Addition to Carbon–Hetero Multiple Bonds

MECHANISM AND REACTIVITY

The reactions considered in this chapter involve addition to the carbon–oxygen, carbon–nitrogen, and carbon–sulfur double bonds, and the carbon–nitrogen triple bond. The mechanistic study of these reactions is much simpler than that of the additions to carbon–carbon multiple bonds considered in Chapter 15.¹ Most of the questions that concerned us there either do not arise here or can be answered very simply. Since C=O, C=N, and C≡N bonds are strongly polar, with the carbon always the positive end (except for isocyanides, see p. 1466), there is never any doubt about the *orientation* of unsymmetrical addition to these bonds. Nucleophilic attacking species always go to the carbon and electrophilic species to the oxygen or nitrogen. Additions to C=S bonds are much less common,² but in these cases the addition can be in the other direction.³ For example, thiobenzophenone (Ph₂C=S), when treated with phenyllithium gives, after hydrolysis, benzhydryl phenyl sulfide (Ph₂CHSPh).⁴

¹For a discussion, see Jencks, W.P. Prog. Phys. Org. Chem. 1964, 2, 63.

²For reviews of thioketones and other compounds with C=S bonds, see Schaumann, E., in Patai, S. *Supplement A: The Chemistry of Double-Bonded Functional Groups*, Vol. 2, pt. 2, Wiley, NY, **1989**, pp. 1269–1367; Ohno, A. in Oae, S. *Organic Chemistry of Sulfur*, Plenum, NY, **1977**, pp. 189–229; Mayer, R., in Janssen, M.J. *Organosulfur Chemistry*, Wiley, NY, **1967**, pp. 219–240; Campaigne, E., in Patai, S. *The Chemistry of the Carbonyl Group*, pt. 1, Wiley, NY, **1966**, pp. 917–959.

³For a review of additions of organometallic compounds to C=S bonds, both to the sulfur (*thiophilic addition*) and to the carbon (*carbophilic addition*), see Wardell, J.L.; Paterson, E.S., in Hartley, F.P.; Patai, S. *The Chemistry of the Metal-Carbon Bond*, Vol. 2, Wiley, NY, **1985**, pp. 219–338, 261–267.

⁴Beak, P.; Worley, J.W. *J. Am. Chem. Soc.* **1972**, *94*, 597. For some other examples, see Schaumann, E.; Walter, W. Chem. Ber. **1974**, *107*, 3562; Metzner, P.; Vialle, J.; Vibet, A. *Tetrahedron* **1978**, *34*, 2289.

March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, Sixth Edition, by Michael B. Smith and Jerry March

Copyright © 2007 John Wiley & Sons, Inc.

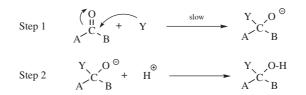
1252 ADDITION TO CARBON-HETERO MULTIPLE BONDS

In addition of YH to a ketone to give 1 the product has a stereogenic carbon, but unless there is chirality in R or R' or YH is optically active, the product must be a racemic mixture because there is no facial bias about the carbonyl. The same holds true for C=N and C=S bonds, since in none of these cases can chirality be present at the heteroatom. The stereochemistry of addition of a single YH to the carbonnitrogen triple bond could be investigated, since the product can exist in (*E*) and (*Z*) forms (p. 183), but these reactions generally give imine products that undergo further reaction. Of course, if R or R' *is* chiral, a racemic mixture will not always arise and the stereochemistry of addition can be studied in such cases. Cram's rule (p. 168) allows us to predict the direction of attack of Y in many cases.⁵ However, even in this type of study, the relative directions of attack of Y and H are not determined, but only the direction of attack of Y with respect to the rest of the substrate molecule.

On p. 1023, it was mentioned that electronic effects can play a part in determining which face of a carbon–carbon double bond is attacked. The same applies to additions to carbonyl groups. For example, in 5-substituted adamantanones (2) electron-withdrawing (-*I*) groups W cause the attack to come from the syn face, while electron-donating groups cause it to come from the anti face.⁶ In 5,6-disubstituted norborn-2-en-7-one systems, the carbonyl appears to tilt away from the π -bond, with reduction occurring from the more hindered face.⁷ An *ab initio* study of nucleophilic addition to 4-*tert*-butylcyclohexanones attempted to predict π -facial selectivity in that system.⁸

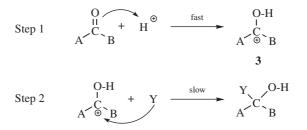
The mechanistic picture is further simplified by the fact that free-radical additions to carbon-heteroatom double bonds are not as prevalent.⁹ In most cases, it

⁶Cheung, C.K.; Tseng, L.T.; Lin, M.; Srivastava, S.; le Noble, W.J. J. Am. Chem. Soc. **1986**, 108, 1598; Laube, T.; Stilz, H.U. J. Am. Chem. Soc. **1987**, 109, 5876.


⁷Kumar, V.A.; Venkatesan, K.; Ganguly, B.; Chandrasekhar, J.; Khan, F.A.; Mehta, G. *Tetrahedron Lett.* **1992**, *33*, 3069.

⁸Yadav, V.K.; Jeyaraj, D.A. J. Org. Chem. 1998, 63, 3474. For a discussion of models, see Priyakumar, U.D.; Sastry, G.N.; Mehta, G. Tetrahedron 2004, 60, 3465.

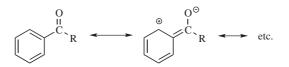
⁹An example is found in 16-31. For other examples, see Kaplan, L. J. Am. Chem. Soc. 1966, 88, 1833;
Drew, R.M.; Kerr, J.A. Int. J. Chem. Kinet. 1983, 15, 281; Fraser-Reid, B.; Vite, G.D.; Yeung, B.A.; Tsang,
R. Tetrahedron Lett. 1988, 29, 1645; Beckwith, A.L.J.; Hay, B.P. J. Am. Chem. Soc. 1989, 111, 2674;
Clerici, A.; Porta, O. J. Org. Chem. 1989, 54, 3872; Cossy, J.; Pete, J.P.; Portella, C. Tetrahedron Lett. 1989, 30, 7361.


⁵For a discussion of such rules, see Eliel, E.L. *The Stereochemistry of Carbon Compounds*, McGraw-Hill, NY, *1962*, pp. 68–74. For reviews of the stereochemistry of addition to carbonyl compounds, see Bartlett, P.A. *Tetrahedron 1980*, *36*, 2, 22; Ashby, E.C.; Laemmle, J.T. *Chem. Rev. 1975*, *75*, 521; Goller, E.J. *J. Chem. Educ. 1974*, *51*, 182; Toromanoff, E. *Top. Stereochem. 1967*, 2, 157.

is the nucleophile that forms the first new bond to carbon, and these reactions are regarded as *nucleophilic additions*, which can be represented thus (for the C=O bond, analogously for the others):

The electrophile shown in step 2 is the proton. In almost all the reactions considered in this chapter, the electrophilic atom is either hydrogen or carbon. Note that step 1 is exactly the same as step 1 of the tetrahedral mechanism of nucleophilic substitution at a carbonyl carbon (p. 1255), but carbon groups (A, B = H, alkyl aryl, etc.) are poor leaving groups so that substitution does not compete with addition. For carboxylic acids and their derivatives (B = OH, OR, NH₂, etc.) much better leaving groups are available and acyl substitution predominates (p. 1254). It is thus the nature of A and B that determines whether a nucleophilic attack at a carbon–heteroatom multiple bond will lead to substitution or addition.

It is also possible for the heteroatom (oxygen in a carbonyl) to react as a base, attacking the electrophilic species. This species is most often a proton and the mechanism is


Whether the nucleophile attacks the carbon or the heteroatom attacks the electrophilic species, the rate-determining step is usually the one involving nucleophilic attack. It may be observed that many of these reactions can be catalyzed by both acids and bases.¹⁰ Bases catalyze the reaction by converting a reagent of the form YH to the more powerful nucleophile Y^- (see p. 490). Acids catalyze it by converting the substrate to an heteroatom-stabilized cation (formation of **3**), thus making it more attractive to nucleophilic attack. Similar catalysis can also be found with metallic ions (e.g., Ag⁺) which act here as Lewis acids.¹¹ We have mentioned before (p. 242) that ions of type **3** are comparatively stable carbocations because the positive charge is spread by resonance.

¹⁰For a discussion of acid and base catalysis in these reactions, see Jencks, W.P.; Gilbert, H.F. *Pure Appl. Chem.* **1977**, *49*, 1021.

¹¹Toromanoff, E. Bull. Soc. Chim. Fr. 1962, 1190.

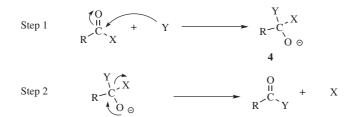
1254 ADDITION TO CARBON-HETERO MULTIPLE BONDS

Reactivity factors in additions to carbon–heteroatom multiple bonds are similar to those for the tetrahedral mechanism of nucleophilic substitution.¹² If A and/or B are electron-donating groups, rates are decreased. Electron-attracting substituents increase rates. This means that aldehydes are more reactive than ketones. Aryl groups are somewhat deactivating compared to alkyl, because of resonance that stabilizes the substrate molecule, but is lost on going to the intermediate:

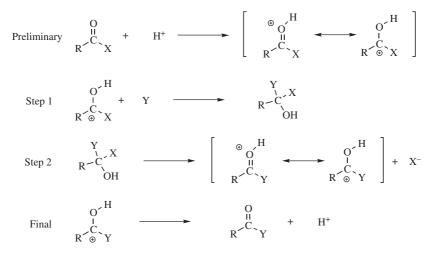
Double bonds in conjugation with the carbon-heteroatom multiple bond also lower addition rates, for similar reasons but, more important, may provide competition from 1,4-addition (p. 1008). Steric factors are also quite important and contribute to the decreased reactivity of ketones compared with aldehydes. Highly hindered ketones like hexamethylacetone and dineopentyl ketone either do not undergo many of these reactions or require extreme conditions.

Nucleophilic Substitution at an Aliphatic Trigonal Carbon: The Tetrahedral Mechanism

All the mechanisms so far discussed take place at a saturated carbon atom. Nucleophilic substitution is also important at trigonal carbons, especially when the carbon is double bonded to an oxygen, a sulfur, or a nitrogen. Substitution at a carbonyl group (or the corresponding nitrogen and sulfur analogs) most often proceeds by a second-order mechanism, which in this book is called the *tetrahedral*¹³ *mechanism*.¹⁴ The IUPAC designation is $A_N + D_N$. The S_N1 mechanisms, involving carbocations, are sometimes found with these substrates, especially with essentially ionic substrates such as RCO⁺ BF₄⁻; there is evidence that in certain cases simple S_N2 mechanisms can take place, especially with a very good leaving group such as Cl⁻;¹⁵


¹²For a review of the reactivity of nitriles, see Schaefer, F.C., in Rappoport, Z. *The Chemistry of the Cyano Group*, Wiley, NY, **1970**, pp. 239–305.

¹³This mechanism has also been called the "additionelimination mechanism," but in this book we limit this term to the type of mechanism shown on p. \$\$\$.


¹⁴For reviews of this mechanism, see Talbot, R.J.E., in Bamford, C.H.; Tipper, C.F.H. *Comprehensive Chemical Kinetics*, Vol. 10, Elsevier, NY, **1972**, pp. 209–223; Jencks, W.P. *Catalysis in Chemistry and Enzymology*, McGraw-Hill, NY, **1969**, pp. 463–554; Satchell, D.P.N.; Satchell, R.S., in Patai, S. *The Chemistry of Carboxylic Acids and Esters*, Wiley, NY, **1969**, pp. 375–452; Johnson, S.L. *Adv. Phys. Org. Chem.* **1967**, *5*, 237.

¹⁵For a review, see Williams, A. Acc. Chem. Res. **1989**, 22, 387. For examples, see Kevill, D.N.; Foss, F.D. J. Am. Chem. Soc. **1969**, 91, 5054; Haberfield, P.; Trattner, R.B. Chem. Commun. **1971**, 1481; De Tar, D.F. J. Am. Chem. Soc. **1982**, 104, 7205; Shpan'ko, I.V.; Goncharov, A.N. J. Org. Chem. USSR **1987**, 23, 2287; Guthrie, J.P.; Pike, D.C. Can. J. Chem. **1987**, 65, 1951; Kevill, D.N.; Kim, C. Bull. Soc. Chim. Fr. **1988**, 383, J. Chem. Soc. Perkin Trans. 2 **1988**, 1353; Bentley, T.W.; Koo, I.S. J. Chem. Soc. Perkin Trans. 2 **1988**, 1353; See, however, Buncel, E.; Um, I.H.; Hoz, S. J. Am. Chem. Soc. **1989**, 111, 971.

and an SET mechanism has also been reported.¹⁶ However, the tetrahedral mechanism is by far the most prevalent. Although this mechanism displays secondorder kinetics, it is not the same as the S_N2 mechanism previously discussed. In the tetrahedral mechanism, first Y attacks to give an intermediate containing both X and Y (4), and then X leaves. This sequence, impossible at a saturated carbon, is possible at an unsaturated one because the central carbon can release a pair of electrons to the oxygen and so preserve its octet:

When reactions are carried out in acid solution, there may also be a preliminary and a final step:

The hydrogen ion is a catalyst. The reaction rate is increased because it is easier for the nucleophile to attack the carbon when the electron density of the latter has been decreased.¹⁷

Evidence for the existence of the tetrahedral mechanism is as follows:¹⁸

1. The kinetics are first order each in the substrate and in the nucleophile, as predicted by the mechanism.

¹⁶Bacaloglu, R.; Blaskó, A.; Bunton, C.A.; Ortega, F. J. Am. Chem. Soc. 1990, 112, 9336.

¹⁷For discussions of general acid and base catalysis of reactions at a carbonyl group, see Jencks, W.P. Acc. Chem. Res. **1976**, *9*, 425; Chem. Rev. **1972**, 72, 705.

¹⁸For additional evidence, see Guthrie, J.P. J. Am. Chem. Soc. **1978**, 100, 5892; Kluger, R.; Chin, J. J. Am. Chem. Soc. **1978**, 100, 7382; O'Leary, M.H.; Marlier, J.F. J. Am. Chem. Soc. **1979**, 101, 3300.

- **2.** There is other kinetic evidence in accord with a tetrahedral intermediate. For example, the rate "constant" for the reaction between acetamide and hydroxylamine is not constant, but decreases with increasing hydroxylamine concentration.¹⁹ This is not a smooth decrease; there is a break in the curve. A straight line is followed at low hydroxylamine concentration and another straight line at high concentration. This means that the identity of the rate-determining step is changing. Obviously, this cannot happen if there is only one step: there must be two steps, and hence an intermediate. Similar kinetic behavior has been found in other cases as well,²⁰ in particular, plots of rate against pH are often bell shaped.
- **3.** Basic hydrolysis has been carried out on carboxylic esters labeled with ¹⁸O in the carbonyl group.²¹ If this reaction proceeded by the normal S_N^2 mechanism, all the ¹⁸O would remain in the carbonyl group, even if, in an equilibrium process, some of the carboxylic acid formed went back to the starting material:

$$HO^{-} + \underset{R}{\overset{18}{\overset{}}_{\overset{$$

On the other hand, if the tetrahedral mechanism operates

$$HO^{-} + \underset{R}{\overset{18}{}O} \xrightarrow{HO} \underset{R}{\overset{1}{}} \underset{R}{\overset{1}{}OR'} \xrightarrow{HO} \underset{R}{\overset{1}{}} \underset{R}{\overset{1}{}OR'} \xrightarrow{HO} \underset{R}{\overset{1}{}} \underset{R}{\overset{1}{}OR'} \xrightarrow{HO} \underset{R}{\overset{1}{}ROH} \xrightarrow{HO} \underset{R}{\overset{1}{}OR'} \xrightarrow{HO} \underset{R}{}OR' \xrightarrow{HO} \underset{R}{\overset{1}{}OR'} \xrightarrow{HO} \underset{R}{}OR' \xrightarrow{HO} \underset{R$$

then the intermediate **5**, by gaining a proton, becomes converted to the symmetrical intermediate **6**. In this intermediate the OH groups are equivalent, and (except for the small ${}^{18}\text{O}/{}^{16}\text{O}$ isotope effect) either one can lose a proton with equal facility:

The intermediates **5** and **7** can now lose OR' to give the acid (not shown in the equations given), or they can lose OH to regenerate the carboxylic ester. If **5** goes back to ester, the ester will still be labeled, but if **7** reverts to ester, the

¹⁹Jencks, W.P.; Gilchrist, M. J. Am. Chem. Soc. 1964, 86, 5616.

²⁰Hand, E.S.; Jencks, W.P. J. Am. Chem. Soc. **1962**, 84, 3505; Johnson, S.L. J. Am. Chem. Soc. **1964**, 86, 3819; Fedor, L.R.; Bruice, T.C. J. Am. Chem. Soc. **1964**, 86, 5697; **1965**, 87, 4138; Kevill, D.N.; Johnson, S.L. J. Am. Chem. Soc. **1965**, 87, 928; Leinhard, G.E.; Jencks, W.P. J. Am. Chem. Soc. **1965**, 87, 3855; Schowen, R.L.; Jayaraman, H.; Kershner, L.D. J. Am. Chem. Soc. **1966**, 88, 3373.

²¹Bender, M.L. J. Am. Chem. Soc. **1951**, 73, 1626; Bender, M.L.; Thomas, R.J. J. Am. Chem. Soc. **1961**, 83, 4183, 4189.

¹⁸O will be lost. A test of the two possible mechanisms is to stop the reaction before completion and to analyze the recovered ester for ¹⁸O. This is just what was done by Bender, who found that in alkaline hydrolysis of methyl, ethyl, and isopropyl benzoates, the esters had lost ¹⁸O. A similar experiment carried out for acid-catalyzed hydrolysis of ethyl benzoate showed that here too the ester lost ¹⁸O. However, alkaline hydrolysis of substituted benzyl benzoates showed no ¹⁸O loss.²² This result does not necessarily mean that no tetrahedral intermediate is involved in this case. If 5 and 7 do not revert to ester, but go entirely to acid, no ¹⁸O loss will be found even with a tetrahedral intermediate. In the case of benzyl benzoates, this may very well be happening, because formation of the acid relieves steric strain. Another possibility is that 5 loses OR' before it can become protonated to 6^{23} Even the experiments that do show ¹⁸O loss do not prove the existence of the tetrahedral intermediate, since it is possible that ¹⁸O is lost by some independent process not leading to ester hydrolysis. To deal with this possibility, Bender and Heck²⁴ measured the rate of ¹⁸O loss in the hydrolysis of ethyl trifluorothioloacetate-¹⁸O:

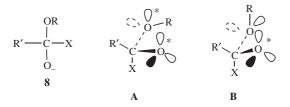
$$\begin{array}{c} \overset{^{18}\text{O}}{\underset{F_3C}{\overset{H}{\leftarrow}}} + H_2\text{O} \xrightarrow{k_1} \text{Intermediate} \xrightarrow{k_3} F_3\text{CCOOH} + \text{EtSH} \end{array}$$

This reaction had previously been shown²⁵ to involve an intermediate by the kinetic methods mentioned on p. 1256. Bender and Heck showed that the rate of ¹⁸O loss and the value of the partitioning ratio k_2/k_3 as determined by the oxygen exchange technique were exactly in accord with these values as previously determined by kinetic methods. Thus the original ¹⁸O-exchange measurements showed that there is a tetrahedral species present, though not necessarily on the reaction path, while the kinetic experiments showed that there is a methods are intermediate present, though not necessarily tetrahedral. Bender and Heck's results demonstrate that there is a tetrahedral intermediate and that it lies on the reaction pathway.

4. In some cases, tetrahedral intermediates have been isolated²⁶ or detected spectrally.²⁷

²⁴Bender, M.L.; Heck, H. d'A. J. Am. Chem. Soc. 1967, 89, 1211.

²⁵Fedor, L.R.; Bruice, T.C. J. Am. Chem. Soc. 1965, 87, 4138.


 ²⁷For reviews, see Capon, B.; Dosunmu, M.I.; Sanchez, M. de N de M. Adv. Phys. Org. Chem. 1985, 21,
 37; McClelland, R.A.; Santry, L.J. Acc. Chem. Res. 1983, 16, 394; Capon, B.; Ghosh, A.K.; Grieve,
 D.M.A. Acc. Chem. Res. 1981, 14, 306. See also, Lobo, A.M.; Marques, M.M.; Prabhakar, S.; Rzepa, H.S.
 J. Chem. Soc., Chem. Commun. 1985, 1113; van der Wel, H.; Nibbering, N.M.M. Recl. Trav. Chim. Pays-Bas 1988, 107, 479, 491.

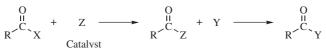
²²Bender, M.L.; Matsui, H.; Thomas, R.J.; Tobey, S.W. J. Am. Chem. Soc. **1961**, 83, 4193. See also, Shain, S.A.; Kirsch, J.F. J. Am. Chem. Soc. **1968**, 90, 5848.

²³For evidence for this possibility, see McClelland, R.A. J. Am. Chem. Soc. 1984, 106, 7579.

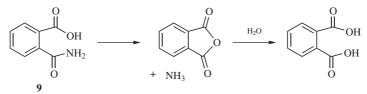
²⁶Rogers, G.A.; Bruice, T.C. J. Am. Chem. Soc. **1974**, 96, 2481; Khouri, F.F.; Kaloustian, M.K. J. Am. Chem. Soc. **1986**, 108, 6683.

Several studies have been made of the directionality of approach by the nucleophile.²⁸ Menger has proposed for reactions in general, and specifically for those that proceed by the tetrahedral mechanism, that there is no single definable preferred transition state, but rather a "cone" of trajectories. All approaches within this cone lead to reaction at comparable rates; it is only when the approach comes outside of the cone that the rate falls.

Directionality has also been studied for the second step. Once the tetrahedral intermediate (4) is formed, it loses Y (giving the product) or X (reverting to the starting compound). Deslongchamps has proposed that one of the factors affecting this choice is the conformation of the intermediate; more specifically, the positions of the lone pairs. In this view, a leaving group X or Y can depart only if the other two atoms on the carbon both have an orbital antiperiplanar to the C-X or C-Y bond. For example, consider an intermediate 8 formed by attack of ⁻OR on a substrate R'COX. Cleavage of the C–X bond with loss of X can take place from conformation A, because the two lone-pair orbitals marked * are antiperiplanar to the C-X bond, but not from **B** because only the O^- has such an orbital. If the intermediate is in conformation **B**, the OR may leave (if X has a lone-pair orbital in the proper position) rather than X. This factor is called *stereoelectronic control*.²⁹ Of course, there is free rotation in acyclic intermediates, and many conformations are possible, but some are preferred, and cleavage reactions may take place faster than rotation, so stereoelectronic control can be a factor in some situations. Much evidence has been presented for this concept.³⁰ More generally, the term *stereoelectronic effects* refers to any case in which orbital


³⁰For monographs, see Kirby, A.J. The Anomeric Effect and Related Stereoelectronic Effects at Oxygen, Springer, NY, **1983**; Deslongchamps, P. Stereoelectronic Effects in Organic Chemistry, Pergamon, NY, **1983**. For lengthy treatments, see Sinnott, M.L. Adv. Phys. Org. Chem. **1988**, 24, 113; Gorenstein, D.G. Chem. Rev. **1987**, 87, 1047; Deslongchamps, P. Heterocycles **1977**, 7, 1271; Tetrahedron **1975**, 31, 2463. For additional evidence, see Perrin, C.L.; Arrhenius, G.M.L. J. Am. Chem. Soc. **1982**, 104, 2839; Briggs, A.J.; Evans, C.M.; Glenn, R.; Kirby, A.J. J. Chem. Soc. Perkin Trans. 2 **1983**, 1637; Ndibwami, A.; Deslongchamps, P.Can. J. Chem. **1986**, 64, 1788; Hegarty, A.F.; Mullane, M. J. Chem. Soc. **1986**, 108, 5997; **1987**, 109, 522.

 ²⁸For discussions, see Menger, F.M. *Tetrahedron* 1983, 39, 1013; Liotta, C.L.; Burgess, E.M.; Eberhardt,
 W.H. J. Am. Chem. Soc. 1984, 106, 4849.


²⁹It has also been called the "antiperiplanar lone pair hypothesis (ALPH)." For a reinterpretation of this factor in terms of the principle of least nuclear motion (see **15-10**), see Hosie, L.; Marshall, P.J.; Sinnott, M.L. *J. Chem. Soc. Perkin Trans.* 2 **1984**, 1121; Sinnott, M.L. *Adv. Phys. Org. Chem.* **1988**, 24, 113.

position requirements affect the course of a reaction. The backside attack in the $S_N 2$ mechanism is an example of a stereoelectronic effect.

Some nucleophilic substitutions at a carbonyl carbon are *catalyzed* by nucleophiles.³¹ There occur, in effect, two tetrahedral mechanisms:

(For an example, see **16-58**). When this happens internally, we have an example of a neighboring-group mechanism at a carbonyl carbon.³² For example, the hydrolysis of phthalamic acid (9) takes place as follows:

Evidence comes from comparative rate studies.³³ Thus **9** was hydrolyzed $\sim 10^5$ times faster than benzamide (PhCONH₂) at about the same concentration of hydrogen ions. That this enhancement of rate was not caused by the resonance or field effects of COOH (an electron-withdrawing group) was shown by the fact both *o*-nitrobenzamide and terephthalamic acid (the para isomer of **9**) were hydrolyzed more slowly than benzamide. Many other examples of neighboring-group participation at a carbonyl carbon have been reported.³⁴ It is likely that nucleophilic catalysis is involved in enzyme catalysis of ester hydrolysis.

The attack of a nucleophile on a carbonyl group can result in substitution or addition, though the first step of each mechanism is the same. The main factor that determines the product is the identity of the group X in RCOX. When X is alkyl or hydrogen, addition usually takes place. When X is halogen, OH, OCOR, NH_2 , and so on, the usual reaction is substitution.

In both the $S_N 1$ and $S_N 2$ mechanisms, the leaving group departs during the rate-determining step and so directly affects the rate. In the tetrahedral mechanism at a carbonyl carbon, the bond between the substrate and leaving group is still intact during the slow step. Nevertheless, the nature of the leaving group still affects the reactivity in two ways: (1) By altering the

³¹For reviews of nucleophilic catalysis, see Bender, M.L. *Mechanisms of Homogeneous Catalysis from Protons to Proteins*, Wiley, NY, **1971**, pp. 147–179; Jencks, W.P. *Catalysis in Chemistry and Enzymology*, McGraw-Hill, NY, **1969**, pp. 67–77; Johnson, S.L. *Adv. Phys. Org. Chem.* **1967**, 5, p. 271. For a review where Z = a tertiary amine (the most common case), see Cherkasova, E.M.; Bogatkov, S.V.; Golovina, Z.P. *Russ. Chem. Rev.* **1977**, 46, 246.

³²For reviews, see Kirby, A.J.; Fersht, A.R. *Prog. Bioorg. Chem.* **1971**, *1*, 1; Capon, B. *Essays Chem.* **1972**, *3*, 127.

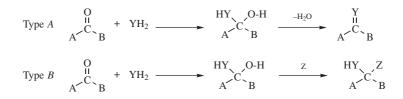
³³Bender, M.L.; Chow, Y.; Chloupek, F.J. J. Am. Chem. Soc. 1958, 80, 5380.

³⁴For examples, see Bruice, T.C.; Pandit, U.K. J. Am. Chem. Soc. **1960**, 82, 5858; Kluger, R.; Lam, C. J. Am. Chem. Soc. **1978**, 100, 2191; Page, M.I.; Render, D.; Bernáth, G. J. Chem. Soc. Perkin Trans. 2 **1986**, 867.

Reaction Number	Reaction
16-57	$RCOX + H_2O \longrightarrow RCOOH$
16-58	$RCOOCOR' + H_2O \longrightarrow RCOOH + R'COOH$
16-59	$RCO_2R' + H_2O \longrightarrow RCOOH + R'OH$
16-59	$RCONR'_2 + H_2O \longrightarrow RCOOH + R_2NH (R' = H, alkyl, aryl)$
16-61	$RCOX + R'OH \longrightarrow RCO_2R'$
16-62	$RCOOCOR + R'OH \longrightarrow RCO_2R'$
16-63	$RCOOH + R'OH \longrightarrow RCO_2R'$
16-64	$RCO_2R' + R''OH \longrightarrow RCO_2R'' + R'OH$
16-66	$RCOX + R'COO^{-} \longrightarrow RCOOCOR'$
10-21	$RCOX + H_2O_2 \longrightarrow RCO_3H$
16-69	$RCOX + R'SH \longrightarrow RCOSR'$
16-72	$RCOX + NHR'_2 \longrightarrow RCONR'_2$ (R' = H, alkyl, aryl)
16-73	$RCOOCOR + NHR'_2 \longrightarrow RCONR'_2 (R' = H, alkyl, aryl)$
16-74	$\text{RCOOH} + \text{NHR}'_2 \xrightarrow[\text{agent}]{\text{coupling}} \text{RCONR}'_2 (\text{R}' = \text{H, alkyl, aryl})$
16-75	$RCO_2R' + NHR^2 \longrightarrow RCONR^2 (R^2 = H, alkyl, aryl)$
16-79	$RCOOH + SOCl_2 \longrightarrow RCOCl$
19-39	$RCOX + LiAlH(O - t - Bu)_3 \longrightarrow RCHO$
19-41	$RCONR'_2 + LiAlH_4 \longrightarrow RCHO$
16-81	$RCOX + R_{2'}CuLi \longrightarrow RCOR'$
16-85	$2RCH_2CO_2R' \longrightarrow RCH_2COCHRCO_2R'$

TABLE 16.1. The More Important Synthetic Reactions that Take Place by the Tetrahedral Mechanism^a

^aCatalysts are not shown.


electron density at the carbonyl carbon, the rate of the reaction is affected. The greater the electron-withdrawing character of X, the greater the partial positive charge on C and the more rapid the attack by a nucleophile. (2) The nature of the leaving group affects the *position of equilibrium*. In the intermediate **4** (p. 1255), there is competition between X and Y as to which group leaves. If X is a poorer leaving group than Y, then Y will preferentially leave and **4** will revert to the starting compounds. Thus there is a partitioning factor between **4** going on to product (loss of X) or back to starting compound (loss of Y). The sum of these two factors causes the sequence of reactivity to be RCOOCl > RCOOCOR' > RCOOAr > RCOOR' > RCONH₂ > RCONR'₂ > RCOO⁻.³⁵ Note that this order is approximately the order of decreasing stability of the leaving-group anion. If the leaving group is bulky, it may exert a steric effect and retard the rate for this reason.

For a list of some of the more important reactions that operate by the tetrahedral mechanism, see Table 16.1, which shows the main reactions that proceed by the tetrahedral mechanism.

 $^{^{35}}$ RCOOH would belong in this sequence just after RCOOAr, but it fails to undergo many reactions for a special reason. Many nucleophiles, instead of attacking the C=O group, are basic enough to take a proton from the acid, converting it to the unreactive RCOO⁻.

REACTIONS

Many of the reactions in this chapter are simple additions to carbon-hetero multiple bonds, with the reaction ending when the two groups have been added. But in many other cases subsequent reactions take place. We will meet a number of such reactions, but most are of two types:

In type *A*, the initially formed adduct loses water (or, in the case of addition to C=NH, ammonia, etc.), and the net result of the reaction is the substitution of C=Y for C=O (or C=NH, etc.). In type *B*, there is a rapid substitution, and the OH (or NH₂, etc.) is replaced by another group Z, which is often another YH moiety. This substitution is in most cases nucleophilic, since Y usually has an unshared pair and S_N1 reactions occur very well on this type of compound (see p. 482), even when the leaving group is as poor as OH or NH₂. In this chapter, we will classify reactions according to what is initially adding to the carbonhetero multiple bond, even if subsequent reactions take place so rapidly that it is not possible to isolate the initial adduct.

Most of the reactions considered in this chapter can be reversed. In many cases, we will consider the reverse reactions with the forward ones, in the same section. The reverse of some of the other reactions are considered in other chapters. In still other cases, one of the reactions in this chapter is the reverse of another (e.g., **16-2** and **16-13**). For reactions that are reversible, the principle of microscopic reversibility (p. 309) applies.

First, we will discuss reactions in which hydrogen or a metallic ion (or in one case phosphorus or sulfur) adds to the heteroatom and second reactions in which carbon adds to the heteroatom. Within each group, the reactions are classified by the nature of the nucleophile. Additions to isocyanides, which are different in character, follow. Acyl substitution reactions that proceed by the tetrahedral mechanism, which mostly involve derivatives of carboxylic acids, are treated at the end.

REACTIONS IN WHICH HYDROGEN OR A METALLIC ION ADDS TO THE HETEROATOM

A. Attack by OH (Addition of H₂O)

16-1 The Addition of Water to Aldehydes and Ketones: Formation of Hydrates

O-Hydro-C-hydroxy-addition

$$\begin{array}{c} O \\ H \\ C \\ \end{array} + H_2 O \xrightarrow{H^+ \text{ or }} HO \\ \hline \\ \hline \\ \hline \\ OH \\ \end{array} \right) \begin{array}{c} OH \\ C \\ \end{array}$$

The adduct formed upon addition of water to an aldehyde or ketone is called a hydrate or *gem*-diol.³⁶ These compounds are usually stable only in water solution and decompose on distillation; that is, the equilibrium shifts back toward the carbonyl compound. The position of the equilibrium is greatly dependent on the structure of the hydrate. Thus, formaldehyde in water at 20°C exists 99.99% in the hydrated form, while for acetaldehyde this figure is 58%, and for acetone the hydrate concentration is negligible.³⁷ It has been found, by exchange with ¹⁸O, that the reaction with acetone is quite rapid when catalyzed by acid or base, but the equilibrium lies on the side of acetone and water.³⁸ Since methyl, a +*I* group, inhibits hydrate formation, it may be expected that electron-attracting groups would have the opposite effect, and this is indeed the case. The hydrate of chloral (trichloroacetaldehyde)³⁹ is a stable crystalline substance. In order for it to revert to chloral, ^{-}OH or H₂O must leave; this is made difficult by the electron-withdrawing character of the Cl₃C group. Some other⁴⁰ polychlorinated and polyfluorinated

Chloral hydrate

Hydrate of cyclopropanone

aldehydes and ketones⁴¹ and α -keto aldehydes also form stable hydrates, as do cyclopropanones.⁴² In the last case,⁴³ formation of the hydrate relieves some of the *I* strain (p. 399) of the parent ketone.

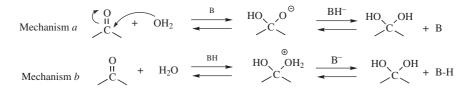
³⁶For reviews, see Bell, R.P. *The Proton in Chemistry*, 2nd ed., Cornell University Press, Ithaca, NY, **1973**, pp. 183–187; *Adv. Phys. Org. Chem.* **1966**, *4*, 1; Le Hénaff, P. *Bull. Soc. Chim. Fr.* **1968**, 4687.

³⁷Bell, R.P.; Clunie, J.C. *Trans. Faraday Soc.* **1952**, 48, 439. See also, Bell, R.P.; McDougall, A.O. *Trans. Faraday Soc.* **1960**, 56, 1281.

³⁸Cohn, M.; Urey, H.C. J. Am. Chem. Soc. 1938, 60, 679.

³⁹For a review of chloral, see Luknitskii, F.I. Chem. Rev. 1975, 75, 259.

⁴⁰For a discussion, see Schulman, E.M.; Bonner, O.D.; Schulman, D.R.; Laskovics, F.M. J. Am. Chem. Soc. **1976**, 98, 3793.


⁴¹For a review of addition to fluorinated ketones, see Gambaryan, N.P.; Rokhlin, E.M.; Zeifman, Yu.V.; Ching-Yun, C.; Knunyants, I.L. *Angew. Chem. Int. Ed.* **1966**, *5*, 947.

⁴²For other examples, see Krois, D.; Lehner, H. Monatsh. Chem. 1982, 113, 1019.

⁴³Turro, N.J.; Hammond, W.B. J. Am. Chem. Soc. 1967, 89, 1028; Schaafsma, S.E.; Steinberg, H.; de Boer, T.J. Recl. Trav. Chim. Pays-Bas 1967, 86, 651. For a review of cyclopropanone chemistry, see Wasserman, H.H.; Clark, G.M.; Turley, P.C. Top. Curr. Chem. 1974, 47, 73.

CHAPTER 16

The reaction is subject to both general-acid and general-base catalysis; the following mechanisms can be written for basic (B) and acidic (BH) catalysis, respectively:⁴⁴

In mechanism *a*, as the H₂O attacks, the base pulls off a proton, and the net result is addition of $^{-}$ OH. This can happen because the base is already hydrogen bonded to the H₂O molecule before the attack. In mechanism *b*, because HB is already hydrogen bonded to the oxygen of the carbonyl group, it gives up a proton to the oxygen as the water attacks. In this way, B and HB accelerate the reaction even beyond the extent that they form $^{-}$ OH or H₃O⁺ by reaction with water. Reactions in which the catalyst donates a proton to the electrophilic reagent (in this case the aldehyde or ketone) in one direction and removes it in the other are called class e reactions. Reactions. ⁴⁵ Thus the acid-catalyzed process here is a class e reaction, while the base catalyzed process is a class n reaction.

For the reaction between ketones and H_2O_2 , see 17-37.

There are no OS references, but see OS VIII, 597, for the reverse reaction.

16-2 Hydrolysis of the Carbon-Nitrogen Double Bond⁴⁶

Oxo-de-alkylimino-bisubstitution, and so on

$$\begin{tabular}{cccc} N-W & H_2O & O \\ II & & C & & C \\ C & & & C & & H_2 \end{array}$$

Compounds containing carbon–nitrogen double bonds can be hydrolyzed to the corresponding aldehydes or ketones.⁴⁷ For imines (W = R or H) the hydrolysis is easy and can be carried out with water. When W = H, the imine is seldom stable enough for isolation, and in aqueous media hydrolysis usually occurs *in situ*, without isolation. The hydrolysis of Schiff bases (W = Ar) is more difficult and requires

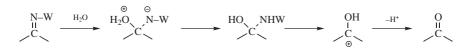
⁴⁴Bell, R.P.; Rand, M.H.; Wynne-Jones, K.M.A. *Trans. Faraday Soc.* **1956**, *52*, 1093; Pocker, Y. *Proc. Chem. Soc.* **1960**, 17; Sørensen, P.E.; Jencks, W.P. J. Am. Chem. Soc. **1987**, *109*, 4675. For a comprehensive treatment, see Lowry, T.H.; Richardson, K.S. Mechanism and Theory in Organic Chemistry, 3rd ed., Harper and Row, NY, **1987**, pp. 662–680. For a theoretical treatment see Wolfe, S.; Kim, C.-K.; Yang, K.; Weinberg, N.; Shi, Z. J. Am. Chem. Soc. **1995**, *117*, 4240.

⁴⁵Jencks, W.P. Acc. Chem. Res. **1976**, 9, 425.

⁴⁶For a review, see Khoee, S.; Ruoho, A.E. Org. Prep. Proceed. Int. 2003, 35, 527.

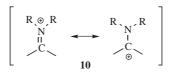
⁴⁷The proton affinities of imines have been determined, see Hammerum, S.; Sølling, T.I. J. Am. Chem. Soc. **1999**, 121, 6002.

acid or base catalysis. Oximes (W = OH), arylhydrazones (W = NHAr), and, most easily, semicarbazones ($W = NHCONH_2$) can also be hydrolyzed. Often a reactive aldehyde (e.g., formaldehyde) is added to combine with the liberated amine.

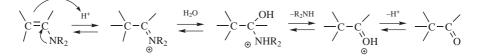

A number of other reagents⁴⁸ have been used to cleave C=N bonds, especially those not easily hydrolyzable with acidic or basic catalysts or that contain other functional groups that are attacked under these conditions. Oximes have been converted to the corresponding aldehyde or ketone⁴⁹ by treatment with, among other reagents, NBS in water,⁵⁰ glyoxylic acid (HCOCOOH),⁵¹ Chloramine-T⁵² Caro's acid on SiO₂,⁵³ HCOOH on SiO₂ with microwave irradiation,⁵⁴ bromosulfonamides,⁵⁵ SiBr₄ on wet silica,⁵⁶ and KMnO₄ on Al₂O₃⁵⁷ or on zeolite.⁵⁸ Chromate oxidizing agents can be quite effective, including tetraethylammonium permanganate,⁵⁹ tetraalkylammonium dichromate with microwave irradiation,⁶⁰ pyridinium fluorochromate,⁶¹ quinolinium fluorochromate⁶² or dichromate.⁶³ Alkaline H₂O₂,⁶⁴ iodine in acetonitrile,⁶⁵ singlet oxygen with NaOMe/MeOH⁶⁶ and with an ionic liquids on SiO₂⁶⁷ have also been used. Transition-metal compounds have been used, including SbCl₅,⁶⁸ Co₂(CO)₈⁶⁹ Hg(NO₃)₂/SiO₂,⁷⁰ or BiBr₃–Bi(OTf)₃ in aqueous media,⁷¹ Bi(NO₃)₃/SiO₂,⁷² a nickel(II) complex

- ⁴⁸For a list of reagents, with references, see Ranu, B.C.; Sarkar, D.C. J. Org. Chem. 1988, 53, 878.
- ⁴⁹For a review, see Corsaro, A.; Chiacchio, U.; Pistarià, V. Synthesis 2001, 1903.
- ⁵⁰Bandgar, B.P.; Makone, S.S. Org. Prep. Proceed. Int. 2000, 32, 391.
- ⁵¹Chavan, S.P.; Soni, P. Tetrahedron Lett. 2004, 45, 3161.
- ⁵²Padmavathi, V.; Reddy, K.V.; Padmaja, A.; Venugopalan, P. J. Org. Chem. 2003, 68, 1567.
- ⁵³Movassagh, B.; Lakouraj, M.M.; Ghodrati, K. Synth. Commun. 2000, 30, 4501.
- ⁵⁴A solvent-free reaction. See Zhou, J.-F.; Tu, S.-J.; Feng, J.-C. Synth.Commun. 2002, 32, 959.
- ⁵⁵Khazaei, A.; Vaghei, R.G.; Tajbakhsh, M. Tetrahedron Lett. 2001, 42, 5099.
- ⁵⁶De, S.K. Tetrahedron Lett. 2003, 44, 9055.
- ⁵⁷Chrisman, W.; Blankinship, M.J.; Taylor, B.; Harris, C.E. Tetrahedron Lett. 2003, 33, 4775; Imanzadeh,
- G.H.; Hajipour, A.R.; Mallakpour, S.E. Synth. Commun. 2003, 33, 735.
- ⁵⁸Jadhav, V.K.; Wadgaonkar, P.P.; Joshi, P.L.; Salunkhe, M.M. Synth. Commun. 1999, 29, 1989.
- ⁵⁹Bigdeli, M.A.; Nikje, M.M.A.; Heravi, M.M. J. Chem. Res. (S) 2001, 496.
- ⁶⁰Hajipour, A.R.; Mallakpour, S.E.; Khoee, E. Synth. Commun. 2002, 32, 9.
- ⁶¹Ganguly, N.C.; De, P.; Sukai, A.K.; De, S. Synth. Commun. 2002, 32, 1.
- ⁶²Bose, D.S.; Narasaiah, A.V. Synth. Commun. 2000, 30, 1153. See also, Ganguly, N.C.; Sukai, A.K.; De, S.; De, P. Synth. Commun. 2001, 31, 1607.
- ⁶³Sadeghi, M.M.; Mohammadpoor-Baltork, I.; Azarm, M.; Mazidi, M.R. Synth. Commun. 2001, 31, 435.
 See also, Hajipour, A.R.; Mallakpour, S.E.; Mohammadpoor-Baltork, I.; Khoee, S. Synth. Commun. 2001, 31, 1187; Tajbakhsh, M.; Heravi, M.M.; Mohanazadeh, F.; Sarabi, S.; Ghassemzadeh, M. Monat. Chem. 2001, 132, 1229; Zhang, G.-S.; Yang, D.-H.; Chen. M.-F. Org. Prep. Proceed. Int. 1998, 30, 713.
 ⁶⁴Ho, T. Synth. Commun. 1980, 10, 465.
- ⁶⁵Yadav, J.S.; Sasmal, P.K.; Chand, P.K. Synth. Commun. 1999, 29, 3667.
- ⁶⁶Öcal, N.; Erden, I. Tetrahedron Lett. 2001, 42, 4765.
- ⁶⁷BAcIm BF₄, 3-butyl-1-(CH₂COOH)imidazolium tetrafluoroborate: Li, D.; Shi, F.; Guo, S.; Deng, Y. *Tetrahedron Lett.* **2004**, *45*, 265. In Dmim BF₄, 1-decyl-3-methyl imidazolium tetrafluoroborate: Li, D.; Shi, F.; Deng, Y. *Tetrahedron Lett.* **2004**, *45*, 6791.
- ⁶⁸Narsaiah, A.V.; Nagaiah, K. Synthesis 2003, 1881.
- ⁶⁹Mukai, C.; Nomura, I.; Kataoka, O.; Hanaoka, M. Synthesis 1999, 1872.
- ⁷⁰De, S.K. Synth. Commun. 2004, 34, 2289.
- ⁷¹Arnold, J.N.; Hayes, P.D.; Kohaus, R.L.; Mohan, R.S. Tetrahedron Lett. 2003, 44, 9173.
- ⁷²Samajdar, S.; Basu, M.K.; Becker, F.F.; Banik, B.K. Synth. Commun. 2002, 32, 1917.

with trimethylacetaldehyde,⁷³ CuCl on Kieselguhr with oxygen,⁷⁴ Bi(NO₃)₃/ Cu(OAc)₂ on Montmorillonite K10,⁷⁵ CrO₃-SiO₂,⁷⁶ and In addition, peroxomonosulfate-SiO₂,⁷⁷ Cu(NO₃)₂–SiO₂,⁷⁸ Zn(NO₃)₂-SiO₂,⁷⁹ and clay (Clayan)⁸⁰ have all been used with microwave irradiation. Phenylhydrazones can be converted to a ketone using Oxone[®] and KHCO₃,⁸¹ polymer-bound iodonium salts,⁸² or KMnO₄ on wet SiO₂.⁸³ Dimethylhydrazones have been converted to ketones by heating with potassium carbonate in dimethyl sulfate,⁸⁴ with MeReO₃/H₂O₂ in acetic acidacetonitrile,⁸⁵ with Pd(OAc)₂/SnCl₂ in aq. DMF,⁸⁶ FeSO₄•7 H₂O in chloroform,⁸⁷ Me₃SiCl/NaI in acetonitrile with 1% water,⁸⁸ [Ni(en)₃]₂S₂O₃, where en = ethylenediamine, in chloroform,⁸⁹ or CeCl₃•7 H₂O–SiO₂ with microwave irradiation.⁹⁰


Hydrazones, such as RAMP or SAMP (see p. 633) can be hydrolyzed with aq. CuCl₂.⁹¹ Tosylhydrazones can be hydrolyzed to the corresponding ketones with aq. acetone and BF₃-etherate,⁹² as well as with other reagents.⁹³ Semicarbazones have been cleaved with ammonium chlorochromates on alumina⁹⁴ (Bu₄N)₂. S₂O₈,⁹⁵ Mg(HSO₄)₂ on wet silica,⁹⁶ or by SbCl₃ with microwave irradiation.⁹⁷

The hydrolysis of carbon-nitrogen double bonds involves initial addition of water and elimination of a nitrogen moiety:



- ⁷³Blay, G.; Benach, E.; Fernández, I.; Galletero, S.; Pedro, J.R.; Ruiz, R. Synthesis 2000, 403.
- ⁷⁴Hashemi, M.M.; Beni, Y.A. Synth. Commun. 2001, 31, 295.
- ⁷⁵Nattier, B.A.; Eash, K.J.; Mohan, R.S. Synthesis 2001, 1010.
- ⁷⁶Bendale, P.M.; Khadilkar, B.M. Synth. Commun. 2000, 30, 665.
- ⁷⁷Bose, D.S.; Narsaiah, A.V.; Lakshminarayana, V. Synth. Commun. 2000, 30, 3121.
- ⁷⁸Ghiaci, M.; Asghari, J. Synth. Commun. 2000, 30, 3865.
- ⁷⁹Tamami, B.; Kiasat, A.R. Synth. Commun. 2000, 30, 4129.
- ⁸⁰Meshram, H.M.; Srinivas, D.; Reddy, G.S.; Yadav, J.S. Synth. Commun. 1998, 28, 4401; 2593.
- ⁸¹Hajipour, A.R.; Mahboubghah, N. Org. Prep Proceed. Int. 1999, 31, 112.
- ⁸²Chen, D.-J.; Cheng, D.-P.; Chen, Z.-C. Synth. Commun. 2001, 31, 3847.
- ⁸³Hajipour, A.R.; Adibi, H.; Ruoho, A.E. J. Org. Chem. 2003, 68, 4553.
- ⁸⁴Kamal, A.; Arifuddin, M.; Rao, N.V. Synth. Commun. 1998, 28, 3927.
- ⁸⁵Stanković, S.; Espenson, J.H. J. Org. Chem. 2000, 65, 2218.
- ⁸⁶Mino, C.; Hirota, T.; Fujita, N.; Yamashita, M. Synthesis 1999, 2024.
- ⁸⁷Nasreen, A.; Adapa, S.R. Org. Prep. Proceed. Int. 1999, 31, 573.
- ⁸⁸Kamal, A.; Ramana, K.V.; Arifuddin, M. Chem. Lett. 1999, 827.
- ⁸⁹Kamal, A.; Arifuddin, M.; Rao, M.V. Synlett 2000, 1482.
- ⁹⁰Yadav, J.S.; Subba Reddy, B.V.; Reddy, M.S.K.; Sabitha, G. Synlett 2001, 1134.
- ⁹¹Enders, D.; Hundertmark, T.; Lazny, R. Synth. Commun. 1999, 29, 27.
- ⁹²Sacks, C.E.; Fuchs, P.L. Synthesis 1976, 456.
- ⁹³DDQ with dichloromethane/water: Chandrasekhar, S.; Reddy, Ch.R.; Reddy, M.V. Chem. Lett. 2000, 430. For references, see Jiricny, J.; Orere, D.M.; Reese, C.B. Synthesis 1970, 919.
- ⁹⁴Zhang, G.-S.; Gong, H.; Yang, D.-H.; Chen, M.-F. Synth. Commun. 1999, 29, 1165; Gong, H.; Zhang, G.-S. Synth. Commun. 1999, 29, 2591.
- ⁹⁵Chen, F.-E.; Liu, J.-P.; Fu, H.; Peng, Z.-Z.; Shao, L.-Y. Synth. Commun. 2000, 30, 2295.
- ⁹⁶Shirini, F.; Zolfigol, M.A.; Mallakpour, B.; Mallakpour, S.E.; Hajipour, A.R.; Baltork, I.M. *Tetrahedron Lett.* **2002**, *43*, 1555.
- ⁹⁷Mitra, A.K.; De, A.; Karchaudhuri, N. Synth. Commun. 2000, 30, 1651.

It is thus an example of reaction type A (p. 1261). The sequence shown is generalized.⁹⁸ In specific cases, there are variations in the sequence of the steps, depending on acid or basic catalysis or other conditions.⁹⁹ Which step is rate determining also depends on acidity and on the nature of W and of the groups connected to the carbonyl.¹⁰⁰

Iminium ions $(10)^{101}$ would be expected to undergo hydrolysis quite readily, since there is a contributing form with a positive charge on the carbon. Indeed, they react with water at room temperature.¹⁰² Acid-catalyzed hydrolysis of enamines (the last step of the Stork reaction, **10-69** involves conversion to iminium ions:¹⁰³

The mechanism of enamine hydrolysis is thus similar to that of vinyl ether hydrolysis (**10-6**).

OS I, 217, 298, 318, 381; II, 49, 223, 234, 284, 310, 333, 395, 519, 522; III, 20, 172, 626, 818; IV, 120; V, 139, 277, 736, 758; VI, 1, 358, 640, 751, 901, 932; VII, 8; 65, 108, 183; 67, 33; 76, 23.

Related to this process is the hydrolysis of isocyanates or isothiocyanates¹⁰⁴ where addition of water to the carbon–nitrogen double bond would give an N-substituted carbamic acid (11). Such compounds are unstable and break down to

⁹⁸For reviews of the mechanism, see Bruylants, A.; Feytmants-de Medicis, E., in Patai, S. *The Chemistry* of the Carbon–Nitrogen Double Bond, Wiley, NY, **1970**, pp. 465–504; Salomaa, P., in Patai, S. *The Chemistry of the Carbonyl Group* pt. 1, Wiley, NY, **1966**, pp. 199–205.

⁹⁹For example, see Reeves, R.L. J. Am. Chem. Soc. **1962**, 82, 3332; Sayer, J.M.; Conlon, E.H. J. Am. Chem. Soc. **1980**, 102, 3592.

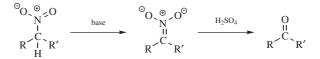
¹⁰⁰Cordes, E.H.; Jencks, W.P. J. Am. Chem. Soc. 1963, 85, 2843.

¹⁰¹For a review of iminium ions, see Böhme, H.; Haake, M. Adv. Org. Chem. 1976, 9, pt. 1, 107.

¹⁰²Hauser, C.R.; Lednicer, D. J. Org. Chem. 1959, 24, 46. For a study of the mechanism, see Gopalakrishnan, G.; Hogg, J.L. J. Org. Chem. 1989, 54, 768.

¹⁰³Maas, W.; Janssen, M.J.; Stamhuis, E.J.; Wynberg, H. J. Org. Chem. 1967, 32, 1111; Sollenberger, P.Y.; Martin, R.B. J. Am. Chem. Soc. 1970, 92, 4261. For a review of enamine hydrolysis, see Stamhuis, E.J.; Cook, A.G., in Cook Enamines, 2nd ed.; Marcel Dekker, NY, 1988, pp. 165–180.

¹⁰⁴For a study of the mechanism, see Castro, E.A.; Moodie, R.B.; Sansom, P.J. J. Chem. Soc. Perkin Trans. 2 **1985**, 737. For a review of the mechanisms of reactions of isocyanates with various nucleophiles, see Satchell, D.P.N.; Satchell, R.S. Chem. Soc. Rev. **1975**, *4*, 231.


carbon dioxide (or COS in the case of isothiocyanates) and the amine:

$$\begin{array}{c} & O \\ H \\ R \\ N \\ H \\ H \\ H \\ H \\ 11 \end{array} \rightarrow RNH_2 + CO_2$$

OS II, 24; IV, 819; V, 273; VI, 910.

16-3 Hydrolysis of Aliphatic Nitro Compounds

Oxo-de-hydro,nitro-bisubstitution

Primary or secondary aliphatic nitro compounds can be hydrolyzed, respectively, to aldehydes or ketones, by treatment of their conjugate bases with sulfuric acid. This is called the *Nef reaction*.¹⁰⁵ Tertiary aliphatic nitro compounds do not give the reaction because they cannot be converted to their conjugate bases. Like **16-2**, this reaction involves hydrolysis of a C=N double bond. A possible mechanism is¹⁰⁶

$$\overset{\Theta}{\operatorname{O}} \overset{\Theta}{\underset{N}{\operatorname{O}}} \overset{O}{\underset{N}{\operatorname{O}}} \overset{\Theta}{\underset{N}{\operatorname{O}}} \overset{\Theta}{\underset{N}{\operatorname{O}}} \overset{O}{\underset{N}{\operatorname{O}}} \overset{O}{\underset{N}{\operatorname{OH}}} \overset{O$$

Intermediates of type 12 have been isolated in some cases.¹⁰⁷

The conversion of nitro compounds to aldehydes or ketones has been carried out with better yields and fewer side reactions by several alternative methods.¹⁰⁸ Among these are treatment of the nitro compound with tin complexes and NaHSO₃,¹⁰⁹ activated dry silica gel,¹¹⁰ or 30% H₂O₂-K₂CO₃,¹¹¹ *t*-BuOOH and a catalyst,¹¹²

¹⁰⁵For reviews, see Pinnick, H.W. Org. React. **1990**, 38, 655; Haines, A.H. Methods for the Oxidation of Organic Compounds, Academic Press, NY, **1988**, pp. 220–231, 416–419.

¹⁰⁶Hawthorne, M.F. J. Am. Chem. Soc. **1957**, 79, 2510. A similar mechanism, but with some slight differences, was suggested earlier by van Tamelen, E.E.; Thiede, R.J. J. Am. Chem. Soc. **1952**, 74, 2615. See also, Sun, S.F.; Folliard, J.T. Tetrahedron **1971**, 27, 323.

¹⁰⁷Feuer, H.; Spinicelli, L.F. J. Org. Chem. 1977, 42, 2091.

¹⁰⁸For a review, see Ballini, R.; Petrini, M. Tetrhaedron 2004, 60, 1017.

¹⁰⁹Urpí, F.; Vilarrasa, J. Tetrahedron Lett. 1990, 31, 7499.

¹¹⁰Keinan, E.; Mazur, Y. J. Am. Chem. Soc. 1977, 99, 3861.

¹¹¹Olah, G.A.; Arvanaghi, M.; Vankar, Y.D.; Prakash, G.K.S. Synthesis 1980, 662.

¹¹²Bartlett, P.A.; Green III, F.R.; Webb, T.R. Tetrahedron Lett. 1977, 331.

DBU in acetonitrile,¹¹³ NaH and Me₃SiOOSiMe₃,¹¹⁴ NaNO₂ in aq. DMSO,¹¹⁵ or ceric ammonium nitrate (CAN).¹¹⁶ The reaction of Al–NiCl₂•6 H₂O in THF converted α , β -unsaturated nitro compounds to the corresponding aldehyde, PhCH=CHNO₂ \rightarrow PhCH₂CHO.¹¹⁷

When *primary* nitro compounds are treated with sulfuric acid without previous conversion to the conjugate bases, they give carboxylic acids. Hydroxamic acids are intermediates and can be isolated, so that this is also a method for preparing them.¹¹⁸ Both the Nef reaction and the hydroxamic acid process involve the aci form; the difference in products arises from higher acidity, for example, a difference in sulfuric acid concentration from 2 to 15.5 *M* changes the product from the aldehyde to the hydroxamic acid.¹¹⁹ The mechanism of the hydroxamic acid reaction is not known with certainty, but if higher acidity is required, it may be that the protonated aci form of the nitro compound is further protonated.

OS VI, 648; VII, 414. See also OS IV, 573.

16-4 Hydrolysis of Nitriles

NN-Dihydro-C-oxo-biaddition

$$R-C\equiv N + H_2O \xrightarrow{H^+ \text{ or } OH^-} R \xrightarrow{C} NH_2$$

Hydroxy,oxo-de-nitrilo-tersubstitution

$$R-C\equiv N + H_2O \xrightarrow{H^+ \text{ or } OH^-} \begin{bmatrix} O & O \\ II & \text{ or } II \\ R^-C & OH & R^-C & O^{\odot} \end{bmatrix}$$

0

Nitriles can be hydrolyzed to give either amides or carboxylic acids.¹²⁰ The amide is formed initially, but since amides are also hydrolyzed with acid or basic treatment, the carboxylic acid is readily formed. When the acid is desired,¹²¹ the reagent of choice is aq. NaOH containing $\sim 6-12\%$ H₂O₂, though acid-catalyzed hydrolysis is also frequently carried out. A "dry" hydrolysis of nitriles has been reported.¹²² The hydrolysis of nitriles to carboxylic acids is one of the best methods for the preparation of these compounds. Nearly all nitriles give the reaction, with either acidic or basic catalysts. Hydrolysis of cyanohydrins, RCH(OH)CN, is usually carried out under acidic conditions, because basic solutions cause competing

¹¹⁷Bezbarua, M.S.; Bez, G.; Barua, N.C. Chem. Lett. 1999, 325.

¹¹³Ballini, R.; Bosica, G.; Fiorini, D.; Petrini, M. Tetahedron Lett. 2002, 43, 5233.

¹¹⁴Shahi, S.P.; Vankar, Y.D. Synth. Commun. 1999, 29, 4321.

¹¹⁵Gissot, A.; N'Gouela, S.; Matt, C.; Wagner, A.; Mioskowski, C. J. Org. Chem. 2004, 69, 8997.

¹¹⁶Olah, G.A.; Gupta, B.G.B. Synthesis 1980, 44.

¹¹⁸Hydroxamic acids can also be prepared from primary nitro compounds with SeO₂ and Et3N: Sosnovsky, G.; Krogh, J.A. *Synthesis* **1980**, 654.

¹¹⁹Kornblum, N.; Brown, R.A. *J. Am. Chem. Soc.* **1965**, 87, 1742. See also, Cundall, R.B.; Locke, A.W. *J. Chem. Soc. B* **1968**, 98; Edward, J.T.; Tremaine, P.H. *Can J. Chem.* **1971**, 49, 3483, 3489, 3493.

¹²⁰For reviews, see Zil'berman, E.N. *Russ. Chem. Rev.* **1984**, 53, 900; Compagnon, P.L.; Miocque, M. *Ann. Chim. (Paris)* **1970**, [14] 5, 11, 23.

¹²¹For a list of reagents, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, *1999*, pp. 1986–1987.

¹²²Chemat, F.; Poux, M.; Berlan, J. J. Chem. Soc. Perkin Trans. 2 1996, 1781; 1994, 2597.

reversion of the cyanohydrin to the aldehyde and CN⁻. However, cyanohydrins have been hydrolyzed under basic conditions with borax or alkaline borates.¹²³ Enzymatic hydrolysis with *Rhodococcus* sp AJ270 has also been reported.¹²⁴ In methanol with BF₃•OEt₂, benzonitrile is converted to methyl benzoate.¹²⁵

There are a number of procedures for stopping at the amide stage,¹²⁶ among them the use of concentrated H₂SO₄; 2 equivalents of chlorotrimethylsilane followed by H₂O,¹²⁷ aq. NaOH with PEG-400 and microwave irradiation,¹²⁸ NaBO₃ with 4 equivalents of water and microwave irradiation,¹²⁹ heating on neutral alumina,¹³⁰ Oxone[®],¹³¹ and dry HCl followed by H₂O. The same result can also be obtained by use of water and certain metal ions or complexes;¹³² a ruthenium catalyst on alumina with water,¹³³ MnO₂/SiO₂ with microwave irradiation,¹³⁴ Hg(OAc)₂ in HOAc;¹³⁵ or 2-mercaptoethanol in a phosphate buffer.¹³⁶ Nitriles can be hydrolyzed to the carboxylic acids without disturbing carboxylic ester functions also present, by the use of tetrachloro- or tetrafluorophthalic acid.¹³⁷ Nitriles are converted to thioamides ArC(=S)NH₂ with ammonium sulfide (NH₄)₂S in methanol, with microwave irradiation.¹³⁸

Thiocyanates are converted to thiocarbamates in a similar reaction:¹³⁹ $R-S-C\equiv N+H_2O \rightarrow R-S-C-O NH_2$. Hydrolysis of cyanamides gives amines, produced by the breakdown of the unstable carbamic acid intermediates: $R_2NCN \rightarrow [R_2NCOOH] \rightarrow R_2NH$.

OS I, 21, 131, 201, 289, 298, 321, 336, 406, 436, 451; II, 29, 44, 292, 376, 512, 586 (see, however, V, 1054), 588; III; 34, 66, 84, 88, 114, 221, 557, 560, 615, 851; IV, 58, 93, 496, 506, 664, 760, 790; V, 239; VI, 932; 76, 169. Also see, OS III, 609; IV, 359, 502; 66, 142.

¹²⁶For a discussion, see Beckwith, A.L.J., in Zabicky, J. *The Chemistry of Amides*, Wiley, NY, **1970**, pp. 119–125. For a list of reagents, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, **1999**, pp. 1988–1990.

¹²⁷Basu, M.K.; Luo, F.-T. Tetrahedron Lett. 1998, 39, 3005.

¹²⁸Bendale, P.M.; Khadilkar, B.M. Synth. Commun. 2000, 30, 1713.

¹²⁹Sharifi, A.; Mohsenzadeh, F.; Mohtihedi, M.M.; Saidi, M.R.; Balalaie, S. *Synth. Commun.* 2001, 31, 431.
 ¹³⁰Wligus, C.P.; Downing, S.; Molitor, E.; Bains, S.; Pagni, R.M.; Kabalka, G.W. *Tetrahedron Lett.* 1995, 36, 3469.

¹³¹Bose, D.S.; Baquer, S.M. Synth. Commun. 1997, 27, 3119.

¹³²For example, see Bennett, M.A.; Yoshida, T. J. Am. Chem. Soc. 1973, 95, 3030; Paraskewas, S. Synthesis 1974, 574; McKenzie, C.J.; Robson, R. J. Chem. Soc., Chem. Commun. 1988, 112.

¹³³Yamaguchi, K.; Matsushita, M.; Mizuno, N. Angew. Chem. Int. Ed. 2004, 43, 1576.

¹³⁴A solvent-free reaction. See Khadilkar, B.M.; Madyar, V.R. Synth. Commun. 2002, 32, 1731.

¹³⁵Plummer, B.F.; Menendez, M.; Songster, M. J. Org. Chem. 1989, 54, 718.

¹³⁶Lee, Y.B.; Goo, Y.M.; Lee, Y.Y.; Lee, J.K. Tetrahedron Lett. 1989, 30, 7439.

¹³⁷Rounds, W.D.; Eaton, J.T.; Urbanowicz, J.H.; Gribble, G.W. Tetrahedron Lett. 1988, 29, 6557.

¹³⁸Bagley, M.C.; Chapaneri, K.; Glover, C.; Merritt, E.A. Synlett 2004 2615.

¹³⁹Zil'berman, E.N.; Lazaris, A.Ya. J. Gen. Chem. USSR 1963, 33, 1012.

¹²³Jammot, J.; Pascal, R.; Commeyras, A. Tetrahedron Lett. 1989, 30, 563.

¹²⁴Wang, M.-X.; Lin, S.-J. J. Org. Chem. 2002, 67, 6542.

¹²⁵Jayachitra, G.; Yasmeen, N..; Rao, K.S.; Ralte, S.L.; Srinivasan, R.; Singh, A.K. Synth. Commun. 2003, 33, 3461.

B. Attack by OR or SR (Addition of ROH; RSH)

16-5 The Addition of Alcohols to Aldehydes and Ketones

Dialkoxy-de-oxo-bisubstitution

Dithioalkyl-de-oxo-bisubstitution

 $\begin{array}{c} O \\ H \\ C \\ C \\ \end{array} + ROH \xrightarrow{H^+} RO \\ C \\ C \\ \end{array} \begin{array}{c} OR \\ + H_2O \\ \end{array}$

Acetals and ketals are formed by treatment of aldehydes and ketones, respectively, with alcohols in the presence of acid catalysts.¹⁴⁰ Lewis acids such as $TiCl_4^{141}$ RuCl₃,¹⁴² or CoCl₂¹⁴³ can be used in conjunction with alcohols. Dioxolanes have been prepared in ethylene glycol using microwave irradiation and ptoluenesulfonic acid as a catalyst.¹⁴⁴ This reaction is reversible, and acetals and ketals can be hydrolyzed by treatment with acid.¹⁴⁵ With small unbranched aldehydes the equilibrium lies to the right. If ketals or acetals of larger molecules must be prepared the equilibrium must be shifted, usually by removal of water. This can be done by azeotropic distillation, ordinary distillation, or the use of a drying agent such as Al₂O₃ or a molecular sieve.¹⁴⁶ The reaction is not catalyzed in either direction by bases, so most acetals and ketals are quite stable to bases, though they are easily hydrolyzed by acids. This reaction is therefore a useful method of protection of aldehyde or ketone functions from attack by bases. The reaction is of wide scope. Most aldehydes are easily converted to acetals.¹⁴⁷ With ketones the process is more difficult, presumably for steric reasons, and the reaction often fails, though many ketals, especially from cyclic ketones, have been made in this manner.¹⁴⁸ Many functional groups may be present without being affected. 1,2-Glycols and 1,3-glycols form cyclic acetals and ketals (1,3-dioxolanes¹⁴⁹

¹⁴¹Clerici, A.; Pastori, N.; Porta, O. Tetrahedron 2001, 57, 217.

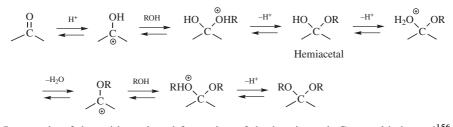
¹⁴²De, S.K.; Gibbs, R.A. Tetrahedron Lett. 2004, 45, 8141.

¹⁴³Velusamy, S.; Punniyamurthy, T. Tetrahedron Lett. 2004, 45, 4917.

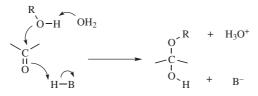
¹⁴⁴Pério, B.; Dozias, M.-J.; Jacquault, P.; Hamelin, J. *Tetrahdron Lett.* **1997**, *38*, 7867; Moghaddam, F.M.; Sharifi, A. *Synth. Commun.* **1995**, *25*, 2457.

¹⁴⁵See Heravi, M.M.; Tajbakhsh, M.; Habibzadeh, S.; Ghassemzadeh, M. *Monat. Chem.* 2001, 132, 985.
 ¹⁴⁶For many examples of each of these methods, see Meskens, F.A.J. *Synthesis* 1981, 501, pp. 502–505.
 ¹⁴⁷For other methods, see Caputo, R.; Ferreri, C.; Palumbo, G. *Synthesis* 1987, 386; Ott, J.; Tombo, G.M.R.; Schmid, B.; Venanzi, L.M.; Wang, G.; Ward, T.R. *Tetrahedron Lett.* 1989, 30, 6151, Liao, Y.; Huang, Y.; Zhu, F. J. *Chem. Soc., Chem. Commun.* 1990, 493; Chan, T.H.; Brook, M.A.; Chaly, T. *Synthesis* 1983, 203.

¹⁴⁸High pressure has been used to improve the results with ketones: Dauben, W.G.; Gerdes, J.M.; Look, G.C. *J. Org. Chem.* **1986**, *51*, 4964. For other methods, see Otera, J.; Mizutani, T.; Nozaki, H. *Organometallics*, **1989**, *8*, 2063; Thurkauf, A.; Jacobson, A.E.; Rice, K.C. *Synthesis* **1988**, 233.


¹⁴⁹See Yadav, J.S.; Reddy, B.V.S.; Srinivas, R.; Ramalingam, T. *Synlett* 2000, 701; Laskar, D.D.; Prajapati,
 D.; Sandhu, J.S. *Chem. Lett.* 1999, 1283; Curini, M.; Epifano, F.; Marcotullio, M.C.; Rosati, O. *Synlett* 2001, 1182; Kawabata, T.; Mizugaki, T.; Ebitani, K.; Kaneda, K. *Tetrahedron Lett.* 2001, 42, 8329; Reddy,
 B.M.; Reddy, V.R.; Giridhar, D. *Synth. Commun.* 2001, 31, 1819; Gopinath, R.; Haque, Sk.J.; Patel, B.K.
 J. Org. Chem. 2002, 67, 5842.

¹⁴⁰For reviews, see Meskens, F.A.J. *Synthesis* **1981**, 501; Schmitz, E.; Eichhorn, I., in Patai, S. *The Chemistry of the Ether Linkage*, Wiley, NY, **1967**, pp. 309–351.


and 1,3-dioxanes,¹⁵⁰ respectively), and these are often used to protect aldehydes and ketones. Chiral dioxolanes have been prepared from chiral diols.¹⁵¹ Dioxolanes have been prepared from ketones in ionic liquids.¹⁵² Ketones are converted with dimethyl ketals by electrolysis with NaBr in methanol.¹⁵³

Intramolecular reactions are possible in which a keto diol or an aldehyde diol generates a bicyclic ketal or acetal. Fused ring [2.2.0] ketals have been prepared in this manner.¹⁵⁴

The mechanism, which involves initial formation of a *hemiacetal*,¹⁵⁵ is the reverse of that given for acetal hydrolysis:

In a study of the acid-catalyzed formation of the hemiacetal, Grunwald showed¹⁵⁶ that the data best fit a mechanism in which the three steps shown here are actually all concerted; that is, the reaction is simultaneously catalyzed by acid and base, with water acting as the base:¹⁵⁷

If the original aldehyde or ketone has an α hydrogen, it is possible for water to split out in that way and enol ethers can be prepared in this manner:

¹⁵⁰Wu, H.-H.; Yang, F.; Cui, P.; Tang, J.; He, M.-Y. *Tetrahedron Lett.* **2004**, 45, 4963; Ishihara, K.; Hasegawa, A.; Yamamoto, H. *Synlett* **2002**, 1296.

¹⁵¹Kurihara, M.; Hakamata, W. J. Org. Chem. 2003, 68, 3413.

¹⁵²In AmBIm Cl.: Li, D.; Shi, F.; Peng, J.; Guo, S.; Deng, Y. J. Org. Chem. 2004, 69, 3582.

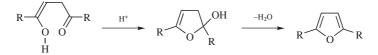
¹⁵³Elinson, M.N.; Feducovich, S.K.; Dmitriev, D.E.; Dorofeev, A.S.; Vereshchagin, A.N.; Nikishin, G.I. *Tetrahedron Lett.* **2001**, 42, 5557.

¹⁵⁴Wang, G.; Wang, Y.; Arcari, A.R.; Rheingold, A.L.; Concolino, T. *Tetrahedron Lett.* **1999**, 40, 7051. ¹⁵⁵For a review of hemiacetals, see Hurd, C.D. J. Chem. Educ. **1966**, 43, 527.

¹⁵⁶Grunwald, E. J. Am. Chem. Soc. 1985, 107, 4715.

¹⁵⁷Grunwald also studied the mechanism of the base-catalyzed formation of the hemiacetal, and found it to be the same as that of base-catalyzed hydration (16-1, mechanism *a*): Grunwald, E. J. Am. Chem. Soc. 1985, 107, 4710. See also, Sørensen, P.E.; Pedersen, K.J.; Pedersen, P.R.; Kanagasabapathy, V.M.; McClelland, R.A. J. Am. Chem. Soc. 1988, 110, 5118; Leussing, D.L. J. Org. Chem. 1990, 55, 666.

Similarly, treatment with an anhydride and a catalyst can give an enol ester (see 16-6).¹⁵⁸


Hemiacetals themselves are no more stable than the corresponding hydrates (16-1). As with hydrates, hemiacetals of cyclopropanones¹⁵⁹ and of polychloro and polyfluoro aldehydes and ketones may be quite stable.

When acetals or ketals are treated with an alcohol of higher molecular weight than the one already there, it is possible to get a transacetalation (see **10-13**). In another type of transacetalation, aldehydes or ketones can be converted to acetals or ketals by treatment with another acetal or ketal or with an ortho ester,¹⁶⁰ in the presence of an acid catalyst (shown for an ortho ester):

$$\begin{array}{c} O \\ II \\ R^{-C} \\ R^{1} \end{array} + \begin{array}{c} EtO \\ R^{2} \\ C \\ OEt \end{array} \xrightarrow{H^{+}} \begin{array}{c} EtO \\ R^{-C} \\ R^{1} \end{array} + \begin{array}{c} O \\ II \\ R^{2} \\ C \\ OEt \end{array} + \begin{array}{c} O \\ II \\ R^{2} \\ C \\ OEt \end{array}$$

This method is especially useful for the conversion of ketones to ketals, since the direct reaction of a ketone with an alcohol often gives poor results. In another method, the substrate is treated with an alkoxysilane ROSiMe₃ in the presence of trimethylsilyl trifluoromethanesulfonate.¹⁶¹

1,4-Diketones give furans when treated with acids. This is actually an example of an intramolecular addition of an alcohol to a ketone, since it is the enol form that adds:

Similarly, 1,5-diketones give pyrans. Conjugated 1,4-diketones, such as 1,4-diphenylbut-2-en-1,4-dione is converted to 2,5-diphenylfuran with formic acid, 5% Pd/C, PEG-200, and a sulfuric acid catalyst with microwave irradiation.¹⁶² Formic acid reacts with alcohols to give orthoformates. Note that alkynyl ketones are converted to furans with palladium (II) acetate.¹⁶³

¹⁶²Rao, H.S.P.; Jothilingam, S. J. Org. Chem. 2003, 68, 5392.

¹⁵⁸For a list of catalysts, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, *1999*, pp. 1484–1485.

¹⁵⁹For a review, see Salaun, J. Chem. Rev. 1983, 83, 619.

¹⁶⁰For a review with respect to ortho esters, see DeWolfe, R.H. *Carboxylic Ortho Ester Derivatives*; Academic Press, NY, **1970**, pp. 154–164. See Karimi, B.; Ebrahimian, G.R.; Seradj, H. *Org. Lett.* **1999**, *1*, 1737; Karimi, B.; Ashtiani, A.M. *Chem. Lett.* **1999**, 1199; Firouzabadi, H.; Iranpoor, N.; Karimi, B. *Synlett* **1999**, 321; Firouzabadi, H.; Iranpoor, N.; Karimi, B. *Synth. Commun.* **1999**, 29, 2255; Leonard, N.M.; Oswald, M.C.; Freiberg, D.A.; Nattier, B.A.; Smith, R.C.; Mohan, R.S. *J. Org. Chem.* **2002**, 67, 5202.

¹⁶¹Tsunoda, T.; Suzuki, M.; Noyori, R.*Tetrahedron Lett.* **1980**, *21*, 1357; Kato, J.; Iwasawa, N.; Mukaiyama, T. Chem. Lett. **1985**, 743. See also, Torii, S.; Takagishi, S.; Inokuchi, T.; Okumoto, H. Bull. Chem. Soc. Jpn. **1987**, *60*, 775.

¹⁶³Jeevanandam, A.; Narkunan, K.; Ling, Y.-C. J. Org. Chem. 2001, 66, 6014. See Arcadi, A.; Cerichelli, G.; Chiarini, M.; Di Giuseppe, S. Marinelli, F. Tetrahedron Lett. 2000, 41, 9195.

CHAPTER 16

OS I, 1, 298, 364, 381; II, 137; III, 123, 387, 502, 536, 644, 731, 800; IV, 21, 479, 679; V, 5, 292, 303, 450, 539; VI, 567, 666, 954; VII, 59, 149, 168, 177, 241, 271, 297; VIII, 357. Also see OS IV, 558, 588; V, 25; VIII, 415.

16-6 Acylation of Aldehydes and Ketones

O-Acyl-C-acyloxy-addition

$$\begin{array}{c} O \\ I \\ R^{1} \\ \end{array} \begin{array}{c} C \\ H \end{array} + (RCO)_{2}O \end{array} \xrightarrow{BF_{3}} \begin{array}{c} R \\ O \\ O \\ \end{array} \xrightarrow{O} \\ O \\ R^{1} \\ \end{array} \begin{array}{c} C \\ H \end{array} \begin{array}{c} R \\ O \\ \end{array} \xrightarrow{O} \\ O \\ \end{array} \begin{array}{c} C \\ O \\ \end{array} \begin{array}{c} R \\ O \\ \end{array} \xrightarrow{O} \\ O \\ \end{array} \begin{array}{c} C \\ O \\ \end{array} \xrightarrow{O} \\ O \\ \end{array}$$

Aldehydes can be converted to *acylals* by treatment with an anhydride in the presence of BF₃, proton acids,¹⁶⁴ PCl₃,¹⁶⁵ NBS,¹⁶⁶ LiBF₄,¹⁶⁷ FeCl₃,¹⁶⁸ InCl₃,¹⁶⁹ InBr₃,¹⁷⁰ Cu(OTf)₂,¹⁷¹ Bi(OTf)₃,¹⁷² BiCl₃,¹⁷³ Bi(NO₃)₃,¹⁷⁴ WCl₆,¹⁷⁵ ZrCl₄,¹⁷⁶ ceric ammonium nitrate,¹⁷⁷ With Envirocat EPZ10 and microwave irradiation, acetic anhydride react with aldehydes to give the acylal.¹⁷⁸ Conjugated aldehydes are converted to the corresponding acylal by reaction with acetic anhydride and a FeCl₃ catalyst.¹⁷⁹ The reaction cannot normally be applied to ketones, though an exception has been reported when the reagent is trichloroacetic anhydride, which gives acylals with ketones without a catalyst.¹⁸⁰

OS IV, 489.

16-7 Reductive Alkylation of Alcohols

C-Hydro-O-alkyl-addition

¹⁶⁴For example, see Olah, G.A.; Mehrotra, A.K. Synthesis 1982, 962.

¹⁶⁵See Michie, J.K.; Miller, J.A. Synthesis 1981, 824.

¹⁶⁶Karimi, B.; Seradj, H.; Ebrahimian, G.R. Synlett 2000, 623

¹⁶⁷Sumida, N.; Nishioka, K.; Sato, T. *Synlett* **2001**, 1921; Yadav, J.S.; Reddy, B.V.S.; Venugapal, C.; Ramalingam, V.T. *Synlett* **2002**, 604.

¹⁶⁸Li, Y.-Q. Synth. Commun. 2000, 30, 3913; Trost, B.M.; Lee, C.B. J. Am. Chem. Soc. 2001, 123, 3671; Wang, C.; Li, M. Synth. Commun. 2002, 32, 3469.

¹⁶⁹Yadav, J.S.; Reddy, B.V.S.; Srinivas, Ch. Synth. Commun. 2002, 32, 1175, 2169.

¹⁷⁰Yin, L.; Zhang, Z.H.; Wang, Y.-M.; Pang, M.-L. Synlett 2004, 1727.

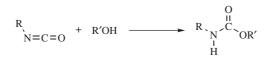
¹⁷¹Chandra, K.L.; Saravanan, P.; Singh, V.K. Synlett 2000, 359.

¹⁷²Carrigan, M.D.; Eash, K.J.; Oswald, M.C.; Mohan, R.S. Tetrahedron Lett. 2001, 42, 8133.

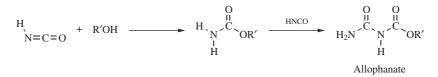
¹⁷³Mohammadpoor-Baltork, I.; Aliyan, H. Synth. Commun. 1999, 29, 2741.

¹⁷⁴Aggen, D.H.; Arnold, J.N.; Hayes, P.D.; Smoter, N.J.; Mohan, R.S. *Tetrahedron* **2004**, 60, 3675.

- ¹⁷⁵A solvent-free reaction. See Karimi, B.; Ebrahimian, G.-R.; Seradj, H. Synth. Commun. 2002, 32, 669.
- ¹⁷⁶Smitha, G.; Reddy, Ch.S. Tetrahedron 2003, 59, 9571.
- ¹⁷⁷Roy, S.C.; Banerjee, B. Synlett 2002, 1677.
- ¹⁷⁸Bandgar, B.P.; Makone, S.S.; Kulkarni, S.R. Monat. Chem. 2000, 131, 417.
- ¹⁷⁹Trost, B.M.; Lee, C.B. J. Am. Chem. Soc. 2001, 123, 3671.
- ¹⁸⁰Libman, J.; Sprecher, M.; Mazur, Y. Tetrahedron 1969, 25, 1679.


1274 ADDITION TO CARBON-HETERO MULTIPLE BONDS

Aldehydes and ketones can be converted to ethers by treatment with an alcohol and triethylsilane in the presence of a strong $acid^{181}$ or by hydrogenation in alcoholic acid in the presence of platinum oxide.¹⁸² The process can formally be regarded as addition of ROH to give a hemiacetal, RR'C(OH)OR², followed by reduction of the OH. In this respect, it is similar to **16-17**. The reaction of an aldehyde with BuOSiHMe₂ and a Me₃SiI catalyst gives the corresponding butyl alkyl ether.¹⁸³ In a similar reaction, ketones can be converted to carboxylic esters (reductive acylation of ketones) by treatment with an acyl chloride and triphenyltin hydride.¹⁸⁴


Ethers have also been prepared by the reductive dimerization of two molecules of an aldehyde or ketone (e.g., cyclohexanone \rightarrow dicyclohexyl ether). This was accomplished by treatment of the substrate with a trialkylsilane and a catalyst.¹⁸⁵

16-8 The Addition of Alcohols to Isocyanates

N-Hydro-C-alkoxy-addition

Carbamates (substituted urethanes) are prepared when isocyanates are treated with alcohols. This is an excellent reaction, of wide scope, and gives good yields. Isocyanic acid HNCO gives unsubstituted carbamates. Addition of a second equivalent of HNCO gives *allophanates*.

The isocyanate can be generated *in situ* by the reaction of an amine and oxalyl chloride, and subsequent reaction with HCl and then an alcohol gives the carbamate.¹⁸⁶ Polyurethanes are made by combining compounds with two NCO groups with

¹⁸¹Doyle, M.P.; DeBruyn, D.J.; Kooistra, D.A. J. Am. Chem. Soc. 1972, 94, 3659.

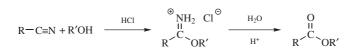
¹⁸²Verzele, M.; Acke, M.; Anteunis, M. J. Chem. Soc. 1963, 5598. For still another method, see Loim, L.M.; Parnes, Z.N.; Vasil'eva, S.P.; Kursanov, D.N. J. Org. Chem. USSR 1972, 8, 902.

¹⁸³Miura, K.; Ootsuka, K.; Suda, S.; Nishikori, H.; Hosomi, A. Synlett 2002, 313.

¹⁸⁴Kaplan, L. J. Am. Chem. Soc. 1966, 88, 4970.

¹⁸⁵Sassaman, M.B.; Kotian, K.D.; Prakash, G.K.S.; Olah, G.A. J. Org. Chem. **1987**, 52, 4314. See also, Kikugawa, Y. Chem. Lett. **1979**, 415.

¹⁸⁶Oh, L.M.; Spoors, P.G.; Goodman, R.M. Tetrahedron Lett. 2004, 45, 4769.


compounds containing two OH groups. Cyclic carbamates, such as 1,3-oxazine-2ones, are generated by the reaction of an isocyanate with an oxetane, in the presence of a palladium catalyst.¹⁸⁷ Isothiocyanates similarly give thiocarbamates¹⁸⁸ RNHCSOR', though they react slower than the corresponding isocyanates. Isocyanates react with LiAlHSeH and then iodomethane to give the corresponding selenocarbonate (RNHCOSeMe).¹⁸⁹

The details of the mechanism are poorly understood,¹⁹⁰ though the oxygen of the alcohol is certainly attacking the carbon of the isocyanate. Hydrogen bonding complicates the kinetic picture.¹⁹¹ The addition of ROH to isocyanates can also be catalyzed by metallic compounds,¹⁹² by light,¹⁹³ or, for tertiary ROH, by lithium alkoxides¹⁹⁴ or *n*-butyllithium.¹⁹⁵

OS I, 140; V, 162; VI, 95, 226, 788, 795.

16-9 Alcoholysis of Nitriles

Alkoxy,oxo-de-nitrilo-tersubstitution

The addition of dry HCl to a mixture of a nitrile and an alcohol in the absence of water leads to the hydrochloride salt of an imino ester (imino esters are also called imidates and imino ethers). This reaction is called the *Pinner synthesis*.¹⁹⁶ The salt can be converted to the free imino ester by treatment with a weak base such as sodium bicarbonate, or it can be hydrolyzed with water and an acid catalyst to the corresponding carboxylic ester. If the latter is desired, water may be present from the beginning, in which case aq. HCl can be used and the need for gaseous HCl is eliminated. Imino esters can also be prepared from nitriles with basic catalysts.¹⁹⁷

¹⁸⁷Larksarp, C.; Alper, H. J. Org. Chem. 1999, 64, 4152.

¹⁸⁸For a review of thiocarbamates, see Walter, W.; Bode, K. Angew. Chem. Int. Ed. **1967**, *6*, 281. See also, Wynne, J.H.; Jensen, S.D.; Snow, A.W. J. Org. Chem. **2003**, *68*, 3733.

¹⁸⁹Koketsu, M.; Ishida, M.; Takakura, N.; Ishihara, H. J. Org. Chem. 2002, 67, 486.

¹⁹⁰For reviews, see Satchell, D.P.N.; Satchell, R.S.Chem. Soc. Rev. 1975, 4, 231; Entelis, S.G.; Nesterov, O.V. Russ. Chem. Rev. 1966, 35, 917.

¹⁹¹See for example, Robertson, W.G.P.; Stutchbury, J.E. J. Chem. Soc. **1964**, 4000; Donohoe, G.; Satchell, D.P.N.; Satchell, R.S. J. Chem. Soc. Perkin Trans. 2 **1990**, 1671 and references cited therein. See also, Sivakamasundari, S.; Ganesan, R. J. Org. Chem. **1984**, 49, 720.

¹⁹²For example, see Kim, Y.H.; Park, H.S. *Synlett* **1998**, 261; Hazzard, G.; Lammiman, S.A.; Poon, N.L.; Satchell, D.P.N.; Satchell, R.S. *J. Chem. Soc. Perkin Trans.* **2 1985**, 1029; Duggan, M.E.; Imagire, J.S. *Synthesis* **1989**, 131.

¹⁹³McManus, S.P.; Bruner, H.S.; Coble, H.D.; Ortiz, M. J. Org. Chem. 1977, 42, 1428.

¹⁹⁴Bailey, W.J.; Griffith, J.R. J. Org. Chem. 1978, 43, 2690.

¹⁹⁵Nikoforov, A.; Jirovetz, L.; Buchbauer, G. Liebigs Ann. Chem. 1989, 489.

¹⁹⁶For a review, see Compagnon, P.L.; Miocque, M. Ann. Chim. (Paris) **1970**, [14] 5, 23, see pp. 24–26. For a review of imino esters, see Neilson, D.G., in Patai, S. The Chemistry of Amidines and Imidates, Wiley, NY, **1975**, pp. 385–489.

¹⁹⁷Schaefer, F.C.; Peters, G.A. J. Org. Chem. 1961, 26, 412.

This reaction is of broad scope and is good for aliphatic, aromatic, and heterocyclic R and for nitriles with oxygen-containing functional groups. The application of the reaction to nitriles containing a carboxyl group constitutes a good method for the synthesis of mono esters of dicarboxylic acids with the desired group esterified and with no diester or diacid present.

Cyanogen chloride reacts with alcohols in the presence of an acid catalyst, such as dry HCl or AlCl₃, to give carbamates:¹⁹⁸

$$CICN + 2 ROH \xrightarrow{HCl} ROCONH_2 + RCl$$

ROH can also be added to nitriles in another manner (**16-91**). OS I, 5, 270; II, 284, 310; IV, 645; VI, 507; VIII, 415.

16-10 The Formation of Carbonates and Xanthates

Di-C-alkoxy-addition; S-Metallo-C-alkoxy-addition

$$\begin{array}{c} O \\ II \\ CI \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ II \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ II \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ II \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ II \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ II \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ II \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ II \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ II \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ II \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ II \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ II \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ II \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ II \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ II \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ II \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ II \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ II \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ II \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ II \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ II \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ II \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ II \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ II \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ II \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ II \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ II \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ II \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ II \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ II \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ II \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ II \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ II \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ II \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ II \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ II \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ II \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ II \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ II \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ II \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ II \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ II \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ II \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ II \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ II \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ II \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ II \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ II \\ RO \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ \\ \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ \\ \end{array} \xrightarrow{\text{ROH}} \begin{array}{c} O \\ \end{array} \xrightarrow$$

The reaction of phosgene with an alcohol generates a haloformic esters, and reaction with a second equivalent of alcohol gives a carbonate. This reaction is related to the acyl addition reactions of acyl chlorides in Reaction **16-98**. An important example is the preparation of carbobenzoxy chloride (PhCH₂OCOCI) from phosgene and benzyl alcohol. This compound is widely used for protection of amino groups during peptide synthesis. When an alcohol reacts with certain alkyl halides (e.g., benzyl chloride) and carbon dioxide, in the presence of Cs₂CO₃ and tetrabutylammonium iodide, a mixed carbonate is formed.¹⁹⁹

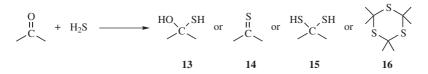
$$S=C=S + ROH \xrightarrow{NaOH} S_{H} O^{C} S_{Na} O^{C} Na^{C}$$

The addition of alcohols to carbon disulfide in the presence of a base produces xanthates.²⁰⁰ The base is often HO⁻, but in some cases better results can be obtained by using methylsulfinyl carbanion $MeSOCH_2^{-201}$ If an alkyl halide RX is present, the xanthate ester ROCSSR' can be produced directly. In a similar manner, alkoxide ions add to CO₂ to give carbonate ester salts (ROCOO⁻).

OS V, 439; VI, 207, 418; VII, 139.

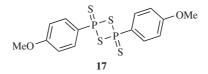
 ¹⁹⁸Bodrikov, I.V.; Danova, B.V. J. Org. Chem. USSR 1968, 4, 1611; 1969, 5, 1558; Fuks, R.; Hartemink,
 M.A. Bull. Soc. Chim. Belg. 1973, 82, 23.

¹⁹⁹Kim, S.i.; Chu, F.; Dueno, E.E.; Jung, K.W. J. Org. Chem. 1999, 64, 4578.


²⁰⁰For a review of the formation and reactions of xanthates, see Dunn, A.D.; Rudorf, W. *Carbon Disulphide in Organic Chemistry*; Ellis Horwood: Chichester, **1989**, pp. 316–367.

²⁰¹Meurling, P.; Sjöberg, B.; Sjöberg, K. Acta Chem. Scand. 1972, 26, 279.

C. Sulfur Nucleophiles


16-11 The Addition of H₂S and Thiols to Carbonyl Compounds

O-Hydro-C-mercapto-addition²⁰²

The addition of H₂S to an aldehyde or ketone can result in a variety of products. The most usual product is the trithiane 16.²⁰³ gem-Dithiols (15) are much more stable than the corresponding hydrates or α -hydroxy thiols.²⁰⁴ They have been prepared by the treatment of ketones with H₂S under pressure²⁰⁵ and under mild conditions with HCl as a catalyst.²⁰⁶ Thiols add to aldehydes and ketones to give hemimercaptals, CH(OH)SR and dithioacetals, CH(SR)₂ (16-5). α -Hydroxy thiols (13) can be prepared from polychloro and polyfluoro aldehydes and ketones.²⁰⁷ Apparently 13 are stable only when prepared from these compounds, and not even for all of them.

Thioketones² (14) can be prepared from certain ketones, such as diaryl ketones, by treatment with H_2S and an acid catalyst, usually HCl. They are often unstable and usually trimerize (to 16) or react with air. Thioaldehydes²⁰⁸ are even less stable and simple ones²⁰⁹ apparently have never been isolated, though *t*-BuCHS has been prepared in

²⁰²This name applies to formation of **13**. Names for formation of **14–16**, are, respectively, thioxo-de-oxobisubstitution, dimercapto-de-oxo-bisubstitution, and carbonyl–trithiane transformation.

²⁰³Campaigne, E.; Edwards, B.E. J. Org. Chem. 1962, 27, 3760.

²⁰⁴For a review of the preparation of *gem*-dithiols, see Mayer, R.; Hiller, G.; Nitzschke, M.; Jentzsch, J. *Angew. Chem. Int. Ed.* **1963**, 2, 370.

²⁰⁵Cairns, T.L.; Evans, G.L.; Larchar, A.W.; McKusick, B.C. J. Am. Chem. Soc. 1952, 74, 3982.

²⁰⁶Campaigne, E.; Edwards, B.E. J. Org. Chem. **1962**, 27, 3760; Demuynck, M.; Vialle, J. Bull. Soc. Chim. Fr. **1967**, 1213.

²⁰⁷Harris Jr., J.F. J. Org. Chem. 1960, 25, 2259.

²⁰⁸For a review of thioaldehydes, see Usov, V.A.; Timokhina, L.V.; Voronkov, M.G. *Russ. Chem. Rev.* **1990**, 59, 378.

²⁰⁹For the preparation and reactions of certain substituted thioaldehydes, see Hofstra, G.; Kamphuis, J.; Bos, H.J.T. *Tetrahedron Lett.* **1984**, 25, 873; Okazaki, R.; Ishii, A.; Inamoto, N. *J. Am. Chem. Soc.* **1987**, 109, 279; Adelaere, B.; Guemas, J.; Quiniou, H. *Bull. Soc. Chim. Fr.* **1987**, 517; Muraoka, M.; Yamamoto, T.; Enomoto, K.; Takeshima, T. *J. Chem. Soc. Perkin Trans.* **1 1989**, 1241, and references cited in these papers. solution, where it exists for several hours at 20°C.²¹⁰ A high-yield synthesis of thioketones involves treatment of acyclic²¹¹ ketones with 2,4-bis(4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane-2,4-disulfide 9^{212} (known as *Lawesson's reagent*)²¹³. Thioketones can also be prepared by treatment of ketones with P_4S_{10} ,²¹⁴ P_4S_{10} and hexamethyldisiloxane,²¹⁵ P_4S_{10} on alumina,²¹⁶ or CF₃SO₃SiMe₃/S(SiMe₃)₂,²¹⁷ and from oximes or various types of hydrazone (overall conversion C=N⁻ \rightarrow C=S).²¹⁸ Reagent 17 converts the C=O groups of amides and carboxylic esters²¹⁹ to C=S groups.²²⁰ Similarly, POCl₃ followed by S(TMS)₂ converts lactams to thiolactams²²¹ and treatment with triflic anhydride, and then H₂S converts amides to thioamides.²²² The reaction of an amide with triflic anhydride, and then aq. S(NH₄)₂ gives the corresponding thioamide.²²³ The H₂S–Me₃SiCl-(*i*Pr)₂NLi complex converts carboxylic esters to thiono esters.²²⁴ Lactones react with **9** in the presence of hexamethyldisiloxane an microwave irradiation to give the thiolactone.²²⁵ Carboxylic acids (RCOOH) can be converted directly to dithiocarboxylic esters (RCSSR')²²⁶ in moderate yield, with P₄S₁₀ and a primary alcohol (R'OH).²²⁷

Thiols add to aldehydes and ketones to give hemimercaptals and dithioacetals. Hemimercaptals are ordinarily unstable,²²⁸ though they are more stable than the corresponding hemiacetals and can be isolated in certain cases.²²⁹ Dithioacetals,

- ²¹²See Thomsen, I.; Clausen, K.; Scheibye, S.; Lawesson, S. Org. Synth. VII, 372.
- ²¹³For reviews of this and related reagents, see Cava, M.P.; Levinson, M.I.*Tetrahedron* **1985**, *41*, 5061; Cherkasov, R.A.; Kutyrev, G.A.; Pudovik, A.N. *Tetrahedron* **1985**, *41*, 2567; Jesberger, M.; Davis, T.P.; Barner, L. *Synthesis* **2003**, 1929. For a study of the mechanism, see Rauchfuss, T.B.; Zank, G.A. *Tetrahedron Lett.* **1986**, *27*, 3445.

²¹⁴See, for example, Scheeren, J.W.; Ooms, P.H.J.; Nivard, R.J.F. Synthesis 1973, 149.

²¹⁵Curphey, T.J. J. Org. Chem. 2002, 67, 6461.

²¹⁶Polshettiwar, V.; Kaushik, M.P. Tetrahedron Lett. 2004, 45, 6255.

²¹⁷Degl'Innocenti, A.; Capperucci, A.; Mordini, A.; Reginato, G.; Ricci, A.; Cerreta, F. *Tetrahedron Lett.* **1993**, *34*, 873.

²¹⁸See for example, Kimura, K.; Niwa, H.; Motoki, S. *Bull. Chem. Soc. Jpn.* **1977**, *50*, 2751; de Mayo, P.; Petrainas, G.L.R.; Weedon, A.C. *Tetrahedron Lett.* **1978**, 4621; Okazaki, R.; Inoue, K.; Inamoto, N. *Tetrahedron Lett.* **1979**, 3673.

²¹⁹For a review of thiono esters RC(=S)OR', see Jones, B.A.; Bradshaw, J.S. *Chem. Rev.* 1984, 84, 17.
 ²²⁰Ghattas, A.A.G.; El-Khrisy, E.A.M.; Lawesson, S. *Sulfur Lett.* 1982, 1, 69; Yde, B.; Yousif, N.M.; Pedersen, U.S.; Thomsen, I.; Lawesson, S.-O. *Tetrahedron* 1984, 40, 2047; Thomsen, I.; Clausen, K.; Scheibye, S.; Lawesson, S. *Org. Synth.* VII, 372.

²²¹Smith, D.C.; Lee, S.W.; Fuchs, P.L. J. Org. Chem. 1994, 59, 348.

²²²Charette, A.B.; Chua, P. Tetrahedron Lett. 1998, 39, 245.

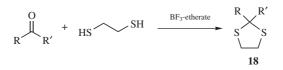
²²³Charette, A.B.; Grenon, M. J. Org. Chem. 2003, 68, 5792.

²²⁴Corey, E.J.; Wright, S.W. Tetrahedron Lett. 1984, 25, 2639.

²²⁵Filippi, J.-J.; Fernandez, X.; Lizzani-Cuvelier, L.; Loiseau, A.-M. Tetrahedron Lett. 2003, 44, 6647.

²²⁶For a review of dithiocarboxylic esters, see Kato, S.; Ishida, M. Sulfur Rep., 1988, 8, 155.

²²⁷Davy, H.; Metzner, P. Chem. Ind. (London) 1985, 824.


²²⁹For example, see Field, L.; Sweetman, B.J. J. Org. Chem. 1969, 34, 1799.

²¹⁰Vedejs, E.; Perry, D.A. J. Am. Chem. Soc. **1983**, 105, 1683. See also, Baldwin, J.E.; Lopez, R.C.G. J. Chem. Soc., Chem. Commun. **1982**, 1029.

²¹¹Cyclopentanone and cyclohexanone gave different products: Scheibye, S.; Shabana, R.; Lawesson, S.; Rømming, C. *Tetrahedron* 1982, 38, 993.

²²⁸See, for example, Fournier, L.; Lamaty, G.; Nata, A.; Roque, J.P. Tetrahedron 1975, 31, 809.

like acetals, are stable in the presence of bases, except that a strong base can remove the aldehyde proton, if there is one^{230} (see **10-71**).

The reaction of aldehydes or ketones with thiols, usually with a Lewis acid catalyst, leads to dithioacetals²³¹ or dithioketals. The most common catalyst used is probably boron trifluoride etherate (BF₃•OEt₂).²³² Similarly reactions that use 1,2-ethanedithiol or 1,3-propanedithiol lead to 1,3-dithiolanes, such as **18**²³³ or 1,3-dithianes.²³⁴ Dithioacetals can also be prepared from aldehydes or ketones by treatment with thiols in the presence of TiCl₄,²³⁵ SiCl₄,²³⁶ LiBF₄,²³⁷ Al(OTf)₃,²³⁸ with a disulfide RSSR (R = alkyl or aryl),²³⁹ or with methylthiotrimethylsilane (MeSSiMe₃).²⁴⁰

Dithioacetals and dithioketals are used as protecting groups for aldehydes and ketones, and after subsequent reactions involving the R or R' group, the protecting group can then be removed.²⁴¹ There are a variety of reagents that convert these compounds back to the carbonyl.²⁴² Simple hydrolysis is the most common method for converting thiocarbonyls to carbonyls. Stirring thioketones with 4-nitrobenzal-dehyde and a catalytic amount of TMSOTf gives the ketone.²⁴³ The reaction of a thioketone and Clayfen with microwave irradiation give the ketone.²⁴⁴ Thioamides

²³⁰Truce, W.E.; Roberts, F.E. J. Org. Chem. 1963, 28, 961.

²³¹See Samajdar, S.; Basu, M.K.; Becker, F.F.; Banik, N.K. Tetrahedron Lett. 2001, 42, 4425.

²³⁴See Firouzabadi, H.; Karimi, B.; Eslami, S. *Tetrahedron Lett.* **1999**, 40, 4055; Firouzabadi, H.; Iranpoor, N.; Karimi, B. *Synthesis* **1999**, 58; Tietze, L.F.; Weigand, B.; Wulff, C. *Synthesis* **2000**, 69; Graham, A.E. *Synth. Commun.* **1999**, 29, 697; Firouzabadi, H.; Eslami, S.; Karimi, B. *Bull. Chem. Soc. Jpn.* **2001**, 74, 2401; Laskar, D.D.; Prajapati, D.; Sandhu, J.S. *J. Chem. Res.* (S) **2001**, 313; De, S.K. *Tetrahedron Lett.* **2004**, 45, 1035, 2339.

²³⁵Kumar, V.; Dev, S. Tetrahedron Lett. 1983, 24, 1289.

²³⁶Ku, B.; Oh, D.Y. Synth. Commun. 1989, 433.

²³⁷This reaction is done neat, see Kazaraya, K.; Tsuji, S.; Sato, T. Synlett 2004, 1640.

²³⁸This is a solvent-free reaction. See Firouzabadi, H.; Iranpoor, N.; Kohmarch, G. *Synth. Commun.* **2003**, *33*, 167.

²³⁹Tazaki, M.; Takagi, M. Chem. Lett. 1979, 767.

²⁴⁰Evans, D.A.; Grimm, K.G.; Truesdale, L.K. J. Am. Chem. Soc. 1975, 97, 3229.

²⁴¹For example, see Ganguly, N.C.; Datta, M. Synlett 2004, 659.

²⁴²Corsaro, A.; Pistarà, V. Tetrahedron 1998, 54, 15027.

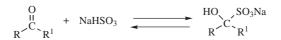
²⁴³Ravindrananthan, T.; Chavan, S.P.; Awachat, M.M.; Kelkar, S.V. Tetrahedron Lett. 1995, 36, 2277.

²⁴⁴Varma, R.S.; Kumar, D. Synth. Commun. 1999, 29, 1333.

²³²Fujita, E.; Nagao, Y.; Kaneko, K. Chem. Pharm. Bull. 1978, 26, 3743; Corey, E.J.; Bock, M.G. Tetrahedron Lett. 1975, 2643.

 ²³³See Anand, R.V.; Saravanan, P.; Singh, V.K. Synlett 1999, 415; Ceschi, M.A.; Felix, L.de A.; Peppe, C. Tetrahedron Lett. 2000, 41, 9695; Muthusamy, S.; Babu, S.A.; Gunanathan, C. Tetrahedron Lett. 2001, 42, 359; Yadav, J.S.; Reddy, B.V.S.; Pandey, S.K. Synlett 2001, 238; Ballini, R.; Barboni, L.; Maggi, R.; Sartori, G. Synth. Commun. 1999, 29, 767; Jin, T.-S.; Sun, X.; Ma, Y.-R.; Li, T.-S. Synth. Commun. 2001, 31, 1669; Deka, N.; Sarma, J.C. Chem. Lett. 2001, 794; Kamal, A.; Chouhan, G. Synlett 2002, 474. For a review, see Olsen, R.K.; Currie, Jr., J.O., in Patai, S. The Chemistry of the Thiol Group, pt. 2, Wiley, NY, 1974, pp. 521–532.

are converted to amides with Caro's acid on SiO₂.²⁴⁵ Lewis acids, such as aluminum chloride (AlCl₃) and mercuric salts, are common reagents and their use is referred to as the Corey–Seebach procedure.²⁴⁶ Other reagents include BF₃•OEt₂ in aq. THF containing mercuric oxide (HgO),²⁴⁷ NBS,²⁴⁸ iodine in DMSO,²⁴⁹ ceric ammonium nitrate, Ce(NH₄)₂(NO₃)₆,²⁵⁰ iodomethane in aqueous media,²⁵¹ Clayfen with microwave irradiation,²⁵² PhI(OAc)₂ in aqueous acetone,²⁵³ and NCS with silver nitrate in aqueous acetonitrile.²⁵⁴ When aldehydes and ketones react with mercapto-alcohols, mixed acetals or ketals are formed. The use of 2-mercaptoethanol (HSCH₂CH₂OH), for example, leads to an oxathiolane²⁵⁵ and 3-mercaptopropanol (HSCH₂CH₂OH) leads to an oxathiane. Alternatively, the dithioketal can be desulfurized with Raney nickel (**14-27**), giving the overall conversion $C=O \rightarrow CH_2$.



If an aldehyde or ketone possesses an α hydrogen, it can be converted to the corresponding enol thioether (19) by treatment with a thiol in the presence of TiCl₄.²⁵⁶ Aldehydes and ketones have been converted to sulfides by treatment with thiols and pyridine–borane, RCOR' + R²SH \rightarrow RR'CHSR²,²⁵⁷ in a reductive alkylation reaction, analogous to 16-7.

OS II, 610; IV, 927; VI, 109; VII, 124, 372. Also see OS III, 332; IV, 967; V, 780; VI, 556; VIII, 302.

16-12 Formation of Bisulfite Addition Products

O-Hydro-C-sulfonato-addition

²⁴⁵Movassagh, B.; Lakouraj, M.M.; Ghodrati, K. Synth. Commun. 2000, 30, 2353.

²⁴⁶Seebach, D.; Corey, E.J. J. Org. Chem. 1975, 40, 231; Seebach, D. Synthesis 1969, 17; Vedejs, E.; Fuchs, P.L. J. Org. Chem. 1971, 36, 366.

²⁴⁷Vedejs, E.; Fuchs, P.L. J. Org. Chem. 1971, 36, 366.

²⁴⁸Cain, E.N.; Welling, L.L. Tetrahedron Lett. 1975, 1353; Corey, E.J.; Erickson, B.W. J. Org. Chem. 1971, 36, 3553.

²⁴⁹Chattopadhyaya, J.B.; Rama Rao, A.V. Tetrahedron Lett. 1973, 3735.

²⁵⁰Ho, T.-L.; Ho, H.C.; Wong, C.M. J. Chem. Soc., Chem. Commun. 1972, 791a.

²⁵¹Fétizon, M.; Jurion, M. J. Chem. Soc., Chem. Commun. 1972, 382; Takano, S.; Hatakeyama, S.; Ogasawara, K. J. Chem. Soc., Chem. Commun. 1977, 68.

²⁵²Meshram, H.M.; Reddy, G.S.; Sumitra, G.; Yadav, J.S. Synth. Commun. 1999, 29, 1113.

²⁵³Shi, X.-X.; Wu, Q.-Q. Synth. Commun. 2000, 30, 4081.

²⁵⁴Corey, E.J.; Erickson, B.W. J. Org. Chem. 1971, 36, 3553.

²⁵⁵See Karimi, B.; Seradj, H. Synlett 2000, 805; Ballini, R.; Bosica, G.; Maggi, R.; Mazzacani, A.; Righi, P.; Sartori, G. Synthesis 2001, 1826; Mondal, E.; Sahu, P.R.; Khan, A.T. Synlett 2002, 463.

²⁵⁶Mukaiyama, T.; Saigo, K. Chem. Lett. 1973, 479.

²⁵⁷Kikugawa, Y. Chem. Lett. 1981, 1157.

CHAPTER 16

Bisulfite addition products are formed from aldehydes, methyl ketones, cyclic ketones (generally seven-membered and smaller rings), α -keto esters, and isocyanates, upon treatment with sodium bisulfite. Most other ketones do not undergo the reaction, probably for steric reasons. The reaction is reversible (by treatment of the addition product with either acid or base²⁵⁸)²⁵⁹ and is useful for the purification of the starting compounds, since the addition products are soluble in water and many of the impurities are not.²⁶⁰

OS I, 241, 336; III, 438; IV, 903; V, 437.

D. Attack by NH₂, NHR, or NR₂ (Addition of NH₃, RNH₂, R₂NH)

16-13 The Addition of Amines to Aldehydes and Ketones

Alkylimino-de-oxo-bisubstitution

$$\begin{array}{c} O \\ II \\ R \\ \end{array} + R^2 NH_2 \longrightarrow \begin{array}{c} N-R^2 \\ II \\ R \\ \end{array}$$

The addition of ammonia²⁶¹ to aldehydes or ketones does not generally give useful products. According to the pattern followed by analogous nucleophiles, the initial products would be expected to be *hemiaminals*,²⁶² but these compounds are generally unstable. Most imines with a hydrogen on the nitrogen spontaneously polymerize.²⁶³ In the presence of an oxidizing agent, such a MnO₂ (see **19-3**), primary alcohols can be converted to imines.²⁶⁴

In contrast to ammonia, primary, secondary, and tertiary amines can add to aldehydes²⁶⁵ and ketones to give different kinds of products. Primary amines give imines²⁶⁶ and secondary amines gives enamines (**10-69**). This section will focus on imines. Reduction of ω -azido ketones leads to the amino-ketones, which cyclizes to form a 2-substituted pyrroline.²⁶⁷ Reduction of nitro-ketones in the presence

²⁶¹For a review of this reagent in organic synthesis, see Jeyaraman, R., in Pizey, J.S. *Synthetic Reagents*, Vol. 5, Wiley, NY, *1983*, pp. 9–83.

²⁶²These compounds have been detected by ¹³C NMR: Chudek, J.A.; Foster, R.; Young, D. J. Chem. Soc. Perkin Trans. 2 1985, 1285.

²⁶³Methanimine CH₂=NH is stable in solution for several hours at -95°C, but rapidly decomposes at -80°C: Braillon, B.; Lasne, M.C.; Ripoll, J.L.; Denis, J.M. *Nouv. J. Chim.*, *1982*, *6*, 121. See also, Bock, H.; Dammel, R. *Chem. Ber. 1987*, *120*, 1961.

²⁶⁴Kanno, H.; Taylor, R.J.K. Synlett 2002, 1287.

²⁵⁸For cleavage with ion-exchange resins, see Khusid, A.Kh.; Chizhova, N.V. J. Org. Chem. USSR 1985, 21, 37.

 ²⁵⁹For a discussion of the mechanism, see Young, P.R.; Jencks, W.P. J. Am. Chem. Soc. 1978, 100, 1228.
 ²⁶⁰The reaction has also been used to protect an aldehyde group in the presence of a keto group: Chihara, T.; Wakabayashi, T.; Taya, K. Chem. Lett. 1981, 1657.

²⁶⁵For a review of the reactions between amines and formaldehyde, see Farrar, W.V. *Rec. Chem. Prog.*, *1968*, *29*, 85.

²⁶⁶For reviews of reactions of carbonyl compounds leading to the formation of C=N bonds, see Dayagi, S.; Degani, Y. in Patai, S. *The Chemistry of the Carbon–Nitrogen Double Bond*, Wiley, NY, **1970**, pp. 64–

^{83;} Reeves, R.L., in Patai, S. The Chemistry of the Carbonyl Group, pt. 1, Wiley, NY, 1966, pp. 600-614.

²⁶⁷Prabhu, K.P.; Sivanand, P.S.; Chandrasekaran, S. Synlett 1998, 47.

of ruthenium compounds and CO also leads to 1-substituted pyrrolines.²⁶⁸ In contrast to imines in which the nitrogen is attached to a hydrogen, these imines are stable enough for isolation. However, in some cases, especially with simple R groups, they rapidly decompose or polymerize unless there is at least one aryl group on the nitrogen or the carbon. When there is an aryl group, the compounds are quite stable. They are usually called *Schiff bases*, and this reaction is the best way to prepare them.²⁶⁹ The reaction is straightforward and proceeds in high yields. Even sterically hindered imines can be prepared.²⁷⁰ Both imines and enamines (see below) have been prepared on clay with microwave irradiation.²⁷¹ The initial *N*-substituted hemiaminals²⁷² lose water to give the stable Schiff bases:

$$\begin{array}{c} O \\ II \\ R^{-C} R^{1} \end{array} + R^{2}NH_{2} \longrightarrow \begin{array}{c} HO \\ R \\ R^{-L} R^{1} \end{array} \xrightarrow{-H_{2}O} \begin{array}{c} N-R^{2} \\ II \\ R^{-C} R^{1} \end{array}$$

In general, ketones react more slowly than aldehydes, and higher temperatures and longer reaction times are often required.²⁷³ In addition, the equilibrium must often be shifted, usually by removal of the water, either azeotropically by distillation, or with a drying agent, such as TiCl_4 ,²⁷⁴ or with a molecular sieve.²⁷⁵ Imines have been formed from aldehydes and amines in an ionic liquid.²⁷⁶

The reaction is often used to effect ring closure.²⁷⁷ The *Friedländer quinoline* synthesis²⁷⁸ is an example where ortho alkenyl aniline derivatives give the quinoline, **20**.²⁷⁹ The alkene derivative can be prepared *in situ* from an aldehyde and a suitably functionalized ylid.²⁸⁰

²⁶⁸Watanabe, Y.; Yamamoto, J.; Akazome, M.; Kondo, T.; Mitsudo, T. J. Org. Chem. 1995, 60, 8328.
 ²⁶⁹See Lai, J.T. Tetrahedron Lett. 2002, 43, 1965.

²⁷⁰Love, B.E.; Ren, J. J. Org. Chem. 1993, 58, 5556.

²⁷¹Varma, R.S.; Dahiya, R.; Kumar, S. Tetrahedron Lett. 1997, 38, 2039.

²⁷²Some of these have been observed spectrally; see Forlani, L.; Marianucci, E.; Todesco, P.E. J. Chem. Res. (S) **1984**, 126.

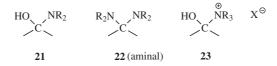
²⁷³For improved methods, see Morimoto, T.; Sekiya, M. *Chem. Lett.* **1985**, 1371; Eisch, J.J.; Sanchez, R. *J. Org. Chem.* **1986**, *51*, 1848.

²⁷⁴Weingarten, H.; Chupp, J.P.; White, W.A. J. Org. Chem. 1967, 32, 3246.

²⁷⁵Bonnett, R.; Emerson, T.R. J. Chem. Soc. **1965**, 4508; Roelofsen, D.P.; van Bekkum, H. Recl. Trav. Chim. Pays-Bas **1972**, 91, 605.

²⁷⁶Andrade, C.K.Z.; Takada, S.C.S.; Alves, L.M.; Rodrigues, J.P.; Suarez, P.A.Z.; Brand, R.F.; Soares, V.C.D. *Synlett* **2004**, 2135.

²⁷⁷For a review of such ring closures, see Katritzky, A.R.; Ostercamp, D.L.; Yousaf, T.I. *Tetrahedron* **1987**, 43, 5171.


²⁷⁸For a review, see Cheng, C.; Yan, S. Org. React. 1982, 28, 37.

²⁷⁹See Arcadi, A.; Chiarini, M.; Di Giuseppe, S.; Marinelli, F. *Synlett* 2003, 203; Yadav, J.S.; Reddy, B.V.S.; Premalatha, K. *Synlett* 2004, 963.

²⁸⁰Hsiao, Y.; Rivera, N.R.; Yasuda, N.; Hughes, D.L.; Reider, P.J. Org. Lett. 2001, 3, 1101.

Pyrylium ions react with ammonia or primary amines to give pyridinium ions²⁸¹ (see p. 498). Primary amines react with 1,4-diketones, with microwave irradiation, to give *N*-substituted pyrroles.²⁸² Similar reactions in the presence of Montmorillonite KSF²⁸³ or by simply heating the components with tosic acid²⁸⁴ have been reported.

As mentioned, the reaction of secondary amines with ketones leads to enamines (10-69). When secondary amines are added to aldehydes or ketones, the initially formed *N*,*N*-disubstituted hemiaminals (21) cannot lose water in the same way, and in some cases it is possible to isolate them.²⁸⁵ However, they are generally unstable, and under the reaction conditions usually react further. If no α hydrogen is present, 10 is converted to

the more stable *aminal* (22).²⁸⁶ However, if an α hydrogen is present, water (from 21) or RNH₂ (from 22) can be lost in that direction to give an enamine, 24.²⁸⁷ This is the most common method²⁸⁸ for the preparation of enamines and usually takes place when an aldehyde or ketone containing an α hydrogen is treated with a secondary amine. The water is usually removed azeotropically or with a drying agent,²⁸⁹ but molecular sieves can also be used.²⁹⁰ Silyl carbamates, such as Me₂ NCO₂SiMe₃, have been used to convert ketones to enamines.²⁹¹ Stable primary enamines have also been prepared.²⁹² Enamino-ketones have been prepared from diketones and secondary amines using low molecular weight amines in water,²⁹³ or using microwave irradiation on silica gel.²⁹⁴ Secondary amine perchlorates react

- ²⁸³Banik, B.K.; Samajdar, S.; Banik, I. J. Org. Chem. 2004, 69, 213.
- ²⁸⁴Klappa, J.J.; Rich, A.E.; McNeill, K. Org. Lett. 2002, 4, 435.

²⁸⁶For a review of aminals, see Duhamel, P., in Patai, S. *The Chemistry of Functional Groups, Supplement F*, pt. 2, Wiley, NY, **1982**, pp. 849–907.

²⁸⁷For reviews of the preparation of enamines, see Haynes, L.W.; Cook, A.G., in Cook, A.G. *Enamines*, 2nd. ed., Marcel Dekker, NY, **1988**, pp. 103–163; Pitacco, G.; Valentin, E., in Patai, S. *The Chemistry of Functional Groups, Supplement F*, pt. 1, Wiley, NY, **1982**, pp. 623–714.

²⁸⁸For another method, see Katritzky, A.R.; Long, Q.; Lue, P.; Jozwiak, A. *Tetrahedron* 1990, 46, 8153.
 ²⁸⁹For example, TiCl₄: White, W.A.; Weingarten, H. J. Org. Chem. 1967, 32, 213; Kuo, S.C.; Daly, W.H. J. Org. Chem. 1970, 35, 1861; Nilsson, A.; Carlson, R. Acta Chem. Scand. Ser. B 1984, 38, 523.

 ²⁸¹For a review, see Zvezdina, E.A.; Zhadonva, M.P.; Dorofeenko, G.N. *Russ. Chem. Rev.* 1982, 51, 469.
 ²⁸²Danks, T.N. *Tetrahedron Lett.* 1999, 40, 3957.

²⁸⁵For example, see Duhamel, P.; Cantacuzène, J. Bull. Soc. Chim. Fr. 1962, 1843.

²⁹⁰Brannock, K.C.; Bell, A.; Burpitt, R.D.; Kelly, C.A. J. Org. Chem. **1964**, 29, 801; Taguchi, K.; Westheimer, F.H. J. Org. Chem. **1971**, 36, 1570; Roelofsen, D.P.; van Bekkum, H. Recl. Trav. Chim. Pays-Bas **1972**, 91, 605; Carlson, R.; Nilsson, A.; Strömqvist, M. Acta Chem. Scand. Ser. B **1983**, 37, 7.


²⁹¹Kardon, F.; Mörtl, M.; Knausz, D. Tetrahedron Lett. 2000, 41, 8937.

²⁹²Erker, G.; Riedel, M.; Koch, S.; Jödicke, T.; Würthwein, E.-U. J. Org. Chem. 1995, 60, 5284.

²⁹³Stefani, H.A.; Costa, I.M.; Silva, D. de O. Synthesis 2000, 1526.

²⁹⁴Rechsteiner, B.; Texier-Boullet, F.; Hamelin, J. Tetrahedron Lett. 1993, 34, 5071.

with aldehydes and ketones to give iminium salts (**10**, p. \$\$\$).²⁹⁵ Tertiary amines can only give salts (**23**). Enamines have been prepared by the reaction of an aldehyde, a secondary amine and a terminal alkyne in the presence of AgI at 100° C,²⁹⁶ AgI in an ionic liquid,²⁹⁷ CuI with microwave irradiation,²⁹⁸ or a gold catalyst.²⁹⁹

OS I, 80, 355, 381; II, 31, 49, 65, 202, 231, 422; III, 95, 328, 329, 332, 358, 374, 513, 753, 827; IV, 210, 605, 638, 824; V, 191, 277, 533, 567, 627, 703, 716, 736, 758, 808, 941, 1070; VI, 5, 448, 474, 496, 520, 526, 592, 601, 818, 901, 1014; VII, 8, 135, 144, 473; VIII, 31, 132, 403, 451, 456, 493, 586, 597. Also see OS IV, 283, 464; VII, 197; VIII, 104, 112, 241.

16-14 The Addition of Hydrazine Derivatives to Carbonyl Compounds

Hydrazono-de-oxo-bisubstitution

The product of condensation of a hydrazine and an aldehyde or ketone is called a *hydrazone*. Hydrazine itself gives hydrazones only with aryl ketones. With other aldehydes and ketones, either no useful product can be isolated, or the remaining NH_2 group condenses with a second equivalent of carbonyl compound to give an *azine*. This type of product is especially important for aromatic aldehydes:

ArCH=N-NH₂ + ArCHO \longrightarrow ArCH=N-N=CHAr An azine

However, in some cases azines can be converted to hydrazones by treatment with excess hydrazine and NaOH.³⁰⁰ Arylhydrazines, especially phenyl, *p*-nitrophenyl, and 2,4-dinitrophenyl,³⁰¹ are used much more often and give the corresponding hydrazones with most aldehydes and ketones.³⁰² Since these are usually solids, they make excellent derivatives and are commonly employed for this purpose. Cyclic hydrazones are also known,³⁰³ as are conjugated hydrazones.³⁰⁴ Azides react

²⁹⁵Leonard, N.J.; Paukstelis, J.V. J. Org. Chem. 1964, 28, 3021.

²⁹⁶Wei, C.; Li, Z.; Li, C.-J. Org. Lett. 2003, 5, 4473.

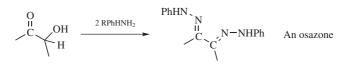
²⁹⁷In bmim BF₄, 1-butyl-3-methylimidazolium tetrafluoroborate: Li, Z.; Wei, C.; Chen, L.; Varma, R.S.; Li, C.-J. *Tetrahedron Lett.* **2004**, *45*, 2443.

²⁹⁸Shi, L.; Tu, Y.-Q.; Wang, M.; Zhang, F.-M.; Fan, C.-A. Org. Lett. 2004, 6, 1001.

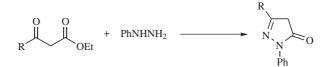
²⁹⁹Wei, C.; Li, C.-J. J. Am. Chem. Soc. 2003, 125, 9584.

³⁰⁰For example, see Day, A.C.; Whiting, M.C. Org. Synth. VI, 10.

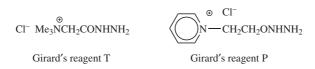
³⁰¹For an improved procedure for the preparation of 2,4-dinitrophenylhydrazones, see Behforouz, M.; Bolan, J.L.; Flynt, M.S. *J. Org. Chem.* **1985**, *50*, 1186.

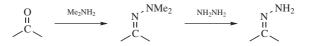

³⁰²For a review of arylhydrazones, see Buckingham, J. Q. Rev. Chem. Soc. 1969, 23, 37.

³⁰³Nakamura, E.; Sakata, G.; Kubota, K. Tetrahedron Lett. 1998, 39, 2157.


³⁰⁴Palacios, F.; Aparicio, D.; de los Santos, J.M. Tetrahedron Lett. 1993, 34, 3481.

with *N*,*N*-dimethylhydrazine and ferric chloride to give the *N*,*N*-dimethylhydrazone.³⁰⁵ Alkenes react with CO/H₂, phenylhydrazine and a diphosphine catalyst to give a regioisomeric mixture of phenylhydrazones that favored "anti-Markovni-kov" addition.³⁰⁶ Oximes are converted to hydrazones with water and hydrazine in refluxing ethanol.³⁰⁷


 α -Hydroxy aldehydes and ketones and α -dicarbonyl compounds give *osazones*, in which two adjacent carbons have carbon–nitrogen double bonds:


Osazones are particularly important in carbohydrate chemistry. In contrast to this behavior, β -diketones and β -keto esters give *pyrazoles* and *pyrazolones*, respectively (illustrated for β -keto esters):

Other hydrazine derivatives frequently used to prepare the corresponding hydrazone are semicarbazide $NH_2NHCONH_2$, in which case the hydrazone is called a semicarbazone, and *Girard's reagents T and P*, in which case the hydrazone is water soluble because of the ionic group. Girard's reagents are often used for purification of carbonyl compounds.³⁰⁸

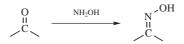
Simple *N*-unsubstituted hydrazones can be obtained by an exchange reaction. The *N*,*N*-dimethylhydrazone is prepared first, and then treated with hydrazine:³⁰⁹

No azines are formed under these conditions.

³⁰⁵Barrett, I.C.; Langille, J.D.; Kerr, M.A. J. Org. Chem. 2000, 65, 6268.

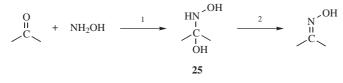
³⁰⁶Ahmed, M.; Jackstell, R.; Seayad, A.M.; Klein, H.; Beller, M. Tetrahedron Lett. 2004, 45, 869.

³⁰⁷Pasha, M.A.; Nanjundaswamy, H.M. Synth. Commun. 2004, 34, 3827.


³⁰⁸For a study of the mechanism with Girard's reagent T, see Stachissini, A.S.; do Amaral, L. J. Org. Chem. **1991**, 56, 1419.

³⁰⁹Newkome, G.R.; Fishel, D.L. J. Org. Chem. 1966, 31, 677.

OS II, 395; III, 96, 351; IV, 351, 377, 536, 884; V, 27, 258, 747, 929; VI, 10, 12, 62, 242, 293, 679, 791; VII, 77, 438. Also see OS III, 708; VI, 161; VIII, 597.


16-15 The Formation of Oximes

Hydroxyimino-de-oxo-bisubstitution

In a reaction very much like **16-14**, oximes can be prepared by the addition of hydroxylamine to aldehydes or ketones. Derivatives of hydroxylamine [e.g., H_2NOSO_3H and $HON(SO_3Na)_2$] have also been used. For hindered ketones, such as hexamethylacetone, high pressures (as high as 10,000 atm) may be necessary.³¹⁰ The reaction of hydroxylamine with unsymmetrical ketones or with aldehydes leads to a mixture of (*E*)- and (*Z*)-isomers. For aromatic aldehydes, heating with K_2CO_3 led to the (*E*)- isomer whereas heating with CuSO₄ gave the (*Z*)-hydroxylamine.³¹¹ Hydroxylamines react with ketones in ionic liquids³¹² and on silica gel.³¹³

It has been shown³¹⁴ that the rate of formation of oximes is at a maximum at a pH that depends on the substrate but is usually \sim 4, and that the rate decreases as the pH is either raised or lowered from this point. We have previously seen (p. 1256) that bell-shaped curves like this are often caused by changes in the rate-determining step. In this case, at low pH values step 2 is rapid (because it is acid-catalyzed), and step 1

is slow (and rate-determining), because under these acidic conditions most of the NH₂OH molecules have been converted to the conjugate NH₃OH⁺ ions, which cannot attack the substrate. As the pH is slowly increased, the fraction of free NH₂OH molecules increases and consequently so does the reaction rate, until the maximum rate is reached at ~pH 4. As the rising pH has been causing an increase in the rate of step 1, it has also been causing a *decrease* in the rate of the acid-catalyzed step 2, although this latter process has not affected the overall rate since step 2 was still faster than step 1. However, when the pH goes above ~4, step 2 becomes rate-determining, and although the rate of step 1 is still increasing (as it will until essentially all the NH₂OH is unprotonated), it is now

³¹⁰Jones, W.H.; Tristram, E.W.; Benning, W.F. J. Am. Chem. Soc. 1959, 81, 2151.

³¹¹Sharghi, H.; Sarvari, M.H. Synlett 2001, 99.

³¹²In bmim PF₆, 1-butyl-3-methylimidazolium hexafluorophosphate: Ren, R.X.; Ou, W. *Tetrahedron Lett.* **2001**, *42*, 8445.

³¹³Hajipour, A.R.; Mohammadpoor-Baltork, I.; Nikbaghat, K.; Imanzadeh, G. Synth. Commun. **1999**, 29, 1697.

³¹⁴Jencks, W.P. J. Am. Chem. Soc. 1959, 81, 475; Prog. Phys. Org. Chem. 1964, 2, 63.

step 2 that determines the rate, and this step is slowed by the decrease in acid concentration. Thus the overall rate decreases as the pH rises beyond ~4. It is likely that similar considerations apply to the reaction of aldehydes and ketones with amines, hydrazines, and other nitrogen nucleophiles.³¹⁵ There is evidence that when the nucleophile is 2-methylthiosemicarbazide, there is a second change in the rate-determining step: above pH ~10 *basic* catalysis of step 2 has increased the rate of this step to the point where step 1 is again rate determining.³¹⁶ Still a third change in the rate-determining step has been found at about pH 1, showing that at least in some cases step 1 actually consists of two steps: formation of a zwitterion, for example,

$$HOH_2N - C - O^{\Theta}$$

in the case shown above, and conversion of this to 25.³¹⁷ The intermediate 25 has been detected by nmr in the reaction between NH₂OH and acetaldehyde.³¹⁸

In another type of process, oximes can be obtained by passing a mixture of ketone vapor, NH₃, and O₂ over a silica-gel catalyst.³¹⁹ Ketones can also be converted to oximes by treatment with other oximes, in a transoximation reaction.³²⁰

OS I, 318, 327; II, 70, 204, 313, 622; III, 690, IV, 229; V, 139, 1031; VII, 149. See also, OS VI, 670.

16-16 The Conversion of Aldehydes to Nitriles

Nitrilo-de-hydro,oxo-tersubstitution

 R^{O} + NH₂OH•HCl \xrightarrow{HCOOH} R $^{-}C \equiv N$

Aldehydes can be converted to nitriles in one step by treatment with hydroxylamine hydrochloride and either formic acid,³²¹ NaHSO₄•SiO₂ with microwave irradiation,³²² or $(Bu_4N)_2S_2O_8$ with Cu(HCO₂)•Ni(COOH)₂ and aq. KOH.³²³ Heating in NMP is also effective with aryl aldehydes³²⁴ and heating on dry alumina with

³¹⁵For reviews of the mechanism of such reactions, see Cockerill, A.F.; Harrison, R.G., in Patai, S. *The Chemistry of Functional Groups: Supplement A*, pt. 1, Wiley, NY, **1977**, pp. 288–299; Sollenberger, P.Y.; Martin, R.B., in Patai, S. *The Chemistry of the Amino Group*, Wiley, NY, **1968**, pp. 367–392. For isotope effect studies, see Rossi, M.H.; Stachissini, A.S.; do Amaral, L. J. Org. Chem. **1990**, 55, 1300.

³¹⁶Sayer, J.M.; Jencks, W.P. J. Am. Chem. Soc. 1972, 94, 3262.

³¹⁷Sayer, J.M.; Edman, C. J. Am. Chem. Soc. 1979, 101, 3010.

³¹⁸Cocivera, M.; Fyfe, C.A.; Effio, A.; Vaish, S.P.; Chen, H.E. J. Am. Chem. Soc. **1976**, 98, 1573; Cocivera, M.; Effio, A. J. Am. Chem. Soc. **1976**, 98, 7371.

³¹⁹Armor, J.N. J. Am. Chem. Soc. 1980, 102, 1453.

³²⁰For example, see Block Jr., P.; Newman, M.S. Org. Synth. V, 1031.

³²¹Olah, G.A.; Keumi, T. Synthesis 1979, 112.

³²²Das, B.; Ramesh, C.; Madhusudhan, P. Synlett 2000, 1599.

³²³Chen, F.-E.; Fu, H.; Meng, G.; Cheng, Y.; Lü, Y.-X. Synthesis 2000, 1519.

³²⁴Kumar, H.M.S.; Reddy, B.V.S.; Reddy, P.T.; Yadav, J.S. Synthesis **1999**, 586; Chakraborti, A.K.; Kaur, G. Tetrahedron **1999**, 55, 13265.

aliphatic aldehyde.³²⁵ The reaction is a combination of **16-15** and **17-29**. Direct nitrile formation has also been accomplished with certain derivatives of NH₂OH, notably, NH₂OSO₂OH.³²⁶ Treatment with hydroxylamine and Nal³²⁷ or certain carbonates³²⁸ also converts aldehydes to the nitrile. Another method involves treatment with hydrazoic acid, though the Schmidt reaction (**18-16**) may compete.³²⁹ Aromatic aldehydes have been converted to nitriles in good yield with NH₂OH/HCOOH on silica gel.³³⁰ Microwave irradiation has been used with NH₂OH·HCl and another reagent, which includes phthalic anhydride,³³¹ Bu₂SnO·Al₂O₃,³³² or H–Y zeolite.³³³ Other reagents include *N*-phenylurea with tosic acid,³³⁴ MnO₂ and ammonia,³³⁵ I₂ with aqueous ammonia,³³⁶ dimethylhydrazine followed by dimethyl sulfoxide,³³⁷ trimethylsilyl azide,³³⁸ and with hydroxylamine hydrochloride, MgSO₄, and TsOH.³³⁹ The reaction of a conjugated aldehyde with ammonia, CuCl and 50% H₂O₂ gave the conjugated nitrile.³⁴¹ Trichloroisocyanuric acid with a catalytic amount of TEMPO (p. 274) converts aldehydes to nitriles at 0°C in dichloromethane.³⁴²

On treatment with 2 equivalents of dimethylaluminum amide Me₂AlNH₂, carboxylic esters can be converted to nitriles: RCOOR' \rightarrow RCN.³⁴³ This is very likely a combination of **16-75** and **17-30**. See also, **19-5**.

OS V, 656.

16-17 Reductive Alkylation of Ammonia or Amines

Hydro,dialkylamino-de-oxo-bisubstitution

$$\begin{array}{c} O \\ II \\ R \\ C \\ R^{1} \end{array} + R^{2} NH + H_{2} \xrightarrow{\text{catalyst}} R^{1} \\ R^{1} \\ C \\ H \end{array}$$

³²⁵Sharghi, H.; Sarvari, M.H. *Tetrahedron* **2002**, *58*, 10323. With wet alumina followed by MeSO₂Cl the product is an amide.

³²⁶Streith, J.; Fizet, C.; Fritz, H. Helv. Chim. Acta 1976, 59, 2786.

³²⁷Ballini, R.; Fiorini, D.; Palmieri, A. Synlett 2003, 1841.

³²⁸Bose, D.S.; Goud, P.R. Synth. Commun. 2002, 32, 3621.

³²⁹For additional methods, see Gelas-Mialhe, Y.; Vessière, R. Synthesis 1980, 1005; Arques, A.; Molina,

P.; Soler, A. Synthesis 1980, 702; Sato, R.; Itoh, K.; Itoh, K.; Nishina, H.; Goto, T.; Saito, M. Chem. Lett.

1984, 1913; Reddy, P.S.N.; Reddy, P.P. Synth. Commun. 1988, 18, 2179; Neunhoeffer, H.; Diehl, W.; Karafiat, U. Liebigs Ann. Chem. 1989, 105.

³³⁰Kabalka, G.W.; Yang, K. Synth. Commun. 1998, 28, 3807.

³³¹Veverková, E.; Toma, Š. Synth. Commun. 2000, 30, 3109.

³³²Yadav, J.S.; Reddy, B.V.S.; Madan, Ch. J. Chem. Res. (S) 2001, 190.

³³³Srinivas, K.V.N.S.; Reddy, E.B.; Das, B. Synlett 2002, 625.

³³⁴Cokun, N.; Arikan, N. Tetrahedron 1999, 55, 11943.

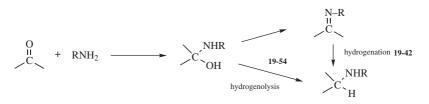
³³⁵Lai, G.; Bhamare, N.K.; Anderson, W.K. Synlett 2001, 230.

³³⁶Talukdar, S.; Hsu, J.-L.; Chou, T.-C.; Fang, J.-M. Tetrahedron Lett. 2001, 42, 1103.

³³⁷Kamal, A.; Arifuddin, M.; Rao, N.V. Synth. Commun. 1998, 28, 4507.

³³⁸Nishiyama, K.; Oba, M.; Watanabe, A. Tetrahedron 1987, 43, 693.

³³⁹Ganboa, I.; Palomo, C. Synth. Commun. 1983, 13, 219.


³⁴⁰Erman, M.B.; Snow, J.W.; Williams, M.J. Tetrahedron Lett. 2000, 41, 6749.

³⁴¹See Baxendale, I.R.; Ley, S.V.; Sneddon, H.F. *Synlett* **2002**, 775; McAllister, G.D.; Wilfred, C.D.; Taylor, R.J.K. *Synlett* **2002**, 1291.

³⁴²Chen, F.-E.; Kuang, Y.-Y.; Dai, H.-F.; Lu, L.; Huo, M. Synthesis 2003, 2629.

³⁴³Wood, J.L.; Khatri, N.A.; Weinreb, S.M. Tetrahedron Lett. 1979, 4907.

When an aldehyde or a ketone is treated with ammonia or a primary or secondary amine in the presence of hydrogen and a hydrogenation catalyst (heterogeneous or homogeneous),³⁴⁴ *reductive alkylation* of ammonia or the amine (or *reductive amination* of the carbonyl compound) takes place.³⁴⁵ The reaction can formally be regarded as occurring in the following manner (shown for a primary amine), which probably does correspond to the actual sequence of steps:³⁴⁶ In this regard, the reaction of an aldehyde with an amine to give an iminium salt (**16-31**) can be followed in a second chemical step of reduction of the C=N unit (**19-42**) using NaBH₄ or a variety of other reagents.³⁴⁷

Primary amines have been prepared from many aldehydes with at least five carbons and from many ketones by treatment with ammonia and a reducing agent. Smaller aldehydes are usually too reactive to permit isolation of the primary amine. Secondary amines have been prepared by both possible procedures: 2 equivalents of ammonia and 1 equivalent of aldehyde or ketone, and 1 equivalent of primary amine and 1 equivalent of carbonyl compound, the latter method being better for all but aromatic aldehydes. Tertiary amines can be prepared in three ways, but the method is seldom carried out with 3 equivalents of ammonia and 1 equivalent of carbonyl compound. Much more often they are prepared from primary or secondary amines.³⁴⁸ When the reagent is ammonia, it is possible for the initial product to react again and for this product to react again, so that secondary and tertiary amines are usually obtained as side products. Similarly, primary amines give tertiary as well as secondary amines. In order to minimize this, the aldehyde or ketone is treated with an excess of ammonia or primary amine (unless of course the higher amine is desired).

For ammonia and primary amines there are two possible pathways, but when secondary amines are involved, only the hydrogenolysis pathway is possible. The reaction is compatible with amino acids, giving the *N*-alkylated amino acid.³⁴⁹

³⁴⁸For a review of the preparation of tertiary amines by reductive alkylation, see Spialter, L.; Pappalardo, J.A. *The Acyclic Aliphatic Tertiary Amines*, Macmillan, NY, **1965**, pp. 44–52.

³⁴⁴Rh: Kadyrov, R.; Riermeier, T.H.; Dingerdissen, U.; Tararov, V.; Börner, A. J. Org. Chem. 2003, 68, 4067; Gross, T.; Seayad, A.M.; Ahmad, M.; Beller, M. Org. Lett. 2002, 4, 2055. Ir: Chi, Y.; Zhou, Y.-G.; Zhang, X. J. Org. Chem. 2003, 68, 4120.

³⁴⁵For reviews, see Rylander, P.N. *Hydrogenation Methods*, Academic Press, NY, **1985**, pp. 82–93; Klyuev, M.V.; Khidekel, M.L. *Russ. Chem. Rev.* **1980**, 49, 14; Rylander, P.N. *Catalytic Hydrogenation over Platinum Metals*, Academic Press, NY, **1967**, pp. 291–303.

³⁴⁶See, for example, Le Bris, A.; Lefebvre, G.; Coussemant, F. Bull. Soc. Chim. Fr. 1964, 1366, 1374, 1584, 1594.

³⁴⁷For a simple example see, Bhattacharyya, S. Synth. Commun. 2000, 30, 2001.

³⁴⁹Song, Y.; Sercel, A.D.; Johnson, D.R.; Colbry, N.L.; Sun, K.-L.; Roth, B.D. *Tetrahedron Lett.* **2000**, *41*, 8225.

Other reducing agents³⁵⁰ can be used instead of hydrogen and a catalyst, among them zinc and HCl, $B_{10}H_{14}^{351}$ or $B_{10}H_{14}$ with Pd/C,³⁵² a picolinyl borane complex in acetic acid–methanol,³⁵³ PhSiH₃ with 2% Bu₂SnCl₂,³⁵⁴ and polymethylhydrosiloxane.³⁵⁵ Several hydride reducing agents can be used, including NaBH₄³⁵⁶ sodium borohydride with Ti(OiPr)₄³⁵⁷ or NiCl₂,³⁵⁸ NaBH₄/H₃BO₄,³⁵⁹ borohydride-exchange resin,³⁶⁰ sodium cyanoborohydride (NaBH₃CN),³⁶¹ sodium triace-toxyborohydride,³⁶² or a polymer-bound triethylammonium acetoxyborohydride.³⁶³ A Hantzsch dihydropyridine in conjunction with a scandium catalyst has been used.³⁶⁴ An interesting variation uses a benzylic alcohol in a reaction with a primary amine, and a mixture of MnO₂ and NaBH₄, giving *in situ* oxidation to the aldehyde and reductive amination to give the amine as the final product.³⁶⁵

Formic acid is commonly used for reductive amination³⁶⁶ in what is called the *Wallach reaction*. Secondary amines react with formaldehyde and NaH₂PO₃ to give the *N*-methylated tertiary amine³⁶⁷ and microwave irradiation has also been used.³⁶⁸ Conjugated aldehydes are converted to alkenyl-amines with the amine/silica gel followed by reduction with zinc borohydride.³⁶⁹ In the particular case where primary or secondary amines are reductively methylated with formaldehyde and formic acid, the method is called the *Eschweiler–Clarke procedure*. Heating with paraformaldehyde and oxalyl chloride has been used to give the same result.³⁷⁰ It is

- ³⁵²Jung, Y.J.; Bae, J.W.; Park, E.S.; Chang, Y.M.; Yoon, C.M. Tetrahedron 2003, 59, 10331.
- ³⁵³Sato, S.; Sakamoto, T.; Miyazawa, E.; Kitugawa, Y. *Tetrahedron* 2004, 60, 7899.

³⁵⁴Apodaca, R.; Xiao, W. Org. Lett. 2001, 3, 1745.

- ³⁵⁵Chandrasekhar, S.; Reddy, Ch.R.; Ahmed, M. Synlett 2000, 1655.
- ³⁵⁶Sondengam, B.L.; Hentchoya Hémo, J.; Charles, G. *Tetrahedron Lett.* **1973**, 261; Schellenberg, K.A. *J. Org. Chem.* **1963**, 28, 3259; Gribble, G.W.; Nutaitis, C.F. *Synthesis* **1987**, 709.
- ³⁵⁷Neidigh, K.A.; Avery, M.A.; Williamson, J.S.; Bhattacharyya, S. J. Chem. Soc. Perkin Trans. 1 1998, 2527; Bhattacharyya, S. J. Org. Chem. 1995, 60, 4928.
- ³⁵⁸Saxena, I.; Borah, R.; Sarma, J.C. J. Chem. Soc., Perkin Trans. 1 2000, 503.
- ³⁵⁹This is a solvent-free reaction. See Cho, B.T.; Kang, S.K. Synlett 2004, 1484.
- ³⁶⁰Yoon, N.M.; Kim, E.G.; Son, H.S.; Choi, J. Synth. Commun. 1993, 23, 1595.
- ³⁶¹Borch, R.F.; Bernstein, M.D.; Durst, H.D. J. Am. Chem. Soc. 1971, 93, 2897; Mattson, R.J.; Pham,
- K.M.; Leuck, D.J.; Cowen, K.A. J. Org. Chem. 1990, 55, 2552. See also, Barney, C.L.; Huber, E.W.;

McCarthy, J.R. *Tetrahedron Lett.* 1990, 31, 5547. For reviews of NaBH₃CN, see Hutchins, R.O.; Natale, N.R. Org. Prep. Proced. Int. 1979, 11, 201; Lane, C.F. Synthesis 1975, 135.

³⁶³Bhattacharyya, S.; Rana, S.; Gooding, O.W.; Labadie, J. *Tetrahedron Lett.* **2003**, 44, 4957.

Nagata, K.; Miyazaki, M.; Ishikawa, H.; Kurihara, A.; Ohsawa, A. Tetrahedron 2004, 60, 6649.

- ³⁶⁵Kanno, H.; Taylor, R.J.K. Tetrahedron Lett. 2002, 43, 7337.
- ³⁶⁶For a microwave induced reaction see Torchy, S.; Barbry, D. J. Chem. Res. (S) 2001, 292.
- ³⁶⁷Davis, B.A.; Durden, D.A. Synth. Commun. 2000, 30, 3353.
- ³⁶⁸Barbry, D.; Torchy, S. Synth. Commun. 1996, 26, 3919.
- ³⁶⁹Ranu, B.C.; Majee, A.; Sarkar, A. J. Org. Chem. 1998, 63, 370.
- ³⁷⁰Rosenau, T.; Potthast, A.; Röhrling, J.; Hofinger, A.; Sixxa, H.; Kosma, P. Synth. Commun. 2002, 32, 457.

³⁵⁰For a list of many of these, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, **1999**, pp. 835–840.

³⁵¹Bae, J.W.; Lee, S.H.; Cho, Y.J.; Yoon, C.M. J. Chem. Soc., Perkin Trans. 1 2000, 145.

³⁶²Abdel-Magid, A.F.; Maryanoff, C.A.; Carson, K.G. *Tetrahedron Lett.* **1990**, *31*, 5595; Abdel-Magid, A.F.; Carson, K.G.; Harris, B.D.; Maryanoff, C.A.; Shah, R.D. *J. Org. Chem.* **1996**, *61*, 3849.

³⁶⁴Itoh, T.; Nagata, K.; Kurihara, A.; Miyazaki, M.; Ohsawa, A. Tetrahedron lett. 2002, 43, 3105; Itoh, T.;

possible to use ammonium (or amine) salts of formic acid,³⁷¹ or formamides, as a substitute for the Wallach conditions. This method is called the Leuckart reaction, 372 and in this case the products obtained are often the N-formyl derivatives of the amines instead of the free amines. A transition-metal catalyzed variation has been reported.³⁷³ Primary and secondary amines can be N-ethylated (e.g., ArNHR \rightarrow ArNREt) by treatment with NaBH₄ in acetic acid.³⁷⁴ Aldehydes react with aniline in the presence of Montmorillonite K10 clay and microwaves to give the amine.³⁷⁵ Tributyltin hydride is used with an ammonium salt,³⁷⁶ or Bu₂SnClH•HMPA with an aromatic amine,³⁷⁷ in the presence of a ketone to give the corresponding amine. Allylic silanes react with aldehydes and carbamates, in the presence of bismuth catalysts,³⁷⁸ or BF₃•OEt₂³⁷⁹ to give the corresponding allylic N-carbamoyl derivative, and trityl perchlorate has been used for the same purpose when N-trimethylsilyl carbamates are employed.³⁸⁰ The reaction can be done with aromatic amines in the presence of vinyl ethers and a copper complex to give β -amino ketones.³⁸¹ Reductive amination of an aryl amine and an aryl aldehyde that contains a ortho conjugated ketone substituents gives the amine, which adds 1,4- (15-AA) to the α , β -unsaturated ketone unit to give a bicyclic amine.³⁸² Alternative methods of reductive alkylation have been developed. Alkylation of an imine formed *in situ* is also possible.³⁸³

Reductive alkylation has also been carried out on nitro, nitroso, azo, and other compounds that are reduced *in situ* to primary or secondary amines. Azo compounds react with aldehydes, in the presence of proline, and subsequent reduction with NaBH₄ gives the chiral hydrazine derivative.³⁸⁴

³⁷¹For a review of ammonium formate in organic synthesis, see Ram, S.; Ehrenkaufer, R.E. *Synthesis* **1988**, 91.

³⁷²For a review, see Moore, M.L. *Org. React.* **1949**, *5*, 301. For discussions of the mechanism, see Awachie, P.I.; Agwada, V.C. Tetrahedron **1990**, *46*, 1899, and references cited therein. For a microwave-induced variation, see Loupy, A.; Monteux, D.; Petit, A.; Aizpurua, J.M.; Domínguez, E.; Palomo, C. Tetrahedron Lett. **1996**, *37*, 8177. For the effects of added formamide, see Lejon, T.; Helland, I. Acta Chem. Scand. **1999**, *53*, 76.

³⁷³Using a rhodium catalyst, see Kitamura, M.; Lee, D.; Hayashi, S.; Tanaka, S.; Yoshimura, M. *J. Org. Chem.* **2002**, *67*, 8685. For a review of this reaction, see Riermeier, T.H.; Dingerdissen, U.; Börner, A. Org. Prep. Proceed. Int. **2004**, *36*, 99.

³⁷⁴For a review, see Gribble, G.W.; Nutaitis, C.F. Org. Prep. Proced. Int. 1985, 17, 317, pp. 336–350.

³⁷⁵Varma, R.S.; Dahiya, R. Tetrahedron 1998, 54, 6293.

³⁷⁶Suwa, T.; Sugiyama, E.; Shibata, I.; Baba, A. Synlett **2000**, 556.

³⁷⁷Suwa, T.; Sugiyama, E.; Shibata, I.; Baba, A. Synthesis 2000, 556.

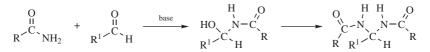
³⁷⁸Ollevier, T.; Ba, T. Tetrahedron Lett. 2003, 44, 9003.

³⁷⁹Billet, M.; Klotz, P.; Mann, A. Tetrahedron lett. 2001, 42, 631.

³⁸⁰Niimi, L.; Serita, K.-i.; Hiraoka, S.; Yokozawa, T. Tetrahedron Lett. 2000, 41, 7075.

³⁸¹Kobayashi, S.; Ueno, M.; Suzuki, R.; Ishitani, H.; Kim, H.-S.; Wataya, Y. *J. Org. Chem.* **1999**, *64*, 6833.

³⁸²Suwa, T.; Shibata, I.; Nishino, K.; Baba, A. Org. Lett. 1999, 1, 1579.


³⁸³See Choudary, B.M.; Jyothi, K.; Madhi, S.; Kantam, M.L. *Synlett* **2004**, 231. For an example in the ionic liquid bmim BF₄, 1-butyl-3-methylimidazolium tetrafluoroborate, see Yadav, J.S.; Reddy, B.V.S.; Raju, A.K. *Synthesis* **2003**, 883.

³⁸⁴List, B. J. Am. Chem. Soc. **2002**, 124, 5656; Kumaragurubaran, N.; Juhl, K.; Zhuang, W.; Bøgevig, A.; Jørgensen, K.A. J. Am. Chem. Soc. **2002**, 124, 6254.

OS I, 347, 528, 531; II, 503; III, 328, 501, 717, 723; IV, 603; V, 552; VI, 499; VII, 27.

16-18 Addition of Amides to Aldehydes

Alkylamido-de-oxo-bisubstitution

Amides can add to aldehydes in the presence of bases (so the nucleophile is actually RCONH⁻) or acids to give acylated amino alcohols, which often react further to give alkylidene or arylidene bisamides.³⁸⁵ If the R' group contains an α hydrogen, water may split out.

Sulfonamides add to aldehydes to give the *N*-sulfonyl imine. Benzaldehyde reacts with TsNH₂, for example, at 160°C in the presence of Si(OEt)₄,³⁸⁶ with tri-fluoroacetic anhydride (TFAA) in refluxing dichloromethane,³⁸⁷ or with TiCl₄ in refluxing dichloroethane,³⁸⁸ to give the *N*-tosylimine, Ts–N=CHPh. In a similar manner, the reaction of TolSO₂Na + PhSO₂Na with an aldehyde in aqueous formic acid gives the *N*-phenylsulfonyl imine.³⁸⁹ The reaction of an aldehyde with Ph₃P=NTs and a ruthenium catalyst gives the *N*-tosylimine.³⁹¹

16-19 The Mannich Reaction

Acyl,amino-de-oxo-bisubstitution, and so on

$$\begin{array}{c} O \\ H \\ H \\ \end{array}^{U} + NH_{4}Cl + H_{3}C \\ H \\ \end{array}^{U} + H_{3}C \\ \end{array}^{U} + NH_{4}Cl + H_{3}C \\ \end{array}^{U} + H_{1}C \\ \end{array}^{U} + H_{1}C \\ \end{array}^{U} + H_{2}N \\ \times^{U} + H_{$$

In the *Mannich reaction*, formaldehyde (or sometimes another aldehyde) is condensed with ammonia, in the form of its salt, and a compound containing an active hydrogen.³⁹² This can formally be considered as an addition of ammonia to give

³⁸⁵For reviews, see Challis, B.C.; Challis, J.A. in Zabicky, J. *The Chemistry of Amides*, Wiley, NY, **1970**, pp. 754–759; Zaugg, H.E.; Martin, W.B. *Org. React.* **1965**, *14*, 52, 91–95, 104–112. For a discussion, see Gilbert, E.E. *Synthesis* **1972**, 30.

³⁸⁶Love, B.E.; Raje, P.S.; Williams II, T.C. Synlett 1994, 493.

³⁸⁷Lee, K.Y.; Lee, C.G.; Kim, J.N. Tetrahedron Lett. 2003, 44, 1231.

³⁸⁸Ram, R.N.; Khan, A.A. Synth. Commun. 2001, 31, 841.

³⁸⁹Chemla, F.; Hebbe, V.; Normant, J.-F. Synthesis 2000, 75.

³⁹⁰Jain, S.L.; Sharma, V.B.; Sain, B. Tetrahedron Lett. 2004, 45, 4341.

³⁹¹Solladié-Cavallo, A.; Benchegroun, M.; Bonne, F. Synth. Commun. 1993, 23, 1683.

³⁹²For reviews, see Tramontini, M.; Angiolini, L. *Tetrahedron* 1990, 46, 1791; Gevorgyan, G.A.; Agababyan, A.G.; Mndzhoyan, O.L. *Russ. Chem. Rev.* 1984, 53, 561; Tramontini, M. *Synthesis* 1973, 703; House, H.O. *Modern Synthetic Reactions*, 2nd ed., W.A. Benjamin, NY, 1972, pp. 654–660. For reviews on the reactions of Mannich Bases, see Tramontini, M.; Angeloni, L. cited above; Gevorgyan, G.A.; Agababyan, A.G.; Mndzhoyan, O.L. *Russ. Chem. Rev.* 1985, 54, 495.

H₂NCH₂OH, followed by a nucleophilic substitution. Instead of ammonia, the reaction can be carried out with salts of primary or secondary amines,³⁹³ or with amides,³⁹⁴ in which cases the product is substituted on the nitrogen with R, R₂, and RCO, respectively. The imine can be generated *in situ*, and the reaction of a ketone, formaldehyde, and diethylamine with microwave irradiation gave the Mannich product, a β -amino ketone.³⁹⁵ Arylamines do not normally give the reaction. Hydrazines can be used.³⁹⁶ The product is referred to as a *Mannich base*. Many active hydrogen compounds give the reaction, including ketones and aldehydes, esters, nitroalkanes,³⁹⁷ and nitriles as well as ortho-carbons of phenols, the carbon of terminal alkynes, the oxygen of alcohols and the sulfur of thiols.³⁹⁸ Vinylogous Mannich reactions are known.³⁹⁹

The Mannich base can react further in three ways. If it is a primary or secondary amine, it may condense with one or two additional molecules of aldehyde and active compound, for example,

$$H_2NCH_2CH_2COR \xrightarrow{HCHO} HN(CH_2CH_2COR)_2 \xrightarrow{HCHO} N(CH_2CH_2COR)_3$$

If the active hydrogen compound has two or three active hydrogens, the Mannich base may condense with one or two additional molecules of aldehyde and ammonia or amine, for example,

$$H_2NCH_2CH_2COR \xrightarrow{HCHO} (H_2NCH_2)_2CHCOR \xrightarrow{HCHO} (H_2NCH_2)_3CHCOR$$

Another further reaction consists of condensation of the Mannich base with excess formaldehyde:

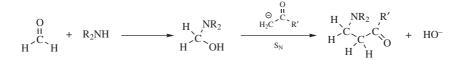
$$H_2NCH_2CH_2COR + HCHO \longrightarrow H_2C=NCH_2CH_2COR$$

Sometimes it is possible to obtain these products of further condensation as the main products of the reaction. At other times they are side products.

When the Mannich base contains an amino group β to a carbonyl (and it usually does), ammonia is easily eliminated. This is a route to α , β -unsaturated aldehydes, ketones, esters, and so on.

³⁹³For a review where the amine component is an amino acid, see Agababyan, A.G.; Gevorgyan, G.A.; Mndzhoyan, O.L. *Russ. Chem. Rev.* **1982**, *51*, 387.

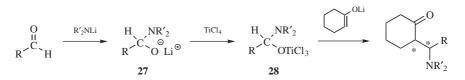
³⁹⁴Hellmann, H. Angew. Chem. **1957**, 69, 463; Newer Methods Prep. Org. Chem. **1963**, 2, 277.


³⁹⁵Gadhwal, S.; Baruah, M.; Prajapati, D.; Sandhu, J.S. Synlett 2000, 341.

³⁹⁶El Kaim, L.; Grimaud, L.; Perroux, Y.; Tirla, C. J. Org. Chem. 2003, 68, 8733.

³⁹⁷Qian, C.; Gao, F.; Chen, R. *Tetrahedron Lett.* **2001**, *42*, 4673. See Baer, H.H.; Urbas, L., in Feuer, H. *The Chemistry of the Nitro and Nitroso Groups*, Wiley, NY, **1970**, pp. 117–130.

 ³⁹⁸see Massy, D.J.R. *Synthesis* **1987**, 589; Dronov, V.I.; Nikitin, Yu.E. *Russ. Chem. Rev.* **1985**, 54, 554
 ³⁹⁹Bur, S.; Martin, S.F. *Tetrahedron* **2001**, 57, 3221. For a review, see Martin, S.F. *Acc. Chem. Res.* **2002**, 35, 895.


Studies of the reaction kinetics have led to the following proposals for the mechanism of the Mannich reaction.⁴⁰⁰ The base-catalyzed reaction:

The acid-catalyzed reaction:

According to this mechanism, it is the free amine, not the salt that reacts, even in acid solution; and the active-hydrogen compound (in the acid-catalyzed process) reacts as the enol when that is possible. This latter step is similar to what happens in **12-4**. There is kinetic evidence for the intermediacy of the iminium ion (**26**).⁴⁰¹

When an unsymmetrical ketone is used as the active-hydrogen component, two products are possible. Regioselectivity has been obtained by treatment of the ketone with pre-formed iminium ions:⁴⁰² the use of Me₂N⁺=CH₂ CF₃COO^{\ominus} in CF₃COOH gives substitution at the more highly substituted position, while with (*i*Pr)₂N=CH₂⁺ ClO₄^{\ominus} the reaction takes place at the less highly substituted position.⁴⁰³ The pre-formed iminium compound dimethyl(methylene)ammonium iodide CH₂=N⁺Me₂ I^{\ominus}, called *Eschenmoser's salt*,⁴⁰⁴ has also been used in Mannich reactions.⁴⁰⁵ The analogous chloride salt has been condensed with an imine to give and a β , β '-dimethylamino ketone after acid hydrolysis.⁴⁰⁶

⁴⁰⁰Cummings, T.F.; Shelton, J.R. J. Org. Chem. 1960, 25, 419.

⁴⁰¹Benkovic, S.J.; Benkovic, P.A.; Comfort, D.R. J. Am. Chem. Soc. 1969, 91, 1860.

⁴⁰²For earlier use of pre-formed iminium ions in the Mannich reaction, see Ahond, A.; Cavé, A.; Kan-Fan, C.; Potier, P. *Bull. Soc. Chim. Fr.* **1970**, 2707; Schreiber, J.; Maag, H.; Hashimoto, N.; Eschenmoser, A. *Angew. Chem. Int. Ed.* **1971**, *10*, 330.

⁴⁰⁵See Holy, N.; Fowler, R.; Burnett, E.; Lorenz, R. *Tetrahedron* 1979, 35, 613; Bryson, T.A.; Bonitz, G.H.; Reichel, C.J.; Dardis, R.E. J. Org. Chem. 1980, 45, 524, and references cited therein.

⁴⁰⁶Arend, M.; Risch, N. Tetrahedron Lett. 1999, 40, 6205.

⁴⁰³Jasor, Y.; Luche, M.; Gaudry, M.; Marquet, A. J. Chem. Soc., Chem. Commun. **1974**, 253; Gaudry, M.; Jasor, Y.; Khac, T.B. Org. Synth. VI, 474.

⁴⁰⁴Schreiber, J.; Maag, H.; Hashimoto, N.; Eschenmoser, A. Angew. Chem. Int. Ed. 1971, 10, 330.

Another type of pre-formed reagent (28) has been used to carry out diastereoselective Mannich reactions. The lithium salts 27 are treated with TiCl₄ to give 28, which is then treated with the enolate of a ketone.⁴⁰⁷ The palladium catalyzed Mannich reaction of enol ethers to imines is also known.⁴⁰⁸ The reaction of silyl enol ethers and imines is catalyzed by HBF₄ in aqueous methanol.⁴⁰⁹ Similarly, silyl enol ethers react with aldehydes and aniline in the presence of InCl₃ to give the β -amino ketone.⁴¹⁰ Imines react on Montmorillonite K10 clay and microwave irradiation gives β -amino esters.⁴¹¹ Enol ethers react similarly in the presence of Yb(OTf)₃.⁴¹²

Enantioselective Mannich reactions are known.⁴¹³ The most common method uses a chiral catalyst, including proline,⁴¹⁴ proline derivatives or proline analogs.⁴¹⁵ Chiral diamine⁴¹⁶ or phosphine-imine⁴¹⁷ ligands have been used. Chiral auxiliaries on the carbonyl fragment can be used.⁴¹⁸ Chiral imines, in the form of chiral hydrazones have been used with silyl enol ethers and a scandium catalyst.⁴¹⁹ Chiral amine react with aldehydes, with silyl enol ethers and an InCl₃ catalyst in ionic liquids, to give the Mannich product with good enantioselectivity.⁴²⁰

Also see, 11-22.

OS III, 305; IV, 281, 515, 816; VI, 474, 981, 987; VII, 34. See also, OS VIII, 358.

16-20 The Addition of Amines to Isocyanates

N-Hydro-C-alkylamino-addition

⁴⁰⁷Seebach, D.; Schiess, M.; Schweizer, W.B. *Chimia* 1985, *39*, 272. See also, Heaney, H.; Papageorgiou,
 G.; Wilkins, R.F. J. Chem. Soc., Chem. Commun. 1988, 1161; Katritzky, A.R.; Harris, P.A. Tetrahedron 1990, *46*, 987.

⁴⁰⁸For a discussion of the mechanism, see Fujii, A.; Hagiwara, E.; Sodeoka, M. J. Am. Chem. Soc. **1999**, *121*, 5450.

⁴⁰⁹Akiyama, T.; Takaya, J.; Kagoshima, H. *Synlett* **1999**, 1045; Akiyama, T.; Takaya, J.; Kagoshima, H. *Tetrahedron Lett.* **2001**, 42, 4025.

⁴¹⁰Loh, T.-P.; Wei, L.L. Tetrahedron Lett. 1998, 39, 323.

⁴¹¹Texier-Boullet, F.; Latouche, R.; Hamelin, J. Tetrahedron Lett. 1993, 34, 2123.

⁴¹²Kobayashi, S.; Ishitani, H. J. Chem. Soc., Chem. Commun. 1995, 1379.

⁴¹³For a review, see Córdova, A. Acc. Chem. Res. 2004, 37, 102.

⁴¹⁴List, B.; Pojarliev, P.; Biller, W.T.; Martin, H.J. J. Am. Chem. Soc. **2004**, *124*, 827; Ibrahem, I.; Casas, J.; Córdova, A. Angew. Chem. Int. Ed. **2004**, *43*, 6528.

⁴¹⁵Notz, W.; Sakthivel, K.; Bui, T.; Zhong, G.; Barbas III, C.F. Tetrahedron Lett. 2000, 42, 199.

⁴¹⁶Kobayashi, S.; Hamada, T.; Manabe, K. J. Am. Chem. Soc. **2002**, *124*, 5640; Trost, B.M.; Terrell, C.R. J. Am. Chem. Soc. **2003**, *125*, 338.

⁴¹⁷Josephsohn, N.S.; Snapper, M.L.; Hoveyda, A.H. J. Am. Chem. Soc. 2004, 126, 3734.

⁴¹⁸Hata, S.; Iguchi, M.; Iwasawa, T.; Yamada, K.-i.; Tomioka, K. Org. Lett. 2004, 6, 1721.

⁴¹⁹Jacobsen, M.F.; Ionita, L.; Skrydstrup, T. J. Org. Chem. 2004, 69, 4792.

⁴²⁰In bmim BF₄, 1-butyl-3-methylimidazolium tetrafluoroborate: Sun, W.; Xia, C.-G.; Wang, H.-W. *Tetrahedron Lett.* **2003**, *44*, 2409.

Ammonia and primary and secondary amines can be added to isocyanates⁴²¹ to give substituted ureas.⁴²² Isothiocyanates give thioureas.⁴²³ This is an excellent method for the preparation of ureas and thioureas, and these compounds are often used as derivatives for primary and secondary amines. Isocyanic acid (HNCO) also gives the reaction; usually its salts (e.g., NaNCO) are used. Wöhler's famous synthesis of urea involved the addition of ammonia to a salt of this acid.⁴²⁴

OS II, 79; III, 76, 617, 735; IV, 49, 180, 213, 515, 700; V, 555, 801, 802, 967; VI, 936, 951; VIII, 26.

16-21 The Addition of Ammonia or Amines to Nitriles

N-Hydro-C-amino-addition

$$R-C\equiv N + NH_3 \xrightarrow{NH_4Cl} R^{\Theta} R^{O}$$

Unsubstituted amidines (in the form of their salts) can be prepared by addition of ammonia to nitriles.⁴²⁵ Many amidines have been made in this way. Dinitriles of suitable chain length can give imidines:⁴²⁶

Primary and secondary amines can be used instead of ammonia, to give substituted amidines, but only if the nitrile contains electron-withdrawing groups; for example, Cl₃CCN gives the reaction. Ordinary nitriles do not react, and, in fact, acetonitrile is often used as a solvent in this reaction.⁴²⁷ Ordinary nitriles can be converted to amidines by treatment with an alkylchloroaluminum amide, MeAl(Cl)NR₂ (R = H or Me).⁴²⁸ The addition of ammonia to cyanamide (NH₂CN) gives guanidine, (NH₂)₂C=NH. Guanidines can also be formed from amines.⁴²⁹

⁴²¹For a review of the mechanism, see Satchell, D.P.N.; Satchell, R.S. Chem. Soc. Rev. 1975, 4, 231.

⁴²²For a review of substituted ureas, see Vishnyakova, T.P.; Golubeva, I.A.; Glebova, E.V. *Russ. Chem. Rev.* **1985**, *54*, 249.

⁴²³Herr, R.J.; Kuhler, J.L.; Meckler, H.; Opalka, C.J. Synthesis 2000, 1569.

⁴²⁴For a history of the investigation of the mechanism of the Wöhler synthesis, see Shorter, J. *Chem. Soc. Rev.* **1978**, *7*, 1. See also, Williams, A.; Jencks, W.P. J. Chem. Soc. Perkin Trans. 2 **1974**, 1753, 1760; Hall, K.J.; Watts, D.W. *Aust. J. Chem.* **1977**, *30*, 781, 903.

⁴²⁵For reviews of amidines, see Granik, V.G. *Russ. Chem. Rev.* **1983**, 52, 377; Gautier, J.; Miocque, M.; Farnoux, C.C., in Patai, S. *The Chemistry of Amidines and Imidates*, Wiley, NY, **1975**, pp. 283–348.

⁴²⁶Elvidge, J.A.; Linstead, R.P.; Salaman, A.M. J. Chem. Soc. 1959, 208.

⁴²⁷Grivas, J.C.; Taurins, A. Can. J. Chem. 1961, 39, 761.

⁴²⁸Garigipati, R.S. Tetrahedron Lett. 1990, 31, 1969.

⁴²⁹Dräger, G.; Solodenko, W.; Messinger, J.; Schön, U.; Kirschning, A. Tetrahedron Lett. 2002, 43, 1401.

If water is present, in the presence of a ruthenium catalyst⁴³⁰ or a platinum catalyst,⁴³¹ the addition of a primary or secondary amine to a nitrile gives an amide: RCN + R¹NHR² + H₂O \rightarrow RCONR¹R² + NH₃ (R² may be H). When benzonitrile reacts with H₂PO₃Se⁻ in aqueous methanol, a selenoamide, PhC=Se)NH₂, is formed after treatment with aq. potassium carbonate.⁴³²

OS I, 302 [but also see OS V, 589]; IV, 245, 247, 515, 566, 769. See also, OS V, 39.

16-22 The Addition of Amines to Carbon Disulfide and Carbon Dioxide

S-Metallo-C-alkylamino-addition

$$S=C=S + RNH_2 \xrightarrow{base} O_{RHN}^{O} S \in C$$

Salts of dithiocarbamic acid can be prepared by the addition of primary or secondary amines to carbon disulfide.⁴³³ This reaction is similar to **16-10**. Hydrogen sulfide can be eliminated from the product, directly or indirectly, to give isothiocyanates (RNCS). Isothiocyanates can be obtained directly by the reaction of primary amines and CS₂ in pyridine in the presence of dicyclohexylcarbodiimide.⁴³⁴ Aniline derivatives react with CS₂ and NaOH, and then ethyl chloroformate to give the aryl isothiocyanate.⁴³⁵ In the presence of diphenyl phosphite and pyridine, primary amines add to CO₂ and to CS₂ to give, respectively, symmetrically substituted ureas and thioureas:⁴³⁶ Isoselenoureas, R₂NC(=NR¹)SeR², can also be formed.⁴³⁷

RNH₂ + CO₂
$$\xrightarrow{\text{pyridine}}$$
 $\stackrel{O}{\underset{\text{HPO(OPh)_2}}{\overset{U}}}$ RHN $\stackrel{O}{\underset{\text{C}}{\overset{U}}}$ NHR

OS I, 447; III, 360, 394, 599, 763; V, 223.

430 Murahashi, S.; Naota, T.; Saito, E. J. Am. Chem. Soc. 1986, 108, 7846.

⁴³¹Cobley, C.J.; van den Heuvel, M.; Abbadi, A.; de Vries, J.G. Tetrahedron Lett. 2000, 41, 2467.

⁴³²Kamiñski, R.; Glass, R.S.; Skowroñska, A. Synthesis 2001, 1308.

⁴³³For reviews, see Dunn, A.D.; Rudorf, W. Carbon Disuphide in Organic Chemistry, Ellis Horwood, Chichester, **1989**, pp. 226–315; Katritzky, A.R.; Faid-Allah, H.; Marson, C.M. Heterocycles **1987**, 26, 1657; Yokoyama, M.; Imamoto, T. Synthesis **1984**, 797, see pp. 804–812. For a review of the addition of heterocyclic amines to CO₂ to give, for example, salts of pyrrole-1-carboxylic acids, see Katritzky, A.R.; Marson, C.M.; Faid-Allah, H. Heterocycles **1987**, 26, 1333.

⁴³⁴Jochims, J.C. *Chem. Ber.* 1968, 101, 1746. For other methods, see Sakai, S.; Fujinami, T.; Aizawa, T. *Bull. Chem. Soc. Jpn.* 1975, 48, 2981; Gittos, M.W.; Davies, R.V.; Iddon, B.; Suschitzky, H. J. *Chem. Soc. Perkin Trans.* 1 1976, 141; Shibanuma, T.; Shiono, M.; Mukaiyama, T. *Chem. Lett.* 1977, 573; Molina, P.; Alajarin, M.; Arques, A. *Synthesis* 1982, 596.

⁴³⁵Li, Z.; Qian, X.; Liu, Z.; Li, Z.; Song, G. Org. Prep. Proceed. Int. 2000, 32, 571.

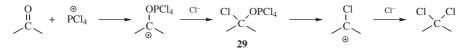
⁴³⁶Yamazaki, N.; Higashi, F.; Iguchi, T. *Tetrahedron Lett.* **1974**, 1191. For other methods for the conversion of amines and CO₂ to ureas, see Ogura, H.; Takeda, K.; Tokue, R.; Kobayashi, T. *Synthesis* **1978**, 394; Fournier, J.; Bruneau, C.; Dixneuf, P.H.; Lécolier, S. *J. Org. Chem.* **1991**, 56, 4456. See Chiarotto, I.; Feroci, M. *J. Org. Chem.* **2003**, 68, 7137; Lemoucheux, L.; Rouden, J.; Ibazizene, M.; Sobrio, F.; Lasne, M.-C. *J. Org. Chem.* **2003**, 68, 7289.

⁴³⁷Asanuma, Y.; Fujiwara, S.-i.; Shi-ike, T.; Kambe, N. J. Org. Chem. 2004, 69, 4845.

E. Halogen Nucleophiles

16-23 The Formation of gem-Dihalides from Aldehydes and Ketones

Dihalo-de-oxo-bisubstitution



Aliphatic aldehydes and ketones can be converted to *gem*-dichlorides⁴³⁸ by treatment with PCl₅. The reaction fails for perhalo ketones.⁴³⁹ If the aldehyde or ketone has an α hydrogen, elimination of HCl may follow and a vinylic chloride is a frequent side product:⁴⁴⁰

or even the main product.⁴⁴¹ The PBr₅ does not give good yields of *gem*-dibromides,⁴⁴² but these can be obtained from aldehydes, by the use of Br₂ and triphenyl phosphite.⁴⁴³ *gem*-Dichlorides can be prepared by reacting an aldehyde with BiCl₃.⁴⁴⁴

The mechanism of *gem*-dichloride formation involves initial attack on PCl_4^+ (which is present in solid PCl_5) at the oxygen, followed by addition of Cl^- to the carbon:⁴⁴⁵

This chloride ion may come from PCl_6^- (which is also present in solid PCl_5). There follows a two-step S_N1 process. Alternatively, **29** can be converted to the product without going through the chlorocarbocation, by an S_Ni process.

This reaction has sometimes been performed on carboxylic esters, though these compounds very seldom undergo any addition to the C=O bond. An example is the conversion of $F_3CCOOPh$ to F_3CCCl_2OPh .⁴⁴⁶ However, formates commonly give the reaction.

441See, for example, Newman, M.S.; Fraenkel, G.; Kirn, W.N. J. Org. Chem. 1963, 28, 1851.

- ⁴⁴⁵Newman, M.S. J. Org. Chem. 1969, 34, 741.
- ⁴⁴⁶Kirsanov, A.V.; Molosnova, V.P. J. Gen. Chem. USSR 1958, 28, 31; Clark, R.F.; Simons, J.H. J. Org. Chem. 1961, 26, 5197.

⁴³⁸For a list of reagents that convert aldehydes and ketones to *gem*-dihalides or vinylic halides, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, *1999*, pp. 719–722.

⁴³⁹ Farah, B.S.; Gilbert, E.E. J. Org. Chem. 1965, 30, 1241.

⁴⁴⁰See, for example, Nikolenko, L.N.; Popov, S.I. J. Gen. Chem. USSR 1962, 32, 29.

⁴⁴²For an indirect method of converting ketones to *gem*-dibromides, see Napolitano, E.; Fiaschi, R.; Mastrorilli, E. *Synthesis* **1986**, 122.

⁴⁴³Hoffmann, R.W.; Bovicelli, P. Synthesis 1990, 657. See also, Lansinger, J.M.; Ronald, R.C. Synth. Commun. 1979, 9, 341.

⁴⁴⁴Kabalka, G.W.; Wu, Z. Tetrahedron Lett. 2000, 41, 579.

Many aldehydes and ketones have been converted to *gem*-difluoro compounds with sulfur tetrafluoride SF_4 ,⁴⁴⁷ including quinones, which give 1,1,4,4-tetrafluorocyclohexadiene derivatives. With ketones, yields can be raised and the reaction temperature lowered, by the addition of anhydrous HF.⁴⁴⁸ Carboxylic acids, acyl chlorides, and amides react with SF_4 to give 1,1,1-trifluorides. In these cases the first product is the acyl fluoride, which then undergoes the *gem*-difluorination reaction:

$$\begin{array}{c} O \\ II \\ R \\ \hline C \\ W \end{array} + SF_4 \longrightarrow \begin{array}{c} O \\ II \\ R \\ \hline C \\ F \end{array} + SF_4 \longrightarrow \begin{array}{c} F \\ R \\ \hline C \\ F \end{array} W = OH, CI, NH_2, NHR$$

The acyl fluoride can be isolated. Carboxylic esters also give trifluorides, but more vigorous conditions are required. In this case, the carbonyl group of the ester is attacked first, and RCF₂OR' can be isolated from RCOOR'⁴⁴⁹ and then converted to the trifluoride. Anhydrides can react in either manner. Both types of intermediate are isolable under the right conditions and SF₄ even converts carbon dioxide to CF₄. A disadvantage of reactions with SF₄ is that they require a pressure vessel lined with stainless steel. Selenium tetrafluoride SeF₄ gives similar reactions, but atmospheric pressure and ordinary glassware can be used.⁴⁵⁰ Another reagent that is often used to convert aldehydes and ketones to *gem*-difluorides is the commercially available diethylaminosulfur trifluoride (DAST, Et₂NSF₃), and CF₂Br₂ in the presence of zinc.⁴⁵¹ The mechanism with SF₄ is probably similar in general nature, if not in specific detail, to that with PCl₅.

Treatment with hydrazine to give the hydrazone, and then $CuBr_2/t$ -BuOLi, generated the *gem*-dibromide.⁴⁵² Oximes gives *gem*-dichlorides upon treatment with chlorine and BF₃•OEt₂, and then HCl.⁴⁵³ Some dithianes can be converted to *gem*-difluorides with a mixture of fluorine and iodine in acetonitrile.⁴⁵⁴ Oximes give *gem*-difluorides with NO⁺BF₄⁻ and pyridinium polyhydrogen fluoride.⁴⁵⁵

In a related process, α -halo ethers can be prepared by treatment of aldehydes and ketones with an alcohol and HX. The reaction is applicable to aliphatic aldehydes and ketones and to primary and secondary alcohols. The addition of HX to an aldehyde or ketone gives α -halo alcohols, which are usually unstable, although exceptions are known, especially with perfluoro and perchloro species.⁴⁵⁶

- ⁴⁵⁰Olah, G.A.; Nojima, M.; Kerekes, I. J. Am. Chem. Soc. 1974, 96, 925.
- ⁴⁵¹Hu, C.-M.; Qing, F.-L.; Shen, C.-X. J. Chem. Soc. Perkin Trans. 1 1993, 335.
- ⁴⁵²Takeda, T.; Sasaki, R.; Nakamura, A.; Yamauchi, S.; Fujiwara, T. Synlett 1996, 273.
- ⁴⁵³Tordeux, M.; Boumizane, K.; Wakselman, C. J. Org. Chem. 1993, 58, 1939.
- ⁴⁵⁴Chambers, R.D.; Sandford, G.; Atherton, M. J. Chem. Soc., Chem. Commun. 1995, 177.
- ⁴⁵⁵York, C.; Prakash, G.K.S.; Wang, Q.; Olah, G.A. Synlett 1994, 425.
- ⁴⁵⁶For example, see Andreades, S.; England, D.C. J. Am. Chem. Soc. **1961**, 83, 4670; Clark, D.R.; Emsley, J.; Hibbert, F. J. Chem. Soc. Perkin Trans. 2 **1988**, 1107.

⁴⁴⁷For reviews, see Wang, C.J. *Org. React.* **1985**, *34*, 319; Boswell, Jr., G.A.; Ripka, W.C.; Scribner, R.M.; Tullock, C.W. *Org. React.* **1974**, *21*, 1.

⁴⁴⁸Muratov, N.N.; Mohamed, N.M.; Kunshenko, B.V.; Burmakov, A.I.; Alekseeva, L.A.; Yagupol'skii, L.M. J. Org. Chem. USSR **1985**, 21, 1292.

⁴⁴⁹For methods of converting RCOOR' to RCF₂OR', see Boguslavskaya, L.S.; Panteleeva, I.Yu.; Chuvatkin, N.N. *J. Org. Chem. USSR* **1982**, *18*, 198; Bunnelle, W.H.; McKinnis, B.R.; Narayanan, B.A. *J. Org. Chem.* **1990**, *55*, 768.

Aromatic aldehydes are converted to benzylic bromides with dibromoboranes, such as c-C₆H₁₁BBr₂.⁴⁵⁷ Aldehydes are converted directly to benzylic chlorides with HSiMe₂Cl and an In(OH)₃ catalyst.⁴⁵⁸ The reaction of BuBCl₂ and oxygen gives alkylation (**16-25**) and chlorination.⁴⁵⁹

OS II, 549; V, 365, 396, 1082; VI, 505, 845; VIII, 247. Also see OS I, 506. For α-halo-ethers, see OS I, 377; IV, 101 (see, however, OS V, 218), 748; VI, 101.

F. Attack at Carbon by Organometallic Compounds⁴⁶⁰

16-24 The Addition of Grignard Reagents and Organolithium Reagents to Aldehydes and Ketones

O-Hydro-C-alkyl-addition

$$\begin{array}{c} O \\ II \\ C \\ \end{array} + RMgX \longrightarrow \begin{array}{c} R \\ C \\ \end{array} \begin{array}{c} OMgX \\ \end{array} \begin{array}{c} hydrol. \\ C \\ \end{array} \begin{array}{c} R \\ C \\ \end{array} \begin{array}{c} OH \\ \end{array}$$

Organomagnesium compounds, commonly known as Grignard reagents (RMgX), are formed by the reaction of alkyl, vinyl, or aryl halides with magnesium metal, usually in ether solvents such as diethyl ether or THF (**12-38**), although the reaction can be done in water⁴⁶¹ under certain conditions. Halogen–magnesium exchange generates a Grignard reagent by reaction of aryl halides with reactive aliphatic Grignard reagents.⁴⁶² The addition of Grignard reagents to aldehydes and ketones ⁴⁶³ is known as the *Grignard reaction*.⁴⁶⁴ The initial product is a magnesium alkoxide, requiring a hydrolysis step to generate the final alcohol product. Formaldehyde gives primary alcohols; other aldehydes give secondary alcohols; and ketones give tertiary alcohols. The reaction is of very broad scope. In many cases, the hydrolysis step is carried out with dilute HCl or H₂SO₄, but this cannot be done for tertiary alcohols in which at least one R group is alkyl because such alcohols are easily dehydrated under acidic conditions (**17-1**). In such cases (and often for other alcohols as well), an aqueous solution of ammonium chloride is used instead of a strong acid. Grignard reagents have been used in solid phase synthesis.⁴⁶⁵

⁴⁵⁸Onishi, Y.; Ogawa, D.; Yasuda, M.; Baba, A. J. Am. Chem. Soc. 2002, 124, 13690.

⁴⁶¹Li, C.-J. Tetrahedron 1996, 52, 5643.

⁴⁶²Song, J.J.; Yee, N.K.; Tan, Z.; Xu, J.; Kapadia, S.R.; Senanayake, C.H. Org. Lett. 2004, 6, 4905.

⁴⁶³For a discussion of the effect of addends on aggregation and reactivity, see Leung, S.S.-W.; Streitwieser, A. J. Org. Chem. **1999**, 64, 3390.

⁴⁶⁴For reviews of the addition of organometallic compounds to carbonyl groups, see Eicher, T., in Patai, S. *The Chemistry of the Carbonyl Group*, pt. 1, Wiley, NY, **1966**, pp. 621–693; Kharasch, M.S.; Reinmuth, O. *Grignard Reactions of Nonmetallic Substances*, Prentice-Hall: Englewood Cliffs, NJ, **1954**, pp. 138–528. For a review of reagents that extend carbon chains by three carbons, with some functionality at the new terminus, see Stowell, J.C. *Chem. Rev.* **1984**, 84, 409. For a computational study of this reaction, see Yamazaki, S.; Yamabe, S. J. Org. Chem. **2002**, 67, 9346.

⁴⁶⁵Franzén, R.G. Tetrahedron 2000, 56, 685.

⁴⁵⁷Kabalka, G.W.; Wu, Z.; Ju, Y. Tetrahedron Lett. 2000, 41, 5161.

⁴⁵⁹Kabalka, G.W.; Wu, Z.; Ju, Y. Tetrahedron Lett. 2001, 42, 6239.

⁴⁶⁰Discussions of most of the reactions in this section are found, in Hartley, F.R.; Patai, S. *The Chemistry of the Metal-Carbon Bond*, Vols. 2–4, Wiley, NY, *1985–1987*.

Alternative methods to generate the aryImagnesium compound are available, including the reaction of an aryl bromide with Bu₃MgLi in THF.⁴⁶⁶ Subsequent addition of an aldehyde leads to addition of the aryl group to form an alcohol. An interesting method to form an alkyImagnesium halide used dibutyImagnesium (Bu₂Mg) and a chiral diamine, and subsequent reaction with an aldehyde led to the alcohol derived from acyl addition of a butyl group with good enantioselectivity.⁴⁶⁷

Organolithium reagents (RLi), prepared from alkyl halides and lithium metal or by exchange of an alkyl halide with a reactive organolithium (12-38) react with aldehydes and ketones by acyl addition to give the alcohol,⁴⁶⁸ after hydrolysis. Organolithium reagents are more basic than the corresponding Grignard reagent, which leads to problems of deprotonation in some cases. Organolithium regents are generally more nucleophilic, and can add to hindered ketones with relative ease when compared to the analogous Grignard reagent.⁴⁶⁹ These reagents tend to form aggregates, which influences the reactivity and selectivity of the addition reaction.⁴⁷⁰ Alkyl, vinyl⁴⁷¹ and aryl organolithium reagents can be prepared and undergo this reaction. Structural variations are also possible. A lithio-epoxide was formed by treating an epoxide with sec-butyllithium in the presence of sparteine,⁴⁷² or with nbutyllithium/TMEDA,⁴⁷³ and subsequent reaction with an aldehyde led to an epoxy alcohol. Treatment of an allenic silvl enol ether ($R_3SiOC=C=C$) with tertbutyllithium and then a ketone leads to acyl addition of a vinyllithium reagents to give a product with a conjugated ketone in which the C=C is allylic to the alcohol, $R_3SiC(=O)C(=CH_2)-C(OH)R_2$ ⁴⁷⁴ The dilithio compound LiC=CCH₂Li reacts with ketones via acyl addition, and an interesting workup with formaldehyde and then aqueous ammonium chloride gave the homopropargyl alcohol. $R_2C(OH)CH_2C \equiv CH$.⁴⁷⁵ Aryl sulfonamides can be treated with 2 equivalents of *n*butyllithium to give an ortho aryllithium which can then be added to an aldehyde to give the resulting diaryl carbinol.⁴⁷⁶ A very interesting variation of the fundamental acyl addition reaction of organolithium reagents treated an aldehyde with an acyllithio amide, LiC(=O)N(Me)CH₂Me, to give an α -hydroxy amide derivative.⁴⁷⁷

The reaction of aldehydes or ketones with alkyl and aryl Grignard reagents has also been done without preliminary formation of RMgX, by mixing RX the carbonyl compound and magnesium metal in an ether solvent. This approach

⁴⁷³Florio, S.; Aggarwal, V.; Salomone, A. Org. Lett. 2004, 6, 4191.

- ⁴⁷⁵Cabezas, J.A.; Pereira, A.R.; Amey, A. Tetrahedron Lett. 2001, 42, 6819.
- ⁴⁷⁶Stanetty, P.; Emerschitz, T. Synth. Commun. 2001, 31, 961.
- ⁴⁷⁷Cunico, R.F. Tetrahedron Lett. 2002, 43, 355.

⁴⁶⁶Inoue, A.; Kitagawa, K.; Shinokubo, H.; Oshima, K. J. Org. Chem. 2001, 66, 4333.

⁴⁶⁷Yong, K.H.; Taylor, N.J.; Chong, J.M. Org. Lett. 2002, 4, 3553.

 $^{^{468}}$ For a study of Hammett ρ values for this reaction, see Maclin, K.M.; Richey Jr., H.G. J. Org. Chem. **2002**, 67, 4370.

⁴⁶⁹Lecomte, V.; Stéphan, E.; Le Bideau, F.; Jaouen, G. Tetrahedron 2003, 59, 2169.

⁴⁷⁰See Fressigné, C.; Maddaluno, J.; Marquez, A.; Giessner-Prettre, C. *J. Org. Chem.* **2000**, *65*, 8899; Granander, J.; Sott, R.; Hilmersson, G. *Tetrahedron* **2002**, *58*, 4717.

⁴⁷¹For a discussion of selectivity, see Spino, C.; Granger, M.-C.; Tremblay, M.-C. Org. Lett. 2002, 4, 4735.

⁴⁷²Hodgson, D.M.; Reynolds, N.J.; Coote, S.J. Org. Lett. 2004, 6, 4187.

⁴⁷⁴Stergiades, I.A.; Tius, M.A. J. Org. Chem. 1999, 64, 7547.

preceded Grignard's work, and is now known as the *Barbier reaction*.⁴⁷⁸ The organolithium analog of this process is also known.⁴⁷⁹ Yields were generally satisfactory. Carboxylic ester, nitrile, and imide groups in the R are not affected by the reaction conditions.⁴⁸⁰ Modern versions of the Barbier reaction employ other metals and/or reaction conditions, and will be discussed in **16-25**. A retro-Barbier reaction has been reported in which a cyclic tertiary alcohol was treated to an excess of bromine and potassium carbonate to give 6-bromo-2-hexanone from 1-methylcyclopentanol.⁴⁸¹ This section will focus on variations of the Barbier reaction that employ Mg or Li derivatives. The reaction of allyl iodide, benzaldehyde and Mg/I₂, for example, gave the acyl addition product 1-phenylbut-3-en-1-ol.⁴⁸²

The reaction of RMgX or RLi with α , β -unsaturated aldehydes or ketones can proceed via 1,4-addition as well as normal 1,2-addition (see **15-25**).⁴⁸³ In general, alkyllithium reagents give less 1,4-addition than the corresponding Grignard reagents.⁴⁸⁴ Quinones add Grignard reagents on one or both sides or give 1,4addition. In a compound containing both an aldehyde and a ketone it is possible to add RMgX chemoselectively to the aldehyde without significantly disturbing the carbonyl of the ketone group⁴⁸⁵ (see also, p. 1306). In conjunction with BeCl₂, organolithium reagents add to conjugated ketones. In THF, 1,4- addition is observed, but in diethyl ether the 1,2-addition product is formed.⁴⁸⁶ Organocerium reagents, generated from cerium chloride (CeCl₃ and a Grignard reagent or an organolithium reagent) gives an organometallic reagent that adds chemoselectively.⁴⁸⁷ Grignard reagents with a catalytic amount of InCl₃ to give a mixture of 1,2- and 1,4-addition products with the 1,4-product predominating, but there was an increased 1,2-addition relative to the uncatalyzed reaction.⁴⁸⁸

As with the reduction of aldehydes and ketones (**19-36**), the addition of organometallic compounds to these substrates can be carried out enantioselectively and diastereoselectively.⁴⁸⁹ Chiral secondary alcohols have been obtained with high

⁴⁸⁶Krief, A.; de Vos, M.J.; De Lombart, S.; Bosret, J.; Couty, F. Tetrahedron Lett. 1997, 38, 6295.

⁴⁸⁷Bartoli, G.; Marcantoni, E.; Petrini, M. Angew. Chem. Int. Ed. **1993**, 32, 1061; Dimitrov, V.; Bratovanov, S.; Simova, S.; Kostova, K. Tetrahedron Lett. **1994**, 35, 6713; Greeves, N.; Lyford, L. Tetrahedron Lett. **1992**, 33, 4759.

⁴⁸⁸Kelly, B.G.; Gilheany; D.G. Tetrahedron Lett. 2002, 43, 887.

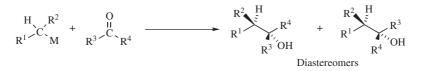
⁴⁸⁹For reviews, see Solladié, G., in Morrison, J.D. Asymmetric Synthesis, Vol. 2, Academic Press, NY, *1983*, pp. 157–199, 158–183; Nógrádi, M. Stereoselective Synthesis, VCH, NY, *1986*, pp. 160–193; Noyori, R.; Kitamura, M. Angew. Chem. Int. Ed. *1991*, 30, 49.

⁴⁷⁸Barbier, P. *Compt. Rend.*, *1899*, *128*, 110. For a review, with Mg, Li, and other metals, see Blomberg, C.; Hartog, F.A. *Synthesis 1977*, 18. For a discussion of the mechanism, see Molle, G.; Bauer, P. J. Am. *Chem. Soc. 1982*, *104*, 3481. For a list of Barbier-type reactions, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, *1999*, pp. 1125–1134.

⁴⁷⁹Guijarro, A.; Yus, M. *Tetrahedron Lett.* **1993**, *34*, 3487; de Souza-Barboza, J.D.; Pétrier, C.; Luche, J. J. Org. Chem. **1988**, *53*, 1212.

⁴⁸⁰Yeh, M.C.P.; Knochel, P.; Santa, L.E. Tetrahedron Lett. 1988, 29, 3887.

⁴⁸¹Zhang, W.-C.; Li, C.-J. J. Org. Chem. 2000, 65, 5831.


⁴⁸²Zhang, W.-C.; Li, C.-J. J. Org. Chem. 1999, 64, 3230.

⁴⁸³For a discussion of the mechanism of this reaction, see Holm, T. Acta Chem. Scand. **1992**, 46, 985.
⁴⁸⁴An example was given on p. \$\$\$.

⁴⁸⁵Vaskan, R.N.; Kovalev, B.G. J. Org. Chem. USSR 1973, 9, 501.

enantioselectivity by addition of Grignard and organolithium compounds to aromatic aldehydes, in the presence of optically active amino alcohols as ligands.⁴⁹⁰

Diastereoselective addition⁴⁹¹ has been carried out with achiral reagents and chiral substrates,⁴⁹² similar to the reduction shown on p. 1802.⁴⁹³ Because the attacking atom in this case is carbon, not hydrogen, it is also possible to get diastereoselective addition with an achiral substrate and an optically active reagent.⁴⁹⁴ Use of suitable reactants creates, in the most general case, two new stereogenic centers, so the product can exist as two pairs of enantiomers:

Even if the organometallic compound is racemic, it still may be possible to get a diastereoselective reaction; that is, one pair of enantiomers is formed in greater amount than the other.⁴⁹⁵

In some cases, the Grignard reaction can be performed intramolecularly.⁴⁹⁶ For example, treatment of 5-bromo-2-pentanone with magnesium and a small amount

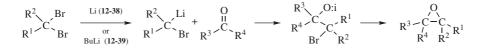
⁴⁹¹For a review, see Yamamoto, Y.; Maruyama, K. *Heterocycles* **1982**, *18*, 357. For a discussion of facial selectivity, see Tomoda, S.; Senju, T. *Tetrahedron* **1999**, *55*, 3871. See Schulze, V.; Nell, P.G.; Burton, A.; Hoffmann, R.W. J. Org. Chem. **2003**, *68*, 4546.

⁴⁹²For a review of cases in which the substrate bears a group that can influence the diastereoselectivity by chelating with the metal, see Reetz, M.T. *Angew. Chem. Int. Ed.* **1984**, *23*, 556. See also, Keck, G.E.; Castellino, S. J. Am. Chem. Soc. **1986**, *108*, 3847.

⁴⁹³See, for example, Eliel, E.L.; Morris-Natschke, S. J. Am. Chem. Soc. 1984, 106, 2937; Reetz, M.T.;
Steinbach, R.; Westermann, J.; Peter, R.; Wenderoth, B. Chem. Ber. 1985, 118, 1441; Yamamoto, Y.;
Matsuoka, K. J. Chem. Soc., Chem. Commun. 1987, 923; Boireau, G.; Deberly, A.; Abenhaïm, D.
Tetrahedron Lett. 1988, 29, 2175; Page, P.C.B.; Westwood, D.; Slawin, A.M.Z.; Williams, D.J. J. Chem.
Soc. Perkin Trans. 1 1989, 1158; Soai, K.; Niwa, S.; Hatanaka, T. Bull. Chem. Soc. Jpn. 1990, 63, 2129.
For examples in which both reactants were chiral, see Roush, W.R.; Halterman, R.L. J. Am. Chem. Soc.
1986, 108, 294; Hoffmann, R.W.; Dresely, S.; Hildebrandt, B. Chem. Ber. 1988, 121, 2225; Paquette, L.A.;
Learn, K.S.; Romine, J.L.; Lin, H. J. Am. Chem. Soc. 1988, 110, 879; Brown, H.C.; Bhat, K.S.; Randad, R.S. J. Org. Chem. 1989, 54, 1570.

⁴⁹⁴For a review of such reactions with crotylmetallic reagents, see Hoffmann, R.W. Angew. Chem. Int. Ed. **1982**, 21, 555. For a discussion of the mechanism, see Denmark, S.E.; Weber, E.J. J. Am. Chem. Soc. **1984**, 106, 7970. For some examples, see Greeves, N.; Pease, J.E. Tetrahedron Lett. **1996**, 37, 5821; Zweifel, G.; Shoup, T.M. J. Am. Chem. Soc. **1988**, 110, 5578; Gung, B.W.; Smith, D.T.; Wolf, M.A. Tetrahedron Lett. **1991**, 32, 13.

⁴⁹⁵For examples, see Coxon, J.M.; van Eyk, S.J.; Steel, P.J. *Tetrahedron Lett.* 1985, 26, 6121; Mukaiyama, T.; Ohshima, M.; Miyoshi, N. *Chem. Lett.* 1987, 1121; Masuyama, Y.; Takahara, J.P.; Kurusu, Y. *Tetrahedron Lett.* 1989, 30, 3437.


⁴⁹⁶For a list of reagents, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, *1999*, pp. 1134–1135.

⁴⁹⁰Mukaiyama, T.; Soai, K.; Sato, T.; Shimizu, H.; Suzuki, K. J. Am. Chem. Soc. 1979, 101, 1455; Mazaleyrat, J.; Cram, D.J. J. Am. Chem. Soc. 1981, 103, 4585; Eleveld, M.B.; Hogeveen, H. Tetrahedron Lett. 1984, 25, 5187; Schön, M.; Naef, R. Tetrahedron Asymmetry 1999, 10, 169; Arvidsson, P.I.; Davidsson, Ö.; Hilmersson, G. Tetrahedron Asymmetry 1999, 10, 527.

of mercuric chloride in THF produced 1-methyl-1-cyclobutanol in 60% yield.⁴⁹⁷ Other four- and five-membered ring compounds were also prepared by this procedure. Similar closing of five- and six-membered rings was achieved by treatment of a δ - or ϵ -halocarbonyl compound, not with a metal, but with a dianion derived from nickel tetraphenyporphine.⁴⁹⁸

$$Br \xrightarrow{Mg} BrMg \xrightarrow{Mg} MgBr + \underbrace{O} BrMg \xrightarrow{OMgBr} H_2C=C$$

The *gem*-disubstituted magnesium compounds formed from CH_2Br_2 or CH_2I_2 (**12-38**) react with aldehydes or ketones to give alkenes in moderate-to-good yields.⁴⁹⁹ Wittig type reacts also produce alkenes and are discussed in **16-44**. The reaction could not be extended to other *gem*-dihalides. Similar reactions with *gem*-dimetallic compounds prepared with metals other than magnesium have also produced alkenes.⁵⁰⁰ An interesting variation is the reaction of methyl-lithium and CH_2I_2 with an aliphatic aldehyde to give an epoxide,⁵⁰¹ but this reagent reacted with lactones to give a cyclic hemiketal with a pendant iodomethyl unit.⁵⁰² Alkylidene oxetanes react with lithium, and then with an aldehyde to give a conjugated ketone.⁵⁰³ The α, α -dimetallic derivatives of phenyl sulfones (PhSO₂CM₂R) (M = Li or Mg) react with aldehydes or ketones R'COR² to give good yields of the α,β -unsaturated sulfones PhSO₂CR=CR'R²,⁵⁰⁴ which can be reduced with aluminum amalgam (see **10-67**) or with LiAlH₄-CuCl₂ to give the alkenes CHR=CR'R².⁵⁰⁵ On the other hand, *gem*-dihalides treated with a carbonyl compound and Li or BuLi give epoxides⁵⁰⁶ (see also, **16-46**).

497 Leroux, Y. Bull. Soc. Chim. Fr. 1968, 359.

⁴⁹⁸Corey, E.J.; Kuwajima, I. J. Am. Chem. Soc. **1970**, 92, 395. For another method, see Molander, G.A.; McKie, J.A. J. Org. Chem. **1991**, 56, 4112, and references cited therein.

⁴⁹⁹Bertini, F.; Grasselli, P.; Zubiani, G.; Cainelli, G.*Tetrahedron* 1970, 26, 1281.

⁵⁰⁰For example, see Zweifel, G.; Steele, R.B. *Tetrahedron Lett.* 1966, 6021; Cainelli, G.; Bertini, F.;
 Grasselli, P.; Zubiani, G. *Tetrahedron Lett.* 1967, 1581; Takai, K.; Hotta, Y.; Oshima, K.; Nozaki, H. Bull.
 Chem. Soc. Jpn. 1980, 53, 1698; Knochel, P.; Normant, J.F. *Tetrahedron Lett.* 1986, 27, 1039; Barluenga,
 J.; Fernández-Simón, J.L.; Concellón, J.M.; Yus, M. J. Chem. Soc., Chem. Commun. 1986, 1665; Okazoe,
 T.; Takai, K.; Utimoto, K. J. Am. Chem. Soc. 1987, 109, 951; Piotrowski, A.M.; Malpass, D.B.;
 Boleslawski, M.P.; Eisch, J.J. J. Org. Chem. 1988, 53, 2829; Tour, J.M.; Bedworth, P.V.; Wu, R.
 Tetrahedron Lett. 1989, 30, 3927; Lombardo, L. Org. Synth. 65, 81.

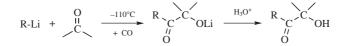
⁵⁰¹Concellón, J.M.; Cuervo, H.; Fernándex-Fano, R. Tetrahedron 2001, 57, 8983.

⁵⁰²Bessieres, B.; Morin, C. Synlett 2000, 1691.

⁵⁰³Hashemsadeh, M.; Howell, A.R. Tetrahedron Lett. 2000, 41, 1855, 1859.

⁵⁰⁴Pascali, V.; Tangari, N.; Umani-Ronchi, A. J. Chem. Soc. Perkin Trans. 1 1973, 1166.

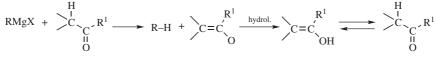
⁵⁰⁵Pascali, V.; Umani-Ronchi, A. J. Chem. Soc., Chem. Commun. 1973, 351.

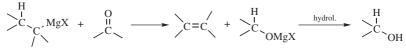

⁵⁰⁶Cainelli, G.; Tangari, N.; Umani-Ronchi, A. *Tetrahedron* **1972**, 28, 3009, and references cited therein.

In other uses of gem-dihalo compounds, aldehydes and ketones add the CH₂I group [R₂CO \rightarrow R₂C(OH)CH₂I] when treated with CH₂I₂ in the presence of SmI₂,⁵⁰⁷ and the CHX₂ group when treated with methylene halides and lithium dicyclohexylamide at low temperatures.⁵⁰⁸

 $\begin{array}{c} H \\ H \\ H \\ \end{array} \begin{array}{c} X \\ X \end{array} + \begin{array}{c} O \\ I \\ C \\ C \\ \end{array} \begin{array}{c} 1. \operatorname{LiN}(C_6H_{11})_2 \\ \hline -78^\circ C \\ \hline 2. \operatorname{H}_{2O} \end{array} \begin{array}{c} C \\ C \\ OH \end{array} \begin{array}{c} C \\ C \\ OH \end{array} X = Cl, Br, I \end{array}$

A hydroxymethyl group can be added to an aldehyde or ketone with the masked reagent $Me_2((iPr)O)SiCH_2MgCl$, which with R_2CO gives $R_2C(OH)CH_2$ -Si(O-(*iPr*))Me₂, but with H_2O_2 give 1,2-diols $R_2C(OH)CH_2OH$.⁵⁰⁹


It is possible to add an acyl group to a ketone to give (after hydrolysis) an α -hydroxy ketone.⁵¹⁰ This can be done by adding RLi and CO to the ketone at -110° C:⁵¹¹


When the same reaction is carried out with carboxylic esters (R'COOR²), α -diketones (RCOCOR') are obtained.⁵¹¹

Most aldehydes and ketones react with most Grignard reagents, but there are several potential side reactions⁵¹² that occur mostly with hindered ketones and with bulky Grignard reagents. The two most important of these are *enolization* and *reduction*. The former requires that the aldehyde or ketone have an α hydrogen, and the latter requires that the Grignard reagent have a β hydrogen:

Enolization

Reduction

⁵⁰⁷Imamoto, T.; Takeyama, T.; Koto, H. *Tetrahedron Lett.* **1986**, 27, 3243.

⁵⁰⁸Taguchi, H.; Yamamoto, H.; Nozaki, H. Bull. Chem. Soc. Jpn. 1977, 50, 1588.

⁵⁰⁹Tamao, K.; Ishida, N. *Tetrahedron Lett.* **1984**, 25, 4245. For another method, see Imamoto, T.; Takeyama, T.; Yokoyama, M. *Tetrahedron Lett.* **1984**, 25, 3225.

⁵¹⁰For a review, see Seyferth, D.; Weinstein, R.M.; Wang, W.; Hui, R.C.; Archer, C.M. *Isr. J. Chem.* **1984**, 24, 167.

⁵¹¹Seyferth, D.; Weinstein, R.M.; Wang, W. J. Org. Chem. **1983**, 48, 1144; Seyferth, D.; Weinstein, R.M.; Wang, W.; Hui, R.C. Tetrahedron Lett. **1983**, 24, 4907.

⁵¹²Lajis, N. Hj.; Khan, M.N.; Hassan, H.A. Tetrahedron 1993, 49, 3405.

Enolization is an acid-base reaction (12-24) in which a proton is transferred from the α carbon to the Grignard reagent. The carbonyl compound is converted to its enolate anion form, which, on hydrolysis, gives the original ketone or aldehyde. Enolization is important not only for hindered ketones but also for those that have a relatively high percentage of enol form (e.g., β -keto esters). In reduction, the carbonyl compound is reduced to an alcohol (16-24) by the Grignard reagent, which itself undergoes elimination to give an alkene. Two other side reactions are condensation (between enolate ion and excess ketone) and Wurtz-type coupling (10-64). Such highly hindered tertiary alcohols as triisopropylcarbinol, tri-tertbutylcarbinol, and diisopropylneopentylcarbinol cannot be prepared (or can be prepared only in extremely low yields) by the addition of Grignard reagents to ketones, because reduction and/or enolization become prominent.⁵¹³ However, these carbinols can be prepared by the use of alkyllithium reagents at $-80^{\circ}C^{514}$ because enolization and reduction are much less important.⁵¹⁵ Other methods of increasing the degree of addition at the expense of reduction include complexing the Grignard reagent with LiClO₄ or Bu_4N^+ Br^{-,516} or using benzene or toluene instead of ether as solvent.⁵¹⁷ Both reduction and enolization can be avoided by adding CeCl₃ to the Grignard reagent (see above).⁵¹⁸

Another way to avoid complications is to add (RO)₃TiCl, TiCl₄,⁵¹⁹ (RO)₃ZrCl, or (R₂N)₃TiX to the Grignard or lithium reagent. This produces organotitanium or organozirconium compounds that are much more selective than Grignard or organolithium reagents.⁵²⁰ An important advantage of these reagents is that they do not react with NO₂ or CN functions that may be present in the substrate, as Grignard and organolithium reagents do. The reaction of a β -keto amide with TiCl₄, for example, gives a complex that allows selective reaction of the ketone unit with MeMgCl–CeCl₃ to give the corresponding alcohol.⁵²¹ Premixing an allylic Grignard reagent with ScCl₃ prior to reaction with the aldehyde gives direct acyl addition without allylic rearrangement as the major product, favoring the transalkene unit.⁵²²

⁵¹⁵Buhler, J.D. J. Org. Chem. 1973, 38, 904.

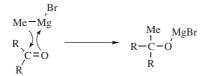
⁵¹³Whitmore, F.C.; George, R.S. J. Am. Chem. Soc. 1942, 64, 1239.

⁵¹⁴Zook, H.D.; March, J.; Smith, D.F. J. Am. Chem. Soc. **1959**, 81, 1617; Bartlett, P.D.; Tidwell, T.T. J. Am. Chem. Soc. **1968**, 90, 4421. See also, Lomas, J.S. Nouv. J. Chim., **1984**, 8, 365; Molle, G.; Briand, S.; Bauer, P.; Dubois, J.E. Tetrahedron **1984**, 40, 5113.

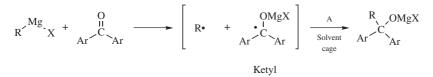
⁵¹⁶Chastrette, M.; Amouroux, R. *Chem. Commun.* **1970**, 470; *Bull. Soc. Chim. Fr.* **1970**, 4348. See also, Richey Jr., H.G.; DeStephano, J.P. *J. Org. Chem.* **1990**, 55, 3281.

⁵¹⁷Canonne, P.; Foscolos, G.; Caron H.; Lemay, G. Tetrahedron 1982, 38, 3563.

⁵¹⁸Imamoto, T.; Takiyama, N.; Nakamura, K.; Hatajima, T.; Kamiya, Y. J. Am. Chem. Soc. **1989**, 111, 4392.


⁵¹⁹See Reetz, M.T.; Kyung, S.H.; Hüllmann, M. Tetrahedron 1986, 42, 2931.

⁵²⁰For a monograph, see Reetz, M.T. Organotitanium Reagents in Organic Synthesis, Springer, NY, **1986**. For reviews, see Weidmann, B.; Seebach, D. Angew. Chem. Int. Ed. **1983**, 22, 31; Reetz, M.T. Top. Curr. Chem. **1982**, 106, 1.


⁵²¹Bartoli, G.; Bosco, M.; Marcantoni, E.; Massaccesi, M.; Rinaldi, S.; Sambri, L. *Tetrahedron Lett.* 2001, 42, 6093.

⁵²²Matsukawa, S.; Funabashi, Y.; Imamoto, T. Tetrahedron Lett. 2003, 44, 1007.

There has been much controversy regarding the mechanism of addition of Grignard reagents to aldehydes and ketones.⁵²³ The reaction is difficult to study because of the variable nature of the species present in the Grignard solution (p. 260) and because the presence of small amounts of impurities in the magnesium seems to have a great effect on the kinetics of the reaction, making reproducible experiments difficult.⁵²⁴ There seem to be two basic mechanisms, depending on the reactants and the reaction conditions. In one of these, the R group is transferred to the carbonyl carbon with its electron pair. A detailed mechanism of this type has been proposed by Ashby and co-workers,⁵²⁵ based on the discovery that this reaction proceeds by two paths: one first order in MeMgBr and Me₂Mg add to the carbonyl carbon, though the exact nature of the step by which MeMgBr or Me₂Mg reacts with the substrate is not certain. One possibility is a four-centered cyclic transition state:⁵²⁷

The other type of mechanism is a single electron transfer (SET) $process^{528}$ with a ketyl intermediate:⁵²⁹

This mechanism, which has been mostly studied with diaryl ketones, is more likely for aromatic and other conjugated aldehydes and ketones than it is for

⁵²³For reviews, see Holm, T. Acta Chem. Scand. Ser. B 1983, 37, 567; Ashby, E.C. Pure Appl. Chem. 1980, 52, 545; Bull. Soc. Chim. Fr. 1972, 2133; Q. Rev. Chem. Soc. 1967, 21, 259; Ashby, E.C.; Laemmle, J.; Neumann, H.M. Acc. Chem. Res. 1974, 7, 272; Blomberg, C. Bull. Soc. Chim. Fr. 1972, 2143. For a review of the stereochemistry of the reaction, see Ashby, E.C.; Laemmle, J. Chem. Rev. 1975, 75, 521. For a review of the effects of the medium and the cation, see Solv'yanov, A.A.; Beletskaya, I.P. Russ. Chem. Rev. 1987, 56, 465.

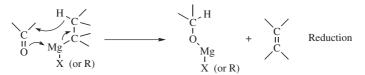
⁵²⁴See, for example, Ashby, E.C.; Neumann, H.M.; Walker, F.W.; Laemmle, J.; Chao, L. J. Am. Chem. Soc. **1973**, 95, 3330.

⁵²⁵Ashby, E.C.; Laemmle, J.; Neumann, H.M. J. Am. Chem. Soc. 1972, 94, 5421.

⁵²⁶Ashby, E.C.; Laemmle, J.; Neumann, H.M. J. Am. Chem. Soc. 1971, 93, 4601; Laemmle, J.; Ashby, E.C.; Neumann, H.M. J. Am. Chem. Soc. 1971, 93, 5120.

⁵²⁷Tuulmets, A. Org. React. (USSR) **1967**, 4, 5; House, H.O.; Oliver, J.E. J. Org. Chem. **1968**, 33, 929; Ashby, E.C.; Yu, S.H.; Roling, P.V. J. Org. Chem. **1972**, 37, 1918. See also, Billet, J.; Smith, S.G. J. Am. Chem. Soc. **1968**, 90, 4108; Lasperas, M.; Perez-Rubalcaba, A.; Quiroga-Feijoo, M.L. Tetrahedron **1980**, 36, 3403.

⁵²⁸For a review, see Dagonneau, M. Bull. Soc. Chim. Fr. 1982, II-269.


⁵²⁹There is kinetic evidence that the solvent cage shown may not be necessary: Walling, C. J. Am. Chem. Soc. **1988**, 110, 6846.

strictly aliphatic ones. Among the evidence 530 for the SET mechanism are ESR spectra 531 and the fact that

side products are obtained (from dimerization of the ketyl).⁵³² In the case of addition of RMgX to benzil (PhCOCOPh), esr spectra of two different ketyl radicals were observed, both reported to be quite stable at room temperature.⁵³³ Note that a separate study failed to observe freely defusing radicals in the formation of Grignard reagents.⁵³⁴ Carbon isotope effect studies with Ph¹⁴COPh showed that the rate-determining step with most Grignard reagents is the carbon–carbon bond-forming step (marked *A*), though with allylmagnesium bromide it is the initial electron-transfer step.⁵³⁵ In the formation of Grignard reagents from bromocyclopropane, diffusing cyclopropyl radical intermediates were found.⁵³⁶ The concerted versus stepwise mechanism has been probed with chiral Grignard reagents.⁵³⁷

Mechanisms for the addition of organolithium reagents have been investigated much less.⁵³⁸ Addition of a cryptand that binds Li⁺ inhibited the normal addition reaction, showing that the lithium is necessary for the reaction to take place.⁵³⁹

There is general agreement that the mechanism leading to reduction⁵⁴⁰ is usually as follows:

⁵³⁰For other evidence, see Savin, V.I.; Kitaev, Yu.P. J. Org. Chem. USSR 1975, 11, 2622; Okubo, M. Bull. Chem. Soc. Jpn. 1977, 50, 2379; Ashby, E.C.; Bowers Jr., J.R. J. Am. Chem. Soc. 1981, 103, 2242; Holm, T. Acta Chem. Scand. Ser. B 1988, 42, 685; Liotta, D.; Saindane, M.; Waykole, L. J. Am. Chem. Soc. 1983, 105, 2922; Yamataka, H.; Miyano, N.; Hanafusa, T. J. Org. Chem. 1991, 56, 2573.

⁵³¹Fauvarque, J.; Rouget, E. C. R. Acad. Sci., Ser C, **1968**, 267, 1355; Maruyama, K.; Katagiri, T. Chem. Lett. **1987**, 731, 735; J. Phys. Org. Chem. **1988**, 1, 21.

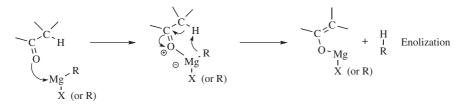
⁵³²Blomberg, C.; Mosher, H.S. J. Organomet. Chem. **1968**, 13, 519; Holm, T.; Crossland, I. Acta Chem. Scand. **1971**, 25, 59.

⁵³³Maruyama, K.; Katagiri, T. J. Am. Chem. Soc. **1986**, 108, 6263; J. Phys. Org. Chem. **1989**, 2, 205. See also, Holm, T. Acta Chem. Scand. Ser. B **1987**, 41, 278; Maruyama, K.; Katagiri, T. J. Phys. Org. Chem. **1991**, 4, 158.

534 Walter, R.I. J. Org. Chem. 2000, 65, 5014.

535 Yamataka, H.; Matsuyama, T.; Hanafusa, T. J. Am. Chem. Soc. 1989, 111, 4912.

⁵³⁶Garst, J.F.; Ungváry, F. Org. Lett. 2001, 3, 605.


537 Hoffmann, RW.; Hölzer, B. Chem. Commun. 2001, 491.

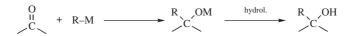
⁵³⁸See, for example, Al-Aseer, M.A.; Smith, S.G. J. Org. Chem. 1984, 49, 2608; Yamataka, H.; Kawafuji,
 Y.; Nagareda, K.; Miyano, N.; Hanafusa, T. J. Org. Chem. 1989, 54, 4706.

539 Perraud, R.; Handel, H.; Pierre, J. Bull. Soc. Chim. Fr. 1980, II-283.

⁵⁴⁰For discussions of the mechanism of reduction, see Singer, M.S.; Salinger, R.M.; Mosher, H.S. J. Org. Chem. 1967, 32, 3821; Denise, B.; Fauvarque, J.; Ducom, J. Tetrahedron Lett. 1970, 335; Cabaret, D.; Welvart, Z. J. Organomet. Chem. 1974, 80, 199; Holm, T. Acta Chem. Scand. 1973, 27, 1552; Morrison, J.D.; Tomaszewski, J.E.; Mosher, H.S.; Dale, J.; Miller, D.; Elsenbaumer, R.L. J. Am. Chem. Soc. 1977, 99, 3167; Okuhara, K. J. Am. Chem. Soc. 1980, 102, 244.

There is evidence that the mechanism leading to enolization is also cyclic, but involves prior coordination with magnesium:⁵⁴¹

Aromatic aldehydes and ketones can be alkylated and reduced in one reaction vessel by treatment with an alkyl- or aryllithium, followed by lithium and ammonia and then by ammonium chloride.⁵⁴²


$$Ar \xrightarrow{C} R \xrightarrow{R^{1}-Li} R^{1} \xrightarrow{C} C \xrightarrow{R^{1}-Li} R^{1} \xrightarrow{C} C \xrightarrow{R^{1}-Li} Ar \xrightarrow{R^{1}-Li} R^{1} \xrightarrow{R^{1}-Li} R = alkyl, aryl, H$$

A similar reaction has been carried out with *N*,*N*-disubstituted amides: RCONR'₂ \rightarrow RR²CHNR'₂.⁵⁴³

OS I, 188; II, 406, 606; III, 200, 696, 729, 757; IV, 771, 792; V, 46, 452, 608, 1058; VI, 478, 537, 542, 606, 737, 991, 1033; VII, 177, 271, 447; VIII, 179, 226, 315, 343, 386, 495, 507, 556; IX, 9, 103, 139, 234, 306, 391, 472; 75, 12; 76, 214; X, 200.

16-25 Addition of Other Organometallics to Aldehydes and Ketones

O-Hydro-C-alkyl-addition

A variety of organometallic reagents other than RMgX and RLi add to aldehydes and ketones. A simple example is formation of sodium, or potassium alkyne anions (e.g., RC=CNa, **16-38**), which undergo acyl addition to ketones or aldehydes to give the propargylic alcohol. For the addition of acetylenic groups, sodium may be the metal used; while vinylic alanes (prepared as in **15-17**) are the reagents of choice for the addition of vinylic groups.⁵⁴⁴ A variation includes the use of tetraalkylammonium hydroxide to generate the alkyne anion,⁵⁴⁵ and terminal alkynes with CsOH react similarly.⁵⁴⁶ A solvent-free reaction was reported that mixed a ketone, a terminal alkyne and potassium *tert*-butoxide.⁵⁴⁷ The reagent Me₃Al/⁻C=CH

⁵⁴¹Pinkus, A.G.; Sabesan, A. J. Chem. Soc. Perkin Trans. 2 1981, 273.

⁵⁴²Lipsky, S.D.; Hall, S.S. *Org. Synth.* VI, 537; McEnroe, F.J.; Sha, C.; Hall, S.S. *J. Org. Chem.* 1976, 41, 3465.

⁵⁴³Hwang, Y.C.; Chu, M.; Fowler, F.W. J. Org. Chem. 1985, 50, 3885.

⁵⁴⁴Newman, H. *Tetrahedron Lett.* **1971**, 4571. Vinylic groups can also be added with 9-vinylic-9-BBN compounds: Jacob III, P.; Brown, H.C. J. Org. Chem. **1977**, 42, 579.

⁵⁴⁵Ishikawa, T.; Mizuta, T.; Hagiwara, K.; Aikawa, T.; Kudo, T.; Saito, S. J. Org. Chem. **2003**, 68, 3702.

⁵⁴⁶Tzalis, D.; Knochel, P. Angew. Chem. Int. Ed. 1999, 38, 1463.

⁵⁴⁷Miyamoto, H.; Yasaka, S.; Tanaka, K. Bull. Chem. Soc. Jpn. 2001, 74, 185.

 Na^+ also adds to aldehydes to give the ethynyl alcohol.⁵⁴⁸ Dialkylzinc reagents have been used for the same purpose, and in the presence of a chiral titanium complex the propargylic alcohol was formed with good enantioselectivity.⁵⁴⁹ Zinc(II) chloride facilitates the addition of a terminal alkyne to an aldehyde to give a propargylic alcohol.⁵⁵⁰ Zinc(II) triflate can also be used for alkyne addition to aldehydes,⁵⁵¹ and in the presence of a chiral ligand leads to good enantioselectivity in the propargyl alcohol product.⁵⁵² Terminal alkynes add to aryl aldehydes in the presence of $InBr_3$ and NEt_3^{553} or SmI_2 .⁵⁵⁴ 1-Iodoalkynes react with In metal and an aldehyde to give the propargylic alcohol.⁵⁵⁵ Potassium alkynyltrifluoroborates (p. 817) react with aldehydes and a secondary amine, in an ionic liquid, to give a propargylic amine.⁵⁵⁶

Propargylic acetate adds to aldehydes with good anti selectivity in the presence of Et_2Zn and a palladium catalyst.⁵⁵⁷ Propargylic bromide add to ketones in the presence of NaI/Dy,⁵⁵⁸ In,⁵⁵⁹ or Mn/Cr catalyst/TMSCl.⁵⁶⁰ Propargylic tin compounds react with aldehydes to give the alcohol, with good antiselectivity.⁵⁶¹

With other organometallic compounds, active metals, such as alkylzinc reagents,⁵⁶² are useful; and compounds such as alkylmercurys do not react. When the reagent is MeNbCl₄, ketones (R₂CO) are converted to R₂C(Cl)Me.⁵⁶³

⁵⁵⁰Jiang, B.; Si, Y.-G. Tetrahedron Lett. 2002, 43, 8323

⁵⁵¹Frantz, D.E.; Fässler, R.; Carreira, E.M. J. Am. Chem. Soc. 2000, 122, 1806.

⁵⁵²Anand, N.K.; Carreira, E.M. *J. Am. Chem. Soc.* 2001, 123, 9687; Sasaki, H.; Boyall, D.; Carreira, E.M. *Helv. Chim. Acta* 2001, 84, 964; Boyall, D.; Frantz, D.E.; Carreira, E.M. *Org. Lett.* 2002, 4, 2605.; Xu, Z.; Chen, C.; Xu, J.; Miao, M.; Yan, W.; Wang, R. *Org. Lett.* 2004, 6, 1193; Jiang, B.; Chen, Z.; Xiong, W. *Chem. Commun.* 2002, 1524. For an example using zinc (II) diflate, see Chen, Z.; Xiong, W.; Jiang, B. *Chem. Commun.* 2002, 2098.

⁵⁵³Sakai, N.; Hirasawa, M.; Konakahara, T. Tetrahedron Lett. 2003, 44, 4171.

⁵⁵⁴Kwon, D.W.; Cho, M.S.; Kim, Y.H. Synlett 2001, 627.

555 Augé, J.; Lubin-Germain, N.; Seghrouchni, L. Tetrahedron Lett. 2002, 43, 5255.

⁵⁵⁶In bmim BF₄, 1-butyl-3-methylimidazolium tetrafluoroborate: Kabalka, G.W.; Venkataiah, B.; Dong, G. *Tetrahedron Lett.* **2004**, *45*, 729.

⁵⁵⁷Marshall, J.A.; Adams, N.D. J. Org. Chem. 1999, 64, 5201.

⁵⁵⁸Li, Z.; Jia, Y.; Zhou, J. Synth. Commun. 2000, 30, 2515.

⁵⁵⁹In the presence of (-)-cinchonidine: Loh, T.-P.; Lin, M.-J.; Tan, K.L. *Tetrahedron Lett.* **2003**, 44, 507. ⁵⁶⁰Inoue, M.; Nakada, M. *Org. Lett.* **2004**, 6, 2977.

⁵⁶¹Savall, B.M.; Powell, N.A.; Roush, W.R. Org. Lett. 2001, 3, 3057.

⁵⁶²For a review with respect to organozinc compounds, see Furukawa, J.; Kawabata, N. *Adv. Organomet. Chem.* **1974**, *12*, 103. For an example, see Sjöholm, R.; Rairama, R.; Ahonen, M. J. Chem. Soc., Chem. Commun. **1994**, 1217. For a review with respect to organocadmium compounds, see Jones, P.R.; Desio, P.J. *Chem. Rev.* **1978**, 78, 491.

⁵⁶³Kauffmann, T.; Abel, T.; Neiteler, G.; Schreer, M. Tetrahedron Lett. 1990, 503.

⁵⁴⁸Joung, M.J.; Ahn, J.H.; Yoon, N.M. J. Org. Chem. 1996, 61, 4472.

 ⁵⁴⁹For a review, see Pu, L. *Tetrahedron* 2003, 59, 9873. For some leading references, see Gao, G.; Moore, D.; Xie, R.-G.; Pu. L. *Org. Lett.* 2002, 4, 4143; Li, Z.-B.; Pu, L. *Org. Lett.* 2004, 6, 1065; Dahmen, S. *Org. Lett.* 2004, 6, 2113; Kamble, R.M.; Singh, V.K. *Tetrahedron Lett.* 2003, 44, 5347; Lu, G.; Li, X.; Chen, G.; Chan, W.L.; Chan, A.S.C. *Tetrahedron Asymmetry* 2003, 14, 449; Kang, Y.-F.; Liu, L.; Wang, R.; Yan, W.-J.; Zhou, Y.-F. *Tetrahedron Asymmetry* 2004, 15, 3155; Lu, G.; Li, X.; Chan, W.L.; Chan, A.S.C. *Angew. Chem. Int. Ed.* 2003, 42, 5057; Xu, Z.; Wang, R.; Xu, J.; Da, C.-s.; Yan, W.-j.; Chen, C. *Angew. Chem. Int. Ed.* 2003, 42, 5747;.

Furthermore, organotitanium reagents can be made to add chemoselectively to aldehydes in the presence of ketones.⁵⁶⁴ Organomanganese compounds are also chemoselective in this way.⁵⁶⁵ Aryl halides that have a pendant ketone unit react with a palladium catalyst to give cyclization via acyl addition.⁵⁶⁶ Chiral amides react with aldehydes in the presence of TiCl₄ to give syn-selective addition products,⁵⁶⁷ and titanium-catalyzed enantioselective additions are known.⁵⁶⁸ An alkene-ketone, where the alkene is a vinyl bromide, reacted with CrCl₂/NiCl₂ to give a vinyl organometallic, which cyclized to generate a cyclic allylic alcohol with the double bond within the ring.⁵⁶⁹ Aryl halides react with a nickel complex under electrolytic conditions to add the aryl group to aldehydes.⁵⁷⁰ The C-3 position of an indole adds to aldehydes in the presence of a palladium catalyst.⁵⁷¹ The addition of trifluoromethyl to an aldehyde was accomplished photochemically using CF₃I and (Me₂N)₂C=C(NMe₂)₂.⁵⁷² α -Iodo phosphonate esters react with aldehydes and SmI₂ to give a β -hydroxy phosphonate ester.⁵⁷³

Dialkylzinc compounds react with aldehydes to give the secondary alcohol, and R_3ZnLi reagents also add R to a carbonyl.⁵⁷⁴ Dimethylzinc and diethylzinc are probably the most common reagents. An intramolecular version is possible by reaction an allene-aldehyde with dimethylzinc. Addition to the allene in the presence of a nickel catalyst⁵⁷⁵ or a CeCl₃ catalyst⁵⁷⁶ is followed by addition of the intermediate organometallic to the aldehyde to give the cyclic product. Aryl halides react with Zn–Ni complexes to give acyl addition of the aryl group to an aldehyde.⁵⁷⁷ The reaction of an allylic halide and Zn⁵⁷⁸ or Zn/TMSCl⁵⁷⁹ leads to acyl addition of aldehydes.

⁵⁶⁵Cahiez, G.; Figadere, B. *Tetrahedron Lett.* **1986**, *27*, 4445. For other organometallic reagents with high selectivity towards aldehyde functions, see Kauffmann, T.; Hamsen, A.; Beirich, C. *Angew. Chem. Int. Ed.* **1982**, *21*, 144; Takai, K.; Kimura, K.; Kuroda, T.; Hiyama, T.; Nozaki, H. *Tetrahedron Lett.* **1983**, *24*, 5281; Soai, K.; Watanabe, M.; Koyano, M. *Bull. Chem. Soc. Jpn.* **1989**, *62*, 2124.

⁵⁶⁶Quan, L.G.; Lamrani, M.; Yamamoto, Y. J. Am. Chem. Soc. 2000, 122, 4827.

⁵⁶⁷Crimmins, M.T.; Chaudhary, K. Org. Lett. 2000 2, 775.

⁵⁶⁸Walsh, P.J. Acc. Chem. Res. 2003, 36, 739.

⁵⁶⁹Trost, B.M.; Pinkerton, A.B. J. Org. Chem. 2001, 66, 7714.

⁵⁷⁰Durandetti, M.; Nédélec, J.-Y.; Périchon, J. Org. Lett. 2001, 3, 2073.

⁵⁷¹Hao, J.; Taktak, S.; Aikawa, K.; Yusa, Y.; Hatano, M.; Mikami, K. Synlett 2001, 1443.

⁵⁷²Aït-Mohand, S.; Takechi, N.; Médebielle, M.; Dolbier Jr., W.R. Org. Lett. 2001, 3, 4271.

⁵⁷³Orsini, F.; Caselli, A. Tetrahedron Lett. 2002, 43, 7255.

⁵⁷⁴For a discussion of the electronic and steric effects, see Musser, C.A.; Richey, Jr., H.G. J. Org. Chem. **2000**, 65, 7750. For a kinetic study of Et3ZnLi and di-*tert*-butyl ketone, see Maclin, K.M.; Richey, Jr., H.G. J. Org. Chem. **2002**, 67, 4602.

⁵⁷⁵Montgomery, J.; Song, M. Org. Lett. 2002, 4, 4009.

⁵⁷⁶Fischer, S.; Groth, U.; Jeske, M.; Schütz, T. Synlett 2002, 1922.

⁵⁷⁷Majumdar, K.K.; Cheng, C.-H. Org. Lett. 2000, 2, 2295.

⁵⁷⁸Yavari, I.; Riazi-Kermani, F. *Synth. Commun.* **1995**, *25*, 2923; Ranu, B.C.; Majee, A.; Das, A.R. *Tetrahedron Lett.* **1995**, *36*, 4885; Durant, A.; Delplancke, J.-L.; Winand, R.; Reisse, J. *Tetrahedron Lett.* **1995**, *36*, 4257; Felpin, F.-X.; Bertrand, M.-J.; Lebreton, J. *Tetrahedron* **2002**, *58*, 7381.

⁵⁷⁹Ito, T.; Ishino, Y.; Mizuno, T.; Ishikawa, A.; Kobyashi, J.-i. Synlett 2002, 2116.

⁵⁶⁴Reetz, M.T. Organotitanium Reagents in Organic Synthesis, Springer, NY, **1986** (monograph), pp. 75–86. See also, Reetz, M.T.; Maus, S. Tetrahedron **1987**, 43, 101; Kim, S.-H.; Rieke, R.D. Tetrahedron Lett. **1999**, 40, 4931.

1312 ADDITION TO CARBON-HETERO MULTIPLE BONDS

Lithium dimethylcopper (Me₂CuLi) reacts with aldehydes⁵⁸⁰ and with certain ketones⁵⁸¹ to give the expected alcohols. The RCu(CN)ZnI reagents also react with aldehydes, in the presence of BF₃–etherate, to give secondary alcohols. Vinyl-tellurium compound react with BF₃•OEt₂ and cyano cuprates [R(2-thienyl)CuCN-Li₂] to give a reagent that adds 1,2- to the carbonyl of a conjugated ketone.⁵⁸² Vinyl tellurium compounds also react with *n*-butyllithium to give a reagent that adds to nonconjugated ketones.⁵⁸³

Many methods have been reported for the addition of allylic groups,⁵⁸⁴ including enantioselective reactions.⁵⁸⁵ One of the most common methods is the Barbier reaction, employing metals and metal compounds other than Mg or Li, although the method is not limited to allylic compounds. Allyl indium compounds⁵⁸⁶ add to aldehydes or ketones in various solvents.⁵⁸⁷ Indium metal is used for the acyl addition of allylic halides with a variety of aldehydes and ketones, including aliphatic aldehydes,⁵⁸⁸ aryl aldehydes⁵⁸⁹ and α -keto esters.⁵⁹⁰ Indium reacts with allylic bromides and ketones in water⁵⁹¹ and in aqueous media. Elimination of the homoallylic alcohol to a conjugated diene can accompany the addition in some cases.⁵⁹² The reaction of a propargyl halide, In, and an aldehyde in aq. THF leads to an allenic alcohol.⁵⁹³ The reaction of benzaldehyde with a propargylic bromide, indium metal and water give the alcohol.⁵⁹⁴ Allyl bromide reacts with Mn/TMSCl and an In catalyst in water to give the homoallylic

⁵⁸⁰Barreiro, E.; Luche, J.; Zweig, J.S.; Crabbé, P. *Tetrahedron Lett.* 1975, 2353; Zweig, J.S.; Luche; Barreiro, E.; Crabbé, P. *Tetrahedron Lett.* 1975, 2355; Reetz, M.T.; Rölfing, K.; Griebenow, N. *Tetrahedron Lett.* 1994, 35, 1969.

⁵⁸¹House, H.O.; Prabhu, A.V.; Wilkins, J.M.; Lee, L.F. J. Org. Chem. **1976**, 41, 3067; Matsuzawa, S.; Isaka, M.; Nakamura, E.; Kuwajima, I. Tetrahedron Lett. **1989**, 30, 1975.

⁵⁸²Araújo, M.A.; Barrientos-Astigarraga, R.E.; Ellensohn, R.M.; Comasseto, J.V. Tetrahedron Lett. 1999, 40, 5115.

⁵⁸³Dabdoub, M.J.; Jacob, R.G.; Ferreira, J.T.B.; Dabdoub, V.B.; Marques, F.de.A. *Tetrahedron Lett.* **1999**, 40, 7159.

⁵⁸⁴For a list of reagents and references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, *1999*, pp. 1156–1170. For a discussion of a deuterium kinetic isotope effect in the addition of allylic reagents to benzaldehyde, see Gajewski, J.J.; Bocian, W.; Brichford, N.L.; Henderson, J.L. *J. Org. Chem.* 2002, 67, 4236.

⁵⁸⁵For a review, see Denmark, S.E.; Fu, J. Chem. Rev. 2003, 103, 2763.

⁵⁸⁶For a review, see Cintas, P. Synlett 1995, 1087.

⁵⁸⁷Yi, X.-H.; Haberman, J.X.; Li, C.-J. Synth. Commun. **1998**, 28, 2999; Lloyd-Jones, G.C.; Russell, T. Synlett **1998**, 903; Li, C.-J.; Lu, Y.-Q. Tetrahedron Lett. **1995**, 36, 2721; Li, C.-J. Tetrahedron Lett **1995**, 36, 517.

⁵⁸⁸Loh, T.-P.; Tan, K.-T.; Yang, J.-Y.; Xiang, C.-L. Tetrahedron Lett. 2001, 42, 8701.

⁵⁸⁹Khan, F.A.; Prabhudas, B. *Tetrahedron* **2000**, *56*, 7595.

⁵⁹⁰Loh, T.-P.; Huang, J.-M.; Xu, K.-C.; Goh, S.-H.; Vittal, J.J. *Tetrahedron Lett.* 2000, 41, 6511; Kumar, S.; Kaur, P.; Chimni, S.S. *Synlett* 2002, 573.

⁵⁹¹Chan, T.H.; Yang, Y. J. Am. Chem. Soc. **1999**, 121, 3228; Paquette, L.A.; Bennett, G.D.; Isaac, M.B.; Chhatriwalla, A. J. Org. Chem. **1998**, 63, 1836; Li, X.-R.; Loh, T.-P. Tetrahedron Asymmetry **1996**, 7, 1535; Isaac, M.B.; Chan, T.-H. Tetrahedron Lett. **1995**, 36, 8957.

⁵⁹²Kumar, V.; Chimni, S.; Kumar, S. *Tetrahedron Lett.* **2004**, 45, 3409.

⁵⁹³Lin, M.-J.; Loh, T.-P. J. Am. Chem. Soc. 2003, 125, 13042.

⁵⁹⁴Lu, W.; Ma, J.; Yang, Y.; Chan, T.H. Org. Lett. 2000, 2, 3469.

alcohols from aldehydes.⁵⁹⁵ When allyl iodide is mixed with In and TMSCl, reaction with a conjugated ketone proceed by 1,4-addition, but in the presence of 10% CuI, the major product is that of 1,2-addition.⁵⁹⁶ The reaction with indium is compatible with the presence of a variety of other functional groups in the molecule, including phosphonate,⁵⁹⁷ propargylic sulfides.⁵⁹⁸ Ethyl α-bromoacetate reacts with aldehydes using In with ultrasound.⁵⁹⁹ Vinyl epoxides can be added to aldehydes using InI and a palladium catalyst,⁶⁰⁰ and vinyl acetates react with indium metal to give a reactive intermediate that adds to the carbonyl of aldehydes.⁶⁰¹ A tandem reaction has been reported in which a bis(indium) reagent, $Br_2InC(=CH_2)-C(=CH_2)InBr_2$, reacts with 2 equivalents of an aldehyde in the presence of ZnF₂ to give a 3-hexyne-1,6-diol derivative.⁶⁰² Alkyl halides react with Zn/Cu and an InCl catalyst, in the presence of $0.07 M \text{ Na}_2\text{Cr}_2\text{O}_7$ to give an intermediate that adds to aldehydes.⁶⁰³ Analogous to aldehydes, 1,1-diacetates react with In and allyl bromide in aq. THF to give a homoallylic acetate, ⁶⁰⁴ as do dimethyl ketals.⁶⁰⁵ Allylic alcohols react with InI and a nickel catalyst to give acyl addition of an allylic group to an aldehyde, giving the homoallylic alcohol.⁶⁰⁶

Another important metal for Barbier-type reaction is samarium. Allyl bromide reacts with a ketone and Sm to give the homoallylic alcohol.⁶⁰⁷ Samarium compounds, such as SmI₂,⁶⁰⁸ can also be used with allylic halides. Allyltin compounds readily add to aldehydes and ketones.⁶⁰⁹ Allylic bromides

Allyltin compounds readily add to aldehydes and ketones.⁶⁰⁹ Allylic bromides react with tin to generate the organometallic *in situ*, which then adds to aldehydes.⁶¹⁰ Allylic chlorides react with aldehydes in the presence of ditin compounds such as Me₃Sn–SnMe₃ and a palladium catalyst.⁶¹¹ Allyltrialkyltin compounds⁶¹²

- ⁵⁹⁷Ranu, B.C.; Samanta, S.; Hajra, A. J. Org. Chem. 2001, 66, 7519.
- ⁵⁹⁸Mitzel, T.M.; Palomo, C.; Jendza, K. J. Org. Chem. 2002, 67, 136.
- ⁵⁹⁹Lee, P.H.; Bang, K.; Lee, K.; Sung, S.-y.; Chang, S. Synth. Commun. 2001, 31, 3781.
- ⁶⁰⁰Araki, S.; Kameda, K.; Tanaka, J.; Hirashita, T.; Yamamura, H.; Kawai, M. J. Org. Chem. 2001, 66, 7919.
- ⁶⁰¹Lombardo, M.; Girotti, R.; Morganti, S.; Trombini, C. Org. Lett. 2001, 3, 2981.
- ⁶⁰²Miao, W.; Lu, W.; Chan, T.H.; J. Am. Chem. Soc. 2003, 125, 2412.
- ⁶⁰³Keh, C.C.K.; Wei, C.; Li, C.-J. J. Am. Chem. Soc. 2003, 125, 4062.
- ⁶⁰⁴Yadav, J.S.; Reddy, B.V.S.; Reddy, G.S.K.K. Tetrahedron Lett. 2000, 41, 2695.
- ⁶⁰⁵Kwon, J.S.; Pae, A.N.; Choi, K.I.; Koh, H.Y.; Kim, Y.; Cho, Y.S. Tetrahedron Lett. 2001, 42, 1957.
- 606 Hirashita, T.; Kambe, S.; Tsuji, H.; Omori, H.; Araki, S. J. Org. Chem. 2004, 69, 5054.
- ⁶⁰⁷Basu, M.K.; Banik, B.K. Tetrahedron Lett. 2001, 42, 187.
- ⁶⁰⁸Kunishima, M.; Tawaka, S.; Kono, K.; Hioki, K.; Tani, S. *Tetrahedron Lett.* **1995**, *36*, 3707; Hélion, F.; Namy, J.-L. J. Org. Chem. **1999**, *64*, 2944.
- ⁶⁰⁹Yasuda, M.; Kitahara, N.; Fujibayashi, T.; Baba, A. *Chem. Lett.* 1998, 743; Marshall, J.A.; Palovich,
 M.R. J. Org. Chem. 1998, 63, 4381; Kobayashi, S.; Nagayama, S. J. Org. Chem. 1996, 61, 2256.
- ⁶¹⁰Tan, K.-T.; Chng, S.-S.; Cheng, H.-S.; Loh, T.-P. J. Am. Chem. Soc. 2003, 125, 2958. For a reaction using Sn and ultrasound, see Andres, P.C.; Peatt, A.C.; Raston, C.L. Tetraheron Lett. 2002, 43, 7541.
 ⁶¹¹Wallner, O.A.; Szabó, K.J. J. Org. Chem. 2003, 68, 2934.
- ⁶¹²For a high pressure version of this reaction, see Issacs, N.S.; Maksimovic, L.; Rintoul, G.B.; Young, D.J. *J. Chem. Soc., Chem. Commun.* **1992**, 1749; Isaacs, N.S.; Marshall, R.L.; Young, D.J. *Tetrahedron Lett.* **1992**, 33, 3023.

⁵⁹⁵Augé, J.; Lubin-Germain, N.; Thiaw-Woaye, A. Tetrahedron Lett. 1999, 40, 9245.

⁵⁹⁶Lee, P.H.; Ahn, H.; Lee. K.; Sung, S.-y.; Kim, S. Tetrahedron Lett. 2001, 42, 37.

and tetraallyltin react with aldehydes or ketones in the presence of BF₃–etherate,⁶¹³ Cu(OTf)₂,⁶¹⁴ CeCl₃ with NaI,⁶¹⁵ Bi(OTf)₃,⁶¹⁶ PbI₂,⁶¹⁷ AgOTf,⁶¹⁸ Cd(ClO₄)₂,⁶¹⁹ SnX₂,⁶²⁰ Ti (IV),⁶²¹ NbCl₅,⁶²² Zr(O*t*-Bu)₄,⁶²³ or La(OTf)₃.⁶²⁴ Tetraallyltin reacts via 1,2-addition to conjugated ketones in refluxing methanol.⁶²⁵ Aluminum catalysts, such as MABR, facilitate addition of allyltributyltin to aldehydes.⁶²⁶ Select-fluor has been used to induce 1,2-addition of the allyl group of allyltributyltin to a conjugated aldehyde.⁶²⁷ Allyltributyltin reacts with aldehydes in the presence of aqueous trifluoromethanesulfonic acid to give the homoallylic alcohol.⁶²⁸ Tetraallyltin reacts with aldehydes in ionic liquids⁶²⁹ and on wet silica,⁶³⁰ and allyltributyltin adds to aldehydes to give homoallylic alcohols with good enantioselectivity in the presence of a chiral titanium complex.⁶³² Allylic alcohols and homoallylic alcohols add to aldehydes in the presence of Sn(OTf)₂⁶³³ In/InCl₃,⁶³⁴ or with a rhodium catalyst.⁶³⁵ Vinyltin regents, such as (2-butadiene)tributyltin, react with aldehydes in the presence of SnCl₄ and 3 equivalents of DMF to

- ⁶¹³Naruta, Y.; Ushida, S.; Maruyama, K. Chem. Lett. 1979, 919. For a review, see Yamamoto, Y. Aldrichimica Acta 1987, 20, 45.
- ⁶¹⁴Kamble, R.M.; Singh, V.K. Tetrahedron Lett. 2001, 42, 7525.
- ⁶¹⁵Bartoli, G.; Bosco, M.; Giuliani, A.; Marcantoni, E.; Palmieri, A.; Petrini, M.; Sambri, L. J. Org. Chem. **2004**, 69, 1290.
- ⁶¹⁶Choudary, B.M.; Chidara, S.; Sekhar, Ch.V.R. Synlett 2002, 1694.
- ⁶¹⁷Shibata, I.; Yoshimura, N.; Yabu, M.; Baba, A. Eurl. J. Org. Chem. 2001, 3207.
- ⁶¹⁸Yanagisawa, A.; Nakashima, H.; Nakatsuka, Y.; Ishiba, A.; Yamamoto, H. Bull. Chem. Soc. Jpn. 2001, 74, 1129.
- ⁶¹⁹Kobayashi, S.; Aoyama, N.; Manabe, K. Synlett 2002, 483.
- ⁶²⁰SnCl₂: Yasuda, M.; Hirata, K.; Nishino, M.; Yamamoto, A.; Baba, A. J. Am. Chem. Soc. 2002, 124, 13442. SnI₂: Masuyama, Y.; Ito, T.; Tachi, K.; Ito, A.; Kurusu, Y. Chem. Commun. 1999, 1261.
- 621Kii, S.; Maruoka, K. Tetrahedron Lett. 2001, 42, 1935.
- ⁶²²Andrade, C.K.Z.; Azevedo, N.R. Tetrahedron Lett. 2001, 42, 6473.
- ⁶²³Kurosa, M.; Lorca, M. Tetrahedron Lett. 2002, 43, 1765.
- ⁶²⁴Aspinall, H.C.; Bissett, J.S.; Greeves, N.; Levin, D. Tetrahedron Lett. 2002, 43, 319.
- ⁶²⁵Khan, A.T.; Mondal, E. Synlett 2003, 694.
- ⁶²⁶Marx, A.; Yamamoto, H. Synlett 1999, 584.
- ⁶²⁷Liu, J.; Wong, C.-H. Tetrahedron Lett. 2002, 43, 3915.
- 628Loh, T.-P.; Xu, J. Tetrahedron Lett. 1999, 40, 2431.
- ⁶²⁹In bmim BF₄, 1-butyl-3-methylimidazolium tetrafluoroborate: Gordon, C.M.; McCluskey, A. *Chem. Commun.* **1999**, 1431.
- ⁶³⁰Jin, Y.Z.; Yasuda, N.; Furuno, H.; Inanaga, J. Tetrahedron Lett. 2003, 44, 8765.
- ⁶³¹In bmim Cl, 1-butyl-3-methylimidazolium chloride: Lu, J.; Ji, S.-J.; Qian, R.; Chen, J.-P.; Liu, Y.; Loh, T.-P. Synlett 2004, 534.
- ⁶³²Waltz, K.M.; Gavenonis, J.; Walsh, P.J. Angew. Chem. Int. Ed. 2002, 41, 3697; Cunningham, A.; Woodward, S. Synlett 2002, 43; Kim, J.G.; Waltz, K.M.; Garcia, I.F.; Kwiatkowski, D.; Walsh, P.J. J. Am. Chem. Soc. 2004, 126, 12580.
- 633 Nokami, J.; Yoshizane, K.; Matsuura, H.; Sumida, S.-i. J. Am. Chem. Soc. 1998, 120, 6609.
- 634 Jang, T.-S.; Keum, G.; Kang, S.B.; Chung, B.Y.; Kim, Y. Synthesis 2003, 775.
- ⁶³⁵Masuyama, Y.; Kaneko, Y.; Kurusu, Y. Tetrahedron Lett. 2004, 45, 8969.

give the dienyl alcohol.⁶³⁶ Allenyl tin compounds (CH₂=C=CHSnBu₃) also react with aldehydes in the presence of BF₃•OEt₂ to give a 2-dienyl alcohol.⁶³⁷ The tin compound can be prepared *in situ* using an α -iodo ketone with an aldehyde and Bu₂SnI₂-LiI.⁶³⁸ A similar addition occurs with (allyl)₂SnBr₂ in water.⁶³⁹ Asymmetric induction has been reported.⁶⁴⁰ The use of a chiral rhodium⁶⁴¹ or titanium⁶⁴² catalyst leads to enantioselective addition of allyltributyltin to aldehydes. Allyltributyltin reacts with aldehydes in the presence of SiCl₄ and a chiral phosphoramide to give the homoallylic alcohol with moderate enantioselectivity.⁶⁴³ It is noted that tetraallyl germanium adds to aldehydes in a similar manner in the presence of a Sc(OTf)₃ catalyst.⁶⁴⁴

A variety of other allylic metal compounds add to aldehydes or ketones.⁶⁴⁵ A variety of alkyl and allylic halides add to aldehydes or ketones in the presence of metals or metal compounds; the metal or compounds based on Ti,⁶⁴⁶ Mn,⁶⁴⁷ Fe,⁶⁴⁸ Ga,⁶⁴⁹

- ⁶³⁷Luo, M.; Iwabuchi, Y.; Hatakeyama, S. Chem. Commun. **1999**, 267; Yu, C.-M.; Lee, S.-J.; Jeon, M. J. Chem. Soc., Perkin Trans. 1 **1999**, 3557.
- 638 Shibata, I.; Suwa, T.; Sakakibara, H.; Baba, A. Org. Lett. 2002, 4, 301.
- 639 Chan, T.H.; Yang, Y.; Li, C.J. J. Org. Chem. 1999, 64, 4452.

⁶⁴⁰Yanagisawa, A.; Narusawa, H.; Ishiba, A.; Yamamoto, H. J. Am. Chem. Soc. 1996, 118, 4723; Keck,

G.E.; Krishnamurthy, D.; Grier, M.C. J. Org. Chem. 1993, 58, 6543; Motoyama, Y.; Nishiyama, H. Synlett 2003, 1883; Xia, G.; Shibatomi, K.; Yamamoto, H. Synlett 2004, 2437.

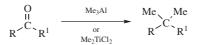
- ⁶⁴¹Moloyama, Y.; Narusawa, H.; Nishiyama, H. Chem. Commun. 1999, 131.
- ⁶⁴²Doucet, H.; Santelli, M. Tetrahedron Asymmetry 2000, 11, 4163.
- ⁶⁴³Denmark, S.E.; Wynn, T. J. Am. Chem. Soc. 2001, 123, 6199.
- ⁶⁴⁴Akiyama, T.; Iwai, J.; Sugano, M. Tetrahedron 1999, 55, 7499.

⁶⁴⁵See, for example, Furuta, K.; Ikeda, Y.; Meguriya, N.; Ikeda, N.; Yamamoto H. Bull. Chem. Soc. Jpn. 1984, 57, 2781; Pétrier, C.; Luche, J.L. J. Org. Chem. 1985, 50, 910; Tanaka, H.; Yamashita, S.; Hamatani, T.; Ikemoto, Y.; Torii, S. Chem. Lett. 1986, 1611; Guo, B.; Doubleday, W.; Cohen, T. J. Am. Chem. Soc. 1987, 109, 4710; Hosomi, A. Acc. Chem. Res. 1988, 21, 200; Araki, S.; Butsugan, Y. Chem. Lett. 1988, 457; Minato, M.; Tsuji, J. Chem. Lett. 1988, 2049; Coxon, J.M.; van Eyk, S.J.; Steel, P.J. Tetrahedron 1989, 45, 1029; Knochel, P.; Rao, S.A. J. Am. Chem. Soc. 1990, 112, 6146; Wada, M.; Ohki, H.; Akiba, K. Bull. Chem. Soc. Jpn. 1990, 63, 1738; Marton, D.; Tagliavini, G.; Zordan, M.; Wardell, J.L. J. Organomet. Chem. 1990, 390, 127; Wang, W.; Shi, L.; Xu, R.; Huang, Y. J. Chem. Soc. Perkin Trans. 1 1990, 424; Shono, T.; Ishifune, M.; Kashimura, S. Chem. Lett. 1990, 449.

⁶⁴⁶Rosales, A.; Oller-López, J.L.; Justicia, J.; Gansäuer, A.; Oltra, J.E.; Curerva, J.M. *Chem. Commun.* 2004, 2628. For a discussion of the mechanism of titanium-mediated asymmetric addition see Balsells, J.; Davis, T.J.; Carroll, P.; Walsh, P.J. *J. Am. Chem. Soc.* 2002, *124*, 10336; BourBouz, S.; Pradaux, F.; Cossy, J.; Ferrroud, C.; Falguières, A. *Tetrahedron Lett.* 2000, *41*, 8877; Jana, S.; Guin, C.; Roy, S.C. *Tetrahedron Lett.* 2004, *45*, 6575.

⁶⁴⁷Kakiya, H.; Nishimae, S.; Shinokubo, H.; Oshima, K. *Tetrahedron* 2001, 57, 8807. With a catalytic amount of CrCl₂ and a salen catalyst, see Berkessel, A.; Menche, D.; Sklorz, C.A.; Schröder, M.; Paterson, I. *Angew. Chem. Int. Ed.* 2003, 42, 1032. For a review of ligand effects for organomanganese and organocerium compounds, see Reetz, M.T.; Haning, H.; Stanchev, S. *Tetrahedron Lett.* 1992, 33, 6963.

⁶⁴⁸Chan, T.C.; Lau, C.P.; Chan, T.H. Tetrahedron Lett. 2004, 45, 4189.


⁶⁴⁹Han, Y.; Chi, Z.; Huang, Y.-Z. Synth. Commun. **1999**, 29, 1287; Wang, Z.; Yuan, S.; Li, C.-J. Tetrahedron Lett. **2002**, 43, 5097.

⁶³⁶ Luo, M.; Iwabuchi, Y.; Hatakeyama, S. Synlett 1999, 1109.

Ge.⁶⁵⁰ Zr.⁶⁵¹ Nb.⁶⁵² Cd.⁶⁵³ Sn.⁶⁵⁴ Sb.⁶⁵⁵ Te.⁶⁵⁶ Ba.⁶⁵⁷ Ce.⁶⁵⁸ Nd.⁶⁵⁹ Hg.⁶⁶⁰ Bi.⁶⁶¹ and Pb.⁶⁶² In addition, BiCl₃/NaBH₄,⁶⁶³ Mg-BiCl₃,⁶⁶⁴ and CrCl₂/NiCl₂,⁶⁶⁵ have been used. Allylic alcohols have been converted to organometallic reagents with diethyl zinc and a palladium catalyst⁶⁶⁶ or a ruthenium catalyst⁶⁶⁷ leading to the homoallylic alcohol upon reaction with an aldehyde. A chiral Cr/Mn complex has been used with allylic bromides in conjunction with trimethylsilyl chloride.⁶⁶⁸ Reagents of the type R–Yb have been prepared from RMgX.⁶⁶⁹ Vinyl bromides react with NiBr₂/CrCl₃/TMSCl to give a reagent that adds to aldehydes to give the allylic alcohol.⁶⁷⁰ Vinyl complexes generated from alkynes and SmI₂ add intramolecularly, and eight-membered rings have been formed in this way.⁶⁷¹ Allylic alcohols add to aldehydes in some cases, using SnCl₂ and a palladium catalyst.⁶⁷² Glyoxal reacted with 2 equivalents of allyl bromide and SnCl₂ with KI in water, to give the bis-homoallylic alcohol oct-1,7-diene-4,5-diol.⁶⁷³ The alkyl group of trialkyl aluminum compounds such as AlEt₃ add to aldehydes, enantioselectively in the presence of chiral transition-metal complexes.⁶⁷⁴ Certain functional groups (COOEt, CONMe₂, CN) can be present in the R group when

- ⁶⁵⁰Hashimoto, Y.; Kagoshima, H.; Saigo, K. Tetrahedron Lett. 1994, 35, 4805.
- ⁶⁵¹Hanzawa, Y.; Tabuchi, N.; Saito, K.; Noguchi, S.; Taguchi, T. Angew. Chem. Int. Ed. 1999, 38, 2395.
- ⁶⁵²Andrade, C.K.Z.; Azevedo, N.R.; Oliveira, G.R. Synthesis 2002, 928.
- ⁶⁵³Zheng, Y.; Bao, W.; Zhang, Y. Synth. Commun. 2000, 30, 3517.
- ⁶⁵⁴For the use of nanoparticulate tin, see Wang, Z.; Zha, Z.; Zhou, C. Org. Lett. 2002, 4, 1683.
- ⁶⁵⁵Jin, Q.-H.; Ren, P.-D.; Li, Y.-Q.; Yao, Z.-P. Synth. Commun. **1998**, 28, 4151; Li, L.-H.; Chan, T.H. Can. J. Chem. **2001**, 79, 1536.
- ⁶⁵⁶For an example using a cyclopropylcarbinyl tosylate and an allyl surrogate, see Avilov, D.V.; Malasare, M.G.; Arslancan, E.; Dittmer, D.L. *Org. Lett.* **2004**, *6*, 2225.
- ⁶⁵⁷Yanagisawa, A.; Habaue, S.; Yasue, K.; Yamamoto, H. J. Am. Chem. Soc. 1994, 116, 6130.
- ⁶⁵⁸Loh, T.-P.; Zhou, J.-R. *Tetrahedron Lett.* **1999**, 40, 9115.
- ⁶⁵⁹Evans, W.J.; Workman, P.S.; Allen, N.T. Org. Lett. 2003, 5, 2041.
- ⁶⁶⁰Chan, T.H.; Yang, Y. Tetrahedron Lett. 1999, 40, 3863.
- ⁶⁶¹Miyamoto, H.; Daikawa, N.; Tanaka, K. *Tetrahedron Lett.* **2003**, *44*, 6963; Wada, S.; Hayashi, N.; Suzuki, H. *Org. Biomol. Chem.* **2003**, *1*, 2160; Smith, K.; Lock, S.; El-Hiti, G.A.; Wada, M.; Miyoshi, N.
- Org. Biomol. Chem. 2004, 2, 935; Xu, X.; Zha, Z.; Miao, Q.; Wang, Z. Synlett 2004, 1171.
- ⁶⁶²Zhou, J.-Y.; Jia, Y.; Sun, G.-F.; Wu, S.-H. Synth. Commun. 1997, 27, 1899.
- ⁶⁶³Ren, P.-D.; Shao, D.; Dong, T.-W. Synth. Commun. 1997, 27, 2569.
- ⁶⁶⁴Wada, M.; Fukuma, T.; Morioka, M.; Takahashi, T.; Miyoshi, N. Tetrahedron Lett. 1997, 38, 8045.
- ⁶⁶⁵Taylor, R.E.; Ciavarri, J.P. Org. Lett. 1999, 1, 467.
- ⁶⁶⁶Kimura, M.; Shimizu, M.; Shibata, K.; Tazoe, M.; Tamaru, Y. Angew. Chem. Int. Ed. 2003, 42, 3392.
 ⁶⁶⁷Wang, M.; Yang, X.-F.; Li, C.-J. Eur. J. Org. Chem. 2003, 998.
- 668 Inoue, M.; Suzuki, T.; Nakada, M. J. Am. Chem. Soc. 2003, 125, 1140.
- ⁶⁶⁹Matsubara, S.; Ikeda, T.; Oshima, K.; Otimoto, K. Chem. Lett. 2001, 1226.
- ⁶⁷⁰Kuroboshi, M.; Tanaka, M.; Kishimoto, S.; Goto, K.; Mochizuki, M.; Tanaka, H. *Tetrahedron Lett.* **2000**, *41*, 81.
- 671 Hölemann, A.; Reissig, H.-U. Synlett 2004, 2732.
- ⁶⁷²Márquez, F.; Llebaria, A.; Delgado, A. Tetrahedron Asymmetry 2001, 12, 1625.
- ⁶⁷³Samoshin, V.V.; Gremyachinskiy, D.E.; Smith, L.I.; Bliznets, I.V.; Gross, P.H. *Tetrahedron Lett.* **2002**, 43, 6329.
- ⁶⁷⁴Lu, J.-F.; You, J.-S.; Gau, H.-M. Tetrahedron Asymmetry 2000, 11, 2531.

organotin reagents RSnEt₃ are added to aldehydes.⁶⁷⁵ Trimethylaluminum⁶⁷⁶ and dimethyltitanium dichloride⁶⁷⁷ exhaustively methylate ketones to give *gem*-dimethyl compounds⁶⁷⁸ (see also **10-63**):

The titanium reagent also dimethylates aromatic aldehydes.⁶⁷⁹ Triethylaluminum reacts with aldehydes, however, to give the mono-ethyl alcohol, and in the presence of a chiral additive the reaction proceeds with good asymmetric induction.⁶⁸⁰ A complex of Me₃Ti•MeLi has been shown to be selective for 1,2-addition with conjugated ketones, in the presence of nonconjugated ketones.⁶⁸¹ In other variations, the organometallic reagent is generated *in situ*. 1,4-Dimethoxybenzene reacts with ethyl glyoxylate (EtO₂C–CHO) in the presence of 5% Yb(OTf)₃, to give the alcohol formed by addition of the aryl group to the aldehyde unit.⁶⁸²

High ee values have also been obtained with organometallics,⁶⁸³ including organotitanium compounds (methyl, aryl, allylic) in which an optically active ligand is coordinated to the titanium,⁶⁸⁴ allylic boron compounds, and organozinc compounds. As for the organozinc reagents, very high enantioselection was obtained from R_2Zn reagents (R = alkyl)⁶⁸⁵ and aromatic⁶⁸⁶ aldehydes by the use of a small

⁶⁷⁷Reetz, M.T.; Westermann, J.; Kyung, S. Chem. Ber. 1985, 118, 1050.

⁶⁷⁸For the *gem*-diallylation of anhydrides, with an indium reagent, see Araki, S.; Katsumura, N.; Ito, H.; Butsugan, Y. *Tetrahedron Lett.* **1989**, *30*, 1581.

⁶⁷⁹Reetz, M.T.; Kyung, S. Chem. Ber. 1987, 120, 123.

- 680Chan, A.S.C.; Zhang, F.-Y.; Yip, C.-W. J. Am. Chem. Soc. 1997, 119, 4080.
- ⁶⁸¹Markó, I.E.; Leung, C.W. J. Am. Chem. Soc. 1994, 116, 371.
- ⁶⁸²Zhang, W.; Wang, P.G. J. Org. Chem. 2000, 65, 4732.

⁶⁸³For examples involving other organometallic compounds, see Abenhaïm, D.; Boireau, G.; Deberly, A. J. Org. Chem. 1985, 50, 4045; Minowa, N.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 1987, 60, 3697; Takai, Y.; Kataoka, Y.; Utimoto, K. J. Org. Chem. 1990, 55, 1707.

⁶⁸⁴Reetz, M.T.; Kükenhöhner, T.; Weinig, P. *Tetrahedron Lett.* **1986**, 27, 5711; Wang, J.; Fan, X.; Feng, X.; Quian, Y. *Synthesis* **1989**, 291; Riediker, M.; Duthaler, R.O. *Angew. Chem. Int. Ed.* **1989**, 28, 494; Riediker, M.; Hafner, A.; Piantini, U.; Rihs, G.; Togni, A. *Angew. Chem. Int. Ed.* **1989**, 30, 499.

⁶⁸⁵For a discussion of transition states in the amino alcohol promoted reaction, see Rasmussen, T.; Norrby, P.-O. *J. Am. Chem. Soc.* **2001**, *123*, 2464.

⁶⁸⁶For catalysts that are also successful for aliphatic aldehydes, see Takahashi, H.; Kawakita, T.; Yoshioka, M.; Kobayashi, S.; Ohno, M. *Tetrahedron Lett.* **1989**, *30*, 7095; Tanaka, K.; Ushio, H.; Suzuki, H. J. Chem. Soc., Chem. Commun. **1989**, 1700; Soai, K.; Yokoyam, S.; Hayasaka, T. J. Org. Chem. **1991**, *56*, 4264.

⁶⁷⁵ Kashin, A.N.; Tulchinsky, M.L.; Beletskaya, I.P. J. Organomet. Chem. 1985, 292, 205.

⁶⁷⁶Meisters, A.; Mole, T. *Aust. J. Chem.* **1974**, *27*, 1655. See also, Jeffery, E.A.; Meisters, A.; Mole, T. *Aust. J. Chem.* **1974**, *27*, 2569. For discussions of the mechanism of this reaction, see Ashby, E.C.; Smith, R.S. *J. Organomet. Chem.* **1982**, *225*, 71. For a review of organoaluminum compounds in organic synthesis, see Maruoka, H.; Yamamoto, H. Tetrahedron **1988**, *44*, 5001.

amount of various catalysts.⁶⁸⁷ The enantioselectivity is influenced by additives, such as LiCl.⁶⁸⁸ Silica-immobilized chiral ligands⁶⁸⁹ can be used in conjunction with dialkylzinc reagents, and polymer-supported ligands have been used.⁶⁹⁰ Chiral dendritic titanium catalysts have been used to give moderate enantioselectivity.⁶⁹¹

Enantioselective reaction of a carbonyl with a dialkylzinc is possible when other functional groups are present in the molecule. Examples include keto esters.⁶⁹² An enzyme-mediated addition of dialkylzinc reagents to aldehydes has also been reported.⁶⁹³ When benzaldehyde was treated with Et_2Zn in the presence of the optically active catalyst 1-piperidino-3,3-dimethyl-2-butanol, a surprising result was obtained. Although the catalyst had only 10.7% excess of one enantiomer, the

687For a review, see Pu, L.; Yu, H.-B. Chem. Rev. 2001, 101, 757. See also, Richmond, M.I.; Seto, C.T. J. Org. Chem. 2003, 68, 7505; Sprout, C.M.; Seto, C.T. J. Org. Chem. 2003, 68, 7788; Nugent, W.A. Org. Lett. 2002, 4, 2133; García, C.; Walsh, P.J. Org. Lett. 2003, 5, 3641; Kang, S.-W.; Ko, D.-H.; Kim, K.H.; Ha, D.-C. Org. Lett. 2003, 5, 4517; Mao, J.; Wan, B.; Wang, R.; Wu, F.; Lu, S. J. Org. Chem. 2004, 69, 9123; Superchi, S.; Giorgio, E.; Scafato, P.; Rosini, C. Tetrahedron Asymmetry 2002, 13, 1385; Bastin, S.; Ginj, M.; Brocarrd, J.; Pélinski, L.; Novogrocki, G. Tetrahedron Asymmetry 2003, 14, 1701; Joshi, S.N.; Malhotra, S.V. Tetrahedron Asymmetry 2003, 14, 1763; Prieto, O.; Ramón, D.J.; Yus, M. Tetrahedron Asymmetry 2003, 14, 1955; Lesma, G.; Danieli, B.; Passarella, D.; Sacchetti, A.; Silovani, A. Tetrahedron Asymmetry 2003, 14, 2453; Danilova, T.I.; Rozenberg, V.I.; Starikova, Z.A.; Bräse, S. Tetrahedron Asymmetry 2004, 15, 223; Scarpi, D.; Lo Galbo, F.; Occhiato, E.G.; Guarna, A. Tetrahedron Asymmetry 2004, 15, 1319; Funabashi, K.; Jachmann, M.; Kanai, M.; Shibasaki, M. Angew. Chem. Int. Ed. 2003, 42, 5489; Lake, F.; Moberg, C. Eur. J. Org. Chem. 2002, 3179; Reddy, K.S.; Solà, L.; Huang, W.-S.; Pu, L. J. Org. Chem. 1999, 64, 4222; Paleo, M.R.; Cabeza, I.; Sardina, F.J. J. Org. Chem. 2000, 65, 2108; Yang, L.; Shen, J.; Da, C.; Wang, R.; Choi, M.C.K.; Yang, L.; Wong, K.-y. Tetrahedron Asymmetry 1999, 10, 133; Shi, M.; Jiang, J.-K. Tetrahedron Asymmetry 1999, 10, 1673; Kawanami, Y.; Mitsuie, T.; Miki, M.; Sakamoto, T.; Nishitani, K. Tetrahedron 2000, 56, 175; Hanyu, N.; Aoki, T.; Mino, T.; Sakamoto, M.; Fujita, T. Tetrahedron Asymmetry 2000, 11, 2971; Arroyo, N.; Haslinger, U.; Mereiter, K.; Widhalm, M. Tetrahedron Asymmetry 2000, 11, 4207; Jimeno, C.; Moyano, A.; Pericàs, M.A.; Riera, A. Synlett 2001, 1155; Hermsen, P.J.; Cremers, J.G.O.; Thijs, L.; Zwanenburg, B. Tetrahedron Lett. 2001, 42, 4243; Xu, Q.; Wang, H.; Pan, X.; Chan, A.S.C.; Yang, T.-k. Tetrahedron Lett. 2001, 42, 6171; Yang, X.-w.; Shen, J.-h.; Da, C.-s.; Wang, H.-s.; Su, W.; Liu, D.-x.; Wang, R.; Choi, M.C.K.; Chan, A.S.C. Tetrahedron Lett. 2001, 42, 6573; Ohga, T.; Umeda, S.; Kawanami, Y. Tetrahedron 2001, 57, 4825; Zhao, G.; Li, X.-G.; Wang, X.-R. Tetrahedron Asymmetry 2001, 12, 399; You, J.-S.; Shao, M.-Y.; Gau, H.-M. Tetrahedron Asymmetry 2001, 12, 2971; Priego, J.; Mancheño, O.G.; Cabrera, S.; Carretero, J.C. Chem. Commun. 2001, 2026; Bolm, C.; Kesselgruber, M; Hermanns, N.; Hildebrand, J.P.; Raabe, G. Angew. Chem. Int. Ed. 2001, 40, 1488; Wipf, P.; Wang, X. Org. Lett. 2002, 4, 1197; Braga, A.L.; Milani, P.; Paixão, M.W.; Zeni, G.; Rodrigues, O.E.D.; Alves, E.F. Chem. Commun. 2004, 2488; Sibi, M.P.; Stanley, L.M. Tetrahedron Asymmetry 2004, 15, 3353; Tseng, S.-L.; Yang, T.-K. Tetrahedron Asymmetry 2004, 15, 3375; Harada, T.; Kanda, K.; Hiraoka, Y.; Marutani, Y.; Nakatsugawa, M. Tetrahedron Asymmetry 2004, 15, 3879; Casey, M.; Smyth, M.P. Synlett 2003, 102.

⁶⁸⁸Sosa-Rivadeneyra, M.; Muñoz-Muñiz, O.; de Parrodi, C.A.; Quintero, L.; Juaristi, E. J. Org. Chem.
 2003, 68, 2369; García, C.; La Rochelle, L.K.; Walsh, P.J. J. Am. Chem. Soc. **2002**, 124, 10970; Priego, J.;
 Mancheño, O.G.; Cabrera, S.; Carretero, J.C. J. Org. Chem. **2002**, 67, 1346.

⁶⁸⁹Fraile, J.M.; Mayoral, J.A.; Servano, J.; Pericàs, M.A.; Solà, L.; Castellnou, D. Org. Lett. 2003, 5, 4333.
 ⁶⁹⁰Sung, D.W.L.; Hodge, P.; Stratford, P.W. J. Chem. Soc., Perkin Trans. 1 1999, 1463; Lipshutz, B.H.; Shin, Y.-J. Tetrahedron Lett. 2000, 41, 9515.

⁶⁹¹Fan, O.-H.; Liu, G.-H.; Chen, X.-M.; Deng, G.-J.; Chan, A.S.C. *Tetrahedron Asymmetry* **2001**, *12*, 1559.

⁶⁹²DiMauro, E.F.; Kozlowski, M.C. Org. Lett. 2002, 4, 3781.

⁶⁹³Yang, W.K.; Cho, B.T. Tetrahedron Asymmetry 2000, 11, 2947.

product PhCH(OH)Me had an ee of 82%.⁶⁹⁴ When the catalyst ee was increased to 20.5%, the product ee rose to 88%. The question is, how could a catalyst produce a product with an ee much higher than itself? One possible explanation⁶⁹⁵ is that (*R*) and (*S*) molecules of the catalyst form a complex with each other, and that only the uncomplexed molecules are actually involved in the reaction. Since initially the number of (*R*) and (*S*) molecules was not the same, the (*R/S*) ratio of the uncomplexed molecules must be considerably higher (or lower) than that of the initial mixture.

Although organoboranes do not generally add to aldehydes and ketones.⁶⁹⁶ allylic boranes are exceptions.⁶⁹⁷ When they add, an allylic rearrangement always takes place. Allylic rearrangements take place with the other reagents as well. The use of a chiral catalyst leads to asymmetric induction⁶⁹⁸ and chiral allylic boranes have been prepared.⁶⁹⁹ It is noted that chloroboranes (R₂BCl) react with aldehydes via acyl addition of the alkyl group, giving the corresponding alcohol after treatment with water.⁷⁰⁰ A variation is the reaction of a diketone, where one carbonyl is conjugated. Treatment with catecholborane gives addition to the conjugated ketone, and subsequent cyclization of the resulting organometallic at the nonconjugated ketone gives a cyclic alcohol with a pendant ketone unit, after treatment with methanol.⁷⁰¹ In the presence of ruthenium complexes, RB(OH)₂ and arylboronic acids $ArB(OH)_2$ (p. 815) add to aldehydes to give the corresponding alcohol.⁷⁰² Polymer-bound aryl borates add an aryl group to aldehydes in the presence of a rhodium catalyst.⁷⁰³ An intramolecular version of the phenylboronic acid-induced reaction is known, where a molecule with ketone and conjugated ketone units is converted to a cyclic alcohol using a chiral rhodium catalyst.⁷⁰⁴ Allylic boronates add to aldehydes.⁷⁰⁵

⁶⁹⁵See Wynberg, H. Chimia 1989, 43, 150.

⁶⁹⁶For another exception, involving a vinylic borane, see Satoh, Y.; Tayano, T.; Hara, S.; Suzuki, A. *Tetrahedron Lett.* **1989**, *30*, 5153.

⁶⁹⁷For reviews, see Hoffmann, R.W.; Niel, G.; Schlapbach, A. *Pure Appl. Chem.* **1990**, 62, 1993; Pelter, A.; Smith, K.; Brown, H.C. *Borane Reagents*, Academic Press, NY, **1988**, pp. 310–318. For a review of allylic boranes, see Bubnov, Yu.N. *Pure Appl. Chem.* **1987**, *21*, 895. For an example that proceeds with asymmetric induction, see Buynak, J.D.; Geng, B.; Uang, S.; Strickland, J.B. *Tetrahedron Lett.* **1994**, *35*, 985.

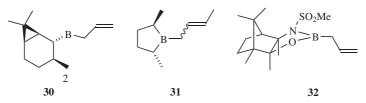
⁶⁹⁸Ishiyama, T.; Ahiko, T.-a.; Miyaura, N. J. Am. Chem. Soc. 2002, 124, 12414; Wada, R.; Oisaki, K.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2004, 126, 8910.

⁶⁹⁹Lachance, H.; Lu, X.; Gravel, M.; Hall, D.G. J. Am. Chem. Soc. 2003, 125, 10160; Ramachandran, P.V.;
 Krezeminski, M.P.; Reddy, M.V.R.; Brown, H.C. Tetrahedron Asymmetry 1999, 10, 11; Roush, W.R.;
 Pinchuk, A.N.; Micalizio, G.C. Tetrahedron Lett. 2000, 41, 9413; Wu, T.R.; Shen, L.; Chong, J.M. Org. Lett. 2004, 6, 2701.

⁷⁰⁰Kabalka, G.W.; Wu, Z.; Ju, Y. *Tetrahedron* **2001**, *57*, 1663; Kabalka, G.W.; Wu, Z.; Ju, Y. *Tetrahedron* **2002**, *58*, 3243.

⁷⁰¹Huddleston, R.R.; Cauble, D.F.; Krische, M.J. J. Org. Chem. 2003, 68, 11.

⁷⁰²Ueda, M.; Miyaura, N. J. Org. Chem. 2000, 65, 4450 and references cited therein.


⁷⁰³Pourbaix, C.; Carreaux, F.; Carboni, B. Org. Lett. **2001**, *3*, 803; Rudolph, J.; Schmidt, F.; Bolm, C. Synthesis **2005**, 840.

⁷⁰⁴Cauble, D.F.; Gipson, J.D.; Krische, M.J. J. Am. Chem. Soc. 2003, 125, 1110.

⁷⁰⁵For a review of the scandium-catalyzed enantioselective addition, see Gravel, M.; Lachance, H.; Lu, X.; Hall, D.G. *Synthesis* **2004**, 1290.

⁶⁹⁴Oguni, N.; Matsuda, Y.; Kaneko, T. J. Am. Chem. Soc. 1988, 110, 7877.

A number of optically active allylic boron compounds have been used, including⁷⁰⁶ B-allylbis(2-isocaranyl)borane (**30**),⁷⁰⁷ (*E*)- and (*Z*)-crotyl-(*R*,*R*)-2,5-dimethylborolanes (**31**),⁷⁰⁸ and the borneol

derivative **32**,⁷⁰⁹ all of which add an allyl group to aldehydes, with good enantioselectivity. Where the substrate possesses an aryl group or a triple bond, enantioselectivity is enhanced by using a metal carbonyl complex of the substrate.⁷¹⁰

Alkenes and alkynes add to aldehydes or ketones by conversion to a reactive organometallic. A radical-type addition is possible using alkenes with BEt₃. Benzaldehyde reacted with isoprene in the presence of BEt₃ and Ni(acac)₂ to give an anti-Markovnikov-type addition to the carbonyl, C=C–C(Me)=C + PhCHO \rightarrow C=CCHMeCH₂CH(OH)Ph.⁷¹¹ Alkynes add to aldehydes elsewhere in the same molecule in the presence of BEt₃ and a nickel catalyst to give a cyclic allylic alcohol.⁷¹² Alkene aldehydes react similarly using Me₃SiOTf.⁷¹³ In a similar manner, dienes add to aldehydes in the presence of a nickel catalyst.⁷¹⁴ Propargylic halides add to aldehydes to give an allenic alcohol using β-SnO[Rd(cod)Cl]₂.⁷¹⁵ Allylic acetates react with ketones to give the homoallylic alcohol under electrochemical conditions that include bipyridyl, tetrabutylammonium tetrafluoroborate and FeBr₂.⁷¹⁶ Terminal alkynes react with zirconium complexes and Me₂Zn to give an allylic tertiary alcohol.⁷¹⁷ Internal alkynes also give allylic alcohols in the presence of BEt₃ and a nickel catalysts.⁷¹⁸ Reaction of an aldehyde containing a conjugated diene unit with diethylzinc and a nickel catalyst leads to cyclic

⁷⁰⁶For some others, see Hoffmann, R.W. Pure Appl. Chem. **1988**, 60, 123; Corey, E.J.; Yu, C.; Kim, S.S. J. Am. Chem. Soc. **1989**, 111, 5495; Roush, W.R.; Ando, K.; Powers, D.B.; Palkowitz, A.D.; Halterman, R.L. J. Am. Chem. Soc. **1990**, 112, 6339; Brown, H.C.; Randad, R.S. Tetrahedron Lett. **1990**, 31, 455; Stürmer, R.; Hoffmann, R.W. Synlett **1990**, 759.

⁷⁰⁸Garcia, J.; Kim, B.M.; Masamune, S. J. Org. Chem. 1987, 52, 4831.

⁷¹⁸Miller, K.M.; Jamison, T.F. J. Am. Chem. Soc. 2004, 126, 15342.

⁷⁰⁷Racherla, U.S.; Brown, H.C. J. Org. Chem. 1991, 56, 401, and references cited therein.

⁷⁰⁹Reetz, M.T.; Zierke, T. Chem. Ind. (London) 1988, 663.

⁷¹⁰Roush, W.R.; Park, J.C. J. Org. Chem. 1990, 55, 1143.

⁷¹¹Kimura, M.; Fujimatsu, H.; Ezoe, A.; Shibata, K.; Shimizu, M.; Matsumoto, S.; Tamaru, Y. Angew. Chem. Int. Ed. **1999**, *38*, 397.

⁷¹²Miller, K.M.; Huang, W.-S.; Jamison, T.F. J. Am. Chem. Soc. 2003, 125, 3442; Miller, K.M.; Luanphaisarnnont, T.; Molinaro, C.; Jamison, T.F. J. Am. Chem. Soc. 2004, 126, 4130.

⁷¹³Suginome, M.; Iwanami, T.; Yamamoto, A.; Ito, Y. Synlett 2001, 1042.

⁷¹⁴Sawaki, R.; Sato, Y.; Mori, M. Org. Lett. 2004, 6, 1131.

⁷¹⁵Banerjee, M.; Roy, S. Org. Lett. 2004, 6, 2137.

⁷¹⁶Durandetti, M.; Meignein, C.; Périchon, J. J. Org. Chem. 2003, 68, 3121.

⁷¹⁷Li, H.; Walsh, P.J. J. Am. Chem. Soc. 2004, 126, 6538.

alcohols having a pendant allylic unit.⁷¹⁹ A similar reaction was reported using a copper catalyst.⁷²⁰ Vinyl iodides also react with Cp_2ZrCl_2 to give a vinylzirco-nium complex that reacts with aldehydes.⁷²¹ The intramolecular addition of an alkene to an aldehyde leads to a saturated cyclic alcohol using PhSiH₃ and a cobalt catalyst.⁷²² Intramolecular addition of a conjugated ester (via the β -carbon) to an aldehyde generates a cyclic ketone.⁷²³ This type of coupling has been called the Stetter reaction,⁷²⁴ which actually involves the addition of aldehydes to activated double bonds (15-34), mediated by a catalytic amount of thiazolium salt in the presence of a weak base. The intramolecular addition of the allene moiety to an aldehyde is catalyzed by a palladium complex in the presence of Me₃SiSn-Bu₃.⁷²⁵ A highly enantio- and diastereoselective intramolecular Stetter reaction has been developed.⁷²⁶ Alkynyl aldehydes react with silanes such as Et₃SiH and a nickel catalyst to give a cyclic compound having a silyl ether and an exocyclic vinylidene unit.⁷²⁷ Alkene-aldehydes give cyclic alcohols via intramolecular addition of the C=C unit to the carbonyl under electrolytic conditions using a phase-transfer catalyst.⁷²⁸ A similar cyclization was reported using SnCl₄.⁷²⁹ Vinylidene cycloalkanes react with aldehydes in the presence of a palladium catalyst to give a homoallylic alcohol where addition occurs at the carbon exocyclic to the ring.⁷³⁰ Alkenes having an allylic hydrogen react with α -keto aldehydes, with a cobalt catalyst, to give α -hydroxy ketones where the alcohol is homoallylic relative to the C=C unit.⁷³¹ Allenes react with benzaldehyde using HCl-SnCl₂ with a palladium catalyst.⁷³² Silyl allenes react with aldehydes in the presence of a chiral scandium catalyst to give homopropargylic alcohols with good enantioselectivity.⁷³³ Intramolecular addition of an allene to aldehyde via addition of phenyl when treated with PhI and a palladium catalyst.⁷³⁴ Allenes add to ketones

- ⁷²²Baik, T.-G.; Luis, A.L.; Wang, L.-C.; Krische, M.J. J. Am. Chem. Soc. 2001, 123, 5112.
- ⁷²³Kerr, M.S.; Rovis, T. J. Am. Chem. Soc. 2004, 126, 8876.

- ⁷³¹Kezuka, S.; Ikeno, T.; Yamada, T. Org. Lett. 2001, 3, 1937.
- ⁷³²Chang, H.-M.; Cheng, C.-H. Org. Lett. 2000, 2, 3439.
- ⁷³³Evans, D.A.; Sweeney, Z.K.; Rovis, T.; Tedrow, J.S. J. Am. Chem. Soc. 2001, 123, 12095.
- ⁷³⁴Kang, S.-K.; Lee, S.-W.; Jung, J.; Lim, Y. J. Org. Chem. 2002, 67, 4376.

⁷¹⁹Shibata, K.; Kimura, M.; Shimizu, M.; Tamaru, Y. Org. Lett. 2001, 3, 2181.

⁷²⁰Agapiou, K.; Cauble, D.F.; Krische, M.J. J. Am. Chem. Soc. 2004, 126, 4528.

⁷²¹Namba, K.; Kishi, Y. Org. Lett. 2004, 6, 5031.

 ⁷²⁴Stetter, H.; Schreckenberg, M. Angew. Chem., Int. Ed 1973, 12, 81; Stetter, H. Angew. Chem., Int. Ed. 1976, 15, 639; Stetter, H.; Kuhlmann, H. Org. React. 1991, 40,407; Enders, D.; Breuer, K.; Runsink, J.; Teles, J.H. Helv. Chim. Acta 1996, 79, 1899; Kerr, M.S.; Rovis, T. J. Am. Chem. Soc. 2004, 126, 8876; Pesch, J.; Harms, K.; Bach, T. Eur. J. Org. Chem. 2004, 2025; Mennen, S.; Blank, J.; Tran-Dube, M.B.; Imbriglio, J.E.; Miller, S.J. Chem. Commun. 2005, 195. For examples of the Stetter reaction with acyl silanes, see Mattson, A.E.; Bharadwaj, A.R.; Scheidt, K.A. J. Am. Chem. Soc. 2004, 126, 2314.

⁷²⁵Kang, S.-K.; Ha, Y.-H.; Ko, B.-S.; Lim, Y.; Jung, J. Angew. Chem. Int. Ed. 2002, 41, 343.

 ⁷²⁶Read de Alaniz, J.; Rovis, T. J. Am. Chem. Soc. 2005, 127, 6284; Kerr, M.S.; Read de Alaniz, J.; Rovis, T. J. Am. Chem. Soc. 2002, 124, 10298.

⁷²⁷Tang, X.-Q.; Montgomery, J. J. Am. Chem. Soc. 1999, 121, 6098.

⁷²⁸Locher, C.; Peerzada, N. J. Chem. Soc., Perkin Trans. 1 1999, 179.

⁷²⁹Alcaide, B.; Pardo, C.; Rodríguez-Ranera, C.; Rodríguez-Vicente, A. Org. Lett. 2001, 3, 4205.

⁷³⁰Hao, J.; Hatano, M.; Mikami, K. Org. Lett. 2000, 2, 4059.

to give homoallylic alcohols in the presence of SmI_2 and HMPA.⁷³⁵ Allenes add to carbonyl groups in the presence of 2.2 equivalents of SmI_2 and an excess of HMPA.⁷³⁶ Alkenes have an allylic methyl group add to formaldehyde, in the presence of BF_3 •OEt₂, to give a homoallylic alcohol.⁷³⁷ Conjugated dienes react with aldehyde via acyl addition of a terminal carbon of the diene, in the presence of Ni(acac)₂ and Et₂Zn.⁷³⁸ Aldehydes having an allylic acetate unit elsewhere in the molecule undergo cyclization in CO and a ruthenium catalyst to give a cyclic alcohol with a pendant vinyl group.⁷³⁹

Allylic trifluoroborates (p. 817) react with aldehydes to give the homoallylic alcohol. Pivaldehyde reacts with potassium 2-butenyltrifluoroborate and a catalytic amount of tetrabutylammonium iodide to give 2,2,4-trimethylhex-5-en-3-ol.⁷⁴⁰ Aliphatic aldehydes react with this reagent, in the presence of BF₃•OEt₂, to give the homoallylic alcohol with allylic rearrangement and a preference for the syn diastereomer,⁷⁴¹ and aryl aldehydes react as well.⁷⁴²

16-26 Addition of Trialkylallylsilanes to Aldehydes and Ketones

O-Hydro-C-alkyl-addition

Allylic trialkyl, trialkoxy, and trihalosilanes add to aldehydes to give the homoallylic alcohols in the presence of a Lewis acid⁷⁴³ (including TaCl₅⁷⁴⁴ and YbCl₃⁷⁴⁵), Me₃SiOTf,⁷⁴⁶ fluoride ion,⁷⁴⁷ proazaphosphatranes,⁷⁴⁸ or a catalytic amount of iodine.⁷⁴⁹ The mechanism of this reaction has been examined.⁷⁵⁰ A ruthenium catalyst has also been used in conjunction with an arylsilane and an aldehyde.⁷⁵¹

⁷⁴²Batey, R.A.; Thadani, A.N.; Smil, D.V.; Lough, A.J. Synthesis 2000, 990.

⁷⁴³For reviews, see Fleming, I.; Dunoguès, J.; Smithers, R. Org. React. 1989, 37, 57, 113–125, 290–328;

Parnes, Z.N.; Bolestova, G.I. Synthesis 1984, 991, see pp. 997-1000. For studies of the mechanism, see

Denmark, S.E.; Weber, E.J.; Wilson, T.; Willson, T.M. Tetrahedron 1989, 45, 1053; Keck, G.E.; Andrus,

M.B.; Castellino, S. J. Am. Chem. Soc. **1989**, 111, 8136. For examples, see Aggarwal, V.K.; Vennall, G.P. Tetrahedron Lett. **1996**, 37, 3745.

- ⁷⁴⁶Davis, A.P.; Jaspars, M. Angew. Chem. Int. Ed. 1992, 31, 470.
- ⁷⁴⁷See Cossy, J.; Lutz, F.; Alauze, V.; Meyer, C. Synlett 2002, 45.
- ⁷⁴⁸Wang, Z.; Kisanga, P.; Verkade, J.G. J. Org. Chem. 1999, 64, 6459.
- ⁷⁴⁹Yadav, J.S.; Chand, P.K.; Anjaneyulu, S. *Tetrahedron Lett.* 2002, 43, 3783.

⁷⁵¹Fujii, T.; Koike, T.; Mori, A.; Osakada, K. Synlett 2002, 298.

⁷³⁵Hölemann, A.; Reissig, H.-U. Org. Lett. 2003, 5, 1463.

⁷³⁶Hölemann, A.; Reißig, H.-U. Chem. Eur. J. 2004, 10, 5493.

⁷³⁷Okachi, T.; Fujimoto, K.; Onaka, M. Org. Lett. 2002, 4, 1667.

⁷³⁸Loh, T.-P.; Song, H.-Y.; Zhou, Y. Org. Lett. 2002, 4, 2715.

⁷³⁹Yu, C.-M.; Lee, S.; Hong, Y.-T.; Yoon, S.-K. Tetrahedron Lett. 2004, 45, 6557.

⁷⁴⁰Thadani, A.N.; Batey, R.A. Org. Lett. 2002, 4, 3827.

⁷⁴¹Batey, R.A.; Thadani, A.N.; Smil, D.V. Tetrahedron Lett. 1999, 40, 4289.

⁷⁴⁴Chandrasekhar, S.; Mohanty, P.K.; Raza, A. Synth. Commun. 1999, 29, 257.

⁷⁴⁵Fang, X.; Watkin, J.G.; Warner, B.P. Tetrahedron Lett. 2000, 41, 447.

⁷⁵⁰Bottoni, A.; Costa, A.L.; DiTommaso, D.; Rossi, I.; Tagliavini, E. J. Am. Chem. Soc. 1997, 119, 12131.

The reaction of an allene aldehyde with Et₃SiH, CO and a rhodium catalyst leads to addition to the alkene followed by intramolecular addition to the aldehyde to give the cyclic alcohol.⁷⁵² Allyl(trimethoxy)silane adds an allyl group to aldehydes using a CdF_2^{753} catalyst or a chiral AgF complex.⁷⁵⁴ Allyltrichlorosilanes have also been used in addition reactions with aldehydes.⁷⁵⁵ Hünig's base (*i*Pr₂NEt) and a sulfoxide have also been used to facilitate the addition of an allyl group to an aldehyde from allyltrichlorosilane.⁷⁵⁶

Allyltrichlorosilane reacts with benzaldehyde in the presence of Bu₄NF to give 1-phenylbut-3-en-10l,⁷⁵⁷ and with a chiral additive the reaction proceeds with good enantioselectivity. When chiral titanium complexes are used in the reaction, allylic alcohols are produced with good asymmetric induction.⁷⁵⁸ Other chiral additives have been used,⁷⁵⁹ as well as chiral catalysts,⁷⁶⁰ and chiral complexes of allyl silanes.⁷⁶¹ Chiral allylic silyl derivatives add to aldehydes to give the chiral homo-allylic alcohol.⁷⁶²

Allylic silanes react with *gem*-diacetates in the presence of $InCl_3$ to give a homoallylic acetate⁷⁶³ or with dimethyl acetals and TMSOTf in an ionic liquid to give the homoallylic methyl ether.⁷⁶⁴ Allylic alcohols can be treated with TMS–Cl and NaI, and then Bi to give an organometallic reagent that adds to aldehydes.⁷⁶⁵

16-27 Addition of Conjugated Alkenes to Aldehydes (the Baylis–Hillman Reaction)⁷⁶⁶

O-Hydro-C-alkenyl-addition

⁷⁵²Kang, S.-K.; Hong, Y.-T.; Lee, J.-H.; Kim, W.-Y.; Lee. I.; Yu, C.-M. Org. Lett. 2003, 5, 2813.

⁷⁵³Aoyama, N.; Hamada, T.; Manabe, K.; Kobayashi, S. Chem. Commun. 2003, 676.

⁷⁵⁴Yanagisawa, A.; Kageyama, H.; Nakatsuka, Y.; Asakawa, K.; Matsumoto, Y.; Yamamoto, H. Angew. Chem. Int. Ed. **1999**, *38*, 3701.

⁷⁵⁵Kobayashi, S.; Nishio, K. J. Org. Chem. 1994, 59, 6620.

⁷⁵⁶Massa, A.; Malkov, A.V.; Kočovský, P.; Scettri, A. Tetrahedron Lett. 2003, 44, 7179.

⁷⁵⁷Malkov, A.V.; Bell, M.; Orsini, M.; Pernazza, D.; Massa, A.; Herrmann, P.; Meghani, P.; Kočovský, P. J. Org. Chem. 2003, 68, 9659.

⁷⁵⁸Gauthier Jr., D.R.; Carreira, E.M. Angew. Chem. Int. Ed. 1996, 35, 2363.

⁷⁵⁹Angell, R.M.; Barrett, A.G.M.; Braddock, D.C.; Swallow, S.; Vickery, B.D. *Chem. Commun.* 1997, 919.
 ⁷⁶⁰Malkov, A.V.; Dufková, L.; Farrugia, L.; Kočovský, P. Angew. Chem Int. Ed. 2003, 42, 3802; Bode, J.W.; Gauthier, Jr., D.R.; Carreira, E.M. Chem. Commun. 2001, 2560.

⁷⁶¹Zhang, L.C.; Sakurai, H.; Kira, M. Chem. Commun. **1997**, 129; Iseki, K.; Mizuno, S.; Kuroki, Y.; Kobayashi, Y. Tetrahedron **1999**, 55, 977

⁷⁶²Wang, X.; Meng, Q.; Nation, A.J.; Leighton, J.L. J. Am. Chem. Soc. **2002**, *124*, 10672; Kubota, K.; I Leighton, J.L. Angew. Chem. Int. Ed. **2003**, 42, 946; Hackman, B.M.; Lombardi, P.J.; Leighton, J.L. Org. Lett. **2004**, 6, 4375.

⁷⁶³Yadav, J.S.; Reddy, B.V.S.; Madhuri, Ch.; Sabitha, G. Chem. Lett. 2001, 18.

⁷⁶⁴In bmim PF₆, 1-butyl-3-methylimidazolium hexafluorophosphate: Zerth, H.M.; Leonard, N.M.; Mohan, R.S. *Org. Lett.* **2003**, *5*, 55.

⁷⁶⁵Miyoshi, N.; Nishio, M.; Murakami, S.; Fukuma, T.; Wada, M. *Bull. Chem. Soc. Jpn.* 2000, 73, 689.
 ⁷⁶⁶For a review, see Basavaih, D.; Rao, A.J.; Satyanarayana, T. *Chem. Rev.* 2003, 103, 811.

In the presence of a base,⁷⁶⁷ such as 1,4-diazabicyclo[2.2.2]octane (DABCO) or trialkylphosphines, conjugated carbonyl compounds (ketones, esters,⁷⁶⁸ thioesters,⁷⁶⁹ and amides⁷⁷⁰) add to aldehydes via the α -carbon to give α -alkenyl- β -hydroxy esters or amides. This sequence is called the *Baylis–Hillman reaction*,⁷⁷¹ and a simple example is the formation of **33**.⁷⁷² It was observed that methyl vinyl ketone gave other products in the Baylis–Hillman reaction, whereas conjugated esters did not.⁷⁷³ Methods that are catalytic in base have been developed for the Baylis–Hillman reaction.⁷⁷⁴ Both microwave irradiation⁷⁷⁵ and ultrasound⁷⁷⁶ have been used to induce the reaction. Under certain conditions, rate enhancements have been observed.⁷⁷⁷ Rate acceleration occurs with bis-aryl(thio)ureas in a DABCO-promoted reaction.⁷⁸¹ Alkynyl carbonyl compounds can be used as partners in the Baylis–Hillman reaction.⁷⁸² Transition metal compounds can facilitate the Baylis–Hillman reaction, and BF₃•OEt₂ has been used.⁷⁸³ With the boron trifluoride

⁷⁶⁸For an example with a conjugated lactone, see Karur, S.; Hardin, J.; Headley, A.; Li, G. *Tetrahedron Lett.* **2003**, *44*, 2991.

⁷⁶⁹Pei, W.; Wei, H.-X.; Li, G. Chem. Commun. 2002, 1856.

⁷⁷⁰See Yu, C.; Hu, L. J. Org. Chem. **2002**, 67, 219; Faltin, C.; Fleming, E.M.; Connon, S.J. J. Org. Chem. **2004**, 69, 6496.

⁷⁷¹Baylis, A.B.; Hillman, M.E.D. Ger. Offen. 2,155,133 *Chem. Abstr.*, **1972**, 77, 34174q [U.S. Patent 3,743,668]; Drewes, S.E.; Roos, G.H.P. *Tetrahedron* **1988**, 44, 4653. For a review, see Basavaiah, D.; Rao, P.D.; Hyma, R.S. *Tetrahedron* **1996**, *52*, 8001.

⁷⁷²Rafel, S.; Leahy, J.W. J. Org. Chem. **1997**, 62, 1521. Also see, Drewes, S.E.; Rohwer, M.B. Synth. Commun. **1997**, 27, 415.

⁷⁷³Shi, M.; Li, C.-Q.; Jiang, J.-K. Chem. Commun. 2001, 833.

⁷⁷⁴With imidazole: Gatri, R.; El Gaïed, M.M. *Tetrahedron Lett.* **2002**, *43*, 7835. With azoles: Luo, S.; Mi, X.; Wang, P.G.; Cheng, J.-P. *Tetrahedron Lett.* **2004**, *45*, 5171. With proazaphosphatranes/TiCl₄: You, J.; Xu, J.; Verkade, J.G. *Angew. Chem. Int. Ed.* **2003**, *42*, 5054. See Leadbeater, N.E.; van der Pol, C. J. Chem. Soc., Perkin Trans. 1 **2001**, 2831. For a discussion of pK_a and reactivity, see Aggarwal, V.K.; Emme, I.; Fulford, S.Y. J. Org. Chem. **2003**, *68*, 692.

⁷⁷⁵Kundu, M.K.; Mukherjee, S.B.; Balu, N.; Padmakumar, R.; Bhat, S.V. Synlett 1994, 444.

⁷⁷⁶Coelho, F.; Almeida, W.P.; Veronese, D.; Mateus, C.R.; Lopes, E.C.S.; Rossi, R.C.; Silveira, G.P.C.; Pavam, C.H. *Tetrahedron* **2002**, *58*, 7437.

⁷⁷⁷See Rafel, S.; Leahy, J.W. J. Org. Chem. **1997**, 62, 1521; Lee, W.-D.; Yang, K.-S.; Chen, K. Chem. Commun. **2001**, 1612. For rate acceleration in water or aqueous media, see Augé, J.; Lubin, N.; Lubineau, A. Tetrahedron Lett. **1994**, 35, 7947; Luo, S.; Wang, P.G.; Cheng, J.-P. J. Org. Chem. **2004**, 69, 555; Cai, J.; Zhou, Z.; Zhao, G.; Tang, C. Org. Lett. **2002**, 4, 4723. For rate acceleration in polar solvents, see Aggarwal, V.K.; Dean, D.K.; Mereu, A.; Williams, R. J. Org. Chem. **2002**, 67, 510. For a discussion of salt effects, see Kumar, A.; Pawar, S.S. Tetrahedron **2003**, 59, 5019.

⁷⁷⁸Maher, D.J.; Connon, S.J. Tetrahedron Lett. 2004, 45, 1301.

- ⁷⁷⁹Rosa, J.N.; Afonso, C.A.M.; Santos, A.G. *Tetrahedron* **2001**, *57*, 4189. For an example in a chiral ionic liquid, see Pégot, B.; Vo-Thanh, G.; Gori, D.; Loupy, A. *Tetrahedron Lett.* **2004**, *45*, 6425.
- ⁷⁸⁰Chandrasekhar, S.; Narsihmulu, Ch.; Saritha, B.; Sultana, S.S. Tetrahedron Lett. 2004, 45, 5865.

⁷⁸¹Krishna, P.R.; Manjuvani, A.; Kannan, V.; Sharma, G.V.M. Tetrahedron Lett. 2004, 45, 1183.

⁷⁸²Matsuya, Y.; Hayashi, K.; Nemoto, H. J. Am. Chem. Soc. 2003, 125, 646; Wei, H.-X.; Jasoni, R.L.; Hu,

J.; Li, G.; Paré, P.W. Tetrahedron 2004, 60, 10233; Shi, M.; Wang, C.-J. Helv. Chim. Acta 2002, 85, 841.

⁷⁸³Walsh, L.M.; Winn, C.L.; Goodman, J.M. Tetrahedron Lett. 2002, 43, 8219.

⁷⁶⁷For an example using NaOMe, see Luo, S.; Mi, X.; Xu, H.; Wang, P.G.; Cheng, J.-P. J. Org. Chem. **2004**, 69, 8413.

induced reaction between an aldehyde and a conjugated ketone, a saturated β -hydroxy ketone was formed with good antiselectivity.⁷⁸⁴ The coupling of aldehydes with conjugated ketones was accomplished with TiCl₄,⁷⁸⁵ dialkylaluminum halides,⁷⁸⁶ and with (polymethyl)hydrosiloxane and a copper catalyst.⁷⁸⁷ Conjugated esters were coupled to aldehydes with DABCO and a lanthanum catalyst.⁷⁸⁸ Aldehydes were coupled to conjugated nitriles with TiCl₄.⁷⁸⁹ The reaction of a conjugated ester, an aldehyde and LiClO₄, with 15% DABCO gave the allylic alcohol product.⁷⁹⁰ *N*-Tosyl imines can be used in place of aldehydes, and the reaction of the imine, a conjugated ester and DABCO gave the allylic *N*-tosylimine.⁷⁹¹ Aldehydes are coupled to conjugated esters with a chiral quinuclidine catalyst and a titanium catalyst, and in the presence of tosylamine, the final product was the allylic *N*-tosylamine formed with modest enantioselectivity.⁷⁹²

An intramolecular version of the Baylis–Hillman reaction generated cyclopentenone derivatives from alkyne-aldehydes and a rhodium catalyst.⁷⁹³ Another intramolecular reaction gave cyclopentenols via cyclization of an aldehyde-conjugated thioester upon treatment with DBU and DMAP.⁷⁹⁴ Cyclization of a conjugated ester using DABCO, where the "alcohol" group contained an aldehyde unit (an α -hydroxy aldehyde derivative) gave a lactone with an hydroxy unit at C3 relative to the carbonyl and an α -vinylidene.⁷⁹⁵ A "double Baylis–Hillman" reaction has also been reported using *N*-tosylimines and conjugated ketones.⁷⁹⁶

Using a chiral auxiliary via an amide⁷⁹⁷ or ester⁷⁹⁸ leads to asymmetric induction.⁷⁹⁹ Aryl aldehydes and conjugated ketones were condensed using proline, leading to modest enantioselectivity.⁸⁰⁰ Chiral biaryl catalysts have been used with trialkylphosphines, giving good enantioselectivity.⁸⁰¹ Chiral quinuclidine catalysts lead to

⁷⁸⁶Pei, W.; Wei, H.X.; Li, G. Chem. Commun. 2002, 2412.

⁷⁸⁷Arnold, L.A.; Imbos, R.; Mandoli, A.; de Vries, A.H.M.; Naasz, R.; Feringa, B.L. *Tetrahedron* 2000, 56, 2865.

⁷⁸⁸Balan, D.; Adolfsson, H. J. Org. Chem. 2001, 66, 6498; Yang, K.-S.; Lee, W.-D.; Pan, J.-F.; Chen, K. J. Org. Chem. 2003, 68, 915.

⁷⁸⁹Shi, M.; Feng, Y.-S. J. Org. Chem. 2001, 66, 406.

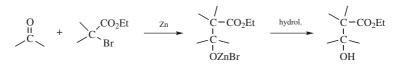
⁷⁹⁰Kawamura, M.; Kobayashi, S. Tetrahedron Lett. **1999**, 40, 1539.

- ⁷⁹¹Xu, Y.-M.; Shi, M. J. Org. Chem. 2004, 69, 417.
- ⁷⁹²Balan, D.; Adolfsson, H. Tetrahedron Lett. 2003, 44, 2521.
- ⁷⁹³Tanaka, K.; Fu, G.C. J. Am. Chem. Soc. 2001, 123, 11492.
- ⁷⁹⁴Keck, G.E.; Welch, D.S. Org. Lett. 2000, 4, 3687.
- ⁷⁹⁵Krishna, P.R.; Kannan, V.; Sharma, G.V.M. J. Org. Chem. 2004, 69, 6467.
- ⁷⁹⁶Shi, M.; Xu, Y.-M. J. Org. Chem. 2003, 68, 4784.
- ⁷⁹⁷Brzezinski, L.J.; Rafel, S.; Leahy, J.W. J. Am. Chem. Soc. 1997, 119, 4317.
- ⁷⁹⁸Perlmutter, P.; Puniani, E.; Westman, G. *Tetrahedron Lett.* **1996**, *37*, 1715; Wei, H.-X.; Chen, D.; Xu, X.; Li, G.; Paré, P.W. *Tetrahedron Asymmetry* **2003**, *14*, 971.
- ⁷⁹⁹Also see, Markó, I.E.; Giles, P.R.; Hindley, N.J. Tetrahedron 1997, 53, 1015.
- ⁸⁰⁰Imbriglio, J.E.; Vasbinder, M.M.; Miller, S.J. Org. Lett. **2003**, *5*, 3741. See also, Shi, M.; Jiang, J.-K.;
- L:i, C.-Q. Tetrahedron Lett. 2002, 43, 127.
- ⁸⁰¹McDougal, N.T.; Schaus, S.E. J. Am. Chem. Soc. 2003, 125, 12094.

⁷⁸⁴Chandrasekhar, S.; Narsihmulu, Ch.; Reddy, N.R.; Reddy, M.S. Tetrahedron Lett. 2003, 44, 2583.

 ⁷⁸⁵Li, G.; Wei, H.-X.; Gao, J.J.; Caputo, T.D. *Tetrahedron Lett.* 2000, 41, 1; Shi, M.; Jiang, J.-K.; Feng, Y.-S. Org. Lett. 2000, 2, 2397.

asymmetric induction.⁸⁰² A combination of a chiral sulfinamide, an In catalyst and 3-hydroxyquinuclidine led to the allylic amine derivative with modest enantioselectivity.⁸⁰³ Sugars have been used as ester auxiliaries, and in reaction with aryl aldehydes and 20% DABCO gave the allylic alcohol with modest enantioselectivity.⁸⁰⁴


The reaction can be modified to give additional products, as with the reaction of o-hydroxybenzaldehyde and methyl vinyl ketone with DABCO, where the initial Baylis–Hillman product cyclized via conjugate addition of the phenolic oxygen to the conjugated ketone (**15-31**).⁸⁰⁵ Aldehydes and conjugated esters can be coupled with a sulfonamide to give an allylic amine.⁸⁰⁶

A variant of this reaction couples halides with alkenes. α -Bromomethyl esters react with conjugated ketones and DABCO to give a coupling product, **34**.⁸⁰⁷ A similar DBU-induced reaction was reported using α -bromomethyl esters and conjugated nitro compounds.⁸⁰⁸

O-Hydro-C-a-ethoxycarbonylalkyl-addition

The *Reformatsky reaction*⁸⁰⁹ is very similar to **16-24**. An aldehyde or ketone is treated with zinc and a halide; the halide is usually an α -halo ester or a vinylog of an α -halo ester (e.g., RCHBrCH=CHCOOEt), though α -halo nitriles,⁸¹⁰ α -halo ketones,⁸¹¹ and α -halo *N*,*N*-disubstituted amides have also been used. Especially

⁸⁰²Shi, M.; Jiang, J.-K. *Tetrahedron Asymmetry* **2002**, *13*, 1941. See Shi, M.; Xu, Y.-M. *Angew. Chem. Int. Ed.* **2002**, *41*, 4507.

⁸⁰³Aggarwal, V.K.; Castro, A.M.M.; Mereu, A.; Adams, H. Tetrahedron Lett. 2002, 43, 1577.

⁸⁰⁴Filho, E.P.S.; Rodrigues, J.A.R.; Moran, P.J.S. Tetrahedron Asymmetry 2001, 12, 847.

⁸⁰⁵Kaye, P.T.; Nocanda, X.W. J. Chem. Soc., Perkin Trans. 1 2000, 1331.

⁸⁰⁶Balan, D.; Adolfsson, H. J. Org. Chem. 2002, 67, 2329.

⁸⁰⁷Basavaiah, D.; Sharada, D.S.; Kumaragurubaran, N.; Reddy, R.M. J. Org. Chem. 2002, 67, 7135.

⁸⁰⁸Ballini, R.; Barboni, L.; Bosica, G.; Fiorini, D.; Mignini, E.; Palmieri, A. Tetrahedron 2004, 60, 4995.

⁸⁰⁹For reviews, see Fürstner, A. Synthesis 1989, 571; Rathke, M.W. Org. React. 1975, 22, 423; Gaudemar, M. Organomet. Chem. Rev. Sect. A 1972, 8, 183. For a review of the Reformatsky reaction in synthesis, see

Ocampo, R.; Dolbier, Jr., W.R. Tetrahedron 2004, 60, 9325.

⁸¹⁰Vinograd, L.Kh.; Vul'fson, N.S. J. Gen. Chem. USSR **1959**, 29, 248, 1118, 2656, 2659; Palomo, C.; Aizpurua, J.M.; López, M.C.; Aurrekoetxea, N. *Tetrahedron Lett.* **1990**, *31*, 2205; Zheng, J.; Yu, Y.; Shen, Y. Synth. Commun. **1990**, 20, 3277.

⁸¹¹For examples (with R₃Sb and CrCl₂, respectively, instead of Zn), see Huang, Y.; Chen, C.; Shen, Y. J. Chem. Soc. Perkin Trans. 1 **1988**, 2855; Dubois, J.E.; Axiotis, G.; Bertounesque, E. Tetrahedron Lett. **1985**, 26, 4371.

high reactivity can be achieved with activated zinc,⁸¹² with zinc/silver-graphite,⁸¹³ and with zinc and ultrasound.⁸¹⁴ The reaction is catalytic in zinc in the presence of iodine and ultrasound.⁸¹⁵ Metals other than zinc can be used, including In,⁸¹⁶ Mn,⁸¹⁷ low valent Ti,⁸¹⁸ and metal compounds, such as TiI₄,⁸¹⁹ TiCl₂,⁸²⁰ Cp₂TiCl₂,⁸²¹ (Bu₃Sn)₂/Bu₂SnCl₂,⁸²² SmI₂,⁸²³ and Sc(OTf)₃/PPh₃.⁸²⁴ A combination of Zn and an α -bromo ester can be used in conjunction with BF₃•OEt₂, followed by reaction with dibenzoyl peroxide.⁸²⁵ The aldehyde or ketone can be aliphatic, aromatic, or heterocyclic or contain various functional groups. Solvents used are generally ethers, including Et₂O, THF, and 1,4-dioxane, although the reaction can be done in water⁸²⁶ using dibenzoyl peroxide and MgClO₄.

Dialkylzinc compounds are an alternative source of zinc in the Reformatsky reaction. When an α -bromo ester, an aldehyde, and diethylzinc were reacted in THF with a rhodium catalyst, the β -hydroxy ester was formed.⁸²⁷

The use of additives, such as germanium, can lead to highly diastereoselective reactions.⁸²⁸ Using chiral auxiliaries⁸²⁹ or chiral additives,⁸³⁰ good enantioselectivity⁸³¹ can be achieved.

Formally, the reaction can be regarded as if it were analogous to the Grignard reaction (16-24), with

⁸¹²Rieke, R.D.; Uhm, S.J. Synthesis 1975, 452; Bouhlel, E.; Rathke, M.W. Synth. Commun. 1991, 21, 133.

- ⁸¹³Csuk, R.; Fürstner, A.; Weidmann, H. J. Chem. Soc., Chem. Commun. 1986, 775.
- ⁸¹⁴Han, B.; Boudjouk, P. J. Org. Chem. 1982, 47, 5030.
- ⁸¹⁵Ross, N.A.; Bartsch, R.A. J. Org. Chem. 2003, 68, 360.
- ⁸¹⁶Araki, S.; Yamada, M.; Butsugan, Y. Bull. Chem. Soc. Jpn. 1994, 67, 1126.

⁸¹⁷Cahiez, G.; Chavant, P. *Tetrahedron Lett.* **1989**, *30*, 7373; Suh, Y.S.; Rieke, R.D. *Tetrahedron Lett.* **2004**, *45*, 1807.

⁸¹⁸Aoyagi, Y.; Tanaka, W.; Ohta, A. J. Chem. Soc., Chem. Commun. 1994, 1225.

819Shimizu, M.; Kobayashi, F.; Hayakawa, R. Tetrahedron 2001, 57, 9591.

⁸²⁰Kagayama, A.; Igarashi, K.; Shiina, I.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 2000, 73, 2579.

⁸²¹Parrish, J.D.; SheHon, D.R.; Little, R.D. Org. Lett. 2003, 5, 3615.

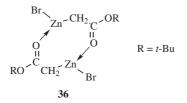
⁸²²Shibata, I.; Kawasaki, M.; Yasuda, M.; Baba, A. Chem. Lett. 1999, 689.

823Utimoto, K.; Matsui, T.; Takai, T.; Matsubara, S. Chem. Lett. 1995, 197; Arime, T.; Takahashi, H.;

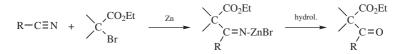
Kobayashi, S.; Yamaguchi, S.; Mori, N. Synth. Commun. 1995, 25, 389; Park, H.S.; Lee, I.S.; Kim, Y.H.

Tetrahedron Lett. 1995, 36, 1673; Molander, G.A.; Etter, J.B. J. Am. Chem. Soc. 1987, 109, 6556.

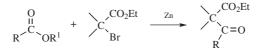
⁸²⁴Kagoshima, H.; Hashimoto, Y.; Saigo, K. Tetrahedron Lett. 1998, 39, 8465.


⁸²⁵Chattopadhyay, A.; Salaskar, A. Synthesis 2000, 561.

- 826Bieber, L.W.; Malvestiti, I.; Storch, E.C. J. Org. Chem. 1997, 62, 9061.
- 827Kanai, K.; Wakabyashi, H.; Honda, T. Org. Lett. 2000, 2, 2549.
- ⁸²⁸Kagoshima, H.; Hashimoto, Y.; Oguro, D.; Saigo, K. J. Org. Chem. 1998, 63, 691.
- ⁸²⁹Fukuzawa, S.-i.; Tatsuzawa, M.; Hirano, K. Tetrahedron Lett. 1998, 39, 6899.


⁸³⁰Soai, K.; Hirose, Y.; Sakata, S. Tetrahedron Asymmetry 1992, 3, 677.

⁸³¹Pini, D.; Uccello-Barretta, G.; Mastantuono, A.; Salvadori, P. *Tetrahedron* 1997, 53, 6065; Andrés, J.M.; Martín, Y.; Pedrosa, R.; Pérez-Encabo, A. *Tetrahedron* 1997, 53, 3787; Mi, A.; Wang, Z.; Zhang, J.; Jiang, Y. *Synth. Commun.* 1997, 27, 1469.; Ribeiro, C.M.R.; de S. Santos, E.; de O. Jardim, A.H.; Maia, M.P.; da Silva, F.C.; Moreira, A.P.D.; Ferreira, V.F. *Tetrahedron Asymmetry* 2002, 13, 1703.


(35) as an intermediate analogous to RMgX.⁸³² There *is* an intermediate derived from zinc and the ester, the structure of which has been shown to be 36, by X-ray crystallography of the solid intermediate prepared from *t*-BuOCOCH₂Br and Zn.⁸³³ As can be seen, it has some of the characteristics of 35.

After hydrolysis, the alcohol is the usual product, but sometimes (especially with aryl aldehydes) elimination follows directly and the product is an alkene. By the use of Bu₃P along with Zn, the alkene can be made the main product,⁸³⁴ making this an alternative to the Wittig reaction (**16-44**). The alkene is also the product when K₂CO₃/NaHCO₃ is used with 2% PEG–telluride.⁸³⁵ Since Grignard reagents cannot be formed from α -halo esters, the method is quite useful, though there are competing reactions and yields are sometimes low. A similar reaction (called the *Blaise reaction*) has been carried out on nitriles:⁸³⁶

Carboxylic esters have also been used as substrates, but then, as might be expected (p. 1252), the result is substitution and not addition:

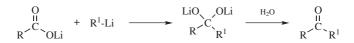
The product in this case is the same as with the corresponding nitrile, though the pathways are different. The reaction is compatible with amine substituents, and α -(*N*,*N*-dibenzyl)amino aldehydes have been used to prepare β -hydroxy- γ -(*N*,*N*-dibenzylamino) esters with good anti-selectivity.⁸³⁷

⁸³²For a study of transition structures, see Maiz, J.; Arrieta, A.; Lopez, X.; Ugalde, J.M.; Cossio, F.P.; Fakultatea, K.; Unibertsitatea, E.H.; Lecea, B. *Tetrahedron Lett.* **1993**, *34*, 6111.

⁸³³Dekker, J.; Budzelaar, P.H.M.; Boersma, J.; van der Kerk, G.J.M.; Spek, A.L. *Organometallics*, **1984**, *3*, 1403.

⁸³⁴Shen, Y.; Xin, Y.; Zhao, J. *Tetrahedron Lett.* **1988**, 29, 6119. For another method, see Huang, Y.; Shi, L.; Li, S.; Wen, X. J. Chem. Soc. Perkin Trans. 1 **1989**, 2397.

⁸³⁵Huang, Z.-Z.; Ye, S.; Xia, W.; Yu, Y.-H.; Tang, Y. J. Org. Chem. 2002, 67, 3096.


⁸³⁶See Cason, J.; Rinehart Jr., K.L.; Thornton, S.D. J. Org. Chem. **1953**, 18, 1594; Bellassoued, M.; Gaudemar, M. J. Organomet. Chem. **1974**, 81, 139; Hannick, S.M.; Kishi, Y. J. Org. Chem. **1983**, 48, 3833.

⁸³⁷Andrés, J.M.; Pedrosa, R.; Pérez, A.; Pérez-Encabo, A. Tetrahedron 2001, 57, 8521.

For an alternative approach involving ester enolates (see **16-36**). OS **III**, 408; **IV**, 120, 444; **IX**, 275.

16-29 The Conversion of Carboxylic Acid Salts to Ketones with Organometallic Compounds

Alkyl-de-oxido-substitution

Good yields of ketones can often be obtained by treatment of the lithium salt of a carboxylic acid with an alkyllithium reagent, followed by hydrolysis.⁸³⁸ The R' group may be aryl or primary, secondary, or tertiary alkyl and R may be alkyl or aryl. The compounds MeLi and PhLi have been employed most often. Tertiary alcohols are side products. Lithium acetate can be used, but generally gives low yields.

A variation of this transformation reacts the acid with lithium naphthalenide in the presence of 1-chlorobutane. The product is the ketone.⁸³⁹ A related reaction treats the lithium carboxylate with lithium metal and the alkyl halide, with sonication, to give the ketone.⁸⁴⁰ Phenylboronic acid (p. 815) reacts with aryl carboxylic acids in the presence of a palladium catalyst and disuccinoyl carbonate to give a diaryl ketone.⁸⁴¹

OS V, 775.

16-30 The Addition of Organometallic Compounds to CO₂ and CS₂

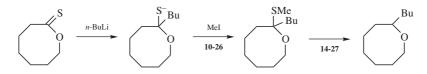
C-Alkyl-O-halomagnesio-addition

Grignard reagents add to one C=O bond of CO_2 exactly as they do to an aldehyde or a ketone.⁸⁴² Here, of course, the product is the salt of a carboxylic acid. The reaction is usually performed by adding the Grignard reagent to dry ice. Many carboxylic acids have been prepared in this manner, and this constitutes an important way of increasing a carbon chain by one unit. Since labeled CO_2 is commercially

⁸⁴⁰Aurell, M.J.; Danhui, Y.; Einhorn, J.; Einhorn, C.; Luche, J.L. *Synlett* **1995**, 459. Also see, Aurell, M.J.; Einhorn, C.; Einhorn, J.; Luche, J.L. *J. Org. Chem.* **1995**, 60, 8.

⁸⁴¹Gooßen, L.J.; Ghosh, K. Chem. Commun. 2001, 2084.

⁸³⁸For a review, see Jorgenson, M.J. Org. React. **1970**, 18, 1. For an improved procedure, see Rubottom, G.M.; Kim, C. J. Org. Chem. **1983**, 48, 1550.

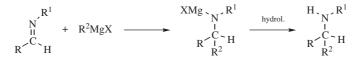

⁸³⁹Alonso, F.; Lorenzo, E.; Yus, M. J. Org. Chem., 1996, 61, 6058.

⁸⁴²For reviews of the reaction between organometallic compounds and CO₂, see Volpin, M.E.; Kolomnikov, I.S. Organomet. React. 1975, 5, 313; Sneeden, R.P.A., in Patai, S. The Chemistry of Carboxylic Acids and Esters, Wiley, NY, 1969, pp. 137–173; Kharasch, M.S.; Reinmuth, O. Grignard Reactions of Nonmetallic Substances, Prentice-Hall, Englewood Cliffs, NJ, 1954, pp. 913–948. For a more general review, see Lapidus, A.L.; Ping, Y.Y. Russ. Chem. Rev. 1981, 50, 63.

available, this is a good method for the preparation of carboxylic acids labeled in the carboxyl group. Other organometallic compounds have also been used (RLi,⁸⁴³ RNa, RCaX, RBa,⁸⁴⁴ etc.), but much less often. The formation of the salt of a carboxylic acid after the addition of CO_2 to a reaction mixture is regarded as a positive test for the presence of a carbanion or of a reactive organometallic intermediate in that reaction mixture (see also, **16-42**).

When chiral additives, such as (-)-sparteine, have added to the initial reaction with the organolithium reagent, quenching with CO₂ produces carboxylic acids with good asymmetric induction.⁸⁴⁵

In a closely related reaction, Grignard reagents add to CS_2 to give salts of dithiocarboxylic acids.⁸⁴⁶ These salts can be trapped with amines to form thioamides.⁸⁴⁷ Two other reactions are worthy of note. (*1*) Lithium dialkylcopper reagents react with dithiocarboxylic esters to give tertiary thiols⁸⁴⁸ (2) Thiono lactones can be converted to cyclic ethers,⁸⁴⁹ for example:


This is a valuable procedure because medium and large ring ethers are not easily made, while the corresponding thiono lactones can be prepared from the readily available lactones (see, e.g., **16-63**) by reaction **16-11**.

A terminal alkyne can be converted to the anion under electrolytic conditions, in the presence of CO₂, to give propargylic acids, $R-C\equiv C-COOH$.⁸⁵⁰

OS I, 361, 524; II, 425; III, 413, 553, 555; V, 890, 1043; VI, 845; IX, 317.

16-31 The Addition of Organometallic Compounds to C=N Compounds

N-Hydro-C-alkyl-addition

⁸⁴³The kinetics of this reaction have been studied, see Nudelman, N.S.; Doctorovich, F. J. Chem. Soc. Perkin Trans. 2 **1994**, 1233.

844 Yanagisawa, A.; Yasue, K.; Yamamoto, H. Synlett 1992, 593.

⁸⁴⁵Park, Y.S.; Beak, P. J. Org. Chem. 1997, 62, 1574.

⁸⁴⁶For a review of the addition of Grignard reagents to C=S bonds, see Paquer, D. *Bull. Soc. Chim. Fr.* **1975**, 1439. For a review of the synthesis of dithiocarboxylic acids and esters, see Ramadas, S.R.; Srinivasan, P.S.; Ramachandran, J.; Sastry, V.V.S.K. *Synthesis* **1983**, 605.

⁸⁴⁷Katritzky, A.R.; Moutou, J.-L.; Yang, Z. Synlett 1995, 99.

⁸⁴⁸Bertz, S.H.; Dabbagh, G.; Williams, L.M. J. Org. Chem. 1985, 50, 4414.

⁸⁴⁹Nicolaou, K.C.; McGarry, D.G.; Somers, P.K.; Veale, C.A.; Furst, G.T. J. Am. Chem. Soc. **1987**, 109, 2504.

⁸⁵⁰Köster, F.; Dinjus, E.; Duñach, E. Eur. J. Org. Chem. 2001, 2507.

Aldimines can be converted to secondary amines by treatment with Grignard reagents.⁸⁵¹ Ketimines generally give reduction instead of addition. However, organolithium compounds give the normal addition product with both aldimines and ketimines.⁸⁵² For the addition of an organometallic compound to an imine to give a primary amine, R' in RCH=NR' would have to be H, and such compounds are seldom stable. However, the conversion has been done, for R = aryl, by the use of the masked reagents (ArCH=N)₂SO₂ [prepared from an aldehyde RCHO and sulfamide $(NH_2)_2SO_2$]. Addition of R^2MgX or R^2Li to these compounds gives ArCHR²NH₂ after hydrolysis.⁸⁵³ An intramolecular version of the addition or organolithium reagents is known, and treatment of the N-(3-chloropropyl)aldimine of benzaldehyde with lithium and DTBB, followed by hydrolysis with water, gave 2-phenylpyrrolidine.⁸⁵⁴ Grignard regents add to imines in the presence of various transition metal catalysts, including $Sc(OTf)_3^{855}$ or $Cp_2ZrCl_2^{.856}$ When chiral additives are used in conjunction with the organolithium reagent, chiral amines are produced⁸⁵⁷ with good asymmetric induction.⁸⁵⁸ Chiral auxiliaries have been used in addition reactions to imines,⁸⁵⁹ and to oxime derivatives.⁸⁶⁰ Chiral catalysts lead to enantioselective addition of alkynes to imines to give a homopropargylic amine.⁸⁶¹

Zinc metal reacts with allylic bromides to form an allylic zinc complex, which reacts with imines to give the homoallylic amine.⁸⁶² This reaction is catalyzed by TMSCl.⁸⁶³ Allylzinc bromide adds to imines.⁸⁶⁴ Dialkylzinc reagents add to imines to give the amine, and in the presence of a chiral ligand the reaction proceeds with

- 852Huet, J. Bull. Soc. Chim. Fr. 1964, 952, 960, 967, 973.
- ⁸⁵³Davis, F.A.; Giangiordano, M.A.; Starner, W.E. Tetrahedron Lett. 1986, 27, 3957.
- ⁸⁵⁴Yus, M.; Soler, T.; Foubelo, F. J. Org. Chem. 2001, 66, 6207.
- ⁸⁵⁵Saito, S.; Hatanaka, K.; Yamamoto, H. Synlett 2001, 1859.
- ⁸⁵⁶Gandon, V.; Bertus, P.; Szymoniak, J. Eur. J. Org. Chem. 2001, 3677.
- ⁸⁵⁷For a review see Enders, D.; Reinhold, U. Tetrahedron Asymmetry, 1997, 8, 1895.
- ⁸⁵⁸Andersson, P.G.; Johansson, F.; Tanner, D. *Tetrahedron* **1998**, *54*, 11549; Tomioka, K.; Inoue, I.; Shindo, M.; Koga, K. *Tetrahedron Lett.* **1991**, *32*, 3095; Denmark, S.E.; Stiff, C.M. J. Org. Chem. **2000**,
- 65, 5875; Chrzanowska, M.; Sokołowska, J. Tetrahedron Asymmetry 2001, 12, 1435.
- ⁸⁵⁹Hashimoto, Y.; Kobayashi, N.; Kai, A.; Saigo, K. Synlett 1995, 961.
- ⁸⁶⁰Dieter, R.K.; Datar, R. Can. J. Chem. 1993, 71, 814.
- ⁸⁶¹Benaglia, M.; Negri, D.; Dell'Anna, G. Tetrahedron Lett. 2004, 45, 8705.
- ⁸⁶²Lee, C.-L.K.; Ling, H.-Y.; Loh, T.-P. J. Org. Chem. 2004, 69, 7787.
- ⁸⁶³Legros, J.; Meyer, F.; Coliboeuf, M.; Crousse, B.; Bonnet-Delpon, D.; Bégué, J.-P. J. Org. Chem. 2003, 68, 6444.
- ⁸⁶⁴van der Sluis, M.; Dalmolen, J.; de Lange, B.; Kaptein, B.; Kellogg, R.M.; Broxterman, Q.B. *Org. Lett.* **2001**, *3*, 3943.

⁸⁵¹For reviews of the addition of organometallic reagents to C=N bonds, see Harada, K., in Patai, S. *The Chemistry of the Carbon–Nitrogen Double Bond*, Wiley, NY, **1970**, pp. 266–272; Kharasch, M.S.; Reinmuth, O. *Grignard Reactions of Nonmetallic Substances*, Prentice-Hall, Englewood Cliffs, NJ, **1954**, pp. 1204–1227. For recent examples, see Wang, D.-K.; Dai, L.-X.; Hou, X.-L.; Zhang, Y. *Tetrahedron Lett.* **1996**, *37*, 4187; Bambridge, K.; Begley, M.J.; Simpkins, N.S. *Tetrahedron Lett.* **1994**, *35*, 3391.

good enantioselectivity.⁸⁶⁵ Dialkylzinc reagents add to *N*-tosyl imines using a copper catalyst, and with a chiral ligand leads to good enantioselectivity.⁸⁶⁶ α -Bromo esters are converted to an organometallic reagent with Zn/Cu, and addition to *N*-arylimines gives *N*-aryl β -amino esters.⁸⁶⁷ The reaction of imines, such as ArN=CHCO₂Et, where R = a chiral benzylic substituent, and ZnBr₂, followed by R'ZnBr leads to a chiral α -amino ester.⁸⁶⁸ Terminal alkynes add to imines using ZnCl₂ and TMSCl, and with a chiral ligand attached to nitrogen the reaction proceeds with some enantioselectivity.⁸⁶⁹

Other organometallic compounds,⁸⁷⁰ including allylic stannanes,⁸⁷¹ allylic samarium, ⁸⁷² allylic germanium,⁸⁷³ and allylic indium compounds⁸⁷⁴ add to aldimines in the same manner. Aryltrialkylstannanes also add the aryl group to *N*-tosyl imines using a rhodium catalyst and sonication.⁸⁷⁵ Catalytic enantioselective addition reactions are well known,⁸⁷⁶ including reactions in an ionic liquid.⁸⁷⁷ Allylic

- ⁸⁶⁷Adrian Jr., J.C.; Barkin, J.L.; Hassib, L. Tetrahedron Lett. 1999, 40, 2457.
- ⁸⁶⁸Chiev, K.P.; Roland, S.; Mangeney, P. Tetrahedron Asymmetry 2001, 13, 2205.
- ⁸⁶⁹Jiang, B.; Si, Y.-G. Tetrahedron Lett. 2003, 44, 6767.

⁸⁷⁰For a list of reagents, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, *1999*, pp. 847–863.

⁸⁷¹Keck, G.E.; Enholm, E.J. J. Org. Chem. 1985, 50, 146; Nakamura, H.; Nakamura, K.; Yamamoto, Y. J. Am. Chem. Soc. 1998, 120, 4242; Kobayashi, S.; Iwamoto, S.; Nagayama, S. Synlett 1997, 1099; Wang, D.-K.; Dai, L.-X.; Hou, X.-L. Tetrahedron Lett. 1995, 36, 8649. Catalytic amounts of metal compounds can be used with the allyl stannane, including: Pd: Nakamura, H.; Iwama, H.; Yamamoto, Y. Chem. Commun. 1996, 1459 and Fernandes, R.A.; Yamamoto, Y. J. Org. Chem. 2004, 69, 3562; Zr: Gastner, T.; Ishitani, H.; Akiyama, R.; Kobayashi, S. Angew. Chem. Int. Ed. 2001, 40, 1896; Ta: Shibata, I.; Nose, K.; Sakamoto, K.; Yasuda, M.; Baba, A. J. Org. Chem. 2004, 69, 2185; La: Aspinall, H.C.; Bissett, J.S.; Greeves, N.; Levin, D. Tetrahedron Lett. 2002, 43, 323; Al: Niwa, Y.; Shimizu, M. J. Am. Chem. Soc. 2003, 125, 3720; Nb: Andrade, C.K.Z.; Oliveira, G.R. Tetrahedron Lett. 2002, 43, 1935; Akiyama, T.; Onuma, Y. J. Chem. Soc., Perkin Trans. 1 2002, 1157. With LiClO₄: Yadav, J.S.; Reddy, B.V.S.; Reddy, P.S.R.; Rao, M.S. Tetrahedron Lett. 2002, 43, 6245.

⁸⁷²Wang, J.; Zhang, Y.; Bao, W. *Synth. Commun.* 1996, 26, 2473. For an example using an allylic bromide with SmI₂, see Kim, B.; Han, R.; Park, R.; Bai, K.; Jun, Y.; Baik, W. *Synth. Commun.* 2001, 31, 2297.
⁸⁷³Akiyama, T.; Iwai, J.; Onuma, Y.; Kagoshima, H. *Chem. Commun.* 1999, 2191.

⁸⁷⁴Chan, T.H.; Lu, W. *Tetrahedron Lett.* **1998**, *39*, 8605; Jin, S.-J.; Araki, S.; Butsugan, Y. *Bull Chem. Soc. Jpn.* **1993**, *66*, 1528; Beuchet, P.; Le Marrec, N.; Mosset, P. *Tetrahedron Lett.* **1992**, *33*, 5959; Vilaivan, T.; Winotapan, C.; Shinada, T.; Ohfune, Y. *Tetrahedron Lett.* **2001**, *42*, 9073.

⁸⁷⁵Ding, R.; Zhao, C.H.; Chen, Y.J.; Lu, L.; Wang, D.; Li, C.J. Tetrahedron Lett. 2004, 45, 2995.

⁸⁷⁶For a review, see Kobayashi, Sh.; Ishitani, H. Chem. Rev. 1999, 99, 1069.

⁸⁷⁷In bmim BF₄, 1-butyl-3-methylimidazolium tetrafluoroborate: Chowdari, N.S.; Ramachary, D.B.; Barbas III, C.F. *Synlett* **2003**, 1906.

⁸⁶⁵For an example using a Zr catalyst with a chiral ligand, see Porter J.R.; Traverse, J.F.; Hoveyda, A.H.; Snapper, M.L. J. Am. Chem. Soc. 2001, 123, 984. With a Pd catalyst, see Inoue, A.; Shinokubo, H.; Oshima, K. J. Am. Chem. Soc. 2003, 125, 1484. With a Zr catalyst, see Porter, J.R.; Traverse, J.F.; Hoveyda, A.H.; Snapper, M.L. J. Am. Chem. Soc. 2001, 123, 10409. See also, Zhang, X.-M.; Zhang, H.-L.; Lin, W.-Q.; Gong, L.-Z.; Mi, A.-Q.; Cui, X.; Jiang, Y.-Z.; Yu, K.B. J. Org. Chem. 2003, 68, 4322; Jensen, D.R.; Schultz, M.J.; Mueller, J.A.; Sigman, M.S. Angew. Chem. Int. Ed. 2003, 42, 3810.

⁸⁶⁶Fujihara, H.; Nagai, K.; Yomioka, K. *J. Am. Chem. Soc.* **2000**, *122*, 12055. See Wang, C.-J.; Shi, M. *J. Org. Chem.* **2003**, *68*, 6229.

halides react with imines in the presence of indium metal⁸⁷⁸ or InCl₃⁸⁷⁹ to give the homoallylic amine, and with N-sulfonyl imines to give the homoallylic sulfonamide.⁸⁸⁰ In this latter reaction, antiselectivity was observed when the reaction was done in water, and syn selectivity when done in aqueous THF.⁸⁸¹ Propargylic halides add to imines in the presence of indium metal, in aq. THF.⁸⁸² Imines react with allylic halides and gallium metal, with ultrasound.⁸⁸³ Imines also react with allylic halides and Yb, in the presence of Me₃SiCl.⁸⁸⁴ Aryl iodides add to N-aryl imines in the presence of a rhodium catalyst.⁸⁸⁵ Titanium enolates add to imines to give β -amino esters.⁸⁸⁶ Terminal alkynes react with any aldehydes and any amines to give propargylic amine without a catalyst,⁸⁸⁷ and an iridium⁸⁸⁸ or a copper catalyst⁸⁸⁹ also leads to a propargylic amine.⁸⁹⁰ Terminal alkynes add to imines to give a propargylic amine with high enantioselectivity using a chiral copper complex.⁸⁹¹ Triethylaluminum adds an ethyl group to an imine in the presence of a europium catalyst. Reaction with PhSnMe₃ and N-tosylimines with a rhodium catalyst, for example, leads to addition of a phenyl group to the carbon of the C=N bond.⁸⁹² Other N-sulfonyl imines react similarly to give the corresponding sulfonamide, and in the presence of a chiral ligand the reaction proceeds to good enantioselectivity.⁸⁹³ N-Tosyl imines also react with dialkylzinc reagents, giving the sulfonamide with modest enantioselectivity.⁸⁹⁴ N-Sulfinyl imines, R₂CH=NS(=O)R',⁸⁹⁵ react with Grignard reagents (R^2MgX) to give the corresponding N-sulfinylamine, $R_2CH(R^2)NHS(=O)R'$ ⁸⁹⁶ Enolate anions, generated by reaction of dimethylaminopyridine and a conjugated ketone, add to N-tosylimines.⁸⁹⁷ N-Carbamoyl imines add acetonitrile (via carbon) using DBU and a ruthenium catalyst.⁸⁹⁸

- ⁸⁷⁸Choucair, B.; Léon, H.; Miré, M.-A.; Lebreton, C.; Mosset, P. Org. Lett. 2000, 2, 1851. See Hirashita, T.; Hayashi, Y.; Mitsui, K.; Araki, S. J. Org. Chem. 2003, 68, 1309.
- ⁸⁷⁹Under electrolysis conditions, see Hilt, G.; Smolko, K.I.; Waloch, C. Tetrahedron Lett. 2002, 43, 1437. ⁸⁸⁰Lu, W.; Chan, T.H. J. Org. Chem. 2000, 65, 8589.
- ⁸⁸¹Lu, W.; Chan, T.H. J. Org. Chem. 2001, 66, 3467.
- ⁸⁸²Prajapati, D.; Laskar, D.D.; Gogoi, B.J.; Devi, G. Tetrahedron Lett. 2003, 44, 6755.
- ⁸⁸³Andrews, P.C.; Peatt, A.C.; Raston, C.L. Tetrahedron Lett. 2004, 45, 243.
- ⁸⁸⁴Su, W.; Li, J.; Zhang, Y. Synth. Commun. 2001, 31, 273.
- ⁸⁸⁵Ishiyama, T.; Hartwig, J. J. Am. Chem. Soc. 2000, 122, 12043.
- ⁸⁸⁶Adrian, Jr., J.C.; Barkin, J.L.; Fox, R.J.; Chick, J.E.; Hunter, A.D.; Nicklow, R.A. J. Org. Chem. 2000, 65, 6264.
- ⁸⁸⁷Li, C.-J.; Wei, C. Chem. Commun. 2002, 268.
- ⁸⁸⁸Fischer, C.; Carreira, E.M. Org. Lett. 2001, 3, 4319; Fischer, C.; Carreira, E.M. Synthesis 2004, 1497.
- ⁸⁸⁹Koradin, C.; Gommermann, N.; Polborn, K.; Knochel, P. Chem. Eur. J. 2003, 9, 2797.
- 890Wei, C.; Li, C.-J. J. Am. Chem. Soc. 2002, 124, 5638.
- ⁸⁹¹Tsvelikhovsky, D.; Gelman, D.; Molander, G.A.; Blum, J. Org. Lett. 2004, 6, 1995.
- ⁸⁹²Oi, S.; Moro, M.; Fukuhara, H.; Kawanishi, T.; Inoue, Y. Tetrahedron Lett. 1999, 40, 9259.
- ⁸⁹³Hayashi, T.; Ishigedani, M. J. Am. Chem. Soc. 2000, 122, 976.
- ⁸⁹⁴Soeta, T.; Nagai, K.; Fujihara, H.; Kuriyama, M.; Tomioka, K. J. Org. Chem. 2003, 68, 9723.
- ⁸⁹⁵For a review of these reagents, see Ellman, J.A.; Owens, T.D.; Tang, T.P. Acc. Chem. Res. 2002, 35, 984
- ⁸⁹⁶Tang, T.P.; Volkman, S.K.; Ellman, J.A. J. Org. Chem. 2001, 66, 8772.
- ⁸⁹⁷Shi, M.; Xu, Y.-M. Chem. Commun. 2001, 1876.
- ⁸⁹⁸Kumagai, N.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2004, 126, 13632.

Activated aromatic compounds add to *N*-carbamoyl imines in the presence of copper catalysts, and with good enantioselectivity when a chiral catalyst is used.⁸⁹⁹ A combination of AuCl₃/AgOTf facilitates the addition of arenes to *N*-tosyl imines.⁹⁰⁰ Furan derivatives add via C-2 with good enantioselectivity using a chiral phosphoric acid catalyst.⁹⁰¹ Alkenes add to *N*-tosyl imines with a Yb catalyst.⁹⁰² an allenes add to *N*-carbamoyl imines in the presence of vanadium catalyst.⁹⁰³ *N*-Carbamoyl imines, formed *in situ*, react with allylic silanes in the presence of an iodine catalyst.⁹⁰⁴ The intramolecular addition of an alkene to an imine, facilitated by Cp₂ZrBu₂, gave a cycloalkyl amine.⁹⁰⁵

Arylboronates (p. 815) add to *N*-sulfonyl imines in the presence of a rhodium catalyst to give the corresponding sulfonamide.⁹⁰⁶ Vinyl boronates also add to nitrones in the presence of Me₂Zn, transferring the vinyl group to the C=N unit.⁹⁰⁷ Aryl boronic acids (p. 815) add the aryl group to *N*-tosyl imines using a rhodium catalyst.⁹⁰⁸ Allylic boronates also add to aldehydes, and subsequent treatment with ammonia give the homoallylic amine.⁹⁰⁹

Allylic silanes, such as allyltrimethylsilane, add to *N*-substituted imines in the presence of a palladium catalyst to give the homoallylic amine.⁹¹⁰ Similar results are obtained when the allylic silane and imine are treated with a catalytic amount of tetrabutylammonium fluoride.⁹¹¹ *N*-Tosyl imines also react with allylic silanes, and the reaction of EtO₂C–CH=NTs and allyltrimethylsilane with a chiral copper catalyst gave EtO₂C–CH(NHTs)CH₂CH=CH₂, albeit in poor yield with modest enantioselectivity.⁹¹² Another addition reaction converts aryl aldehydes to the imine using Me₂N–SiMe₃ and LiClO₄, and subsequent reaction with Me₂PhSiCl gave the corresponding amine, ArCH(SiMe₂Ph)NMe₂.⁹¹³ Allylic trichlorosilanes add to hydrazones to give homoallylic hydrazine derivatives with excellent anti-selectivity.⁹¹⁴

⁹⁰²Yamanaka, M.; Nishida, A.; Nakagawa, M. J. Org. Chem. 2003, 68, 3112.

⁹⁰³Trost, B.M.; Jonasson, C. Angew. Chem. Int. Ed. 2003, 42, 2063.

907 Pandya, A.; S.U.; Pinet, S.; Chavant, P.Y.; Vallée, Y. Eur. J. Org. Chem. 2003, 3621.

⁹⁰⁸Kuriyama, M.; Soeta, T.; Hao, X.; Chen, Q.; Tomioka, K. J. Am. Chem. Soc. 2004, 126, 8128.

⁹⁰⁹Sugiura, M.; Hirano, K.; Kobayashi, S. J. Am. Chem. Soc. 2004, 126, 7182.

⁹¹⁰Nakamura, K.; Nakamura, H.; Yamamoto, Y. J. Org. Chem. 1999, 64, 2614.

⁹¹¹Wang, D.-K.; Zhou, Y.-G.; Tang, Y.; Hou, X.-L.; Dai, L.-X. *J. Org. Chem.* **1999**, *64*, 4233. Tetraallylsilane and TBAF, with a chiral palladium catalyst, gives chiral homoallylic amines, see Fernandes, R.A.; Yamamoto, Y. J. Org. Chem. **2004**, *69*, 735.

⁸⁹⁹Saaby, S.; Fang, X.; Gathergood, N.; Jørgensen, K.A. *Angew. Chem. Int. Ed.* **2000**, *39*, 4114. See also, Saaby, S.; Bayón, P.; Aburel, P.S.; Jørgensen, K.A. *J. Org. Chem.* **2002**, *67*, 4352.

⁹⁰⁰Luo, Y.; Li, C.-J. Chem. Commun. 2004, 1930.

⁹⁰¹ Uraguchi, D.; Sorimachi, K.; Terada, M. J. Am. Chem. Soc. 2004, 126, 11804. See also, Spanedda,

M.V.; Ourévitch, M.; Crouse, B.; Bégué, J.-P.; Bonnet-Delpon, D. Tetrahedron Lett. 2004, 45, 5023.

⁹⁰⁴Phukan, P. J. Org. Chem. 2004, 69, 4005.

⁹⁰⁵Makabe, M.; Sato, Y.; Mori, M. J. Org. Chem. 2004, 69, 6238.

⁹⁰⁶Ueda, M.; Saito, A.; Miyaura, N. Synlett 2000, 1637.

⁹¹²Fang, X.; Johannsen, M.; Yao, S.; Gathergood, N.; Hazell, R.G.; Jørgensen, K.A. J. Org. Chem. 1999, 64, 4844.

⁹¹³Naimi-Jamal, M.R.; Mojtahedi, M.M.; Ipaktschi, J.; Saidi, M.R. J. Chem. Soc., Perkin Trans. 1 1999, 3709.

⁹¹⁴Hirabayashi, R.; Ogawa, C.; Sugiura, M.; Kobayashi, S. J. Am. Chem. Soc. 2001, 123, 9493.

and with good enantioselectivity using a chiral ligand.⁹¹⁵ Chiral allyl silane derivatives have been developed, and add to hydrazones with good enantioselectivity.⁹¹⁶

Aldehydes add via the α -carbon using proline, to give β -amino aldehydes with good selectivity to give chiral β -amino aldehydes.⁹¹⁷ Silyl enol ethers add to hydrazones in the presence of ZnF₂ and a chiral ligand to give chiral β -hydrazino ketones.⁹¹⁸ Nitro compounds add to *N*-carbamoyl imines with a chiral diamine catalyst with some enantioselectivity.⁹¹⁹ Nitro compounds add via carbon using a copper catalyst, and with good enantioselectivity when a chiral ligand is used.⁹²⁰ Similar addition to imine derivatives was accomplished using ketene silyl acetals and Amberlyst-15.⁹²¹ Alternatively, an imine is reacted first with Zn(OTf)₂ and then with a ketene silyl acetal.⁹²² The conjugate bases of nitro compounds (formed by treatment of the nitro compound with BuLi) react with Grignard reagents in the presence of ClCH=NMe₂⁺ Cl⁻ to give oximes: RCH=N(O)OLi + R'MgX \rightarrow RR'C=NOH.⁹²³

Many other C=N systems (phenylhydrazones, oxime ethers, etc.) give normal addition when treated with Grignard reagents; others give reductions; others give miscellaneous reactions. Organocerium reagents add to hydrazones.⁹²⁴ Oximes can be converted to hydroxylamines (**37**) by treatment with 2 equivalents of an alkyllithium reagent, followed by methanol.⁹²⁵ Oxime ethers add an allyl group upon reaction with allyl bromide and indium metal in water.⁹²⁶ Nitrones, $R_2C=N^+(R')-O^-$, react with allylic bromides and Sm to give homoallylic oximes,⁹²⁷ and with terminal alkynes and a zinc catalyst to give propargylic oximes.⁹²⁸

⁹¹⁶Berger, R.; Duff, K.; Leighton, J.L. J. Am. Chem. Soc. 2004, 126, 5686.

⁹¹⁷Córdova, A.; Barbas III, C.F. *Tetrahedron Lett.* **2003**, *44*, 1923; Notz, W.; Tanaka, F.; Watanabe, S.; Chowdari, N.S.; Turner, J.M.; Thayumanavan, R.; Barbas III, C.F. *J. Org. Chem.* **2003**, *68*, 9624;

Chowdari, N.S.; Suri, J.T.; Barbas III, C.F. Org. Lett. 2004, 6, 2507.

⁹¹⁸Hamada, T.; Manabe, K.; Kobayashi, S. *J. Am. Chem. Soc.* **2004**, *126*, 7768. For a similar reaction using a bismuth catalyst, see Ollevier, T.; Nadeau, E. J. Org. Chem. **2004**, *69*, 9292.

- ⁹¹⁹Nugent, B.M.; Yoder, R.A.; Johnston, J.N. J. Am. Chem. Soc. 2004, 126, 3418.
- 920 Nishiwaki, N.; Knudson, K.R.; Gothelf, K.V.; Jørgensen, K.A. Angew. Chem. Int. Ed. 2001, 40, 2992.
- ⁹²¹Shimizu, M.; Itohara, S.; Hase, E. Chem. Commun. 2001, 2318.
- 922Ishimaru, K.; Kojima, T. J. Org. Chem. 2003, 68, 4959.
- ⁹²³Fujisawa, T.; Kurita, Y.; Sato, T. Chem. Lett. 1983, 1537.
- 924 Denmark, S.E.; Edwards, J.P.; Nicaise, O. J. Org. Chem. 1993, 58, 569.
- 925Richey Jr., H.G.; McLane, R.C.; Phillips, C.J. Tetrahedron Lett. 1976, 233.
- 926Bernardi, L.; Cerè, V.; Femoni, C.; Pollicino, S.; Ricci, A. J. Org. Chem. 2003, 68, 3348.
- ⁹²⁷Laskar, D.D.; Prajapati, D.; Sandu, J.S. Tetrahedron Lett. 2001, 42, 7883.
- 928 Frantz, D.E.; Fässler, R.; Carreira, E.M. J. Am. Chem. Soc. 1999, 121, 11245. See Pinet, S.; Pandya,
- S.U.; Chavant, P.Y.; Ayling, A.; Vallee, Y. Org. Lett. 2002, 4, 1463.

⁹¹⁵ Kobayashi, S.; Ogawa, C.; Konishi, H.; Sugiura, M. J. Am. Chem. Soc. 2003, 125, 6610.

Grignard reagents also add to nitrones.⁹²⁹ Nitrones react with $CH_2=CHCH_2InBr$ in aq. DMF to give the homoallylic oxime⁹³⁰ and silyl ketene acetals add in the presence of a chiral titanium catalyst to good enantioselectivity.⁹³¹ Hydrazone derivatives react with iodoalkenes in the presence of InCl₃ and Mn₂(CO)₁₀ under photochemical conditions to give the hydrazine derivative.⁹³² Indium metal promotes the addition of alkyl iodides to hydrazones.⁹³³ A hydrazone can be formed *in situ* by reacting an aldehyde with a hydrazine derivative, and in the presence of tetrallyltin and a scandium catalysts, homoallylic hydrazine derivatives are formed.⁹³⁴ Ketene dithioacetals add to hydrazones using a chiral zirconium catalyst to give a pyrazolidine.⁹³⁵

Radical addition to imines is known. Carbon-centered radicals add to imines.⁹³⁶ The reaction of an alkyl halide with BEt₃ in aqueous methanol, for example, gives the imine addition product, an alkylated amine.⁹³⁷ Secondary alkyl iodides add to *O*-alkyl oximes in the presence of BEt₃ and AIBN, and this methodology was used to convert MeO₂C–CH=NOBn to MeO₂C–CH(R)NOBn.⁹³⁸ Benzylic halides adds to imines under photochemical conditions, and in the presence of 1-benzyl-1,4-dihydronicotinamide⁹³⁹ or with BEt₃ in aqueous methanol.⁹⁴⁰ Tertiary alkyl iodides add to oxime ethers using BF₃•OEt₂ in the presence of BEt₃/O₂.⁹⁴¹

Iminium salts⁹⁴² give tertiary amines directly, with just R adding:

Chloroiminium salts ClCH=NR'₂ Cl⁻ (generated *in situ* from an amide HCONR'₂ and phosgene COCl₂) react with 2 equivalents of a Grignard reagent RMgX, one adding to the C=N and the other replacing the Cl, to give tertiary amines R_2 CHNR'₂.

OS IV, 605; VI, 64. Also see OS III, 329.

⁹²⁹See Merino, P.; Tejero, T. Tetrahedron 2001, 57, 8125.

⁹³⁰Kumar, H.M.S.; Anjaneyulu, S.; Reddy, E.J.; Yadav, J.S. Tetrahedron Lett. 2000, 41, 9311.

⁹³¹Murahashi, S.-I.; Imada, Y.; Kawakami, T.; Harada, K.; Yonemushi, Y.; Tomita, N. J. Am. Chem. Soc. **2002**, *124*, 2888.

933 Miyabe, H.; Ueda, M.; Nishimura, A.; Naito, T. Tetrahedron 2004, 60, 4227.

- 935 Yamshita, Y.; Kobayashi, S. J. Am. Chem. Soc. 2004, 126, 11279.
- ⁹³⁶For a review, see Friestad, G.K. Tetrahedron 2001, 57, 5461.
- 937 Miyabe, H.; Ueda, M.; Naito, T. J. Org. Chem. 2000, 65, 5043.
- ⁹³⁸Miyabe, H.; Ueda, M.; Yoshioka, N.; Yamakawa, K.; Naito, T. Tetrahedron 2000, 56, 2413.
- 939Jin, M.; Zhang, D.; Yang, L.; Liu, Y.; Liu, Z. Tetrahedron Lett. 2000, 41, 7357.

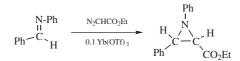
Enamines, 2nd ed., Marcel Dekker, NY, 1988, pp. 275-356.

⁹³²Friedstad, G.K.; Qin, J. J. Am. Chem. Soc. 2001, 123, 9922.

⁹³⁴Kobayashi, S.; Hamada, T.; Manabe, K. Synlett 2001, 1140.

⁹⁴⁰ McNabb, S.B.; Ueda, M.; Naito, T. Org. Lett. 2004, 6, 1911.

⁹⁴¹Halland, N.; Jørgensen, K.A. J. Chem. Soc., Perkin Trans. 1 2001, 1290.


⁹⁴²For a review of nucleophilic addition to iminium salts, see Paukstelis, J.V.; Cook, A.G., in Cook, A.G.

⁹⁴³Wieland, G.; Simchen, G. Liebigs Ann. Chem. 1985, 2178.

CHAPTER 16

16-32 Addition of Carbenes and Diazoalkanes to C=N Compounds

In the presence of metal catalysts such as $Yb(OTf)_3$, diazoalkanes add to imines to generate aziridines. An example is:⁹⁴⁴

The reaction is somewhat selective for the cis-diastereomer. The use of chiral additives in this reaction leads to aziridines enantioselectively.⁹⁴⁵ Imines can be formed by the reaction of an aldehyde and an amine, and subsequent treatment with Me₃SiI and butyllithium gives an aziridine.⁹⁴⁶ *N*-Tosyl imines react with diazoalkenes to form *N*-tosyl aziridines, with good cis-selectivity⁹⁴⁷ and modest enantioselectivity in the presence of a chiral copper catalyst,⁹⁴⁸ but excellent enantioselectivity with a chiral rhodium catalyst.⁹⁴⁹. It is noted that *N*-tosyl aziridines are formed by the reaction of an alkene with PhI=NTs and a copper catalyst.⁹⁵⁰ The reaction of alkenes with diazo compounds is discussed in **15-53**.

16-33 The Addition of Grignard Reagents to Nitriles and Isocyanates

Alkyl,oxo-de-nitrilo-tersubstitution (Overall transformation)

$$R-C\equiv N + R^{1}-MgX \longrightarrow R^{N-MgX} \xrightarrow{N-MgX} R^{1} \xrightarrow{hydrol.} O \xrightarrow{II} R^{-C} R^{1}$$

N-Hydro-C-alkyl-addition

$$R-N=C=O + R^{1}-MgX \longrightarrow \begin{array}{c} R & OMgX \\ N=C & & N=C \\ R^{1} & H \\ R^{1} & H \\ \end{array} \xrightarrow{N-C \\ H \\ R^{1} \\ R^{1} \\ R^{1} \\ H \\ R^{1} \\ R^{1} \\ H \\ R^{1} \\ R^$$

Ketones can be prepared by addition of Grignard reagents to nitriles, followed by hydrolysis of the initially formed imine anion. Many ketones have been made in this manner, though when both R groups are alkyl, yields are not high.⁹⁵¹ Yields

⁹⁴⁴Nagayama, S.; Kobayashi, S. Chem Lett. 1998, 685. Also see, Rasmussen, K.G.; Jørgensen, K.A. J. Chem. Soc., Chem. Commun. 1995, 1401.

⁹⁴⁵ Hansen, K.B.; Finney, N.S.; Jacobsen, E.N. Angew. Chem. Int. Ed. 1995, 34, 676.

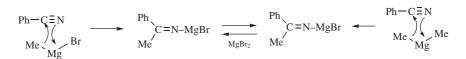
⁹⁴⁶Reetz, M.T.; Lee, W.K. Org. Lett. 2001, 3, 3119.

⁹⁴⁷Aggarwal, V.K.; Ferrara, M. Org. Lett. 2000, 2, 4107; Hori, R.; Aoyama, T.; Shioiri, T. Tetrahedron Lett. 2000, 41, 9455; Krumper, J.R.; Gerisch, M.; Suh, J.M.; Bergman, R.G.; Tilley, T.D. J. Org. Chem. 2003, 68, 9705; Williams, A.L.; Johnston, J.N. J. Am. Chem. Soc. 2004, 126, 1612; Sun, W.; Xia, C.-G.; Wang, H.-W. Tetrahedron Lett. 2003, 44, 2409.

⁹⁴⁸Juhl, K.; Hazell, R.G.; Jørgensen, K.A. J. Chem. Soc., Perkin Trans. 1 1999, 2293.

⁹⁴⁹Aggarwal, V.K.; Alonso, E.; Fang, G.; Ferrara, M.; Hynd, G.; Porcelloni, M. Angew. Chem. Int. Ed. **2001**, 40, 1433.

⁹⁵⁰Handy, S.T.; Czopp, M. Org. Lett. 2001, 3, 1423.


⁹⁵¹For a review, see Kharasch, M.S.; Reinmuth, O. Grignard Reactions of Nonmetallic Substances, Prentice-Hall, Englewood Cliffs, NJ, **1954**, pp. 767–845.

can be improved by the use of Cu(I) salts⁹⁵² or by using benzene containing one equivalent of ether as the solvent, rather than ether alone.⁹⁵³ The ketimine salt does not in general react with Grignard reagents: Hence tertiary alcohols or tertiary alkyl amines are not often side products.⁹⁵⁴ By careful hydrolysis of the salt it is sometimes possible to isolate ketimines,⁹⁵⁵

especially when R and R' = aryl. The addition of Grignard reagents to the C \equiv N group is normally slower than to the C=O group, and cyano group containing aldehydes add the Grignard reagent without disturbing the CN group.⁹⁵⁶ Other metal compounds have been used, including Sm with allylic halides⁹⁵⁷ and organocerium compounds such as MeCeCl₂.⁹⁵⁸ Allylic halides react with an excess of zinc metal in the presence of 40% AlCl₃, and in the presence of a nitrile homoallylic ketones are produced after hydrolysis.⁹⁵⁹ Benzonitrile reacts as with iodopropane and a mixture of SmI₂ and NiI₂ catalysts to give 1-phenyl-1-butanone.⁹⁶⁰

Addition of Grignard reagents⁹⁶¹ or organolithium reagents⁹⁶² to ω -halo nitriles leads to 2-substituted cyclic imines.

The following mechanism has been proposed for the reaction of the methyl Grignard reagent with benzonitrile:⁹⁶³

Arenes add to nitriles in the presence of a palladium catalyst in DMSO/trifluoroacetic acid to give a diaryl ketone.⁹⁶⁴

The addition of Grignard reagents to isocyanates gives, after hydrolysis, *N*-substituted amides.⁹⁶⁵ This is a very good reaction and can be used to prepare

⁹⁵²Weiberth, F.J.; Hall, S.S. J. Org. Chem. 1987, 52, 3901.

⁹⁵³Canonne, P.; Foscolos, G.B.; Lemay, G. Tetrahedron Lett. 1980, 155.

⁹⁵⁴For examples where tertiary amines have been made the main products, see Alvernhe, G.; Laurent, A. *Tetrahedron Lett.* **1973**, 1057; Gauthier, R.; Axiotis, G.P.; Chastrette, M. *J. Organomet. Chem.* **1977**, *140*, 245.

956Cason, J.; Kraus, K.W.; McLeod Jr., W.D. J. Org. Chem. 1959, 24, 392.

⁹⁵⁷Yu, M.; Zhang, Y.; Guo, H. Synth. Commun. 1997, 27, 1495.

⁹⁶⁰Kang, H.-Y.; Song, S.-E. Tetrahedron Lett. 2000, 41, 937.

⁹⁶¹Fry, D.F.; Fowler, C.B.; Dieter, R.K. Synlett 1994, 836.

962Gallulo, V.; Dimas, L.; Zezza, C.A.; Smith, M.B. Org. Prep. Proceed. Int. 1989, 21, 297.

⁹⁶³Ashby, E.C.; Chao, L.; Neumann, H.M. J. Am. Chem. Soc. 1973, 95, 4896, 5186.

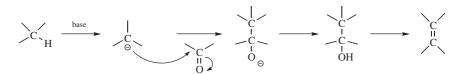
⁹⁵⁵ Pickard, P.L.; Toblert, T.L. J. Org. Chem. 1961, 26,4886.

⁹⁵⁸Ciganek, E. J. Org. Chem. 1992, 57, 4521.

⁹⁵⁹Lee, A.S.-Y.; Lin, L.-S. Tetrahedron Lett. 2000, 41, 8803.

⁹⁶⁴Zhou, C.; Larock, R.C. J. Am. Chem. Soc. 2004, 126, 2302.

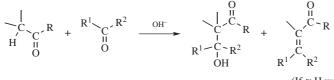
⁹⁶⁵For a review of this and related reactions, see Screttas, C.G.; Steele, B.R. *Org. Prep. Proced. Int.* **1990**, 22, 271.


derivatives of alkyl and aryl halides. The reaction has also been performed with alkyllithium compounds.⁹⁶⁶ Isothiocyanates give *N*-substituted thioamides. Other organometallic compounds add to isocyanates. Vinyltin reagents lead to conjugated amides.⁹⁶⁷

It is noted that terminal alkynes add to the carbon of an isonitrile in the presence of a uranium complex, giving a propargylic imine.⁹⁶⁸

OS III, 26, 562; V, 520.

G. Carbon Attack by Active Hydrogen Compounds


Reactions **16-34–16-50** are base-catalyzed condensations (although some of them are also catalyzed to acids).⁹⁶⁹ In **16-34–16-44**, a base removes a C–H proton to give a carbanion, which then adds to a C=O. The oxygen acquires a proton, and the resulting alcohol may or may not be dehydrated, depending on whether an α hydrogen is present and on whether the new double bond would be in conjugation with double bonds already present:

The reactions differ in the nature of the active hydrogen component and the carbonyl component. Table 16.2 illustrates the differences. Reaction **16-50** is an analogous reaction involving addition to $C \equiv N$.

16-34 The Aldol Reaction⁹⁷⁰

O-Hydro-C-(α-acylalkyl)-addition; α-Acylalkylidine-de-oxo-bisubstitution

⁽If α H was present)

⁹⁶⁶LeBel, N.A.; Cherluck, R.M.; Curtis, E.A. *Synthesis* 1973, 678; Cooke, Jr., M.P.; Pollock, C.M. J. Org. Chem. 1993, 58, 7474. For another method, see Einhorn, J.; Luche, J.L. Tetrahedron Lett. 1986, 27, 501.
 ⁹⁶⁷Niestroj, M.; Neumann, W.P.; Thies, O. Chem. Ber. 1994, 127, 1131.

⁹⁶⁹For reviews, see House, H.O. *Modern Synthetic Reactions*, 2nd ed., W.A. Benjamin, NY, **1972**, pp. 629–682; Reeves, R.L., in Patai, S. *The Chemistry of the Carbonyl Group*, pt. 1, Wiley, NY, **1966**, pp. 567–619. See also, Stowell, J.C. *Carbanions in Organic Synthesis*, Wiley, NY, **1979**.

⁹⁶⁸Barnea, E.; Andrea, T.; Kapon, M.; Berthet, J.-C.; Ephritikhine, M.; Eisen, M.S. J. Am. Chem. Soc. **2004**, *126*, 10860.

⁹⁷⁰See Smith, M.B. Organic Synthesis, 2nd ed., McGraw-Hill, NY, 2001, pp. 740-745.

Reaction	Active-Hydrogen Component	Carbonyl Component	Subsequent Reaction
16-34	Aldehyde	Aldehyde, ketone	Dehydration may follow
	Ketone $C \xrightarrow{H} R$		
Aldol reaction			
16-36	Ester C_{C}^{H} OR	Aldehyde, ketone (usually without α-hydrogens)	Dehydration may follow
16-38	$\begin{array}{ccc} H & Z & R & Z \\ H & C & Z^{1} & H & C & Z^{1} \\ \end{array}$ and similar molecules	Aldehyde, ketone (usually without α-hydrogens)	Dehydration (usually follows)
Knoevenagel rea	action		
16-41	$\overset{H}{\sim}^{C}_{SiMe_{3}}$	Aldehyde, ketone may follow	Dehydration
Peterson reactio	n		
16-42	C_{Z} H Z = COR, COOR, NO ₂	CO_2, CS_2	
16-39	Anhydride $\begin{array}{c} \begin{array}{c} & \\ \\ C \end{array} \\ \begin{array}{c} \\ C \end{array} \\ \end{array} \\ \begin{array}{c} \\ C \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ C \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ C \end{array} \\ \end{array} $ \\ \end{array} \\ \end{array} \\ \end{array}	Aromatic aldehyde usually follows	Dehydration
Perkin reaction			
16-40	α -Halo Ester $\xrightarrow{X \ C}_{C \ OR}$	Aldehyde, Ketone (S _N reaction) follows	Epoxidation
Darzen's reaction	on		
16-43	Aldehyde C CHO	Formaldehyde reaction follows	Crossed
	Ketone $C \xrightarrow{H} R$		Crossed- Cannizzaro

TABLE 16.2. Base-Catalyzed Condensations Showing the Active-Hydrogen Components and the Carbonyl Compounds

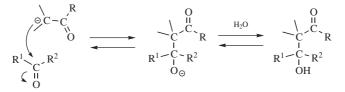

Reaction	Active-Hydrogen Component	Carbonyl Component	Subsequent Reaction
Tollens' reaction	n		
16-44	Phosphorous ylid $\downarrow^{C \odot \Theta}_{O \frown PPh_{3}}$	Aldehyde, ketone	"Dehydration" always follows
Wittig reaction			
16-50	Nitrile $\sum_{C=N}^{H}$	Nitrile	
Thorpe reaction	1		

TABLE 16.2. (Continued)

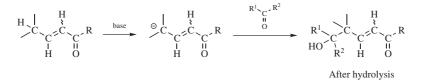
In the *aldol reaction*,⁹⁷¹ the α carbon of one aldehyde or ketone molecule adds to the carbonyl carbon of another.⁹⁷² Although acid-catalyzed aldol reactions are known,⁹⁷³ the most common form of the reaction uses a base. There is evidence that an SET mechanism can intervene when the substrate is an aromatic ketone.⁹⁷⁴ Although hydroxide was commonly used in early versions of this reaction, stronger bases, such as alkoxides (RO⁻) or amides (R₂N⁻), are also common. Amine bases have been used.⁹⁷⁵ Hydroxide ion is not a strong enough base to convert substantially all of an aldehyde or ketone molecule to the corresponding enolate ion, that is., the equilibrium lies well to the left, for both aldehydes and

$$\begin{array}{c} \downarrow \\ C \\ H \\ H \\ O \end{array} \xrightarrow{R} \begin{array}{c} O \\ H \end{array} \xrightarrow{OH^{-}} \left[\begin{array}{c} \odot \\ -C \\ C \\ H \end{array} \xrightarrow{R} \begin{array}{c} -C \\ C \\ H \\ O \end{array} \xrightarrow{R} \begin{array}{c} -C \\ C \\ O \\ O \end{array} \xrightarrow{R} \end{array} \right]$$

ketones. Nevertheless, enough enolate ion is present for the reaction to proceed:

 971 This reaction is also called the *aldol condensation*, though, strictly speaking, this term applies to the formation only of the α , β -unsaturated product, and not the aldol.

⁹⁷²For reviews, see Thebtaranonth, C.; Thebtaranonth, Y., in Patai, S.; Rappoport, Z. *The Chemistry of Enones*, pt. 1, Wiley, NY, *1989*, pp. 199–280, 199–212; Hajos, Z.G., in Augustine, R.L. *Carbon–Carbon Bond Formation*, Vol. 1; Marcel Dekker, NY, *1979*; pp. 1–84; Nielsen, A.T.; Houlihan, W.J. *Org. React. 1968*, *16*, 1.


⁹⁷³For example, see Mahrwald, R.; Gündogan, B. J. Am. Chem. Soc. 1998, 120, 413.

⁹⁷⁴Ashby, E.C.; Argyropoulos, J.N. J. Org. Chem. 1986, 51, 472.

⁹⁷⁵Trost, B.M.; Silcoff, E.R.; Ito, H. Org. Lett. 2001, 3, 2497.

This equilibrium lies further to the right with alkoxide and especially with amide bases, depending on the solvent. Protic solvents, such as water or alcohol, are acidic enough to react with the enolate anion and shift the equilibrium to the left. In an aprotic solvent, such as ether or THF, with a strong amide base, such as lithium diisopropylamide (LDA, p. 389), the equilibrium lies more to the right.⁹⁷⁶ A variety of amide bases can be used to deprotonate the ketone or aldehyde, and in the case of an unsymmetrical ketone removal of the more acidic proton leads to the kinetic enolate anion.⁹⁷⁷ Note that a polymer-bound amide base has been used⁹⁷⁸ and solid-phase chiral lithium amides are known.⁹⁷⁹ A polymer-supported phosphoramide has been used as a catalyst for the aldol condensation.⁹⁸⁰ The product is a β -hydroxy aldehyde (called an *aldol*) or ketone, which in some cases is dehydrated during the course of the reaction. In aprotic solvents with a mild workup procedure, however, the aldol is readily isolated unless the substrate is an aromatic aldehyde or ketone. The aldol reaction has been done in ionic liquids.⁹⁸¹ Even if the dehydration is not spontaneous, it can usually be done easily, since the new double bond is in conjugation with the C=O bond; so that this is a method of preparing α,β -unsaturated aldehydes and ketones, as well as β -hydroxy aldehydes and ketones. One-pot procedures have been reported to give the conjugated product.⁹⁸² The entire reaction is an equilibrium (including the dehydration step), and α , β -unsaturated and β -hydroxy aldehydes and ketones can be cleaved by treatment with OH (the retrograde aldol reaction). The retro-aldol condensation has been exploited for crossed-aldol reactions.⁹⁸³ A vinylogous aldol reaction is known⁹⁸⁴ as is a 1"double" aldol.⁹⁸⁵ Enzyme-mediated aldol reactions have been reported using two aldehydes, including formaldehyde.986

Under the principle of vinylogy, the active hydrogen can be one in the γ position of an α , β -unsaturated carbonyl compound:

⁹⁷⁶For a discussion of solvent and temperature effects, see Cainelli, G.; Galletti, P.; Giacomini, D.; Orioli, P. *Tetrahedron Lett.* **2001**, *42*, 7383.

⁹⁷⁷See Xie, L.; Vanlandeghem, K.; Isenberger, K.M.; Bernier, C. J. Org. Chem. 2003, 68, 641; Zhao, P.; Lucht, B.L.; Kenkre, S.L.; Collum, D.B. J. Org. Chem. 2004, 69, 242; Zhao, P.; Condo, A.; Keresztes, I.; Collum, D.B. J. Am. Chem. Soc. 2004, 126, 3113.

⁹⁷⁸Seki, A.; Ishiwata, F.; Takizawa, Y.; Asami, M. Tetrahedron 2004, 60, 5001.

⁹⁷⁹Johansson, A.; Abrahamsson, P.; Davidsson, Ö. Tetrahedron Asymmetry 2003, 14, 1261.

980Flowers II, R.A.; Xu, X.; Timmons, C.; Li, G. Eur. J. Org. Chem. 2004, 2988.

⁹⁸¹In bmim BF₄, 1-butyl-3-methylimidazolium tetrafluoroborate: Zheng, X.; Zhang, Y. *Synth. Commun.* **2003**, 161.

982 Kourouli, T.; Kefalas, P.; Ragoussis, N.; Ragoussis, V. J. Org. Chem. 2002, 67, 4615.

⁹⁸³For an example, see Simpura, I.; Nevalainen, V. Angew. Chem. Int. Ed. 2000, 39, 3422.

⁹⁸⁴For reviews, see Casiraghi, G.; Zanardi, F.; Appendino, G.; Rassu, G.; *Chem. Rev.* 2000, 100, 1929; Casiraghi, G.; Zanardi, E.; Rassu, G. Pure Appl. Chem. 2000, 72, 1645.

⁹⁸⁵For a discussion of the mechanism of this reaction see Abiko, A.; Inoue, T.; Masamune, S. J. Am. Chem. Soc. **2002**, *124*, 10759.

986 Demir, A.S.; Ayhan, P.; Igdir, A.C.; Duygu, A.N. Tetrahedron 2004, 60, 6509.

CHAPTER 16

The scope of the aldol reaction may be discussed under five headings:

- **1.** Reaction between Two Molecules of the Same Aldehyde. Hydroxide or alkoxide bases are used in protic solvents,⁹⁸⁷ and the reaction is quite feasible. Many aldehydes have been converted to aldols and/or their dehydration products in this manner. The most effective catalysts are basic ion-exchange resins. Of course, the aldehyde must possess an α hydrogen.
- **2.** Reaction between Two Molecules of the Same Ketone. With hydroxide or alkoxide bases in protic solvents the equilibrium lies well to the left,⁹⁸⁸ and the reaction is feasible only if the equilibrium can be shifted. This can often be done by allowing the reaction to proceed in a Soxhlet extractor (e.g., see OS I, 199). Two molecules of the same ketone can also be condensed without a Soxhlet extractor,⁹⁸⁹ by treatment with basic Al₂O₃.⁹⁹⁰ Unsymmetrical ketones condense on the side that has more hydrogens. An exception is butanone, which reacts at the CH₂ group with acid catalysts, though with basic catalysts, it too reacts at the CH₃ group.

Alternatively, the use of an amide base, such as LDA or lithium hexamethyldisilazide (p. 389), in aprotic solvents, such as ether or THF, at low temperatures, generates an enolate anion under conditions where the equilibrium lies more to the right. A second equivalent of the ketone can then be added. Clearly, this technique is effective in reactions of aldehydes.

- **3.** Reaction between Two Different Aldehydes. In the most general case, this will produce a mixture of four products (eight, if the alkenes are counted). However, if one aldehyde does not have an α hydrogen, only two aldols are possible, and in many cases the crossed product is the main one. The crossed-aldol reaction is often called the *Claisen–Schmidt reaction*.⁹⁹¹ The crossed aldol is readily accomplished using amide bases in aprotic solvent. The first aldehyde is treated with LDA in THF at -78° C, for example, to form the enolate anion. Subsequent treatment with a second aldehyde leads to the mixed aldol product. The crossed aldol of two aldehydes has been done using potassium *tert*-butoxide and Ti(OBu)₄.⁹⁹²
- **4.** *Reaction between Two Different Ketones.* This is seldom attempted with hydroxide or alkoxide bases in protic solvents since similar considerations apply to those discussed for aldehydes. This reaction is commonly done with amide bases in aprotic solvents, but with somewhat more difficulty than with aldehydes.

⁹⁸⁷For discussions of equilibrium constants in aldol reactions, see Guthrie, J.P.; Wang, X. *Can. J. Chem.* **1991**, 69, 339; Guthrie, J.P. J. Am. Chem. Soc. **1991**, 113, 7249, and references cited therein.

⁹⁸⁸The equilibrium concentration of the product from acetone in pure acetone was determined to be 0.01%: Maple, S.R.; Allerhand, A. J. Am. Chem. Soc. **1987**, 109, 6609.

 ⁹⁸⁹For another method, see Barot, B.C.; Sullins, D.W.; Eisenbraun, E.J. Synth. Commun. 1984, 14, 397.
 ⁹⁹⁰Muzart, J. Synthesis 1982, 60; Synth. Commun. 1985, 15, 285.

 ⁹⁹¹For an aqueous version, see Buonora, P.T.; Rosauer, K.G.; Dai, L. *Tetrahedron Lett.* 1995, 36, 4009.
 ⁹⁹²Han, Z.; Yorimitsu, H.; Shinokubo, H.; Oshima, K. *Tetrahedron Lett.* 2000, 41, 4415.

1344 ADDITION TO CARBON-HETERO MULTIPLE BONDS

5. Reaction between an Aldehyde and a Ketone. This is usually feasible with hydroxide or alkoxides bases in protic solvents, particularly when the aldehyde has no α hydrogen, since there is no competition from ketone condensing with itself.⁹⁹³ This is also called the *Claisen–Schmidt reaction*. Even when the aldehyde has an α hydrogen, it is generally the α carbon of the ketone that adds to the carbonyl of the aldehyde, not the other way around. Mixtures are usually produced, however. If the ketone or the aldehyde is treated with an amide base in aprotic solvents, a second aldehyde or ketone can be added to give the aldolate with high regioselectivity. The reaction can be also made regioselective by preparing an enol derivative of the ketone separately⁹⁹⁴ and then adding this to the aldehyde (or ketone). Other types of preformed derivatives that react with aldehydes and ketones are enamines (with a Lewis acid catalyst),⁹⁹⁵ and enol borinates $R'CH=CR^2-OBR_2^{996}$ (which can be synthesized by 15-27) or directly from an aldehyde or ketone⁹⁹⁷). Preformed metallic enolates are also used. For example, lithium enolates⁹⁹⁸ (prepared by 12-23) react with the substrate in the presence of $ZnCl_2$;⁹⁹⁹ in this case the aldol product is stabilized by chelation of its two oxygen atoms with the zinc ion.¹⁰⁰⁰ Other metallic enolates can be used for aldol reactions, either preformed or generated in situ with a catalytic amount of a metal compound. Metals used for this purpose include Mg,¹⁰⁰¹ Ti,¹⁰⁰² Zr,¹⁰⁰³ Pd,¹⁰⁰⁴

⁹⁹³For a study of the rate and equilibrium constants in the reaction between acetone and benzaldehyde, see Guthrie, J.P.; Cossar, J.; Taylor, K.F. *Can. J. Chem.* **1984**, 62, 1958. For a microwave induced reaction using aqueous NaOH, see Kad, G.L.; Kaur, K.P.; Singh, V.; Singh, J. *Synth. Commun.* **1999**, 29, 2583.
⁹⁹⁴For some other aldol reactions with preformed enol derivatives, see Mukaiyama, T. *Isr. J. Chem.* **1984**, 24, 162; Caine, D., in Augustine, R.L., *Carbon–Carbon Bond Formation*, Vol. 1, Marcel Dekker, NY,

1979, pp. 264–276.

⁹⁹⁶Inoue, T.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 1980, 53, 174; Hooz, J.; Oudenes, J.; Roberts, J.L.; Benderly, A. J. Org. Chem. 1987, 52, 1347; Nozaki, K.; Oshima, K.; Utimoto, K. Tetrahedron Lett. 1988, 29, 1041. For a review, see Pelter, A.; Smith, K.; Brown, H.C. Borane Reagents, Academic Press, NY, 1988, pp. 324–333. For an *ab initio* study see Murga, J.; Falomir, E.; Carda, M.; Marco, J.A. Tetrahedron 2001, 57, 6239.

⁹⁹⁷For conversion of ketones to either (*Z*) or (*E*) enol borinates, see, for example, Evans, D.A.; Nelson, J.V.; Vogel, E.; Taber, T.R. *J. Am. Chem. Soc.* **1981**, *103*, 3099; Brown, H.C.; Dhar, R.K.; Bakshi, R.K.; Pandiarajan, P.K.; Singaram, B. *J. Am. Chem. Soc.* **1989**, *111*, 3441; Brown, H.C.; Ganesan, K. *Tetrahedron Lett.* **1992**, *33*, 3421.

⁹⁹⁸For a complete structure–energy analysis of one such reaction, see Arnett, E.M.; Fisher, F.J.; Nichols, M.A.; Ribeiro, A.A. *J. Am. Chem. Soc.* **1990**, *112*, 801.

999 House, H.O.; Crumrine, D.S.; Teranishi, A.Y.; Olmstead, H.D. J. Am. Chem. Soc. 1973, 95, 3310.

¹⁰⁰⁰It has been contended that such stabilization is not required: Mulzer, J.; Brüntrup, G.; Finke, J.; Zippel, M. J. Am. Chem. Soc. **1979**, 101, 7723.

¹⁰⁰¹Wei, H.-X.; Jasoni, R.L.; Shao, H.; Hu, J.; Paré, P.W. Tetrahedron 2004, 60, 11829.


¹⁰⁰²Stille, J.R.; Grubbs, R.H. *J. Am. Chem. Soc.* **1983**, *105*, 1664; Mahrwald, R.; Costisella, B.; Gündogan, B. *Tetrahedron Lett.* **1997**, *38*, 4543. For the use of Ti(OiPr)₄ to modify syn/anti ratios of aldol products, see Mahrwald, R.; Costisella, B.; Gündogan, B. *Synthesis* **1998**, 262.

¹⁰⁰³Evans, D.A.; McGee, L.R. *Tetrahedron Lett.* **1980**, 21, 3975; J. Am. Chem. Soc. **1981**, 103, 2876.
 ¹⁰⁰⁴Nokami, J.; Mandai, T.; Watanabe, H.; Ohyama, H.; Tsuji, J. J. Am. Chem. Soc. **1989**, 111, 4126.

⁹⁹⁵ Takazawa, O.; Kogami, K.; Hayashi, K. Bull. Chem. Soc. Jpn. 1985, 58, 2427.

In,¹⁰⁰⁵ Sn,¹⁰⁰⁶ La,¹⁰⁰⁷ and Sm,¹⁰⁰⁸ all of which give products with moderate to excellent diastereoselectivity¹⁰⁰⁹ and regioselectivity. α -Alkoxy ketones react with lithium enolates particularly rapidly.¹⁰¹⁰ A bis(aldol) condensation has been reported with epoxy ketones and aldehydes using SmI₂.¹⁰¹¹ Vinyl silanes react with aldehydes in the presence of a copper catalyst to vie the aldol product.¹⁰¹²

The reactions with preformed enol derivatives provide a way to control the stereoselectivity of the aldol reaction.¹⁰¹³ As with the Michael reaction (**15-24**), the aldol reaction creates two new stereogenic centers, and, in the most general case, there are four stereoisomers of the aldol product (two racemic diastereomers), which can be represented as

syn (or erythro) (±) pair

anti (or threo) (±) pair

Among the preformed enol derivatives used for diastereoselective aldol condensations have been enolates of Li,¹⁰¹⁴ Mg, Ti,¹⁰¹⁵ Zr,³⁴³ and Sn,¹⁰¹⁶ silyl enol

¹⁰⁰⁵Loh, T.-P.; Wei, L.-L.; Feng, L.-C. *Synlett* **1999**, 1059. For an example using ultrasound and InCl₃, see Loh, T.-P.; Feng, L.-C.; Wei, L.-L. *Tetrahedron* **2001**, *57*, 4231.

¹⁰⁰⁶Yanagisawa, A.; Kimura, K.; Nakatsuka, Y.; Yamamoto, H. Synlett 1998, 958.

¹⁰⁰⁷Kobayashi, S.; Hachiya, I.; Takahori, T. Synthesis 1993, 371.

¹⁰⁰⁸Yokoyama, Y.; Mochida, K. Synlett **1996**, 445; Sasai, H.; Arai, S.; Shibasaki, M. J. Org.Chem. **1994**, 59, 2661. Also see, Bao, W.; Zhang, Y.; Wang, J. Synth. Commun. **1996**, 26, 3025.

¹⁰⁰⁹For a review, see Mahrwald, R. Chem. Rev. 1999, 99, 1095.

¹⁰¹⁰Das, G.; Thornton, E.R. J. Am. Chem. Soc. 1990, 112, 5360.

¹⁰¹¹Mukaiyama, T.; Arai, H.; Shiina, I. Chem. Lett. 2000, 580.

¹⁰¹²Yang, B.-Y.; Chen, X.-M.; Deng, G.-J.; Zhang, Y.-L.; Fan, Q.-H. Tetrahedron Lett. 2003, 44, 3535.

¹⁰¹³For reviews, see Heathcock, C.H. Aldrichimica Acta 1990, 23, 99; Science 1981, 214, 395; Nógrádi, M. Stereoselective Synthesis, VCH, NY, 1986, pp. 193–220; Heathcock, C.H., in Morrison, J.D. Asymmetric Synthesis, Vol. 3, Academic Press, NY, 1984, pp. 111–212; Heathcock, C.H., in Buncel, E.; Durst, T. Comprehensive Carbanion Chemistry, pt. B, Elsevier, NY, 1984, pp. 177–237; Evans, D.A.; Nelson, J.V.; Taber, T.R. Top. Stereochem. 1982, 13, 1; Evans, D.A. Aldrichimica Acta 1982, 15, 23; Braun, M.; Sacha, H.; Galle, D.; Baskaran, S. Pure Appl. Chem. 1996, 68, 561. For a discussion of how configuration and conformation influence the stereochemistry of aldols, see Kitamura, M.; Nakano, K.; Miki, T.; Okada, M.; Noyori, R. J. Am. Chem. Soc. 2001, 123, 8939.

¹⁰¹⁴Fellmann, P.; Dubois, J.E. *Tetrahedron* 1978, 34, 1349; Heathcock, C.H.; Pirrung, M.C.; Montgomery,
 S.H.; Lampe, J. *Tetrahedron* 1981, 37, 4087; Masamune, S.; Ellingboe, J.W.; Choy, W. J. Am. Chem. Soc.
 1982, 104, 5526; Ertas, M.; Seebach, D. *Helv. Chim. Acta* 1985, 68, 961.

¹⁰¹⁵Nerz-Stormes, M.; Thornton, E.R. *Tetrahedron Lett.* 1986, 897; Evans, D.A.; Rieger, D.L.; Bilodeau,
 M.T.; Urpí, F. J. Am. Chem. Soc. 1991, 113, 1047; Cosp. A.; Larrosa, I.; Vilasís, I.; Romea, P.; Urpí, F.;
 Vilarrasa, J. Synlett 2003, 1109.

¹⁰¹⁶Mukaiyama, T.; Iwasawa, N.; Stevens, R.W.; Haga, T. *Tetrahedron* **1984**, 40, 1381; Labadie, S.S.; Stille, J.K. *Tetrahedron* **1984**, 40, 2329; Yura, T.; Iwasawa, N.; Mukaiyama, T. *Chem. Lett.* **1986**, 187. See also, Nakamura, E.; Kuwajima, I. *Tetrahedron Lett.* **1983**, 24, 3347.

ethers,¹⁰¹⁷ enol borinates,¹⁰¹⁸ and enol borates R'CH=CR²-OB(OR)₂.¹⁰¹⁹ The nucleophilicity of silvl enol ethers has been examined.¹⁰²⁰ Base-induced formation of the enolate anion generally leads to a mixture of (E)- and (Z)isomers, and dialkyl amide bases are used in most cases. The (E/Z) stereoselectivity depends on the structure of the lithium dialkylamide base, with the highest (E/Z) ratios obtained with LiTMP-butyllithium mixed aggregates in THF.¹⁰²¹ The use of LiHMDS resulted in a reversal of the (E/Z) selectivity. In general, metallic (Z) enolates give the syn (or erythro) pair, and this reaction is highly useful for the diastereoselective synthesis of these products.¹⁰²² The (E) isomers generally react nonstereoselectively. However, anti (or threo) stereoselectivity has been achieved in a number of cases, with titanium enolates,¹⁰²³ with magnesium enolates,¹⁰²⁴ with certain enol borinates,¹⁰²⁵ and with lithium enolates at -78°C.¹⁰²⁶ Enolization accounts for syn-anti isomerization of aldols.¹⁰²⁷ In another variation, a β -keto Weinreb amide (see 16-82) reacted with TiCl₄ and Hünig's base (iPr₂NEt) and then an aldehyde to give the β -hydroxy ketone.¹⁰²⁸

¹⁰¹⁸Evans, D.A.; Nelson, J.V.; Vogel, E.; Taber, T.R. J. Am. Chem. Soc. 1981, 103, 3099; Evans, D.A.;
 Bartroli, J.; Shih, T.L. J. Am. Chem. Soc. 1981, 103, 2127; Masamune, S.; Choy, W.; Kerdesky, F.A.J.;
 Imperiali, B. J. Am. Chem. Soc. 1981, 103, 1566; Paterson, I.; Goodman, J.M.; Lister, M.A.; Schumann,
 R.C.; McClure, C.K.; Norcross, R.D. Tetrahedron 1990, 46, 4663; Walker, M.A.; Heathcock, C.H. J. Org.
 Chem. 1991, 56, 5747. For reviews, see Paterson, I. Chem. Ind. (London) 1988, 390; Pelter, A.; Smith, K.;
 Brown, H.C. Borane Reagents, Academic Press, NY, 1988, p. 324.

¹⁰¹⁹Hoffmann, R.W.; Ditrich, K.; Fröch, S. Liebigs Ann. Chem. 1987, 977.

¹⁰²⁰Patz, M.; Mayr, H. Tetrahedron Lett. 1993, 34, 3393.

¹⁰²¹Pratt, L. M.; Newman, A.; Cyr, J. S.; Johnson, H.; Miles, B.; Lattier, A.; Austin, E.; Henderson, S.; Hershey, B.; Lin, M.; Balamraju, Y.; Sammonds, L.; Cheramie, J.; Karnes, J.; Hymel, E.; Woodford, B.; Carter, C. J. Org. Chem. **2003**, *68*, 6387.

¹⁰²²For discussion of transition-state geometries in this reaction, see Hoffmann, R.W.; Ditrich, K.; Froech, S.; Cremer, D. *Tetrahedron* 1985, 41, 5517; Anh, N.T.; Thanh, B.T. *Nouv. J. Chim.*, 1986, 10, 681; Li, Y.; Paddon-Row, M.N.; Houk, K.N. J. Org. Chem. 1990, 55, 481; Denmark, S.E.; Henke, B.R. J. Am. Chem. Soc. 1991, 113, 2177.

¹⁰²³See Murphy, P.J.; Procter, G.; Russell, A.T. *Tetrahedron Lett.* **1987**, 28, 2037; Nerz-Stormes, M.; Thornton, E.R. J. Org. Chem. **1991**, 56, 2489.

¹⁰²⁴Swiss, K.A.; Choi, W.; Liotta, D.; Abdel-Magid, A.F.; Maryanoff, C.A. J. Org. Chem. **1991**, 56, 5978.

¹⁰²⁵Masamune, S.; Sato, T.; Kim, B.M.; Wollmann, T.A. *J. Am. Chem. Soc.* **1986**, *108*, 8279; Danda, H.; Hansen, M.M.; Heathcock, C.H. *J. Org. Chem.* **1990**, *55*, 173. See also, Corey, E.J.; Kim, S.S. *Tetrahedron Lett.* **1990**, *31*, 3715.

¹⁰²⁶Hirama, M.; Noda, T.; Takeishi, S.; Itô, S. Bull. Chem. Soc. Jpn. **1988**, 61, 2645; Majewski, M.; Gleave, D.M. Tetrahedron Lett. **1989**, 30, 5681.

¹⁰²⁷Ward, D.E.; Sales, M.; Sasmal, P.K. Org. Lett. **2001**, *3*, 3671; Ward, D.E.; Sales, M.; Sasmal, P.K. J. Org. Chem. **2004**, 69, 4808.

¹⁰²⁸Calter, M.A.; Guo, X.; Liao, W. Org. Lett. 2001, 3, 1499.

 ¹⁰¹⁷Matsuda, I.; Izumi, Y. *Tetrahedron Lett.* 1981, 22, 1805; Yamamoto, Y.; Maruyama, K.;
 Matsumoto, K. J. Am. Chem. Soc. 1983, 105, 6963; Sakurai, H.; Sasaki, K.; Hosomi, A. Bull. Chem.
 Soc. Jpn. 1983, 56, 3195; Hagiwara, H.; Kimura, K.; Uda, H. J. Chem. Soc., Chem. Commun. 1986, 860.

These reactions can also be made enantioselective¹⁰²⁹ (in which case only one of the four isomers predominates)¹⁰³⁰ by using¹⁰³¹ chiral enol derivatives,¹⁰³² chiral aldehydes or ketones,¹⁰³³ or both.¹⁰³⁴ Chiral bases¹⁰³⁵ can be used, such as proline,¹⁰³⁶ proline derivatives,¹⁰³⁷ or chiral additives, used in conjunction with the base.¹⁰³⁸ A chiral binaphthol dianion has been used to catalyze the reaction.¹⁰³⁹ Chiral auxiliaries¹⁰⁴⁰ have been developed that can be used in conjunction with the aldol condensation, as well as chiral catalysts¹⁰⁴¹ and chiral ligands¹⁰⁴²

¹⁰²⁹For a review, see Allemann, C.; Gordillo, R.; Clemente, F.R.; Cheong, P.H.-Y.; Houk, K.N. Acc. Chem. Res. 2004, 37, 558; Saito, S.; Yamamoto, H. Acc. Chem. res. 2004, 37, 570. For a discussion of chelation versus nonchelation control, see Yan, T.-H.; Tan, C.-W.; Lee, H.-C.; Lo, H.-C.; Huang, T.-Y. J. Am. Chem. Soc. 1993, 115, 2613. For the effects of lithium salts on enantioselective deprotonation, see Majewski, M.; Lazny, R.; Nowak, P. Tetrahedron Lett. 1995, 36, 5465. Also see, Smith, M.B. Organic Synthesis, 2nd ed., McGraw-Hill, NY, 2001, pp. 779–790.

¹⁰³⁰For anti-selective aldol reactions, see Oppolzer, W.; Lienard, P. *Tetrahedron Lett.* **1993**, *34*, 4321. For a "non-Evans" *syn*-aldol, see Yan, T.-H.; Lee, H.-C.; Tan, C.-W. *Tetrahedron Lett.* **1993**, *34*, 3559.

¹⁰³¹For reviews, see Klein, J., in Patai, S. Supplement A: The Chemistry of Double-Bonded Functional Groups, Vol. 2, pt. 1, Wiley, NY, **1989**, pp. 567–677; Braun, M. Angew. Chem. Int. Ed. **1987**, 26, 24.

¹⁰³²For examples, see Eichenauer, H.; Friedrich, E.; Lutz, W.; Enders, D. Angew. Chem. Int. Ed.
 1978, 17, 206; Meyers, A.I.; Yamamoto, Y. Tetrahedron 1984, 40, 2309; Ando, A.; Shioiri, T. J.
 Chem. Soc., Chem. Commun. 1987, 1620; Muraoka, M.; Kawasaki, H.; Koga, K. Tetrahedron Lett.
 1988, 29, 337; Paterson, I.; Goodman, J.M. Tetrahedron Lett. 1989, 30, 997; Siegel, C.; Thornton,
 E.R. J. Am. Chem. Soc. 1989, 111, 5722; Gennari, C.; Molinari, F.; Cozzi, P.; Oliva, A. Tetrahedron
 Lett. 1989, 30, 5163; Faunce, J.A.; Grisso, B.A.; Mackenzie, P.B. J. Am. Chem. Soc. 1991, 113, 3418.

¹⁰³³For example, see Ojima, I.; Yoshida, K.; Inaba, S. Chem. Lett. **1977**, 429; Heathcock, C.H.; Flippin, L.A. J. Am. Chem. Soc. **1983**, 105, 1667; Reetz, M.T.; Kesseler, K.; Jung, A. Tetrahedron **1984**, 40, 4327.

¹⁰³⁴For example, see Heathcock, C.H.; White, C.T.; Morrison, J.J.; VanDerveer, D. J. Org. Chem. 1981, 46, 1296; Short, R.P.; Masamune, S. Tetrahedron Lett. 1987, 28, 2841.

¹⁰³⁵For a review, see Notz, W.; Tanaka, F.; Barbas III, C.F. Acc. Chem. Res. 2004, 37, 580.

¹⁰³⁶Notz, W.; List, B. J. Am. Chem. Soc. 2000, 122, 7386; List, B.; Pojarliev, P.; Castello, C. Org. Lett. 2001, 3, 573; Sakthivel, K.; Notz, W.; Bui, T.; Barbas III, C.F. J. Am. Chem. Soc. 2001, 123, 5260; Northrup, A.B.; MacMillan, D.W.C. J. Am. Chem. Soc. 2002, 124, 6798. See Peng, Y.-Y.; Ding, Q.-P.; Li, Z.; Wang, P.G.; Cheng, J.-P. Tetrahedron Lett. 2003, 44, 3871; Darbre, T.; Machuqueiro, M. Chem. Commun. 2003, 1090; Nyberg, A.I.; Usano, A.; Pihko, P.M. Synlett 2004, 1891. For an example with formaldehyde, see Casas, J.; Sundén, H.; Córdova, A. Tetrahedron Lett. 2004, 45, 6117. For a proline-catalyzed high pressure reaction, see Sekiguchi, Y.; Sasaoka, A.; Shimomoto, A.; Fujioka, S.; Kotsuki, H. Synlett 2003, 1655.

¹⁰³⁷Tang, Z.; Jiang, F.; Yu, L.-T.; Cui, X.; Gong, L.-Z.; Mi, A.-Q.; Jiang, Y.-Z.; Wu, Y.-D. J. Am. Chem. Soc. **2003**, 125, 5262; Zhong, G.; Fan, J.; Barbas III, C.F. Tetrahedron Lett. **2004**, 45, 5681.

¹⁰³⁸See Mahrwald, R. Org. Lett. 2000, 2, 4011.

¹⁰³⁹Nakajima, M.; Orito, Y.; Ishizuka, T.; Hashimoto, S. Org. Lett. 2004, 6, 3763.

¹⁰⁴⁰Hein, J.E.; Hultin, P.G. Synlett 2003, 635.

¹⁰⁴¹Suzuki, T.; Yamagiwa, N.; Matsuo, Y.; Sakamoto, S.; Yamaguchi, K.; Shibasaki, M.; Noyori, R. *Tetrahedron Lett.* **2001**, *42*, 4669. For a review, see Alcaidi, B.; Almendros, P. *Eur. J. Org. Chem.* **2002**, 1595.

¹⁰⁴²Trost, B.M.; Ito, H. J. Am. Chem. Soc. 2000, 122, 12003.

in catalytic reactions. Aldehydes are condensed with ketones with potassium hexamethyldisilazide (KHMDS) and 8% of a chiral lithium catalyst, giving the aldol product with moderate enantioselectivity.¹⁰⁴³ Structural variations in the aldehyde or ketone are compatible with many enantioselective condensation reactions. An α -hydroxy ketone was condensed with an aldehyde using a chiral zinc catalyst to give the aldol (an α , β -dihydroxy ketone) with good syn selectivity and good enantioselectivity.¹⁰⁴⁴ A catalytic amount of a nicotine metabolite allows an enantioselective reaction in aqueous media.¹⁰⁴⁵ Chiral vinylogous aldol reactions have been reported.¹⁰⁴⁶

Silyl enol ethers react with aldehydes in the presence of chiral boranes¹⁰⁴⁷ or other additives¹⁰⁴⁸ to give aldols with good asymmetric induction (see the Mukaiyama aldol reaction in **16-35**). Chiral boron enolates have been used.¹⁰⁴⁹ Since both new stereogenic centers are formed enantioselectively, this kind of process is called *double asymmetric synthesis*.¹⁰⁵⁰ Where both the enolate derivative and substrate were achiral, carrying out the reaction in the presence of an optically active boron compound¹⁰⁵¹ or a diamine coordinated with a tin compound¹⁰⁵² gives the aldol product with excellent enantioselectivity for one stereoisomer. Formation of the magnesium enolate anion of a chiral amide, adds to aldehydes to give the alcohol enantioselectively.¹⁰⁵³

Diamine protonic acids have been used for catalytic asymmetric aldol reaction.¹⁰⁵⁴ Boron triflate derivatives, R₂BOTf, have been used for the condensation of ketals and ketone to give β -alkoxy ketones.¹⁰⁵⁵

¹⁰⁴³Yoshikawa, N.; Yamada, Y.M.A.; Das, J.; Sasai, H.; Shibasaki, M. J. Am. Chem. Soc. 1999, 121, 4168.

¹⁰⁴⁴Kumagai, N.; Matsunaga, S.; Yoshikawa, N.; Ohshima, T.; Shibasaki, M. Org. Lett. 2001, 3, 1539; Yoshikawa, N.; Kumagai, N.; Matsunaga, S.; Moll, G.; Ohshma, T.; Suzuki, T.; Shibasaki, M. J. Am. Chem. Soc. 2001, 123, 2466; Trost, B.M.; Ito, H.; Silcoff, E.R. J. Am. Chem. Soc. 2001, 123, 3367.

¹⁰⁴⁵Dickerson, T.J.; Janda, K.D. J. Am. Chem. Soc. 2002, 124, 3220.

¹⁰⁴⁶Takikawa, H.; Ishihara, K.; Saito, S.; Yamamoto, H. *Synlett* **2004**, 732; Denmark, S.E.; Heemstra, Jr., J.R. *Synlett* **2004**, 2411.

¹⁰⁴⁷Ishihara, K.; Maruyama, T.; Mouri, M.; Gao, Q.; Furuta, K.; Yamamoto, H. *Bull. Chem. Soc. Jpn.* **1993**, *66*, 3483.

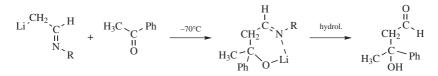
¹⁰⁴⁸Corey, E.J.; Cywin, C.L.; Roper, T.D. Tetrahedron Lett. 1992, 33, 6907.

¹⁰⁴⁹See Yoshida, K.; Ogasawara, M.; Hayashi, T. J. Org. Chem. 2003, 68, 1901.

¹⁰⁵⁰For a review, see Masamune, S.; Choy, W.; Petersen, J.S.; Sita, L.R. Angew. Chem. Int. Ed. **1985**, 24, 1.

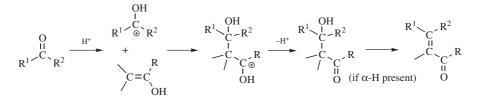
¹⁰⁵¹Corey, E.J.; Kim, S.S. J. Am. Chem. Soc. **1990**, 112, 4976; Furuta, K.; Maruyama, T.; Yamamoto, H. J. Am. Chem. Soc. **1991**, 113, 1041; Kiyooka, S.; Kaneko, Y.; Komura, M.; Matsuo, H.; Nakano, M. J. Org. Chem. **1991**, 56, 2276. For a review, see Bernardi, A.; Gennari, C.; Goodman, J.M.; Paterson, I. Tetrahedron Asymmetry **1995**, 6, 2613.

¹⁰⁵²Mukaiyama, T.; Uchiro, H.; Kobayashi, S. Chem. Lett. 1990, 1147.


¹⁰⁵³Evans, D.A.; Tedrow, J.S.; Shaw, J.T.; Downey, C.W. J. Am. Chem. Soc. 2002, 124, 392.

¹⁰⁵⁴Saito, S.; Nakadai, M.; Yamamoto, H. *Synlett* **2001**, 1245; Trost, B.M.; Fettes, A.; Shireman, B.T. *J. Am. Chem. Soc.* **2004**, *126*, 2660.

¹⁰⁵⁵Li, L.-S.; Das, S.; Sinha, S.C. Org. Lett. 2004, 6, 127.


CHAPTER 16

It is possible to make the α carbon of the aldehyde add to the carbonyl carbon of the ketone, by using an imine instead of an aldehyde, and LiN(*i*Pr)₂ as the base:¹⁰⁵⁶

This is known as a *directed aldol reaction*. Similar reactions have been performed with α -lithiated dimethylhydrazones of aldehydes or ketones¹⁰⁵⁷ and with α -lithiated aldoximes.¹⁰⁵⁸

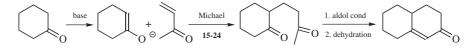
The aldol reaction can also be performed with acid catalysts, as mentioned above, in which case dehydration usually follows. Here, there is initial protonation of the carbonyl group, which attacks the α carbon of the *enol* form of the other molecule:¹⁰⁵⁹

With respect to the enol, this mechanism is similar to that of halogenation (12-4). A side reaction that is sometimes troublesome is further condensation, since the product of an aldol reaction is still an aldehyde or ketone. The aldol condensation of aldehydes has also been done using a mixture of pyrrolidine and benzoic acid.¹⁰⁶⁰

The intramolecular aldol condensation is well known, and aldol reactions are often used to close five- and six-membered rings. Because of the favorable entropy (p. 303), such ring closures generally take place with ease¹⁰⁶¹ when using hydroxide or alkoxide bases in protic solvents. In aprotic solvents with amide bases,

¹⁰⁶⁰Ishikawa, T.; Uedo, E.; Okada, S.; Saito, S. Synlett 1999, 450.

¹⁰⁶¹For rate and equilibrium constants, see Guthrie, J.P.; Guo, J. J. Am. Chem. Soc. **1996**, 118, 11472. For neighboring-group effects, see Eberle, M.K. J. Org. Chem. **1996**, 61, 3844.


¹⁰⁵⁶Wittig, G.; Frommeld, H.D.; Suchanek, P. Angew. Chem. Int. Ed. **1963**, 2, 683. For reviews, see Mukaiyama, T. Org. React. **1982**, 28, 203; Wittig, G. Top. Curr. Chem. **1976**, 67, 1; Rec. Chem. Prog. **1967**, 28, 45; Wittig, G.; Reiff, H. Angew. Chem. Int. Ed. **1968**, 7, 7; Reiff, H. Newer Methods Prep. Org. Chem. **1971**, 6, 48.

 ¹⁰⁵⁷Corey, E.J.; Enders, D. *Tetrahedron Lett.* 1976, 11. See also, Beam, C.F.; Thomas, C.W.; Sandifer, R.M.; Foote, R.S.; Hauser, C.R. *Chem. Ind. (London)* 1976, 487; Sugasawa, T.; Toyoda, T.; Sasakura, K. *Synth. Commun.* 1979, 9, 515; Depezay, J.; Le Merrer, Y. *Bull. Soc. Chim. Fr.* 1981, II-306.
 ¹⁰⁵⁸Hassner, A.; Näumann, F. *Chem. Ber.* 1988, 121, 1823.

¹⁰⁵⁹There is evidence (in the self-condensation of acetaldehyde) that a water molecule acts as a base (even in concentrated H₂SO₄) in assisting the addition of the enol to the protonated aldehyde: Baigrie, L.M.; Cox, R.A.; Slebocka-Tilk, H.; Tencer, M.; Tidwell, T.T. *J. Am. Chem. Soc.* **1985**, *107*, 3640.

formation of the enolate anion occurs by deprotonation of the more acidic site, followed by cyclization to the second carbonyl. The acid-catalyzed intramolecular aldol condensation is known, and the mechanism has been studied.¹⁰⁶² Stereoselective proline-catalyzed intramolecular aldol reactions give the cyclize product with good enantioselectivity.¹⁰⁶³

An important extension of the intramolecular aldol condensation is the *Robinson annulation* reaction,¹⁰⁶⁴ which has often been used in the synthesis of steroids and terpenes. In original versions of this reaction, a cyclic ketone is converted to another cyclic ketone under equilibrium conditions using hydroxide or alkoxide bases in a protic solvent, forming one additional six-membered ring containing a double bond. The reaction can be done in a stepwise manner using amide bases in aprotic solvents. In the reaction with hydroxide or alkoxide bases in alcohol or water solvents, the substrate is treated with methyl vinyl ketone (or a simple derivative of methyl vinyl ketone) and a base.¹⁰⁶⁵ The enolate ion of the substrate adds to the methyl vinyl ketone in a Michael reaction (**15-24**) to give a diketone that undergoes or is made to undergo an internal aldol

reaction and subsequent dehydration to give the product.¹⁰⁶⁶ The Robinson annulation can be combined with alkylation.¹⁰⁶⁷ Enantioselective Robinson annulation techniques have been developed, including a proline-catalyzed reaction.¹⁰⁶⁸ The Robinson annulation has been done in ionic liquids¹⁰⁶⁹ and a solvent-free version of the reaction is known.¹⁰⁷⁰

Because methyl vinyl ketone has a tendency to polymerize, precursors are often used instead, that is., compounds that will give methyl vinyl ketone when treated with a base. One common example, $MeCOCH_2CH_2NEt_2Me^+ I^-$ (see **17-9**), is easily prepared by quaternization of $MeCOCH_2CH_2NEt_2$, which itself is prepared

¹⁰⁶²Bouillon, J.-P.; Portella, C.; Bouquant, J.; Humbel, S. J. Org. Chem. 2000, 65, 5823.

¹⁰⁶³Bahmanyar, S.; Houk, K.N. J. Am. Chem. Soc. 2001, 123, 12911; Pidathala, C.; Hoang, L.; Vignola, N.; List, B. Angew. Chem. Int. Ed. 2003, 42, 2785.

¹⁰⁶⁶For improved procedures, see Sato, T.; Wakahara, Y.; Otera, J.; Nozaki, H. *Tetrahedron Lett.* **1990**, *31*, 1581, and references cited therein.

¹⁰⁶⁷Tai, C.-L.; Ly, T.W.; Wu, J.-D.; Shia, K.-S.; Liu, H.-J. Synlett 2001, 214.

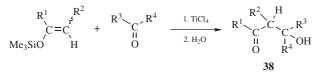
¹⁰⁶⁸Bui, T.; Barbas III, C.F. Tetrahedron Lett. 2000, 41, 6951; Rajagopal, D.; Narayanan, R.; Swaminathan, S. Tetrahedron Lett. 2001, 42, 4887.

¹⁰⁶⁹Morrison, D.W.; Forbes, D.C.; Davis Jr., J.H. Tetrahedron Lett. 2001, 42, 6053.

¹⁰⁷⁰Miyamoto, H.; Kanetaka, S.; Tanaka, K.; Yoshizawa, K.; Toyota, S.; Toda, F. Chem. Lett. 2000, 888.

¹⁰⁶⁴For reviews of this and related reactions, see Gawley, R.E. Synthesis **1976**, 777; Jung, M.E. Tetrahedron **1976**, 32, 1; Mundy, B.P. J. Chem. Educ. **1973**, 50, 110. For a list of references, see Larock, R.C. Comprehensive Organic Transformations, 2nd ed., Wiley-VCH, NY, **1999**, pp. 1356–1358.

¹⁰⁶⁵Acid catalysis has also been used: see Heathcock, C.H.; Ellis, J.E.; McMurry, J.E.; Coppolino, A. *Tetrahedron Lett.* **1971**, 4995.


by a Mannich reaction (**16-19**) involving acetone, formaldehyde, and diethylamine. α -Silylated vinyl ketones RCOC(SiMe₃)=CH₂ have also been used successfully in annulation reactions.¹⁰⁷¹ The SiMe₃ group is easily removed. 1,5-Diketones prepared in other ways are also frequently cyclized by internal aldol reactions. When the ring closure of a 1,5-diketone is catalyzed by the amino acid (*S*)-proline, the product is optically active with high enantiomeric excess.¹⁰⁷² *Stryker's reagent* ¹⁰⁷³[(Ph₃P)CuH]₆ has been used for an intramolecular addition where ketone enolate anion to a conjugated ketone, giving cyclic alcohol with a pendant ketone unit.¹⁰⁷⁴

OS I, 77, 78, 81, 199, 283, 341; II, 167, 214; III, 317, 353, 367, 747, 806, 829; V, 486, 869; VI, 496, 666, 692, 781, 901; VII, 185, 190, 332, 363, 368, 473; VIII, 87, 208, 241, 323, 339, 620; IX, 432, 610; X, 339.

16-35 Mukaiyama Aldol and Related Reactions¹⁰⁷⁵

O-Hydro-C-(α-acylalkyl)-addition

An important variation of the aldol condensation involves treatment of an aldehyde or ketone with a silyl ketene acetal $R_2C=C(OSiMe_3)OR'^{1076}$ in the presence of TiCl₄¹⁰⁷⁷, to give **38**. The silyl ketene acetal can be considered a preformed enolate that gives aldol product

with $TiCl_4$ in aqueous solution, or with no catalyst at all.¹⁰⁷⁸ A combination of $TiCl_4$ and a *N*-tosyl imine has also been used to facilitate the Mukaiyama aldol

¹⁰⁷¹Stork, G.; Singh, J. J. Am. Chem. Soc. **1974**, 96, 6181; Boeckman, Jr., R.K. J. Am. Chem. Soc. **1974**, 96, 6179.

¹⁰⁷²Eder, U.; Sauer, G.; Wiechert, R. Angew. Chem. Int. Ed. 1971, 10, 496; Hajos, Z.G.; Parrish, D.R. J. Org. Chem. 1974, 39, 1615. For a review of the mechanism, see Agami, C. Bull. Soc. Chim. Fr. 1988, 499.

¹⁰⁷³Mahoney, W.S.; Brestensky, D.M.; Stryker, J.M. J. Am. Chem. Soc. **1988**, 110, 291; Brestensky, D.M.; Stryker, J.M. Tetrahedron Lett. **1989**, 30, 5677.

¹⁰⁷⁴Chiu, P.; Szeto, C.-P.; Geng, Z.; Cheng, K.-F. Org. Lett. 2001, 3, 1901.

¹⁰⁷⁵See Smith, M.B. Organic Synthesis, 2nd ed., McGraw-Hill, NY, 2001, pp.755–759.

¹⁰⁷⁶For a list of references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, **1999**, pp. 1745–1752. For methods of preparing silyl ketene acetals, see Revis, A.; Hilty, T.K. *Tetrahedron Lett.* **1987**, 28, 4809, and references cited therein.

¹⁰⁷⁷Mukaiyama, T. Pure Appl. Chem. **1983**, 55, 1749; Kohler, B.A.B. Synth. Commun. **1985**, 15, 39; Mukaiyama, T.; Narasaka, K. Org. Synth., 65, 6. For a discussion of the mechanism, see Gennari, C.; Colombo, L.; Bertolini, G.; Schimperna, G. J. Org. Chem. **1987**, 52, 2754. For a review of this and other applications of TiCl₄ in organic synthesis, see Mukaiyama, T. Angew. Chem. Int. Ed. **1977**, 16, 817. See also, Reetz, M.T. Organotitanium Reagents in Organic Synthesis, Spinger, NY, **1986**.

¹⁰⁷⁸Lubineau, A.; Meyer, E. *Tetrahedron* 1988, 44, 6065; Miura, K.; Sato, H.; Tamaki, K.; Ito, H.; Hosomi,
 A. *Tetrahedron Lett.* 1998, 39, 2585. For an uncatalyzed reaction under high pressure, see Bellassoued,
 M.; Reboul, E.; Dumas, F. *Tetrahedron Lett.* 1997, 38, 5631.

reaction. ¹⁰⁷⁹ The mechanism of this reaction has been explored. ¹⁰⁸⁰ Other catalysts have been used for this reaction as well, including $InCl_3$, ¹⁰⁸¹ SmI₂, ¹⁰⁸² Sc(OTf)₃, ¹⁰⁸³ HgI₂, ¹⁰⁸⁴ Yb(OTf)₃, ¹⁰⁸⁵ Cu(OTf)₂, ¹⁰⁸⁶ [Cp₂Zr(Ot-Bu)THF]⁺[BPh₄]⁻, ¹⁰⁸⁷ LiClO₄, ¹⁰⁸⁸ VOCl₃, ¹⁰⁸⁹ an iron catalyst, ¹⁰⁹⁰ and Bi(OTf)₃. ¹⁰⁹¹ The reaction can be done in water using a scandium catalyst ¹⁰⁹² or a Montmorillonite K10 clay. ¹⁰⁹³ Silyl enol ethers react with aqueous formaldehyde in the presence of TBAF to give the aldol product. ¹⁰⁹⁴ A catalytic amount of Me₃SiCl facilitates the titanium mediated reaction. ¹⁰⁹⁵ Sulfonamides, such as HNTf₂, have been used as a catalyst¹⁰⁹⁶ as has pyridine *N*-oxide. ¹⁰⁹⁷ A combination of Ph₂BOH and benzoic acid in water catalyzes the reaction. ¹⁰⁹⁸ Lithium perchlorate in acetonitrile (5 *M*) can be used for the reaction of an aldehyde and a silyl enol ether. ¹⁰⁹⁹ When the catalyst is dibutyltin bis (triflate) Bu₂Sn(OTf)₂, aldehydes react, but not their acetals, while acetals of ketones react, but not the ketones themselves. ¹¹⁰⁰ Reaction at the carbonyl of saturated carbonyl compounds. ¹¹⁰¹ Propargylic acetals react with silyl enol ethers and a scandium catalyst to give β-alkoxy ketones. ¹¹⁰² Imines react with silyl enol ethers n the presence of BF₃•OEt₂ to give β-amino ketones. ¹¹⁰³

¹⁰⁷⁹Miura, K.; Nakagawa, T.; Hosomi, A. J. Am. Chem. Soc. 2002, 124, 536.

¹⁰⁸⁰Hollis, T.K.; Bosnich, B. J. Am. Chem. Soc. **1995**, 117, 4570. For the transition-state geometry, see Denmark, S.E.; Lee, W. J. Org. Chem. **1994**, 59, 707.

¹⁰⁸¹Loh, T.-P.; Pei, J.; Cao, G.-Q. *Chem. Commun.* **1996**, 1819; Kobayashi, S.; Busujima, T.; Nagayama, S. *Tetrahedron Lett.* **1998**, *39*, 1579. Both InCl₃ and CeCl₃ have been used in aqueous media, see Muñoz-Muñiz, O.; Quintanar-Audelo, M.; Juaristi, E. J. Org. Chem. **2003**, *68*, 1622.

¹⁰⁸²Van de Weghe, P.; Collin, J. Tetrahedron Lett. 1993, 34, 3881.

¹⁰⁸³Kobayashi, S.; Wakabayashi, T.; Nagayama, S.; Oyamada, H. *Tetrahedron Lett.* **1997**, *38*, 4559; Komoto, I.; Kobayashi, S. *Chem. Commun.* **2001**, 1842; Komoto, I.; Kobayashi, S. *J. Org. Chem.* **2004**, *69*, 680.

¹⁰⁸⁴Dicker, I.B. J. Org. Chem. 1993, 58, 2324.

¹⁰⁸⁵This catalyst is tolerated in water. See Kobayashi, S.; Hachiya, I. J. Org. Chem. 1994, 59, 3590.

¹⁰⁸⁶Kobayashi, S.; Nagayama, S.; Busujima, T. Chem. Lett. 1997, 959.

¹⁰⁸⁷Hong, Y.; Norris, D.J.; Collins, S. J. Org. Chem. 1997, 58, 3591.

¹⁰⁸⁸Reetz, M.T.; Fox, D.N.A. *Tetrahedron Lett.* **1993**, 34, 1119.

¹⁰⁸⁹Kurihara, M.; Hayshi, T.; Miyata, N. Chem. Lett. 2001, 1324.

¹⁰⁹⁰Bach, T.; Fox, D.N.A.; Reetz, M.T. J. Chem. Soc., Chem. Commun. 1992, 1634.

¹⁰⁹¹LeRoux, C.; Ciliberti, L.; Laurent-Robert, H.; Laporterie, A.; Dubac, J. Synlett 1998, 1249.

¹⁰⁹²Manabe, K.; Kobayashi, S. *Tetrahedron Lett.* **1999**, 40, 3773. For a discussion of the effect of surfactants on this reaction, see Tian, H.-Y.; Chen, Y.-J.; Wang, D.; Bu, Y.-P.; Li, C.-J. *Tetrahedron Lett.* **2001**, 42, 1803.

¹⁰⁹³Loh, T.-P.; Li, X.-R. Tetrahedron 1999, 55, 10789.

¹⁰⁹⁴Ozasa, N.; Wadamoto, M.; Ishihara, K.; Yamamoto, H. Synlett 2003, 2219.

¹⁰⁹⁵Yoshida, Y.; Matsumoto, N.; Hamasaki, R.; Tanabe, Y. Tetrahedron Lett 1999, 40, 4227.

¹⁰⁹⁶Ishihara, K.; Hiraiwa, Y.; Yamamoto, H. Synlett 2001, 1851.

¹⁰⁹⁷Denmark, S.E.; Fan, Y. J. Am. Chem. Soc. 2002, 124, 4233.

¹⁰⁹⁸Mori, Y.; Kobayashi, J.; Manabe, K.; Kobayashi, S. *Tetrahedron* 2002, 58, 8263.

¹⁰⁹⁹Sudha, R.; Sankararaman, S. J. Chem. Soc., Perkin Trans. 1 1999, 383.

¹¹⁰⁰Sato, T.; Otera, J.; Nozaki, H. J. Am. Chem. Soc. 1990, 112, 901.

¹¹⁰¹Shirakawa, S.; Maruoka, K. *Tetrahedron Lett.* **2002**, *43*, 1469.

¹¹⁰²Yoshimatsu, M.; Kuribayashi, M.; Koike, T. Synlett 2001, 1799.

¹¹⁰³Akiyama, T.; Takaya, J.; Kagoshima, H. Chem. Lett. 1999, 947.

RCH=CH(OTMS)SiMe₃ react with acetals in the presence of SnCl₄ to give β -alkoxy silvl ketones.¹¹⁰⁴

An interesting variation in this reaction combined an intermolecular Mukaiyama aldol followed by an intramolecular reaction (a "domino" Mukaiyama aldol) that gave cyclic conjugated ketone products.¹¹⁰⁵ Borane derivatives such as $C=C-OB(NMe_2)_2$ react with aldehydes to give β -amino ketones.¹¹⁰⁶

Silyl enol ethers¹¹⁰⁷ derived from esters (silyl ketene acetals) react with aldehydes in the presence of various catalysts to give β -hydroxy esters. Water accelerates the reaction of an aldehyde and a ketene silyl acetal with no other additives.¹¹⁰⁸ The reaction is catalyzed by triphenylphosphine¹¹⁰⁹ and also by SiCl₄ with a chiral bis(phosphoramide) catalyst.¹¹¹⁰ The reaction was done without a catalyst in an ionic liquid.¹¹¹¹ A vinylogous reaction is known that gives δ -hydroxy- α , β unsaturated esters.¹¹¹² Under different conditions, silyl ketene acetals of conjugated esters react with aldehydes to give conjugated lactones.¹¹¹³ Imines react with silyl ketene acetals in the presence of SmI₃ to give β -amino esters.¹¹¹⁴ Another variation converted a *N*-(1-trimethylsilyloxyvinyl) imine to a conjugated amide by initial reaction with 2 equivalents of *n*-butyllithium and a zirconium complex followed by reaction with an aldehyde.¹¹¹⁵ Silyl ketene acetals also undergo conjugate addition in reactions with conjugated ketones.¹¹¹⁶ Silyl ketene acetals of thio esters also react with aldehydes to give β -hydroxy thioesters.¹¹¹⁷

Asymmetric Mukaiyama aldol reactions and reactions of silyl ketene acetals have been reported, ¹¹¹⁸ usually using chiral additives¹¹¹⁹ although chiral auxiliaries

¹¹⁰⁷For a discussion of enantioselective deprotonation to form chiral silyl enol ethers, see Carswell, E.L.; Hayes, D.; Henderson, K.W.; Kerr, W.J.; Russell, C.J. *Synlett* **2003**, 1017.

¹¹⁰⁸Loh, T.-P.; Feng, L.-C.; Wei, L.-L. Tetrahedron 2000, 56, 7309.

¹¹⁰⁹Matsukawa, S.; Okano, N.; Imamoto, T. Tetrahedron Lett. 2000, 41, 103.

¹¹¹⁰Denmark, S.E.; Heemstra, Jr., J.R. Org. Lett. **2003**, *5*, 2303; Denmark, S.E.; Wynn, T.; Beutner, G.L. J. Am. Chem. Soc. **2002**, *124*, 13405.

¹¹¹¹In omim Cl, 1-octyl-3-methylimidazolium chloride or in bmim PF₆, 1-butyl-3-methylimidazolium hexafluorophosphate: Chen, S.-L.; Ji, S.-J.; Loh, T.-P. *Tetrahedron Lett.* **2004**, *45*, 375.

¹¹¹²Bluet, G.; Campagne, J.-M. J. Org. Chem. 2001, 66, 4293; Christmann, M.; Kalesse, M. Tetrahedron Lett. 2001, 42, 1269.

¹¹¹³Bluet, G.; Bazán-Tejeda, B.; Campagne, J.-M. Org. Lett. 2001, 3, 3807.

¹¹¹⁴Hayakawa, R.; Shimizu, M. Chem. Lett. 1999, 591.

¹¹¹⁵Gandon, V.; Bertus, P.; Szymoniak, J. Tetrahedron 2000, 56, 4467.

¹¹¹⁶Harada, T.; Iwai, H.; Takatsuki, H.; Fujita, K.; Kubu, M.; Oku, A. Org. Lett. 2001, 3, 2101.

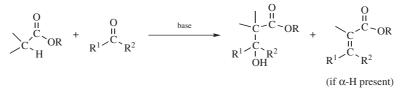
¹¹¹⁷Hamada, T.; Manabe, K.; Ishikawa, S.; Nagayama, S.; Shiro, M.; Kobayashi, S. J. Am. Chem. Soc. **2003**, *125*, 2989.

¹¹¹⁸Bach, T. Angew. Chem. Int. Ed. **1994**, 33, 417. For a discussion of stereocontrol, see Annunziata, R.; Cinquini, M.; Cozzi, F.; Cozzi, P.G.; Consolandi, E. J. Org. Chem. **1992**, 57, 456.

¹¹¹⁹For examples, see Kobayashi, S.; Kawasuji, T.; Mori, N. *Chem. Lett.* **1994**, 217; Kobayashi, S.; Uchiro, H.; Shiina, I.; Mukaiyama, T. *Tetrahedron* **1993**, 49, 1761; Mikami, K.; Matsukawa, S. *J. Am. Chem. Soc.* **1994**, 116, 4077; Kaneko, Y.; Matsuo, T.; Kiyooka, S. *Tetrahedron Lett.* **1994**, 35, 4107; Kiyooka, S.; Kido, Y.; Kaneko, Y. *Tetrahedron Lett.* **1994**, 35, 5243.

¹¹⁰⁴Honda, M.; Oguchi, W.; Segi, M.; Nakajima, T. Tetrahedron 2002, 58, 6815.

¹¹⁰⁵Langer, P.; Köhler, V. Org. Lett. 2000, 2, 1597.


¹¹⁰⁶Suginome, M.; Uehlin, L.; Yamamoto, A.; Murakami, M. Org. Lett. 2004, 6, 1167.

have also been used.¹¹²⁰ Chiral catalysts, usually transition-metal complexes using chiral ligands, are quite effective,¹¹²¹ but chiral bis(oxazolones)¹¹²² and chiral quaternary ammonium salts¹¹²³ have also been used. A zirconium BINOL complex gave good enantioselectivity in reactions of silyl ketene acetals, and also good anti selectivity in the product.¹¹²⁴ This reaction can also be run with the aldehyde or ketone in the form of its acetal R³R⁴C(OR')₂, in which case the product is the ether R¹COCHR₂CR³R⁴OR' instead of **38**.¹¹²⁵ Trichlorosilyl enol ethers react with aldehydes directly in the presence of a chiral phosphoramide to give the aldol with good syn selectivity and good enantioselectivity.¹¹²⁶ Vinylogous silyl ketene acetals with a chiral oxazolidinone auxiliary attached to the α -vinylic carbon react with aldehydes and TiCl₄ to give a δ -hydroxy- α , β -unsaturated amide (an acyl oxazolidinone).¹¹²⁷

Enol acetates and enol ethers also give this product when treated with acetals and $TiCl_4$ or a similar catalyst.¹¹²⁸ A variation of this condensation uses an enol acetate with an aldehyde in the presence of Et₂AlOEt to give the aldol product.¹¹²⁹

16-36 Aldol-Type Reactions between Carboxylic Acid Derivatives and Aldehydes or Ketones

 $O-Hydro-C-(\alpha-alkoxycarbonylalkyl)-addition; \quad \alpha-Alkoxycarbonylalkylidene-de-oxo-bisubstitution$

¹¹²⁰For an example, see Vasconcellos, M.L.; Desmaële, D.; Costa, P.R.R.; d'Angelo, J. *Tetrahedron Lett.* **1992**, *33*, 4921.

¹¹²¹Titanium complexes: Imashiro, R.; Kuroda, T. J. Org. Chem. 2003, 68, 974. Copper complexes: Kobayashi, S.; Nagayama, S.; Busujima, T. Tetrahedron 1999, 55, 8739. Lead complexes: Nagayama, S.; Kobayashi, S. J. Am. Chem. Soc 2000, 122, 11531. Cerium complexes: Kobayashi, S.; Hamada, T.; Nagayama, S.; Manabe, K. Org. Lett. 2001, 3, 165. Silver complexes: Yanagisawa, A.; Nakatsuka, Y.; Asakawa, K.; Kageyama, H.; Yamamoto, H. Synlett 2001, 69; Yanigisawa, A.; Nakatsuka, Y.; Asakawa, K.; Wadamoto, M.; Kageyama, H.; Yamamoto, H. Bull. Chem. Soc. Jpn. 2001, 74, 1477; Wadamoto, M.; Ozasa, N.; Yanigisawa, A.; Yamamoto, H. J. Org. Chem. 2003, 68, 5593. Zirconium complexes: Kobayashi, S.; Ishitani, H.; Yamashita, Y.; Ueno, M.; Shimizu, H. Tetrahedron 2001, 57, 861. Scandium complexes: Ishikawa, S.; Hamada, T.; Manabe, K.; Kobayashi, S. J. Am. Chem. Soc. 2004, 126, 12236.

¹¹²³Zhang, F.-Y.; Corey, E.J. Org. Lett. 2001, 3, 639.

¹¹²⁴Ishitani, H.; Yamashita, Y.; Shimizu, H.; Kobayashi, S. J. Am. Chem. Soc. 2000, 122, 5403.

¹¹²⁵Mukaiyama, T.; Kobayashi, S.; Murakami, M. *Chem. Lett.* **1984**, 1759; Murata, S.; Suzuki, M.; Noyori, R. *Tetrahedron* **1988**, 44, 4259. For a review of cross-coupling reactions of acetals, see Mukaiyama, T.; Murakami, M. *Synthesis* **1987**, 1043.

¹¹²⁶Denmark, S.E.; Pham, S.M. J. Org. Chem. 2003, 68, 5045; Denmark, S.E.; Stavenger, R.A. J. Am. Chem. Soc. 2000, 122, 8837; Denmark, S.E.; Ghosh, S.K. Angew. Chem. Int. Ed. 2001, 40, 4759.

¹¹²⁷Shirokawa, S.-i.; Kamiyama, M.; Nakamura, T.; Okada, M.; Nakazaki, A.; Hosokawa, S.; Kobayashi, S. J. Am. Chem. Soc. 2004, 126, 13604.

¹¹²⁸Kitazawa, E.; Imamura, T.; Saigo, K.; Mukaiyama, T. Chem. Lett. 1975, 569.

¹¹²⁹Mukaiyama, T.; Shibata, J.; Shimamura, T.; Shiina, I. Chem. Lett. 1999, 951.

In the presence of a strong base, the α carbon of a carboxylic ester or other acid derivative can condense with the carbonyl carbon of an aldehyde or ketone to give a β -hydroxy ester,¹¹³⁰ amide, and so on., which may or may not be dehydrated to the α , β -unsaturated derivative. This reaction is sometimes called the *Claisen reaction*,¹¹³¹ an unfortunate usage since that name is more firmly connected to 16-85. Early reactions used hydroxide or an alkoxide base in water or alcohol solvents, where self-condensation was the major process. Under such conditions, the aldehyde or ketone was usually chosen for its lack of an α -proton. Much better control of the reaction was achieved when amide bases in aprotic solvents, such as ether or THF, were used. The reaction of *tert*-butyl acetate and LDA¹¹³² in hexane or more commonly THF at -78° C gives the enolate anion of *tert*-butyl acetate,¹¹³³ (12-23, e.g., although self-condensation is occasionally a problem even here. Subsequent reaction a ketone provides a simple rapid alternative to the Reformatsky reaction (16-28) as a means of preparing β -hydroxy *tert*-butyl esters. It is also possible for the α carbon of an aldehyde or ketone to add to the carbonyl carbon of a carboxylic ester, but this is a different reaction (16-86) involving nucleophilic substitution and not addition to a C=O bond. It can, however, be a side reaction if the aldehyde or ketone has an α hydrogen.

Transition-metal mediated condensation of esters and aldehydes is known. The reaction of a thioester and an aryl aldehyde with TiCl₄–NBu₃, for example, gave a β -hydroxy thioester with good syn selectivity.¹¹³⁴ Selenoamides [RCH₂C(=Se)NR'₂] react with LDA and then an aldehyde to give β -hydroxy selenoamides.¹¹³⁵

Besides ordinary esters (containing an α hydrogen), the reaction can also be carried out with lactones and, as in **16-34**, with the γ position of α , β -unsaturated esters (vinylogy). The enolate anion of an amide can be condensed with an aldehyde.¹¹³⁶

There are a number of variations of the condensation reaction of acid derivatives. The reaction between a cyclic ketone having a pendant alkynyl ester unit and tetrabutylammonium fluoride leads to cyclization to a bicyclic alcohol with an exocyclic allene moiety.¹¹³⁷ A chain-extension reaction culminates in acyl addition of an ester enolate. The reaction of a β -keto ester, such as methyl 3-oxobutanote and EtZnCH₂I, leads to chain extension via a carbenoid-like insertion reaction (p. 803), which reacts with an aldehyde in a second step to give a methyl 3-oxopentanoate derivative with a –CH(OH)R group at C-2 relative to the ester carbonyl.¹¹³⁸

¹¹³⁵Murai, T.; Suzuki, A.; Kato, S. J. Chem. Soc., Perkin Trans. 1 2001, 2711.

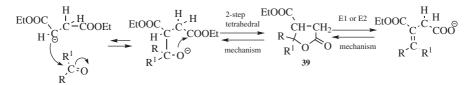
¹¹³⁰If the reagent is optically active because of the presence of a chiral sulfoxide group, the reaction can be enantioselective. For a review of such cases, see Solladié, G. *Chimia* **1984**, *38*, 233.

¹¹³¹Because it was discovered by Claisen, L. Ber. 1890, 23, 977.

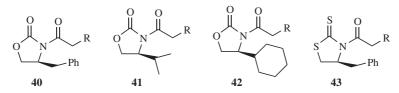
¹¹³²Huerta, F.F.; Bäckvall, J.-E. Org. Lett. 2001, 3, 1209.

¹¹³³Rathke, M.W.; Sullivan, D.F. J. Am. Chem. Soc. 1973, 95, 3050.

¹¹³⁴Tanabe, Y.; Matsumoto, N.; Funakoshi, S.; Manta, N. Synlett 2001, 1959.


¹¹³⁶For a case using CeCl₃ to promote the reaction, see Shang, X.; Liu, H-.J. *Synth. Commun.* **1994**, 24, 2485.

¹¹³⁷Wendling, F.; Miesch, M. Org. Lett. 2001, 3, 2689.


¹¹³⁸Lai, S.; Zercher, C.K.; Jasinski, J.P.; Reid, S.N.; Staples, R.J. Org. Lett. 2001, 3, 4169.

1356 ADDITION TO CARBON-HETERO MULTIPLE BONDS

For most esters, a much stronger base is needed than for aldol reactions; $(iPr)_2$ -NLi (LDA, p. 389), Ph₃CNa and LiNH₂ are among those employed. However, one type of ester reacts more easily, and such strong bases are not needed: diethyl succinate and its derivatives condense with aldehydes and ketones in the presence of bases such as NaOEt, NaH, or KOCMe₃. This reaction is called the *Stobbe condensation*.¹¹³⁹ One of the ester groups (sometimes both) is hydrolyzed in the course of the reaction. The following mechanism accounts for (*1*) the fact the succinic esters react so much better than others; (2) one ester group is always cleaved; and (3) the alcohol is not the product but the alkene. In addition, intermediate lactones **39** have been isolated from the mixture.¹¹⁴⁰ The Stobbe condensation has been extended to di-*tert*-butyl esters of glutaric acid.¹¹⁴¹ The boron-mediated reaction is known.¹¹⁴²

Chiral additives, such as diazaborolidines can be added to an ester, and subsequent treatment with a base and then an aldehyde leads to a chiral β -hydroxy ester.¹¹⁴³ A variety of chiral amide or oxazolidinone derivatives have been used to form amide linkages to carboxylic acid derivatives. These chiral auxiliaries lead to chirality transfer from the enolate anion of such derivatives, in both alkylation reactions and acyl substitution reactions with aldehydes and ketones. The so-called Evans auxiliaries (**40-42**) are commonly used and give good enantioselectivity.¹¹⁴⁴ A variation is the magnesium halide-catalyzed anti-aldol reaction of chiral *N*-acylthiazolidinethiones (see **43**).¹¹⁴⁵ The use of chiral *N*-acyloxazolidinthiones with TiCl₄ and sparteine also gave good selectivity in the acyl addition.¹¹⁴⁶ Chiral diazaboron derivatives have also been used to facilitate the condensation of a α -phenylthio ester with an aldehyde.¹¹⁴⁷

¹¹³⁹For a review, see Johnson, W.S.; Daub, G.H. Org. React. 1951, 6, 1.

- ¹¹⁴⁰Robinson, R.; Seijo, E. J. Chem. Soc. 1941, 582.
- ¹¹⁴¹Puterbaugh, W.H. *J. Org. Chem.* **1962**, 27, 4010. See also, El-Newaihy, M.F.; Salem, M.R.; Enayat, E.I.; El-Bassiouny, F.A. *J. Prakt. Chem.* **1982**, 324, 379.
- ¹¹⁴²For a review, see Abiko, A. Acc. Chem. Res. 2004, 37, 387.
- ¹¹⁴³Corey, E.J.; Choi, S. Tetrahedron Lett. 2000, 41, 2769.
- ¹¹⁴⁴Evans, D.A.; Takacs, J.M. *Tetrahedron Lett.* **1980**, *21*, 4233; Sonnet, P.E.; Heath, R.R. J. Org. Chem. **1980**, *45*, 3137; Evans, D.A.; Chapman, K.T.; Bisaha, J. *Tetrahedron Lett.* **1984**, *25*, 4071.
- ¹¹⁴⁵Evans, D.A.; Downey, C.W.; Shaw, J.T.; Tedrow, J.S. Org. Lett. 2002, 4, 1127.
- ¹¹⁴⁶Crimmins, M.T.; McDougall, P.J. Org. Lett. 2003, 5, 591.
- ¹¹⁴⁷Corey, E.J.; Choi, S. Tetrahedron Lett. 2000, 41, 2769.

The condensation of an ester enolate and a ketone¹¹⁴⁸ can be used as part of a Robinson annulation-like sequence (see **16-34**).

OS I, 252; III, 132; V, 80, 564; 70, 256; X, 437; 81, 157. Also see OS IV, 278, 478; V, 251.

16-37 The Henry Reaction¹¹⁴⁹

 CH_3NO_2 + HCHO \longrightarrow HOCH₂CH₂NO₂

When aliphatic nitro compounds are used instead of aldehydes or ketones, no reduction occurs, and the reaction has been referred to as a Tollens' reaction (see **16-43**). However, the classical condensation of an aliphatic nitro compound with an aldehyde or ketone is usually called the *Henry reaction*¹¹⁵⁰ or the *Kamlet reaction*, and is essentially a nitro aldol reaction. A variety of conditions have been reported, including the use of a silica catalyst,¹¹⁵¹ Mg–Al hydrotalcite,¹¹⁵² a tetraalkylammonium hydroxide,¹¹⁵³ proazaphosphatranes,¹¹⁵⁴ or an ionic liquid.¹¹⁵⁵ A solvent free Henry reaction was reported in which a nitroalkane and an aldehyde were reacted on KOH powder.¹¹⁵⁶ Potassium phosphate has been used with nitromethane and aryl aldehydes.¹¹⁵⁷ The Henry reaction has been done using ZnEt₂ and 20% ethanolamine.¹¹⁵⁸ A gel-entrapped base has been used to catalyze this reaction.¹¹⁵⁹

¹¹⁴⁸Posner, G.H.; Lu, S.; Asirvatham, E.; Silversmith, E.F.; Shulman, E.M. *J. Am. Chem. Soc.* **1986**, *108*, 511. For an extension of this work to the coupling of four components, see Posner, G.H.; Webb, K.S.; Asirvatham, E.; Jew, S.; Degl'Innocenti, A. *J. Am. Chem. Soc.* **1988**, *110*, 4754.

¹¹⁴⁹For a review of this reaction with respect to nitroalkanes (the *Henry reaction*, **16-37**), see Baer, H.H.; Urbas, L., in Feuer, H. *The Chemistry of the Nitro and Nitroso Groups*, Wiley, NY, **1970**, pp. 76–117. See also, Rosini, G.; Ballini, R.; Sorrenti, P. *Synthesis* **1983**, 1014; Matsumoto, K. *Angew. Chem. Int. Ed.* **1984**, 23, 617; Eyer, M.; Seebach, D. J. Am. Chem. Soc. **1985**, 107, 3601. For reviews of the nitroalkenes that are the products of this reaction, see Barrett, A.G.M.; Graboski, G.G. Chem. Rev. **1986**, 86, 751; Kabalka, G.W.; Varma, R.S. Org. Prep. Proced. Int. **1987**, 19, 283.

 ¹¹⁵⁰Henry, L. Compt. Rend. 1895, 120, 1265; Kamlet, J. U.S. Patent 2,151,171 1939 [Chem. Abstr., 33: 5003' 1939]; Hass, H.B.; Riley, E.F. Chem. Rev. 1943, 32, 373 (see p. 406); Lichtenthaler, F.W. Angew. Chem. Int. Ed. 1964, 3, 211. For a review, see Luzzio, F.A. Tetrahedron 2001, 57, 915.

¹¹⁵¹Demicheli, G.; Maggi, R.; Mazzacani, A.; Righi, P.; Sartori, G.; Bigi, F. *Tetrahedron Lett.* 2001, 42, 2401.

¹¹⁵²Bulbule, V.J.; Deshpande, V.H.; Velu, S.; Sudalai, A.; Sivasankar, S.; Sathe, V.T. *Tetrahedron* **1999**, 55, 9325.

¹¹⁵³Bulbule, V.J.; Jnaneshwara, G.K.; Deshmukh, R.R.; Borate, H.B.; Deshpande, V.H. *Synth. Commun.* **2001**, *31*, 3623.

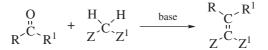
¹¹⁵⁴Kisanga, P.B.; Verkade, J.G. J. Org. Chem. 1999, 64, 4298.

¹¹⁵⁵In TMG Lac, tetramethylguanidinium lactate: Jiang, T.; Gao, H.; Han, B.; Zhao, G.; Chang, Y.; Wu, W.; Gao, L.; Yang, G. *Tetrahedron Lett.* **2004**, *45*, 2699.

¹¹⁵⁶Ballini, R.; Bosica, G.; Parrini, M. Chem. Lett. 1999, 1105.

¹¹⁵⁷Desai, U.V.; Pore, D.M.; Mane, R.B.; Solabannavar, S.B.; Wadgaonkar, P.P. Synth. Commun. 2004, 34, 19.

¹¹⁵⁸Klein, G.; Pandiaraju, S.; Reiser, O. Tetrahedron Lett. 2002, 43, 7503.


¹¹⁵⁹Bandgar, B.P.; Uppalla, L.S. Synth. Commun. 2000, 30, 2071.

Catalytic enantioselective Henry reactions are known,¹¹⁶⁰ such as the use of a chiral copper catalyst¹¹⁶¹ or a zinc catalyst.¹¹⁶² The Henry reaction of nitromethane an a chiral aldehyde under high pressure gives the β -nitro alcohol with excellent enantioselectivity.¹¹⁶³

A variation of this reaction converts nitro compounds to nitronates RCH=N⁺(OTMS)–O⁻, which react with aldehydes in the presence of a copper catalyst to give the β -nitro alcohol.¹¹⁶⁴

16-38 The Knoevenagel Reaction

Bis(ethoxycarbonyl)methylene-de-oxo-bisubstitution, and so on

The condensation of aldehydes or ketones, usually not containing an α hydrogen, with compounds of the form Z–CH₂–Z' or Z–CHR–Z' is called the *Knoevenagel reaction*.¹¹⁶⁵ Both Z and Z' may be CHO, COR, COOH, COOR, CN, NO₂, SOR, SO₂R, SO₂OR, or similar groups. Such compounds have a significantly higher enol content¹¹⁶⁶ and the α -proton is much more acidic (Table 8.1 on p. 360). When Z = COOH, decarboxylation of the product often takes place *in situ*.¹¹⁶⁷ If a strong enough base is used, the reaction can be performed on compounds possessing only a single Z (e.g., CH₃Z or RCH₂Z). Other active hydrogen compounds can also be employed, among them CHCl₃, 2-methylpyridines, terminal acetylenes, cyclopentadienes, and so on.; in fact any compound that contains a C–H bond the hydrogen of which can be removed by a base. As shown in the example, the reaction of β -keto esters and aldehydes to give **44** is promoted by diethylamine at 0°C. Nitroalkanes¹¹⁴⁹ as well as β -keto sulfoxides¹¹⁶⁸ undergo the reaction.

¹¹⁶⁰Christensen, C.; Juhl, K.; Jørgensen, K.A. *Chem. Commun.* 2001, 2222; Christensen, C.; Juhl, K.; Hazell, R.G.; Jørgensen, K.A. *J. Org. Chem.* 2002, 67, 4875.

- ¹¹⁶³Misumi, Y.; Matsumoto, K. Angew. Chem. Int. Ed. 2002, 41, 1031.
- ¹¹⁶⁴Risgaard, T.; Gothelf, K.V.; Jørgensen, K.A. Org. Biomol. Chem. 2003, 1, 153.
- ¹¹⁶⁵For reviews, see Jones, G. Org. React. 1967, 15, 204; Wilk, B.K. Tetrahedron 1997, 53, 7097.
- ¹¹⁶⁶Rochlin, E.; Rappoport, Z. J. Org. Chem. 2003, 68, 1715.

¹¹⁶¹Evans, D.A.; Seidel, D.; Rueping, M.; Lam, H.W.; Shaw, J.T.; Downey, C.W. *J. Am. Chem. Soc.* **2003**, *125*, 12692.

¹¹⁶²Trost, B.M.; Yeh, V.S.C. Angew. Chem. Int. Ed. 2002, 41, 861.

¹¹⁶⁷For a discussion of the mechanism when the reaction is accompanied by decarboxylation, see Tanaka, M.; Oota, O.; Hiramatsu, H.; Fujiwara, K. *Bull. Chem. Soc. Jpn.* **1988**, *61*, 2473.

¹¹⁶⁸Kuwajima, I.; Iwasawa, H. *Tetrahedron Lett.* **1974**, 107. See also, Huckin, S.N.; Weiler, L. *Can. J. Chem.* **1974**, 52, 2157.

As with **16-34**, these reactions have sometimes been performed with acid catalysts.¹¹⁶⁹ Ionic liquid solvents have been used,¹¹⁷⁰ and heating on quaternary ammonium salts without solvent leads to a Knoevenagel reaction.¹¹⁷¹ Other solvent-free reactions are known.¹¹⁷² Ultrasound has been used to promote the reaction,¹¹⁷³ and it has also been done using microwave irradiation¹¹⁷⁴ or on silica,¹¹⁷⁵ with microwave irradiation. Another solid-state variation is done on moist LiBr,¹¹⁷⁶ heating with sodium carbonate and molecular sieves 4 Å promotes the reaction,¹¹⁷⁷ as do zeolites.¹¹⁷⁸ High-pressure conditions have been used.¹¹⁷⁹ Transition-metal compounds such as palladium complexes,¹¹⁸⁰ SmI₂¹¹⁸¹ or BiCl₃¹¹⁸² have been used to promote the Knoevenagel reaction.

In the reaction with terminal acetylenes,¹¹⁸³ sodium acetylides are the most common reagents (when they are used, the reaction is often called the *Nef reaction*), but lithium,¹¹⁸⁴ magnesium, and other metallic acetylides have also been used. A particularly convenient reagent is lithium acetylide–ethylenediamine complex,¹¹⁸⁵ a stable, free-flowing powder that is commercially available. Alternatively, the substrate may be treated with the alkyne itself in the presence of

¹¹⁶⁹For example, see Rappoport, Z.; Patai, S. J. Chem. Soc. 1962, 731.

¹¹⁷⁰In bmim Cl, 1-butyl-3-methylimidazolium chloride, with AlCl₃: Harjani, J.R.; Nara, S.J.; Salunkhe, M.M. *Tetrahedron Lett.* **2002**, *43*, 1127. See Morrison, D.W.; Forbes, D.C.; Davis Jr., J.H. *Tetrahedron Lett.* **2001**, *42*, 6053. In bmim BF₄, 1-butyl-3-methylimidazolium tetrafluoroborate: Su, C.; Chen, Z.-C.; Zheng, Q.G. Synthesis **2003**, 555.

¹¹⁷¹Bose, D.S.; Narsaiah, A.V. J. Chem. Res. (S) 2001, 36.

¹¹⁷²McCluskey, A.; Robinson, P.J.; Hill, T.; Scott, J.L.; Edwards, J.K. *Tetrahedron Lett.* 2002, 43, 3117;
 Ren, Z.; Cao, W.; Tong, W. *Synth. Commun.* 2002, 32, 3475; Mogilaiah, K.; Prashanthi, M.; Reddy, G.R.;
 Reddy, Ch.S.; Reddy, N.V. *Synth. Commun.* 2003, 33, 2309; Zuo, W.-X.; Hua, R.; Qiu, X. *Synth. Commun.* 2004, 34, 3219.

¹¹⁷³McNulty, J.; Steeve, J.A.; Wolf, S. *Tetrahedron Lett.* **1998**, *39*, 8013; Li, J.-T.; Zang, H.-J.; Feng, Y.-Y.; Li, L.-J.; Li, T.-S. Synth. Commun. **2001**, *31*, 653.

¹¹⁷⁴de la Cruz, P.; Díez-Barra, E.; Loupy, A.; Langa, F. *Tetrahedron Lett.* 1996, 37, 1113; Mitra, A.K.; De,
 A.; Karchaudhuri, N. *Synth. Commun.* 1999, 29, 2731; Balalaie, S.; Nemati, N. *Synth. Commun.* 2000, 30,
 869; Loupy, A.; Song, S.-J.; Sohn, S.-M.; Lee, Y.-M.; Kwon, T.W.; J. Chem. Soc., Perkin Trans. 1 2001,
 1220; Yadav, J.S.; Reddy, B.V.S.; Basak, A.K.; Visali, B.; Narsaiah, A.V.; Nagaiah, K. Eur. J. Org. Chem.
 2004, 546.

¹¹⁷⁵Kumar, H.M.S.; Reddy, B.V.S.; Reddy, P.T.; Srinivas, D.; Yadav, J.S. Org. Prep. Proceed. Int. 2000, 32, 81; Peng, Y.; Song, G.; Qian, X. J. Chem. Res. (S) 2001, 188.

¹¹⁷⁶Prajapati, D.; Lekhok, K.C.; Sandhu, J.S.; Ghosh, A.C. J. Chem. Soc. Perkin Trans. 1 1996, 959.

¹¹⁷⁷Siebenhaar, B.; Casagrande, B.; Studer, M.; Blaser, H.-U. Can. J. Chem. 2001, 79, 566.

¹¹⁷⁸Reddy, T.I.; Varma, R.S. Tetrahedron Lett. 1997, 38, 1721.

¹¹⁷⁹Jenner, G. Tetrahedron Lett. 2001, 42, 243.

¹¹⁸⁰You, J.; Verkade, J.G. J. Org. Chem. 2003, 68, 8003.

¹¹⁸¹Chandrasekhar, S.; Yu, J.; Falck, J.R.; Mioskowski, C. Tetrahedron Lett. 1994, 35, 5441.

¹¹⁸²This catalyst was used in the reaction without solvent. See Prajapati, D.; Sandhu, J.S. *Chem. Lett.* **1992**, 1945.

¹¹⁸³For reviews, see Ziegenbein, W., in Viehe, H.G. *Acetylenes*, Marcel Dekker, NY, *1969*, pp. 207–241; Ried, W. *Newer Methods Prep. Org. Chem. 1968*, *4*, 95.

¹¹⁸⁴See Midland, M.M. J. Org. Chem. **1975**, 40, 2250, for the use of amine-free monolithium acetylide. ¹¹⁸⁵Beumel Jr., O.F.; Harris, R.F. J. Org. Chem. **1963**, 28, 2775. a base, so that the acetylide is generated *in situ*. This procedure is called the *Favorskii reaction*, not to be confused with the Favorskii rearrangement (18-7).¹¹⁸⁶

With most of these reagents the alcohol is not isolated (only the alkene) if the alcohol has a hydrogen in the proper position.¹¹⁸⁷ However, in some cases the alcohol is the major product. A β -keto allylic ester was shown to react with an aldehyde to give a β -hydroxy ketone, with loss of the allyl ester moiety, upon treatment with YbCl₃ and a palladium catalyst.¹¹⁸⁸ With suitable reactants, the Knoevenagel reaction, like the aldol (16-2), has been carried out diastereoselectively¹¹⁸⁹ and enantioselectively.¹¹⁹⁰ When the reactant is of the form ZCH₂Z', aldehydes react much better than ketones and few successful reactions with ketones have been reported. However, it is possible to get good yields of alkene from the condensation of diethyl malonate, CH₂(COOEt)₂, with ketones, as well as with aldehydes, if the reaction is run with TiCl₄ and pyridine in THF.¹¹⁹¹ In reactions with ZCH₂Z', the catalyst is most often a secondary amine (piperidine is the most common, but see formation of 44), though many other catalysts have been used. When the catalyst is pyridine (to which piperidine may or may not be added) the reaction is known as the Doebner *modification* of the Knoevenagel reaction and the product is usually the conjugated acid 45. Alkoxides are also common catalysts. Microwave-induced Doebner condensation reactions are known.¹¹⁹²

$$PrCHO + \begin{pmatrix} COOH \\ COOH \end{pmatrix} \xrightarrow{pyridine} PrHC \xrightarrow{H} \\ COOH \end{pmatrix} COOH 45$$

A number of special applications of the Knoevenagel reaction follow:

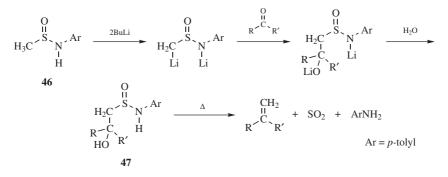
1. The dilithio derivative of *N*-methanesulfinyl-*p*-toluidine¹¹⁹³ (46) adds to aldehydes and ketones to give, after hydrolysis, the hydroxysulfinamides

¹¹⁸⁸Lou, S.; Westbrook J.A.; Schaus, S.E. J. Am. Chem. Soc. 2004, 126, 11440.

¹¹⁸⁹See, for example, Trost, B.M.; Florez, J.; Jebaratnam, D.J. J. Am. Chem. Soc. **1987**, 109, 613; Mahler,
 U.; Devant, R.M.; Braun, M. Chem. Ber. **1988**, 121, 2035; Ronan, B.; Marchalin, S.; Samuel, O.; Kagan,
 H.B. Tetrahedron Lett. **1988**, 29, 6101; Barrett, A.G.M.; Robyr, C.; Spilling, C.D. J. Org. Chem. **1989**, 54, 1233; Pyne, S.G.; Boche, G. J. Org. Chem. **1989**, 54, 2663.

¹¹⁸⁶For a discussion of the mechanism of the Favorskii addition reaction, see Kondrat'eva, L.A.; Potapova, I.M.; Grigina, I.N.; Glazunova, E.M.; Nikitin, V.I. *J. Org. Chem. USSR* **1976**, *12*, 948.

¹¹⁸⁷For lists of reagents (with references) that condense with aldehydes and ketones to give alkene products, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, **1999**, pp. 317–325, 341–350. For those that give the alcohol product, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, **1999**, pp. 1178–1179, 1540–1541, 1717–1724, 1727, 1732–1736, 1778–1780, 1801–1805.


 ¹¹⁹⁰See, for example, Enders, D.; Lotter, H.; Maigrot, N.; Mazaleyrat, J.; Welvart, Z. *Nouv. J. Chim.*, *1984*, 8, 747; Ito, Y.; Sawamura, M.; Hayashi, T. *J. Am. Chem. Soc. 1986*, *108*, 6405; Togni, A.; Pastor, S.D. *J. Org. Chem. 1990*, *55*, 1649; Sakuraba, H.; Ushiki, S. *Tetrahedron Lett. 1990*, *31*, 5349; Niwa, S.; Soai, K. *J. Chem. Soc. Perkin Trans. 1 1990*, 937.

¹¹⁹¹Lehnert, W. Tetrahedron 1973, 29, 635; Synthesis 1974, 667, and references cited therein.

¹¹⁹²Mitra, A.K.; De, A.; Karchaudhuri, N. *Synth. Commun.* **1999**, 29, 573; Pellón, R.F.; Mamposo, T.; González, E.; Calderón, O. *Synth. Commun.* **2000**, *30*, 3769.

¹¹⁹³For a method of preparing **46**, see Bowlus, S.B.; Katzenellenbogen, J.A. Synth. Commun. **1974**, 4, 137.

47, which, upon heating, undergo stereospecifically syn eliminations to give alkenes.¹¹⁹⁴ The reaction is thus a method for achieving the conversion RR'CO \rightarrow RR'C=CH₂ and represents an alternative to the Wittig reaction.¹¹⁹⁵ Note that sulfones with an amide group at the α -position, ArSO₂CH(R)N(R)C=O, react with ketones via acyl addition in the presence of SmI₂.¹¹⁹⁶

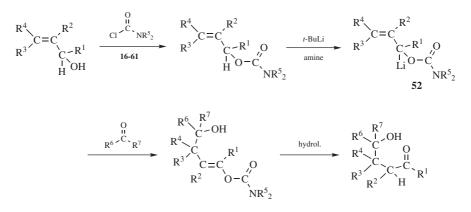
2. The reaction of ketones with tosylmethylisocyanide (**48**) gives different products, ¹¹⁹⁷ depending on the reaction conditions.

¹¹⁹⁴Corey, E.J.; Durst, T. J. Am. Chem. Soc. 1968, 90, 5548, 5553.

¹¹⁹⁵For similar reactions, see Jung, F.; Sharma, N.K.; Durst, T. J. Am. Chem. Soc. 1973, 95, 3420;
 Kuwajima, I.; Uchida, M. Tetrahedron Lett. 1972, 649; Johnson, C.R.; Shanklin, J.R.; Kirchhoff, R.A. J. Am. Chem. Soc. 1973, 95, 6462; Lau, P.W.K.; Chan, T.H. Tetrahedron Lett. 1978, 2383; Yamamoto, K.; Tomo, Y.; Suzuki, S. Tetrahedron Lett. 1980, 21, 2861; Martin, S.F.; Phillips, G.W.; Puckette, T.A.; Colapret, J.A. J. Am. Chem. Soc. 1980, 102, 5866; Arenz, T.; Vostell, M.; Frauenrath, H. Synlett 1991, 23.
 ¹¹⁹⁶Yoda, H.; Ujihara, Y.; Takabe, K. Tetrahedron Lett. 2001, 42, 9225.

¹¹⁹⁷For reviews of α-metalated isocyanides, see Schöllkopf, U. Pure Appl. Chem. **1979**, 51, 1347; Angew. Chem. Int. Ed. **1977**, 16, 339; Hoppe, D. Angew. Chem. Int. Ed. **1974**, 13, 789.

When the reaction is run with potassium *tert*-butoxide in THF at -5° C, one obtains (after hydrolysis) the normal Knoevenagel product **49**, except that the isocyano group has been hydrated (**16-97**).¹¹⁹⁸ With the same base but with 1,2-dimethoxyethane (DME) as solvent the product is the nitrile **50**.¹¹⁹⁹ When the ketone is treated with **48** and thallium(I) ethoxide in a 4:1 mixture of absolute ethanol and DME at room temperature, the product is a 4-ethoxy-2-oxazoline **51**.¹²⁰⁰ Since **50** can be hydrolyzed¹²⁰¹ to a carboxylic acid¹¹⁹⁸ and **51** to an α -hydroxy aldehyde,¹²⁰⁰ this versatile reaction provides a means for achieving the conversion of RCOR' to RCHR'COOH, RCHR'CN, or RCR'(OH)CHO. The conversions to RCHR'COOH and to RCHR'CN¹²⁰² have also been carried out with certain aldehydes (R' = H).


- **3.** Aldehydes and ketones RCOR' react with α -methoxyvinyllithium, CH₂=C(Li)OMe, to give hydroxy enol ethers, RR'C(OH)C(OMe)=CH₂, which are easily hydrolyzed to acyloins, RR'C(OH)COMe.¹²⁰³ In this reaction, the CH₂=C(Li)OMe is a synthon for the unavailable H₃C- $\overset{\bigcirc{}C}{C}$ =O,¹²⁰⁴ and is termed an *acyl anion equivalent*. The reagent also reacts with esters RCOOR' to give RC(OH)(COMe=CH₂)₂. A synthon for the Ph–C=O ion is PhC(CN)OSiMe₃, which adds to aldehydes and ketones RCOR' to give, after hydrolysis, the α -hydroxy ketones, RR'C(OH) *C*(*OH*)*COPh*.¹²⁰⁵
- **4.** Lithiated allylic carbamates (**52**) (prepared as shown) react with aldehydes or ketones ($\mathbb{R}^{6}\mathrm{COR}^{7}$), in a reaction accompanied by an allylic rearrangement, to give (after hydrolysis) γ -hydroxy aldehydes or ketones.¹²⁰⁶ The reaction is called *the homoaldol reaction*, since the product is a homolog of the product of **16-34**. The reaction has been performed enantioselectively.¹²⁰⁷

- ¹¹⁹⁹Oldenziel, O.H.; van Leusen, D.; van Leusen, A.M. J. Org. Chem. 1977, 42, 3114.
- ¹²⁰⁰Oldenziel, O.H.; van Leusen, A.M. *Tetrahedron Lett.* **1974**, 163, 167. For conversions to α,βunsaturated ketones and diketones, see, respectively, Moskal, J.; van Leusen, A.M. *Tetrahedron Lett.* **1984**, 25, 2585; van Leusen, A.M.; Oosterwijk, R.; van Echten, E.; van Leusen, D. *Recl. Trav. Chim. Pays-Bas* **1985**, 104, 50.
- ¹²⁰¹Compound **49** can also be converted to a nitrile; see **17-30**.
- ¹²⁰²van Leusen, A.M.; Oomkes, P.G. Synth. Commun. 1980, 10, 399.
- ¹²⁰³Baldwin, J.E.; Höfle, G.A.; Lever Jr., O.W. J. Am. Chem. Soc. **1974**, 96, 7125. For a similar reaction, see Tanaka, K.; Nakai, T.; Ishikawa, N. *Tetrahedron Lett.* **1978**, 4809.
- ¹²⁰⁴For a synthon for the [©]COCOOEt ion, see Reetz, M.T.; Heimbach, H.; Schwellnus, K. *Tetrahedron Lett.* **1984**, 25, 511.

- ¹²⁰⁶For a review, see Hoppe, D. Angew. Chem. Int. Ed. 1984, 23, 932.
- ¹²⁰⁷Krämer, T.; Hoppe, D. Tetrahedron Lett. 1987, 28, 5149.

 ¹¹⁹⁸Schöllkopf, U.; Schröder, U.; Blume, E. *Liebigs Ann. Chem.* 1972, 766, 130; Schöllkopf, U.; Schröder, U. Angew. Chem. Int. Ed. 1972, 11, 311.

¹²⁰⁵Hünig, S.; Wehner, G. Synthesis 1975, 391.

5. The lithium salt of an active hydrogen compound adds to the lithium salt of the tosylhydrazone of an aldehyde to give product 53. If X = CN, SPh, or SO₂R, 53 spontaneously loses N₂ and LiX to give the alkene 54. The entire process is done in one reaction vessel: The active hydrogen compound is mixed with the tosylhydrazone and the mixture is treated with $(iPr)_2NLi$ to form both salts at once.¹²⁰⁸ This process is another alternative to the Wittig reaction for forming double bonds.

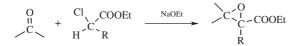
$$\begin{array}{c} \begin{array}{c} Li \\ I \\ N \\ N \\ R \\ C \\ H \end{array} \xrightarrow{N} T_{S} + \begin{array}{c} R' \\ H \\ C \\ X \end{array} \xrightarrow{-LiT_{S}} \begin{array}{c} Li - N \\ N \\ H \\ C \\ C \\ H \end{array} \xrightarrow{-LiT_{S}} \begin{array}{c} Li - N \\ N \\ H \\ C \\ C \\ C \\ K \end{array} \xrightarrow{-LiX} \begin{array}{c} H \\ C = C \\ R \\ R' \end{array} \xrightarrow{-LiX} \begin{array}{c} H \\ C = C \\ R \\ R' \end{array} \xrightarrow{-LiX} \begin{array}{c} H \\ C = C \\ R \\ R' \end{array} \xrightarrow{-LiX} \begin{array}{c} H \\ C = C \\ R \\ R' \end{array} \xrightarrow{-LiX} \begin{array}{c} H \\ C = C \\ R \\ R' \end{array} \xrightarrow{-LiX} \begin{array}{c} H \\ C = C \\ R \\ R' \end{array} \xrightarrow{-LiX} \begin{array}{c} H \\ C = C \\ R \\ R' \end{array} \xrightarrow{-LiX} \begin{array}{c} H \\ C = C \\ R \\ R' \end{array} \xrightarrow{-LiX} \begin{array}{c} H \\ C = C \\ R \\ R' \end{array} \xrightarrow{-LiX} \begin{array}{c} H \\ C = C \\ R \\ R' \end{array} \xrightarrow{-LiX} \begin{array}{c} H \\ C = C \\ R \\ R' \end{array} \xrightarrow{-LiX} \begin{array}{c} H \\ C = C \\ R' \\ R' \end{array} \xrightarrow{-LiX} \begin{array}{c} H \\ C = C \\ R' \\ R' \end{array} \xrightarrow{-LiX} \begin{array}{c} H \\ C = C \\ R' \\ R' \end{array} \xrightarrow{-LiX} \begin{array}{c} H \\ C = C \\ R' \\ R' \end{array} \xrightarrow{-LiX} \begin{array}{c} H \\ C = C \\ R' \\ R' \end{array} \xrightarrow{-LiX} \begin{array}{c} H \\ C = C \\ R' \\ R' \end{array} \xrightarrow{-LiX} \begin{array}{c} H \\ C = C \\ R' \\ R' \end{array} \xrightarrow{-LiX} \begin{array}{c} H \\ C = C \\ R' \\ R' \end{array} \xrightarrow{-LiX} \begin{array}{c} H \\ C = C \\ R' \\ R' \end{array} \xrightarrow{-LiX} \begin{array}{c} H \\ C = C \\ R' \\ R' \end{array} \xrightarrow{-LiX} \begin{array}{c} H \\ C = C \\ R' \\ R' \end{array} \xrightarrow{-LiX} \begin{array}{c} H \\ R' \\ C = C \\ R' \\ R' \end{array} \xrightarrow{-LiX} \begin{array}{c} H \\ R' \\ R' \\ R' \end{array} \xrightarrow{-LiX} \begin{array}{c} H \\ R' \\ R' \\ R' \end{array} \xrightarrow{-LiX} \begin{array}{c} H \\ R' \\ R' \\ R' \end{array} \xrightarrow{-LiX} \begin{array}{c} H \\ R' \\ R' \\ R' \\ R' \end{array} \xrightarrow{-LiX} \begin{array}{c} H \\ R' \\ R' \\ R' \\ R' \end{array} \xrightarrow{-LiX} \begin{array}{c} H \\ R' \\ R' \\ R' \\ R' \\ R' \end{array}$$

OS I, 181, 290, 413; II, 202; III, 39, 165, 317, 320, 377, 385, 399, 416, 425, 456, 479, 513, 586, 591, 597, 715, 783; IV, 93, 210, 221, 234, 293, 327, 387, 392, 408, 441, 463, 471, 549, 573, 730, 731, 777; V, 130, 381, 572, 585, 627, 833, 1088, 1128; VI, 41, 95, 442, 598, 683; VII, 50, 108, 142, 276, 381, 386, 456; VIII, 258, 265, 309, 353, 391, 420; X, 271. Also see, OS III, 395; V, 450.

16-39 The Perkin Reaction

α-Carboxyalkylidene-de-oxo-bisubstitution

The condensation of aromatic aldehydes with anhydrides is called the *Perkin* reaction.¹²⁰⁹ When the anhydride has two α hydrogens (as shown), dehydration


 ¹²⁰⁸Vedejs, E.; Dolphin, J.M.; Stolle, W.T. J. Am. Chem. Soc. 1979, 101, 249.
 ¹²⁰⁹For a review, see Johnson, J.R. Org. React. 1942, 1, 210.

always occurs; the β -hydroxy acid salt is never isolated. In some cases, anhydrides of the form (R₂CHCO)₂O have been used, and then the hydroxy compound is the product since dehydration cannot take place. The base in the Perkin reaction is nearly always the salt of the acid corresponding to the anhydride. Although the Na and K salts have been most frequently used, higher yields and shorter reaction times have been reported for the Cs salt.¹²¹⁰ Besides aromatic aldehydes, their vinylogs ArCH=CHCHO also give the reaction. Otherwise, the reaction is not suitable for aliphatic aldehydes.¹²¹¹

OS I, 398; II, 61, 229; III, 426.

16-40 Darzens Glycidic Ester Condensation

(2+1)OC, CC-cyclo- α -Alkoxycarbonylmethylene-addition

Aldehydes and ketones condense with α -halo esters in the presence of bases to give α,β -epoxy esters, called *glycidic esters*. This is called *the Darzens condensation*.¹²¹² The reaction consists of an initial Knoevenagel-type reaction (**16-38**), followed by an internal S_N^2 reaction (**10-9**):¹²¹³

Although the intermediate halo alkoxide is generally not isolated, ¹²¹⁴ it has been done, not only with α -fluoro esters (since fluorine is such a poor leaving group in nucleophilic substitutions), but also with α -chloro esters.¹²¹⁵ This is only one of several types of evidence that rule out a carbene intermediate.¹²¹⁶ Sodium ethoxide is often used as the base, though other bases, including sodium amide, are sometimes used. Aromatic aldehydes and ketones give good yields, but aliphatic aldehydes react poorly. However, the reaction can be made to give good yields

¹²¹⁰Koepp, E.; Vögtle, F. Synthesis 1987, 177.

¹²¹¹Crawford, M.; Little, W.T. J. Chem. Soc. 1959, 722.

¹²¹²For a review, see Berti, G. *Top. Stereochem.* **1973**, 7, 93, pp. 210–218. Also see Bakó, P.; Szöllősy, Á; Bombicz, P.; Töke, L. *Synlett* **1997**, 291.

¹²¹³For discussions of the mechanism of the reaction, and especially of the stereochemistry, see Roux-Schmitt, M.; Seyden-Penne, J.; Wolfe, S. *Tetrahedron* **1972**, *28*, 4965; Bansal, R.K.; Sethi, K. *Bull. Chem. Soc. Jpn.* **1980**, *53*, 1197.

¹²¹⁴The transition state for this reaction has been examined. See Yliniemelä, A.; Brunow, G.; Flügge, J.; Teleman, O. *J. Org. Chem.* **1996**, *61*, 6723.

¹²¹⁵Ballester, M.; Pérez-Blanco, D. J. Org. Chem. **1958**, 23, 652; Martynov, V.F.; Titov, M.I. J. Gen. Chem. USSR **1963**, 33, 1350; **1964**, 34, 2139; Elkik, E.; Francesch, C. Bull. Soc. Chim. Fr. **1973**, 1277, 1281.

¹²¹⁶Another, based on the stereochemistry of the products, is described by Zimmerman, H.E.; Ahramjian, L. J. Am. Chem. Soc. **1960**, 82, 5459.

(~80%) with simple aliphatic aldehydes, as well as with aromatic aldehydes and ketones by treatment of the α -halo ester with the base lithium bis(trimethylsilyl) amide, LiN(SiMe₃)₂, in THF at -78° C (to form the conjugate base of the ester) and addition of the aldehyde or ketone to this solution.¹²¹⁷ If a preformed dianion

of an α -halo carboxylic acid Cl– $\overset{\ominus}{C}$ R–COO $^{\ominus}$ is used instead, α , β -epoxy acids are produced directly.¹²¹⁸ The Darzens reaction has also been carried out on α -halo ketones, α -halo nitriles,¹²¹⁹ α -halo sulfoxides¹²²⁰ and sulfones,¹²²¹ α -halo *N*,*N*-disubstituted amides,¹²²² α -halo ketimines,¹²²³ and even on allylic¹²²⁴ and benzylic halides. Phase-transfer catalysis has been used.¹²²⁵ Note that the reaction of a β -bromo- α -oxo ester and a Grignard reagent leads to the glycidic ester.¹²²⁶ Acid-catalyzed Darzens reactions have also been reported.¹²²⁷ (see also, **16-46**).

The Darzens reaction has been performed enantioselectively, by coupling optically active α -bromo- β -hydroxy esters with aldehydes.¹²²⁸ Chiral phase-transfer agents have been used to give epoxy ketones with modest enantioselectivity.¹²²⁹ Chiral additives have proven to be effective.¹²³⁰

Glycidic esters can easily be converted to aldehydes (**12-40**). The reaction has been extended to the formation of analogous aziridines by treatment of an imine with an α -halo ester or an α -halo *N*,*N*-disubstituted amide and *t*-BuOK in the solvent 1,2-dimethoxyethane.¹²³¹ However, yields were not high.

OS III, 727; IV, 459, 649.

16-41 The Peterson Alkenylation Reaction

Alkylidene-de-oxo-bisubstitution

¹²¹⁷Borch, R.F. Tetrahedron Lett. 1972, 3761.

¹²¹⁸Johnson, C.R.; Bade, T.R. J. Org. Chem. 1982, 47, 1205.

¹²¹⁹See White, D.R.; Wu, D.K. J. Chem. Soc., Chem. Commun. 1974, 988.

¹²²⁰Satoh, T.; Sugimoto, A.; Itoh, M.; Yamakawa, K. Tetrahedron Lett. 1989, 30, 1083.

¹²²¹Arai, S.; Ishida, T.; Shioiri, T. Tetrahedron Lett. 1998, 39, 8299.

¹²²²Tung, C.C.; Speziale, A.J.; Frazier, H.W. J. Org. Chem. 1963, 28, 1514.

¹²²³Mauzé, B. J. Organomet. Chem. 1979, 170, 265.

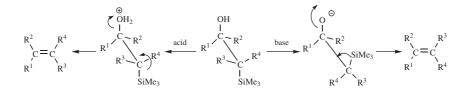
¹²²⁴Sulmon, P.; De Kimpe, N.; Schamp, N.; Declercq, J.; Tinant, B. J. Org. Chem. 1988, 53, 4457.

¹²²⁵See Jończyk, A.; Kwast, A.; Makosza, M. J. Chem. Soc., Chem. Commun. 1977, 902; Gladiali, S.; Soccolini, F. Synth. Commun. 1982, 12, 355; Arai, S.; Suzuki, Y.; Tokumaru, K.; Shioiri, T. Tetrahedron Lett. 2002, 43, 833. See Starks, C.M.; Liotta, C. Phase Transfer Catalysis, Academic Press, NY, 1978, pp. 197–198.

¹²²⁶Jung, M.E.; Mengel, W.; Newton, T.W. Synth. Commun. 1999, 29, 3659.

¹²²⁷Sipos, G.; Schöbel, G.; Sirokmán, F. J. Chem. Soc. Perkin Trans. 2 1975, 805.

¹²²⁸Corey, E.J.; Choi, S. *Tetrahedron Lett.* **1991**, *32*, 2857. For a review, see Ohkata, K.; Kimura, J.; Shinohara, Y.; Takagi, R.; Hiraga, Y. *Chem. Commun.* **1996**, 2411.


¹²²⁹Arai, S.; Shirai, Y.; Ishida, T.; Shioiri, T. Tetrahedron 1999, 55, 6375.

¹²³⁰Aggarwal, V.K.; Hynd, G.; Picoul, W.; Vasse, J.-L. J. Am. Chem. Soc. 2002, 124, 9964.

¹²³¹Deyrup, J.A. J. Org. Chem. 1969, 34, 2724.

1366 ADDITION TO CARBON–HETERO MULTIPLE BONDS

In the *Peterson alkenylation reaction*^{1232, 1233} the lithio (or sometimes magnesio) derivative of a trialkylsilane adds to an aldehyde or ketone to give a β -hydroxysilane, which spontaneously eliminates water, or can be made to do so by treatment with acid or base, to produce an alkene. This reaction is still another alternative to the Wittig reaction (**16-44**), and is sometimes called the *silyl-Wittig reaction*.¹²³⁴ The R group can also be a COOR group, in which case the product is an α , β -unsaturated ester,¹²³⁵ or an SO₂Ph group, in which case the product is a vinylic sulfone.¹²³⁶ The stereochemistry of the product can often be controlled by whether an acid or a base is used to achieve elimination. The role of Si–O interactions has also been examined.¹²³⁷ Use of a base generally gives syn elimination (Eⁱ mechanism, see p. 1507), while an acid usually results in anti elimination (E2 mechanism, see p. 1478).¹²³⁸ Samarium(II) iodide in HMPA has also been used for elimination of the hydroxy sulfone.¹²³⁹ α -Alkoxy benzotriazoyl sulfones (ROCH₂SO₂Bt, where Bt = benzothiazole, reacts with lithium hexamethyldisilazide and an aldehyde to give a vinyl ether.¹²⁴⁰

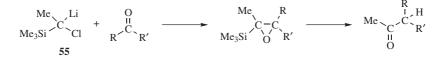
¹²³²Peterson, D.J. J. Org. Chem. **1968**, 33, 780. For reviews, see Ager, D.J. Org. React. **1990**, 38, 1; Synthesis **1984**, 384; Colvin, E.W. Silicon Reagents in Organic Synthesis, Academic Press, NY, **1988**, pp. 63–75; Weber, W.P. Silicon Reagents for Organic Synthesis, Springer, NY, **1983**, pp. 58–78; Magnus, P. Aldrichimica Acta **1980**, 13, 43; Chan, T. Acc. Chem. Res. **1977**, 10, 442. For a list of references, see Larock, R.C. Comprehensive Organic Transformations, 2nd ed., Wiley-VCH, NY, **1999**, pp. 337–341.

¹²³³For reviews of these compounds, see Poirier, J. Org. Prep. Proced. Int. **1988**, 20, 319; Brownbridge, P. Synthesis **1983**, 1–28, 85; Rasmussen, J.K. Synthesis **1977**, 91. For monographs on silicon reagents in organic synthesis see Colvin, E.W. Silicon Reagents in Organic Synthesis, Academic Press, NY, **1988**. For reviews, see Colvin, E.W., in Hartley, F.R.; Patai, S. The Chemistry of the Metal–Carbon Bond, Vol. 4, Wiley, NY, pp. 539–621; Ager, D.J. Chem. Soc. Rev. **1982**, 11, 493; Colvin, E.W. Chem. Soc. Rev. **1978**, 7, 15, pp. 43–50.

¹²³⁴For discussions of the mechanism, see Bassindale, A.R.; Ellis, R.J.; Lau, J.C.; Taylor, P.G. J. Chem. Soc. Perkin Trans. 2 **1986**, 593; Hudrlik, P.F.; Agwaramgbo, E.L.O.; Hudrlik, A.M. J. Org. Chem. **1989**, 54, 5613.

¹²³⁵Hartzell, S.L.; Sullivan, D.F.; Rathke, M.W. *Tetrahedron Lett.* 1974, 1403; Shimoji, K.; Taguchi, H.;
 Oshima, K.; Yamamoto, H.; Nozaki, H. J. Am. Chem. Soc. 1974, 96, 1620; Chan, T.H.; Moreland, M.
 Tetrahedron Lett. 1978, 515; Strekowski, L.; Visnick, M.; Battiste, M.A. *Tetrahedron Lett.* 1984, 25, 5603.
 ¹²³⁶Craig, D.; Ley, S.V.; Simpkins, N.S.; Whitham, G.H.; Prior, M.J. J. Chem. Soc. Perkin Trans. 1 1985, 1949.

¹²³⁷Bassindale, A.R.; Ellis, R.J.; Taylor, P.G. J. Chem. Res. (S) 1996, 34.

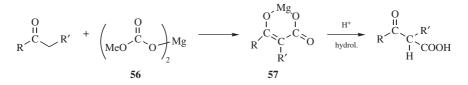

¹²³⁸See Colvin, E.W. Silicon Reagents in Organic Synthesis, Academic Press, NY, 1988, pp. 65–69.

¹²³⁹Markò, I.E.; Murphy, F.; Kumps, L.; Ates, A.; Touillaux, R.; Craig, D.; Carballares, S.; Dolan, S. *Tetrahedron* **2001**, *57*, 2609.

¹²⁴⁰Surprenant, S.; Chan, W.Y.; Berthelette, C. Org. Lett. 2003, 5, 4851.

CHAPTER 16

When aldehydes or ketones are treated with reagents of the form 55, the product is an epoxy silane (16-46), which can be hydrolyzed to a methyl ketone.¹²⁴¹ For aldehydes, this is a method for converting RCHO to a methyl ketone RCH₂COMe.


The reagents Me₃SiCHRM (M = Li or Mg) are often prepared from Me₃SiCHRCl¹²⁴² (by **12-38** or **12-39**), but they have also been made by **12-22** and by other procedures.¹²⁴³

A new version of the reaction has been developed, reacting $Me_3SiCH_2CO_2Et$ with an aldehyde and a catalytic amount of CsF in DMSO.¹²⁴⁴ A seleno-amide derivative has been used in a similar manner.¹²⁴⁵

There are no references in *Organic Syntheses*, but see OS **VIII**, 602, for a related reaction.

16-42 The Addition of Active Hydrogen Compounds to CO₂ and CS₂

α-Acylalkyl-de-methoxy-substitution (Overall reaction)

Ketones of the form RCOCH₃ and RCOCH₂R' can be carboxylated indirectly by treatment with magnesium methyl carbonate **56**.¹²⁴⁶ Because formation of the chelate **57** provides the driving force of the reaction, carboxylation cannot be achieved at a disubstituted α position. The reaction has also been performed on CH₃NO₂ and compounds of the form RCH₂NO₂¹²⁴⁷ and on certain lactones.¹²⁴⁸ Direct carboxylation has been reported in a number of instances. Ketones have

¹²⁴¹Cooke, F.; Roy, G.; Magnus, P. Organometallics 1982, 1, 893.

¹²⁴²For a review of these reagents, see Anderson, R. Synthesis 1985, 717.

¹²⁴³See, for example, Ager, D.J. J. Chem. Soc. Perkin Trans. 1 1986, 183; Barrett, A.G.M.; Flygare, J.A. J. Org. Chem. 1991, 56, 638.

¹²⁴⁴Bellassoued, M.; Ozanne, N. J. Org. Chem. 1995, 60, 6582.

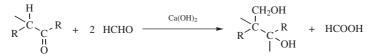
¹²⁴⁵Murai, T.; Fujishima, A.; Iwamoto, C.; Kato, S. J. Org. Chem. 2003, 68, 7979.

¹²⁴⁶Stiles, M. J. Am. Chem. Soc. **1959**, 81, 2598; Ann. N.Y. Acad. Sci. **1960**, 88, 332; Crombie, L.; Hemesley, P.; Pattenden, G. Tetrahedron Lett. **1968**, 3021.

¹²⁴⁷Finkbeiner, H.L.; Stiles, M. J. Am. Chem. Soc. **1963**, 85, 616; Finkbeiner, H.L.; Wagner, G.W. J. Org. Chem. **1963**, 28, 215.

¹²⁴⁸Martin, J.; Watts, P.C.; Johnson, F. Chem. Commun. 1970, 27.

been carboxylated in the α position to give β -keto acids.¹²⁴⁹ The base here was lithium 4-methyl-2,16-di-*tert*-butylphenoxide.


Ketones RCOCH₂R' (as well as other active hydrogen compounds) undergo base-catalyzed addition to CS_2^{1250} to give a dianion intermediate RCOC⁻R'CSS²⁻, which can be dialkylated with a halide R²X to produce α -dithiomethylene ketones, RCOCR'=C(SR²)₂.¹²⁵¹ Compounds of the form ZCH₂Z' also react with bases and CS₂ to give analogous dianions.¹²⁵²

Although reactions with N=O derivatives do not formally fall into this category of reactions, it is somewhat related. Nitroso compounds react with activated nitriles in the presence of LiBr and microwave irradiation to give a cyano imine, ArN=C(CN)Ar.¹²⁵³ This transformation has been called the *Ehrlich–Sachs reaction*.¹²⁵⁴


OS VII, 476. See also, OS VIII, 578.

16-43 Tollens' Reaction

O-Hydro-C(β-hydroxyalkyl)-addition

In the *Tollens' reaction* an aldehyde or ketone containing an α hydrogen is treated with formaldehyde in the presence of Ca(OH)₂ or a similar base. The first step is a mixed aldol reaction (**16-34**).

The reaction can be stopped at this point, but more often a second equivalent of formaldehyde is permitted to reduce the newly formed aldol to a 1,3-diol, in a crossed Cannizzaro reaction (**19-81**). If the aldehyde or ketone has several α hydrogens, they can all be replaced. An important use of the reaction is to prepare pentaerythritol from acetaldehyde:

 $CH_3CHO + 4 HCHO \longrightarrow C(CH_2OH)_4 + HCOOH$

¹²⁴⁹Tirpak, R.E.; Olsen, R.S.; Rathke, M.W. J. Org. Chem. **1985**, 50, 4877. For an enantioselective version, see Hogeveen, H.; Menge, W.M.P.B. Tetrahedron Lett. **1986**, 27, 2767.

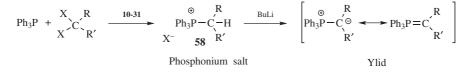
¹²⁵⁰For reviews of the reactions of CS₂ with carbon nucleophiles, see Dunn, A.D.; Rudorf, W. *Carbon Disulphide in Organic Chemistry*, Ellis Horwood, Chichester, **1989**, pp. 120–225; Yokoyama, M.; Imamoto, T. *Synthesis* **1984**, 797, pp. 797–804.

¹²⁵¹See, for example, Corey, E.J.; Chen, R.H.K. Tetrahedron Lett. 1973, 3817.

¹²⁵²Jensen, L.; Dalgaard, L.; Lawesson, S. *Tetrahedron* **1974**, *30*, 2413; Konen, D.A.; Pfeffer, P.E.; Silbert, L.S. *Tetrahedron* **1976**, *32*, 2507, and references cited therein.

¹²⁵³Laskar, D.D.; Prajapati, D.; Sandhu, J.S. Synth. Commun. 2001, 31, 1427.

¹²⁵⁴Ehrlich, P.; Sachs, F. Chem. Ber. 1899, 32, 2341


OS I, 425; IV, 907; V, 833.

16-44 The Wittig Reaction

Alkylidene-de-oxo-bisubstitution

In the *Wittig reaction* an aldehyde or ketone is treated with a *phosphorus ylid* (also spelled ylide and called a *phosphorane*) to give an alkene.¹²⁵⁵ The conversion of a carbonyl compound to an alkene with a phosphorus ylid is called the *Wittig reaction*. Phosphorus ylids are usually prepared by treatment of a phosphonium salt with a base,¹²⁵⁶ and phosphonium salts are usually prepared from a triaryl phosphine and an alkyl halide (**10-31**):

The reaction of triphenylphosphine and an alkyl halides is facilitated by the use of microwave irradiation.¹²⁵⁷ Indeed, the Wittig reaction itself is assisted by microwave irradiation.¹²⁵⁸ Phosphonium salts are also prepared by addition of phosphines to Michael alkenes (like **15-8**) and in other ways. The phosphonium salts are most often converted to the ylids by treatment with a strong base such as

¹²⁵⁵For a general treatise, see Cadogan, J.I.G. Organophosphorus Reagents in Organic Synthesis, Academic Press, NY, 1979. For a monograph on the Wittig reaction, see Johnson, A.W. Ylid Chemistry, Academic Press, NY, 1966. For reviews, see Maryanoff, B.E.; Reitz, A.B. Chem. Rev. 1989, 89, 863; Bestmann, H.J.; Vostrowsky, O. Top. Curr. Chem. 1983, 109, 85; Pommer, H.; Thieme, P.C. Top. Curr. Chem. 1983, 109, 165; Pommer, H. Angew. Chem. Int. Ed. 1977, 16, 423; Maercker, A. Org. React. 1965, 14, 270; House, H.O. Modern Synthetic Reactions, 2nd ed., W.A. Benjamin, NY, 1972, pp. 682-709; Lowe, P.A. Chem. Ind. (London) 1970, 1070; Bergelson, L.D.; Shemyakin, M.M., in Patai, S. The Chemistry of Carboxylic Acids and Esters, Wiley, NY, 1969, pp. 295–340; Newer Methods Prep. Org. Chem. 1968, 5, 154. For related reviews, see Tyuleneva, V.V.; Rokhlin, E.M.; Knunyants, I.L. Russ. Chem. Rev. 1981, 50, 280; Starks, C.M.; Liotta, C. Phase Transfer Catalysis, Academic Press, NY, 1978, pp. 288-297; Weber, W.P.; Gokel, G.W. Phase Transfer Catalysis in Organic Synthesis, Springer, NY, 1977; pp. 234-241; Zbiral, E. Synthesis 1974, 775; Bestmann, H.J. Bull. Soc. Chim. Fr. 1971, 1619; Angew. Chem. Int. Ed. 1965, 4, 583, 645–660, 830–838; Newer Methods Prep. Org. Chem. 1968, 5, 1; Horner, L. Fortschr. Chem. Forsch., 1966, 7, 1. For a historical background, see Wittig, G. Pure Appl. Chem. 1964, 9, 245. For a list of reagents and references for the Wittig and related reactions, see Larock, R.C. Comprehensive Organic Transformations, 2nd ed., Wiley-VCH, NY, 1999, pp. 327-337.

¹²⁵⁶When phosphonium *fluorides* are used, no base is necessary, as these react directly with the substrate to give the alkene: Schiemenz, G.P.; Becker, J.; Stöckigt, J. *Chem. Ber.* **1970**, *103*, 2077.

¹²⁵⁷Kiddle, J.J. *Tetrahedron Lett.* **2000**, *41*, 1339.

 ¹²⁵⁸Frattini, S.; Quai, M.; Cereda, E. *Tetrahedron Lett.* 2001, 42, 6827.; Wu, J.; Wu, H.; Wei, S.; Dai, W.-M. *Tetrahedron Lett.* 2004, 45, 4401.

butyllithium, sodium amide,¹²⁵⁹ sodium hydride, or a sodium alkoxide, though weaker bases can be used if the salt is acidic enough. Unusual bases such as 1,5,7-triazabicyclo [4.4.0]dec-5-ene have been used to promote the Wittig reaction.¹²⁶⁰ In some cases, and excess of fluoride ion is sufficient.¹²⁶¹ For $(Ph_3P^+)_2CH_2$, sodium carbonate is a strong enough base.¹²⁶² When the base used does not contain lithium, the ylid is said to be prepared under "salt-free" conditions¹²⁶³ because the lithium halide (where the halide counterion comes from the phosphonium salt) is absent.

When the phosphorus ylid reacts with the aldehyde or ketone to form an alkene, a phosphine oxide is also formed. When triphenylphosphine is used to give Ph₃P=CRR', for example, the by-product is triphenylphosphine oxide, Ph₃PO, which is sometimes difficult to separate from the other reaction products. Ylids are usually prepared from triphenylphosphine, but other triarylphosphines,¹²⁶⁴ trialkylphosphines,¹²⁶⁵ and triphenylarsine¹²⁶⁶ have also been used. Tellurium ylids have been prepared *in situ* from α -halo esters and BrTeBu₂OTeBu₂Br and react with aldehydes to give conjugated esters.¹²⁶⁷ Polymer-bound aryldiphenylphosphino compounds¹²⁶⁸ have been used in reactions with alkyl halides to complete a Wittig reaction. Phosphines that have an α -hydrogen should be avoided, so that reaction with the chosen alkyl halide will lead to a phosphonium salt (**58**) with the α -proton at the desired position. This limitation is essential if a specific ylid is to be formed from the alkyl halide precursor. The Wittig reaction has been carried out with polymer-supported ylids.¹²⁶⁹ It has also been done on silica gel.¹²⁷⁰

If we view the Wittig reaction from an alkyl halide starting material (alkyl halide phosphonium salt \rightarrow phosphorus ylid \rightarrow alkene), the halogen-bearing carbon of an alkyl halide must contain at least one hydrogen as in **59** (for deprotonation at the phosphonium salt stage).

¹²⁵⁹For a convenient method of doing this that results in high yields, see Schlosser, M.; Schaub, B. *Chimia* **1982**, *36*, 396.

¹²⁶⁰Simoni, D.; Rossi, M.; Rondanin, R.; Mazzali, A.; Baruchello, R.; Malagutti, C.; Roberti, M.; Invidiata, F.P. Org. Lett. 2000, 2, 3765.

¹²⁶¹Kobayashi, T.; Eda, T.; Tamura, O.; Ishibashi, H. J. Org. Chem. 2002, 67, 3156.

¹²⁶²Ramirez, F.; Pilot, J.F.; Desai, N.B.; Smith, C.P.; Hansen, B.; McKelvie, N. J. Am. Chem. Soc. 1967, 89, 6273.

¹²⁶³Bestmann, H.J. Angew. Chem. Int. Ed. 1965, 4, 586.

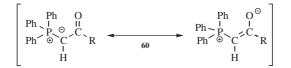
¹²⁶⁴Schiemenz, G.P.; Thobe, J. Chem. Ber. 1966, 99, 2663.

¹²⁶⁵For example, see Johnson, A.W.; LaCount, R.B. *Tetrahedron* **1960**, *9*, 130; Bestmann, H.J.; Kratzer, O. *Chem. Ber.* **1962**, *95*, 1894.

¹²⁶⁶An arsenic ylid has been used in a catalytic version of the Wittig reaction; that is, the R₃AsO product is constantly regenerated to produce more arsenic ylid: Shi, L.; Wang, W.; Wang, Y.; Huang, Y. *J. Org. Chem.* **1989**, *54*, 2027; Huang, Z.-Z.; Huang, X.; Huang, Y.-Z. *Tetrahedron Lett.* **1995**, *36*, 425.

¹²⁶⁷Huang, Z.-Z.; Tang, Y. J. Org. Chem. 2002, 67, 5320.

¹²⁶⁸Betancort, J.M.; Barbas III, C.F. Org. Lett. 2001, 3, 3737.


¹²⁶⁹Bernard, M.; Ford, W.T.; Nelson, E.C. J. Org. Chem. 1983, 48, 3164.

¹²⁷⁰Patil, V.J.; Mävers, U. Tetrahedron Lett. 1996, 37, 1281.

CHAPTER 16

The reaction is very general.¹²⁷¹ The aldehyde or ketone may be aliphatic, alicyclic, or aromatic (including diaryl ketones). Wittig reactions in which the ylid and/or the carbonyl substrate contain double or triple bonds; it may contain various functional groups, such as OH, OR, NR₂, aromatic nitro or halo, acetal, amide,¹²⁷² or even ester groups.¹²⁷³ Note, however, that a Wittig reaction has been reported in which the carbonyl group of an ester was converted to a vinyl ether.¹²⁷⁴ An important advantage of the Wittig reaction is that the *position* of the new double bond is always certain, in contrast to the result in most of the base-catalyzed condensations (16-34-16-43). Ylids have been shown to react with lactones, however, to form ω-alkenyl alcohols.¹²⁷⁵ β-Lactams have also been converted to alkenyl-azetidine derivatives using phosphorus ylids.¹²⁷⁶ Double or triple bonds *conjugated* with the carbonyl also do not interfere, the attack being at the C=O carbon. The carbonyl partner can be generated in situ, in the presence of an ylid; the reaction of an alcohol with a mixture of an oxidizing agent and an ylid generates an alkene. Oxidizing agents used in this manner include BaMnO₄,¹²⁷⁷ MnO₂,¹²⁷⁸ and PhI(OAc)₂.¹²⁷⁹ Polyhalomethanes, such as CBr₃F, react with triphenylphosphine in the presence of diethylzinc and an aldehyde or ketone to give the gem-dihaloalkene, $RCH(R') = CF(Br).^{1280}$

The phosphorus ylid may also contain double or triple bonds and certain functional groups. Simple ylids (R, R' = hydrogen or alkyl) are highly reactive, reacting with oxygen, water, hydrohalic acids, and alcohols, as well as carbonyl compounds and carboxylic esters, so the reaction must be run under conditions where these materials are absent. When an electron-withdrawing group, for example, COR, CN, COOR, CHO, is present in the α position, the ylids are much more stable, because the charge on the carbon is delocalized by resonance as in **60**.

¹²⁷¹For a discussion of a cooperative ortho effect, see Dunne, E.C.; Coyne, É.J.; Crowley, P.B.; Gilheany, D.G. *Tetrahedron Lett.* **2002**, *43*, 2449.

¹²⁷²Smith, M.B.; Kwon, T.W. Synth. Commun. 1992, 22, 2865. For the reaction of an acyl imidazole ylid, see Matsunaga, S.; Kinoshita, T.; Okada, S.; Harada, S.; Shibasaki, M. J. Am. Chem. Soc. 2004, 126, 7559.
 ¹²⁷³For an example, see Harcken, C.; Martin, S.F. Org. Lett. 2001, 3, 3591; Yu, X.; Huang, X. Synlett 2002, 1895. Although phosphorus ylids also react with esters, that reaction is too slow to interfere: Greenwald,

R.; Chaykovsky, M.; Corey, E.J. J. Org. Chem. 1963, 28, 1128.

¹²⁷⁴Tsunoda, T.; Takagi, H.; Takaba, D.; Kaku, H.; Itô, S. Tetrahedron Lett. 2000, 41, 235.

¹²⁷⁵Brunel, Y.; Rousseau, G. Tetrahedron Lett. 1996, 37, 3853.

¹²⁷⁶Baldwin, J.E.; Edwards, A.J.; Farthing, C.N.; Russell, A.T. Synlett 1993, 49.

¹²⁷⁷Shuto, S.; Niizuma, S.; Matsuda, A. J. Org. Chem. 1998, 63, 4489.

¹²⁷⁸Reid, M.; Rowe, D.J.; Taylor, R.J.K. *Chem. Commun.* **2003**, 2284; Blackburn, L.; Pei, C.; Taylor, R.J.K. *Synlett* **2002**, 215; Raw, S.A.; Reid, M.; Roman, E.; Taylor, R.J.K. *Synlett* **2004**, 819.

¹²⁷⁹Zhang, P.-F.; Chen, Z.-C. Synth. Commun. 2001, 31, 1619.

¹²⁸⁰Lei, X.; Dutheuil, G.; Pannecoucke, X.; Quirion, J.-C. Org. Lett. 2004, 6, 2101.

Such ylids react readily with aldehydes, but slowly or not at all with ketones.¹²⁸¹ In extreme cases (e.g., **61**), the

ylid does not react with ketones *or* aldehydes. Besides these groups, the ylid may contain one or two α halogens¹²⁸² or an α OR or OAr group. In the latter case, the product is an enol ether, which can be hydrolyzed

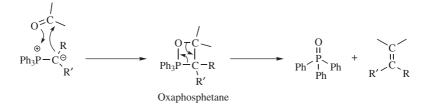
$$R^{2}OCH_{2}Cl \xrightarrow{Ph_{3}P} R^{2}OCH_{2}PPh_{3} \xrightarrow{1. base} R^{2}OHC = C$$
, $R \xrightarrow{R'} hydrol.$, $R' \xrightarrow{H'} CHO$

(10-6) to an aldehyde,¹²⁸³ so that this reaction is a means of achieving the conversion RCOR' \rightarrow RR'CHCHO.¹²⁸⁴ However, the ylid may not contain an α nitro group. If the phosphonium salt contains a potential leaving group, such as Br or OMe, in the β position, treatment with a base gives elimination, instead of the ylid:

$$Ph_3^{\oplus}PCH_2CH_2Br \longrightarrow Ph_3^{\oplus}PCH=CH_2$$

However, a β COO⁻ group may be present, and the product is a β , γ -unsaturated acid:¹²⁸⁵ This is the only convenient way to make these compounds, since elimination by any other route gives the thermodynamically more stable α , β -unsaturated isomers. This is an illustration of the utility of the Wittig method for the specific location of a double bond. Another illustration is the conversion of cyclohexanones to alkenes containing exocyclic double bonds, for example,¹²⁸⁶

¹²⁸¹For successful reactions of stabilized ylids with ketones, under high pressure, see Isaacs, N.S.; El-Din, G.N. *Tetrahedron Lett.* **1987**, 28, 2191. See also, Dauben, W.G.; Takasugi, J.J. *Tetrahedron Lett.* **1987**, 28, 4377.


¹²⁸²Seyferth, D.; Heeren, J.K.; Singh, G.; Grim, S.O.; Hughes, W.B. J. Organomet. Chem. 1966, 5, 267;
 Schlosser, M.; Zimmermann, M. Synthesis 1969, 75; Burton, D.J.; Greenlimb, P.E. J. Fluorine Chem. 1974, 3, 447; Smithers, R.H. J. Org. Chem. 1978, 43, 2833; Miyano, S.; Izumi, Y.; Fujii, K.; Ohno, Y.;
 Hashimoto, H. Bull. Chem. Soc. Jpn. 1979, 52, 1197; Stork, G.; Zhao, K. Tetrahedron Lett. 1989, 30, 2173.
 ¹²⁸³For references to the use of the Wittig reaction to give enol ethers or enol thioethers, which are then hydrolyzed, see Larock, R.C. Comprehensive Organic Transformations, 2nd ed., Wiley-VCH, NY, 1999, pp. 1441–1444, 1457–1458.

¹²⁸⁴For other methods of achieving this conversion via Wittig-type reactions, see Ceruti, M.; Degani, I.; Fochi, R. *Synthesis* **1987**, 79; Moskal, J.; van Leusen, A.M. *Recl. Trav. Chim. Pays-Bas* **1987**, *106*, 137; Doad, G.J.S. J. Chem. Res. (S) **1987**, 370.

¹²⁸⁵Corey, E.J.; McCormick, J.R.D.; Swensen, W.E. J. Am. Chem. Soc. 1964, 86, 1884.
 ¹²⁸⁶Wittig, G.; Schöllkopf, U. Chem. Ber. 1954, 87, 1318.

Still another example is the easy formation of anti-Bredt bicycloalkenones¹²⁸⁷ (see p. 229). As indicated above, α, α' -dihalophosphoranes can be used to prepare 1,1-dihaloalkenes. Another way to prepare such compounds¹²⁸⁸ is to treat the carbonyl compound with a mixture of CX₄ (X = Cl, Br, or I) and triphenylphosphine, either with or without the addition of zinc dust (which allows less Ph₃P to be used).¹²⁸⁹ Aryl aldehydes react with these dihalophosphoranes to give aryl alkynes after treatment of the initially formed vinyl halide with potassium *tert*-butoxide.¹²⁹⁰ Formamides have been converted to ynamines by reaction with a mixture of PPh₃/CCl₄ followed by *n*-butyllithium.¹²⁹¹ The carbonyl compound can be generated *in situ*, in the presence of the phosphorane. A cyclopropylcarbonyl alcohol was converted to a β-cyclopropyl- α ,β-unsaturated ester by reaction with MnO₂ in the presence of Ph₃P=CHCO₂Me.¹²⁹²

The mechanism¹²⁹³ of the key step of the Wittig reaction is as follows:¹²⁹⁴

The energetics of ylid formation and their reaction is solution has been studied.¹²⁹⁵ For many years it was assumed that a diionic compound, called a *betaine*, is an intermediate on the pathway from the starting compounds

¹²⁹⁰Michel, P.; Gennet, D.; Rassat, A. *Tetrahedron Lett.* **1999**, 40, 8575. See Michael, P.; Rassat, A. *Tetrahedron Lett.* **1999**, 40, 8579.

¹²⁹¹Brückner, D. Synlett **2000**, 1402.

¹²⁹²Blackburn, L.; Wei, X.; Taylor, R.J.K. Chem. Commun. 1999, 1337.

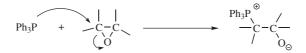
¹²⁹³For a review of the mechanism, see Cockerill, A.F.; Harrison, R.G., in Patai, S. *The Chemistry of Functional Groups: Supplement A*, pt. 1, Wiley, NY, **1977**, pp. 232–240. For a thorough discussion, see Vedejs, E.; Marth, C.F. *J. Am. Chem. Soc.* **1988**, *110*, 3948.

¹²⁸⁷Bestmann, H.J.; Schade, G. Tetrahedron Lett. 1982, 23, 3543.

¹²⁸⁸For a list of references to the preparation of haloalkenes by Wittig reactions, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, **1999**, pp. 725–727.

 ¹²⁸⁹See, for example, Rabinowitz, R.; Marcus, R. J. Am. Chem. Soc. 1962, 84, 1312; Ramirez, F.; Desai,
 N.B.; McKelvie, N. J. Am. Chem. Soc. 1962, 84, 1745; Corey, E.J.; Fuchs, P.L. Tetrahedron Lett. 1972,
 3769; Posner, G.H.; Loomis, G.L.; Sawaya, H.S. Tetrahedron Lett. 1975, 1373; Suda, M.; Fukushima, A. Tetrahedron Lett. 1981, 22, 759; Gaviña, F.; Luis, S.V.; Ferrer, P.; Costero, A.M.; Marco, J.A. J. Chem. Soc., Chem. Commun. 1985, 296; Li, P.; Alper, H. J. Org. Chem. 1986, 51, 4354.

¹²⁹⁴It has been contended that another mechanism, involving single electron transfer, may be taking place in some cases: Olah, G.A.; Krishnamurthy, V.V. J. Am. Chem. Soc. **1982**, 104, 3987; Yamataka, H.; Nagareda, K.; Hanafusa, T.; Nagase, S. *Tetrahedron Lett.* **1989**, 30, 7187. A diradical mechanism has also been proposed for certain cases: Ward, Jr., W.J.; McEwen, W.E. J. Org. Chem. **1990**, 55, 493.


¹²⁹⁵Arnett, E.M.; Wernett, P.C. J. Org. Chem. 1993, 58, 301.

to the oxaphosphetane, and in fact it may be so, but there is little evidence for it. 1296

"Betaine" precipitates have been isolated in certain Wittig reactions,¹²⁹⁷ but these are betaine-lithium halide adducts, and might just as well have been formed from the oxaphosphetane as from a true betaine.¹²⁹⁸ However, there is one report of an observed betaine lithium salt during the course of a Wittig reaction.¹²⁹⁹ An X-ray structure was determined for a gauche betaine from a thio-Wittig reaction.¹³⁰⁰ In contrast, there is much evidence for the presence of the oxaphosphetane intermediates, at least with unstable ylids. For example, ³¹P NMR spectra taken of the reaction mixtures at low temperatures¹³⁰¹ are compatible with an oxaphosphetane structure that persists for some time but not with a tetra-coordinated phosphorus species. Since a betaine, an ylid, and a phosphine oxide all have tetracoordinated phosphorus, these species could not be causing the spectra, leading to the conclusion that an oxaphosphetane intermediate is present in the solution. In certain cases oxaphosphetanes have been isolated.¹³⁰² It has even been possible to detect cis and trans isomers of the intermediate oxaphosphetanes by NMR spectroscopy.¹³⁰³ According to this mechanism, an optically active phosphonium salt $RR'R^2P^+CHR^2$ should retain its configuration all the way through the reaction, and it should be preserved in the phosphine oxide $RR'R^2PO$. This has been shown to be the case.¹³⁰⁴

The proposed betaine intermediates can be formed, in a completely different manner, by nucleophilic substitution by a phosphine on an epoxide (**10-35**):

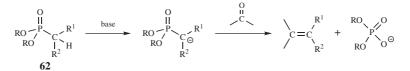
¹²⁹⁶See Vedejs, E.; Marth, C.F. J. Am. Chem. Soc. 1990, 112, 3905.

¹²⁹⁷Wittig, G.; Weigmann, H.; Schlosser, M. Chem. Ber. 1961, 94, 676; Schlosser, M.; Christmann, K.F. Liebigs Ann. Chem. 1967, 708, 1.

¹²⁹⁸Maryanoff, B.E.; Reitz, A.B. Chem. Rev. 1989, 89, 863, see p. 865.

¹²⁹⁹Neumann, R.A.; Berger, S. Eur. J. Org. Chem. 1998, 1085.

¹³⁰⁰Puke, C.; Erker, G.; Wibbeling, B.; Fröhlich, R. Eur. J. Org. Chem. 1999, 1831.


¹³⁰¹Vedejs, E.; Meier, G.P.; Snoble, K.A.J. J. Am. Chem. Soc. **1981**, 103, 2823. See also, Nesmayanov, N.A.; Binshtok, E.V.; Reutov, O.A. Doklad. Chem. **1973**, 210, 499.

¹³⁰²Birum, G.H.; Matthews, C.N. *Chem. Commun.* **1967**, 137; Mazhar-Ul-Haque; Caughlan, C.N.; Ramirez, F.; Pilot, J.F.; Smith, C.P. J. Am. Chem. Soc. **1971**, 93, 5229.

¹³⁰³Maryanoff, B.E.; Reitz, A.B.; Mutter, M.S.; Inners, R.R.; Almond Jr., H.R.; Whittle, R.R.; Olofson, R.A. J. Am. Chem. Soc. **1986**, 108, 7664. See also, Pískala, A.; Rehan, A.H.; Schlosser, M. Coll. Czech. Chem. Commun. **1983**, 48, 3539.

¹³⁰⁴McEwen, W.E.; Kumli, K.F.; Bladé-Font, A.; Zanger, M.; VanderWerf, C.A. J. Am. Chem. Soc. 1964, 86, 2378. Betaines formed in this way can then be converted to the alkene, and this is one reason why betaine intermediates were long accepted in the Wittig reaction.

The Wittig reaction has also been carried out with phosphorus ylids other than phosphoranes, the most important being prepared from phosphonates, such as 62.¹³⁰⁵

This method, sometimes called the *Horner–Emmons*, *Wadsworth–Emmons*, or *Wittig–Horner reaction*,¹³⁰⁶ has several advantages over the use of phosphoranes, including selectivity.¹³⁰⁷ These ylids are more reactive than the corresponding phosphoranes, and when R^1 or R^2 is an electron-withdrawing group, these compounds often react with ketones that are inert to phosphoranes. High pressure has been used to facilitate this reaction.¹³⁰⁸ In addition, the phosphorus product is a phosphate ester and hence soluble in water, unlike Ph_3PO , which makes it easy to separate it from the alkene product. Phosphonates are also cheaper than phosphonium salts and can easily be prepared by the *Arbuzov reaction*:¹³⁰⁹

$$EtO = P + X-CH_2R \longrightarrow EtO = P - CH_2R$$

Phosphonates have also been prepared from alcohols and $(ArO)_2P(=O)Cl$, NEt₃ and a TiCl₄ catalyst.¹³¹⁰ The reaction of $(RO)_2P(=O)H$ and aryl iodides with a CuI catalyst leads to aryl phosphonates.¹³¹¹ Polymer-bound phosphonate esters have been used for olefination.¹³¹² Dienes are produced when allylic phosphonate esters react with aldehydes.¹³¹³

¹³⁰⁵Horner, L.; Hoffmann, H.; Wippel, H.G.; Klahre, G. Chem. Ber. 1959, 92, 2499; Wadsworth, Jr., W.S.; Emmons, W.D. J. Am. Chem. Soc. 1961, 83, 1733.

¹³⁰⁶For reviews, see Wadsworth, Jr., W.S. Org. React. 1977, 25, 73; Stec, W.J. Acc. Chem. Res. 1983, 16, 411; Walker, B.J., in Cadogan, J.I.G. Organophosphorous Reagents in Organic Synthesis, Academic Press, NY, 1979, pp. 156–205; Dombrovskii, A.V.; Dombrovskii, V.A. Russ. Chem. Rev. 1966, 35, 733; Boutagy, J.; Thomas, R. Chem. Rev. 1974, 74, 87. For a convenient method of carrying out this reaction, see Seguineau, P; Villieras, J. Tetrahedron Lett. 1988, 29, 477, and other papers in this series.

¹³⁰⁷Motoyoshiya, J.; Kasaura, T.; Kokin, K.; Yokoya, S.-i.; Takaguchi, Y.; Narita, S.; Aoyama, H. *Tetrahedron* **2001**, *57*, 1715.

¹³⁰⁹Also known as the *Michaelis-Arbuzov rearrangement*. For reviews, see Petrov, A.A.; Dogadina, A.V.; Ionin, B.I.; Garibina, V.A.; Leonov, A.A. *Russ. Chem. Rev.* **1983**, 52, 1030; Bhattacharya, A.K.; Thyagarajan, G. *Chem. Rev.* **1981**, 81, 415. For related reviews, see Shokol, V.A.; Kozhushko, B.N. *Russ. Chem. Rev.* **1985**, 53, 98; Brill, T.B.; Landon, S.J. *Chem. Rev.* **1984**, 84, 577. See also, Kaboudin, B.; Balakrishna, M.S. *Synth. Commun.* **2001**, 31, 2773.

¹³¹³Wang, Y.; West, F.G. Synthesis 2002, 99.

¹³⁰⁸Has-Becker, S.; Bodmann, K.; Kreuder, R.; Santoni, G.; Rein, T.; Reiser, O. Synlett 2001, 1395.

¹³¹⁰Jones, S.; Selitsianos, D. Org. Lett. 2002, 4, 3671.

¹³¹¹Gelman, D.; Jiang, L.; Buchwald, S.L. Org. Lett. 2003, 5, 2315.

¹³¹²Barrett, A.G.M.; Cramp, S.M.; Roberts, R.S.; Zecri, F.J. Org. Lett. 1999, 1, 579.

Stereoselective alkenylation reactions have been achieved using chiral additives¹³¹⁴ or auxiliaries.¹³¹⁵ Ylids formed from phosphine oxides,

phosphonic acid bisamides, $(R_2^2N)_2$ POCHRR',¹³¹⁶ and alkyl phosphonothionates, (MeO)₂PSCHRR',¹³¹⁷ share some of these advantages. Reagents, such as Ph₂POCH₂NR'₂, react with aldehydes or ketones (R₂COR³) to give good yields of enamines (R²R³C=CHNR).¹³¹⁸ (*Z*)-Selective reagents are also known,¹³¹⁹ including the use of a di(2,2,2-trifluoroethoxy)phosphonate with KHMDS and 18-crown-6.¹³²⁰ An interesting intramolecular version of the Horner–Emmons reaction leads to alkynes.¹³²¹ The reaction of a functionalized aldehyde (R–CHO) with (MeO)₂POCHN₂, leads to the alkyne (R–C≡CH).¹³²²

Some Wittig reactions give the (*Z*)-alkene; some the (*E*), and others give mixtures, and the question of which factors determine the stereoselectivity has been much studied.¹³²³ It is generally found that ylids containing stabilizing groups or formed from trialkylphosphines give (*E*)-alkenes. However, ylids formed from triarylphosphines and not containing stabilizing groups often give (*Z*) or a mixture of (*Z*) and (*E*)-alkenes.¹³²⁴ One explanation for this¹¹⁹³ is that the reaction of the ylid with the carbonyl compound is a [2 + 2]-cycloaddition, which in order to be concerted must adopt the $[\pi 2_s + \pi 2_a]$ pathway. As we have seen earlier (p. 1225), this pathway leads to the formation of the more sterically crowded product, in this case the *Z* alkene. If this explanation is correct, it is not easy to explain the predominant formation of (*E*)

¹³¹⁴Mizuno, M.; Fujii, K.; Tomioka, K. Angew. Chem. Int. Ed. **1998**, 37, 515. Also see, Arai, S.; Hamaguchi, S.; Shioiri, T. *Tetrahedron Lett.* **1998**, 39, 2997. For a review of asymmetric Wittig-type reactions see Rein, T.; Pedersen, T.M. Synthesis **2002**, 579.

¹³¹⁵Abiko, A.; Masamune, S. Tetrahedron Lett. 1996, 37, 1077.

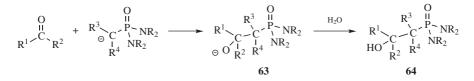
¹³¹⁶Corey, E.J.; Kwiatkowski, G.T. *J. Am. Chem. Soc.* **1968**, *90*, 6816; Corey, E.J.; Cane, D.E. *J. Org. Chem.* **1969**, *34*, 3053. For a chiral derivative, see Hanessian, S.; Beaudoin, S. *Tetrahedron Lett.* **1992**, *33*, 7655, 7659.

¹³¹⁷Corey, E.J.; Kwiatkowski, G.T. J. Am. Chem. Soc. 1966, 88, 5654.

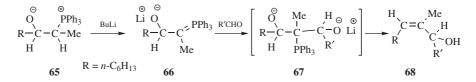
¹³¹⁸Brockhof, N.L.J.M.; van der Gen, A. *Recl. Trav. Chim. Pays-Bas* **1984**, *103*, 305; Broekhof, N.L.J.M.; van Elburg, P.; Hoff, D.J.; van der Gen, A. *Recl. Trav. Chim. Pays-Bas* **1984**, *103*, 317.

¹³¹⁹Ando, K. Tetrahedron Lett. 1995, 36, 4105.

¹³²⁰Yu, W.; Su, M.; Jin, Z. Tetrahedron Lett. 1999, 40, 6725.


¹³²¹Nangia, A.; Prasuna, G.; Rao, P.B. *Tetrahedron Lett.* **1994**, *35*, 3755; Couture, A.; Deniau, E.; Gimbert, Y.; Grandclaudon, P. J. Chem. Soc. Perkin Trans. **1 1993**, 2463.

¹³²²Hauske, J.R.; Dorff, P.; Julin, S.; Martinelli, G.; Bussolari, J. Tetrahedron Lett. 1992, 33, 3715.


¹³²³For reviews of the stereochemistry of the Wittig reactions, see Maryanoff, B.E.; Reitz, A.B. Chem. Rev. **1989**, 89, 863; Gosney, I.; Rowley, A.G., in Cadogan, J.I.G. Organophosphorous Reagents in Organic Synthesis, Academic Press, NY, **1979**, pp. 17–153; Reucroft, J.; Sammes, P.G. Q. Rev. Chem. Soc. **1971**, 25, 135, see pp. 137–148, 169; Schlosser, M. Top. Stereochem. **1970**, 5, 1. Also see Takeuchi, K.; Paschal, J.W.; Loncharich, R.J. J. Org. Chem. **1995**, 60, 156.

¹³²⁴For cases where such an ylid gave (*E*)-alkenes, see Maryanoff, B.E.; Reitz, A.B.; Duhl-Emswiler, B.A. *J. Am. Chem. Soc.* 1985, 107, 217; Le Bigot, Y.; El Gharbi, R.; Delmas, M.; Gaset, A. *Tetrahedron* 1986, 42, 3813. For guidance in how to obtain the maximum yields of the *Z* product, see Schlosser, M.; Schaub, B.; de Oliveira-Neto, J.; Jeganathan, S. *Chimia* 1986, 40, 244.

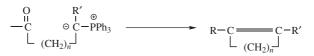
products from stable ylids, but (E) compounds are of course generally thermodynamically more stable than the (Z) isomers, and the stereochemistry seems to depend on many factors.

The (E/Z) ratio of the product can often be changed by a change in solvent or by the addition of salts.¹³²⁵ Another way of controlling the stereochemistry of the product is by use of the aforementioned phosphonic acid bisamides. In this case, the betaine (**63**) does form and when treated with water gives the β -hydroxyphosphonic acid bisamides **64**, which can be crystallized and then cleaved to $R^1R^2C=CR^3R^4$ by refluxing in benzene or toluene in the presence of silica gel.¹³¹⁶ **64** are generally formed as mixtures of diastereomers, and these mixtures can be separated by recrystallization. Cleavage of the two diastereomers gives the two isomeric alkenes. Optically active phosphonic acid bisamides have been used to give optically active alkenes.¹³²⁶ Another method of controlling the stereochemistry of the alkene [to obtain either the (*Z*) or (*E*) isomer] starting with a phosphine oxide (Ph₂POCH₂R), has been reported.¹³²⁷

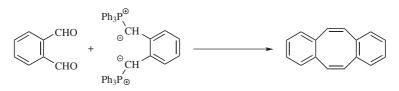
In reactions where the betaine–lithium halide intermediate is present, it is possible to extend the chain further if a hydrogen is present α to the phosphorus. For example, reaction of ethylidnetriphenylphosphorane with heptanal at -78° C gave **65**, which with butyllithium gave the ylid **66**. Treatment of this with an aldehyde R'CHO gave the intermediate **67**, which after workup gave **68**.¹³²⁸ This reaction gives the unsaturated alcohols **68** stereoselectively. **66** also reacts with other electrophiles. For example, treatment of **66** with *n*-chlorosuccinimide or PhICl₂ gives the vinylic chloride RCH=CMeCl stereoselectively: NCS giving the cis and PhICl₂

¹³²⁵See, for example, Reitz, A.B.; Nortey, S.O.; Jordan, Jr., A.D.; Mutter, M.S.; Maryanoff, B.E. J. Org. Chem. **1986**, *51*, 3302.

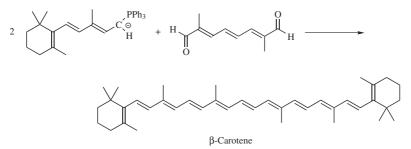
¹³²⁶Hanessian, S.; Delorme, D.; Beaudoin, S.; Leblanc, Y. J. Am. Chem. Soc. 1984, 106, 5754; Rein, T.; Reiser, O. Acta Chem. Scand. B, 1996, 50, 369. For a review of asymmetric ylid reactions, see Li, A.-H.; Dai, L.-X.; Aggarwal, V.K. Chem. Rev. 1997, 97, 2341.


¹³²⁷Ayrey, P.M.; Warren, S. Tetrahedron Lett. 1989, 30, 4581.

 ¹³²⁸Corey, E.J.; Yamamoto, H. J. Am. Chem. Soc. 1970, 92, 226; Schlosser, M.; Coffinet, D. Synthesis
 1972, 575; Corey, E.J.; Ulrich, P.; Venkateswarlu, A. Tetrahedron Lett. 1977, 3231; Schlosser, M.; Tuong, H.B.; Respondek, J.; Schaub, B. Chimia 1983, 37, 10.


the trans isomer.¹³²⁹ The use of Br₂ and FCIO₃ (see **12-4** for the explosive nature of this reagent) gives the corresponding bromides and fluorides, respectively.¹³³⁰ Reactions of **66** with electrophiles have been called *scoopy* reactions (α substitution plus *c*arbonyl alkeneylation via β -oxido *p*hosphorus *ylids*).¹³³¹

The reaction of a phosphonate ester, DBU, NaI, and HMPA with an aldehyde leads to a conjugated ester with excellent (*Z*)-selectivity.¹³³² A (*Z*)-selective reaction was reported using a trifluoroethyl phosphonate in a reaction with an aldehyde and potassium *tert*-butoxide.¹³³³

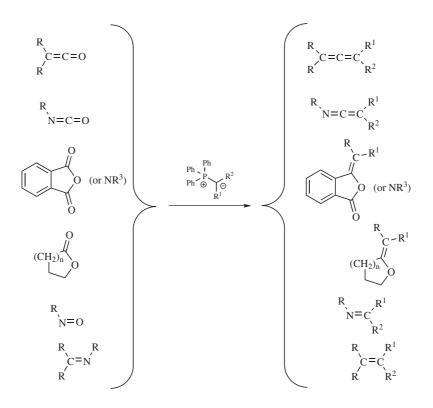

The Wittig reaction has been carried out intramolecularly, to prepare rings containing from 5 to 16 carbons,¹³³⁴ both by single ring closure

and double ring closure.¹³³⁵

The Wittig reaction has proved very useful in the synthesis of natural products, some of which are quite difficult to prepare in other ways.¹³³⁶ One example out of many is the synthesis of β -carotene:¹³³⁷

¹³²⁹Schlosser, M.; Christmann, K. Synthesis 1969, 38; Corey, E.J.; Shulman, J.I.; Yamamoto, H. Tetrahedron Lett. 1970, 447.

¹³³⁰Schlosser, M.; Christmann, K.-F. Synthesis 1969, 38.


¹³³¹Schlosser, M. Top. Stereochem. 1970, 5, 1, p. 22.

- ¹³³²Ando, K.; Oishi, T.; Hirama, M.; Ohno, H.; Ibuka, T. J. Org. Chem. 2000, 65, 4745.
- ¹³³³Touchard, F.P. Tetrahedron Lett. 2004, 45, 5519.
- ¹³³⁴For a review, see Becker, K.B. *Tetrahedron* **1980**, *36*, 1717.
- ¹³³⁵For a review of these double-ring closures, see Vollhardt, K.P.C. Synthesis 1975, 765.

¹³³⁶For a review of applications of the Wittig reaction to the synthesis of natural products, see Bestmann,

- H.J.; Vostrowsky, O. Top. Curr. Chem. 1983, 109, 85.
- ¹³³⁷Wittig, G.; Pommer, H. German patent 1956, 954,247, [Chem. Abstr. 1959, 53, 2279].

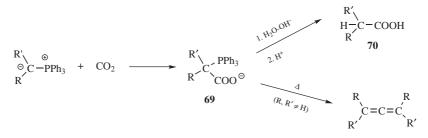
Phosphorus ylids also react in a similar manner with the C=O bonds of ketenes, ¹³³⁸ isocyanates, ¹³³⁹ certain anhydrides ¹³⁴⁰ lactones, ¹³⁴¹ and imides, ¹³⁴² the N=O of nitroso groups, and the C=N of imines, ¹³⁴³ for example,

Phosphorus ylids react with carbon dioxide to give the isolable salts 69,¹³⁴⁴ which can be hydrolyzed to the carboxylic acids 70 (thus achieving the conversion

¹³³⁸For example, see Aksnes, G.; Frøyen, P. Acta Chem. Scand. 1968, 22, 2347.

¹³³⁹For example, see Frøyen, P. Acta Chem. Scand. Ser. B 1974, 28, 586.

¹³⁴⁰See, for example, Abell, A.D.; Massy-Westropp, R.A. *Aust. J. Chem.* **1982**, *35*, 2077; Kayser, M.M.; Breau, L. *Can. J. Chem.* **1989**, *67*, 1401. For a study of the mechanism, see Abell, A.D.; Clark, B.M.; Robinson, W.T. *Aust. J. Chem.* **1988**, *41*, 1243.


¹³⁴¹With microwave irradiation, see Sabitha, G.; Reddy, M.M.; Srinivas, D.; Yadov, J.S. *Tetrahedron Lett.* **1999**, *40*, 165.

¹³⁴²For a review of the reactions with anhydrides and imides (and carboxylic esters, thiol esters, and amides), see Murphy, P.J.; Brennan, J. *Chem. Soc. Rev.* **1988**, *17*, 1. For a review with respect to imides, see Flitsch, W.; Schindler, S.R. *Synthesis* **1975**, 685.

¹³⁴³Bestmann, H.J.; Seng, F. Tetrahedron 1965, 21, 1373.

¹³⁴⁴Bestmann, H.J.; Denzel, T.; Salbaum, H. Tetrahedron Lett. 1974, 1275.

 $RR'CHX \rightarrow RR'CHCOOH$) or (if neither R nor R' is hydrogen) dimerized to allenes.

Although phosphorus ylids are most commonly used to alkenylation reactions, nitrogen ylids can occasionally be used. As an example, the reaction of *N*-benzyl-*N*-phenylpiperidinium bromide with base generated a N-ylid, which reacted with benzaldehyde to form styrene.¹³⁴⁵ The structure has been determined for an intermediate in an aza-Wittig reaction.¹³⁴⁶

OS V, 361, 390, 499, 509, 547, 751, 949, 985; VI, 358; VII, 164, 232; VIII, 265, 451; 75, 139, OS IX, 39, 230.

16-45 Tebbe, Petasis and Alternative Alkenylations

Methylene-de-oxo-bisubstitution

A useful alternative to phosphorus ylids are the titanium reagents, such as, **71**, prepared from dicyclopentadienyltitanium dichloride and trimethylaluminum.¹³⁴⁷ Treatment of a carbonyl compound with the titanium cyclopentadienide complex **71** (*Tebbe's reagent*) in toluene–THF containing a small amount of pyridine¹³⁴⁸ leads to the alkene. Dimethyltitanocene (Me₂TiCp₂), called the *Petasis reagent*, is a convenient and highly useful alternative to **71**.¹³⁴⁹ The mechanism of Petasis olefination has been examined.¹³⁵⁰ Tebbe's reagent and the Petasis reagent give good results with ketones.¹³⁵¹ An important feature of these new reagents is that

¹³⁴⁵Lawrence, N.J.; Beynek, H. Synlett 1998, 497.

¹³⁴⁶Kano, N.; Hua, X.J.; Kawa, S.; Kawashima, T. Tetrahedron Lett. 2000, 41, 5237.

¹³⁴⁷For a method of generating this reagent *in situ*, see Cannizzo, L.F.; Grubbs, R.H. *J. Org. Chem.* **1985**, 50, 2386.

¹³⁴⁸Tebbe, F.N.; Parshall, G.W.; Reddy, G.S. J. Am. Chem. Soc. **1978**, 100, 3611; Pine, S.H.; Pettit, R.J.; Geib, G.D.; Cruz, S.G.; Gallego, C.H.; Tijerina, T.; Pine, R.D. J. Org. Chem. **1985**, 50, 1212. See also, Clawson, L.; Buchwald, S.L.; Grubbs, R.H. *Tetrahedron Lett.* **1984**, 25, 5733; Clift, S.M.; Schwartz, J. J. Am. Chem. Soc. **1984**, 106, 8300.

¹³⁴⁹Petasis N.A.; Bzowej, E.I. J. Am. Chem. Soc. 1990, 112, 6392.

¹³⁵⁰Meurer, E.C.; Santos, L.S.; Pilli, R.A.; Eberlin, M.N. Org. Lett. 2003, 5, 1391.

¹³⁵¹Pine, S.H.; Shen, G.S.; Hoang, H. Synthesis 1991, 165.

carboxylic esters and lactones¹³⁵² can be converted in good yields to the corresponding enol ethers. The enol ether can be hydrolyzed to a ketone (**10-6**), so this is also an indirect method for making the conversion RCOOR' \rightarrow RCOCH₃ (see also, **16-82**). Conjugated esters are converted to alkoxy-dienes with this reagent.¹³⁵³ Lactams, including β -lactams, are converted with alkylidene cycloamines (alkylidene azetidines from β -lactams, which are easily hydrolyzed to β -amino ketones).¹³⁵⁴

Besides stability and ease of preparation, another advantage of the Petasis reagent is that structural analogs can be prepared, including $Cp_2Ti(C_3H_5)_2^{1355}$ ($C_3H_5 = cyclopropyl$), $CpTi(CH_2SiMe_3)_3$,¹³⁵⁶ and $Cp_2TiMe(CH=CH_2)$.¹³⁵⁷ In another variation, 2 equivalents of $Cp_2Ti[P(OEt)_3]_2$ reacted with a ketone in the presence of 1,1-diphenylthiocyclobutane to give the alkenylcyclobutane derivative.¹³⁵⁸ An alternative titanium reagent was prepared using TiCl₄, magnesium metal and dichloromethane, reacting with both ketones¹³⁵⁹ and esters¹³⁶⁰ to give alkenes or vinyl ethers, respectively. Alkenes are generated form ketones and alkyl iodides in the presence of a catalytic amount of $Cp_2Ti[POEt)_3]_2$.¹³⁶¹

 α, α -Dibromosulfones (ArSO₂SHBr₂) react with ketones in the presence of Sm/SmI₂ and a CrCl₃ catalyst gives to corresponding vinyl sulfone.¹³⁶² Imides are converted to alkylidene lactams when treated with an alkyl halide, 2.5 equivalents of SmI₂ and a NiI₂ catalyst.¹³⁶³

Carboxylic esters undergo the conversion $C=O \rightarrow C=CHR$ (R = primary or secondary alkyl) when treated with RCHBr₂, Zn,¹³⁶⁴ and TiCl₄ in the presence of *N*,*N*,*N'*,*N'*-tetramethylethylenediamine.¹³⁶⁵ Metal carbene complexes¹³⁶⁶ R₂C = ML_n (L = ligand), where M is a transition metal, such as Zr, W, or Ta, have also been

¹³⁵³Petasis N.A.; Lu, S.-P. Tetrahedron Lett. 1995, 36, 2393.

¹³⁵⁴Tehrani, K.A.; De Kimpe, N. *Tetrahedron Lett.* 2000, 41, 1975. See Martínez, I.; Howell, A.R. *Tetrahedron Lett.* 2000, 41, 5607.

¹³⁵⁵Petasis N.A.; Browej, E.I. Tetrahedron Lett. 1993, 34, 943.

¹³⁵⁶Petasis N.A.; Akritopoulou, I. Synlett 1992, 665.

¹³⁵⁷Petasis N.A.; Hu, Y.-H. J. Org. Chem. 1997, 62, 782. Also see, Petasis N.A.; Straszewski, J.P.; Fu, D.-K. Tetrahedron Lett. 1995, 36, 3619; Rahim, Md.A.; Taguchi, H.; Watanabe, M.; Fujiwara, T.; Takeda, T.

Tetrahedron Lett. 1998, 39, 2153; Petasis N.A.; Browej, E.I. J. Org. Chem. 1992, 57, 1327.

¹³⁵⁸Fujiwara, T.; Iwasaki, N.; Takeda, T. *Chem. Lett.* **1998**, 741. For an example using a *gem*-dichloride, see Takeda, T.; Sasaki, R.; Fujiwara, T. J. Org. Chem. **1998**, 63, 7286.

¹³⁵⁹Yan, T.H.; Tsai, C.-C.; Chien, C.-T.; Cho, C.-C. Huang, P.-C. Org. Lett. 2004, 6, 4961.

¹³⁶⁰Yan, T.-H.; Chien, C.-T.; Tsai, C.-C.; Lin, K.-W.; Wu, Y.-H. Org. Lett. 2004, 6, 4965.

¹³⁶¹Takeda, T.; Shimane, K.; Ito, K.; Saeki, N.; Tsubouchi, A. Chem. Communn. 2002, 1974.

¹³⁶²Liu, Y.; Wu, H.; Zhang, Y. Synth. Commun. 2001, 31, 47.

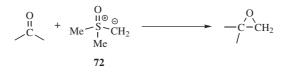
¹³⁶³Farcas, S.; Namy, J.-L. Tetrahedron Lett. 2001, 42, 879.

¹³⁶⁴Ishino, Y.; Mihara, M.; Nishihama, S.; Nishiguchi, I. Bull. Chem. Soc. Jpn. 1998, 71, 2669.

¹³⁶⁵Okazoe, T.; Takai, K.; Oshima, K.; Utimoto, K. *J. Org. Chem.* **1987**, *52*, 4410. For the reaction with CH₂(ZnI)₂ with TiCl₂, see Matsubra, S.; Ukai, K.; Mizuno, T.; Utimoto, K. *Chem. Lett.* **1999**, 825. This procedure is also successful for silyl esters, to give silyl enol ethers: Takai, K.; Kataoka, Y.; Okazoe, T.; Utimoto, K. *Tetrahedron Lett.* **1988**, *29*, 1065.

¹³⁶⁶For a review of the synthesis of such complexes, see Aguero, A.; Osborn, J.A. New J. Chem. 1988, 12, 111.

¹³⁵²See Martínez, I.; Andrews, A.E.; Emch, J.D.; Ndakala, A.J.; Wang, J.; Howell, A.R.; Rheingold, A.L.; Figuero, J.S. *Org. Lett.* 2003, 5, 399; Dollinger, L.M.; Ndakala, A.J.; Hashemzadeh, M.; Wang, G.; Wang, Y.; Martínez, K.; Arcari, J.T.; Galluzzo, D.J.; Howell, A.R.; Rheingold, A.L. Figuero. J.S.; *J. Org. Chem.* 1999, 64, 7074.


used to convert the C=O of carboxylic esters and lactones to CR_2 .¹³⁶⁷ It is likely that the complex $Cp_2Ti = CH_2$ is an intermediate in the reaction with Tebbe's reagent.

There are a few other methods for converting ketones or aldehydes to alkenes. When a ketone is treated with CH₃CHBr₂/Sm/SmI₂, with a catalytic amount of CrCl₃, for example, the alkene is formed.¹³⁶⁸ α -Halo esters also react with CrCl₂ in the presence of a ketone to give vinyl halides.¹³⁶⁹ In another reaction, an aldehydes reacted with EtCHBr(OAc) in the presence of Zn/CrCl₃ to give the alkene.¹³⁷⁰ α -Diazo esters react with ketones in the presence of an iron catalyst to give the corresponding alkene.¹³⁷¹ α -Diazo silylalkanes react similarly in the presence of a rhodium catalyst.¹³⁷² Benzylic alcohols also react with α -diazo silylalknes in the presence of a rhodium catalyst.¹³⁷³ The react of aryl aldehydes and MeC(CO₂Et)₃ with a catalytic amount of phenol leads to the corresponding conjugated ethyl ester (ArCH=CHCO₂Et).¹³⁷⁴

OS VIII, 512, IX, 404; X, 355.

16-46 The Formation of Epoxides from Aldehydes and Ketones

(1+2)OC,CC-cyclo-Methylene-addition

Aldehydes and ketones can be converted to $epoxides^{1375}$ in good yields with the sulfur ylids dimethyloxosulfonium methylid (72) and dimethylsulfonium

¹³⁶⁸Matsubara, S.; Horiuchi, M.; Takai, K.; Utimoto, K. Chem. Lett. 1995, 259.

¹³⁷⁰Knecht, M.; Boland, W. Synlett 1993, 837.

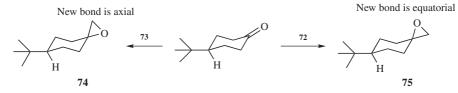
¹³⁷¹Chen, Y.; Huang, L.; Zhang, X.P. *Org. Lett.* **2003**, *5*, 2493; Mirafzal, G.A.; Cheng, G.; Woo, L.K. J. Am. Chem. Soc. **2002**, *124*, 176; Aggarwal, V.K.; Fulton, J.R.; Sheldon, C.G.; de Vincente, J. J. Am. *Chem. Soc.* **2003**, *125*, 6034.

¹³⁷²Lebel, H.; Guay, D.; Paquet, V.; Huard, K. *Org. Lett.* **2004**, *6*, 3047. For a synthesis of dienes from conjugated aldehydes, see Lebel, H.; Paquet, V. J. Am. Chem. Soc. **2004**, *126*, 320.

¹³⁷³Lebel, H.; Paquet, V. J. Am. Chem. Soc. 2004, 126, 11152.

¹³⁷⁴Kumar, H.M.S.; Rao, M.S.; Joyasawal, S.; Yadav, J.S. Tetrahedron Lett. 2003, 44, 4287.

¹³⁷⁵For reviews, see Block, E. *Reactions of Organosulfur Compounds*, Academic Press, NY, **1978**, pp. 101–105; Berti, G. *Top. Stereochem.* **1973**, 7, 93, 218–232. For a list of reagents, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, **1999**, pp. 944–951.


 ¹³⁶⁷See, for example, Schrock, R.R. J. Am. Chem. Soc. 1976, 98, 5399; Aguero, A.; Kress, J.; Osborn, J.A. J. Chem. Soc., Chem. Commun. 1986, 531; Hartner, Jr., F.W.; Schwartz, J.; Clift, S.M. J. Am. Chem. Soc. 1990, 105, 640.

¹³⁶⁹Barma, D.K.; Kundu, A.; Zhang, H.; Mioskowski, C.; Falck, J.R. J. Am. Chem. Soc. 2003, 125, 3218.

methylid (73).¹³⁷⁶ For most purposes, 72 is the

$$\begin{bmatrix} O & O \\ II & II \Theta \\ Me \xrightarrow{S} CH_2 & Me \xrightarrow{S} CH_2 \\ Me & Me \end{bmatrix} \begin{bmatrix} Me & Me \\ S = CH_2 & Me \\ Me & Me \end{bmatrix}$$
72
73

reagent of choice, because **73** is much less stable and ordinarily must be used as soon as it is formed, while **72** can be stored several days at room temperature. When diastereomeric epoxides can be formed, **73** usually attacks from the more hindered and **72** from the less-hindered side. Thus, 4-*tert*-butylcyclohexanone, treated with **72** gave exclusively **75** while **73** gave mostly **74**.¹³⁷⁷ Another difference in behavior between the

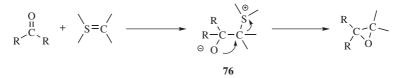
two reagents is that with α,β-unsaturated ketones, **72** gives only cyclopropanes (reaction **15-64**), while **73** gives oxirane formation. Other sulfur ylids have been used in an analogous manner, to transfer CHR or CR₂.¹³⁷⁸ High yields have been achieved by the use of sulfonium ylids anchored to insoluble polymers under phase-transfer conditions.¹³⁷⁹ A solvent-free version of this reaction has been developed using powdered K *tert*-butoxide and Me₃S⁺I⁻.¹³⁸⁰ Note that treatment of epoxides with 2 equivalents of Me₂S=CH₂ leads to allylic alcohols.¹³⁸¹ Other sulfur ylids convert aldehydes to epoxides, including the one generated *in situ* from RR'S⁺CH₂COO⁻.¹³⁸² Chiral sulfur ylids¹³⁸³ have been prepared, giving

¹³⁷⁶For reviews, see House, H.O. *Modern Synthetic Reactions*, 2nd ed., W.A. Benjamin, NY, **1972**, pp. 709–733; Durst, T. *Adv. Org. Chem.* **1969**, *6*, 285, see pp. 321–330. For a monograph on sulfur ylids, see Trost, B.M.; Melvin, Jr., L.S. *Sulfur Ylids*; Academic Press, NY, **1975**.

¹³⁷⁷Corey, E.J.; Chaykovsky, M. J. Am. Chem. Soc. 1965, 87, 1353.

¹³⁷⁸Adams, J.; Hoffman, Jr., L.; Trost, B.M. J. Org. Chem. 1970, 35, 1600; Yoshimine, M.; Hatch, M.J. J.
 Am. Chem. Soc. 1967, 89, 5831; Braun, H.; Huber, G.; Kresze, G. Tetrahedron Lett. 1973, 4033; Corey,
 E.J.; Jautelat, M.; Oppolzer, W. Tetrahedron Lett. 1967, 2325.

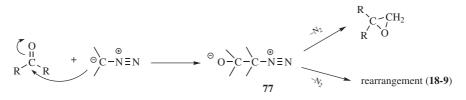
¹³⁷⁹Farrall, M.J.; Durst, T.; Fréchet, J.M.J. Tetrahedron Lett. 1979, 203.


¹³⁸⁰Toda, F.; Kanemoto, K. Heterocycles 1997, 46, 185.

¹³⁸¹Harnett, J.J.; Alcaraz, L.; Mioskowski, C.; Martel, J.P.; Le Gall, T.; Shin, D.-S.; Falck, J.R. *Tetrahedron Lett.* **1994**, *35*, 2009; Alcaraz, L.; Harnett, J.J.; Mioskowski, C.; Martel, J.P.; Le Gall, T.; Shin, D.-S.; Falck, J.R. *Tetrahedron Lett.* **1994**, *35*, 5449. Also see, Alcaraz, L.; Harnett, J.J.; Mioskowski, C.; Martel, J.P.; Le Gall, T.; Shin, D.-S.; Falck, J.R. *Tetrahedron Lett.* **1994**, *35*, 5449. Also see, Alcaraz, L.; Harnett, J.J.; Mioskowski, C.; Martel, J.P.; Le Gall, T.; Shin, D.-S.; Falck, J.R. *Tetrahedron Lett.* **1994**, *35*, 5453 for generation of alkenes from Me₂S=CH₂ and alkyl halides or mesylates.

¹³⁸²Forbes, D.C.; Standen, M.C.; Lewis, D.L. Org. Lett. 2003, 5, 2283.

¹³⁸³See Aggarwal, V.K.; Angelaud, R.; Bihan, D.; Blackburn, P.; Fieldhouse, R.; Fonguerna, S.J.; Ford, G.D.; Hynd, G.; Jones, E.; Jones, R.V.H.; Jubault, P.; Palmer, M.J.; Ratcliffe, P.D.; Adams, H. J. Chem. Soc., Perkin Trans. 1 2001, 2604.


the epoxide with good asymmetric induction.¹³⁸⁴ Chiral selenium ylids have been used in a similar manner.¹³⁸⁵

The generally accepted mechanism for the reaction between sulfur ylids and aldehydes or ketone is formation of **76**, with displacement of the Me₂S leaving group by the alkoxide.¹³⁸⁶ This mechanism is similar to that of the reaction of sulfur ylids with C=C double bonds (**15-64**).¹³⁸⁷ The stereochemical difference in the behavior of **72** and **73** has been attributed to formation of the betaine **76** being reversible for **72**, but not for the less stable **73**, so that the more-hindered product is the result of kinetic control and the less-hindered of thermodynamic control.¹³⁸⁸

Phosphorus ylids do not give this reaction, but give 16-44 instead.

Aldehydes and ketones can also be converted to epoxides by treatment with a diazoalkane,¹³⁸⁹ most commonly diazomethane, but an important side reaction is the formation of an aldehyde or ketone with one more carbon than the starting compound (reaction **18-9**). The reaction can be carried out with many aldehydes, ketones, and quinones, usually with a rhodium catalyst.¹³⁹⁰ A mechanism that accounts for both products is

Compound 77 or nitrogen-containing derivatives of it have sometimes been isolated.

An alternative route to epoxides from ketones uses α -chloro sulfones and potassium *tert*-butoxide to give α,β -epoxy sulfones.¹³⁹¹ A similar reaction was reported

- ¹³⁹⁰See Davies, H.M.L.; De Meese, J. Tetrahedron Lett. 2001, 42, 6803.
- ¹³⁹¹Mąkosza, M.; Urbańska, N.; Chesnokov, A.A. Tetrahedron Lett. 2003, 44, 1473.

¹³⁸⁴Baird, C.P.; Taylor, P.C. J. Chem. Soc. Perkin Trans. 1 1998, 3399; Domingo, V.M.; Castañer, J. J. Chem. Soc., Chem. Commun. 1995, 893; Hayakawa, R.; Shimizu, M. Synlett 1999, 1328; Zanardi, J.; Leriverend, C.; Aubert, D.; Julienne, K.; Metzner, P. J. Org. Chem. 2001, 66, 5620; Saito, T.; Akiba, D.; Sakairi, M.; Kanazawa, S. Tetrahedron Lett. 2001, 42, 57; Winn, C.L.; Bellenie, B.R.; Goodman, J.M. Tetrahedron Lett. 2002, 43, 5427.

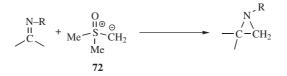
¹³⁸⁵See Takada, H.; Metzner, P.; Philouze, C. Chem. Commun. 2001, 2350.

¹³⁸⁶See Aggarwal, V.K.; Harvery, J.N.; Richardson, J. J. Am. Chem. Soc. 2002, 124, 5747.

¹³⁸⁷See, for example, Townsend, J.M.; Sharpless, K.B. *Tetrahedron Lett.* **1972**, 3313; Johnson, C.R.; Schroeck, C.W.; Shanklin, J.R. J. Am. Chem. Soc. **1973**, 95, 7424.

¹³⁸⁸Johnson, C.R.; Schroeck, C.W.; Shanklin, J.R. J. Am. Chem. Soc. 1973, 95, 7424.

¹³⁸⁹For a review, see Gutsche, C.D. Org. React. **1954**, 8, 364.


using KOH and 10% of a chiral phase-transfer agent, giving moderate enantioselectivity in the epoxy sulfone product.¹³⁹²

Dihalocarbenes and carbenoids, which readily add to C=C bonds (15-64), do not generally add to the C=O bonds of ordinary aldehydes and ketones.¹³⁹³ See also, 16-91.

OS V, 358, 755.

16-47 The Formation of Aziridines from Imines

(1+2)NC,CC-cyclo-Methylene-addition

Just as sulfur ylids react with the carbonyl of an aldehyde or ketone to give an epoxide, tellurium ylids react with imines to give an aziridine. The reaction of an allylic tellurium salt, $RCH=CHCH_2Te^+Bu_2 Br^-$, with lithium hexamethyldisilazide in HMPA/toluene leads to the tellurium ylid via deprotonation. In the presence of an imine, the ylid add to the imine and subsequent displacement of Bu_2Te generates an aziridine with a pendant vinyl group.¹³⁹⁴

16-48 The Formation of Episulfides and Episulfones¹³⁹⁵

$$2 \xrightarrow[K]{o} C - N \equiv N + S \xrightarrow{R} R \xrightarrow{R} C \xrightarrow{C} R$$

Epoxides can be converted directly to episulfides by treatment with NH₄SCN and ceric ammonium nitrate.¹³⁹⁶ Diazoalkanes, treated with sulfur, give episulfides.¹³⁹⁷ It is likely that $R_2C=S$ is an intermediate, which is attacked by another molecule of diazoalkane, in a process similar to that shown in **16-46**. Thioketones *do* react with diazoalkanes to give episulfides.¹³⁷⁷ Carbenes, such as the dichlorocarbene from CHCl₃ and base, react with thioketones to give an

¹³⁹²Arai, S.; Shioiri, T. Tetrahedron 2002, 58, 1407.

¹³⁹³For exceptions, see Greuter, H.; Winkler, T.; Bellus, D. Helv. Chim. Acta 1979, 62, 1275; Sadhu, K.M.; Matteson, D.S. Tetrahedron Lett. 1986, 27, 795; Araki, S.; Butsugan, Y. J. Chem. Soc., Chem. Commun. 1989, 1286.

¹³⁹⁴Liao, W.-W.; Deng, X.-M.; Tang, Y. Chem. Commun. 2004, 1516.

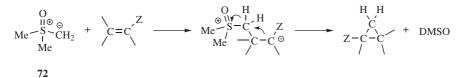
 ¹³⁹⁵For a review, see Muller, L.L.; Hamer, J. 1,2-Cycloaddition Reactions, Wiley, NY, 1967, pp. 57–86.
 ¹³⁹⁶Iranpoor, N.; Kazemi, F. Synthesis 1996, 821.

¹³⁹⁷Schönberg, A.; Frese, E. Chem. Ber. 1962, 95, 2810.

¹³⁹⁸For example, see Beiner, J.M.; Lecadet, D.; Paquer, D.; Thuillier, A. Bull. Soc. Chim. Fr. 1973, 1983.

 α, α -dichloro episufide.¹³⁹⁹

$$\operatorname{RCH}_{2}\operatorname{SO}_{2}\operatorname{Cl} \xrightarrow{\operatorname{R'}_{3}\operatorname{N}} \operatorname{RCH}=\operatorname{SO}_{2} \xrightarrow{\operatorname{CH}_{2}\operatorname{N}_{2}} \xrightarrow{\operatorname{R}} \operatorname{C}_{2} \xrightarrow{\operatorname{CH}_{2}} \xrightarrow{\Delta} \operatorname{RCH}=\operatorname{CH}_{2}$$


$$\operatorname{RCH}_{2}\operatorname{SO}_{2} \xrightarrow{\operatorname{CH}_{2}\operatorname{N}_{2}} \xrightarrow{\Gamma} \operatorname{RCH}=\operatorname{CH}_{2}$$

Alkanesulfonyl chlorides, when treated with diazomethane in the presence of a base (usually a tertiary amine), give episulfones (**79**).¹⁴⁰⁰ The base removes HCl from the sulfonyl halide to produce the highly reactive sulfene (**78**) (**17-14**), which then adds CH₂. The episulfone can then be heated to give off SO₂ (**17-20**), making the entire process a method for achieving the conversion $\text{RCH}_2\text{SO}_2\text{Cl} \rightarrow \text{RCH}=\text{CH}_2$.¹⁴⁰¹

OS V, 231, 877.

16-49 Cyclopropanation of Conjugated Carbonyl Compounds

Double-bond compounds that undergo the Michael reaction (**15-24**) can be converted to cyclopropane derivatives with sulfur ylids.¹⁴⁰² Among the most common of these is dimethyloxosulfonium methylid

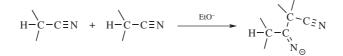
72,¹⁴⁰³ which is widely used to transfer CH₂ to activated double bonds, but other sulfur ylids

¹³⁹⁹Mlosteń, G.; Romański, J.; Swiątek, A.; Hemgartner, H. Helv. Chim. Acta 1999, 82, 946.

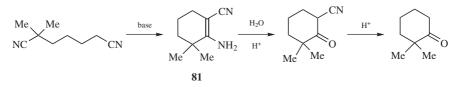
¹⁴⁰⁰Opitz, G.; Fischer, K. Angew. Chem. Int. Ed. 1965, 4, 70.

¹⁴⁰¹For a review of this process, see Fischer, N.S. Synthesis 1970, 393.

¹⁴⁰²For a monograph on sulfur ylids, see Trost, B.M.; Melvin Jr., L.S. Sulfur Ylids, Academic Press, NY, 1975. For reviews, see Fava, A., in Bernardi, F.; Csizmadia, I.G.; Mangini, A. Organic Sulfur Chemistry, Elsevier, NY, 1985, pp. 299–354; Belkin, Yu.V.; Polezhaeva, N.A. Russ. Chem. Rev. 1981, 50, 481; Block, E., in Stirling, C.J.M. The Chemistry of the Sulphonium Group, pt. 2, Wiley, NY, 1981, pp. 680–702; Block, E. Reactions of Organosulfur Compounds, Academic Press, NY, 1978, pp. 91–127. See also, Mamai, A.; Madalengoitia, J.S. Tetrahedron Lett. 2000, 41, 9009.


¹⁴⁰³Truce, W.E.; Badiger, V.V. J. Org. Chem. **1964**, 29, 3277; Corey, E.J.; Chaykovsky, M. J. Am. Chem. Soc. **1965**, 87, 1353; Agami, C.; Prevost, C. Bull. Soc. Chim. Fr. **1967**, 2299. For a review of this reagent, see Gololobov, Yu.G.; Nesmeyanov, A.N.; Lysenko, V.P.; Boldeskul, I.E. Tetrahedron **1987**, 43, 2609.

have also been used. A combination of DMSO and KOH in an ionic liquid converts conjugated ketones to α,β -cyclopropyl ketones.¹⁴⁰⁴ Both CHR and CR₂ can be added in a similar manner with certain nitrogen-containing compounds. For example, ylids,¹⁴⁰⁵ such as **80**, add various groups to activated double bonds.¹⁴⁰⁶ Sulfur ylids react with allylic alcohols in the presence of MnO₂ and molecular sieve 4 Å to give the cyclopropyl aldehyde.¹⁴⁰⁷ Similar reactions have been performed with phosphorus ylids,¹⁴⁰⁸ with pyridinium ylids,¹⁴⁰⁹ and with the compounds (PhS)₃CLi and Me₃Si(PhS)₂CLi.¹⁴¹⁰ The reactions with ylids such as these involve of course nucleophilic acyl addition.


Other reagents can be used to convert an aldehyde or ketone to a cyclopropane derivative. Conjugated ketones react with $Cp_2Zr(CH_2-CH_2)$ and PMe₃ to give a vinyl cyclopropane derivative after treatment with aqueous sulfuric acid.¹⁴¹¹

16-50 The Thorpe Reaction

N-Hydro-C-(α-cyanoalkyl)-addition

In the *Thorpe reaction*, the α carbon of one nitrile molecule is added to the CN carbon of another, so this reaction is analogous to the aldol reaction (**16-34**). The C=NH bond is, of course, hydrolyzable (**16-2**), so β -keto nitriles can be prepared in this manner. The Thorpe reaction can be done intramolecularly, in which case it is

¹⁴⁰⁴In bmim PF₆, 1-butyl-3-methylimidazolium hexafluorophosphate: Chandrasekhar, S.; Jagadeshwar, N.V.; Reddy, K.V. *Tetrahedron Lett.* **2003**, *44*, 3629.

 1405 For a review of sulfoximides (R₂S(O)NR₂) and ylids derived from them, see Kennewell, P.D.; Taylor, J.B. *Chem. Soc. Rev.* **1980**, *9*, 477.

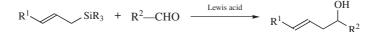
¹⁴⁰⁶For reviews, see Johnson, C.R. Aldrichimica Acta 1985, 18, 1; Acc. Chem. Res. 1973, 6, 341;
 Kennewell, P.D.; Taylor, J.B. Chem. Soc. Rev. 1975, 4, 189; Trost, B.M. Acc. Chem. Res. 1974, 7, 85.
 ¹⁴⁰⁷Oswald, M.F.; Raw, S.A.; Taylor, R.J.K. Org. Lett. 2004, 6, 3997.

¹⁴⁰⁸Bestmann, H.J.; Seng, F. Angew. Chem. Int. Ed. **1962**, 1, 116; Grieco, P.A.; Finkelhor, R.S. Tetrahedron Lett. **1972**, 3781.

¹⁴⁰⁹Shestopalov, A.M.; Sharanin, Yu.A.; Litvinov, V.P.; Nefedov, O.M. J. Org. Chem. USSR **1989**, 25, 1000.

¹⁴¹⁰Cohen, T.; Myers, M. J. Org. Chem. 1988, 53, 457.

¹⁴¹¹Bertus, P.; Gandon, V.; Szymoniak, J. Chem. Commun. 2000, 171.


called the *Thorpe-Ziegler reaction*.¹⁴¹² This is a useful method for closing large rings. Yields are high for five- to eight-membered rings, fall off to about zero for rings of nine to thirteen members, but are high again for fourteen-membered and larger rings, if high-dilution techniques are employed. The product in the Thorpe–Ziegler reaction is not the imine, but the tautomeric enamine, for example, **81**; if desired this can be hydrolyzed to an α -cyano ketone (**16-2**), which can in turn be hydrolyzed and decarboxylated (**16-4**, **12-40**). Other active-hydrogen compounds can also be added to nitriles.¹⁴¹³

OS VI, 932.

H. Other Carbon or Silicon Nucleophiles

16-51 Addition of Silanes

O-Hydro-C-alkyl-addition

Allylic silanes react with aldehydes, in the presence of Lewis acids, to give a homoallylic alcohol.¹⁴¹⁴ In the case of benzylic silanes, this addition reaction has been induced with $Mg(ClO_4)_2$ under photochemical conditions.¹⁴¹⁵ Cyclopropyl-carbinyl silanes add to acetals in the presence of TMSOTf to give a homoallylic alcohol.¹⁴¹⁶ Allyltrichlorosilane adds an allyl group to an aldehyde in the presence of a cyclic urea and AgOTf.¹⁴¹⁷ The addition of chiral additives leads to the alcohol with good asymmetric induction.¹⁴¹⁸ In a related reaction, allylic silanes react with acyl halides to produce the corresponding carbonyl derivative. The reaction of phenyl chloroformate, allyltrimethylsilane and AlCl₃, for example, gave phenyl but-3-enoate.¹⁴¹⁹

Allylic silanes also add to imines, in the presence of TiCl₄, to give amines.¹⁴²⁰

¹⁴¹²For a monograph, see Taylor, E.C.; McKillop, A. *The Chemistry of Cyclic Enaminonitriles and ortho-Amino Nitriles*, Wiley, NY, **1970**. For a review, see Schaefer, J.P.; Bloomfield, J.J. *Org. React.* **1967**, *15*, 1.

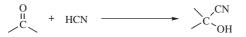
 ¹⁴¹³See, for example, Josey, A.D. J. Org. Chem. 1964, 29, 707; Barluenga, J.; Fustero, S.; Rubio, V.; Gotor,
 V. Synthesis 1977, 780; Hiyama, T.; Kobayashi, K. Tetrahedron Lett. 1982, 23, 1597; Gewald, K.;
 Bellmann, P.; Jänsch, H. Liebigs Ann. Chem. 1984, 1702; Page, P.C.B.; van Niel, M.B.; Westwood, D. J.
 Chem. Soc. Perkin Trans. 1 1988, 269.

¹⁴¹⁴Panek, J.S.; Liu, P. Tetrahedron Lett. 1997, 38, 5127.

¹⁴¹⁵Fukuzumi, S.; Okamoto, T.; Otera, J. J. Am. Chem. Soc. 1994, 116, 5503.

¹⁴¹⁶Braddock, D.C.; Badine, D.M.; Gottschalk, T. Synlett 2001, 1909.

¹⁴¹⁷Chataigner, I.; Piarulli, U.; Gennari, C. Tetrahedron Lett. 1999, 40, 3633.


¹⁴¹⁸Ishihara, K.; Mouri, M.; Gao, Q.; Maruyama, T.; Furuta, K.; Yamamoto, H. J. Am. Chem. Soc. **1993**, 115, 11490.

¹⁴¹⁹Mayr, H.; Gabriel, A.O.; Schumacher, R. Liebigs Ann. Chem. 1995, 1583.

¹⁴²⁰Kercher, T.; Livinghouse, T. J. Am. Chem. Soc. 1996, 118, 4200.

16-52 The Formation of Cyanohydrins

O-Hydro-C-cyano-addition

The addition of HCN to aldehydes or ketones produces cyanohydrins.¹⁴²¹ This is an equilibrium reaction, and for aldehydes and aliphatic ketones the equilibrium lies to the right; therefore the reaction is quite feasible, except with sterically hindered ketones such as diisopropyl ketone. However, ketones ArCOR give poor yields, and the reaction cannot be carried out with ArCOAr since the equilibrium lies too far to the left. With aromatic aldehydes the benzoin condensation (**16-55**) competes. With α , β -unsaturated aldehydes and ketones, 1,4-addition competes (**15-38**). The reaction has been carried out enantioselectively: optically active cyanohydrins were prepared with the aid of optically active catalysts.¹⁴²² Hydrogen cyanide adds to aldehydes in the presence of a lyase to give the cyanohydrin with good enantioselectivity.¹⁴²³ Cyanohydrins have been formed using a lyase in an ionic liquid.¹⁴²⁴

$$\underset{R}{\overset{O}{\overset{H}}}_{C} + Me_{3}Si-CN \xrightarrow{Lewis}_{acid} \underset{R'}{\overset{C}{\overset{C}}}_{C} \overset{CN}{OSiMe_{3}} \xrightarrow{R} \underset{R'}{\overset{C}{\overset{C}}}_{OH}$$

Ketones of low reactivity, such as ArCOR, can be converted to cyanohydrins by treatment with diethylaluminum cyanide (Et₂AlCN) (see OS **VI**, 307) or, indirectly, with cyanotrimethylsilane (Me₃SiCN)¹⁴²⁵ in the presence of a Lewis acid or base,¹⁴²⁶

¹⁴²¹For reviews, see Friedrich, K., in Patai, S.; Rappoport, Z. *The Chemistry of Functional Groups, Supplement C*, pt. 2, Wiley, NY, *1983*, pp. 1345–1390; Friedrich, K.; Wallenfels, K., in Rappoport, Z. *The Chemistry of the Cyano Group*, Wiley, NY, *1970*, pp. 72–77.

¹⁴²²See Minamikawa, H.; Hayakawa, S.; Yamada, T.; Iwasawa, N.; Narasaka, K. *Bull. Chem. Soc. Jpn. 1988*, *61*, 4379; Jackson, W.R.; Jayatilake, G.S.; Matthews, B.R.; Wilshire, C. *Aust. J. Chem. 1988*, *41*, 203; Garner, C.M.; Fernández, J.M.; Gladysz, J.A. *Tetrahedron Lett. 1989*, *30*, 3931; Mori, A.; Ikeda, Y.; Kinoshita, K.; Inoue, S. *Chem. Lett. 1989*, 2119; Kobayashi, S.; Tsuchiya, Y.; Mukaiyama, T. *Chem. Lett. 1991*, 541; Gröger, H.; Capan, E.; Barthuber, A.; Vorlop, K.-D. *Org. Lett. 2001*, *3*, 1969, and references cited therein. For a review, see Brune, J.-M.; Holmes, I.P. Angew. Chem. Int. Ed. *2004*, *43*, 2752.

¹⁴²³Gerrits, P.J.; Marcus, J.; Birikaki, L.; van der Gen, A. *Tetrahedron Asymmetry* **2001**, *12*, 971.

¹⁴²⁴In bmim BF₄, 1-butyl-3-methylimidazolium tetrafluoroborate: Gaisberger, R.P.; Fechter, M.H.; Griengl, H. *Tetrahedron Asymmetry* **2004**, *15*, 2959.

¹⁴²⁵For reviews of Me₃SiCN and related compounds, see Rasmussen, J.K.; Heilmann, S.M.; Krepski, L. *Adv. Silicon Chem.* **1991**, *1*, 65; Groutas, W.C.; Felker, D. *Synthesis* **1980**, 861. For procedures using Me₃SiCl and ⁻CN instead of Me₃SiCN, see Yoneda, R.; Santo, K.; Harusawa, S.; Kurihara, T. *Synthesis* **1986**, 1054; Sukata, K. *Bull. Chem. Soc. Jpn.* **1987**, *60*, 3820.

¹⁴²⁶Kobayashi, S.; Tsuchiya, Y.; Mukaiyama, T. *Chem. Lett.* **1991**, 537; Belokon', Y.; Flego, M.; Ikonnikov, N.; Moscalenko, M.; North, M.; Orizu, C.; Tararov, V.; Tasinazzo, M. *J. Chem. Soc. Perkin Trans. 1* **1997**, 1293; Wada, M.; Takahashi, T.; Domae, T.; Fukuma, T.; Miyoshi, N.; Smith, K. *Tetrahedron Asymmetry*, **1997**, 8, 3939; Kanai, M.; Hamashima, Y.; Shibasaki, M. *Tetrahedron Lett.* **2000**, *41*, 2405. The reaction works in some cases without a Lewis acid, see Manju, K.; Trehan, S. J. Chem. Soc. *Perkin Trans. 1* **1995**, 2383.

followed by hydrolysis of the resulting O-trimethylsilyl cyanohydrin 82. Solvent-free conditions have been reported using TMSCN, an aldehydes and potassium carbonate.¹⁴²⁷ Amine N-oxides catalyze the reaction¹⁴²⁸ as does tetrabutylammonium cyanide.¹⁴²⁹ Lithium perchlorate in ether facilitates this reaction.¹⁴³⁰ With MgBr₂ as a catalyst, the reaction proceeds to good syn selectivity. ¹⁴³¹ Other useful catalysts include platinum complexes,¹⁴³² Ti(OiPr)₄,¹⁴³³ and InBr₃.¹⁴³⁴ When TiCl₄ is used, the reaction between Me₃SiCN and aromatic aldehydes or ketones gives α -chloro nitriles (ClCRR'-CN).¹⁴³⁵ The use of chiral additives in this latter reaction leads to cyanohydrins with good asymmetric induction.¹⁴³⁶ Sulfoximine-titanium reagents have been used in enantioselective trimethylsilyl cyanations of aldehydes.¹⁴³⁷ Chiral transition-metal catalysts have been used to give O-trialkylsilyl cyanohydrins with good enantioselectivity, including titanium complexes¹⁴³⁸ as well as complexes of other metals.¹⁴³⁹ A vanadium catalysts has been used in an ionic liquid.¹⁴⁴⁰ Note that the reaction of an aldehyde and TMSCN in the presence of aniline and a BiCl₃ catalyst leads to an α -cyano amine.¹⁴⁴¹ α -Cyano amines are also formed by the reaction of an aldehyde with (Et₂N)₂BCN.¹⁴⁴²

¹⁴²⁷He, B.; Li, Y.; Feng, X.; Zhang, G. Synlett 2004, 1776.

¹⁴²⁸Shen, Y.; Feng, X.; Li, Y.; Zhang, G.; Jiang, Y. *Tetrahedron* 2003, 59, 5667. See Bakendale, I.R.; Ley,
 S.V.; Sneddon, H.F. *Synlett* 2002, 775; Shen, Y.; Feng, X.; Li, Y.; Zhang, G.; Jiang, Y. *Eur. J. Org. Chem.* 2004, 129.

¹⁴²⁹Amurrio, I.; Córdoba, R.; Csákÿ, A.G.; Plumet, J. Tetrahedron 2004, 60, 10521.

¹⁴³⁰Jenner, G. Tetrahedron Lett. 1999, 40, 491.

¹⁴³¹Ward, D.E.; Hrapchak, M.J.; Sales, M. Org. Lett. 2000, 2, 57.

¹⁴³²Fossey, J.S.; Richards, C.J. Tetrahedron Lett. 2003, 44, 8773.

¹⁴³³Huang, W.; Song, Y.; Bai, C.; Cao, G.; Zheng, Z. *Tetrahedron Lett.* **2004**, *45*, 4763; He, B.; Chen, F.-X.; Li, Y.; Feng, X.; Zhang, G. *Tetrahedron Lett.* **2004**, *45*, 5465.

¹⁴³⁴Bandini, M.; Cozzi, P.G.; Melchiorre, P.; Umani-Ronchi, A. Tetrahedron Lett 2001, 42, 3041.

¹⁴³⁵Kiyooka, S.; Fujiyama, R.; Kawaguchi, K. Chem. Lett. 1984, 1979.

¹⁴³⁶Tararov, V.I.; Hibbs, D.E.; Hursthouse, M.B.; Ikonnikov, N.S.; Malik, K.M.A.; North, M.; Orizu, C.;
 Belokon, Y.N. *Chem. Commun.* 1998, 387; Bolm, C.; Müller, P. *Tetrahedron Lett.* 1995, 36, 1625; Ryu,
 D.H.; Corey, E.J. J. Am. Chem. Soc. 2004, 126, 8106.

¹⁴³⁷Bolm, C.; Müller, P.; Harms, K. Acta Chem. Scand. B, 1996, 50, 305.

¹⁴³⁸Hamashima, Y.; Kanai, M.; Shibasaki, M. J. Am. Chem.Soc. 2000, 122, 7412; Belokon, Y.N.; Green, B.; Ikonnikov, N.S.; North, M.; Parsons, T.; Tararov, V.I. Tetrahedron 2001, 57, 771 and references cited therein; Liang, S.; Bu, X.R. J. Org. Chem. 2002, 67, 2702; Li, Y.; He, B.; Qin, B.; Feng, X.; Zhang, G. J. Org. Chem. 2004, 69, 7910; Chen, F.-X.; Qin, B.; Feng, X.; Zhang, G.; Jiang, Y. Tetrahedron 2004, 60, 10449; Uang, B.-J.; Fu, I.-P.; Hwang, C.-D.; Chang, C.-W.; Yang, C.-T.; Hwang, D.-R. Tetrahedron 2004, 60, 10479; Gama, A.; Flores-López, L.-Z.; Aguirre, G.; Parra-Hake, M.; Somanathan, R.; Walsh, P.J. Tetrahedron Asymmetry 2002, 13, 149.

¹⁴³⁹Transition metals used include Yb: Aspinall, H.C.; Greeves, N.; Smith, P.M. *Tetrahedron Lett.* 1999, 40, 1763. Al: Hamashima, Y.; Sawada, D.; Nogami, H.; Kanai, M.; Shibasaki, M. *Tetrahedron* 2001, 57, 805; Deng, H.; Isler, M.P.; Snapper, M.L.; Hoveyda, A.H. *Angew. Chem. Int. Ed.* 2002, 41, 1009. Sc: Karimi, B.; Ma'Mani, L. Org. Lett. 2004, 6, 4813.

 ¹⁴⁴⁰In bmim PF₆, 1-butyl-3-methylimidazolium hexafluorophosphate: Baleizão, C.; Gigante, B.; Garcia, H.; Corma, A. *Tetrahedron Lett.* 2003, 44, 6813.

¹⁴⁴¹De, S.K.; Gibbs, R.A. Tetrahedron Lett. 2004, 45, 7407.

¹⁴⁴²Suginome, M.; Yamamoto, A.; Ito, Y. Chem. Commun. 2002, 1392.

Ketones can be converted to cyanohydrin *O*-carbonates, $R_2C(CN)OCO_2R'$, by reaction with EtO₂C–CN. In the presence of a Cinchona alkaloid, the product is formed with good enantioselectivity.¹⁴⁴³ Potassium cyanide and acetic anhydride reacts with an aldehyde in the presence of a chiral titanium catalyst to give an α -acetoxy nitrile.¹⁴⁴⁴

Rather than direct reaction with an aldehyde or ketone, the bisulfite addition product is often treated with cyanide. The addition is nucleophilic and the actual nucleophile is ⁻CN, so the reaction rate is increased by the addition of base.¹⁴⁴⁵ This was demonstrated by Lapworth in 1903, and consequently this was one of the first organic mechanisms to be known.¹⁴⁴⁶ This method is especially useful for aromatic aldehydes, since it avoids competition from the benzoin condensation. If desired, it is possible to hydrolyze the cyanohydrin *in situ* to the corresponding α -hydroxy acid. This reaction is important in the *Kiliani–Fischer* method of extending the carbon chain of a sugar.

A particularly useful variation of this reaction uses cyanide rather than HCN. α -Amino nitriles¹⁴⁴⁷ can be prepared in one step by the treatment of an aldehyde or ketone with NaCN and NH₄Cl. This is called the *Strecker synthesis*;¹⁴⁴⁸ and it is a special case of the Mannich reaction (**16-19**). Since the CN is easily hydrolyzed to the acid, this is a convenient method for the preparation of α -amino acids. The reaction has also been carried out with NH₃ + HCN and with NH₄CN. Salts of primary and secondary amines can be used instead of NH₄⁺ to obtain *N*-substituted and *N*,*N*-disubstituted α -amino nitriles. Unlike **16-52**, the Strecker synthesis is useful for aromatic as well as aliphatic ketones. As in **16-52**, the Me₃SiCN method has been used; **76** is converted to the product with ammonia or an amine.¹⁴⁴⁹ The effect of pressure on the Strecker synthesis has been studied.¹⁴⁵⁰

OS I, 336; II, 7, 29, 387; III, 436; IV, 58, 506; VI, 307; VII, 20, 381, 517, 521. For the reverse reaction, see OS III, 101. For the Strecker synthesis, see OS I, 21, 355; III, 66, 84, 88, 275; IV, 274; V, 437; VI, 334.

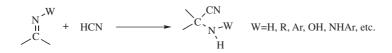
¹⁴⁴³Tian, S.-K.; Deng, L. J. Am. Chem. Soc. 2001, 123, 6195.

¹⁴⁴⁵For a review, see Ogata, Y.; Kawasaki, A., in Zabicky, J. *The Chemistry of the Carbonyl Group*, Vol. 2, Wiley, NY, **1970**, pp. 21–32. See also, Okano, V.; do Amaral, L.; Cordes, E.H. *J. Am. Chem. Soc.* **1976**, *98*, 4201; Ching, W.; Kallen, R.G. *J. Am. Chem. Soc.* **1978**, *100*, 6119.

¹⁴⁴⁶Lapworth, A. J. Chem. Soc. 1903, 83, 998.

 1447 For a review of α -amino nitriles, see Shafran, Yu.M.; Bakulev, V.A.; Mokrushin, V.S. *Russ. Chem. Rev.* **1989**, 58, 148.

¹⁴⁴⁸For a review of asymmetric Strecker syntheses, see Williams, R.M. Synthesis of Optically Active α-Amino Acids, Pergamon, Elmsford, NY, **1989**, pp. 208–229; Yet, L. Angew. Chem. Int. Ed. **2001**, 40, 875; Gröger, H. Chem. Rev. **2003**, 103, 2795.


¹⁴⁴⁹See Mai, K.; Patil, G. Tetrahedron Lett. 1984, 25, 4583; Synth. Commun. 1985, 15, 157.

¹⁴⁵⁰Jenner, G.; Salem, R.B.; Kim, J.C.; Matsumoto, K. Tetrahedron Lett. 2003, 44, 447.

¹⁴⁴⁴Belokon, Y.N.; Gutnov, A.V.; Moskalenko, M.A.; Yashkina, L.V.; Lesovoy, D.E.; Ikonnikov, N.S.; Larichev, V.S.; North, M. *Chem. Commun.* **2002**, 244; Kawasaki, Y.; Fujii, A.; Nakano, Y.; Sakaguchi, S.; Ishii, Y. J. Org. Chem. **1999**, 64, 4214.

16-53 The Addition of HCN to C=N and $C\equiv N$ Bonds

N-Hydro-C-cyano-addition

HCN adds to imines, Schiff bases, hydrazones, oximes, and similar compounds. Cyanide can be added to iminium ions to give α -cyano amines (83).

As in **16-50**, the addition to imines has been carried out enantioselectively.¹⁴⁵¹ Chiral ammonium salts have been used with HCN.¹⁴⁵² TMSCN reacts with *N*-tosyl imines in the presence of BF₃•OEt₂ to give the α -cyano *N*-tosyl amine.¹⁴⁵³ In the presence of a chiral zirconium¹⁴⁵⁴ or aluminum¹⁴⁵⁵ catalyst, Bu₃SnCN react with imines to give α -cyanoamines enantioselectively. The reaction of an imine and TMSCN gives the cyano amine with good enantioselectivity using a chiral scandium catalyst.¹⁴⁵⁶ Titanium catalysts have been used in the presence of a chiral Schiff base.¹⁴⁵⁷ Treatment of an imine with a chiral 1,4,6- triazabicy-clo[3.3.0]oct-4-ene and then HCN give the α -cyano amine with good enantioselectivity.¹⁴⁵⁸

The addition of KCN to triisopropylbenzenesulfonyl hydrazones **84** provides an indirect method for achieving the conversion $RR'CO \rightarrow RR'CHCN$.¹⁴⁵⁹ The reaction is successful for hydrazones of aliphatic aldehydes and ketones.

RR'C=NNHSO₂Ar + KCN
$$\xrightarrow{\text{MeOH}}$$
 RR'CHCN Ar = 2,4,6-(*i*-Pr)₃C₆H₂
84

¹⁴⁵¹Saito, K.; Harada, K. Tetrahedron Lett. 1989, 30, 4535.

¹⁴⁵⁴Ishitani, H.; Komiyama, S.; Hasegawa, Y.; Kobayashi, S. J. Am. Chem. Soc. 2000, 122, 762.

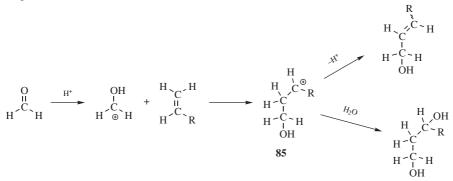
¹⁴⁵⁵Nakamura, S.; Sato, N.; Sugimoto, M.; Toru, T. Tetrahedron Asymmetry 2004, 15, 1513.

- ¹⁴⁵⁶Chavarot, M.; Byrne, J.J.; Chavant, P.Y.; Vallée, Y. Tetrahedron Asymmetry 2001, 12, 1147.
- ¹⁴⁵⁷Krueger, C.A.; Kuntz, K.W.; Dzierba, C.D.; Wirschun, W.G.; Gleason, J.D.; Snapper, M.L.; Hoveyda, A.H. J. Am. Chem. Soc. 1999, 121, 4284.
- ¹⁴⁵⁸Corey, E.J.; Grogan, M.J. Org. Lett. 1999, 1, 157.

¹⁴⁵⁹Jiricny, J.; Orere, D.M.; Reese, C.B. J. Chem. Soc. Perkin Trans. 1 1980, 1487. For other methods of achieving this conversion, see Ziegler, F.E.; Wender, P.A. J. Org. Chem. 1977, 42, 2001; Cacchi, S.; Caglioti, L.; Paolucci, G. Synthesis 1975, 120; Yoneda, R.; Harusawa, S.; Kurihara, T. Tetrahedron Lett. 1989, 30, 3681; Okimoto, M.; Chiba, T. J. Org. Chem. 1990, 55, 1070.

¹⁴⁵²Huang, J.; Corey, E.J. Org. Lett. 2004, 6, 5027.

¹⁴⁵³Prasad, B.A.B.; Bisai, A.; Singh, V.K. Tetrahedron Lett. 2004, 45, 9565.


HCN can also be added to the C \equiv N bond to give iminonitriles or α -aminomalononitriles.¹⁴⁶⁰

R-CN
$$\xrightarrow{\text{HCN}}_{\text{-CN}} \xrightarrow{\text{N-H}}_{\text{R}} \xrightarrow{\text{HCN}}_{\text{-CN}} \xrightarrow{\text{HCN}}_{\text{-CN}} \xrightarrow{\text{H2N}}_{\text{R}} \xrightarrow{\text{CN}}_{\text{CN}}$$

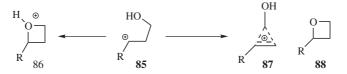
OS V, 344. See also, OS V, 269.

16-54 The Prins Reaction

The addition of an alkene to formaldehyde in the presence of an acid¹⁴⁶¹ catalyst is called the *Prins reaction*.¹⁴⁶² Three main products are possible; which one predominates depends on the alkene and the conditions. When the product is the 1,3-diol or the dioxane,¹⁴⁶³ the reaction involves addition to the C=C as well as to the C=O. The mechanism is one of electrophilic attack on both double bonds. The acid first protonates the C=O, and the resulting carbocation is attacked by the C=C to give **85**.

The cation product **85** can undergo loss of H^+ to give the alkene or add water to give the diol.¹⁴⁶⁴ It has been proposed that **85** is stabilized by neighboring-group

¹⁴⁶⁰For an example, see Ferris, J.P.; Sanchez, R.A. Org. Synth. V, 344.


¹⁴⁶¹The Prins reaction has also been carried out with basic catalysts: Griengl, H.; Sieber, W. Monatsh. Chem. **1973**, 104, 1008, 1027.

¹⁴⁶²For reviews, see Adams, D.R.; Bhatnagar, S.P. Synthesis 1977, 661; Isagulyants, V.I.; Khaimova, T.G.; Melikyan, V.R.; Pokrovskaya, S.V. Russ. Chem. Rev. 1968, 37, 17. For a list of references, see Larock, R.C. Comprehensive Organic Transformations, 2nd ed., Wiley-VCH, NY, 1999, p. 248.

¹⁴⁶³The reaction to produce dioxanes has also been carried out with equimolar mixtures of formaldehyde and another aldehyde RCHO. The R appears in the dioxane on the carbon between the two oxygens: Safarov, M.G.; Nigmatullin, N.G.; Ibatullin, U.G.; Rafikov, S.R. *Doklad. Chem.* **1977**, 236, 507.

¹⁴⁶⁴Hellin, M.; Davidson, M.; Coussemant, F. Bull. Soc. Chim. Fr. 1966, 1890, 3217.

attraction, with either the oxygen¹⁴⁶⁵ or a carbon¹⁴⁶⁶ stabilizing the charge (**86** and

87, respectively). This stabilization is postulated to explain the fact that with 2-butenes¹⁴⁶⁷ and with cyclohexenes the addition is anti. A backside attack of H₂O on the three- or four-membered ring would account for it. Other products are obtained too, which can be explained on the basis of **86** or **87**.^{1465,1466} Additional evidence for the intermediacy of **86** is the finding that oxetanes (**88**) subjected to the reaction conditions (which would protonate **88** to give **86**) give essentially the same product ratios as the corresponding alkenes.¹⁴⁶⁸ An argument against the intermediacy of **86** and **87** is that not all alkenes show the anti-stereoselectivity mentioned above. Indeed, the stereochemical results are often quite complex, with syn, anti, and nonstereoselective addition reported, depending on the nature of the reactants and the reaction conditions.¹⁴⁶⁹ Since addition to the C=C bond is electrophilic, the reactivity of the alkene increases with alkyl substitution and Markovnikov's rule is followed. The dioxane product may arise from a reaction between the 1,3-diol and formaldehyde¹⁴⁷⁰ (**16-5**) or between **86** and formaldehyde.

Lewis acids, such as $SnCl_4$, also catalyze the reaction, in which case the species that adds to the alkenes is $H_2C^+-O^--SnCl_4$.¹⁴⁷¹ Montmorillonite K10 clay containing zinc (IV) has been used to promote the reaction.¹⁴⁷² The reaction can also be catalyzed by peroxides, in which case the mechanism is probably a free-radical one. Other transition metal complexes can be used to form homoallylic alcohols. A typical example is the reaction of methylenecyclohexane with an aryl aldehyde to give **89**.¹⁴⁷³

¹⁴⁶⁵Blomquist, A.T.; Wolinsky, J. J. Am. Chem. Soc. 1957, 79, 6025; Schowen, K.B.; Smissman, E.E.; Schowen, R.L. J. Org. Chem. 1968, 33, 1873.

¹⁴⁶⁶Dolby, L.J.; Lieske, C.N.; Rosencrantz, D.R.; Schwarz, M.J. J. Am. Chem. Soc. **1963**, 85, 47; Dolby,
 L.J.; Schwarz, M.J. J. Org. Chem. **1963**, 28, 1456; Safarov, M.G.; Isagulyants, V.I.; Nigmatullin, N.G. J.
 Org. Chem. USSR **1974**, 10, 1378.

¹⁴⁶⁷Fremaux, B.; Davidson, M.; Hellin, M.; Coussemant, F. Bull. Soc. Chim. Fr. 1967, 4250.

¹⁴⁶⁸Meresz, O.; Leung, K.P.; Denes, A.S. Tetrahedron Lett. 1972, 2797.

¹⁴⁶⁹For example, see LeBel, N.A.; Liesemer, R.N.; Mehmedbasich, E. J. Org. Chem. **1963**, 28, 615; Portoghese, P.S.; Smissman, E.E. J. Org. Chem. **1962**, 27, 719; Wilkins, C.L.; Marianelli, R.S. Tetrahedron **1970**, 26, 4131; Karpaty, M.; Hellin, M.; Davidson, M.; Coussemant, F. Bull. Soc. Chim. Fr. **1971**, 1736; Coryn, M.; Anteunis, M. Bull. Soc. Chim. Belg. **1974**, 83, 83.

¹⁴⁷⁰Hellin, M.; Davidson, M; Coussemant, F *Bull. Soc. Chim. Fr.* **1966**, 1890, 3217; Isagulyants, V.I.;
 Isagulyants, G.V.; Khairudinov, I.R.; Rakhmankulov, D.L. *Bull. Acad. Sci. USSR. Div. Chem. Sci.*, **1973**, 22, 1810; Sharf, V.Z.; Kheifets, V.I.; Freidlin, V.I. *Bull. Acad. Sci. USSR Div. Chem. Sci.*, **1974**, 23, 1681.
 ¹⁴⁷¹Yang, D.H.; Yang, N.C.; Ross, C.B. J. Am. Chem. Soc. **1959**, 81, 133.

¹⁴⁷²Tateiwa, J.-i.; Kimura, A.; Takasuka, M.; Uemura, S. J. Chem. Soc. Perkin Trans. 1 1997, 2169.
 ¹⁴⁷³Ellis, W.W.; Odenkirk, W.; Bosnich, B. Chem. Commun. 1998, 1311.

Samarium iodide promotes this addition reaction.¹⁴⁷⁴ In a related reaction, simple alkene units add to esters in the presence of sodium and liquid ammonia to give an alcohol.¹⁴⁷⁵ Structural variations in the alkene lead to different products. Homo-allylic alcohols react with aldehydes in the presence of Montmorillonite KSF clay to give 4-hydroxytetrahydropyrans.¹⁴⁷⁶ A variation of this reaction converts an aryl aldehyde and a homoallylic alcohol to a 4-chlorotetrahydropyran in the presence of InCl₃.¹⁴⁷⁷ Homoallylic alcohols, protected as -O(CHMeOAc) react with BF₃•OEt₂ and acetic acid to give 4-acetoxytetrahydropyrans or with SnBr₄ to give 4-bromotetrahydropyrans.¹⁴⁷⁸ Homoallylic alcohols with a vinyl silane moiety react with InCl₃ and an aldehyde to give a dihydropyran.¹⁴⁷⁹

A closely related reaction has been performed with activated aldehydes or ketones; without a catalyst such as chloral and acetoacetic ester, but with heat.¹⁴⁸⁰ The product in these cases is a β -hydroxy alkene, and the mechanism is pericyclic:¹⁴⁸¹

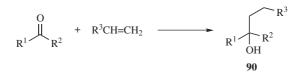
This reaction is reversible and suitable β -hydroxy alkenes can be cleaved by heat (**17-32**). There is evidence that the cleavage reaction occurs by a cyclic mechanism (p. 1551), and, by the principle of microscopic reversibility, the addition mechanism should be cyclic too.¹⁴⁸² Note that this reaction is an oxygen analog of the ene synthesis (**15-23**). This reaction can also be done with unactivated aldehydes¹⁴⁸³ and ketones¹⁴⁸⁴ if Lewis-acid catalysts such as dimethylaluminum chloride (Me₂AlCl) or ethylaluminum dichloride (EtAlCl₂) are used.¹⁴⁸⁵ Lewis acid catalysts

- ¹⁴⁷⁵Cossy, J.; Gille, B.; Bellosta, V. J. Org. Chem. 1998, 63, 3141.
- ¹⁴⁷⁶Yadav, J.S.; Reddy, B.V.S.; Kumar, G.M.; Murthy, Ch.V.S.R. Tetrahedron Lett. 2001, 42, 89.
- ¹⁴⁷⁷Yang, J.; Viswanathan, G.S.; Li, C.-J. *Tetrahedron Lett.* **1999**, 40, 1627.
- ¹⁴⁷⁸Jaber, J.J.; Mitsui, K.; Rychnovsky, S.D. J. Org. Chem. 2001, 66, 4679.
- ¹⁴⁷⁹Dobbs, A.P.; Martinović, S. Tetrahedron Lett. 2002, 43, 7055.

¹⁴⁸⁰Arnold, R.T.; Veeravagu, P. J. Am. Chem. Soc. **1960**, 82, 5411; Klimova, E.I.; Abramov, A.I.; Antonova, N.D.; Arbuzov, Yu.A. J. Org. Chem. USSR **1969**, 5, 1308; Klimova, E.I.; Antonova, N.D.; Arbuzov, Yu.A. J. Org. Chem. USSR **1969**, 5, 1312, 1315.

¹⁴⁸¹See, for example, Achmatowicz, Jr., O.; Szymoniak, J. J. Org. Chem. **1980**, 45, 1228; Ben Salem, R.; Jenner, G. Tetrahedron Lett. **1986**, 27, 1575. There is evidence that the mechanism is somewhat more complicated than shown here: Kwart, H.; Brechbiel, M. J. Org. Chem. **1982**, 47, 3353.

¹⁴⁷⁴Sarkar, T.K.; Nandy, S.K. Tetrahedron Lett. 1996, 37, 5195.


¹⁴⁸²For other evidence, see Achmatowicz Jr., O.; Szymoniak, J. J. Org. Chem. **1980**, 45, 1228; Ben Salem, R.; Jenner, G. *Tetrahedron Lett.* **1986**, 27, 1575; Papadopoulos, M.; Jenner, G. *Tetrahedron Lett.* **1981**, 22, 2773.

¹⁴⁸³Snider, B.B. Acc. Chem. Res. **1980**, 13, 426; Cartaya-Marin, C.P.; Jackson, A.C.; Snider, B.B. J. Org. Chem. **1984**, 49, 2443.

¹⁴⁸⁴Jackson, A.C.; Goldman, B.E.; Snider, B.B. J. Org. Chem. 1984, 49, 3988.

¹⁴⁸⁵For discussions of the mechanism with Lewis acid catalysts, see Stephenson, L.M.; Orfanopoulos, M. J. Org. Chem. **1981**, 46, 2200; Kwart, H.; Brechbiel, M. J. Org. Chem. **1982**, 47, 5409; Song, Z.; Beak, P. J. Org. Chem. **1990**, 112, 8126.

also increase rates with activated aldehydes.¹⁴⁸⁶ The use of optically active catalysts has given optically active products with high ee.¹⁴⁸⁷

In a related reaction, alkenes can be added to aldehydes and ketones to give reduced alcohols **90**. This has been accomplished by several methods,¹⁴⁸⁸ including treatment with SmI_2^{1489} or Zn and Me₃SiCl,¹⁴⁹⁰ and by electrochemical¹⁴⁹¹ and photochemical¹⁴⁹² methods. Most of these methods have been used for intramole-cular addition and most or all involve free-radical intermediates.

OS IV, 786. See also, OS VII, 102.

16-55 The Benzoin Condensation

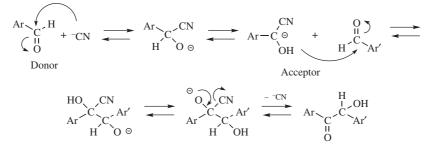
Benzoin aldehyde condensation

When certain aldehydes are treated with cyanide ion, *benzoins* (91) are produced in a reaction called the *benzoin condensation*. The condensation can be regarded as involving the addition of one molecule of aldehyde to the C=O group of another. The reaction only occurs with aromatic aldehydes, but not all of them,¹⁴⁹³ and for glyoxals RCOCHO. The two molecules of aldehyde obviously perform different functions. The one that no longer has a C–H bond in the product is called the *donor*, because it has "donated" its hydrogen to the oxygen of the other molecule, the *acceptor*. Some aldehydes can perform only one of these functions, and hence cannot be self-condensed, though they can often be condensed with a different aldehyde. For example, *p*-dimethylaminobenzaldehyde is not an acceptor but only a donor. Thus it cannot condense with itself, but it can condense with benzaldehyde, which can perform both functions, but is a better acceptor than it is a donor.

 ¹⁴⁸⁶Benner, J.P.; Gill, G.B.; Parrott, S.J.; Wallace, B. *J. Chem. Soc. Perkin Trans.* 1 1984, 291, 315, 331.
 ¹⁴⁸⁷Maruoka, K.; Hoshino, Y.; Shirasaka, T.; Yamamoto, H. *Tetrahedron Lett.* 1988, 29, 3967; Mikami, K.; Terada, M.; Nakai, T. *J. Am. Chem. Soc.* 1990, 112, 3949.

¹⁴⁸⁸For references, see Ujikawa, O.; Inanaga, J.; Yamaguchi, M. *Tetrahedron Lett.* **1989**, 30, 2837; Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, **1999**, pp. 1178–1179.

¹⁴⁸⁹Ujikawa, O.; Inanaga, J.; Yamaguchi, M. Tetrahedron Lett. 1989, 30, 2837.


¹⁴⁹⁰Corey, E.J.; Pyne, S.G. Tetrahedron Lett. 1983, 24, 2821.

¹⁴⁹¹See Shono, T.; Kashimura, S.; Mori, Y.; Hayashi, T.; Soejima, T.; Yamaguchi, Y. J. Org. Chem. 1989, 54, 6001.

¹⁴⁹²See Belotti, D.; Cossy, J.; Pete, J.P.; Portella, C. J. Org. Chem. 1986, 51, 4196.

¹⁴⁹³For a review, see Ide, W.S.; Buck, J.S. Org. React. 1948, 4, 269.

The following is the accepted mechanism¹⁴⁹⁴ for this reversible reaction, which was originally proposed by Lapworth in 1903:¹⁴⁹⁵

The key step, the loss of the aldehydic proton, can take place because the acidity of this C-H bond is increased by the electron-withdrawing power of the CN group. Thus, cyanide is a highly specific catalyst for this reaction, because, almost uniquely, it can perform three functions: (1) It acts as a nucleophile; (2) its electron-withdrawing ability permits loss of the aldehydic proton; and (3) having done this, it then acts as a leaving group. Certain thiazolium salts can also catalyze the reaction.¹⁴⁹⁶ In this case, aliphatic aldehydes can also be used¹⁴⁹⁷ (the products are called *acyloins*), and mixtures of aliphatic and aromatic aldehydes give mixed α -hydroxy ketones.¹⁴⁹⁸ The reaction has also been carried out without cyanide, by using the benzoylated cyanohydrin as one of the components in a phase-transfer catalyzed process. By this means, products can be obtained from aldehydes that normally fail to self-condense.¹⁴⁹⁹ The condensation has also been done with excellent enantioselectivity using benzoylformate decarboxylase.¹⁵⁰⁰ Using aryl silyl ketones, ArC(=O)SiMe₂Ph, and aldehydes with a lanthanum catalyst, a 'mixed' benzoin condensation has been accomplished.1501

OS I, 94; VII, 95.

¹⁴⁹⁵Lapworth, A. J. Chem. Soc. 1903, 83, 995; 1904, 85, 1206.

¹⁴⁹⁶See Ugai, T.; Tanaka, S.; Dokawa, S. J. Pharm. Soc. Jpn. 1943, 63, 296 [Chem. Abstr. 45, 5148];
 Breslow, R. J. Am. Chem. Soc. 1958, 80, 3719; Breslow, R.; Kool, E. Tetrahedron Lett. 1988, 29, 1635;
 Castells, J.; López-Calahorra, F.; Domingo, L. J. Org. Chem. 1988, 53, 4433; Diederich, F.; Lutter, H. J. Am. Chem. Soc. 1989, 111, 8438. For another catalyst, see Lappert, M.F.; Maskell, R.K. J. Chem. Soc., Chem. Commun. 1982, 580.

¹⁴⁹⁷Stetter, H.; Rämsch, R.Y.; Kuhlmann, H. *Synthesis* 1976, 733; Stetter, H.; Kuhlmann, H. *Org. Synth.* VII, 95; Matsumoto, T.; Ohishi, M.; Inoue, S. J. Org. Chem. 1985, 50, 603.

¹⁴⁹⁸Stetter, H.; Dämbkes, G. Synthesis 1977, 403.

¹⁴⁹⁴For a discussion, See Kuebrich, J.P.; Schowen, R.L.; Wang, M.; Lupes, M.E. J. Am. Chem. Soc. 1971, 93, 1214.

¹⁴⁹⁹Rozwadowska, M.D. Tetrahedron 1985, 41, 3135.

¹⁵⁰⁰Demir, A.S.; Dünnwald, T.; Iding, H.; Pohl, M.; Müller, M. Tetrahedron Asymmetry **1999**, 10, 4769.

¹⁵⁰¹Bausch, C.C.; Johnson, J.S. J. Org. Chem. 2004, 69, 4283.

1398 ADDITION TO CARBON–HETERO MULTIPLE BONDS

16-56 Addition of Radicals to C=O, C=S, C=N Compounds

Radical cyclization is not limited to reaction with a C=C unit (see **15-29** and **15-30**), and reactions with both C=N and C=O moieties are known. Reaction of MeON=CH(CH₂)₃CHO with Bu₃SnH and AIBN, for example, led to *trans*-2-(methoxyamino)cyclopentanol in good yield.¹⁵⁰² Conjugated ketones add to aldehyde via the β-carbon under radical conditions (2 equivalents of Bu₃SnH and 0.1 equivalent of CuCl) to give a β-hydroxy ketone.¹⁵⁰³ Addition of radical to the C=N unit of R-C=N-SPh¹⁵⁰⁴ or R-C=N-OBz¹⁵⁰⁵ led to cyclic imines. Radical addition to simple imines leads to aminocycloalkenes.¹⁵⁰⁶ Radical also add to the carbonyl unit of phenylthio esters to give cyclic ketones.¹⁵⁰⁷

N,*N*-Dimethylaniline reacts with aldehydes under photochemical conditions to give acyl addition via the carbon atom of one of the methyl groups.¹⁵⁰⁸ The reaction of PhNMe₂ and benzaldehyde, for example, gave PhN(Me)CH₂CH(OH)Ph upon photolysis.

ACYL SUBSTITUTION REACTIONS

A. O, N, and S Nucleophiles

16-57 Hydrolysis of Acyl Halides

Hydroxy-de-halogenation

$RCOCI + H_2O \longrightarrow RCOOH$

Acyl halides are so reactive that hydrolysis is easily carried out.¹⁵⁰⁹ In fact, most simple acyl halides must be stored under anhydrous conditions lest they react with water in the air. Consequently, water is usually a strong enough nucleophile for the reaction, though in difficult cases hydroxide ion may be required. The reaction is seldom synthetically useful, because acyl halides are normally prepared from acids. The reactivity order is $F < Cl < Br < I.^{1510}$ If a carboxylic acid is used as the nucleophile, an exchange may take place (see **16-79**). The mechanism¹⁵¹⁰ of hydrolysis can be either S_N1 or tetrahedral, the former occurring in highly polar solvents

¹⁵⁰²Tormo, J.; Hays, D.S.; Fu, G.C. J. Org. Chem. 1998, 63, 201.

¹⁵⁰³Ooi, T.; Doda, K.; Sakai, D.; Maruoka, K. Tetrahedron Lett. 1999, 40, 2133.

¹⁵⁰⁴Boivin, J.; Fouquet, E.; Zard, S.Z. Tetrahedron 1994, 50, 1745.

¹⁵⁰⁵Boivin, J.; Schiano, A.-M.; Zard, S.Z. Tetrahedron Lett. 1994, 35, 249.

¹⁵⁰⁶Bowman, W.R.; Stephenson, P.T.; Terrett, N.K.; Young, A.R. Tetrahedron Lett. 1994, 35, 6369.

¹⁵⁰⁷Kim, S.; Jon, S.Y. Chem. Commun. 1996, 1335.

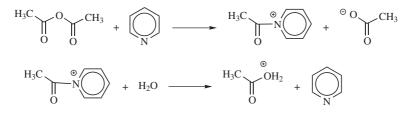
¹⁵⁰⁸Kim, S.S.; Mah, Y.J.; Kim, A.R. Tetrahedron Lett. 2001, 42, 8315.

¹⁵⁰⁹See Bentley, T.W.; Shim, C.S. J. Chem. Soc. Perkin Trans. 2 1993, 1659 for a discussion on the solvolysis of acyl chlorides.

¹⁵¹⁰For a review, see Talbot, R.J.E., in Bamford, C.H.; Tipper, C.F.H. *Comprehensive Chemical Kinetics*, Vol. 10; Elsevier, NY, *1972*, pp. 226–257. For a review of the mechanisms of reactions of acyl halides with water, alcohols, and amines, see Kivinen, A., in Patai, S. *The Chemistry of Acyl Halides*, Wiley, NY, *1972*, pp. 177–230.

and in the absence of strong nucleophiles. 1511 There is also evidence for the $S_{\rm N}2$ mechanism in some cases. 1512

Hydrolysis of acyl halides is not usually catalyzed by acids, except for acyl fluorides, where hydrogen bonding can assist in the removal of F.¹⁵¹³ There are several methods available for the hydrolysis of acyl fluorides.¹⁵¹⁴


OS II, 74.

16-58 Hydrolysis of Anhydrides

Hydroxy-de-acyloxy-substitution

$$\stackrel{R}{\underset{O}{\longrightarrow}} \stackrel{O}{\underset{O}{\longrightarrow}} \stackrel{R'}{\underset{O}{\longrightarrow}} + H_2O \longrightarrow \stackrel{R}{\underset{O}{\longrightarrow}} \stackrel{OH}{\underset{O}{\longrightarrow}} + \stackrel{HO}{\underset{O}{\longrightarrow}} \stackrel{R'}{\underset{O}{\longrightarrow}}$$

Anhydrides are somewhat more difficult to hydrolyze than acyl halides, but here too water is usually a strong enough nucleophile. The mechanism is usually tetrahedral.¹⁵¹⁵ Only under acid catalysis does the S_N1 mechanism occur and seldom even then.¹⁵¹⁶ Anhydride hydrolysis can also be catalyzed by bases. Of course, hydroxide ion attacks more readily than water, but other bases can also catalyze the reaction. This phenomenon, called *nucleophilic catalysis* (p. 1258), is actually the result of two successive tetrahedral mechanisms. For example, pyridine catalyzes the hydrolysis of acetic anhydride in this manner.¹⁵¹⁷

Many other nucleophiles similarly catalyze the reaction. OS I, 408; II, 140, 368, 382; IV, 766; V, 8, 813.

¹⁵¹¹Bender, M.L.; Chen, M.C. J. Am. Chem. Soc. **1963**, 85, 30. See also, Song, B.D.; Jencks, W.P. J. Am. Chem. Soc. **1989**, 111, 8470; Bentley, T.W.; Koo, I.S.; Norman, S.J. J. Org. Chem. **1991**, 56, 1604.

¹⁵¹²Bentley, T.W.; Carter, G.E.; Harris, H.C.J. Chem. Soc. Perkin Trans. 2 1985, 983; Guthrie, J.P.; Pike, D.C. Can. J. Chem. 1987, 65, 1951. See also, Lee, I.; Sung, D.D.; Uhm, T.S.; Ryu, Z.H. J. Chem. Soc. Perkin Trans. 2 1989, 1697.

¹⁵¹³Bevan, C.W.L.; Hudson, R.F. J. Chem. Soc. **1953**, 2187; Satchell, D.P.N. J. Chem. Soc. **1963**, 555.

¹⁵¹⁴Motie, R.E.; Satchell, D.P.N.; Wassef, W.N. J. Chem. Soc. Perkin Trans. 2 1992, 859; 1993, 1087.

¹⁵¹⁵The kinetics of the acid hydrolysis has been determined. See Satchell, D.P.N.; Wassef, W.N.; Bhatti, Z.A. *J. Chem. Soc. Perkin Trans.* 2 *1993*, 2373.

¹⁵¹⁶Satchell, D.P.N. *Q. Rev. Chem. Soc.* **1963**, *17*, 160, 172–173. For a review of the mechanism, see Talbot, R.J.E., in Bamford, C.H.; Tipper, C.F.H. *Comprehensive Chemical Kinetics*, Vol. 10, Elsevier, NY, **1972**, pp. 280–287.

¹⁵¹⁷Butler, A.R.; Gold, V. J. Chem. Soc. 1961, 4362; Fersht, A.R.; Jencks, W.P. J. Am. Chem. Soc. 1970, 92, 5432, 5442; Deady, L.W.; Finlayson, W.L. Aust. J. Chem. 1983, 36, 1951.

16-59 Hydrolysis of Carboxylic Esters

Hydroxy-de-alkoxylation

 $RCOO^{-} + R'OH \xrightarrow[-OH, H, O]{} R_{O} \xrightarrow{OR'} RCOOH + R'OH$

Ester hydrolysis is usually catalyzed by acids or bases. Since OR is a much poorer leaving group than halide or OCOR, water alone does not hydrolyze most esters. When bases catalyze the reaction, the attacking species is the more powerful nucleophile $^-$ OH. This reaction is called *saponification* and gives the salt of the acid. Acids catalyze the reaction by making the carbonyl carbon more positive and therefore more susceptible to attack by the nucleophile. Both reactions are equilibrium reactions, so they are practicable only when there is a way of shifting the equilibrium to the right. Since formation of the salt does just this, ester hydrolysis is almost always done for preparative purposes in basic solution, unless the compound is base sensitive. Even in the case of **92**, however, selective base hydrolysis of the ethyl ester gave an 80%

$$\begin{array}{ccc} MeO_2C & CO_2Et \\ CH \cdot (CH_2)_3 & & & \\ MeO_2C & & & \\ \end{array} \xrightarrow{t-BuOK, H_2O, THF} & MeO_2C & CO_2H \\ MeO_2C & & & \\ 80\% & & & CH - (CH_2)_3 \\ MeO_2C & & \\ 92 & & & 93 \end{array}$$

yield of the acid-dimethyl ester (93).¹⁵¹⁸ Ester hydrolysis can also be catalyzed¹⁵¹⁹ by metal ions, by cyclodextrins,¹⁵²⁰ by enzymes,¹⁵²¹ and by nucleophiles.¹⁴ Other reagents used to cleave carboxylic esters include Dowex-50,¹⁵²² Me₃SiI,¹⁵²³ and InCl₃ on moist silica gel using microwave irradiation.¹⁵²⁴ Cleavage of phenolic esters is usually faster than carboxylic esters derived from aliphatic acids. The reagent Sm/I₂ at -78° C has been used,¹⁵²⁵ ammonium acetate in aqueous methanol,¹⁵²⁶

¹⁵¹⁸Wilk, B.K. Synth. Commun. 1996, 26, 3859.

¹⁵¹⁹For a list of catalysts and reagents that have been used to convert carboxylic esters to acids, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, *1999*, pp. 1959-1968.

¹⁵²⁰See Bender, M.L.; Komiyama, M. *Cyclodextrin Chemistry*, Springer, NY, **1978**, pp. 34–41. The mechanism is shown in Saenger, W. *Angew. Chem. Int. Ed.* **1980**, *19*, 344.

¹⁵²¹For reviews of ester hydrolysis catalyzed by pig liver esterase, see Zhu, L.; Tedford, M.C. *Tetrahedron 1990*, *46*, 6587; Ohno, M.; Otsuka, M. *Org. React. 1989*, *37*, 1. For reviews of enzymes as catalysts in synthetic organic chemistry, see Wong, C. *Chemtracts: Org. Chem. 1990*, *3*, 91; *Science 1989*, *244*, 1145; Whitesides, G.M.; Wong, C. *Angew. Chem. Int. Ed. 1985*, *24*, 617. Addition of crown ethers can enhance the rate of hydrolysis, see Itoh, T.; Hiyama, Y.; Betchaku, A.; Tsukube, H. *Tetrahedron Lett. 1993*, *34*, 2617. ¹⁵²²Basu, M.K.; Sarkar, D.C.; Ranu, B.C. *Synth. Commun. 1989*, *19*, 627.

¹⁵²³See Olah, G.A.; Narang, S.C. *Tetrahedron* **1982**, *38*, 2225; Olah, G.A.; Husain, A.; Singh, B.P.; Mehrotra, A.K. J. Org. Chem. **1983**, *48*, 3667.

¹⁵²⁴Ranu, B.C.; Dutta, P.; Sarkar, A. Synth. Commun. 2000, 30, 4167.

¹⁵²⁵Yanada, R.; Negoro, N.; Bessho, K.; Yanada, K. Synlett 1995, 1261.

¹⁵²⁶Ramesh, C.; Mahender, G.; Ravindranath, N.; Das, B. Tetrahedron 2003, 59, 1049.

Amberlyst 15 in methanol,¹⁵²⁷ and phenolic esters have been selectively hydrolyzed in the presence of alkyl esters on alumina with microwave irradiation.¹⁵²⁸ Thiophenol with K₂CO₃ in NMP quantitatively converted methyl benzoate to benzoic acid.¹⁵²⁹ Allylic esters were cleaved with 2% Me₃SiOTf in dichloromethane,¹⁵³⁰ with CeCl₃•7 H₂O-NaI,¹⁵³¹ and with NaHSO₄•silica gel.¹⁵³² Lactones also undergo the reaction¹⁵³³ (though if the lactone is five- or six-membered, the hydroxy acid often spontaneously reforms the lactone) and thiol esters (RCOSR') give thiols R'SH. Typical reagents for this latter transformation include NaSMe in methanol,¹⁵³⁴ borohydride exchange resin-Pd(OAc)₂ for reductive cleavage of thiol esters to thiols, ¹⁵³⁵ and TiCl₄/ Zn for the conversion of phenylthioacetates to thiophenols.¹⁵³⁶ Sterically hindered esters are hydrolyzed with difficulty (p. 479), but reaction of 2 equivalents of t-BuOK with 1 equivalent of water is effective.¹⁵³⁷ Hindered esters can also be cleaved by sequential treatment with zinc bromide and then water,¹⁵³⁸ with silica gel in refluxing toluene,¹⁵³⁹ and on alumina when irradiated with microwaves.¹⁵⁴⁰ For esters insoluble in water the rate of two-phase ester saponification can be greatly increased by the application of ultrasound,¹⁵⁴¹ and phase-transfer techniques have been applied.¹⁵⁴² Enzymatic hydrolysis of diesters with esterase has been shown to give the hydroxy ester,¹⁵⁴³ and selective hydrolysis of dimethyl succinate to monomethyl succinic acid was accomplished with aq. NaOH in THF.¹⁵⁴⁴ Hydrolysis of vinyl esters leads to ketones, and the reaction of C-substituted vinyl acetates with an esterase derived from Marchantia polymorpha gave substituted ketones with high enantioselectivity.¹⁵⁴⁵ Scandium triflate was shown to hydrolyze α -acetoxy ketones to α -hydroxy ketones.1546

¹⁵²⁷Das, B.; Banerjee, J.; Ramu, R.; Pal, R.; Ravindranath, N.; Ramesh, C. Tetrahedron Lett. 2003, 44, 5465.

¹⁵²⁸Varma, R.S.; Varma, M.; Chatterjee, A.K. J. Chem. Soc. Perkin Trans. 1 1993, 999; Blay, G.; Cardona,

L.; Garcia, B.; Pedro, J.R. Synthesis 1989, 438.

¹⁵²⁹Sharma, L.; Nayak, M.K.; Chakraborti, A.K. Tetrahedron 1999, 55, 9595.

- ¹⁵³⁰Nishizawa, M.; Yamamoto, H.; Seo, K.; Imagawa, H.; Sugihara, T. Org. Lett. 2002, 4, 1947.
- ¹⁵³¹Yadav, J.S.; Reddy, B.V.S.; Rao, C.V.; Chand, P.K.; Prasad, A.R. Synlett 2002, 137.

¹⁵³²Ramesh, C.; Mahender, G.; Ravindranath, N.; Das, B. Tetrahedron Lett. 2003, 44, 1465.

¹⁵³³For a review of the mechanisms of lactone hydrolysis, see Kaiser, E.T.; Kézdy, F.J. Prog. Bioorg. Chem. 1976, 4, 239, pp. 254–265.

¹⁵³⁴Wallace, O.B.; Springer, D.M. *Tetrahedron Lett.* **1998**, *39*, 2693.

¹⁵³⁵Choi, J.; Yoon, N.M. Synth. Commun. 1995, 25, 2655.

¹⁵³⁶Jin, C.K.; Jeong, H.J.; Kim, M.K.; Kim, J.Y.; Yoon, Y.-J.; Lee, S.-G. Synlett 2001, 1956.

¹⁵³⁷Gassman, P.G.; Schenk, W.N. J. Org. Chem. 1977, 42, 918.

¹⁵³⁸Wu, Y.-g.; Limburg, D.C.; Wilkinson, D.E.; Vaal, M.J.; Hamilton, G.S. *Tetrahedron Lett.* 2000, 41, 2847.

- ¹⁵³⁹Jackson, R.W. Tetrahedron Lett. 2001, 42, 5163.
- ¹⁵⁴⁰Ley, S.V.; Mynett, D.M. Synlett **1993**, 793.
- ¹⁵⁴¹Moon, S.; Duchin, L.; Cooney, J.V. Tetrahedron Lett. **1979**, 3917.

¹⁵⁴²Loupy, A.; Pedoussaut, M.; Sansoulet, J. J. Org. Chem. 1986, 51, 740.

¹⁵⁴³Houille, O.; Schmittberger, T.; Uguen, D. Tetrahedron Lett. 1996, 37, 625; Nair, R.V.; Shukla, M.R.;

Patil, P.N.; Salunkhe, M.M. Synth. Commun. 1999, 29, 1671.

- ¹⁵⁴⁴Niwayama, S. J. Org. Chem. 2000, 65, 5834.
- ¹⁵⁴⁵Hirata, T.; Shimoda, K.; Kawano, T. Tetrahedron Asymmetry 2000, 11, 1063.
- ¹⁵⁴⁶Kajiro, H.; Mitamura, S.; Mori, A.; Hiyama, T. Bull. Chem. Soc. Jpn. 1999, 72, 1553.

Ingold¹⁵⁴⁷ has classified the acid- and base-catalyzed hydrolyses of esters (and the formation of esters, since these are reversible reactions and thus have the same mechanisms) into eight possible mechanisms (Table 16.3), depending on the

rormation		
	Name	
Ingold	IUPAC ¹⁵⁴⁸	Туре
A _{AC} 1	$\mathbf{A_h} + \mathbf{D_N} + \mathbf{A_N} + \mathbf{D_h}$	S _N 1
$\mathbf{R}^{C} \mathbf{O} \mathbf{R}^{H^{*}}$	$ \begin{array}{c} O \\ H \\ R \\ C \\ N' \\ R' \\ A \end{array} \xrightarrow{\text{slow}} O \\ H \\ R' O H \\ $	$ \begin{array}{c} O \\ H \\ C \\ O \\ O \\ H \end{array} \xrightarrow{H} \begin{array}{c} R \\ C \\ O \\ O$
$A_{AC}2$	$\mathbf{A}_{h} + \mathbf{A}_{N} + \mathbf{A}_{h}\mathbf{D}_{h} + \mathbf{D}_{h}$	Tetrahedral
$\mathbb{R}^{C} \mathbb{O} \mathbb{R}^{H^{+}}$	$ \begin{array}{c} R \\ C \\ I \\ OH \\ Slow \\ C \\ OH \\ Slow \\ OH \\ C \\ OH \\ OH \\ OH \\ OH \\ OH \\ OH $	$ \begin{array}{c} R \xrightarrow{OH} R' \xrightarrow{slow} R \xrightarrow{C \xrightarrow{OH}} H^* \xrightarrow{H^*} 0 \\ \Gamma \xrightarrow{OH} H \xrightarrow{R'OH} OH \xrightarrow{H^*} OH \xrightarrow{H^*} R \xrightarrow{C'OH} \end{array} $
	В	С
$A_{AL}1$	$\mathbf{A_h} + \mathbf{D_N} + \mathbf{A_N} + \mathbf{D_h}$	S _N 1
R ^C OR'	$\stackrel{H^{+}}{\longleftrightarrow} \stackrel{R}{\underset{OH}{\overset{C \otimes OR'}{\longrightarrow}}} \stackrel{O}{\underset{R}{\overset{U}{\longrightarrow}}} \stackrel{O}{\underset{R}{\overset{U}{\longrightarrow}}} \stackrel{O}{\underset{R}{\overset{U}{\longrightarrow}}} \stackrel{O}{\underset{C \otimes OR'}{\overset{U}{\longrightarrow}}} \stackrel{O}{\underset{C \otimes OR'}{\overset{U}{\longrightarrow}} \stackrel{O}{\underset{C \otimes OR'}{\overset{U}{\longrightarrow}}} \stackrel{O}{\underset{C \otimes OR'}{\overset{U}{\longrightarrow}} O$	$+ \stackrel{\Theta}{\underset{\text{slow}}{\text{R}'}} R' \xrightarrow[H_2O]{} RO_2 \xrightarrow[H^+]{} R'OH$
$A_{AL}2$	$\mathbf{A_h} + \mathbf{A_N}\mathbf{D_N} + \mathbf{D_h}$	S _N 2
R ^C OR	$\overset{H^{*}}{\longleftarrow} R^{\overset{O}{\leftarrow}} O^{\overset{R'}{\leftarrow}} O^{\overset{H_{2}O}{\leftarrow}} O^{\overset{P'}{\leftarrow}} O^{\overset{H_{2}O}{\leftarrow}} O^{\overset{P'}{\leftarrow}} O^{\overset{P'}{\leftarrow$	$ \begin{array}{c} O \\ \parallel \\ C \\ R \end{array} + \begin{array}{c} O \\ R'OH \\ H^{+} \end{array} R'OH $
B _{AC} 1	$\mathbf{D}_{\mathbf{N}} + \mathbf{A}_{\mathbf{N}} + \mathbf{A}_{\mathbf{x}\mathbf{h}}\mathbf{D}_{\mathbf{h}}$	S _N 1
R ^C OR' slo	$\xrightarrow{\text{O}}_{\text{W}} \stackrel{\text{O}}{\underset{\text{R}}{\overset{\text{O}}{\longrightarrow}}} + \stackrel{\Theta}{\underset{\text{OR}'}{\overset{\Theta}{\longrightarrow}}} \stackrel{\text{O}}{\underset{\text{R}}{\overset{\text{O}}{\longrightarrow}}} \stackrel{\text{O}}{\underset{\text{R}}{\overset{\text{O}}{\longrightarrow}}} \stackrel{\text{O}}{\underset{\text{R}}{\overset{\text{O}}{\longrightarrow}}} \stackrel{\text{O}}{\underset{\text{R}}{\overset{\text{O}}{\longrightarrow}}} \stackrel{\text{O}}{\underset{\text{O}}{\longrightarrow}} \stackrel{\text{O}}{\underset{\text{R}}{\overset{\text{O}}{\longrightarrow}}} \stackrel{\text{O}}{\underset{\text{R}}{\longrightarrow}} \stackrel{\text{O}}{\underset{\text{R}}{\overset{\text{O}}{\longrightarrow}}} \stackrel{\text{O}}{\underset{\text{R}}{\longrightarrow}} \stackrel{\text{O}}{\underset{R}}{\underset{\text{R}}{\longrightarrow}} \stackrel{\text{O}}{\underset{R}}{\underset{R}}{\underset{R}}{\underset{R}}{\underset{R}}{\underset{R}}{\underset{R}}$	$ \overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}$
$B_{AC}2$	$\mathbf{A}_{N} + \mathbf{D}_{N} + \mathbf{A}_{xh}\mathbf{D}_{h}$	Tetrahedral
$R^{O} OR^{O} OR^{O}$	$\stackrel{OH}{\underset{\text{slow}}{\longrightarrow}} \xrightarrow{\begin{array}{c} OH \\ I \\ C \\ O \end{array}} \xrightarrow{\begin{array}{c} O \\ I \\ O \end{array}} \xrightarrow{\begin{array}{c} O \\ I \\ R \end{array} \xrightarrow{\begin{array}{c} O \\ I \\ C \end{array}} \xrightarrow{\begin{array}{c} O \\ I \\ R \end{array} \xrightarrow{\begin{array}{c} C \\ C \end{array}} \xrightarrow{\begin{array}{c} O \\ I \\ R \end{array} \xrightarrow{\begin{array}{c} C \\ C \end{array}} \xrightarrow{\begin{array}{c} O \\ I \\ R \end{array} \xrightarrow{\begin{array}{c} C \\ C \end{array}} \xrightarrow{\begin{array}{c} O \\ I \\ R \end{array} \xrightarrow{\begin{array}{c} C \\ C \end{array}} \xrightarrow{\begin{array}{c} O \\ I \\ R \end{array} \xrightarrow{\begin{array}{c} O \\ I \\ C \end{array} \xrightarrow{\begin{array}{c} O \\ I \\ R \end{array}} \xrightarrow{\begin{array}{c} O \\ I \\ R \end{array} \xrightarrow{\begin{array}{c} O \\ I \\ R \end{array} \xrightarrow{\begin{array}{c} O \\ I \\ R \end{array} \xrightarrow{\begin{array}{c} O \\ I \\ R \end{array}} \xrightarrow{\begin{array}{c} O \\ I \\ R \end{array} \xrightarrow{\begin{array}{c} O \\ I \end{array} \xrightarrow{\begin{array}{c} O \\ I \\ R \end{array} \xrightarrow{\begin{array}{c} O \\ I \end{array} \xrightarrow{\begin{array}{c} O \\ I \\ R \end{array} \xrightarrow{\begin{array}{c} O \\ I \end{array} \xrightarrow{\begin{array}{c} O \\ \end{array}} \xrightarrow{\begin{array}{c} O \\ I \end{array} \xrightarrow{\begin{array}{c} O \\ I \end{array} \xrightarrow{\begin{array}{c} O \\ I \end{array} \xrightarrow{\begin{array}{c} O \\ \end{array}} \xrightarrow{\begin{array}{c} O \end{array} \xrightarrow{\begin{array}{c} O \end{array} \xrightarrow{\begin{array}{c} O \\ \end{array}} \xrightarrow{\begin{array}{c} O \end{array} O \end{array} \end{array}} \xrightarrow{\begin{array}{c} O \end{array} \end{array}} \xrightarrow{\begin{array}{c} O \end{array} O \end{array} \xrightarrow{\begin{array}{c} O \end{array} O \end{array} \end{array}} \xrightarrow{\begin{array}{c} O \end{array} \end{array}$	$C_{OH} + {}^{\Theta}OR' \longrightarrow {}^{O}_{R} {}^{C}C_{O} {}^{\Theta} + HOR'$

TABLE 16.3. Classification of the Eight Mechanisms for Ester Hydrolysis and Formation $^{\rm 1547}$

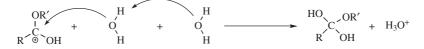
¹⁵⁴⁷Ingold, C.K. *Structure and Mechanism in Organic Chemistry*, 2nd ed., Cornell University Press, Ithaca, NY, *1969*, pp. 1129–1131.

¹⁵⁴⁸As given here, the IUPAC designations for $B_{AC}1$ and $B_{AL}1$ are the same, but Rule A.2 adds further symbols so that they can be distinguished: Su-AL for $B_{AL}1$ and Su-AC for $B_{AC}1$. See the IUPAC rules: Guthrie, R.D. *Pure Appl. Chem.* **1989**, *61*, 23, see p. 49.

	Name			
Ingold	IUPAC	Туре		
B _{AL} 1	$D_{N}+A_{N}+A_{xh}D_{h} \\$	S _N 1		
F	$ \begin{array}{c} O \\ II \\ R \\ \hline C \\ OR' \end{array} \xrightarrow{slow} \begin{array}{c} O \\ II \\ R \\ \hline C \\ O \\ \hline O \\ O \\ \hline O \\ O \\ O \\ O \\ O \\ O$	$a' \xrightarrow{H_2O} \overset{\textcircled{o}}{R'OH_2} \xrightarrow{\textcircled{o}_{OH}} R'OH$		
B _{AL} 2	$A_N D_N$	S _N 2		
	$\stackrel{O}{\underset{R}{\overset{\cup}{\overset{\cup}{}}}}_{C} \stackrel{\circ_{OH}}{\longrightarrow}$	$C \rightarrow F R'OH$		

TABLE 16.3. (Continued)

following criteria: (1) acid- or base-catalyzed, (2) unimolecular or bimolecular, and (3) acyl cleavage or alkyl cleavage.¹⁵⁴⁹ All eight of these are $S_N 1$, $S_N 2$, or tetrahedral mechanisms. The acid-catalyzed mechanisms are shown with reversible arrows. They are not only reversible, but symmetrical; that is, the mechanisms for ester formation are exactly the same as for hydrolysis, except that H replaces R. Internal proton transfers, such as shown for **B** and **C**, may not actually be direct but may take place through the solvent. There is much physical evidence to show that esters are initially protonated on the carbonyl and not on the alkyl oxygen (Chapter 8, Ref. 17). We have nevertheless shown the AAC1 mechanism as proceeding through the ether-protonated intermediate A, since it is difficult to envision OR' as a leaving group here. It is of course possible for a reaction to proceed through an intermediate even if only a tiny concentration is present. The designations AAC1, and so on., are those of Ingold. The AAC2 and AAC1 mechanisms are also called A2 and A1, respectively. Note that the AAC1 mechanism is actually the same as the S_N1cA mechanism for this type of substrate and that A_{AL}2 is analogous to S_N2cA. Some authors use A1 and A2 to refer to all types of nucleophilic substitution in which the leaving group first acquires a proton. The base-catalyzed reactions are not shown with reversible arrows, since they are reversible only in theory and not in practice. Hydrolyses taking place under neutral conditions are classified as B mechanisms.


Of the eight mechanisms, seven have actually been observed in hydrolysis of carboxylic esters. The one that has not been observed is the $B_{AC}1$ mechanism.¹⁵⁵⁰ The most common mechanisms are the $B_{AC}2$ for basic catalysis and the $A_{AC}2^{1551}$

¹⁵⁴⁹For reviews of the mechanisms of ester hydrolysis and formation, see Kirby, A.J., in Bamford, C.H.; Tipper, C.F.H., *Comprehensive Chemical Kinetics*, Vol. 10, **1972**, pp. 57–207; Euranto, E.K., in Patai, S. *The Chemistry of Carboxylic Acids and Esters*, Wiley, NY, **1969**, pp. 505–588.

¹⁵⁵⁰This is an S_N1 mechanism with OR' as leaving group, which does not happen.

¹⁵⁵¹For a discussion of this mechanism with specific attention to the proton transfers involved, see Zimmermann, H.; Rudolph, J. Angew. Chem. Int. Ed. **1965**, 4, 40.

for acid catalysis, that is, the two tetrahedral mechanisms. Both involve acyloxygen cleavage. The evidence is (1) hydrolysis with $H_2^{18}O$ results in the ¹⁸O appearing in the acid and not in the alcohol;¹⁵⁵² (2) esters with chiral R' groups give alcohols with *retention* of configuration;¹⁵⁵³ (3) allylic R' gives no allylic rearrangement;¹⁵⁵⁴ (4) neopentyl R' gives no rearrangement;¹⁵⁵⁵ all these facts indicate that the O–R' bond is not broken. It has been concluded that two molecules of water are required in the A_{AC}2 mechanism.

If this is so, the protonated derivatives **B** and **C** would not appear at all. This conclusion stems from a value of w (see p. 371) of ~5, indicating that water acts as a proton donor here, as well as a nucleophile.¹⁵⁵⁶ Termolecular processes are rare, but in this case the two water molecules are already connected by a hydrogen bond. (A similar mechanism, called B_{AC}3, also involving two molecules of water, has been found for esters that hydrolyze without a catalyst.¹⁵⁵⁷ Such esters are mostly those containing halogen atoms in the R group.)

The other mechanism involving acyl cleavage is the $A_{AC}1$ mechanism. This is rare, being found only where R is very bulky, so that bimolecular attack is sterically hindered, and only in ionizing solvents. The mechanism has been demonstrated for esters of 2,4,6-trimethylbenzoic acid (mesitoic acid). This acid depresses the freezing point of sulfuric acid four times as much as would be predicted from its molecular weight, which is evidence for the equilibrium

ArCOOH +
$$2 H_2 SO_4 \longrightarrow ArCO^{\odot} + H_3O^+ + 2 HSO_4^-$$

In a comparable solution of benzoic acid the freezing point is depressed only twice the predicted amount, indicating only a normal acid-base reaction. Further, a sulfuric acid solution of methyl mesitoate when poured into water gave mesitoic acid, while a similar solution of methyl benzoate similarly treated did not.¹⁵⁵⁸ The $A_{AC}1$ mechanism is also found when acetates of phenols or of primary alcohols are

¹⁵⁵²For one of several examples, see Polanyi, M.; Szabo, A.L. Trans. Faraday Soc. 1934, 30, 508.

¹⁵⁵³Holmberg, B. Ber. 1912, 45, 2997.

¹⁵⁵⁴Ingold, C.K.; Ingold, E.H. J. Chem. Soc. 1932, 758.

¹⁵⁵⁵Norton, H.M.; Quayle, O.R. J. Am. Chem. Soc. 1940, 62, 1170.

¹⁵⁵⁶Martin, R.B. J. Am. Chem. Soc. **1962**, 84, 4130. See also, Lane, C.A.; Cheung, M.F.; Dorsey, G.F. J. Am. Chem. Soc. **1968**, 90, 6492; Yates, K. Acc. Chem. Res. **1971**, 6, 136; Huskey, W.P.; Warren, C.T.; Hogg, J.L. J. Org. Chem. **1981**, 46, 59.

¹⁵⁵⁷Euranto, E.K.; Kanerva, L.T.; Cleve, N.J. J. Chem. Soc. Perkin Trans. 2 1984, 2085; Neuvonen, H. J. Chem. Soc. Perkin Trans. 2 1986, 1141; Euranto, E.K.; Kanerva, L.T. Acta Chem. Scand. Ser. B 1988, 42 717.

¹⁵⁵⁸Treffers, H.P.; Hammett, L.P. J. Am. Chem. Soc. 1937, 59, 1708. For other evidence for this mechanism, see Bender, M.L.; Chen, M.C. J. Am. Chem. Soc. 1963, 85, 37.

hydrolyzed in concentrated (>90%) H_2SO_4 (the mechanism under the more usual dilute acid conditions is the normal $A_{AC}2$).¹⁵⁵⁹

The mechanisms involving alkyl-oxygen cleavage are ordinary $S_N 1$ and $S_N 2$ mechanisms in which OCOR (an acyloxy group) or its conjugate acid is the leaving group. Two of the three mechanisms, the $B_{AL} 1$ and $A_{AL} 1$ mechanisms, occur most readily when R' comes off as a stable carbocation, that is, when R' is tertiary alkyl, allylic, benzylic, and so on. For acid catalysis, most esters with this type of alkyl group (especially tertiary alkyl) cleave by this mechanism, but even for these substrates, the $B_{AL} 1$ mechanism occurs only in neutral or weakly basic solution, where the rate of attack by hydroxide is so slowed that the normally slow (by comparison) unimolecular cleavage takes over. These two mechanisms have been established by kinetic studies, ¹⁸O labeling, and isomerization of R'.¹⁵⁶⁰ Secondary and benzylic acetates hydrolyze by the $A_{AC} 2$ mechanism in dilute H_2SO_4 , but in concentrated acid the mechanism changes to $A_{AL} 1$.¹⁵⁵⁹ Despite its designation, the $B_{AL} 1$ mechanism is actually uncatalyzed (as is the unknown $B_{AC} 1$ mechanism).

The two remaining mechanisms, $B_{AL}2$ and $A_{AL}2$, are very rare, the $B_{AL}2$ because it requires hydroxide ion to attack an alkyl carbon when an acyl carbon is also available,¹⁵⁶¹ and the $A_{AL}2$ because it requires water to be a nucleophile in an S_N2 process. Both have been observed, however. The $B_{AL}2$ has been seen in the hydrolysis of β -lactones under neutral conditions¹⁵⁶² (because cleavage of the C–O bond in the transition state opens the four-membered ring and relieves strain), the alkaline hydrolysis of methyl 2,4,6-tri-*tert*-butyl benzoate,¹⁵⁶³ and in the unusual reaction¹⁵⁶⁴

$$ArCOOMe + RO^{-} \longrightarrow ArCOO^{-} + ROMe$$

When it does occur, the $B_{AL}2$ mechanism is easy to detect, since it is the only one of the base-catalyzed mechanisms that requires inversion at R'. However, in the last example given, the mechanism is evident from the nature of the product, since the ether could have been formed in no other way. The $A_{AL}2$ mechanism has been reported in the acid cleavage of γ -lactones.¹⁵⁶⁵

To sum up the acid-catalysis mechanisms, A_{AC}^2 and A_{AL}^1 are the common mechanisms, the latter for R' that give stable carbocations, the former for practically

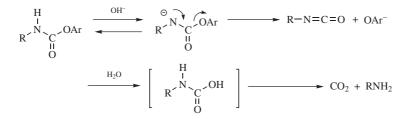
¹⁵⁶¹Douglas, J.E.; Campbell, G.; Wigfield, D.C. Can. J. Chem. 1993, 71, 1841.

¹⁵⁶⁵Moore, J.A.; Schwab, J.W. Tetrahedron Lett. 1991, 32, 2331.

¹⁵⁵⁹Yates, K. Acc. Chem. Res. **1971**, 6, 136; Al-Shalchi, W.; Selwood, T.; Tillett J.G. J. Chem. Res. (S) **1985**, 10.

¹⁵⁶⁰For discussions, see Kirby, A.J., in Bamford, C.H.; Tipper, C.F.H. *Comprehensive Chemical Kinetics*, Vol. 9, Elsevier, NY, **1973**, pp. 86–101; Ingold, C.K. *Structure and Mechanism in Organic Chemistry*, 2nd ed., Cornell University Press, Ithaca, NY, **1969**, pp. 1137–1142, 1157–1163.

¹⁵⁶²Cowdrey, W.A.; Hughes, E.D.; Ingold, C.K.; Masterman, S.; Scott, A.D. J. Chem. Soc. **1937**, 1264; Long, F.A.; Purchase, M. J. Am. Chem. Soc. **1950**, 73, 3267.


¹⁵⁶³Barclay, L.R.C.; Hall, N.D.; Cooke, G.A. Can. J. Chem. 1962, 40, 1981.

¹⁵⁶⁴Sneen, R.A.; Rosenberg, A.M. J. Org. Chem. **1961**, 26, 2099. See also, Müller, P.; Siegfried, B. Helv. Chim. Acta **1974**, 57, 987.

all the rest. The $A_{AC}1$ mechanism is rare, being found mostly with strong acids and sterically hindered R. The $A_{AL}2$ mechanism is even rarer. For basic catalysis, $B_{AC}2$ is almost universal; $B_{AL}1$ occurs only with R' that give stable carbocations and then only in weakly basic or neutral solutions; $B_{AL}2$ is very rare; and $B_{AC}1$ has never been observed.

The above results pertain to reactions in solution. In the gas-phase¹⁵⁶⁶ reactions can take a different course, as illustrated by the reaction of carboxylic esters with MeO⁻, which in the gas phase was shown to take place only by the $B_{AL}2$ mechanism,¹⁵⁶⁷ even with aryl esters,¹⁵⁶⁸ where this means that an S_N2 mechanism takes place at an aryl substrate. However, when the gas-phase reaction of aryl esters was carried out with MeO⁻ ions, each of which was solvated with a single molecule of MeOH or H_2O , the $B_{AC}2$ mechanism was observed.¹⁵⁶⁷

In the special case of alkaline hydrolysis of *N*-substituted aryl carbamates, there is another mechanism¹⁵⁶⁹ involving elimination–addition:¹⁵⁷⁰

This mechanism does not apply to unsubstituted or N,N-disubstituted aryl carbamates, which hydrolyze by the normal mechanisms. Carboxylic esters substituted in the a position by an electron-withdrawing group (e.g., CN or COOEt) can also hydrolyze by a similar mechanism involving a ketene intermediate.¹⁵⁷¹

 ¹⁵⁶⁶Takashima, K.; José, S.M.; do Amaral, A.T.; Riveros, J.M. J. Chem. Soc., Chem. Commun. 1983, 1255.
 ¹⁵⁶⁷Comisarow, M. Can. J. Chem. 1977, 55, 171.

¹⁵⁶⁸Fukuda, E.K.; McIver Jr., R.T. J. Am. Chem. Soc. 1979, 101, 2498.

¹⁵⁶⁹For a review of elimination–addition mechanisms at a carbonyl carbon, see Williams, A.; Douglas, K.T. *Chem. Rev.* **1975**, *75*, 627649.

 ¹⁵⁷⁰Bender, M.L.; Homer, R.B. J. Org. Chem. 1965, 30, 3975; Williams, A. J. Chem. Soc. Perkin Trans. 2
 1972, 808; 1973, 1244; Hegarty, A.F.; Frost, L.N. J. Chem. Soc. Perkin Trans. 2 1973, 1719; Menger, F.M.; Glass, L.E. J. Org. Chem. 1974, 39, 2469; Sartoré, G.; Bergon, M.; Calmon, J.P. J. Chem. Soc. Perkin Trans. 2 1977, 650; Moravcová, J.; Večeřa, M. Collect. Czech. Chem. Commun. 1977, 42, 3048; Broxton, T.J.; Chung, R.P. J. Org. Chem. 1986, 51, 3112.

 ¹⁵⁷¹Casanova, J.; Werner, N.D.; Kiefer, H.R. J. Am. Chem. Soc. 1967, 89, 2411; Holmquist, B.; Bruice, T.C. J. Am. Chem. Soc. 1969, 91, 2993, 3003; Campbell, D.S.; Lawrie, C.W. Chem. Commun. 1971, 355; Kirby, A.J.; Lloyd, G.J. J. Chem. Soc. Perkin Trans. 2 1976, 1762; Broxton, T.J.; Duddy, N.W. J. Org. Chem. 1981, 46, 1186; Inoue, T.C.; Bruice, T.C. J. Am. Chem. Soc. 1982, 104, 1644; J. Org. Chem. 1983, 48, 3559; 1986, 51, 959; Alborz, M.; Douglas, K.T. J. Chem. Soc. Perkin Trans. 2 1982, 331; Thea, S.; Cevasco, G.; Guanti, G.; Kashefi-Naini, N.; Williams, A. J. Org. Chem. 1985, 50, 1867; Isaacs, N.S.; Najem, T.S. Can. J. Chem. 1986, 64, 1140; J. Chem. Soc. Perkin Trans. 2 1988, 557.

These elimination–addition mechanisms usually are referred to as E1cB mechanisms, because that is the name given to the elimination portion of the mechanism (p. 1488).

The acid-catalyzed hydrolysis of enol esters RCOOCR'=CR can take place either by the normal $A_{AC}2$ mechanism or by a mechanism involving initial protonation on the double-bond carbon, similar to the mechanism for the hydrolysis of enol ethers given in **10-6**,¹⁵⁷² depending on reaction conditions.¹⁵⁷³ In either case, the products are the carboxylic acid RCOOH and the aldehyde or ketone R–CHCOR'.

OS I, 351, 360, 366, 379, 391, 418, 523; II, 1, 5, 53, 93, 194, 214, 258, 299, 416, 422, 474, 531, 549; III, 3, 33, 101, 209, 213, 234, 267, 272, 281, 300, 495, 510, 526, 531, 615, 637, 652, 705, 737, 774, 785, 809 (but see OS V, 1050), 833, 835; IV, 15, 55, 169, 317, 417, 444, 532, 549, 555, 582, 590, 608, 616, 628, 630, 633, 635, 804; V, 8, 445, 509, 687, 762, 887, 985, 1031; VI, 75, 121, 560, 690, 824, 913, 1024; VII, 4, 190, 210, 297, 319, 323, 356, 411; VIII, 43, 141, 219, 247, 258, 263, 298, 486, 516, 527. Ester hydrolyses with concomitant decarboxylation are listed at reaction 12-40.

16-60 Hydrolysis of Amides

Hydroxy-de-amination

$$NH_3 + \underset{R}{\overset{O}{\overset{}}} \overset{OH^-}{\underset{H_2O}{\overset{}}} \overset{OH^-}{\underset{H_2O}{\overset{}}} \overset{O}{\underset{R}{\overset{}}} \overset{H^+}{\underset{NH_2}{\overset{}}} \overset{O}{\underset{H_2O}{\overset{}}} \overset{H^+}{\underset{H_2O}{\overset{}}} \overset{O}{\underset{R}{\overset{}}} \overset{H^+}{\underset{H_2O}{\overset{}}} \overset{O}{\underset{H_2O}{\overset{}}} \overset{H^+}{\underset{H_2O}{\overset{}}} \overset{O}{\underset{H_2O}{\overset{}}} \overset{H^+}{\underset{H_2O}{\overset{}} \overset{H^+}{\underset{H_2O}{\overset{}}} \overset{H^+}{\underset{H_2O}{\overset{}}} \overset{H^+}{\underset{H_2O}{\overset{}}} \overset{H^+}{\underset{H_2O}{\overset{}}} \overset{H^+}{\underset{H_2O}{\overset{}}} \overset{H^+}{\underset{H_2O}{\overset{}} \overset{H^+}{\underset{H_2O}{\overset{}}} \overset{H^+}{\underset{H_2O}{\overset{}} \overset{H^+}{\underset{H_2O}{\overset{}}} \overset{H^+}{\underset{H_2O}{\overset{H^+}{\underset{H_2O}{\overset{}}} \overset{H^+}{\underset{H_2O}{\overset{H$$

Unsubstituted amides (RCONH₂) can be hydrolyzed with either acidic or basic catalysis, the products being, respectively, the free acid and the ammonium ion or the salt of the acid and ammonia. *N*-Substituted (RCONHR') and *N*,*N*-disubstituted (RCONR''₂) amides can be hydrolyzed analogously, with the primary or secondary amine, respectively (or their salts), being obtained instead of ammonia. Lactams, imides, cyclic imides, hydrazides, and so on., also undergo the reaction. Water alone is not sufficient to hydrolyze most amides, ¹⁵⁷⁴ since NH₂ is even a poorer leaving group than OR.¹⁵⁷⁵ Prolonged heating is often required, even with acidic or basic catalysts.¹⁵⁷⁶ Treatment of primary

¹⁵⁷²Alkynyl esters also hydrolyze by this mechanism; see Allen, A.D.; Kitamura, T.; Roberts, K.A.; Stang, P.J.; Tidwell, T.T. *J. Am. Chem. Soc.* **1988**, *110*, 622.

¹⁵⁷³See, for example, Noyce, D.S.; Pollack, R.M. *J. Am. Chem. Soc.* **1969**, *91*, 119, 7158; Monthéard, J.; Camps, M.; Chatzopoulos, M.; Benzaïd, A. Bull. Soc. Chim. Fr. **1984**, II-109. For a discussion, see Euranto, E.K. *Pure Appl. Chem.* **1977**, *49*, 1009.

¹⁵⁷⁴See Zahn, D. Eur. J. Org. Chem. 2004, 4020.

¹⁵⁷⁵The very low rate of amide hydrolysis by water alone has been measured: Kahne, D.; Still, W.C. J. Am. Chem. Soc. **1988**, 110, 7529.

¹⁵⁷⁶For a list of catalysts and reagents that have been used to hydrolyze amides, with references, see Larock, R.C. *Comprehensive Organic Transformatinos*, 2nd ed., Wiley-VCH, NY, **1999**, pp. 1976–1977. Also see, Bagno, A.; Lovato, G.; Scorrano, G. *J. Chem. Soc. Perkin Trans.* 2 **1993**, 1091.

amides with phthalic anhydride at 250°C and 4 atm gives the carboxylic acid and phthalimide.¹⁵⁷⁷ The conversion of acylhydrazine derivatives to the corresponding carboxylic acid with PhI(OH)(OTs) and water is a variation of amide hydrolysis.¹⁵⁷⁸ Hydrolysis of carbamates (RNHCO₂R) to the corresponding amine can be categorized in this section. Although the product is an amine and the carboxyl unit fragments, this reaction is simply a variation of amide hydrolysis. Strong acids, such as trifluoroacetic acid (in dichloromethane), are usually employed.¹⁵⁷⁹ Treatment of *N*-Boc derivatives (RNHCO₂*t*-Bu) with AlCl₃¹⁵⁸⁰ or with aqueous sodium *tert*-butoxide¹⁵⁸¹ gave the amine. The by-products of this reaction are typically carbon dioxide and isobutylene.

$$R^{C}_{NH_2}$$
 + HONO \longrightarrow R^{C}_{OH} + N_2

In difficult cases, nitrous acid, NOCl, N₂O₄,¹⁵⁸² or a similar compound can be used (unsubstituted amides only¹⁵⁸³). These reactions involve a diazonium ion (see **13-19**) and are much faster than ordinary hydrolysis; for benzamide the nitrous acid reaction took place 2.5×10^7 times faster than ordinary hydrolysis.¹⁵⁸⁴ Another procedure for difficult cases involves treatment with aqueous sodium peroxide.¹⁵⁸⁵ In still another method, the amide is treated with water and *t*-BuOK at room temperature.¹⁵⁸⁶ The strong base removes the proton from **107**, thus preventing the reaction marked k_{-1} . A kinetic study has been done on the alkaline hydrolyses of *N*-trifluoroacetyl aniline derivatives.¹⁵⁸⁷ Amide hydrolysis can also be catalyzed by nucleophiles (see p. 1259).

The same framework of eight possible mechanisms that was discussed for ester hydrolysis can also be applied to amide hydrolysis.¹⁵⁸⁸ Both the acid- and base-catalyzed hydrolyses are essentially irreversible, since salts are formed in both

¹⁵⁸²Kim, Y.H.; Kim, K.; Park, Y.J. Tetrahedron Lett. 1990, 31, 3893.

¹⁵⁸³*N*-Substituted amides can be converted to *N*-nitrosoamides, which are more easily hydrolyzable than the orginal amide. For example, see Rull, M.; Serratosa, F.; Vilarrasa, J. *Tetrahedron Lett.* **1977**, 4549. For another method of hydrolyzing *N*-substituted amides, see Flynn, D.L.; Zelle, R.E.; Grieco, P.A. *J. Org. Chem.* **1983**, 48, 2424.

¹⁵⁷⁷Chemat, F. Tetrahedron Lett. 2000, 41, 3855.

¹⁵⁷⁸Wuts, P.G.M.; Goble, M.P. Org. Lett. 2000, 2, 2139.

¹⁵⁷⁹Schwyzer, R.; Costopanagiotis, A.; Sieber, P. Helv. Chim. Acta 1963, 46, 870.

¹⁵⁸⁰Bose, D.S.; Lakshminarayana, V. Synthesis 1999, 66.

¹⁵⁸¹Tom, N.J.; Simon, W.M.; Frost, H.N.; Ewing, M. Tetrahedron Lett. 2004, 45, 905.

¹⁵⁸⁴Ladenheim, H.; Bender, M.L. J. Am. Chem. Soc. 1960, 82, 1895.

¹⁵⁸⁵Vaughan, H.L.; Robbins, M.D. J. Org. Chem. 1975, 40, 1187.

¹⁵⁸⁶Gassman, P.G.; Hodgson, P.K.G.; Balchunis, R.J. J. Am. Chem. Soc. 1976, 98, 1275.

¹⁵⁸⁷Hibbert, F.; Malana, M.A. J. Chem. Soc. Perkin Trans. 2 1992, 755.


¹⁵⁸⁸For reviews, see O'Connor, C. *Q. Rev. Chem. Soc.* **1970**, 24, 553; Talbot, R.J.E., in Bamford, C.H.; Tipper, C.F.H. *Comprehensive Chemical Kinetics*, Vol. 9, Elsevier, NY, **1973**, pp. 257–280; Challis, B.C.; Challis, J.C., in Zabicky, J. *The Chemistry of Amides*, Wiley, NY, **1970**, pp. 731–857.

cases. For basic catalysis, 1589 the mechanism is $B_{AC}2$.

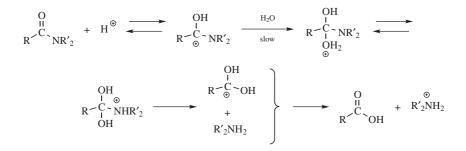
-1----

$$\underset{R}{\overset{O}{\overset{H}}}_{R} \overset{O}{\overset{H}{\overset{H}}}_{R} \overset{O}{\overset{H}}_{R} \overset{O}{\overset{H}}{}} \overset{O}{\overset{H}}{} \overset{O}{\overset{H}}{} \overset{O}{\overset{H}}{} \overset{O}{\overset{H}}{} \overset{O}{}} \overset{O}{\overset{H}}{} \overset{O}{} \overset{O}{\overset{H}}{} \overset{O}{} \overset{O}{$$

There is much evidence for this mechanism, similar to that discussed for ester hydrolysis. A molecular-orbital study on the mechanism of amide hydrolysis is available.¹⁵⁹⁰ In certain cases, kinetic studies have shown that the reaction is second order in OH^- , indicating that **94** can lose a proton to give **95**.¹⁵⁹¹ Depending on the nature

of R', **95** can cleave directly to give the two negative ions (path *a*) or become *N*-protonated prior to or during the act of cleavage (path *b*), in which case the products are obtained directly and a final proton transfer is not necessary.¹⁵⁹² Studies of the effect, on the rate of hydrolysis and on the ratio k_{-1}/k_2 , of substituents on the aromatic rings in a series of amides CH₃CONHAr led to the conclusion that path *a* is taken when Ar contains electron-withdrawing substituents and path *b* when electron-donating groups are present.¹⁵⁹³ The presence of electron-withdrawing groups helps stabilize the negative charge on the nitrogen, so that NR₂⁻ can be a leaving group (path *a*). Otherwise, the C–N bond does not cleave until the nitrogen is protonated (either prior to or in the act of cleavage), so that the leaving group, *even in the base-catalyzed reaction*, is not NR₂^{/-} but the conjugate NHR₂['](path *b*). Though we have shown formation of **94** as the rate-determining step in the B_{AC}2 mechanism, this is true only at high base concentrations. At lower concentrations of base, the cleavage of **107** or **95** becomes rate determining.¹⁵⁹⁴

¹⁵⁹⁴Schowen, R.L.; Jayaraman, H.; Kershner, L. J. Am. Chem. Soc. **1966**, 88, 3373. See also, Gani, V.; Viout, P. Tetrahedron **1976**, 32, 1669, 2883; Bowden, K.; Bromley, K. J. Chem. Soc. Perkin Trans. 2 **1990**, 2103.


¹⁵⁸⁹For a comprehensive list of references, see DeWolfe, R.H.; Newcomb, R.C. *J. Org. Chem.* **1971**, *36*, 3870. ¹⁵⁹⁰Hori, K.; Kamimura, A.; Ando, K.; Mizumura, M.; Ihara, Y. *Tetrahedron* **1997**, *53*, 4317.

 ¹⁵⁹¹Biechler, S.S.; Taft, R.W. J. Am. Chem. Soc. 1957, 79, 4927. For evidence that a similar intermediate can arise in base-catalyzed ester hydrolysis see Khan, M.N.; Olagbemiro, T.O. J. Org. Chem. 1982, 47, 3695.
 ¹⁵⁹²Eriksson, S.O. Acta Chem. Scand. 1968, 22, 892; Acta Pharm. Suec., 1969, 6, 139.

¹⁵⁹³Schowen, R.L.; Hopper, C.R.; Bazikian, C.M. J. Am. Chem. Soc. **1972**, 94, 3095. Gani, V.; Viout, P. Tetrahedron Lett. **1972**, 5241; Menger, F.M.; Donohue, J.A. J. Am. Chem. Soc. **1973**, 95, 432; Pollack, R.M.; Dumsha, T.C. J. Am. Chem. Soc. **1973**, 95, 4463; Kijima, A.; Sekiguchi, S. J. Chem. Soc. Perkin Trans. 2 **1987**, 1203.

1410 ADDITION TO CARBON-HETERO MULTIPLE BONDS

For acid catalysis, matters are less clear. The reaction is generally second order, and it is known that amides are primarily protonated on the oxygen (Chapter 8, Ref. 24). Because of these facts it has been generally agreed that most acid-catalyzed amide hydrolysis takes place by the $A_{AC}2$ mechanism.

Further evidence for this mechanism is that a small but detectable amount of ¹⁸O exchange (see p. 1256) has been found in the acid-catalyzed hydrolysis of benzamide.¹⁵⁹⁵ (¹⁸O exchange has also been detected for the base-catalyzed process,¹⁵⁹⁶ in accord with the $B_{AC}2$ mechanism). Kinetic data have shown that three molecules of water are involved in the rate-determining step,¹⁵⁹⁷ suggesting that, as in the $A_{AC}2$ mechanism for ester hydrolysis (**16-59**), additional water molecules take part in a process, such as

The four mechanisms involving alkyl—N cleavage (the AL mechanisms) do not apply to this reaction. They are not possible for unsubstituted amides, since the only N—C bond is the acyl bond. They are possible for *N*-substituted and *N*,*N*-disubstituted amides, but in these cases they give entirely different products and are not amide hydrolyses at all.

$$R \xrightarrow{O} NR'_2 + \xrightarrow{O} OH \longrightarrow R \xrightarrow{O} NHR' + R'OH$$

¹⁵⁹⁵McClelland, R.A. J. Am. Chem. Soc. **1975**, 97, 5281; Bennet, A.J.; Ślebocka-Tilk, H.; Brown, R.S.; Guthrie, J.P.; Jodhan, A. J. Am. Chem. Soc. **1990**, 112, 8497.

¹⁵⁹⁶Bender, M.L.; Thomas, R.J. J. Am. Chem. Soc. **1961**, 83, 4183, Bunton, C.A.; Nayak, B.; O'Connor, C. J. Org. Chem. **1968**, 33, 572; lebocka-Tilk, H.; Bennet, A.J.; Hogg, H.J.; Brown, R.S. J. Am. Chem. Soc. **1991**, 113, 1288; McClelland, R.A. J. Am. Chem. Soc. **1975**, 97, 5281; Bennet, A.J.; Ślebocka-Tilk, H.; Brown, R.S.; Guthrie, J.P.; Jodhan, A. J. Am. Chem. Soc. **1990**, 112, 8497.

¹⁵⁹⁷Moodie, R.B.; Wale, P.D.; Whaite, K. J. Chem. Soc. **1963**, 4273; Yates, K.; Stevens, J.B. Can. J. Chem. **1965**, 43, 529; Yates, K.; Riordan, J.C. Can. J. Chem. **1965**, 43, 2328.

This reaction, while rare, has been observed for various *N-tert*-butylamides in 98% sulfuric acid, where the mechanism was the $A_{AL}1$ mechanism,¹⁵⁹⁸ and for certain amides containing an azo group, where a $B_{AL}1$ mechanism was postulated.¹⁵⁹⁹ Of the two first-order acyl cleavage mechanisms, only the $A_{AC}1$ has been observed, in concentrated sulfuric acid solutions.¹⁶⁰⁰ Of course, the diazotization of unsubstituted amides might be expected to follow this mechanism, and there is evidence that this is true.¹⁵⁸⁴

OS I, 14, 111, 194, 201, 286; II, 19, 25, 28, 49, 76, 208, 330, 374, 384, 457, 462, 491, 503, 519, 612; III, 66, 88, 154, 256, 410, 456, 586, 591, 661, 735, 768, 813; IV, 39, 42, 55, 58, 420, 441, 496, 664; V, 27, 96, 341, 471, 612, 627; VI, 56, 252, 507, 951, 967; VII, 4, 287; VIII, 26, 204, 241, 339, 451.

The oxidation of aldehydes to carboxylic acids can proceed by a nucleophilic mechanism, but more often it does not. The reaction is considered in Chapter 19 (19-23). Basic cleavage of β -keto esters and the haloform reaction could be considered at this point, but they are also electrophilic substitutions and are treated in Chapter 12 (12-43 and 12-44).

B. Attack by OR at an Acyl Carbon

16-61 Alcoholysis of Acyl Halides

Alkoxy-de-halogenation

The reaction between acyl halides and alcohols or phenols is the best general method for the preparation of carboxylic esters. It is believed to proceed by a $S_N 2$ mechanism.¹⁶⁰¹ As with **16-57**, the mechanism can be $S_N 1$ or tetrahedral.¹⁵¹⁰ Pyridine catalyzes the reaction by the nucleophilic catalysis route (see **16-58**). Lewis acids such as lithium perchlorate can be used.¹⁶⁰² The reaction is of wide scope, and many functional groups do not interfere. A base is frequently added to combine with the HX formed. When aqueous alkali is used, this is called the *Schotten–Baumann procedure*, but pyridine is also frequently used. Both R and R' may be primary, secondary, or tertiary alkyl or aryl. Enol esters can also be prepared by this method, though *C*-acylation competes in these cases. In difficult cases, especially with hindered acids or tertiary R', the alkoxide can be used instead of the alcohol.¹⁶⁰³ Activated alumina has also been used as a catalyst, for

¹⁵⁹⁸Lacey, R.N. J. Chem. Soc. **1960**, 1633; Druet, L.M.; Yates, K. Can. J. Chem. **1984**, 62, 2401.
 ¹⁵⁹⁹Stodola, F.H. J. Org. Chem. **1972**, 37, 178.

¹⁶⁰²Bandgar, B.P.; Kamble, V.T.; Sadavarte, V.S.; Uppalla, L.S. Synlett 2002, 735.

¹⁶⁰⁰Duffy, J.A.; Leisten, J.A. J. Chem. Soc. **1960**, 545, 853; Barnett, J.W.; O'Connor, C.J. J. Chem. Soc., Chem. Commun. **1972**, 525; J. Chem. Soc. Perkin Trans. 2 **1972**, 2378.

¹⁶⁰¹Bentley, T.W.; Llewellyn, G.; McAlister, J.A. J. Org. Chem. **1996**, 61, 7927; Kevill, D.N.; Knauss, D.C. J. Chem. Soc. Perkin Trans. 2 **1993**, 307; Fleming, I.; Winter, S.B.D. Tetrahedron Lett. **1993**, 34, 7287.

¹⁶⁰³For an example, see Kaiser, E.M.; Woodruff, R.A. J. Org. Chem. 1970, 35, 1198.

tertiary R'.¹⁶⁰⁴ Thallium salts of phenols give very high yields of phenolic esters,¹⁶⁰⁵ and BiOCl is very effective for the preparation of phenolic acetates.¹⁶⁰⁶ Phase-transfer catalysis has been used for hindered phenols.¹⁶⁰⁷ Zinc has been used to couple alcohols and acyl chlorides,¹⁶⁰⁸ and catalytic Cu(acac)₂ and benzoyl chloride was used to prepare the mono-benzoate of ethylene glycol.¹⁶⁰⁹ Selective acylation is possible in some cases.¹⁶¹⁰

Acyl halides react with thiols, in the presence of zinc, to give the corresponding thio-ester.¹⁶¹¹ The reaction of acid chlorides or anhydrides (see **16-62**) with diphenyldiselenide, in the presence of Sm/CoCl_2^{1612} or Sm/CrCl_3^{1613} gave the corresponding seleno ester (PhSeCOMe).

Acyl halides can also be converted to carboxylic acids by using ethers instead of alcohols, in MeCN in the presence of certain catalysts such as cobalt(II) chloride.¹⁶¹⁴ A variation of this reaction has been reported that uses acetic anhydride.¹⁶¹⁵

This is a method for the cleavage of ethers (see also, 10-49).

OS I, 12; III, 142, 144, 167, 187, 623, 714; IV, 84, 263, 478, 479, 608, 616, 788; V, 1, 166, 168, 171; VI, 199, 259, 312, 824; VII, 190; VIII, 257, 516.

16-62 Alcoholysis of Anhydrides

Alkoxy-de-acyloxy-substitution

$$\begin{array}{c} O & O \\ I & I \\ R^{-C} & O^{-C} & R^{2} \end{array} + R'OH \longrightarrow \begin{array}{c} O \\ I & I \\ R^{-C} & OR' \end{array} + \begin{array}{c} O \\ I \\ HO^{-C} & R^{2} \end{array}$$

The scope of this reaction is similar to that of **16-61**. Anhydrides are somewhat less reactive than acyl halides, and they are often used to prepare carboxylic esters. Benzyl acetates have been prepared via microwave irradiation of benzylic alcohols

¹⁶⁰⁴Nagasawa, K.; Yoshitake, S.; Amiya, T.; Ito, K. Synth. Commun. 1990, 20, 2033.

¹⁶⁰⁵Taylor, E.C.; McLay, G.W.; McKillop, A. J. Am. Chem. Soc. 1968, 90, 2422.

¹⁶⁰⁶Ghosh, R.; Maiti, S.; Chakraborty, A. Tetrahedron Lett. 2004, 45, 6775.

¹⁶⁰⁷Illi, V.O. *Tetrahedron Lett.* 1979, 2431. For another method, see Nekhoroshev, M.V.; Ivakhnenko, E.P.;

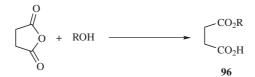
Okhlobystin, O.Yu. J. Org. Chem. USSR 1977, 13, 608.

¹⁶⁰⁸Yadav, J.S.; Reddy, G.S.; Svinivas, D.; Himabindu, K. Synth. Commun. 1998, 28, 2337.

¹⁶⁰⁹Sirkecioglu, O.; Karliga, B.; Talinli, N. Tetrahedron Lett. 2003, 44, 8483.

¹⁶¹⁰Srivastava, V.; Tandon, A.; Ray, S. Synth. Commun. 1992, 22, 2703.

¹⁶¹¹Meshram, H.M.; Reddy, G.S.; Bindu, K.H.; Yadav, J.S. Synlett 1998, 877.


¹⁶¹²Chen, R.; Zhang, Y. Synth. Commun. 2000, 30, 1331.

¹⁶¹³Liu, Y.; Zhang, Y. Synth. Commun. 1999, 29, 4043.

¹⁶¹⁴See Ahmad, S.; Iqbal, J. Chem. Lett. 1987, 953, and references cited therein.

¹⁶¹⁵Lakouraj, M.; Movassaghi, B.; Fasihi, J. J. Chem. Res. (S) 2001, 378.

and acetic anhydride.¹⁶¹⁶ Acids,¹⁶¹⁷ Lewis acids,¹⁶¹⁸ and bases, such as pyridine are often used as catalysts.¹⁶¹⁹ Acetic anhydride and NiCl₂ with microwave irradiation converts benzylic alcohols to the corresponding acetate.¹⁶²⁰ The monoacetate of 1,2-diols have been prepared using CeCl₃ as a catalyst.¹⁶²¹ Pyridine is a nucleophilic-type catalyst (see **16-58**). 4-(*N*,*N*-Dimethylamino)pyridine is a better catalyst and can be used in cases where pyridine fails.¹⁶²² *N*-Bromosuccinimide has been shown to catalyzed esterification of alcohols with acetic anhydride.¹⁶²³ Formic anhydride is not a stable compound but esters of formic acid can be prepared by treating alcohols¹⁶²⁴ or phenols¹⁶²⁵ with acetic-formic anhydride. Cyclic anhydrides give mono-esterified dicarboxylic acids, such as **96**.¹⁶²⁶ The asymmetric alcoholysis of cyclic anhydrides has been reviewed.¹⁶²⁷

Alcohols can also be acylated by mixed organic–inorganic anhydrides, such as acetic-phosphoric anhydride, $MeCOOPO(OH)_2^{1628}$ (see **16-68**). Thioesters of the type ArS(C=O)Me have been prepared from diphenyl disulfide and PBu_3 , followed by treatment with acetic anhydride.¹⁶²⁹

¹⁶¹⁶Bandgar, B.P.; Kasture, S.P.; Kamble, V.T. Synth. Commun. 2001, 31, 2255.

¹⁶¹⁷Nafion-H has been used: Kumareswaran, R.; Pachamuthu, K.; Vankar, Y.D. Synlett 2000, 1652.

¹⁶¹⁸Some of the catalysts used are Cu(OTf)₂: Saravanan, P.; Singh, V.K. *Tetrahedron Lett.* 1999, 40, 2611. In(OTf)₃: Barrero, A.F.; Alvarez-Manzaneda, E.J.; Chahboun, R.; Meneses, R. *Synlett* 1999, 1663. InCl₃: Chakraborti, A.K.; Gulhane, R. *Tetrahedron Lett.* 2003, 44, 6749. TiCl₄: Chandrasekhar, S.; Ramachandar, T.; Reddy, M.V.; Takhi, M. J. Org. Chem. 2000, 65, 4729. LiClO₄: Nakae, Y.; Kusaki, I.; Sato, T. *Synlett* 2001, 1584; Ce(OTf)₃: Dalpozzo, R.; DeNino, A.; Maiuolo, L.; Procopio, A.; Nardi, M.; Bartoli, G.; Romeo, R. *Tetrahedron Lett.* 2003, 44, 5621. Yb(OTf)₃: Dumeunier, R.; Markó, I.E. *Tetrahedron Lett.* 2004, 45, 825. RuCl₃: De, S.K. *Tetrahedron Lett.* 2004, 45, 2919. Mg(ClO₄)₂: Bartoli, G.; Bosco, M.; Dalpozzo, R.; Marcantoni, E.; Massaccesi, M.; Sambri, L. *Eur. J. Org. Chem.* 2003, 4611. ¹⁶¹⁹For a list of catalysts, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, 1999, pp. 1955–1957.

¹⁶²⁰Constantinou-Kokotou, V.; Peristeraki, A. Synth. Commun. 2004, 34, 4227.

¹⁶²¹Clarke, P.A.; Kayaleh, N.E.; Smith, M.A.; Baker, J.R.; Bird, S.J.; Chan, C. J. Org. Chem. 2002, 67, 5226; Clarke, P.A. Tetrahedron Lett. 2002, 43, 4761.

¹⁶²²For reviews, see Scriven, E.F.V. Chem. Soc. Rev. 1983, 12, 129; Höfle, G.; Steglich, W.; Vorbrüggen, H. Angew. Chem. Int. Ed. 1978, 17, 569.

¹⁶²³Karimi, B.; Seradj, H. Synlett 2001, 519.

¹⁶²⁴For example, see Stevens, W.; van Es, A. *Recl. Trav. Chim. Pays-Bas* **1964**, 83, 1287; van Es, A.; Stevens, W. *Recl. Trav. Chim. Pays-Bas* **1965**, 84, 704.

¹⁶²⁵For example, see Stevens, W.; van Es, A. Recl. Trav. Chim. Pays-Bas 1964, 83, 1294; Söfuku, S.; Muramatsu, I.; Hagitani, A. Bull. Chem. Soc. Jpn. 1967, 40, 2942.

¹⁶²⁶For conversion of an anhydride to a mono-ester with high enantioselectivity, see Chen, Y.; Tian, S.-K.; Deng, L. J. Am. Chem. Soc. **2000**, 122, 9542.

¹⁶²⁷Chen, Y.; McDaid, P.; Deng, L. Chem. Rev. 2003, 103, 2965.

¹⁶²⁸Fatiadi, A.J. Carbohydr. Res. 1968, 6, 237.

¹⁶²⁹Ayers, J.T.; Anderson, S.R. Synth. Commun **1999**, 29, 351. This transformation has also been accomplished with Zn/AlCl₃: see Movassagh, B. Lakouraj, M.M.; Fadaei, Z. J. Chem. Res. (S) **2001**, 22.

OS I, 285, 418; II, 69, 124; III, 11, 127, 141, 169, 237, 281, 428, 432, 690, 833; IV, 15, 242, 304; V, 8, 459, 591, 887; VI, 121, 245, 560, 692; 486; VIII, 141, 258.

16-63 Esterification of Carboxylic Acids

Alkoxy-de-hydroxylation

RCOOH + R'OH $\xrightarrow{H+}$ RCOOR' + H₂O

The esterification of carboxylic acids with $alcohols^{1630}$ is the reverse of **16-60** and can be accomplished only if a means is available to drive the equilibrium to the right.¹⁶³¹ There are many ways of doing this, among which are (1) addition of an excess of one of the reactants, usually the alcohol; (2) removal of the ester or the water by distillation; (3) removal of water by azeotropic distillation; and (4) removal of water by use of a dehydrating agent, silica gel,¹⁶³² or a molecular sieve. When R' is methyl, the most common way of driving the equilibrium is by adding excess MeOH; when R' is ethyl, it is preferable to remove water by azeotropic distillation.¹⁶³³ The most common catalysts are H₂SO₄ and TsOH, although some reactive acids (e.g., formic, ¹⁶³⁴ trifluoroacetic¹⁶³⁵) do not require a catalyst. Ammonium salts have been used to initiate esterification,¹⁶³⁶ and boric acid has been used to esterify α -hydroxy acids.¹⁶³⁷ The R' group may be primary or secondary alkyl groups other than methyl or ethyl, but tertiary alcohols usually give carbocations and elimination. Phenols can sometimes be used to prepare phenolic esters, but yields are generally very low. Selective esterification of an aliphatic carboxylic acid in the presence of an aromatic acid was accomplished with NaHSO₄·SiO₂ and methanol.¹⁶³⁸

Diphenylammonium triflate was useful for direct esterification of carboxylic acids with longer chain aliphatic alcohols.¹⁶³⁹ Photoirradiation of carboxylic acid with CBr_4^{1640} or CCl_4^{1641} in methanol was shown to give the methyl ester, with high selectivity for nonconjugated acids in the case of CBr_4 . *O*-Alkylisoureas react

¹⁶³⁵Johnston, B.H.; Knipe, A.C.; Watts, W.E. Tetrahedron Lett. 1979, 4225.

¹⁶³⁰For a review of some methods, see Haslam, E. Tetrahedron 1980, 36, 2409.

¹⁶³¹For a list of reagents, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, *1999*, pp. 1932–1941.

¹⁶³²Nascimento, M.de G.; Zanotto, S.P.; Scremin, M.; Rezende, M.C. Synth. Commun. 1996, 26, 2715.

¹⁶³³Newman, M.S. An Advanced Organic Laboratory Course; Macmillan, NY, 1972, pp. 8–10.

¹⁶³⁴Formates can be prepared if diisopropyl ether is used to remove water by azeotropic distillation: Werner, W. *J. Chem. Res. (S)* **1980**, 196. For an alternative synthesis of formate esters using trifluoroethyl formate, see Hill, D.R.; Hsiao, C.-N.; Kurukulasuriya, R.; Wittenberger, S.J. *Org. Lett.* **2002**, *4*, 111.

¹⁶³⁶Wakasugi, K.; Nakamura, A.; Tanabe, Y. *Tetrahedron Lett.* **2001**, 42, 7427; Gacem, B.; Jenner, G. *Tetrahedron Lett.* **2003**, 44, 1391.

¹⁶³⁷Houston, T.A.; Wilkinson, B.L.; Blanchfield, J.T. Org. Lett. 2004, 6, 679.

¹⁶³⁸Das, B.; Venkataiah, B.; Madhsudhan, P. Synlett 2000, 59.

¹⁶³⁹Wakasugi, K.; Misaki, T.; Yamada, K.; Tanabe, Y. Tetrahedron Lett. 2000, 41, 5249.

¹⁶⁴⁰Lee, A.S.-Y.; Yang, H.-C.; Su, F.-Y. Tetrahedron Lett. 2001 42, 301.

¹⁶⁴¹Hwu, J.R.; Hsu, C.-Y.; Jain, M.L. Tetrahedron Lett. 2004 45, 5151.

with conjugated carboxylic acids to give the corresponding ester with microwave irradiation, 1642 and a polymer-bound *O*-alkylurea has been used as well. 1643

Mixing the carboxylic acid and alcohol with *p*-toluenesulfonic acid (neat), gave the ester in 3 min with microwave irradiation.¹⁶⁴⁴ Esterification has also been accomplished using ionic liquids as the reaction medium,¹⁶⁴⁵ and a solid-state esterification was reported on P_2O_5/SiO_2 .¹⁶⁴⁶ Diols are converted to the mono-acetate by heating with acetic acid on a zeolite.¹⁶⁴⁷

Both γ - and δ -hydroxy acids such as **97** are easily converted to a lactone by treatment with acids, or often simply on standing, but larger and smaller lactone rings cannot be made in this manner, because polyester formation occurs more readily.¹⁶⁴⁸ Often the conversion of a group, such as keto or halogen, γ or δ to a carboxyl group, to a hydroxyl group gives the lactone directly, since the hydroxy acid cyclizes too rapidly for isolation. β -Substituted β -hydroxy acids can be converted to β -lactones by treatment with benzenesulfonyl chloride in pyridine at $0-5^{\circ}$ C.¹⁶⁴⁹ ϵ -Lactones (seven-membered rings) have been made by cyclization of ϵ -hydroxy acids at high dilution.¹⁶⁵⁰ Macrocyclic lactones¹⁶⁵¹ can be prepared indirectly in very good yields by conversion of the hydroxy acids to 2-pyridinethiol esters and adding these to refluxing xylene.¹⁶⁵² Palladium-catalyzed aromatic carboxylation

¹⁶⁴⁴Loupy, A.; Petit, A.; Ramdan, M.; Yvanaeff, C.; Majdoub, M.; Labiad, B.; Villemin, D. *Can. J. Chem. 1993*, *71*, 90. See also, Zhang, Z.; Zhou, L.; Zhang, M.; Wu, H.; Chen, Z. *Synth. Commun. 2001*, *31*, 2435;
 Fan, X.; Yuan, K.; Hao, C. Li, N.; Tan, G.; Yu, X. *Org. Prep. Proceed. Int. 2000*, *32*, 287.

¹⁶⁴⁵Isobe, T.; Ishikawa, T. J. Org. Chem. 1999, 64, 6984.

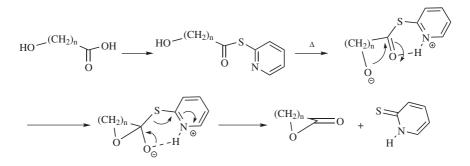
¹⁶⁴⁶Eshghi, H.; Rafei, M.; Karimi, M.H. Synth. Commun. 2001, 31, 771.

¹⁶⁴⁷Srinivas, K.V.N.S.; Mahender, I.; Das, B. Synlett 2003, 2419.

¹⁶⁴⁸For a review of the synthesis of lactones and lactams, see Wolfe, J.F.; Ogliaruso, M.A., in Patai, S. *The Chemistry of Acid Derivatives*, pt. 2, Wiley, NY, *1979*, pp. 1062–1330. For a list of methods for converting hydroxy acids to lactones, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, *1989*, pp. 1861–1867.

¹⁶⁴⁹Adam, W.; Baeza, J.; Liu, J. J. Am. Chem. Soc. **1972**, 94, 2000. For other methods of converting βhydroxy acids to β-lactones, see Merger, F. Chem. Ber. **1968**, 101, 2413; Blume, R.C. Tetrahedron Lett. **1969**, 1047.

¹⁶⁵⁰Lardelli, G.; Lamberti, V.; Weller, W.T.; de Jonge, A.P. Recl. Trav. Chim. Pays-Bas 1967, 86, 481.


¹⁶⁵¹For reviews on the synthesis of macrocyclic lactones, see Nicolaou, K.C. *Tetrahedron* **1977**, *33*, 683; Back, T.G. *Tetrahedron* **1977**, *33*, 3041; Masamune, S.; Bates, G.S.; Corcoran, J.W. *Angew. Chem. Int. Ed.* **1977**, *16*, 585.

¹⁶⁵²Corey, E.J.; Brunelle, D.J.; *Tetrahedron Lett.* 1976, 3409; Wollenberg, R.H.; Nimitz, J.S.; Gokcek, D.Y. *Tetrahedron Lett.* 1980, 21, 2791; Thalmann, A.; Oertle, K.; Gerlach, H. Org. Synth. VII, 470. See also, Schmidt, U.; Heermann, D. Angew. Chem. Int. Ed. 1979, 18, 308. For a ruthenium-catalyzed macrocyclization see Trost, B.M.; Chisholm, J.D. Org. Lett. 2002, 4, 3743.

¹⁶⁴²Crosignani, S.; White, P.D.; Linclau, B. Org. Lett. 2002, 4, 2961.

¹⁶⁴³Crosignani, S.; White, P.D.; Steinauer, R.; Linclau, B. Org. Lett. **2003**, *5*, 853; Crosignani, S.; White, P.D.; Linclau, B. J. Org. Chem. **2004**, *69*, 5897.

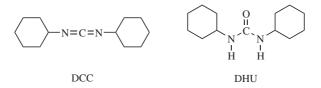
reactions generated carboxylic acids *in situ*, and when an alcohol unit is present elsewhere in the molecule cyclization gives the corresponding lactone.¹⁶⁵³

A closely related method, which often gives higher yields of a macrocyclic lactone, involves treatment of the hydroxy acids with 1-methyl- or 1-phenyl-2-halopyridinium salts, especially 1-methyl-2-chloropyridinium iodide (*Mukaiyama's reagent*).¹⁶⁵⁴ Another method uses organotin oxides¹⁶⁵⁵ and both TiCl₄/AgClO₄¹⁶⁵⁶ and TiCl₂(OSO₂CF₃)₂¹⁶⁵⁷ have been used.

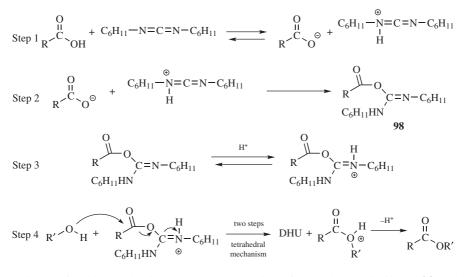
Esterification is catalyzed by acids (not bases) in ways that were discussed on p. 1402.¹⁵⁴⁹ The mechanisms are usually $A_{AC}2$, but $A_{AC}1$ and $A_{AL}1$ have also been observed.¹⁶⁵⁸ Certain acids, such as 2,6-di-ortho-substituted benzoic acids, cannot be esterified by the $A_{AC}2$ mechanism because of steric hindrance (p. 481). In such cases, esterification can be accomplished by dissolving the acid in 100% H₂SO₄ (forming the ion RCO⁺) and pouring the solution into the alcohol ($A_{AC}1$ mechanism). The reluctance of hindered acids to undergo the normal $A_{AC}2$ mechanism can sometimes be put to advantage when, in a molecule containing two COOH groups,

¹⁶⁵³Kayaki, Y.; Noguchi, Y.; Iwasa, S.; Ikariya, T.; Noyori, R. Chem. Commun. 1999, 1235.

¹⁶⁵⁴For a review of reactions with this and related methods, see Mukaiyama, T. Angew. Chem. Int. Ed. **1979**, *18*, 707. For a polymer-supported Mukaiyama reagent, see Convers, E.; Tye, H.; Whittaker, M. Tetrahedron Lett. **2004**, *45*, 3401.


¹⁶⁵⁵Steliou, K.; Szczygielska-Nowosielska, A.; Favre, A.; Poupart, M.A.; Hanessian, S. J. Am. Chem. Soc. 1980, 102, 7578; Steliou, K.; Poupart, M.A. J. Am. Chem. Soc. 1983, 105, 7130. For some other methods, see Masamune, S.; Kamata, S.; Schilling, W. J. Am. Chem. Soc. 1975, 97, 3515; Scott, L.T.; Naples, J.O. Synthesis 1976, 738; Kurihara, T.; Nakajima, Y.; Mitsunobu, O. Tetrahedron Lett. 1976, 2455; Corey, E.J.; Brunelle, D.J.; Nicolaou, K.C. J. Am. Chem. Soc. 1977, 99, 7359; Vorbrüggen, H.; Krolikiewicz, K. Angew. Chem. Int. Ed. 1977, 16, 876; Nimitz, J.S.; Wollenberg, R.H. Tetrahedron Lett. 1978, 3523; Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. Jpn. 1979, 52, 1989; Venkataraman, K.; Wagle, D.R. Tetrahedron Lett. 1980, 21, 1893; Schmidt, U.; Dietsche, M. Angew. Chem. Int. Ed. 1981, 20, 771; Taniguchi, N.; Kinoshita, H.; Inomata, K.; Kotake, H. Chem. Lett. 1984, 1347; Cossy, J.; Pete, J. Bull. Soc. Chim. Fr. 1988, 989.

¹⁶⁵⁶Shiina, I.; Miyoshi, S.; Miyashita, M.; Mukaiyama, T. Chem. Lett. 1994, 515; Mukaiyama, T.; Izumi, J.; Miyashita, M.; Shiina, I. Chem. Lett. 1993, 907.


¹⁶⁵⁷Hojo, M.; Nagayoshi, M.; Fujii, A.; Yanagi, T.; Ishibashi, N.; Miura, K.; Hosomi, A. Chem. Lett. 1994, 719.

¹⁶⁵⁸For a review of aspects of the mechanism, see Salomaa, P.; Kankaanperä, A.; Pihlaja, K., in Patai, S. *The Chemistry of the Hydroxyl Group, pt. 1*, Wiley, NY, **1971**, pp. 466–481.

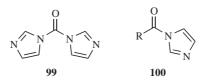
only the less hindered one is esterified. The $A_{AC}1$ pathway cannot be applied to unhindered carboxylic acids.

Another way to esterify a carboxylic acid is to treat it with an alcohol in the presence of a dehydrating agent.¹⁶³¹ One of these is dicyclohexylcarbodiimide (DCC), which is converted in the process to dicyclohexylurea (DHU). The mechanism¹⁶⁵⁹ has much in common with the nucleophilic catalysis mechanism; the acid is converted to a compound with a better leaving group. However, the conversion is not by a tetrahedral mechanism (as it is in nucleophilic catalysis), since the C–O bond remains intact during this step:

Evidence for this mechanism was the preparation of *O*-acylureas similar to **98** and the finding that when catalyzed by acids they react with alcohols to give esters.¹⁶⁶⁰ Hindered tertiary alcohols can be coupled via DCC to give the hindered ester.¹⁶⁶¹ A polymer-bound carbodiimide has been used to prepare macrocyclic lactones.¹⁶⁶² In at least one case, the reaction of HOOCCH₂CN with DCC and *tert*-butanol gave the *tert*-butyl ester via a ketene intermediate.¹⁶⁶³

¹⁶⁵⁹Smith, M.; Moffatt, J.G.; Khorana, H.G. J. Am. Chem. Soc. **1958**, 80, 6204; Balcom, B.J.; Petersen, N.O. J. Org. Chem. **1989**, 54, 1922.

¹⁶⁶⁰Doleschall, G.; Lempert, K. Tetrahedron Lett. 1963, 1195.


¹⁶⁶¹Shimizu, T.; Hiramoto, K.; Nakata, T. Synthesis 2001, 1027.

¹⁶⁶²Keck, G.E.; Sanchez, C.; Wager, C.A. Tetrahedron Lett. 2000, 41, 8673.

¹⁶⁶³Nahmany, M.; Melman, A. Org. Lett. 2001, 3, 3733.

1418 ADDITION TO CARBON-HETERO MULTIPLE BONDS

There are limitations to the use of DCC; yields are variable and *N*-acylureas are side products. Many other dehydrating agents¹⁶⁶⁴ have been used, including DCC and an aminopyridine,¹⁶⁶⁵ Amberlyst-15,¹⁶⁶⁶ chlorosilanes,¹⁶⁶⁷ MeSO₂Cl-Et₃N,¹⁶⁶⁸ and *N*,*N'*-carbonyldiimidazole(**99**).¹⁶⁶⁹ In the latter case, imidazolides (**100**) are intermediates that readily react with alcohols.

It is known that the Lewis acid BF₃ promotes the esterification by converting the acid to RCO^+ –BF₃ ⁻OH, so the reaction proceeds by an A_{AC}1 type of mechanism. The use of BF₃-etherate is simple and gives high yields.¹⁶⁷⁰ Other Lewis acids can be used.¹⁶⁷¹ Esterification has been done using a LaY zeolite.¹⁶⁷²

Carboxylic esters can also be prepared by treating carboxylic acids with *tert*butyl ethers and acid catalysts.¹⁶⁷³

RCOOH + t-Bu-OR' \longrightarrow RCOOR' + H₂C=CMe₂ + H₂O

Carboxylic acids can be converted to *tert*-butyl esters by treatment with *tert*-butyl 2,2,2-trichloroacetimidate (see **10-10**) and $BF_3 \cdot OEt_2$.¹¹⁷³ Carboxylic esters can be formed from the carboxylate anion and a suitable alkylating agent (**10-26**).

Thioesters of the type RSC(=S)R' (a dithiocarboxylic ester) and RSC(C=O)R' (a thiocarboxylic ester) can be generated by reaction of carboxylic acids with thiols.

¹⁶⁶⁵Hassner, A.; Alexanian, V. *Tetrahedron Lett.* **1978**, 4475; Neises, B.; Steglich, W. Angew. Chem. Int. Ed. **1978**, 17, 522; Boden, E.P.; Keck, G.E. J. Org. Chem. **1985**, 50, 2394.

¹⁶⁶⁶Petrini, M.; Ballini, R.; Marcantoni, E.; Rosini, G. Synth. Commun. 1988, 18, 847.

¹⁶⁶⁷Nakao, R.; Oka, K.; Fukumoto, T. *Bull. Chem. Soc. Jpn.* **1981**, *54*, 1267; Brook, M.A.; Chan, T.H. Synthesis **1983**, 201.

¹⁶⁶⁸Chandrasekaran, S.; Turner, J.V. Synth. Commun. 1982, 12, 727.

¹⁶⁶⁹For a review, see Staab, H.A.; Rohr, W. *Newer Methods Prep. Org. Chem.* **1968**, *5*, 61. See also, Morton, R.C.; Mangroo, D.; Gerber, G.E. Can. J. Chem. **1988**, *66*, 1701.

¹⁶⁷⁰For examples, see Marshall, J.L.; Erickson, K.C.; Folsom, T.K. *Tetrahedron Lett.* **1970**, 4011; Kadaba, P.K. *Synthesis* **1972**, 628; *Synth. Commun.* **1974**, 4, 167.

¹⁶⁷¹Lewis acids used for esterification include FeCl₃: Sharma, G.V.M.; Mahalingam, A.K.; Nagarajan, M.; Ilangovan, P.; Radhakrishna, P. *Synlett* 1999, 1200. Hf(Cl₄(thf)₂: Ishihara, K.; Nakayama, M.; Ohara, S.;Yamamoto, H. *Synlett* 2001, 1117 and Ishihara, K.; Nakayama, M.; Ohara, S.; Yamamoto, H. *Tetrahedron* 2002, 58, 8179; Bi(OTf)₃•x H₂O: Carrigan, D.; Freiberg, D.A.; Smith, R.C.; Zerth, H.M.; Mohan, R.S. *Synthesis* 2001, 2091; BiCl₃: Mohammadpoor-Baltork, I.; Khosropour, A.R.; Aliyan, H. J. *Chem. Res* 2001, 280; Fe₂(SO₄)₃•x H₂O: Zhang, G.-S. *Synth. Commun.* 1999, 29, 607. Ceric ammonium nitrate: Pan, W.-B.; Chang, F.-R.; Wei, L.-M.; Wu, M.J.; Wu, Y.-C. *Tetrahedron Lett.* 2003, 44, 331. ¹⁶⁷²Narender, N.; Srinivasu, P.; Kulkarni, S.J.; Raghavan, K.V. *Synth. Commun.* 2000, 30, 1887.

¹⁶⁷³Derevitskaya, V.A.; Klimov, E.M.; Kochetkov, N.K. *Tetrahedron Lett.* 1970, 4269. See also, Mohacsi,
 E. Synth. Commun. 1982, 12, 453.

¹⁶⁶⁴For a list of many of these with references, see Arrieta, A.; García, T.; Lago, J.M.; Palomo, C. *Synth. Commun.* **1983**, *13*, 471.

In one example, phosphorous pentasulfide was used in conjunction with a thiol to make dithiocarboxylic esters¹⁶⁷⁴ or thiocarboxylic esters.¹⁶⁷⁵ Thiocarboxylic esters were prepared from thiols and triflic acid.¹⁶⁷⁶

OS I, 42, 138, 237, 241, 246, 254, 261, 451; II, 260, 264, 276, 292, 365, 414, 526; III, 46, 203, 237, 381, 413, 526, 531, 610; IV, 169, 178, 302, 329, 390, 398, 427, 506, 532, 635, 677; V, 80, 762, 946; VI, 471, 797; VII, 93, 99, 210, 319, 356, 386, 470; VIII, 141, 251, 597; IX, 24, 58; 75, 116; 75, 129. Also see, OS III, 536, 742.

16-64 Transesterification

Alkoxy-de-alkoxylation

$$\begin{array}{c} O \\ H \\ R \\ C \\ OR^{1} \end{array} + R^{2}OH \xrightarrow{H^{+} \text{ or }^{-}OH} O \\ R \\ R \\ C \\ OR^{2} \end{array} + R^{1}OH$$

Transesterification¹⁶⁷⁷ is catalyzed¹⁶⁷⁸ by acids¹⁶⁷⁹ or bases,¹⁶⁸⁰ or performed under neutral conditions.¹⁶⁸¹ It is an equilibrium reaction and must be shifted in the desired direction. In many cases low-boiling esters can be converted to higher boiling ones by the distillation of the lower boiling alcohol as fast as it is formed. Reagents used to catalyze¹⁶⁸² transesterification include Montmorillonite K10¹⁶⁸³ and various Lewis acids.¹⁶⁸⁴ A polymer-bound siloxane has been used to induce transesterification.¹⁶⁸⁵ This reaction has been used as a method for the acylation of a primary OH in the presence of a secondary OH.¹⁶⁸⁶ Regioselectivity has

- ¹⁶⁷⁴Sudalai, A.; Kanagasabapathy, S.; Benicewicz, B.C. Org. Lett. 2000, 2, 3213.
- ¹⁶⁷⁵Curphey, T.J. Tetrahedron Lett. 2002, 43, 371.
- ¹⁶⁷⁶Iimura, S.; Manabe, K.; Kobayashi, S. Chem. Commun. 2002, 94.
- ¹⁶⁷⁷Otera, J. Chem. Rev. **1993**, 93, 1449.

¹⁶⁷⁸For a list of catalysts, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, *1999*, pp. 1969–1973.

¹⁶⁷⁹Catalysts other than mineral acids can be used, for example, Amberlyst-15 resin. See Chavan, S.P.; Subbarao, Y.T.; Dantale, S.W.; Sivappa, R. *Synth. Commun.* **2001**, *31*, 289.

¹⁶⁸⁰Stanton, M.G.; Gagné, M.R. J. Org. Chem. 1997, 62, 8240; Vasin, V.A.; Razin, V.V. Synlett 2001, 658.
 ¹⁶⁸¹For some methods of transesterification under neutral conditions, see Otera, J.; Yano, T.; Kawabata, A.; Nozaki, H. *Tetrahedron Lett.* 1986, 27, 2383; Imwinkelried, R.; Schiess, M.; Seebach, D. Org. Synth., 65, 230; Bandgar, B.P.; Uppalla, L.S.; Sadavarte, V.S. Synlett 2001, 1715.

¹⁶⁸²For a review see Grasa, G.A.; Singh, R.; Nolan, S.P. Synthesis 2004, 971.

¹⁶⁸³Ponde, D.E.; Deshpande, V.H.; Bulbule, V.J.; Sudalai, A.; Gajare, A.S. J. Org. Chem. 1998, 63, 1058.
 ¹⁶⁸⁴Lewis acids used for this reaction include Ti(OEt)₄: Krasik, P. Tetrahedron Lett. 1998, 39, 4223.
 TICl₄: Mahrwald, R.; Quint, S. Tetrahedron 2000, 56, 7463. Cu(NO₃)₂: Iranpoor, N.; Firouzabadi, H.;

Zolfigol, M.A. Synth. Commun. 1998, 28, 1923. Sn(OTf)₂: Mukaiyama, T.; Shiina, I.; Miyashita, M. Chem. Lett. 1992, 625. Yb(OTf)₃: Sharma, G.V.M.; Ilangovan, A. Synlett 1999, 1963. LiClO₄: Bandgar, B.P.; Sadavarte, V.S.; Uppalla, L.S. Synlett 2001, 1338. FeSO₄: Bandgar, B.P.; Sadavarte, V.S.; Uppalla, L.S. Synth. Commun. 2001, 31, 2063. Ceric ammonium nitrate: Štefane, B.; Kočevar, M.; Polanc, S. Synth. Commun. 2002, 32, 1703.

 ¹⁶⁸⁵Hagiwara, H.; Koseki, A.; Isobe, K.; Shimizu, K.-i.; Hoshi, T.; Suzuki, T. *Synlett* 2004, 2188.
 ¹⁶⁸⁶Yamada, S. *Tetrahedron Lett.* 1992, 33, 2171. See also, Costa, A.; Riego, J.M. *Can. J. Chem.* 1987, 65, 2327.

also been accomplished by using enzymes (lipases) as catalysts.¹⁶⁸⁷ Lactones, such as **101**, are easily opened by treatment with alcohols¹⁶⁸⁸ to give open-chain hydroxy esters.

Transesterification has been carried out with phase-transfer catalysts, without an added solvent.¹⁶⁸⁹ Nonionic superbases (see p. 365) of the type $P(RNCH_2CH_2)_3N$ catalyze the transesterification of carboxylic acid esters at $25^{\circ}C$.¹⁶⁹⁰ Silyl esters (R'CO_2SiR_3) have been converted to alkyl esters (R'CO_2R) via reaction with alkyl halides and tetrabutylammonium fluoride.¹⁶⁹¹ Thioesters are converted to phenolic esters by treatment with triphosgene–pyridine and then phenol.¹⁶⁹²

Transesterification occurs by mechanisms¹⁶⁹³ that are identical with those of ester hydrolysis, except that ROH replaces HOH (by the acyl-oxygen fission mechanisms). When alkyl fission takes place, the products are the *acid* and the *ether*:

$$\begin{array}{c} O \\ II \\ R \\ \hline \\ C \\ OR^1 \end{array} + R^2 OH \longrightarrow \begin{array}{c} O \\ II \\ R \\ \hline \\ C \\ OH \end{array} + ROR^2$$

Therefore, transesterification reactions frequently fail when R' is tertiary, since this type of substrate most often reacts by alkyl–oxygen cleavage. In such cases, the reaction is of the Williamson type with OCOR as the leaving group (see **10-10**).

$$\underset{H_{3}C}{\overset{CH_{2}}{\longleftarrow}} \overset{O}{\underset{R}{\overset{U}{\leftarrow}}} \overset{C}{\underset{R}{\overset{H}{\leftarrow}}} + R'OH \xrightarrow{RCO_{2}R'} + \underset{H_{3}C}{\overset{CH_{2}}{\longleftarrow}} \overset{CH_{2}}{\underset{OH}{\overset{C}{\leftarrow}}} \overset{CH_{3}}{\underset{H_{3}C}{\overset{CH_{3}}{\leftarrow}}} \overset{CH_{3}}{\underset{H_{3}C}{\overset{CH_{3}}{\leftarrow}}}$$

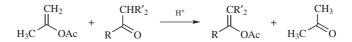
With enol esters such as **102**, reaction with an alcohol gives an ester and the enol of a ketone, which readily tautomerizes to the ketone as shown. Hence, enol esters are good acylating agents for alcohols.¹⁶⁹⁴ This transformation has been

¹⁶⁸⁷Wong, C.H.; Whitesides, G. M. in Baldwin, J.E. Enzymes in Synthetic Organic Chemistry, Tetrahedron Organic Chemistry Series Vol. 12, Pergamon Press, NY, **1994**; Faber, K. Biotransformations in Organic Chemistry. A Textbook, 2nd ed; Springer-Verlag, NY, **1995**; Córdova, A.; Janda, K.D. J. Org. Chem. **2001**, 66, 1906; Ciuffreda, P.; Casati, S.; Santaniello, E. Tetrahedron Lett. **2003**, 44, 3663.

¹⁶⁸⁸Anand, R.C.; Sevlapalam, N. Synth. Commun. 1994, 24, 2743.

¹⁶⁹⁰Ilankumaran, P.; Verkade, J.G. J. Org. Chem. 1999, 64, 3086.

¹⁶⁹¹Ooi, T.; Sugimoto, H.; Maruoka, K. Heterocycles 2001, 54, 593.


¹⁶⁹²Joshi, U.M.; Patkar, L.N.; Rajappa, S. Synth. Commun. 2004, 34, 33.

¹⁶⁸⁹Barry, J.; Bram, G.; Petit, A. *Tetrahedron Lett.* **1988**, 29, 4567. See also, Nishiguchi, T.; Taya, H. J. *Chem. Soc. Perkin Trans.* 1 **1990**, 172.

¹⁶⁹³For a review, see Koskikallio, E.A., in Patai, S. *The Chemistry of Carboxylic Acids and Esters*, Wiley, NY, *1969*, pp. 103–136.

¹⁶⁹⁴Rothman, E.S.; Hecht, S.S.; Pfeffer, P.E.; Silbert, L.S. J. Org. Chem. **1972**, 37, 3551; Ilankumaran, P.; Verkade, J.G. J. Org. Chem. **1999**, 64, 9063.

accomplished in ionic liquid media,¹⁶⁹⁵ and there is a $PdCl_2/CuCl_2$ mediated version.¹⁶⁹⁶ Isopropenyl acetate can also be used to convert other ketones to the corresponding enol acetates in an exchange reaction:¹⁶⁹⁷

Enol esters can also be prepared in the opposite type of exchange reaction, catalyzed by mercuric acetate¹⁶⁹⁸ or Pd(II) chloride,¹⁶⁹⁹ for example,

A closely related reaction is equilibration of a dicarboxylic acid and its diester to produce monoesters: The reaction of a carboxylic acid with ethyl acetate, in the presence of NaHSO₄•SiO₂, was shown to give the corresponding ethyl ester.¹⁷⁰⁰ Iodine catalyzes the transesterification of β -keto esters.¹⁷⁰¹

OS II, 5, 122, 360; III, 123, 146, 165, 231, 281, 581, 605; IV, 10, 549, 630, 977; V, 155, 545, 863; VI, 278; VII, 4, 164, 411; VIII, 155, 201, 235, 263, 350, 444, 528. See also, OS VII, 87; VIII, 71.

16-65 Alcoholysis of Amides

Alkoxy-de-amidation

$$R^{1}$$
 NR_{2} R^{2} R^{1} O R^{2} OR^{2}

Alcoholysis of amides is possible,¹⁷⁰² although it is usually difficult. It has been most common with the imidazolide type of amides (e.g., **100**). For other amides, an activating agent is usually necessary before the alcohol will replace the NR₂ unit. Dimethylformamide, however, reacted with primary alcohols in the presence of 2,4,6-trichloro-1,3,5-pyrazine (cyanuric acid) to give the corresponding formate ester.¹⁷⁰³ Treatment of an amide with triflic anhydride (CF₃SO₂OSO₂CF₃) in the

¹⁶⁹⁵Grasa, G.A.; Kissling, R.M.; Nolan, S.P. Org. Lett. 2002, 4, 3583.

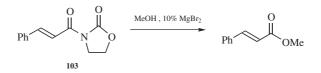
¹⁶⁹⁶Bosco, J.W.J.; Saikia, A.K. Chem. Commun. 2004, 1116.

¹⁶⁹⁷For examples, see Deghenghi, R.; Engel, C.R. J. Am. Chem. Soc. **1960**, 82, 3201; House, H.O.; Trost, B.M. J. Org. Chem. **1965**, 30, 2502.

¹⁶⁹⁸For example, see Hopff, H.; Osman, M.A. *Tetrahedron* **1968**, *24*, 2205, 3887; Mondal, M.A.S.; van der Meer, R.; German, A.L.; Heikens, D. *Tetrahedron* **1974**, *30*, 4205.

¹⁶⁹⁹Henry, P.M. J. Am. Chem. Soc. 1971, 93, 3853; Acc. Chem. Res. 1973, 6, 16.

¹⁷⁰⁰Das, B.; Venkataiah, B. Synthesis 2000, 1671.


¹⁷⁰¹Chavan, S.P.; Kale, R.R.; Shivasankar, K.; Chandake, S.I.; Benjamin, S.B. Synthesis 2003, 2695.

¹⁷⁰²For example, see Czarnik, A.W. Tetrahedron Lett. 1984, 25, 4875. For a list of references, see Larock,

R.C. Comprehensive Organic Transformations, 2nd ed., Wiley-VCH, NY, 1999, pp. 197-1978.

¹⁷⁰³DeLuca, L.; Giacomelli, G.; Porcheddu, A. J. Org. Chem. 2002, 67, 5152.

presence of pyridine and then with an excess of alcohol leads to the ester,¹⁷⁰⁴ as does treatment with Me₂NCH(OMe)₂ followed by the alcohol.¹⁷⁰⁵ Trimethyloxonium tetrafluoroborate converted primary amides to methyl esters.¹⁷⁰⁶ The reaction of acetanilide derivatives with sodium nitrite in the presence of acetic anhydride– acetic acid leads to phenolic acetates.¹⁷⁰⁷ Acyl hydrazides (RCONHNH₂) were converted to esters by reaction with alcohols and various reagents,¹⁷⁰⁸ and methoxyamides (RCONHOMe) were converted to esters with TiCl₄/ROH.¹⁷⁰⁹ The reaction of an oxazolidinone amide **103** with methanol and 10% MgBr₂ gave the corresponding methyl ester.¹⁷¹⁰

C. Attack by OCOR at an Acyl Carbon

16-66 Acylation of Carboxylic Acids With Acyl Halides

Acyloxy-de-halogenation

RCOCl + R′COO⁻ → RCOOCOR′

Unsymmetrical, as well as symmetrical, anhydrides are often prepared by the treatment of an acyl halide with a carboxylic acid salt. Cobalt(II) chloride (CoCl₂) has been used as a catalyst.¹⁷¹¹ If a metallic salt is used, Na⁺, K⁺, or Ag⁺ are the most common cations, but more often pyridine or another tertiary amine is added to the free acid and the resulting salt is subsequently treated with the acyl halide. Mixed formic anhydrides are prepared from sodium formate and an aryl halide, by use of a solid-phase copolymer of pyridine-1-oxide.¹⁷¹² Symmetrical anhydrides can be prepared by reaction of the acyl halide with aq. NaOH or

¹⁷⁰⁶Kiessling, A.J.; McClure, C.K. Synth. Commun. 1997, 27, 923.

¹⁷⁰⁴Charette, A.B.; Chua, P. Synlett 1998, 163.

¹⁷⁰⁵Anelli, P.L.; Brocchetta, M.; Palano, D.; Visigalli, M. Tetrahedron Lett. 1997, 38, 2367.

¹⁷⁰⁷Glatzhofer, D.T.; Roy, R.R.; Cossey, K.N. Org. Lett. 2002, 4, 2349.

¹⁷⁰⁸Prakash, O.; Sharma, V.; Sadana, A. *J. Chem. Res. (S)* **1996**, 100; Štefane, B.; Koevar, M.; Polanc, S. *Tetrahedron Lett.* **1999**, *40*, 4429; Yamaguchi, J.-i.; Aoyagi, T.; Fujikura, R.; Suyama, T. *Chem. Lett.* **2001**, 466.

¹⁷⁰⁹Fisher, L.E.; Caroon, J.M.; Stabler, S.R.; Lundberg, S.; Zaidi, S.; Sorensen, C.M.; Sparacino, M.L.; Muchowski, J.M. *Can. J. Chem.* **1994**, 72, 142.

¹⁷¹⁰Orita, A.; Nagano, Y.; Hirano, J.; Otera, J. Synlett 2001, 637.

¹⁷¹¹Srivastava, R.R.; Kabalka, G.W. Tetrahedron Lett. 1992, 33, 593.

¹⁷¹²Fife, W.K.; Zhang, Z. J. Org. Chem. **1986**, 51, 3744. See also, Fife, W.K.; Zhang, Z., *Tetrahedron Lett.*

¹⁹⁸⁶, *27*, 4933, 4937. For a review of acetic formic anhydride see Strazzolini, P.; Giumanini, A.G.; Cauci, S. *Tetrahedron 1990*, *46* 1081.

NaHCO₃ under phase-transfer conditions, 1713 or with sodium bicarbonate with ultrasound. 1714

OS III, 28, 422, 488; IV, 285; VI, 8, 910; VIII, 132. See also, OS VI, 418.

16-67 Acylation of Carboxylic Acids With Carboxylic Acids

Acyloxy-de-hydroxylation

$$2 \operatorname{RCOOH} \xrightarrow{P_2O_5} (\operatorname{RCO})_2O + H_2O$$

Anhydrides can be formed from two molecules of an ordinary carboxylic acid only if a dehydrating agent is present so that the equilibrium can be driven to the right. Common dehydrating agents¹⁷¹⁵ are acetic anhydride, trifluoroacetic anhydride, dicyclohexylcarbodiimide,¹⁷¹⁶ and P₂O₅. Triphenylphosphine/CCl₃CN with triethylamine has also been used with benzoic acid derivatives.¹⁷¹⁷ The method is very poor for the formation of mixed anhydrides, which in any case generally undergo disproportionation to the two simple anhydrides when they are heated. However, simple heating of dicarboxylic acids does give cyclic anhydrides, provided that the ring formed contains five, six, or seven members, for example,

Malonic acid and its derivatives, which would give four-membered cyclic anhydrides, do not give this reaction when heated but undergo decarboxylation (12-40) instead.

Carboxylic acids exchange with amides and esters; these methods are sometimes used to prepare anhydrides if the equilibrium can be shifted, for example,

$$\begin{array}{c} O \\ I \\ R \\ \end{array} \xrightarrow{C} OH \end{array} + \begin{array}{c} O \\ I \\ R \\ \end{array} \xrightarrow{C} OR^2 \end{array} \xrightarrow{O} \begin{array}{c} O \\ I \\ R \\ \end{array} \xrightarrow{C} O \\ \end{array} \xrightarrow{O} \begin{array}{c} O \\ I \\ C \\ O \\ \end{array} \xrightarrow{C} O \\ \end{array} + \begin{array}{c} R^2 OH \\ R^2 OH \end{array}$$

¹⁷¹³Plusquellec, D.; Roulleau, F.; Lefeuvre, M.; Brown, E. *Tetrahedron* **1988**, 44, 2471; Wang, J.; Hu, Y.; Cui, W. J. Chem. Res. (S) **1990**, 84.

¹⁷¹⁴Hu, Y.; Wang, J.-X.; Li, S. Synth. Commun. 1997, 27, 243.

¹⁷¹⁵For lists of other dehydrating agents with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, **1999**, pp. 1930–1932; Ogliaruso, M.A.; Wolfe, J.F., in Patai, S. *The Chemistry of Acid Derivatives*, pt.1, Wiley, NY, **1979**, pp. 437–438.

¹⁷¹⁷Kim, J.; Jang, D.O. Synth. Commun. 2001, 31, 395.

¹⁷¹⁶For example, see Schüssler, H.; Zahn, H. *Chem. Ber.* **1962**, *95*, 1076; Rammler, D.H.; Khorana, H.G. J. Am. Chem. Soc. **1963**, 85, 1997. See also, Hata, T.; Tajima, K.; Mukaiyama, T. *Bull. Chem. Soc. Jpn.* **1968**, *41*, 2746.

Enolic esters are especially good for this purpose, because the equilibrium is shifted by formation of the ketone.

The combination of KF with 2-acetoxypropene under microwave conditions was effective.¹⁷¹⁸ Carboxylic acids also exchange with anhydrides; indeed, this is how acetic anhydride acts as a dehydrating agent in this reaction.

Anhydrides can be formed from certain carboxylic acid salts; for example, by treatment of trimethylammonium carboxylates with phosgene:¹⁷¹⁹

 $2 \operatorname{RCOO}^{\odot} \xrightarrow{\otimes} \operatorname{NHEt_3} \xrightarrow{\operatorname{COCl_2}} \operatorname{RCOOCOR} + 2 \operatorname{NHEt_3} \operatorname{Cl}^{\ominus} + \operatorname{CO_2}$

or of thallium(I) carboxylates with thionyl chloride, 1605 or of sodium carboxylates with CCl₄ and a catalyst such as CuCl or FeCl₂.¹⁷²⁰

OS I, 91, 410; II, 194, 368, 560; III, 164, 449; IV, 242, 630, 790; V, 8, 822; IX, 151. Also see, OS VI, 757; VII, 506.

16-68 Preparation of Mixed Organic–Inorganic Anhydrides

Nitrooxy-de-acyloxy-substitution

 $(RCO)_2O + HONO_2 \longrightarrow RCOONO_2$

Mixed organic–inorganic anhydrides are seldom isolated, though they are often intermediates when acylation is carried out with acid derivatives catalyzed by inorganic acids. Sulfuric, perchloric, phosphoric, and other acids form similar anhydrides, most of which are unstable or not easily obtained because the equilibrium lies in the wrong direction. These intermediates are formed from amides, carboxylic acids, and esters, as well as anhydrides. Organic anhydrides of phosphoric acid are more stable than most others and, for example, RCOOPO(OH)₂ can be prepared in the form of its salts.¹⁷²¹ Mixed anhydrides of carboxylic acids (RCOOSO₂R') are obtained in high yields by treatment of sulfonic acids with acyl halides or (less preferred) anhydrides.¹⁷²²

OS I, 495; VI, 207; VII, 81.

¹⁷¹⁸Villemin, D.; Labiad, B.; Loupy, A. Synth. Commun. 1993, 23, 419.

¹⁷¹⁹Rinderknecht, H.; Ma, V. *Helv. Chim. Acta* **1964**, 47, 152. See also, Nangia, A.; Chandrasekaran, S. *J. Chem. Res.* (S) **1984**, 100.

¹⁷²⁰Weiss, J.; Havelka, F.; Nefedov, B.K. Bull. Acad. Sci. USSR Div. Chem. Sci. 1978, 27, 193.

¹⁷²¹Avison, A.W.D. J. Chem. Soc. 1955, 732.

¹⁷²²Karger, M.H.; Mazur, Y. J. Org. Chem. 1971, 36, 528.

16-69 Attack by SH or SR at an Acyl Carbon¹⁷²³

Thiol acids and thiol esters¹⁷²⁴ can be prepared in this manner, which is analogous to **16-57** and **16-64**. Anhydrides¹⁷²⁵ and aryl esters $(\text{RCOOAr})^{1726}$ are also used as substrates, but the reagents in these cases are usually HS⁻ and RS⁻. Thiol esters can also be prepared by treatment of carboxylic acids with P₄S₁₀—Ph₃SbO,¹⁷²⁷ or with a thiol RSH and either polyphosphate ester or phenyl dichlorophosphate PhOPOCl₂.¹⁷²⁸ Esters RCOOR' can be converted to thiol esters RCOSR² by treatment with trimethylsilyl sulfides Me₃SiSR² and AlCl₃.¹⁷²⁹

Alcohols, when treated with a thiol acid and zinc iodide, give thiol esters $\left(R'COSR\right)^{1730}$

OS III, 116, 599; IV, 924, 928; VII, 81; VIII, 71.

16-70 Transamidation

Alkylamino-de-amidation

 $\begin{array}{c} O \\ II \\ R^{-C} NR^{1}R^{2} \end{array} + R^{3}R^{4}NH \longrightarrow \begin{array}{c} O \\ II \\ R^{-C} NR^{3}R^{4} \end{array} + R^{1}R^{2}NH$

It is sometimes necessary to replace one amide group with another, particularly when the group attached to nitrogen functions as a protecting group¹⁷³¹ *N*-Benzyl amides can be converted to the corresponding *N*-allyl amide with allylamine and titanium catalysts.¹⁷³² Reaction of *N*-Boc 2-phenylethylamine (Boc = *tert*-butoxy carbonyl) with Ti(O*i*Pr)₄ and benzyl alcohol, for example, gives the *N*-Cbz derivative (Cbz = carbobenzoylcarbonyl).¹⁷³³ *N*-Carbamoyl amines were converted to

¹⁷²³For a review, see Satchell, D.P.N. Q. Rev. Chem. Soc. 1963, 17, 160, pp. 182-184.

¹⁷²⁴For a review of these compounds, see Scheithauer, S.; Mayer, R. Top. Sulfur Chem. 1979, 4, 1.

¹⁷²⁵Ahmad, S.; Iqbal, J. Tetrahedron Lett. 1986, 27, 3791.

¹⁷²⁶Hirabayashi, Y.; Mizuta, M.; Mazume, T. Bull. Chem. Soc. Jpn. 1965, 38, 320.

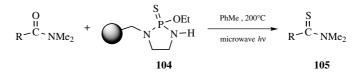
¹⁷²⁷Nomura, R.; Miyazaki, S.; Nakano, T.; Matsuda, H. Chem. Ber. 1990, 123, 2081.

¹⁷²⁸Imamoto, T.; Kodera, M.; Yokoyama, M. *Synthesis* **1982**, 134; Liu, H.; Sabesan, S.I. *Can. J. Chem.* **1980**, 58, 2645. For other methods of converting carboxylic acids to thiol esters, see the references given in these papers. See also, Dellaria, Jr., F.F.; Nordeen, C.; Swett, L.R. *Synth. Commun.* **1986**, *16*, 1043.

¹⁷²⁹Mukaiyama, T.; Takeda, T.; Atsumi, K. *Chem. Lett.* **1974**, 187. See also, Hatch, R.P.; Weinreb, S.M. J. Org. Chem. **1977**, 42, 3960; Cohen, T.; Gapinski, R.E. *Tetrahedron Lett.* **1978**, 4319.

¹⁷³⁰Gauthier, J.Y.; Bourdon, F.; Young, R.N. *Tetrahedron Lett.* **1986**, 27, 15.

¹⁷³¹See, for example, Swain, C.G.; Ketley, A.D.; Bader, R.F.W. J. Am. Chem. Soc. **1959**, 81, 2353; Knipe, A.C. J. Chem. Soc. Perkin Trans. 2 **1973**, 589.

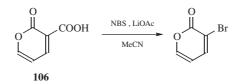

¹⁷³²Eldred, S.E.; Stone, D.A.; Gellman, S.H.; Stahl, S.S. J. Am. Chem. Soc. 2003, 125, 3422.

¹⁷³³Shapiro, G.; Marzi, M. J. Org. Chem. 1997, 62, 7096.

N-acetyl amines with acetic anhydride, Bu₃SnH, and Pd(PPh₃)₄.¹⁷³⁴ Triethylaluminum converts methyl carbamates (ArNHCO₂Me) to the corresponding propanamide.¹⁷³⁵

A related process reacts acetamide with amines and aluminum chloride to give the *N*-acetyl amine.¹⁷³⁶ Another related process converted imides to *O*-benzyloxy amides by the samarium-catalyzed reaction with *O*-benzylhydroxylamine.¹⁷³⁷

Thioamides can be prepared from amide by reaction with an appropriate sulfur reagent. The reaction of *N*,*N*-dimethylacetamide under microwave irradiation, with the polymer-bound reagent **104** gave **105**.¹⁷³⁸ Reaction of the thioamide with Bi(NO₃)₃•5 H₂O converts regenerates the amide.¹⁷³⁹ Oxone[®] and a thioamide, on the solid-phase, regenerates the amide.¹⁷⁴⁰ Selenoamides (RC(=Se)NR₂' have also been prepared from amides.¹⁷⁴¹



D. Attack by Halogen

16-71 The Conversion of Carboxylic Acids to Halides

Halo-de-oxido,oxo-tersubstitution

In certain cases, carboxyl groups can be replaced by halide. Acrylic acid derivatives ArCH=CHCOOH, for example, react with 3 equivalents of Oxone in the presence of NaBr to give a vinyl bromide ArCH=CHBr.¹⁷⁴² In other cases, conjugated acids, such as, **106**, have been converted to the bromide by reaction with *N*-bromosuccinimide (NBS, p. 962) and LiOAc.¹⁷⁴³

¹⁷³⁴Roos, E.C.; Bernabé, P.; Hiemstra, H.; Speckamp, W.N.; Kaptein, B.; Boesten, W.H.J. J. Org. Chem. **1995**, 60, 1733.

¹⁷³⁵El Kaim, L.; Grimaud, L.; Lee, A.; Perroux, Y.; Tiria, C. Org. Lett. 2004, 6, 381.

¹⁷³⁶Bon, E.; Bigg, D.C.H.; Bertrand, G. J. Org. Chem. 1994, 59, 4035.

¹⁷³⁷Sibi, M.P.; Hasegawa, H.; Ghorpade, S.R. Org. Lett. 2002, 4, 3343.

¹⁷³⁸Ley, S.V.; Leach, A.G.; Storer, R.I. J. Chem. Soc. Perkin Trans. 1 2001, 358.

- ¹⁷⁴⁰Mohammadpoor-Baltork, I.; Sadeghi, M.M.; Esmayilpour, K. Synth. Commun. 2003, 33, 953.
- ¹⁷⁴¹Saravanan, V.; Mukherjee, C.; Das, S.; Chandrasekaran, S. *Tetrahedron Lett.* 2004, 45, 681.
- ¹⁷⁴²You, H.-W.; Lee, K.-J. Synlett 2001, 105.

¹⁷³⁹Mohammadpoor-Baltork, I.; Khodaei, M.M.; Nikoofar, K. Tetrahedron Lett. 2003, 44, 591.

¹⁷⁴³Cho, C.-G.; Park, J.-S.; Jung, I.-H.; Lee, H. Tetrahedron Lett. 2001, 42, 1065.

E. Attack by Nitrogen at an Acyl Carbon¹⁷⁴⁴

16-72 Acylation of Amines by Acyl Halides

Amino-de-halogenation

 $RCOX + NH_3 \longrightarrow RCONH_2 + HX$

The treatment of acyl halides with ammonia or amines is a very general reaction for the preparation of amides.¹⁷⁴⁵ The reaction is highly exothermic and must be carefully controlled, usually by cooling or dilution. Ammonia gives unsubstituted amides, primary amines give *N*-substituted amides,¹⁷⁴⁶ and secondary amines give *N*,*N*-disubstituted amides. Arylamines can be similarly acylated. Hydroxamic acids have been prepared by this route.¹⁷⁴⁷ In some cases, aqueous alkali is added to combine with the liberated HCl. This is called the *Schotten– Baumann procedure*, as in **16-61**. Activated zinc can be used to increase the rate of amide formation when hindered amines and/or acid chlorides are used.¹⁷⁴⁸ An indium-mediated amidation reaction¹⁷⁴⁹ and a BiOCl-mediated reaction¹⁷⁵⁰ have been reported. A variation of this basic reaction uses DMF with acyl halides to give *N*,*N*-dimethylamides.¹⁷⁵¹ A solvent-free reaction was reported using DABCO and methanol.¹⁷⁵²

Hydrazine and hydroxylamine also react with acyl halides to give, respectively, hydrazides (RCONHNH₂)¹⁷⁵³ and hydroxamic acids (RCONHOH).¹⁷⁵⁴ When phosgene is the acyl halide, both aliphatic and aromatic primary amines give chloroformamides (ClCONHR) that lose HCl to give isocyanates (RNCO).¹⁷⁵⁵ This is one of the most common methods for

$$\begin{array}{c} O \\ II \\ CI \\ \end{array} + RNH_2 \longrightarrow \begin{array}{c} O \\ II \\ CI \\ \end{array} \\ CI \\ \end{array} \xrightarrow{-HCI} O = C = N - R$$

¹⁷⁴⁶See Bhattacharyya, S.; Gooding, O.W.; Labadie, J. Tetrahedron Lett. 2003, 44, 6099.

¹⁷⁴⁷Reddy, A.S.; Kumar, M.S.; Reddy, G.R. Tetrahedron Lett. 2000, 41, 6285.

¹⁷⁴⁸Meshram, H.M.; Reddy, G.S.; Reddy, M.M.; Yadav, J.S. *Tetrahedron Lett.* 1998, 39, 4103.

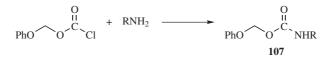
¹⁷⁴⁹Cho, D.H.; Jang, D.O. Tetrahedron Lett. 2004, 45, 2285.

¹⁷⁵⁰Ghosh, R.; Maiti, S.; Chakraborty, A. Tetrahedron Lett. 2004, 45, 6775.

¹⁷⁵¹Lee, W.S.; Park, K.H.; Yoon, Y-J. Synth. Commun. 2000, 30, 4241.

¹⁷⁵²Hajipour, A.R.; Mazloumi, Gh. Synth. Commun. 2002, 32, 23.

¹⁷⁵³For a review of hydrazides, see Paulsen, H.; Stoye, D., in Zabicky, J. *The Chemistry of Amides*, Wiley, NY, **1970**, pp. 515–600.


¹⁷⁵⁴For an improved method, see Ando, W.; Tsumaki, H. Synth. Commun. 1983, 13, 1053.

¹⁷⁵⁵For reviews of the preparation and reactions of isocyanates and isothiocyanates, see, respectively, the articles by Richter, R.; Ulrich, H. pp. 619–818, and Drobnica, L.; Kristián, P.; Augustín, J. pp. 1003–1221, in Patai S. *The Chemistry of Cyanates and Their Thio Derivatives*, pt. 2, Wiley, NY, **1977**.

¹⁷⁴⁴For a review, see Challis, M.S.; Butler, A.R., in Patai, S. *The Chemistry of the Amino Group*, Wiley, NY, *1968*, pp. 279–290.

¹⁷⁴⁵For a review, see Beckwith, A.L.J., in Zabicky, J. *The Chemistry of Amides*, Wiley, NY, **1970**, pp. 73– 185. See Jedrzejczak, M.; Motie, R.E.; Satchell, D.P.N. *J. Chem. Soc. Perkin Trans.* 2 **1993**, 599 for a discussion of the kinetics of this reaction.

the preparation of isocyanates.¹⁷⁵⁶ Thiophosgene,¹⁷⁵⁷ similarly treated, gives isothiocyanates. A safer substitute for phosgene in this reaction is trichloromethyl chloroformate CCl₃OCOCl.¹⁷⁵⁸ When chloroformates ROCOCl are treated with primary amines, carbamates ROCONHR' are obtained.¹⁷⁵⁹ An example of this reaction is the use of benzyl chloroformate to protect the amino group of amino acids and peptides.

The PhCH₂OCO group in **107** is called the carbobenzoxy group,¹⁷⁶⁰ and is often abbreviated Cbz or Z. Another important group similarly used is the tertbutoxycarbonyl group Me₃COCO, abbreviated as Boc. In this case, the chloride (Me₃COCOCl) is unstable, so the anhydride, (Me₃COCO)₂O, is used instead, in an example of 16-73. Amino groups in general are often protected by conversion to amides.¹⁷⁶¹ The treatment of acyl halides with lithium nitride gives N,Ndiacyl amides (triacylamines), 108.¹⁷⁶² The reactions proceed by the tetrahedral mechanism.1763

$$3 \text{ RCOCl} + \text{Li}_3 \text{N} \longrightarrow (\text{RCO})_3 \text{N}$$

108

A novel variation of this reaction uses nitrogen gas as the nitrogen source in the amide. The reaction of benzoyl chloride with TiCl₄/Li/Me₃SiCl/CsF and N₂, gave a 77% yield of benzamide.¹⁷⁶⁴

An interesting variation of this transformation reacts carbamoyl chlorides with organocuprates to give the corresponding amide.¹⁷⁶⁵

¹⁷⁵⁶For examples, see Ozaki, S. Chem. Rev. 1972, 72, 457, see pp. 457–460. For a review of the industrial preparation of isocyanates by this reaction, see Twitchett, H.J. Chem. Soc. Rev. **1974**, *3*, 209. ¹⁷⁵⁷For a review of thiophosgene, see Sharma, S. Sulfur Rep. **1986**, *5*, 1.

¹⁷⁵⁸Kurita, K.; Iwakura, Y. Org. Synth. VI, 715.

¹⁷⁵⁹For example see Ariza, X.; Urpí, F.; Vilarrasa, J. Tetrahedron Lett. 1999, 40, 7515. See also, Mormeneo, D.; Llebaria, A.; Delgado, A. Tetrahedron Lett. 2004, 45, 6831. For a variation involving azide and a palladium catalyst, see Okumoto, H.; Nishihara, S.; Yamamoto, S.; Hino, H.; Nozawa, A.; Suzuki, A. Synlett 2000, 991.

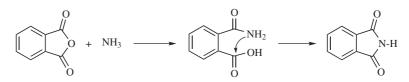
¹⁷⁶⁰For an alternative reagent to prepare *N*- Cbz derivatives, see Yasuhara, T.; Nagaoka, Y.; Tomioka, K. J. Chem. Soc. Perkin Trans. 1 1999, 2233.

¹⁷⁶¹Greene, T.W. Protective Groups in Organic Synthesis, Wiley, NY, 1980, pp. 222–248, 324–326; Wuts, P.G.M.; Greene, T.W. Protective Groups in Organic Synthesis, 2nd ed., Wiley, NY, 1991, pp. 327-330; Wuts, P.G.M.; Greene, T.W. Protective Groups in Organic Synthesis, 3rd ed., Wiley, NY, 1999, pp. 518-525; 737-739.

¹⁷⁶²Baldwin, F.P.; Blanchard, E.J.; Koening, P.E. J. Org. Chem. 1965, 30, 671.

¹⁷⁶³Kivinen, A., in Patai, S. The Chemistry of Acyl Halides, Wiley, NY, 1972; Bender, M.L.; Jones, J.M. J. Org. Chem. 1962, 27, 3771. See also, Song, B.D.; Jencks, W.P. J. Am. Chem. Soc. 1989, 111, 8479. ¹⁷⁶⁴Kawaguchi, M.; Hamaoka, S.; Mori, M. Tetrahedron Lett. 1993, 34, 6907.

¹⁷⁶⁵Lemoucheux, L.; Seitz, T.; Rouden, J.; Lasne, M.-C. Org. Lett. 2004, 6, 3703.


OS I, 99, 165; II, 76, 208, 278, 328, 453; III, 167, 375, 415, 488, 490, 613; IV, 339, 411, 521, 620, 780; V, 201, 336; VI, 382, 715; VII, 56, 287, 307; VIII, 16, 339; IX, 559; 81, 254. See also, OS VII, 302.

16-73 Acylation of Amines by Anhydrides

Amino-de-acyloxy-substitution

$$\begin{array}{c} O & O \\ II & II \\ R^{-C} & C^{-C} \\ C^{-C} \\ R^{\prime} \end{array} + NH_3 \longrightarrow \begin{array}{c} O \\ II \\ R^{-C} \\ NH_2 \end{array} + R^{\prime}COOH$$

This reaction, similar in scope and mechanism¹⁷⁶⁶ to **16-72**, can be carried out with ammonia or primary or secondary amines.¹⁷⁶⁷ Note that there is a report where a tertiary amine (an *N*-alkylpyrolidine) reacted with acetic anhydride at 120°C, in the presence of a BF₃-etherate catalyst, to give *N*-acetylpyrrolidine (an acylative dealkylation).¹⁷⁶⁸ Amino acids can be *N*-acylated using acetic anhydride and ultrasound.¹⁷⁶⁹ However, ammonia and primary amines can also give imides, in which two acyl groups are attached to the nitrogen. The conversion of cyclic anhydrides to cyclic imides is generally facile,¹⁷⁷⁰ although elevated temperatures are occasionally required to generate the imide.¹⁷⁷¹ Microwave irradiation of formamide and a cyclic anhydride generates the cyclic imides.¹⁷⁷² Cyclic imides have also been formed in ionic liquids.¹⁷⁷³ Cyclic imides were also formed by microwave irradiation of a polymer-bound phthalate after initial reaction with an amine.¹⁷⁷⁴

The second step for imide formation, which is much slower than the first, is the attack of the amide nitrogen on the carboxylic carbon. Unsubstituted and *N*-substituted amides have been used instead of ammonia. Since the other product

¹⁷⁶⁶For a discussion of the mechanism, see Kluger, R.; Hunt, J.C. *J. Am. Chem. Soc.* **1989**, *111*, 3325. ¹⁷⁶⁷For a review, see Beckwith, A.L.J., in Zabicky, J. *The Chemistry of Amides*, Wiley, NY, **1970**, pp. 86–

96. See also, Naik, S.; Bhattacharjya, G.; Talukdar, B.; Patel, B.K. *Eur. J. Org. Chem.* **2004**, 1254.

¹⁷⁶⁸Dave, P. R.; Kumar, K. A.; Duddu, R.; Axenrod, T.; Dai, R.; Das, K. K.; Guan, X.-P.; Sun, J.; Trivedi, N. J.; Gilardi, R. D. *J. Org. Chem.* **2000**, *65*, 1207.

¹⁷⁶⁹Anuradha, M.V.; Ravindranath, B. Tetrahedron 1997, 53, 1123.

¹⁷⁷⁰For reviews of imides, see Wheeler, O.H.; Rosado, O., in Zabicky, J. *The Chemistry of Amides*, Wiley, NY, **1970**, pp. 335–381; Hargreaves, M.K.; Pritchard, J.G.; Dave, H.R. *Chem. Rev.* **1970**, 70, 439 (cyclic imides).

¹⁷⁷¹Tsubouchi, H.; Tsuji, K.; Ishikawa, H. Synlett 1994, 63.

¹⁷⁷⁴Martin, B.; Sekljic, H.; Chassaing, C. Org. Lett. 2003, 5, 1851.

¹⁷⁷²Peng, Y.; Song, G.; Qian, X. Synth. Commun. **2001**, 31, 1927; Kacprzak, K. Synth. Commun. **2003**, 33, 1499.

¹⁷⁷³In bmim PF₆, 1-butyl-3-methylimidazolium hexafluorophosphate: Le, Z.-G.; Chen, Z.-C.; Hu, Y.; Zheng, Q.-G. *Synthesis* **2004**, 995.

of this reaction is RCOOH, this is a way of "hydrolyzing" such a mides in the absence of water. $^{1775}\,$

Even though formic anhydride is not a stable compound (see p. 723), amines can be formylated with the mixed anhydride of acetic and formic acids (HCOO-COMe)¹⁷⁷⁶ or with a mixture of formic acid and acetic anhydride. Acetamides are not formed with these reagents. Secondary amines can be acylated in the presence of a primary amine by conversion to their salts and addition of 18-crown-6.¹⁷⁷⁷ The crown ether complexes the primary ammonium salt, preventing its acylation, while the secondary ammonium salts, which do not fit easily into the cavity, are free to be acylated. Dimethyl carbonate can be used to prepare methyl carbamates in a related procedure.¹⁷⁷⁸ *N*-Acetylsulfonamides were prepared from acetic anhydride and a primary sulfonamide, catalyzed by Montmorillonite K10–FeO¹⁷⁷⁹ or sulfuric acid.¹⁷⁸⁰

The reaction of anhydrides with aryl azides, in the presence of Me₃SiCl and NaI, gives N-aryl imides.¹⁷⁸¹

OS I, 457; II, 11; III, 151, 456, 661, 813; IV, 5, 42, 106, 657; V, 27, 373, 650, 944, 973; VI, 1; VII, 4, 70; VIII, 132; **76**, 123.

16-74 Acylation of Amines by Carboxylic Acids

Amino-de-hydroxylation

 $RCOOH + NH_3 \longrightarrow RCOO^-NH_4^+ \xrightarrow{pyrolysis} RCONH_2$

When carboxylic acids are treated with ammonia or amines, salts are obtained. The salts of ammonia or primary or secondary amines can be pyrolyzed to give amides,¹⁷⁸² but the method is less convenient than **16-72**, **16-73**, and **16-75** and is seldom of preparative value.¹⁷⁸³ Heating in the presence of a base such as hexamethyldisilazide makes the amide-forming process more efficient.¹⁷⁸⁴ Boronic acids catalyze the direct conversion of carboxylic acid and amine to amides.¹⁷⁸⁵

¹⁷⁷⁵Eaton, J.T.; Rounds, W.D.; Urbanowicz, J.H.; Gribble, G.W. Tetrahedron Lett. 1988, 29, 6553.

¹⁷⁷⁶For the formylation of amines with the mixed anhydride of formic and trimethylacetic acid, see Vlietstra, E.J.; Zwikker, J.W.; Nolte, R.J.M.; Drenth, W. *Recl. Trav. Chim. Pays-Bas* **1982**, *101*, 460.

¹⁷⁷⁷Barrett, A.G.M.; Lana, J.C.A. J. Chem. Soc., Chem. Commun. 1978, 471.

¹⁷⁷⁸Vauthey, I.; Valot, F.; Gozzi, C.; Fache, F.; Lemaire, M. Tetrahedron Lett. 2000, 41, 6347.

¹⁷⁷⁹Singh, D.U.; Singh, P.R.; Samant, S.D. Tetahedron Lett. 2004, 45, 4805.

¹⁷⁸⁰Martin, M.T.; Roschangar, F.; Eaddy, J.F. Tetrahedron Lett. 2003, 44, 5461.

¹⁷⁸¹Kamal, A.; Laxman, E.; Laxman, N.; Rao, N.V. Tetrahedron Lett. 1998, 39, 8733.

¹⁷⁸²For example, see Mitchell, J.A.; Reid, E.E. *J. Am. Chem. Soc.* **1931**, *53*, 1879. Also see, Jursic, B.S.; Zdravkovski, Z. Synth. Commun. **1993**, 23, 2761.

¹⁷⁸³For a review of amide formation from carboxylic acids, see Beckwith, A.L.J., in Zabicky, J. *The Chemistry of Amides*, Wiley, NY, **1970**, pp. 105–109.

¹⁷⁸⁴Chou, W.-C.; Chou, M.-C.; Lu, Y.-Y.; Chen, S.-F. *Tetrahedron Lett.* **1999**, 40, 3419. For alternative approaches using specialized reagents, see Jang, D.O.; Park, D.J.; Kim, J. *Tetrahedron Lett.* **1999**, 40, 5323; Bailén, M.A.; Chinchilla, R.; Dodsworth, D.J.; Nájera, C. *Tetrahedron Lett.* **2000**, 41, 9809 and **2001**, 42, 5013; White, J.M.; Tunoori, A.R.; Turunen, B.J.; Georg, G.I J. Org. Chem. **2004**, 69, 2573.

¹⁷⁸⁵Ishihara, K.; Kondo, S.; Yamamoto, H. Synlett 2001, 1371.

Polymer-bound reagents have also been used.¹⁷⁸⁶ The synthetically important Weinreb amides [RCON(Me)OMe, see **16-82**] can be prepared from the carboxylic acid and MeO(Me)NH+HCl in the presence of tributylphosphine and 2-pyridine-*N*-oxide disulfide.¹⁷⁸⁷ Di(2-pyridyl)carbonate has been used in a related reaction that generates amides directly.¹⁷⁸⁸ The reaction of a carboxylic acid and imidazole under microwave irradiation gives the amide.¹⁷⁸⁹ Microwave irradiation of a secondary amine, formic acid, 2-chloro-4,6-dimethoxy[1,3,5]triazine, and a catalytic amount of DMAP (4-dimethylaminopyridine) leads to the formamide.¹⁷⁹⁰ Ammonium bicarbonate and formamide converts acids to amides with microwave irradiation.¹⁷⁹¹ Lactams are readily produced from γ - or δ -amino acids,¹⁷⁹² for example,

This lactamization process can be promoted by enzymes, such as pancreatic porcine lipase. 1793 Reduction of ω -azido carboxylic acids leads to macrocyclic lactams. 1794

Although treatment of carboxylic acids with amines does not directly give amides, the reaction can be made to proceed in good yield at room temperature or slightly above by the use of coupling agents,¹⁷⁹⁵ the most important of which is dicyclohexylcarbodiimide. This reagent is very convenient and is used¹⁷⁹⁶ a great deal in peptide synthesis.¹⁷⁹⁷ A polymer-supported carbodiimide has been used.¹⁷⁹⁸ The mechanism is probably the same as in **16-63** up to the formation

¹⁷⁸⁷Banwell, M.; Smith, J. *Synth. Commun.* **2001**, *31*, 2011. For another procedure, see Kim, M.; Lee, H.; Han, K.-J.; Kay,K.-Y. *Synth. Commun.* **2003**, *33*, 4013.

¹⁷⁸⁸Shiina, I.; Suenaga, Y.; Nakano, M.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 2000, 73, 2811.

¹⁷⁸⁹Khalafi-Nezhad, A.; Mokhtari, B.; Rad, M.N.S. *Tetrahedron Lett.* **2003**, 44, 7325; Perreux, L.; Loupy, A.; Volatron, F. *Tetrahedron* **2002**, *58*, 2155.

¹⁷⁹⁰De Lucca, L.; Giacomelli, G.; Porcheddu, A.; Salaris, M. Synlett 2004, 2570.

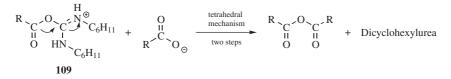
¹⁷⁹¹Peng, Y.; Song, G. Org. Prep. Proceed. Int. 2002, 34, 95.

¹⁷⁹²See, for example, Bladé-Font, A. *Tetrahedron Lett.* **1980**, 21, 2443. See Wei, Z.-Y.; Knaus, E.E. *Tetrahedron Lett.* **1993**, 34, 4439 for a variation of this reaction.

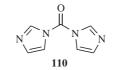
¹⁷⁹³Gutman, A.L.; Meyer, E.; Yue, X.; Abell, C. Tetrahedron Lett. 1992, 33, 3943.

¹⁷⁹⁴Bosch, I.; Romea, P.; Urpí, F.; Vilarrasa, J. *Tetrahedron Lett.* **1993**, *34*, 4671. See Bai, D.; Shi, Y. *Tetrahedron Lett.* **1992**, *33*, 943 for the preparation of lactam units in para-cyclophanes.

¹⁷⁹⁵For a review of peptide synthesis with dicyclohexylcarbodiimide and other coupling agents, see Klausner, Y.S.; Bodansky, M. *Synthesis* **1972**, 453.


¹⁷⁹⁶It was first used this way by Sheehan, J.C.; Hess, G.P. J. Am. Chem. Soc. 1955, 77, 1067.

¹⁷⁹⁷For a treatise on peptide synthesis, see Gross, E.; Meienhofer, J. *The Peptides*, 3 vols., Academic Press, NY, **1979–1981**. For a monograph, see Bodanszky, M.; Bodanszky, A. *The Practice of Peptide Synthesis*, Springer, NY, **1984**.


¹⁷⁹⁸Feuerstein, M.; Doucet, H.; Santelli, M. Tetrahedron Lett. 2001, 42, 6667.

¹⁷⁸⁶Buchstaller, H.P.; Ebert, H.M.; Anlauf, U. *Synth. Commun.* **2001**, *31*, 1001; Crosignani, S.; Gonzalez, J.; Swinnen, D. Org. Lett. **2004**, *6*, 4579; Chichilla, R.; Dodsworth, D.J.; Nájera, C.; Soriano, J.M. *Tetrahedron Lett.* **2003**, *44*, 463.

of **109**. This intermediate is then attacked by another molecule of $RCOO^-$ to give the anhydride (RCO)₂O, which is the actual species that reacts with the amine:

The anhydride has been isolated from the reaction mixture and then used to acylate an amine.¹⁷⁹⁹ Other promoting agents¹⁸⁰⁰ are $ArB(OH)_2$ reagents,¹⁸⁰¹ $Sn[N(TMS)_2]_2$,¹⁸⁰² N,N'-carbonyldiimidazole (**110**, p. 1418),¹⁸⁰³ which behaves as in reaction **16-63**, POCl₃,¹⁸⁰⁴TiCl₄,¹⁸⁰⁵ molecular sieves,¹⁸⁰⁶ Lawesson's reagent (p. 1278),¹⁸⁰⁷ and (MeO)₂POCl.¹⁸⁰⁸ Certain dicarboxylic acids form amides simply on treatment with primary aromatic amines. In these cases, the cyclic anhydride is an intermediate and is the species actually attacked by the amine.¹⁸⁰⁹ Carboxylic acids (exchange),¹⁸¹⁰ sulfonic acids, or phosphoric acids, for example,¹⁸¹¹

 $RCOOH + Ph_2PONH_2 \longrightarrow RCONH_2 + Ph_2POOH$

¹⁷⁹⁹Schüssler, H.; Zahn, H. *Chem. Ber.* **1962**, *95*, 1076; Rebek, J.; Feitler, D. *J. Am. Chem. Soc.* **1974**, *96*, 1606. There is evidence that some of the **98** is converted to products by another mechanism. See Rebek, J.; Feitler, D. *J. Am. Chem. Soc.* **1973**, *95*, 4052.

¹⁸⁰⁰For a list of reagents, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, *1999*, pp. 1941–1949.

¹⁸⁰¹Ishihara, K.; Ohara, S.; Yamamoto, H. J. Org. Chem. 1996, 61, 4196.

¹⁸⁰²Burnell-Curty, C.; Roskamp, E.J. Tetrahedron Lett. 1993, 34, 5193.

¹⁸⁰³See Vaidyanathan, R.; Kalthod, V.G.; Ngo, D.; Manley, J.M.; Lapekas, S.P. J. Org. Chem. 2004, 69, 2565. A modified but related reagent has also been used. See Grzyb, J.A.; Batey, R.A. Tetrahedron Lett. 2003, 44, 7485.

¹⁸⁰⁴Klosa, J. J. Prakt. Chem. 1963, [4] 19, 45.

¹⁸⁰⁵Wilson, J.D.; Weingarten, H. Can. J. Chem. 1970, 48, 983.

¹⁸⁰⁶Cossy, J.; Pale-Grosdemange, C. Tetrahedron Lett. 1989, 30, 2771.

¹⁸⁰⁷Thorsen, M.; Andersen, T.P.; Pedersen, U.; Yde, B.; Lawesson, S. Tetrahedron 1985, 41, 5633.

¹⁸⁰⁸Jászay, Z.M.; Petneházy, I.; Töke, L. Synth. Commun. 1998, 28, 2761.

¹⁸⁰⁹Higuchi, T.; Miki, T.; Shah, A.C.; Herd, A.K. J. Am. Chem. Soc. 1963, 85, 3655.

¹⁸¹⁰For example, see Schindbauer, H. Monatsh. Chem. 1968, 99, 1799.

¹⁸¹¹Zhmurova, I.N.; Voitsekhovskaya, I.Yu.; Kirsanov, A.V. J. Gen. Chem. USSR **1959**, 29, 2052. See also, Kopecky, J.; Smejkal, J. Chem. Ind. (London) **1966**, 1529; Liu, H.; Chan, W.H.; Lee, S.P. Synth. Commun. **1979**, 9, 31.

or by treatment with trisalkylaminoboranes, $B(NHR')_3$, with trisdialkylaminoboranes, $B(NR'_2)_3$, ¹⁸¹²

RCOOH + $B(NR_2')_3 \longrightarrow RCONR_2'$

or with bis(diorganoamino)magnesium reagents $(R_2N)_2Mg$.¹⁸¹³ The reaction of thiocarboxylic acids and azides, in the presence of triphenylphosphine, gives the corresponding amide.¹⁸¹⁴

An important technique, discovered by R.B. Merrifield in 1963^{1815} and since used for the synthesis of many peptides,¹⁸¹⁶ is called *solid phase synthesis* or *polymer-supported synthesis*.¹⁸¹⁷ The reactions used are the same as in ordinary synthesis, but one of the reactants is anchored onto a solid polymer. For example, if it is desired to couple two amino acids (to form a dipeptide), the polymer selected might be polystyrene with CH₂Cl side chains. One of the amino acids, protected by a *tert*butoxycarbonyl group (Boc), would then be coupled to the side chains. It is not necessary that all the side chains be converted, but a random selection will be. The Boc group is then removed by hydrolysis with trifluoroacetic acid in CH₂Cl₂ and the second amino acid is coupled to the first, using DCC or some other coupling agent. The second Boc group is removed, resulting in a dipeptide that is still anchored to the polymer. If this dipeptide is the desired product, it can be cleaved from the polymer by various methods,¹⁸¹⁸ one of which is treatment with HF. If a longer peptide is wanted, additional amino acids can be added by repeating the requisite steps.

¹⁸¹³Sanchez, R.; Vest, G.; Despres, L. Synth. Commun. 1989, 19, 2909.

¹⁸¹⁴Park, S.-D.; Oh, J.-H.; Lim, D. Tetrahedron Lett. 2002, 43, 6309.

¹⁸¹⁵Merrifield, R.B. J. Am. Chem. Soc. 1963, 85, 2149.

¹⁸¹⁶For a monograph on solid-state peptide synthesis, see Birr, C. Aspects of the Merrifield Peptide Synthesis, Springer, NY, 1978. For reviews, see Bayer, E. Angew. Chem. Int. Ed. 1991, 30, 113; Kaiser, E.T. Acc. Chem. Res. 1989, 22, 47; Jacquier, R. Bull. Soc. Chim. Fr. 1989, 220; Barany, G.; Kneib-Cordonier, N.; Mullen, D.G. Int. J. Pept. Protein Res. 1987, 30, 705; Andreev, S.M.; Samoilova, N.A.; Davidovich, Yu.A.; Rogozhin, S.V. Russ. Chem. Rev. 1987, 56, 366; Gross, E.; Meienhofer, J. The Peptides, Vol. 2, Academic Press, NY, 1980, the articles by Barany, G.; Merrifield, R.B. pp. 1–184, Fridkin, M. pp. 333–363; Erickson, B.W.; Merrifield, R.B. in Neurath, H.; Hill, R.L.; Boeder, C.-L. The Proteins, 3rd ed., Vol. 2, Academic Press, NY, 1976, pp. 255–527. For R. B. Merrifield's Nobel Prize lecture, see Merrifield, R.B. Angew. Chem. Int. Ed. 1985, 24, 799; Chem. Scr. 1985, 25, 121.

¹⁸¹⁷For monographs on solid-phase synthesis in general, see Laszlo, P. Preparative Organic Chemistry Using Supported Reagents, Academic Press, NY, **1987**; Mathur, N.K.; Narang, C.K.; Williams, R.E. Polymers as Aids in Organic Chemistry, Academic Press, NY **1980**; Hodge, P.; Sherrington, D.C. Polymer-Supported Reactions in Organic Synthesis, Wiley, NY, **1980**. For reviews, see Pillai, V.N.R.; Mutter, M. Top. Curr. Chem. **1982**, 106, 119; Akelah, A.; Sherrington, D.C. Chem. Rev. **1981**, 81, 557; Akelah, A. Synthesis **1981**, 413; Rebek, J. Tetrahedron **1979**, 35, 723; McKillop, A.; Young, D.W. Synthesis **1979**, 401, 481; Crowley, J.I.; Rapoport, H. Acc. Chem. Res. **1976**, 9, 135; Patchornik, A.; Kraus, M.A. Pure Appl. Chem. **1975**, 43, 503.

¹⁸¹⁸For some of these methods, see Whitney, D.B.; Tam, J.P.; Merrifield, R.B. *Tetrahedron* 1984, 40, 4237.

¹⁸¹²Pelter, A.; Levitt, T.E.; Nelson, P. *Tetrahedron* **1970**, *26*, 1539; Pelter, A.; Levitt, T.E. *Tetrahedron* **1970**, *26*, 1545, 1899.

The basic advantage of the polymer-support techniques is that the polymer (including all chains attached to it) is easily separated from all other reagents, because it is insoluble in the solvents used. Excess reagents, other reaction products (e.g., dicyclohexylurea), side products, and the solvents themselves are quickly washed away. Purification of the polymeric species is rapid and complete. The process can even be automated,¹⁸¹⁹ to the extent that six or more amino acids can be added to a peptide chain in one day. Commercial automated peptide synthesizers are now available.¹⁸²⁰

Although the solid-phase technique was first developed for the synthesis of peptide chains and has seen considerable use for this purpose, it has also been used to synthesize chains of polysaccharides and polynucleotides; in the latter case, solidphase synthesis has almost completely replaced synthesis in solution.¹⁸²¹ The technique has been applied less often to reactions in which only two molecules are brought together (nonrepetitive syntheses), but many examples have been reported.¹⁸²² Combinatorial chemistry had its beginning with the Merrifield synthesis, particularly when applied to peptide synthesis, and continues as an important part of modern organic chemistry.¹⁸²³

OS I, 3, 82, 111, 172, 327; II, 65, 562; III, 95, 328, 475, 590, 646, 656, 768; IV, 6, 62, 513; V, 670, 1070; VIII, 241; 81, 262. Also see OS III, 360; VI, 263; VIII, 68.

16-75 Acylation of Amines by Carboxylic Esters

Amino-de-alkoxylation

 $RCOOR' + NH_3 \longrightarrow RCONH_2 + R'OH$

The conversion of carboxylic esters to amides is a useful reaction, and unsubstituted, *N*-substituted, and *N*,*N*-disubstituted amides can be prepared this way from the appropriate amine.¹⁸²⁴ Both R and R' can be alkyl or aryl, but an especially

¹⁸²¹For a review, see Bannwarth, W. Chimia 1987, 41, 302.

¹⁸²²For reviews, see Fréchet, J.M.J. *Tetrahedron* **1981**, *37*, 663; Fréchet, J.M.J. in Hodge, P.; Sherrington, D.C. Polymer-Supported Reactions in Organic Synthesis, Wiley, NY, **1980**, pp. 293–342, Leznoff, C.C. *Acc. Chem. Res.* **1978**, *11*, 327; *Chem. Soc. Rev.* **1974**, *3*, 64.

 ¹⁸¹⁹This was first reported by Merrifield, R.B.; Stewart, J.M.; Jernberg, N. Anal. Chem. 1966, 38, 1905.
 ¹⁸²⁰For a discussion of automated organic synthesis, see Frisbee, A.R.; Nantz, M.H.; Kramer, G.W.; Fuchs, P.L. J. Am. Chem. Soc. 1984, 106, 7143. For an improved method, see Schnorrenberg, G.; Gerhardt, H. Tetrahedron 1989, 45, 7759.

¹⁸²³Czarnik, A.W.; DeWitt, S.H. A Practical Guide to Combinatorial Chemistry, American Chemical Society, Washington, DC, 1997; Chaiken, I.N.; Janda, K.D. Molecular Diversity and Combinatorial Chemistry: Libraries and Drug Discovery, American Chemical Society, Washington, DC 1996; Balkenhol, F.; von dem Bussche-Hünnefeld, C.; Lansky, A.; Zechel, C. Angew. Chem. Int. Ed. 1996, 35, 2289; Thompson, L.A.; Ellman, J.A. Chem. Rev. 1996, 96, 555; Pavia, M.R.; Sawyer, T.K.; Moos, W.H. Bioorg. Med. Chem. Lett. Symposia–in–print no. 4 1993, 3, 387; Crowley, J.I.; Rapoport, H. Acc. Chem. Res. 1976, 9, 135; Leznoff, C.C. Acc. Chem. Res. 1978, 11, 327.

¹⁸²⁴For a review, see Beckwith, A.L.J., in Zabicky, J. *The Chemistry of Amides*, Wiley, NY, **1970**, pp. 96– 105. For a list of reagents, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, **1999**, pp. 1973–1976.

good leaving group is p-nitrophenyl. Ethyl trifluoroacetate was found to react selectively with primary amines to form the corresponding trifluoroacetyl amide.¹⁸²⁵ Many simple esters (R = Me, Et, etc.) are not very reactive, and strongly basic catalysis has been used in such cases,¹⁸²⁶ but catalysis by cyanide ion¹⁸²⁷ MgBr₂,¹⁸²⁸ InI_{3} , ¹⁸²⁹ and acceleration by high pressure¹⁸³⁰ have been reported. Methyl esters have been converted to the corresponding amide under microwave irradiation,¹⁸³¹ and also ethyl esters.¹⁸³² Lithium amides have been used to convert esters to amides as well.¹⁸³³ β -Keto esters undergo the reaction especially easily.¹⁸³⁴ In another procedure, esters are treated with dimethylaluminum amides (Me₂AlNRR') to give good yields of amides under mild conditions.¹⁸³⁵ The reagents are easily prepared from Me₃Al and NH₃ or a primary or secondary amine or their salts. This is particularly effective when a reactive substituent, such as a primary halide, is present elsewhere in the molecule.¹⁸³⁶ Tin reagents, such as Sn[N(TMS)₂]₂, in the presence of an amine can also be use to convert an ester to an amide.¹⁸³⁷ This reagent can also be used to convert β -amino esters to β -lactams.¹⁸³⁸ Aniline was treated with *n*-butyllithium to form the lithium amide, which reacted with an ester to give the amide.¹⁸³⁹ The ester-to-amide conversion has also been accomplished electrochemically, by passing electric current in the cathodic compartment.¹⁸⁴⁰ An enzyme-mediated amidation is known using amino cyclase I.¹⁸⁴¹ The reaction of dimethyl carbonate and an amine is an effective way to prepare methyl carbamates.1842

¹⁸²⁵Xu, D.; Prasad, K.; Repic, O.; Blacklock, T.J. Tetrahedron Lett. 1995, 36, 7357.

- ¹⁸²⁶For references, see Matsumoto, K.; Hashimoto, S.; Uchida, T.; Okamoto, T.; Otani, S. *Chem. Ber.* **1989**, *122*, 1357.
- ¹⁸²⁷Högberg, T.; Ström, P.; Ebner, M.; Rämsby, S. J. Org. Chem. 1987, 52, 2033.
- ¹⁸²⁸Guo, Z.; Dowdy, E.D.; Li, W.-S.; Polniaszek, R.; Delaney, E. Tetrahedron Lett. 2001, 42, 1843.
- ¹⁸²⁹Ranu, B.C.; Dutta, P. Synth. Commun. 2003, 33, 297.
- ¹⁸³⁰Matsumoto, K.; Hashimoto, S.; Uchida, T.; Okamoto, T.; Otani, S. Chem. Ber. 1989, 122, 1357.

¹⁸³¹Varma, R.S.; Naicker, K.P. Tetrahedron Lett. 1999, 40, 6177.

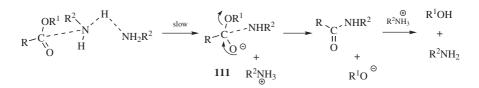
¹⁸³²Suri, O.P.; Satti, N.K.; Suri, K.A. Synth. Commun. 2000, 30, 3709; Zradni, F.-Z.; Hamelin, J.; Derdour, A. Synth. Commun. 2002, 32, 3525.

¹⁸³³See Wang, J.; Rosingana, M.; Discordia, R.P.; Soundararajan, N.; Polniaszek, R. *Synlett* 2001, 1485.

¹⁸³⁴Labelle, M.; Gravel, D. J. Chem. Soc., Chem. Commun. 1985, 105.

¹⁸³⁵Basha, A.; Lipton, M.; Weinreb, S.M. Org. Synth. VI, 492; Levin, J.I.; Turos, E.; Weinreb, S.M. Synth. Commun. 1982, 12, 989; Barrett, A.G.M.; Dhanak, D. Tetrahedron Lett. 1987, 28, 3327. For the extension of this method to the formation of hydrazides, see Benderly, A.; Stavchansky, S. Tetrahedron Lett. 1988, 29, 739.

¹⁸³⁶Shimizu, T.; Osako, K.; Nakata, T. Tetrahedron Lett. 1997, 38, 2685.


¹⁸³⁷Smith, L.A.; Wang, W.-B.; Burnell-Curty, C.; Roskamp, E.J. *Synlett* **1993**, 850; Wang, W.-B.; Roskamp, E.J. *J. Org. Chem.* **1992**, 57, 6101.

- ¹⁸³⁸Wang, W.-B.; Roskamp, E.J. J. Am. Chem. Soc. 1993, 115, 9417.
- ¹⁸³⁹Ooi, T.; Tayama, E.; Yamada, M.; Maruoka, K. Synlett. 1999, 729.
- ¹⁸⁴⁰Arai, K.; Shaw, C.; Nozawa, K.; Kawai, K.; Nakajima, S. Tetrahedron Lett. 1987, 28, 441.
- ¹⁸⁴¹Youshko, M.I.; van Rantwijk, F.; Sheldon, R.A. Tetrahedron Asymmetry 2001, 12, 3267.
- ¹⁸⁴²Distaso, M.; Quaranta, E. *Tetrahedron 2004*, *60*, 1531; Curini, M.; Epifano, F.; Maltese, F.; Rosati, O. *Tetrahedron Lett.* 2002, *43*, 4895.

As in **16-72**, hydrazides and hydroxamic acids can be prepared from carboxylic esters, with hydrazine and hydroxylamine, respectively. Both hydrazine and hydroxylamine react more rapidly than ammonia or primary amines (the alpha effect, p. 495). Imidates RC(=NH)OR' give amidines RC(=NH)NH₂. Lactones, when treated with ammonia or primary amines, give lactams. Lactams are also produced from γ - and δ -amino esters in an internal example of this reaction. Isopropenyl formate is a useful compound for the formylation of primary and secondary amines.¹⁸⁴³

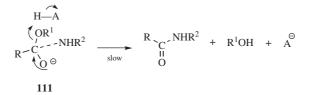
$$R_2NH + HCOOCMe = CH_2 \longrightarrow R_2NCHO + CH_2$$
$$= CMeOH \longrightarrow MeCOMe$$

Although more studies have been devoted to the mechanism of the acylation of amines with carboxylic esters than with other reagents, the mechanistic details are not yet entirely clear.¹⁸⁴⁴ In its broad outlines, the mechanism appears to be essentially $B_{AC}2$.¹⁸⁴⁵ Under the normal basic conditions, the reaction is general base-catalyzed,¹⁸⁴⁶ indicating that a proton is being transferred in the rate-determining step and that two molecules of amine are involved.¹⁸⁴⁷

Alternatively, another base, such as H_2O or OH^- , can substitute for the second molecule of amine. With some substrates and under some conditions, especially at low pH, the breakdown of **111** can become rate determining.¹⁸⁴⁸ The reaction also takes place under acidic conditions and is general acid catalyzed, so that

¹⁸⁴³van Melick, J.E.W.; Wolters, E.T.M. Synth. Commun. 1972, 2, 83.

¹⁸⁴⁴For a discussion of the mechanism, see Satchell, D.P.N.; Satchell, R.S., in Patai, S. *The Chemistry of Carboxylic Acids and Esters*, Wiley, NY, **1969**, pp. 410–431. For a computational study see Ilieva, S.; Galabov, B.; Musaev, D.G.; Morokuma, K.; Schaefer III, H.F. *J. Org. Chem.* **2003**, 68, 1496.


¹⁸⁴⁵Bunnett, J.F.; Davis, G.T. *J. Am. Chem. Soc.* **1960**, 82, 665; Bruice, T.C.; Donzel, A.; Huffman, R.W.; Butler, A.R. *J. Am. Chem. Soc.* **1967**, 89, 2106.

¹⁸⁴⁶Bunnett, J.F.; Davis, G.T. J. Am. Chem. Soc. **1960**, 82, 665, Jencks, W.P.; Carriuolo, J. J. Am. Chem. Soc. **1960**, 82, 675; Bruice, T.C.; Mayahi, M.F. J. Am. Chem. Soc. **1960**, 82, 3067.

¹⁸⁴⁷Blackburn, G.M.; Jencks, W.P. J. Am. Chem. Soc. **1968**, 90, 2638; Bruice, T.C.; Felton, S.M. J. Am. Chem. Soc. **1969**, 91, 2799; Felton, S.M.; Bruice, T.C. J. Am. Chem. Soc. **1969**, 91, 6721; Nagy, O.B.; Reuliaux,V.; Bertrand, N.; Van Der Mensbrugghe, A.; Leseul, J.; Nagy, J.B. Bull. Soc. Chim. Belg. **1985**, 94, 1055.

¹⁸⁴⁸Hansen, B. Acta Chem. Scand. **1963**, 17, 1307; Gresser, M.J.; Jencks, W.P. J. Am. Chem. Soc. **1977**, 99, 6963, 6970. See also, Yang, C.C.; Jencks, W.P. J. Am. Chem. Soc. **1988**, 110, 2972.

breakdown of 111 is rate determining and proceeds as follows:¹⁸⁴⁹

HA may be $R^2NH_3^+$ or another acid. Intermediate **111** may or may not be further protonated on the nitrogen. Even under basic conditions, a proton donor may be necessary to assist leaving-group removal. Evidence for this is that the rate is lower with NR_2^- in liquid ammonia than with NHR_2 in water, apparently owing to the lack of acids to protonate the leaving oxygen.¹⁸⁵⁰

In the special case of β -lactones, where small-angle strain is an important factor, alkyl–oxygen cleavage is observed (B_{AL}2 mechanism, as in the similar case of hydrolysis of β -lactones, **16-59**), and the product is not an amide but a β -amino acid (β -alanine).

A similar result has been found for certain sterically hindered esters.¹⁸⁵¹ This reaction is similar to **10-31**, with OCOR as the leaving group. Other lactones have been opened to ω -hydroxy amides with Dibal:BnNH₂.¹⁸⁵²

OS I, 153, 179; II, 67, 85; III, 10, 96, 108, 404, 440, 516, 536, 751, 765; IV, 80, 357, 441, 486, 532, 566, 819; V, 168, 301, 645; VI, 203, 492, 620, 936; VII, 4, 30, 41, 411; VIII, 26, 204, 528. Also see, OS I, 5; V, 582; VII, 75.

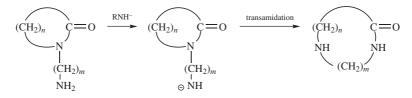
16-76 Acylation of Amines by Amides

Alkylamino-de-amination

 $RCONH_2 + R' \overset{\odot}{N}H_3 \longrightarrow RCONHR' + NH_4^{\ddagger}$

This is an exchange reaction and is usually carried out with the salt of the amine.¹⁸⁵³ The leaving group is usually NH₂ rather than NHR or NR₂ and primary

¹⁸⁵²Huang, P.-Q.; Zheng, X.; Deng, X.-M. *Tetrahedron Lett.* 2001, 42, 9039. See also, Taylor, S.K.; Ide, N.D.; Silver, M.E.; Stephan, M. Synth. Commun. 2001, 31, 2391.


¹⁸⁴⁹Blackburn, G.M.; Jencks, W.P. J. Am. Chem. Soc. 1968, 90, 2638.

¹⁸⁵⁰Bunnett, J.F.; Davis, G.T. J. Am. Chem. Soc. 1960, 82, 665.

¹⁸⁵¹Zaugg, H.E.; Helgren, P.F.; Schaefer, A.D. J. Org. Chem. **1963**, 28, 2617. See also, Weintraub, L.; Terrell, R. J. Org. Chem. **1965**, 30, 2470; Harada, R.; Kinoshita, Y. Bull. Chem. Soc. Jpn. **1967**, 40, 2706.

¹⁸⁵³For a list of procedures, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, **1999**, pp. 1978–1982.

amines (in the form of their salts) are the most common reagents. Boron trifluoride can be added to complex with the leaving ammonia. Neutral amines also react in some cases to give the new amide.¹⁸⁵⁴ The reaction is often used to convert urea to substituted ureas: $NH_2CONH_2 + RNH_3^+ \rightarrow NH_2CONHR + NH_4^+$.¹⁸⁵⁵ An *N*-aryl group of a urea can be converted to a *N*,*N*-dialkyl group by heating the urea with the amine in an autoclave.¹⁸⁵⁶ *N*-R-Substituted amides are converted to *N*-R'-substituted amides by treatment with N_2O_4 to give an *N*-nitroso compound, followed by treatment of this with a primary amine R'NH₂.¹⁸⁵⁷ Lactams can be converted to ring-expanded lactams if

a side chain containing an amino group is present on the nitrogen. A strong base is used to convert the NH_2 to NH^- , which then acts as a nucleophile, expanding the ring by means of a transamidation.¹⁸⁵⁸ The discoverers call it the *Zip reaction*, by analogy with the action of zippers.¹⁸⁵⁹

Lactams can be opened to $\omega\text{-amino}$ amides by reaction with amines at 10 kbar. 1860

OS I, 302 (but see V, 589), 450, 453; II, 461; III, 151, 404; IV, 52, 361. See also, OS VIII, 573.

16-77 Acylation of Amines by Other Acid Derivatives

Acylamino-de-halogenation or dealkoxlaton

RCOC1 + $H_2NCOR' \longrightarrow RCONHCOR'$

Acid derivatives that can be converted to amides include thiol acids RCOSH, thiol esters RCOSR,¹⁸⁶¹ acyloxyboranes $RCOB(OR')_2$,¹⁸⁶² silicic esters (RCOO)₄Si,

¹⁸⁵⁴Murakami, Y.; Kondo, K.; Miki, K.; Akiyama, Y.; Watanabe, T.; Yokoyama, Y. *Tetrahedron Lett.* **1997**, *38*, 3751.

¹⁸⁵⁵For a discussion of the mechanism, see Chimishkyan, A.L.; Snagovskii, Yu.S.; Gulyaev, N.D.; Leonova, T.V.; Kusakin, M.S. *J. Org. Chem. USSR* **1985**, *21*, 1955.

¹⁸⁵⁶Yang, Y.; Lu, S. Org. Prep. Proceed. Int. 1999, 31, 559.

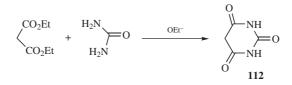
¹⁸⁵⁷Garcia, J.; Vilarrasa, J. Tetrahedron Lett. 1982, 23, 1127.

¹⁸⁵⁸Askitoğlu, E.; Guggisberg, A.; Hesse, M. *Helv. Chim. Acta* **1985**, *68*, 750, and references cited therein. For a carbon analog, see Süsse, M.; Hájiček, J.; Hesse, M. *Helv. Chim. Acta* **1985**, *68*, 1986.

¹⁸⁵⁹For a review of this reaction, and of other ring expansions to form macrocyclic rings, see Stach, H.; Hesse, M. *Tetrahedron* **1988**, *44*, 1573.

¹⁸⁶⁰Kotsuki, H.; Iwasaki, M.; Nishizawa, H. Tetrahedron Lett. 1992, 33, 4945.

¹⁸⁶¹For a discussion of the mechanism, see Douglas, K.T. Acc. Chem. Res. 1986, 19, 186.


¹⁸⁶²The best results are obtained when the acyloxyboranes are made from a carboxylic acid and catecholborane (p. 1123): Collum, D.B.; Chen, S.; Ganem, B. J. Org. Chem. **1978**, 43, 4393.

1,1,1-trihalo ketones RCOCX₃,¹⁸⁶³ α -keto nitriles, acyl azides, and non-enolizable ketones (see the Haller–Bauer reaction **12-34**). A polymer-bound acyl derivative was converted to an amide using tributylvinyl tin, trifluoroacetic acid, AsPh₃ and a palladium catalyst.¹⁸⁶⁴ The source of amine in this reaction was the polymer itself, which was an amide resin. *N*-Acylsulfonamides react with primary amines to the amide (AcNHR).¹⁸⁶⁵ Aniline derivatives are converted to acetamides with *N*-acyl oxymethylpyradazin-3-ones in dichloromethane.¹⁸⁶⁶ Carbonylation reactions can be used to prepare amides and related compounds. The reaction of a primary amine, an alkyl halide with CO₂, in the presence of Cs₂CO₃/Bu₄NI, gave the corresponding carbamate.¹⁸⁶⁷

OS III, 394; IV, 6, 569; V, 160, 166; VI, 1004.

Imides can be prepared by the attack of amides or their salts on acyl halides, anhydrides, and carboxylic acids or esters.¹⁸⁶⁸ The best synthetic method for the preparation of acyclic imides is the reaction between an amide and an anhydride at 100°C catalyzed by H_2SO_4 .¹⁸⁶⁹ When acyl chlorides are treated with amides in a 2:1 molar ratio at low temperatures in the presence of pyridine, the products are *N*,*N*-diacylamides, (RCO)₃N.¹⁸⁷⁰

This reaction is often used to prepare urea derivatives, an important example being the preparation of barbituric acid, 112.¹⁸⁷¹

When the substrate is oxalyl chloride (ClCOCOCl) and the reagent an unsubstituted amide, an acyl isocyanate (RCONCO) is formed. The "normal" product (RCONH-COCOCl) does not form, or if it does, it rapidly loses CO and HCl.¹⁸⁷²

OS II, 60, 79, 422; III, 763; IV, 245, 247, 496, 566, 638, 662, 744; V, 204, 944.

¹⁸⁶³See, for example, Salim, J.R.; Nome, F.; Rezende, M.C. *Synth. Commun.* **1989**, *19*, 1181; Druzian, J.; Zucco, C.; Rezende, M.C.; Nome, F. J. Org. Chem. **1989**, *54*, 4767.

¹⁸⁶⁴Deshpande, M.S. Tetrahedron Lett. 1994, 35, 5613.

¹⁸⁶⁵Coniglio, S.; Aramini, A.; Cesta, M.C.; Colagioia, S.; Curti, R.; D'Alessandro, F.; D'anniballe, G.; D'Elia, V.; Nano, G.; Orlando, V.; Allegretti, M. *Tetrahedron Lett.* **2004**, *45*, 5375.

¹⁸⁶⁶Kang, Y.-J.; Chung, H.-A.; Kim, J.-J.; Yoon, Y.-J. Synthesis 2002, 733.

¹⁸⁶⁷Salvatore, R.N.; Shin, S.I.; Nagle, A.S.; Jung, K.W. J. Org. Chem. 2001, 66, 1035.

¹⁸⁶⁸For a review, see Challis, B.C.; Challis, J.A., in Zabicky, J. *The Chemistry of Amides*, Wiley, NY, **1970**, pp. 759–773.

¹⁸⁶⁹Baburao, K.; Costello, A.M.; Petterson, R.C.; Sander, G.E. *J. Chem. Soc. C* **1968**, 2779; Davidson, D.; Skovronek, H. *J. Am. Chem. Soc.* **1958**, 80, 376.

¹⁸⁷⁰For example, see LaLonde, R.T.; Davis, C.B. J. Org. Chem. 1970, 35, 771.

¹⁸⁷¹For a review of barbituric acid, see Bojarski, J.T.; Mokrosz, J.L.; Barto, H.J.; Paluchowska, M.H. *Adv. Heterocycl. Chem.* **1985**, *38*, 229.

¹⁸⁷²Speziale, A.J.; Smith, L.R.; Fedder, J.E. J. Org. Chem. 1965, 30, 4306.

16-78 Acylation of Azides

The reaction of an aldehyde with sodium azide and $Et_4 I(OAc)_2$ or polymerbound PhI(OAc)₂ leads to an acyl azide.¹⁸⁷³

F. Attack by Halogen at an Acyl Carbon

16-79 Formation of Acyl Halides from Carboxylic Acids

Halo-de-hydroxylation

RCOOH + Halogenating _____ RCOX agent

Halogenating agent = $SOCl_2$, $SOBr_2$, PCl_3 , $POCl_3$, PBr_3 , and so on.

The same inorganic acid halides that convert alcohols to alkyl halides (**10-48**) also convert carboxylic acids to acyl halides.¹⁸⁷⁴ The reaction is the best and the most common method for the preparation of acyl chlorides. Bromides and iodides¹⁸⁷⁵ are also made in this manner, but much less often. Acyl bromides can be prepared with BBr₃ on alumina.¹⁸⁷⁶ Thionyl chloride¹⁸⁷⁷ is a good reagent, since the by-products are gases and the acyl halide is easily isolated, but PX₃ and PX₅ (X = Cl or Br) are also commonly used.¹⁸⁷⁸ Hydrogen halides do not give the reaction. A particularly mild procedure, similar to one mentioned in **10-48**, involves reaction of the acid with Ph₃P in CCl₄, whereupon acyl chlorides are produced without obtaining any acidic compound as a by-product.¹⁸⁷⁹ Acyl fluorides can be prepared by treatment of carboxylic acids with cyanuric fluoride.¹⁸⁸⁰ Acid salts

¹⁸⁷³Marinescu, L.G.; Pedersen, C.M.; Bols, M. *Tetrahedron* **2005**, *61*, 123. Aldehydes are converted to acyl azides by reaction with IN₃, see Marinescu, L.; Thinggaard, J.; Thomsen, I. B.; Bols, M. J. Org. *Chem.* **2003**, *68*, 9453. See Hünig, S.; Schaller, R. *Angew. Chem. Int. Ed.* **1982**, *21*, 36.

¹⁸⁷⁴For a review, see Ansell, M.F., in Patai, S. *The Chemistry of Acyl Halides*, Wiley, NY, **1972**, pp. 35–68. ¹⁸⁷⁵Carboxylic acids and some of their derivatives react with diiodosilane SiH₂I₂ to give good yields of acyl iodides: Keinan, E.; Sahai, M. *J. Org. Chem.* **1990**, *55*, 3922.

¹⁸⁷⁶Bains, S.; Green, J.; Tan, L.C.; Pagni, R.M.; Kabalka, G.W. Tetrahedron Lett. 1992, 33, 7475.

¹⁸⁷⁷For a review of thionyl chloride (SOCl₂), see Pizey, J.S. *Synthetic Reagents*, Vol. 1, Wiley, NY, **1974**, pp. 321–357. See Mohanazadeh, F.; Momeni, A.R. *Org. Prep. Proceed. Int.* **1996**, 28, 492 for the use of SOCl₂ on silica gel.

¹⁸⁷⁸For a list of reagents, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, *1999*, pp. 1929–1930.

¹⁸⁷⁹Lee, J.B. J. Am. Chem. Soc. **1966**, 88, 3440. For other methods of preparing acyl chlorides, see Venkataraman, K.; Wagle, D.R. Tetrahedron Lett. **1979**, 3037; Devos, A.; Remion, J.; Frisque-Hesbain, A.; Colens, A.; Ghosez, L. J. Chem. Soc., Chem. Commun. **1979**, 1180.

¹⁸⁸⁰Olah, G.A.; Nojima, M.; Kerekes, I. *Synthesis* **1973**, 487. For other methods of preparing acyl fluorides, see Mukaiyama, T.; Tanaka, T. *Chem. Lett.* **1976**, 303; Ishikawa, N.; Sasaki, S. *Chem. Lett.* **1976**, 1407.

are also sometimes used as substrates. Acyl halides are also used as reagents in an exchange reaction:

which probably involves an anhydride intermediate. This is an equilibrium reaction that must be driven to the desired side.

A mild, and often superior reagent is oxalyl chloride (**113**) and oxalyl bromide, since oxalic acid decomposes to CO and CO₂, and the equilibrium is thus driven to the side of the other acyl halide.¹⁸⁸¹ These reagents are commonly the reagent of choice, particularly when sensitive functionality is present elsewhere in the molecule.

OS I, 12, 147, 394; II, 74, 156, 169, 569; III, 169, 490, 547, 555, 613, 623, 712, 714; IV, 34, 88, 154, 263, 339, 348, 554, 608, 616, 620, 715, 739, 900; V, 171, 258, 887; VI, 95, 190, 549, 715; VII, 467; VIII, 441, 486, 498.

16-80 Formation of Acyl Halides from Acid Derivatives

Halo-de-acyloxy-substitution

Halo-de-halogenation

$$(\text{RCO})_2\text{O} + \text{HF} \longrightarrow \text{RCOF}$$

RCOCl + HF \longrightarrow RCOF

These reactions are most important for the preparation of acyl fluorides.¹⁸⁸² Acyl chlorides and anhydrides can be converted to acyl fluorides by treatment with polyhydrogen fluoride–pyridine solution¹⁸⁸³ or with liquid HF at -10° C.¹⁸⁸⁴ Formyl fluoride, which is a stable compound, was prepared by the latter procedure from the mixed anhydride of formic and acetic acids.¹⁸⁸⁵ Acyl fluorides can also be obtained by reaction of acyl chlorides with KF in acetic acid¹⁸⁸⁶ or with diethyl-aminosulfur trifluoride (DAST).¹⁸⁸⁷ Carboxylic esters and anhydrides can be

¹⁸⁸¹Adams, R.; Ulich, L.H., *J. Am. Chem. Soc.* **1920**, 42, 599; Wood, T.R.; Jackson, F.L.; Baldwin, A.R.; Longenecker, H.E. *J. Am. Chem. Soc.* **1944**, 66, 287. For a typical example see Zhang, A.; Nie, J. *J. Agric. Food Chem.* **2005**, 53, 2451.

¹⁸⁸²For lists of reagents converting acid derivatives to acyl halides, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, **1999**, pp. 1950–1951, 1955, 1968.

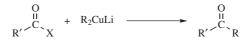
¹⁸⁸³Olah, G.A.; Welch, J.; Vankar, Y.D.; Nojima, M.; Kerekes, I.; Olah, J.A. *J. Org. Chem.* **1979**, 44, 3872. See also, Yin, J.; Zarkowsky, D.S.; Thomas, D.W.; Zhao, M.W.; Huffman, M.A. *Org. Lett.* **2004**, *6*, 1465.

¹⁸⁸⁴Olah, G.A.; Kuhn, S.J. J. Org. Chem. **1961**, 26, 237.

¹⁸⁸⁵Olah, G.A.; Kuhn, S.J. J. Am. Chem. Soc. **1960**, 82, 2380.

¹⁸⁸⁶Emsley, J.; Gold, V.; Hibbert, F.; Szeto, W.T.A. J. Chem. Soc. Perkin Trans. 2 1988, 923.

¹⁸⁸⁷Markovski, L.N.; Pashinnik, V.E. Synthesis 1975, 801.


converted to acyl halides other than fluorides by the inorganic acid halides mentioned in **16-79**, as well as with Ph_3PX_2 (X = Cl or Br),¹⁸⁸⁸ but this is seldom done. Halide exchange can be carried out in a similar manner. When halide exchange is done, it is always acyl bromides and iodides that are made from chlorides, since chlorides are by far the most readily available.¹⁸⁸⁹

OS II, 528; III, 422; V, 66, 1103; IX, 13. See also, OS IV, 307.

G. Attack by Carbon at an Acyl Carbon¹⁸⁹⁰

16-81 The Conversion of Acyl Halides to Ketones With Organometallic Compounds 1891

Alkyl-de-halogenation

Acyl halides react cleanly and under mild conditions with lithium dialkylcopper reagents (see **10-58**)¹⁸⁹² to give high yields of ketones.¹⁸⁹³ The R' group may be primary, secondary, or tertiary alkyl or aryl and may contain iodo, keto, ester, nitro, or cyano groups. The R groups that have been used successfully are methyl, primary alkyl, and vinylic. Secondary and tertiary alkyl groups can be introduced by the use of PhS(R)CuLi (p. 602) instead of R₂CuLi,¹⁸⁹⁴ or by the use of either the mixed homocuprate (R'SO₂CH₂CuR)⁻ Li⁺,¹⁸⁹⁵ or a magnesium dialkylcopper reagent "RMeCuMgX."¹⁸⁹⁶ Secondary alkyl groups can also be introduced with the copper–zinc reagents RCu(CN)ZnI.¹⁸⁹⁷ The R group may be alkynyl if a

¹⁸⁹³Vig, O.P.; Sharma, S.D.; Kapur, J.C. J. Indian Chem. Soc. **1969**, 46, 167; Jukes, A.E.; Dua, S.S.; Gilman, H. J. Organomet. Chem. **1970**, 21, 241; Posner, G.H.; Whitten, C.E.; McFarland, P.E. J. Am. Chem. Soc. **1972**, 94, 5106; Luong-Thi, N.; Rivière, H. J. Organomet. Chem. **1974**, 77, C52.

¹⁸⁸⁸Burton, D.J.; Koppes, W.M. J. Chem. Soc., Chem. Commun. **1973**, 425; J. Org. Chem. **1975**, 40, 3026; Anderson Jr., A.G.; Kono, D.H. Tetrahedron Lett. **1973**, 5121.

 ¹⁸⁸⁹For methods of converting acyl chlorides to bromides or iodides, see Schmidt, A.H.; Russ, M.; Grosse, D. *Synthesis* 1981, 216; Hoffmann, H.M.R.; Haase, K. *Synthesis* 1981, 715.

¹⁸⁹⁰For a discussion of many of the reactions in this section, see House, H.O. *Modern Synthetic Reactions*, 2nd ed., W.A. Benjamin, NY, *1972*, pp. 691–694, 734–765.

¹⁸⁹¹For a review, see Cais, M.; Mandelbaum, A., in Patai, S. *The Chemistry of the Carbonyl Group*, Vol. 1, Wiley, NY, **1966**, Vol. 1, pp. 303–330.

¹⁸⁹²See Posner, G.H. An Introduction to Synthesis Using Organocopper Reagents, Wiley, NY, 1980, pp.
81–85. Ryu, I.; Ikebe, M.; Sonoda, N.; Yamamoto, S.-y.; Yamamura, G.-h.; Komatsu, M. Tetrahedron Lett.
2002, 43, 1257.

 ¹⁸⁹⁴Posner, G.H.; Whitten, C.E.; Sterling, H.J. J. Am. Chem. Soc. 1973, 95, 7788; Posner, G.H.; Whitten,
 C.E. Tetrahedron Lett. 1973, 1815; Bennett, G.B.; Nadelson, J.; Alden, L.; Jani, A. Org. Prep. Proced. Int. 1976, 8, 13.

¹⁸⁹⁵Johnson, C.R.; Dhanoa, D.S. J. Org. Chem. 1987, 52, 1885.

¹⁸⁹⁶Bergbreiter, D.E.; Killough, J.M. J. Org. Chem. 1976, 41, 2750.

¹⁸⁹⁷Knochel, P.; Yeh, M.C.P.; Berk, S.C.; Talbert, J. J. Org. Chem. 1988, 53, 2390.

cuprous acetylide $R^2C \equiv CCu$ is the reagent.¹⁸⁹⁸ Organocopper reagents generated *in situ* from highly reactive copper, and containing such functional groups as cyano, chloro, and ester, react with acyl halides to give ketones.¹⁸⁹⁹

Many other organometallic reagents¹⁹⁰⁰ give good yields of ketones when treated with acyl halides because, as with R₂CuLi, R₂Cd, these compounds do not generally react with the ketone product. A particularly useful class of organometallic reagent are organocadmium reagents R₂Cd, prepared from Grignard reagents (12-22). In this case, R may be any or primary alkyl. In general, secondary and tertiary alkylcadmium reagents are not stable enough to be useful in this reaction.¹⁹⁰¹ An ester group may be present in either R'COX or R₂Cd. Direct treatment of the acid chloride with an alkyl halide and cadmium metal leads to the ketone in some cases.¹⁹⁰² Organozinc compounds behave similarly to dialkylcadmium reagents, but are used less often.¹⁹⁰³ Organotin reagents R₄Sn react with acyl halides to give high yields of ketones, if a Pd complex is present.¹⁹⁰⁴ Organolead reagents R_4Pb behave similarly.¹⁹⁰⁵ Allylic halides and indium metal react with acyl chlorides to give the ketone.¹⁹⁰⁶ Various other groups, for example, nitrile, ester, and aldehyde can be present in the acyl halide without interference. Other reagents include organomanganese compounds¹⁹⁰⁷ (R can be primary, secondary, or tertiary alkyl, vinylic, alkynyl, or aryl), organozinc, ¹⁹⁰⁸ and organothallium compounds (R can be primary alkyl or aryl).¹⁹⁰⁹ The reaction of an α -halo-ketone and an acyl chloride with SmI₂ leads to a β -diketone.¹⁹¹⁰ Initial reaction of an acyl chloride with palladium(0), followed by reaction with potassium acetate and then a trialkylborane gave a ketone.¹⁹¹¹ Arylboronic acids and acid chloride give the ketone in

¹⁸⁹⁸Castro, C.E.; Havlin, R.; Honwad, V.K.; Malte, A.; Mojé, S. J. Am. Chem. Soc. **1969**, 91, 6464. For methods of preparing acetylenic ketones, see Verkruijsse, H.D.; Heus-Kloos, Y.A.; Brandsma, L. J. Organomet. Chem. **1988**, 338, 289.

¹⁸⁹⁹Wehmeyer, R.M.; Rieke, R.D. *Tetrahedron Lett.* 1988, 29, 4513; Stack, D.E.; Dawson, B.T.; Rieke,
 R.D. J. Am. Chem. Soc. 1992, 114, 5110.

¹⁹⁰⁰For a list of reagents, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, *1999*, pp. 1389–1400.

¹⁹⁰¹Cason, J.; Fessenden, R. J. Org. Chem. 1960, 25, 477.

¹⁹⁰²Baruah, B.; Boruah. A.; Prajapati, D.; Sandhu, J.S. Tetrahedron Lett. 1996, 37, 9087.

¹⁹⁰³For examples, see Grey, R.A. J. Org. Chem. 1984, 49, 2288; Tamaru, Y.; Ochiai, H.; Nakamura, T.; Yoshida, Z. Org. Synth. 67, 98.

¹⁹⁰⁴Labadie, J.W.; Stille, J.K. J. Am. Chem. Soc. **1983**, 105, 669, 6129; Labadie, J.W.; Tueting, D.; Stille, J.K. J. Org. Chem. **1983**, 48, 4634. For a Me₃SiSnR₃ reagent, see Geng, F.; Maleczka, Jr., R.E. Tetrahedron Lett. **1999**, 40, 3113. For an allylic SnR₃ reagent, see Inoue, K.; Shimizu, Y.; Shibata, I.; Baba, A. Synlett **2001**, 1659.

¹⁹⁰⁵Yamada, J.; Yamamoto, Y. J. Chem. Soc., Chem. Commun. 1987, 1302.

¹⁹⁰⁶Yadav, J.S.; Srinivas, D.; Reddy, G.S.; Bindu, K.H. *Tetrahedron Lett.* **1997**, *38*, 8745. Also see, Bryan, V.J.; Chan, T.-H. *Tetrahedron Lett.* **1997**, *38*, 6493 for a similar reaction with an acyl imidazole.

¹⁹⁰⁷Kim, S.-H.; Rieke, R.D. J. Org. Chem. **1998**, 63, 6766; Cahiez, G.; Martin, A.; Delacroix, T. Tetrahedron Lett. **1999**, 40, 6407.

¹⁹⁰⁸Hanson, M.V.; Brown, J.D.; Rieke, R.D.; Niu, Q.J. *Tetrahedron Lett.* 1994, 35, 7205; Filon, H.; Gosmini, C.; Périchon, J. *Tetrahedron* 2003, 59, 8199.

¹⁹⁰⁹Markó, I.E.; Southern, J.M. J. Org. Chem. 1990, 55, 3368.

¹⁹¹⁰Ying, T.; Bao, W.; Zhang, Y.; Xu, W. Tetrahedron Lett. 1996, 37, 3885.

¹⁹¹¹Kabalka, G.W.; Malladi, R.R.; Tejedor, D.; Kelley, S. Tetrahedron Lett. 2000, 41, 999.

the presence of a palladium catalyst.¹⁹¹² Similar reaction of acid chlorides, NaBPh₄, KF, and a palladium catalyst gave the aryl ketone.¹⁹¹³ Antimony alkynes such as Ph₂Sb–C \equiv C–Ph react with acid chloride in the presence of a palladium catalyst to give the conjugated alkynyl ketone.¹⁹¹⁴ Such conjugated ketones can also be prepared from an acyl halide, a terminal alkyne and a CuI catalyst¹⁹¹⁵ a palladium catalyst,¹⁹¹⁶ or with indium metal.¹⁹¹⁷ Terminal alkynes react with chloroformates and a palladium catalyst to give the corresponding propargyl ester.¹⁹¹⁸ Similar reaction of an alkyne with an acid chloride and a palladium–copper¹⁹¹⁹ or CuI catalyst,¹⁹²⁰ both with microwave irradiation, gave the alkynyl ketones.

When the organometallic compound is a Grignard reagent,¹⁹²¹ ketones are generally not obtained because the initially formed ketone reacts with a second molecule of RMgX to give the salt of a tertiary alcohol (**16-82**). Ketones *have* been prepared in this manner by the use of low temperatures, inverse addition (i.e., addition of the Grignard reagent to the acyl halide rather than the other way), excess acyl halide, and so on., but the yields are usually low, though high yields have been reported in THF at -78° C.¹⁹²² Pretreatment with a trialkylphosphine and then the Grignard reagent can lead to the ketone.¹⁹²³ Using CuBr¹⁹²⁴ or a nickel catalyst¹⁹²⁵ with the Grignard reagent can lead to the ketone. Some ketones are unreactive toward Grignard reagents for steric or other reasons; these can be prepared in this way.¹⁹²⁶ Other methods involve running the reaction in the presence of Me₃SiCl¹⁹²⁷ (which reacts with the initial adduct in the tetrahedral mechanism, p. 1254), and the use of a combined Grignard-lithium diethylamide reagent.¹⁹²⁸ Also, certain metallic halides, notably ferric and cuprous halides, are catalysts

¹⁹¹²Urawa, Y.; Ogura, K. Tetrahedron Lett. 2003, 44, 271.

- ¹⁹¹³Wang, J.-X.; Wei, B.; Hu, Y.; Liu, Z.; Yang, Y. Synth. Commun. 2001, 31, 3885.
- ¹⁹¹⁴Kakusawa, N.; Yamaguchi, K.; Kurita, J.; Tsuchiya, T. Tetrahedron Lett. 2000, 41, 4143.
- ¹⁹¹⁵Chowdhury, C.; Kundu, N.G. *Tetrahedron* **1999**, 55, 7011; Wang, J.-X.; Wei, B.; Hu, Y.; Liua, Z.; Kang, L. J. Chem. Res. (S) **2001**, 146.
- ¹⁹¹⁶Karpov, A.S.; Müller, T.J.J. Org. Lett. 2003, 5, 3451.
- ¹⁹¹⁷Augé, J.; Lubin-Germain, N.; Seghrouchni, L. Tetrahedron Lett. 2003, 44, 819.
- ¹⁹¹⁸Böttcher, A.; Becker, H.; Brunner, M.; Preiss, T.; Henkelmann, J.,; De Bakker, C.; Gleiter, R. J. Chem. Soc., Perkin Trans.1 1999, 3555.
- ¹⁹¹⁹Wang, J.-x.; Wei, B.; Huang, D.; Hu, Y.; Bai, L. Synth. Commun. 2001, 31, 3337.
- ¹⁹²⁰Wang, J.-X.; Wei, B.; Hu, Y.; Liu, Z.; Fu, Y. Synth. Commun. 2001, 31, 3527.

¹⁹²¹For a review, see Kharasch, M.S.; Reinmuth, O. Grignard Reactions of Nonmetallic Substances, Prentice-Hall, Englewood, NJ, **1954**, pp. 712–724.

¹⁹²²Sato, M.; Inoue, M.; Oguro, K.; Sato, M. *Tetrahedron Lett.* **1979**, 4303; Eberle, M.K.; Kahle, G.G. *Tetrahedron Lett.* **1980**, *21*, 2303; Föhlisch, B.; Flogaus, R. *Synthesis* **1984**, 734.

¹⁹²³Maeda, H.; Okamoto, J.; Ohmori, H. Tetrahedron Lett. 1996, 37, 5381.

- ¹⁹²⁴Babudri, F.; Fiandanese, V.; Marchese, G.; Punzi, A. *Tetrahedron* **1996**, *52*, 13513; *Tetrahedron Lett.* **1995**, *36*, 7305.
- ¹⁹²⁵Malanga, C.; Aronica, L.A.; Lardicci, L. *Tetrahedron Lett.* **1995**, *36*, 9185. For the preparation of an amide from a *N*,*N*-dialkylcarbamyl chloride (R₂NCOCl) and a Grignard reagent, with a nickel catalyst, see Lemoucheux, L.; Rouden, J.; Lasne, M.-C. *Tetrahedron Lett.* **2000**, *41*, 9997.
- ¹⁹²⁶For example, see Lion, C.; Dubois, J.E.; Bonzougou, Y. J. Chem. Res. (S) **1978**, 46; Dubois, J.E.; Lion, C.; Arouisse, A. Bull. Soc. Chim. Belg. **1984**, 93, 1083.
- ¹⁹²⁷Cooke, Jr., M.P. J. Org. Chem. 1986, 51, 951.
- ¹⁹²⁸Fehr, C.; Galindo, J.; Perret, R. Helv. Chim. Acta 1987, 70, 1745.

that improve the yields of ketone at the expense of tertiary alcohol.¹⁹²⁹ For these catalysis, both free radical and ionic mechanisms have been proposed.¹⁹³⁰

Grignard reagents react with ethyl chloroformate to give carboxylic esters $EtOCOCl + RMgX \rightarrow EtOCOR$. Acyl halides can also be converted to ketones by treatment with Na₂Fe(CO)₄ followed by R'X (**10-76**).

OS II, 198; III, 601; IV, 708; VI, 248, 991; VII, 226, 334; VIII, 268, 274, 371, 441, 486.

16-82 The Conversion of Anhydrides, Carboxylic Esters, or Amides to Ketones With Organometallic Compounds¹⁹³¹

Dialkyl,hydroxy-de-alkoxy,oxo-tersubstitution; Alkyl-de-acyloxy- or de-amido substitution

$$\begin{array}{c} O \\ II \\ R \\ \hline C \\ OR^1 \end{array} + 2 R^2 - MgX \longrightarrow \begin{array}{c} R^2 \\ R \\ \hline C \\ O-MgX \end{array} \xrightarrow{hydrol.} \begin{array}{c} R^2 \\ R \\ \hline C \\ OHgX \end{array} \xrightarrow{hydrol.} \begin{array}{c} R^2 \\ R \\ \hline C \\ OHgX \end{array} \xrightarrow{hydrol.} \begin{array}{c} R^2 \\ R \\ \hline C \\ OHgX \end{array} \xrightarrow{hydrol.} \begin{array}{c} R^2 \\ R \\ \hline C \\ OHgX \end{array} \xrightarrow{hydrol.} \begin{array}{c} R^2 \\ R \\ \hline C \\ OHgX \end{array} \xrightarrow{hydrol.} \begin{array}{c} R^2 \\ R \\ \hline C \\ OHgX \end{array} \xrightarrow{hydrol.} \begin{array}{c} R^2 \\ R \\ \hline C \\ OHgX \end{array} \xrightarrow{hydrol.} \begin{array}{c} R^2 \\ R \\ \hline C \\ OHgX \end{array} \xrightarrow{hydrol.} \begin{array}{c} R^2 \\ R \\ \hline C \\ OHgX \end{array} \xrightarrow{hydrol.} \begin{array}{c} R^2 \\ R \\ \hline C \\ OHgX \end{array} \xrightarrow{hydrol.} \begin{array}{c} R^2 \\ R \\ \hline C \\ OHgX \end{array} \xrightarrow{hydrol.} \begin{array}{c} R^2 \\ R \\ \hline C \\ OHgX \end{array} \xrightarrow{hydrol.} \begin{array}{c} R^2 \\ R \\ \hline C \\ OHgX \end{array} \xrightarrow{hydrol.} \begin{array}{c} R^2 \\ R \\ \hline C \\ OHgX \end{array} \xrightarrow{hydrol.} \begin{array}{c} R^2 \\ R \\ \hline C \\ OHgX \end{array} \xrightarrow{hydrol.} \begin{array}{c} R^2 \\ R \\ \hline C \\ OHgX \end{array} \xrightarrow{hydrol.} \begin{array}{c} R^2 \\ R \\ \hline C \\ OHgX \end{array} \xrightarrow{hydrol.} \begin{array}{c} R^2 \\ R \\ \hline C \\ OHgX \end{array} \xrightarrow{hydrol.} \begin{array}{c} R^2 \\ R \\ \hline C \\ OHgX \end{array} \xrightarrow{hydrol.} \begin{array}{c} R^2 \\ R \\ \hline C \\ OHgX \end{array} \xrightarrow{hydrol.} \begin{array}{c} R^2 \\ R \\ \hline C \\ OHgX \end{array}$$

When carboxylic esters are treated with Grignard reagents, addition to the carbonyl (16-24) generates a ketone. Under the reaction conditions, the initially formed ketones usually undergoes acyl substitution of R^2 for OR' (16-81), so that tertiary alcohols are formed in which two R groups are the same. Isolation of the ketone as the major product is possible in some cases, particularly when the reaction is done at low temperature¹⁹³² and when there is steric hindrance to the carbonyl in the first-formed ketone. Esters, RCO₂Me, react with Zn(BH₄)₂/ EtMgBr to give an alcohol, RCH(OH)Et.¹⁹³³ Formates give secondary alcohols and carbonates give tertiary alcohols in which all three R groups are the same: $(EtO)_2C=O+RMgX \rightarrow R_3COMgX$. Acyl halides and anhydrides behave similarly, though these substrates are employed less often.¹⁹³⁴ Many side reactions are possible, especially when the acid derivative or the Grignard reagent is branched: enolizations, reductions (not for esters, but for halides), condensations, and cleavages, but the most important is simple substitution (16-81), which in some cases can be made to predominate. When 1,4-dimagnesium compounds are used, carboxylic esters are converted to cyclopentanols.¹⁹³⁵ 1,5-Dimagnesium

¹⁹³²Deskus, J.; Fan, D.; Smith, M.B. Synth. Commun. 1998, 28, 1649.

¹⁹²⁹For examples, see Cason, J.; Kraus, K.W. J. Org. Chem. **1961**, 26, 1768, 1772; MacPhee, J.A.; Dubois, J.E. Tetrahedron Lett. **1972**, 467; Cardellicchio, C.; Fiandanese, V.; Marchese, G.; Ronzini, L. Tetrahedron Lett. **1987**, 28, 2053; Fujisawa, T.; Sato, T. Org. Synth. 66, 116; Babudri, F.; D'Ettole, A.; Fiandanese, V.; Marchese, G.; Naso, F. J. Organomet. Chem. **1991**, 405, 53.

 ¹⁹³⁰For example, see Dubois, J.E.; Boussu, M. *Tetrahedron Lett.* **1970**, 2523; *Tetrahedron* **1973**, 29, 3943;
 MacPhee, J.A.; Boussu, M.; Dubois, J.E. *J. Chem. Soc. Perkin Trans.* 2 **1974**, 1525.

¹⁹³¹For a review, see Kharasch, M.S.; Reinmuth, O. *Grignard Reactions of Nonmetallic Substances*, Prentice-Hall, Englewood, NJ, **1954**, pp. 561–562, 846–908.

¹⁹³³Hallouis, S.; Saluzzo, C.; Amouroux, R. Synth. Commun. 2000, 30, 313.

¹⁹³⁴For a review of these reactions, see Kharasch, M.S.; Reinmuth, O. *Grignard Reactions of Nonmetallic Substances*, Prentice-Hall, Englewood Cliffs, NJ, **1954**, pp. 549–766, 846–869.

¹⁹³⁵Canonne, P.; Bernatchez, M. J. Org. Chem. 1986, 51, 2147; 1987, 52, 4025.

compounds give cyclohexanols, but in lower yields.¹⁹³⁶

$$R \longrightarrow OR'$$
 + $BrMg \longrightarrow MgBr \longrightarrow MgBr \longrightarrow OH$

As is the case with acyl halides (**16-81**), anhydrides and carboxylic esters give tertiary alcohols (**16-82**) when treated with Grignard reagents. Low temperatures, ¹⁹³⁷ the solvent HMPA, ¹⁹³⁸ and inverse addition have been used to increase the yields of ketone. ¹⁹³⁹ Amides give better yields of ketone at room temperature, but still not very high. ¹⁹⁴⁰ Anhydrides can react with arylmagnesium halides at low temperature, and in the presence of (–)-sparteine, to give a keto acid with good enantioselectivity. ¹⁹⁴¹ Organocadmium reagents are less successful with these substrates than with acyl halides (**16-81**). Esters of formic acid, dialkylformamides, and lithium or sodium formate¹⁹⁴² give good yields of aldehydes, when treated with Grignard reagents.

$$R^{C}$$
 W + R'M R^{C} W = OCOR², OR², NR²₂

Alkyllithium compounds have been used to give ketones from carboxylic esters. The reaction must be carried out in a high-boiling solvent, such as toluene, since reaction at lower temperatures gives tertiary alcohols.¹⁹⁴³ Alkyllithium reagents also give good yields of carbonyl compounds with N,N-disubstituted amides.¹⁹⁴⁴ Dialkylformamides give aldehydes and other disubstituted amides give ketones and other acid derivatives have been used.¹⁹⁴⁵

¹⁹³⁸Huet, F.; Pellet, M.; Conia, J.M. Tetrahedron Lett. 1976, 3579.

¹⁹⁴⁵Mueller-Westerhoff, U.T.; Zhou, M. Synlett 1994, 975.

¹⁹³⁶Kresge, A.J.; Weeks, D.P. J. Am. Chem. Soc. **1984**, 106, 7140. See also, Fife, T.H. J. Am. Chem. Soc. **1967**, 89, 3228; Craze, G.; Kirby, A.J.; Osborne, R. J. Chem. Soc. Perkin Trans. 2 **1978**, 357; Amyes, T.L.; Jencks, W.P. J. Am. Chem. Soc. **1989**, 111, 7888, 7900.

¹⁹³⁷See, for example, Newman, M.S.; Smith, A.S. J. Org. Chem. 1948, 13, 592; Edwards, Jr., W.R.; Kammann Jr., K.P. J. Org. Chem. 1964, 29, 913; Araki, M.; Sakat, S.; Takei, H.; Mukaiyama, T. Chem. Lett. 1974, 687.

¹⁹³⁹For a list of preparations of ketones by the reaction of organometallic compounds with carboxylic esters, salts, anhydyrides, or amides, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, **1999**, pp. 1386–1389, 1400–1419.

¹⁹⁴⁰For an improved procedure with amides, see Olah, G.S.; Prakash, G.K.S.; Arvanaghi, M. *Synthesis* **1984**, 228. See Martín, R.; Romea, P.; Tey, C.; Urpí, F.; Vilarrasa, J. *Synlett* **1997**, 1414 for reaction with an amide derived from morpholine and Grignard reagents, which gives the ketone in good yield. See Kashima, C.; Kita, I.; Takahashi, K.; Hosomi, A. *J. Heterocyclic Chem.* **1995**, *32*, 25 for a related reaction. ¹⁹⁴¹Shintani, R.; Fu, G.C. *Angew. Chem. Int. Ed.* **2002**, *41*, 1057.

¹⁹⁴²Bogavac, M.; Arsenijević, L.; Pavlov, S.; Arsenijević, V. Tetrahedron Lett. 1984, 25, 1843.

¹⁹⁴³Petrov, A.D.; Kaplan, E.P.; Tsir, Ya. J. Gen. Chem. USSR 1962, 32, 691.

¹⁹⁴⁴Evans, E.A. *J. Chem. Soc.* **1956**, 4691. For the synthesis of a silyl ketone from a silyllithium reagent, see Clark, C.T.; Milgram, B.C.; Scheidt, K.A. *Org. Lett.* **2004**, *6*, 3977. For a review, see Wakefield, B.J. *Organolithium Methods*, Academic Press, NY, **1988**, pp. 82–88.

CHAPTER 16

Ketones can also be obtained by treatment of the lithium salt of a carboxylic acid with an alkyllithium reagent (**16-28**). For an indirect way to convert carboxylic esters to ketones, see **16-82**. A similar reaction with hindered aryl carboxylic acids has been reported.¹⁹⁴⁶ Treatment of a β -amido acid with two equivalents of *n*-butyllithium, followed by reaction with an acid chloride leads to a β -keto amide.¹⁹⁴⁷ Carboxylic acids can be treated with 2-chloro-4,6-dimethoxy[1,3,5]-triazine and the RMgX/CuI to give ketones.¹⁹⁴⁸

Disubstituted formamides can give addition of 2 equivalents of Grignard reagent. The products of this reaction (called *Bouveault reaction*) are an aldehyde and a tertiary amine.¹⁹⁴⁹ The use of an amide other than a formamide

$$\begin{array}{c} O \\ II \\ R \\ \end{array} + 3 R' - MgX \longrightarrow \begin{array}{c} R' \\ R \\ \end{array} C \\ \begin{array}{c} R' \\ NR_2 \end{array} + R'CHO$$

can give a ketone instead of an aldehyde, but yields are generally low. The addition of 2 equivalents of phenyllithium to a carbamate gave good yields of the ketone, however.¹⁹⁵⁰ When butyllithium reacted with an α -carbamoyl secondary amide $[RCH(NHCO_2R')C(=O)NR_2^2]$ at $-78^{\circ}C$, the amide reacted preferentially to give the α -carbamoyl ketone.¹⁹⁵¹ The reaction of N-(3-bromopropyl) lactams with tert-butyllithium gave cyclization to the bicyclic amino alcohol, and subsequent reduction with LiAlH₄ (19-64) gave the bicyclic amine.¹⁹⁵² Ketones can also be prepared by treatment of thioamides with organolithium compounds (alkyl or aryl).¹⁹⁵³ Cerium reagents, such as MeCeCl₂, also add two R groups to an amide.¹⁹⁵⁴ More commonly, an organolithium reagent is treated with CeCl₃ to generate the organocerium reagent in situ.¹⁹⁵⁵ It has proven possible to add two different R groups by sequential addition of two Grignard reagents.¹⁹⁵⁶ Diketones have also been produced by using the bis(imidazole) derivative of oxalic acid.¹⁹⁵⁷ Alternatively, if R' contains an α hydrogen, the product may be an enamine, and enamines have been synthesized in goods yields by this method.¹⁹⁵⁸ When an amide having a gem-dibromocyclopropyl unit elsewhere in the molecule was treated

¹⁹⁴⁶Zhang, P.; Terefenko, E.A.; Slavin, J. Tetrahedron Lett. 2001, 42, 2097.

¹⁹⁴⁷Chen, Y.; Sieburth, S.Mc.N. Synthesis 2002, 2191.

¹⁹⁴⁸DeLuca, L.; Giacomelli, G.; Porcheddu, A. Org. Lett. 2001, 3, 1519.

¹⁹⁴⁹For a review, see Spialtr, L.; Pappalardo, J.A. *The Acyclic Aliphatic Tertiary Amines*, Macmillan, NY, **1965**, pp. 59–63.

¹⁹⁵⁰Prakash, G.K.S.; York, C.; Liao, Q.; Kotian, K.; Olah, G.A. Heterocycles 1995, 40, 79.

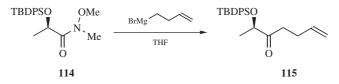
¹⁹⁵¹Sengupta, S.; Mondal, S.; Das, D. Tetrahedron Lett. 1999, 40, 4107.

¹⁹⁵²Jones, K.; Storey, J.M.D. J. Chem. Soc., Perkin Trans. 1 2000, 769.

¹⁹⁵³Tominaga, Y.; Kohra, S.; Hosomi, A. *Tetrahedron Lett.* **1987**, 28, 1529.

¹⁹⁵⁴Calderwood, D.J.; Davies, R.V.; Rafferty, P.; Twigger, H.L.; Whelan, H.M. *Tetrahedron Lett.* **1997**, *38*, 1241.

¹⁹⁵⁵Ahn, Y.; Cohen, T. Tetrahedron Lett. 1994, 35, 203.


¹⁹⁵⁶Comins, D.L.; Dernell, W. Tetrahedron Lett. 1981, 22, 1085.

¹⁹⁵⁷Mitchell, R.H.; Iyer, V.S. *Tetrahedron Lett.* **1993**, *34*, 3683. Also see, Sibi, M.P.; Sharma, R.; Paulson, K.L. *Tetrahedron Lett.* **1992**, *33*, 1941.

¹⁹⁵⁸Hansson, C.; Wickberg, B. J. Org. Chem. 1973, 38, 3074.

with methyllithium, Li–Br exchange was accompanied by intramolecular acyl addition to the amide carbonyl, giving a bicyclic amino alcohol.¹⁹⁵⁹

N-Methoxy-*N*-methyl amides, such as, **114**, are referred to as a **Weinreb amide**.¹⁹⁶⁰ When a Weinreb amide reacts with a Grignard reagent or an organolithium reagent,¹⁹⁶¹ the product is the ketone. The reaction of **56** with 3-butenylmagnesium bromide to give ketone **115** is a typical example.¹⁹⁶² Aryloxy carbamates with a Weinreb amide unit, ArO₂C–NMe(OMe), react with RMgBr and then R'Li to give an unsymmetrical ketone, RC(=O)R'.¹⁹⁶³ Intramolecular displacement of a Weinreb amide by an organolithium reagent generated *in situ* from an iodide precursor leads to cyclic ketones.¹⁹⁶⁴ Reaction with vinylmagnesium bromide led to a β -*N*-methoxy-*N*-methylamino ketone, presumably by initial formation of the conjugated ketone followed by Michael addition (**15-24**) of the liberated amine.¹⁹⁶⁵ An interesting extension of this acyl substitution reaction coupled vinylmagnesium bromide with a Weinreb amide to give a conjugated ketone, which reacted with a secondary amine in a second step (see **15-31**) to give a β -amino ketone.¹⁹⁶⁶

By the use of the compound *N*-methoxy-N,N',N'-trimethylurea, it is possible to add two R groups as RLi, the same or different, to a CO group.¹⁹⁶⁷

N,*N*-Disubstituted amides can be converted to alkynyl ketones by treatment with alkynylboranes: $\text{RCONR}_2^2 + (\text{R}'\text{C}\equiv\text{C})_3\text{B} \rightarrow \text{RCOC}\equiv\text{CR}'$.¹⁹⁶⁸ Lactams react with triallylborane to give cyclic 2,2-diallyl amines after treatment with methanol, and then aqueous hydroxide.¹⁹⁶⁹ Triallylborane reacts with the carbonyl group of lactams, and after treatment with methanol and then aqueous NaOH gives the

¹⁹⁶⁰Nahm, S.; Weinreb, S.M. Tetrahedron Lett. 1981, 22, 3815.

¹⁹⁶¹See Tallier, C.; Bellosta, V.; Meyer, C.; Cossy, J. Org. Lett. 2004, 6, 2145.

¹⁹⁶²Xie, W.; Zou, B.; Pei, D.; Ma, D. Org. Lett. 2005, 7, 2775. For other exmaples see Andrés, J.M.; Pedrosa, R. Pérez-Encabo, A. Tetrahedron 2000, 56, 1217.

¹⁹⁶³Lee, N.R.; Lee, J.I. Synth. Commun. 1999, 29, 1249.

¹⁹⁶⁴Ruiz, J.; Sotomayor, N.; Lete, E. Org. Lett. 2003, 5, 1115.

¹⁹⁶⁵Gomtsyan, A. *Org. Lett.* **2000**, *2*, 11. For a reaction with methyl esters with an excess of vinylmagnesium halide and a copper catalyst to give a 3-butenyl ketone by a similar acyl substitution–Michael addition route, see Hansford, K.A.; Dettwiler, J.E.; Lubell, W.D. *Org. Lett.* **2003**, *5*, 4887.

¹⁹⁶⁶Gomtsyan, A.; Koenig, R.J.; Lee, C.-H. J. Org. Chem. 2001, 66, 3613.

¹⁹⁶⁷Hlasta, D.J.; Court, J.J. *Tetrahedron Lett.* **1989**, *30*, 1773. See also, Nahm, S.; Weinreb, S.M. *Tetrahedron Lett.* **1981**, *22*, 3815.

¹⁹⁶⁸Yamaguchi, M.; Waseda, T.; Hirao, I. Chem. Lett. 1983, 35.

¹⁹⁶⁹Bubnov, Y.N.; Pastukhov, F.V.; Yampolsky, I.V.; Ignatenko, A.V. Eur. J. Org. Chem. 2000, 1503; Li, Z.; Zhang, Y. Tetrahedron Lett. 2001, 42, 8507.

¹⁹⁵⁹Baird, M.S.; Huber, F.A.M.; Tverezovsky, V.V.; Bolesov, I.G. Tetrahedron 2001, 57, 1593.

gem-diallyl amine: 2-pyrrolidinone \rightarrow 2,2-diallylpyrrolidine.¹⁹⁷⁰ N,N-Disubstituted carbamates (X = OR²) and carbamoyl chlorides (X = Cl) react with 2 equivalents of an alkyl- or aryllithium or Grignard reagent to give symmetrical ketones, in which both R groups are derived from the organometallic compound: R₂NCOX + 2 RMgX \rightarrow R₂CO.¹⁹⁷¹ N,N-Disubstituted amides give ketones in high yields when treated with alkyllanthanum triflates RLa(OTf)₂.¹⁹⁷²

Other organometallic reagents give acyl substitution. Sodium naphthalenide reacts with esters to give naphthyl ketones.¹⁹⁷³ Trimethylaluminum, which exhaustively methylates ketones (16-24), also exhaustively methylates carboxylic acids to give *tert*-butyl compounds¹⁹⁷⁴ (see also, **10-63**). Trimethylaluminum reacts with esters to form ketones, in the presence of N,N'-dimethylethyelnediamine.¹⁹⁷⁵ Thioesters (RCOSR') react with arylboronic acids, in the presence of a palladium catalyst, to give the corresponding ketone,¹⁹⁷⁶ and esters react similarly with arylboronic acids (a palladium catalyst)¹⁹⁷⁷ or arylboronates (a ruthenium catalyst).¹⁹⁷⁸ Trialkylboranes have been similarly used to convert thioesters to ketones.¹⁹⁷⁹ Thioesters give good yields of ketones when treated with lithium dialkylcopper reagents R_2^2 CuLi (R" = primary or secondary alkyl or aryl).¹⁹⁸⁰ Organozinc reagents also convert thioesters to ketones.¹⁹⁸¹ Arylboronic acids also react with dialkyl anhydrides, with a rhodium catalyst¹⁹⁸² or a palladium catalyst,¹⁹⁸³ to give the ketone. Aryl iodides react with acetic anhydride, with a palladium catalyst, to give the aryl methyl ketone.¹⁹⁸⁴ Diaryl- or dialkylzinc reagents react with anhydrides and a palladium catalyst¹⁹⁸⁵ or a nickel catalyst¹⁹⁸⁶ to give the ketone. Note that in the presence of a SmI2 catalyst and 2 equivalents of allyl bromide, lactones were converted to the diallyl diol.¹⁹⁸⁷ N-(3-Iodopropyl)succinimide derivatives react with SmI₂ and an iron catalyst to give bicyclic pyrrolizidinone derivatives

¹⁹⁷⁰Bubnov, Yu.N.; Klimkina, E.V.; Zhun', I.V.; Pastukhov, F.V.; Yampolsky, I.V. Pure Appl. Chem. 2000, 72, 1641.

¹⁹⁷¹Michael, U.; Hörnfeldt, A. Tetrahedron Lett. 1970, 5219; Scilly, N.F. Synthesis 1973, 160.

¹⁹⁷²Collins, S.; Hong, Y. Tetrahedron Lett. 1987, 28, 4391.

¹⁹⁷³Periasamy, M.; Reddy, M.R.; Bharathi, P. Synth. Commun. 1999, 29, 677.

¹⁹⁷⁴Meisters, A.; Mole, T. Aust. J. Chem. 1974, 27, 1665.

¹⁹⁷⁵Chung, E.-A.; Cho, C.-W.; Ahn, K.H. J. Org. Chem. 1998, 63, 7590.

¹⁹⁷⁶Liebeskind, L.S.; Srogl, J. J. Am. Chem. Soc. 2000, 122, 11260; Wittenberg, R.; Srogi, J.; Egi, M.; Liebeskind, L.S. Org. Lett. 2003, 5, 3033.

¹⁹⁷⁷Tatanidani, H.; Kakiuchi, F.; Chatani, N. Org. Lett. 2004, 6, 3597.

¹⁹⁷⁸Tatanidani, H.; Yokota, K.; Kakiuchi, F.; Chatani, N. J. Org. Chem. 2004, 69, 5615.

¹⁹⁷⁹Yu, Y.; Liebeskind, L.S. J. Org. Chem. 2004, 69, 3554.

¹⁹⁸⁰Anderson, R.J.; Henrick, C.A.; Rosenblum, L.D. J. Am. Chem. Soc. **1974**, 96, 3654. See also, Kim, S.; Lee, J.I. J. Org. Chem. **1983**, 48, 2608.

¹⁹⁸¹Shimizu, T.; Seki, M. Tetrahedron Lett. 2002, 43, 1039.

¹⁹⁸²Frost, C.G.; Wadsworth, K.J. Chem. Commun. 2001, 2316.

¹⁹⁸³Gooßen, L.J.; Ghosh, K. Eur. J. Org. Chem. 2002, 3254.

¹⁹⁸⁴Cacchi, S.; Fabrizi, G.; Gavazza, F.; Goggiamani, A. Org. Lett. 2003, 5, 289.

¹⁹⁸⁵Wang, D.; Zhang, Z. Org. Lett. **2003**, *5*, 4645; Bercot, E.A.; Rovis, T. J. Am. Chem. Soc. **2004**, 126, 10248.

¹⁹⁸⁶Bercot, E.A.; Rovis, T. J. Am. Chem. Soc. **2002**, 124, 174; O'Brien, E.M.; Bercot, E.A.; Rovis, T. J. Am. Chem. Soc. **2003**, 125, 10498.

¹⁹⁸⁷Lannou, M.-I.; Hélion, F.; Namy, J.-L. Tetrahedron Lett. 2002, 43, 8007.

via intramolecular addition of the organometallic intermediate to one carbonyl.¹⁹⁸⁸ The reaction of alkylzinc halides and thioesters leads to ketones in the presence of 1.5% Pd/C,¹⁹⁸⁹ in what has been called *Fukuyama coupling*.¹⁹⁹⁰

Carboxylic esters can be converted to their homologs (RCOOEt \rightarrow RCH₂. COOEt) by treatment with Br₂CHLi followed by BuLi at -90° C. The ynolate RC \equiv COLi is an intermediate.¹⁹⁹¹ If the ynolate is treated with 1,3-cyclohexadiene, followed by NaBH₄, the product is the alcohol RCH₂CH₂OH.¹⁹⁹²

Note that acyl benzotriazoles react with β -keto esters to give diketones via acyl substitution.¹⁹⁹³ Acyl cyanides, RC(=O)CN, react with allylic bromides and indium metal to give the corresponding ketone.¹⁹⁹⁴ Coupling an acid chloride and a silyl amide, R₃SiC(=O)NR'₂, leads to an α -keto amide.¹⁹⁹⁵ Acyl benzotriazoles have been coupled with SmI₂ to give the 1,2-diketone.¹⁹⁹⁶ α -Cyanoketone (acyl nitriles) were coupled with YbI₂ in a similar manner.¹⁹⁹⁷ α -Keto phosphonate esters undergo radical acyl substitution to give cyclic ketones under photochemical conditions.¹⁹⁹⁸

Silyl esters are converted to the enolate anion upon treatment with *n*-butyllithium, and subsequent addition of an aldehyde followed by saponification leads to the β -hydroxy acid.¹⁹⁹⁹

Vinyl organometallic reagents can be added to acyl derivatives. Reaction of an alkyne with Cp₂ZrEt₂ generates the vinyl zirconium reagent, which react with ethyl chloroformate to give an α , β -unsaturated ester.²⁰⁰⁰

OS I, 226; II, 179, 602; III, 237, 831, 839; IV, 601; VI, 240, 278; VIII, 474, 505. OS II, 282; 72, 32; III, 353; IV, 285; VI, 611; VII, 323, 451; 81, 14.

16-83 The Coupling of Acyl Halides

De-halogen-coupling

pyrophoric Pb 2 RCOC1 -→ RCOCOR

¹⁹⁸⁸Ha, D.-C.; Yun, C.-S.; Lee, Y. J. Org. Chem. 2000, 65, 621.

¹⁹⁸⁹Shimizu, T.; Seki, M. Tetrahedron Lett. 2001, 42, 429.

¹⁹⁹⁰See Tokuyama, H.; Yokoshima, S.; Yamashita, T.; Fukuyama, T. *Tetrahedron Lett.* **1998**, *39*, 3189; Mori, Y.; Seki, M. *Tetrahedron Lett.* **2004**, *45*, 7343. For a different but related cross-coupling, see Zhang, Y.; Rovis, T. J. Am. Chem. Soc. **2004**, *126*, 15964.

¹⁹⁹¹Kowalski, C.J.; Haque, M.S.; Fields, K.W. J. Am. Chem. Soc. **1985**, 107, 1429; Kowalski, C.J.; Haque, M.S. J. Org. Chem. **1985**, 50, 5140.

¹⁹⁹²Kowalski, C.J.; Haque, M.S. J. Am. Chem. Soc. 1986, 108, 1325.

¹⁹⁹³Katritzky, A.R.; Wang, Z.; Wang, M.; Wilkerson, C.R.; Hall, C.D.; Akhmedov, N.G. J. Org. Chem. **2004**, 69, 6617.

¹⁹⁹⁴Yoo, B.W.; Choi, K.H.; Lee, S.J.; Nam, G.S.; Chang, K.Y.; Kim, S.H.; Kim, J.H. *Synth. Commun.* **2002**, *32*, 839.

¹⁹⁹⁵Chen, J.; Cunico, R.F. J. Org. Chem. 2004, 69, 5509.

¹⁹⁹⁶Wang, X.; Zhang, Y. Tetrahedron Lett. 2002, 43, 5431.

¹⁹⁹⁷Saikia, P.; Laskar, D.D.; Prajapati, D.; Sandhu, J.S. *Tetahedron Lett.* 2002, 43, 7525.

¹⁹⁹⁸Kim, S.; Cho, C.H.; Lim, C.J. J. Am. Chem. Soc. 2003, 125, 9574.

¹⁹⁹⁹Bellassoued, M.; Grugier, J.; Lensen, N.; Catheline, A. J. Org. Chem. 2002, 67, 5611.

²⁰⁰⁰Takahashi, T.; Xi, C.; Ura, Y.; Nakajima, K. J. Am. Chem. Soc. 2000, 122, 3228.

CHAPTER 16

Acyl halides can be coupled with pyrophoric lead to give symmetrical α -diketones in a Wurtz-type reaction.²⁰⁰¹ The reaction has been performed with R = Me and Ph. Samarium iodide SmI₂²⁰⁰² gives the same reaction. Benzoyl chloride was coupled to give benzil by subjecting it to ultrasound in the presence of Li wire:

Unsymmetrical α -diketones, RCOCOR', have been prepared by treatment of an acyl halide RCOCl with an acyltin reagent (R'COSnBu₃), with a palladium complex catalyst.²⁰⁰⁴

16-84 Acylation at a Carbon Bearing an Active Hydrogen

Bis(ethoxycarbonyl)methyl-de-halogenation, and so on

This reaction is similar to **10-67**, but there are fewer examples.²⁰⁰⁵ Either Z or Z' may be any of the groups listed in **10-67**.²⁰⁰⁶ Anhydrides react similarly but are used less often. The product contains three Z groups, since RCO is a Z group. One or two of these can be cleaved (**12-40**, **12-43**). In this way, a compound ZCH₂Z' can be converted to ZCH₂Z² or an acyl halide (RCOCl) to a methyl ketone (RCOCH₃). *O*-Acylation is sometimes a side reaction.²⁰⁰⁷ When thallium(I) salts of ZCH₂Z' are used, it is possible to achieve regioselective acylation at either the C or the O position. For example, treatment of the thallium(I) salt of MeCOCH₂COMe with acetyl chloride at -78° C gave >90% *O*-acylation, while acetyl fluoride at room temperature gave >95% *C*-acylation.²⁰⁰⁸ The use of an alkyl chloroformate gives triesters.²⁰⁰⁹

The application of this reaction to simple ketones²⁰¹⁰ (in parallel with **10-68**) requires a strong base, such as NaNH₂ or Ph₃CNa, and is often complicated by

²⁰⁰¹Mészáros, L. Tetrahedron Lett. 1967, 4951.

²⁰⁰³Han, B.H.; Boudjouk, P. Tetrahedron Lett. 1981, 22, 2757.

²⁰⁰⁴Verlhac, J.; Chanson, E.; Jousseaume, B.; Quintard, J. *Tetrahedron Lett.* **1985**, *26*, 6075. For another procedure, see Olah, G.A.; Wu, A. J. Org. Chem. **1991**, *56*, 902.

²⁰⁰⁵For examples of reactions in this section, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, **1999**, pp. 1484–1485, 1522–1527.

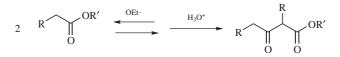
²⁰⁰⁶For an improved procedure, see Rathke, M.W.; Cowan, P.J. J. Org. Chem. 1985, 50, 2622.

²⁰⁰⁷When phase-transfer catalysts are used, *O*-acylation becomes the main reaction: Jones, R.A.; Nokkeo, S.; Singh, S. *Synth. Commun.* **1977**, *7*, 195.

²⁰⁰⁸Taylor, E.C.; Hawks III, G.H.; McKillop, A. J. Am. Chem. Soc. 1968, 90, 2421.

²⁰⁰⁹See, for example, Skaržewski, J. *Tetrahedron* **1989**, *45*, 4593. For a review of triesters, see Newkome, G.R.; Baker, G.R. Org. Prep. Proced. Int. **1986**, *19*, 117.

²⁰¹⁰Hegedus, L.S.; Williams, R.E.; McGuire, M.A.; Hayashi, T. J. Am. Chem. Soc. 1980, 102, 4973.


²⁰⁰²Souppe, J.; Namy, J.; Kagan, H.B. *Tetrahedron Lett.* **1984**, 25, 2869. See also, Collin, J.; Namy, J.; Dallemer, F.; Kagan, H.B. J. Org. Chem. **1991**, 56, 3118.

O-acylation, which in many cases becomes the principal pathway because acylation at the oxygen is usually much faster. It is possible to increase the proportion of *C*-acylated product by employing an excess (2–3 equivalents) of enolate anion (and adding the substrate to this, rather than vice versa), by the use of a relatively non-polar solvent and a metal ion (e.g., Mg^{2+}), which is tightly associated with the enolate oxygen atom, by the use of an acyl halide rather than an anhydride,²⁰¹¹ and by working at low temperatures.²⁰¹² In cases where the use of an excess of enolate anion results in *C*-acylation, it is because *O*-acylated. Simple ketones can also be acylated by treatment of their silyl enol ethers with an acyl chloride in the presence of ZnCl₂ or SbCl₃.²⁰¹³ Ketones can be acylated by anhydrides to give β -diketones, with BF₃ as catalyst.²⁰¹⁴ Simple esters RCH₂COOEt can be acylated at the a carbon (at -78° C) if a strong base such as lithium *N*-isopropylcyclohexylamide is used to remove the proton.²⁰¹⁵

OS II, 266, 268, 594, 596; III, 16, 390, 637; IV, 285, 415, 708; V, 384, 937; VI, 245; VII, 213, 359; VIII, 71, 326, 467. See also, OS VI, 620.

16-85 Acylation of Carboxylic Esters by Carboxylic Esters: The Claisen and Dieckmann Condensations

Alkoxycarbonylalkyl-de-alkoxy-substitution

When carboxylic esters containing an α hydrogen are treated with a strong base, such as sodium ethoxide, a condensation occurs to give a β -keto ester via an ester enolate anion.²⁰¹⁶ This reaction is called the *Claisen condensation*. When it is carried out with a mixture of two different esters, each of which possesses an α hydrogen (this reaction is called a mixed Claisen or a crossed Claisen condensation), a mixture of all four products is generally obtained and the reaction is seldom useful synthetically.²⁰¹⁷ However, if only one of the esters has an

²⁰¹¹See House, H.O. *Modern Synthetic Reactions*, 2nd ed., W.A. Benjamin, NY, **1972**, pp. 762–765; House, H.O.; Auerbach, R.A.; Gall, M.; Peet, N.P. J. Org. Chem. **1973**, 38, 514.

 ²⁰¹²Seebach, D.; Weller, T.; Protschuk, G.; Beck, A.K.; Hoekstra, M.S. *Helv. Chim. Acta* 1981, 64, 716.
 ²⁰¹³Tirpak, R.E.; Rathke, M.W. J. Org. Chem. 1982, 47, 5099.

²⁰¹⁴For a review, see Hauser, C.R.; Swamer, F.W.; Adams, J.T. Org. React. 1954, 8, 59, 98–106.

 ²⁰¹⁵For example, see Rathke, M.W.; Deitch, J. *Tetrahedron Lett.* 1971, 2953; Logue, M.W. J. Org. Chem.
 1974, 39, 3455; Couffignal, R.; Moreau, J. J. Organomet. Chem. 1977, 127, C65; Ohta, S.; Shimabayashi,
 A.; Hayakawa, S.; Sumino, M.; Okamoto, M. Synthesis 1985, 45; Hayden, W.; Pucher, R.; Griengl, H.
 Monatsh. Chem. 1987, 118, 415.

²⁰¹⁶For a study of ester and amide enolate stabilization, see Rablen, P.R.; Bentrup, KL.H. J. Am. Chem. Soc. **2003**, *125*, 2142.

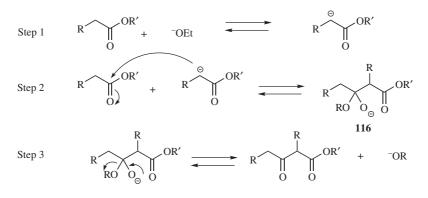
²⁰¹⁷For a method of allowing certain crossed-Claisen reactions to proceed with good yields, see Tanabe, Y. *Bull. Chem. Soc. Jpn.* **1989**, 62, 1917.

 α hydrogen, the mixed reaction is frequently satisfactory. Among esters lacking a hydrogens (hence acting as the substrate ester) that are commonly used in this way are esters of aromatic acids, and ethyl carbonate and ethyl oxalate. When the ester enolate reacts with ethyl carbonate, the product is a malonic ester, and reaction with ethyl formate introduces a formyl group. Claisen condensation of phenyl esters with ZrCl₄ and diisopropylethylamine (Hünigs base) give the corresponding keto ester.²⁰¹⁸

As with ketone enolate anions (see **16-34**), the use of amide bases under kinetic control conditions (strong base with a weak conjugate acid, aprotic solvents, low temperatures), allows the mixed Claisen condensation to proceed. Self-condensation of the lithium enolate with the parent ester is a problem when LDA is used as a base,²⁰¹⁹ but this is minimized with LICA (lithium isopropylcyclohexyl amide).²⁰²⁰ Note that solvent-free Claisen condensation reactions have been reported.²⁰²¹

When the two ester groups involved in the condensation are in the same molecule, the product is a cyclic β -keto ester and the reaction is called the *Dieckmann condensation*.²⁰²²

The Dieckmann condensation is most successful for the formation of five-, six-, and seven-membered rings. Yields for rings of 9–12 members are very low or nonexistent; larger rings can be closed with high-dilution techniques. Reactions in which large rings are to be closed are generally assisted by high dilution, since one end of the molecule has a better chance of finding the other end than of finding another molecule. A solvent-free Dieckmann condensation has been reported on solid potassium *tert*-butoxide.²⁰²³ Dieckmann condensation of unsymmetrical substrates can be made regioselective (unidirectional) by the use of solid-phase supports.²⁰²⁴


The mechanism of the Claisen and Dieckmann reactions is the ordinary tetrahedral mechanism,²⁰²⁵ with one molecule of ester being converted to a nucleophile by

- ²⁰¹⁹Rathke, M.W.; Sullivan, D.F. J. Am. Chem. Soc. **1973**, 95, 3050; Lochmann, L.; Lím, D. J. Organomet. Chem. **1973**, 50, 9; Sullivan, D.F.; Woodbury, R.P.; Rathke, M.W. J. Org. Chem. **1977**, 42, 2038.
- ²⁰²⁰Rathke, M.W.; Lindert, A. J. Am. Chem. Soc. 1971, 93, 2318.
- ²⁰²¹Yoshizawa, K.; Toyota, S.; Toda, F. Tetrahedron Lett. 2001, 42, 7983.
- ²⁰²²For a review, see Schaefer, J.P.; Bloomfield, J.J. Org. React. 1967, 15, 1.
- ²⁰²³Toda, F.; Suzuki, T.; Higa, S. J. Chem. Soc. Perkin Trans. 1 1998, 3521.

²⁰¹⁸Tanabe, Y.; Hamasaki, R.; Funakoshi, S. Chem. Commun. 2001, 1674.

²⁰²⁴Crowley, J.I.; Rapoport, H. *J. Org. Chem.* **1980**, *45*, 3215. For another method, see Yamada, Y.; Ishii, T.; Kimura, M.; Hosaka, K. *Tetrahedron Lett.* **1981**, *22*, 1353.

²⁰²⁵There is evidence that, at least in some cases, an SET mechanism is involved: Ashby, E.C.; Park, W. *Tetrahedron Lett.* **1983**, 1667. The transition structures have also been examined by Nishimura, T.; Sunagawa, M.; Okajima, T.; Fukazawa, Y. *Tetrahedron Lett.* **1997**, *38*, 7063.

the base and the other serving as the substrate.

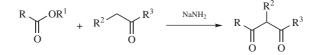
This reaction illustrates the striking difference in behavior between carboxylic esters on the one hand and aldehydes and ketones on the other. When a carbanion, such as an enolate anion, is added to the carbonyl group of an aldehyde or ketone (**16-38**), the H or R is not lost, since these groups are much poorer leaving groups than OR. Instead the intermediate similar to **116** adds a proton at the oxygen to give a hydroxy compound.

In contrast to **10-67** ordinary esters react quite well, that is, two Z groups are not needed. A lower degree of acidity is satisfactory because it is not necessary to convert the attacking ester entirely to its ion. Step 1 is an equilibrium that lies well to the left. Nevertheless, the small amount of enolate anion formed is sufficient to attack the readily approachable ester substrate. All the steps are equilibria. The reaction proceeds because the product is converted to its conjugate base by the base present (i.e., a β -keto ester is a stronger acid than an alcohol):

The use of a stronger base, such as NaNH₂, NaH, or KH,²⁰²⁶ often increases the yield. For some esters stronger bases *must* be used, since sodium ethoxide is ineffective. Among these are esters of the type R₂CHCOOEt, the products of which (R₂CHCOCR₂COOEt) lack an acidic hydrogen, so that they cannot be converted to enolate anions by sodium ethoxide.²⁰²⁷ The Dieckmann condensation has also been done using TiCl₃/NBu₃ with a TMSOTf catalyst.²⁰²⁸ A Dieckmann-like condensation was reported where an α, ω -dicarboxylic acid was hated to 450°C on graphite, with microwave irradiation, to give the cyclic ketone.²⁰²⁹

²⁰²⁶Brown, C.A. Synthesis 1975, 326.

²⁰²⁷For a discussion, see Garst, J.F. J. Chem. Educ. 1979, 56, 721.


²⁰²⁸Yoshida, Y.; Hayashi, R.; Sumihara, H.; Tanabe, Y. Tetrahedron Lett. 1997, 38, 8727.

²⁰²⁹Marquié, J.; Laporterie, A.; Dubac, J.; Roques, N. Synlett 2001, 493.

OS I, 235; II, 116, 194, 272, 288; III, 231, 300, 379, 510; IV, 141; V, 288, 687, 989; VIII, 112.

16-86 Acylation of Ketones and Nitriles by Carboxylic Esters

α-Acylalkyl-de-alkoxy-substitution

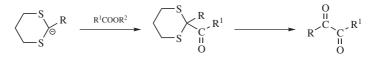
Carboxylic esters can be treated with ketones to give β -diketones. The reaction is so similar that it is sometimes also called the Claisen reaction, though this usage may be confusing. A strong base, such as sodium amide or sodium hydride, is required. Yields can be increased by the catalytic addition of crown ethers.²⁰³⁰ Esters of formic acid (R = H) give β -keto aldehydes and ethyl carbonate gives β -keto esters. β -Keto esters can also be obtained by treating the lithium enolates of ketones with methyl cyanoformate MeOCOCN²⁰³¹ (in this case CN is the leaving group) and by treating ketones with KH and diethyl dicarbonate, (EtOCO)₂O.²⁰³²

In the case of unsymmetrical ketones, the attack usually comes from the less highly substituted side, so that CH_3 is more reactive than RCH_2 , and the R_2CH group rarely attacks. This reaction has been used to effect cyclization, especially to prepare five- and six-membered rings. Nitriles are frequently used instead of ketones, the products being β -keto nitriles.

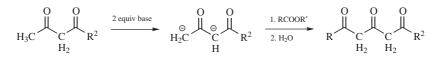
Other nucleophilic carbon reagents, such as acetylide ions, and ions derived from α -methylpyridines have also been used. A particularly useful nucleophile is the methylsulfinyl carbanion, CH₃SOCH₂-,²⁰³³ the conjugate base of DMSO, since the β -keto sulfoxide produced can easily be reduced to a methyl ketone (p. 624). The methylsulfonyl carbanion (CH₃SO₂CH₂⁻), the conjugate base of dimethyl sulfone, behaves similarly,²⁰³⁴ and the product can be similarly reduced. Certain carboxylic esters, acyl halides, and DMF will acylate 1,3-dithianes²⁰³⁵ (see **10-71**) to give, after oxidative hydrolysis with NBS or NCS, α -keto aldehydes or

²⁰³⁰Popik, V.V.; Nikolaev, V.A. J. Org. Chem. USSR 1989, 25, 1636.

²⁰³¹Mander, L.N.; Sethi, P. Tetrahedron Lett. 1983, 24, 5425.


²⁰³²Hellou, J.; Kingston, J.F.; Fallis, A.G. Synthesis 1984, 1014.

²⁰³³See Durst, T. Adv. Org. Chem. 1969, 6, 285, pp. 296–301.


²⁰³⁴Schank, K.; Hasenfratz, H.; Weber, A. Chem. Ber. **1973**, 106, 1107, House, H.O.; Larson, J.K. J. Org. Chem. **1968**, 33, 61.

²⁰³⁵Corey, E.J.; Seebach, D. J. Org. Chem. 1975, 40, 231

 α -diketones,²⁵⁴ for example,

As in **10-67**, a ketone attacks with its second most acidic position if 2 equivalents of base are used. Thus, β -diketones have been converted to 1,3,5-triketones.²⁰³⁶

Side reactions are condensation of the ketone with itself (16-34), of the ester with itself, and of the ketone with the ester, but with the ester supplying the a position (16-36). The mechanism is the same as in 16-85.²⁰³⁷

OS I, 238; II, 126, 200, 287, 487, 531; III, 17, 251, 291, 387, 829; IV, 174, 210, 461, 536; V, 187, 198, 439, 567, 718, 747; VI, 774; VII, 351.

16-87 Acylation of Carboxylic Acid Salts

α-Carboxyalkyl-de-alkoxy-substitution

$$\operatorname{RCH}_{2}\operatorname{COO}^{-} \xrightarrow{(i\operatorname{Pr})_{2}\operatorname{NLi}} \operatorname{RCH}_{\operatorname{COO}}^{\Theta} \xrightarrow{\operatorname{R'COOMe}} \operatorname{R'}_{\operatorname{COOMe}} \xrightarrow{\operatorname{R'}_{\operatorname{COOMe}}} \operatorname{R'}_{\operatorname{COOMe}} \operatorname{R'}_{\operatorname{COOMe}} \xrightarrow{\operatorname{R'}_{\operatorname{COOMe}}} \operatorname{R'}_{\operatorname{COOMe}} \xrightarrow{\operatorname{R'}_{\operatorname{COOMe}}} \operatorname{R'}_{\operatorname{COOMe}} \operatorname{R'}_{\operatorname{COMe}} \operatorname{R'}_{\operatorname{COMe}$$

We have previously seen (10-70) that dianions of carboxylic acids can be alkylated in the α position. These ions can also be acylated on treatment with a carboxylic ester²⁰³⁸ to give salts of β -keto acids. As in 10-70, the carboxylic acid can be of the form RCH₂COOH or RR²CHCOOH. Since β -keto acids are so easily converted to ketones (12-40), this is also a method for the preparation of ketones R'COCH₂R and R'COCHRR², where R' can be primary, secondary, or tertiary alkyl, or aryl. If the ester is ethyl formate, an α -formyl carboxylate salt (R' = H) is formed, which on acidification spontaneously decarboxylates into an aldehyde.²⁰³⁹ This method accomplishes the conversion RCH₂COOH \rightarrow RCH₂CHO, and is an alternative to the reduction methods discussed in 19-39. When the carboxylic acid is of the form RR"CHCOOH, better yields are obtained by acylating with acyl halides rather than esters.²⁰⁴⁰

²⁰³⁶Miles, M.L.; Harris, T.M.; Hauser, C.R. J. Org. Chem. 1965, 30, 1007.

²⁰³⁷Hill, D.G.; Burkus, T.; Hauser, C.R. J. Am. Chem. Soc. 1959, 81, 602.

²⁰³⁸Kuo, Y.; Yahner, J.A.; Ainsworth, C. J. Am. Chem. Soc. **1971**, 93, 6321; Angelo, B. C.R. Seances Acad. Sci. Ser. C **1973**, 276, 293.

²⁰³⁹Pfeffer, P.E.; Silbert, L.S. *Tetrahedron Lett.* **1970**, 699; Koch, G.K.; Kop, J.M.M. *Tetrahedron Lett.* **1974**, 603.

²⁰⁴⁰Krapcho, A.P.; Kashdan, D.S.; Jahngen, Jr., E.G.E.; Lovey, A.J. J. Org. Chem. **1977**, 42, 1189; Lion, C.; Dubois, J.E. J. Chem. Res. (S) **1980**, 44.

CHAPTER 16

16-88 Preparation of Acyl Cyanides

Cyano-de-halogenation

RCOX + CuCN → RCOCN

Acyl cyanides²⁰⁴¹ can be prepared by treatment of acyl halides with copper cyanide. The mechanism could be free-radical or nucleophilic substitution. The reaction has also been accomplished with thallium(I) cyanide,²⁰⁴² with Me₃SiCN and an SnCl₄ catalyst,²⁰⁴³ and with Bu₃SnCN,²⁰⁴⁴ but these reagents are successful only when R = aryl or tertiary alkyl. KCN has also been used, along with ultrasound,²⁰⁴⁵ as has NaCN with phase-transfer catalysts.²⁰⁴⁶

OS III, 119.

16-89 Preparation of Diazo Ketones

Diazomethyl-de-halogenation

 $RCOX + CH_2N_2 \longrightarrow RCOCHN_2$

The reaction between acyl halides and diazomethane is of wide scope and is the best way to prepare diazo ketones.²⁰⁴⁷ Diazomethane must be present in excess or the HX produced will react with the diazo ketone (**10-52**). This reaction is the first step of the *Arndt–Eistert synthesis* (**18-8**). Diazo ketones can also be prepared directly from a carboxylic acid and diazomethane or diazoethane in the presence of DCC.²⁰⁴⁸

OS III, 119; VI, 386, 613; VIII, 196.

16-90 Ketonic Decarboxylation²⁰⁴⁹

Alkyl-de-hydroxylation

2 RCOOH $\xrightarrow{400-500^{\circ}\text{C}}$ RCOR + CO₂

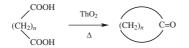
²⁰⁴¹For a review of acyl cyanides, see Hünig, S.; Schaller, R. Angew. Chem. Int. Ed. 1982, 21, 36.

²⁰⁴²Taylor, E.C.; Andrade, J.G.; John, K.C.; McKillop, A. J. Org. Chem. 1978, 43, 2280.

²⁰⁴³Olah, G.A.; Arvanaghi, M.; Prakash, G.K.S. Synthesis 1983, 636.

²⁰⁴⁴Tanaka, M. *Tetrahedron Lett.* 1980, 21, 2959. See also Tanaka, M.; Koyanagi, M. Synthesis 1981, 973.
 ²⁰⁴⁵Ando, T.; Kawate, T.; Yamawaki, J.; Hanafusa, T. Synthesis 1983, 637.

²⁰⁴⁶Koenig, K.E.; Weber, W.P. *Tetrahedron Lett.* **1974**, 2275. See also, Sukata, K. *Bull. Chem. Soc. Jpn.* **1987**, 60, 1085.


²⁰⁴⁷For reviews, see Fridman, A.L.; Ismagilova, G.S.; Zalesov, V.S.; Novikov, S.S. *Russ. Chem. Rev.* **1972**, 41, 371; Ried, W.; Mengler, H. *Fortshr. Chem. Forsch.*, **1965**, 5, 1.

²⁰⁴⁸Hodson, D.; Holt, G.; Wall, D.K. J. Chem. Soc. C 1970, 971.

²⁰⁴⁹For a review, see Kwart, H.; King, K., in Patai, S. *The Chemistry of Carboxylic Acids and Esters*, Wiley, NY, *1969*, pp. 362–370.

Carboxylic acids can be converted to symmetrical ketones by pyrolysis in the presence of thorium oxide. In a mixed reaction, formic acid and another acid heated over thorium oxide give aldehydes. Mixed alkyl aryl ketones have been prepared by heating mixtures of ferrous salts.²⁰⁵⁰ When the R group is large, the methyl ester rather than the acid can be decarbmethoxylated over thorium oxide to give the symmetrical ketone.

The reaction has been performed on dicarboxylic acids, whereupon cyclic ketones are obtained:

This process, called *Ruzicka cyclization*, is good for the preparation of rings of six and seven members and, with lower yields, of C_8 and C_{10} – C_{30} cyclic ketones.²⁰⁵¹

Not much work has been done on the mechanism of this reaction. However, a free-radical mechanism has been suggested on the basis of a thorough study of all the side products.²⁰⁵²

OS I, 192; II, 389; IV, 854; V, 589. Also see, OS IV, 55, 560.

REACTIONS IN WHICH CARBON ADDS TO THE HETEROATOM

A. Oxygen Adding to the Carbon

16-91 The Ritter Reaction *N*-Hydro,*N*-alkyl-*C*-oxo-biaddition

$$R - C \equiv N + R'OH \xrightarrow{H^+}_{R'} R' \xrightarrow{O}_{R'} R'$$

Alcohols can be added to nitriles in an entirely different manner from that of reaction **16-9**. In this reaction, the alcohol is converted by a strong acid to a carbocation, which is attacked by the nucleophilic nitrogen atom to give **117**. Subsequent addition of water to the electrophilic carbon atom leads to the enol form of the amide (see **118**), which tautomerizes (p. 98) to the *N*-alkyl amide.

$$R^{1}-OH \xrightarrow{H^{+}} \odot R^{1}+R-C\equiv N \xrightarrow{R^{-1}} R^{-1} \xrightarrow{H_{2}O} R^{-1} \xrightarrow{N-R^{1}} R^{-1} \xrightarrow{H_{2}O} R^{-1} \xrightarrow{N-R^{1}} OH$$
117
118

²⁰⁵⁰Granito, C.; Schultz, H.P. J. Org. Chem. 1963, 28, 879.

²⁰⁵¹See, for example, Ruzicka, L.; Stoll, M.; Schinz, H. *Helv. Chim. Acta* 1926, *9*, 249; 1928, *11*, 1174;
 Ruzicka, L.; Brugger, W.; Seidel, C.F.; Schinz, H. *Helv. Chim. Acta* 1928, *11*, 496.

²⁰⁵²Hites, R.A.; Biemann, K. J. Am. Chem. Soc. **1972**, 94, 5772. See also, Bouchoule, C.; Blanchard, M.; Thomassin, R. Bull. Soc. Chim. Fr. **1973**, 1773. Only alcohols that give rise to fairly stable carbocations react (secondary, tertiary, benzylic, etc.); non-benzylic primary alcohols do not give the reaction. The carbocation need not be generated from an alcohol, but may come from protonation of an alkene or from other sources. In any case, the reaction is called the *Ritter reac-tion*.²⁰⁵³ Lewis acids, such as Mg(HSO₄)₂, have been used to promote the reaction.²⁰⁵⁴ Highly sterically hindered nitriles have been converted to *N*-methyl amides by heating with methanol and sulfuric acid.²⁰⁵⁵ HCN also gives the reaction, the product being a formamide. Trimethylsilyl cyanide has also been used.²⁰⁵⁶

Since the amides (especially the formamides) are easily cleaved under hydrolysis conditions to amines, the Ritter reaction provides a method for achieving the conversions $R'OH \rightarrow R'NH_2$ (see **10-32**) and alkene $\rightarrow R'NH_2$ (see **15-8**) in those cases where R' can form a relatively stable carbocation. The reaction is especially useful for the preparation of tertiary alkyl amines because there are few alternate ways of preparing these compounds. The reaction can be extended to primary alcohols by treatment with triflic anhydride²⁰⁵⁷ or Ph₂CCl⁺ SbCl⁻₆ or a similar salt²⁰⁵⁸ in the presence of the nitrile.

Alkenes of the form RCH=CHR' and RR'C=CH₂ add to nitriles in the presence of mercuric nitrate to give, after treatment with NaBH₄, the same amides that would be obtained by the Ritter reaction.²⁰⁵⁹ This method has the advantage of avoiding strong acids.

$$\begin{array}{c} R \\ R^{1} \\ R^{1} \\ R^{1} \end{array} \xrightarrow{\text{Hg(NO_3)}_{2}} \begin{array}{c} R^{1} \\ R^{1} \\ R^{1} \\ R^{2} \end{array} \xrightarrow{\text{NaOH}} \begin{array}{c} R^{1} \\ R^{1} \\ R^{2} \\ R^{1} \\ R^$$

Benzylic compounds, such as ethylbenzene, react with alkyl nitriles, ceric ammonium nitrate, and a catalytic amount of N-hydroxysuccinimide to give the Ritter product, the amide.²⁰⁶⁰

The Ritter reaction can be applied to cyanamides RNHCN to give ureas RNHCONHR'. 2061

OS V, 73, 471.

²⁰⁵³Ritter, J.J.; Minieri, P.P. J. Am. Chem. Soc. **1948**, 70, 4045. For reviews, see Krimen, L.I.; Cota, D.J. Org. React. **1969**, 17, 213; Beckwith, A.L.J., in Zabicky, J. The Chemistry of Amides, Wiley, NY, **1970**, pp. 125–130; Johnson, F.; Madroñero, R. Adv. Heterocycl. Chem. **1966**, 6, 95; Tongco, E.C.; Prakash, G.K.S.; Olah, G.A. Synlett **1997**, 1193.

²⁰⁵⁴Salehi, P.; Khodaei, M.M.; Zolfigol, M.A.; Keyvan, A. Synth. Commun. 2001, 31, 1947.

²⁰⁵⁵Lebedev, M.Y.; Erman, M.B. Tetrahedron Lett. 2002, 43, 1397.

²⁰⁵⁶Chen, H.G.; Goel, O.P.; Kesten, S.; Knobelsdorf, J. Tetrahedron Lett. 1996, 37, 8129.

²⁰⁵⁷Martinez, A.G.; Alvarez, R.M.; Vilar, E.T.; Fraile, A.G.; Hanack, M.; Subramanian, L.R. *Tetrahedron Lett.* **1989**, *30*, 581.

²⁰⁵⁸Barton, D.H.R.; Magnus, P.D.; Garbarino, J.A.; Young, R.N. J. Chem. Soc. Perkin Trans. 1 1974, 2101.
 See also, Top, S.; Jaouen, G. J. Org. Chem. 1981, 46, 78.

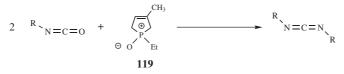
²⁰⁵⁹Sokolov, V.I.; Reutov, O.A. Bull. Acad. Sci. USSR Div. Chem. Sci. 1968, 225; Brown, H.C.; Kurek, J.T. J. Am. Chem. Soc. 1969, 91, 5647; Chow, D.; Robson, J.H.; Wright, G.F. Can. J. Chem. 1965, 43, 312; Fry, A.J.; Simon, J.A. J. Org. Chem. 1982, 47, 5032.

²⁰⁶⁰Sakaguchi, S.; Hirabayashi, T.; Ishii, Y. Chem. Commun. 2002, 516.

²⁰⁶¹Anatol, J.; Berecoechea, J. Bull. Soc. Chim. Fr. 1975, 395; Synthesis 1975, 111.

16-92 The Addition of Aldehydes to Aldehydes

When catalyzed by acids, low-molecular-weight aldehydes add to each other to give cyclic acetals, the most common product being the trimer.²⁰⁶² The cyclic trimer of formaldehyde is called *trioxane*,²⁰⁶³ and that of acetaldehyde is known as *paraldehyde*. Under certain conditions, it is possible to get tetramers²⁰⁶⁴ or dimers. Aldehydes can also polymerize to linear polymers, but here a small amount of water is required to form hemiacetal groups at the ends of the chains. The linear polymer formed from formaldehyde is called *paraformaldehyde*. Since trimers and polymers of aldehydes are acetals, they are stable to bases, but can be hydrolyzed by acids. Because formaldehyde and acetaldehyde have low boiling points, it is often convenient to use them in the form of their trimers or polymers.


Aryl aldehydes condense with aliphatic aldehydes in the presence of benzoylformate decarboxylase and thiamin diphosphate to give an α -hydroxy ketone with god enantioselectivity.²⁰⁶⁵

A slightly related reaction involves nitriles, which can be trimerized with various acids, bases, or other catalysts to give triazines (see OS III, 71).²⁰⁶⁶ Here HCl is most often used. Most nitriles with an α hydrogen do not give the reaction.

B. Nitrogen Adding to the Carbon

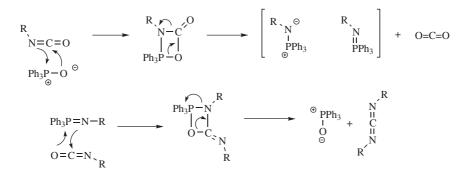
16-93 The Addition of Isocyanates to Isocyanates (Formation of Carbodiimides)

Alkylimino-de-oxo-bisubstitution

The treatment of isocyanates with 3-methyl-1-ethyl-3-phospholene-1-oxide (119) is a useful method for the synthesis of carbodiimides²⁰⁶⁷ in good

²⁰⁶⁶For a review, see Martin, D.; Bauer, M.; Pankratov, V.A. *Russ. Chem. Rev.* **1978**, 47, 975. For a review with respect to cyanamides RNH–CN, see Pankratov, V.A.; Chesnokova, A.E. *Russ. Chem. Rev.* **1989**, 58, 879. For reviews of the chemistry of carb.

²⁰⁶⁷For reviews of the chemistry of carbodiimides, see Williams, A.; Ibrahim, I.T. *Chem. Rev.* 1981, 81, 589; Mikołajczyk, M.; Kiełbasiński, P. *Tetrahedron* 1981, 37, 233; Kurzer, F.; Douraghi-Zadeh, K. *Chem. Rev.* 1967, 67, 107.


²⁰⁶²For a review, see Bevington, J.C. Q. Rev. Chem. Soc. 1952, 6, 141.

²⁰⁶³For a synthesis of trioxanes using bentonitic earth catalysts, see Camarena, R.; Cano, A.C.; Delgado, F.; Zúñiga, N.; Alvarez, C. *Tetrahedron Lett.* **1993**, *34*, 6857.

²⁰⁶⁴Barón, M.; de Manderola, O.B.; Westerkamp, J.F. Can. J. Chem. 1963, 41, 1893.

²⁰⁶⁵Dünnwald, T.; Demir, A.S.; Siegert, P.; Pohl, M.; Müller, M. Eur. J. Org. Chem. 2000, 2161.

yields.²⁰⁶⁸ The mechanism does not simply involve the addition of one molecule of isocyanate to another, since the kinetics are first order in isocyanate and first order in catalyst. The following mechanism has been proposed (the catalyst is here represented as R_3P^+ – O^- :²⁰⁶⁹

According to this mechanism, one molecule of isocyanate undergoes addition to C=O, and the other addition to C=N. Evidence is that ¹⁸O labeling experiments have shown that each molecule of CO₂ produced contains one oxygen atom derived from the isocyanate and one from **119**,²⁰⁷⁰ precisely what is predicted by this mechanism. Certain other catalysts are also effective.²⁰⁷¹ High-load, soluble oligomeric carbodiimides have been prepared.²⁰⁷²

OS V, 501.

16-94 The Conversion of Carboxylic Acid Salts to Nitriles

Nitrilo-de-oxido,oxo-tersubstitution

$$RCOO^-$$
 + $BrCN \xrightarrow{250-300^{\circ}C} RCN$ + CO_2

Salts of aliphatic or aromatic carboxylic acids can be converted to the corresponding nitriles by heating with BrCN or ClCN. Despite appearances, this is not a substitution reaction. When $R^{14}COO^{-}$ was used, the label appeared in the nitrile, not in the CO_2 ,²⁰⁷³ and optical activity in R was retained.²⁰⁷⁴ The acyl isocyanate RCON=C=O could be isolated from the reaction mixture; hence the

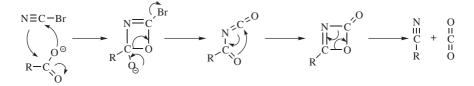
²⁰⁶⁸Campbell, T.W.; Monagle, J.J.; Foldi, V.S. J. Am. Chem. Soc. 1962, 84, 3673.

²⁰⁶⁹Monagle, J.J.; Campbell, T.W.; McShane Jr., H.F. J. Am. Chem. Soc. 1962, 84, 4288.

²⁰⁷⁰Monagle, J.J.; Mengenhauser, J.V. J. Org. Chem. 1966, 31, 2321.

²⁰⁷¹Monagle, J.J. J. Org. Chem. 1962, 27, 3851; Appleman, J.O.; DeCarlo, V.J. J. Org. Chem. 1967, 32,

^{1505;} Ulrich, H.; Tucker, B.; Sayigh, A.A.R. J. Org. Chem. 1967, 32, 1360; Tetrahedron Lett. 1967, 1731;

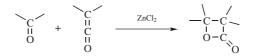

Ostrogovich, G.; Kerek, F.; Buzás, A.; Doca, N. Tetrahedron 1969, 25, 1875.

²⁰⁷²Zhang, M.; Vedantham, P.; Flynn, D.L.; Hanson, P.R. J. Org. Chem. 2004, 69, 8340.

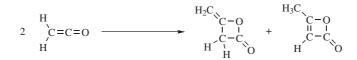
²⁰⁷³Douglas, D.E.; Burditt, A.M. Can. J. Chem. 1958, 36, 1256.

²⁰⁷⁴Barltrop, J.A.; Day, A.C.; Bigley, D.B. J. Chem. Soc. 1961, 3185.

following mechanism was proposed:2073



C. Carbon Adding to the Carbon.


The reactions in this group are cycloadditions.

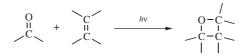
16-95 The Formation of β -Lactones and Oxetanes

(2+2)OC,CC-cyclo-[oxoethylene]-1/2/addition

Aldehydes, ketones, and quinones react with ketenes to give β -lactones,²⁰⁷⁵ diphenylketene being used most often.²⁰⁷⁶ The reaction is catalyzed by Lewis acids, and without them most ketenes do not give adducts because the adducts decompose at the high temperatures necessary when no catalyst is used. When ketene was added to chloral (Cl₃CCHO) in the presence of the chiral catalyst (+)-quinidine, one enantiomer of the β -lactone was produced with excellent enantioselectivity.²⁰⁷⁷ The use of a chiral aluminum catalyst also led to β -lactones with good syn selectivity and good enantioselectivity.²⁰⁷⁸ Other di- and trihalo aldehydes and ketones also give the reaction enantioselectively, with somewhat lower enantioselectivity.²⁰⁷⁹ Ketene adds to another molecule of itself:

This dimerization is so rapid that ketene does not form β -lactones with aldehydes or ketones, except at low temperatures. Other ketenes dimerize more slowly. In

²⁰⁷⁵See Nelson, S.G.; Wan, Z.; Peclen, Y.J.; Spencer, K.L. *Tetrahedron Lett.* **1999**, 40, 6535; Cortez, G.S.; Tennyson, R.L.; Romo, D. J. Am. Chem. Soc. **2001**, 123, 7945.


²⁰⁷⁶For reviews, see Muller, L.L.; Hamer, J. 1,2-Cycloaddition Reactions, Wiley, NY, **1967**, pp. 139–168; Ulrich, H. Cycloaddition Reactions of Heterocumulenes; Academic Press, NY, **1967**, pp. 39–45, 64–74.

 ²⁰⁷⁷Wynberg, H.; Staring, E.G.J. J. Am. Chem. Soc. **1982**, 104, 166; J. Chem. Soc., Chem. Commun. **1984**, 1181.

²⁰⁷⁸Nelson, S.G.; Zhu, C.; Shen, X. J. Am. Chem. Soc. 2004, 126, 14.

²⁰⁷⁹Wynberg, H.; Staring, E.G.J. J. Org. Chem. 1985, 50, 1977.

these cases, the major dimerization product is not the β -lactone, but a cyclobutanedione (see **15-63**). However, the proportion of ketene that dimerizes to β -lactone can be increased by the addition of catalysts, such as triethylamine or triethyl phosphite.²⁰⁸⁰ Ketene acetals R₂C=C(OR')₂ add to aldehydes and ketones in the presence of ZnCl₂ to give the corresponding oxetanes.²⁰⁸¹

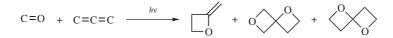
Ordinary aldehydes and ketones can add to alkenes, under the influence of UV light, to give oxetanes. Quinones also react to give spirocyclic oxetanes.²⁰⁸² This reaction, called the *Paterno–Büchi reaction*,²⁰⁸³ is similar to the photochemical dimerization of alkenes discussed at **15-63**. In general, the mechanism consists of the addition of an excited state of the carbonyl compound to the ground state of the alkene. Both singlet $(S_1)^{2084}$ and n,π^* triplet²⁰⁸⁵ states have been shown to add to alkenes to give oxetanes. A diradical intermediate²⁰⁸⁶

has been detected by spectroscopic methods.²⁰⁸⁷ Yields in the Paterno–Büchi reaction are variable, ranging from very low to fairly high (90%). The reaction can be

²⁰⁸⁰Farnum, D.G.; Johnson, J.R.; Hess, R.E.; Marshall, T.B.; Webster, B. J. Am. Chem. Soc. **1965**, 87, 5191; Elam, E.U. J. Org. Chem. **1967**, 32, 215.

 ²⁰⁸¹Aben, R.W.; Hofstraat, R.; Scheeren, J.W. *Recl. Trav. Chim. Pays-Bas* 1981, 100, 355. For a discussion of oxetane cycloreversion, see Miranda, M.A.; Izquierdo, M.A.; Galindo, F. *Org. Lett.* 2001, *3*, 1965.
 ²⁰⁸²Ciufolini, M.A.; Rivera-Fortin, M.A.; Byrne, N.E. *Tetrahedron Lett.* 1993, *34*, 3505.

²⁰⁸³For reviews, see Ninomiya, I.; Naito, T. Photochemical Synthesis, Academic Press, NY, **1989**, pp. 138–152; Carless, H.A.J., in Coyle, J.D. Photochemistry in Organic Synthesis, Royal Society of Chemistry, London, **1986**, pp. 95–117; Carless, H.A.J., in Horspool, W.M. Synthetic Organic Photochemistry, Plenum, NY, **1984**, pp. 425–487; Jones II, M. Org. Photochem. **1981**, 5, 1; Arnold, D.R. Adv. PhotoChem. **1968**, 6, 301–423; Chapman, O.L.; Lenz, G. Org. Photochem. **1967**, 1, 283, pp. 283–294; Muller, L.L.; Hamer, J. 1,2-Cycloaddition Reactions, Wiley, NY, **1967**, pp. 111–139. Also see, Bosch, E.; Hubig, S.M.; Kochi, J.K. J. Am. Chem. Soc. **1998**, 120, 386; Bach, T.; Jödicke, K.; Kather, K.; Frölich, R. J. Am. Chem. Soc. **1997**, 119, 2437; Hu, S.; Neckers, D.C. J. Org. Chem. **1997**, 62, 564.


²⁰⁸⁴See, for example, Turro, N.J. Pure Appl. Chem. **1971**, 27, 679; Yang, N.C.; Kimura, M.; Eisenhardt, W. J. Am. Chem. Soc. **1973**, 95, 5058; Singer, L.A.; Davis, G.A.; Muralidharan, V.P. J. Am. Chem. Soc. **1969**, 91, 897; Barltrop, J.A.; Carless, H.A.J. J. Am. Chem. Soc. **1972**, 94, 1951, 8761.

²⁰⁸⁵Arnold, D.R.; Hinman, R.L.; Glick, A.H. *Tetrahedron Lett.* **1964**, 1425; Yang, N.C.; Nussim, M.; Jorgenson, M.J.; Murov, S. *Tetrahedron Lett.* **1964**, 3657.

²⁰⁸⁶For other evidence for these diradical intermediates, see references cited in Griesbeck, A.G.; Stadmüller, S. J. Am. Chem. Soc. **1990**, 112, 1281. See also, Kutateladze, A.G. J. Am. Chem. Soc. **2001**, 123, 9279.

²⁰⁸⁷Freilich, S.C.; Peters, K.S. J. Am. Chem. Soc. **1981**, 103, 6255; **1985**, 107, 3819. For a review, see Griesbeck, A.G.; Mauder, H.; Stadmüller, S. Accts. Chem. Res. **1994**, 27, 70.

highly diastereoselective, ²⁰⁸⁸ and allylic alcohols were shown to react with aldehydes to give an oxetane with syn selectivity.²⁰⁸⁹ There are several side reactions. When the reaction proceeds through a triplet state, it can in general be successful only when the alkene possesses a triplet energy comparable to, or higher than, the carbonyl compound; otherwise energy transfer from the excited carbonyl group to the ground-state alkene can take place (triplet-triplet photosensitization, see p. 340).²⁰⁹⁰ In most cases, quinones react normally with alkenes, giving oxetane products, but other α , β -unsaturated ketones usually give preferential cyclobutane formation (**15-63**). Aldehydes and ketones also add photochemically to allenes to give the corresponding alkylideneoxetanes and dioxaspiro compounds:²⁰⁹¹ Aldehydes add to silyl enol ethers.²⁰⁹² An intramolecular reaction of ketones was reported to give a bicyclic oxetane via photolysis on the solid state.²⁰⁹³

OS III, 508; V, 456. For the reverse reaction, see OS V, 679.

16-96 The Formation of β -Lactams

(2+2)NC,CC-cyclo-[oxoethylene]-1/2/addition

Ketenes add to imines to give β -lactams.²⁰⁹⁴ The reaction is generally carried out with ketenes of the form R₂C=C=O. It has not been successfully applied to

²⁰⁸⁸Bach, T.; Jödicke, K.; Wibbeling, B. *Tetrahedron* **1996**, *52*, 10861; Fleming, S.A.; Gao, J.J. *Tetrahedron Lett.* **1997**, *38*, 5407; Vasudevan, S.; Brock, C.P.; Watt, D.S.; Morita, H. J. Org. Chem. **1994**, *59*, 4677; Adam, W.; Stegmann, V.R.; Weinkötz, S. J. Am. Chem. Soc. **2001**, *123*, 2452; Adam, W.; Stegmann, V.R. *J. Am. Chem. Soc.* **2002**, *124*, 3600. For a discussion of the origins of regioselectivity, see Ciufolini, M.A.; Rivera-Fortin, M.A.; Zuzukin, V.; Whitmire, K.H. J. Am. Chem. Soc. **1994**, *116*, 1272. ²⁰⁸⁹Greisbeck, A.G.; Bondock, S. J. Am. Chem. Soc. **2001**, *123*, 6191. See also, Adam, W.; Stegmann, V.R. *Synthesis* **2001**, 1203.

²⁰⁹⁰For a spin-directed reaction, see Griesbeck, A.G.; Fiege, M.; Bondock, S.; Gudipati, M.S. Org. Lett. 2000, 2, 3623.

²⁰⁹¹Howell, A.R.; Fan, R.; Truong, A. *Tetrahedron Lett.* **1996**, *37*, 8651. For a review of the formation of heterocycles by cycloadditions of allenes, see Schuster, H.F.; Coppola, G.M. Allenes in Organic Synthesis, Wiley, NY, **1984**, pp. 317–326.

²⁰⁹²Abe, M.; Tachibana, K.; Fujimoto, K.; Nojima, M. Synthesis 2001, 1243.

²⁰⁹³Kang, T.; Scheffer, J.R. Org. Lett. 2001, 3, 3361.

²⁰⁹⁴For a list of references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, **1999**, pp. 1919–1921. For reviews of the formation of β-lactams, see Brown, M.J. *Heterocycles* **1989**, 29, 2225; Isaacs, N.S. *Chem. Soc. Rev.* **1976**, *5*, 181; Mukerjee, A.K.; Srivastava, R.C. *Synthesis* **1973**, 327; Muller, L.L.; Hamer, J. *1,2-Cycloaddition Reactions*, Wiley, NY, **1967**, pp. 173–206; Ulrich, H. *Cycloaddition Reactions of Heterocumulenes*, Academic Press, NY, **1967**, pp. 75–83, 135–152; Anselme, J., in Patai, S. *The Chemistry of the Carbon–Nitrogen Double Bond*, Wiley, NY, **1970**, pp. 305–309. For a review of cycloaddition reactions of imines, see Sandhu, J.S.; Sain, B. *Heterocycles* **1987**, 26, 777. RCH=C=O, except when these are generated *in situ* by decomposition of a diazo ketone (the Wolff rearrangement, **18-8**) in the presence of the imine. It has been done with ketene, but the more usual course with this reagent is an addition to the enamine tautomer of the substrate. Thioketenes²⁰⁹⁵ (R₂C=C=S) give β -thiolactams.²⁰⁹⁶ Imines also form β -lactams when treated with (*1*) zinc (or another metal²⁰⁹⁷) and an α -bromo ester (Reformatsky conditions, **16-28**),²⁰⁹⁸ or (*2*) the chromium carbene complexes (CO)₅Cr=C(Me)OMe.²⁰⁹⁹ The latter method has been used to prepare optically active β -lactams.²¹⁰⁰ Ketenes have also been added to certain hydrazones (e.g., PhCH=NNMe₂) to give *N*-amino β -lactams.²¹⁰¹ A polymer-bound pyridinium salt facilitates β -lactam formation from carboxylic acids and imines.²¹⁰²

N-Tosyl imines react with ketenes, Proton Sponge (p. 365) and a chiral amine to give the *N*-tosyl β -lactam with good enantioselectivity.²¹⁰³ A chiral ferrocenyl catalyst also gives good enantioselectivity,²¹⁰⁴ and chiral ammonium salts have been used as catalysts.²¹⁰⁵ A catalytic amount of benzoyl quinine gives β -lactams with good enantioselectivity.²¹⁰⁶ An intramolecular version of this ketene-imine reaction is known.²¹⁰⁷

Like the similar cycloaddition of ketenes to alkenes (**15-63**), most of these reactions probably take place by the diionic mechanism c (p. 1224).²¹⁰⁸ β -Lactams have also been prepared in the opposite manner: by the addition of enamines to isocyanates:²¹⁰⁹

²⁰⁹⁵For a review of thioketenes, see Schaumann, E. Tetrahedron 1988, 44, 1827.

²⁰⁹⁶Schaumann, E. Chem. Ber. 1976, 109, 906.

²⁰⁹⁷With In: Banik, B.K.; Ghatak, A.; Becker, F.F. J. Chem. Soc., Perkin Trans. 1 2000, 2179.

²⁰⁹⁸For a review, see Hart, D.J.; Ha, D. Chem. Rev. 1989, 89, 1447.

²⁰⁹⁹Hegedus, L.S.; McGuire, M.A.; Schultze, L.M.; Yijun, C.; Anderson, O.P. J. Am. Chem. Soc. **1984**, *106*, 2680; Hegedus, L.S.; McGuire, M.A.; Schultze, L.M. Org. Synth. 65, 140.

²¹⁰⁰Hegedus, L.S.; Imwinkelried, R.; Alarid-Sargent, M.; Dvorak, D.; Satoh, Y. J. Am. Chem. Soc. **1990**, *112*, 1109.

²¹⁰¹Sharma, S.D.; Pandhi, S.B. J. Org. Chem. 1990, 55, 2196.

²¹⁰²Donati, D.; Morelli, C.; Porcheddu, A.; Taddei, M. J. Org. Chem. 2004, 69, 9316.

²¹⁰³Taggi, A.E.; Hafez, A.M.; Wack, H.; Young, B.; Drury III, W.J.; Lectka, T. J. Am. Chem. Soc. 2000, 122, 7831.

²¹⁰⁴Hodous, B.L.; Fu, G.C. J. Am. Chem. Soc. 2002, 124, 1578.

²¹⁰⁵Taggi, A.E.; Hafez, A.M.; Wack, H.; Young, B.; Ferraris, D.; Lectka, T. J. Am. Chem. Soc. **2002**, 124, 6626.

²¹⁰⁶Shah, M.H.; France, S.; Lectka, T. Synlett 2003, 1937.

²¹⁰⁷Clark, A.J.; Battle, G.M.; Bridge, A. Tetrahedron Lett. 2001, 42, 4409.

²¹⁰⁸See Moore, H.W.; Hernandez Jr., L.; Chambers, R. J. Am. Chem. Soc. **1978**, 100, 2245; Pacansky, J.; Chang, J.S.; Brown, D.W.; Schwarz, W. J. Org. Chem. **1982**, 47, 2233; Brady, W.T.; Shieh, C.H. J. Org. Chem. **1983**, 48, 2499.

²¹⁰⁹For example, see Perelman, M.; Mizsak, S.A. J. Am. Chem. Soc. **1962**, 84, 4988; Opitz, G.; Koch, J. Angew. Chem. Int. Ed. **1963**, 2, 152.

The reactive compound chlorosulfonyl isocyanate $(ClSO_2NCO)^{2110}$ forms β -lactams even with unactivated alkenes,²¹¹¹ as well as with imines,²¹¹² allenes,²¹¹³ conjugated dienes,²¹¹⁴ and cyclopropenes.²¹¹⁵ With microwave irradiation, alkyl isocyanates also react.²¹¹⁶

α-Diazo ketones react with imines and microwave irradiation to give β-lactams.²¹¹⁷ Allylic phosphonate esters react with imines, in the presence of a palladium catalyst, to give β-lactams.²¹¹⁸ Alkynyl reagents, such as BuC≡CO–Li⁺, react with imines to form β-lactams.²¹¹⁹ Imines and benzylic halides react to give β-lactams in the presence of CO and a palladium catalyst.²¹²⁰ Conjugated amides react with NBS and 20% sodium acetate to give an α-bromo β-lactam.²¹²¹ A different approach to β-lactams heated aziridines with CO and a cobalt catalyst.²¹²² Aziridines also react with CO and a dendrimer catalyst to go a β-lactam.²¹²³

OS V, 673; VIII, 3, 216.

ADDITION TO ISOCYANIDES²¹²⁴

Addition to $R^+N\equiv C^-$ is not a matter of a species with an electron pair adding to one atom and a species without a pair adding to the other, as is addition to the other types of double and triple bonds in this chapter and Chapter 15. In these additions, the electrophile and the nucleophile *both add to the carbon*. No species

²¹¹⁷Linder, M.R.; Podlech, J. Org. Lett. 2001, 3, 1849.

²¹²⁰Cho, C.S.; Jiang, L.H.; Shim, S.C. Synth. Commun. 1999, 29, 2695.

²¹²¹Naskar, D.; Roy, S. J. Chem. Soc., Perkin Trans. 1 1999, 2435.

²¹²³Lu, S.-M.; Alper, H. J. Org. Chem. 2004, 69, 3558.

²¹¹⁰For reviews of this compound, see Kamal, A.; Sattur, P.B. *Heterocycles* **1987**, *26*, 1051; Szabo, W.A. *Aldrichimica Acta* **1977**, *10*, 23; Rasmussen, J.K.; Hassner, A. *Chem. Rev.* **1976**, *76*, 389; Graf, R. *Angew. Chem. Int. Ed.* **1968**, *7*, 172.

²¹¹¹Graf, R. *Liebigs Ann. Chem.* **1963**, 661, 111; Bestian, H. *Pure Appl. Chem.* **1971**, 27, 611. See also, Barrett, A.G.M.; Betts, M.J.; Fenwick, A. J. Org. Chem. **1985**, 50, 169.

²¹¹²McAllister, M.A.; Tidwell, T.T. J. Chem. Soc. Perkin Trans. 2 1994, 2239; Sordo, J.A.; González, J.; Sordo, T.L. J. Am. Chem. Soc. 1992, 114, 6249.

²¹¹³Moriconi, E.J.; Kelly, J.F. J. Org. Chem. **1968**, 33, 3036. See also, Martin, J.C.; Carter, P.L.; Chitwood, J.L. J. Org. Chem. **1971**, 36, 2225.

²¹¹⁴Moriconi, E.J.; Meyer, W.C. J. Org. Chem. **1971**, 36, 2841; Malpass, J.R.; Tweddle, N.J. J. Chem. Soc. Perkin Trans. 1 **1977**, 874.

²¹¹⁵Moriconi, E.J.; Kelly, J.F.; Salomone, R.A. J. Org. Chem. 1968, 33, 3448.

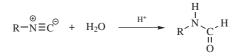
²¹¹⁶Taguchi, Y.; Tsuchiya, T.; Oishi, A.; Shibuya, I. Bull. Chem. Soc. Jpn. 1996, 69, 1667.

²¹¹⁸Torii, S.; Okumoto, H.; Sadakane, M.; Hai, A.K.M.A.; Tanaka, H. *Tetrahedron Lett.* **1993**, *34*, 6553. ²¹¹⁹Shindo, M.; Oya, S.; Sato, Y.; Shishido, K. *Heterocycles* **1998**, *49*, 113.

²¹²²Davoli, P.; Forni, A.; Moretti, I.; Prati, F.; Torre, G. *Tetrahedron* **2001**, *57*, 1801; Davoli, P.; Prati, F. *Heterocycles* **2000**, *53*, 2379.

²¹²⁴For a monograph, see Ugi, I. *Isonitrile Chemistry*, Academic Press, NY, **1971**. For reviews, see Walborsky, H.M.; Periasamy, M.P., in Patai, S.; Rappoport, Z. *The Chemistry of Functional Groups, Supplement C*, pt. 2, Wiley, NY, **1983**, pp. 835–887; Hoffmann, P.; Marquarding, D.; Kliimann, H.; Ugi, I., in Rappoport, Z. *The Chemistry of the Cyano Group*, Wiley, NY, **1970**, pp. 853–883.

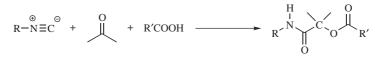
CHAPTER 16


add to the

nitrogen, which, however, loses its positive charge by obtaining as an unshared pair one of the triple-bond pairs of electrons to give **120**. In most of the reactions considered below, **120** undergoes a further reaction, so the product is of the form.

16-97 The Addition of Water to Isocyanides

1/N,2/C-Dihydro-2/C-oxo-biaddition

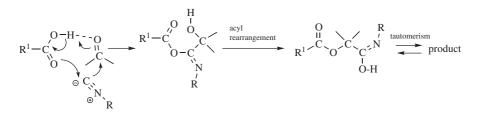

Formamides can be prepared by the acid-catalyzed addition of water to isocyanides. The mechanism is probably²¹²⁵

$$R \stackrel{\otimes}{-N} \equiv C \stackrel{\otimes}{-} H \stackrel{+}{+} \longrightarrow R \stackrel{\otimes}{-N} \equiv C - H \stackrel{H_2O}{\longrightarrow} R \stackrel{N}{-} C \stackrel{H}{\longrightarrow} R \stackrel{tautom.}{\longrightarrow} R \stackrel{H}{\longrightarrow} R \stackrel{N}{\longrightarrow} C \stackrel{H}{\longrightarrow} R \stackrel{L}{\longrightarrow} R \stackrel{H}{\longrightarrow} R \stackrel{H}{\longrightarrow} R \stackrel{N}{\longrightarrow} C \stackrel{H}{\longrightarrow} R \stackrel{H}{\longrightarrow} R$$

The reaction has also been carried out under alkaline conditions, with hydroxide in aqueous dioxane.²¹²⁶ The mechanism here involves nucleophilic attack by hydroxide at the carbon atom. An intramolecular addition of an alkyne (in an ortho alkynyl phenyl isonitrile) to the carbon of an isonitrile occurred with heating in methanol to give quinoline derivatives.²¹²⁷

16-98 The Passerini and Ugi Reactions²¹²⁸

1/N-Hydro-2/C-(a-acyloxyalkyl),2/C-oxo-biaddition


 ²¹²⁵Drenth, W. Recl. Trav. Chim. Pays-Bas 1962, 81, 319; Lim, Y.Y.; Stein, A.R. Can. J. Chem. 1971, 49, 2455.
 ²¹²⁶Cunningham, I.D.; Buist, G.J.; Arkle, S.R. J. Chem. Soc. Perkin Trans. 2 1991, 589.

²¹²⁷Suginome, M.; Fukuda, T.; Ito, Y. Org. Lett. 1999, 1, 1977.

²¹²⁸For reviews, see Ugi, I. Angew. Chem. Int. Ed. **1982**, 21, 810; Marquarding, D.; Gokel, G.W.; Hoffmann, P.; Ugi, I. in Ugi, I. *Isonitrile Chemistry*, Academic Press, NY, **1971**, pp. 133–143, Gokel, G.W.; Lüdke, G.; Ugi, I. in Ugi, I. Ref. 936, pp. 145–199, 252–254.

1468 ADDITION TO CARBON-HETERO MULTIPLE BONDS

When an isocyanide is treated with a carboxylic acid and an aldehyde or ketone, an α -acyloxy amide is prepared. This is called the *Passerini reaction*. A SiCl₄-mediated reaction in the presence of a chiral bis-phosphoramide gives an α -hydroxy amide with good enantioselectivity.²¹²⁹ The following mechanism has been postulated for the basic reaction:²¹³⁰

If ammonia or an amine is also added to the mixture (in which case the reaction is known as the *Ugi reaction*, or the *Ugi four-component condensation*, abbreviated 4 CC), the product is the corresponding bis(amide)

(from NH₃) or

$$\begin{array}{c|c} R'-C-NR''-C-C-NH-R\\ \\ U\\ O \end{array}$$

(from a primary amine R^2NH_2).

Repetitive Ugi reactions are known.²¹³¹ This product probably arises from a reaction between the carboxylic acid, the isocyanide, and the *imine* formed from the aldehyde or ketone and ammonia or the primary amine. The use of an *N*-protected amino acid²¹³² or peptide as the carboxylic acid component and/or the use of an isocyanide containing a C-protected carboxyl group allows the reaction to be used for peptide synthesis.²¹³³

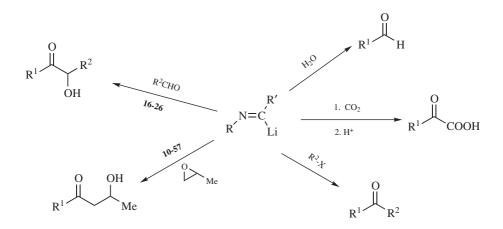
²¹²⁹Denmark, S.E.; Fan, Y. J. Am. Chem. Soc. 2003, 125, 7825.

²¹³⁰For the effect of high pressure of sterically hindered reactions, see Jenner, G. *Tetrahedron Lett.* **2000**, *43*, 1235.

²¹³¹Constabel, F.; Ugi, I. Tetrahedron 2001, 57, 5785.

²¹³²See, for example, Godet, T.; Bovin, Y.; Vincent, G.; Merle, D.; Thozet, A.; Ciufolini, M.A. *Org. Lett.* **2004**, *6*, 3281.

²¹³³For reviews, see Ugi, I., in Gross, E.; Meienhofer, J. *The Peptides*, Vol. 2, Academic Press, NY, **1980**, pp. 365–381, *Intra-Sci. Chem. Rep.* **1971**, 5, 229; *Rec. Chem. Prog.* **1969**, 30, 289; Gokel, G.W.; Hoffmann, P.; Kleimann, H.; Klusacek, H.; Lüdke, G.; Marquarding, D.; Ugi, I., in Ugi, I. *Isonitrile Chemistry*, Academic Press, NY, **1971**, pp. 201–215. See also, Kunz, H.; Pfrengle, W. J. Am. Chem. Soc. **1988**, 110, 651.


CHAPTER 16

16-99 The Formation of Metalated Aldimines

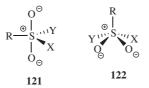
1/1/Lithio-alkyl-addition

Isocyanides that do not contain an α hydrogen react with alkyllithium compounds,²¹³⁴ as well as with Grignard reagents, to give lithium (or magnesium) aldimines.²¹³⁵ These metalated aldimines are versatile nucleophiles and react with various substrates as follows:

The reaction therefore constitutes a method for converting an organometallic compound R'M to an aldehyde R'CHO (see also, **12-33**), an α -keto acid,²¹³⁶ a ketone R'COR (see also, **12-33**), an α -hydroxy ketone, or a β -hydroxy ketone. In each case, the C=N bond is hydrolyzed to a C=O bond (**16-2**).

²¹³⁴For a review of other metallation reactions of isocyanides, see Ito, Y.; Murakami, M. Synlett **1990**, 245.

 ²¹³⁵Niznik, G.E.; Morrison III, W.H.; Walborsky, H.M. J. Org. Chem. 1974, 39, 600; Marks, M.J.;
 Walborsky, H.M. J. Org. Chem. 1981, 46, 5405; 1982, 47, 52. See also, Walborsky, H.M.; Ronman, P. J. Org. Chem. 1978, 43, 731. For the formation of zinc aldimines, see Murakami, H.; Ito, H.; Ito, Y. J. Org. Chem. 1988, 53, 4158.


 $^{^{2136}}$ For a review of the synthesis and properties of α -keto acids, see Cooper, A.J.L.; Ginos, J.Z.; Meister, A. *Chem. Rev.* **1983**, 83, 321.

In a related reaction, isocyanides can be converted to aromatic aldimines by treatment with an iron complex followed by irradiation in benzene solution: RNC + $C_6H_6 \rightarrow PhCH=NR$.²¹³⁷

OS VI, 751.

NUCLEOPHILIC SUBSTITUTION AT A SULFONYL SULFUR ATOM²¹³⁸

Nucleophilic substitution at RSO₂X is similar to attack at RCOX. Many of the reactions are essentially the same, though sulfonyl halides are less reactive than halides of carboxylic acids.²¹³⁹ The mechanisms²¹⁴⁰ are not identical, because a "tetrahedral" intermediate in this case (**121**) would have five groups on the central atom. This is possible since sulfur can accommodate up to 12 electrons in its valence shell, but it seems more likely that these mechanisms more closely resemble the S_N2 mechanism, with a trigonal-bipyramidal transition state (**122**). There are two major experimental results leading to this conclusion.

1. The stereospecificity of this reaction is more difficult to determine than that of nucleophilic substitution at a saturated carbon, where chiral compounds are relatively easy to prepare, but it may be recalled (p. 142) that optical activity is possible in a compound of the form RSO₂X if one oxygen is ¹⁶O and the other ¹⁸O. When a sulfonate ester possessing this type of chirality was converted to a sulfone with a Grignard reagent (**16-105**), inversion of configuration was found.²¹⁴¹ This is not incompatible with an intermediate such as **121** but it is also in good accord with an S_N2-like mechanism with backside attack.

²¹³⁷Jones, W.D.; Foster, G.P.; Putinas, J.M. J. Am. Chem. Soc. 1987, 109, 5047.

²¹³⁸For a review of mechanisms of nucleophilic substitutions at di-, tri-, and tetracoordinated sulfur atoms, see Ciuffarin, E.; Fava, A. *Prog. Phys. Org. Chem.* **1968**, *6*, 81.

²¹³⁹For a comparative reactivity study, see Hirata, R.; Kiyan, N.Z.; Miller, J. Bull. Soc. Chim. Fr. 1988, 694.

²¹⁴⁰For a review of mechanisms of nucleophilic substitution at a sulfonyl sulfur, see Gordon, I.M.; Maskill, H.; Ruasse, M. *Chem. Soc. Rev.* **1989**, *18*, 123.

²¹⁴¹Sabol, M.A.; Andersen, K.K. J. Am. Chem. Soc. **1969**, 91, 3603. See also, Jones, M.R.; Cram, D.J. J. Am. Chem. Soc. **1974**, 96, 2183.

2. More direct evidence against 121 (though still not conclusive) was found in an experiment involving acidic and basic hydrolysis of aryl arenesulfonates, where it has been shown by the use of ¹⁸O that an intermediate like 121 is not reversibly formed, since ester recovered when the reaction was stopped before completion contained no ¹⁸O when the hydrolysis was carried out in the presence of labeled water.²¹⁴²

Other evidence favoring the S_N 2-like mechanism comes from kinetics and substituent effects.²¹⁴³ However, evidence for the mechanism involving **121** is that the rates did not change much with changes in the leaving group²¹⁴⁴ and the ρ values were large, indicating that a negative charge builds up in the transition state.²¹⁴⁵

In certain cases in which the substrate carries an α hydrogen, there is strong evidence²¹⁴⁶ that at least some of the reaction takes place by an elimination-addition mechanism (E1cB, similar to the one shown on p. 1406), going through a *sulfene* intermediate,²¹⁴⁷ for example, the reaction between methanesulfonyl chloride and aniline.

 $CH_3 - SO_2Cl \xrightarrow{base} CH_2 = SO_2 \xrightarrow{PhNH_2} CH_3 - SO_2 - NHPh$ A sulfene

²¹⁴²Christman, D.R.; Oae, S. Chem. Ind. (London) 1959, 1251; Oae, S.; Fukumoto, T.; Kiritani, R. Bull. Chem. Soc. Jpn. 1963, 36, 346; Kaiser, E.T.; Zaborsky, O.R. J. Am. Chem. Soc. 1968, 90, 4626.

²¹⁴³See, for example, Robertson, R.E.; Rossall, B. Can. J. Chem. 1971, 49, 1441; Rogne, O. J. Chem. Soc. B 1971, 1855; J. Chem. Soc. Perkin Trans. 2 1972, 489; Gnedin, B.G.; Ivanov, S.N.; Spryskov, A.A. J. Org. Chem. USSR 1976, 12, 1894; Banjoko, O.; Okwuiwe, R. J. Org. Chem. 1980, 45, 4966; Ballistreri, F.P.; Cantone, A.; Maccarone, E.; Tomaselli, G.A.; Tripolone, M. J. Chem. Soc. Perkin Trans. 2 1981, 438; Suttle, N.A.; Williams, A. J. Chem. Soc. Perkin Trans. 2 1983, 1563; D'Rozario, P.; Smyth, R.L.; Williams, A. J. Am. Chem. Soc. 1984, 106, 5027; Lee, I.; Kang, H.K.; Lee, H.W. J. Am. Chem. Soc. 1987, 109, 7472; Arcoria, A.; Ballistreri, F.P.; Spina, E.; Tomaselli, G.A.; Maccarone, E. J. Chem. Soc. Perkin Trans. 2 1988, 1793; Gnedin, B.G.; Ivanov, S.N.; Shchukina, M.V. J. Org. Chem. USSR 1988, 24, 731.

²¹⁴⁴Ciuffarin, E.; Senatore, L.; Isola, M. J. Chem. Soc. Perkin Trans. 2 1972, 468.

²¹⁴⁵Ciuffarin, E.; Senatore, L. Tetrahedron Lett. 1974, 1635.

²¹⁴⁶For a review, see Opitz, G. Angew. Chem. Int. Ed. 1967, 6, 107. See also, King, J.F.; Lee, T.W.S. J. Am. Chem. Soc. 1969, 91, 6524; Skrypnik, Yu.G.; Bezrodnyi, V.P. Doklad. Chem. 1982, 266, 341; Farng, L.O.; Kice, J.L. J. Am. Chem. Soc. 1981, 103, 1137; Thea, S.; Guanti, G.; Hopkins, A.; Williams, A. J. Am. Chem. Soc. 1982, 104, 1128, J. Org. Chem. 1985, 50, 5592; Bezrodnyi, V.P.; Skrypnik, Yu.G. J. Org. Chem. USSR 1984, 20, 1660, 2349; King, J.F.; Skonieczny, S. Tetrahedron Lett. 1987, 28, 5001; Pregel, M.J.; Buncel, E. J. Chem. Soc. Perkin Trans. 2 1991, 307.

²¹⁴⁷For reviews of sulfenes, see King, J.F. Acc. Chem. Res. **1975**, 8, 10; Nagai, T.; Tokura, N. Int. J. Sulfur Chem. Part B **1972**, 207; Truce, W.E.; Liu, L.K. Mech. React. Sulfur Compd. **1969**, 4, 145; Opitz, G. Angew. Chem. Int. Ed. **1967**, 6, 107; Wallace, T.J. Q. Rev. Chem. Soc. **1966**, 20, 67. In the special case of nucleophilic substitution at a sulfonic ester RSO_2OR' , where R' is alkyl, R'–O cleavage is much more likely than S–O cleavage because the OSO_2R group is such a good leaving group (p. 497).²¹⁴⁸ Many of these reactions have been considered previously (e.g., **10-4**, **10-10**), because they are nucleophilic substitutions at an alkyl carbon atom and not at a sulfur atom. However, when R' is aryl, then the S–O bond is much more likely to cleave because of the very low tendency aryl substrates have for nucleophilic substitution.²¹⁴⁹

The order of nucleophilicity toward a sulfonyl sulfur has been reported as $OH^- > RNH_2 > N_3^- > F^- > AcO^- > Cl^- > H_2O > I^{-.2150}$ This order is similar to that at a carbonyl carbon (p. \$\$\$). Both of these substrates can be regarded as relatively hard acids, compared to a saturated carbon which is considerably softer and which has a different order of nucleophilicity (p. 494).

16-100 Attack by OH: Hydrolysis of Sulfonic Acid Derivatives

S-Hydroxy-de-chlorination, etc.

$$RSO_2X \xrightarrow{H_2O \text{ or}} RSO_2OH \quad (X = Cl, OR', NR'_2)$$

Sulfonyl chlorides as well as esters and amides of sulfonic acids can be hydrolyzed to the corresponding acids. Sulfonyl chlorides can by hydrolyzed with water or with an alcohol in the absence of acid or base. Basic catalysis is also used, though of course the salt is the product obtained. Esters are readily hydrolyzed, many with water or dilute alkali. This is the same reaction as **10-4**, and usually involves R'—O cleavage, except when R' is aryl. However, in some cases retention of configuration has been shown at alkyl R', indicating S—O cleavage in these cases.²¹⁵¹ Sulfonamides are generally *not* hydrolyzed by alkaline treatment, not even with hot concentrated alkali. Acids, however, do hydrolyze sulfonamides, but less readily than they do sulfonyl halides or sulfonic esters. Of course, ammonia or the amine appears as the salt. However, sulfonamides can be hydrolyzed with base if the solvent is HMPA.²¹⁵²

Magnesium in methanol has been used to convert sulfonate esters to the parent alcohol.²¹⁵³ Likewise, CeCl₃•7 H₂O–NaI in acetonitrile converted aryl tosylates to the parent phenol derivative.²¹⁵⁴

²¹⁴⁸A number of sulfonates in which R contains a branching, for example, Ph₂C(CF₃)SO₂OR', can be used to ensure that there will be no S–O cleavage: Netscher, T.; Prinzbach, H. *Synthesis* **1987**, 683.

²¹⁴⁹See Tagaki, W.; Kurusu, T.; Oae, S. Bull. Chem. Soc. Jpn. 1969, 42, 2894.

²¹⁵⁰Kice, J.L.; Kasperek, G.J.; Patterson, D. J. Am. Chem. Soc. **1969**, 91, 5516; Rogne, O. J. Chem. Soc. B **1970**, 1056; Kice, J.L.; Legan, E. J. Am. Chem. Soc. **1973**, 95, 3912.

²¹⁵¹Chang, F.C. Tetrahedron Lett. 1964, 305.

²¹⁵²Cuvigny, T.; Larchevêque, M. J. Organomet. Chem. 1974, 64, 315.

²¹⁵³Sridhar, M.; Kumar, B.A.; Narender, R. Tetrahedron Lett. 1998, 39, 2847.

²¹⁵⁴Reddy, G.S.; Mohan, G.H.; Iyengar, D.S. Synth. Commun. 2000, 30, 3829.

OS I, 14; II, 471; III, 262; IV, 34; V, 406; VI, 652, 727. Also see, OS V, 673; VI, 1016.

16-101 Attack by OR. Formation of Sulfonic Esters

S-Alkoxy-de-chlorination, and so on

 $RSO_2Cl + R'OH \xrightarrow{base} RSO_2OR'$ $RSO_2NR_2'' + R'OH \xrightarrow{base} RSO_2OR' + NHR_2''$

Sulfonic esters are most frequently prepared by treatment of the corresponding sulfonyl halides with alcohols in the presence of a base. This procedure is the most common method for the conversion of alcohols to tosylates, brosylates, and similar sulfonic esters. Both R and R' may be alkyl or aryl. The base is often pyridine, which functions as a nucleophilic catalyst,²¹⁵⁵ as in the similar alcoholysis of carboxylic acyl halides (16-61). Propylenediamines have also been used to facilitate tosylation of an alcohol.²¹⁵⁶ Silver oxide has been used, in conjunction with KI.²¹⁵⁷ Primary alcohols react the most rapidly, and it is often possible to sulfonate selectively a primary OH group in a molecule that also contains secondary or tertiary OH groups. The reaction with sulfonamides has been much less frequently used and is limited to N,N-disubstituted sulfonamides; that is, R- may not be hydrogen. However, within these limits it is a useful reaction. The nucleophile in this case is actually RO^- . However, R' may be hydrogen (as well as alkyl) if the nucleophile is a phenol, so that the product is RSO₂OAr. Acidic catalysts are used in this case.²¹⁵⁸ Sulfonic acids have been converted directly to sulfonates by treatment with triethyl or trimethyl orthoformate, HC(OR)₃, without catalyst or solvent;²¹⁵⁹ and with a trialkyl phosphite, P(OR)₃.²¹⁶⁰

Mono-tosylation of a 1,2-diol was achieved using tosyl chloride and triethylamine, with a tin oxide catalyst. $^{2161}\,$

OS I, 145; III, 366; IV, 753; VI, 56, 482, 587, 652; VII, 117; 66, 1; 68, 188. Also see, OS IV, 529; VI, 324, 757; VII, 495; VIII, 568.

²¹⁵⁵Rogne, O. J. Chem. Soc. B 1971, 1334. See also, Litvinenko, M.; Shatskaya, V.A.; Savelova, V.A. Doklad. Chem. 1982, 265, 199.

²¹⁵⁶Yoshida, Y; Shimonishi, K.; Sakakura, Y.; Okada, S.; Aso, N.; Tanabe, Y. Synthesis 1999, 1633.

²¹⁵⁷Bouzide, A.; LeBerre, N.; Sauvé, G. Tetrahedron Lett. 2001, 42, 8781.

²¹⁵⁸Klamann, D.; Fabienke, E. Chem. Ber. 1960, 93, 252.

²¹⁵⁹Padmapriya, A.A.; Just, G.; Lewis, N.G. Synth. Commun. 1985, 15, 1057.

²¹⁶⁰Karaman, R.; Leader, H.; Goldblum, A.; Breuer, E. Chem. Ind. (London) 1987, 857.

²¹⁶¹Martinelli, M.J.; Vaidyanathan, R.; Khau, V.V. *Tetrahedron Lett.* 2000, 41, 3773; Bucher, B.; Curran, D.P. *Tetrahedron Lett.* 2000, 41, 9617.

16-102 Attack by Nitrogen: Formation of Sulfonamides

S-Amino-de-chlorination

 $RSO_2Cl + NH_3 \longrightarrow RSO_2NH_2$

The treatment of sulfonyl chlorides with ammonia or amines is the usual way of preparing sulfonamides. Primary amines give *N*-alkyl sulfonamides, and secondary amines give *N*,*N*-dialkyl sulfonamides. The reaction is the basis of the *Hinsberg test* for distinguishing between primary, secondary, and tertiary amines. *N*-Alkyl sulfonamides, having an acidic hydrogen, are soluble in alkali, while *N*,*N*-dialkyl sulfonamides are not. Since tertiary amines are usually recovered unchanged, primary, secondary, and tertiary amines can be told apart. However, the test is limited for at least two reasons.²¹⁶² (1) Many *N*-alkyl sulfonamides in which the alkyl group has six or more carbons are insoluble in alkali, despite their acidic hydrogen,²¹⁶³ so that a primary amine may appear to be a secondary amine. (2) If the reaction conditions are not carefully controlled, tertiary amines may not be recovered unchanged.²¹⁶⁰

A primary or a secondary amine can be protected by reaction with phenacylsulfonyl chloride, (PhCOCH₂SO₂Cl), to give a sulfonamide, RNHSO₂CH₂COPh or $R_2NSO_2CH_2COPh$.²¹⁶⁴ The protecting group can be removed when desired with zinc and acetic acid. Sulfonyl chlorides react with azide ion to give sulfonyl azides (RSO₂N₃).²¹⁶⁵ Chlorothioformates, ROC(=S)Cl, react with triethylamine to give the *N*,*N*-diethylthioamide.²¹⁶⁶

A quite different synthesis of sulfonamides treated allyltributyltin with PhI=NTs, in the presence of copper (II) triflate.²¹⁶⁷ another alternative method treats silyl enol ethers with sulfur dioxide, and subsequent and reaction with a secondary amine gave the β -sulfonamido ester.²¹⁶⁸

OS IV, 34, 943; V, 39, 179, 1055; VI, 78, 652; VII, 501; VIII, 104. See also, OS VI, 788.

16-103 Attack by Halogen: Formation of Sulfonyl Halides

S-Halo-de-hydroxylation

 $RSO_2OH + PCl_5 \longrightarrow RSO_2Cl$

²¹⁶²For directions for performing and interpreting the Hinsberg test, see Gambill, C.R.; Roberts, T.D.; Shechter, H. J. Chem. Educ. **1972**, 49, 287.

²¹⁶³Fanta, P.E.; Wang, C.S. J. Chem. Educ. 1964, 41, 280.

²¹⁶⁴Hendrickson, J.B.; Bergeron R. Tetrahedron Lett. 1970, 345.

²¹⁶⁵For an example, see Regitz, M.; Hocker, J.; Liedhegener, A. Org. Synth. V, 179.

²¹⁶⁶Milan, D.S.; Prager, R.H. Aust. J. Chem. 1999, 52, 841.

²¹⁶⁷Kim, D.Y.; Kim. H.S.; Choi, Y.J.; Mang, J.Y.; Lee, K. Synth. Commun. 2001, 31, 2463.

²¹⁶⁸Bouchez, L.C.; Dubbaka, S.R.; Urks, M.; Vogel, P. J. Org. Chem. 2004, 69, 6413.

This reaction, parallel with **16-79**, is the standard method for the preparation of sulfonyl halides. Also used are PCl₃ and SOCl₂, and sulfonic acid salts can also serve as substrates. Cyanuric acid (2,4,6-trichloro[1,3,5]triazene) also serves as a chlorinating agent.²¹⁶⁹ Sulfonyl bromides and iodides have been prepared from sulfonyl hydrazides (ArSO₂NHNH₂, themselves prepared by **16-102**) by treatment with bromine or iodine.²¹⁷⁰ Sulfonyl fluorides are generally prepared from the chlorides, by halogen exchange.²¹⁷¹

OS I, 84; IV, 571, 693, 846, 937; V, 196. See also, OS VII, 495.

16-104 Attack by Hydrogen: Reduction of Sulfonyl Chlorides

S-Hydro-de-chlorination or S-Dechlorination

 $2 \text{ RSO}_2\text{Cl} + \text{Zn} \longrightarrow (\text{RSO}_2)_2\text{Zn} \xrightarrow{\text{H+}} 2 \text{ RSO}_2\text{H}$

Sulfinic acids can be prepared by reduction of sulfonyl chlorides. Though mostly done on aromatic sulfonyl chlorides, the reaction has also been applied to alkyl compounds. Besides zinc, sodium sulfite, hydrazine, sodium sulfide, and other reducing agents have been used. For reduction of sulfonyl chlorides to thiols, see **19-78**.

OS I, 7, 492; IV, 674.

16-105 Attack by Carbon: Preparation of Sulfones

S-Aryl-de-chlorination

ArSO₂Cl + Ar'MgX → ArSO₂Ar'

Grignard reagents convert aromatic sulfonyl chlorides or aromatic sulfonates to sulfones. Organolithium reagents react with sulfonyl fluorides at -78° C to give the corresponding sulfone.²¹⁷² Aromatic sulfonates have also been converted to sulfones with organolithium compounds,²¹⁷³ with aryltin compounds,²¹⁷⁴ and with alkyl halides and Zn metal.²¹⁷⁵ Vinylic and allylic sulfones have been prepared by treatment of sulfonyl chlorides with a vinylic or allylic stannane and a palladium complex catalyst.²¹⁷⁶ Alkynyl sulfones can be prepared by treatment of sulfonyl chlorides with an AlCl₃ catalyst.²¹⁷⁷ Note that

²¹⁶⁹Blotny, G. Tetrahedron Lett. 2003, 44, 1499.

- ²¹⁷¹See Bianchi, T.A.; Cate, L.A. J. Org. Chem. 1977, 42, 2031, and references cited therein.
- ²¹⁷²Frye, L.L.; Sullivan, E.L.; Cusack, K.P.; Funaro, J.M. J. Org. Chem, 1992, 57, 697.

²¹⁷⁰Poshkus, A.C.; Herweh, J.E.; Magnotta, F.A. J. Org. Chem. **1963**, 28, 2766; Litvinenko, L.M.; Dadali, V.A.; Savelova, V.A.; Krichevtsova, T.I. J. Gen. Chem. USSR **1964**, 34, 3780.

²¹⁷³Baarschers, W.H. Can. J. Chem. 1976, 54, 3056.

²¹⁷⁴Neumann, W.P.; Wicenec, C. Chem. Ber. 1993, 126, 763.

²¹⁷⁵Sun, X.; Wang, L.; Zhang, Y. Synth. Commun. 1998, 28, 1785.

²¹⁷⁶Labadie, S.S. J. Org. Chem. 1989, 54, 2496.

²¹⁷⁷See Waykole, L.; Paquette, L.A. Org. Synth. 67, 149.

trifluoromethylsulfones were converted to methyl sulfones by reaction with methylmagneisum bromide.²¹⁷⁸

Arylboronic acids (p. 815) react with sulfonyl chlorides in the presence of $PdCl_2$ to give the corresponding sulfone.²¹⁷⁹ arylboronic acids also react with sulfinate anions (RSO₂Na) in the presence of Cu(OAc)₂ to give the sulfone.²¹⁸⁰

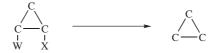
OS VIII, 281.

²¹⁷⁸Steensma, R.W.; Galabi, S.; Tagat, J.R.; McCombie, S.W. Tetrahedron Lett. 2001, 42, 2281.

²¹⁷⁹Bandgar, B.P.; Bettigeri, S.V.; Phopase, J. Org. Lett. 2004, 6, 2105.

²¹⁸⁰Beaulieu, C.; Guay, D.; Wang, Z.; Evans, D.A. *Tetrahedron Lett.* **2004**, 45, 3233.

Eliminations


When two groups are lost from adjacent atoms so that a new double¹

(or triple) bond is formed the reaction is called β -*elimination*; one atom is the α , the other the β atom. In an α elimination, both groups are lost from the same atom to give a carbene (or a nitrene):

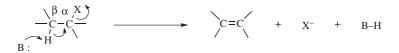
 $\begin{array}{c} A \cdot G \cdot W \\ G \cdot G \cdot G \\ A - B : \end{array}$

In a γ elimination, a three-membered ring is formed:

Some of these processes were discussed in Chapter 10. Another type of elimination involves the expulsion of a fragment from within a chain or ring $(X-Y-Z \rightarrow X-Z+Y)$. Such reactions are called *extrusion reactions*. This chapter discusses β -elimination and (beginning on p. 1553) extrusion reactions; however, β -elimination in which both X and W are hydrogens are oxidation reactions and are treated in Chapter 19.

¹See Williams, J.M.J. *Preparation of Alkenes, A Practical Approach*, Oxford University Press, Oxford, **1996**.

March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, Sixth Edition, by Michael B. Smith and Jerry March


Copyright © 2007 John Wiley & Sons, Inc.

MECHANISMS AND ORIENTATION

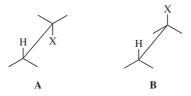
β-Elimination reactions may be divided into two types; one type taking place largely in solution, the other (pyrolytic eliminations) mostly in the gas phase. In the reactions in solution, one group leaves with its electrons and the other without, the latter most often being hydrogen. In these cases, we refer to the former as the leaving group or nucleofuge. For pyrolytic eliminations, there are two principal mechanisms, one pericyclic and the other a free-radical pathway. A few photochemical eliminations are also known (the most important is Norrish type II cleavage of ketones, p. 344), but these are not generally of synthetic importance² and will not be discussed further. In most β-eliminations the new bonds are C=C or C≡C; our discussion of mechanisms is largely confined to these cases.³ Mechanisms in solution (E2, E1)⁴ and E1cB are discussed first.

The E2 Mechanism

In the E2 mechanism (elimination, bimolecular), the two groups depart simultaneously, with the proton being pulled off by a base:

The mechanism thus takes place in one step and kinetically is second order: first order in substrate and first order in base. An *ab initio* study has produced a model for the E2 transition state geometry.⁵ The IUPAC designation is $A_{xH}D_HD_N$, or more generally (to include cases where the electrofuge is not hydrogen), $A_nD_ED_N$. It is analogous to the S_N2 mechanism (p. 426) and often competes with it. With respect

²For synthetically useful examples of Norrish type II cleavage, see Neckers, D.C.; Kellogg, R.M.; Prins, W.L.; Schoustra, B. *J. Org. Chem.* **1971**, *36*, 1838.

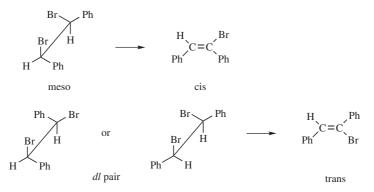

³For a monograph on elimination mechanisms, see Saunders, Jr., W.H.; Cockerill, A.F. *Mechanisms of Elimination Reactions*, Wiley, NY, **1973**. For reviews, see Gandler, J.R., in Patai, S. *Supplement A: The Chemistry of Double-Bonded Functional Groups*, Vol. 2, pt. 1, Wiley, NY, **1989**, pp. 733–797; Aleskerov, M.A.; Yufit, S.S.; Kucherov, V.F. *Russ. Chem. Rev.* **1978**, 47, 134; Cockerill, A.F.; Harrison, R.G., in Patai, S. *The Chemistry of Functional Groups, Supplement A* pt. 1, Wiley, NY, **1977**, pp. 153–221; Willi, A.V. *Chimia*, **1977**, 31, 93; More O'Ferrall, R.A., in Patai, S. *The Chemistry of the Carbon-Halogen Bond*, pt. 2, Wiley, NY, **1973**, pp. 609–675; Cockerill, A.F., in Bamford, C.H.; Tipper, C.F.H. *Comprehensive Chemical Kinetics*, Vol. 9, Elsevier, NY, **1973**, pp. 163–372; Saunders, Jr., W.H. *Acc. Chem. Res.* **1976**, 9, 19; Stirling, C.J.M. *Essays Chem.* **1973**, 5, 123; Bordwell, F.G. *Acc. Chem. Res.* **1972**, 5, 374; Fry, A. *Chem. Soc. Rev.* **1972**, 1, 163; LeBel, N.A. *Adv. Alicyclic Chem.* **1971**, 3, 195; Bunnett, J.F. *Surv. Prog. Chem.* **1969**, 5, 53; in Patai, S. *The Chemistry of Alkenes*, Vol. 1, Wiley, NY, **1964**, the articles by Saunders, Jr., W.H. pp. 149–201 (eliminations in solution); and by Maccoll, A. pp. 203–240 (pyrolytic eliminations); Köbrich, G. *Angew. Chem. Int. Ed.* **1965**, 4, 49, pp. 59–63 (for the formation of triple bonds).

⁴Thibblin, A. Chem. Soc. Rev. 1993, 22, 427.

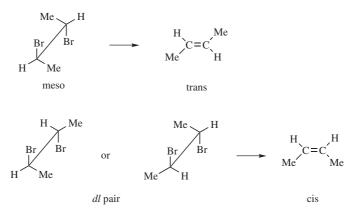
⁵Schrøder, S.; Jensen, F. J. Org. Chem. 1997, 62, 253.

to the substrate, the difference between the two pathways is whether the species with the unshared pair attacks the carbon (and thus acts as a nucleophile) or the hydrogen (and thus acts as a base). As in the case of the S_N2 mechanism, the leaving group may be positive or neutral and the base may be negatively charged or neutral.

Among the evidence for the existence of the E2 mechanism are (1) the reaction displays the proper second-order kinetics; (2) when the hydrogen is replaced by deuterium in second-order eliminations, there is an isotope effect of from 3 to 8, consistent with breaking of this bond in the rate-determining step.⁶ However, neither of these results alone could prove an E2 mechanism, since both are compatible with other mechanisms also (e.g., see E1cB p. 1488). The most compelling evidence for the E2 mechanism is found in stereochemical studies.⁷ As will be illustrated in the examples below, the E2 mechanism is stereospecific: The five atoms involved (including the base) in the transition state must be in one plane. There are two ways for this to happen. The H and X may be


trans to one another (**A**) with a dihedral angle of 180° , or they may be cis (**B**) with a dihedral angle of 0° .⁸ Conformation **A** is called *anti-periplanar*, and this type of elimination, in which H and X depart in opposite directions, is called *anti-elimination*. Conformation **B** is *syn-periplanar*, and this type of elimination, with H and X leaving in the same direction, is called *syn-elimination*. Many examples of both kinds have been discovered. In the absence of special effects (discussed below) anti-elimination is usually greatly favored over syn-elimination, probably because **A** is a staggered conformation (p. 199) and the molecule requires less energy to reach this transition state than it does to reach the eclipsed transition state **B**. A few of the many known examples of predominant or exclusive anti-elimination follow.

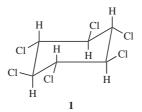
⁶See, for example, Saunders, Jr., W.H.; Edison, D.H. *J. Am. Chem. Soc.* **1960**, 82, 138; Shiner, Jr., V.J.; Smith, M.L. *J. Am. Chem. Soc.* **1958**, 80, 4095; **1961**, 83, 593. For a review of isotope effects in elimination reactions, see Fry, A. *Chem. Soc. Rev.* **1972**, *1*, 163.


⁷For reviews, see Bartsch, R.A.; Závada, J. Chem. Rev. **1980**, 80, 453; Coke, J.L. Sel. Org. Transform. **1972**, 2, 269; Sicher, J. Angew. Chem. Int. Ed. **1972**, 11, 200; Pure Appl. Chem. **1971**, 25, 655; Saunders, Jr., W.H.; Cockerill, A.F. Mechanisms of Elimination Reactions, Wiley, NY, **1973**, pp. 105–163; Cockerill, A.F., in Bamford, C.H.; Tipper, C.F.H. Comprehensive Chemical Kinetics, Vol. 9, Elsevier, NY, **1973**, pp. 217–235; More O'Ferrall, R.A., in Patai, S. The Chemistry of the Carbon–Halogen Bond, pt. 2, Wiley, NY, **1973**, pp. 630–640.

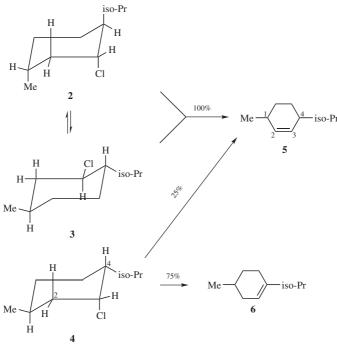
⁸DePuy, C.H.; Morris, G.F.; Smith, J.S.; Smat, R.J. J. Am. Chem. Soc. 1965, 87, 2421.

1. Elimination of HBr from *meso*-1,2-dibromo-1,2-diphenylethane gave *cis*-2bromostilbene, while the (+) or (-) isomer gave the trans alkene. This stereospecific result, which

was obtained in 1904,⁹ demonstrates that in this case elimination is anti. Many similar examples have been discovered since. Obviously, this type of experiment need not be restricted to compounds that have a meso form. Antielimination requires that an erythro dl pair (or either isomer) give the cis alkene, and the threo dl pair (or either isomer) give the trans isomer, and this has been found many times. Anti-elimination has also been demonstrated in cases where the electrofuge is not hydrogen. In the reaction of 2,3-dibromobutane with iodide ion, the two bromines are removed (**17-22**). In this case, the meso compound gave the trans alkene and the dl pair the cis:¹⁰



2. In open-chain compounds, the molecule can usually adopt that conformation in which H and X are anti-periplanar. However, in cyclic systems this is not always the case. There are nine stereoisomers of 1,2,3,4,5,6-hexachlorocyclohexane: seven meso forms and a *dl* pair (see p. 165). Four of the meso compounds and the *dl* pair (all that were then known) were subjected to

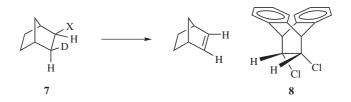

⁹Pfeiffer, P. Z. Phys. Chem. 1904, 48, 40.

¹⁰Winstein, S.; Pressman, D.; Young, W.G. J. Am. Chem. Soc. 1939, 61, 1645.

elimination of HCl. Only one of these (1) has no Cl trans to an H. Of the other isomers, the fastest elimination rate was about three times as fast as the slowest, but the rate for 1 was 7000 times slower than that of the slowest of the other isomers.¹¹ This result demonstrates that with these compounds anti elimination is greatly favored over syn elimination, although the latter must be taking place on 1, very slowly, to be sure.

3. The preceding result shows that elimination of HCl in a six-membered ring proceeds best when the H and X are trans to each other. However, there is an additional restriction. Adjacent trans groups on a six-membered ring can be diaxial or diequatorial (p. 204) and the molecule is generally free to adopt either conformation, although one may have a higher energy than the other. Anti-periplanarity of the leaving groups requires that they be diaxial, even if this is the conformation of higher energy. The results with menthyl and neomenthyl chlorides are easily

¹¹Cristol, S.J.; Hause, N.L.; Meek, J.S. J. Am. Chem. Soc. 1951, 73, 674.


1482 ELIMINATIONS

interpretable on this basis. Menthyl chloride has two chair conformations, 2 and 3. Compound 3, in which the three substituents are all equatorial, is the more stable. The more stable chair conformation of neomenthyl chloride is 4, in which the chlorine is axial; there are axial hydrogens on both C-2 and C-4. The results are: neomenthyl chloride gives rapid E2 elimination and the alkene produced is predominantly 6 (6/5 ratio is 3:1) in accord with Zaitsev's rule (p. 767). Since an axial hydrogen is available on both sides, this factor does not control the direction of elimination and Zaitsev's rule is free to operate. However, for menthyl chloride, elimination is much slower and the product is entirely the anti-Zaitsev, 5. It is slow because the unfavorable conformation 2 has to be achieved before elimination can take place, and the product is 5 because only on this side is there an axial hydrogen.¹²

4. That anti-elimination also occurs in the formation of triple bonds is shown by elimination from *cis*- and *trans*-HOOC-CH=C(Cl)COOH. In this case, the product in both cases is HOOCC=CCOOH, but the trans isomer reacts \sim 50 times faster than the cis compound.¹³

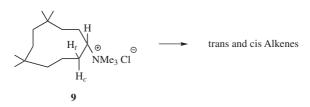
Some examples of syn-elimination have been found in molecules where H and X could not achieve an anti-periplanar conformation.

1. The deuterated norbornyl bromide (7, X = Br) gave 94% of the product containing no deuterium.¹⁴ Similar results were obtained with other leaving groups and with bicyclo[2.2.2] compounds.¹⁵ In these cases the exo X group cannot achieve a dihedral angle of 180° with the endo β hydrogen because of the rigid structure of the molecule. The dihedral angle here is ~120°. These leaving groups prefer syn-elimination with a dihedral angle of ~0° to anti-elimination with an angle of ~120°.

¹²Hughes, E.D.; Ingold, C.K.; Rose, J.B. J. Chem. Soc. 1953, 3839.

¹³Michael, A. J. Prakt. Chem. **1895**, 52, 308. See also, Marchese, G.; Naso, F.; Modena, G. J. Chem. Soc. B **1968**, 958.

¹⁴Kwart, H.; Takeshita, T.; Nyce, J.L. J. Am. Chem. Soc. 1964, 86, 2606.


¹⁵For example, see Bird, C.W.; Cookson, R.C.; Hudec, J.; Williams, R.O. J. Chem. Soc. **1963**, 410; Stille, J.K.; Sonnenberg, F.M.; Kinstle, T.H. J. Am. Chem. Soc. **1966**, 88, 4922; Coke, J.L.; Cooke, Jr., M.P. J. Am. Chem. Soc. **1967**, 89, 6701; DePuy, C.H.; Naylor, C.G.; Beckman, J.A. J. Org. Chem. **1970**, 35, 2750; Brown, H.C.; Liu, K. J. Am. Chem. Soc. **1970**, 92, 200; Sicher, J.; Pánkova, M.; Závada, J.; Kniežo, L.; Orahovats, A. Collect. Czech. Chem. Commun. **1971**, 36, 3128; Bartsch, R.A.; Lee, J.G. J. Org. Chem. **1991**, 56, 212, 2579.

2. Molecule 8 is a particularly graphic example of the need for a planar transition state. In 8, each Cl has an adjacent hydrogen trans to it, and if planarity of leaving groups were not required, anti-elimination could easily take place. However, the crowding of the rest of the molecule forces the dihedral angle to be $\sim 120^{\circ}$, and elimination of HCl from 8 is much slower than from corresponding nonbridged compounds.¹⁶ (Note that syn elimination from 8 is even less likely than anti-elimination.) Syn-elimination can take place from the trans isomer of 8 (dihedral angle $\sim 0^{\circ}$); this isomer reacted about eight times faster than 8.¹⁶

The examples so far given illustrate two points. (1) Anti-elimination requires a dihedral angle of 180° . When this angle cannot be achieved, anti-elimination is greatly slowed or prevented entirely. (2) For the simple systems so far discussed syn-elimination is not found to any significant extent unless anti elimination is greatly diminished by failure to achieve the 180° angle.

As noted in Chapter 4 (p. 223), six-membered rings are the only ones among rings of 4–13 members in which strain-free anti-periplanar conformations can be achieved. It is not surprising, therefore, that syn elimination is least common in six-membered rings. Cooke and Coke subjected cycloalkyltrimethylammonium hydroxides to elimination (**17-7**) and found the following percentages of synelimination with ring size: four-membered, 90%; five-membered, 46%; six-membered, 4% seven-membered, 31 to 37%.¹⁷ Note that the NMe₃⁺ group has a greater tendency to syn-elimination than do other common leaving groups, such as OTs, Cl, and Br.

Other examples of syn-elimination have been found in medium-ring compounds, where both cis and trans alkenes are possible (p. 184). As an illustration, we can look at experiments performed by, Svoboda, and Sicher.¹⁸ These workers subjected 1,1,4,4-tetramethyl-7-cyclodecyltrimethylammonium chloride (**9**) to

elimination and obtained mostly *trans*-, but also some *cis*-tetramethylcyclodecenes as products. (Note that *trans*-cyclodecenes, although stable, are less stable than the cis isomers). In order to determine the stereochemistry of the reaction, they repeated the elimination, this time using deuterated substrates. They found that

¹⁶Cristol, S.J.; Hause, N.L. J. Am. Chem. Soc. 1952, 74, 2193.

¹⁷Cooke, Jr., M.P.; Coke, J.L. *J. Am. Chem. Soc.* **1968**, *90*, 5556. See also, Coke, J.L.; Smith, G.D.; Britton, Jr., G.H. *J. Am. Chem. Soc.* **1975**, *97*, 4323.

¹⁸Závada, J.; Svoboda, M.; Sicher, J. Tetrahedron Lett. **1966**, 1627; Collect. Czech. Chem. Commun. **1968**, 33, 4027.

when 9 was deuterated in the trans position $(H_t = D)$, there was a substantial isotope effect in the formation of *both* cis and trans alkenes, but when **9** was deuterated in the cis position $(H_c = D)$, there was *no* isotope effect in the formation of either alkene. Since an isotope effect is expected for an E2 mechanism,¹⁹ these results indicated that only the trans hydrogen (H_t) was lost, whether the product was the cis or the trans isomer.²⁰ This in turn means that the cis isomer must have been formed by anti-elimination and the trans isomer by syn-elimination. (Anti-elimination could take place from approximately the conformation shown, but for syn elimination the molecule must twist into a conformation in which the C–H_t and C–NMe₃⁺ bonds are syn-periplanar.) This remarkable result, called the syn-anti dichotomy, has also been demonstrated by other types of evidence.²¹ The fact that syn-elimination in this case predominates over anti (as indicated by the formation of trans isomer in greater amounts than cis) has been explained by conformational factors.²² The syn-anti dichotomy has also been found in other medium-ring systems (8-12 membered),²³ although the effect is greatest for 10-membered rings. With leaving groups,²⁴ the extent of this behavior decreases in the order $^+NMe_3 > OTs >$ Br > Cl, which parallels steric requirements. When the leaving group is uncharged, syn-elimination is favored by strong bases and by weakly ionizing solvents.²⁵

Syn-elimination and the syn—anti dichotomy have also been found in open-chain systems, although to a lesser extent than in medium-ring compounds. For example, in the conversion of 3-hexyl-4-*d*-trimethylammonium ion to 3-hexene with potassium *sec*-butoxide, ~67% of the reaction followed the syn–anti dichotomy.²⁶ In general syn-elimination in open-chain systems is only important in cases where certain types of steric effect are present. One such type is compounds in which substituents are found on both the β' and the γ carbons (the unprimed letter refers to the branch in which the elimination takes place). The factors that cause these results are not

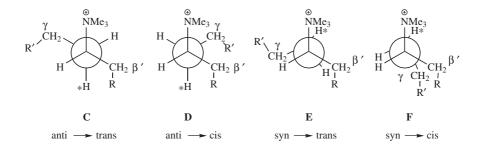
¹⁹Other possible mechanisms, such as E1cB (p. 1488) or α',β elimination (p. 1524), were ruled out in all these cases by other evidence.

²⁰This conclusion has been challenged by Coke, J.L. Sel. Org. Transform 1972, 2, 269.

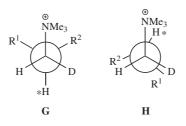
²¹Sicher, J.; Závada, J. Collect. Czech. Chem. Commun. 1967, 32, 2122; Závada, J.; Sicher, J. Collect. Czech. Chem. Commun. 1967, 32, 3701. For a review, see Bartsch, R.A.; Závada, J. Chem. Rev. 1980, 80, 453.

²²For discussions, see Bartsch, R.A.; Závada, J. Chem. Rev. **1980**, 80, 453; Coke, J.L. Sel. Org. Transform. **1972**, 2, 269; Sicher, J. Angew. Chem. Int. Ed. **1972**, 11, 200; Pure Appl. Chem. **1971**, 25, 655.

²³For example, see Coke, J.L.; Mourning, M.C. *J. Am. Chem. Soc.* **1968**, 90, 5561, where the experiment was performed on cyclooctyltrimethylammonium hydroxide, and *trans*-cyclooctene was formed by a 100% syn mechanism, and *cis*-cyclooctene by a 51% syn and 49% anti mechanism.


²⁴For examples with other leaving groups, see Sicher, J.; Jan, G.; Schlosser, M. Angew. Chem. Int. Ed. **1971**, 10, 926; Závada, J.; Pánková, M. Collect. Czech. Chem. Commun. **1980**, 45, 2171, and references.cited therein.

²⁵See, for example, Sicher, J.; Závada, J. Collect. Czech. Chem. Commun. 1968, 33, 1278.


²⁶Bailey, D.S.; Saunders Jr., W.H. J. Am. Chem. Soc. 1970, 92, 6904. For other examples of synelimination and the syn-anti dichotomy in open-chain systems, see Pánková, M.; Vítek, A.; Vasíšková, S.; Řeřicha, R.; Závada, J. Collect. Czech. Chem. Commun. 1972, 37, 3456; Schlosser, M.; An, T.D. Helv. Chim. Acta 1979, 62, 1194; Sugita, T.; Nakagawa, J.; Nishimoto, K.; Kasai, Y.; Ichikawa, K. Bull. Chem. Soc. Jpn. 1979, 52, 871; Pánková, M.; Kocián, O.; Krupička, J.; Závada, J. Collect. Czech. Chem. Commun. 1983, 48, 2944.

CHAPTER 17

completely understood, but the following conformational effects have been proposed as a partial explanation.²⁷ The two anti- and two syn-periplanar conformations are, for a quaternary ammonium salt:

In order for an E2 mechanism to take place, a base must approach the proton marked *. In C, this proton is shielded on both sides by R and R'. In D, the shielding is on only one side. Therefore, when anti-elimination does take place in such systems, it should give more cis product than trans. Also, when the normal anti elimination pathway is hindered sufficiently to allow the syn pathway to compete, the anti \rightarrow trans route should be diminished more than the anti \rightarrow cis route. When synelimination begins to appear, it seems clear that E, which is less eclipsed than F, should be the favored pathway and syn-elimination should generally give the trans isomer. In general, deviations from the syn-anti dichotomy are greater on the trans side than on the cis. Thus, trans alkenes are formed partly or mainly by syn-elimination, but cis alkenes are formed entirely by anti-elimination. Predominant synelimination has also been found in compounds of the form $R^1R^2CHCHDNMe_3^+$, where R^1 and R^2 are both bulky.²⁸ In this case, the conformation leading to synelimination (H) is also less strained than G, which gives anti-elimination. The **G** compound has three bulky groups (including NMe_3^+) in the gauche position to each other.

It was mentioned above that weakly ionizing solvents promote syn-elimination when the leaving group is uncharged. This is probably caused by ion pairing, which

²⁷Bailey, D.S.; Saunders, Jr., W.H. J. Am. Chem. Soc. **1970**, 92, 6904; Chiao, W.; Saunders, Jr., W.H. J. Am. Chem. Soc. **1977**, 99, 6699.

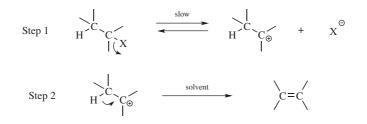
²⁸Dohner, B.R.; Saunders Jr., W.H. J. Am. Chem. Soc. 1986, 108, 245.

is greatest in nonpolar solvents.²⁹ Ion pairing can

cause syn-elimination with an uncharged leaving group by means of the transition state shown in **10**. This effect was graphically illustrated by elimination from 1,1,4,4-tetramethyl-7-cyclodecyl bromide.³⁰ The ratio of syn-to-anti-elimination when this compound was treated with *t*-BuOK in the nonpolar benzene was 55.0. But when the crown ether dicyclohexano-18-crown-6 was added (this compound selectively removes K⁺ from the *t*-BuO⁻ K⁺ ion pair and thus leaves *t*-BuO⁻ as a free ion), the syn/anti ratio decreased to 0.12. Large decreases in the syn/anti ratio on addition of the crown ether were also found with the corresponding tosylate and with other nonpolar solvents.³¹ However, with positively charged leaving groups the effect is reversed. Here, ion pairing *increases* the amount of anti-elimination.³² In this case, a relatively free base (e.g., PhO⁻) can be attracted to the leaving group, putting it in a favorable position for attack on the syn β hydrogen, while ion pairing would reduce this attraction.

We can conclude that anti-elimination is generally favored in the E2 mechanism, but that steric (inability to form the anti-periplanar transition state), conformational, ion pairing, and other factors cause syn-elimination to intervene (and even predominate) in some cases.

²⁹For reviews of ion pairing in this reaction, see Bartsch, R.A.; Závada, J. Chem. Rev. 1980, 80, 453; Bartsch, R.A. Acc. Chem. Res. 1975, 8, 239.

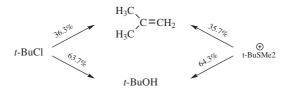

³¹For other examples of the effect of ion pairing, see Bayne, W.F.; Snyder, E.I. *Tetrahedron Lett.* 1971, 571; Bartsch, R.A.; Wiegers, K.E. *Tetrahedron Lett.* 1972, 3819; Fiandanese, V.; Marchese, G.; Naso, F.; Sciacovelli, O. J. Chem. Soc. Perkin Trans. 2 1973, 1336; Borchardt, J.K.; Swanson, J.C.; Saunders, Jr., W.H. J. Am. Chem. Soc. 1974, 96, 3918; Mano, H.; Sera, A.; Maruyama, K. Bull. Chem. Soc. Jpn. 1974, 47, 1758; Závada, J.; Pánková, M.; Svoboda, M. Collect. Czech. Chem. Commun. 1976, 41, 3778; Baciocchi, E.; Ruzziconi, R.; Sebastiani, G.V. J. Org. Chem. 1979, 44, 3718; Croft, A.P.; Bartsch, R.A. Tetrahedron Lett. 1983, 24, 2737; Kwart, H.; Gaffney, A.H.; Wilk, K.A. J. Chem. Soc. Perkin Trans. 2 1984, 565.

³²Borchardt, J.K.; Saunders Jr., W.H. J. Am. Chem. Soc. 1974, 96, 3912.

³⁰Svoboda, M.; Hapala, J.; Závada, J. Tetrahedron Lett. 1972, 265.

The E1 Mechanism

The E1 mechanism is a two-step process in which the rate-determining step is ionization of the substrate to give a carbocation that rapidly loses a β proton to a base, usually the solvent:


The IUPAC designation is $D_N + D_E$ (or $D_N + D_H$). This mechanism normally operates without an *added* base. Just as the E2 mechanism is analogous to and competes with the $S_N 2$, so is the E1 mechanism related to the $S_N 1$. In fact, the first step of the E1 is exactly the same as that of the $S_N 1$ mechanism. The second step differs in that the solvent pulls a proton from the β carbon of the carbocation rather than attacking it at the positively charged carbon, as in the $S_N 1$ process. In a pure E1 reaction (without ion pairs, etc.), the product should be completely nonstereospecific, since the carbocation is free to adopt its most stable conformation before giving up the proton.

Some of the evidence for the E1 mechanism is as follows:

- 1. The reaction exhibits first-order kinetics (in substrate) as expected. Of course, the solvent is not expected to appear in the rate equation, even if it were involved in the rate-determining step (p. 316), but this point can be easily checked by adding a small amount of the conjugate base of the solvent. It is generally found that such an addition does not increase the rate of the reaction. If this more powerful base does not enter into the rate-determining step, it is unlikely that the solvent does. An example of an E1 mechanism with a rate-determining second step (proton transfer) has been reported.³³
- **2.** If the reaction is performed on two molecules that differ only in the leaving group (e.g., *t*-BuCl and *t*-BuSMe₂⁺), the rates should obviously be different, since they depend on the ionizing ability of the molecule. However, once the carbocation is formed, if the solvent and the temperature are the same, it should suffer the same fate in both cases, since the nature of the leaving group does not affect the second step. This means that *the ratio of elimination to substitution should be the same*. The compounds mentioned in the example were solvolyzed at 65.3°C in 80% aqueous ethanol with the following results:³⁴

³³Baciocchi, E.; Clementi, S.; Sebastiani, G.V.; Ruzziconi, R. J. Org. Chem. 1979, 44, 32.

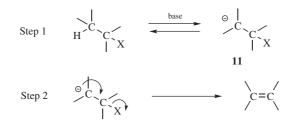
³⁴Cooper, K.A.; Hughes, E.D.; Ingold, C.K.; MacNulty, B.J. J. Chem. Soc. 1948, 2038.

Although the rates were greatly different (as expected with such different leaving groups), the product ratios were the same, within 1%. If this had taken place by a second-order mechanism, the nucleophile would not be expected to have the same ratio of preference for attack at the β hydrogen compared to attack at a *neutral* chloride as for attack at the β hydrogen compared to attack at a *positive* SMe₂ group.

- **3.** Many reactions carried out under first-order conditions on systems where E2 elimination is anti proceed quite readily to give alkenes where a cis hydrogen must be removed, often in preference to the removal of a trans hydrogen. For example, menthyl chloride (**2**, p. 1482), which by the E2 mechanism gave only **5**, under E1 conditions gave 68% **6** and 32% **5**, since the steric nature of the hydrogen is no longer a factor here, and the more stable alkene (Zaitsev's rule, p. 1482) is predominantly formed.
- **4.** If carbocations are intermediates, we should expect rearrangements with suitable substrates. These have often been found in elimination reactions performed under E1 conditions.

E1 reactions can involve ion pairs, just as is true for S_N1 reactions (p. 437).³⁵ This effect is naturally greatest for nondissociating solvents: It is least in water, greater in ethanol, and greater still in acetic acid. It has been proposed that the ion-pair mechanism (p. 439) extends to elimination reactions too, and that the S_N1 , S_N2 , E1, and E2 mechanisms possess in common an ion-pair intermediate, at least occasionally.³⁶

The E1cB Mechanism³⁷


In the E1 mechanism, X leaves first and then H. In the E2 mechanism, the two groups leave at the same time. There is a third possibility: The H leaves first,

³⁵Cocivera, M.; Winstein, S. J. Am. Chem. Soc. **1963**, 85, 1702; Smith, S.G.; Goon, D.J.W. J. Org. Chem. **1969**, 34, 3127; Bunnett, J.F.; Eck, D.L. J. Org. Chem. **1971**, 36, 897; Sridharan, S.; Vitullo, V.P. J. Am. Chem. Soc. **1977**, 99, 8093; Seib. R.C.; Shiner Jr., V.J.; Sendijarević, V.; Humski, K. J. Am. Chem. Soc. **1978**, 100, 8133; Jansen, M.P.; Koshy, K.M.; Mangru, N.N.; Tidwell, T.T. J. Am. Chem. Soc. **1981**, 103, 3863; Coxon, J.M.; Simpson, G.W.; Steel, P.J.; Whiteling, S.C. Tetrahedron **1984**, 40, 3503; Thibblin, A. J. Am. Chem. Soc. **1987**, 109, 2071; J. Phys. Org. Chem. **1989**, 2, 15.

³⁶Sneen, R.A. Acc. Chem. Res. **1973**, 6, 46; Thibblin, A.; Sidhu, H. J. Chem. Soc. Perkin Trans. 2 **1994**, 1423. See, however, McLennan, D.J. J. Chem. Soc. Perkin Trans. 2 **1972**, 1577.

³⁷For reviews, see Cockerill, A.F.; Harrison, R.G., in Bamford, C.H.; Tipper, C.F.H. *Comprehensive Chemical Kinetics*, Vol. 9, Elsevier, NY, **1973**, pp. 158–178; Hunter, D.H. *Intra-Sci. Chem. Rep.* **1973**, 7(3), 19; McLennan, D.J. *Q. Rev. Chem. Soc.* **1967**, 21, 490. For a general discussion, see Koch, H.F. *Acc. Chem. Res.* **1984**, 17, 137.

and then the X. This is a two-step process, called the E1cB *mechanism*,³⁸ or the *carbanion mechanism*, since the intermediate is a carbanion:

The name E1cB comes from the fact that it is the conjugate base of the substrate that is giving up the leaving group (see the S_N1cB mechanism, p. 521). The IUPAC designation is $A_nD_E + D_N$ or $A_{xh}D_H + D_N$ (see p. 420). We can distinguish three limiting cases: (1) The carbanion returns to starting material faster than it forms product: step 1 is reversible; step 2 is slow. (2) Step 1 is the slow step, and formation of product is faster than return of the carbanion to starting material. In this case, step 1 is essentially irreversible. (3) Step 1 is rapid, and the carbanion goes slowly to product. This case occurs only with the most stable carbanions. Here, too, step 1 is essentially irreversible. These cases have been given the designations: (1) $(E1cB)_R$, (2) $(E1cB)_I$ (or $E1cB_{irr}$), and (3) $(E1)_{anion}$. Their characteristics are listed in Table 17.1.³⁹ Investigations of the reaction order are generally not very useful (except for case 3, which is first order), because cases 1 and 2 are second order and thus difficult or impossible to distinguish from the E2 mechanism by this procedure.⁴⁰ We would expect the greatest likelihood of finding the E1cB mechanism in substrates that have (a) a poor nucleofuge and (b) an acidic hydrogen, and most investigations have concerned such substrates. The following is some of the evidence in support of the E1cB mechanism:

 The first step of the (E1cB)_R mechanism involves a reversible exchange of protons between the substrate and the base. In that case, if deuterium is present in the base, recovered starting material should contain deuterium. This was found to be the case in the treatment of Cl₂C=CHCl with NaOD to give ClC≡CCl. When the reaction was stopped before completion, there was

³⁸For a discussion, see Ryberg, P.; Matsson, O. J. Org. Chem. 2002, 67, 811.

³⁹This table, which appears in Cockerill, A.F.; Harrison, R.G. in Bamford, C.H.; Tipper, C.F.H. *Comprehensive Chemical Kinetics*, Vol. 9, Elsevier, NY, *1973*, p. 161, was adapted from a longer one, in Bordwell, F.G. *Acc. Chem. Res. 1972*, *5*, 374, see p. 375.

⁴⁰(E1cB)_I cannot be distinguished from E2 by this means, because it has the identical rate law: Rate = k[substrate][B⁻]. The rate law for (E1cB)_R is different: Rate = k[substrate][B⁻]/[BH], but this is often not useful because the only difference is that the rate is also dependent (inversely) on the concentration of the conjugate acid of the base, and this is usually the solvent, so that changes in its concentration cannot be measured.

B: + (D) H - C - C - X

	/ α \						
Mechanism	Kinetic ^a Order	β-Hydrogen Exchange Faster Than Elimination	General or Specific Base Catalysis	$k_{ m H}/k_{ m D}$	Electron Withdrawal at $C\beta^d$	Electron release at $C\alpha^d$	Leaving- Group Isotope Effect or Element Effect
(E1) _{anion}	1	Yes	General ^c	1.0	Rate decrease	Rate increase	Substantial
(E1cB) _R	2	Yes	Specific	1.0	Small rate increase	Small rate increase	Substantial
(E1cB) _{ip}	2	No	General ^e	$1.0 \rightarrow 1.2$	Small rate increase	Small rate increase	Substantial
(E1cB) _I	2	No	General	$2 \rightarrow 8$	Rate increase	Little effect	Small to negligible
E2 ^b	2	No	General	$2 \rightarrow 8$	Rate increase	Small rate increase	Small

 \longrightarrow B-H + C=C + X^{\ominus}

TABLE 17.1. Kinetic Predictions for Base-Induced β-Eliminations³⁹

^aAll mechanism exhibit first-order kinetics in substrate.

^bOnly transition states with considerable carbanion character considered in this table.

^cSpecific base catalysis predicted if extent of substrate ionization reduced from almost complete.

^dEffect on rate assuming no change in mechanism is caused; steric factors upon substitution at C α and rise to C β have not been considered. The rate reductions are geared to substituent effects such as those giving rise to Hammett reaction constants on β - and α -aryl substitution.

^eDepends on whether an ion pair assists in removal of leaving group.

deuterium in the recovered alkene.⁴¹ A similar result was found for pentahaloethanes.⁴² These substrates are relatively acidic. In both cases the electron-withdrawing halogens increase the acidity of the hydrogen, and in the case of trichloroethylene there is the additional factor that a hydrogen on an sp^2 carbon is more acidic than one on an sp^3 carbon (p. 388). Thus, the E1cB mechanism is more likely to be found in eliminations yielding triple bonds than in those giving double bonds. Another likely place for the E1cB mechanism should be in reaction of a substrate like PhCH₂CH₂Br, since the carbanion is stabilized by resonance with the phenyl group. Nevertheless, no deuterium exchange was found here.⁴³ If this type of evidence is a guide, then it may be inferred that the (E1cB)_R mechanism is quite rare, at least for eliminations with common leaving groups such as Br, Cl, or OTs, which yield C=C double bonds.

⁴¹Houser, J.J.; Bernstein, R.B.; Miekka, R.G.; Angus, J.C. J. Am. Chem. Soc. 1955, 77, 6201.

⁴²Hine, J.; Wiesboeck, R.; Ghirardelli, R.G. *J. Am. Chem. Soc.* **1961**, 83, 1219; Hine, J.; Wiesboeck, R.; Ramsay, O.B. *J. Am. Chem. Soc.* **1961**, 83, 1222.

⁴³Skell, P.S.; Hauser, C.R. J. Am. Chem. Soc. 1945, 67, 1661.

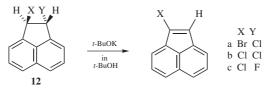
2. When the reaction

$$p$$
-NO₂C₆H₄--CH₂--CH₂--NR₄ + B^O ----- p -NO₂C₆H₄--CH₂=CH₂ + BH + NR₃

was carried out in water containing acetohydroxamate buffers, a plot of the rate against the buffer concentration was curved and the rate leveled off at high buffer concentrations, indicating a change in rate-determining step.⁴⁴ This rules out an E2 mechanism, which has only one step.⁴⁵ When D₂O was used instead of H₂O as solvent, there was an initial inverse solvent isotope effect of 7.7 (the highest inverse solvent isotope effect yet reported).

That is, the reaction took place faster in D_2O than in H_2O . This is compatible only with an E1cB mechanism in which the proton-transfer step is not entirely rate determining. The isotope effect arises from a partitioning of the carbanion intermediate **11**. This intermediate either can go to product or it can revert to starting compound, which requires taking a proton from the solvent. In D_2O , the latter process is slower (because the O–D bond of D_2O cleaves less easily than the O–H bond of H_2O), reducing the rate at which **11** returns to starting compound. With the return reaction competing less effectively, the rate of conversion of **11** to product is increased.

3. We have predicted that the E1cB mechanism would most likely be found with substrates containing acidic hydrogens and poor leaving groups. Compounds of the type ZCH₂CH₂OPh, where Z is an electron-withdrawing group (e.g., NO₂, SMe₂⁺, ArSO₂, CN, COOR), belong to this category, because OPh is a very poor leaving group (p. 438). There is much evidence to show that the mechanism here is indeed E1cB.⁴⁶ Isotope effects, measured for MeSOCD₂CH₂OPh and Me₂S⁺CD₂CH₂OPh with NaOD in D₂O, are ~ 0.7 . This is compatible with an (E1cB)_R mechanism, but not with an E2 mechanism for which an isotope effect of perhaps 5 might be expected (of course, an E1 mechanism is precluded by the extremely poor nucleofugal ability of OPh). The fact that $k_{\rm H}/k_{\rm D}$ is less than the expected value of 1 is attributable to solvent and secondary isotope effects. Among other evidence for an E1cB mechanism in these systems is that changes in the identity of Z had a dramatic effect on the relative rates: a span of 10^{11} between NO₂ and COO⁻. Note that elimination from substrates of the type RCOCH₂CH₂Y is the reverse of Michael-type addition to C=C bonds. We have seen (p. \$such addition involves initial attack by a nucleophile Y and subsequent attack by a proton. Thus the initial loss of a proton from substrates of this type (i.e., an E1cB mechanism) is in accord with the principle of microscopic


⁴⁴Keeffe, J.R.; Jencks, W.P. J. Am. Chem. Soc. 1983, 105, 265.

⁴⁵For a borderline E1cB–E2 mechanism, see Jia, Z.S.; Rudziń sci, J.; Panethy, P.; Thibblin, A. J. Org. Chem. **2002**, 67, 177.

⁴⁶Cann, P.F.; Stirling, C.J.M. J. Chem. Soc. Perkin Trans. 2 1974, 820. For other examples; see Fedor, L.R. J. Am. Chem. Soc. 1969, 91, 908; More O'Ferrall, R.A.; Slae, S. J. Chem. Soc. B 1970, 260; Kurzawa, J.; Leffek, K.T. Can. J. Chem. 1977, 55, 1696.

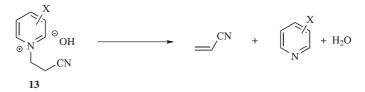
reversibility.⁴⁷ It may also be recalled that benzyne formation (p. 859) can occur by such a process. It has been suggested that all base-initiated eliminations wherein the proton is activated by a strong electron-with-drawing group are E1cB reactions,⁴⁸ but there is evidence that this is not the case that when there is a good nucleofuge, the mechanism is E2 even when strong electron-withdrawing groups are present.⁴⁹ On the other hand, Cl⁻ has been found to be a leaving group in an E1cB reaction.⁵⁰

Of the three cases of the E1cB mechanism, the one most difficult to distinguish from E2 is $(E1cB)_I$. One way to make this distinction is to study the effect of a change in leaving group. This was done in the case of the three acenaphthylenes **12**, where it was found that (*1*) the three rates were fairly similar, the largest being only about

four times that of the smallest, and (2) in compound c (X = Cl, Y = F), the only product contained Cl and no F, that is, only the poorer nucleofuge F departed while Cl remained.⁵¹ Result (1) rules out all the E1cB mechanisms except (E1cB)_I, because the others should all have considerable leaving group effects (Table 17.1). An ordinary E2 mechanism should also have a large leaving group effect, but an E2 mechanism with substantial carbanionic character (see the next section) might not. However, no E2 mechanism can explain result (2), which can be explained by the fact that an a Cl is more effective than an a F in stabilizing the planar carbanion that remains when the proton is lost. Thus (as in the somewhat similar case of aromatic nucleophilic substitution, see p. 868), when X⁻ leaves in the second step, the one that leaves is not determined by which is the better nucleofuge, but by which has had its β hydrogen removed.⁵² Additional evidence for the existence of the

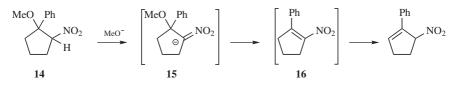
⁴⁸Bordwell, F.G.; Vestling, M.M.; Yee, K.C. *J. Am. Chem. Soc.* **1970**, *92*, 5950; Bordwell, F.G. *Acc. Chem. Res.* **1972**, *5*, 374.

⁴⁹Marshall, D.R.; Thomas, P.J.; Stirling, C.J.M. J. Chem. Soc. Perkin Trans. 2 1977, 1898, 1914; Banait, N.S.; Jencks, W.P. J. Am. Chem. Soc. 1990, 112, 6950.


⁵⁰Ölwegård, M.; McEwen, I.; Thibblin, A.; Ahlberg, P. J. Am. Chem. Soc. 1985, 107, 7494.

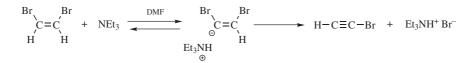
⁵¹Baciocchi, E.; Ruzziconi, R.; Sebastiani, G.V. J. Org. Chem. 1982, 47, 3237.

⁵²For other evidence for the existence of the (E1cB)₁ mechanism, see Bordwell, F.G.; Vestling, M.M.; Yee, K.C. J. Am. Chem. Soc. **1970**, *92*, 5950; Fedor, L.R.; Glave, W.R. J. Am. Chem. Soc. **1971**, *93*, 985; Redman, R.P.; Thomas, P.J.; Stirling, C.J.M. J. Chem. Soc. Perkin Trans. 2 **1978**. 1135; Thibblin, A. Chem. Scr. **1980**, *15*, 121; Carey, E.; More O'Ferrall, R.A.; Vernon, N.M. J. Chem. Soc. Perkin Trans. 2 **1982** 1581; Baciocchi, E.; Ruzziconi, R. J. Org. Chem. **1984**, *49*, 3395; Jarczewski, A.; Waligorska, M.; Leffek, K.T. Can. J Chem. **1985**, *63*, 1194; Gula, M.J.; Vitale, D.E.; Dostal, J.M.; Trometer, J.D.; Spencer, T.A. J. Am. Chem. Soc. **1988** 110, 4400; Garay, R.O.; Cabaleiro, M.C. J. Chem. Res. (S), **1988**, 388; Gandler, J.R.; Storer, J.W.; Ohlberg, D.A.A. J. Am. Chem. Soc. **1990**, *112*, 7756.


⁴⁷Patai, S.; Weinstein, S.; Rappoport, Z. J. Chem. Soc. **1962**, 1741. See also, Hilbert, J.M.; Fedor, L.R. J. Org. Chem. **1978**, 43, 452.

 $(E1cB)_I$ mechanism was the observation of a change in the rate-determining step in the elimination reaction of *N*-(2-cyanoethyl)pyridinium

ions **13**, treated with base, when X was changed.⁵³ Once again, the demonstration that two steps are involved precludes the one-step E2 mechanism.


4. An example of an (E1)_{anion} mechanism has been found with the substrate **14**, which when treated with methoxide ion undergoes elimination to **16**, which is unstable under the reaction conditions and rearranges as

shown.⁵⁴ Among the evidence for the proposed mechanism in this case were kinetic and isotope-effect results, as well as the spectral detection of **15**.⁵⁵

5. In many eliminations to form C=O and $C\equiv N$ bonds the initial step is loss of a positive group (normally a proton) from the oxygen or nitrogen. These may also be regarded as E1cB processes.

There is evidence that some E1cB mechanisms can involve carbanion ion pairs, for example, 56

This case is designated (E1cB)_{ip}; its characteristics are shown in Table 17.1.

⁵³Bunting, J.W.; Toth, A.; Heo, C.K.M.; Moors, R.G. J. Am. Chem. Soc. **1990**, 112, 8878. See also, Bunting, J.W.; Kanter, J.P. J. Am. Chem. Soc. **1991**, 113, 6950.

⁵⁴Bordwell, F.G.; Yee, K.C.; Knipe, A.C. J. Am. Chem. Soc. 1970, 92, 5945.

⁵⁵For other examples of this mechanism, see Berndt, A. Angew. Chem. Int. Ed. **1969**, 8, 613; Albeck, M.; Hoz, S.; Rappoport, Z. J. Chem. Soc. Perkin Trans. 2 **1972**, 1248; **1975**, 628.

 ⁵⁶Kwok, W.K.; Lee, W.G.; Miller, S.I. J. Am. Chem. Soc. 1969, 91, 468. See also Lord, E.; Naan, M.P.;
 Hall, C.D. J. Chem. Soc. B 1971, 220; Rappoport, Z.; Shohamy, E. J. Chem. Soc. B 1971, 2060;
 Fiandanese, V.; Marchese, G.; Naso, F. J. Chem. Soc., Chem. Commun. 1972, 250; Koch, H.F.; Dahlberg,
 D.B.; Toczko, A.G.; Solsky, R.L. J. Am. Chem. Soc. 1973, 95, 2029; Hunter, D.H.; Shearing, D.J. J. Am.
 Chem. Soc. 1973, 95, 8333; Thibblin, A.; Ahlberg, P. J. Am. Chem. Soc. 1979, 101, 7311; Petrillo, G.;
 Novi, M.; Garbarino, G.; Dell'Erba, C.; Mugnoli, A. J. Chem. Soc. Perkin Trans. 2 1985, 1291.

The E1-E2-E1cB Spectrum

In the three mechanisms so far considered, the similarities are greater than the differences. In each case, there is a leaving group that comes off with its pair of electrons and another group (usually hydrogen) that comes off without them. The only difference is in the order of the steps. It is now generally accepted that there is a spectrum of mechanisms ranging from one extreme, in which the leaving group departs well before the proton (pure E1), to the other extreme, in which the proton comes off first and then, after some time, the leaving group follows (pure E1cB). The *pure* E2 case would be somewhere in the middle, with both groups leaving simultaneously. However, most E2 reactions are not exactly in the middle, but somewhere to one side or the other. For example, the nucleofuge might depart just before the proton. This case may be described as an E2 reaction with a small amount of E1 character. The concept can be expressed by the question: In the transition state, which bond (C–H or C–X) has undergone more cleavage?⁵⁷

One way to determine just where a given reaction stands on the E1-E2-E1cB spectrum is to study isotope effects, which ought to tell something about the behavior of bonds in the transition state.⁵⁸ For example, CH₃CH₂NMe₃⁺ showed a nitrogen isotope effect (k^{14}/k^{15}) of 1.017, while PhCH₂CH₂NMe₃⁺ gave a corresponding value of 1.009.⁵⁹ It would be expected that the phenyl group would move the reaction toward the E1cB side of the line, which means that for this compound the C–N bond is not as greatly broken in the transition state as it is for the unsubstituted one. The isotope effect bears this out, for it shows that in the phenyl compound, the mass of the nitrogen has less effect on the reaction rate than it does in the unsubstituted compound. Similar results have been obtained with SR₂⁺ leaving groups by the use of ${}^{32}S/{}^{34}S$ isotope effects⁶⁰ and with Cl (${}^{35}Cl/{}^{37}Cl$).⁶¹ The position of reactions along the spectrum has also been studied from the other side of the newly forming double bond by the use of H/D and H/T isotope effects, ⁶² although interpretation of these results is clouded by the fact that β hydrogen isotope effects are expected to change smoothly from small to large to small again as the degree of transfer of the

⁵⁷For discussions, see Cockerill, A.F.; Harrison, R.G., in Bamford, C.H.; Tipper, C.F.H. *Comprehensive Chemical Kinetics*, Vol. 9, Elsevier, NY, **1973**, pp. 178–189; Saunders, Jr., W.H. *Acc. Chem. Res.* **1976**, 9, 19; Bunnett, J.F. *Surv. Prog. Chem.* **1969**, 5, 53; Saunders, Jr., W.H.; Cockerill, A.F. *Mechanisms of Elimination Reactions*, Wiley, NY, **1973**, pp. 47–104; Bordwell, F.G. *Acc. Chem. Res.* **1972**, 5, 374.

⁵⁸For a review, see Fry, A. *Chem. Soc. Rev.* **1972**, *1*, 163. See also Hasan, T.; Sims, L.B.; Fry, A. J. Am. Chem. Soc. **1983**, 105, 3967; Pulay, A.; Fry, A. *Tetrahedron Lett.* **1986**, 27, 5055.

⁵⁹Ayrey, G.; Bourns, A.N.; Vyas, V.A. Can. J. Chem. **1963**, 41, 1759. Also see, Simon, H.; Müllhofer, G. Chem. Ber. **1963**, 96, 3167; **1964**, 97, 2202; Pure Appl. Chem. **1964**, 8, 379, 536; Smith, P.J.; Bourns, A.N. Can. J. Chem. **1970**, 48, 125.

 ⁶⁰Wu, S.; Hargreaves, R.T.; Saunders Jr., W.H. J. Org. Chem. 1985, 50, 2392, and references cited therein.
 ⁶¹Grout, A.; McLennan, D.J.; Spackman, I.H. J. Chem. Soc. Perkin Trans. 2 1977, 1758.

⁶²For example, see Hodnett, E.M.; Sparapany, J.J. Pure Appl. Chem. **1964**, 8, 385, 537; Finley, K.T.; Saunders, Jr., W.H. J. Am. Chem. Soc. **1967**, 89, 898; Ghanbarpour, A.; Willi, A.V. Liebigs Ann. Chem. **1975**, 1295; Simon, H.; Müllhofer, G. Chem. Ber. **1964**, 97, 2202; Thibblin, A. J. Am. Chem. Soc. **1988**, 110, 4582; Smith, P.J.; Amin, M. Can. J. Chem. **1989**, 67, 1457.

 β hydrogen from the β carbon to the base increases⁶³ (recall, p. \$\$\$, that isotope effects are greatest when the proton is half-transferred in the transition state), by the possibility of secondary isotope effects (e.g., the presence of a β deuterium or tritium may cause the leaving group to depart more slowly), and by the possibility of tunneling.⁶⁴ Other isotope-effect studies have involved labeled a or β carbon, labeled a hydrogen, or labeled base.⁵⁸

Another way to study the position of a given reaction on the spectrum involves the use of β -aryl substitution. Since a positive Hammet ρ value is an indication of a negatively charged transition state, the ρ value for substituted β -aryl groups should increase as a reaction moves from E1- to E1cB-like along the spectrum. This has been shown to be the case in a number of studies;⁶⁵ for example, ρ values of ArCH₂CH₂X increase as the leaving-group ability of X decreases. A typical set of ρ values was X = I, 2.07; Br, 2.14; Cl, 2.61; SMe₂⁺, 2.75; F, 3.12.⁶⁶ As we have seen, decreasing leaving-group ability correlates with increasing E1cB character.

Still another method measures volumes of activation.⁶⁷ These are negative for E2 and positive for E1cB mechanisms. Measurement of the activation volume therefore provides a continuous scale for deciding just where a reaction lies on the spectrum.

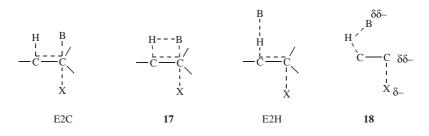
The E2C Mechanism⁶⁸

Certain alkyl halides and tosylates undergo E2 eliminations faster when treated with such weak bases as Cl^- in polar aprotic solvents or PhS⁻ than with the usual E2 strong bases, such as RO⁻ in ROH.⁶⁹ In order to explain these results, Parker

⁶³There is controversy as to whether such an effect has been established in this reaction: See Cockerill, A.F. *J. Chem. Soc. B* **1967**, 964; Blackwell, L.F. *J. Chem. Soc. Perkin Trans.* **2 1976**, 488.

⁶⁴For examples of tunneling in elimination reactions, see Miller, D.J.; Saunders, Jr., W.H. J. Org. Chem. 1981, 46, 4247 and previous papers in this series. See also, Shiner, Jr., V.J.; Smith, M.L. J. Am. Chem. Soc. 1961, 83, 593; McLennan, D.J. J. Chem. Soc. Perkin Trans. 2 1977, 1753; Fouad, F.M.; Farrell, P.G. Tetrahedron Lett. 1978, 4735; Koth, H.F.; McLennan, D.J.; Koch, J.G.; Tumas, W.; Dobson, B.; Koch, J.G. J. Am. Chem. Soc. 1983, 105, 1930; Kwart, H.; Wilk, K.A. J. Org. Chem. 1985, 50, 817; Amin, M.; Price, R.C.; Saunders, Jr., W.H. J. Am. Chem. Soc. 1990, 112, 4467.

⁶⁵Saunders Jr., W.H.; Bushman, D.G.; Cockerill, A.F. J. Am. Chem. Soc. **1968**, 90, 1775; Yano, Y.; Oae, S. Tetrahedron **1970**, 26, 27, 67; Blackwell, L.F.; Buckley, P.D.; Jolley, K.W.; MacGibbon, A.K.H. J. Chem. Soc. Perkin Trans. 2 **1973**, 169; Smith, P.J.; Tsui, S.K. J. Am. Chem. Soc. **1973**, 95, 4760; Can. J. Chem. **1974**, 52, 749.


⁶⁶DePuy, C.H.; Froemsdorf, D.H. J. Am. Chem. Soc. **1957**, 79, 3710; DePuy, C.H.; Bishop, C.A. J. Am. Chem. Soc. **1960**, 82, 2532, 2535.

⁶⁷Brower, K.R.; Muhsin, M.; Brower, H.E. J. Am. Chem. Soc. **1976**, 98, 779. For a review, see van Eldik, R.; Asano, T.; le Noble, W.J. Chem. Rev. **1989**, 89, 549.

⁶⁸For reviews, see McLennan, D.J. *Tetrahedron* **1975**, *31*, 2999; Ford, W.T. *Acc. Chem. Res.* **1973**, *6*, 410; Parker, A.J. *CHEMTECH* **1971**, 297.

⁶⁹For example; see Winstein, S.; Darwish, D.; Holness, N.J. J. Am. Chem. Soc. **1956**, 78, 2915; de la Mare, P.B.D.; Vernon, C.A. J. Chem. Soc. **1956**, 41; Eliel, E.L.; Ro, R.S. Tetrahedron **1958**, 2, 353; Bunnett, J.F.; Davis, G.T.; Tanida, H. J. Am. Chem. Soc. **1962**, 84, 1606; McLennan, D.J. J. Chem. Soc. B **1966**, 705, 709; Hayami, J.; Ono, N.; Kaji, A. Bull. Chem. Soc. Jpn. **1971**, 44, 1628.

and co-workers proposed⁷⁰ that there is a spectrum⁷¹ of E2 transition states in which the base can interact in the transition state with the α carbon, as well as with the β hydrogen. At one end of this spectrum is

a mechanism (called E2C) in which, in the transition state, the base interacts mainly with the carbon. The E2C mechanism is characterized by strong nucleophiles that are weak bases. At the other extreme is the normal E2 mechanism, here called E2H to distinguish it from E2C, characterized by strong bases. Transition state **17** represents a transition state between these extremes. Additional evidence⁷² for the E2C mechanism is derived from Brønsted equation considerations (p. 373), from substrate effects, from isotope effects, and from the effects of solvents on rates.

However, the E2C mechanism has been criticized, and it has been contended that all the experimental results can be explained by the normal E2 mechanism.⁷³ McLennan has suggested that the transition state is that shown as 18.⁷⁴ An ionpair mechanism has also been proposed.⁷⁵ Although the actual mechanisms involved may be a matter of controversy, there is no doubt that a class of elimination reactions exists that is characterized by second-order attack by weak bases.⁷⁶ These reactions also have the following general characteristics:⁷⁷ (*I*) they are favored by good leaving groups; (2) they are favored by polar aprotic solvents;

⁷³McLennan, D.J.; Wong, R.J. J. Chem. Soc. Perkin Trans. 2 1974, 1818, and references cited therein; Ford, W.T.; Pietsek, D.J.J. J. Am. Chem. Soc. 1975, 97, 2194; Loupy, A. Bull. Soc. Chim. Fr. 1975, 2662; Miller, D.J.; Saunders Jr., W.H. J. Am. Chem. Soc. 1979, 101, 6749; Bordwell, F.G.; Mrozack, S.R. J. Org. Chem. 1982, 47, 4813; Bunnett, J.F.; Migdal, C.A. J. Org. Chem. 1989, 54, 3037, 3041, and references cited therein.

⁷⁴McLennan, D.J.; Lim, G. *Aust. J. Chem.* **1983**, *36*, 1821. For an opposing view, see Kwart, H.; Gaffney, A. J. Org. Chem. **1983**, *48*, 4502.

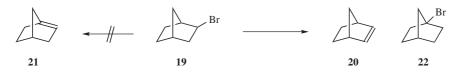
⁷⁵Ford, W.T. Acc. Chem. Res. **1973**, 6, 410.

⁷⁶For convenience, we will refer to this class of reactions as E2C reactions, though the actual mechanism is in dispute.

⁷⁷Beltrame, P.; Biale, G.; Lloyd, D.J.; Parker, A.J.; Ruane, M.; Winstein, S. *J. Am. Chem. Soc.* **1972**, *94*, 2240; Beltrame, P.; Ceccon, A.; Winstein, S. *J. Am. Chem. Soc.* **1972**, *94*, 2315.

⁷⁰Parker, A.J.; Ruane, M.; Biale, G.; Winstein, S. Tetrahedron Lett. 1968, 2113.

⁷¹This is apart from the E1-E2-E1cB spectrum.


 ⁷²Lloyd, D.J.; Parker, A.J. *Tetrahedron Lett.* 1968, 5183; 1970, 5029; Alexander, R.; Ko, E.C.F.; Parker, A.J.; Broxton, T.J. J. Am. Chem. Soc. 1968, 90, 5049; Ko, E.C.F.; Parker, A.J. J. Am. Chem. Soc. 1968, 90, 6447; Parker, A.J.; Ruane, M.; Palmer, D.A.; Winstein, S. J. Am. Chem. Soc. 1972, 94, 2228; Biale, G.; Parker, A.J.; Stevens, I.D.R.; Takahashi, J.; Winstein, S. J. Am. Chem. Soc. 1972, 94, 2228; Cook, D. J. Org. Chem. 1976, 41, 2173, and references cited therein; Muir, D.M.; Parker, A.J. Aust. J. Chem. 1983, 36, 1667; Kwart, H.; Wilk, K.A. J. Org. Chem. 1985, 50, 3038.

(3) the reactivity order is tertiary > secondary > primary, the opposite of the normal E2 order (p. 1503); (4) the elimination is always anti- (syn-elimination is not found), but in cyclohexyl systems, a diequatorial anti-elimination is about as favorable as a diaxial anti-elimination (unlike the normal E2 reaction, p. 1481); (5) they follow Zaitsev's rule (see below), where this does not conflict with the requirement for anti-elimination.

Regiochemistry of the Double Bond

With some substrates, a β hydrogen is present on only one carbon and (barring rearrangements) there is no doubt as to the identity of the product. For example, PhCH₂CH₂Br can give only PhCH=CH₂. However, in many other cases two or three alkenyl products are possible. In the simplest such case, a *sec*-butyl compound can give either 1- or 2-butene. There are a number of rules that enable us to predict, in many instances, which product will predominantly form.⁷⁸

1. No matter what the mechanism, a double bond does not go to a bridgehead carbon unless the ring sizes are large enough (Bredt's rule, see p. 229). This means, for example, not only that 19 gives only 20 and not 21 (indeed 21 is not a known compound), but also that 22 does not undergo elimination.

- **2.** No matter what the mechanism, if there is a double bond (C=C or C=O) or an aromatic ring already in the molecule that can be in conjugation with the new double bond, the conjugated product usually predominates, sometimes even when the stereochemistry is unfavorable (for an exception, see p. 1501).
- **3.** In the E1 mechanism the leaving group is gone before the choice is made as to which direction the new double bond takes. Therefore the direction is determined almost entirely by the relative stabilities of the two (or three) possible alkenes. In such cases, *Zaitsev's rule*⁷⁹ operates. This rule states that *the double bond goes mainly toward the most highly substituted carbon*. That is, a *sec*-butyl compound gives more 2-butene than 1-butene, and 3-bromo-2,3-dimethylpentane gives more 2,3-dimethyl-2-pentene than either 3,4-dimethyl-2-pentene or 2-ethyl-3-methyl-1-butene. Thus Zaitsev's rule predicts that the alkene predominantly formed will be the one with the largest possible number of alkyl groups on the C=C carbons, and in most cases this is what is found. From heat of combustion data (see p. 29) it is known that

⁷⁸For a review of orientation in cycloalkyl systems, see Hückel, W.; Hanack, M. Angew. Chem. Int. Ed. **1967**, *6*, 534.

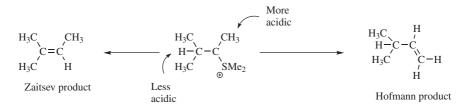
⁷⁹Often given the German spelling: Saytzeff.

alkene stability increases with alkyl substitution, although just why this should be is a matter of conjecture. The most common explanation is hyperconjugation. For E1 eliminations, Zaitsev's rule governs the orientation whether the leaving group is neutral or positive, since, as already mentioned, the leaving group is not present when the choice of direction is made. This statement does not hold for E2 eliminations, and it may be mentioned here, for contrast with later results, that E1 elimination of Me₂CHCHMeSMe₂⁺ gave 91% of the Zaitsev product and 9% of the other.⁸⁰ However, there are cases in which the leaving group affects the direction of the double bond in E1-eliminations.⁸¹ This may be attributed to ion pairs; that is, the leaving group is not completely gone when the hydrogen departs. Zaitsev's rule breaks down in cases where the non-Zaitsev product is more stable for steric reasons. For example, E1 or E1-like eliminations of 1,2-diphenyl-2-Xpropanes PhMeCXCH₂Ph were reported to give ~50% CH₂=CPhCH₂Ph, despite the fact that the double bond of the Zaitsev product (PhMeC=CHPh) is conjugated with two benzene rings.⁸²

4. For the anti E2 mechanism a trans β proton is necessary; if this is available in only one direction, that is the way the double bond will form. Because of the free rotation in acyclic systems (except where steric hindrance is great), this is a factor only in cyclic systems. Where trans β hydrogens are available on two or three carbons, two types of behavior are found, depending on substrate structure and the nature of the leaving group. Some compounds follow Zaitsev's rule and give predominant formation of the most highly substituted alkene, but others follow Hofmann's rule: The double bond goes mainly toward the least highly substituted carbon. although many exceptions are known, the following general statements can be made: In most cases, compounds containing uncharged nucleofuges (those that come off as negative ions) follow Zaitsev's rule, just as they do in E1 elimination, no matter what the structure of the substrate. However, elimination from compounds with charged nucleofuges, for example, NR_3^+ , SR_2^+ (those that come off as neutral molecules), follow Hofmann's rule if the substrate is acyclic,⁸³ but Zaitsev's rule if the leaving group is attached to a sixmembered ring.84

Much work has been devoted to searching for the reasons for the differences in orientation. Since Zaitsev orientation almost always gives the

⁸⁰de la Mare, P.B.D. Prog. Stereochem. **1954**, 1, 112.


⁸¹Cram, D.J.; Sahyun, M.R.V. J. Am. Chem. Soc. **1963**, 85, 1257; Silver, M.S. J. Am. Chem. Soc. **1961**, 83, 3482.

⁸²Ho, I.; Smith, J.G. Tetrahedron 1970, 26, 4277.

⁸³An example of an acyclic quaternary ammonium salt that follows Zaitsev's rule is found, in Feit, I.N.; Saunders, Jr., W.H. J. Am. Chem. Soc. **1970**, 92, 5615.

⁸⁴For examples where Zaitsev's rule is followed with charged leaving groups in cyclohexyl systems, see Gent, B.B.; McKenna, J. J. Chem. Soc. **1959**, 137; Hughes, E.D.; Wilby, J. J. Chem. Soc. **1960**, 4094; Brownlee, T.H.; Saunders Jr., W.H. Proc. Chem. Soc. **1961**, 314; Booth, H.; Franklin, N.C.; Gidley, G.C. J. Chem. Soc. C **1968**, 1891. For a discussion of the possible reasons for this, see Saunders, Jr., W.H.; Cockerill, A.F. Mechanisms of Elimination Reactions, Wiley, NY, **1973**, pp. 192–193.

thermodynamically more stable isomer, what needs to be explained is why in some cases the less stable Hofmann product predominates. Three explanations have been offered for the change in orientation in acyclic systems with a change from uncharged to charged nucleofuges. The first of these, by Hughes and Ingold,⁸⁵ is that Hofmann orientation is caused by the fact that the acidity of the β hydrogen is decreased by the presence of the electron-donating alkyl groups. For example, under E2 conditions Me₂CHCHMeSMe₂⁺ gives more of the Hofmann product; it is the more acidic hydrogen that is removed by the base.

Of course, the CH₃ hydrogens would still be more acidic than the Me₂CH hydrogen even if a neutral leaving group were present, but the explanation of Hughes and Ingold is that acidity matters with charged and not with neutral leaving groups, because the charged groups exert a strong electronwithdrawing effect, making differences in acidity greater than they are with the less electron-withdrawing neutral groups.⁸⁵ The explanation of Bunnett⁸⁶ is similar. According to this, the change to a positive leaving group causes the mechanism to shift toward the E1cB end of the spectrum, where there is more C-H bond breaking in the rate-determining step and where, consequently, acidity is more important. In this view, when there is a neutral leaving group, the mechanism is more E1-like, C-X bond breaking is more important, and alkene stability determines the direction of the new double bond. The third explanation, by H.C. Brown, is completely different. In this picture, field effects are unimportant, and the difference in orientation is largely a steric effect caused by the fact that charged groups are usually larger than neutral ones. A CH₃ group is more open to attack than a CH₂R group and a CHR₂ group is still less easily attacked. Of course, these considerations also apply when the leaving group is neutral, but, according to Brown, they are much less important here because the neutral groups are smaller and do not block access to the hydrogens as much. Brown showed that Hofmann elimination increases with the size of the leaving group. Thus the percentage of 1-ene obtained from CH₃CH₂CH₂CHXCH₃ was as follows (X listed in order of increasing size): Br, 31%; I, 30%; OTs, 48%; SMe₂⁺, 87%; SO₂Me, 89%;

⁸⁵For summaries of this position, see Ingold, C.K. Proc. Chem. Soc. **1962**, 265; Banthorpe, D.V.; Hughes,

E.D.; Ingold, C.K. J. Chem. Soc. 1960, 4054.

⁸⁶Bunnett, J.F. Surv. Prog. Chem. 1969, 5, 53.

NMe₃⁺, 98%.⁸⁷ Hofmann elimination was also shown to increase with increase in bulk of the substrate.⁸⁸ With large enough compounds, Hofmann orientation can be obtained even with halides, for example, *tert*-amyl bromide ogave 89% of the Hofmann product. Even those who believe in the acidity explanations concede that these steric factors operate in extreme cases.⁸⁹

There is one series of results incompatible with the steric explanation E2 elimination from the four 2-halopentanes gave the following percentages of 1-pentene: F, 83%; Cl, 37%; Br, 25%; I, 20%.⁹⁰ The same order was found for the four-2-halohexanes.⁹¹ Although there is some doubt about the relative steric requirements of Br, Cl, and I, there is no doubt that F is the smallest of the halogens, and if the steric explanation were the only valid one, the fluoroalkanes could not give predominant Hofmann orientation. Another result that argues against the steric explanation is the effect of changing the nature of the base. An experiment in which the effective size of the base was kept constant while its basicity was increased (by using as bases a series of $XC_6H_4O^-$ ions) showed that the percentage of Hofmann elimination increased with increasing base strength, although the size of the base did not change.⁹² These results are in accord with the explanation of Bunnett, since an increase in base strength moves an E2 reaction closer to the E1cB end of the spectrum. In further experiments, a large series of bases of different kinds was shown to obey linear free-energy relationships between basicity and percentage of Hofmann elimination,⁹³ although certain very large bases (e.g., 2,6-di-tert-butyl-phenoxide) did not obey the relationships, steric effects becoming important in these cases. How large the base must be before steric effects are observed depends on the pattern of alkyl substitution in the substrate, but not on the nucleofuge.⁹⁴ One further result may be noted. In the gas phase, elimination of H and BrH⁺ or H and ClH⁺ using Me₃N as the base predominantly followed Hofmann's rule,⁹⁵ although BrH⁺ and ClH⁺ are not very large.

⁸⁷Brown, H.C.; Wheeler, O.H. J. Am. Chem. Soc. 1956, 78, 2199.

⁸⁹For example, see Banthorpe, D.V.; Hughes, E.D.; Ingold, C.K. J. Chem. Soc. 1960, 4054.

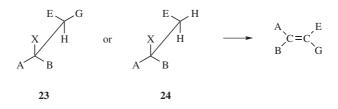
⁹⁰Saunders, Jr., W.H.; Fahrenholtz, S.R.; Caress, E.A.; Lowe, J.P.; Schreiber, M.R. J. Am. Chem. Soc. 1965, 87, 3401. Similar results were obtained by Brown, H.C.; Klimisch, R.L. J. Am. Chem. Soc. 1966, 88, 1425.

⁸⁸Brown, H.C.; Moritani, I.; Nakagawa, M. J. Am. Chem. Soc. **1956**, 78, 2190; Brown, H.C.; Moritani, I. J. Am. Chem. Soc. **1956**, 78, 2203; Bartsch, R.A. J. Org. Chem. **1970**, 35, 1334. See also, Charton, M. J. Am. Chem. Soc. **1975**, 97, 6159.

⁹¹Bartsch, R.A.; Bunnett, J.F. J. Am. Chem. Soc. 1968, 90, 408.

 ⁹²Froemsdorf, D.H.; Robbins, M.D. J. Am. Chem. Soc. **1967**, 89, 1737. See also, Froemsdorf, D.H.; Dowd,
 W.; Leimer, K.E. J. Am. Chem. Soc. **1966**, 88, 2345; Bartsch, R.A.; Kelly, C.F.; Pruss, G.M. Tetrahedron
 Lett. **1970**, 3795; Feit, I.N.; Breger, I.K.; Capobianco, A.M.; Cooke, T.W.; Gitlin, L.F. J. Am. Chem. Soc.
 1975, 97, 2477; Feit, I.N.; Suanders, Jr., W.H. J. Am. Chem. Soc. **1970**, 92, 5615.

⁹³Bartsch, R.A.; Roberts, D.K.; Cho, B.R. J. Org. Chem. 1979, 44, 4105.

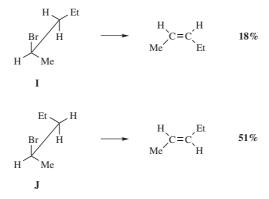

⁹⁴Bartsch, R.A.; Read, R.A.; Larsen, D.T.; Roberts, D.K.; Scott, K.J.; Cho, B.R. J. Am. Chem. Soc. **1979**, 101, 1176.

⁹⁵Angelini, G.; Lilla, G.; Speranza, M. J. Am. Chem. Soc. 1989, 111, 7393.

- **5.** Only a few investigations on the orientation of syn E2 eliminations have been carried out, but these show that Hofmann orientation is greatly favored over Zaitsev.⁹⁶
- 6. In the E1cB mechanism the question of orientation seldom arises because the mechanism is generally found only where there is an electron-withdrawing group in the β position, and that is where the double bond goes.
- 7. As already mentioned, E2C reactions show a strong preference for Zaitsev orientation.⁹⁷ In some cases, this can be put to preparative use. For example, the compound PhCH₂CHOTsCHMe₂ gave ~98% PhCH=CHCHMe₂ under the usual E2 reaction conditions (*t*-BuOK in *t*-BuOH). In this case, the double bond goes to the side with more hydrogens because on that side it will be able to conjugate with the benzene ring. However, with the weak base $Bu_4N^+ Br^-$ in acetone the Zaitsev product PhCH₂CH=CMe₂ was formed in 90% yield.⁹⁸

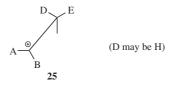
Stereochemistry of the Double Bond

When elimination takes place on a compound of the form CH_3 -CABX or CHAB-CGGX, the new alkene does not have cis-trans isomerism, but for compounds of the form CHEG-CABX (E and G *not* H) (**23**) and CH₂E-CABX (**24**), cis and trans isomers are possible. When the anti E2 mechanism is in operation, **23** gives the isomer


arising from trans orientation of X and H and, as we have seen before (p. 1478), an erythro compound gives the cis alkene and a threo compound the trans. For **24**, two conformations are possible for the transition state; these lead to different isomers and often both are obtained. However, the one that predominates is often determined by an eclipsing effect.⁹⁹ For example, Zaitsev elimination from 2-bromopentane can occur as follows:

⁹⁶Sicher, J.; Svoboda, M.; Pánková, M.; Závada, J. Collect. Czech. Chem. Commun. 1971, 36, 3633; Bailey, D.S.; Saunders, Jr., W.H. J. Am. Chem. Soc. 1970, 92, 6904.

⁹⁷For example; see Ono, N. *Bull. Chem. Soc. Jpn.* **1971**, *44*, 1369; Bailey, D.S.; Saunders, Jr., W.H. *J. Org. Chem.* **1973**, *38*, 3363; Muir, D.M.; Parker, A.J. *J. Org. Chem.* **1976**, *41*, 3201.


⁹⁸Lloyd, D.J.; Muir, D.M.; Parker, A.J. Tetrahedron Lett. **1971**, 3015

⁹⁹See Cram, D.J.; Greene, F.D.; DePuy, C.H. J. Am. Chem. Soc. **1956**, 78, 790; Cram, D.G., in Newman, M.S. Steric Effects in Organic Chemistry, Wiley, NY, **1956**, pp. 338–345.

In conformation **I**, the ethyl group is between Br and Me, while in **J** it is between Br and H. This means that **J** is more stable, and most of the elimination should occur from this conformation. This is indeed what happens, and 51% of the trans isomer is formed (with KOEt) compared to 18% of the cis (the rest is the Hofmann product).¹⁰⁰ These effects become larger with increasing size of A, B, and E.

However, eclipsing effects are not the only factors that affect the cis/trans ratio in anti E2 eliminations. Other factors are the nature of the leaving group, the base, the solvent, and the substrate. Not all these effects are completely understood.¹⁰¹

For E1 eliminations, if there is a free carbocation (25), it is free to rotate, and no matter what the geometry of the original compound, the more stable situation is the one where the larger of the D–E pair is opposite the smaller of the A–B pair and the corresponding alkene should form. If the carbocation is not completely free, then to that extent, E2-type products are formed. Similar considerations apply in E1cB eliminations.¹⁰²

REACTIVITY

In this section, we examine the effects of changes in the substrate, base, leaving group, and medium on (1) overall reactivity, (2) E1 versus E2 versus E1cB,¹⁰³ and (3) elimination versus substitution.

¹⁰⁰Brown, H.C.; Wheeler, O.H. J. Am. Chem. Soc. 1956, 78 2199.

¹⁰¹For discussions, see Bartsch, R.A.; Bunnett, J.F. J. Am. Chem. Soc. **1969**, 91, 1376, 1382; Feit, I.N.; Saunders, Jr., W.H. J. Am. Chem. Soc. **1970**, 92, 1630, 5615; Alunni, S.; Baciocchi, E. J. Chem. Soc. Perkin Trans. 2 **1976**, 877; Saunders, Jr., W.H.; Cockerill, A.F. Mechanisms of Elimination Reactions, Wiley, NY, **1973**, pp. 165–193.

 ¹⁰²See, for example, Redman, R.P.; Thomas, P.J.; Stirling, C.J.M. J. Chem. Soc., Chem. Commun. **1978**, 43.
 ¹⁰³For discussions, see Cockerill, A.F.; Harrison, R.G., in Patai, S. The Chemistry of Functional Groups, Supplement A, pt. 1, Wiley, NY, **1977**, pp. 178–189.

Effect of Substrate Structure

- **1.** *Effect on Reactivity.* We refer to the carbon containing the nucleofuge (X) as the a carbon and to the carbon that loses the positive species as the β carbon. Groups attached to the α or β carbons can exert at least four kinds of influence:
 - **a.** They can stabilize or destabilize the incipient double bond (both α and β groups).
 - **b.** They can stabilize or destabilize an incipient negative charge, affecting the acidity of the proton (β groups only).
 - **c.** They can stabilize or destabilize an incipient positive charge (α groups only).
 - **d.** They can exert steric effects (e.g., eclipsing effects) (both α and β groups).

Effects a and d can apply in all three mechanisms, although steric effects are greatest for the E2 mechanism. Effect b does not apply in the E1 mechanism, and effect c does not apply in the E1cB mechanism. Groups, such as Ar and C=C, increase the rate by any mechanism, except perhaps when formation of the C=C bond is not the rate-determining step, whether they are α or β (effect a). Electron-withdrawing groups increase the acidity when in the β position, but have little effect in the a position unless they also conjugate with the double bond. Thus Br, Cl, CN, Ts, NO₂, CN, and SR in the β position all increase the rate of E2 eliminations.

- **2.** *Effect on* E1 *versus* E2 *versus* E1cB. The α alkyl and α aryl groups stabilize the carbocation character of the transition state, shifting the spectrum toward the E1 end. β alkyl groups also shift the mechanism toward E1, since they *decrease* the acidity of the hydrogen. However, β aryl groups shift the mechanism the other way (toward E1cB) by stabilizing the carbanion. Indeed, as we have seen (p. \$\$\$), all electron-withdrawing groups in the β position shift the mechanism toward E1cB.¹⁰⁴ α alkyl groups also increase the extent of elimination with weak bases (E2C reactions).
- **3.** Effect on Elimination versus Substitution. Under second-order conditions, a branching increases elimination, to the point where tertiary substrates undergo few $S_N 2$ reactions, as we saw in Chapter 10. For example, Table 17.2 shows results on some simple alkyl bromides. Similar results were obtained with SMe_2^+ as the leaving group.¹⁰⁵ Two reasons can be presented for this trend. One is statistical: As a branching increases, there are usually more hydrogens for the base to attack. The other is that a branching presents steric hindrance to attack of the base at the carbon. Under first-order conditions, increased a branching also increases the amount of elimination (E1 vs. $S_N 1$), although not

¹⁰⁴For a review of eliminations with COOH, COOR, CONH₂, and CN groups in the β position, see Butskus, P.F.; Denis, G.I. *Russ. Chem. Rev.* **1966**, *35*, 839.

¹⁰⁵Dhar, M.L.; Hughes, E.D.; Ingold, C.K.; Masterman, S. J. Chem. Soc. 1948, 2055.

Substrate	Temperature, °C	Alkene, %	Rate $\times 10^5$ of E2 Reaction	Reference
CH ₃ CH ₂ Br	55	0.9	1.6	108
(CH ₃) ₂ CHBr	24	80.3	0.237	109
(CH ₃) ₃ CBr	25	97	4.17	107
CH ₃ CH ₂ CH ₂ Br	55	8.9	5.3	105
(CH ₃) ₂ CHCH ₂ Br	55	59.5	8.5	105

TABLE 17.2. The Effect of α and β Branching on the Rate of E2 Elimination and the Amount of Alkene Formed^{*a*}

^{*a*}The reactions were between the alkyl bromide and ⁻OEt The rate for isopropyl bromide was actually greater than that for ethyl bromide, if the temperature difference is considered. Neopentyl bromide, the next compound in the β -branching series, cannot be compared because it has no β -hydrogen and cannot give an elimination product without rearrangement.

so much, and usually the substitution product predominates. For example, solvolysis of *tert*-butyl bromide gave only 19% elimination¹⁰⁶ (cf. with Table 17.2). β Branching also increases the amount of E2 elimination with respect to S_N2 substitution (Table 17.2), not because elimination is faster, but because the S_N2 mechanism is so greatly slowed (p. 478). Under first-order conditions too, β branching favors elimination over substitution, probably for steric reasons.¹⁰⁷ However, E2 eliminations from compounds with charged leaving groups are slowed by β branching. This is related to Hofmann's rule (p. 1498). Electron-withdrawing groups in the β position not only increase the rate of E2 eliminations and shift the mechanisms toward the E1cB end of the spectrum, but also increase the extent of elimination as opposed to substitution.

Effect of the Attacking Base

1. *Effect on* E1 *versus* E2 *versus* E1cB. In the E1 mechanism, an external base is generally not required: The solvent acts as the base. Hence, when external bases are added, the mechanism is shifted toward E2. Stronger bases and higher base concentrations cause the mechanism to move toward the E1cB end of the E1-E2-E1cB spectrum.¹¹⁰ However, weak bases in polar aprotic solvents can also be effective in elimination reactions with certain substrates (the E2C reaction). Normal E2 elimination has been accomplished with the following bases:¹¹¹ H₂O, NR₃, ⁻OH, ⁻OAc, ⁻OR, ⁻OAr, ⁻NH₂, CO₃²⁻,

¹⁰⁶Dhar, M.L.; Hughes, E.D.; Ingold, C.K. J. Chem. Soc. 1948, 2058.

¹⁰⁷Hughes, M.L.; Ingold, C.K.; Maw, G.A. J. Chem. Soc. 1948, 2065.

¹⁰⁸Hughes, E.D.; Ingold, C.K.; Maw, G.A. J. Chem. Soc. **1948**, 2072; Hughes, E.D.; Ingold, C.K.; Woolf, L.I. J. Chem. Soc. **1948**, 2084.

¹⁰⁹Brown, H.C.; Berneis, H.L. J. Am. Chem. Soc. 1953, 75, 10.

¹¹⁰For a review, see Baciocchi, E. *Acc. Chem. Res.* **1979**, *12*, 430. See also, Baciocchi, E.; Ruzziconi, R.; Sebastiani, G.V. J. Org. Chem. **1980**, *45*, 827.

¹¹¹This list is from Banthorpe, D.V. *Elimination Reactions*; Elsevier, NY, 1963, p. 4.

LiAlH₄, I^- , CN^- , and organic bases. However, the only bases of preparative importance in the normal E2 reaction are OH⁻, OR⁻, and NH₂⁻, usually in the conjugate acid as solvent, and certain amines. Weak bases effective in the E2C reaction are Cl⁻, Br⁻ F⁻, ⁻OAc, and RS⁻. These bases are often used in the form of their R₄N⁺ salts.

2. Effect on Elimination versus Substitution. Strong bases not only benefit E2 as against E1, but also benefit elimination as against substitution. With a high concentration of strong base in a non-ionizing solvent, bimolecular mechanisms are favored and E2 predominates over S_N2 . At low base concentrations, or in the absence of base altogether, in ionizing solvents, unimolecular mechanisms are favored, and the S_N1 mechanism predominates over the E1. In Chapter 10, it was pointed out that some species are strong nucleophiles, but weak bases (p. 490). The use of these obviously favors substitution, except that, as we have seen, elimination can predominate if polar aprotic solvents are used. It has been shown for the base cyanide that in polar aprotic solvents, the less the base is encumbered by its counterion in an ion pair (i.e., the freer the base), the more substitution is favored at the expense of elimination.¹¹²

Effect of the Leaving Group

- 1. *Effect on Reactivity.* The leaving groups in elimination reactions are similar to those in nucleophilic substitution. The E2 eliminations have been performed with the following groups: NR₃⁺, PR₃⁺, SR₂⁺, OHR⁺, SO₂R, OSO₂R, OCOR, OOH, OOR, NO₂,¹¹³ F, Cl, Br, I, and CN (*not* OH₂⁺). The E1 eliminations have been carried out with: NR₃⁺, SR₂⁺, OH₂⁺, OHR⁺, OSO₂R, OCOR, Cl, Br, I, and N₂⁺.¹¹⁴ However, the major leaving groups for preparative purposes are OH₂⁺ (always by E1) and Cl, Br, I, and NR₃⁺ (usually by E2).
- **2.** *Effect on* E1 *versus* E2 *versus* E1cB. Better leaving groups shift the mechanism toward the E1 end of the spectrum, since they make ionization easier. This effect has been studied in various ways. One way already mentioned was a study of ρ values (p. 1495). Poor leaving groups and positively charged leaving groups shift the mechanism toward the E1cB end of the spectrum because the strong electron-withdrawing field effects increase the acidity of the β hydrogen.¹¹⁵ The E2C reaction is favored by good leaving groups.
- **3.** *Effect on Elimination versus Substitution.* As we have already seen (p. 1487), for first-order reactions the leaving group has nothing to do with the

¹¹²Loupy, A.; Seyden-Penne, J. Bull. Soc. Chim. Fr. 1971, 2306.

¹¹³For a review of eliminations in which NO₂ is a leaving group, see Ono, N., in Feuer, H.; Nielsen, A.T. *Nitro Compounds; Recent Advances in Synthesis and Chemistry*, VCH, NY, **1990**, pp. 1–135, 86–126.

¹¹⁴These lists are from Banthorpe, D.V. *Elimination Reactions*, Elsevier, NY, *1963*, pp. 4, 7.

¹¹⁵For a discussion of leaving-group ability, see Stirling, C.J.M. Acc. Chem. Res. **1979**, *12*, 198. See also, Varma, M.; Stirling, C.J.M. J. Chem. Soc., Chem. Commun. **1981**, 553.

competition between elimination and substitution, since it is gone before the decision is made as to which path to take. However, where ion pairs are involved, this is not true, and results have been found where the nature of the leaving group does affect the product.¹¹⁶ In second-order reactions, the elimination/substitution ratio is not greatly dependent on a halide leaving group, although there is a slight increase in elimination in the order I > Br > Cl. When OTs is the leaving group, there is usually much more substitution. For example, *n*-C₁₈H₃₇Br treated with *t*-BuOK gave 85% elimination, while *n*-C₁₈H₃₇OTs gave, under the same conditions, 99% substitution.¹¹⁷ On the other hand, positively charged leaving groups increase the amount of elimination.

Effect of the Medium

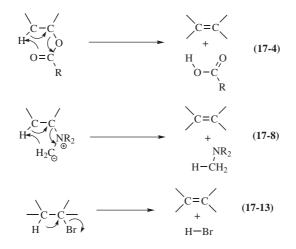
- **1.** *Effect of Solvent on* E1 *versus* E2 *versus* E1cB. With any reaction a more polar environment enhances the rate of mechanisms that involve ionic intermediates. For neutral leaving groups, it is expected that E1 and E1cB mechanisms will be aided by increasing polarity of solvent and by increasing ionic strength. With certain substrates, polar aprotic solvents promote elimination with weak bases (the E2C reaction).
- **2.** Effect of Solvent on Elimination versus Substitution. Increasing polarity of solvent favors S_N2 reactions at the expense of E2. In the classical example, alcoholic KOH is used to effect elimination, while the more polar aqueous KOH is used for substitution. Charge-dispersal discussions, similar to those on p. 503,¹¹⁸ only partially explain this. In most solvents, S_N1 reactions are favored over E1. The E1 reactions compete best in polar solvents that are poor nucleophiles, especially dipolar aprotic solvents.¹¹⁹ A study made in the gas phase, where there is no solvent, has shown that when 1-bromopropane reacts with MeO⁻ only elimination takes place (no substitution) even with this primary substrate.¹²⁰
- **3.** *Effect of Temperature.* Elimination is favored over substitution by increasing temperature, whether the mechanism is first or second order.¹²¹ The reason is that the activation energies of eliminations are higher than those of substitutions (because eliminations have greater changes in bonding).

¹²⁰Jones, M.E.; Ellison, G.B. J. Am. Chem. Soc. **1989**, 111, 1645. For a different result with other reactants, see Lum, R.C.; Grabowski, J.J. J. Am. Chem. Soc. **1988**, 110, 8568.

¹¹⁶For example, see Skell, P.S.; Hall, W.L. J. Am. Chem. Soc. **1963**, 85 2851; Cocivera, M.; Winstein, S. J. Am. Chem. Soc. **1963**, 85, 1702; Feit, I.N.; Wright, D.G. J. Chem. Soc., Chem. Commun. **1975**, 776. See, however, Cavazza, M. Tetrahedron Lett. **1975**, 1031.

¹¹⁷Veeravagu, P.; Arnold, R.T.; Eigenmann, E.W. J. Am. Chem. Soc. 1964, 86, 3072.

¹¹⁸Cooper, K.A.; Dhar, M.L.; Hughes, E.D.; Ingold, C.K.; MacNulty, B.J.; Woolf, L.I. *J. Chem. Soc.* **1948**, 2043.

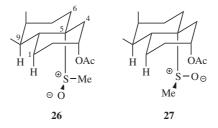

¹¹⁹Aksnes, G.; Stensland, P. Acta Chem. Scand. 1989, 43, 893, and references cited therein.

¹²¹Cooper, K.A.; Hughes, E.D.; Ingold, C.K.; Maw, G.A.; MacNulty, B.J. J. Chem. Soc. 1948, 2049.

MECHANISMS AND ORIENTATION IN PYROLYTIC ELIMINATIONS

Mechanisms¹²²

Several types of compound undergo elimination on heating, with no other reagent present. Reactions of this type are often run in the gas phase. The mechanisms are obviously different from those already discussed, since all those require a base (which may be the solvent) in one of the steps, and there is no base or solvent present in pyrolytic elimination. Two mechanisms have been found to operate. One involves a cyclic transition state, which may be four, five, or six membered. Examples of each size are


In this mechanism, the two groups leave at about the same time and bond to each other as they are doing so. The designation is E^i in the Ingold terminology and *cyclo*-D_ED_NA_n in the IUPAC system. The elimination must be syn and, for the four- and five-membered transition states, the four or five atoms making up the ring must be coplanar. Coplanarity is not required for the six-membered transition state, since there is room for the outside atoms when the leaving atoms are staggered.

¹²²For reviews, see Taylor, R., in Patai, S. *The Chemistry of Functional Groups, Supplement B*, pt. 2, Wiley, NY, **1979**, pp. 860–914; Smith, G.G.; Kelly, F.W. *Prog. Phys. Org. Chem.* **1971**, *8*, 75, pp. 76–143, 207–234; in Bamford, C.H.; Tipper, C.F.H. *Comprehensive Chemical Kinetics*, Vol. 5, Elsevier, NY, **1972**, the articles by Swinbourne, E.S. pp. 149–233 (pp. 158–188), and by Richardson, W.H.; O'Neal, H.E. pp. 381–565 (pp. 381–446); Maccoll, A. *Adv. Phys. Org. Chem.* **1965**, *3*, 91. For reviews of mechanisms in pyrolytic eliminations of halides, see Egger, K.W.; Cocks, A.T., in Patai's. *The Chemistry of the Carbon-Halogen Bond*, pt. 2, Wiley, NY, **1973**, pp. 677–745; Maccoll, A. *Chem. Rev.* **1969**, *69*, 33.

As in the E2 mechanism, it is not necessary that the C–H and C–X bond be equally broken in the transition state. In fact, there is also a spectrum of mechanisms here, ranging from a mechanism in which C–X bond breaking is a good deal more advanced than C–H bond breaking to one in which the extent of bond breaking is virtually identical for the two bonds. Evidence for the existence of the E^{i} mechanism is

- **1.** The kinetics are first order, so only one molecule of the substrate is involved in the reaction (i.e., if one molecule attacked another, the kinetics would be second order in substrate).¹²³
- **2.** Free-radical inhibitors do not slow the reactions, so no free-radical mechanism is involved.¹²⁴
- **3.** The mechanism predicts exclusive syn elimination, and this behavior has been found in many cases.¹²⁵ The evidence is inverse to that for the anti E2 mechanism and generally involves the following facts: (1) an erythro isomer gives a trans alkene and a threo isomer gives a cis alkene; (2) the reaction takes place only when a cis β hydrogen is available; (3) if, in a cyclic compound, a cis hydrogen is available on only one side, the elimination goes in that direction. Another piece of evidence involves a pair of steroid molecules. In 3β -acetoxy-(*R*)- 5α -methylsulfinylcholestane (**26** shows rings A and B of this compound) and in 3β -acetoxy-(*S*)- 5α -methylsulfinylcholestane (**27**: rings A and B), the *only* difference is the configuration of

oxygen and methyl about the sulfur. Yet pyrolysis of **26** gave only elimination to the 4-side (86% 4-ene), while **27** gave predominant elimination to the 6-side (65% 5-ene and 20% 4-ene).¹²⁶ Models show that interference from the 1- and 9-hydrogens causes the two groups on the sulfur to lie *in front of it* with respect to the rings, rather than behind it. Since the sulfur is chiral, this

¹²³O'Connor, G.L.; Nace, H.R. J. Am. Chem. Soc. 1953, 75, 2118.

¹²⁴Barton, D.H.R.; Head, A.J.; Williams, R.J. J. Chem. Soc. 1953, 1715.

¹²⁵In a few instances anti or nonstereoselective elimination has been found; this behavior is generally ascribed to the intervention of other mechanisms. For example, see Bordwell, F.G.; Landis, P.S. *J. Am. Chem. Soc.* **1958**, 80, 2450, 6383; Briggs, W.S.; Djerassi, C. *J. Org. Chem.* **1968**, 33, 1625; Smissman, E.E.; Li, J.P.; Creese, M.W. *J. Org. Chem.* **1970**, 35, 1352.

¹²⁶Jones, D.N.; Saeed, M.A. Proc. Chem. Soc. **1964**, 81. See also, Goldberg, S.I.; Sahli, M.S. J. Org. Chem. **1967**, 32, 2059.

means that in **26** the oxygen is near the 4-hydrogen, while in **27** it is near the 6-hydrogen. This experiment is compatible only with syn-elimination.¹²⁷

- **4.** The ¹⁴C isotope effects for the Cope elimination (**17-9**) show that both the C–H and C–N bonds have been extensively broken in the transition state. ¹²⁸
- **5.** Some of these reactions have been shown to exhibit negative entropies of activation, indicating that the molecules are more restricted in geometry in the transition state than they are in the starting compound.

Where a pyrolytic elimination lies on the mechanistic spectrum seems to depend mostly on the leaving group. When this is halogen, all available evidence suggests that in the transition state the C-X bond is cleaved to a much greater extent than the C-H bond, that is, there is a considerable amount of carbocation character in the transition state. This is in accord with the fact that a completely nonpolar fourmembered cyclic transition state violates the Woodward-Hoffmann rules (see the similar case of **15-63**). Evidence for the carbocation-like character of the transition state when halide is the leaving group is that relative rates are in the order $I > Br > Cl^{129}$ (see p. 496), and that the effects of substituents on reaction rates are in accord with such a transition state.¹³⁰ Rate ratios for pyrolysis of some alkyl bromides at 320°C were ethyl bromide, 1; isopropyl bromide, 280; tert-butyl bromide, 78,000. Also, α -phenylethyl bromide had about the same rate as *tert*-butyl bromide. On the other hand, β -phenylethyl bromide was only slightly faster than ethyl bromide.¹³¹ This indicates that C-Br cleavage was much more important in the transition state than C-H cleavage, since the incipient carbocation was stabilized by a alkyl and α -aryl substitution, while there was no incipient carbanion to be stabilized by β -aryl substitution. These substituent effects, as well as those for other groups, are very similar to the effects found for the S_N1 mechanism and thus in very good accord with a carbocation-like transition state.

For carboxylic esters, the rate ratios were much smaller,¹³² although still in the same order, so that this reaction is closer to a pure E^i mechanism, although the transition state still has some carbocationic character. Other evidence for a greater initial C–O cleavage with carboxylic esters is that a series of 1-arylethyl acetates followed σ^+ rather than σ , showing carbocationic character at the 1 position.¹³³

¹²⁷For other evidence for syn-elimination, see Curtin, D.Y.; Kellom, D.B. J. Am. Chem. Soc. **1953**, 75, 6011; Skell, P.S.; Hall, W.L. J. Am. Chem. Soc. **1964**, 86, 1557; Bailey, W.J.; Bird, C.N. J. Org. Chem. **1977**, 42, 3895.

¹²⁸Wright, D.R.; Sims, L.B.; Fry, A. J. Am. Chem. Soc. 1983, 105, 3714.

¹²⁹Maccoll, A., in Patai, S. The Chemistry of Alkenes, Vol. 1, Wiley, NY, 1964, pp. 215–216.

¹³⁰For reviews of such studies, see Maccoll, A. Chem. Rev. 1969, 69, 33.

¹³¹For rate studies of pyrolysis of some β-alkyl substituted ethyl bromides, see Chuchani, G.; Rotinov, A.; Dominguez, R.M.; Martin, I. *Int. J. Chem. Kinet.* **1987**, *19*, 781.

 ¹³²For example, see Scheer, J.C.; Kooyman, E.C.; Sixma, F.L.J. *Recl. Trav. Chim. Pays-Bas* 1963, 82, 1123. See also, Louw, R.; Vermeeren, H.P.W.; Vogelzang, M.W. *J. Chem. Soc. Perkin Trans.* 2 1983, 1875.
 ¹³³Taylor, R.; Smith, G.G.; Wetzel, W.H. *J. Am. Chem. Soc.* 1962, 84, 4817; Smith, G.G.; Jones, D.A.K.; Brown, D.F. *J. Org. Chem.* 1963, 28, 403; Taylor, R. *J. Chem. Soc. Perkin Trans.* 2 1978, 1255. See also,

Ottenbrite, R.M.; Brockington, J.W. J. Org. Chem. 1974, 39, 2463; Jordan, E.A.; Thorne, M.P. J. Chem. Soc. Perkin Trans. 2 1984, 647; August, R.; McEwen, I.; Taylor, R. J. Chem. Soc. Perkin Trans. 2 1987, 1683, and other papers in this series; Al-Awadi, N.A. J. Chem. Soc. Perkin Trans. 2 1990, 2187.

The extent of E1 character in the transition state increases in the following order of ester types: acetate < phenylacetate < benzoate < carbamate < carbonate.¹³⁴ Cleavage of xanthates (17-5), cleavage of sulfoxides (17-12), the Cope reaction (17-9), and reaction 17-8 are probably very close to straight E^{i} mechanisms.¹³⁵

The second type of pyrolysis mechanism is completely different and involves free radicals. Initiation occurs by pyrolytic homolytic cleavage. The remaining steps may vary, and a few are shown

Free-radical mechanisms are mostly found in pyrolyses of polyhalides and of primary monohalides,¹³⁶ although they also have been postulated in pyrolysis of certain carboxylic esters.¹³⁷ β -Elimination of tosyl radicals is known.¹³⁸ Much less is known about these mechanisms and we will not consider them further. Free-radical eliminations in solution are also known, but are rare.¹³⁹

Orientation in Pyrolytic Eliminations

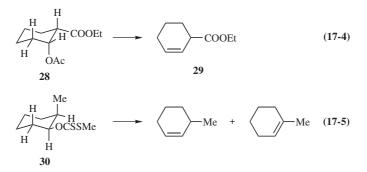
As in the E1-E2-E1cB mechanistic spectrum, Bredt's rule applies; and if a double bond is present, a conjugated system will be preferred, if sterically possible. Apart from these considerations, the following statements can be made for E^{i} eliminations:

1. In the absence of considerations mentioned below, orientation is statistical and is determined by the number of β hydrogens available (therefore *Hofmann's rule* is followed). For example, *sec*-butyl acetate gives 55–62%

¹³⁴Taylor, R. J. Chem. Soc. Perkin Trans. 2 1975, 1025.

¹³⁵For a review of the mechanisms of **17-12**, **17-9**, and the pyrolysis of sulfilimines, see Oae, S.; Furukawa, N. *Tetrahedron* **1977**, *33*, 2359.

¹³⁶For example, see Barton, D.H.R.; Howlett, K.E. J. Chem. Soc. 1949, 155, 165.


¹³⁷For example, see Rummens, F.H.A. *Recl. Trav. Chim. Pays-Bas* **1964**, 83, 901; Louw, R.; Kooyman, E.C. *Recl. Trav. Chim. Pays-Bas* **1965**, 84, 1511.

¹³⁸Timokhin, V.I.; Gastaldi, S.; Bertrand, M.P.; Chatgilialoglu, C. J. Org. Chem. 2003, 68, 3532.

¹³⁹For examples; see Kampmeier, J.A.; Geer, R.P.; Meskin, A.J.; D'Silva, R.M. J. Am. Chem. Soc. **1966**, 88, 1257; Kochi, J.K.; Singleton, D.M.; Andrews, L.J. *Tetrahedron* **1968**, 24, 3503; Boothe, T.E.; Greene Jr., J.L.; Shevlin, P.B. J. Org. Chem. **1980**, 45, 794; Stark, T.J.; Nelson, N.T.; Jensen, F.R. J. Org. Chem. **1980**, 45, 420; Kochi, J.K. Organic Mechanisms and Catalysis, Academic Press, NY, **1978**, pp. 346–349; Kamimura, A.; Ono, N. J. Chem. Soc., Chem. Commun. **1988**, 1278.

1-butene and 38–45% 2-butene, 140 which is close to the 3:2 distribution predicted by the number of hydrogens available. 141

2. A cis β hydrogen is required. Therefore in cyclic systems, if there is a cis hydrogen on only one side, the double bond will go that way. However, when there is a six-membered transition state, this does not necessarily mean that the leaving groups must be cis to each other, since such transition states need not be completely coplanar. If the leaving group is axial, then the hydrogen obviously must be equatorial (and consequently cis to the leaving group), since the transition state cannot be realized when the groups are both axial. But if the leaving group is equatorial, it can form a transition state with a β hydrogen that is either axial (hence, cis) or equatorial (hence, trans). Thus **28**, in which the leaving group is most likely axial, does not form a double bond in the

direction of the carbethoxyl group, even although that would be conjugated, because there is no equatorial hydrogen on that side. Instead it gives 100% **29**.¹⁴² On the other hand, **30**, with an equatorial leaving group, gives ~50% of each alkene, even although, for elimination to the 1-ene, the leaving group must go off with a trans hydrogen.¹⁴³

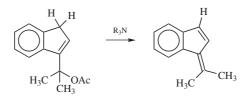
- **3.** In some cases, especially with cyclic compounds, the more stable alkene forms and Zaitsev's rule applies. For example, menthyl acetate gives 35% of the Hofmann product and 65% of the Zaitsev, even although a cis β hydrogen is present on both sides and the statistical distribution is the other way. A similar result was found for the pyrolysis of menthyl chloride.¹⁴⁴
- **4.** There are also steric effects. In some cases, the direction of elimination is determined by the need to minimize steric interactions in the transition state or to relieve steric interactions in the ground state.

 ¹⁴⁰Froemsdorf, D.H.; Collins, C.H.; Hammond, G.S.; DePuy, C.H. J. Am. Chem. Soc. 1959, 81, 643; Haag,
 W.O.; Pines, H. J. Org. Chem. 1959, 24, 877.

¹⁴¹DePuy, C.H.; King, R.W. *Chem. Rev.* **1960**, *60*, 431, have tables showing the product distribution for many cases.

¹⁴²Bailey, W.J.; Baylouny, R.A. J. Am. Chem. Soc. 1959, 81, 2126.

¹⁴³Botteron D.G.; Shulman, G.P. J. Org. Chem. 1962, 27, 2007.


¹⁴⁴Barton, D.H.R.; Head, A.J.; Williams, R.J. J. Chem. Soc. **1952**, 453; Bamkole, T.; Maccoll, A. J. Chem. Soc. B **1970**, 1159.

1,4 Conjugate Eliminations¹⁴⁵

1,4-Eliminations of the type

 $H-C-C=C-C-X \longrightarrow C=C-C=C$

are much rarer than conjugate additions (Chapter 15), but some examples are known.¹⁴⁶ One such is¹⁴⁷

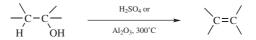
REACTIONS

First, we consider reactions in which a C=C or a C≡C bond is formed. From a synthetic point of view, the most important reactions for the formation of double bonds are **17-1** (usually by an E1 mechanism), **17-7**, **17-13**, and **17-22** (usually by an E2 mechanism), and **17-4**, **17-5**, and **17-9** (usually by an Eⁱ mechanism). The only synthetically important method for the formation of triple bonds is **17-13**.¹⁴⁸ In the second section, we treat reactions in which C≡N bonds and C=N bonds are formed, and then eliminations that give C=O bonds and diazoalkanes. Finally, we discuss extrusion reactions.

REACTIONS IN WHICH C=C AND C=C BONDS ARE FORMED

A. Reactions in which Hydrogen Is Removed from One Side

In 17-1–17-6, the other leaving atom is oxygen. In 17-7–17-11, it is nitrogen. For reactions in which hydrogen is removed from both sides, see 19-1–19-6.


 ¹⁴⁵Taylor, R., in Patai *The Chemistry of Functional Groups, Supplement B*, pt. 2, Wiley, NY, *1979*, pp. 885–890; Smith, G.G.; Mutter, L.; Todd, G.P. *J. Org. Chem. 1977*, *42*, 44; Chuchani, G.; Dominguez, R.M. *Int. J. Chem. Kinet. 1981*, *13*, 577; Hernández, A.; Chuchani, G. *Int. J. Chem. Kinet. 1983*, *15*, 205.
 ¹⁴⁶For a review of certain types of 1,4- and 1,6-eliminations, see Wakselman, M. *Nouv. J. Chem. 1983*, *7*, 439.

¹⁴⁷Thibblin, A. J. Chem. Soc. Perkin Trans. 2 1986, 321; Ölwegård, M.; Ahlberg, P. Acta Chem. Scand. 1990, 44, 642. For studies of the stereochemistry of 1,4-eliminations, see Hill, R.K.; Bock, M.G. J. Am. Chem. Soc. 1978, 100, 637; Moss, R.J.; Rickborn, B. J. Org. Chem. 1986, 51, 1992; Ölwegård, M.; Ahlberg, P. J. Chem. Soc., Chem. Commun. 1989, 1279.

¹⁴⁸For reviews of methods for preparing alkynes, see Friedrich, K., in Patai, S.; Rappoport, Z. *The Chemistry of Functional Groups, Supplement C*, pt. 2, Wiley, NY, **1983**; pp. 1376–1384; Ben-Efraim, D.A., in Patai, S. *The Chemistry of the Carbon–Carbon Triple Bond*, pt. 2, Wiley, NY, **1978**, pp. 755–790. For a comparative study of various methods, see Mesnard, D.; Bernadou, F.; Miginiac, L. *J. Chem. Res. (S)* **1981**, 270, and references cited therein.

17-1 Dehydration of Alcohols

Hydro-hydroxy-elimination

Dehydration of alcohols can be accomplished in several ways. Both H₂SO₄ and H₃PO₄ are common reagents, but in many cases these lead to rearrangement products and to ether formation (10-12). If the alcohol can be evaporated, vapor-phase elimination over Al₂O₃ is an excellent method since side reactions are greatly reduced. This method has even been applied to such high-molecular-weight alcohols as 1-dodecanol.¹⁴⁹ Other metallic oxides (e.g., Cr₂O₃, TiO₂, WO₃) have also been used, as have been sulfides, other metallic salts, and zeolites. The presence of an electron-withdrawing group usually facilitates elimination of water, as in the aldol condensation (16-35). 2-Nitroalcohols, for example, give conjugated nitro compounds when heated with zeolite Y-Y.¹⁵⁰ Treating a 4-hydroxy lactam with DMAP (N,N-dimethylaminopyridine) and Boc anhydride leads to the conjugated lactam.¹⁵¹ Elimination of serine derivatives to α-alkylidene amino acid derivatives was accomplished with (EtO)₂POCl.¹⁵² Another method of avoiding side reactions is the conversion of alcohols to esters, and the pyrolysis of these (17-4–17-6). The ease of dehydration increases with α branching, and tertiary alcohols are dehydrated so easily with only a trace of acid that it sometimes happens even when the investigator desires otherwise. It may also be recalled that the initial alcohol products of many base-catalyzed condensations dehydrate spontaneously (Chapter 16) because the new double bond can be in conjugation with one already there. Many other dehydrating agents¹⁵³ have been used on occasion: P₂O₅, I₂, ZnCl₂, Ph₃BiBr₂/I₂,¹⁵⁴ PPh₃-I₂,¹⁵⁵ BF₃-etherate, DMSO, SiO₂-Cl/Me₃SiCl,¹⁵⁶ KHSO₄, anhydrous CuSO₄, and phthalic anhydride, among others. Secondary and tertiary alcohols can also be dehydrated, without rearrangements, simply on refluxing in HMPA.¹⁵⁷ With nearly all reagents, dehydration follows Zaitsev's rule.

¹⁵⁷Monson, R.S. Tetrahedron Lett. 1971, 567; Monson, R.S.; Priest, D.N. J. Org. Chem. 1971, 36, 3826; Lomas, J.S.; Sagatys, D.S.; Dubois, J.E. Tetrahedron Lett. 1972, 165.

¹⁴⁹For example, see Spitzin, V.I.; Michailenko, I.E.; Pirogowa, G.N. *J. Prakt. Chem.* **1964**, [4] 25, 160; Bertsch, H.; Greiner, A.; Kretzschmar, G.; Falk, F. *J. Prakt. Chem.* **1964**, [4] 25, 184.

¹⁵⁰Anbazhagan, M.; Kumaran, G.; Sasidharan, M. J. Chem. Res. (S) 1997, 336.

¹⁵¹Mattern, R.-H. Tetrahedron Lett. 1996, 37, 291.

¹⁵²Berti, F.; Ebert, C.; Gardossi, L. Tetrahedron Lett. 1992, 33, 8145.

¹⁵³For a list of reagents, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, **1999**, pp. 291–294.

¹⁵⁴Dorta, R.L.; Suárez, E.; Betancor, C. Tetrahedron Lett. 1994, 35, 5035.

¹⁵⁵Alvarez-Manzaneda, E.J.; Chahboun, R.; Torres, E.C.; Alvarez, E.; Alvarez-Manzaneda, R.; Haidour, A.; Ramos, J. *Tetrahedron Lett.* **2004**, *45*, 4453.

¹⁵⁶Firouzabadi, H.; Iranpoor, N.; Hazarkhani, H.; Karimi, B. Synth. Commun. 2003, 33, 3653.

An exception involves the passage of hot alcohol vapors over thorium oxide at 350–450°C, under which conditions Hofmann's rule is followed,¹⁵⁸ and the mechanism is probably different. Cyclobutanol derivatives can be opened in the presence of a palladium catalyst. 2-Phenylbicyclo[3.2.0]octan-2-ol, for example, reacted with a catalytic amount of palladium acetate in the presence of pyridine and oxygen to give phenyl methylenecyclohexane ketone.¹⁵⁹

Transition metals can induce the dehydration of certain alcohols. β -Hydroxy ketones are converted to conjugated ketones by treatment with CeCl₃ and NaI.¹⁶⁰ In the presence of a palladium complex, alkyl cyclopropanols undergo a dehydration reaction to give a conjugated ketone.¹⁶¹ A δ -hydroxy- α , β -unsaturated aldehyde was converted to a dienyl aldehyde with a hafnium catalyst.¹⁶² β -Hydroxy esters are converted to conjugated esters when treated with 2 equivalents of SmI₂.¹⁶³ The reaction of a β -hydroxy nitrile with methylmagneisum chloride¹⁶⁴ or with MgO¹⁶⁵ leads to a conjugated nitrile. In another variation of the dehydration reaction, vicinal bromohydrins are converted to alkenes upon treatment with In, InCl₃, and a palladium catalyst.¹⁶⁶ Chlorohydrins react similarly when treated with samarium, and then diiodomethane.¹⁶⁷

Carboxylic acids can be dehydrated by pyrolysis, the product being a ketene:

$$\begin{array}{c} O \\ H \\ H \\ H \\ H \end{array} \xrightarrow{C} O H \\ H \end{array} \xrightarrow{\Delta} \begin{array}{c} R \\ H \\ H \end{array} \xrightarrow{C = C = O} \\ H \end{array}$$

Ketene itself is commercially prepared in this manner. Carboxylic acids have also been converted to ketenes by treatment with certain reagents, among them TsCl,¹⁶⁸ dicyclohexylcarbodiimide,¹⁶⁹ and 1-methyl-2-chloropyridinium iodide (*Mukaiya-ma's reagent*).¹⁷⁰ Analogously, amides can be dehydrated with P_2O_5 , pyridine,

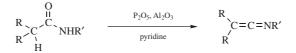
¹⁵⁹Nishimura, T.; Ohe, K.; Uemura, S. J. Am. Chem. Soc. 1999, 121, 2645.

¹⁶¹Okumoto, H.; Jinnai, T.; Shimizu, H.; Harada, Y.; Mishima, H.; Suzuki, A. Synlett 2000, 629.

¹⁶²Saito, S.; Nagahara, T.; Yamamoto, H. Synlett 2001, 1690.

¹⁶³Concellón, J.M.; Pérez-Andrés, J.A.; Rodríguez-Solla, H. Angew. Chem. Int. Ed. 2000, 39, 2773.

- ¹⁶⁴Fleming, F.F.; Shook, B.C. Tetrahedron Lett. 2000, 41, 8847.
- ¹⁶⁵Fleming, F.F.; Shook, B.C. J. Org. Chem. 2002, 67, 3668.
- ¹⁶⁶Cho, S.; Kang, S.; Keum, G.; Kang, S.B.; Han, S.-Y.; Kim, Y. J. Org. Chem. 2003, 68, 180.
- ¹⁶⁷Concellón, J.M.; Rodríguez-Solla, H.; Huerta, M..; Pérez-Andrés, J.A. *Eur. J. Org. Chem.* 2002, 1839.


¹⁷⁰Brady, W.T.; Marchand, A.P.; Giang, Y.F.; Wu, A. J. Org. Chem. **1987**, *52*, 3457; Funk, R.L.; Abelman, M.M.; Jellison, K.M. Synlett **1989**, 36.

¹⁵⁸Lundeen, A.J.; Van Hoozer, R. J. Am. Chem. Soc. **1963**, 85, 2180; J. Org. Chem. **1967**, 32, 3386. See also, Davis, B.H. J. Org. Chem. **1982**, 47, 900; Iimori, T.; Ohtsuka, Y.; Oishi, T. Tetrahedron Lett. **1991**, 32, 1209.

¹⁶⁰Bartoli, G.; Bellucci, M.C.; Petrini, M.; Marcantoni, E.; Sambri, L.; Torregiani, E. Org. Lett. 2000, 2, 1791.

 ¹⁶⁸Brady, W.T.; Marchand, A.P.; Giang, Y.F.; Wu, A. Synthesis 1987, 395; J. Org. Chem. 1987, 52, 3457.
 ¹⁶⁹Olah, G.A.; Wu, A.; Farooq, O. Synthesis 1989, 568.

and Al₂O₃ to give ketenimines:¹⁷¹

There is no way in which dehydration of alcohols can be used to prepare triple bonds: gem-diols and vinylic alcohols are not normally stable compounds and vicdiols¹⁷² give either conjugated dienes or lose only 1 equivalent of water to give an aldehyde or ketone. Dienes can be prepared, however, by heating alkynyl alcohols with triphenyl phosphine.¹⁷³

When proton acids catalyze alcohol dehydration, the mechanism is E1.¹⁷⁴ The principal process involves conversion of ROH to ROH₂⁺ and cleavage of the latter to R^+ and H_2O , although with some acids a secondary process probably involves conversion of the alcohol to an inorganic ester and ionization of this (illustrated for H₂SO₄):

ROH
$$\xrightarrow{H_2SO_4}$$
 ROSO₂OH \longrightarrow R⁺ + HSO₄

Note that these mechanisms are the reverse of those involved in the acid-catalyzed hydration of double bonds (15-3), in accord with the principle of microscopic reversibility. With anhydrides (e.g., P2O5, phthalic anhydride), as well as with some other reagents, such as HMPA,¹⁷⁵ it is likely that an ester is formed, and the leaving group is the conjugate base of the corresponding acid. In these cases, the mechanism can be E1 or E2. The mechanism with Al₂O₃ and other solid catalysts has been studied extensively, but is poorly understood.¹⁷⁶

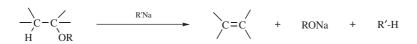
Magnesium alkoxides (formed by $ROH + Me_2Mg \rightarrow ROMgMe$) have been decomposed thermally, by heating at 195-340°C to give the alkene, CH₄, and MgO.¹⁷⁷ Syn-elimination is found and an Eⁱ mechanism is likely. Similar decomposition of aluminum and zinc alkoxides has also been accomplished.^{178,189}

¹⁷¹Stevens, C.L.; Singhal, G.H. J. Org. Chem. 1964, 29, 34.

¹⁷²For a review on the dehydration of 1,2- and 1,3-diols, see Bartók, M.; Molnár, A., in Patai, S. The Chemistry of Functional Groups, Supplement E, pt. 2, Wiley, NY, 1980, pp. 721-760.

¹⁷³Guo, C.; Lu, X. J. Chem. Soc., Chem. Commun. 1993, 394.

¹⁷⁴For reviews of dehydration mechanisms, see Vinnik, M.I.; Obraztsov, P.A. Russ. Chem. Rev. 1990, 59, 63; Saunders, Jr., W.H.; Cockerill, A.F. Mechanisms of Elimination Reactions, Wiley, NY, 1973, pp. 221-274, 317-331; Knözinger, H., in Patai, S. The Chemistry of the Hydroxyl Group, pt. 2, Wiley, NY, 1971, pp. 641–718. ¹⁷⁵See, for example, Kawanisi, M.; Arimatsu, S.; Yamaguchi, R.; Kimoto, K. *Chem. Lett.* **1972**, 881.


¹⁷⁶For reviews, see Beránek, L.; Kraus, M., in Bamford, C,H; Tipper, C.F.H. Comprehensive Chemical Kinetics, Vol. 20, Elsevier, NY, 1978, pp. 274-295; Pines, H. Intra-Sci. Chem. Rep. 1972, 6(2), 1, pp. 17-21; Noller, H.; Andréu, P.; Hunger, M. Angew. Chem. Int. Ed. 1971, 10, 172; Knözinger, H. Angew. Chem. Int. Ed. 1968, 7, 791. See also, Berteau, P.; Ruwet, M.; Delmon, B. Bull. Soc. Chim. Belg. 1985, 94, 859. ¹⁷⁷Ashby, E.C.; Willard, G.F.; Goel, A.B. J. Org. Chem. 1979, 44, 1221.

¹⁷⁸Brieger, G.; Watson, S.W.; Barar, D.G.; Shene, A.L. J. Org. Chem. 1979, 44, 1340.

OS I, 15, 183, 226, 280, 345, 430, 473, 475; II, 12, 368, 408, 606; III, 22, 204, 237, 312, 313, 353, 560, 729, 786; IV, 130, 444, 771; V, 294; VI, 307, 901; VII, 210, 241, 363, 368, 396; VIII, 210, 444. See also, OS VII, 63; VIII, 306, 474. No attempt has been made to list alkene-forming dehydration reactions accompanying condensations or rearrangements.

17-2 Cleavage of Ethers to Alkenes

Hydro-alkoxy-elimination

Alkenes can be formed by the treatment of ethers with very strong bases, such as alkylsodium or alkyllithium¹⁷⁹ compounds, sodium amide,¹⁸⁰ or LDA,¹⁸¹ although there are side reactions with many of these reagents. The reaction is aided by electron-withdrawing groups in the β position, and, for example, EtOCH₂CH(COOEt)₂ can be converted to CH₂=C(COOEt)₂ without any base at all, but simply on heating.¹⁸² *tert*-Butyl ethers are cleaved more easily than others. Several mechanisms are possible. In many cases, the mechanism is probably E1cB or on the E1cB side of the mechanistic spectrum,¹⁸³ since the base required is so strong, but it has been shown (by the use of PhCD₂OEt) that PhCH₂OEt reacts by the five-membered Eⁱ mechanism:¹⁸⁴ Propargylic benzyl ethers are converted to conjugated dienes by heating with a ruthenium catalyst.¹⁸⁵

$$\begin{array}{c} Ph \\ \odot C = O \\ H \\ \rightarrow CH_2 \\ H = CH_2 \end{array} \xrightarrow{Ph} \begin{array}{c} Ph \\ H = C = O \\ H \\ H \end{array} \xrightarrow{Ph} \begin{array}{c} H \\ \leftarrow C \\ H \end{array} \xrightarrow{Ph} \begin{array}{c} H \\ \leftarrow C \\ H \end{array} \xrightarrow{Ph} \begin{array}{c} H \\ \leftarrow C \\ H \end{array} \xrightarrow{Ph} \begin{array}{c} H \\ \leftarrow C \\ H \end{array} \xrightarrow{Ph} \begin{array}{c} H \\ \leftarrow C \\ H \end{array} \xrightarrow{Ph} \begin{array}{c} H \\ \leftarrow C \\ H \end{array} \xrightarrow{Ph} \begin{array}{c} H \\ \leftarrow C \\ H \end{array} \xrightarrow{Ph} \begin{array}{c} H \\ \leftarrow C \\ H \end{array} \xrightarrow{Ph} \begin{array}{c} H \\ \leftarrow C \\ H \end{array} \xrightarrow{Ph} \begin{array}{c} H \\ \leftarrow C \\ H \end{array} \xrightarrow{Ph} \begin{array}{c} H \\ \leftarrow C \\ H \end{array} \xrightarrow{Ph} \begin{array}{c} H \\ \leftarrow C \\ H \end{array} \xrightarrow{Ph} \begin{array}{c} H \\ \leftarrow C \\ H \end{array} \xrightarrow{Ph} \begin{array}{c} H \\ \leftarrow C \\ H \end{array} \xrightarrow{Ph} \begin{array}{c} H \\ \leftarrow C \\ H \end{array} \xrightarrow{Ph} \begin{array}{c} H \\ \leftarrow C \\ H \end{array} \xrightarrow{Ph} \begin{array}{c} H \\ \leftarrow C \\ H \end{array} \xrightarrow{Ph} \begin{array}{c} H \\ \leftarrow C \\ H \end{array} \xrightarrow{Ph} \begin{array}{c} H \\ \leftarrow C \\ H \end{array} \xrightarrow{Ph} \begin{array}{c} H \\ \leftarrow C \\ H \end{array} \xrightarrow{Ph} \begin{array}{c} H \\ \leftarrow C \\ H \end{array} \xrightarrow{Ph} \begin{array}{c} H \\ \leftarrow C \\ H \end{array} \xrightarrow{Ph} \begin{array}{c} H \\ \leftarrow C \\ H \end{array} \xrightarrow{Ph} \begin{array}{c} H \\ \leftarrow C \\ H \end{array} \xrightarrow{Ph} \begin{array}{c} H \\ \leftarrow C \\ H \end{array} \xrightarrow{Ph} \begin{array}{c} H \\ \leftarrow C \\ H \end{array} \xrightarrow{Ph} \begin{array}{c} H \\ \leftarrow C \\ H \end{array} \xrightarrow{Ph} \begin{array}{c} H \\ \leftarrow C \\ H \end{array} \xrightarrow{Ph} \begin{array}{c} H \\ \leftarrow C \\ H \end{array} \xrightarrow{Ph} \begin{array}{c} H \\ \leftarrow C \\ H \end{array} \xrightarrow{Ph} \begin{array}{c} H \\ \leftarrow C \\ H \end{array} \xrightarrow{Ph} \begin{array}{c} H \\ \leftarrow C \\ H \end{array} \xrightarrow{Ph} \begin{array}{c} H \\ \leftarrow C \\ H \end{array} \xrightarrow{Ph} \begin{array}{c} H \\ \leftarrow C \\ H \end{array} \xrightarrow{Ph} \begin{array}{c} H \\ \leftarrow C \\ H \end{array} \xrightarrow{Ph} \begin{array}{c} H \\ \leftarrow C \\ H \end{array} \xrightarrow{Ph} \begin{array}{c} H \\ \leftarrow C \\ \xrightarrow{Ph} \begin{array}{c} H \\ \leftarrow C \\ H \end{array} \xrightarrow{Ph} \begin{array}{c} H \\ \leftarrow C \\ H \end{array} \xrightarrow{Ph} \begin{array}{c} H \\ \leftarrow C \\ \xrightarrow{Ph} \begin{array}{c} H \\ \xrightarrow{Ph} \\ \xrightarrow{Ph} \begin{array}{c} H \\ \xrightarrow{Ph} \\ \xrightarrow{Ph} \\ \xrightarrow{Ph} \begin{array}{c} H \\ \xrightarrow{Ph} \\ \xrightarrow{Ph} \\ \xrightarrow{Ph} \\ \xrightarrow{Ph} \begin{array}{c} H \\ \xrightarrow{Ph} \\$$

Ethers have also been converted to alkenes and alcohols by passing vapors over hot P_2O_5 or Al_2O_3 (this method is similar to **17-1**), but this is not a general reaction. Cyclic ethers, such as THF, react slowly with organolithium reagents with cleavage that produces a C=C unit.¹⁸⁶ Fragmentation of 2,5-dihydrofuran with ethylmagnesium chloride and a chiral zirconium catalyst leads to a chiral, homoallylic alcohol.¹⁸⁷ However, acetals can be converted to enol ethers (**31**) in this manner.

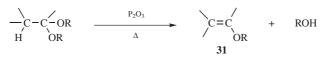
¹⁷⁹Hodgson, D.M.; Stent, M.A.H.; Wilson, F.X. Org. Lett. 2001, 3, 3401.

¹⁸¹Fleming, F.F.; Wang, Q.; Steward, O.W. J. Org. Chem. 2001, 66, 2171.

¹⁸⁴Letsinger, R.L.; Pollart, D.F. J. Am. Chem. Soc. 1956, 78, 6079.

¹⁸⁵Yeh, K.-L.; Liu, B.; Lo, C.-Y.; Huang, H.-L.; Liu, R.-S. J. Am. Chem. Soc. 2002, 124, 6510.

¹⁸⁶For the mechanism of *n*-butyllithium cleavage of 2-methyltetrahydrofuran, see Cohen, T.; Stokes, S. *Tetrahedron Lett.* **1993**, *34*, 8023.


¹⁸⁰For a review, see Maercker, A. Angew. Chem. Int. Ed. 1987, 26, 972.

¹⁸²Feely, W.; Boekelheide, V. Org Synth. IV, 298.

¹⁸³For an investigation in the gas phase, see DePuy, C.H.; Bierbaum, V.M. J. Am. Chem. Soc. **1981**, 103, 5034.

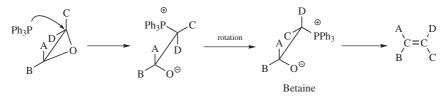
¹⁸⁷Morken, J.P.; Didiuk, M.T.; Hoveyda, A.H. J. Am. Chem. Soc. 1993, 115, 6997.

When ketals react with 2 equivalents of triisobutylaluminum, the product is a vinyl ether.¹⁸⁸

This can also be done at room temperature by treatment with trimethylsilyl triflate and a tertiary amine¹⁸⁹ or with Me₃SiI in the presence of hexamethyldisilazane.¹⁹⁰

Enol ethers can be pyrolyzed to alkenes and aldehydes in a manner similar to that of 17-4

The rate of this reaction for R–O–CH=CH₂ increased in the order Et < iPr < t-Bu.¹⁹¹ The mechanism is similar to that of **17-4**.


OS IV, 298, 404; V, 25, 642, 859, 1145; VI, 491, 564, 584, 606, 683, 948; VIII, 444.

17-3 The Conversion of Epoxides and Episulfides to Alkenes

epi-Oxy-elimination

$$C = C$$
 + PPh₃ \rightarrow $C = C$ + Ph₃P=O

Epoxides can be converted to $alkenes^{192}$ by treatment with triphenylphosphine¹⁹³ or triethyl phosphite P(OEt)₃.¹⁹⁴ The first step of the mechanism is nucleophilic substitution (**10-35**), followed by a four-center elimination. Since inversion accompanies the substitution, the overall elimination is anti, that is, if two groups A and C are cis in the epoxide, they will be trans in the alkene:

¹⁸⁸Cabrera, G.; Fiaschi, R.; Napolitano, E. Tetrahedron Lett. 2001, 42, 5867.

¹⁸⁹Gassman, P.G.; Burns, S.J. J. Org. Chem. 1988, 53, 5574.

¹⁹⁰Miller, R.D.; McKean, D.R. *Tetrahedron Lett.* **1982**, 23, 323. For another method, see Marsi, M.; Gladysz, J.A. *Organometallics* **1982**, 1, 1467.

¹⁹¹McEwen, I.; Taylor, R. J. Chem. Soc. Perkin Trans. 2 **1982**, 1179. See also Taylor, R. J. Chem. Soc. Perkin Trans. 2 **1988**, 737.

¹⁹²For reviews, see Wong, H.N.C.; Fok, C.C.M.; Wong, T. *Heterocycles* **1987**, *26*, 1345; Sonnet, P.E. *Tetrahedron* **1980**, *36*, 557, pp. 576.

¹⁹³Wittig, G.; Haag, W. Chem. Ber. 1955, 88, 1654.

¹⁹⁴Scott, C.B. J. Org. Chem. 1957, 22, 1118.

Alternatively, the epoxide can be treated with lithium diphenylphosphide, Ph₂PLi, and the product quaternized with methyl iodide.¹⁹⁵ Alkenes have also been obtained from epoxides by reaction with a large number of reagents,¹⁹⁶ among them Li in THF,¹⁹⁷ TsOH and NaI,¹⁹⁸ trimethylsilyl iodide,¹⁹⁹ PI₃,²⁰⁰ F₃COOH–NaI,²⁰¹ SmI₂,²⁰² Mo(CO)₆, TpReO₃, where Tp is a pyrazolyl borate,²⁰³ and the tungsten reagents mentioned in **17-18**. Some of these methods give syn elimination. Treatment of cyclooctane oxide with Ph₃P–OPPh₃ and NEt₃ gave cyclooctadiene.²⁰⁴ Sodium amalgam with a cobalt–salen complex converted epoxides to alkenes.²⁰⁵

Epoxides can be converted to allylic alcohols²⁰⁶ by treatment with several reagents, including *sec*-butyllithium,²⁰⁷ *tert*-butyldimethylsilyl iodide,²⁰⁸ and *i*Pr₂N-Li–*t*-BuOK (the *LIDAKOR reagent*).²⁰⁹ Phenyllithium reacts with epoxides in the presence of lithium tetramethylpiperidide (LTMP) to give a trans alkene.²¹⁰ Sulfur ylids, such as Me₂S=CH₂, also convert epoxides to allylic alcohols.²¹¹ Bromomethyl epoxides react with InCl₃/NaBH₄ to give an allylic alcohol.²¹² α , β -Epoxy ketones are converted to conjugated ketones by treatment with NaI in acetone in the presence of Amberlyst 15,²¹³ or with 2.5 equivalents of SmI₂.²¹⁴ Cyclic epoxides are converted to conjugated dienes by heating with (NMe₂)₂P(=O)Cl and H₂O.²¹⁵

¹⁹⁵Vedejs, E.; Fuchs, P.L. J. Am. Chem. Soc. 1971, 93, 4070; 1973, 95, 822.

- ¹⁹⁷Gurudutt, K.N.; Ravindranath, B. Tetrahedron Lett. 1980, 21, 1173.
- ¹⁹⁸Baruah, R.N.; Sharma, R.P.; Baruah, J.N. Chem. Ind. (London) 1983, 524.
- ¹⁹⁹Denis, J.N.; Magnane, R.; Van Eenoo, M.; Krief, A. *Nouv. J. Chim.* **1979**, *3*, 705. For other silyl reagents, see Reetz, M.T.; Plachky, M. *Synthesis* **1976**, 199; Dervan, P.B.; Shippey, M.A. *J. Am. Chem. Soc.* **1976**, 98, 1265; Caputo, R.; Mangoni, L.; Neri, O.; Palumbo, G. *Tetrahedron Lett.* **1981**, 22, 3551.
- ²⁰⁰Denis, J.N.; Magnaane, R.; Van Eenoo, M.; Krief, A. Nouv. J. Chim. 1979, 3, 705.
- ²⁰¹Sarma, D.N.; Sharma, R.P. Chem. Ind. (London) 1984, 712.

²⁰²Girard, P.; Namy, J.L.; Kagan, H.B. J. Am. Chem. Soc. **1980**, 102, 2693; Matsukawa, M.; Tabuchi, T.; Inanaga, J.; Yamaguchi, M. Chem. Lett. **1987**, 2101.

²⁰³Gable, K.P.; Brown, E.C. Synlett 2003, 2243.

²⁰⁴Hendrickson, J.B.; Walker, M.A.; Varvak, A.; Hussoin, Md.S. Synlett 1996, 661.

²⁰⁵Isobe, H.; Branchaud, B.P. *Tetrahedron Lett.* **1999**, 40, 8747.

²⁰⁶For reviews, see Smith, J.G. Synthesis **1984**, 629, pp. 637–642; Crandall, J.K.; Apparu, M. Org. React. **1983**, 29, 345. For a list of reagents, with references, see Larock, R.C. Comprehensive Organic Transformations, 2nd ed., Wiley-VCH, NY, **1999**, pp. 231–233. See also, Okovytyy, S.; Gorb, L.; Leszczynski, J. Tetrahedron **2001**, 57, 1509.

²⁰⁷Doris, E.; Dechoux, L.; Mioskowski, C. Tetrahedron Lett. 1994, 35, 7943.

²⁰⁸Detty, M.R. J. Org. Chem. **1980**, 45, 924. For another silyl reagent, see Murata, S.; Suzuki, M.; Noyori, R. J. Am. Chem. Soc. **1979**, 101, 2738.

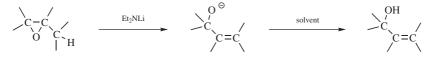
²⁰⁹Mordini, A.; Ben Rayana, E.; Margot, C.; Schlosser, M. *Tetrahedron* **1990**, 46, 2401; Degl'Innocenti, A.; Mordini, A.; Pecchi, S.; Pinzani, D.; Reginato, G.; Ricci, A. *Synlett* **1992**, 753, 803; Thurner, A.; Faigl,

F.; Töke, L.; Mordini, A.; Valacchi, M.; Reginato, G.; Czira, G. Tetrahedron 2001, 57, 8173.

²¹⁰Hodgson, D.M.; Fleming, M.J.; Stanway, S.J. J. Am. Chem. Soc. **2004**, *126*, 12250.

²¹¹Alcaraz, L.; Cridland, A.; Kinchin, E. Org. Lett. **2001**, *3*, 4051.

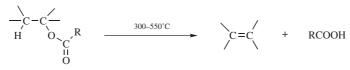
²¹²Ranu, B.C.; Banerjee, S.; Das, A. *Tetrahedron Lett.* **2004**, 45, 8579.


²¹³Righi, G.; Bovicelli, P.; Sperandio, A. *Tetrahedron* **2000**, *56*, 1733.

²¹⁴Concellón, J.M.; Bardales, E. J. Org. Chem. 2003, 68, 9492; Concellón, J.M.; Bardales, E. Org. Lett. 2002, 4, 189. In a similar manner, epoxy amides are converted to conjugated amides, see Concellón, J.M.; Bardales, E. Eur. J. Org. Chem. 2004, 1523.

²¹⁵Demir, A.S. Tetrahedron 2001, 57, 227.

¹⁹⁶For a list of reagents, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, **1999**, pp. 272–277.


When an optically active reagent is used, optically active allylic alcohols can be produced from achiral epoxides.²¹⁶ Sparteine and *sec*-butyllithium generate a chiral base that leads to formation of chiral allylic alcohols.²¹⁷ Chiral diamines react with organolithium reagents to produce chiral bases that convert epoxides to allylic alcohols with good enantioselectivity.²¹⁸ Chiral diamines with a mixture of LDA and DBU (p. 1132) give similar results.²¹⁹

Episulfides²²⁰ can be converted to alkenes.²²¹ However, in this case the elimination is syn, so the mechanism cannot be the same as that for conversion of epoxides. The phosphite attacks sulfur rather than carbon. Among other reagents that convert episulfides to alkenes are Bu₃SnH,²²² certain rhodium complexes,²²³ LiAlH₄²²⁴ (this compound behaves quite differently with epoxides, see **19-35**), and meI.²²⁵ The reaction of H₂S/PPh₃ and MeReO₃ converts episulfides to alkenes.²²⁶ Episulfoxides can be converted to alkenes and sulfur monoxide simply by heating.²²⁷

17-4 Pyrolysis of Carboxylic Acids and Esters of Carboxylic Acids

Hydro-acyloxy-elimination

²¹⁶Su, H.; Walder, L.; Zhang, Z.; Scheffold, R. *Helv. Chim. Acta* **1988**, *71*, 1073, and references cited therein. Also see, Asami, M.; Suga, T.; Honda, K.; Inoue, S. *Tetrahedron Lett.* **1997**, *38*, 6425.; Lill, S.O.N.; Pettersen, D.; Amedjkouh, M.; Ahlberg, P. J. Chem. Soc., Perkin Trans. 1 **2001**, 3054; Brookes, P.C.; Milne, D.J.; Murphy, P.J.; Spolaore, B. *Tetrahedron* **2002**, *58*, 4675.

²¹⁷Alexakis, A.; Vrancken, E.; Mangeney, P. J. Chem. Soc. Perkin Trans. 1 2000, 3354.

²¹⁸de Sousa, S.E.; O'Brien, P.; Steffens, H.C. Tetrahedron Lett. **1999**, 40, 8423; Equey, O.; Alexakis, A. Tetrahedron Asymmetry **2004**, 15, 1069.

²¹⁹Bertilsson, S.K.; Södergren, M.J.; Andersson, P.G. J. Org. Chem. 2002, 67, 1567; Bertilsson, S.K.; Andersson, P.G. Tetrahedron 2002, 58, 4665.

²²⁰For a review of this reaction, see Sonnet, P.E. *Tetrahedron* **1980**, *36*, 557, see p. 587. For a review of episulfides, see Goodman, L.; Reist, E.J., in Kharasch; Meyers *The Chemistry of Organic Sulfur Compounds*, Vol. 2; Pergamon: Elmsford, NY, **1966**, pp. 93–113.

²²¹Neureiter, N.P.; Bordwell, F.G. J. Am. Chem. Soc. **1959**, 81, 578; Davis, R.E. J. Org. Chem. **1957**, 23, 1767.

²²²Schauder, J.R.; Denis, J.N.; Krief, A. Tetrahedron Lett. 1983, 24, 1657.

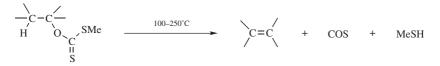
²²³Calet, S.; Alper, H. Tetrahedron Lett. 1986, 27, 3573.

²²⁴Lightner, D.A.; Djerassi, C. Chem. Ind. (London) **1962**, 1236; Latif, N.; Mishriky, N.; Zeid, I. J. Prakt. Chem. **1970**, 312, 421.

²²⁵Culvenor, C.J.; Davies, W.; Heath, N.S. J. Chem. Soc. 1949, 282; Helmkamp, G.K.; Pettitt, D.J. J. Org. Chem. 1964, 29, 3258.

²²⁶Jacob, J.; Espenson, J.H. Chem. Commun. 1999, 1003.

²²⁷Hartzell, G.E.; Paige, J.N. J. Am. Chem. Soc. 1966, 88, 2616, J. Org. Chem. 1967, 32, 459; Aalbersberg,
 W.G.L.; Vollhardt, K.P.C. J. Am. Chem. Soc. 1977, 99, 2792.


Direct elimination of a carboxylic acid to an alkene has been accomplished by heating in the presence of palladium catalysts.²²⁸ Carboxylic esters in which the alkyl group has a β hydrogen can be pyrolyzed, most often in the gas phase, to give the corresponding acid and an alkene.²²⁹ No solvent is required. Since rearrangement and other side reactions are few, the reaction is synthetically very useful and is often carried out as an indirect method of accomplishing 17-1. The yields are excellent and the workup is easy. Many alkenes have been prepared in this manner. For higher alkenes (above $\sim C_{10}$) a better method is to pyrolyze the alcohol in the presence of acetic anhydride.²³⁰

The mechanism is Eⁱ (see p. 1507). Lactones can be pyrolyzed to give unsaturated acids, provided that the six-membered transition state required for Eⁱ reactions is available (it is not available for five- and six-membered lactones, but it is for larger rings²³¹). Amides give a similar reaction, but require higher temperatures.

Allylic acetates give dienes when heated with certain palladium²³² or molybdenum²³³ compounds.

OS III, 30; IV, 746; V, 235; IX, 293.

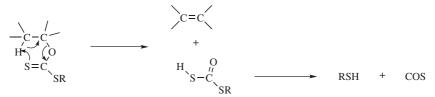
17-5 The Chugaev Reaction

Methyl xanthates are prepared by treatment of alcohols with NaOH and CS₂ to give RO–C(=S)–SNa, followed by treatment of this with methyl iodide.²³⁴ Pyrolysis of the xanthate to give the alkene, COS, and the thiol is called the *Chugaev reaction.*²³⁵ The reaction is thus, like **17-4**, an indirect method of accomplishing **17-2**. The temperatures required with xanthates are lower than with ordinary esters, which is advantageous because possible isomerization of the resulting alkene is minimized. The mechanism is Eⁱ, similar to that of **17-4**. For a time there was doubt as to which sulfur atom closed the ring, but now there is much evidence, including

²³⁰Aubrey, D.W.; Barnatt, A.; Gerrard, W. Chem. Ind. (London) 1965, 681.

²³¹See, for example, Bailey, W.J.; Bird, C.N. J. Org. Chem. 1977, 42, 3895.

²³²For a review, see Heck, R.F. Palladium Reagents in Organic Synthesis; Academic Press, NY, 1985, pp. 172–178. ²³³Trost, B.M.; Lautens, M.; Peterson, B. *Tetrahedron Lett.* **1983**, 24, 4525.

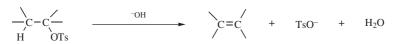

²³⁴For a method of preparing xanthates from alcohols in one laboratory step, see Lee, A.W.M.; Chan, W.H.; Wong, H.C.; Wong, M.S. Synth. Commun. 1989, 19, 547; Nagle, A.S.; Salvataore, R.N.; Cross, R.M.; Kapxhiu, E.A.; Sahab, S.; Yoon, C.H.; Jung, K.W. Tetrahedron Lett. 2003, 44, 5695.

²³⁵For reviews, see DePuy, C.H.; King, R.W. Chem. Rev. 1960, 60, 431, see p. 444; Nace, H.R. Org. React. 1962, 12, 57.

²²⁸Miller, J.A.; Nelson, J.A.; Byrne, M.P. J. Org. Chem. 1993, 58, 18; Gooßen, L.J.; Rodríguez, N. Chem. Commun. 2004, 724.

²²⁹For a review, see DePuy, C.H.; King, R.W. Chem. Rev. 1960, 60, 431, 432. For some procedures, see Jenneskens, L.W.; Hoefs, C.A.M.; Wiersum, U.E. J. Org. Chem. 1989, 54, 5811, and references cited therein.

the study of ³⁴S and ¹³C isotope effects, to show that it is the C=S sulfur:²³⁶ In a structural variation of this reaction, heating a propargylic xanthate with 2,4,6-trimethylpyridinium trifluoromethyl sulfonate leads to formation of an alkene.²³⁷

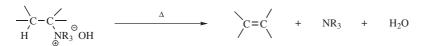


The mechanism is thus exactly analogous to that of 17-5.

OS VII, 139.

17-6 Decomposition of Other Esters

Hydro-tosyloxy-elimination



Several types of inorganic ester can be cleaved to alkenes by treatment with bases. Esters of sulfuric, sulfurous, and other acids undergo elimination in solution by E1 or E2 mechanisms, as do tosylates and other esters of sulfonic acids.²³⁸ It has been shown that bis(tetra-*n*-butylammonium) oxalate, $(Bu_4N^+)_2$ (COO⁻)₂, is an excellent reagent for inducing tosylates to undergo elimination rather than substitution.²³⁹ Aryl sulfonates have also been cleaved without a base. Esters of 2-pyridinesulfonic acid and 8-quinolinesulfonic acid gave alkenes in high yields simply on heating, without a solvent.²⁴⁰ Phosphonate esters have been cleaved to alkenes by treatment with Lawesson's reagent.²⁴¹ Esters of PhSO₂OH and TsOH behaved similarly when heated in a dipolar aprotic solvent, such as Me₂SO or HMPA.²⁴²

OS, VI, 837; VII, 117.

17-7 Cleavage of Quaternary Ammonium Hydroxides

Hydro-trialkylammonio-elimination

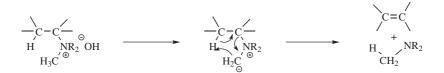
²³⁶Bader, R.F.W.; Bourns, A.N. Can. J. Chem. 1961, 39, 348.

²³⁷Fauré-Tromeur, M.; Zard, S.Z. Tetrahedron Lett. 1999, 40, 1305.

²³⁸For a list of reagents used for sulfonate cleavages, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, **1999**, pp. 294–295.

²³⁹Corey, E.J.; Terashima, S. Tetrahedron Lett. 1972, 111.

²⁴⁰Corey, E.J.; Posner, G.G.; Atkinson, R.F.; Wingard, A.K.; Halloran, D.J.; Radzik, D.M.; Nash, J.J. J. Org. Chem. **1989**, 54, 389.


²⁴¹Shimagaki, M.; Fujieda, Y.; Kimura, T.; Nakata, T. Tetrahedron Lett. 1995, 36, 719.

²⁴²Nace, H.R. J. Am. Chem. Soc. 1959, 81, 5428.

Cleavage of quaternary ammonium hydroxides is the final step of the process known as Hofmann exhaustive methylation or Hofmann degradation.²⁴³ In the first step, a primary, secondary, or tertiary amine is treated with enough methyl iodide to convert it to the quaternary ammonium iodide (10-31). In the second step, the iodide is converted to the hydroxide by treatment with silver oxide. In the cleavage step, an aqueous or alcoholic solution of the hydroxide is distilled, often under reduced pressure. The decomposition generally takes place at a temperature between 100 and 200°C. Alternatively, the solution can be concentrated to a syrup by distillation or freeze-drying.²⁴⁴ When the syrup is heated at low pressures, the cleavage reaction takes place at lower temperatures than are required for the reaction in the ordinary solution, probably because the base (HO⁻ or RO⁻) is less solvated.²⁴⁵ The reaction has never been an important synthetic tool, but in the nineteenth century and the first part of the twentieth century, it saw much use in the determination of the structure of unknown amines, especially alkaloids. In many of these compounds, the nitrogen is in a ring, or even at a ring junction, and in such cases the alkene still contains nitrogen. Repetitions of the process are required to remove the nitrogen completely, as in the conversion of 2-methylpiperidine to 1,5-hexadiene by two rounds of exhaustive methylation followed by pyrolysis.

A side reaction involving nucleophilic substitution to give an alcohol (R_4N^+ $^-OH \rightarrow ROH + R_3N$) generally accompanies the normal elimination reaction,²⁴⁶ but seldom causes trouble. However, when none of the four groups on the nitrogen has a β hydrogen, substitution is the only reaction possible. On heating Me_4N^+ ^-OH in water, methanol is obtained, although without a solvent the product is not methanol, but dimethyl ether.²⁴⁷

The mechanism is usually E2. Hofmann's rule is generally obeyed by acyclic and Zaitsev's rule by cyclohexyl substrates (p. 1498). In certain cases, where the molecule is highly hindered, a five-membered E^i mechanism, similar to that in **17-8**, has been shown to operate. That is, the hydroxide in these cases does not attract the β hydrogen, but instead removes one of the methyl hydrogens:

²⁴³For reviews, see Bentley, K.W., in Bentley, K.W.; Kirby, G.W *Elucidation of Organic Structures by Physical and Chemical Methods*, 2nd ed. (Vol. 4 of Weissberger *Techniques of Chemistry*), pt. 2, Wiley, NY, **1973**, pp. 255–289; White, E.H.; Woodcock, D.J., in Patai, S. *The Chemistry of the Amino Group*, Wiley, NY, **1968**, pp. 409–416; Cope, A.C.; Trumbull, E.R. *Org. React.* **1960**, *11*, 317.

²⁴⁴Archer, D.A. J. Chem. Soc. C 1971, 1327.

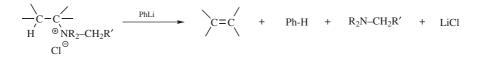
 ²⁴⁵Saunders, Jr., W.H.; Cockerill, A.F. *Mechanisms of Elimination Reactions*, Wiley, NY, **1973**, pp. 4–5.
 ²⁴⁶Baumgarten, R.J. J. Chem. Educ. **1968**, 45, 122.

²⁴⁷Musker, W.K. J. Chem. Educ. **1968**, 45, 200; Musker, W.K.; Stevens, R.R. J. Am. Chem. Soc. **1968**, 90, 3515; Tanaka, J.; Dunning, J.E.; Carter, J.C. J. Org. Chem. **1966**, 31, 3431.

The obvious way to distinguish between this mechanism and the ordinary E2 mechanism is by the use of deuterium labeling. For example, if the reaction is carried out on a quaternary hydroxide deuterated on the β carbon (R₂CDCH₂NMe₃⁺

 $^{-}$ OH), the fate of the deuterium indicates the mechanism. If the E2 mechanism is in operation, the trimethylamine produced would contain no deuterium (which would be found only in the water). But if the mechanism is Eⁱ, the amine would contain deuterium. In the case of the highly hindered compound (Me₃C)₂CDCH₂NMe₃⁺ $^{-}$ OH, the deuterium did appear in the amine, demonstrating an Ei mechanism for this case.²⁴⁸ With simpler compounds, the mechanism is E2, since here the amine was deuterium-free.²⁴⁹

When the nitrogen bears more than one group possessing a β hydrogen, which group cleaves? The Hofmann rule says that *within* a group the hydrogen on the least alkylated carbon cleaves. This tendency is also carried over to the choice of which group cleaves: thus ethyl with three β hydrogens cleaves more readily than any longer *n*-alkyl group, all of which have two β hydrogens. "The β hydrogen is removed most readily if it is located on a methyl group, next from RCH₂, and least readily from R₂CH."²⁵⁰ In fact, the Hofmann rule as first stated²⁵¹ in 1851 applied only to which group cleaved, not to the orientation within a group; the latter could not have been specified in 1851, since the structural theory of organic compounds was not formulated until 1857–1860. Of course, the Hofmann rule (applied to which group cleaves *or* to orientation within a group) is superseded by conjugation possibilities. Thus PhCH₂CH₂NMe₂Et⁺ OH gives mostly styrene instead of ethylene.

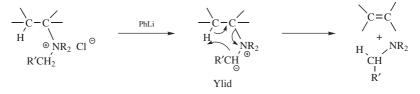

Triple bonds have been prepared by pyrolysis of 1,2-bis(ammonium) salts.²⁵²

$$\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & &$$

OS IV, 980; V, 315, 608; VI, 552. Also see, OS V, 621, 883; VI, 75.

17-8 Cleavage of Quaternary Ammonium Salts With Strong Bases

Hydro-trialkylammonio-elimination



²⁴⁸Cope, A.C.; Mehta, A.S. *J. Am. Chem. Soc.* **1963**, 85, 1949. See also, Baldwin, M.A.; Banthorpe, D.V.; Loudon, A.G.; Waller, F.D. *J. Chem. Soc. B* **1967**, 509.

- ²⁴⁹Cope, A.C.; LeBel, N.A.; Moore, P.T.; Moore, W.R. J. Am. Chem. Soc. 1961, 83, 3861.
- ²⁵⁰Cope, A.C.; Trumbull, E.R. Org. React. 1960, 11, 317, see p. 348.
- ²⁵¹Hofmann, A.W. Liebigs Ann. Chem. 1851, 78, 253.

²⁵²For a review, see Franke, W.; Ziegenbein, W.; Meister, H. Angew. Chem. 1960, 72, 391, see p. 397–398.

When quaternary ammonium halides are treated with strong bases (e.g., PhLi, KNH_2 in liquid NH_3^{253}), an elimination can occur that is similar in products, although not in mechanism, to **17-7**. This is an alternative to **17-7** and is done on the quaternary ammonium halide, so that it is not necessary to convert this to the hydroxide. The mechanism is E^1 :

An α' hydrogen is obviously necessary in order for the ylid to be formed. This type of mechanism is called α',β elimination, since a β hydrogen is removed by the α' carbon. The mechanism has been confirmed by labeling experiments similar to those described at **17-7**,²⁵⁴ and by isolation of the intermediate ylids.²⁵⁵ An important synthetic difference between this and most instances of **17-7** is that synelimination is observed here and anti-elimination in **17-7**, so products of opposite configuration are formed when the alkene exhibits cis–trans isomerism.

An alternative procedure that avoids the use of a very strong base is heating the salt with KOH in polyethylene glycol monomethyl ether.²⁵⁶

Benzotriazole has been shown to be a good leaving group for elimination reactions. The reaction of an allylic benzotriazole (3-benzotriazoyl-4-trimethylsilyl-1-butene) with *n*-butyllithium, and then an alkyl halide leads to an alkylated 1,3-diene upon heating.²⁵⁷

17-9 Cleavage of Amine Oxides

Hydro-(Dialkyloxidoammonio)-elimination

Cleavage of amine oxides to produce an alkene and a hydroxylamine is called the *Cope reaction* or *Cope elimination* (not to be confused with the Cope *rearrangement*, **18-32**). It is an alternative to **17-7** and **17-8**.²⁵⁸ The reaction is usually

²⁵³Bach, R.D.; Bair, K.W.; Andrzejewski, D. J. Am. Chem. Soc. 1972, 94, 8608; J. Chem. Soc., Chem. Commun. 1974, 819.

²⁵⁴Weygand, F.; Daniel, H.; Simon, H. Chem. Ber. **1958**, 91, 1691; Bach, R.D.; Knight, J.W. Tetrahedron Lett. **1979**, 3815.

²⁵⁵Wittig, G.; Burger, T.F. Liebigs Ann. Chem. 1960, 632, 85.

²⁵⁶Hünig, S.; Öller, M.; Wehner, G. Liebigs Ann. Chem. 1979, 1925.

²⁵⁷Katritzky, A.R.; Serdyuk, L.; Toader, D.; Wang, X. J. Org. Chem. 1999, 64, 1888.

²⁵⁸For reviews, see Cope, A.C.; Trumbull, E.R. Org. React. **1960**, 11, 317, see p. 361; DePuy, C.H.; King, R.W. Chem. Rev. **1960**, 60, 431, see pp. 448–451.

performed with a mixture of amine and oxidizing agent (see **19-29**) without isolation of the amine oxide. Because of the mild conditions side reactions are few, and the alkenes do not usually rearrange. The reaction is thus very useful for the preparation of many alkenes. A limitation is that it does not open six-membered rings containing nitrogen, although it does open rings of 5 and 7–10 members.²⁵⁹ Rates of the reaction increase with increasing size of α and β -substituents.²⁶⁰ The reaction can be carried out at room temperature in dry Me₂SO or THF.²⁶¹ The elimination is a stereoselective syn process,²⁶² and the five-membered Eⁱ mechanism operates:

Almost all evidence indicates that the transition state must be planar. Deviations from planarity as in **17-4** (see p. 1507) are not found here, and indeed this is why six-membered heterocyclic nitrogen compounds do not react. Because of the stereoselectivity of this reaction and the lack of rearrangement of the products, it is useful for the formation of trans-cycloalkenes (eight-membered and higher). A polymer-bound Cope elimination reaction has been reported.²⁶³

OS IV, 612.

17-10 Pyrolysis of Keto-ylids

Hydro-(oxophosphoryl)-elimination

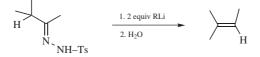
Phosphorus ylids are quite common (see **16-44**) and keto-phosphorus ylids [RCOCH=PPh₃] are also known. When these compounds are heating (flash vacuum pyrolysis, FVP) to > 500°C, alkynes are formed. Simple alkynes²⁶⁴ can be formed as well as keto-alkynes²⁶⁵ and en-ynes.²⁶⁶ Rearrangement from ylids derived from tertiary amines an α -diazo ketones is also known.²⁶⁷

- ²⁶²See, for example, Bach, R.D.; Andrzejewski, D.; Dusold, L.R. J. Org. Chem. 1973, 38, 1742.
- ²⁶³Sammelson, R.E.; Kurth, M.J. Tetrahedron Lett. 2001, 42, 3419.

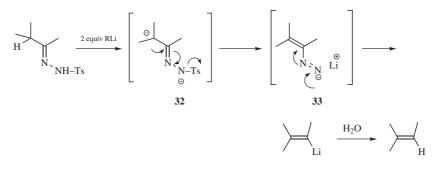
²⁵⁹Cope, A.C.; LeBel, N.A. J. Am. Chem. Soc. **1960**, 82, 4656; Cope, A.C.; Ciganek, E.; Howell, C.F.; Schweizer, E.E. J. Am. Chem. Soc. **1960**, 82, 4663.

²⁶⁰Závada, J.; Pánková, M.; Svoboda, M. Collect. Czech. Chem. Commun. 1973, 38, 2102.

²⁶¹Cram, D.J.; Sahyun, M.R.V.; Knox, G.R. J. Am. Chem. Soc. 1962, 84, 1734.


²⁶⁴Aitken, R.A.; Atherton, J.I. J. Chem. Soc. Perkin Trans. 1 1994, 1281.

²⁶⁵Aitken, R.A.; Hérion, H.; Janosi, A.; Karodia, N.; Raut, S.V.; Seth, S.; Shannon, I.J.; Smith, F.C. J. Chem. Soc. Perkin Trans. 1 1994, 2467.


²⁶⁶Aitken, R.A.; Boeters, C; Morrison, J.J. J. Chem. Soc. Perkin Trans. 1 1994, 2473.

²⁶⁷DelZotto, A.; Baratta, W.; Miani, F.; Verardo, G.; Rigo, P. Eur. J. Org. Chem. 2000, 3731.

17-11 Decomposition of Toluene-*p*-sulfonylhydrazones

Treatment of the tosylhydrazone of an aldehyde or a ketone with a strong base leads to the formation of an alkene, the reaction being formally an elimination accompanied by a hydrogen shift.²⁶⁸ The reaction (called the *Shapiro reaction*) has been applied to tosylhydrazones of many aldehydes and ketones. The most useful method synthetically involves treatment of the substrate with at least 2 equivalents of an organolithium compound²⁶⁹ (usually MeLi) in ether, hexane, or tetramethylenediamine.²⁷⁰ This procedure gives good yields of alkenes without side reactions and, where a choice is possible, predominantly gives the less highly substituted alkene. Tosylhydrazones of α , β -unsaturated ketones give conjugated dienes.²⁷¹ The mechanism²⁷² has been formulated as:

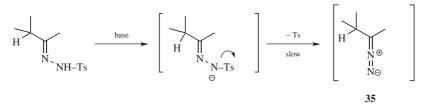
Evidence for this mechanism is (1) 2 equivalents of RLi are required; (2) the hydrogen in the product comes from the water and not from the adjacent carbon, as shown by deuterium labeling;²⁷³ and (3) the intermediates **32–34** have been trapped.²⁷⁴ This reaction, when performed in tetramethylenediamine, can be a synthetically useful method²⁷⁵ of generating vinylic lithium compounds (**34**), which

- ²⁷³Ref. 269; Shapiro, R.H.; Hornaman, E.C. J. Org. Chem. 1974, 39, 2302.
- ²⁷⁴Lipton, M.F.; Shapiro, R.H. J. Org. Chem. 1978, 43, 1409.
- ²⁷⁵See Traas, P.C.; Boelens, H.; Takken, H.J. *Tetrahedron Lett.* **1976**, 2287; Stemke, J.E.; Chamberlin, A.R.; Bond, F.T. *Tetrahedron Lett.* **1976**, 2947.

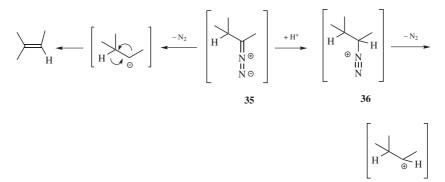
²⁶⁸For reviews, see Adlington, R.M.; Barrett, A.G.M. Acc. Chem. Res. **1983**, 16, 55; Shapiro, R.H. Org. React. **1976**, 23, 405.

²⁶⁹Shapiro, R.H.; Heath, M.J. J. Am. Chem. Soc. 1967, 89, 5734; Kaufman, G.; Cook, F.; Shechter, H.; Bayless, J.; Friedman, L. J. Am. Chem. Soc. 1967, 89, 5736; Shapiro, R.H. Tetrahedron Lett. 1968, 345;

Meinwald, J.; Uno, F. J. Am. Chem. Soc. 1968, 90, 800.


²⁷⁰Stemke, J.E.; Bond, F.T. Tetrahedron Lett. 1975, 1815.

²⁷¹See Dauben, W.G.; Rivers, G.T.; Zimmerman, W.T. J. Am. Chem. Soc. 1977, 99, 3414.


²⁷²For a review of the mechanism, see Casanova, J.; Waegell, B. Bull. Soc. Chim. Fr. 1975, 922.

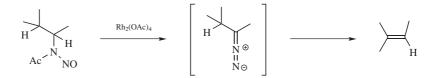
can be trapped by various electrophiles²⁷⁶ such as D₂O (to give deuterated alkenes), CO₂ (to give α,β -unsaturated carboxylic acids, **16-30**), or DMF (to give α,β -unsaturated aldehydes, **16-82**). Treatment of *N*-aziridino hydrazones with LDA leads to alkenes with high cis selectivity.²⁷⁷

The reaction also takes place with other bases (e.g., LiH,²⁷⁸ Na in ethylene glycol, NaH, NaNH₂) or with smaller amounts of RLi, but in these cases side reactions are common and the orientation of the double bond is in the other direction (to give the more highly substituted alkene). The reaction with Na in ethylene glycol is called the *Bamford–Stevens reaction*.²⁷⁹ For these reactions two mechanisms are possible: a carbenoid and a carbocation mechanism.²⁸⁰ The side reactions found are those expected of carbenes and carbocations. In general, the carbocation mechanism is chiefly found in protic solvents and the carbenoid mechanism in aprotic solvents. Both routes involve formation of a diazo compound (**35**) which in some cases can be isolated.

In fact, this reaction has been used as a synthetic method for the preparation of diazo compounds.²⁸¹ In the absence of protic solvents, **36** loses N_2 , and hydrogen migrates, to give the alkene product. The migration of

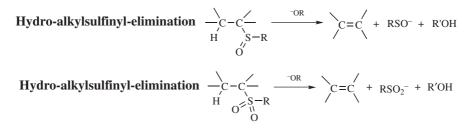
²⁷⁶For a review, see Chamberlin, A.R.; Bloom, S.H. Org. React. 1990, 39, 1.

²⁷⁷Maruoka, K.; Oishi, M.; Yamamoto, H. J. Am. Chem. Soc. 1996, 118, 2289.


²⁷⁸Biellmann, J.F.; Pète, J. Bull. Soc. Chim. Fr. 1967, 675.

²⁷⁹Bamford, W.R.; Stevens, R.R. J. Chem. Soc. **1952**, 4735. For a tandem Bamford-Stevens–Claisen rearrangement, see May, J.A.; Stoltz, B.M. J. Am. Chem. Soc. **2002**, 124, 12426.

²⁸⁰Powell, J.W.; Whiting, M.C. *Tetrahedron* 1959, 7, 305; 1961, 12 168; DePuy, C.H.; Froemsdorf, D.H.
 J. Am. Chem. Soc. 1960, 82, 634; Bayless, J.H.; Friedman, L.; Cook, F.B.; Shechter, H. J. Am. Chem. Soc. 1968, 90, 531; Nickon, A.; Werstiuk, N.H. J. Am. Chem. Soc. 1972, 94, 7081.


²⁸¹For a review, see Regitz, M.; Maas, G. *Diazo Compounds*; Academic Press, NY, **1986**, pp. 257–295. For an improved procedure, see Wulfman, D.S.; Yousefian, S.; White, J.M. *Synth. Commun.* **1988**, *18*, 2349.

hydrogen may immediately follow, or be simultaneous with, the loss of N_2 . In a protic solvent, **35** becomes protonated to give the diazonium ion **36**, which loses N_2 to give the corresponding carbocation, that may then undergo elimination or give other reactions characteristic of carbocations. A diazo compound is an intermediate in the formation of alkenes by treatment of *N*-nitrosoamides with a rhodium(II) catalyst.²⁸²

OS VI, 172; VII, 77; IX, 147. For the preparation of a diazo compound, see OS VII, 438.

17-12 Cleavage of Sulfoxides, Selenoxides, and Sulfones

Sulfonium compounds $(-C-^+SR_2)$ undergo elimination similar to that of their ammonium counterparts (**17-7** and **17-8**) in scope and mechanism but this reaction is not of great synthetic importance. These syn-elimination reactions are related to the Cope elimination (**17-9**) and the Hofmann elimination (**17-7**).²⁸³

Sulfones and sulfoxides²⁸⁴ with a β hydrogen, on the other hand, undergo elimination on treatment with an alkoxide or, for sulfones,²⁸⁵ even with hydroxide.²⁸⁶ Sulfones also eliminate in the presence of an organolithium reagent and a palladium catalyst.²⁸⁷ Mechanistically, these reactions belong on the E1-E2-E1cB spectrum.²⁸⁸ Although the leaving groups are uncharged, the orientation follows Hofmann's rule, not Zaitsev's. Sulfoxides (but not sulfones) also undergo elimination

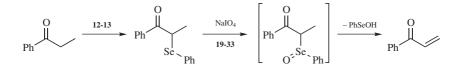
²⁸²Godfrey, A.G.; Ganem, B. J. Am. Chem. Soc. 1990, 112, 3717.

²⁸³For a discussion and leading references of this class of eliminations, see Smith, M.B. Organic Synthesis, 2nd ed., McGraw-Hill, NY, **2001**, pp. 135–141.

²⁸⁴See Cubbage, J.W.; Guo, Y.; McCulla, R.D.; Jenks, W.S. J. Org. Chem. 2001, 66, 8722.

²⁸⁵Certain sulfones undergo elimination with 5% HCl in THF: Yoshida, T.; Saito, S. Chem. Lett. 1982, 165.

²⁸⁶Hofmann, J.E.; Wallace, T.J.; Argabright, P.A.; Schriesheim, A. Chem. Ind. (London) 1963, 1234.


²⁸⁷Gai, Y.; Jin, L.; Julia, M.; Verpeaux, J.-N. J. Chem. Soc., Chem. Commun. 1993, 1625.

²⁸⁸Hofmann, J.E.; Wallace, T.L.; Schriesheim, A. J. Am. Chem. Soc. 1964, 86, 1561.

on pyrolysis at $\sim 80^{\circ}$ C in a manner analogous to **17-9**. The mechanism is also analogous, being the five-membered Eⁱ mechanism with syn elimination.²⁸⁹

Selenoxides²⁹⁰ and sulfinate esters R_2CH -CHR-SO-OMe²⁹¹ also undergo elimination by the Eⁱ mechanism, the selenoxide reaction taking place at room temperature. The reaction with selenoxides has been extended to the formation of triple bonds.²⁹²

Both the selenoxide²⁹³ and sulfoxide²⁹⁴ reactions have been used in a method for the conversion of ketones, aldehydes, and carboxylic esters to their α , β -unsaturated derivatives (illustrated for the selenoxide).

Because of the mildness of the procedure, this is probably the best means of accomplishing this conversion. Treatment of ketones with LDA and then PhClS=Nt-Bu leads to the conjugated ketone.²⁹⁵ Allylic sulfoxides undergo 1,4-elimination to give dienes.²⁹⁶ Ketones also react with hypervalent iodine cmpound in DMSO to give conjugated ketone.²⁹⁷ In a similar manner, keotnes are converted to conjugated ketones by heating with HIO₅/I₂O₅ in DMSO.²⁹⁸

 ²⁸⁹Schmitz, C.; Harvey, J.N.; Viehe, H.G. Bull. Soc. Chim. Belg. 1994, 103, 105; Yoshimura, T.;
 Tsukurimichi, E.; Iizuka, Y.; Mizuno, H.; Isaji, H.; Shimasaki, C. Bull. Chem. Soc. Jpn. 1989, 62, 1891.
 ²⁹⁰For reviews, see Back, T.G., in Patai, S. The Chemistry of Organic Selenium and Telurium Compounds,
 Vol. 2, Wiley, NY, 1987, pp. 91–213, 95–109; Paulmier, C. Selenium Reagents and Intermediates in Organic Synthesis, Pergamon, Elmsford, NY, 1986, pp. 132–143; Reich, H.J. Acc. Chem. Res. 1979, 12,
 22, in Trahanovsky, W.S. Oxidation in Organic Chemistry, pt. C, Academic Press, NY, 1978, pp. 15–101;
 Sharpless, K.B.; Gordon, K.M.; Lauer, R.F.; Patrick, D.W.; Singer, S.P.; Young, M.W. Chem. Scr. 1975,
 8A; 9. See also, Liotta, D. Organoselenium Chemistry, Wiley, NY, 1987.

²⁹¹Jones, D.N.; Higgins, W. J. Chem. Soc. C 1970, 81.

²⁹²Reich, H.J.; Willis, Jr., W.W. J. Am. Chem. Soc. 1980, 102, 5967.

²⁹³Clive, D.L.J. J. Chem. Soc., Chem. Commun. 1973, 695; Reich, H.J.; Renga, J.M.; Reich, I.L. J. Am. Chem. Soc. 1975, 97, 5434, and references cited therein; Sharpless, K.B.; Lauer, R.F.; Teranishi, A.Y. J. Am. Chem. Soc. 1973, 95, 6137; Grieco, P.A.; Miyashita, M. J. Org. Chem. 1974, 39, 120; Crich, D.; Barba, G.R. Org. Lett. 2000, 2, 989. For lists of reagents, with references, see Larock, R.C. Comprehensive Organic Transformations, 2nd ed., Wiley-VCH, NY, 1999, pp. 287–290. For a discussion of the effect of ortho substituents, see Sayama, S.; Onami, T. Tetrahedron Lett. 2000, 41, 5557.

²⁹⁴Trost, B.M.; Salzmann, T.N.; Hiroi, K. J. Am. Chem. Soc. **1976**, 98, 4887. For a review of this and related methods, see Trost, B.M. Acc. Chem. Res. **1978**, 11, 453.

²⁹⁵Mukaiyama, T.; Matsuo, J.-i.; Kitgawa, H. Chem. Lett. 2000, 1250.

²⁹⁶de Groot, A.; Jansen, B.J.M.; Reuvers, J.T.A.; Tedjo, E.M. Tetrahedron Lett. 1981, 22, 4137.

²⁹⁷Nicolaou, K.C.; Montagnon, T.; Baran, P.S.; Zhong, Y.-L. J. Am. Chem. Soc. 2002, 124, 2245;

Nicolaou, K.C.; Gray, D.L.F.; Montagnon, T.; Harrison, S.T. Angew. Chem. Int. Ed. 2002, 41, 996.

²⁹⁸Nicolaou, K.C.; Montagnon, T.; Baran, P.S. Angew. Chem. Int. Ed. 2002, 41, 1386.

A radical elimination reaction generates alkenes from sulfoxides. The reaction of a 2-bromophenyl alkylsulfoxide with Bu₃SnH and AIBN (see p. 935 for a discussion of these standard radical conditions) leads to an alkene.²⁹⁹

OS VI, 23, 737; VIII, 543; IX, 63.

17-13 Dehydrohalogenation of Alkyl Halides

Hydro-halo-elimination

The elimination of HX from an alkyl halide is a very general reaction and can be accomplished with chlorides, fluorides, bromides, and iodides.³⁰⁰ Hot alcoholic KOH is the most frequently used base, although stronger bases³⁰¹ ($^{-}$ OR, $^{-}$ NH₂, etc.) or weaker ones (e.g., amines) are used where warranted.³⁰² The bicyclic amidines 1,5-diazabicyclo[3.4.0]nonene-5 (DBN)³⁰³ and 1,8-diazabicyclo[5.4.0]undecene-7 (DBU)³⁰⁴ are good reagents for difficult cases.³⁰⁵ Dehydrohalogenation with the non-ionic base (Me₂N)₃P=N-P(NMe₂)₂=NMe is even faster.³⁰⁶ Phase-transfer catalysis has been used with hydroxide as base.³⁰⁷ As previously mentioned (p. 1495), certain weak bases in dipolar aprotic solvents are effective reagents for dehydrohalogenation. Among those most often used for synthetic purposes are LiCl or LiBr–LiCO₃ in DMF.³⁰⁸ Dehydrohalogenation has also been effected by heating of the alkyl halide in HMPA with no other reagent present.³⁰⁹ As in

³⁰⁶Schwesinger, R.; Schlemper, H. Angew. Chem. Int. Ed. 1987, 26, 1167.

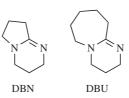
²⁹⁹Imboden, C.; Villar, F.; Renaud, P. Org. Lett. 1999, 1, 873.

³⁰⁰For a review of eliminations involving the carbon–halogen bond, see Baciocchi, E., in Patai, S.; Rappoport, *Z. The Chemistry of Functional Groups, Supplement D*, pt. 2, Wiley, NY, **1983**, pp. 1173–1227. ³⁰¹Triphenylmethylpotassium rapidly dehydrohalogenates secondary alkyl bromides and iodides, in

>90% yields, at 0°C: Anton, D.R.; Crabtree, R.H. *Tetrahedron Lett.* **1983**, 24, 2449.

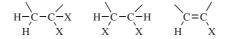
³⁰²For a list of reagents, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, *1999*, pp. 256–258.

³⁰³Truscheit, E.; Eiter, K. *Liebigs Ann. Chem.* **1962**, 658, 65; Oediger, H.; Kabbe, H.; Möller, F.; Eiter, K. *Chem. Ber.* **1966**, 99, 2012; Vogel, E.; Klärner, F. *Angew. Chem. Int. Ed.* **1968**, 7, 374.


 ³⁰⁴Oediger, H.; Möller, F. Angew. Chem. Int. Ed. 1967, 6, 76; Wolkoff, P. J. Org. Chem. 1982, 47, 1944.
 ³⁰⁵For a review of these reagents, see Oediger, H.; Möller, F.; Eiter, K. Synthesis 1972, 591.

³⁰⁷Kimura, Y.; Regen, S.L. J. Org. Chem. **1983**, 48, 195; Halpern, M.; Zahalka, H.A.; Sasson, Y.; Rabinovitz, M. J. Org. Chem. **1985**, 50, 5088. See also, Barry, J.; Bram, G.; Decodts, G.; Loupy, A.; Pigeon, P.; Sansoulet, J. J. Org. Chem. **1984**, 49, 1138.

³⁰⁸For a discussion, see Fieser, L.F.; Fieser, M. *Reagents for Organic Syntheses*, Vol. 1, Wiley, NY, **1967**, pp. 606–609. For a review of alkali-metal fluorides in this reaction, see Yakobson, G.G.; Akhmetova, N.E. *Synthesis* **1983**, 169, see pp. 170–173.


 ³⁰⁹Hanna, R. *Tetrahedron Lett.* 1968, 2105; Monson, R.S. *Chem. Commun.* 1971, 113; Hutchins, R.O.;
 Hutchins, M.G.; Milewski, C.A. J. Org. Chem. 1972, 37, 4190; Hoye, T.R.; van Deidhuizen, J.J.; Vos, T.J.;
 Zhao, P. Synth. Commun. 2001, 31, 1367.

nucleophilic substitution (p. 496), the order of leaving group reactivity is $I\!>\!Br\!>\!Cl\!>\!F\!.^{310}$

Tertiary halides undergo elimination most easily. Eliminations of chlorides, bromides, and iodides follow Zaitsev's rule, except for a few cases where steric effects are important (for an example, see p. 1499). Eliminations of fluorides follow Hofmann's rule (p. 1500).

This reaction is by far the most important way of introducing a triple bond into a molecule.³¹¹ Alkyne formation can be accomplished with substrates of the types:³¹²

When the base is NaNH₂ 1-alkynes predominate (where possible), because this base is strong enough to form the salt of the alkyne, shifting any equilibrium between 1- and 2-alkynes. When the base is ^{-}OH or ^{-}OR , the equilibrium tends to be shifted to the internal alkyne, which is thermodynamically more stable. If another hydrogen is suitably located (e.g., $-CRH-CX_2-CH_2-$), allene formation can compete, although alkynes are usually more stable. 1,1,2-Trihalocyclopropanes are converted to alkynes by ring opening reactions.³¹³

Dehydrohalogenation is generally carried out in solution, with a base, and the mechanism is usually E2, although the E1 mechanism has been demonstrated in some cases. However, elimination of HX can be accomplished by pyrolysis of the halide, in which case the mechanism is E^i (p. 1507) or, in some instances, the free-radical mechanism (p. 1510). Pyrolysis is normally performed without a catalyst at ~400°C. The pyrolysis reaction is not generally useful synthetically, because of its reversibility. Less work has been done on pyrolysis with a catalyst³¹⁴ (usually a metallic oxide or salt), but the mechanisms here are probably E1 or E2.

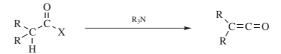
³¹⁰Matsubara, S.; Matsuda, H.; Hamatani, T.; Schlosser, M. Tetrahedron 1988, 44, 2855.

³¹¹For reviews, see Ben-Efraim, D.A. in Patai, S. *The Chemistry of the Carbon-Carbon Triple Bond*, pt. 2, Wiley, NY, **1978**, p. 755; Köbrich, G.; Buck, P., in Viehe, H. G. *Acetylenes*, Marcel Dekker, NY, **1969**, pp. 100–134; Franke, W.; Ziegenbein, W.; Meister, H. *Angew. Chem.* **1960**, 72, 391, see p. 391; Köbrich, G. *Angew. Chem. Int. Ed.* **1965**, 4, 49, see pp. 50–53.

³¹²For a list of reagents, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, **1999**, pp. 569–571.

³¹³For a review, see Sydnes, L.K. Eur. J. Org. Chem. 2000, 3511.

³¹⁴For a review, see Noller, H.; Andréu, P.; Hunger, M. Angew. Chem. Int. Ed. 1971, 10, 172.


In the special case of the prochiral carboxylic acids **37**, dehydrohalogenation with an optically active lithium amide gave an optically active product with ee as high as 82%.³¹⁵

Other regents lead to dehydrohalogenation. 1,1,1-Trichloro compounds are converted to vinyl chlorides with CrCl₂.³¹⁶

OS I, 191, 205, 209, 438; II, 10, 17, 515; III, 125, 209, 270, 350, 506, 623, 731, 785; IV, 128, 162, 398, 404, 555, 608, 616, 683, 711, 727, 748, 755, 763, 851, 969; V, 285, 467, 514; VI, 87, 210, 327, 361, 368, 427, 462, 505, 564, 862, 883, 893, 954, 991, 1037; VII, 126, 319, 453, 491; VIII, 161, 173, 212, 254; IX, 191, 656, 662. Also see, OS VI, 968.

17-14 Dehydrohalogenation of Acyl Halides and Sulfonyl Halides

Hydro-halo-elimination

Ketenes can be prepared by treatment of acyl halides with tertiary amines³¹⁷ or with NaH and a crown ether.³¹⁸ The scope is broad, and most acyl halides possessing an α hydrogen give the reaction, but if at least one R is hydrogen, only the ketene dimer, not the ketene, is isolated. However, if it is desired to use a reactive ketene in a reaction with a given compound, the ketene can be generated *in situ* in the presence of the given compound.³¹⁹

$$RCH_2SO_2CI \xrightarrow{R_3N} [RCH=SO_2] \longrightarrow RCH=CHR + Other products$$

Sulfene

Closely related is the reaction of tertiary amines with sulfonyl halides that contain an a hydrogen. In this case, the initial product is the highly reactive sulfene, which cannot be isolated but reacts further to give products, one of which may be the alkene that is the dimer of RCH.³²⁰ Reactions of sulfenes *in situ* are also common (e.g., see **16-48**).

OS IV, 560; V, 294, 877; VI, 549, 1037; VII, 232; VIII, 82.

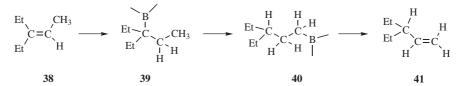
³¹⁵Duhamel, L.; Ravard, A.; Plaquevent, J.C.; Plé, G.; Davoust, D. Bull. Soc. Chim. Fr. 1990, 787.

³¹⁶Baati, R.; Barma, D.K.; Krishna, U.M.; Mioskowski, C.; Falck, J.R. Tetrahedron Lett. 2002, 43, 959.

³¹⁷For a monograph on the chemistry of ketenes, see Tidwell, T.T. Ketenes, Wiley, NY, 1995.

³¹⁸Taggi, A.E.; Wack, H.; Hafez, A.M.; France, S.; Lectka, T. Org. Lett. 2002, 4, 627.

³¹⁹For a review of this procedure, see Luknitskii, F.I.; Vovsi, B.A. Russ. Chem. Rev. 1969, 38, 487.


³²⁰For reviews of sulfenes, see King, J.F. Acc. Chem. Res. **1975**, 8, 10; Nagai, T.; Tokura, N. Int. J. Sulfur Chem. Part B **1972**, 207; Truce, W.E.; Liu, L.K. Mech. React. Sulfur Compd. **1969**, 4, 145; Opitz, G. Angew. Chem. Int. Ed. **1967**, 6, 107; Wallace, T.J. Q. Rev. Chem. Soc. **1966**, 20, 67.

17-15 Elimination of Boranes

Hydro-boranetriyl-elimination

```
(R_2CH-CH_2)_3B + 3 1-Decene 3 R_2C=CH_2 + [CH_3(CH_2)_8CH_2]_3B
```

Trialkylboranes are formed from an alkene and BH₃ (**15-16**). When the resulting borane is treated with another alkene, an exchange reaction occurs.³²¹ This is an equilibrium process that can be shifted by using a large excess of alkene, by using an unusually reactive alkene, or by using an alkene with a higher boiling point than the displaced alkene and removing the latter by distillation. The reaction is useful for shifting a double bond in the direction opposite to that resulting from normal isomerization methods (**12-2**). This cannot be accomplished simply by treatment of a borane, such as **39**, with an alkene, because elimination in this reaction follows Zaitsev's rule: It is in the direction of the most stable alkene, and the product would be **38**, not **41**. However, if it is desired to convert **38** to **41**, this can be accomplished by converting **38** to **39**, isomerizing **39** to **40** (**18-11**) and then subjecting **40** to the exchange reaction with a higher boiling alkene (e.g., 1-decene), whereupon **41** is produced. In the usual isomerizations (**12-2**), **41** could be isomerized to **38**, but not the other way around. The reactions **39** \rightarrow **40** and **40** \rightarrow **41** proceed essentially without rearrangement. The mechanism is probably the reverse of borane addition (**15-16**).

A similar reaction, but irreversible, has been demonstrated for alkynes.³²²

 $(R_2CH-CH_2)_3B + R'C \equiv CR' \longrightarrow 3 R_2C=CH_2 + (R'CH=CR')_3B$

17-16 Conversion of Alkenes to Alkynes

Hydro-methyl-elimination

$$\begin{array}{ccc} H_{3}C & CH_{2}R & \\ C = C & & \\ H_{3}C & H & \\ \end{array} \xrightarrow{\text{NaNO}_{2}} H_{3}C - C \equiv C - CH_{2}R \\ \end{array}$$

Alkenes of the form shown lose the elements of methane when treated with sodium nitrite in acetic acid and water, to form alkynes in moderate-to-high yields.³²³ The R may contain additional unsaturation, as well as OH, OR, OAc,

³²¹Brown, H.C.; Bhatt, M.V.; Munekata, T.; Zweifel, G. J. Am. Chem. Soc. **1967**, 89, 567; Taniguchi, H. Bull. Chem. Soc. Jpn. **1979**, 52, 2942.

³²²Hubert, A.J. J. Chem. Soc. 1965, 6669.

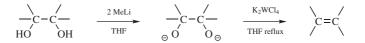
³²³Abidi, S.L. Tetrahedron Lett. 1986, 27, 267; J. Org. Chem. 1986, 51, 2687.

C=O, and other groups, but the Me₂C=CHCH₂ portion of the substrate is necessary for the reaction to take place. The mechanism is complex, beginning with a nitration that takes place with allylic rearrangement [Me₂C=CHCH₂R \rightarrow H₂ C=CMeCH(NO₂)CH₂R], and involving several additional intermediates.³²⁴ The CH₃ lost from the substrate appears as CO₂, as demonstrated by the trapping of this gas.³²⁴

1,1-Dibromoalkenes are converted to alkynes when treated with *n*-butyllithium.³²⁵ This transformation is a modification of the *Fritsch–Buttenberg–Wiechell rearrangement*.³²⁶ Vinyl sulfoxides that contain a leaving group, such as chloride on the double bond, react with *tert*-butyllithium to give a lithio alkyne, and hydrolysis leads to the final product, an alkyne.

17-17 Decarbonylation of Acyl Halides

Hydro-chloroformyl-elimination


$$\underset{R}{\overset{CH_{2}}{\underset{CH_{2}}{\leftarrow}}} \underset{Cl}{\overset{O}{\underset{Cl}{\leftarrow}}} \underset{\Delta}{\overset{RhCl(PPh_{3})_{3}}{\xrightarrow{}}} \underset{H}{\overset{R}{\underset{C}{\leftarrow}}} \underset{C}{\overset{H}{\underset{C}{\leftarrow}}} \underset{H}{\overset{H}{\underset{H}{\leftarrow}}} \underset{H}{\overset{H}{\xrightarrow{}}} \underset{H}{\overset{H}{\underset{H}{\leftarrow}}} \underset{H}{\overset{H}{\underset{H}{\leftarrow}}} \underset{H}{\overset{H}{\underset{H}{\leftarrow}}} \underset{H}{\overset{H}{\underset{H}{\leftarrow}}} \underset{H}{\overset{H}{\underset{H}{\leftarrow}}} \underset{H}{\overset{H}{\underset{H}{\leftarrow}}} \underset{H}{\overset{RhCl(CO)(PPh_{3})_{2}}{\xrightarrow{}}}$$

Acyl chlorides containing an a hydrogen are smoothly converted to alkenes, with loss of HCl and CO, on heating with chlorotris(triphenylphosphine)rhodium, with metallic platinum, or with certain other catalysts.³²⁷ The mechanism probably involves conversion of RCH₂CH₂COCl to RCH₂CH₂–RhCO(Ph₃P)₂Cl₂ followed by a concerted syn elimination of Rh and H³²⁸ (see also, **14-32** and **19-12**).

B. Reactions in Which Neither Leaving Atom Is Hydrogen

17-18 Deoxygenation of Vicinal Diols

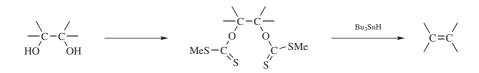
Dihydroxy-elimination

vic-Diols can be deoxygenated by treatment of the dilithium dialkoxide with the tungsten halide (K_2WCl_6), or with certain other tungsten reagents, in refluxing THF.³²⁹ Tetrasubstituted diols react most rapidly. The elimination is largely, but

³²⁹Sharpless, K.B.; Flood, T.C. J. Chem. Soc., Chem. Commun. **1972**, 370; Sharpless, K.B.; Umbreit, M.A.; Nieh, T.; Flood, T.C. J. Am. Chem. Soc. **1972**, 94, 6538.

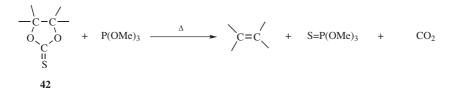
³²⁴Corey, E.J.; Seibel, W.L.; Kappos, J.C. Tetrahedron Lett. 1987, 28, 4921.

³²⁵Chernick, E.T.; Eisler, S.; Tykwinski, R.R. Tetrahedron Lett. 2001, 42, 8575.


 ³²⁶Fritsch, P. Ann. 1894, 279, 319; Buttenberg, W.P. Ann., 1894, 279, 324; Wiechell, H. Ann. 1894, 279, 337; Stang, P.J.; Fox, D.P.; Collins, C.J.; Watson, Jr., C.R. J. Org. Chem. 1978, 43, 364. For a review, see Stang, P.J. Chem. Rev. 1978, 78, 383.

³²⁷For a review, see Tsuji, J.; Ohno, K. *Synthesis* **1969**, 157. For extensions to certain other acid derivatives, see Minami, I.; Nisar, M.; Yuhara, M.; Shimizu, I.; Tsuji, J. *Synthesis* **1987**, 992.

³²⁸Lau, K.S.Y.; Becker, Y.; Huang, F.; Baenziger, N.; Stille, J.K. J. Am. Chem. Soc. **1977**, 99, 5664.


not entirely, syn. Several other methods have been reported,³³⁰ in which the diol is deoxygenated directly, without conversion to the dialkoxide. These include treatment with titanium metal,³³¹ with TsOH–NaI,³³² and by heating with CpReO₃, where Cp is cyclopentadienyl.³³³

vic-Diols can also be deoxygenated indirectly, through sulfonate ester derivatives. For example, *vic*-dimesylates and *vic*-ditosylates have been converted to alkenes by treatment, respectively, with naphthalene-sodium³³⁴ and with NaI in DMF.³³⁵ In another procedure, the diols are converted to bisdithiocarbonates (bis xanthates), which undergo elimination (probably by a free-radical mechanism) when

treated with tri-*n*-butylstannane in toluene or benzene.³³⁶ vic-Diols can also be deoxygenated through cyclic derivatives (**17-19**).

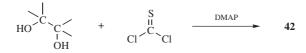
17-19 Cleavage of Cyclic Thionocarbonates

Cyclic thionocarbonates (42) can be cleaved to alkenes (the *Corey–Winter reaction*)³³⁷ by heating with trimethyl phosphite³³⁸ or other trivalent phosphorus compounds³³⁹ or by treatment with bis(1,5-cyclooctadiene)nickel.³⁴⁰ The

- ³³¹McMurry, J.E. Acc. Chem. Res. 1983, 16, 405, and references cited therein.
- ³³²Sarma, J.C.; Sharma, R.P. Chem. Ind. (London) 1987, 96.
- ³³³Cook, G.K.; Andrews, M.A. J. Am. Chem. Soc. 1996, 118, 9448.
- ³³⁴Carnahan Jr., J.C.; Closson, W.D. Tetrahedron Lett. 1972, 3447.
- ³³⁵Dafaye, J. Bull. Soc. Chim. Fr. 1968, 2099.

³³⁶Barrett, A.G.M.; Barton, D.H.R.; Bielski, R. J. Chem. Soc. Perkin Trans. 1 1979, 2378.

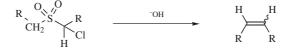
³³⁷For reviews, see Block, E. Org. React. **1984**, 30, 457; Sonnet, P.E. Tetrahedron **1980**, 36, 557, 593–598; Mackie, R.K., in Cadogan, J.I.G. Organophosphorus Reagents in Organic Synthesis, Academic Press, NY, **1979**, pp. 354–359.

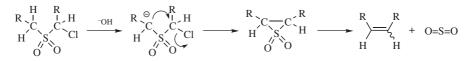

³³⁰For a list of reagents, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, **1999**, pp. 297–299.

³³⁸Corey, E.J.; Winter, R.A.E. J. Am. Chem. Soc. 1963, 85, 2677.

³³⁹Corey, E.J. Pure Appl. Chem. 1967, 14, 19, see pp. 32–33.

 ³⁴⁰Semmelhack, M.F.; Stauffer, R.D. *Tetrahedron Lett.* 1973, 2667. For another method, see Vedejs, E.;
 Wu, E.S.C. J. Org. Chem. 1974, 39, 3641.


thionocarbonates can be prepared by treatment of 1,2-diols with thiophosgene and 4-dimethylaminopyridine (DMAP):³⁴¹


The elimination is of course syn, so the product is sterically controlled. Alkenes that are not sterically favored can be made this way in high yield, (e.g., *cis*-PhCH₂CH=CHCH₂Ph).³⁴² Certain other five-membered cyclic derivatives of 1,2-diols can also be converted to alkenes.³⁴³

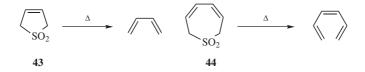
17-20 The Ramberg–Bäcklund Reaction

Ramberg-Bäcklund halosulfone transformation

The reaction of an α -halo sulfone with a base to give an alkene is called the *Ramberg–Bäcklund reaction*.³⁴⁴ The reaction is quite general for α -halo sulfones with an α ' hydrogen, despite the unreactive nature of α -halo sulfones in normal S_N2 reactions (p. 486). Halogen reactivity is in the order $I > Br \gg Cl$. Phase-transfer catalysis has been used.³⁴⁵ In general, mixtures of cis and trans isomers are obtained, but usually the less stable cis isomer predominates. The mechanism involves formation of an episulfone, and then elimination of SO_2 . There is much

³⁴¹Corey, E.J.; Hopkins, P.B. Tetrahedron Lett. 1982, 23, 1979.

³⁴²Corey, E.J.; Carey, F.A.; Winter, R.A.E. J. Am. Chem. Soc. 1965, 87, 934.


³⁴³See Hines, J.N.; Peagram, M.J.; Whitham, G.H.; Wright, M. Chem. Commun. 1968, 1593; Josan, J.S.; Eastwood, F.W. Aust. J. Chem. 1968, 21, 2013; Hiyama, T.; Nozaki, H. Bull. Chem. Soc. Jpn. 1973, 46, 2248; Marshall, J.A.; Lewellyn, M.E. J. Org. Chem. 1977, 42, 1311; Breuer, E.; Bannet, D.M. Tetrahedron 1978, 34, 997; Hanessian, S.; Bargiotti, A.; LaRue, M. Tetrahedron Lett. 1978, 737; Hatanaka, K.; Tanimoto, S.; Oida, T.; Okano, M. Tetrahedron Lett. 1981, 22, 5195; Ando, M.; Ohhara, H.; Takase, K. Chem. Lett. 1986 879; King, J.L.; Posner, B.A.; Mak, K.T.; Yang, N.C. Tetrahedron Lett. 1987, 28, 3919; Beels, C.M.D.; Coleman, M.J.; Taylor, R.J.K. Synlett 1990, 479.

³⁴⁴For reviews, see Paquette, L.A. Org. React. **1977**, 25, 1; Mech. Mol. Migr. **1968**, 1, 121; Acc. Chem. Res. **1968**, 1, 209; Meyers, C.Y.; Matthews, W.S.; Ho, L.L.; Kolb, V.M.; Parady, T.E., in Smith, G.V. Catalysis in Organic Synthesis, Academic Press, NY, **1977**, pp. 197–278; Rappe, C., in Patai, S. The Chemistry of the Carbon-Halogen Bond, pt. 2, Wiley, NY, **1973**, pp. 1105–1110; Bordwell, F.G. Acc. Chem. Res. **1970**, 3, 281, pp. 285–286; in Janssen, M.J. Organosulfur Chemistry, Wiley, NY, **1967**, pp. 271–284.

³⁴⁵Hartman, G.D.; Hartman, R.D. Synthesis **1982**, 504.

evidence for this mechanism,³⁴⁶ including the isolation of the episulfone intermediate,³⁴⁷ and the preparation of episulfones in other ways and the demonstration that they give alkenes under the reaction conditions faster than the corresponding α -halo sulfones.³⁴⁸ Episulfones synthesized in other ways (e.g., **16-48**) are reasonably stable compounds, but eliminate SO₂ to give alkenes when heated or treated with base.

If the reaction is run on the unsaturated bromo sulfones $RCH_2CH=CHSO_2$ CH_2Br (prepared by reaction of $BrCH_2SO_2Br$ with $RCH_2CH=CH_2$ followed by treatment with Et_3N), the dienes $RCH=CHCH=CH_2$ are produced in moderate-to-good yields.³⁴⁹ The compound mesyltriflone $CF_3SO_2CH_2SO_2CH_3$ can be used as a synthon for the tetraion ${}^{2-}C=C^{2-}$. Successive alkylation (**10-67**) converts it to $CF_3SO_2CR^1R^2SO_2CHR^3R^4$ (anywhere from one to four alkyl groups can be put in), which, when treated with base, gives $R^1R^2C=CR^3R^4$.³⁵⁰ The nucleofuge here is the $CF_3SO_2^-$ ion.

2,5-Dihydrothiophene-1,1-dioxides (43) and 2,17-dihydrothiepin-1,1-dioxides (44) undergo analogous 1,4- and 1,6-eliminations, respectively (see also, 17-36). These are concerted reactions and, as predicted by the orbital-symmetry rules (p. 1207), the former³⁵¹ is a suprafacial process and the latter³⁵² an antarafacial process. The rules also predict that elimination of SO₂ from episulfones cannot take place by a concerted mechanism (except antarafacially, which is unlikely for such a small ring), and the evidence shows that this reaction occurs by a nonconcerted pathway.³⁵³ The eliminations of SO₂ from 43 and 44 are examples of *cheletropic reactions*,³⁵⁴ which are defined as reactions in which two σ bonds that terminate

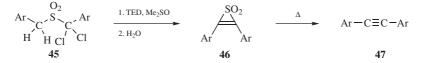
³⁴⁹Block, E.; Aslam, M.; Eswarakrishnan, V.; Gebreyes, K.; Hutchinson, J.; Iyer, R.; Laffitte, J.; Wall, A. J. Am. Chem. Soc. **1986**, 108, 4568.

³⁵⁰Hendrickson, J.B.; Boudreaux, G.J.; Palumbo, P.S. J. Am. Chem. Soc. 1986, 108, 2358.

³⁵¹Mock, W.L. J. Am. Chem. Soc. **1966**, 88, 2857; McGregor, S.D.; Lemal, D.M. J. Am. Chem. Soc. **1966**, 88, 2858.

³⁵²Mock, W.L. J. Am. Chem. Soc. 1969, 91, 5682.

³⁵³Bordwell, F.G.; Williams, Jr., J.M.; Hoyt, Jr., E.B.; Jarvis, B.B. J. Am. Chem. Soc. **1968**, 90, 429; Bordwell, F.G.; Williams Jr., J.M. J. Am. Chem. Soc. **1968**, 90, 435. See also, Vilsmaier, E.; Tropitzsch, R.; Vostrowsky, O. Tetrahedron Lett. **1974**, 3987.


³⁵⁴For a review, see Mock, W.L., in Marchand, A.P.; Lehr, R.E. *Pericyclic Reactions*, Vol. 2, Academic Press, NY, *1977*, pp. 141–179.

³⁴⁶See, for example, Paquette, L.A. J. Am. Chem. Soc. **1964**, 86, 4089; Neureiter, N.P. J. Am. Chem. Soc. **1966**, 88, 558; Bordwell, F.G.; Wolfinger, M.D. J. Org. Chem. **1974**, 39, 2521; Bordwell, F.G.; Doomes, E. J. Org. Chem. **1974**, 39, 2526, 2531.

³⁴⁷Sutherland, A.G.; Taylor, R.J.K. Tetrahedron Lett. 1989, 30, 3267.

³⁴⁸Bordwell, F.G.; Williams Jr., J.M.; Hoyt, Jr., E.B.; Jarvis, B.B. J. Am. Chem. Soc. **1968**, 90, 429; Bordwell, F.G.; Williams, Jr., J.M. J. Am. Chem. Soc. **1968**, 90, 435.

at a single atom (in this case the sulfur atom) are made or broken in concert.³⁵⁵

 α,α -Dichlorobenzyl sulfones (**45**) react with an excess of the base triethylenediamine (TED) in DMSO at room temperature to give 2,3-diarylthiiren-1,1-dioxides (**46**), which can be isolated.³⁵⁶ Thermal decomposition of **46** gives the alkynes **47**.³⁵⁷

A Ramberg–Bäcklund-type reaction has been carried out on the α -halo *sulfides* (ArCHClSCH₂Ar), which react with *t*-BuOK and PPh₃ in refluxing THF to give the alkenes (ArCH=CHAr).³⁵⁸ Cyclic sulfides lead to ring-contracted cyclic alkenes upon treatment with NCS in CCl₄ followed by oxidation with *m*-chloroperoxyben-zoic acid.³⁵⁹

The Ramberg–Bäcklund reaction can be regarded as a type of extrusion reaction (see p. 1553).

OS V, 877; VI, 454, 555; VIII, 212.

17-21 The Conversion of Aziridines to Alkenes

epi-Imino-elimination

$$\sim C - C - C$$

 $N + HONO \longrightarrow C = C + N_2O + H_2O$

Aziridines not substituted on the nitrogen atom react with nitrous acid to produce alkenes.³⁶⁰ An *N*-nitroso compound is an intermediate (**12-50**); other reagents that produce such intermediates also give alkenes. The reaction is stereospecific: cis aziridines give cis alkenes and trans aziridines give trans alkenes.³⁶¹ Aziridines carrying *N*-alkyl substituents can be converted to alkenes by treatment with ferrous iodide³⁶² or with *m*-chloroperoxybenzoic acid.³⁶³ An *N*-oxide intermediate

³⁵⁵Woodward, R.B.; Hoffmann, R. *The Conservation of Orbital Symmetry*; Academic Press, NY, **1970**, pp. 152–163.

³⁵⁶Philips, J.C.; Swisher, J.V.; Haidukewych, D.; Morales, O. Chem. Commun. 1971, 22.

³⁵⁷Carpino, L.A.; McAdams, L.V.; Rynbrandt, R.H.; Spiewak, J.W. J. Am. Chem. Soc. **1971**, 93, 476; Philips, J.C.; Morales, O. J. Chem. Soc., Chem. Commun. **1977**, 713.

³⁵⁸Mitchell, R.H. *Tetrahedron Lett.* **1973**, 4395. For a similar reaction without base treatment, see Pommelet, J.; Nyns, C.; Lahousse, F.; Merényi, R.; Viehe, H.G. *Angew. Chem. Int. Ed.* **1981**, 20, 585. ³⁵⁹MacGee, D.I.; Beck, E.J. *J. Org. Chem.* **2000**, 65, 8367.

³⁶⁰For reviews, see Sonnet, P.E. *Tetrahedron* **1980**, *36*, 557, see p. 591; Dermer, O.C.; Ham, G.E. *Ethylenimine and other Aziridines*, Academic Press, NY, **1969**, pp. 293–295.

³⁶¹Clark, R.D.; Helmkamp, G.K. J. Org. Chem. **1964**, 29, 1316; Carlson, R.M.; Lee, S.Y. Tetrahedron Lett. **1969**, 4001.

³⁶²Imamoto, T.; Yukawa, Y. Chem. Lett. 1974, 165.

³⁶³Heine, H.W.; Myers, J.D.; Peltzer III, E.T. Angew. Chem. Int. Ed. 1970, 9, 374.

(19-29) is presumably involved in the latter case. N-Tosyl aziridines are converted to *N*-tosyl imines when treated with boron trifluoride.³⁶⁴ 2-Tosylmethyl *N*-tosylaziridines react with Te^{2-} in the presence of Adogen 464 to give allylic N-tosyl amines.³⁶⁵ 2-Halomethyl N-tosyl aziridines also react with indium metal in methanol to give N-tosyl allylic amines.³⁶⁶

17-22 Elimination of Vicinal Dihalides

Dihalo-elimination

Dehalogenation has been accomplished with many reagents, the most common being zinc, magnesium, and iodide ion.³⁶⁷ Heating in HMPA is often enough to convert a *vic*-dibromide to an alkene.³⁶⁸ Among reagents used less frequently have been phenyllithium, phenylhydrazine, $CrCl_2$, Na_2S in DMF,³⁶⁹ and LiAlH₄.³⁷⁰ Electroche-mical reduction has also been used.³⁷¹ Treatment with In^{372} or Sm^{373} metal in CH₃OH, InCl₃/NaBH₄,³⁷⁴ a Grignard reagent and Ni(dppe)Cl₂, (dppe = 1, 2-diphenylphosphinoethane),³⁷⁵ nickel compounds with Bu_3SnH ,³⁷⁶ or SmI_2 ,³⁷⁷ leads to the alkene. Although the reaction usually gives good yields, it is not very useful because the best way to prepare vic-dihalides is by the addition of halogen to a double bond (15-39). One useful feature of this reaction is that there is no doubt about the *position* of the new double bond, so that it can be used to give double bonds exactly where they are wanted. For example, allenes, which are not easily prepared by other methods. can be prepared from X–C–CX₂–C–X or X–C–CX=C– systems.³⁷⁸ Cumulenes

³⁶⁸Khurana, J.M.; Bansal, G.; Chauhan, S. Bull. Chem. Soc. Jpn. 2001, 74, 1089.

³⁶⁹Fukunaga, K.; Yamaguchi, H. Synthesis 1981, 879. See also, Nakayama, J.; Machida, H.; Hoshino, M. Tetrahedron Lett. 1983, 24 3001; Landini, D.; Milesi, L.; Quadri, M.L.; Rolla, F. J. Org. Chem. 1984, 49, 152.

³⁷⁰For a lists of reagents, with references, see Larock, R.C. Comprehensive Organic Transformations, 2nd ed., Wiley-VCH, NY, 1999, pp. 259-263.

³⁷³Yanada, R.; Negoro, N.; Yanada, K.; Fujita, T. Tetrahedron Lett. 1996, 37, 9313.

³⁷⁴Ranu, B.C.; Das, A.; Hajra, A. Synthesis 2003, 1012.

- ³⁷⁵Malanga, C.; Aronica, L.A.; Lardicci, L. Tetrahedron Lett. 1995, 36, 9189.
- ³⁷⁶Malanga, C.; Mannucci, S.; Lardicci, L. Tetrahedron 1998, 54, 1021.

³⁷⁷Yanada, R.; Bessho, K.; Yanada, K. Chem. Lett, 1994, 1279.

³⁷⁸For reviews of allene formation, see Schuster, H.F.; Coppola, G.M. Allenes in Organic Synthesis, Wiley, NY, 1984, pp. 9-56; Landor, P.D., in Landor, S.R. The Chemistry of the Allenes, Vol. 1, Academic

Press, NY, 1982; pp. 19-233; Taylor, D.R. Chem. Rev. 1967, 67, 317.

³⁶⁴Sugihara, Y.; Iimura, S.; Nakayama, J. Chem. Commun. 2002, 134.

³⁶⁵Chao, B.; Dittmer, D.C. Tetrahedron Lett. 2001, 42, 5789.

³⁶⁶Yadav, J.S.; Bandyapadhyay, A.; Reddy, B.V.S. Synlett 2001, 1608.

³⁶⁷For a review of this reaction, see Baciocchi, E., in Patai, S.; Rappoport, Z. The Chemistry of Functional Groups, Supplement D, pt. 1, Wiley, NY, 1983, pp. 161-201. Also see, Bosser, G.; Paris, J. J. Chem. Soc. Perkin Trans. 2 1992, 2057.

³⁷¹See Shono, T. Electroorganic Chemistry as a New Tool in Organic Synthesis, Springer, NY, 1984, pp. 145–147; Fry, A.J. Synthetic Organic Electrochemistry, 2nd ed., Wiley, NY, **1989**, pp. 151–154. ³⁷²Ranu, B.C.; Guchhait, S.K.; Sarkar, A. Chem. Commun. **1998**, 2113.

have been obtained from 1,4-elimination:

 $BrCH2-C\equiv C-CH_2Br + Zn \longrightarrow CH_2=C=C=CH_2$

Cumulenes have also been prepared by treating alkynyl epoxides with boron trifluoride.³⁷⁹ 1,4-Elimination of BrC–C=C–CBr has been used to prepare conjugated dienes C=C–C=C.³⁸⁰ Allenes are formed by heating propargylic alcohols with arylboronic acids (p. 815) and a palladium catalyst.³⁸¹ Allenes are also formed from propargylic amines using a CuI and a palladium catalyst.³⁸²

The reaction of a vicinal dibromide with triethylamine and DMF with microwave irradiation leads to vinyl bromide.³⁸³ Alkenes are formed from vicinal bromides by heating with iron in methanol³⁸⁴ or samarium in the presence of TMSCl and a trace of water.³⁸⁵ α , β -Dibromo amides are converted to conjugated amides upon photolysis in methanol.³⁸⁶

The reaction can be carried out for any combination of halogens, except where one is fluorine. Mechanisms are often complex and depend on the reagent and reaction conditions.³⁸⁷ For different reagents, mechanisms involving carbocations, carbanions, and free-radical intermediates, as well as concerted mechanisms, have been proposed. When the reagent is zinc, anti stereospecificity has been observed in some cases,³⁸⁸ but not in others.³⁸⁹

Note that geminal dibromo cyclopropanes (1,1-dibromocyclopropanes) are opened to conjugated dienes by heating to 500° C.³⁹⁰

OS III, 526, 531; IV, 195, 268; V, 22, 255, 393, 901; VI, 310, VII, 241. Also see, OS IV, 877, 914, 964.

17-23 Dehalogenation of α -Halo Acyl Halides

Dihalo-elimination

³⁷⁹Wang, X.; Ramos, B.; Rodriguez, A. Tetrahedron Lett. 1994, 35, 6977.

³⁸⁰Engman, L.; Byström, S.E. J. Org. Chem. 1985, 50, 3170.

³⁸¹Yoshida, M.; Gotou, T.; Ihara, M. Tetrahedron Lett. 2004, 45, 5573.

³⁸²Nakmura, H.; Kamakura, T.; Ishikura, M.; Biellmann, J.-F. J. Am. Chem. Soc. 2004, 126, 5958.

³⁸³Kuang, C.; Senboku, H.; Tokuda, M. Tetrahedron Lett. 2001, 42, 3893.

³⁸⁴Thakur, A.J.; Boruah, A.; Baruah, B.; Sandhu, J.S. Synth. Commun. 2000, 30, 157.

³⁸⁵Xu, X.; Lu, P.; Zhang, Y. Synth. Commun. 2000, 30, 1917.

³⁸⁶Aruna, S.; Kalyanakumar, R.; Ramakrishnan, V.T. Synth. Commun. 2001, 31, 3125.

³⁸⁷For discussion, see Saunders, Jr., W.H.; Cockerill, A.F. *Mechanisms of Elimination Reactions*, Wiley, NY, **1973**, pp. 332–368; Baciocchi, W., in Patai, S.; Rappoport, Z. *The Chemistry of Functional Grups, Supplement D*, pt. 2, Wiley, NY, **1983**, p. 161.

³⁸⁸For example, see House, H.O.; Ro, R.S. J. Am. Chem. Soc. **1958**, 80, 182; Gordon, M.; Hay, J.V. J. Org. Chem. **1968**, 33, 427.

³⁸⁹For example, see Stevens, C.L.; Valicenti, J.A. J. Am. Chem. Soc. **1965**, 87, 838; Sicher, J.; Havel, M.; Svoboda, M. Tetrahedron Lett. **1968**, 4269.

³⁹⁰Werstiuk, N.H.; Roy, C.D. Tetrahedron Lett. 2001, 42, 3255.

Ketenes can be prepared by dehalogenation of α-halo acyl halides with zinc or with triphenylphosphine.³⁹¹ The reaction generally gives good results when the two R groups are aryl or alkyl, but not when either one is hydrogen.³⁹² OS IV, 348; VIII, 377.

17-24 Elimination of a Halogen and a Hetero Group

Alkoxy-halo-elimination

The elimination of OR and halogen from β-halo ethers is called the *Boord reac*tion. It can be carried out with zinc, magnesium, sodium, or certain other reagents.³⁹³ The yields are high and the reaction is of broad scope. β -Halo acetals readily yield vinylic ethers

$$\begin{array}{ccc} X \stackrel{l}{\xrightarrow{}} \stackrel{l}{\xrightarrow{} \xrightarrow{} \stackrel{l}{\xrightarrow{}} \stackrel$$

and 2 equivalents of SmI₂ in HMPA is effective.³⁹⁴ Besides β -halo ethers, the reaction can also be carried out on compounds of the formula

where X is halogen and Z is OCOR, OTs, ³⁹⁵ NR_2 , ³⁹⁶ or SR. ³⁹⁷ When X = Cl and Z = OAc, heating in THF with an excess of SmI_2 followed by treatment with dilute aq. HCl gives an alkene.³⁹⁸ When Z = I and the other Z is an oxygen of an oxazolone (a carbamate unit), heating with indium metal in methanol leads to an allylic amine.³⁹⁹ The Z group may also be OH, but then X is limited to Br and I.⁴⁰⁰ Like 17-22, this method ensures that the new double bond will be in a specific position.

³⁹¹Darling, S.D.; Kidwell, R.L. J. Org. Chem. 1968, 33, 3974.

³⁹³See Larock, R.C. Comprehensive Organic Transformations, 2nd ed., Wiley-VCH, NY, 1999, pp. 263–267, for reagents that produce olefins from β-halo ethers and esters, and from halohydrins.

³⁹⁴Park, H.S.; Kim, S.H.; Park, M.Y.; Kim, Y.H. Tetrahedron Lett. 2001, 42, 3729.

³⁹⁵Cristol, S.J.; Rademacher, L.E. J. Am. Chem. Soc. 1959, 81, 1600; Reeve, W.; Brown, R.; Steckel, T.F. J. Am. Chem. Soc. 1971, 93, 4607.

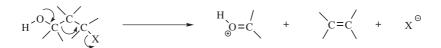
 $^{^{392}}$ For a procedure that gives 60–65% yields when one R = H, see McCarney, C.C.; Ward, R.S. J. Chem. Soc. Perkin Trans. 1 1975, 1600. See also, Masters, A.P.; Sorensen, T.S.; Ziegler, T. J. Org. Chem. 1986, 51.3558.

³⁹⁶Gurien, H. J. Org. Chem. 1963, 28, 878.

³⁹⁷Amstutz, E.D. J. Org. Chem. 1944, 9, 310.

³⁹⁸Concellón, J.M.; Bernad, P.L.; Bardales, E. Org. Lett. 2001, 3, 937.

³⁹⁹Yadav, J.S.; Bandyopadhyay, A.; Reddy, B.V.S. Tetrahedron Lett. 2001, 42, 6385.

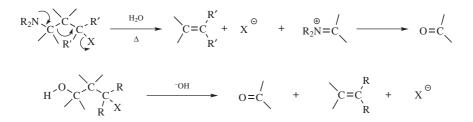

⁴⁰⁰Concellón, J.M.; Pérez-Andrés, J.A.; Rodríguez-Solla, H. Chem. Eur. J. 2001, 7, 3062.

The fact that magnesium causes elimination in these cases limits the preparation of Grignard reagents from these compounds. It has been shown that treatment of β -halo ethers and esters with zinc gives nonstereospecific elimination,⁴⁰¹ so the mechanism was not E2. An E1cB mechanism was postulated because of the poor leaving-group ability of OR and OCOR. Bromohydrins can be converted to alkenes (elimination of Br, OH) in high yields by treatment with LiAlH₄–TiCl₃.⁴⁰²

OS III, 698, IV, 748; VI, 675.

FRAGMENTATIONS

When carbon is the positive leaving group (the electrofuge) in an elimination, the reaction is called *fragmentation*.⁴⁰³ These processes occur on substrates of the form W–C–C–X, where X is a normal nucleofuge (e.g., halogen, OH_2^+ , OTs, NR_3^+) and W is a positive-carbon electrofuge. In most of the cases, W is HO–C– or R₂N–C–, so that the positive charge on the carbon atom is stabilized by the unshared pair of the oxygen or nitrogen, for example,



The mechanisms are mostly E1 or E2. We will discuss only a few fragmentations, since many are possible and not much work has been done on most of them. Reactions **17-25–17-28** and **17-30** may be considered fragmentations (see also **19-12** and **19-13**).

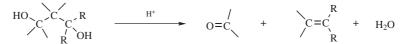
17-25 1,3-Fragmentation of γ -Amino, γ -Hydroxy Halides, and 1,3-Diols

Dialkylaminoalkyl-halo-elimination, and so on

Hydroxyalkyl-hydroxy-elimination

401 House, H.O.; Ro, R.S. J. Am. Chem. Soc. 1965, 87, 838.

⁴⁰²McMurry, J.E.; Hoz, T. J. Org. Chem. 1975, 40, 3797.


⁴⁰³For reviews, see Becker, K.B.; Grob, C.A., in Patai, S. *The Chemistry of Functional Groups, Supplement A*, pt. 2, Wiley, NY, **1977**, pp. 653–723; Grob, C.A. *Angew. Chem. Int. Ed.* **1969**, *8*, 535; Grob, C.A.; Schiess, P.W. *Angew. Chem. Int. Ed.* **1967**, *6*, 1.

 γ -Dialkylamino halides undergo fragmentation when heated with water to give an alkene and an iminium salt, which under the reaction conditions is hydrolyzed to an aldehyde or ketone (**16-2**).⁴⁰⁴ γ -Hydroxy halides and tosylates are fragmented with base. In this instance, the base does not play its usual role in elimination reactions, but instead serves to remove a proton from the OH group, which enables the carbon leaving group to come off more easily:

$$\overset{HO}{\sim} C \xrightarrow{C} C \xrightarrow{R} X \xrightarrow{-OH} \overset{O}{\longrightarrow} C \xrightarrow{C} C \xrightarrow{R} X \xrightarrow{O} X$$

The mechanism of these reactions is often E1. However, in at least some cases, an E2 mechanism operates.⁴⁰⁵ It has been shown that stereoisomers of cyclic γ -amino halides and tosylates in which the two leaving groups can assume an antiperiplanar conformation react by the E2 mechanism, while those isomers in which the groups cannot assume such a conformation either fragment by the E1 mechanism or do not undergo fragmentation at all, but in either case give rise to side products characteristic of carbocations.⁴⁰⁶

 γ -Dialkylamino alcohols do not give fragmentation, since for ionization the OH group must be converted to ${OH_2}^+$ and this would convert NR₂ to NR₂H⁺, which does not have the unshared pair necessary to form the double bond with the carbon.⁴⁰⁷

1,3-Diols in which at least one OH group is tertiary or is located on a carbon with aryl substituents can be cleaved by acid treatment.⁴⁰⁸ The reaction is most useful synthetically when at least one of the OH groups is on a ring.⁴⁰⁹

17-26 Decarboxylation of β-Hydroxy Carboxylic Acids and of β-Lactones

Carboxy-hydroxy-elimination

An OH and a COOH group can be eliminated from β -hydroxy carboxylic acids by refluxing with excess dimethylformamide dimethyl acetal.⁴¹⁰ Mono-, di-, tri-, and tetrasubstituted alkenes have been prepared by this method in good yields.⁴¹¹

⁴⁰⁴Grob, C.A.; Ostermayer, F.; Raudenbusch, W. Helv. Chim. Acta 1962, 45, 1672.

⁴⁰⁵Fischer, W.; Grob, C.A. Helv. Chim. Acta 1978, 61, 2336, and references cited therein.

⁴⁰⁶ Geisel, M.; Grob, C.A.; Wohl, R.A. Helv. Chim. Acta 1969, 52, 2206, and references cited therein.

⁴⁰⁷Grob, C.A.; Hoegerle, R.M.; Ohta, M. Helv. Chim. Acta 1962, 45, 1823.

⁴⁰⁸Zimmerman, H.E.; English, Jr., J. J. Am. Chem. Soc. 1954, 76, 2285, 2291, 2294.

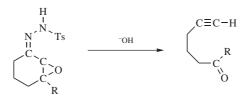
⁴⁰⁹For a review of such cases, see Caine, D. Org. Prep. Proced. Int. 1988, 20, 1.

⁴¹⁰Hara, S.; Taguchi, H.; Yamamoto, H.; Nozaki, H. Tetrahedron Lett. 1975, 1545.

⁴¹¹For a 1,4 example of this reaction, see Rüttimann, A.; Wick, A.; Eschenmoser, A. *Helv. Chim. Acta* **1975**, 58, 1450.

There is evidence that the mechanism involves E1 or E2 elimination from the zwitterionic intermediate 412

$$\odot_{O_2C} - C - C - OC = NMe_2$$


The reaction has also been accomplished⁴¹³ under extremely mild conditions (a few seconds at 0°C) with PPh₃ and diethyl azodicarboxylate EtOOC–N=N–COOEt.⁴¹⁴ In a related procedure, β -lactones undergo thermal decarboxylation to give alkenes in high yields. The reaction has been shown to be a stereospecific syn-elimination.⁴¹⁵ There is evidence that this reaction also involves a zwitterionic intermediate.⁴¹⁶

There are no OS references, but see OS VII, 172, for a related reaction.

17-27 Fragmentation of α , β -Epoxy Hydrazones

Eschenmoser-Tanabe ring cleavage

Cyclic α,β -unsaturated ketones⁴¹⁷ can be cleaved by treatment with base of their epoxy tosylhydrazone derivatives to give acetylenic ketones.⁴¹⁸ The reaction can be applied to the formation of acetylenic aldehydes (R = H) by using the

⁴¹²Mulzer, J.; Brüntrup, G. Tetrahedron Lett. 1979, 1909.

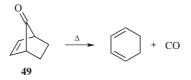
⁴¹³For another method, see Tanzawa, T.; Schwartz, J. Organometallics 1990, 9, 3026.

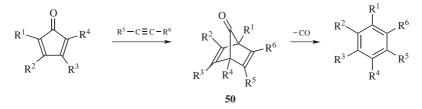

⁴¹⁴Mulzer, J.; Brüntrup, G. Angew. Chem. Int. Ed. **1977**, *16*, 255; Mulzer, J.; Lammer, O. Angew. Chem. Int. Ed. **1983**, 22, 628.

⁴¹⁵Noyce, D.S.; Banitt, E.H. J. Org. Chem. 1966, 31, 4043; Adam, W.; Baeza, J.; Liu, J. J. Am. Chem. Soc. 1972, 94, 2000; Krapcho, A.P.; Jahngen, Jr., E.G.E. J. Org. Chem. 1974, 39, 1322, 1650; Mageswaran, S.; Sultanbawa, M.U.S. J. Chem. Soc. Perkin Trans. 1 1976, 884; Adam, W.; Martinez, G.; Thompson, J.; Yany, F. J. Org. Chem. 1981, 46, 3359.

⁴¹⁶Mulzer, J.; Zippel, M.; Brüntrup, G. *Angew. Chem. Int. Ed.* **1980**, *19*, 465; Mulzer, J.; Zippel, M. *Tetrahedron Lett.* **1980**, *21*, 751. See also, Moyano, A.; Pericàs, M.A.; Valentí, E. J. Org. Chem. **1989**, 573. ⁴¹⁷For other methods of fragmentation of an α,β-epoxy ketone derivatives, see MacAlpine, G.A.; Warkentin, J. *Can. J. Chem.* **1978**, *56*, 308, and references cited therein.

⁴¹⁸Eschenmoser, A.; Felix, D.; Ohloff, G. *Helv. Chim. Acta* **1967**, *50*, 708; Tanabe, M.; Crowe, D.F.; Dehn, R.L.; Detre, G. Tetrahedron Lett. **1967**, 3739; Tanabe, M.; Crowe, D.F.; Dehn, R.L. *Tetrahedron Lett.* **1967**, 3943.


corresponding, 2,4-dinitro-tosylhydrazone derivatives.⁴¹⁹ Hydrazones (e.g., **48**) prepared from epoxy ketones and ring-substituted *N*-aminoaziridines undergo similar fragmentation when heated.⁴²⁰


OS VI, 679.

17-28 Elimination of CO and CO₂ from Bridged Bicyclic Compounds

seco-Carbonyl-1/4/elimination

On heating, bicyclo[2.2.1]hept-2,3-en-17-ones (**49**) usually lose CO to give cyclohexadienes,⁴²¹ in a type of reverse Diels–Alder reaction. Bicyclo[2.2.1]heptadienones (**50**) undergo the reaction so readily (because of the

stability of the benzene ring produced) that they cannot generally be isolated. The parent **50** has been obtained at $10-15^{\circ}$ K in an Ar matrix, where its spectrum could be studied.⁴²² Both **49** and **50** can be prepared by Diels–Alder reactions between a cyclopentadienone and an alkyne or alkene, so that this reaction is a useful method for the preparation of specifically substituted benzene rings and cyclohexadienes.⁴²³

⁴¹⁹Corey, E.J.; Sachdev, H.S. J. Org. Chem. 1975, 40, 579.

⁴²²LeBlanc, B.F.; Sheridan, R.S. *J. Am. Chem. Soc.* **1985**, 107, 4554; Birney, D.M.; Wiberg, K.B.; Berson, J.A. *J. Am. Chem. Soc.* **1988**, 110, 6631.

⁴²³For a review with many examples; see Ogliaruso, M.A.; Romanelli, M.G.; Becker, E.I. *Chem. Rev.* **1965**, 65, 261, 300–348. For references to this and related reactions, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, **1999**, pp. 207–213.

⁴²⁰Felix, D.; Müller, R.K.; Horn, U.; Joos, R.; Schreiber, J.; Eschenmoser, A. *Helv. Chim. Acta* **1972**, 55, 1276.

⁴²¹For a review, see Stark, B.P.; Duke, A.J. *Extrusion Reactions*, Pergamon, Elmsford, NY, *1967*, pp. 16–46.

Unsaturated bicyclic lactones of the type **51** can also undergo the reaction, losing CO_2 (see also **17-35**).

OS III, 807; V, 604, 1037.

Reversal of the Diels-Alder reaction may be considered a fragmentation (see 15-50).

REACTIONS IN WHICH C=N OR C=N BONDS ARE FORMED

17-29 Dehydration of Oximes and Similar Compounds

C-Hydro-N-hydroxy-elimination; C-Acyl-N-hydroxy-elimination

$$R^{\text{OH}} \xrightarrow{\text{Ac}_2\text{O}} R^{\text{C}} = R^{\text{C}}$$

Aldoximes can be dehydrated to nitriles⁴²⁴ by many dehydrating agents, of which acetic anhydride is the most common. Among reagents that are effective under mild conditions⁴²⁵ (room temperature) are Ph₃P–CCl₄,⁴²⁶ SeO₂,⁴²⁷ Me₂*t*-BuSiCl/imidazole,⁴²⁸ ferric sulfate,⁴²⁹ SOCl₂/benzotriazole,⁴³⁰ TiCl₃(OTf),⁴³¹ CS₂, and Amberlyst A26 (⁻OH),⁴³² Montmorillonite KSF clay,⁴³³ (*S*,*S*)-dimethyl dithiocarbonates,⁴³⁴ and chloromethylene dimethylammonium chloride Me₂N= CHCl⁺ Cl^{-.435} Heating an oxime with a ruthenium catalyst gives the nitrile.⁴³⁶ Heating with the *Burgess reagent* [Et₃N⁺ ⁻SO₂N–CO₂Me] in polyethylene glycol

⁴²⁴For reviews, see Friedrich, K., in Patai, S.; Rappoport, Z. *The Chemistry of the Carbon–Carbon Triple Bond*, pt. 2, Wiley, NY, **1978**, pp. 1345–1390; Friedrich, K.; Wallenfels, K., in Rappoport, Z. *The Chemistry of the Cyano Group*, Wiley, NY, **1970**, pp. 92–96. For a review of methods of synthesizing nitriles, see Fatiadi, K., in Friedrich, K. in Patai, S.; Rappoport, Z. *The Chemistry of the Carbon–Carbon Triple Bond*, pt. 2, Wiley, NY, **1978**, pp. 1057–1303.

⁴²⁵For lists of some other reagents, with references, see Molina, P.; Alajarin, M.; Vilaplana, M.J. Synthesis 1982, 1016; Attanasi, O.; Palma, P.; Serra-Zanetti, F. Synthesis 1983, 741; Jurš ić, B. Synth. Commun. 1989, 19, 689.

⁴²⁶Kim, J.N.; Chung, K.H.; Ryu, E.K. Synth. Commun. 1990, 20, 2785.

427Shinozaki, H.; Imaizumi, M.; Tajima, M. Chem. Lett. 1983, 929.

⁴²⁸Ortiz-Marciales, M.; Piñero, L.; Ufret, L.; Algarín, W.; Morales, J. Synth. Commun. 1998, 28, 2807.

⁴²⁹Desai, D.G.; Swami, S.S.; Mahale, G.D. Synth. Commun. 2000, 30, 1623.

⁴³⁰Chaudhari, S.S.; Akamanchi, K.G. Synth. Commun. 1999, 29, 1741.

⁴³¹Iranpoor, N.; Zeynizadeh, B. Synth. Commun. 1999, 29, 2747.

432 Tamami, B.; Kiasat, A.R. Synth. Commun. 2000, 30, 235.

435 See Shono, T.; Matsumura, Y.; Tsubata, K.; Kamada, T.; Kishi, K. J. Org. Chem. 1989, 54, 2249.

⁴³³Meshram, H.M. Synthesis **1992**, 943.

⁴³⁴Khan, T.A.; Peruncheralathan, S.; Ila, H.; Junjappa, H. Synlett 2004, 2019.

⁴³⁶Yang, S.H.; Chang, S. Org. Lett. 2001, 3, 4209.

is effective for this transformation.⁴³⁷ Microwave irradiation on EPZ-10⁴³⁸ or sulfuric acid impregnated silica gel⁴³⁹ gives the nitrile, as does microwave irradiation of an oxime with tetrachloropyridine on alumina.⁴⁴⁰ Aldehydes can be converted to oximes *in situ* and microwave irradiation on alumina⁴⁴¹ or with ammonium acetate⁴⁴² gives the nitrile. Solvent-free reactions are known.⁴⁴³ Electrochemical synthesis has also been used.⁴³⁵ The reaction is most successful when the H and OH are anti. Various alkyl and acyl derivatives of aldoximes, for example, RCH=NOR, RCH=NOCOR, RCH=NOSO₂Ar, and so on, also give nitriles, as do chlorimines RCH=NCl (the latter with base treatment).⁴⁴⁴ *N,N*-Dichloro derivatives of primary amines give nitriles on pyrolysis: RCH₂NCl₂ \rightarrow RCN.⁴⁴⁵

$$\begin{array}{c} & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

Quaternary hydrazonium salts (derived from aldehydes) give nitriles when treated with $^{-}\text{OEt}^{446}$ or DBU (p. 1132):⁴⁴⁷ as do dimethylhydrazones, RCH=NNMe₂, when treated with Et₂NLi and HMPA.⁴⁴⁸ All these are methods of converting aldehyde derivatives to nitriles. For the conversion of aldehydes directly to nitriles, without isolation of intermediates (see **16-16**).

Hydroxylamines that have an α -proton are converted to nitrones when treated with a manganese salen complex.⁴⁴⁹

 $R \xrightarrow{\begin{array}{c} N \\ I \\ I \\ O \end{array}} R' \xrightarrow{\begin{array}{c} SOCl_2 \\ I \\ O \end{array}} R - C \equiv N + R'COO^{\odot}$

Certain ketoximes can be converted to nitriles by the action of proton or Lewis acids.⁴⁵⁰ Among these are oximes of α -diketones (illustrated above), α -keto acids,

⁴³⁷Miller, C.P.; Kaufman, D.H. Synlett 2000, 1169.

438Bandgar, B.P.; Sadavarte, V.S.; Sabu, K.R. Synth. Commun. 1999, 29, 3409.

⁴³⁹Kumar, H.M.S.; Mohanty, P.K.; Kumar, M.S.; Yadav, J.S. Synth. Commun. 1997, 27, 1327; Sarvari, M.H. Synthesis 2005, 787.

⁴⁴⁰Lingaiah, N.; Narender, R. Synth. Commun. 2002, 32, 2391.

⁴⁴¹Bose, D.S.; Narsaiah, A.V. Tetrahedron Lett. 1998, 39, 6533.

⁴⁴²Das, B.; Ramesh, C.; Madhusudhan, P. Synlett 2000, 1599.

⁴⁴³See Sharghi, H.; Sarvari, M.H. Synthesis 2003, 243.

444 Hauser, C.R.; Le Maistre, J.W.; Rainsford, A.E. J. Am. Chem. Soc. 1935, 57, 1056.

⁴⁴⁵Roberts, J.T.; Rittberg, B.R.; Kovacic, P. J. Org. Chem. 1981, 46, 4111.

⁴⁴⁶Smith, R.F.; Walker, L.E. J. Org. Chem. 1962, 27, 4372; Grandberg, I.I. J. Gen. Chem. USSR, 1964, 34, 570; Grundon, M.F.; Scott, M.D. J. Chem. Soc. 1964, 5674; Ioffe, B.V.; Zelenina, N.L. J. Org. Chem. USSR, 1968, 4, 1496.

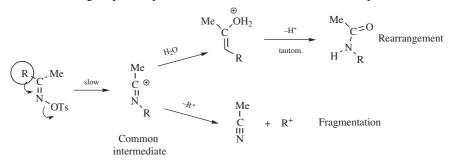
447 Moore, J.S.; Stupp, S.I. J. Org. Chem. 1990, 55, 3374.

⁴⁴⁸Cuvigny, T.; Le Borgne, J.F.; Larchevêque, M.; Normant, H. Synthesis 1976, 237.

⁴⁴⁹Cicchi, S.; Cardona, F.; Brandi, A.; Corsi, M.; Goti, A. Tetrahedron Lett. 1999, 40, 1989.

⁴⁵⁰For reviews, see Gawley, R.E. Org. React. **1988**, 35, 1; Conley, R.T.; Ghosh, S. Mech. Mol. Migr. **1971**, 4, 197, 197–251; McCarty, C.G., in Patai, S. The Chemistry of the Carbon–Nitrogen Double Bond, Wiley,

NY, 1970, pp. 416–439; Casanova, J., in Rappoport, Z. The Chemistry of the Cyano Group, Wiley, NY, 1970, pp. 915–932.


 α -dialkylamino ketones, α -hydroxy ketones, β -keto ethers, and similar compounds.⁴⁵¹ These are fragmentation reactions, analogous to **17-25**. For example, α -dialkylamino ketoximes also give amines and aldehydes or ketones besides nitriles:⁴⁵²

$$\begin{array}{c} R \\ HO \\ HO \\ HO \\ \end{array} \xrightarrow{NR_2} \xrightarrow{80\% \text{ ethanol}} R-C \equiv N + \begin{array}{c} H \\ H \\ H \\ H \\ \end{array} \xrightarrow{NR_2} \xrightarrow{H_2O} H \\ H \\ H \\ H \\ \end{array} \xrightarrow{C=O} + NHR_2$$

The reaction that normally occurs on treatment of a ketoxime with a Lewis or proton acid is the Beckmann rearrangement (**18-17**); fragmentations are considered side reactions, often called "abnormal" or "second-order" Beckmann rearrangements.⁴⁵³ Obviously, the substrates mentioned are much more susceptible to fragmentation than are ordinary ketoximes, since in each case an unshared pair is available to assist in removal of the group cleaving from the carbon. However, fragmentation is a side reaction even with ordinary ketoximes⁴⁵⁴ and, in cases where a particularly stable carbocation can be cleaved, may be the main reaction:⁴⁵⁵

$$\begin{array}{c} \text{Me} & & \text{CHAr}_2 & \xrightarrow{\text{PCI}_5} & \text{Me} - \text{C} \equiv \text{N} & + & \text{Ar}_2\text{CHCI} \\ & & \text{HO} & & & \end{array}$$

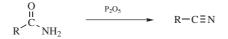
There are indications that the mechanism at least in some cases first involves a rearrangement and then cleavage. The ratio of fragmentation to Beckmann rearrangement of a series of oxime tosylates, RC(=NOTs)Me, was not related to the solvolysis rate but *was* related to the stability of R^+ (as determined by the solvolysis rate of the corresponding RCl), which showed that fragmentation did not take place in the rate-determining step.⁴⁵⁶ It may be postulated then that the first step in the fragmentation and in the rearrangement is the same and that this is the rate-determining step. The product is determined in the second step:

⁴⁵¹For more complete lists with references, see Olah, G.A.; Vankar, Y.D.; Berrier, A.L. *Synthesis* **1980**, 45; Conley, R.T.; Ghosh, S. *Mech. Mol. Migr.* **1971**, 4, 197.

⁴⁵²Fischer, H.P.; Grob, C.A.; Renk, E. *Helv. Chim. Acta* **1962**, *45*, 2539; Fischer, H.P.; Grob, C.A. *Helv. Chim. Acta* **1963**, *46*, 936.

⁴⁵³See the discussion in Ferris, A.F. J. Org. Chem. 1960, 25, 12.

⁴⁵⁴See, for example, Hill, R.K.; Conley, R.T. J. Am. Chem. Soc. 1960, 82, 645.


⁴⁵⁵Hassner, A.; Nash, E.G. Tetrahedron Lett. 1965, 525.

⁴⁵⁶Grob, C.A.; Fischer, H.P.; Raudenbusch, W.; Zergenyi, J. Helv. Chim. Acta 1964, 47, 1003.

However, in other cases the simple E1 or E2 mechanisms operate.⁴⁵⁷ OS V, 266; IX, 281; OS II, 622; III, 690.

17-30 Dehydration of Unsubstituted Amides

N,N-Dihydro-C-oxo-bielimination

Unsubstituted amides can be dehydrated to nitriles.⁴⁵⁸ Phosphorous pentoxide is the most common dehydrating agent for this reaction, but many others, including POCl₃, PCl₅, CCl₄-Ph₃P,⁴⁵⁹ HMPA,⁴⁶⁰ LiCl with a zirconium catalyst,⁴⁶¹ MeOOCNSO₂NEt₃ (the Burgess reagent),⁴⁶² Me₂N=CHCl⁺ Cl⁻,⁴⁶³ AlCl₃/KI/ H₂O,⁴⁶⁴ Bu₂SnO with microwave irradiation,⁴⁶⁵ PPh₃/NCS,⁴⁶⁶ triflic anhydride,⁴⁶⁷ oxalyl chloride/DMSO/ $-78^{\circ}C^{468}$ (Swern conditions, see 19-3), and SOCl₂ have also been used.⁴⁶⁹ Heating an amide with paraformaldehyde and formic acid gives the nitrile.⁴⁷⁰ Treatment with benzotriazol-1-yloxytris(pyrrolidino)phosphonium hexafluorophosphate converts amides to nitriles.⁴⁷¹ It is possible to convert an acid to the nitrile, without isolation of the amide, by heating its ammonium salt with the dehydrating agent,⁴⁷² or by other methods.⁴⁷³ Acyl halides can also be directly converted to nitriles by heating with sulfamide (NH₂)₂SO₂.⁴⁷⁴ The reaction may be formally looked on as a β -elimination from the enol form of the amide RC(OH)=NH, in which case it is like 17-29, except that H and OH have changed

⁴⁵⁸For reviews, see Bieron J.F.; Dinan, F.J., in Zabicky, J. The Chemistry of Amides, Wiley, NY, 1970, pp. 274-283; Friedrich, K.; Wallenfels, K., in Rappoport, Z. The Chemistry of the Cyano Group, Wiley, NY, 1970, pp. 96-103; Friedrich, K., in Patai, S.; Rapoport, Z. The Chemistry of Functional Groups, Supplement C, pt. 2, Wiley, NY, 1978, p. 1345.

⁴⁵⁹Yamato, E.; Sugasawa, S. Tetrahedron Lett. 1970, 4383; Appel, R.; Kleinstück, R.; Ziehn, K. Chem. Ber. 1971, 104, 1030; Harrison, C.R.; Hodge, P.; Rogers, W.J. Synthesis 1977, 41.

⁴⁶⁰Monson, R.S.; Priest, D.N. Can. J. Chem. 1971, 49, 2897.

- ⁴⁶¹Ruck, R.T.; Bergman, R.G. Angew. Chem. Int. Ed. 2004, 43, 5375.
- ⁴⁶²Claremon, D.A.; Phillips, B.T. Tetrahedron Lett. 1988, 29, 2155.
- ⁴⁶³Barger, T.M.; Riley, C.M. Synth. Commun. 1980, 10, 479.
- ⁴⁶⁴Boruah, M.; Konwar, D. J. Org. Chem. 2002, 67, 7138.
- ⁴⁶⁵Bose, D.S.; Jayalakshmi, B. J. Org. Chem. 1999, 64, 1713.
- ⁴⁶⁶Iranpoor, N.; Firouzabadi, H.; Aghapoor, G. Synth. Commun. 2002, 32, 2535.
- ⁴⁶⁷Bose, D.S.; Jayalakshmi, B. Synthesis 1999, 64.
- ⁴⁶⁸Nakajima, N.; Ubukata, M. Tetrahedron Lett. 1997, 38, 2099.
- ⁴⁶⁹For a list of reagents, with references, see Larock, R.C. Comprehensive Organic Transformations, 2nd ed., Wiley-VCH, NY, 1999, pp. 1983-1985.
- ⁴⁷⁰Heck, M.-P.; Wagner, A.; Mioskowski, C. J. Org. Chem. 1996, 61, 6486.
- ⁴⁷¹Bose, D.S.; Narsaiah, A.V. Synthesis 2001, 373.
- ⁴⁷²See, for example, Imamoto, T.; Takaoka, T.; Yokoyama, M. Synthesis 1983, 142.
- ⁴⁷³For a list of methods, with references, see Larock, R.C. Comprehensive Organic Transformations, 2nd ed., Wiley-VCH, NY, 1999, pp. 1949-1950.
- ⁴⁷⁴Hulkenberg, A.; Troost, J.J. Tetrahedron Lett. 1982, 23, 1505.

⁴⁵⁷Ahmad, A.; Spenser, I.D. Can. J. Chem. 1961, 39, 1340; Ferris, A.F.; Johnson, G.S.; Gould, F.E. J. Org. Chem. 1960, 25, 1813; Grob, C.A.; Sieber, A. Helv. Chim. Acta 1967, 50, 2520; Green, M.; Pearson, S.C. J. Chem. Soc. B 1969, 593.

places. In some cases, for example, with SOCl₂, the mechanism probably *is* through the enol form, with the dehydrating agent forming an ester with the OH group, for example, RC(OSOCl)=NH, which undergoes elimination by the E1 or E2 mechanism.⁴⁷⁵ *N,N*-Disubstituted ureas give cyanamides (R₂N-CO-NH₂ \rightarrow R₂N-CN) when dehydrated with CHCl₃-NaOH under phase-transfer conditions.⁴⁷⁶ Treatment of an amide with aqueous NaOH and ultrasound leads to the nitrile.⁴⁷⁷

N-Alkyl-substituted amides can be converted to nitriles and alkyl chlorides by treatment with PCl₅. This is called the *von Braun reaction* (not to be confused with the other von Braun reaction, **10-54**).

 $R'CONHR + PCl_5 \longrightarrow R'CN + RCl$

OS I, 428; II, 379; III, 493, 535, 584, 646, 768; IV, 62, 144, 166, 172, 436, 486, 706; VI, 304, 465.

17-31 Conversion of *N*-Alkylformamides to Isonitriles (Isocyanides)

CN-Dihydro-C-oxo-bielimination

$$H \xrightarrow{C} N \xrightarrow{R} \frac{COCl_2}{R_{3N}} \xrightarrow{O} C \equiv N - R$$

Isocyanides (isonitriles) can be prepared by elimination of water from *N*-alkylformamides⁴⁷⁸ with phosgene and a tertiary amine.⁴⁷⁹ Other reagents, among them TsCl in quinoline, POCl₃ and a tertiary amine,⁴⁸⁰ Me₂N=CHCl⁺ Cl⁻,⁴⁸¹ triflic anhydride-(*i*Pr)₂NEt,⁴⁸² PhOC(=S)Cl,⁴⁸³ and Ph₃P–CCl₄-Et₃N⁴⁸⁴ have also been employed. Formamides react with thionyl chloride (two sequential treatments) to give an intermediate that gives an isonitrile upon electrolysis in DMF with LiClO₄.⁴⁸⁵

A variation of this process uses carbodiimides,⁴⁸⁶ which can be prepared by the dehydration of N,N'-disubstituted ureas with various dehydrating agents,⁴⁸⁷ among

⁴⁷⁵Rickborn, B.; Jensen, F.R. J. Org. Chem. 1962, 27, 4608.

⁴⁷⁶Schroth, W.; Kluge, H.; Frach, R.; Hodek, W.; Schädler, H.D. J. Prakt. Chem. 1983, 325, 787.

⁴⁷⁷Sivakumar, M.; Senthilkumar, P.; Pandit, A.B. Synth. Commun. 2001, 31, 2583.

⁴⁷⁸For a new synthesis see Creedon, S.M.; Crowley, H.K.; McCarthy, D.G. J. Chem. Soc. Perkin Trans. 1 **1998**, 1015.

⁴⁷⁹For reviews, see Hoffmann, P.; Gokel, G.W.; Marquarding, D.; Ugi, I., in Ugi, I. *Isonitrile Chemistry*, Academic Press, NY, **1971**, pp. 10–17; Ugi, I.; Fetzer, U.; Eholzer, U.; Knupfer, H.; Offermann, K. *Angew. Chem. Int. Ed.* **1965**, *4*, 472; *Newer Methods Prep. Org. Chem.* **1968**, *4*, 37.

⁴⁸⁰See Obrecht, R.; Herrmann, R.; Ugi, I. Synthesis 1985, 400.

⁴⁸¹Walborsky, H.M.; Niznik, G.E. J. Org. Chem. 1972, 37, 187.

482Baldwin, J.E.; O'Neil, I.A. Synlett 1991, 603.

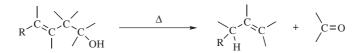
⁴⁸³Bose, D.S.; Goud, P.R. Tetrahedron Lett. 1999, 40, 747.

⁴⁸⁴Appel, R.; Kleinstück, R.; Ziehn, K. Angew. Chem. Int. Ed. 1971, 10, 132.

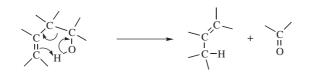
485 Guirado, A.; Zapata, A.; Gómez, J.L.; Trebalón, L.; Gálvez, J. Tetrahedron 1999, 55, 9631.

⁴⁸⁶For a review of the reactions in this section, see Bocharov, B.V. *Russ. Chem. Rev.* **1965**, *34*, 212. For a review of carbodiimide chemistry; see Williams, A.; Ibrahim, I.T. *Chem. Rev.* **1981**, *81*, 589.

⁴⁸⁷For some others not mentioned here, see Sakai, S.; Fujinami, T.; Otani, N.; Aizawa, T. *Chem. Lett.* 1976, 811; Shibanuma, T.; Shiono, M.; Mukaiyama, T. *Chem. Lett.* 1977, 575; Kim, S.; Yi, K.Y. J. Org. *Chem.* 1986, 51, 2613, *Tetrahedron Lett.* 1986, 27, 1925. which are TsCl in pyridine, POCl₃, PCl₅, P₂O₅–pyridine, TsCl (with phase-transfer catalysis),⁴⁸⁸ and Ph₃PBr₂–Et₃N.⁴⁸⁹ Hydrogen sulfide can be removed from the corresponding thioureas by treatment with HgO, NaOCl, or diethyl azodicarboxylate–triphenylphosphine.⁴⁹⁰


OS V, 300, 772; VI, 620, 751, 987. See also OS VII, 27. For the carbodiimide/ thiourea dehydration, see OS V, 555; VI, 951.

REACTIONS IN WHICH C=O BONDS ARE FORMED


Many elimination reactions in which C=O bonds are formed were considered in Chapter 16, along with their more important reverse reactions (also see, **12-40** and **12-41**).

17-32 Pyrolysis of β -Hydroxy Alkenes

O-Hydro-C-allyl-elimination

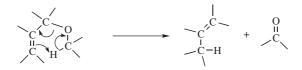
When pyrolyzed, β -hydroxy alkenes cleave to give alkenes and aldehydes or ketones.⁴⁹¹ Alkenes produced this way are quite pure, since there are no side reactions. The mechanism has been shown to be pericyclic, primarily by observations that the kinetics are first order⁴⁹² and that, for ROD, the deuterium appeared in the allylic position of the new alkene.⁴⁹³ This mechanism is the reverse of that for the oxygen analog of the ene synthesis (**16-54**). β -Hydroxyacetylenes react similarly to give the corresponding allenes and carbonyl compounds.⁴⁹⁴ The mechanism is the same despite the linear geometry of the triple bonds.

⁴⁸⁸Jászay, Z.M.; Petneházy, I.; Töke, L.; Szajáni, B. Synthesis 1987, 520.

⁴⁸⁹Bestmann, H.J.; Lienert, J.; Mott, L. J.L. Liebigs Ann. Chem. 1968, 718, 24.

Whalley, W., in Patai, S. The Chemistry of the Hydroxyl Group, pt. 2, Wiley, NY, 1971, pp. 729–734.

⁴⁹⁰Mitsunobu, O.; Kato, K.; Tomari, M. Tetrahedron 1970, 26, 5731.

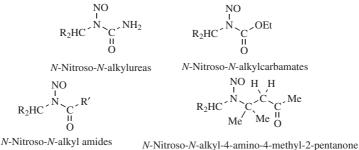

⁴⁹¹Arnold, R.T.; Smolinsky, G. J. Am. Chem. Soc. 1959, 81, 6643. For a review, see Marvell, E.N.;

⁴⁹²Voorhees, K.J.; Smith, G.G. J. Org. Chem. 1971, 36, 1755.

⁴⁹³Arnold, R.T.; Smolinsky, G. J. Org. Chem. **1960**, 25, 128; Smith, G.G.; Taylor, R. Chem. Ind. (London) **1961**, 949.

⁴⁹⁴Viola, A.; Proverb, R.J.; Yates, B.L.; Larrahondo, J. J. Am. Chem. Soc. 1973, 95, 3609.

In a related reaction, pyrolysis of allylic ethers that contain at least one α hydrogen gives alkenes and aldehydes or ketones. The mechanism is also pericvclic⁴⁹⁵

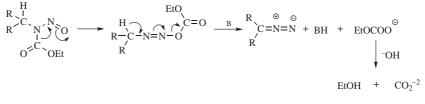


REACTIONS IN WHICH N=N BONDS ARE FORMED

17-33 Eliminations to Give Diazoalkanes

N-Nitrosoamine-diazoalkane transformation

Various N-nitroso-N-alkyl compounds undergo elimination to give diazoalkanes.⁴⁹⁶ One of the most convenient methods for the preparation of diazomethane involves base treatment of N-nitroso-N-methyl-p-toluenesulfonamide (illustrated above, with R = H).⁴⁹⁷ However, other compounds commonly used are (base treatment is required in all cases):


All these compounds can be used to prepare diazomethane, although the sulfonamide, which is commercially available, is most satisfactory. N-Nitroso-N-methylcarbamate and N-nitroso-N-methylurea give good yields, but are highly irritating and carcinogenic.⁴⁹⁸ For higher diazoalkanes the preferred substrates are nitrosoalkylcarbamates.

⁴⁹⁵ Cookson, R.C.; Wallis, S.R. J. Chem. Soc. B 1966, 1245; Kwart, H.; Slutsky, J.; Sarner, S.F. J. Am. Chem. Soc. 1973, 95, 5242; Egger, K.W.; Vitins, P. Int. J. Chem. Kinet. 1974, 6, 429.

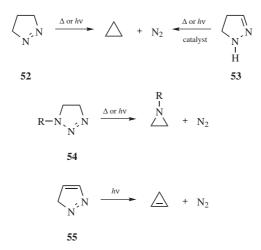
⁴⁹⁶For a review, see Regitz, M.; Maas, G. Diazo Compounds; Academic Press, NY, 1986, pp. 296–325. For a review of the preparation and reactions of diazomethane, see Black, T.H. Aldrichimica Acta 1983, 16, 3. For discussions, see Cowell, G.W.; Ledwith, A. Q. Rev. Chem. Soc. 1970, 24, 119, pp. 126-131; Smith, P.A.S. Open-chain Nitrogen Compounds; W. A. Benjamin, NY, 1966, especially pp. 257-258, 474-475, in Vol. 2.

⁴⁹⁷ de Boer, T.J.; Backer, H.J. Org. Synth. IV, 225, 250; Hudlicky, M. J. Org. Chem. 1980, 45, 5377. 498Searle, C.E. Chem. Br. 1970, 6, 5.

Most of these reactions probably begin with a 1,3 nitrogen-to-oxygen rearrangement, followed by the actual elimination (illustrated for the carbamate):

OS II, 165; III, 119, 244; IV, 225, 250; V, 351; VI, 981.

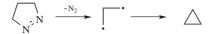
EXTRUSION REACTIONS


We consider an *extrusion reaction*⁴⁹⁹ to be one in which an atom or group Y connected to two other atoms X and Z is lost from a molecule, leading to a product in which X is bonded directly to Z.

 $X-Y-Z \longrightarrow X-Z + Y$

Reactions 14-32 and 17-20 also fit this definition. Reaction 17-28 does not fit the definition, but is often also classified as an extrusion reaction. An extrusibility scale has been developed, showing that the ease of extrusion of the common Y groups is in the order: $-N=N->-COO->-SO_2->-CO-$.⁵⁰⁰

17-34 Extrusion of N₂ from Pyrazolines, Pyrazoles, and Triazolines


Azo-extrusion

⁴⁹⁹For a monograph, see Stark, B.P.; Duke, A.J. *Extrusion Reactions*, Pergamon, Elmsford, NY, *1967*. For a review of extrusions that are photochemically induced, see Givens, R.S. *Org. Photochem. 1981*, *5*, 227.
 ⁵⁰⁰Paine, A.J.; Warkentin, J. *Can. J. Chem. 1981*, *59*, 491.

1554 ELIMINATIONS

1-Pyrazolines (**52**) can be converted to cyclopropane and N₂ on photolysis⁵⁰¹ or pyrolysis.⁵⁰² The tautomeric 2-pyrazolines (**53**), which are more stable than **52** also give the reaction, but in this case an acidic or basic catalyst is required, the function of which is to convert **53** to **52**.⁵⁰³ In the absence of such catalysts, **53** do not react.⁵⁰⁴ In a similar manner, triazolines (**54**) are converted to aziridines.⁵⁰⁵ Side reactions are frequent with both **52** and **54**, and some substrates do not give the reaction at all. However, the reaction has proved synthetically useful in many cases. In general, photolysis gives better yields and fewer side reactions than pyrolysis with both **52** and **54**. *3H*-Pyrazoles⁵⁰⁶ (**55**) are stable to heat, but in some cases can be converted to cyclopropenes on photolysis,⁵⁰⁷ although in other cases other types of products are obtained.

There is much evidence that the mechanism⁵⁰⁸ of the 1-pyrazoline reactions generally involves diradicals, although the mode of formation and detailed structure (e.g., singlet vs. triplet) of these radicals may vary with the substrate and reaction conditions. The reactions of the 3H-pyrazoles have been postulated to proceed through a diazo compound that loses N₂ to give a vinylic carbene.⁵⁰⁹

OS V, 96, 929. See also, OS VIII, 597.

⁵⁰¹Van Auken, T.V.; Rinehart Jr., K.L. J. Am. Chem. Soc. 1962, 84, 3736.

⁵⁰²For reviews of the reactions in this section, see Adam, W.; De Lucchi, O. *Angew. Chem. Int. Ed.* **1980**, 19, 762; Meier, H.; Zeller, K. *Angew. Chem. Int. Ed.* **1977**, *16*, 835; Stark, B.P.; Duke, A.J. *Extrusion Reactions*, Pergamon, Elmsford, NY, **1967**, pp. 116–151. For a review of the formation and fragmentation of cyclic azo compounds, see Mackenzie, K., in Patai, S. *The Chemistry of the Hydrazo, Azo, and Azoxy Groups*, pt. 1, Wiley, NY, **1975**, pp. 329–442.

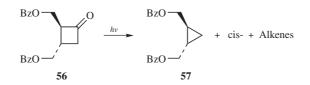
⁵⁰³For example, see Jones, W.M.; Sanderfer, P.O.; Baarda, D.G. J. Org. Chem. 1967, 32, 1367.

⁵⁰⁴McGreer, D.E.; Wai, W.; Carmichael, G. *Can. J. Chem.* **1960**, *38*, 2410; Kocsis K.; Ferrini, P.G.; Arigoni, D.; Jeger, O. *Helv. Chim. Acta* **1960**, *43*, 2178.

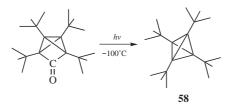
⁵⁰⁵For a review, see Scheiner, P. Sel. Org. Transform. 1970, 1, 327.

⁵⁰⁶For a review of 3*H*-pyrazoles, see Sammes, M.P.; Katritzky, A.R. *Adv. Heterocycl. Chem.* **1983**, 34, 2. ⁵⁰⁷Ege, G.*Tetrahedron Lett.* **1963**, 1667; Closs, G.L.; Böll, W.A.; Heyn, H.; Dev, V. *J. Am. Chem. Soc.*

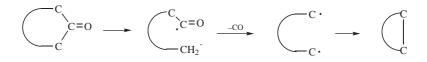
1968, 90, 173; Franck-Neumann, M.; Buchecker, C. *Tetrahedron Lett.* 1969, 15; Pincock, J.A.; Morchat, R.; Arnold, D.R. J. Am. Chem. Soc. 1973, 95, 7536.

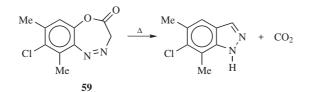

⁵⁰⁸For a review of the mechanism; see Engel, P.S. *Chem. Rev.* **1980**, *80*, 99. See also, Engel, P.S.; Nalepa, C.J. *Pure Appl. Chem.* **1980**, *52*, 2621; Engel, P.S.; Gerth, D.B. *J. Am. Chem. Soc.* **1983**, *105*, 6849; Reedich, D.E.; Sheridan, R.S. *J. Am. Chem. Soc.* **1988**, *110*, 3697.

⁵⁰⁹Closs, G.L.; Böll, W.A.; Heyn, H.; Dev, V. *J. Am. Chem. Soc.* **1968**, *90*, 173; Pincock, J.A.; Morchat, R.; Arnold, D.R. *J. Am. Chem. Soc.* **1973**, *95*, 7536.


CHAPTER 17

17-35 Extrusion of CO or CO₂


Carbonyl-extrusion


Although the reaction is not general, certain cyclic ketones can be photolyzed to give ring-contracted products.⁵¹⁰ In the example above, the cyclobutanone **56** was photolyzed to give **57**.⁵¹¹ This reaction was used to synthesize tetra-*tert*-butyltetra-hedrane, **58**.⁵¹²

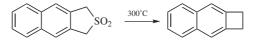
The mechanism probably involves a Norrish type I cleavage (p. 343), loss of CO from the resulting radical, and recombination of the radical fragments.

Certain lactones extrude CO_2 on heating or on irradiation, such as the pyrolysis of **59**.⁵¹³

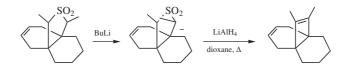
⁵¹⁰For reviews of the reactions in this section, see Redmore, D.; Gutsche, C.D. *Adv. Alicyclic Chem.* **1971**, *3*, 1, see pp. 91–107; Stark, B.P.; Duke, A.J. *Extrusion Reactions*, Pergamon, Elmsford, NY, **1967**, pp. 47–71.

^{\$11}Ramnauth, J.; Lee-Ruff, E. *Can. J. Chem.* **1997**, 75, 518. See also, Ramnauth, J.; Lee-Ruff, E. *Can. J. Chem.* **2001**, 79, 114.

⁵¹²Maier, G.; Pfriem, S.; Schäfer, U.; Matusch, R. Angew. Chem. Int. Ed. 1978, 17, 520.


⁵¹³Ried, W.; Wagner, K. Liebigs Ann. Chem. 1965, 681, 45.

Decarboxylation of β -lactones (see **17-26**) may be regarded as a degenerate example of this reaction. Unsymmetrical diacyl peroxides RCO–OO–COR' lose two molecules of CO₂ when photolyzed in the solid state to give the product RR'.⁵¹⁴ Electrolysis was also used, but yields were lower. This is an alternative to the Kolbe reaction (**11-34**) (see also **17-28** and **17-38**).


There are no OS references, but see OS VI, 418, for a related reaction.

17-36 Extrusion of SO₂

Sulfonyl-extrusion

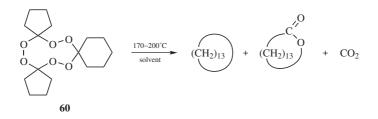
In a reaction similar to **17-35**, certain sulfones, both cyclic and acyclic, ⁵¹⁵ extrude SO₂ on heating or photolysis to give ring-contracted products. ⁵¹⁶ An example is the preparation of naphtho(*b*)cyclobutene shown above. ⁵¹⁷ In a different kind of reaction, five-membered cyclic sulfones can be converted to cyclobutenes by treatment with butyllithium followed by LiAlH₄, ⁵¹⁸ for example,

This method is most successful when both the α and α' position of the sulfone bear alkyl substituents (see also **17-20**). Treating four-membered ring sultams with SnCl₂ led to aziridine products via loss of SO₂.⁵¹⁹

OS VI, 482.

⁵¹⁴Lomölder, R.; Schäfer, H.J. Angew. Chem. Int. Ed. 1987, 26, 1253.

⁵¹⁶For reviews of extrusions of SO₂, see Vögtle, F.; Rossa, L. Angew. Chem. Int. Ed. **1979**, *18*, 515; Stark, B.P.; Duke, A.J. Extrusion Reactions, Pergamon, Elmsford, NY, **1967**, pp. 72–90; Kice, J.L., in Kharasch, N.; Meyers, C.Y. The Chemisry of Organic Sulfur Compounds, Vol. 2, Pergamon, Elmsford, NY, **1966**, pp. 115–136. For a review of extrusion reactions of S, Se, and Te compounds, see Guziec, Jr., F.S.; SanFilippo, L.J. Tetrahedron **1988**, 44, 6241.

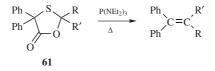

⁵¹⁸Photis, J.M.; Paquette, L.A. J. Am. Chem. Soc. 1974, 96, 4715.

⁵¹⁵See, for example, Gould, I.R.; Tung, C.; Turro, N.J.; Givens, R.S.; Matuszewski, B. *J. Am. Chem. Soc.* **1984**, *106*, 1789.

⁵¹⁷Cava, M.P.; Shirley, R.L. J. Am. Chem. Soc. 1960, 82, 654.

⁵¹⁹Kataoka, T.; Iwama, T. Tetrahedron Lett. 1995, 36, 5559.

17-37 The Story Synthesis



When cycloalkylidine peroxides (e.g., **60**) are heated in an inert solvent (e.g., decane), extrusion of CO₂ takes place; the products are the cycloalkane containing three carbon atoms less than the starting peroxide and the lactone containing two carbon atoms less⁵²⁰ (the *Story synthesis*).⁵²¹ The two products are formed in comparable yields, usually ~15–25% each. Although the yields are low, the reaction is useful because there are not many other ways to prepare large rings. The reaction is versatile, having been used to prepare rings of every size from 8 to 33 members.

Both dimeric and trimeric cycloalkylidine peroxides can be synthesized⁵²² by treatment of the corresponding cyclic ketones with H_2O_2 in acid solution.⁵²³ The trimeric peroxide is formed first and is subsequently converted to the dimeric compound.⁵²⁴

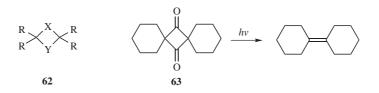
17-38 Alkene Synthesis by Twofold Extrusion

Carbon dioxide, thio-extrusion

4,4-Diphenyloxathiolan-5-ones (61) give good yields of the corresponding alkenes when heated with tris(diethylamino)phosphine.⁵²⁵ This reaction is an

⁵²⁰Sanderson, J.R.; Story, P.R.; Paul, K. J. Org. Chem. **1975**, 40, 691; Sanderson, J.R.; Paul, K.; Story, P.R. Synthesis **1975**, 275.

⁵²¹For a review, see Story, P.R.; Busch, P. Adv. Org. Chem. 1972, 8, 67, see pp. 79-94.


⁵²²For synthesis of mixed trimeric peroxides (e.g., **60**), see Sanderson, J.R.; Zeiler, A.G. *Synthesis* **1975**, 388; Paul, K.; Story, P.R.; Busch, P.; Sanderson, J.R. J. Org. Chem. **1976**, 41, 1283.

⁵²³Kharasch, M.S.; Sosnovsky, G. J. Org. Chem. **1958**, 23, 1322; Ledaal, T. Acta Chem. Scand., **1967**, 21, 1656. For another method, see Sanderson, J.R.; Zeiler, A.G. Synthesis **1975**, 125.

⁵²⁴Story, P.R.; Lee, B.; Bishop, C.E.; Denson, D.D.; Busch, P. *J. Org. Chem.* **1970**, *35*, 3059. See also, Sanderson, J.R.; Wilterdink, R.J.; Zeiler, A.G. *Synthesis* **1976**, 479.

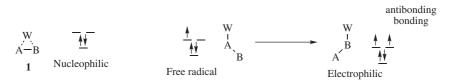
⁵²⁵Barton, D.H.R.; Willis, B.J. J. Chem. Soc. Perkin Trans. 1 1972, 305.

example of a general type: alkene synthesis by twofold extrusion of X and Y from a molecule of the type **62**.⁵²⁶ Other examples are photolysis of 1,4-diones⁵²⁷ (e.g., **63**) and treatment of acetoxy sulfones [RCH(OAc)CH₂SO₂Ph] with Mg/EtOH and a catalytic amount of HgCl₂.⁵²⁸ **61** can be prepared by the condensation of thiobenzilic acid Ph₂C(SH)COOH with aldehydes or ketones.

OS V, 297.

⁵²⁶For a review of those in which X or Y contains S, Se, or Te, see Guziec, Jr., F.S.; SanFilippo, L.J. *Tetrahedron* **1988**, 44, 6241.

⁵²⁷Turro, N.J.; Leermakers, P.A.; Wilson, H.R.; Neckers, D.C.; Byers, G.W.; Vesley, G.F. J. Am. Chem. Soc. **1965**, 87, 2613.


⁵²⁸Lee, G.H.; Lee, H.K.; Choi, E.B.; Kim, B.T.; Pak, C.S. *Tetrahedron Lett.* **1995**, *36*, 5607.

Rearrangements

In a rearrangement reaction a group moves from one atom to another in the same molecule.¹ Most are migrations from an atom to an adjacent one (called 1,2-shifts), but some are over longer distances. The migrating group (W)

may move with its electron pair (these can be called *nucleophilic* or *anionotropic* rearrangements; the migrating group can be regarded as a nucleophile), without its electron pair (*electrophilic* or *cationotropic* rearrangements; in the case of migrating hydrogen, *prototropic* rearrangements), or with just one electron (free-radical rearrangements). The atom A is called the *migration origin* and B is the *migration terminus*. However, there are some rearrangements that do not lend themselves to neat categorization in this manner. Among these are those with cyclic transition states (**18-27–18-36**).

As we will see, nucleophilic 1,2-shifts are much more common than electrophilic or free-radical 1,2-shifts. The reason for this can be seen by a consideration of the transition states (or in some cases intermediates) involved. We represent the transition state or intermediate for all three cases by **1**, in which the two-electron

¹For books, see de Mayo, P. *Rearrangements in Ground and Excited States*, 3 vols., Academic Press, NY, *1980*; Stevens, T.S.; Watts, W.E. *Selected Molecular Rearrangements*, Van Nostrand-Reinhold, Princeton, NJ, *1973*. For a review of many of these rearrangements, see Collins, C.J.; Eastham, J.F., in Patai, S. *The Chemistry of the Carbonyl Group*, Vol. 1, Wiley, NY, *1966*, pp. 761–821. See also, the series *Mechanisms of Molecular Migrations*.

March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, Sixth Edition, by Michael B. Smith and Jerry March

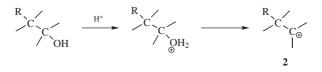
Copyright © 2007 John Wiley & Sons, Inc.

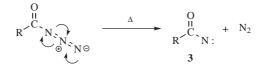
A–W bond overlaps with the orbital on atom B, which contains zero, one, and two electrons, in the case of nucleophilic, free-radical, and electrophilic migration, respectively. The overlap of these orbitals gives rise to three new orbitals, which have an energy relationship similar to those on p. 72 (one bonding and two degenerate antibonding orbitals). In a nucleophilic migration, where only two electrons are involved, both can go into the bonding orbital and **1** is a low-energy transition state; but in a free-radical or electrophilic migration, there are, respectively, three or four electrons that must be accommodated, and antibonding orbitals must be occupied. It is not surprising therefore that, when 1,2-electrophilic or free-radical shifts are found, the migrating group W is usually aryl or some other group that can accommodate the extra one or two electrons and thus effectively remove them from the three-membered transition state or intermediate (see **41** on p. 1577).

In any rearrangement, we can in principle distinguish between two possible modes of reaction: In one of these, the group W becomes completely detached from A and may end up on the B atom of a different molecule (*intermolecular* rearrangement); in the other W goes from A to B in the *same* molecule (*intramolecular* rearrangement), in which case there must be some continuing tie holding W to the A–B system, preventing it from coming completely free. Strictly speaking, only the intramolecular type fits our definition of a rearrangement, but the general practice, which is followed here, is to include under the title "rearrangement" all net rearrangements whether they are inter- or intramolecular. It is usually not difficult to tell whether a given rearrangement is inter- or intramolecular. The most common method involves the use of *crossover* experiments. In this type of experiment, rearrangement is carried out on a mixture of W–A–B and V–A–C, where V is closely related to W (say, methyl vs. ethyl) and B to C. In an intramolecular process only A–B–W and A–C–V are recovered, but if the reaction is intermolecular, then not only will these two be found, but also A–B–V and A–C–W.

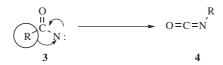
MECHANISMS

Nucleophilic Rearrangements²


Broadly speaking, such rearrangements consist of three steps, of which the actual migration is the second:


²For reviews, see Vogel, P. Carbocation Chemistry; Elsevier, NY, **1985**, pp. 323–372; Shubin, V.G. Top. Curr. Chem. **1984**, 116/117, 267; Saunders, M.; Chandrasekhar, J.; Schleyer, P.v.R., in de Mayo, P. Rearrangements in Ground and Excited States, Vol. 1, Academic Press, NY, **1980**, pp. 1–53; Kirmse, W. Top. Curr. Chem. **1979**, 80, 89. For reviews of rearrangements in vinylic cations, see Shchegolev, A.A.; Kanishchev, M.I. Russ. Chem. Rev. **1981**, 50, 553; Lee, C.C. Isot. Org. Chem. **1980**, 5, 1.

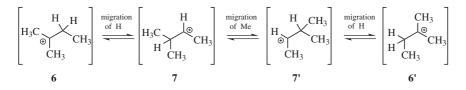
This process has been called the *Whitmore 1,2-shift.*³ Since the migrating group carries the electron pair with it, the migration terminus B must be an atom with only six electrons in its outer shell (an open sextet). The first step therefore is creation of a system with an open sextet. Such a system can arise in various ways, but two of these are the most important:


1. Formation of a Carbocation. These can be formed in a number of ways (see p. 247), but one of the most common methods when a rearrangement is desired is the acid treatment of an alcohol to give 2 from an intermediate oxonium ion. These two steps are of course the same as the first two steps of the S_N 1cA or the E1 reactions of alcohols.

2. *Formation of a Nitrene*. The decomposition of acyl azides is one of several ways in which acyl nitrenes **3** are formed (see p. 293). After the migration has taken place, the atom at the migration origin (A) must necessarily have an open sextet. In the third step, this atom acquires an octet. In the case of carbocations, the most common third steps are combinations with a nucleophile (rearrangement with substitution) and loss of H⁺ (rearrangement with elimination).

Although we have presented this mechanism as taking place in three steps, and some reactions do take place in this way, in many cases two or all three steps are simultaneous. For example, in the nitrene example above, as the R migrates, an electron pair from the nitrogen moves into the C–N bond to give a stable isocyanate, **4**.

In this example, the second and third steps are simultaneous. It is also possible for the second and third steps to be simultaneous even when the "third" step involves more than just a simple motion of a pair of electrons. Similarly, there are many reactions in which the first two steps are simultaneous; that is, there is no actual formation of a species, such as 2 or 3. In these instances, it may be said that

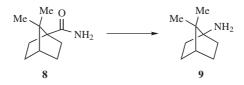

³It was first postulated by Whitmore, F.C. J. Am. Chem. Soc. 1932, 54, 3274.

R assists in the removal of the leaving group, with migration of R and the removal of the leaving group taking place simultaneously. Many investigations have been carried out in attempts to determine, in various reactions, whether such intermediates as 2 or 3 actually form, or whether the steps are simultaneous (see, e.g., the discussions on pp. 1381, 1563), but the difference between the two possibilities is often subtle, and the question is not always easily answered.⁴

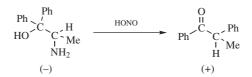
Evidence for this mechanism is that rearrangements of this sort occur under conditions where we have previously encountered carbocations: S_N1 conditions, Friedel–Crafts alkylation, and so on. Solvolysis of neopentyl bromide leads to rearrangement products, and the rate increases with increasing ionizing power of the solvent but is unaffected by concentration of base,⁵ so that the first step is carbocation formation. The same compound under S_N2 conditions gave no rearrangement, but only ordinary substitution, though slowly. Thus with neopentyl bromide, formation of a carbocation leads only to rearrangement. Carbocations usually rearrange to more stable carbocations. Thus the direction of rearrangement is usually primary \rightarrow secondary \rightarrow tertiary. Neopentyl (Me₃CCH₂), neophyl (PhCMe₂CH₂), and norbornyl (e.g., **5**) type systems are especially prone to carbocation rearrangement reactions. It has been shown that the rate of migration increases with the degree of electron deficiency at the migration terminus.⁶

We have previously mentioned (p. 236) that stable tertiary carbocations can be obtained, in solution, at very low temperatures. The NMR studies have shown that when these solutions are warmed, rapid migrations of hydride and of alkyl groups take place, resulting in an equilibrium mixture of structures.⁷ For example, the *tert*-pentyl cation (**5**)⁸ equilibrates as follows:

⁴The IUPAC designations depend on the nature of the steps. For the rules, see Guthrie, R.D. *Pure Appl. Chem.* **1989**, *61*, 23, 44–45.


⁵Dostrovsky, I.; Hughes, E.D. J. Chem. Soc. 1946, 166.

 ⁶Borodkin, G.I.; Shakirov, M.M.; Shubin, V.G.; Koptyug, V.A. J. Org. Chem. USSR 1978, 14, 290, 924.
 ⁷For reviews, see Brouwer, D.M.; Hogeveen, H. Prog. Phys. Org. Chem. 1972, 9, 179, see pp. 203–237; Olah, G.A.; Olah, J.A., in Olah, G.A.; Schleyer, P.V.R. Carbonium Ions, Vol. 2, Wiley, NY, 1970, pp. 751–760, 766–778. For a discussion of the rates of these reactions, see Sorensen, T.S. Acc. Chem. Res. 1976, 9, 257.
 ⁸Brouwer, D.M. Recl. Trav. Chim. Pays-Bas 1968, 87, 210; Saunders, M.; Hagen, E.L. J. Am. Chem. Soc. 1968, 90, 2436.

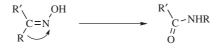

Carbocations that rearrange to give products of identical structure (e.g., $6 \rightleftharpoons 6', 7 \rightleftharpoons 7'$) are called *degenerate carbocations* and such rearrangements are *degenerate rearrangements*. Many examples are known.⁹

The Actual Nature of the Migration

Most nucleophilic 1,2-shifts are intramolecular. The W group does not become free, but always remains connected in some way to the substrate. Apart from the evidence from crossover experiments, the strongest evidence is that when the W group is chiral, the configuration is *retained* in the product. For example, (+)-PhCHMe-COOH was converted to (-)-PhCHMeNH₂ by the Curtius (**18-14**), Hofmann (**18-13**), Lossen (**18-15**), and Schmidt (**18-16**) reactions.¹⁰ In these reactions, the extent of retention varied from 95.8 to 99.6%. Retention of configuration in the migrating group has been shown many times since.¹¹ Another experiment demonstrating retention was the

easy conversion of **8** to **9**.¹¹ Neither inversion nor racemization could take place at a bridgehead. There is much other evidence that retention of configuration usually occurs in W, and inversion never.¹² However, this is not the state of affairs at A and B. In many reactions, of course, the structure of W–A–B is such that the product has only one steric possibility at A or B or both, and in most of these cases nothing can be learned. But in cases where the steric nature of A or B can be investigated, the results are mixed. It has been shown that either inversion or racemization can occur at A or B. Thus the following conversion proceeded with inversion at B:¹³

⁹For reviews, see Ahlberg, P.; Jonsäll, G.; Engdahl, C. *Adv. Phys. Org. Chem.* **1983**, *19*, 223; Leone, R.E.; Barborak, J.C.; Schleyer, P.v.R., in Olah, G.A.; Schleyer, P.v.R. *Carbonium Ions*, Vol. 4, Wiley, NY, **1970**, pp. 1837–1939; Leone, R.E.; Schleyer, P.v.R. *Angew. Chem. Int. Ed.* **1970**, *9*, 860.


¹⁰Campbell, A.; Kenyon, J. J. Chem. Soc. 1946, 25, and references cited therein.

¹¹For retention of migrating group configuration in the Wagner–Meerwein and pinacol rearrangements, see Beggs, J.J.; Meyers, M.B. *J. Chem. Soc. B* **1970**, 930; Kirmse, W.; Gruber, W.; Knist, J. *Chem. Ber.* **1973**, 106, 1376; Shono, T.; Fujita, K.; Kumai, S. *Tetrahedron Lett.* **1973**, 3123; Borodkin, G.I.; Panova, Y.B.; Shakirov, M.M.; Shubin, V.G. *J. Org. Chem. USSR* **1983**, *19*, 103.

¹²See Cram, D.J., in Newman Steric Effects in Organic Chemistry, Wiley, NY, **1956**; pp. 251–254; Wheland, G.W. Advanced Organic Chemistry, 3rd ed., Wiley, NY, **1960**, pp. 597–604.

¹³Bernstein, H.I.; Whitmore, F.C. J. Am. Chem. Soc. 1939, 61, 1324. For other examples, see Tsuchihashi, G.; Tomooka, K.; Suzuki, K. Tetrahedron Lett. 1984, 25, 4253.

and inversion at A has been shown in other cases.¹⁴ However, in many other cases, racemization occurs at A or B or both.¹⁵ It is not always necessary for the product to have two steric possibilities in order to investigate the stereochemistry at A or B. Thus, in most Beckmann rearrangements (**18-17**), only the group trans (usually called *anti*) to the hydroxyl group migrates:

showing inversion at B.

This information tells us about the degree of concertedness of the three steps of the rearrangement. First consider the migration terminus B. If racemization is found at B, it is probable that the first step takes place before the second and that a positively charged carbon (or other sextet atom) is present at B:

$$\stackrel{R}{\xrightarrow{}}_{A-B-X} \longrightarrow \stackrel{R}{\xrightarrow{}}_{A-B^{+}} \longrightarrow \stackrel{*}{\xrightarrow{}}_{A-B^{'}} \stackrel{R}{\longrightarrow} \text{Third step}$$

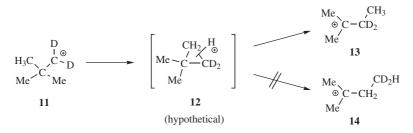
With respect to B this is an S_N 1-type process. If inversion occurs at B, it is likely that the first two steps are concerted, that a carbocation is *not* an intermediate, and that the process is S_N 2-like:

$$\begin{array}{c} R \\ A-B-X \\ 10 \end{array} \xrightarrow{R} \\ A \xrightarrow{A} \\ A \xrightarrow{B} \\ R \\ A \xrightarrow{R} \\ A \xrightarrow{$$

In this case, participation by R assists in removal of X in the same way that neighboring groups do (p. 446). Indeed, R *is* a neighboring group here. The only difference is that, in the case of the neighboring-group mechanism of nucleophilic substitution, R never becomes detached from A, while in a rearrangement the bond between R and A is broken. In either case, the anchimeric assistance results in an increased rate of reaction. Of course, for such a process to take place, R must be in a favorable geometrical position (R and X antiperiplanar). Intermediate **10** may be a true intermediate or only a transition state, depending on what migrates. In certain cases of the S_N1-type process, it is possible for migration to take place with net retention of configuration at the migrating terminus because of conformational effects in the carbocation.¹⁶

We may summarize a few conclusions:

1. The S_N1-type process occurs mostly when B is a tertiary atom or has one aryl group and at least one other alkyl or aryl group. In other cases, the S_N2-type


¹⁴See Meerwein, H.; van Emster, K. *Ber.* **1920**, *53*, 1815; **1922**, *55*, 2500; Meerwein, H.; Gérard, L. *Liebigs Ann. Chem.* **1923**, *435*, 174.

¹⁵For example, see Winstein, S.; Morse, B.K. J. Am. Chem. Soc. 1952, 74, 1133.

¹⁶Collins, C.J.; Benjamin, B.M. J. Org. Chem. 1972, 37, 4358, and references cited therein.

process is more likely. Inversion of configuration (indicating an S_N^2 -type process) has been shown for a neopentyl substrate by the use of the chiral neopentyl-1-*d* alcohol.¹⁷ On the other hand, there is other evidence that neopentyl systems undergo rearrangement by a carbocation (S_N^1 -type) mechanism.¹⁸

2. The question as to whether 10 is an intermediate or a transition state has been much debated. When R is aryl or vinyl, then 10 is probably an intermediate and the migrating group lends anchimeric assistance¹⁹ (see p. 459 for resonance stabilization of this intermediate, when R is aryl). When R is alkyl, 10 is a protonated cyclopropane (edge- or corner-protonated; see p. 1026). There is much evidence that in simple migrations of a methyl group, the bulk of the products formed do not arise from protonated cyclopropane *intermediates*. Evidence for this statement has already been given (p. 467). Further evidence was obtained from experiments involving labeling.

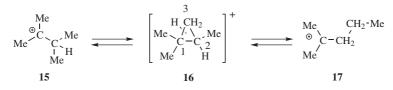
Rearrangement of the neopentyl cation labeled with deuterium in the 1 position (11) gave only *tert*-pentyl products with the label in the 3 position (derived from 13), though if 12 were an intermediate, the cyclopropane ring could just as well cleave the other way to give *tert*-pentyl derivatives labeled in the 4 position (derived from 14).²⁰ Another experiment that led to the same conclusion was the generation, in several ways, of $Me_3C^{13}CH_2^+$. In this case, the only *tert*-pentyl products isolated were labeled in C-3, that is, $Me_2C^+-^{13}CH_2CH_3$ derivatives; no derivatives of $Me_2C^+-CH_2^{13}CH_3$ were found.²¹

Although the bulk of the products are not formed from protonated cyclopropane intermediates, there is considerable evidence that at least in 1-propyl

¹⁷Sanderson, W.A.; Mosher, H.S. *J. Am. Chem. Soc.* **1966**, 88, 4185; Mosher, H.S. *Tetrahedron* **1974**, *30*, 1733. See also, Guthrie, R.D. *J. Am. Chem. Soc.* **1967**, 89, 6718.

¹⁸Nordlander, J.E.; Jindal, S.P.; Schleyer, P.v.R.; Fort Jr., R.C.; Harper, J.J.; Nicholas, R.D. J. Am. Chem. Soc. **1966**, 88, 4475; Shiner, Jr., V.J.; Imhoff, M.A. J. Am. Chem. Soc. **1985**, 107, 2121.

¹⁹For example, see Rachon, J.; Goedkin, V.; Walborsky, H.M. *J. Org. Chem.* **1989**, 54, 1006. For an opposing view, see Kirmse, W.; Feyen, P. *Chem. Ber.* **1975**, *108*, 71; Kirmse, W.; Plath, P.; Schaffrodt, H. *Chem. Ber.* **1975**, *108*, 79.


²⁰Skell, P.S.; Starer, I.; Krapcho, A.P. J. Am. Chem. Soc. 1960, 82, 5257.

²¹Karabatsos, G.J.; Orzech Jr., C.E.; Meyerson, S. J. Am. Chem. Soc. 1964, 86, 1994.

systems, a small part of the product can in fact arise from such intermediates.²² Among this evidence is the isolation of 10–15% cyclopropanes (mentioned on p. 467). Additional evidence comes from propyl cations generated by diazotization of labeled amines (CH₃CH₂CD₂⁺, CH₃CD₂CH₂⁺, CH₃CH₂¹⁴CH₂⁺), where isotopic distribution in the products indicated that a small amount (~5%) of the product had to be formed from protonated cyclopropane intermediates, for example,²³

$$\begin{array}{cccc} CH_{3}CH_{2}CD_{2}NH_{2} & \xrightarrow{HONO} & -1\% & C_{2}H_{4}D_CHD_OH \\ CH_{3}CD_{2}CH_{2}NH_{2} & \xrightarrow{HONO} & -1\% & C_{2}H_{4}D_CHD_OH \\ CH_{3}CH_{214}CH_{2}NH_{2} & \xrightarrow{HONO} & -2\% & {}^{14}CH_{3}CH_{2}CH_{2}OH & + & -2\% & CH_{3}{}^{14}CH_{2}CH_{2}OH \end{array}$$

Even more scrambling was found in trifluoroacetolysis of 1-propyl-1-¹⁴C-mercuric perchlorate.²⁴ However, protonated cyclopropane intermediates accounted for <1% of the products from diazotization of labeled isobutyla-mine²⁵ and from formolysis of labeled 1-propyl tosylate.²⁶

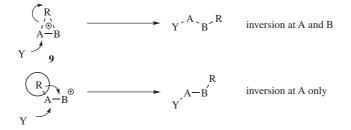
It is likely that protonated cyclopropane transition states or intermediates are also responsible for certain non-1,2 rearrangements. For example, in super acid solution, the ions **15** and **17** are in equilibrium. It is not possible for these to interconvert solely by 1,2-alkyl or hydride shifts unless primary carbocations (which are highly unlikely) are intermediates. However, the reaction can be explained²⁷ by postulating that (in the forward reaction) it is the 1,2 bond

²²For reviews, see Saunders, M.; Vogel, P.; Hagen, E.L.; Rosenfeld, J. Acc. Chem. Res. 1973, 6, 53; Lee, C.C. Prog. Phys. Org. Chem. 1970, 7, 129; Collins, C.J. Chem. Rev. 1969, 69, 543. See also, Cooper, C.N.; Jenner, P.J.; Perry, N.B.; Russell-King, J.; Storesund, H.J.; Whiting, M.C. J. Chem. Soc. Perkin Trans. 2 1982, 605.

²³Lee, C.C.; Kruger, J.E. Tetrahedron 1967, 23, 2539; Lee, C.C.; Wan, K. J. Am. Chem. Soc. 1969, 91, 6416; Karabatsos, G.J.; Orzech, Jr., C.E.; Fry, J.L.; Meyerson, S. J. Am. Chem. Soc. 1970, 92, 606.

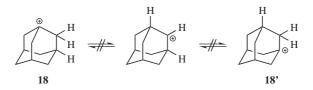
²⁴Lee, C.C.; Cessna, A.J.; Ko, E.C.F.; Vassie, S. J. Am. Chem. Soc. **1973**, 95, 5688. See also, Lee, C.C.; Reichle, R. J. Org. Chem. **1977**, 42, 2058, and references cited therein.

²⁵Karabatsos, G.J.; Hsi, N.; Meyerson, S. J. Am. Chem. Soc. **1970**, 92, 621. See also, Karabatsos, G.J.; Anand, M.; Rickter, D.O.; Meyerson, S. J. Am. Chem. Soc. **1970**, 92, 1254.


²⁶Lee, C.C.; Kruger, J.E. Can. J. Chem. **1966**, 44, 2343; Shatkina, T.N.; Lovtsova, A.N.; Reutov, O.A. Bull. Acad. Sci. USSR Div. Chem. Sci. **1967**, 2616; Karabatsos, G.J.; Fry, J.L.; Meyerson, S. J. Am. Chem. Soc. **1970**, 92, 614. See also, Lee, C.C.; Zohdi, H.F. Can. J. Chem. **1983**, 61, 2092.

 ²⁷Brouwer, D.M.; Oelderik, J.M. *Recl. Trav. Chim. Pays-Bas* 1968, 87, 721; Saunders, M.; Jaffe, M.H.;
 Vogel, P. J. Am. Chem. Soc. 1971, 93, 2558; Saunders, M.; Vogel, P. J. Am. Chem. Soc. 1971, 93, 2559, 2561; Kirmse, W.; Loosen, K.; Prolingheuer, E. Chem. Ber. 1980, 113, 129.

of the intermediate or transition state **16** that opens up rather than the 2,3 bond, which is the one that would open if the reaction were a normal 1,2-shift of a methyl group. In this case, opening of the 1,2 bond produces a tertiary cation, while opening of the 2,3 bond would give a secondary cation. (In the reaction $17 \rightarrow 15$, it is of course the 1,3 bond that opens).

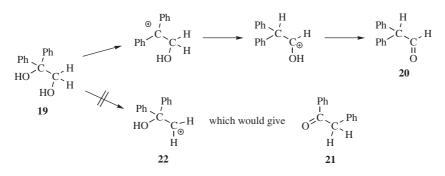

3. There has been much discussion of H as migrating group. There is no conclusive evidence that **10** in this case is or is not a true intermediate, although both positions have been argued (see p. 467).

The stereochemistry at the migration origin A is less often involved, since in most cases it does not end up as a tetrahedral atom; but when there is inversion here, there is an S_N 2-type process at the beginning of the migration. This may or may not be accompanied by an S_N 2 process at the migration terminus B:

In some cases, it has been found that, when H is the migrating species, the configuration at A may be *retained*.²⁸

There is evidence that the configuration of the molecule may be important even where the leaving group is gone long before migration takes place. For example, the 1-adamantyl cation (18) does not equilibrate intramolecularly, even at temperatures up to 130° C,²⁹ though open-chain (e.g., $6 \rightleftharpoons 6^{\circ}$) and cyclic tertiary

carbocations undergo such equilibration at 0°C or below. On the basis of this and other evidence it has been concluded that for a 1,2-shift of hydrogen or methyl to proceed as smoothly as possible, the vacant p orbital of the carbon bearing the positive charge and the sp^3 orbital carrying the migrating group must be coplanar,²⁹ which is not possible for **18**.

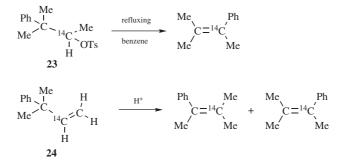

 ²⁸Winstein, S.; Holness, N.J. J. Am. Chem. Soc. 1955, 77, 5562; Cram, D.J.; Tadanier, J. J. Am. Chem. Soc. 1959, 81, 2737; Bundel', Yu.G.; Pankratova, K.G.; Gordin, M.B.; Reutov, O.A. Doklad. Chem. 1971, 199, 700; Kirmse, W.; Ratajczak, H.; Rauleder, G. Chem. Ber. 1977, 110, 2290.

 ²⁹Brouwer, D.M.; Hogeveen, H. *Recl. Trav. Chim. Pays-Bas* 1970, 89, 211; Majerski, Z.; Schleyer, P.v.R.;
 Wolf, A.P. J. Am. Chem. Soc. 1970, 92, 5731.

Migratory Aptitudes³⁰

In many reactions, there is no question about which group migrates. For example, in the Hofmann, Curtius, and similar reactions there is only one possible migrating group in each molecule, and one can measure migratory aptitudes only by comparing the relative rearrangement rates of different compounds. In other instances, there are two or more potential migrating groups, but which migrates is settled by the geometry of the molecule. The Beckmann rearrangement (18-17) provides an example. As we have seen, only the group trans to the OH migrates. In compounds whose geometry is not restricted in this manner, there still may be eclipsing effects (see p. 1502), so that the choice of migrating group is largely determined by which group is in the right place in the most stable conformation of the molecule.³¹ However, in some reactions, especially the Wagner-Meerwein (18-1) and the pinacol (18-2) rearrangements, the molecule may contain several groups that, geometrically at least, have approximately equal chances of migrating, and these reactions have often been used for the direct study of relative migratory aptitudes. In the pinacol rearrangement, there is the additional question of which OH group leaves and which does not, since a group can migrate only if the OH group on the other carbon is lost.

We deal with the second question first. To study this question, the best type of substrate to use is one of the form $\begin{array}{c} R_2C - CR'_2 \\ OH OH \end{array}$, since the only thing that determines migratory aptitude is which OH group comes off. Once the OH group is gone, the migrating group is determined. As might be expected, the OH that leaves is the one whose loss gives rise to the more stable carbocation. Thus 1,1-diphenylethanediol (19) gives diphenylacetaldehyde (20), not phenylacetophenone (21). Obviously, it does not matter in this case whether phenyl has a greater


inherent migratory aptitude than hydrogen or not. Only the hydrogen can migrate because 22 is not formed. As we know, carbocation stability is enhanced by

³⁰For discussions, see Koptyug, V.A.; Shubin, V.G. J. Org. Chem. USSR **1980**, 16, 1685; Wheland, G.W. Advanced Organic Chemistry, 3rd ed., Wiley, NY, **1960**, pp. 573–597.

³¹For a discussion, see Cram, D.J., in Newman, M.S. *Steric Effects in Organic Chemistry*, Wiley, NY, *1956*, pp. 270–276. For an interesting example, see Nickon, A.; Weglein, R.C. *J. Am. Chem. Soc. 1975*, *97*, 1271.

groups in the order aryl > alkyl > hydrogen, and this normally determines which side loses the OH group. However, exceptions are known, and which group is lost may depend on the reaction conditions (e.g., see the reaction of **53**, p. 1586).

In order to answer the question about inherent migratory aptitudes, the obvious type of substrate to use (in the pinacol rearrangement) is $\frac{R'RC-CRR'}{OHOH}$, since the same carbocation is formed no matter which OH leaves, and it would seem that a direct comparison of the migratory tendencies of R and R' is possible. On closer inspection, however, we can see that several factors are operating. Apart from the question of possible conformational effects, already mentioned, there is also the fact that whether the group R or R' migrates is determined not only by the relative inherent migrating abilities of R and R', but also by whether the group that does *not* migrate is better at stabilizing the positive charge that will now be found at the migration origin.³² Thus, migration of R gives rise to the cation R'C⁺(OH)CR₂R'₂, while migration of R' gives the cation R⁺C(OH)CRR'₂, and these cations have different stabilities. It is possible that in a given case R might be found to migrate less than R', not because it actually has a lower inherent migrating tendency, but because it is much better at stabilizing the positive charge. In addition to this factor,

migrating ability of a group is also related to its capacity to render anchimeric assistance to the departure of the nucleofuge. An example of this effect is the finding that in the decomposition of tosylate 23 only the phenyl group migrates, while in acid treatment of the corresponding alkene 24, there is competitive migration of both methyl and phenyl (in these reactions ¹⁴C labeling is necessary to determine which group has migrated).³³ Both 23 and 24 give the same carbocation; the differing results must be caused by the fact that in 23 the phenyl group can assist the leaving group, while no such process is possible for 24. This example clearly illustrates the difference between migration to a relatively

 ³²For example, see McCall, M.J.; Townsend, J.M.; Bonner, W.A. J. Am. Chem. Soc. 1975, 97, 2743;
 Brownbridge, P.; Hodgson, P.K.G.; Shepherd, R.; Warren, S. J. Chem. Soc. Perkin Trans. 1 1976, 2024.
 ³³Grimaud, J.; Laurent, A. Bull. Soc. Chim. Fr. 1967, 3599.

free terminus and one that proceeds with the migrating group lending anchimeric assistance.³⁴

It is not surprising therefore that clear-cut answers as to relative migrating tendencies are not available. More often than not migratory aptitudes are in the order aryl > alkyl, but exceptions are known, and the position of hydrogen in this series is often unpredictable. In some cases, migration of hydrogen is preferred to aryl migration; in other cases, migration of alkyl is preferred to that of hydrogen. Mixtures are often found and the isomer that predominates often depends on conditions. For example, the comparison between methyl and ethyl has been made many times in various systems, and in some cases methyl migration and in others ethyl migration has been found to predominate.³⁵ However, it can be said that among aryl migrating groups, electron-donating substituents in the para and meta positions increase the migratory aptitudes, while the same substituents in the ortho positions decrease them. Electron-withdrawing groups decrease migrating ability in all positions. The following are a few of the relative migratory aptitudes determined for aryl groups by Bachmann and Ferguson:³⁶ p-anisyl, 500; p-tolyl, 15.7; m-tolyl, 1.95; phenyl, 1.00; p-chlorophenyl, 0.7; o-anisyl, 0.3. For the o-anisyl group, the poor migrating ability probably has a steric cause, while for the others there is a fair correlation with activation or deactivation of electrophilic aromatic substitution, which is what the process is with respect to the benzene ring. It has been reported that at least in certain systems acyl groups have a greater migratory aptitude than alkyl groups.³⁷

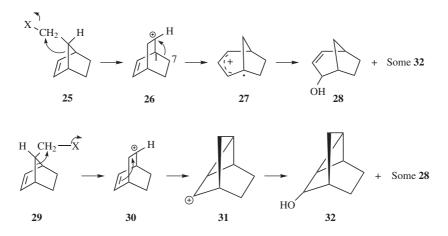
Memory Effects³⁸

Solvolysis of the endo bicyclic compound **25** (X = ONs, p. 497, or Br) gave mostly the bicyclic allylic alcohol, **28**, along with a smaller amount of the tricyclic alcohol **32**, while solvolysis of the exo isomers, **29**, gave mostly **32**, with smaller amounts of **28**.³⁹ Thus the two isomers gave entirely different ratios of products, although

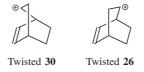
³⁴A number of studies of migratory aptitudes in the dienone-phenol rearrangement (**18-5**) are in accord with the above. For a discussion, see Fischer, A.; Henderson, G.N. *J. Chem. Soc., Chem. Commun.* **1979**, 279, and references cited therein. See also, Palmer, J.D.; Waring, A.J. *J. Chem. Soc. Perkin Trans.* **2 1979**, 1089; Marx, J.N.; Hahn, Y.P. *J. Org. Chem.* **1988**, *53*, 2866.

 ³⁵For examples, see Cram, D.J.; Knight, J.D. J. Am. Chem. Soc. 1952, 74, 5839; Stiles, M.; Mayer, R.P. J. Am. Chem. Soc. 1959, 81, 1497; Heidke, R.L.; Saunders, Jr., W.H. J. Am. Chem. Soc. 1966, 88, 5816; Dubois, J.E.; Bauer, P. J. Am. Chem. Soc. 1968, 90, 4510, 4511; Bundel', Yu. G.; Levina, I.Yu.; Reutov, O.A. J. Org. Chem. USSR 1970, 6, 1; Pilkington, J.W.; Waring, A.J. J. Chem. Soc. Perkin Trans. 2 1976, 1349; Korchagina, D.V.; Derendyaev, B.G.; Shubin, V.G.; Koptyug, V.A. J. Org. Chem. USSR 1976, 12, 378; Wistuba, E.; Rüchardt, C. Tetrahedron Lett. 1981, 22, 4069; Jost, R.; Laali, K.; Sommer, J. Nouv. J. Chim. 1983, 7, 79

³⁶Bachmann, W.E.; Ferguson, J.W. J. Am. Chem. Soc. 1934, 56, 2081.


³⁷Le Drian, C.; Vogel, P. Helv. Chim. Acta 1987, 70, 1703; Tetrahedron Lett. 1987, 28, 1523.

³⁸For a review, see Berson, J.A. Angew. Chem. Int. Ed. 1968, 7, 779.


³⁹Berson, J.A.; Poonian, M.S.; Libbey, W.J. J. Am. Chem. Soc. **1969**, *91*, 5567; Berson, J.A.; Donald, D.S.; Libbey, W.J. J. Am. Chem. Soc. **1969**, *91*, 5580; Berson, J.A.; Wege, D.; Clarke, G.M.; Bergman, R.G. J. Am. Chem. Soc. **1969**, *91*, 5594, 5601.

CHAPTER 18

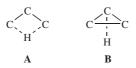
the carbocation initially formed (26 or 30) seems to be the same for each. In the case of 26, a second rearrangement (a shift of the 1,7 bond) follows, while with 30 what follows is an intramolecular addition of the positive carbon to the double bond.

It seems as if **26** and **30** "remember" how they were formed before they go on to give the second step. Such effects are called *memory effects* and other such cases are known.⁴⁰ The causes of these effects are not well understood, though there has been much discussion. One possible cause is differential solvation of the apparently identical ions **26** and **30**. Other possibilities are (1) that the ions have geometrical structures that are twisted in opposite senses (e.g., a twisted **30** might have its positive carbon closer to the double

bond than a twisted 26); (2) that ion pairing is responsible;⁴¹ and (3) that nonclassical carbocations are involved.⁴² One possibility that has been ruled out is that the steps $25 \rightarrow 26 \rightarrow 27$ and $29 \rightarrow 30 \rightarrow 31$ are concerted, so that 26 and 30 never exist at all. This possibility has been excluded by several kinds of evidence, including the fact that 25 gives not only 28, but also some 32; and 29 gives some 28

⁴⁰For examples of memory effects in other systems, see Berson, J.A.; Luibrand, R.T.; Kundu, N.G.; Morris, D.G. J. Am. Chem. Soc. **1971**, 93, 3075; Collins, C.J. Acc. Chem. Res. **1971**, 4, 315; Collins, J.A.; Glover, I.T.; Eckart, M.D.; Raaen, V.F.; Benjamin, B.M.; Benjaminov, B.S. J. Am. Chem. Soc. **1972**, 94, 899; Svensson, T. Chem. Scr., **1974**, 6, 22.

⁴¹See Collins, C.J. Chem. Soc. Rev. 1975, 4, 251.


⁴²See, for example, Seybold, G.; Vogel, P.; Saunders, M.; Wiberg, K.B. *J. Am. Chem. Soc.* **1973**, 95, 2045; Kirmse, W.; Günther, B. *J. Am. Chem. Soc.* **1978**, *100*, 3619.

along with **32**. This means that some of the **26** and **30** ions interconvert, a phenomenon known as *leakage*.

Longer Nucleophilic Rearrangements

The question as to whether a group can migrate with its electron pair from A to C in W–A–B–C or over longer distances has been much debated. Although claims have been made that alkyl groups can migrate in this way, the evidence is that such migration is extremely rare, if it occurs at all. One experiment that demonstrated this was the generation of the 3,3-dimethyl-1-butyl cation Me₃CCH₂CH₂⁺. If 1,3-methyl migrations are possible, this cation would appear to be a favorable substrate, since such a migration would convert a primary cation into the tertiary 2-methyl-2-pentyl cation Me₂CCH₂CH₂CH₃, while the only possible 1,2 migration (of hydride) would give only a secondary cation. However, no products arising from the 2-methyl-2-pentyl cation were found, the only rearranged products being those formed by the 1,2 hydride migration.⁴³ 1,3 Migration of bromine has been reported.⁴⁴

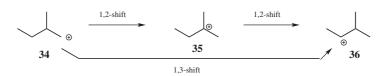
However, most of the debate over the possibility of 1,3 migrations has concerned not methyl or bromine, but 1,3 hydride shifts.⁴⁵ There is no doubt that *apparent* 1,3 hydride shifts take place (many instances have been found), but the question is whether they are truly direct hydride shifts or whether they occur by another

mechanism. There are at least two ways in which indirect 1,3-hydride shifts can take place: (1) by successive 1,2-shifts or (2) through the intervention of protonated cyclopropanes (see p. 1565). A direct 1,3-shift would have the transition state **A**, while the transition state for a 1,3-shift involving a protonated cyclopropane intermediate would resemble **B**. The evidence is that most reported 1,3 hydride shifts are actually the result of successive 1,2 migrations,⁴⁶ but that in some cases small amounts of products cannot be accounted for in this way. For example, the reaction of 2-methyl-1-butanol with KOH and bromoform gave a mixture of alkenes, nearly all of which could have arisen from simple

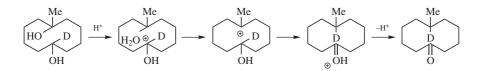
⁴³Skell, P.S.; Reichenbacher, P.H. J. Am. Chem. Soc. 1968, 90, 2309.

⁴⁴Reineke, C.E.; McCarthy, Jr., J.R. J. Am. Chem. Soc. **1970**, 92, 6376; Smolina, T.A.; Gopius, E.D.; Gruzdneva, V.N.; Reutov, O.A. Doklad. Chem. **1973**, 209, 280.

⁴⁵For a review, see Fry, J.L.; Karabatsos, G.J., in Olah, G.A.; Schleyer, P.v.R. *Carbonium Ions*, Vol. 2, Wiley, NY, **1970**, p. 527.


⁴⁶For example, see Bundel', Yu.G.; Levina, I.Yu.; Krzhizhevskii, A.M.; Reutov, O.A. *Doklad. Chem. 1968*, *181*, 583; Fărcaşiu, D.; Kascheres, C.; Schwartz, L.H. *J. Am. Chem. Soc. 1972*, *94*, 180; Kirmse, W.; Knist, J.; Ratajczak, H. *Chem. Ber. 1976*, *109*, 2296.

CHAPTER 18


elimination or 1,2-shifts of hydride or alkyl. However, 1.2% of the product was 33:⁴⁷

Hypothetically, **33** could have arisen from a 1,3-shift (direct or through a protonated cyclopropane) or from two successive 1,2-shifts:

However, the same reaction applied to 2-methyl-2-butanol gave no **33**, which demonstrated that **36** was not formed from **35**. The conclusion made was that **36** was formed directly from **34**. This experiment does not answer the question as to whether **36** was formed by a direct shift or through a protonated cyclopropane, but from other evidence⁴⁸ it appears that 1,3 hydride shifts that do not result from successive 1,2 migrations usually take place through protonated cyclopropane intermediates (which, as we saw on p. 1565, account for only a small percentage of the product in any case). However, there is evidence that direct 1,3 hydride shifts by way of **A** may take place in super acid solutions.⁴⁹ Although direct nucleophilic rearrangements over distances >1,2 are rare (or perhaps nonexistent) when the migrating atom or group must move along a chain, this is not so for a shift across a ring of 8–11 members. Many such transannular rearrangements are known.⁵⁰ Several examples are given on p. 223. This is the mechanism of one of these:⁵¹

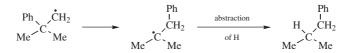
⁴⁷Skell, P.S.; Maxwell, R.J. J. Am. Chem. Soc. **1962**, 84, 3963. See also, Skell, P.S.; Starer, I. J. Am. Chem. Soc. **1962**, 84, 3962.

⁴⁸For example, see Brouwer, D.M.; van Doorn, J.A. *Recl. Trav. Chim. Pays-Bas* **1969**, 8, 573; Dupuy, W.E.; Goldsmith, E.A.; Hudson, H.R. *J. Chem. Soc. Perkin Trans.* 2 **1973**, 74; Hudson, H.R.; Koplick, A.J.; Poulton, D.J. *Tetrahedron Lett.* **1975**, 1449; Fry, J.L.; Karabatsos, G.J., in Olah, G.A.; Schleyer, P.v.R. *Carbonium Ions*, Vol. 2, Wiley, NY, **1970**, p. 527.

⁴⁹Saunders, M.; Stofko Jr., J.J. J. Am. Chem. Soc. 1973, 95, 252.

⁵⁰For reviews, see Cope, A.C.; Martin, M.M.; McKervey, M.A. *Q. Rev. Chem. Soc.* **1966**, *20*, 119. For many references, see Blomquist, A.T.; Buck, C.J. *J. Am. Chem. Soc.* **1951**, *81*, 672.

⁵¹Prelog, V.; Küng, W. Helv. Chim. Acta 1956, 39, 1394.

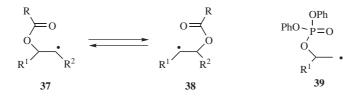

It is noteworthy that the *methyl* group does not migrate in this system. It is generally true that alkyl groups do not undergo transannular migration.⁵² In most cases, it is hydride that undergoes this type of migration, though a small amount of phenyl migration has also been shown.⁵³

Free-Radical Rearrangements⁵⁴

1,2-Free-radical rearrangements are much less common than the nucleophilic type previously considered, for the reasons mentioned on p. 1559. Where they do occur, the general pattern is similar. There must first be generation of a free radical, and then the actual migration in which the migrating group moves with one electron:

Finally, the new free radical must stabilize itself by a further reaction. The order of radical stability leads us to predict that here too, as with carbocation rearrangements, any migrations should be in the order primary \rightarrow secondary \rightarrow tertiary, and that the logical place to look for them should be in neopentyl and neophyl systems. The most common way of generating free radicals for the purpose of detection of rearrangements is by decarbonylation of aldehydes (**14-32**). In this manner, it was found that neophyl radicals *do* undergo rearrangement. Thus, PhCMe₂CH₂CHO treated with di*-tert*-butyl peroxide gave about equal amounts of the normal product PhCMe₂CH₃ and the product arising from migration of phenyl:⁵⁵

⁵²For an apparent exception, see Fărcașiu, D.; Seppo, E.; Kizirian, M.; Ledlie, D.B.; Sevin, A. J. Am. Chem. Soc. **1989**, 111, 8466.


⁵⁵Winstein, S.; Seubold, Jr., F.H. *J. Am. Chem. Soc.* **1947**, 69, 2916; Seubold, Jr., F.H. *J. Am. Chem. Soc.* **1953**, 75, 2532. For the observation of this rearrangement by esr, see Hamilton, Jr., E.J.; Fischer, H. *Helv. Chim. Acta* **1973**, *56*, 795.

⁵³Cope, A.C.; Burton, P.E.; Caspar, M.L. J. Am. Chem. Soc. 1962, 84, 4855.

⁵⁴For reviews, see Beckwith, A.L.J.; Ingold, K.U. in de Mayo, P. Rearrangements in Ground and Excited States, Vol. 1, Academic Press, NY, **1980**, pp. 161–310; Wilt, J.W., in Kochi, J.K. Free Radicals, Vol. 1, Wiley, NY, **1973**, pp. 333–501; Stepukhovich, A.D.; Babayan, V.I. Russ. Chem. Rev. **1972**, 41, 750; Nonhebel, D.C.; Walton, J.C. Free-Radical Chemistry, Cambridge University Press, London, **1974**, pp. 498–552; Huyser, E.S. Free-Radical Chain Reactions, Wiley, NY, **1970**, pp. 235–255; Freidlina, R.Kh. Adv. Free-Radical Chem. **1965**, 1, 211–278; Pryor, W.A. Free Radicals, McGraw-Hill, NY, **1966**, pp. 266–284.

Many other cases of free-radical migration of aryl groups have been found.⁵⁶ Intramolecular radical rearrangements are known.⁵⁷ The C-4 radicals of α - and β -thujone undergo two distinct rearrangement reactions, and it has been proposed that these could serve as simultaneous, but independent radical clocks.⁵⁸

A 1,2-shift has been observed in radicals bearing an OCOR group at the β carbon where the oxygen group migrates as shown in the interconversion of **37** and **38**. This has been proven by ¹⁸O isotopic labeling experiments⁵⁹ and other mechanistic explorations.⁶⁰ A similar rearrangement was observed with phosphatoxy alkyl radicals, such as **39**.⁶¹ A 1,2-shift of hydrogen atoms has been observed in aryl radicals.⁶²

A C \rightarrow N 1,2-aryl rearrangement was observed when alkyl azides were treated with *n*-Bu₃SnH, proceeding via an C–N[•]–SnBu₃ species to give an imine.⁶³

It is noteworthy that the extent of migration is much less than with corresponding carbocations: Thus in the example given, there was only \sim 50% migration, whereas the carbocation would have given much more. Also noteworthy is that there was no migration of the methyl group. In general, it may be said that freeradical migration of alkyl groups does not occur at ordinary temperatures. Many attempts have been made to detect such migration on the traditional neopentyl and bornyl types of substrates. However, alkyl migration is not observed, even in substrates where the corresponding carbocations undergo facile rearrangement.⁶⁴ Another type of migration that is very common for carbocations, but not observed

⁵⁶For example, see Curtin, D.Y.; Hurwitz, M.J. J. Am. Chem. Soc. 1952, 74, 5381; Wilt, J.K.; Philip, H. J. Org. Chem. 1959, 24, 441; 1960, 25, 891; Pines, H.; Goetschel, C.T. J. Am. Chem. Soc. 1964, 87, 4207; Goerner Jr., R.N.; Cote, P.N.; Vittimberga, B.M. J. Org. Chem. 1977, 42, 19; Collins, C.J.; Roark, W.H.; Raaen, V.F.; Benjamin, B.M. J. Am. Chem. Soc. 1979, 101, 1877; Walter, D.W.; McBride, J.M. J. Am. Chem. Soc. 1981, 103, 7069, 7074. For a review, see Studer, A.; Bossart, M. Tetrahedron 2001, 57, 9649.

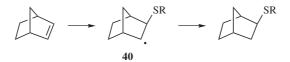
⁵⁷Prévost, N.; Shipman, M. Org. Lett. 2001, 3, 2383.

⁵⁸He, X.; Ortiz de Montellano, P.R. J. Org. Chem. 2004, 69, 5684.

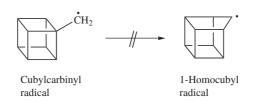
⁵⁹Crich, D.; Filzen, G.F. J. Org. Chem. 1995, 60, 4834.

⁶⁰Beckwith, A.L.J.; Duggan, P.J. J. Chem. Soc. Perkin Trans. 2 1992, 1777; 1993, 1673.

⁶¹Crich, D.; Yao, Q. *Tetrahedron Lett.* **1993**, *34*, 5677. See Ganapathy, S.; Cambron R.T.; Dockery, K.P.; Wu, Y.-W.; Harris, J.M.; Bentrude, W.G. *Tetrahedron Lett.* **1993**, *34*, 5987 for a related triplet sensitized rearrangement of allylic phosphites and phosphonates.


⁶²Brooks, M.A.; Scott, L.T. J. Am. Chem. Soc. 1999, 121, 5444.

⁶³Kim, S.; Do, J.Y. J. Chem. Soc., Chem. Commun. 1995, 1607.


⁶⁴For a summary of unsuccessful attempts, see Slaugh, L.H.; Magoon, E.F.; Guinn, V.P. J. Org. Chem. **1963**, 28, 2643.

for free radicals, is 1,2 migration of hydrogen. We confine ourselves to a few examples of the lack of migration of alkyl groups and hydrogen:

- 1. 3,3-Dimethylpentanal (EtCMe₂CH₂CHO) gave no rearranged products on decarbonylation. 65
- **2**. Addition of RSH to norbornene gave only *exo*-norbornyl sulfides, though **40** is an intermediate, and the corresponding carbocation cannot be formed without rearrangement.⁶⁶

3. The cubylcarbinyl radical did not rearrange to the 1-homocubyl radical, though doing so would result in a considerable decrease in strain.⁶⁷

4. It was shown⁶⁸ that no rearrangement of isobutyl radical to *tert*-butyl radical (which would involve the formation of a more stable radical by a hydrogen shift) took place during the chlorination of isobutane.

However, 1,2 migration of alkyl groups has been shown to occur in certain *diradicals*.⁶⁹ For example, the following rearrangement has been established by tritium labeling.⁷⁰

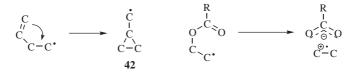
In this case, the fact that migration of the methyl group leads directly to a compound in which all electrons are paired undoubtedly contributes to the driving force of the reaction.

⁶⁷Eaton, P.E.; Yip, Y. J. Am. Chem. Soc. 1991, 113, 7692.

⁶⁵ Seubold, Jr., F.H. J. Am. Chem. Soc. 1954, 76, 3732.

⁶⁶Cristol, S.J.; Brindell, G.D. J. Am. Chem. Soc. 1954, 76, 5699.

⁶⁸Brown, H.C.; Russel, G.A. J. Am. Chem. Soc. 1952, 74, 3995. See also, Desai, V.R.; Nechvatal, A.; Tedder, J.M. J. Chem. Soc. B 1970, 386.


⁶⁹For a review, see Freidlina, R.Kh.; Terent'ev, A.B. Russ. Chem. Rev. 1974, 43, 129.

 ⁷⁰McKnight, C.; Rowland, F.S. J. Am. Chem. Soc. 1966, 88, 3179. For other examples, see Greene, F.D.;
 Adam, W.; Knudsen Jr., G.A. J. Org. Chem. 1966, 31, 2087; Gajewski, J.J.; Burka, L.T. J. Am. Chem. Soc.
 1972, 94, 8857, 8860, 8865; Adam, W.; Aponte, G.S. J. Am. Chem. Soc. 1971, 93, 4300.

The fact that aryl groups migrate, but alkyl groups and hydrogen generally do not, leads to the proposition that **41**, in which the odd electron is not found in the three-membered ring, may be an intermediate. There has been much controversy on this point, but the bulk of the evidence indicates that **41** is a transition state, not an intermediate.⁷¹ Among the evidence is the failure to observe **41** either by ESR⁷² or CIDNP.⁷³ Both of these techniques can detect free radicals with extremely short lifetimes (pp. 266–268).⁷⁴

Besides aryl, vinylic⁷⁵ and acetoxy groups⁷⁶ also migrate. Vinylic groups migrate by way of a cyclopropylcarbinyl radical intermediate (**42**),⁷⁷ while the migration of acetoxy groups may involve the charge-separated structure shown.⁷⁸ Thermal isomerization of 1-(3-butenyl)cyclopropane at 415°C leads to bicyclo[2.2.1]heptane.⁷⁹ Migration has been observed for chloro (and to a much lesser extent

bromo) groups. For example, in the reaction of $Cl_3CCH=CH_2$ with bromine under the influence of peroxides, the products were 47% $Cl_3CCHBrCH_2Br$

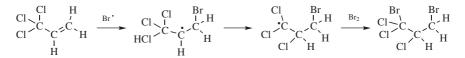
⁷¹For molecular-orbital calcualtions indicating that **41** is an intermediate, see Yamabe, S. *Chem. Lett.* **1989**, 1523.

⁷²Edge, D.J.; Kochi, J.K. J. Am. Chem. Soc. 1972, 94, 7695.

⁷³Shevlin, P.B.; Hansen, H.J. J. Org. Chem. 1977, 42, 3011; Olah, G.A.; Krishnamurthy, V.V.; Singh, B.P.;
Iyer, P.S. J. Org. Chem. 1983, 48, 955. 37 has been detected as an intemediate in a different reaction: Effio,
A.; Griller, D.; Ingold, K.U.; Scaiano, J.C.; Sheng, S.J. J. Am. Chem. Soc. 1980, 102, 6063; Leardini, R.;
Nanni, D.; Pedulli, G.F.; Tundo, A.; Zanardi, G.; Foresti, E.; Palmieri, P. J. Am. Chem. Soc. 1989, 111, 7723.

⁷⁴For other evidence, see Martin, M.M. J. Am. Chem. Soc. **1962**, 84, 1986; Rüchardt, C.; Hecht, R. Chem. Ber. **1965**, 98, 2460, 2471; Rüchardt, C.; Trautwein, H. Chem. Ber. **1965**, 98, 2478.

⁷⁵For example, see Slaugh, L.H. *J. Am. Chem. Soc.* **1965**, *87*, 1522; Newcomb, M.; Glenn, A.G.; Williams, W.G. *J. Org. Chem.* **1989**, *54*, 2675.


⁷⁶Surzur, J.; Teissier, P. Bull. Soc. Chim. Fr. **1970**, 3060; Tanner, D.D.; Law, F.C.P. J. Am. Chem. Soc. **1969**, 91, 7535; Julia, S.; Lorne, R. C. R. Acad. Sci. Ser. C **1971**, 273, 174; Lewis, S.N.; Miller, J.J.; Winstein, S. J. Org. Chem. **1972**, 37, 1478.

⁷⁷For evidence for this species, see Montgomery, L.K.; Matt, J.W.; Webster, J.R. *J. Am. Chem. Soc.* **1967**, 89, 923; Montgomery, L.K.; Matt, J.W. *J. Am. Chem. Soc.* **1967**, 89, 934, 6556; Giese, B.; Heinrich, N.; Horler, H.; Koch, W.; Schwarz, H. *Chem. Ber.* **1986**, *119*, 3528.

⁷⁸Beckwith, A.L.J.; Thomas, C.B. J. Chem. Soc. Perkin Trans. 2 **1973**, 861; Barclay, L.R.C.; Lusztyk, J.; Ingold, K.U. J. Am. Chem. Soc. **1984**, 106, 1793.

⁷⁹Baldwin, J.E.; Burrell, R.C.; Shukla, R. Org. Lett. 2002, 4, 3305.

(the normal addition product) and 53% BrCCl₂CHClCH₂Br, which arose by rearrangement:

In this particular case, the driving force for the rearrangement is the particular stability of dichloroalkyl free radicals. Nesmeyanov, Freidlina, and co-workers have extensively studied reactions of this sort.⁸⁰ It has been shown that the 1,2 migration of Cl readily occurs if the migration origin is tertiary and the migration terminus primary.⁸¹ Migration of Cl and Br could take place by a transition state in which the odd electron is accommodated in a vacant *d* orbital of the halogen.

Migratory aptitudes have been measured for the phenyl and vinyl groups, and for three other groups, using the system $RCMe_2CH_2 \bullet \rightarrow Me_2\dot{C} CH_2R$. These were found to be in the order $R = H_2C=CH_2 > Me_3CC=O > Ph > Me_3C\equiv C > CN$.⁸²

In summary then, 1,2 free-radical migrations are much less prevalent than the analogous carbocation processes, and are important only for aryl, vinylic, acetoxy, and halogen migrating groups. The direction of migration is normally toward the more stable radical, but "wrong-way" rearrangements are also known.⁸³

Despite the fact that hydrogen atoms do not migrate 1,2, longer free-radical migrations of hydrogen are known.⁸⁴ The most common are 1,5-shifts, but 1,6 and longer shifts have also been found. The possibility of 1,3 hydrogen shifts has been much investigated, but it is not certain if any actually occur. If they do they are rare, presumably because the most favorable geometry for C•••H•••C in the transition state is linear and this geometry cannot be achieved in a 1,3-shift. 1,4-Shifts are definitely known, but are still not very common. These long shifts are best regarded as internal abstractions of hydrogen (for reactions involving them, see 14-6 and 18-40):

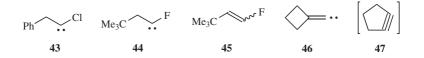
Transannular shifts of hydrogen atoms have also been observed.⁸⁵

⁸⁰For reviews, see Freidlina, R.Kh.; Terent'ev, A.B. *Russ. Chem. Rev.* **1979**, 48, 828; Freidlina, R.Kh. *Adv. Free-Radical Chem.* **1965**, 1, 211, 231–249.

⁸¹See, for example, Skell, P.S.; Pavlis, R.R.; Lewis, D.C.; Shea, K.J. J. Am. Chem. Soc. **1973**, 95, 6735; Chen, K.S.; Tang, D.Y.H.; Montgomery, L.K.; Kochi, J.K. J. Am. Chem. Soc. **1974**, 96, 2201.

⁸²Lindsay, D.A.; Lusztyk, J.L.; Ingold, K.U. J. Am. Chem. Soc. 1984, 106, 7087.

⁸³Slaugh, L.H.; Raley, J.H. J. Am. Chem. Soc. 1960, 82, 1259; Bonner, W.A.; Mango, F.D. J. Org. Chem. 1964, 29, 29; Dannenberg, J.J.; Dill, K. Tetrahedron Lett. 1972, 1571.


⁸⁴For a discussion, see Freidlina, R.Kh.; Terent'ev, A.B. Acc. Chem. Res. 1977, 10, 9.

⁸⁵Heusler, K.; Kalvoda, J. Tetrahedron Lett. 1963, 1001; Cope, A.C.; Bly, R.S.; Martin, M.M.; Petterson,

R.C. J. Am. Chem. Soc. **1965**, 87, 3111; Fisch, M.; Ourisson, G. Chem. Commun. **1965**, 407; Traynham, J.G.; Couvillon, T.M. J. Am. Chem. Soc. **1967**, 89, 3205.

Carbene Rearrangements⁸⁶

Carbenes can rearrange to alkenes in many cases.⁸⁷ A 1,2-hydrogen shift leads to an alkene, and this is often competitive with insertion reactions.⁸⁸ Benzylchloro-carbene (**43**) rearranges via a 1,2 hydrogen shift to give the alkene.⁸⁹ Similarly, carbene **44** rearranges to alkene **45**, and replacement of H on the α -carbon with D showed a deuterium isotope effect of ~5.⁹⁰ Vinylidene carbene (H₂C=C:) rearranges to acetylene.⁹¹ Rearrangement of alkylidene carbene **46** has been calculated to give the highly unstable cyclopentyne (**47**), which cannot be isolated, but can give a [2 + 2]-cycloaddition product when generated in the presence of a simple alkene.⁹² The spiro carbenes undergo rearrangement reactions.⁹³

Electrophilic Rearrangements⁹⁴

Rearrangements in which a group migrates without its electrons are much rarer than the two kinds previously considered, but the general principles are the same. A carbanion (or other negative ion) is created first, and the actual rearrangement step involves migration of a group without its electrons:

The product of the rearrangement may be stable or may react further, depending on its nature (see also, pp. 1585). An *ab initio* study predicts that a [1,2]-alkyl shift in alkyne anions should be facile.⁹⁵

⁸⁶For a review of thermally induced cyclopropane–carbene rearrangements, see Baird, M.S. *Chem. Rev.* **2003**, 103, 1271.

⁸⁷de Meijere, A.; Kozhushkov, S.I.; Faber, D.; Bagutskii, V.; Boese, R.; Haumann, T.; Walsh, R. *Eur. J. Org. Chem.* **2001**, 3607.

⁸⁸Nickon, A.; Stern, A.G.; Ilao, M.C. Tetrahedron Lett. 1993, 34, 1391.

⁸⁹Merrer, D.C.; Moss, R.A.; Liu, M.T.H.; Banks, J.-T.; Ingold, K.U. J. Org. Chem. 1998, 63, 3010.

⁹⁰Moss, R.A.; Ho, C.-J.; Liu, W.; Sierakowski, C. Tetrahedron Lett. 1992, 33, 4287.

⁹¹Hayes, R.L.; Fattal, E.; Govind, N.; Carter, E.A. J. Am. Chem. Soc. 2001, 123, 641.

⁹²Gilbert, J.C.; Kirschner, S. Tetrahedron Lett. 1993, 34, 599, 603.

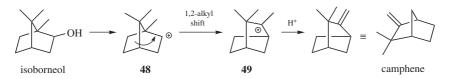
⁹³Moss, R.A.; Zheng, F.; Krough-Jespersen, K. Org. Lett. 2001, 3, 1439.

⁹⁴For reviews, see Hunter, D.H.; Stothers, J.B.; Warnhoff, E.W. in de Mayo, P. Rearrangments in Ground and Excited States, Vol. 1, Academic Press, NY, **1980**, pp. 391–470; Grovenstein, Jr., E. Angew. Chem. Int. Ed. **1978**, 17, 313; Adv. Organomet. Chem. **1977**, 16, 167; Jensen, F.R.; Rickborn, B. Electrophilic Substitution of Organomercurials, McGraw-Hill, NY, **1968**, pp. 21–30; Cram, D.J. Fundamentals of Carbanion Chemistry, Academic Press, NY, **1965**, pp. 223–243.

⁹⁵Borosky, G.L. J. Org. Chem. 1998, 63, 3337.

REACTIONS

The reactions in this chapter are classified into three main groups and 1,2-shifts are considered first. Within this group, reactions are classified according to (1) the identity of the substrate atoms A and B and (2) the nature of the migrating group W. In the second group are the cyclic rearrangements. The third group consists of rearrangements that cannot be fitted into either of the first two categories.


Reactions in which the migration terminus is on an aromatic ring have been treated under aromatic substitution. These are **11-27–11-32**, **11-36**, **13-30–13-32**, and, partially, **11-33**, **11-38**, and **11-39**. Double-bond shifts have also been treated in other chapters, though they may be considered rearrangements (p. \$\$\$, p. \$\$\$, and **12-2**). Other reactions that may be regarded as rearrangements are the Pummerer (**19-83**) and Willgerodt (**19-84**) reactions.

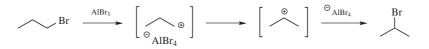
1,2-REARRANGEMENTS

A. Carbon-to-Carbon Migrations of R, H, and Ar

18-1 Wagner–Meerwein and Related Reactions


 $1/Hydro, 1/hydroxy-(2/ \rightarrow 1/alkyl)$ -migro-elimination, and so on

Wagner–Meerwein rearrangements were first discovered in the bicyclic terpenes, and most of the early development of this reaction was with these compounds.⁹⁶ An example is the conversion of isoborneol to camphene. It fundamentally involves a 1,2 alkyl shift of an intermediate carbocation, such as $48 \rightarrow 49$. When alcohols are treated with acids, simple substitution (e.g., 10-48) or elimination (17-1) usually accounts for most or all of the products. But in many cases, especially where two or three alkyl or aryl groups are on the β carbon, some or all of the product is rearranged. These rearrangements have been called *Wagner–Meerwein rearrangements*, although this term is nowadays reserved for relatively specific transformations, such as isoborneol to camphene and related reactions. As pointed out previously, the carbocation that is a direct product of the rearrangement must stabilize itself, and most often it does this by the loss


⁹⁶For a review of rearrangements in bicyclic systems, see Hogeveen, H.; van Kruchten, E.M.G.A. *Top. Curr. Chem.* **1979**, 80, 89. For reviews concerning caranes and pinanes see, respectively, Arbuzov, B.A.; Isaeva, Z.G. *Russ. Chem. Rev.* **1976**, 45, 673; Banthorpe, D.V.; Whittaker, D. *Q. Rev. Chem. Soc.* **1966**, 20, 373.

of a hydrogen β to it, so the rearrangement product is usually an alkene.⁹⁷ If there is a choice of protons, Zaitsev's rule (p. 1482) governs the direction, as we might expect. Sometimes a different positive group is lost instead of a proton. Less often, the new carbocation stabilizes itself by combining with a nucleophile instead of losing a proton. The nucleophile may be the water that is the original leaving group, so that the product is a rearranged alcohol, or it may be some other species present (solvent, added nucleophile, etc.). Rearrangement is usually predominant in neopentyl and neophyl types of substrates, and with these types normal nucleophilic substitution is difficult (normal elimination is of course impossible). Under S_N2 conditions, substitution is extremely slow;⁹⁸ and under S_N1 conditions, carbocations are formed that rapidly rearrange. However, free-radical substitution, unaccompanied by rearrangement, can be carried out on neopentyl systems, though, as we have seen (p. 1574), neophyl systems undergo rearrangement as well as substitution.

Examples of Wagner–Meerwein-type rearrangements are found in simpler systems, such as neopentyl chloride (example a) and even 1-bromopropane (example b). These two examples illustrate the following points:

1. Hydride ion can migrate. In example *b*, it was hydride that shifted, not bromine:

2. The leaving group does not have to be H_2O , but can be any departing species whose loss creates a carbocation, including N_2 from aliphatic diazonium ions⁹⁹ (see the section on leaving groups in nucleophilic substitution, p. 438). Also, rearrangement may follow when the carbocation is created by addition of a proton or other positive species to a double bond. Even alkanes give

⁹⁷For a review of such rearrangements, see Kaupp, G. Top. Curr. Chem. 1988, 146, 57.

⁹⁸See, however, Lewis, R.G.; Gustafson, D.H.; Erman, W.F. *Tetrahedron Lett.* **1967**, 401; Paquette, L.A.; Philips, J.C. *Tetrahedron Lett.* **1967**, 4645; Anderson, P.H.; Stephenson, B.; Mosher, H.S. J. Am. Chem. Soc. **1974**, 96, 3171.

⁹⁹For reviews of rearrangements arising from diazotization of aliphatic amines, see, in Patai, S. *The Chemistry of the Amino Group*, Wiley, NY, **1968**, the articles by White, E.H.; Woodcock, D.J. pp. 407–497 (473–483) and by Banthorpe, D.V. pp. 585–667 (586–612).

rearrangements when heated with Lewis acids, provided some species is initially present to form a carbocation from the alkane.

- **3.** Example b illustrates that the last step can be substitution instead of elimination.
- **4.** Example *a* illustrates that the new double bond is formed in accord with Zaitsev's rule.

2-Norbornyl cations (see **48**), besides displaying the 1,2-shifts of a CH₂ group previously illustrated for the isoborneol \rightarrow camphene conversion, are also prone to rapid hydride shifts from the 3 to the 2 position (known as 3,2-shifts). These 3,2-shifts usually take place from the exo side;¹⁰⁰ that is, the 3-exo hydrogen migrates to the 2-exo position.¹⁰¹ This stereoselectivity is analogous to the behavior we have previously seen for norbornyl

$$R^2$$
 4 3 H_{exo} R^2 0 H_{exo} R^1 H_{exo} H_{endo} R^1 H_{exo} H_{endo}

systems, namely, that nucleophiles attack norbornyl cations from the exo side (p. 461) and that addition to norbornenes is also usually from the exo direction (p. 1023).

For rearrangements of alkyl carbocations, the direction of rearrangement is usually toward the most stable carbocation (or radical), which is tertiary > secondary > primary, but rearrangements in the other direction have also been found,¹⁰² and often the product is a mixture corresponding to an equilibrium mixture of the possible carbocations. In the Wagner–Meerwein rearrangement, the rearrangement has been observed for a secondary to a secondary carbocation rearrangement, leading to some controversy. Winstein¹⁰³ described norbornyl cations in terms of the resonance structures represented by the nonclassical ion **50**.¹⁰⁴ This view was questioned, primarily by Brown,¹⁰⁵ who suggested that the facile rearrangements could be explained by a series of fast 1,3-Wagner–Meerwein shifts.¹⁰⁶

¹⁰⁶Brown, H.C.; Ravindranathan, M. J. Am. Chem. Soc. 1978, 100, 1865.

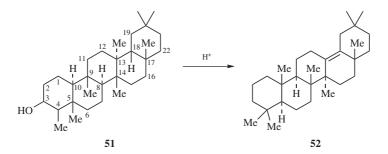
¹⁰⁰For example, see Kleinfelter, D.C.; Schleyer, P.v.R. *J. Am. Chem. Soc.* **1961**, *83*, 2329; Collins, C.J.; Cheema, Z.K.; Werth, R.G.; Benjamin, B.M. *J. Am. Chem. Soc.* **1964**, *86*, 4913; Berson, J.A.; Hammons, J.H.; McRowe, A.W.; Bergman, R.G.; Remanick, A.; Houston, D. *J. Am. Chem. Soc.* **1967**, *89*, 2590.

¹⁰¹For examples of 3,2-endo shifts, see Bushell, A.W.; Wilder, Jr., P. J. Am. Chem. Soc. **1967**, 89, 5721; Wilder, Jr., P.; Hsieh, W. J. Org. Chem. **1971**, 36, 2552.

¹⁰²See, for example, Cooper, C.N.; Jenner, P.J.; Perry, N.B.; Russell-King, J.; Storesund, H.J.; Whiting, M.C. J. Chem. Soc. Perkin Trans. 2 **1982**, 605.

 ¹⁰³Winstein, S. Quart. Rev. Chem. Soc. 1969, 23, 141; Winstein, S.; Trifan, D.S. J. Am. Chem. Soc. 1949, 71, 2953; Winstein, S.; Trifan, D.S. J. Am. Chem. Soc. 1952, 74, 1154.

¹⁰⁴Berson, J.A., in de Mayo, P. *Molecular Rearrangements*, Vol. 1, Academic Press, NY, *1980*, p. 111; Sargent, G.D. *Quart. Rev. Chem. Soc. 1966*, *20*, 301; Olah, G.A. *Acc. Chem. Res. 1976*, *9*, 41; Scheppelle, S.E. *Chem. Rev. 1972*, *72*, 511.

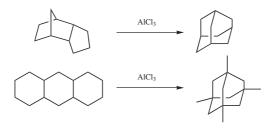

 ¹⁰⁵Brown, H.C. *The Non–Classical Ion Problem*, Plenum, New York, *1977*; Brown, H.C. *Tetrahedron 1976*, *32*, 179; Brown, H.C.; Kawakami, J.H. *J. Am. Chem. Soc. 1970*, *92*, 1990. See also, Story, R.R.;
 Clark, B.C., in Olah, G.A.; Schleyer, P.v.R. *Carbonium Ions*, Vol. 3, Wiley, New York, *1972*, p. 1007.

There is considerable evidence, however, that the norbornyl cation rearranges with σ -participation,¹⁰⁷ and there is strong NMR evidence for the nonclassical ion in super acids at low temperatures.¹⁰⁸

As alluded to above, the term "Wagner–Meerwein rearrangement" is not precise. Some use it to refer to all the rearrangements in this section and in **18-2**. Others use it only when an alcohol is converted to a rearranged alkene. Terpene chemists call the migration of a methyl group the *Nametkin rearrangement*. The term *retropinacol rearrangement* is often applied to some or all of these. Fortunately, this disparity in nomenclature does not seem to cause much confusion.

Sometimes several of these rearrangements occur in one molecule, either simultaneously or in rapid succession. A spectacular example is found in the triterpene series. Friedelin is a triterpenoid ketone found in cork. Reduction gives 3β -friedelanol (**51**). When this compound is treated with acid, 13(18)-oleanene (**52**) is formed.¹⁰⁹ In this case, *seven* 1,2-shifts take place. On removal of H₂O from position 3 to leave a positive

charge, the following shifts occur: hydride from 4 to 3; methyl from 5 to 4; hydride from 10 to 5; methyl from 9 to 10; hydride from 8 to 9; methyl from 14 to 8; and methyl from 13 to 14. This leaves a positive charge at position 13, which is stabilized by loss of the proton at the 18 position to give **52**. All these shifts are stereospecific, the group always migrating on the side of the ring system on which it is located; that is, a group above the "plane" of the ring system (indicated by a solid line in **51**) moves above the plane, and a group below the plane (dashed line) moves


¹⁰⁷Coates, R.M.; Fretz, E.R. J. Am. Chem. Soc. **1977**, 99, 297; Brown, H.C.; Ravindranathan, M. J. Am. Chem. Soc. **1977**, 99, 299.

¹⁰⁸Olah, G.A. *Carbocations and Electrophilic Reactions*, Verlag Chemie/Wiley, New York, **1974**, pp. 80– 89; Olah, G.A.; White, A.M.; DeMember, J.R.; Commeyras, A.; Lui, C.Y. *J. Am. Chem. Soc.* **1970**, *92*, 4627.

¹⁰⁹Corey, E.J.; Ursprung, J.J. J. Am. Chem. Soc. 1956, 78, 5041.

below it. It is probable that the seven shifts are not all concerted, although some of them may be, for intermediate products can be isolated.¹¹⁰ As an illustration of point 2 (p. 1581), it may be mentioned that friedelene, derived from dehydration of **51**, also gives **52** on treatment with acid.¹¹¹

It was mentioned above that even alkanes undergo Wagner–Meerwein rearrangements if treated with Lewis acids and a small amount of initiator. Catalytic asymmetric Wagner–Meerwein shifts have been observed.¹¹² An interesting application of this reaction is the conversion of tricyclic molecules to adamantane and its derivatives.¹¹³ It has been found that *all* tricyclic alkanes containing 10 carbons are converted to adamantane by treatment with a Lewis acid, such as AlCl₃. If the substrate contains >10 carbons, alkyl-substituted adamantanes are produced. The IUPAC name for these reactions is *Schleyer adamantization*. Two examples are

If 14 or more carbons are present, the product may be diamantane or a substituted diamantane.¹¹⁴ These reactions are successful because of the high thermodynamic stability of adamantane, diamantane, and similar diamond-like molecules. The most stable of a set of C_nH_m isomers (called the *stabilomer*) will be the end product if the reaction reaches equilibrium.¹¹⁵ Best yields are obtained by the use of "sludge" catalysts¹¹⁶ (i.e., a mixture of AlX₃ and *tert*-butyl bromide or *sec*-butyl bromide).¹¹⁷ Though it is certain that these adamantane-forming reactions take place by nucleophilic 1,2-shifts, the exact pathways are not easy to unravel

¹¹⁰For a discussion, see Whitlock Jr., H.W.; Olson, A.H. J. Am. Chem. Soc. 1970, 92, 5383.

¹¹¹Dutler, H.; Jeger, O.; Ruzicka, L. *Helv. Chim. Acta* **1955**, *38*, 1268; Brownlie, G.; Spring, F.S.; Stevenson, R.; Strachan, W.S. J. Chem. Soc. **1956**, 2419; Coates, R.M. *Tetrahedron Lett.* **1967**, 4143.

¹¹²Trost, B.M.; Yasukata, T. J. Am. Chem. Soc. 2001, 123, 7162.

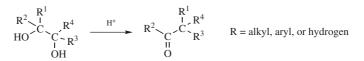
¹¹³For reviews, see McKervey, M.A.; Rooney, J.J., in Olah, G.A. *Cage Hydrocarbons*, Wiley, NY, *1990*, pp. 39–64; McKervey, M.A. *Tetrahedron 1980*, *36*, 971; *Chem. Soc. Rev. 1974*, *3*, 479; Greenberg, A.; Liebman, J.F. *Strained Organic Molecules*, Academic Press, NY, *1978*, pp. 178–202; Bingham, R.C.; Schleyer, P.v.R. *Fortschr. Chem. Forsch. 1971*, *18*, 1, 3–23.

¹¹⁴See Gund, T.M.; Osawa, E.; Williams, Jr., V.Z.; Schleyer, P.v.R. J. Org. Chem. 1974, 39, 2979.

¹¹⁵For a method for the prediction of stabilomers, see Godleski, S.A.; Schleyer, P.v.R.; Osawa, E.; Wipke, W.T. *Prog. Phys. Org. Chem.* **1981**, *13*, 63.

¹¹⁶Schneider, A.; Warren, R.W.; Janoski, E.J. J. Org. Chem. **1966**, 31, 1617; Williams, Jr., V.Z.; Schleyer, P.v.R.; Gleicher, G.J.; Rodewald, L.B. J. Am. Chem. Soc. **1966**, 88, 3862; Robinson, M.J.T.; Tarratt, H.J.F. Tetrahedron Lett. **1968**, 5.

¹¹⁷For other methods, see Johnston, D.E.; McKervey, M.A.; Rooney, J.J. J. Am. Chem. Soc. **1971**, 93, 2798; Olah, G.A.; Wu, A.; Farooq, O.; Prakash, G.K.S. J. Org. Chem. **1989**, 54, 1450.


because of their complexity.¹¹⁸ Treatment of adamantane-2-¹⁴C with AlCl₃ results in total carbon scrambling on a statistical basis.¹¹⁹

As already indicated, the mechanism of the Wagner–Meerwein rearrangement is usually nucleophilic. Free-radical rearrangements are also known (see the mechanism section of this chapter), though virtually only with aryl migration. However, carbanion mechanisms (electrophilic) have also been found.⁹⁴ Thus Ph₃CCH₂Cl treated with sodium gave Ph₂CHCH₂Ph along with unrearranged products.¹²⁰ This is called the *Grovenstein–Zimmerman rearrangement*. The intermediate is Ph₃CCH₂-, and the phenyl moves without its electron pair. Only aryl and vinylic,¹²¹ and not alkyl, groups migrate by the electrophilic mechanism (p. \$\$\$) and transition states or intermediates analogous to **41** and **42** are likely.¹²²

OS V, 16, 194; VI, 378, 845.

18-2 The Pinacol Rearrangement

1/O-Hydro,3/hydroxy- $(2/ \rightarrow 3/alkyl)$ -*migro*-elimination

When *vic*-diols (glycols) are treated with acids,¹²³ they can be rearranged to give aldehydes or ketones, although elimination without rearrangement can also be accomplished. This reaction is called the *pinacol rearrangement*; the reaction gets its name from a prototype compound pinacol (Me₂COHCOHMe₂), which is rearranged to pinacolone (Me₃CCOCH₃).¹²⁴ In this type of reaction, reduction can compete with rearrangement.¹²⁵ The reaction has been accomplished many times, with alkyl, aryl, hydrogen, and even ethoxycarbonyl (COOEt)¹²⁶ as migrating

¹¹⁸See, for example, Engler, E.M.; Fărcașiu, M.; Sevin, A.; Cense, J.M.; Schleyer, P.v.R. J. Am. Chem. Soc. **1973**, 95, 5769; Klester, A.M.; Ganter, C. Helv. Chim. Acta **1983**, 66, 1200; **1985**, 68, 734.

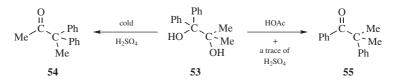
¹¹⁹Majerski, Z.; Liggero, S.H.; Schleyer, P.v.R.; Wolf, A.P. Chem. Commun. 1970, 1596.

¹²⁰Grovenstein, Jr., E. J. Am. Chem. Soc. **1957**, 79, 4985; Grovenstein, Jr., E.; Williams Jr., L.P. J. Am. Chem. Soc. **1961**, 83, 412; Zimmerman, H.E.; Zweig, A. J. Am. Chem. Soc. **1961**, 83, 1196. See also, Crimmins, T.F.; Murphy, W.S.; Hauser, C.R. J. Org. Chem. **1966**, 31, 4273; Grovenstein, Jr., E.; Cheng, Y. J. Am. Chem. Soc. **1972**, 94, 4971.

¹²¹See Grovenstein, Jr., E.; Black, K.W.; Goel, S.C.; Hughes, R.L.; Northrop, J.H.; Streeter, D.L.; VanDerveer, D. J. Org. Chem. **1989**, 54, 1671, and references cited therein.

¹²²Bertrand, J.A.; Grovenstein, Jr., E.; Lu, P.; VanDerveer, D. J. Am. Chem. Soc. 1976, 98, 7835.

¹²³For a reaction initiated by iminium salts, see Lopez, L.; Mele, G.; Mazzeo, C. J. Chem. Soc. Perkin Trans. 1 **1994**, 779. For reactions initiated by radical cations, see de Sanabia, J.A.; Carrión, A.E. Tetrahedron Lett. **1993**, 34, 7837. SbCl₅ has been used: see Harada, T.; Mukaiyama, T. Chem. Lett. **1992**, 81.


¹²⁴For reviews, see Bartók, M.; Molnár, A., in Patai, S. *The Chemistry of Functional Groups, Supplement E*, Wiley, NY, **1980**, pp. 722–732; Collins, C.J.; Eastham, J.F., in Patai, S. *The Chemistry of the Carbonyl Group*, Vol. 1, Wiley, NY, **1966**, pp. 762–771.

¹²⁵Grant, A.A.; Allukian, M.; Fry, A.J. Tetrahedron Lett. 2002, 43, 4391.

¹²⁶Kagan, J.; Agdeppa Jr., D.A.; Mayers, D.A.; Singh, S.P.; Walters, M.J.; Wintermute, R.D. J. Org. Chem. 1976, 41, 2355. COOH has been found to migrate in a Wagner–Meerwein reaction: Berner, D.; Cox, D.P.; Dahn, H. J. Am. Chem. Soc. 1982, 104, 2631.

groups. In most cases, each carbon has at least one alkyl or aryl group, and the reaction is most often carried out with tri- and tetrasubstituted glycols. As mentioned earlier, glycols in which the four R groups are not identical can give rise to more than one product, depending on which group migrates (see p. 1568 for a discussion of migratory aptitudes). A noncatalytic reaction is possible in super-critical water.¹²⁷

Stereodifferentiation is possible in this reaction.¹²⁸ When TMSOTf was used to initiate the reaction, it was shown to be highly regioselective.¹²⁹ Mixtures are often produced, and which group preferentially migrates may depend on the reaction conditions, as well as on the nature of the substrate. Thus the

action of cold, concentrated sulfuric acid on **53** produces mainly the ketone **54** (methyl migration), while treatment of **53** with acetic acid containing a trace of sulfuric acid gives mostly **55** (phenyl migration).¹³⁰ If at least one R is hydrogen, aldehydes can be produced as well as ketones. Generally, aldehyde formation is favored by the use of mild conditions (lower temperatures, weaker acids), because under more drastic conditions the aldehydes may be converted to ketones (**18-4**). The reaction has been carried out in the solid state, by treating solid substrates with HCl gas or with an organic solid acid.¹³¹

$$\overset{R^{2} \sim \overset{R^{1}}{\overset{}_{O}}}{\underset{OH}{\overset{}_{O}}} \overset{R^{3}}{\underset{OH}{\overset{}_{O}}} \overset{H^{*}}{\underset{O}{\overset{}_{O}}} \overset{R^{2} \sim \overset{R^{1}}{\overset{}_{O}}}{\underset{OH}{\overset{}_{O}}} \overset{R^{2}}{\underset{OH}{\overset{}_{O}}} \overset{R^{2}}{\underset{OH}{\overset{R^{2}}{\underset{OH}{\overset{}_{O}}} \overset{R^{2}}{\underset{R^{2}}{\underset{OH}{\overset{}_{O}}} \overset{R^{2}}{\underset{OH}{\overset{}_{O}}} \overset{R^{2}}{\underset{OH}{}} \overset{R^{2}}{\underset{OH}{\overset{}_{O}}} \overset{R^{2}}{\underset{O$$

The mechanism involves a simple 1,2-shift. The ion **56** (where all four R groups are Me) has been trapped by the addition of tetrahydrothiophene.¹³² It may seem odd that a migration takes place when the positive charge is already at a tertiary position, but carbocations stabilized by an oxygen atom are even more stable than tertiary alkyl cations (p. 242). There is also the driving force supplied by the fact that the new carbocation can immediately stabilize itself by losing a proton.

It is obvious that other compounds in which a positive charge can be placed on a carbon α to one bearing an OH group can also give this rearrangement. This is true for β -amino alcohols, which rearrange on treatment with nitrous acid (this is called

¹²⁷Ikushima, Y.; Hatakeda, K.; Sato, O.; Yokoyama, T.; Arai, M. J. Am. Chem. Soc. 2000, 122, 1908.

¹²⁸Paquette, L.A.; Lanter, J.C.; Johnston, J.N. J. Org. Chem. 1997, 62, 1702.

¹²⁹Kudo, K.; Saigo, K.; Hashimoto, Y.; Saito, K.; Hasegawa, M. Chem. Lett. 1992, 1449.

¹³⁰Ramart-Lucas, P.; Salmon-Legagneur, F. C. R. Acad. Sci. 1928, 188, 1301.

¹³¹Toda, F.; Shigemasa, T. J. Chem. Soc. Perkin Trans. 1 1989, 209.

¹³²Bosshard, H.; Baumann, M.E.; Schetty, G. Helv. Chim. Acta 1970, 53, 1271.

the *semipinacol* rearrangement), iodohydrins, for which the reagent is mercuric oxide or silver nitrate, β -hydroxyalkyl selenides, $R^1R^2C(OH)C(SeR^5)R^3R^4$,¹³³ and allylic alcohols,¹³⁴ which can rearrange on treatment with a strong acid that protonates the double bond.

A similar rearrangement is given by epoxides,¹³⁵

$$\begin{array}{c} R^{1} & R^{3} \\ C - C \\ R^{2} & O \\ R^{4} \end{array} \xrightarrow[MgBr_{2}-Et_{2}O]{} BF_{3}-Et_{2}O \\ \hline MgBr_{2}-Et_{2}O \\ \hline M$$

when treated with acidic¹³⁶ reagents, such as BF₃–etherate or MgBr₂–etherate, 5 *M* LiClO₄ in ether,¹³⁷ InCl₃,¹³⁸ Al(OC₆F₃)₃,¹³⁹ Bi(OTf)₃,¹⁴⁰ VO(OEt)Cl₂,¹⁴¹ or sometimes by heat alone.¹⁴² Epoxides are converted to aldehydes or ketones on treatment with certain metallic catalysts¹⁴³ including treatment with iron complexes in refluxing dioxane,¹⁴⁴ IrCl₃,¹⁴⁵ or with BiOClO₄ in dichloromethane.¹⁴⁶ A related rearrangement called the *Meinwald rearrangement* was induced by the enzyme pig liver esterase.¹⁴⁷ It has been shown that epoxides are intermediates in the pinacol rearrangements of certain glycols.¹⁴⁸ Among the evidence for the mechanism given is that Me₂COHCOHMe₂, Me₂COHCNH₂Me₂, and Me₂COHCCIMe₂ gave the reaction at different rates (as expected), but yielded the *same mixture* of two products pinacol and pinacolone indicating a common intermediate.¹⁴⁹

¹³⁴See Wang, B.M.; Song, Z.L.; Fan, C.A.; Tu, Y.Q.; Chen, W.M. *Synlett* **2003**, 1497; Hurley, P.B.; Dake, G.R. *Synlett* **2003**, 2131.

¹³⁵For a discussion of the mechanism, see Hodgson, D.M.; Robinson, L.A.; Jones, M.L. *Tetrahedron Lett.* **1999**, 40, 8637.

¹³⁶Epoxides can also be rearranged with basic catalysts, though the products are usually different. For a review, see Yandovskii, V.N.; Ershov, B.A. *Russ. Chem. Rev.* **1972**, *41*, 403, 410.

¹³⁷Sudha, R.; Narashimhan, K.M.; Saraswathy, V.G.; Sankararaman, S. J. Org. Chem. **1996**, 61, 1877; Sankararaman, S.; Nesakumar, J.E. J. Chem. Soc., Perkin Trans. 1 **1999**, 3173.

¹³⁸Ranu, B.C.; Jana, U. J. Org. Chem. 1998, 63, 8212.

¹³⁹Kita, Y.; Furukawa, A.; Futamura, J.; Ueda, K.; Sawama, Y.; Hamamoto, H.; Fujioka, H. *J. Org. Chem.* **2001**, *66*, 8779.

¹⁴⁰Bhatia, K.A.; Eash, K.J.; Leonard, N.M.; Oswald, M.C.; Mohan, R.S. *Tetrahedron Lett.* 2001, 42, 8129.
 ¹⁴¹Martínez, F.; del Campo., C.; Llama, E.F. J. Chem. Soc., Perkin Trans. 1 2000, 1749.

¹⁴²For a list of reagents that accomplish this transformation, with references, see Larock, R.C. *Comprehensive Organic Transformations*; 2nd ed., Wiley-VCH, NY, **1999**, pp. 1277–1280.

¹⁴³For example, see Alper, H.; Des Roches, D.; Durst, T.; Legault, R. *J. Org. Chem.* **1976**, *41*, 3611; Milstein, D.; Buchman, O.; Blum, J. *J. Org. Chem.* **1977**, *42*, 2299; Prandi, J.; Namy, J.L.; Menoret, G.; Kagan, H.B.

J. Organomet. Chem. 1985, 285, 449; Miyashita, A.; Shimada, T.; Sugawara, A.; Nohira, H. Chem. Lett.

1986, 1323; Maruoka, K.; Nagahara, S.; Ooi, T.; Yamamoto, H. Tetrahedron Lett. 1989, 30, 5607.

¹⁴⁴Suda, K.; Baba, K.; Nakajima, S.-I.; Takanami, T. *Tetrahedron Lett.* **1999**, 40, 7243.

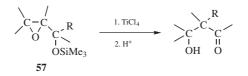
¹⁴⁵Karamé, I.; Tommasino, M.L.; LeMaire, M. Tetrahedron Lett. 2003, 44, 7687.

¹⁴⁶Anderson, A.M.; Blazek, J.M.; Garg, P.; Payne, B.J.; Mohan, R.S. *Tetrahedron Lett.* **2000**, *41*, 1527.

¹⁴⁷Niwayama, S.; Noguchi, H.; Ohno, M.; Kobayashi, S. Tetrahedron Lett. 1993, 34, 665.

¹⁴⁸See, for example, Matsumoto, K. Tetrahedron 1968, 24, 6851; Pocker, Y.; Ronald, B.P. J. Am. Chem.

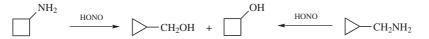
Soc. 1970, 92, 3385; J. Org. Chem. 1970, 35, 3362; Tamura, K.; Moriyoshi, T. Bull. Chem. Soc. Jpn. 1974, 47, 2942.


¹⁴⁹Pocker, Y. Chem. Ind. (London), 1959, 332. See also, Herlihy, K.P. Aust. J. Chem. 1981, 34, 107.

¹³³For a review, see Krief, A.; Laboureur, J.L.; Dumont, W.; Labar, D. Bull. Soc. Chim. Fr. 1990, 681.

A good way to prepare β -diketones consists of heating α,β -epoxy ketones at 80–140°C in toluene with small amounts of $(Ph_3P)_4Pd$ and 1,2-bis(diphenyl-phosphino)ethane.¹⁵⁰ Epoxides are converted to 1,2-diketones with Bi, DMSO, O₂, and a catalytic amounts of Cu(OTf)₂ at 100°C.¹⁵¹ α,β –Epoxy ketones are also converted to 1,2-diketones with a ruthenium catalyst¹⁵² or an iron catalyst.¹⁵³ Epoxides with an α -hydroxyalkyl substituent give a pinacol rearrangement product in the presence of a ZnBr₂¹⁵⁴ or Tb(OTf)₃¹⁵⁵ catalyst to give a γ -hydroxy ketone.

Oxaziridines are converted to ring-expanded lactams under photochemical conditions.¹⁵⁶ *N*-Tosyl aziridines with an α -hydroxyalkyl substituent give a pinacol rearrangement product in the presence of Lewis acids, such as SmI₂, in this case a keto-*N*-tosyl amide.¹⁵⁷


 β -Hydroxy ketones can be prepared by treating the silyl ethers (57) of α , β -epoxy alcohols with TiCl₄.¹⁵⁸

OS I, 462; II, 73, 408; III, 312; IV, 375, 957; V, 326, 647; VI, 39, 320; VII, 129. See also, OS VII, 456.

18-3 Expansion and Contraction of Rings

Demyanov ring contraction; Demyanov ring expansion

When a positive charge is formed on an alicyclic carbon, migration of an alkyl group can take place to give ring contraction, producing a ring that is one carbon smaller than the original, as in the interconversion of the cyclobutyl cation and the

¹⁵⁰Suzuki, M.; Watanabe, A.; Noyori, R. J. Am. Chem. Soc. 1980, 102, 2095.

¹⁵¹Antoniotti, S.; Duñach, E. Chem. Commun. 2001, 2566.

¹⁵²Chang, C.-L.; Kumar, M.P.; Liu, R.-S. J. Org. Chem. 2004, 69, 2793.

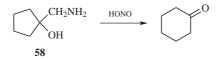
¹⁵³Suda, K.; Baba, K.; Nakajima, S.; Takanami, T. Chem. Commun. 2002, 2570.

¹⁵⁴Tu, Y.Q.; Fan, C.A.; Ren, S.K.; Chan, A.S.C. J. Chem. Soc., Perkin Trans. 1 2000, 3791.

¹⁵⁵Bickley, J.F.; Hauer, B.; Pena, P.C.A.; Roberts, S.M.; Skidmore, J. J. Chem. Soc., Perkin Trans. 1 2001, 1253.

¹⁵⁶Bourguet, E.; Baneres, J.-L.; Girard, J.-P.; Parello, J.; Vidal, J.-P.; Lusinchi, X.; Declerzq, J.-P. *Org. Lett.* **2001**, *3*, 3067.

¹⁵⁷Wang, B.M.; Song, Z.L.; Fan, C.A.; Tu, Y.Q.; Shi, Y. Org. Lett. 2002, 4, 363.

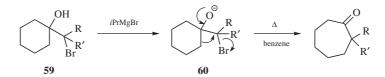

¹⁵⁸Maruoka, K.; Hasegawa, M.; Yamamoto, H.; Suzuki, K.; Shimazaki, M.; Tsuchihashi, G. J. Am. Chem. Soc. **1986**, *108*, 3827. For a different rearrangement of **53**, see Maruoka, K.; Ooi, T.; Yamamoto, H. J. Am. Chem. Soc. **1989**, *111*, 6431.

cyclopropylcarbinyl cation.

 $\square^{\oplus} \implies \triangleright \mathsf{CH}_2^{\oplus}$

Note that this change involves conversion of a secondary to a primary carbocation. In a similar manner, when a positive charge is placed on a carbon a to an alicyclic ring, ring expansion can take place.¹⁵⁹ The new carbocation, and the old one, can then give products by combination with a nucleophile (e.g., the alcohols shown above), or by elimination, so that this reaction is a special case of 18-1. Often, both rearranged and unrearranged products are formed, so that, for example, cyclobutylamine and cyclopropylmethylamine give similar mixtures of the two alcohols shown above on treatment with nitrous acid (a small amount of 3-buten-1-ol is also produced). When the carbocation is formed by diazotization of an amine, the reaction is called the Demyanov rearrangement,¹⁶⁰ but of course similar products are formed when the carbocation is generated in other ways. The expansion reaction has been performed on rings of C_3-C_8 ,¹⁶¹ but yields are best with the smaller rings, where relief of small-angle strain provides a driving force for the reaction. The contraction reaction has been applied to four-membered rings and to rings of C_6 - C_8 , but contraction of a cyclopentyl cation to a cyclobutylmethyl system is generally not feasible because of the additional strain involved. Strain is apparently much less of a factor in the cyclobutyl-cyclopropylmethyl interconversion (for a discussion of this interconversion, see p. 450). The influence of substituents on this rearrangement has been examined.¹⁶²

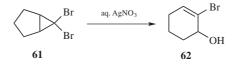
Ring expansions of certain hydroxyamines, such as 58



¹⁵⁹For monographs on ring expansions, see Hesse, M. Ring Enlargement in Organic Chemistry, VCH, NY, **1991**; Gutsche, C.D.; Redmore, D. Carbocyclic Ring Expansion Reactions, Academic Press, NY, **1968**. For a review of ring contractions, see Redmore, D.; Gutsche, C.D. Adv. Alicyclic Chem. **1971**, *3*, 1. For reviews of ring expansions in certain systems, see Baldwin, J.E.; Adlington, R.M.; Robertson, J. Tetrahedron **1989**, 45, 909; Stach, H.; Hesse, M. Tetrahedron **1988**, 44, 1573; Dolbier Jr., W.R. Mech. Mol. Migr. **1971**, *3*, 1. For reviews of expansions and contractions of three- and four membered rings, see Salaün, J., in Rappoport, Z. The Chemistry of the Cyclopropyl Group, pt. 2, Wiley, NY, **1987**, pp. 809–878; Conia, J.M.; Robson, M.J. Angew. Chem. Int. Ed. **1975**, 14, 473. For a list of ring expansions and contractions, with references, see Larock, R.C. Comprehensive Organic Transformation, 2nd ed., Wiley-VCH, NY, **1999**, pp. 1283–1302.

¹⁶¹For a review concerning three-membered rings, see Wong, H.N.C.; Hon, M.; Tse, C.; Yip, Y.; Tanko, J.;
 Hudlicky, T. *Chem. Rev.* 1989, 89, 165, see pp. 182–186. For a review concerning three- and four-membered rings, see Breslow, R., in Mayo, P. *Molecular Rearrangements*, Vol. 1, Wiley, NY, 1963, pp. 233–294.
 ¹⁶²Wiberg, K.B.; Shobe, D.; Nelson, G.C. J. Am. Chem. Soc. 1993, 115, 10645.

¹⁶⁰For a review, see Smith, P.A.S.; Baer, D.R. *Org. React.* **1960**, *11*, 157. See also, Chow, L.; McClure, M.; White, J. *Org. Biomol. Chem.* **2004**, *2*, 648.

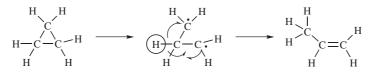

are analogous to the semipinacol rearrangement (**18-2**). This reaction is called the *Tiffeneau–Demyanov ring expansion*. These have been performed on rings of C_4-C_8 and the yields are better than for the simple Demyanov ring expansion. A similar reaction has been used to expand rings of from five to eight members.¹⁶³ In this case, a cyclic bromohydrin of the form **59** is treated with a Grignard reagent which, acting as a base, removes the OH proton to give the alkoxide **60**. Refluxing of **60** brings about the ring enlargement. The reaction has been accomplished for **59** in which at least one R group is phenyl or methyl,¹⁶⁴ but fails when both R groups are hydrogen.¹⁶⁵

A positive charge generated on a three-membered ring gives "contraction" to an allylic cation. 166

We have previously seen (p. 487) that this is the reason nucleophilic substitutions are not feasible at a cyclopropyl substrate. The reaction is often used to convert cyclopropyl halides and tosylates to allylic products, especially for the purpose of ring expansion, an example being the conversion of **61–62**.¹⁶⁷ The stereochemistry of these cyclopropyl cleavages is governed by the principle of orbital symmetry conservation (for a discussion, see p. 1644).

Three-membered rings can also be cleaved to unsaturated products in at least two other ways. (1) On pyrolysis, cyclopropanes can undergo "contraction" to

¹⁶⁴Sisti, A.J.; Meyers, M. J. Org. Chem. 1973, 38, 4431; Sisti, A.J.; Rusch, G.M. J. Org. Chem. 1974, 39, 1182.


¹⁶⁵Sisti, A.J. J. Org. Chem. 1968, 33, 3953.

¹⁶⁶For reviews, see Marvell, E.N. *Thermal Electrocylic Reactions*, Academic Press, NY, **1980**, pp. 23–53; Sorensen, T.S.; Rauk, A., in Marchand, A.P.; Lehr, R.E. *Pericyclic Reactions*, Vol. 2, Academic Press, NY, **1977**, pp. 1–78.

¹⁶⁷Skell, P.S.; Sandler, S.R. J. Am. Chem. Soc. 1958, 80, 2024.

¹⁶³Sisti, A.J. Tetrahedron Lett. **1967**, 5327; J. Org. Chem. **1968**, 33, 453. See also, Sisti, A.J.; Vitale, A.C. J. Org. Chem. **1972**, 37, 4090.

propenes.¹⁶⁸ In the simplest case, cyclopropane gives propene when heated to $400-500^{\circ}$ C. The mechanism is generally regarded¹⁶⁹ as involving a diradical

intermediate¹⁷⁰ (recall that free-radical 1,2 migration is possible for diradicals, p. 1574). (2) The generation of a carbene or carbenoid carbon in a three-membered ring can lead to allenes, and allenes are often prepared in this

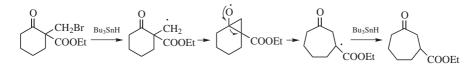
way.¹⁷¹ Flash vacuum pyrolysis of 1-chlorocyclopropene thermally rearranges to chloroallene.¹⁷² One way to generate, such a species is treatment of a 1,1-dihalo-cyclopropane with an alkyllithium compound (**12-39**).¹⁷³ In contrast, the generation of a carbene or carbenoid at a cyclopropylmethyl carbon gives ring expansion.¹⁷⁴

Some free-radical ring enlargements are also known, an example being:¹⁷⁵

¹⁶⁸For reviews, see Berson, J.A., in de Mayo, P. *Rearrangaements in Ground and Excited States*, Vol. 1, Academic Press, NY, *1980*, pp. 324–352; *Ann. Rev. Phys. Chem. 1977*, 28, 111; Bergman, R.G., in Kochi, J.K. *Free Radicals*, Vol. 1, Wiley, NY, *1973*, pp. 191–237; Frey, H.M. *Adv. Phys. Org. Chem. 1966*, *4*, 147, see pp. 148–170.

¹⁶⁹For evidence that diradical intermediates may not be involved, at least in some cases, see Fields, R.; Haszeldine, R.N.; Peter, D. *Chem. Commun.* **1967**, 1081; Parry, K.A.W.; Robinson, P.J. *Chem. Commun.* **1967**, 1083; Clifford, R.P.; Holbrook, K.A. J. *Chem. Soc. Perkin Trans.* 2 **1972**, 1972; Baldwin, J.E.; Grayston, M.W. J. Am. Chem. Soc. **1974**, 96, 1629, 1630.

¹⁷⁰We have seen before that such diradicals can close up to give cyclopropanes (**17-34**). Therefore, pyrolysis of cyclopropanes can produce not only propenes, but also isomerized (cis \rightarrow trans or optically active \rightarrow inactive) cyclopropanes. See, for example, Berson, J.A.; Balquist, J.M. J. Am. Chem. Soc. **1968**, 90, 7343; Bergman, R.G.; Carter, W.L. J. Am. Chem. Soc. **1969**, 91, 7411.


¹⁷¹For reviews, see Schuster, H.F.; Coppola, G.M. *Allenes in Organic Synthesis*, Wiley, NY, **1984**, pp. 20–23; Kirmse, W. *Carbene Chemistry*, 2nd ed., Academic Press, NY, **1971**, pp. 462–467.

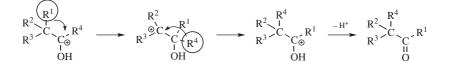
¹⁷²Billups, W.E.; Bachman, R.E. Tetrahedron Lett. 1992, 33, 1825.

¹⁷³See Baird, M.S.; Baxter, A.G.W. *J. Chem. Soc. Perkin Trans.* 1 1979, 2317, and references cited therein. ¹⁷⁴For a review, see Gutsche, C.D.; Redmore, D. *Carbocyclic Ring Expansion Reactions*, Academic Press, NY, 1968, pp. 111–117.

¹⁷⁵Dowd, P.; Choi, S. *Tetrahedron Lett.* **1991**, *32*, 565; *Tetrahedron* **1991**, *47*, 4847. For a related ring expansion, see Baldwin, J.E.; Adlington, R.M.; Robertson, J. J. Chem. Soc., Chem. Commun. **1988**, 1404.

This reaction has been used to make rings of 6, 7, 8, and 13 members. A possible mechanism is

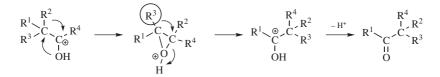
This reaction has been extended to the expansion of rings by three or four carbons, by the use of a substrate containing $(CH_2)_n X$ (n = 3 or 4) instead of $CH_2Br.^{176}$ By this means, 5-, 6-, and 7-membered rings were enlarged to 18–11-membered rings.


OS III, 276; IV, 221, 957; V, 306, 320; VI, 142, 187; VII, 12, 114, 117, 129, 135; VIII, 179, 467, 556, 578.

18-4 Acid-Catalyzed Rearrangements of Aldehydes and Ketones

1/Alkyl,2/alkyl-interchange, and so on

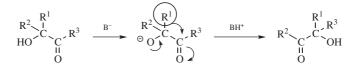
Rearrangements of this type, where a group α to a carbonyl "changes places" with a group attached to the carbonyl carbon, occur when migratory aptitudes are favorable.¹⁷⁷ The R², R³, and R⁴ groups may be alkyl or hydrogen. Certain aldehydes have been converted to ketones, and ketones to other ketones (though more drastic conditions are required for the latter), but no rearrangement of a ketone to an aldehyde (R¹ = H) has so far been reported. There are two mechanisms,¹⁷⁸ each beginning with protonation of the oxygen and each involving two migrations. In one pathway, the migrations are in opposite directions:¹⁷⁹


¹⁷⁶Dowd, P.; Choi, S. J. Am. Chem. Soc. 1987, 109, 6548; Tetrahedron Lett. 1991, 32, 565.

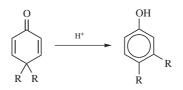
¹⁷⁸Favorskii, A.; Chilingaren, A. C. R. Acad. Sci. 1926, 182, 221.

¹⁷⁷For reviews, see Fry, A. *Mech. Mol. Migr.* **1971**, *4*, 113; Collins, C.J.; Eastham, J.F., in Patai, S. *The Chemistry of the Carbonyl Group*, Vol. 1, Wiley, NY, **1966**, pp. 771–790.

 ¹⁷⁹Kendrick Jr., L.W.; Benjamin, B.M.; Collins, C.J. J. Am. Chem. Soc. 1958, 80, 4057; Rothrock, T.S.;
 Fry, A. J. Am. Chem. Soc. 1958, 80, 4349; Collins, C.J.; Bowman, N.S. J. Am. Chem. Soc. 1959, 81, 3614.


In the other pathway, the migrations are in the same direction. The actual mechanism of this pathway is not certain, but an epoxide (protonated) intermediate¹⁸⁰ is one possibility:¹⁸¹

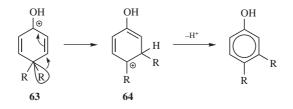
If the reaction is carried out with ketone labeled in the C=O group with ¹⁴C, the first pathway predicts that the product will contain all the ¹⁴C in the C=O carbon, while in the second pathway the label will be in the α carbon (demonstrating migration of oxygen). The results of such experiments¹⁸² have shown that in some cases only the C=O carbon was labeled, in other cases only the a carbon, while in still others both carbons bore the label, indicating that in these cases both pathways were in operation. With α -hydroxy aldehydes and ketones, the process may stop after only one migration (this is called the α -ketol rearrangement).



The α -ketol rearrangement can also be brought about by base catalysis, but only if the alcohol is tertiary, since if R^1 or R^2 = hydrogen, enolization of the substrate is more favored than rearrangement.

18-5 The Dienone–Phenol Rearrangement

 $2/C \rightarrow 5/O$ -Hydro, $1/C \rightarrow 2/C$ -alkyl-bis-migration

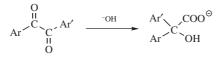


¹⁸⁰Zook, H.D.; Smith, W.E.; Greene, J.L. J. Am. Chem. Soc. 1957, 79, 4436.

¹⁸¹Some such pathway is necessary to account for the migration of oxygen that is found. It may involve a protonated epoxide, a 1,2-diol, or simply a [1,2]-shift of an OH group.

¹⁸²See, for example, Barton, S.; Porter, C.R. J. Chem. Soc. 1956, 2483; Zalesskaya, T.E.; Remizova, T.B. J. Gen. Chem. USSR 1965, 35, 29; Fry, A.; Oka, M. J. Am. Chem. Soc. 1979, 101, 6353.

Cyclohexadienone derivatives that have two alkyl groups in the 4 position undergo, on acid treatment,¹⁸³ 1,2 migration of one of these groups from **64** to give the phenol. Note that a photochemical version of this reaction has been observed.¹⁸⁴



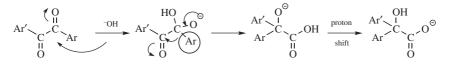
The driving force in the overall reaction (the *dienone-phenol rearrangement*) is of course creation of an aromatic system.¹⁸⁵ Note that **63** and **64** are arenium ions (p. 240), the same as those generated by attack of a phenol on an electrophile.¹⁸⁶ Sometimes, in the reaction of a phenol with an electrophile, a kind of reverse rearrangement (called the *phenol-dienone rearrangement*) takes place, though without an actual migration.¹⁸⁷ An example is

18-6 The Benzil–Benzilic Acid Rearrangement

1/O-Hydro,3/oxido- $(1/ \rightarrow 2/$ aryl)-*migro*-addition

When treated with base, α -diketones rearrange to give the salts of α -hydroxy acids, a reaction known as the *benzil-benzilic acid rearrangement* (benzil is

¹⁸⁴Guo, Z.; Schultz, A.G. Org. Lett. 2001, 3, 1177.

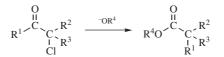

¹⁸⁵For reviews, see Perkins, M.J.; Ward, P. Mech. Mol. Migr. 1971, 4, 55, 90–103; Miller, B. Mech. Mol. Migr. 1968, 1, 247; Shine, H.J. Aromatic Rearrangements, Elsevier, NY, 1967, pp. 55–68; Waring, A.J. Adv. Alicyclic Chem. 1966, 1, 129, 207–223. For a review of other rearrangements of cyclohexadienones, see Miller, B. Acc. Chem. Res. 1975, 8, 245.

¹⁸⁶For evidence that these ions are indeed intermediates in this rearrangement, see Vitullo, V.P.; Grossman, N. *J. Am. Chem. Soc.* **1972**, *94*, 3844; Planas, A.; Tomás, J.; Bonet, J. *Tetrahedron Lett.* **1987**, 28, 471.

¹⁸⁷For a review, see Ershov, V.V.; Volod'kin, A.A.; Bogdanov, G.N. Russ. Chem. Rev. 1963, 32, 75.

¹⁸³For a reagent that greatly accelerates this reaction, see Chalais, S.; Laszlo, P.; Mathy, A. *Tetrahedron Lett.* **1986**, 27, 2627.

PhCOCOPh; benzilic acid is Ph₂COHCOOH).¹⁸⁸ A rhodium catalyzed version of this reaction has also been reported.¹⁸⁹ Though the reaction is usually illustrated with aryl groups, it can also be applied to aliphatic diketones¹⁹⁰ and to α -keto aldehydes. The use of an alkoxide instead of hydroxide gives the corresponding ester directly,¹⁹¹ though alkoxide ions that are readily oxidized (e.g., OEt⁻ or OCHMe₂⁻) are not useful here, since they reduce the benzil to a benzoin. The mechanism is similar to the rearrangements in **18-1–18-4**, but there is a difference: The migrating group does not move to a carbon with an open sextet. The carbon makes room for the migrating group by releasing a pair of π electrons from the C=O bond to the oxygen. The first step is attack of the base at the carbonyl group, the same as the first step of the tetrahedral mechanism of nucleophilic substitution (p. 1254) and of many additions to the C=O bond (Chapter 16):



The mechanism has been intensely studied,¹⁸⁸ and there is much evidence for it.¹⁹² The reaction is irreversible.

OS I, 89.

18-7 The Favorskii Rearrangement

$2/Alkoxy-de-chloro(2/ \rightarrow 1/alkyl)$ -migro-substitution

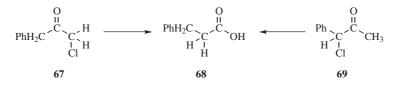
The reaction of α -halo ketones (chloro, bromo, or iodo) with alkoxide ions¹⁹³ to give rearranged esters is called the *Favorskii rearrangement*.¹⁹⁴ The use of

¹⁸⁸For a review, see Selman, S.; Eastham, J.F. Q. Rev. Chem. Soc. 1960, 14, 221.

¹⁸⁹Shimizu, I.; Tekawa, M.; Maruyama, Y.; Yamamoto, A. Chem. Lett. 1992, 1365.

¹⁹⁰For an example, see Schaltegger, A.; Bigler, P. Helv. Chim. Acta 1986, 69, 1666.

¹⁹¹Doering, W. von E.; Urban, R.S. J. Am. Chem. Soc. 1956, 78, 5938.


¹⁹²However, some evidence for an SET pathway has been reported: Screttas, C.G.; Micha-Screttas, M.; Cazianis, C.T. *Tetrahedron Lett.* **1983**, *24*, 3287.

¹⁹³The reaction has also been reported to take place with BF₃–MeOH and Ag⁺: Giordano, C.; Castaldi, G.; Casagrande, F.; Abis, L. *Tetrahedron Lett.* **1982**, *23*, 1385.

¹⁹⁴For reviews, see Boyer, L.E.; Brazzillo, J.; Forman, M.A.; Zanoni, B. J. Org. Chem. **1996**, 61, 7611; Hunter, D.H.; Stothers, J.B.; Warnhoff, E.W., in de Mayo, P. *Rearrangements in Ground and Excited States*, Vol. 1, Academic Press, NY, **1980**, pp. 437–461; Chenier, P.J. J. Chem. Educ. **1978**, 55, 286; Rappe, C., in Patai, S. *The Chemistry of the Carbon–Halogen Bond*, pt. 2, Wiley, NY, **1973**, pp. 1084–1101; Redmore, D.; Gutsche, C.D. *Carbocylcic Ring Expansion Reactions*, Academic Press, NY, **1968**, pp.46– 69; Akhrem, A.A.; Ustynyuk, T.K.; Titov, Yu.A. *Russ. Chem. Rev.* **1970**, *39*, 732. For an asymmetric version, see Satoh, T.; Motohashi, S.; Kimura, S.; Tokutake, N.; Yamakawa, K. *Tetrahedron Lett.* **1993**, *34*, 4823. hydroxide ions or amines as bases leads to the free carboxylic acid (salt) or amide, respectively, instead of the ester. Cyclic α -halo ketones give ring contraction, as in the conversion of **65–66**.

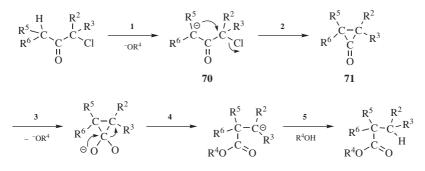
The reaction has also been carried out on α -hydroxy ketones¹⁹⁵ and on α , β -epoxy ketones, which give β -hydroxy acids.¹⁹⁶ The fact that an epoxide gives a reaction analogous to a halide indicates that the oxygen and halogen are leaving groups in a nucleophilic substitution step.

Through the years, the mechanism¹⁹⁷ of the Favorskii rearrangement has been the subject of much investigation; at least five different mechanisms have been proposed. However, the finding¹⁹⁸ that **67** and **68** *both* give **69** (this behavior is typical) shows that any mechanism where the halogen leaves and R¹ takes its place is invalid, since in such a case **67** would be expected to give **69** (with PhCH₂ migrating), but **68** should give PhCHMeCOOH (with CH₃ migrating). That is, in the case of **68**, it was PhCH that migrated and not methyl. Another important result was determined by radioactive labeling. **65**, in which C-1 and C-2 were equally labeled with ¹⁴C, was converted to **66**. The product was found to contain 50% of the label on the carbonyl carbon, 25% on C-1, and 25% on C-2.¹⁹⁹ Now the carbonyl carbon, which originally carried half of the radioactivity, still had this much, so the rearrangement did not directly affect *it*. However, if the C-6 carbon had migrated to C-2, the other half of the radioactivity would be only on C-1 of the product:

¹⁹⁵Craig, J.C.; Dinner, A.; Mulligan, P.J. J. Org. Chem. 1972, 37, 3539.

¹⁹⁶See, for example, House, H.O.; Gilmor, W.F. J. Am. Chem. Soc. **1961**, 83, 3972; Mouk, R.W.; Patel, K.M.; Reusch, W. Tetrahedron **1975**, 31, 13.

 ¹⁹⁷For a review of the mechanism, see Baretta, A.; Waegell, B. *React. Intermed. (Plenum)* 1982, 2, 527.
 ¹⁹⁸McPhee, W.D.; Klingsberg, E. J. Am. Chem. Soc. 1944, 66, 1132; Bordwell, F.G.; Scamehorn, R.G.; Springer, W.R. J. Am. Chem. Soc. 1969, 91, 2087.


¹⁹⁹Loftfield, R.B. J. Am. Chem. Soc. 1951, 73, 4707.

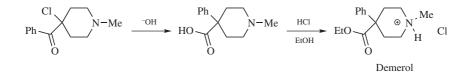
CHAPTER 18

On the other hand, if the migration had gone the other way: If the C-2 carbon had migrated to C-6–then this half of the radioactivity would be found solely on C-2 of the product:

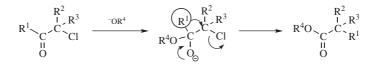
The fact that C-1 and C-2 were found to be equally labeled showed that *both migrations occurred*, with equal probability. Since C-2 and C-6 of **65** are not equivalent, this means that there must be a symmetrical intermediate.²⁰⁰ The type of intermediate that best fits the circumstances is a cyclopropanone,²⁰¹ and the mechanism (for the general case) is formulated (replacing R¹ of our former symbolism with CHR⁵R⁶, since it is obvious that for this mechanism an α hydrogen is required on the non-halogenated side of the carbonyl):

The intermediate corresponding to **71** in the case of **65** is a symmetrical compound, and the three-membered ring can be opened with equal probability on either side of the carbonyl, accounting for the results with ¹⁴C. In the general case, **71** is not symmetrical and should open on the side that gives the more stable carbanion.²⁰² This accounts for the fact that **67** and **68** give the same product. The intermediate in both cases is **70**, which always opens to give the carbanion stabilized by resonance. The cyclopropanone intermediate (**71**) has been isolated in the case where $R^2 = R^5 = t$ -Bu and $R^3 = R^6 = H$,²⁰³ and it

 $^{^{200}}$ A preliminary migration of the chlorine from C-2 to C-6 was ruled out by the fact that recovered **65** had the same isotopic distribution as the starting **65**.


²⁰¹Although cyclopropanones are very reactive compounds, several of them have been isolated. For reviews of cyclopropanone chemistry, see Wasserman, H.H.; Clark, G.M.; Turley, P.C. *Top. Curr. Chem.* **1974**, *47*, 73; Turro, N.J. *Acc. Chem. Res.* **1969**, *2*, 25.

²⁰²Factors other than carbanion stability (including steric factors) may also be important in determining which side of an unsymmetrical **71** is preferentially opened. See, for example, Rappe, C.; Knutsson, L. *Acta Chem. Scand.*, **1967**, *21*, 2205; Rappe, C.; Knutsson, L.; Turro, N.J.; Gagosian, R.B. J. Am. Chem. Soc. **1970**, *92*, 2032.


²⁰³Pazos, J.F.; Pacifici, J.G.; Pierson, G.O.; Sclove, D.B.; Greene, F.D. J. Org. Chem. 1974, 39, 1990.

has also been trapped.²⁰⁴ Also, cyclopropanones synthesized by other methods have been shown to give Favorskii products on treatment with NaOMe or other bases.²⁰⁵

The mechanism discussed is in accord with all the facts when the halo ketone contains an α hydrogen on the other side of the carbonyl group. However, ketones that do not have a hydrogen there also rearrange to give the same type of product. This is usually called the *quasi-Favorskii rearrangement*. An example is found in the preparation of Demerol:²⁰⁶

The quasi-Favorskii rearrangement obviously cannot take place by the cyclopropanone mechanism. The mechanism that is generally accepted (called the *semi-benzilic mechanism*²⁰⁷) is a base-catalyzed pinacol

rearrangement-type mechanism similar to that of **18-6**. This mechanism requires inversion at the migration terminus and this has been found.²⁰⁸ It has been shown that even where there *is* an appropriately situated a hydrogen, the semibenzilic mechanism may still operate.²⁰⁹

An interesting analog of the Favorskii rearrangement treats a ketone, such as 4-*tert*-butylcyclohexanone, without an α -halogen with Tl(NO₃)₃ to give 3-*tert*-butylcyclopentane-1-carboxylic acid.²¹⁰

OS IV, 594; VI, 368, 711.

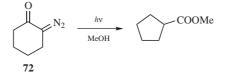
²⁰⁶Smissman, E.E.; Hite, G. J. Am. Chem. Soc. 1959, 81, 1201.

²⁰⁷Tchoubar, B.; Sackur, O. C. R. Acad. Sci. 1939, 208, 1020.

²⁰⁸Baudry, D.; Bégué, J.; Charpentier-Morize, M. Bull. Soc. Chim. Fr. **1971**, 1416; Tetrahedron Lett. **1970**, 2147.

²⁰⁹For example, see Salaun, J.R.; Garnier, B.; Conia, J.M. *Tetrahedron* **1973**, *29*, 2895; Rappe, C.; Knutsson, L. *Acta Chem. Scand.*, **1967**, *21*, 163; Warnhoff, E.W.; Wong, C.M.; Tai, W.T. J. Am. Chem. Soc. **1968**, *90*, 514.

²¹⁰Ferraz, H.M.; Silva, Jr., J.F. Tetrahedron Lett. 1997, 38, 1899.


²⁰⁴Fort, A.W. J. Am. Chem. Soc. **1962**, 84, 4979; Cookson, R.C.; Nye, M.J. Proc. Chem. Soc. **1963**, 129; Breslow, R.; Posner, J.; Krebs, A. J. Am. Chem. Soc. **1963**, 85, 234; Baldwin, J.E.; Cardellina, J.H.I. Chem. Commun. **1968**, 558.

²⁰⁵Crandall, J.K.; Machleder, W.H. J. Org. Chem. **1968**, 90, 7347; Turro, N.J.; Gagosian, R.B.; Rappe, C.; Knutsson, L. Chem. Commun. **1969**, 270; Wharton, P.S.; Fritzberg, A.R. J. Org. Chem. **1972**, 37, 1899.

18-8 The Arndt–Eistert Synthesis

$$\begin{array}{c} O \\ II \\ R \\ \hline C \\ CI \end{array} \xrightarrow{CH_2N_2} & \begin{array}{c} O \\ II \\ R \\ \hline C \\ CHN_2 \end{array} \xrightarrow{H_2O} & \begin{array}{c} R \\ \hline C \\ Ag_2O \end{array} \xrightarrow{CH_2} C \\ O \\ O \end{array}$$

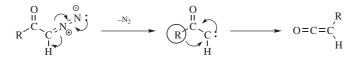
In the Arndt-Eistert synthesis, an acyl halide is converted to a carboxylic acid with one additional carbon.²¹¹ The first step of this process is reaction **16-89**. The actual rearrangement occurs in the second step on treatment of the diazo ketone with water and silver oxide or with silver benzoate and triethylamine. This rearrangement is called the Wolff rearrangement.²¹² It is the best method of increasing a carbon chain by one if a *carboxylic acid* is available (10-75 and 16-30 begin with alkyl halides). If an alcohol R'OH is used instead of water, the ester RCH₂COOR' is isolated directly.²¹³ Similarly, ammonia gives the amide. Other catalysts are sometimes used (e.g., colloidal platinum, copper, etc.), but occasionally the diazo ketone is simply heated or photolyzed in the presence of water, an alcohol, or ammonia, with no catalyst at all.²¹⁴ The photolysis method²¹⁵ often gives better results than the silver catalysis method. Of course, diazo ketones prepared in any other way also give the rearrangement.²¹⁶ The reaction is of wide scope. The R group may be alkyl or aryl and may contain many functional groups including unsaturation, but not including groups acidic enough to react with CH₂N₂ or diazo ketones (e.g., 10-5 and 10-19). Sometimes the reaction is performed with other diazoalkanes (i.e., R'CHN₂) to give RCHR'COOH. The reaction has often been used for ring contraction of cyclic diazo ketones,²¹⁷ such as 72.²¹⁸

²¹¹For reviews, see Meier, H.; Zeller, K. Angew. Chem. Int. Ed. **1975**, *14*, 32; Kirmse, W. Carbene Chemistry, 2nd ed., Academic Press, NY, **1971**, pp. 475–493; Rodina, L.L.; Korobitsyna, I.K. Russ. Chem. Rev. **1967**, *36*, 260; For a review of rearrangements of diazo and diazonium compounds, see Whittaker, D., in Patai, S. The Chemistry of Diazonium and Diazo Compounds, pt. 2, Wiley, NY, **1978**, pp. 593–644.

²¹²For a review, see Kirmse, W. *Eur. J. Org. Chem.* **2002**, 2193. For a microwave-induced Wolff rearrangement, see Sudrik, S.G.; Chavan, S.P.; Chandrakumar, K.R.S.; Pal, S.; Date, S.K.; Chavan, S.P.; Sonawane, H.R. *J. Org. Chem.* **2002**, *67*, 1574.

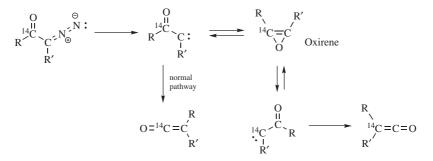
²¹³For an ultrasound-induced version of this variation, see Winum, J.-Y.; Kamal, M.; Leydet, A.; Roque, J.-P.; Montero, J.-L. *Tetrahedron Lett.* **1996**, *37*, 1781.

²¹⁴For a list of methods, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, *1999*, pp. 1850–1851.


²¹⁵For reviews of the photolysis method, see Regitz, M.; Maas, G. *Diazo Compounds*, Academic Press, NY, **1986**, pp. 185–195; Ando, W., in Patai, S. *The Chemistry of the Carbonyl Group*, Vol. 1, Wiley, NY, **1966**, 78, pp. 458–475.

 216 For a method of conducting the reaction with trimethylsilyldiazomethane instead of CH₂N₂, see Aoyama, T.; Shioiri, T. *Tetrahedron Lett.* **1980**, 21, 4461.

²¹⁷For a review, see Redmore, D.; Gutsche, C.D. *Carbocyclic Ring Expansion Reactions*, Academic Press, NY, *1968*, pp. 125–136.


²¹⁸Korobitsyna, I.K.; Rodina, L.L.; Sushko, T.P. J. Org. Chem. USSR **1968**, 4, 165; Jones, Jr., M.; Ando, W. J. Am. Chem. Soc. **1968**, 90, 2200. See Lee, Y.R.; Suk, J.Y.; Kim, B.S. Tetrahedron Lett. **1999**, 40, 8219.

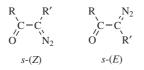
The mechanism is generally regarded as involving formation of a carbene.²¹⁹ It is the divalent carbon that has the open sextet and to which the migrating group brings its electron pair:

The actual product of the reaction is thus the ketene, which then reacts with water (15-3), an alcohol (15-5), or ammonia or an amine (15-8). Particularly stable ketenes²²⁰ (e.g., Ph₂C=C=O) have been isolated and others have been trapped in other ways (e.g., as β -lactams,²²¹ 16-96). The purpose of the catalyst is not well understood, though many suggestions have been made. This mechanism is strictly analogous to that of the Curtius rearrangement (18-14). Although the mechanism as shown above involves a free carbene and there is much evidence to support this,²²² it is also possible that at least in some cases the two steps are concerted and a free carbene is absent.

When the Wolff rearrangement is carried out photochemically, the mechanism is basically the same,²¹⁵ but another pathway can intervene. Some of the ketocarbene originally formed can undergo a carbene–carbene rearrangement, through an oxirene intermediate.²²³ This was shown by ¹⁴C labeling experiments, where

diazo ketones labeled in the carbonyl group gave rise to ketenes that bore the label at both C=C carbons.²²⁴ In general, the smallest degree of scrambling (and thus of

²¹⁹See Scott, A.P.; Platz, M.S.; Radom, L. J. Am. Chem. Soc. 2001, 123, 6069.

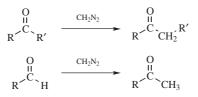

²²⁰In some cases, ketenes are subject to rearrangement, see Farlow, R.A.; Thamatloor, D.A.; Sunoj, R.B.; Hadad, C.M. *J. Org. Chem.* **2002**, *67*, 3257.

²²¹Kirmse, W.; Horner, L. Chem. Ber. **1956**, 89, 2759; also see, Horner, L.; Spietschka, E. Chem. Ber. **1956**, 89, 2765.

 ²²²For a summary of evidence on both sides of the question, see Kirmse, W. *Carbene Chemistry*, 2nd ed.,
 Academic Press, NY, *1971*, pp. 476–480. See also, Torres, M.; Ribo, J.; Clement, A.; Strausz, O.P. *Can. J. Chem. 1983*, *61*, 996; Tomoika, H.; Hayashi, N.; Asano, T.; Izawa, Y. *Bull. Chem. Soc. Jpn. 1983*, *56*, 758.
 ²²³For a review of oxirenes, see Lewars, Y. *Chem. Rev. 1983*, *83*, 519.

²²⁴Fenwick, J.; Frater, G.; Ogi, K.; Strausz, O.P. J. Am. Chem. Soc. **1973**, 95, 124; Zeller, K. Chem. Ber. **1978**, 112, 678. See also, Thornton, D.E.; Gosavi, R.K.; Strausz, O.P. J. Am. Chem. Soc. **1970**, 92, 1768; Russell, R.L.; Rowland, F.S. J. Am. Chem. Soc. **1970**, 92, 7508; Majerski, Z.; Redvanly, C.S. J. Chem. Soc., Chem. Commun. **1972**, 694.

the oxirene pathway) was found when R' = H. An intermediate believed to be an oxirene has been detected by laser spectroscopy.²²⁵ The oxirene pathway is not found in the thermal Wolff rearrangement. It is likely that an excited singlet state of the carbene is necessary for the oxirene pathway to intervene.²²⁶ In the photochemical process, ketocarbene intermediates, in the triplet state, have been isolated in an Ar matrix at 10–15 K, where they have been identified by UV–visible, IR, and esr spectra.²²⁷ These intermediates went on to give the rearrangement via the normal pathway, with no evidence for oxirene intermediates.



The diazo ketone can exist in two conformations, called s-(E) and s-(Z). Studies have shown that Wolff rearrangement takes place preferentially from the s-(Z) conformation.²²⁸

OS III, 356; VI, 613, 840.

18-9 Homologation of Aldehydes and Ketones

Methylene-insertion

Aldehydes and ketones²²⁹ can be converted to their homologs with diazomethane.²³⁰ Several other reagents²³¹ are also effective, including Me₃SiI, and then silica gel,²³² or LiCH(B–OCH₂CH₂O–)₂.²³³ With the diazomethane reaction,

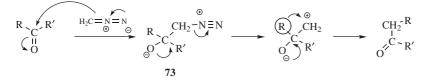
²³⁰For a review, see Gutsche, C.D. Org. React. 1954, 8, 364.

²²⁵Tanigaki, K.; Ebbesen, T.W. *J. Am. Chem. Soc.* **1987**, *109*, 5883. See also, Bachmann, C.; N'Guessan, T.Y.; Debû, F.; Monnier, M.; Pourcin, J.; Aycard, J.; Bodot, H. *J. Am. Chem. Soc.* **1990**, *112*, 7488.

²²⁶Csizmadia, I.G.; Gunning, H.E.; Gosavi, R.K.; Strausz, O.P. J. Am. Chem. Soc. 1973, 95, 133.

²²⁷McMahon, R.J.; Chapman, O.L.; Hayes, R.A.; Hess, T.C.; Krimmer, H. J. Am. Chem. Soc. **1985**, 107, 7597.

²²⁸Kaplan, F.; Mitchell, M.L. *Tetrahedron Lett.* **1979**, 759; Tomioka, H.; Okuno, H.; Izawa, Y. J. Org. *Chem.* **1980**, 45, 5278.


²²⁹For a homologation of carboxylic esters RCOOEt \rightarrow RCH₂COOEt, which goes by an entirely different pathway, see Kowalski, C.J.; Haque, M.S.; Fields, K.W. *J. Am. Chem. Soc.* **1985**, 107, 1429. Also see, Yamamoto, M.; Nakazawa, M.; Kishikawa, K.; Kohmoto, S. *Chem. Commun.* **1996**, 2353.

²³¹See Taylor, E.C.; Chiang, C.; McKillop, A. *Tetrahedron Lett.* 1977, 1827; Villieras, J.; Perriot, P.; Normant, J.F. *Synthesis* 1979, 968; Aoyama, T.; Shioiri, T. *Synthesis* 1988, 228.

²³²Lemini, C.; Ordoñez, M.; Pérez-Flores, J.; Cruz-Almanza, R. Synth. Commun. 1995, 25, 2695.

²³³Schummer, D.; Höfle, G. Tetrahedron 1995, 51, 11219.

formation of an epoxide (16-46) is a side reaction. Although this reaction appears superficially to be similar to the insertion of carbenes into C–H bonds, 12-21 (and IUPAC names it as an insertion), the mechanism is quite different. This is a true rearrangement and no free carbene is involved. The first step is an addition to the C=O bond:

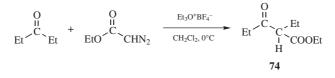
The betaine **73** can sometimes be isolated. As shown in **16-46**, intermediate **73** can also go to the epoxide. The evidence for this mechanism is summarized in the review by Gutsche.²³⁰ Note that this mechanism is essentially the same as in the apparent "insertions" of oxygen (**18-19**) and nitrogen (**18-16**) into ketones.

Aldehydes give fairly good yields of methyl ketones; that is, hydrogen migrates in preference to alkyl. The most abundant side product is not the homologous aldehyde, but the epoxide. However, the yield of aldehyde at the expense of methyl ketone can be increased by the addition of methanol. If the aldehyde contains electron-withdrawing groups, the yield of epoxides is increased and the ketone is formed in smaller amounts, if at all. Ketones give poorer yields of homologous ketones. Epoxides are usually the predominant product here, especially when one or both R groups contain an electron-withdrawing group. The yield of ketones also decreases with increasing length of the chain. The use of a Lewis acid increases the yield of ketone.²³⁴ Cyclic ketones,²³⁵ three-membered²³⁶ and larger, behave particularly well and give good yields of ketones with the ring expanded by one.²³⁷ Aliphatic diazo compounds (RCHN₂ and R₂CN₂) are sometimes used instead of diazomethane, with the expected results.²³⁸ Ethyl diazoacetate can be used analogously, in the presence of a Lewis acid or of triethyloxonium fluoroborate,²³⁹ to

²³⁴For a review of homologations catalyzed by Lewis acids, see Müller, E.; Kessler, H.; Zeeh, B. *Fortschr. Chem. Forsch.* **1966**, *7*, 128, see pp. 137–150.

²³⁵For other methods for the ring enlargement of cyclic ketones, see Krief, A.; Laboureur, J.L. *Tetrahedron Lett.* **1987**, 28, 1545; Krief, A.; Laboureur, J.L.; Dumont, W. *Tetrahedron Lett.* **1987**, 28, 1549; Abraham, W.D.; Bhupathy, M.; Cohen, T. *Tetrahedron Lett.* **1987**, 28, 2203; Trost, B.M.; Mikhail, G.K. J. Am. Chem. Soc. **1987**, 109, 4124.

²³⁶For example, see Turro, N.J.; Gagosian, R.B. J. Am. Chem. Soc. 1970, 92, 2036.


²³⁷For a review, see Gutsche, C.D.; Redmore, D. *Carbocyclic Ring Expansion Reactions*, Academic Press, NY, **1968**, pp. 81–98. For a review pertaining to bridged bicyclic ketones, see Krow, G.R. *Tetrahedron* **1987**, *43*, 3.

²³⁸For example, see Smith, R.F. J. Org. Chem. **1960**, 25, 453; Warner, C.R.; Walsh, Jr., E.J.; Smith, R.F. J. Chem. Soc. **1962**, 1232; Loeschorn, C.A.; Nakajima, M.; Anselme, J. Bull. Soc. Chim. Belg. **1981**, 90, 985.

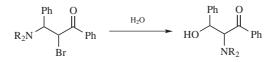
²³⁹Mock, W.L.; Hartman, M.E. J. Org. Chem. 1977, 42, 459, 466; Baldwin, S.W.; Landmesser, N.G. Synth. Commun. 1978, 8, 413.

CHAPTER 18

give a β -keto ester, such as 74.

When unsymmetrical ketones were used in this reaction (with BF₃ as catalyst), the less highly substituted carbon preferentially migrated.²⁴⁰ The reaction can be made regioselective by applying this method to the α -halo ketone, in which case only the other carbon migrates.²⁴¹ The ethyl diazoacetate procedure has also been applied to the acetals or ketals of α , β -unsaturated aldehydes and ketones.²⁴²

Bicyclic ketones can be expanded to form monocyclic ketones in the presence of certain reagents. Treatment of a bicyclo[4.1.0]hexan-4-one derivative with SmI₂ led to a cyclohexanone.²⁴³ The SmI₂ also converts α -halomethyl cyclic ketones to the next larger ring ketone²⁴⁴ and cyclic ketones to the next larger ring ketone in the presence of CH₂I₂.²⁴⁵ α -Chloro- α -3-iodopropylcyclobutanones were converted to cycloheptanones using radical conditions (Bu₃SnH/AIBN).²⁴⁶


Another homologation reaction converts an aldehyde to its tosyl hydrazone, and subsequent reaction with an aldehyde and NaOEt/EtOH give a ketone.²⁴⁷ The reaction of an aldehyde with vinyl acetate and barium hydroxide gives the homologated conjugated aldehyde.²⁴⁸

OS IV, 225, 780. For homologation of carboxyl acid derivatives, see OS IX, 426

B. Carbon-to-Carbon Migrations of Other Groups

18-10 Migrations of Halogen, Hydroxyl, Amino, and so on

Hydroxy-de-bromo-cine-substitution, and so on

When a nucleophilic substitution is carried out on a substrate that has a neighboring group (p. 446) on the adjacent carbon, a cyclic intermediate can be generated

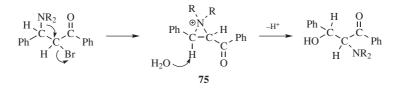
²⁴⁰Liu, H.J.; Majumdar, S.P. Synth. Commun. 1975, 5, 125.

²⁴¹Dave, V.; Warnhoff, E.W. J. Org. Chem. 1983, 48, 2590.

²⁴²Doyle, M.P.; Trudell, M.L.; Terpstra, J.W. J. Org. Chem. 1983, 48, 5146.

²⁴³Lee, P.H.; Lee, J. Tetrahedron Lett. 1998, 39, 7889.

²⁴⁴Hasegawa, E.; Kitazume, T.; Suzuki, K.; Tosaka, E. Tetrahedron Lett. 1998, 39, 4059.


²⁴⁵Fukuzawa, S.; Tsuchimoto, T. Tetrahedron Lett. 1995, 36, 5937.

²⁴⁶Zhang, W.; Dowd, P. *Tetrahedron Lett.* **1992**, *33*, 3285. For an example generating larger rings, see Dowd, P.; Choi, S.-C. *Tetrahedron* **1992**, *48*, 4773.

²⁴⁷Angle, S.R.; Neitzel, M.L. J. Org. Chem. 2000, 65, 6458.

²⁴⁸Mahata, P.K.; Barun, O.; Ila, H.; Junjappa, H. Synlett 2000, 1345.


that is opened on the opposite side, resulting in migration of the neighboring group. In the example shown above (NR₂ = morpholino),²⁴⁹ the reaction took place via an aziridinium salt **75** to give an α -amino- β -hydroxy ketone.

Sulfonate esters and halides can also migrate in this reaction.²⁵⁰ α -Halo and α -acyloxy epoxides undergo ready rearrangement to α -halo and α -acyloxy ketones, respectively.²⁵¹ These substrates are very prone to rearrange, and often do so on standing without a catalyst, though in some cases an acid catalyst is necessary. The reaction is essentially the same as the rearrangement of epoxides shown in **18-2**, except that in this case halogen or acyloxy is the migrating group (as shown above; however, it is also possible for one of the R groups (alkyl, aryl, or hydrogen) to migrate instead, and mixtures are sometimes obtained).

18-11 Migration of Boron

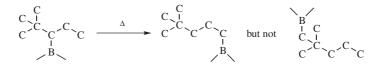
Hydro,dialkylboro-interchange, and so on

Boranes are prepared by the reaction of $BH_3(B_2H_6)$ or an alkylborane with an alkene (**15-16**). When a nonterminal borane is heated at temperatures ranging from 100 to 200°C, the boron moves toward the end of the chain.²⁵² The reaction is catalyzed by small amounts of borane or other species containing B–H bonds.

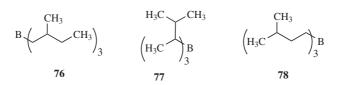
²⁴⁹Southwick, P.L.; Walsh, W.L. J. Am. Chem. Soc. **1955**, 77, 405. See also, Suzuki, K.; Okano, K.; Nakai, K.; Terao, Y.; Sekiya, M. Synthesis **1983**, 723.

²⁵⁰For a review of Cl migrations, see Peterson, P.E. Acc. Chem. Res. 1971, 4, 407. See also, Loktev, V.F.; Korchagina, D.V.; Shubin, V.G.; Koptyug, V.A. J. Org. Chem. USSR 1977, 13, 201; Dobronravov, P.N.; Shteingarts, V.D. J. Org. Chem. USSR 1977, 13, 420. For examples of Br migration, see Gudkova, A.S.; Uteniyazov, K.; Reutov, O.A. Doklad. Chem. 1974, 214, 70; Brusova, G.P.; Gopius, E.D.; Smolina, T.A.; Reutov, O.A. Doklad. Chem. 1980, 253, 334. For a review of F migration (by several mechanisms) see Kobrina, L.S.; Kovtonyuk, V.N. Russ. Chem. Rev. 1988, 57, 62. For an example OH migration, see Cathcart, R.C.; Bovenkamp, J.W.; Moir, R.Y.; Bannard, R.A.B.; Casselman, A.A. Can. J. Chem. 1977, 55, 3774. For a review of migrations of ArS and Ar₂P(O), see Warren, S. Acc. Chem. Res. 1978, 11, 403. See also, Aggarwal, V.K.; Warren, S. J. Chem. Soc. Perkin Trans. 1 1987, 2579.

²⁵¹For a review, see McDonald, R.N. Mech. Mol. Migr. 1971, 3, 67.


²⁵²Brown, H.C. Hydroboration, W. A. Benjamin, NY, **1962**, pp. 136–149, Brown, H.C.; Zweifel, G. J. Am. Chem. Soc. **1966**, 88, 1433. See also, Brown, H.C.; Racherla, U.S. J. Organomet. Chem. **1982**, 241, C37.

CHAPTER 18


The boron can move past a branch, for example,

but not past a double branch, for example,

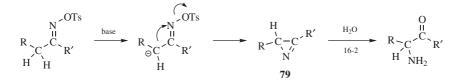
The reaction is an equilibrium: **76**, **77**, and **78** each gave a mixture containing $\sim 40\%$ **76**, 1% **77**, and 59% **78**. The migration can go quite a long distance. Thus (C₁₁H₂₃CHC₁₁H₂₃)₃B was completely converted to (C₂₃H₄₇)₃B, involving a migration of 11 positions.²⁵³ If the boron is on a cycloalkyl ring, it can move around

the ring; if any alkyl chain is also on the ring, the boron may move from the ring to the chain, ending up at the end of the chain.²⁵⁴ The reaction is useful for the migration of double bonds in a controlled way (see **12-2**). The mechanism may involve a π complex, at least partially.²⁵⁵

18-12 The Neber Rearrangement

Neber oxime tosylate-amino ketone rearrangement

 α -Amino ketones can be prepared by treatment of ketoxime tosylates with a base, such as ethoxide ion or pyridine.²⁵⁶ This reaction is called the *Neber rearrangement*. The R group is usually aryl, though the reaction has been carried out with


²⁵³Logan, T.J. J. Org. Chem. 1961, 26, 3657.

²⁵⁴Brown, H.C.; Zweifel, G. J. Am. Chem. Soc. 1967, 89, 561.

²⁵⁵See Wood, S.E.; Rickborn, B. J. Org. Chem. 1983, 48, 555; Field, L.D.; Gallagher, S.P. Tetrahedron Lett. 1985, 26, 6125.

²⁵⁶For a review, see Conley, R.T.; Ghosh, S. Mech. Mol. Migr. 1971, 4, 197, pp. 289–304.

R = alkyl or hydrogen. The R' group may be alkyl, or aryl but not hydrogen. The Beckmann rearrangement (**18-17**) and the abnormal Beckmann reaction (elimination to the nitrile, **17-30**) may be side reactions, although these generally occur in acid media. A similar rearrangement is given by *N*,*N*-dichloroamines of the type RCH₂CH(NCl₂)R', where the product is also RCH(NH₂)COR'.²⁵⁷ The mechanism of the Neber rearrangement is via an azirine intermediate **79**.²⁵⁸

The best evidence for this mechanism is that the azirine intermediate has been isolated.^{258,259} In contrast to the Beckmann rearrangement, this one is sterically indiscriminate:²⁶⁰ Both a syn and an anti ketoxime give the same product. The mechanism as shown above consists of three steps. However, it is possible that the first two steps are concerted, and it is also possible that what is shown as the second step is actually two steps: loss of OTs to give a nitrene, and formation of the azirine. In the case of the dichloroamines, HCl is first lost to give RCH₂C(=NCl)R', which then behaves analogously.²⁶¹ *N*-Chloroimines prepared in other ways also give the reaction.²⁶²

OS V, 909; VII, 149.

C. Carbon-to-Nitrogen Migrations of R and AR

The reactions in this group are nucleophilic migrations from a carbon to a nitrogen atom. In each case the nitrogen atom either has six electrons in its outer shell (and thus invites the migration of a group carrying an electron pair) or else loses a nucleofuge concurrently with the migration (p. 1560). Reactions **18-13–18-16** are used to prepare amines from acid derivatives. Reactions **18-16** and **18-17** are used to prepare amines from ketones. The mechanisms of **18-13–18-16** (with carboxylic acids) are very similar and follow one of two patterns:

²⁵⁸Cram, D.J.; Hatch, M.J. J. Am. Chem. Soc. **1953**, 75, 33; Hatch, M.J.; Cram, D.J. J. Am. Chem. Soc. **1953**, 75, 38.

²⁵⁷Baumgarten, H.E.; Petersen, H.E. J. Am. Chem. Soc. 1960, 82, 459, and references cited therein.

²⁵⁹Neber, P.W.; Burgard, A. Liebigs Ann. Chem. **1932**, 493, 281; Parcell, R.F. Chem. Ind. (London) **1963**, 1396.

²⁶⁰House, H.O.; Berkowitz, W.F. J. Org. Chem. 1963, 28, 2271.

²⁶¹For example, see Nakai, M.; Furukawa, N.; Oae, S. Bull. Chem. Soc. Jpn. 1969, 42, 2917.

²⁶²Baumgarten, H.E.; Petersen, J.M.; Wolf, D.C. J. Org. Chem. 1963, 28, 2369.

Some of the evidence²⁶³ is (1) configuration is retained in R (p. 1563); (2) the kinetics are first order; (3) intramolecular rearrangement is shown by labeling; and (4) no rearrangement occurs *within* the migrating group, for example, a neopentyl group on the carbon of the starting material is still a neopentyl group on the nitrogen of the product.

In many cases, it is not certain whether the nucleofuge X is lost first, creating an intermediate nitrene²⁶⁴ or nitrenium ion, or whether migration and loss of the nucleofuge are simultaneous, as shown above.²⁶⁵ It is likely that both possibilities can exist, depending on the substrate and reaction conditions.

18-13 The Hofmann Rearrangement

Bis(hydrogen)-(2/ 1/N-alkyl)-migro-detachment (formation of isocyanate)

RCONH₂ + NaOBr \longrightarrow R—N=C=O $\xrightarrow{hydrolysis}$ RNH₂

In the Hofmann rearrangement, an unsubstituted amide is treated with sodium hypobromite (or sodium hydroxide and bromine, which is essentially the same thing) to give a primary amine that has one carbon fewer than the starting amide.²⁶⁶ The actual product is the isocyanate, but this compound is seldom isolated²⁶⁷ since it is usually hydrolyzed under the reaction conditions. The R group may be alkyl or aryl, but if it is an alkyl group of more than about six or seven carbons, low yields are obtained unless Br₂ and NaOMe are used instead of Br₂ and NaOH.²⁶⁸ Another modification uses NBS/NaOMe.²⁶⁹ Under these conditions the product of addition to the isocyanate is the carbamate RNHCOOMe (16-8), which is easily isolated or can be hydrolyzed to the amine. Side reactions when NaOH is the base are formation of ureas RNHCONHR and acylureas RCONH-CONHR by addition, respectively, of RNH₂ and RCONH₂ to RNCO (16-20). If acylureas are desired, they can be made the main products by using only one-half of the usual quantities of Br2 and NaOH. Another side product, but only from primary R, is the nitrile derived from oxidation of RNH_2 (19-5). Imides react to give amino acids, for example, phthalimide gives o-aminobenzoic acid. α -Hydroxy and α -halo amides give aldehydes and ketones by way of the unstable α -hydroxy- or α -haloamines. However, a side product with an α -halo amide is a *gem*-dihalide. Ureas analogously give hydrazines.

²⁶³For a discussion of this mechanism and the evidence for it, see Smith, P.A.S., in de Mayo, P. *Molecular Rearrangements*, Vol. 1, Wiley, NY, *1963*, Vol. 1, pp. 258–550.

²⁶⁴For a review of rearrangements involving nitrene intermediates, see Boyer, J.H. *Mech. Mol. Migr.* **1969**, 2, 267. See also, Ref. 282.

²⁶⁵The question is discussed by Lwowski, W., in Lwowski Nitrenes, Wiley, NY, 1970, pp. 217–221.

²⁶⁶For a review, see Wallis, E.S.; Lane, J.F. Org. React. 1946, 3, 267.

²⁶⁷If desired, the isocyanate can be isolated by the use of phase-transfer conditions: see Sy, A.O.; Raksis, J.W. *Tetrahedron Lett.* **1980**, *21*, 2223.

²⁶⁸For an example of the use of this method at low temperatures, see Radlick, P.; Brown, L.R. *Synthesis* **1974**, 290.

²⁶⁹Huang, X.; Keillor, J.W. Tetrahedron Lett. 1997, 38, 313.

The mechanism follows the pattern outlined on p. 1606.

The first step is an example of **12-52** and intermediate *N*-halo amides (**80**) have been isolated. In the second step, **80** lose a proton to the base. Compound **80** is acidic because of the presence of two electron-withdrawing groups (acyl and halo) on the nitrogen. It is possible that the third step is actually two steps: loss of bromide to form a nitrene, followed by the actual migration, but most of the available evidence favors the concerted reaction.²⁷⁰ A similar reaction can be effected by the treatment of amides with lead tetraacetate.²⁷¹ Among other reagents that convert RCONH₂ to RNH₂ (R = alkyl, but not aryl) are phenyliodosyl bis(trifluoroacetate) PhI(OCOCF₃)₂²⁷² and hydroxy(tosyloxy)iodobenzene PhI(OH)OTs.²⁷³ A mixture of NBS, Hg(OAc)₂, and R'OH is one of several reagent mixtures that convert an amide RCONH₂ to the carbamate RNHCOOR' (R = primary, secondary, or tertiary alkyl or aryl) in high yield.²⁷⁴ A mixture of NBS and DBU (p. 1132) in methanol gives the carbamate,²⁷⁵ as does electrolysis in methanol.²⁷⁶

A variation of the Hofmann rearrangement treated a β -hydroxy primary amide with PhI(O₂CCF₃)₂ in aqueous acetonitrile, giving an isocyanate via –CON–I, which reacts with the hydroxyl group intramolecularly to give a cyclic carbamate.²⁷⁷ Note that carbamates are converted to isocyanates by heating with Montmorillonite K10.²⁷⁸

OS II, 19, 44, 462; IV, 45; VIII, 26, 132.

18-14 The Curtius Rearrangement

Dinitrogen- $(2/ \rightarrow 1/N$ -alkyl)-*migro*-detachment

RCON₃ $\xrightarrow{\Delta}$ R—N=C=O

²⁷⁰See, for example, Imamoto, T.; Tsuno, Y.; Yukawa, Y. Bull. Chem. Soc. Jpn. **1971**, 44, 1632, 1639, 1644; Imamoto, T.; Kim, S.; Tsuno, Y.; Yukawa, Y. Bull. Chem. Soc. Jpn. **1971**, 44, 2776.

²⁷¹Acott, B.; Beckwith, A.L.J.; Hassanali, A. Aust. J. Chem. **1968**, 21, 185, 197; Baumgarten, H.E.; Smith, H.L.; Staklis, A. J. Org. Chem. **1975**, 40, 3554.

²⁷²Loudon, G.M.; Radhakrishna, A.S.; Almond, M.R.; Blodgett, J.K.; Boutin, R.H. J. Org. Chem. 1984, 49, 4272; Boutin, R.H.; Loudon, G.M. J. Org. Chem. 1984, 49, 4277; Pavlides, V.H.; Chan, E.D.; Pennington, L.; McParland, M.; Whitehead, M.; Coutts, I.G.C. Synth. Commun. 1988, 18, 1615.

²⁷³Vasudevan, A.; Koser, G.F. J. Org. Chem. 1988, 53, 5158.

²⁷⁴Jew, S.; Park, H.G.; Park, H.; Park, M.; Cho, Y. Tetrahedron Lett. 1990, 31, 1559.

²⁷⁵Huang, X.; Seid, M.; Keillor, J.W. J. Org. Chem. 1997, 62, 7495.

²⁷⁶Matsumura, Y.; Maki, T.; Satoh, Y. *Tetrahedron Lett.* 1997, 38, 8879.

²⁷⁷Yu, C.; Jiang, Y.; Liu, B.; Hu, L. Tetrahedron Lett. 2001, 42, 1449.

²⁷⁸Uriz, P.; Serra, M.; Salagre, P.; Castillon, S.; Claver, C.; Fernandez, E. Tetrahedron Lett. 2002, 43, 1673.

The *Curtius rearrangement* involves the pyrolysis of acyl azides to yield isocyanates.²⁷⁹ The reaction gives good yields of isocyanates, since no water is present to hydrolyze them to the amine. Of course, they can be subsequently hydrolyzed, and indeed the reaction *can* be carried out in water or alcohol, in which case the products are amines, carbamates, or acylureas, as in **18-13**.²⁸⁰ This is a very general reaction and can be applied to almost any carboxylic acid: aliphatic, aromatic, alicyclic, heterocyclic, unsaturated, and containing many functional groups. Acyl azides can be prepared as in **10-43** or by treatment of acylhydrazines (hydrazides) with nitrous acid (analogous to **12-49**). The Curtius rearrangement is catalyzed by Lewis or protic acids, but these are usually not necessary for good results.

The mechanism is similar to that in **18-13** to give an isocyanate. Also note the exact analogy between this reaction and **18-8**. However, in this case, there is no evidence for a free nitrene and it is probable that the steps are concerted.²⁸¹

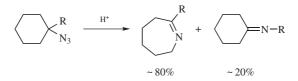
$$\overset{O}{\underset{\mathbb{R}}{\overset{U}{\underset{\mathbb{C}}{\overset{V}{\underset{\mathbb{C}}{\underset{\mathbb{C}}{\overset{V}{\underset{\mathbb{C}}{\overset{V}{\underset{\mathbb{C}}{\overset{V}{\underset{\mathbb{C}}{\underset{\mathbb{C}}{\overset{V}{\underset{\mathbb{C}}{\overset{V}{\underset{\mathbb{C}}{\overset{V}{\underset{\mathbb{C}}{\underset{\mathbb{C}}{\overset{V}{\underset{\mathbb{C}}{\underset{\mathbb{C}}{\overset{V}{\underset{\mathbb{C}}{\underset{\mathbb{C}}{\overset{V}{\underset{\mathbb{C}}{\underset{\mathbb{C}}{\overset{V}{\underset{\mathbb{C}}{\underset{\mathbb{C}}{\overset{V}{\underset{\mathbb{C}}{\overset{V}{\underset{\mathbb{C}}{\overset{V}{\underset{\mathbb{C}}{\atop1}}{\underset{\mathbb{C}}{\\{\mathbb{C}}{\underset{\mathbb{C}}{\underset{\mathbb{C}}{\underset{\mathbb{C}}{\\{\mathbb{C}}{\underset{\mathbb{C}}{\underset{\mathbb{C}}{\underset{\mathbb{C}}{\\{\mathbb{C}}{\\{\mathbb{C}}{\underset{\mathbb{C}}{\underset{\mathbb{C}}{\\{\mathbb{C}}{\\{\mathbb{C}}{\underset{\mathbb{C}}{\\{\mathbb{C}}{\\{\mathbb{C}}{\\{\mathbb{C}}{\\{\mathbb{C}}{\underset{\mathbb{C}}{\\{\mathbb{C}}{\\{\mathbb{C}}{\\{\mathbb{C}}{\\{\mathbb{C}}{\underset{\mathbb{C}}{\\{\mathbb{C}}{\\{\mathbb{C}}{\\{\mathbb{C}}{\\{\mathbb{C}}{\\{\mathbb{C}}{\\{\mathbb{C}}{\\{\mathbb{C}}{\\{\mathbb{C}}{\\{\mathbb{C}}{\\{\mathbb{C}}{\\{\mathbb{C}}{\\{\mathbb{C}}{\\{\mathbb{C}}{\\{\mathbb{C}}{\\{$$

Alkyl azides can be similarly pyrolyzed to give imines, in an analogous reaction: $^{\rm 282}$

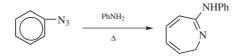
$$R_3CN_3 \longrightarrow R_2C=NR$$

The R groups may be alkyl, aryl, or hydrogen, though if hydrogen migrates, the product is the unstable $R_2C=NH$. The mechanism is essentially the same as that of the Curtius rearrangement. However, in pyrolysis of tertiary alkyl azides, there is evidence that free alkyl nitrenes are intermediates.²⁸³ The reaction can also be carried out with acid catalysis, in which case lower temperatures can be used, though the acid may hydrolyze the imine (**16-2**). Cycloalkyl azides give

²⁷⁹For a review, see Banthorpe, D.V., in Patai, S. *The Chemistry of the Azido Group*, Wiley, NY, **1971**, pp. 397–405.

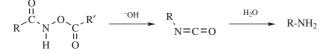

²⁸⁰For a variation that conveniently produces the amine directly, see Pfister, J.R.; Wyman, W.E. Synthesis 1983, 38. See also, Capson, T.L.; Poulter, C.D. Tetrahedron Lett. 1984, 25, 3515.

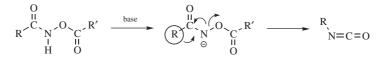
²⁸¹See, for example, Lwowski, W. Angew. Chem. Int. Ed. 1967, 6, 897; Linke, S.; Tissue, G.T.; Lwowski, W. J. Am. Chem. Soc. 1967, 89, 6308; Smalley, R.K.; Bingham, T.E. J. Chem. Soc. C 1969, 2481.


²⁸²For a treatise on azides, which includes discussion of rearrangement reactions, see Scriven, E.F.V. *Azides and Nitrenes*, Academic Press, NY, **1984**. For a review of rearrangements of alkyl and aryl azides, see Stevens, T.S.; Watts, W.E. *Selected Molecular Rearrangements*, Van Nostrand-Reinhold, Princeton, NJ, **1973**, pp. 45–52. For reviews of the formation of nitrenes from alkyl and aryl azides, see, in Lwowski, W. *Nitrenes*, Wiley, NY, **1970**, the chapters by Lewis, F.D.; Saunders, Jr., W.H. pp. 47–97, 47–78 and by Smith, P.A.S. pp. 99–162.

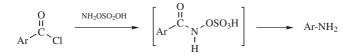
 ²⁸³Abramovitch, R.A.; Kyba, E.P. J. Am. Chem. Soc. 1974, 96, 480; Montgomery, F.C.; Saunders, Jr.,
 W.H. J. Org. Chem. 1976, 41, 2368.

ring expansion.²⁸⁴


Aryl azides also give ring expansion on heating, for example,²⁸⁵


OS III, 846; IV, 819; V, 273; VI, 95, 910. Also see, OS VI, 210.

18-15 The Lossen Rearrangement


Hydro, acetoxy-($2/ \rightarrow 1N$ -alkyl)-*migro*-detachment

The *O*-acyl derivatives of hydroxamic $acids^{286}$ give isocyanates when treated with bases or sometimes even just on heating, in a reaction known as the *Lossen rearrangement*.²⁸⁷ The mechanism is similar to that of **18-13** and **18-14**:

In a similar reaction, aromatic acyl halides are converted to amines in one laboratory step by treatment with hydroxylamine-O-sulfonic acid.²⁸⁸

A chiral Lossen rearrangement is known.²⁸⁹

²⁸⁴Smith, P.A.S.; Lakritz, J. cited in Smith, P.A.S., in de Mayo, P. *Molecular Rearrangments*, Vol. 1, Wiley, NY, *1963*, p. 474.

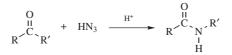
²⁸⁵Huisgen, R.; Vossius, D.; Appl, M. Chem. Ber. 1958, 91, 1,12.

²⁸⁶For a review of hydroxamic acids, see Bauer, L.; Exner, O. Angew. Chem. Int. Ed. 1974, 13, 376.

²⁸⁷For an example, see Salomon, C.J.; Breuer, E. J. Org. Chem, 1997, 62, 3858.

²⁸⁸Wallace, R.G.; Barker, J.M.; Wood, M.L. Synthesis 1990, 1143.

²⁸⁹Chandrasekhar, S.; Sridhar, M. Tetrahedron Asymmetry 2000, 11, 3467.


CHAPTER 18

18-16 The Schmidt Reaction

RCOOH + HN₃ $\xrightarrow{H^+}$ R—N=C=O $\xrightarrow{H_2O}$ RNH₂

There are actually three reactions called by the name *Schmidt reaction*, involving the addition of hydrazoic acid to carboxylic acids, aldehydes and ketones, and alcohols and alkenes.²⁹⁰ The most common is the reaction with carboxylic acids. illustrated above.²⁹¹ Sulfuric acid is the most common catalyst, but Lewis acids have also been used. Good results are obtained for aliphatic R, especially for long chains. When R is aryl, the yields are variable, being best for sterically hindered compounds like mesitoic acid. This method has the advantage over 18-13 and 18-14 in that there is just one laboratory step from the acid to the amine, but conditions are more drastic.²⁹² Under the acid conditions employed, the isocyanate is virtually never isolated.

The reaction between a ketone and hydrazoic acid is a method for "insertion" of NH between the carbonyl group and one R group, converting a ketone into an amide.²⁹³

Either or both of the R groups may be aryl. In general, dialkyl ketones and cyclic ketones react more rapidly than alkyl aryl ketones, and these more rapidly than diaryl ketones. The latter require sulfuric acid and do not react in concentrated HCl, which is strong enough for dialkyl ketones. Dialkyl and cyclic ketones react sufficiently faster than diaryl or aryl alkyl ketones or carboxylic acids or alcohols so that these functions may be present in the same molecule without interference. Cyclic ketones give lactams:²⁹⁴

²⁹⁰For a review, see Banthorpe, D.V., in Patai, S. The Chemistry of the Azido Group, Wiley, NY, 1971, pp. 405–434. ²⁹¹For a review, see Koldobskii, G.I.; Ostrovskii, V.A.; Gidaspov, B.V. Russ. Chem. Rev. 1978, 47,

^{1084.}

²⁹²For a comparision of reactions 18-13-18-16 as methods for converting an acid to an amine, see Smith, P.A.S. Org. React. 1946, 3, 337, 363-366.

²⁹³For reviews, see Koldobskii, G.I.; Tereschenko, G.F.; Gerasimova, E.S.; Bagal, L.I. Russ. Chem. Rev. 1971, 40, 835; Beckwith, A.L.J., in Zabicky, J. The Chemistry of Amides, Wiley, NY, 1970, pp. 137-145.

²⁹⁴For a review with respect to bicyclic ketones, see Krow, G.R. *Tetrahedron* **1981**, 37, 1283.

With alkyl aryl ketones, it is the aryl group that generally migrates to the nitrogen, except when the alkyl group is bulky.²⁹⁵ The reaction has been applied to a few aldehydes, but rarely. With aldehydes the product is usually the nitrile (**16-16**). Even with ketones, conversion to the nitrile is often a side reaction, especially with the type of ketone that gives **17-30**. A useful variation of the Schmidt reaction treats a cyclic ketone with an alkyl azide $(RN_3)^{296}$ in the presence of TiCl₄, generating a lactam.²⁹⁷ An intramolecular Schmidt reaction gives bicyclic amines by treatment of a cyclic alkene having a pendant azidoalkyl group with Hg(ClO₄)₂, and then NaBH₄.²⁹⁸ Another variation treats a silyl enol ether of a cyclic ketone with TMSN₃ and photolyzes the product with UV light to give a lactam.²⁹⁹ α Azido cyclic ketones rearrangement to lactams under radical conditions (Bu₃SnH/AIBN).³⁰⁰

Alcohols and alkenes react with HN_3 to give alkyl azides,³⁰¹ which in the course of reaction rearrange in the same way as discussed in reaction **18-14**.²⁸² The Mitsunobu reaction (**10-17**) can be used to convert alcohols to alkyl azides, and an alternative reagent for azides, (PhO)₂PON₃, for use in the Mitsunobu is now available.³⁰²

There is evidence that the mechanism with carboxylic $acids^{293}$ is similar to that of **18-14**, except that it is the protonated azide that undergoes the rearrangement:³⁰³

$$\underset{R}{\overset{O}{\overset{H^{+}}{\longrightarrow}}}{\overset{H^{+}}{\longrightarrow}} \underset{R}{\overset{O}{\overset{H^{+}}{\longrightarrow}}} \overset{O}{\underset{R}{\overset{H^{+}}{\longrightarrow}}} + HN_{3} \xrightarrow{\longrightarrow} \underset{H}{\overset{O}{\underset{H^{+}}{\boxtimes}}} \underset{R}{\overset{O}{\overset{V}{\underset{H^{+}}{\boxtimes}}} \overset{N^{\Theta}}{\underset{H^{+}}{\longrightarrow}} \xrightarrow{\longrightarrow} O = C = N \underset{R}{\overset{O}{\overset{H^{+}}{\longrightarrow}}} \xrightarrow{\overset{H^{+}}{\underset{H^{+}}{\longrightarrow}}} \overset{O}{\underset{H^{+}}{\longrightarrow}} \xrightarrow{\overset{O}{\underset{H^{+}}{\longrightarrow}}} \xrightarrow{\overset{O}{\underset{H^{+}}{\longrightarrow}}} \overset{N^{\Theta}}{\underset{H^{+}}{\longrightarrow}} \xrightarrow{\longrightarrow} O = C = N \underset{R}{\overset{O}{\overset{H^{+}}{\longrightarrow}}} \xrightarrow{\overset{H^{+}}{\underset{H^{+}}{\longrightarrow}}} \xrightarrow{\overset{O}{\underset{H^{+}}{\longrightarrow}}} \xrightarrow{O}{\underset{H^{+}}{\longrightarrow}} \xrightarrow{O}{\underset{H^{+}}{\xrightarrow}} \xrightarrow{O}{\underset{H^{+}}{\longrightarrow}} \xrightarrow{O}{\underset{H^{+}}{\longrightarrow}} \xrightarrow{O}{\underset{H^{+}}{\longrightarrow}} \xrightarrow{O}{\underset{H^{+}}{\xrightarrow}} \xrightarrow{O}{\underset{H^{+}}{\longrightarrow}} \xrightarrow{O}{\underset{H^{+}}{\xrightarrow}} \xrightarrow{O$$

The first step is the same as that of the $A_{AC}1$ mechanism (16-59 which explains why good results are obtained with hindered substrates. The mechanism with ketones

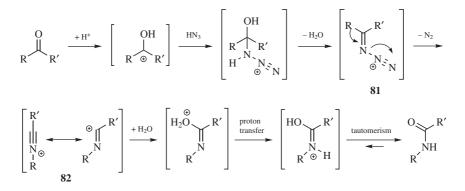
²⁹⁵Exceptions to this statement have been noted in the case of cyclic aromatic ketones bearing electrondonating groups in ortho and para positions: Bhalerao, U.T.; Thyagarajan, G. *Can. J. Chem.* **1968**, 46, 3367; Tomita, M.; Minami, S.; Uyeo, S. *J. Chem. Soc. C* **1969**, 183.

²⁹⁶See Furness, K.; Aubé, J. Org. Lett. 1999, 1, 495.

²⁹⁷Desai, P.; Schildknegt, K.; Agrios, K.A.; Mossman, C.; Milligan, G.L.; Aubé, J. J. Am. Chem. Soc. 2000, 122, 7226; Sahasrabudhe, K.; Gracias, V.; Furness, K.; Smith, B.T.; Katz, C.E.; Reddy, D.S.; Aubé, J. J. Am. Chem. Soc. 2003, 125, 7914. For a variation using a ketal with TMSOTf see Mossman, C.J.; Aubé, J. Tetrahedron, 1996, 52, 3403.

 ²⁰⁸Pearson, W.H.; Hutta, D.A.; Fang, W.-k. J. Org. Chem. 2000, 65, 8326. See also, Wrobleski, A.; Aubé, J. J. Org. Chem. 2001, 66, 886.

²⁹⁹Evans, P.A.; Modi, D.P. J. Org. Chem. 1995, 60, 6662.


³⁰⁰Benati, L.; Nanni, D.; Sangiorgi, C.; Spagnolo, P. J. Org. Chem. 1999, 64, 7836.

³⁰¹For an example, see Kumar, H.M.S.; Reddy, B.V.S.; Anjaneyulu, S.; Yadav, J.S. *Tetrahedron Lett.* **1998**, *39*, 7385. Also see, Saito, A.; Saito, K.; Tanaka, A.; Oritani, T. *Tetrahedron Lett.* **1997**, *38*, 3955.

³⁰²Thompson, A.S.; Humphrey, G.R.; DeMarco, A.M.; Mathre, D.J.; Grabowski, E.J.J. *J. Org. Chem.* **1993**, *58*, 5886.

³⁰³There has been some controversy about this mechanism. For a discussion, see Vogler, E.A.; Hayes, J.M. *J. Org. Chem.* **1979**, *44*, 3682.

involves formation of a nitrilium ion 82, which reacts with water.

The intermediates **81** have been independently generated in aqueous solution.³⁰⁴ Note the similarity of this mechanism to those of "insertion" of CH₂ (**18-9**) and of O (**18-19**). The three reactions are essentially analogous, both in products and in mechanism.^{293,305} Also note the similarity of the latter part of this mechanism to that of the Beckmann rearrangement (**18-17**).

OS V, 408; VI, 368; VII, 254; X, 207. See also, OS V, 623.

18-17 The Beckmann Rearrangement

Beckmann oxime-amide rearrangement

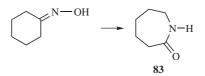
When oximes are treated with PCl₅ or a number of other reagents, they rearrange to substituted amides in a reaction called the *Beckmann rearrangement*.³⁰⁶ Among other reagents used have been concentrated H₂SO₄, formic acid, liquid SO₂, SOCl₂,³⁰⁷ silica gel,³⁰⁸ MoO₃ on silica gel,³⁰⁹ RuCl₃,³¹⁰ Y(OTf)₃,³¹¹

³⁰⁴Amyes, T.L.; Richard, J.P. J. Am. Chem. Soc. 1991, 113, 1867.

³⁰⁵For evidence for this mechanism, see Ostrovskii, V.A.; Koshtaleva, T.M.; Shirokova, N.P.; Koldobskii, G.I.; Gidaspov, B.V. J. Org. Chem. USSR **1974**, *10*, 2365, and references cited therein.

³⁰⁶For reviews, see Gawley, R.E. Org. React. **1988**, 35, 1; McCarty, C.G., in Patai, S. The Chemistry of the Carbon-Nitrogen Double Bond, Wiley, NY, **1970**, pp. 408–439. Also see, Nguyen, M.T.; Raspoet, G.; Vanquickenborne, L.G. J. Am. Chem. Soc. **1997**, 119, 2552.

³⁰⁷Butler, R.N.; O'Donoghue, D.A. J. Chem. Res. (S), 1983, 18.


³⁰⁸Costa, A.; Mestres, R.; Riego, J.M. *Synth. Commun.* **1982**, *12*, 1003. On silica with microwave irradiation, see Loupy, A.; Régnier, S. *Tetrahedron Lett.* **1999**, *40*, 6221.

³⁰⁹Dongare, M.K.; Bhagwat, V.V.; Ramana, C.V.; Gurjar, M.K. Tetrahedron Lett. 2004, 45, 4759.

³¹⁰De, S.K. Synth. Commun. 2004, 34, 3431.

³¹¹De, S.K. Org. Prep. Proceed. Int. 2004, 36, 383.

HCl-HOAc-Ac₂O, POCl₃,³¹² BiCl₃,³¹³ neat with FeCl₃,³¹⁴ and polyphosphoric acid.³¹⁵ The reaction has been done in supercritical water³¹⁶ and in ionic liquids.³¹⁷ A polymer-bound Beckman rearrangement has been reported.³¹⁸ Simply heating the oxime of benzophenone neat leads to *N*-phenyl benzamide.³¹⁹ The oximes of cyclic ketones give ring enlargement and form the lactam,³²⁰ as in the formation of caprolactam (**83**) from the oxime of cyclohexanone. Heating an oxime of a cyclic ketone, *neat*, with AlCl₃ also leads to the lactam,³²¹ as does microwave irradiation of an oxime on Montmorillonite K10 clay.³²² Other solvent-free reactions are known.³²³ Treatment of a cyclic ketone with NH₂OSO₃H on silica gel followed by microwave irradiation also gives the lactam.³²⁴ Cyclic ketones can be converted directly to lactams in one laboratory step by treatment with NH₂OSO₂OH and formic acid (**16-14** takes place first, then the Beckmann rearrangement).³²⁵ Heating a ketone with hydroxylamine HCl and oxalic acid also gives the amide.³²⁶ Note that the reaction of an imine with BF₃•OEt₂ and *m*-chloroperoxybenzoic acid leads to a formamide.³²⁷

Of the groups attached to the carbon of the C=N unit, the one that migrates in the Beckman rearrangement is generally the one anti to the hydroxyl, and this is

- ³¹³With microwave irradiation, see Thakur, A.J.; Boruah, A.; Prajapati, D.; Sandhu, J.S. *Synth. Commun.* **2000**, *30*, 2105.
- ³¹⁴Khodaei, M.M.; Meybodi, F.A.; Rezai, N.; Salehi, P. Synth. Commun. 2001, 31, 2047.
- ³¹⁵For a review of Beckmann rearrangements with polyphosphoric acid, see Beckwith, A.L.J., in Zabicky, J. *The Chemistry of Amides*, Wiley, NY, **1970**, pp. 131–137.
- ³¹⁶Ikushima, Y.; Hatakeda, K.; Sato, O.; Yokoyama, T.; Arai, M. J. Am. Chem. Soc. 2000, 122, 1908; Boero, M.; Ikeshoji, T.; Liew, C.C.; Terakura, K.; Parrinello, M. J. Am. Chem. Soc. 2004, 126, 6280.
- 317 In BPy BF₄, butylpyridinium tetrafluoroborate: Peng, J.; Deng, Y. *Tetrahedron Lett.* **2001**, 42, 403. In bmim PF₆, 1-butyl-3-methylimidazolium hexafluorophosphate: Ren, R.X.; Zueva, L.D.; Ou, X. *Tetrahedron Lett.* **2001**, 42, 8441.
- ³¹⁸His, S.; Meyer, C.; Cossy, J.; Emeric, G.; Greiner, A. Tetrahedron Lett. 2003, 44, 8581.

³¹⁹Chandrasekhar, S.; Gopalaiah, K. Tetrahedron Lett. 2001, 42, 8123.

³²⁰For a review of such ring enlargements, see Vinnik, M.I.; Zarakhani, N.G. *Russ. Chem. Rev.* **1967**, *36*, 51. For a review with respect to bicyclic oximes, see Krow, G.R. *Tetrahedron* **1981**, *37*, 1283.

³²⁴Laurent, A.; Jacquault, P.; DiMarino, J.-L.; Hamelin, J. J. Chem. Soc., Chem. Commun. 1995, 1101.

³¹²Majo, V.J.; Venugopal, M.; Prince, A.A.M.; Perumal, P.T. Synth. Commun. 1995, 25, 3863.

³²¹Ghiaci, M.; Imanzadeh, G.H. Synth. Commun. **1998**, 28, 2275. See Moghaddam, F.M.; Rad, A.A.R.; Zali-Boinee, H. Synth. Commun. **2004**, 34, 2071.

³²²Bosch, A.I.; de la Cruz, P.; Diez-Barra, E.; Loupy, A.; Langa, F. Synlett **1995**, 1259.

³²³Sharghi, H.; Hosseini, M. Synthesis 2002, 1057; Eshghi, H.; Gordi, Z. Synth. Commun. 2003, 33, 2971.

³²⁵Olah, G.A.; Fung, A.P. *Synthesis* **1979**, 537. See also, Novoselov, E.F.; Isaev, S.D.; Yurchenko, A.G.; Vodichka, L.; Trshiska, Ya. *J. Org. Chem. USSR* **1981**, *17*, 2284.

³²⁶Chandrassekhar, S.; Gopalaiah, K. Tetrahedron Lett. 2003, 44, 7437.

³²⁷An, G.-i.; Kim, M.; Kim. J.Y.; Rhee, H. Tetrahedron Lett. 2003, 44, 2183.

often used as a method of determining the configuration of the oxime. However, it is not unequivocal. It is known that with some oximes the syn group migrates and that with others, especially where R and R' are both alkyl, mixtures of the two possible amides are obtained. However, this behavior does not necessarily mean that the syn group actually undergoes migration. In most cases, the oxime undergoes isomerization under the reaction conditions *before* migration takes place.³²⁸ The scope of the reaction is quite broad and R and R' may be alkyl, aryl, or hydrogen. However, hydrogen very seldom *migrates*, so the reaction is not generally a means of converting aldoximes to unsubstituted amides (RCONH₂). This latter conversion can be accomplished, however, by treatment of the aldoxime with nickel acetate under neutral conditions³²⁹ or by heating the aldoxime for 60 h at 100°C after it has been adsorbed onto silica gel.³³⁰ As in the case of the Schmidt rearrangement, when the oxime is derived from an alkyl aryl ketone, it is generally the aryl group that preferentially migrates.³³¹

Not only do oximes undergo the Beckmann rearrangement, but so also do esters of oximes with many acids, organic and inorganic. A side reaction with many substrates is the formation of nitriles (the "abnormal" Beckmann rearrangement, **17-30**). The other reagents convert OH to an ester leaving group (e.g., OPCl₄ from PCl₅ and OSO₂OH from concentrated $H_2SO_4^{332}$). The *O*-carbonates of imines, such as Ph₂C=N-OCO₂Et, react with BF₃•OEt₂ to give the corresponding amide, in this case *N*-phenyl benzamide.³³³

In the first step of the mechanism, the OH group is converted by the reagent to a better leaving group, for example, proton acids convert it to OH_2^+ . After that, the mechanism³³⁴ follows a course analogous to that for the Schmidt reaction of ketones (**18-16**) from the formation of nitrilium ion **82** on:³³⁵ Alternatively, the attack on **82** can be by the leaving group, if different from H₂O. For example, when PCl₅ is used to induce the reaction, a N–O–PCl₄ species is formed, which generates **82**. Intermediates of the form **82** have been detected by nmr and uv spectroscopy.³³⁶ The rearrangement has also been found to take place by a different mechanism, involving formation of a nitrile by fragmentation, and then addition by

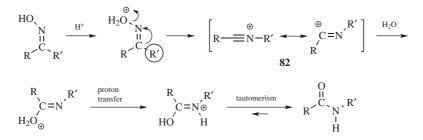
³³¹See Arisawa, M.; Yamaguchi, M. Org. Lett. 2001, 3, 311.

³²⁸Lansbury, P.T.; Mancuso, N.R. *Tetrahedron Lett.* **1965**, 2445 have shown that some Beckmann rearrangements are *authentically* nonstereospecific.

³²⁹Field, L.; Hughmark, P.B.; Shumaker, S.H.; Marshall, W.S. *J. Am. Chem. Soc.* **1961**, *83*, 1983. See also, Leusink, A.J.; Meerbeek, T.G.; Noltes, J.G. *Recl. Trav. Chim. Pays-Bas* **1976**, *95*, 123; **1977**, *96*, 142.

³³⁰Chattopadhyaya, J.B.; Rama Rao, A.V. Tetrahedron 1974, 30, 2899.

³³²Gregory, B.J.; Moodie, R.B.; Schofield, K. J. Chem. Soc. B 1970, 338; Kim, S.; Kawakami, T.; Ando, T.; Yukawa, Y. Bull. Chem. Soc. Jpn. 1979, 52, 1115.


³³³Anilkumar, R.; Chandrasekhar, S. Tetrahedron Lett. 2000, 41, 5427.

³³⁴For a discussion of the gas-phase reaction mechanism, see Nguyen, M.T.; Vanquickenborne, L.G. J. Chem. Soc. Perkin Trans. 2 **1993**, 1969.

³³⁵For summaries of the considerable evidence for this mechanism, see Donaruma, L.G.; Heldt, W.Z. Org. *React.* **1960**, *11*, 1, 5–14; Smith, P.A.S., in de Mayo, P. *Molecular Rearrangments*, Vol. 1, Wiley, NY, **1963**, 483–507, p. 488–493.

³³⁶Gregory, B.J.; Moodie, R.B.; Schofield, K. J. Chem. Soc. B 1970, 338.

a Ritter reaction (**16-91**).³³⁷ Beckmann rearrangements have also been carried out photochemically.³³⁸

If the rearrangement of oxime sulfonates is induced by organoaluminum reagents,³³⁹ the nitrilium ion intermediate **82** is captured by the nucleophile originally attached to the Al. By this means an oxime can be converted to an imine, an imino thioether (R–N=C–SR), or an imino nitrile (R–N=C–CN).³⁴⁰ In the last case, the nucleophile comes from added trimethylsilyl cyanide. The imine-producing reaction can also be accomplished with a Grignard reagent in benzene or toluene.³⁴¹

In a related reaction, treatment of spirocyclic oxaziridines with MnCl(TPP)³⁴² or photolysis³⁴³ leads to a lactam.

OS II, 76, 371; VIII, 568.

18-18 Stieglitz and Related Rearrangements

Methoxy-de-N-chloro- $(2/ \rightarrow 1/N$ -alkyl)-migro-substitution, and so on

Besides the reactions discussed at **18-13–18-17**, a number of other rearrangements are known in which an alkyl group migrates from C to N. Certain bicyclic *N*-haloamines, for example *N*-chloro-2-azabicyclo[2.2.2]octane (above), undergo

³³⁷Hill, R.K.; Conley, R.T.; Chortyk, O.T. J. Am. Chem. Soc. **1965**, 87, 5646; Palmere, R.M.; Conley, R.T.; Rabinowitz, J.L. J. Org. Chem. **1972**, 37, 4095.

³³⁸See, for example, Izawa, H.; de Mayo, P.; Tabata, T. *Can. J. Chem.* **1969**, 47, 51; Cunningham, M.; Ng Lim, L.S.; Just, T. *Can. J. Chem.* **1971**, 49, 2891; Suginome, H.; Yagihashi, F. *J. Chem. Soc. Perkin Trans. 1* **1977**, 2488.

³³⁹For a review, see Maruoka, K.; Yamamoto, H. Angew. Chem. Int. Ed. 1985, 24, 668.

³⁴⁰Maruoka, K.; Miyazaki, T.; Ando, M.; Matsumura, Y.; Sakane, S.; Hattori, K.; Yamamoto, H. J. Am. Chem. Soc. **1983**, 105, 2831; Maruoka, K.; Nakai, S.; Yamamoto, H. Org. Synth. 66, 185.

³⁴¹Hattori, K.; Maruoka, K.; Yamamoto, H. Tetrahedron Lett. 1982, 23, 3395.

³⁴²Suda, K.; Sashima, M.; Izutsu, M.; Hino, F. J. Chem. Soc., Chem. Commun. 1994, 949.

³⁴³Post, A.J.; Nwaukwa, S.; Morrison, H. J. Am. Chem. Soc. 1994, 116, 6439.

rearrangement when solvolyzed in the presence of silver nitrate.³⁴⁴ This reaction is similar to the Wagner–Meerwein rearrangement (**18-1**) and is initiated by the silver-catalyzed departure of the chloride ion.³⁴⁵ Similar reactions have been used for ring expansions and contractions, analogous to those discussed for reaction **18-3**.³⁴⁶ An example is the conversion of 1-(*N*-chloroamino)cyclopropanols to β -lactams.³⁴⁷ Methyl prolinate was converted to the lactam 2-piperidone upon treatment with SmI₂ and pivalic acid–THF.³⁴⁸

The name *Stieglitz rearrangement* is generally applied to the rearrangements of trityl *N*-haloamines and

Ar₃CNHX $\xrightarrow{\text{base}}$ Ar₂C=NAr Ar₃CNHOH $\xrightarrow{\text{PCl}_5}$ Ar₂C=NAr

hydroxylamines. These reactions are similar to the rearrangements of alkyl azides (**18-14**), and the name Stieglitz rearrangement is also given to the rearrangement of trityl azides. Another similar reaction is the rearrangement undergone by tritylamines when treated with lead tetraacetate:³⁴⁹

 $Ar_3CNH_2 \longrightarrow Ar_2C=NAr$

D. Carbon-to-Oxygen Migrations of R and AR

18-19 The Baeyer–Villiger Rearrangement³⁵⁰

Oxy-insertion

³⁴⁴Gassman, P.G.; Fox, B.L. J. Am. Chem. Soc. **1967**, 89, 338. See also, Schell, F.M.; Ganguly, R.N. J. Org. Chem. **1980**, 45, 4069; Davies, J.W.; Malpass, J.R.; Walker, M.P. J. Chem. Soc., Chem. Commun. **1985**, 686; Hoffman, R.V.; Kumar, A.; Buntain, G.A. J. Am. Chem. Soc. **1985**, 107, 4731.

 345 For C \rightarrow N rearrangements induced by AlCl₃, see Kovacic, P.; Lowery, M.K.; Roskos, P.D. Tetrahedron **1970**, 26, 529.

³⁴⁶Gassman, P.G.; Carrasquillo, A. *Tetrahedron Lett.* **1971**, 109; Hoffman, R.V.; Buntain, G.A. J. Org. Chem. **1988**, 53, 3316.

³⁴⁷Wasserman, H.H.; Adickes, H.W.; Espejo de Ochoa, O. J. Am. Chem. Soc. 1971, 93, 5586; Wasserman, H.H.; Glazer, E.A.; Hearn, M.J. Tetrahedron Lett. 1973, 4855.

³⁴⁸Honda, T.; Ishikawa, F. Chem. Commun. 1999, 1065.

³⁴⁹Sisti, A.J.; Milstein, S.R. J. Org. Chem. 1974, 39, 3932.

³⁵⁰For a review, see Renz, M.; Meunier, B. *Eur. J. Org. Chem.* **1999**, 737. For a review of green procedures, see Ten Brink, G.-J.; Arends, W.C.E.; Sheldon, R.A. *Chem. Rev.* **2004**, *104*, 4105.

The treatment of ketones with peroxyacids, such as peroxybenzoic or peroxyacetic acid, or with other peroxy compounds in the presence of acid catalysts, gives carboxylic esters by "insertion" of oxygen³⁵¹ and the carboxylic acid parent of the peroxyacid as a by-product. The reaction is called the Baeyer-Villiger rearrangement.³⁵² A particularly good reagent is peroxytrifluoroacetic acid. Reactions with this reagent are rapid and clean, giving high yields of product, though it is often necessary to add a buffer, such as Na₂HPO₄, to prevent transesterification of the product with trifluoroacetic acid that is also formed during the reaction. The reaction is often applied to cyclic ketones to give lactones.³⁵³ Hydrogen peroxide has been used to convert cyclic ketones to lactones using a catalytic amount of MeReO3³⁵⁴ or a diselenide catalyst.³⁵⁵ Hydrogen peroxide and a MeReO₃ catalyst has been used in an ionic liquid.³⁵⁶ Transition-metal catalysts have been used with peroxyacids to facilitate the oxidation.³⁵⁷ Hydrogen peroxide and PhAsO₃H₂ in hexafluoro-1propanol can be used.³⁵⁸ Polymer-supported peroxy acids have been used,³⁵⁹ and solvent-free Bayer-Villiger reactions are known.³⁶⁰ Enantioselective synthesis³⁶¹ of chiral lactones from achiral ketones has been achieved by the use of enzymes³⁶²

³⁵³For a review of the reaction as applied to bicyclic ketones, see Krow, G.R. *Tetrahedron* 1981, 37, 2697.
 ³⁵⁴Phillips, A.M.F.; Romão, C. *Eur. J. Org. Chem.* 1999, 1767.

³⁵⁵ten Brink, G.-J.; Vis, J.-M.; Arends, I.W.C.E.; Sheldon, R.A. J. Org. Chem. 2001, 66, 2429.

³⁵⁶In bmim BF₄, 1-butyl-3-methylimidazoliuum tetrafluoroborate: Bernini, R.; Coratti, A.; Fabrizi, G.; Goggiamani, A. *Tetrahedron Lett.* **2003**, *44*, 8991.

³⁵⁷Kotsuki, H.; Arimura, K.; Araki, T.; Shinohara, T. *Synlett* **1999**, 462; Alam, M.M.; Varala, R.; Adapa, S.R. *Synth. Commun.* **2003**, *33*, 3035.

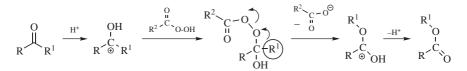
³⁵⁸Berkessel, A.; Andreae, M.R.M. Tetrahedron Lett. 2001, 42, 2293.

³⁵⁹Lambert, A.; Elings, J.A.; Macquarrie, D.J.; Carr, G.; Clark, J.H. *Synlett* **2000**, 1052. For a discussion of selectivity in solid-state Bayer-Villiger reactions, see Hagiwara, H.; Nagatomo, H.; Yoshii, F.; Hoshi, T.; Suzuki, T.; Ando, M. *J. Chem. Soc., Perkin Trans. 1* **2000**, 2645.

³⁶⁰Yakura, T.; Kitano, T.; Ikeda, M.; Uenishi, J. Tetrahedron Lett. 2002, 43, 6925.

³⁶¹See Bolm, C.; Beckmann, O.; Kühn, T.; Palazzi, C.; Adam, W.; Rao, P.B.; Saha-Möller, C.R. *Tetrahedron Asymmetry* **2001**, *12*, 2441; Bolm, C.; Frison J.-C.; Zhang, Y.; Wulff, W.D. *Synlett* **2004**, 1619.

³⁶²See Taschner, M.J.; Black, D.J. J. Am. Chem. Soc. 1988, 110, 6892; Taschner, M.J.; Peddada, L. J. Chem. Soc., Chem. Commun. 1992, 1384; Pchelka, B.K.; Gelo Pujic, M.; Guibé-Jampel, E. J. Chem. Soc. Perkin Trans. 1 1998, 2625; Stewart, J.D.; Reed, K.W.; Martinez, C.A.; Zhu, J.; Chen, G.; Kayser, M.M. J. Am. Chem. Soc. 1998, 120, 3541; Lemoult, S.C.; Richardson, P.F.; Roberts, S.M. J. Chem. Soc. Perkin Trans. 1 1995, 89; Mihovilovic, M.D.; Müller, B.; Kayser, M.M.; Stewart, J.D.; Stanetty, P. Synlett 2002, 703. For a review of enzyme-catalyzed Baeyer–Villiger rearrangements, see Walsh, C.T.; Chen, Y.J. Angew. Chem. Int. Ed. 1988, 27, 333. For a review of monooxygenase-mediated Baeyer–Villiger rearrangements, see Mihovilovic, M.D.; Müller, B.; Stanetty, P. Eur. J. Org. Chem. 2002, 3711. For a reaction using engineered E. coli cells, see Mihovilovic, M.D.; Chen, G.; Wang, S.; Kyte, B.; Rochon, F.; Kayser, M.M.; Stewart, J.D. J. Org. Chem. 2001, 66, 733.


³⁵¹For a list of reagents, with references, see Larock, R.C. *Comprehensive Organic Transformations*; 2nd ed., Wiley-VCH, NY, *1999*, pp. 1665–1667.

³⁵²For reviews, see Hudlický, M. Oxidations in Organic Chemistry, American Chemical Society, Washington, DC, *1990*, pp. 186–195; Plesničar, B., in Trahanovsky, W.S. Oxidation in Organic Chemistry, pt. C, Academic Press, NY, *1978*, pp. 254–267; House, H.O. Modern Synthetic Reactions, 2nd ed., W.A. Benjamin, NY, *1972*, pp. 321–329; Lewis, S.N., in Augustine, R.L. Oxidation, Vol. 1, Marcel Dekker, NY, *1969*, pp. 237–244; Lee, J.B.; Uff, B.C. Q. Rev. Chem. Soc. *1967*, 21, 429, see pp. 449–453. Also see, Mino, T.; Masuda, S.; Nishio, M.; Yamashita, M. J. Org. Chem. *1997*, 62, 2633. For a discussion of uncatalyzed versus BF₃-assisted reactions, see Carlqvist, P.; Eklund, R.; Brinck, T. J. Org. Chem. *2001*, 66, 1193.

and other asymmetric reactions are known.³⁶³ Oxidation of chiral substrates with m-chloroperoxybenzoic acid (mcpba) also leads to chiral lactones.³⁶⁴

For acyclic compounds, R' must usually be secondary, tertiary, or vinylic, although primary R' has been rearranged with peroxytrifluoroacetic acid,³⁶⁵ with BF₃–H₂O₂,³⁶⁶ and with K₂S₂O₈–H₂SO₄.³⁶⁷ For unsymmetrical ketones the approximate order of migration is tertiary alkyl > secondary alkyl, aryl > primary alkyl > methyl. Since the methyl group has a low migrating ability, the reaction provides a means of cleaving a methyl ketone R'COMe to produce an alcohol or phenol (R'OH) (by hydrolysis of the ester R'OCOMe). The migrating ability of aryl groups is increased by electron-donating and decreased by electron-withdrawing substituents.³⁶⁸ There is a preference of anti over gauche migration.³⁶⁹ Enolizable β -diketones do not react. α -Diketones can be converted to anhydrides.³⁷⁰ With aldehydes, migration of hydrogen gives the carboxylic acid, and this is a way of accomplishing **19-23**. Migration of the other group would give formates, but this seldom happens, though aryl aldehydes have been converted to formates with H₂O₂ and a selenium compound³⁷¹ (see also the Dakin reaction in **19-11**).

The mechanism³⁷² is similar to those of the analogous reactions with hydrazoic acid (**18-16** with ketones) and diazomethane (**18-8**):

One important piece of evidence for this mechanism was that benzophenone–¹⁸O gave ester entirely labeled in the carbonyl oxygen, with none in the alkoxyl oxygen.³⁷³ Carbon-14 isotope-effect studies on acetophenones have shown that

³⁶³For example, see Sugimura, T.; Fujiwara, Y.; Tai, A. *Tetrahedron Lett.* **1997**, *38*, 6019; Bolm, C.; Schlingloff, G.; Weickhardt, K. *Angew. Chem. Int. Ed.* **1994**, *33*, 1848; Bolm, C.; Schlingloff, G. *J. Chem. Soc., Chem. Commun.* **1995**, 1247; Bolm, C.; Beckmann, O.; Cosp, A.; Palazzi, C. *Synlett* **2001**, 1461; Bolm, C.; Beckmann, O.; Palazzi, C. *Can. J. Chem.* **2001**, *79*, 1593; Shinohara, T.; Fujioka, S.; Kotsuki, H. *Heterocycles* **2001**, *55*, 237; Watanabe, A.; Uchida, T.; Ito, K.; Katsuki, T. *Tetrahedron Lett.* **2002**, *43*, 4481; Murhashi, S.-I.; Ono, S.; Imada, Y. *Angew. Chem. Int. Ed.* **2002**, *41*, 2366.

³⁶⁴Hunt, KW.; Grieco, P.A. Org. Lett. 2000, 2, 1717.

³⁶⁷Deno, N.C.; Billups, W.E.; Kramer, K.E.; Lastomirsky, R.R. J. Org. Chem. 1970, 35, 3080.

³⁶⁸For as report of substituent effects in the α , β , and γ position of alkyl groups, see Noyori, R.; Sato, T.; Kobayashi, H. *Bull. Chem. Soc. Jpn.* **1983**, *56*, 2661.

³⁷³Doering, W. von E.; Dorfman, E. J. Am. Chem. Soc. **1953**, 75, 5595. For summaries of the other evidence, see Smith, P.A.S., in de Mayo, P. Molecular Rearrangements, Vol. 1, Wiley, NY, **1963**, pp. 578–584.

³⁶⁵Emmons, W.D.; Lucas, G.B. J. Am. Chem. Soc. 1955, 77, 2287.

³⁶⁶McClure, J.D.; Williams, P.H. J. Org. Chem. 1962, 27, 24.

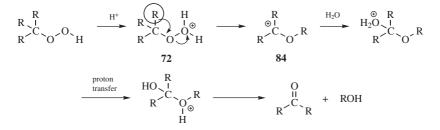
³⁶⁹Snowden, M.; Bermudez, A.; Kelly, D.R.; Radkiewicz-Poutsma, J.L. J. Org. Chem. 2004, 69, 7148.

³⁷⁰For a study of the mechanism of this conversion, see Cullis, P.M.; Arnold, J.R.P.; Clarke, M.; Howell, R.; DeMira, M.; Naylor, M.; Nicholls, D. J. Chem. Soc., Chem. Commun. **1987**, 1088.

³⁷¹Syper, L. Synthesis **1989**, 167. See also, Godfrey, I.M.; Sargent, M.V.; Elix, J.A. J. Chem. Soc. Perkin Trans. 1 **1974**, 1353.

³⁷²Proposed by Criegee, R. Liebigs Ann. Chem. 1948, 560, 127.

migration of aryl groups takes place in the rate-determining step,³⁷⁴ demonstrating that migration of Ar is concerted with departure of OCOR^{2,375} It is hardly likely that migration would be the slow step if the leaving group departed first to give an ion with a positive charge on an oxygen atom, which would be a highly unstable species.


18-20 Rearrangement of Hydroperoxides

C-Alkyl-O-hydroxy-elimination

$$\begin{array}{c} R \\ R \\ R \\ C \\ O \\ O \\ H \end{array} \xrightarrow{H^+} \begin{array}{c} O \\ I \\ R \\ C \\ R \end{array} + ROH$$

Hydroperoxides (R = alkyl, aryl, or hydrogen) can be cleaved by proton or Lewis acids in a reaction whose principal step is a rearrangement.³⁷⁶ The reaction has also been applied to peroxy esters (R₃COOCOR'), but less often. When aryl and alkyl groups are both present, migration of aryl dominates. It is not necessary actually to prepare and isolate hydroperoxides. The reaction takes place when the alcohols are treated with H₂O₂ and acids. Migration of an alkyl group of a primary hydroperoxide provides a means for converting an alcohol to its next lower homolog (RCH₂OOH \rightarrow CH₂=O + ROH).

The mechanism is as follows:³⁷⁷

The last step is hydrolysis of the unstable hemiacetal. Alkoxycarbocation intermediates (84, R = alkyl) have been isolated in super acid solution³⁷⁸ at

³⁷⁴Palmer, B.W.; Fry, A. J. Am. Chem. Soc. 1970, 92, 2580. See also, Mitsuhashi, T.; Miyadera, H.; Simamura, O. Chem. Commun. 1970, 1301. For secondary isotope-effect studies, see Winnik, M.A.; Stoute, V.; Fitzgerald, P. J. Am. Chem. Soc. 1974, 96, 1977.

³⁷⁵In some cases, the rate-determining step has been shown to be the addition of peracid to the substrate (see, e.g., Ogata, Y.; Sawaki, Y. *J. Org. Chem.* **1972**, *37*, 2953). Even in these cases it is still highly probable that migration is concerted with departure of the nucleofuge.

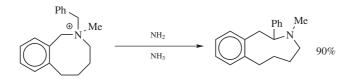
³⁷⁶For reviews, see Yablokov, V.A. Russ. Chem. Rev. **1980**, 49, 833; Lee, J.B.; Uff, B.C. Q. Rev. Chem. Soc. **1967**, 21, 429, 445–449.

³⁷⁷For a discussion of the transition state involved in the migration step, see Wistuba, E.; Rüchardt, C. *Tetrahedron Lett.* **1981**, 22, 3389.

³⁷⁸For a review of peroxy compounds in super acids, see Olah, G.A.; Parker, D.G.; Yoneda, N. Angew. Chem. Int. Ed. **1978**, 17, 909.

low temperatures, and their structures proved by nmr.³⁷⁹ The protonated hydroperoxides could not be observed in these solutions, evidently reacting immediately on formation.

OS V, 818.


E. Nitrogen-to-Carbon, Oxygen-to-Carbon, and Sulfur-to-Carbon Migration

18-21 The Stevens Rearrangement

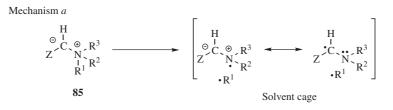
Hydron-($2/N \rightarrow 1/alkyl$)-*migro*-detachment

In the *Stevens rearrangement*, a quaternary ammonium salt containing an electron-withdrawing group Z on one of the carbons attached to the nitrogen is treated with a strong base (e.g., NaOR or NaNH₂) to give a rearranged tertiary amine. The Z group may be RCO, ROOC, or phenyl.³⁸⁰ The most common migrating groups are allylic, benzylic, benzhydryl, 3-phenylpropargyl, and phenacyl, though even methyl migrates to a sufficiently negative center.³⁸¹ When an allylic group migrates, it may or may not involve an allylic rearrangement within the migrating group (see **18-35**), depending on the substrate and reaction conditions. The reaction has been used for ring enlargement,³⁸² for example:

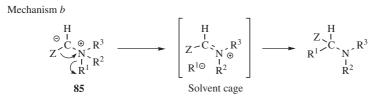
The mechanism has been the subject of much study.³⁸³ That the rearrangement is intramolecular was shown by crossover experiments, by ¹⁴C labeling,³⁸⁴ and by the

³⁷⁹Sheldon, R.A.; van Doorn, J.A. Tetrahedron Lett. 1973, 1021.

³⁸⁰For reviews of the Stevens rearrangement, see Lepley, A.R.; Giumanini, A.G. Mech. Mol. Migr. 1971, 3, 297; Pine, S.H. Org. React. 1970, 18, 403. For reviews of the Stevens and the closely related Wittig rearrangement (18-22), see Stevens, T.S.; Watts, W.E. Selected Molecular Rearrangements, Van Nostrand-Reinhold, Princeton, NJ, 1973, pp. 81–116; Wilt, J.W., in Kochi, J.K. Free Radicals, Vol. 1, Wiley, NY, 1973, pp. 448–458; Iwai, I. Mech. Mol. Migr. 1969, 2, 73, see pp. 105–113; Stevens, T.S. Prog. Org. Chem. 1968, 7, 48.


³⁸¹Migration of aryl is rare, but has been reported: Heaney, H.; Ward, T.J. *Chem. Commun.* **1969**, 810; Truce, W.E.; Heuring, D.L. *Chem. Commun.* **1969**, 1499.

³⁸²Elmasmodi, A.; Cotelle, P.; Barbry, D.; Hasiak, B.; Couturier, D. Synthesis 1989, 327.


³⁸³For example, see Pine, S.H. J. Chem. Educ. 1971, 48, 99; Heard, G.L.; Yates, B.F. Aust. J. Chem. 1994, 47, 1685.

³⁸⁴Stevens, T.S. J. Chem. Soc. 1930, 2107; Johnstone, R.A.W.; Stevens, T.S. J. Chem. Soc. 1955, 4487.

fact that retention of configuration is found at $R^{1.385}$ The first step is loss of the acidic proton to give the ylid **85**, which has been isolated.³⁸⁶ The finding³⁸⁷ that CIDNP spectra³⁸⁸ could be obtained in many instances shows that in these cases the product is formed directly from a free-radical precursor. The following radical pair mechanism was proposed:³⁸⁹

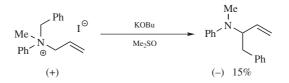
The radicals do not drift apart because they are held together by the solvent cage. According to this mechanism, the radicals must recombine rapidly in order to account for the fact that R^1 does not racemize. Other evidence in favor of mechanism *a* is that in some cases small amounts of coupling products (R^1-R^1) have been isolated,³⁹⁰ which would be expected if some $\cdot R^1$ leaked from the solvent cage. However, not all the evidence is easily compatible with mechanism *a*.³⁹¹ It is possible that another mechanism (*b*) similar to mechanism *a*, but involving

ion pairs in a solvent cage instead of radical pairs, operates in some cases. A third possible mechanism would be a concerted 1,2-shift,³⁹² but the orbital symmetry

- ³⁸⁷Lepley, A.R.; Becker, R.H.; Giumanini, A.G. J. Org. Chem. **1971**, *36*, 1222; Baldwin, J.E.; Brown, J.E. J. Am. Chem. Soc. **1969**, *91*, 3646; Jemison, R.W.; Morris, D.G. Chem. Commun. **1969**, 1226; Schöllkopf, U.; Ludwig, U.; Ostermann, G.; Patsch, M. Tetrahedron Lett. **1969**, 3415.
- ³⁸⁸For a review of the application of CIDNP to rearrangement reactions, see Lepley, A.R., in Lepley, A.R.; Closs, G.L. *Chemically Induced Magnetic Polarization*, Wiley, NY, **1973**, pp. 323–384.

³⁸⁵Brewster, J.H.; Kline, M.W. J. Am. Chem. Soc. **1952**, 74, 5179; Schöllkopf, U.; Ludwig, U.; Ostermann, G.; Patsch, M. Tetrahedron Lett. **1969**, 3415.

³⁸⁶Jemison, R.W.; Mageswaran, S.; Ollis, W.D.; Potter, S.E.; Pretty, A.J.; Sutherland, I.O.; Thebtaranonth, Y. Chem. Commun. 1970, 1201.


³⁸⁹Schöllkopf, U.; Ludwig, U. *Chem. Ber.* **1968**, 101, 2224; Ollis, W.D.; Rey, M.; Sutherland, I.O. J. Chem. Soc. Perkin Trans. 1 **1983**, 1009, 1049.

³⁹⁰Schöllkopf, U.; Ludwig, U.; Ostermann, G.; Patsch, M. *Tetrahedron Lett.* **1969**, 3415; Hennion, G.F.; Shoemaker, M.J. J. Am. Chem. Soc. **1970**, 92, 1769.

³⁹¹See, for example, Pine, S.H.; Catto, B.A.; Yamagishi, F.G. J. Org. Chem. 1970, 35, 3663.

³⁹²For evidence against this mechanism, see Jenny, E.F.; Druey, J. Angew. Chem. Int. Ed. 1962, 1, 155.

principle requires that this take place with inversion at $\mathbb{R}^{1,393}$ (see p. 1654.) Since the actual migration takes place with retention, it cannot, according to this argument, proceed by a concerted mechanism. However, in the case where the migrating group is allylic, a concerted mechanism can also operate (**18-35**). An interesting finding compatible with all three mechanisms is that optically active allylbenzylmethylphenylammonium iodide (asymmetric nitrogen, see p. 142) gave an optically active product:³⁹⁴

The *Sommelet–Hauser rearrangement* competes when Z is an aryl group (see **13-31**). *Hofmann elimination* competes when one of the R groups contains a β hydrogen atom (**17-7** and **17-8**).

Sulfur ylids containing a Z group give an analogous rearrangement, often also referred to as a Stevens

rearrangement.³⁹⁵ In this case too, there is much evidence (including CIDNP) that a radical-pair cage mechanism is operating,³⁹⁶ except that when the migrating group is allylic, the mechanism may be different (see **18-35**). Another reaction with a similar mechanism³⁹⁷ is the *Meisenheimer rearrangement*,³⁹⁸ in which certain tertiary

³⁹³Woodward, R.B.; Hoffmann, R. *The Conservation of Orbital Symmetry*, Academic Press, NY, **1970**, p. 131.

³⁹⁴Hill, R.K.; Chan, T. J. Am. Chem. Soc. 1966, 88, 866.

³⁹⁶See, for example, Baldwin, J.E.; Erickson, W.F.; Hackler, R.E.; Scott, R.M. *Chem. Commun.* 1970, 576; Schöllkopf, U.; Schossig, J.; Ostermann, G. *Liebigs Ann. Chem.* 1970, 737, 158; Iwamura, H.I.; Iwamura, M.; Nishida, T.; Yoshida, M.; Nakayama, T. *Tetrahedron Lett.* 1971, 63.

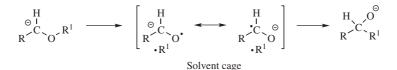
³⁹⁷For some of the evidence, see Ostermann, G.; Schöllkopf, U. *Liebigs Ann. Chem.* **1970**, 737, 170; Lorand, J.P.; Grant, R.W.; Samuel, P.A.; O'Connell, E.; Zaro, J. *Tetrahedron Lett.* **1969**, 4087.

³⁹⁸For a review, see Johnstone, R.A.W. *Mech. Mol. Migr.* **1969**, 2, 249. See Buston, J.E.H.; Coldham, I.; Mulholland, K.R. J. Chem. Soc., Perkin Trans. 1 **1999**, 2327.

³⁹⁵For a review, see Olsen, R.K.; Currie, Jr., J.O., in Patai, S. *The Chemistry of The Thiol Group*, pt. 2, Wiley, NY, **1974**, pp. 561–566.

amine oxides rearrange on heating to give substituted hydroxylamines.³⁹⁹ The migrating group R¹ is almost always allylic or benzilic.⁴⁰⁰ R² and R³ may be alkyl or aryl, but if one of the R groups contains a β hydrogen, Cope elimination (**17-9**) often competes. In a related reaction, when 2-methylpyridine *N*-oxides are treated with trifluoroacetic anhydride, the *Boekelheide reaction* occurs to give 2-hydroxymethylpyridines.⁴⁰¹

Certain tertiary benzylic amines, when treated with BuLi, undergo a rearrangement analogous to the Wittig rearrangement (**18-22**), for example, $PhCH_2NPh_2 \rightarrow Ph_2CHNHPh$.⁴⁰² Only aryl groups migrate in this reaction.


Isocyanides, when heated in the gas phase or in nonpolar solvents, undergo a 1,2-intramolecular rearrangement to nitriles: $RNC \rightarrow RCN$.⁴⁰³ In polar solvents the mechanism is different.⁴⁰⁴

18-22 The Wittig Rearrangement⁴⁰⁵

Hydron-($2/O \rightarrow 1/alkyl$)-*migro*-detachment

The rearrangement of ethers with alkyllithium reagents is called the *Wittig rearrangement* (not to be confused with the Wittig reaction, **16-44**) and is similar to **18-21**.³⁸⁰ However, a stronger base is required (e.g., phenyllithium or sodium amide). The R and R' groups, may be alkyl,⁴⁰⁶ aryl, or vinylic.⁴⁰⁷ Also, one of the hydrogens may be replaced by an alkyl or aryl group, in which case the product is the salt of a tertiary alcohol. Migratory aptitudes

³⁹⁹For example, see Buston, J.E.H.; Coldham, I.; Mulholland, K.R. *Tetrahedron Asymmetry*, **1998**, 9, 1995.

⁴⁰⁰Migration of aryl and of certain alkyl groups has also been reported. See Khuthier, A.; Al-Mallah, K.Y.; Hanna, S.Y.; Abdulla, N.I. *J. Org. Chem.* **1987**, *52*, 1710, and references cited therein.

⁴⁰¹Fontenas, C.; Bejan, E.; Haddon, H.A.; Balavoine, G.G.A. Synth. Commun. 1995, 25, 629.

⁴⁰²Eisch, J.J.; Kovacs, C.A.; Chobe, P. J. Org. Chem. 1989, 54, 1275.

⁴⁰³See Pakusch, J.; Rüchardt, C. Chem. Ber. 1991, 124, 971, and references cited therein.

⁴⁰⁴Meier, M.; Rüchardt, C. Chimia 1986, 40, 238.

⁴⁰⁵See Hiersemann, M.; Abraham, L.; Pollex, A. Synlett 2003, 1088.

⁴⁰⁶See Bailey, W.F.; England, M.D.; Mealy, M.J.; Thongsornkleeb, C.; Teng, L. Org. Lett. **2000**, 2, 489.

⁴⁰⁷For migration of vinyl, see Rautenstrauch, V.; Büchi, G.; Wüest, H. J. Am. Chem. Soc. **1974**, 96, 2576. For rearrangment of an α-trimethylsilyl allyl ether, see Maleczka, Jr., R.E.; Geng, F. Org. Lett. **1999**, 1, 1115.

here are allylic, benzylic > ethyl > methyl > phenyl.⁴⁰⁸ The stereospecificity of the 1,2-Wittig rearrangement has been discussed.⁴⁰⁹ The following radical-pair mechanism⁴¹⁰ (similar to mechanism *a* of **18-21**) is likely, after removal of the proton by the base. One of the radicals in the radical pair is a ketyl. Among the evidence for this mechanism is (1) the rearrangement is largely intramolecular; (2) migratory aptitudes are in the order of free-radical stabilities, not of carbanion stabilities⁴¹¹ (which rules out an ion-pair mechanism similar to mechanism b of **18-21**); (3) aldehydes are obtained as side products; 412 (4) partial racemization of R' has been observed⁴¹³ (the remainder of the product retained its configuration); (5) crossover products have been detected; 414 and (6) when ketyl radicals and R radicals from different precursors were brought together, similar products resulted.⁴¹⁵ However, there is evidence that at least in some cases the radical-pair mechanism accounts for only a portion of the product, and some kind of concerted mechanism can also take place.⁴¹⁶ Most of the above investigations were carried out with systems where R' is alkyl, but a radical-pair mechanism has also been suggested for the case where R' is aryl.⁴¹⁷ When R' is allylic a concerted mechanism can operate (18-35).

When R is vinylic it is possible, by using a combination of an alkyllithium and *t*-BuOK, to get migration to the γ carbon (as well as to the α carbon), producing an enolate that, on hydrolysis, gives an aldehyde:⁴¹⁸

$$CH_2 = CH - CH_2 - OR' \longrightarrow R'CH_2 - CH = CH - OLi \longrightarrow R'CH_2CH_2CHO$$

An aza-Wittig rearrangement is also known.⁴¹⁹

There are no OS references, but see OS VIII, 501, for a related reaction.

⁴⁰⁸Wittig, G. *Angew. Chem.* **1954**, *66*, 10; Solov'yanov, A.A.; Ahmed, E.A.A.; Beletskaya, I.P.; Reutov, O.A. J. Chem. Soc., Chem. Commun. **1987**, *23*, 1232.

⁴⁰⁹Maleczka Jr., R.E.; Geng, F. J. Am. Chem. Soc. 1998, 120, 8551.

⁴¹⁰For a review of the mechanism, see Schöllkopf, U. Angew. Chem. Int. Ed. 1970, 9, 763.

⁴¹¹Lansbury, P.T.; Pattison, V.A.; Sidler, J.D.; Bieber, J.B. J. Am. Chem. Soc. **1966**, 88, 78; Schäfer, H.; Schöllkopf, U.; Walter, D. *Tetrahedron Lett.* **1968**, 2809.

⁴¹²For example, see Hauser, C.R.; Kantor, S.W. J. Am. Chem. Soc. **1951**, 73, 1437; Cast, J.; Stevens, T.S.; Holmes, J. J. Chem. Soc. **1960**, 3521.

⁴¹³Schöllkopf, U.; Schäfer, H. *Liebigs Ann. Chem.* **1963**, 663, 22; Felkin, H.; Frajerman, C. *Tetrahedron Lett.* **1977**, 3485; Hebert, E.; Welvart, Z. J. Chem. Soc., Chem. Commun. **1980**, 1035; Nouv. J. Chim. **1981**, 5, 327.

⁴¹⁴Lansbury, P.T.; Pattison, V.A. J. Org. Chem. 1962, 27, 1933; J. Am. Chem. Soc. 1962, 84, 4295.

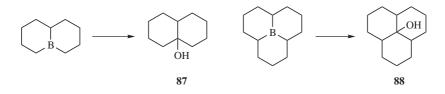
⁴¹⁵Garst, J.F.; Smith, C.D. J. Am. Chem. Soc. 1973, 95, 6870.

⁴¹⁶Garst, J.F.; Smith, C.D. J. Am. Chem. Soc. 1976, 98, 1526. For evidence against this, see Hebert, E.; Welvart, Z.; Ghelfenstein, M.; Szwarc, H. Tetrahedron Lett. 1983, 24, 1381.

⁴¹⁷Eisch, J.J.; Kovacs, C.A.; Rhee, S. J. Organomet. Chem. 1974, 65, 289.

⁴¹⁸Schlosser, M.; Strunk, S. Tetrahedron 1989, 45, 2649.

⁴¹⁹Coldham, I. J. Chem. Soc. Perkin Trans. 1 1993, 1275; Anderson, J.C.; Siddons, D.C.; Smith, S.C.; Swarbrick, M.E. J. Chem. Soc., Chem. Commun. 1995, 1835; Ahman, J.; Somfai, P. J. Am. Chem. Soc. 1994, 116, 9781.


F. Boron-to-Carbon Migrations⁴²⁰

For another reaction involving boron-to-carbon migration, see 10-73.

18-23 Conversion of Boranes to Alcohols

 $R_{3}B + CO \xrightarrow{HOCH_{2}CH_{2}OH} R_{3}C \xrightarrow{O} \xrightarrow{H_{2}O_{2}} R_{3}C-OH$ **86**

Trialkylboranes (which can be prepared from alkenes by **15-16**) react with carbon monoxide⁴²¹ at 100–125°C in the presence of ethylene glycol to give the 2-bora-1,3-dioxolanes (**86**), which are easily oxidized (**12-27**) to tertiary alcohols.⁴²² The R groups may be primary, secondary, or tertiary, and may be the same or different.⁴²³ Yields are high and the reaction is quite useful, especially for the preparation of sterically hindered alcohols, such as tricyclohexyl-carbinol (**87**) and tri-2-norbornylcarbinol (**88**), which are difficult to prepare by **16-24**. Heterocycles in which boron is a ring atom react similarly (except that high CO pressures are required), and cyclic alcohols can be obtained from these substrates.⁴²⁴ The preparation of such heterocyclic boranes was discussed at **15-16**. The overall conversion of a diene or triene to a cyclic alcohol has been described by H.C. Brown as "stitching" with boron and "riveting" with carbon.

⁴²⁰For reviews, see Matteson, D.S., in Hartley, F.R. *The Chemistry of the Metal-Carbon Bond*, Vol. 4, Wiley, NY, *1984*, pp. 307–409, 346–387; Pelter, A.; Smith, K.; Brown, H.C. *Borane Reagents*, Academic Press, NY, *1988*, pp. 256–301; Negishi, E.; Idacavage, M.J. Org. React. *1985*, *33*, 1; Suzuki, A *Top. Curr. Chem. 1983*, *112*, 67; Pelter, A., in de Mayo, P. Rearrangements in Ground and Excited States, Vol. 2, Academic Press, NY, *1980*, pp. 95–147; *Chem. Soc. Rev. 1982*, *11*, 191; Cragg, G.M.L.; Koch, K.R. *Chem. Soc. Rev. 1977*, *6*, 393; Weill-Raynal, J. Synthesis *1976*, 633; Cragg, G.M.L. Organoboranes in Organic Synthesis; Marcel Dekker, NY, *1973*, pp. 249–300; Paetzold, P.I.; Grundke, H. Synthesis *1973*, 635.

⁴²¹For discussions of the reaction of boranes with CO, see Negishi, E. *Intra-Sci. Chem. Rep.* 1973, 7(1),
81; Brown, H.C. *Boranes in Organic Chemistry*, Cornell University Press, Ithica, NY, 1972, pp. 343–371; *Acc. Chem. Res.* 1969, 2, 65.

⁴²²Hillman, M.E.D. J. Am. Chem. Soc. 1962, 84, 4715; 1963, 85, 982; Brown, H.C.; Rathke, M.W. J. Am. Chem. Soc. 1967, 89, 2737; Puzitskii, K.V.; Pirozhkov, S.D.; Ryabova, K.G.; Pastukhova, I.V.; Eidus, Ya.T. Bull. Acad. Sci. USSR Div. Chem. Sci. 1972, 21, 1939; 1973, 22, 1760; Brown, H.C.; Cole, T.E.; Srebnik, M.; Kim, K. J. Org. Chem. 1986, 51, 4925.

⁴²³Brown, H.C.; Gupta, S.K. J. Am. Chem. Soc. **1971**, 93, 1818; Negishi, E.; Brown, H.C. Synthesis **1972**, 197.

⁴²⁴Brown, H.C.; Negishi, E.; Dickason, W.C. J. Org. Chem. 1985, 50, 520, and references cited therein.

CHAPTER 18

Though the mechanism has not been investigated thoroughly, it has been shown to be intramolecular by the failure to find crossover products when mixtures of boranes are used.⁴²⁵ The following scheme, involving three boron-to-carbon migrations, has been suggested.

$$\begin{array}{c} \overset{\Theta_{C} \equiv 0^{\Theta}}{\longrightarrow} & \overset{R}{\underset{R} \to 0} \xrightarrow{-} & \overset{R}{\longrightarrow} \overset{R}{\underset{R} \to 0} \xrightarrow{-} & \overset{R}{\underset$$

The purpose of the ethylene glycol is to intercept the boronic anhydride **90**, which otherwise forms polymers that are difficult to oxidize. As we will see in **18-23** and **18-24**, it is possible to stop the reaction after only one or two migrations have taken place.

Method 1
$$R_3B + CHCl_2OMe \xrightarrow{1. LiOCEt_3 - THF} R_3COH$$

Method 2 $R_3B + {}^{\Theta}CN \xrightarrow{THF} R_3B - CN \xrightarrow{1. excess (CF_3CO)_2O} R_3COH$
91

There are two other methods for achieving the conversion $R_3B \rightarrow R_3COH$, which often give better results: (1) treatment with α,α -dichloromethyl methyl ether and the base lithium triethylcarboxide⁴²⁶ (2) treatment with a suspension of sodium cyanide in THF followed by reaction of the resulting trialkylcyanoborate **91** with an excess (>2 equivalents) of trifluoroacetic anhydride.⁴²⁷ All the above migrations take place with retention of configuration at the migrating carbon.⁴²⁸

Several other methods for the conversion of boranes to tertiary alcohols are also known. $^{\rm 429}$

If the reaction between trialkylboranes and carbon monoxide (**18-23**) is carried out in the presence of water followed by addition of NaOH, the product is a secondary alcohol. If H_2O_2 is added along with the NaOH, the corresponding ketone is obtained instead.⁴³⁰ Various functional groups (e.g., OAc, COOR, CN) may be

⁴²⁵Brown, H.C.; Rathke, M.W. J. Am. Chem. Soc. 1967, 89, 4528.

⁴²⁶Brown, H.C.; Carlson, B.A. J. Org. Chem. **1973**, 38, 2422; Brown, H.C.; Katz, J.; Carlson, B.A. J. Org. Chem. **1973**, 38, 3968.

⁴²⁷Pelter, A.; Hutchings, M.G.; Smith, K.; Williams, D.J. J. Chem. Soc. Perkin Trans. 1 1975, 145, and references cited therein.

⁴²⁸See however Pelter, A.; Maddocks, P.J.; Smith, K. J. Chem. Soc., Chem. Commun. 1978, 805.

 ⁴²⁹See, for example, Brown, H.C.; Lane, C.F. Synthesis 1972, 303; Yamamoto, Y.; Brown, H.C. J. Org. Chem. 1974, 39, 861; Zweifel, G.; Fisher, R.P. Synthesis 1974, 339; Midland, M.M.; Brown, H.C. J. Org. Chem. 1975, 40, 2845; Levy, A.B.; Schwartz, S.J. Tetrahedron Lett. 1976, 2201; Baba, T.; Avasthi, K.; Suzuki, A. Bull. Chem. Soc. Jpn. 1983, 56, 1571; Pelter, A.; Rao, J.M. J. Organomet. Chem. 1985, 285, 65; Junchai, B.; Hongxun, D. J. Chem. Soc., Chem. Commun. 1990, 323.

⁴³⁰Brown, H.C.; Rathke, M.W. J. Am. Chem. Soc. 1967, 89, 2738.

present in R without being affected,⁴³¹ though if they are in the α or β position relative to the boron atom, difficulties may

$$\stackrel{\bigcirc}{R_3B} - CN \xrightarrow{1. (CF_3CO)_2O} RCOR$$
91

be encountered. The use of an equimolar amount of trifluoroacetic anhydride leads to the ketone rather than the tertiary alcohol.^{427,432} By this procedure, thexylboranes (RR'R²B, where R² = thexyl) can be converted to unsymmetrical ketones (RCOR').⁴³³ Variations of this methodology have been used to prepare optically active alcohols.⁴³⁴

For another conversion of trialkylboranes to ketones (see **18-26**).⁴³⁵ Other conversions of boranes to secondary alcohols are also known.⁴³⁶

OS VII, 427. Also see, OS VI, 137.

18-24 Conversion of Boranes to Primary Alcohols, Aldehydes, or Carboxylic Acids

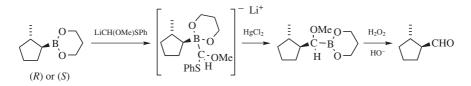
When the reaction between a trialkylborane and carbon monoxide (18-23) is carried out in the presence of a reducing agent such as lithium borohydride or potassium triisopropoxyborohydride, the reduction agent intercepts the intermediate **89**, so that only one boron-to-carbon migration takes place, and the product is hydrolyzed to a primary alcohol or oxidized to an aldehyde.⁴³⁷ This procedure wastes two of the three R groups, but this problem can be avoided by the use of

⁴³¹Brown, H.C.; Kabalka, G.W.; Rathke, M.W. J. Am. Chem. Soc. 1967, 89, 4530.

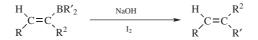
⁴³²Pelter, A.; Smith, K.; Hutchings, M.G.; Rowe, K. *J. Chem. Soc. Perkin Trans.* 1 1975, 129; See also, Mallison, P.R.; White, D.N.J.; Pelter, A.; Rowe, K.; Smith, K. *J. Chem. Res.* (*S*), 1978, 234.

⁴³³This has been done enantioselectively: Brown, H.C.; Bakshi, R.K.; Singaram, B. J. Am. Chem. Soc. **1988**, 110, 1529.

⁴³⁴For reviews, see Matteson, D.S. *Mol. Struct. Energ.* **1988**, 5, 343; Acc. Chem. Res. **1988**, 21, 294; Synthesis **1986**, 973, 980–983.


⁴³⁵For still other methods, see Brown, H.C.; Levy, A.B.; Midland, M.M. J. Am. Chem. Soc. **1975**, 97, 5017; Ncube, S.; Pelter, A.; Smith, K. Tetrahedron Lett. **1979**, 1893; Pelter, A.; Rao, J.M. J. Organomet. Chem. **1985**, 285, 65; Yogo, T.; Koshino, J.; Suzuki, A. Chem. Lett. **1981**, 1059; Brown. H.C.; Bhat, N.G.; Basavaiah, D. Synthesis **1983**, 885; Narayana, C.; Periasamy, M. Tetrahedron Lett. **1985**, 26, 6361.

⁴³⁶See, for example, Zweifel, G.; Fisher, R.P. Synthesis **1974**, 339; Brown, H.C.; DeLue, N.R. J. Am. Chem. Soc. **1974**, 96, 311; Hubbard, J.L.; Brown, H.C. Synthesis **1978**, 676; Uguen, D. Bull. Soc. Chim. Fr. **1981**, II-99.


⁴³⁷Brown, H.C.; Hubbard, J.L.; Smith, K. Synthesis **1979**, 701, and references cited therein. For discussions of the mechanism, see Brown, H.C.; Hubbard, J.L. J. Org. Chem. **1979**, 44, 467; Hubbard, J.L.; Smith, K. J. Organomet. Chem. **1984**, 276, C41.

B-alkyl-9-BBN derivatives (p. 1077). Since only the 9-alkyl group migrates, this method permits the conversion in high yield of an alkene to a primary alcohol or aldehyde containing one more carbon.⁴³⁸ When B-alkyl-9-BBN derivatives are treated with CO and lithium tri-*tert*-butoxyaluminum hydride,⁴³⁹ other functional groups (e.g., CN and ester) can be present in the alkyl group without being reduced.⁴⁴⁰ Boranes can be directly converted to carboxylic acids by reaction with the dianion of phenoxyacetic acid.⁴⁴¹

Boronic esters $RB(OR')_2$ react with methoxy(phenylthio)methyllithium LiCH(OMe)SPh to give salts, which, after treatment with HgCl₂, and then H₂O₂, yield aldehydes.⁴⁴² This synthesis has been made enantioselective, with high ee values (>99%), by the use of an optically pure boronic ester,⁴⁴³ for example:

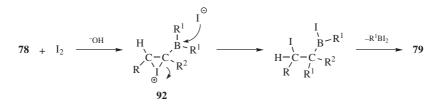
18-25 Conversion of Vinylic Boranes to Alkenes

The reaction between trialkylboranes and iodine to give alkyl iodides was mentioned at **12-31**. When the substrate contains a vinylic group, the reaction takes a different course,⁴⁴⁴ with one of the R' groups migrating to the carbon, to give alkenes.⁴⁴⁵ The reaction is stereospecific in two senses: (1) if the groups

⁴³⁸Brown, H.C.; Knights, E.F.; Coleman, R.A. J. Am. Chem. Soc. 1969, 91, 2144.

⁴³⁹Brown, H.C.; Coleman, R.A. J. Am. Chem. Soc. 1969, 91, 4606.

 ⁴⁴⁰For other methods of converting boranes to aldehydes, see Yamamoto, S.; Shiono, M.; Mukaiyama, T. *Chem. Lett.* **1973**, 961; Negishi, E.; Yoshida, T.; Silveira, Jr., A.; Chiou, B.L. *J. Org. Chem.* **1975**, 40, 814.
 ⁴⁴¹Hara, S.; Kishimura, K.; Suzuki, A.; Dhillon, R.S. *J. Org. Chem.* **1990**, 55, 6356. See also, Brown, H.C.; Imai, T. *J. Org. Chem.* **1984**, 49, 892.


⁴⁴²Brown, H.C.; Imai, T. J. Am. Chem. Soc. **1983**, 105, 6285. For a related method that produces primary alcohols, see Brown, H.C.; Imai, T.; Perumal, P.T.; Singaram, B. J. Org. Chem. **1985**, 50, 4032.

⁴⁴³Brown, H.C.; Imai, T.; Desai, M.C.; Singaram, B. J. Am. Chem. Soc. 1985, 107, 4980.

⁴⁴⁴Zweifel, G.; Fisher, R.P. *Synthesis* **1975**, 376; Brown, H.C.; Basavaiah, D.; Kulkarni, S.U.; Bhat, N.G.; Vara Prasad, J.V.N. *J. Org. Chem.* **1988**, *53*, 239.

⁴⁴⁵For a list of methods of preparing alkenes using boron reagents, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, *1999*, pp. 421–427.

R and R'' are cis in the starting compound, they will be trans in the product; (2) there is retention of configuration within the migrating group R'.⁴⁴⁶ Since vinylic boranes can be prepared from alkynes (**15-16**), this is a method for the addition of R' and H to a triple bond. If $R^2 = H$, the product is a (Z)-alkene. The mechanism is believed to involve an iodonium intermediate, such as **92**, and attack by iodide on boron. When R' is vinylic, the product is a conjugated diene.⁴⁴⁷

In another procedure, the addition of a dialkylborane to a 1-haloalkyne produces an α -halo vinylic borane (93).⁴⁴⁸ Treatment of this with NaOMe gives the rearrangement shown, and protonolysis of the product

$$R_{2}B-H + Br - C \equiv C - R^{1} \xrightarrow{\text{syn addition}} R^{+}_{15-16} \xrightarrow{R^{+}}_{Br} C = C^{+}_{R^{1}} \xrightarrow{NaOMe} R^{+}_{C} C = C^{+}_{OMe} \xrightarrow{R^{+}}_{OMe} \xrightarrow{HOAc} R^{+}_{R} \xrightarrow{R^{+}}_{H} C = C^{+}_{R^{1}}$$

produces the (*E*)-alkene.⁴⁴⁶ If R is a vinylic group the product is a 1,3-diene.⁴⁴⁹ If one of the groups is thexyl, the other migrates.⁴⁵⁰ This extends the scope of the synthesis, since dialkylboranes where one R group is thexyl are easily prepared. A combination of both of the procedures described above results in the preparation of trisubstituted alkenes.⁴⁵¹ The entire conversion of haloalkyne to alkene can be carried out in one reaction vessel, without isolation of intermediates. An aluminum counterpart of the α -halo vinylic borane procedure has been reported.⁴⁵²

⁴⁴⁶Zweifel, G.; Fisher, R.P.; Snow, J.T.; Whitney, C.C. J. Am. Chem. Soc. 1971, 93, 6309.

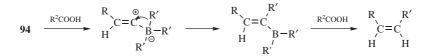
⁴⁴⁷Zweifel, G.; Polston, N.L.; Whitney, C.C. J. Am. Chem. Soc. **1968**, 90, 6243; Brown, H.C.; Ravindran, N. J. Org. Chem. **1973**, 38, 1617; Hyuga, S.; Takinami, S.; Hara, S.; Suzuki, A. Tetrahedron Lett. **1986**, 27, 977.

⁴⁴⁸For improvements in this method, see Brown, H.C.; Basavaiah, D.; Kulkarni, S.U.; Lee, H.D.; Negishi, E.; Katz, J. *J. Org. Chem.* **1986**, *51*, 5270.

⁴⁴⁹Negishi, E.; Yoshida, T. J. Chem. Soc. Chem. Commun. **1973**, 606; See also, Negishi, E.; Yoshida, T.; Abramovitch, A.; Lew, G.; Williams, R.H. Tetrahedron **1991**, 47, 343.

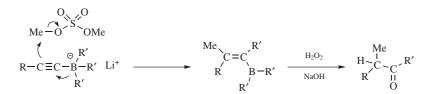
⁴⁵⁰Corey, E.J.; Ravindranathan, T. J. Am. Chem. Soc. **1972**, 94, 4013; Negishi, E.; Katz, J.; Brown, H.C. Synthesis **1972**, 555.

⁴⁵¹Zweifel, G.; Fisher, R.P. Synthesis 1972, 557.


⁴⁵²Miller, J.A. J. Org. Chem. 1989, 54, 998.

CHAPTER 18

18-26 Formation of Alkynes, Alkenes, and Ketones from Boranes and Acetylides


$$R_{3}B + RC \equiv CLi \longrightarrow RC \equiv C \xrightarrow{\bigcirc} BR_{3}'Li^{\bigcirc} \xrightarrow{I_{2}} RC \equiv CR'$$

94

A hydrogen directly attached to a triple-bond carbon can be replaced in high yield by an alkyl or an aryl group, by treatment of the lithium acetylide with a trialkyl- or triarylborane, followed by reaction of the lithium alkynyltrialkylborate **94** with iodine.⁴⁵³ The R' group may be primary or secondary alkyl as well as aryl, so the reaction has a broader scope than the older reaction **10-74**.⁴⁵⁴ The R group may be alkyl, aryl, or hydrogen, though in the last-mentioned case satisfactory yields are obtained only if lithium acetylide–ethylenediamine is used as the starting

compound.⁴⁵⁵ Optically active alkynes can be prepared by using optically active thexylborinates (RR²BOR', R² = thexyl), where R is chiral, and LiC≡CSiMe₃.⁴⁵⁶ The reaction can be adapted to the preparation of alkenes⁴¹⁴ by treatment of **94** with an electrophile such as propanoic acid⁴⁵⁷ or tributyltin chloride.⁴⁵⁸ The reaction with Bu₃SnCl produces the (*Z*)-alkene stereoselectively.

Treatment of **94** with an electrophile, such as methyl sulfate, allyl bromide, or triethyloxonium borofluoride, followed by oxidation of the resulting vinylic borane gives a ketone (illustrated for methyl sulfate): 459

⁴⁵³Suzuki, A.; Miyaura, N.; Abiko, S.; Itoh, M.; Brown, H.C.; Sinclair, J.A.; Midland, M.M. J. Org. Chem. **1986**, *51*, 4507; Sikorski, J.A.; Bhat, N.G.; Cole, T.E.; Wang, K.K.; Brown, H.C. J. Org. Chem. **1986**, *51*, 4521. For a review of reactions of organoborates, see Suzuki, A. Acc. Chem. Res. **1982**, *15*, 178.

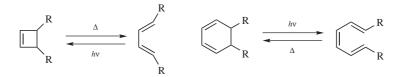
⁴⁵⁴For a study of the relative migratory aptitudes of R', see Slayden, S.W. J. Org. Chem. **1981**, 46, 2311. ⁴⁵⁵Midland, M.M.; Sinclair, J.A.; Brown, H.C. J. Org. Chem. **1974**, 39, 731.

⁴⁵⁶Brown, H.C.; Mahindroo, V.K.; Bhat, N.G.; Singaram, B. J. Org. Chem. 1991, 56, 1500.

⁴⁵⁸Hooz, J.; Mortimer, R. *Tetrahedron Lett.* **1976**, 805; Wang, K.K.; Chu, K. *J. Org. Chem.* **1984**, 49, 5175.

⁴⁵⁷Miyaura, N.; Yoshinari, T.; Itoh, M.; Suzuki, A. *Tetrahedron Lett.* **1974**, 2961; Pelter, A.; Gould, K.J.; Harrison, C.R. *Tetrahedron Lett.* **1975**, 3327.

⁴⁵⁹Pelter, A.; Drake, R.A. Tetrahedron Lett. 1988, 29, 4181.


Note that there are reactions that involve $N \to O$ rearrangements, including those mediated by silicon. 460

NON-1,2 REARRANGEMENTS

A. Electrocyclic Rearrangements

18-27 Electrocyclic Rearrangements of Cyclobutenes and 1,3-Cyclohexadienes

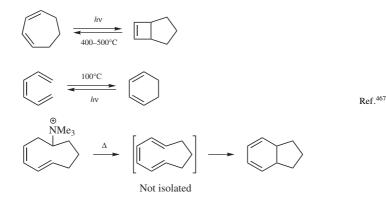
(4)*seco*-1/4/Detachment; (4)*cyclo*-1/4/Attachment (6)*seco*-1.6/Detachment; (6)*cyclo*-1/6/Attachment

Cyclobutenes and 1,3-dienes can be interconverted by treatment with uv light or with heat.⁴⁶¹ The thermal reaction is generally not reversible (although exceptions⁴⁶² are known), and many cyclobutenes have been converted to 1,3-dienes by heating at temperatures between 100 and 200°C. The photochemical conversion can in principle be carried out in either direction, but most often 1,3-dienes are converted to cyclobutenes rather than the reverse, because the dienes are stronger absorbers of light at the wavelengths used.⁴⁶³ In a similar reaction, 1,3-cyclohexadienes interconvert with 1,3,5-trienes, but in this case the ring-closing process is generally favored thermally and the ring-opening process photochemically, though exceptions are known in both directions.⁴⁶⁴ Substituent effects can lead to acceleration of the electrocyclization process.⁴⁶⁵ Torquoselectivity in cyclobutene ring opening reaction has been examined.⁴⁶⁶

460 Talami, S.; Stirling, C.J.M. Can. J. Chem. 1999, 77, 1105.

⁴⁶¹See Dolbier Jr., W.R.; Koroniak, H.; Houk, K.N.; Sheu, C. *Acc. Chem. Res.* **1996**, *29*, 471; Niwayama, S.; Kallel, E.A.; Spellmeyer, D.C.; Sheu, C.; Houk, K.N. J. Org. Chem. **1996**, *61*, 2813. The effect of pressure on this reaction has been discussed, see Jenner, G. *Tetrahedron* **1998**, *54*, 2771.

⁴⁶²For example; see Shumate, K.M.; Neuman, P.N.; Fonken, G.J. J. Am. Chem. Soc. 1965, 87, 3996; Gil-Av, E.; Herling, J. *Tetrahedron Lett.* 1967, 1; Doorakian, G.A.; Freedman, H.H. J. Am. Chem. Soc. 1968, 90, 3582; Brune, H.A.; Schwab, W. *Tetrahedron* 1969, 25, 4375; Steiner, R.P.; Michl, J. J. Am. Chem. Soc. 1978, 100, 6413.


⁴⁶³For examples of photochemical conversion of a cylcobutene to a 1,3-diene, see Scerer, Jr., K.V. J. Am. Chem. Soc. 1968, 90, 7352; Saltiel, J.; Lim, L.N. J. Am. Chem. Soc. 1969, 91, 5404; Adam, W.; Oppenländer, T.; Zang, G. J. Am. Chem. Soc. 1985, 107, 3921; Dauben, W.G.; Haubrich, J.E. J. Org. Chem. 1988, 53, 600.

⁴⁶⁴For a review of photochemical rearrangements in trienes, see Dauben, W.G.; McInnis, E.L.; Michno, D.M., in de Mayo, P. *Rearrangements in Ground and Excited States*, Vol. 3, Academic Press, NY, *1980*, pp. 91–129. For an *ab initio* study see Rodríguez-Otero, J. J. Org. Chem. *1999*, 64, 6842.

⁴⁶⁶Yasui, M.; Naruse, Y.; Inagaki, S. J. Org. Chem. 2004, 69, 7246.

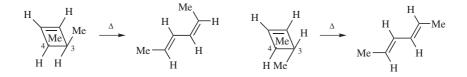
⁴⁶⁵Tanaka, K.; Mori, H.; Yamamoto, M.; Katsumura, S. J. Org. Chem. 2001, 66, 3099.

Some examples are

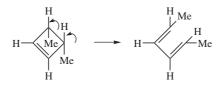
An interesting example of 1,3-cyclohexadiene–1,3,5-triene interconversion is the reaction of norcaradienes to give cycloheptatrienes.⁴⁶⁸ Norcaradienes give this reaction so readily (because they are *cis*-1,2-divinylcyclopropanes, see p. 1661) that they cannot generally be isolated, though some exceptions are known^{469,470} (see also, p. 1239).

Norcaradiene

⁴⁶⁷Dauben, W.G.; Cargill, R.L. *Tetrahedron* **1961**, *12*, 186; Chapman, O.L.; Pasto, D.J.; Borden, G.W.; Griswold, A.A. J. Am. Chem. Soc. **1962**, *84*, 1220.


⁴⁶⁸For reviews of the norcaradiene-cycloheptatriene interconversion and the analogous benzene oxide-oxepin interconversion, see Maier, G. *Angew. Chem. Int. Ed.* **1967**, *6*, 402; Vogel, E.; Günther, H. *Angew. Chem. Int. Ed.* **1967**, *6*, 385; Vogel, E. *Pure Appl. Chem.* **1969**, *20*, 237.

⁴⁶⁹Ciganek, E. J. Am. Chem. Soc. 1967, 89, 1454; Mukai, T.; Kubota, H.; Toda, T. Tetrahedron Lett. 1967, 3581; Maier, G.; Heep, U. Chem. Ber. 1968, 101, 1371; Ciganek, E. J. Am. Chem. Soc. 1971, 93, 2207; Dürr, H.; Kober, H. Tetrahedron Lett. 1972, 1255, 1259; Vogel, E.; Wiedemann, W.; Roth, H.D.; Eimer, J.; Günther, H. Liebigs Ann. Chem. 1972, 759, 1; Bannerman, C.G.F.; Cadogan, J.I.G.; Gosney, I.; Wilson, N.H. J. Chem. Soc., Chem. Commun. 1975, 618; Takeuchi, K.; Kitagawa, T.; Senzaki, Y.; Okamoto, K. Chem. Lett. 1983, 73; Kawase, T.; Iyoda, M.; Oda, M. Angew. Chem. Int. Ed. 1987, 26, 559.

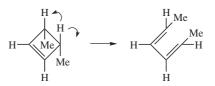

⁴⁷⁰See, for example, Ciganek, E. J. Am. Chem. Soc. 1967, 89, 1454; Mukai, T.; Kubota, H.; Toda, T. Tetrahedron Lett. 1967, 3581; Maier, G.; Heep, U. Chem. Ber. 1968, 101, 1371; Ciganek, E. J. Am. Chem. Soc. 1971, 93, 2207; Dürr, H.; Kober, H. Tetrahedron Lett. 1972, 1255, 1259; Vogel, E.; Wiedemann, W.; Roth, H.D.; Eimer, J.; Günther, H. Liebigs Ann. Chem. 1972, 759, 1; Bannerman, C.G.F.; Cadogan, J.I.G.; Gosney, I.; Wilson, N.H. J. Chem. Soc., Chem. Commun. 1975, 618; Takeuchi, K.; Kitagawa, T.; Senzaki, Y.; Okamoto, K. Chem. Lett. 1983, 73; Kawase, T.; Iyoda, M.; Oda, M. Angew. Chem. Int. Ed. 1987, 26, 559.

1634 REARRANGEMENTS

These reactions, called *electrocyclic rearrangements*,⁴⁷¹ take place by pericyclic mechanisms. The evidence comes from stereochemical studies, which show a remarkable stereospecificity whose direction depends on whether the reaction is induced by heat or light. For example, it was found for the thermal reaction that *cis*-3,4-dimethylcyclobutene gave only *cis*,*trans*-2,4-hexadiene, while the trans isomer gave only the trans–trans diene:⁴⁷²

This is evidence for a four-membered cyclic transition state and arises from conrotatory motion about the C-3–C-4 bond.⁴⁷³ It is called conrotatory because both movements are clockwise (or both counterclockwise). Because both rotate in the same direction, the cis isomer gives the cis–trans diene:⁴⁷⁴

The other possibility (*disrotatory* motion) would have one moving clockwise while the other moves counterclockwise; the cis isomer would have given the cis–cis


⁴⁷¹For a monograph on thermal isomerizations, which includes electrocyclic and sigmatropic rearrangements, as well as other types, see Gajewski, J.J. *Hydrocarbon Thermal Isomerizations*, Academic Press, NY, **1981**. For a monograph on electrocyclic reactions, see Marvell, E.N. *Thermal Electrocyclic Reactions*, Academic Press, NY, **1980**. For reviews, see Dolbier, W.R.; Koroniak, H. *Mol. Struct. Energ.*, **1988**, 8, 65; Laarhoven, W.H. *Org. Photochem.* **1987**, 9, 129; George, M.V.; Mitra, A.; Sukumaran, K.B. *Angew. Chem. Int. Ed.* **1980**, 19, 973; Jutz, J.C. *Top. Curr. Chem.* **1978**, 73, 125; Gilchrist, T.L.; Storr, R.C. *Organic Reactions and Orbital Symmetry*, Cambridge University Press, Cambridge, **1972**, pp. 48–72; DeWolfe, R.H. in Bamford, C.H.; Tipper, C.F.H. *Comprehensive Chemical Kinetics*, Vol. 9, Elsevier, NY, **1973**; pp. 461–470; Crowley, K.J.; Mazzocchi, P.H., in Zabicky, J. *The Chemistry of Alkenes*, Vol. 2, Wiley, NY, **1970**, pp. 284–297; Criegee, R. *Angew. Chem. Int. Ed.* **1968**, 7, 559; Vollmer, J.J.; Servis, K.L. *J. Chem. Educ.* **1968**, 45, 214. For a review of isotope effects in these reactions, see Gajewski, J.J. *Isot. Org. Chem.* **1987**, 7, 115. For a related review, see Schultz, A.G.; Motyka, L. *Org. Photochem.* **1983**, 6, 1.

⁴⁷²Winter, R.E.K. *Tetrahedron Lett.* **1965**, 1207. Also see, Vogel, E. *Liebigs Ann. Chem.* **1958**, 615, 14; Criegee, R.; Noll, K. *Liebigs Ann. Chem.* **1959**, 627, 1.

⁴⁷³The mechanism of cyclobutene thermal isomerization has been examined. See Baldwin, J.E.; Gallagher, S.S.; Leber, P.A.; Raghavan, A.S.; Shukla, R. *J. Org. Chem.* **2004**, *69*, 7212.

⁴⁷⁴This picture is from Woodward, R.B.; Hoffmann, R. J. Am. Chem. Soc. **1965**, 87, 395, who coined the terms, *conrotatory* and *disrotatory*.

diene (shown) or the trans-trans diene:

If the motion had been disrotatory, this would still have been evidence for a cyclic mechanism. If the mechanism were a diradical or some other kind of noncyclic process, it is likely that no stereospecificity of either kind would have been observed. The reverse reaction is also conrotatory. In contrast, the photochemical cyclobutene: 1,3-Diene interconversion is *disrotatory* in either direction.⁴⁷⁵ On the other hand, the cyclohexadiene: 1,3,5-Triene interconversion shows precisely the opposite behavior. The thermal process is *disrotatory*, while the photochemical process is *conrotatory* (in either direction). These startling results are a consequence of the symmetry rules mentioned in Chapter 15 (p. 1208).⁴⁷⁶ As in the case of cycloaddition reactions, we will use the frontier orbital and Möbius–Hückel approaches.⁴⁷⁷

The Frontier Orbital Method⁴⁷⁸

As applied to these reactions, the frontier orbital method may be expressed: A σ bond will open in such a way that the resulting p orbitals will have the symmetry of the highest occupied π orbital of the product. In the case of cyclobutenes, the HOMO of the product in the thermal reaction is the χ_2 orbital (Fig. 18.1).

⁴⁷⁵Photochemical ring opening of cyclobutenes can also be nonstereospecific. See Leigh, W.J.; Zheng, K. *J. Am. Chem. Soc.* **1991**, *113*, 4019; Leigh, W.J.; Zheng, K.; Nguyen, N.; Werstiuk, N.H.; Ma, J. J. Am. *Chem. Soc.* **1991**, *113*, 4993, and references cited therein.

⁴⁷⁶Woodward, R.B.; Hoffmann, R. J. Am. Chem. Soc. **1965**, 87, 395. Also see, Longuet-Higgins, H.C.; Abrahamson, E.W. J. Am. Chem. Soc. **1965**, 87, 2045; Fukui, K. Tetrahedron Lett. **1965**, 2009.

⁴⁷⁷For the correlation diagram method, see Jones, R.A.Y. *Physical and Mechanistic Organic Chemistry*, 2nd ed., Cambridge University Press, Cambridge, **1984**, pp. 352–359; Yates, K. Hückel Molecular Orbital Theory, Academic Press, NY, **1978**, pp. 250–263. Also see, Zimmerman, H.E., in Marchand, A.P.; Lehr, R.E. *Pericyclic Reactions*, Vol. 2, Academic Press, NY, **1977**, pp. 53–107; Acc. Chem. Res. **1971**, 4, 272; J. Am. Chem. Soc. **1966**, 88, 1564, 1566; Dewar, M.J.S. Angew. Chem. Int. Ed. **1971**, 10, 761; Jefford, C.W.; Burger, U. Chimia **1971**, 25, 297; Herndon, W.C. J. Chem. Educ. **1981**, 58, 371.

 ⁴⁷⁸Fukui, K.; Fujimoto, H. Bull. Chem. Soc. Jpn. 1967, 40, 2018; 1969, 42, 3399; Fukui, K. Fortschr. Chem. Forsch. 1970, 15, 1; Acc. Chem. Res. 1971, 4, 57; Houk, K.N. Acc. Chem. Res. 1975, 8, 361. See also, Chu, S. Tetrahedron 1978, 34, 645. For a monograph on frontier orbitals see Fleming, I. Pericyclic Reactions, Oxford University Press, Oxford, 1999. For reviews, see Fukui, K. Angew. Chem. Int. Ed. 1982, 21, 801; Houk, K.N., in Marchand, A.P.; Lehr, R.F. Pericyclic Reactions, Vol. 2, Academic Press, NY, 1977, pp. 181–271.

Fig. 18.1. Symmetries of the X_2 and X_3* orbitals of a conjugated diene.

Therefore, in a thermal process, the cyclobutene must open so that on one side the positive lobe lies above the plane, and on the other side below it. Thus the substituents are forced into conrotatory motion (Fig. 18.2). On the other hand, in the photochemical process, the HOMO of the product is now the χ_3 orbital (Fig. 18.1), and in order for the *p* orbitals to achieve this symmetry (the two plus lobes on the same side of the plane), the substituents are forced into disrotatory motion.

We may also look at this reaction from the opposite direction (ring closing). For this direction, the rule is that *those lobes of orbitals that overlap (in the HOMO) must be of the same sign*. For thermal cyclization of butadienes, this requires conrotatory motion (Fig. 18.3). In the photochemical process the HOMO is the χ_3 orbital, so that disrotatory motion is required for lobes of the same sign to overlap.

The Möbius–Hückel Method⁴⁸¹

As we saw on p. 1210, in this method we choose a basis set of p orbitals and look for sign inversions in the transition state. Figure 18.4 shows a basis set for a 1,3diene. It is seen that disrotatory ring closing (Fig. 18.4a) results in overlap of plus lobes only, while in conrotatory closing (Fig. 18.4b) there is one overlap of a plus



Fig. 18.2. Thermal opening of 1,2-dimethylcyclobutene. The two hydrogens and two methyls are forced into conrotatory motion so that the resulting p orbitals have the symmetry of the HOMO of the diene.

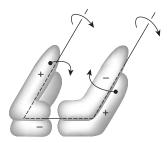
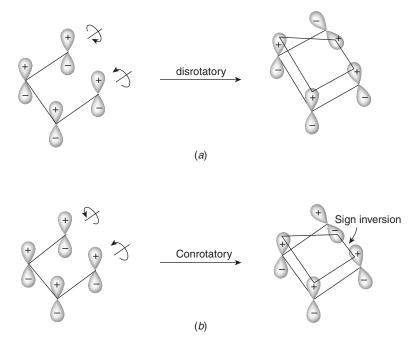
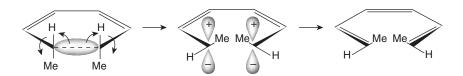
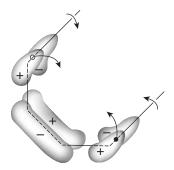



Fig. 18.3. Thermal ring closing of a 1,3-diene. Conrotatory motion is required for two + lobes to overlap.

with a minus lobe. In the first case, we have zero sign inversions, while in the second there is one sign inversion. With zero (or an even number of) sign inversions, the disrotatory transition state is a Hückel system, and so is allowed thermally only if the total number of electrons is 4n + 2 (p. 1211). Since the total here is 4, the

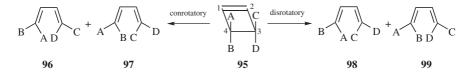

Fig. 18.4. The 1,3-diene–cyclobutene interconversion. The orbitals shown are *not* molecular orbitals, but a basis set of *p*-atomic orbitals. (*a*) Disrotatory ring closure gives zero sign inversion. (*b*) Conrotatory ring closure gives one sign inversion. We could have chosen to show any other basis set (e.g., another basis set would have two plus lobes above the plane and two below, etc.). This would change the number of sign inversion, but the disrotatory mode would still have an even number of sign inversions, and the conrotatory mode an odd number, whichever basis set was chosen.

disrotatory process is not allowed. On the other hand, the conrotatory process, with one sign inversion, is a Möbius system, which is thermally allowed if the total number is 4n. The conrotatory process is therefore allowed thermally. For the photochemical reactions, the rules are reversed: A reaction with 4n electrons requires a Hückel system, so only the disrotatory process is allowed.


Both the frontier orbital and the Möbius–Hückel methods can also be applied to the cyclohexadiene: 1,3,5-triene reaction;⁴⁷⁹ in either case the predicted result is that for the thermal process, only the disrotatory pathway is allowed, and for the photochemical process, only the conrotatory. For example, for a 1,3,5-triene, the symmetry of the HOMO is

In the thermal cleavage of cyclohexadienes, then, the positive lobes must lie on the same side of the plane, requiring disrotatory motion:

Disrotatory motion is also necessary for the reverse reaction, in order that the orbitals that overlap may be of the same sign:



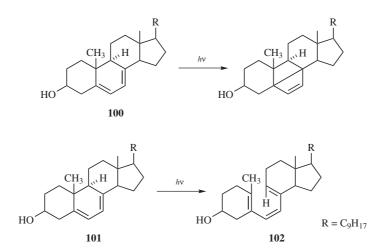
⁴⁷⁹For a discussion of the transition structures and energy, see Zora, M. J. Org. Chem. 2004, 69, 1940.

All these directions are reversed for photochemical processes, because in each case a higher orbital, with inverted symmetry, is occupied.

In the Möbius–Hückel approach, diagrams similar to Fig. 18.4 can be drawn for this case. Here too, the disrotatory pathway is a Hückel system and the conrotatory pathway a Möbius system, but since six electrons are now involved, the thermal reaction follows the Hückel pathway and the photochemical reaction the Möbius pathway.

In the most general case, there are four possible products that can arise from a given cyclobutene or cyclohexadiene: two from the conrotatory and two from the disrotatory pathway. For example, conrotatory ring opening of **95** gives either **96** or **97**, while disrotatory opening gives either **98** or **99**. The orbital-symmetry rules tell us when a given reaction will operate by the conrotatory and when by the disrotatory mode, but they do not say which of the two possible conrotatory or disrotatory pathways will be followed. It is often possible,

however, to make such predictions on steric grounds. For example, in the opening of **95** by the disrotatory pathway, **98** arises when groups A and C swing in toward each other (clockwise motion around C-4, counterclockwise around C-3), while **99** is formed when groups B and D swing in and A and C swing out (clockwise motion around C-3, counterclockwise around C-4). We therefore predict that when A and C are larger than B and D, the predominant or exclusive product will be **99**, rather than **98**. Predictions of this kind have largely been borne out.⁴⁸⁰ There is evidence, however, that steric effects⁴⁸¹ are not the only factor, and that electronic effects also play a role, which may be even greater.⁴⁸² An electron-donating group stabilizes the transition state when it rotates *outward*, because it mixes with the LUMO; if it rotates *inward*, it mixes with the HOMO, destabilizing the transition state.⁴⁸³ The compound 3-formylcyclobutene provided a test. Steric factors would cause the CHO


⁴⁸⁰For example, see Baldwin, J.E.; Krueger, S.M. J. Am. Chem. Soc. **1969**, 91, 6444; Spangler, C.W.; Hennis, R.P. J. Chem. Soc., Chem. Commun. **1972**, 24; Gesche, P.; Klinger, F.; Riesen, A.; Tschamber, T.; Zehnder, M.; Streith, J. Helv. Chim. Acta **1987**, 70, 2087.

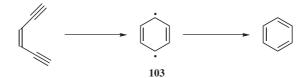
⁴⁸¹Leigh, W.J.; Postigo, J.A. J. Am. Chem. Soc. 1995, 117, 1688.

 ⁴⁸²Kirmse, W.; Rondan, N.G.; Houk, K.N. J. Am. Chem. Soc. 1984, 106, 7989; Dolbier, Jr., W.R.; Gray, T.A.; Keaffaber, J.J.; Celewicz, L.; Koroniak, H. J. Am. Chem. Soc. 1990, 112, 363; Hayes, R.; Ingham, S.; Saengchantara, S.T.; Wallace, T.W. Tetrahedron Lett. 1991, 32, 2953.

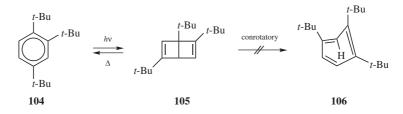
⁴⁸³For theoretical studies, see Buda, A.B.; Wang, Y.; Houk, K.N. *J. Org. Chem.* **1989**, *54*, 2264; Kallel, E.A.; Wang, Y.; Spellmeyer, D.C.; Houk, K.N. *J. Am. Chem. Soc.* **1990**, *112*, 6759.

(an electron-withdrawing group) to rotate outward; electronic effects would cause it to rotate inward. The experiment showed inward rotation.⁴⁸⁴

Cyclohexadienes are of course 1,3-dienes, and in certain cases it is possible to convert them to cyclobutenes instead of to 1,3,5-trienes.⁴⁸⁵ An interesting example is found in the pyrocalciferols. Photolysis of the syn isomer **100** (or of the other syn isomer, not shown) leads to the corresponding cyclobutene,⁴⁸⁶ while photolysis of the anti isomers (one of them is 101) gives the ring-opened 1,3,5-triene, 102. This difference in behavior is at first sight remarkable, but is easily explained by the orbital-symmetry rules. Photochemical ring opening to a 1,3,5-triene must be conrotatory. If 100 were to react by this pathway, the product would be the triene 102, but this compound would have to contain a trans-cyclohexene ring (either the methyl group or the hydrogen would have to be directed inside the ring). On the other hand, photochemical conversion to a cyclobutene must be disrotatory, but if 101 were to give this reaction, the product would have to have a trans-fused ring junction. Compounds with such ring junctions are known (p. 188), but are very strained. Stable trans-cyclohexenes are unknown (p. 226). Thus, 100 and 101 give the products they do owing to a combination of orbital-symmetry rules and steric influences.


⁴⁸⁴Rudolf, K.; Spellmeyer, D.C.; Houk, K.N. J. Org. Chem. **1987**, 52, 3708; Piers, E.; Lu, Y.-F. J. Org. Chem. **1989**, 54, 2267.

⁴⁸⁵For a discussion of the factors favoring either direction, see Dauben, W.G.; Kellogg, M.S.; Seeman, J.I.; Vietmeyer, N.D.; Wendschuh, P.H. *Pure Appl. Chem.* **1973**, *33*, 197.


⁴⁸⁶Dauben, W.G.; Fonken, G.J. *J. Am. Chem. Soc.* **1959**, *81*, 4060. This was the first reported example of the conversion of a 1,3-diene to a cyclobutene.

CHAPTER 18

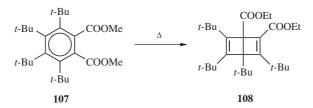
A variation of this process is the *Bergmann cyclization*, 487 where an ene-diyne cyclizes to a biradical (103) and then aromatizes as shown.

Simply heating the en-diyne will usually lead to aromatization via this pathway.⁴⁸⁸ Quinones can be formed via Bergman cyclization⁴⁸⁹ and there are other synthetic applications.⁴⁹⁰ The role of vinyl substitution has been examined.⁴⁹¹ An aza-Bergman cyclization is known.⁴⁹²

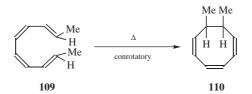
The 1,3-diene-cyclobutene interconversion can even be applied to benzene rings. For example,⁴⁹³ photolysis of 1,2,4-tri-*tert*-butylbenzene (**104**) gives

⁴⁸⁷Bergman, R.G. Accts. Chem. Res. 1973, 6, 25; Darby, N.; Kim, C.U.; Shelton, K.W.; Takada, S.; Masamune, S. J. Chem. Soc. (D), 1971, 23, 1516; Adam, W.; Krebs, O. Chem. Rev. 2003, 103, 4131. For a discussion of electronic and stereoelectronic effects see Pourde II, G.W.; Warner, P.M.; Parrish, D.A.; Jones, G.B. J. Org. Chem. 2002, 67, 5369; Jones, G.B.; Wright, J.M.; Hynd, G.; Wyatt, J.K.; Warner, P.M.; Huber, R.S.; Li, A.; Kilgore, M.W.; Sticca, R.P.; Pollenz, R.S. J. Org. Chem. 2002, 67, 5727. For polar effects, see Schmittel, M.; Kiau, S. Chem. Lett, 1995, 953; Grissom, J.W.; Calkins, T.L.; McMillen, H.A.; Jiang, Y. J. Org. Chem. 1994, 59, 5833. For free-energy relationships see Choy, N.; Kim, C.-S.; Ballestero, C.; Artigas, L.; Diez, C.; Lichtenberger, F.; Shapiro, J.; Russell, K.C. Tetrahedron Lett. 2000, 41, 6955.
 ⁴⁸⁸For examples, see Grissom, J.W.; Klingberg, D. Tetrahedron Lett. 1995, 36, 6607; Danheiser, R.L.; Gould, A.E.; de la Pradilla, R.F.; Helgason, A.L. J. Org. Chem. 1994, 59, 5514; Grissom, J.W.; Calkins, T.L.; McMillen, H.A. J. Org. Chem. 1993, 58, 6556; Tanaka, H.; Yamada, H.; Matsuda, A.; Takahashi, T. Synlett 1997, 381.

⁴⁸⁹Jones, G.B.; Warner, P.M. J. Org. Chem. 2001, 66, 8669.


⁴⁹⁰Bowles, D.M.; Palmer, G.J.; Landis, C.A.; Scott, J.L.; Anthony, J.E. *Tetrahedron* 2001, 57, 3753.

⁴⁹¹Jones, G.B.; Warner, P.M. J. Am. Chem. Soc. 2001, 123, 2134.


492Feng, L.; Kumar, D.; Kerwin, S.M. J. Org. Chem. 2003, 68, 2234.

⁴⁹³Unsubstituted Dewar benzene has been obtained, along with other photoproducts, by photolysis of benzene: Ward, H.R.; Wishnok, J.S. J. Am. Chem. Soc. 1968, 90, 1085; Bryce-Smith, D.; Gilbert, A.; Robinson, D.A. Angew. Chem. Int. Ed. 1971, 10, 745. For other examples, see Arnett, E.M.; Bollinger, J.M. Tetrahedron Lett. 1964, 3803; Camaggi, G.; Gozzo, F.; Cevidalli, G. Chem. Commun. 1966, 313; Haller, I. J. Am. Chem. Soc. 1966, 88, 2070; J. Chem. Phys. 1967, 47, 1117; Barlow, M.G.; Haszeldine, R.N.; Hubbard, R. Chem. Commun. 1969, 202; Lemal, D.M.; Staros, J.V.; Austel, V. J. Am. Chem. Soc. 1969, 91, 3373.

1,2,5-tri-*tert*-butyl[2.2.0]hexadiene (**105**, a Dewar benzene).⁴⁹⁴ The reaction owes its success to the fact that once **105** is formed, it cannot, under the conditions used, revert to **104** by either a thermal or a photochemical route. The orbital-symmetry rules prohibit thermal conversion of **105** to **104** by a pericyclic mechanism, because thermal conversion of a cyclobutene to a 1,3-diene must be conrotatory, and conrotatory reaction of **105** would result in a 1,3,5-cyclohexatriene containing one trans double bond (**106**), which is of course too strained to exist. Compound **105** cannot revert to **104** by a photochemical pathway either, because light of the frequency used to excite **104** would not be absorbed by **105**. This is thus another example of a molecule that owes its stability to the orbital-symmetry rules (see p. 1232). Pyrolysis of **105** does give **104**, probably by a diradical mechanism.⁴⁹⁵ In the case of **107** and **108**, the Dewar benzene is actually more stable than the benzene. Compound **107** rearranges to **108** in 90% yield at 120°C.⁴⁹⁶ In this case, thermolysis of the benzene gives the Dewar benzene (rather than the reverse), because of the strain of four adjacent *tert*-butyl groups on the ring.

A number of electrocyclic reactions have been carried out with systems of other sizes, for example, conversion of the 1,3,5,7-octatetraene **109** to the cyclooctatriene **110**.⁴⁹⁷ The stereochemistry of these reactions can be predicted in a

⁴⁹⁴Wilzbach, K.E.; Kaplan, L. J. Am. Chem. Soc. 1965, 87, 4004; van Tamelen, E.E.; Pappas, S.P.; Kirk, K.L. J. Am. Chem. Soc. 1971, 93, 6092; van Tamelen, E.E. Acc. Chem. Res. 1972, 5, 186. As mentioned on p. \$\$\$ (Lemal, D.M.; Lokensgard, J.P. J. Am. Chem. Soc. 1966, 88, 5934; Schäfer, W.; Criegee, R.; Askani, R.; Grüner, H. Angew. Chem. Int. Ed. 1967, 6, 78), Dewar benzenes can be photolyzed further to give prismanes.
⁴⁹⁵See, for example, Oth, J.F.M. Recl. Trav. Chim. Pays-Bas 1968, 87, 1185; Adam, W.; Chang, J.C. Int. J.

⁴⁹⁵See, for example, Oth, J.F.M. *Recl. Trav. Chim. Pays-Bas* **1968**, 87, 1185; Adam, W.; Chang, J.C. *Int. J. Chem. Kinet.*, **1969**, *1*, 487; Lechtken, P.; Breslow, R.; Schmidt, A.H.; Turro, N.J. J. Am. Chem. Soc. **1973**, 95, 3025; Wingert, H.; Irngartinger, H.; Kallfass, D.; Regitz, M. *Chem. Ber*. **1987**, *120*, 825.

⁴⁹⁶Maier, G.; Schneider, K. Angew. Chem. Int. Ed. **1980**, 19, 1022. See also, Wingert, H.; Maas, G.; Regitz, M. Tetrahedron **1986**, 42, 5341.

⁴⁹⁷Marvell, E.N.; Seubert, J. J. Am. Chem. Soc. 1967, 89, 3377; Huisgen, R.; Dahmen, A.; Huber, H. J.
 Am. Chem. Soc. 1967, 89, 7130, Tetrahedron Lett. 1969, 1461; Dahmen, A.; Huber, H. Tetrahedron Lett. 1969, 1465.

similar manner. The results of such predictions can be summarized according to whether the number of electrons involved in the cyclic process is of the form 4n or 4n + 2 (where *n* is any integer including zero).

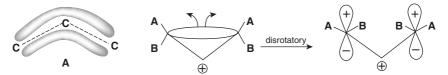
	Thermal Reaction	Photochemical Reaction
4 <i>n</i>	Conrotatory	Disrotatory
4n + 2	Disrotatory	Conrotatory

Although the orbital-symmetry rules predict the stereochemical results in almost all cases, it is necessary to recall (p. 1210) that they only say what is allowed and what is forbidden, but the fact that a reaction is allowed does not necessarily mean that the reaction takes place, and if an allowed reaction does take place, it does not *necessarily* follow that a concerted pathway is involved, since other pathways of lower energy may be available.⁴⁹⁸ Furthermore, a "forbidden" reaction might still be made to go, if a method of achieving its high activation energy can be found. This was, in fact, done for the cyclobutene butadiene interconversion (*cis*-3,4-dichlorocyclobutene gave the forbidden *cis*, *cis*- and *trans*,*trans*-1,4-dichloro-1,3-butadienes, as well as the allowed cis, trans isomer) by the use of ir laser light.⁴⁹⁹ This is a thermal reaction. The laser light excites the molecule to a higher vibrational level (p. 330), but not to a higher electronic state.

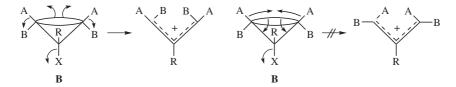
As is the case for [2+2]-cycloaddition reactions (**15-63**), certain forbidden electrocyclic reactions can be made to take place by the use of metallic catalysts.⁵⁰⁰ An example is the silver ion-catalyzed conversion of tricyclo[4.2.0.0^{2.5}]octa-3,7-diene to cyclooctatetraene:⁵⁰¹

This conversion is very slow thermally (i.e., without the catalyst) because the reaction must take place by a disrotatory pathway, which is disallowed thermally.⁵⁰² In another example, the major thermal product from the barrelene anion is a

⁵⁰¹Merk, W.; Pettit, R. J. Am. Chem. Soc. 1967, 89, 4788.


 ⁴⁹⁸For a discussion, see Baldwin, J.E.; Andrist, A.H.; Pinschmidt Jr., R.K. Acc. Chem. Res. 1972, 5, 402.
 ⁴⁹⁹Mao, C.; Presser, N.; John, L.; Moriarty, R.M.; Gordon, R.J. J. Am. Chem. Soc. 1981, 103, 2105.

 ⁵⁰⁰For a review, see Pettit, R.; Sugahara, H.; Wristers, J.; Merk, W. Discuss. Faraday Soc. 1969, 47, 71.
 See also, Labunskaya, V.I.; Shebaldova, A.D.; Khidekel', M.L. Russ. Chem. Rev. 1974, 43, 1; Mango, F.D.
 Top. Curr. Chem. 1974, 45, 39; Tetrahedron Lett. 1973, 1509; Intra-Sci. Chem. Rep. 1972, 6 (3), 171;
 CHEMTECH 1971, 1, 758; Adv. Catal. 1969, 20, 291; Mango, F.D.; Schachtschneider, J.H. J. Am. Chem.
 Soc. 1971, 93, 1123; 1969, 91, 2484; van der Lugt, W.T.A.M. Tetrahedron Lett. 1970, 2281; Wristers, J.;
 Brener, L.; Pettit, R. J. Am. Chem. Soc. 1970, 92, 7499.

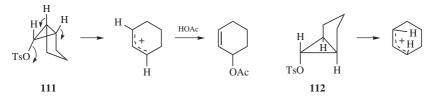

⁵⁰²For discussions of how these reactions take place, see Slegeir, W.; Case, R.; McKennis, J.S.; Pettit, R. *J. Am. Chem. Soc.* **1974**, *96*, 287; Pinhas, A.R.; Carpenter, B.K. *J. Chem. Soc., Chem. Commun.* **1980**, 15.

rearranged allyl anion that is formed by disrotatory cleavage of the cyclopropyl ring, a formally Woodward–Hoffmann-forbidden process.⁵⁰³

The ring opening of cyclopropyl cations (pp. 486, 1591) is an electrocyclic reaction and is governed by the orbital symmetry rules.⁵⁰⁴ For this case, we invoke the rule that the *s* bond opens in such a way that the resulting *p* orbitals have the symmetry of the highest occupied orbital of the product, in this case, an allylic cation. We may recall that an allylic system has three molecular orbitals (p. 42). For the cation, with only two electrons, the highest occupied orbital is the one of the lowest energy (A). Thus, the cyclopropyl cation must undergo a

disrotatory ring opening in order to maintain the symmetry. (Note that, in contrast, ring opening of the cyclopropyl *anion* must be conrotatory,⁵⁰⁵ since in this case it is the next orbital of the allylic system that is the highest occupied, and this has the opposite symmetry.⁵⁰⁶) However, it is very difficult to generate a free cyclopropyl cation (p. 487), and it is likely that in most cases, cleavage of the σ bond is concerted with departure of the leaving group in the original cyclopropyl substrate. This, of course, means that the σ bond provides anchimeric assistance to the removal of the leaving group (an S_N2-type process), and we would expect that such assistance should come from the back side. This has an important effect on the direction of ring opening. The orbital-symmetry rules require that the ring opening be disrotatory, but as we have seen, there are two disrotatory pathways and the rules do not tell us which is preferred. But the fact that the *s* orbital provides assistance from the backside means that the two substituents that are trans to the leaving group must move *outward*, not inward.⁵⁰⁷ Thus, the disrotatory pathway that is followed is the one shown in B, not the one shown in C, because the former puts the electrons of the σ bond on the

⁵⁰³Leivers, M.; Tam, I.; Groves, K.; Leung, D.; Xie, Y.; Breslow, R. Org. Lett. 2003, 5, 3407.
 ⁵⁰⁴For discussions, see DePuy, C.H. Acc. Chem. Res. 1968, 1, 33; Schöllkopf, U. Angew. Chem. Int. Ed. 1968, 7, 588.

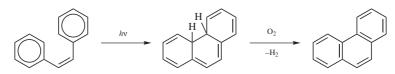

⁵⁰⁵For a review of ring opening of cyclopropyl anions and related reactions, see Boche, G. *Top. Curr. Chem.* **1988**, *146*, 1.

⁵⁰⁶For evidence that this is so, see Newcomb, M.; Ford, W.T. J. Am. Chem. Soc. **1974**, *96*, 2968; Boche, G.; Buckl, K.; Martens, D.; Schneider, D.R.; Wagner, H. Chem. Ber. **1979**, *112*, 2961; Coates, R.M.; Last, L.A. J. Am. Chem. Soc. **1983**, *105*, 7322. For a review of the analogous ring opening of epoxides, see Huisgen, R. Angew. Chem. Int. Ed. **1977**, *16*, 572.

⁵⁰⁷This was first proposed by DePuy, C.H.; Schnack, L.G.; Hausser, J.W.; Wiedemann, W. J. Am. Chem. Soc. **1965**, 87, 4006.

CHAPTER 18

side opposite that of the leaving group.⁵⁰⁸ Strong confirmation of this picture⁵⁰⁹ comes from acetolysis of *endo-* (**111**) and *exo-*bicyclo[3,1,0]hexyl-6-tosylate (**112**). The groups trans to the tosylate must move outward. For **111**, this means that the two hydrogens can go outside the framework of the six-membered ring, but for **112** they



are forced to go inside. Consequently, it is not surprising that the rate ratio for solvolysis of **111/112** was found to be $>2.5 \times 10^6$ and that at 150° C **112** did not solvolyze at all.⁵¹⁰ This evidence is kinetic. Unlike the cases of the cyclobutene (1,3-diene and cyclohexadiene) 1,3,5-triene interconversions, the direct product here is a cation, which is not stable but reacts with a nucleophile and loses some of its steric integrity in the process, so that much of the evidence has been of the kinetic type rather than from studies of product stereochemistry. However, it has been shown by investigations in superacids, where it is possible to keep the cations intact and to study their structures by NMR, that in all cases studied the cation that is predicted by these rules is in fact formed.⁵¹¹

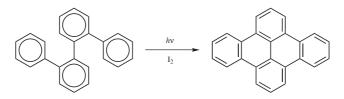
OS V, 235, 277, 467; VI, 39, 145, 196, 422, 427, 862; IX, 180.

18-28 Conversion of One Aromatic Compound to Another

(6)cyclo-de-hydrogen-coupling (Overall transformation)

Stilbenes can be converted to phenanthrenes by irradiation with UV light⁵¹² in the presence of an oxidizing agent, such as dissolved molecular oxygen, FeCl₃,

⁵⁰⁸It has been suggested that the pathway shown in **C** is possible in certain cases: Hausser, J.W.; Grubber, M.J. *J. Org. Chem.* **1972**, *37*, 2648; Hausser, J.W.; Uchic, J.T. *J. Org. Chem.* **1972**, *37*, 4087.


⁵⁰⁹There is much other evidence. For example, see Jefford, C.W.; Medary, R. *Tetrahedron Lett.* 1966, 2069; Jefford, C.W.; Wojnarowski, W. *Tetrahedron Lett.* 1968, 199; Sliwinski, W.F.; Su, T.M.; Schleyer, P.v.R. J. Am. Chem. Soc. 1972, 94, 133; Sandler, S.R. J. Org. Chem. 1967, 32, 3876; Ghosez, L.; Slinckx, G.; Glineur, M.; Hoet, P.; Laroche, P. *Tetrahedron Lett.* 1967, 2773; Parham, W.E.; Yong, K.S. J. Org. Chem. 1968, 33, 3947; Reese, C.B.; Shaw, A. J. Am. Chem. Soc. 1970, 92, 2566; Dolbier, Jr., W.R.; Phanstiel, O. *Tetrahedron Lett.* 1988, 29, 53.

⁵¹¹Schleyer, P.v.R.; Su, T.M.; Saunders, M.; Rosenfeld, J.C. J. Am. Chem. Soc. 1969, 91, 5174.

⁵¹²For reviews, see Mallory, F.B.; Mallory, C.W. Org. React. **1984**, 30, 1; Laarhoven, W.H. Recl. Trav. Chim. Pays-Bas **1983**, 102, 185, 241; Blackburn, E.V.; Timmons, C.J. Q. Rev. Chem. Soc. **1969**, 23, 482; Stermitz, L.F. Org. Photochem. **1967**, 1, 247. For a review of electrocyclizations of conjugated aryl olefins in general, see Laarhoven, W.H. Org. Photochem. **1989**, 10, 163.

⁵¹⁰Schöllkopf, U.; Fellenberger, K.; Patsch, M.; Schleyer, P.v.R.; Su, T.M.; Van Dine, G.W. *Tetrahedron Lett.* **1967**, 3639.

Pd–C,⁵¹³ or iodine.⁵¹⁴ The reaction is a photochemically allowed conrotatory⁵¹⁵ conversion of a 1,3,5-hexatriene to a cyclohexadiene, followed by removal of two hydrogen atoms by the oxidizing agent. The intermediate dihydrophenanthrene has been isolated.⁵¹⁶ The use of substrates containing heteroatoms (e.g., PhN=NPh) allows the formation of heterocyclic ring systems. The actual reacting species must be the *cis*-stilbene, but *trans*-stilbenes can often be used, because they are isomerized to the cis isomers under the reaction conditions. The reaction can be extended to the preparation of many fused aromatic systems, for example,⁵¹⁷

though not all such systems give reaction.⁵¹⁸

Isomerization of biphenylene to $benzo[a]pentalene^{519}$ is a well-known benzene ring contraction rearrangement,⁵²⁰ driven by relief of strain in the four-membered ring. Related to this process is the FVP of the alternant polycyclic aromatic hydro-carbon benzo[b]biphenylene at 1100°C, which gives fluoranthene, a nonalternant polycyclic aromatic hydrocarbon, as the major product at 1100°C in the gas phase.⁵²¹ The mechanism used explain that this isomerization involves equilibrating diradicals of 2-phenylnaphthalene, which rearrange by the net migration of a phenyl group to give equilibrating diradicals of 1-phenylnaphthalene, one isomer of which then cyclizes to fluoranthene.

Another transformation of one aromatic compound to another is the *Stone–Wales rearrangement* of pyracyclene (**113**),⁵²² which is a bond-switching reaction. The rearrangement of bifluorenylidene (**114**) to dibenzo[g,p]chrysene (**115**) occurs at temperatures as low as 400°C and is accelerated in the presence of decomposing iodomethane, a convenient source of methyl radicals.⁵²³ This result suggested a

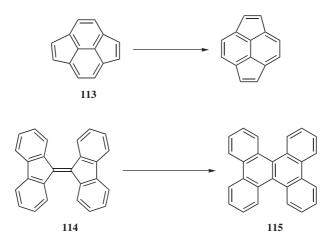
- ⁵¹⁶Doyle, T.D.; Benson, W.R.; Filipescu, N. J. Am. Chem. Soc. 1976, 98, 3262.
- ⁵¹⁷Sato, T.; Shimada, S.; Hata, K. Bull. Chem. Soc. Jpn. 1971, 44, 2484.

⁵¹³Rawal, V.H.; Jones, R.J.; Cava, M.P. Tetrahedron Lett. 1985, 26, 2423.

⁵¹⁴For the use of iodine plus propylene oxide in the absence of air, see Liu, L.; Yang, B.; Katz, T.J.; Poindexter, M.K. J. Org. Chem. **1991**, 56, 3769.

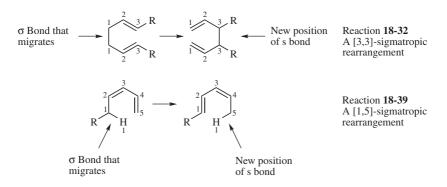
⁵¹⁵Cuppen, T.J.H.M.; Laarhoven, W.H. J. Am. Chem. Soc. 1972, 94, 5914.

⁵¹⁸For a discussion and lists of photocyclizing and nonphotocyclizing compounds, see Laarhoven, W.H. *Recl. Trav. Chim. Pays-Bas* **1983**, *102*, 185, 185–204.


⁵¹⁹Wiersum, U.E.; Jenneskens, L.W. *Tetrahedron Lett.* **1993**, *34*, 6615; Brown, R.F.C.; Choi, N.; Coulston, K.J.; Eastwood, F.W.; Wiersum, U.E.; Jenneskens, L.W. *Tetrahedron Lett.* **1994**, *35*, 4405.

 ⁵²⁰Scott, LT.; Roelofs, N.H. J. Am. Chem. Soc. 1987, 109, 5461; Scott, L.T.; Roelofs, N.H. Tetrahedron Lett. 1988, 29, 6857; Anderson, M.R.; Brown, R.F.C.; Coulston, K.J.; Eastwood, F.W.; Ward, A. Aust. J. Chem. 1990, 43, 1137; Brown, R F.C.; Eastwood, F.W.; Wong, N.R. Tetrahedron Lett. 1993, 34, 3607.
 ⁵²¹Preda, D.V.; Scott, L.T. Org. Lett. 2000, 2, 1489.

⁵²²Stone, A.J.; Wales, D.J. Chem. Phys. Lett. 1986, 128, 501.

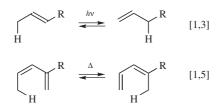

⁵²³Alder, R.W.; Whittaker, G. J. Chem. Soc., Perkin Trans. 2 1975, 712

radical rearrangement. This rearrangement is believed to occur by a radicalpromoted mechanism consisting of a sequence of homoallyl–cyclopropylcarbinyl rearrangement steps.⁵²⁴

B. Sigmatropic Rearrangements

A sigmatropic rearrangement is defined⁵²⁵ as migration, in an uncatalyzed intramolecular process, of a σ bond, adjacent to one or more π systems, to a new position in a molecule, with the π systems becoming reorganized in the process. Examples are

The *order* of a signatropic rearrangement is expressed by two numbers set in brackets: [i,j]. These numbers can be determined by counting the atoms over which each end of the σ bond has moved. Each of the original termini is given the number 1. Thus in the first example above, each terminus of the σ bond has


⁵²⁴Alder, R.W.; Harvey, J. N. J. Am. Chem. Soc. 2004, 126, 2490.

⁵²⁵Woodward, R.B.; Hoffmann, R. *The Conservation of Orbital Symmetry*, Academic Press, NY, **1970**, p. 114.

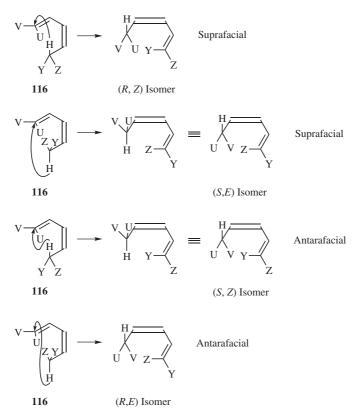
migrated from C-1 to C-3, so the order is [3,3]. In the second example, the carbon terminus has moved from C-1 to C-5, but the hydrogen terminus has not moved at all, so the order is [1,5].

18-29 [1,*j*]-Sigmatropic Migrations of Hydrogen

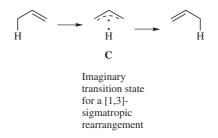
$1/ \rightarrow 3/Hydrogen-migration; 1/ \rightarrow 5/Hydrogen-migration$

Many examples of thermal or photochemical rearrangements in which a hydrogen atom migrates from one end of a system of π bonds to the other have been reported,⁵²⁶ although the reaction is subject to geometrical conditions. Isotope effects play a role in sigmatropic rearrangements, and there is evidence for a kinetic silicon isotope effect.⁵²⁷ Pericyclic mechanisms are involved,⁵²⁸ and the hydrogen must, in the transition state, be in contact with both ends of the chain at the same time. This means that for [1,5] and longer rearrangements, the molecule must be able to adopt the cisoid conformation. Furthermore, there are two geometrical pathways by which any sigmatropic rearrangement can take place, which we illustrate for the case of a [1,5]-sigmatropic rearrangement, ⁵²⁹ starting with a substrate of the form 116, where the migration origin is an asymmetric carbon atom and $U \neq V$. In one of the two pathways, the hydrogen moves along the top or bottom face of the π system. This is called *suprafacial migration*. In the other pathway, the hydrogen moves *across* the π system, from top to bottom, or vice versa. This is antarafacial migration. Altogether, a single isomer like 116 (different rotamers) can give four products. In a suprafacial migration, H can move across the top of the π system (as drawn above) to give the (R,Z) isomer, or it can rotate 180° and move across the bottom of the π system to give the (S,E) isomer.530 The antarafacial migration can similarly lead to two diastereomers, in

⁵²⁷Lin, Y.-L.; Turos, E. J. Am. Chem. Soc. 1999, 121, 856.

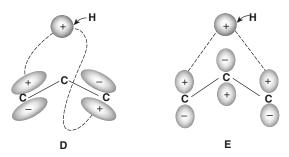

⁵²⁶For a monograph, see Gajewski, J.J. Hydrocarbon Thermal Isomerizations, Academic Press, NY, 1981. For reviews, see Mironov, V.A.; Fedorovich, A.D.; Akhrem, A.A. Russ. Chem. Rev. 1981, 50, 666; Spangler, C.W. Chem. Rev. 1976, 76, 187; DeWolfe, R.H., in Bamford, C.H.; Tipper, C.F.H. Comprehensieve Chemical Kinetics, Vol. 9, Elsevier, NY, 1973, pp. 474–480; Woodward, R.B.; Hoffmann, R. The Conservation of Orbital Symmetry, Academic Press, NY, 1970, pp. 114–140; Hansen, H.; Schmid, H. Chimia, 1970, 24, 89; Roth, W.R. Chimia, 1966, 20, 229.

⁵²⁸For a discussion of catalysts that induce pericyclic rearrangements, see Moss, S.; King, B.T.; de Meijere, A.; Kozhushkov, S.I.; Eaton, P.E.; Michl, J. *Org. Lett.* **2001**, *3*, 2375.

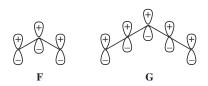

⁵²⁹Note that a [1,5]-sigmatropic rearrangement of hydrogen is also an internal ene synthesis (15-20).

⁵³⁰Since we are using the arbitrary designations U, V, Y, and Z, we have been arbitrary in which isomer to call (R,Z) and which to call (S,E).

this case the (S,Z) and (R,E) isomers.



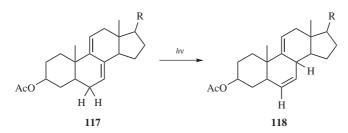
In any given sigmatropic rearrangement, only one of the two pathways is allowed by the orbital-symmetry rules; the other is forbidden. To analyze this situation, first we use a modified frontier orbital approach.⁵³¹ We will imagine that in the transition state C, the migrating H atom breaks away from the rest of the system, which we may treat as if it were a free radical.


⁵³¹See Woodward, R.B.; Hoffmann, R. *The Conservation of Orbital Symmetry*, Academic Press, NY, **1970**, pp. 114–140.

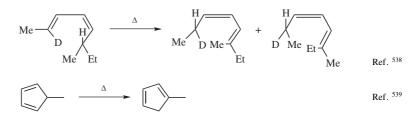
Note that this is not what actually takes place; we merely imagine it in order to be able to analyze the process. In a [1,3]-sigmatropic rearrangement, the imaginary transition state consists of a hydrogen atom and an allyl radical. The latter species (p. 42) has three π orbitals, but the only one that concerns us here is the HOMO which, in a thermal rearrangement is **D**. The electron of the hydrogen atom is of course in a 1*s* orbital, which has only one lobe. The rule governing sigmatropic migration of hydrogen is *the H must move from a plus to a plus or from a minus to a minus*

*lobe, of the HOMO; it cannot move to a lobe of opposite sign.*⁵³² Obviously, the only way this can happen in a thermal [1,3]-sigmatropic rearrangement is if the migration is antarafacial. Consequently, the rule predicts that antarafacial thermal [1,3]-sigmatropic rearrangements are allowed, but the suprafacial pathway is forbidden. However, in a photochemical reaction, promotion of an electron means that E is now the HOMO; the suprafacial pathway is now allowed and the antarafacial pathway forbidden.

A similar analysis of [1,5]-sigmatropic rearrangements shows that in this case the thermal reaction must be suprafacial and the photochemical process antarafacial. For the general case, with odd-numbered j, we can say that [1,j]-suprafacial migrations are allowed thermally when j is of the form $4n^+ 1$, and photochemically when j has the form 4n - 1; the opposite is true for antarafacial migrations.



As expected, the Möbius–Hückel method leads to the same predictions. Here, we look at the basis set of orbitals shown in **F** and **G** for [1,3]- and [1,5]-rearrangements, respectively. A [1,3]-shift involves four electrons, so an allowed thermal pericyclic reaction must be a Möbius system (p. 1210) with one or an odd number


⁵³²This follows from the principle that bonds are formed only by overlap of orbitals of the same sign. Since this is a concerted reaction, the hydrogen orbital in the transition state must overlap simultaneously with one lobe from the migration origin and one from the terminus. It is obvious that both of these lobes must have the same sign.

of sign inversions. As can be seen in **F**, only an antarafacial migration can achieve this. A [1,5]-shift, with six electrons, is allowed thermally only when it is a Hückel system with zero or an even number of sign inversions; hence it requires a suprafacial migration.⁵³³

The actual reported results bear out this analysis. Thus a thermal [1,3] migration is allowed to take place only antarafacially, but such a transition state would be extremely strained, and thermal [1,3]-sigmatropic migrations of hydrogen are unknown.⁵³⁴ On the other hand, the photochemical pathway allows suprafacial [1,3]-shifts, and a few such reactions are known, an example being the photochemical rearrangement of **117** to **118**.⁵³⁵ Substituents influence the efficacy of the [1,3]-hydrogen shift.⁵³⁶

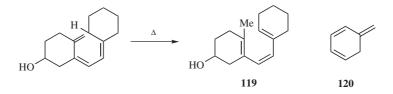
The situation is reversed for [1,5]-hydrogen shifts. In this case the thermal rearrangements, being suprafacial, are quite common, while photochemical rearrangements are rare.⁵³⁷ Two examples of the thermal reaction are

⁵³³For a discussion of the origins for the preference for orbital-symmetry forbidden reactions and the stereochemistry of [1,5]-sigmatropic shifts, see Kless, A.; Nendel, M.; Wilsey, S.; Houk, K.N. J. Am. Chem. Soc. **1999**, 121, 4524.

⁵³⁴A possible [1,3]-migration of hydrogen has been reported. See Yeh, M.; Linder, L.; Hoffman, D.K.; Barton, T.J. J. Am. Chem. Soc. **1986**, 108, 7849. See also, Pasto, D.J.; Brophy, J.E. J. Org. Chem. **1991**, 56, 4554.

⁵³⁵Dauben, W.G.; Wipke, W.T. *Pure Appl. Chem.* **1964**, *9*, 539, 546. For another example, see Kropp, P.J.;
 Fravel, Jr., H.G.; Fields, T.R. J. Am. Chem. Soc. **1976**, *98*, 840.

536Hudson, C.E.; McAdoo, D.J. J. Org. Chem. 2003, 68, 2735.


⁵³⁷For examples of photochemical [1,5]-antarafacial reactions, see Kiefer, E.F.; Tanna, C.H. J. Am. Chem. Soc. **1969**, 91, 4478; Kiefer, E.F.; Fukunaga, J.Y. *Tetrahedron Lett.* **1969**, 993; Dauben, W.G.; Poulter, C.D.; Suter, C. J. Am. Chem. Soc. **1970**, 92, 7408.

⁵³⁸Roth, W.R.; König, J.; Stein, K. Chem. Ber. 1970, 103, 426.

⁵³⁹McLean, S.; Haynes, P. *Tetrahedron* 1965, 21, 2329. For a review of such rearrangements, see Klärner,
 F. *Top. Stereochem.* 1984, 15, 1. For a discussion of [1,5]-sigmatropic hydrogen shifts in cyclic 1,3-dienes, see Hess, Jr., B.A.; Baldwin, J.E. J. Org. Chem. 2002, 67, 6025.

Note that the first example bears out the stereochemical prediction made earlier. Only the two isomers shown were formed. In the second example, migration can continue around the ring. Migrations of this kind are called *circumambulatory rear*rangements.⁵⁴⁰ Such migrations are known for cyclopentadiene, pyrrole, and phosphole derivatives.⁵⁴¹ Geminal bond participation has been observed in pentadienes,⁵⁴² the effects of phenyl substituents have been studied,⁵⁴³ and the kinetics and activation parameters of [1,5] hydrogen shifts have been examined.⁵⁴⁴ The [1,5] hydrogen shifts are also known with vinyl aziridines.⁵⁴⁵

The rare [1,4]-hydrogen transfer has been observed in radical cyclizations.⁵⁴⁶ With respect to [1,7]-hydrogen shifts, the rules predict the thermal reaction to be antarafacial.⁵⁴⁷ Unlike the case of [1,3]-shifts, the transition state is not too greatly strained, and an example of such rearrangements is the formation of 119 and **120**.⁵⁴⁸ Photochemical [1,7]-shifts are suprafacial and, not surprisingly, many of these have been observed.549

The orbital symmetry rules also help us to explain, as on pp. 1232 and 1642, the unexpected stability of certain compounds. Thus, 120 could, by a thermal [1,3]sigmatropic rearrangement, easily convert to toluene, which of course is far more stable because it has an aromatic sextet. Yet, 120 has been prepared and is stable at dry ice temperature and in dilute solutions.⁵⁵⁰

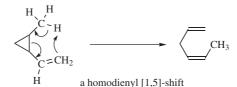
⁵⁴⁰For a review, see Childs, R.F. Tetrahedron 1982, 38, 567. See also, Minkin, V.I.; Mikhailov, I.E.; Dushenko, G.A.; Yudilevich, J.A.; Minyaev, R.M.; Zschunke, A.; Mügge, K. J. Phys. Org. Chem. 1991, 4, 31. For a study of [1,5]-sigmatropic shiftamers, see Tantillo, D.J.; Hoffmann, R. Eur. J. Org. Chem. 2004, 273.

541Bachrach, S.M. J. Org. Chem. 1993, 58, 5414.

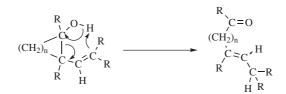
- ⁵⁴²Ikeda, H.; Ushioda, N.; Inagaki, S. Chem. Lett. 2001, 166.
- ⁵⁴³Hayase, S.; Hrovat, D.A.; Borden, W.T. J. Am. Chem. Soc. 2004, 126, 10028.

544Baldwin, J.E.; Raghavan, A.S. J. Org. Chem. 2004, 69, 8128.

⁵⁴⁵Åhman, J.; Somfai, P.; Tanner, D. J. Chem. Soc., Chem. Commun. 1994, 2785; Somfai, P.; Åhman, J. Tetrahedron Lett. 1995, 36, 1953.


546 Journet, M.; Malacria, M. Tetrahedron Lett. 1992, 33, 1893.

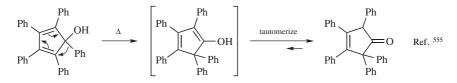
⁵⁴⁷For a computational study that supports tunneling in thermal [1,7]-hydrogen shifts see Hess, Jr., B.A. J. Org. Chem. 2001, 66, 5897.


⁵⁴⁸Gurskii, M.E.; Gridnev, I.D.; Il'ichev, Y.V.; Ignatenko, A.V.; Bubnov, Y.N. Angew. Chem. Int. Ed. 1992, 31, 781; Baldwin, J.E.; Reddy, V.P. J. Am. Chem. Soc. 1987, 109, 8051; 1988, 110, 8223.

⁵⁴⁹See Murray, R.W.; Kaplan, M.L. J. Am. Chem. Soc. 1966, 88, 3527; ter Borg, A.P.; Kloosterziel, H. Recl. Trav. Chim. Pays-Bas 1969, 88, 266; Tezuka, T.; Kimura, M.; Sato, A.; Mukai, T. Bull. Chem. Soc. *Jpn.* **1970**, 43, 1120. ⁵⁵⁰Bailey, W.J.; Baylouny, R.A. J. Org. Chem. **1962**, 27, 3476.

Analogs of sigmatropic rearrangements in which a cyclopropane ring replaces one of the double bonds are also known, for example,⁵⁵¹

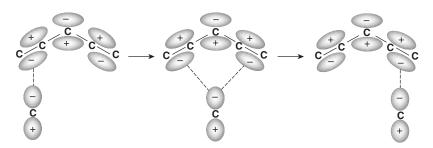
The reverse reaction has also been reported.⁵⁵² 2-Vinylcycloalkanols⁵⁵³ undergo an analogous reaction, as do cyclopropyl ketones (see p. 1673 for this reaction).



18-30 [1, *j*]-Sigmatropic Migrations of Carbon

[1,3] migration of alkyl

[1,5] migration of phenyl


⁵⁵¹Frey, H.M.; Solly, R.K. Int. J. Chem. Kinet., **1969**, 1, 473; Roth, W.R.; König, J. Liebigs Ann. Chem. **1965**, 688, 28; Ohloff, G. Tetrahedron Lett. **1965**, 3795; Jorgenson, M.J.; Thacher, A.F. Tetrahedron Lett. **1969**, 4651; Corey, E.J.; Yamamoto, H.; Herron D.K.; Achiwa, K. J. Am. Chem. Soc. **1970**, 92, 6635; Loncharich, R.J.; Houk, K.N. J. Am. Chem. Soc. **1988**, 110, 2089; Parziale, P.A.; Berson, J.A. J. Am. Chem. Soc. **1990**, 112, 1650; Pegg, G.G.; Meehan, G.V. Aust. J. Chem. **1990**, 43, 1009, 1071.

⁵⁵³Arnold, R.T.; Smolinsky, G. J. Am. Chem. Soc. **1960**, 82, 4918; Leriverend, P.; Conia, J.M. Tetrahedron Lett. **1969**, 2681; Conia, J.M.; Barnier, J.P. Tetrahedron Lett. **1969**, 2679.

⁵⁵⁴Roth, W.R.; Friedrich, A. Tetrahedron Lett. 1969, 2607.

⁵⁵⁵Youssef, A.K.; Ogliaruso, M.A. J. Org. Chem. 1972, 37, 2601.

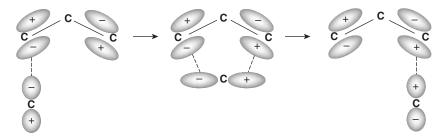

⁵⁵²Roth, W.R.; König, J. *Liebigs Ann. Chem.* **1965**, 688, 28. Also see, Grimme, W. *Chem. Ber.* **1965**, 98, 756.

Fig. 18.5. Hypothetical orbital movement for a thermal [1,5]-sigmatropic migration of carbon. To move from one negative lobe, the migrating carbon uses only its own negative lobe, retaining its configuration.

Sigmatropic migrations of alkyl or aryl groups⁵⁵⁶ are less common than the corresponding hydrogen migrations.⁵⁵⁷ When they do take place, there is an important difference. Unlike a hydrogen atom, whose electron is in a 1*s* orbital with only one lobe, a carbon free radical has its odd electron in a *p* orbital that has *two lobes of opposite sign*. Therefore, if we draw the imaginary transition states for this case (see p. 1650), we see that in a thermal suprafacial [1,5] process (Fig. 18.5), symmetry can be conserved only if the migrating carbon moves in such a way that the lobe which was originally attached to the π system remains attached to the π system.

This can happen only if configuration is *retained within the migrating group*. On the other hand, thermal suprafacial [1,3] migration (Fig. 18.6) *can* take place if the migrating carbon switches lobes. If the migrating carbon was originally bonded by its minus lobe, it must now use its plus lobe to form the new C–C bond. Thus, configuration in the migrating group will be *inverted*. From these considerations we predict that suprafacial [1,*j*]-sigmatropic rearrangements in which carbon is the migrating group are always allowed, both thermally and photochemically, but that thermal [1,3] migrations will proceed with inversion and thermal [1,5]

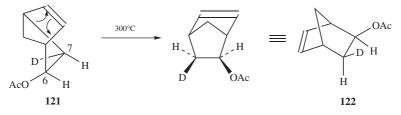
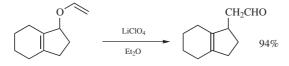


Fig. 18.6. Hypothetical orbital movement for a thermal [1,3]-sigmatropic migration of carbon. The migrating carbon moves a negative to a positive lobe, requiring it to switch its own bonding lobe from negative to positive, inverting its configuration.

⁵⁵⁶For reviews, see Mironov, V.A.; Fedorovich, A.D.; Akhrem, A.A. *Russ. Chem. Rev.* **1981**, 50, 666; Spangler, C.W. *Chem. Rev.* **1976**, 76, 187


⁵⁵⁷It has been shown that methyl and phenyl have lower migratory aptitudes than hydrogen in thermal sigmatropic rearrangements: Shen, K.; McEwen, W.E.; Wolf, A.P. *Tetrahedron Lett.* **1969**, 827; Miller, L.L.; Greisinger, R.; Boyer, R.F. J. Am. Chem. Soc. **1969**, 91, 1578.

migrations with retention of configuration within the migrating group. More generally, we can say that suprafacial [1,j] migrations of carbon in systems where j = 4n - 1 proceed with inversion thermally and retention photochemically, while systems where j = 4n + 1 show the opposite behavior. Where antarafacial migrations take place, all these predictions are of course reversed.

The first laboratory test of these predictions was the pyrolysis of deuterated *endo*-bicyclo[3.2.0]hept-2-en-6-yl acetate (**121**), which gave the *exo*-deuterio-*exo*-norbornyl acetate **122**.⁵⁵⁸ Thus, as predicted by the orbital symmetry rules, this thermal suprafacial [1,3]-sigmatropic reaction took place with complete inversion at C-7. Similar results have been obtained in a number of other cases.⁵⁵⁹ However, similar studies of the pyrolysis of the parent hydrocarbon of **121**, labeled with D at C-6 and C-7, showed that while most of the product was formed with inversion at C-7, a significant fraction (11–29%) was formed with retention.⁵⁶⁰ Other cases of lack of complete inversion are also known.⁵⁶¹ A diradical mechanism has been invoked to explain such cases.⁵⁶² There is strong evidence for a radical mechanism for some [1,3]-sigmatropic rearrangements.⁵⁶³ Photochemical suprafacial [1,3] migrations of carbon have been shown to proceed with retention, as predicted.⁵⁶⁴

Although allylic vinylic ethers generally undergo [3,3]-sigmatropic rearrangements (**18-33**), they can be made to give the [1,3] kind, to give aldehydes, for example,

⁵⁵⁸Berson, J.A.; Nelson, G.L. J. Am. Chem. Soc. **1967**, 89, 5503; Berson, J.A. Acc. Chem. Res. **1968**, 1, 152.

⁵⁵⁹See Roth, W.R.; Friedrich, A. *Tetrahedron Lett.* **1969**, 2607; Berson, J.A. Acc. Chem. Res. **1972**, *5*, 406; Bampfield, H.A.; Brook, P.R.; Hunt, K. J. Chem. Soc., Chem. Commun. **1976**, 146; Franzus, B.; Scheinbaum, M.L.; Waters, D.L.; Bowlin, H.B. *J. Am. Chem. Soc.* **1976**, *98*, 1241; Klärner, F.; Adamsky, F. Angew. Chem. Int. Ed. **1979**, *18*, 674.

⁵⁶⁰Baldwin, J.E.; Belfield, K.D. J. Am. Chem. Soc. **1988**, 110, 296; Klärner, F.; Drewes, R.; Hasselmann, D. J. Am. Chem. Soc. **1988**, 110, 297.

⁵⁶¹See, for example, Berson, J.A.; Holder, R.W. J. Am. Chem. Soc. **1973**, 95, 2037; Pikulin, S.; Berson, J.A. J. Am. Chem. Soc. **1988**, 110, 8500.

⁵⁶²See Newman-Evans, R.H.; Carpenter, B.K. J. Am. Chem. Soc. **1984**, 106, 7994; Pikulin, S.; Berson, J.A. J. Am. Chem. Soc. **1988**, 110, 8500. See also, Berson, J.A. Chemtracts: Org. Chem. **1989**, 2, 213.

⁵⁶³See, for example, Bates, G.S.; Ramaswamy, S. *Can. J. Chem.* **1985**, *63*, 745; Dolbier, W.B.; Phanstiel IV, O. *J. Am. Chem. Soc.* **1989**, *111*, 4907.

⁵⁶⁴Cookson, R.C.; Hudec, J.; Sharma, M. Chem. Commun. 1971, 107, 108.

by treatment with LiClO₄ in diethyl ether.⁵⁶⁵ In this case, the C–O bond undergoes a 1,3 migration from the O to the end vinylic carbon. When the vinylic ether is of the type ROCR'=CH₂, ketones RCH₂COR' are formed. There is evidence that this [1,3]-sigmatropic rearrangement is not concerted, but involves dissociation of the substrate into ions.⁵⁶⁵

Thermal suprafacial [1,5] migrations of carbon have been found to take place with retention,⁵⁶⁶ but also with inversion.⁵⁶⁷ A diradical mechanism has been suggested for the latter case.⁵⁶⁷

Simple nucleophilic, electrophilic, and free-radical 1,2-shifts can also be regarded as signatropic rearrangements (in this case, [1,2]-rearrangements). We have already (p. \$) applied similar principles to such rearrangements to show that nucleophilic 1,2-shifts are allowed, but the other two types are forbidden unless the migrating group has some means of delocalizing the extra electron or electron pair. The mechanism of the forbidden [3s,5s]-sigmatropic shift has been examined.⁵⁶⁸

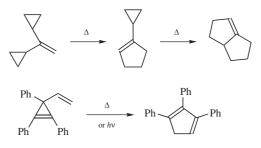
18-31 Conversion of Vinylcyclopropanes to Cyclopentenes

The thermal expansion of a vinylcyclopropane to a cyclopentene ring⁵⁶⁹ is a special case of a [1,3]-sigmatropic migration of carbon, although it can also be considered an internal $[\pi^2 + \sigma^2]$ -cycloaddition reaction (see **15-63**). It is known as a *vinylcyclopropane rearrangement*.⁵⁷⁰ The reaction has been carried out on many vinylcyclopropanes bearing various substituents in the ring⁵⁷¹ or

⁵⁶⁸Leach, A.G.; Catak, S.; Houk, K.N. Chem. Eur. J. 2002, 8, 1290.

⁵⁶⁹For reviews, see Baldwin, J.E. Chem. Rev. 2003, 103, 1197; Wong, H.N.C.; Hon, M.; Tse, C.; Yip, Y.; Tanko, J.; Hudlicky, T. Chem. Rev. 1989, 89, 165, see pp. 169–172; Hudlicky, T.; Kutchan, T.M.; Naqvi, S.M. Org. React. 1985, 33, 247; DeWolfe, R.H., in Bamford, C.H.; Tipper, C.F.H. Comprehenseive Chemical Kintetics, Vol. 9, Elseiver, NY, 1973, pp. 470–474; Gutsche, C.D.; Redmore, D. Carbocyclic Ring Expansion Reactions, Academic Press, NY, 1968, pp. 163–170.

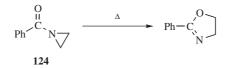
⁵⁶⁵Grieco, P.A.; Clark, J.D.; Jagoe, C.T. J. Am. Chem. Soc. **1991**, 113, 5488; Palani, N.; Balasubramanian, K.K. Tetrahedron Lett. **1995**, 36, 9527.


⁵⁶⁶Boersma, M.A.M.; de Haan, J.W.; Kloosterziel, H.; van de Ven, L.J.M. *Chem. Commun.* 1970, 1168.

⁵⁶⁷Klärner, F.; Yaslak, S.; Wette, M. Chem. Ber. 1979, 112, 1168; Klärner, F.; Brassel, B. J. Am. Chem. Soc. 1980, 102, 2469; Gajewski, J.J.; Gortva, A.M.; Borden, J.E. J. Am. Chem. Soc. 1986, 108, 1083; Baldwin, J.E.; Broline, B.M. J. Am. Chem. Soc. 1982, 104, 2857.


⁵⁷⁰For a novel vinylcyclopropane rearrangement, see Armesto, D.; Ramos, A.; Mayoral, E.P.; Ortiz, M.J.; Agarrabeitia, A.R. *Org. Lett.* **2000**, *2*, 183.

⁵⁷¹For a study of substituent effects, see McGaffin, G.; Grimm, B.; Heinecke, U.; Michaelsen, H.; de Meijere, A.; Walsh, R. *Eur. J. Org. Chem.* **2001**, 3559.


on the vinyl group and has been extended to 1,1-dicyclopropylethene⁵⁷²

and (both thermally⁵⁷³ and photochemically⁵⁷⁴) to vinylcyclopropenes. This rearrangement can be catalyzed by rhodium and silver compounds, and has been used to form rings.⁵⁷⁵ Another variation converts α -trimethylsilylcyclopropyl ketones to ring-expanded ketones, such as **123**, via FVP at 550°C.⁵⁷⁶ Flash vacuum pyrolysis of the trimethylsilyl ether of cyclopropylcarbinyl alcohols gives similar results.⁵⁷⁷ A variation uses flash vacuum pyrolysis at 600°C to convert α -trimethylsilyloxy- α -vinyl cyclic ketones to ring expanded ketones.⁵⁷⁸

Various heterocyclic analogs⁵⁷⁹ are also known, as in the rearrangement of aziridinyl amides (**124**).⁵⁸⁰ Cyclopropyl ketones can be treated with tosylamine and a zirconium catalyst, which converts the imine formed *in situ* to a pyrroline.⁵⁸¹

⁵⁷²Ketley, A.D. Tetrahedron Lett. 1964, 1687; Branton, G.R.; Frey, H.M. J. Chem. Soc. A 1966, 1342.

⁵⁷³Small, A.; Breslow, R. cited in Breslow, R. in de Mayo, P. *Molecular Rearrangments*, Vol. 1, Wiley, NY, *1963*, p. 236.

⁵⁷⁴Padwa, A.; Blacklock, T.J.; Getman, D.; Hatanaka, N.; Loza, R. J. Org. Chem. **1978**, 43, 1481; Zimmerman, H.E.; Kreil, D.J. J. Org. Chem. **1982**, 47, 2060.

⁵⁷⁵Wender, P.A.; Husfeld, C.O.; Langkopf, E.; Love, J.A. J. Am. Chem. Soc. 1998, 120, 1940.

⁵⁷⁶Liu, H.; Shook, C.A.; Jamison, J.A.; Thiruvazhi, M.; Cohen, T. J. Am. Chem. Soc. 1998, 120, 605.

⁵⁷⁷Rüedi, G.; Nagel, M.; Hansen, H.-J. Org. Lett. 2004, 6, 2989.

⁵⁷⁸Rüedi, G.; Oberli, M.A.; Nagel, M.; Hansen, H.-J. Org. Lett. 2004, 6, 3179.

⁵⁷⁹For a review of a nitrogen analog, see Boeckman, Jr., R.K.; Walters, M.A. Adv. Heterocycl. Nat. Prod. Synth. **1990**, 1, 1.

⁵⁸⁰For reviews of ring expansions of aziridines, see Heine, H.W. *Mech. Mol. Migr.* 1971, 3, 145; Dermer, O.C.; Ham, G.E. *Ethylenimine and Other Aziridines*, Academic Press, NY, 1969, pp. 282–290. See also, Wong, H.N.C.; Hon, M.; Tse, C.; Yip, Y.; Tanko, J.; Hudlicky, T. *Chem. Rev.* 1989, 89, 165, 190–192.
 ⁵⁸¹Shi, M.; Yang, Y.-H.; Xu, B. *Synlett* 2004, 1622.

Two competing reactions are the homodienyl [1,5]-shift (if a suitable H is available, see **18-29**), and simple cleavage of the cyclopropane ring, leading in this case to a diene (see **18-3**).

Vinylcyclobutanes can be similarly converted to cyclohexenes,⁵⁸² but larger ring compounds do not generally give the reaction.⁵⁸³ Bicyclo[2.1.0]pentane derivatives undergo this reaction, and tricyclo[4.1.0.0^{2.5}]heptanes rearrange to give non-conjugated cycloheptadienes.⁵⁸⁴ Though high temperatures (as high as 500°C) are normally required for the thermal reaction, the lithium salts of 2-vinylcyclopropanols rearrange to the lithium salt of cyclopent-3-enols at 25°C.⁵⁸⁵ Salts of 2-vinylcyclobutanols behave analogously.⁵⁸⁶

The reaction rate has also been greatly increased by the addition of a oneelectron oxidant tris-(4-bromophenyl)aminium hexafluoroantimonate Ar_3N_{+} SbF₆- (Ar = *p*-bromophenyl).⁵⁸⁷ This reagent converts the substrate to a cation radical, which undergoes ring expansion much faster.⁵⁸⁸

The mechanisms of these ring expansions are not certain. Both concerted⁵⁸⁹ and diradical⁵⁹⁰ pathways have been proposed,⁵⁹¹ and it is possible that both pathways operate, in different systems.

For the conversion of a vinylcyclopropane to a cyclopentene in a different way, see OS **68**, 220.

⁵⁸²See, for example, Overberger, C.G.; Borchert, A.E. J. Am. Chem. Soc. 1960, 82, 1007; Gruseck, U.; Heuschmann, M. Chem. Ber. 1990, 123, 1911. The kinetics of gas-phase fragmentation of propenylmethyl cyclobutanes has been examined, see Baldwin, J.E.; Burrell, R.C. J. Org. Chem. 2002, 67, 3249. Thermal [1,3]-carbon signatropic rearrangements of vinylcyclobutanes have been reviewed. See Leber, P.A.; Baldwin, J.E. Acc. Chem. Res. 2002, 35, 279.

⁵⁸⁵Danheiser, R.L.; Bronson, J.J.; Okano, K. J. Am. Chem. Soc. 1985, 107, 4579.

⁵⁸⁶Danheiser, R.L.; Martinez-Davila, C.; Sard, H. Tetrahedron 1981, 37, 3943.

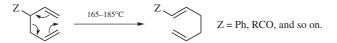
⁵⁸⁷Dinnocenzo, J.P.; Conlan, D.A. J. Am. Chem. Soc. 1988, 110, 2324.

⁵⁸⁸For a review of ring expansion of vinylcyclobutane cation radicals, see Bauld, N.L. *Tetrahedron* **1989**, 45, 5307.

⁵⁸⁹For evidence favoring the concerted mechanism, see Billups, W.E.; Leavell, K.H.; Lewis, E.S.; Vanderpool, S. J. Am. Chem. Soc. **1973**, 95, 8096; Berson, J.A.; Dervan, P.B.; Malherbe, R.; Jenkins, J.A. J. Am. Chem. Soc. **1976**, 98, 5937; Andrews, G.D.; Baldwin, J.E. J. Am. Chem. Soc. **1976**, 98, 6705, 6706; Dolbier, Jr., W.R.; Al-Sader, B.H.; Sellers, S.F.; Koroniak, H. J. Am. Chem. Soc. **1981**, 103, 2138; Gajewski, J.J.; Olson, L.P. J. Am. Chem. Soc. **1991**, 113, 7432.

⁵⁹⁰For evidence favoring the diradical mechanism, see Willcott, M.R.; Cargle, V.H. J.Am.Chem.Soc. 1967, 89, 723; Doering, W. von E.; Schmidt, E.K.G. Tetrahedron 1971, 27, 2005; Roth, W.R.; Schmidt, E.K.G. Tetrahedron Lett. 1971, 3639; Simpson, J.M.; Richey Jr., H.G. Tetrahedron Lett. 1973, 2545; Gilbert, J.C.; Higley, D.P. Tetrahedron Lett. 1973, 2075; Caramella, P.; Huisgen, R.; Schmolke, B. J.Am.Chem.Soc. 1974, 96, 2997, 2999; Mazzocchi, P.H.; Tamburin, H.J. J.Am.Chem. Soc. 1975, 97, 555; Zimmerman, H.E.; Fleming, S.A. J. Am. Chem. Soc. 1983, 105, 622; Klumpp, G.W.; Schakel, M. Tetrahedron Lett. 1983, 24, 4595; McGaffin, G.; de Meijere, A.; Walsh, R. Chem. Ber. 1991, 124, 939. A "continuous diradical transition state" has also been proposed: Roth, W.R.; Lennartz, H.; Doering, W. von E.; Birladeanu, L.; Guyton, C.A.; Kitagawa, T. J. Am. Chem. Soc. 1990, 112, 1722, and references cited therein.

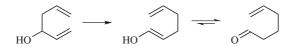
⁵⁹¹For a discussion concerning whether or not this [1,3]-shift is a concerted reaction, see Gajewski, J.J.; Olson, L.P.; Willcott III, M.R. *J. Am. Chem. Soc.* **1996**, *118*, 299. For a discussion of the mechanism of this reaction, see Su, M.-D. *Tetrahedron* **1995**, *51*, 5871.


⁵⁸³For an exception, see Thies, R.W. J. Am. Chem. Soc. 1972, 94, 7074.

⁵⁸⁴Deak, H.L.; Stokes, S.S.; Snapper, M.L. J. Am. Chem. Soc. 2001, 123, 5152.

N-Cyclopropylimines undergo rearrangement to cyclic imines (pyrrolines) under photochemical conditions.⁵⁹² P-Vinyl phosphiranes (the P analog of cyclopropanes with P in the ring) under a similar rearrangement, and the mechanism has been studied.⁵⁹³

18-32 The Cope Rearrangment

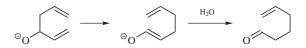

 $(3/4/) \rightarrow (1/6/)$ -sigma-Migration

When 1,5-dienes are heated, a [3,3] signatropic rearrangement known as the *Cope rearrangement* (not to be confused with the Cope elimination reaction, **17-9**) occurs to generate an isomeric 1,5-diene.⁵⁹⁴ When the diene is symmetrical about the 3,4 bond, we have the unusual situation where a reaction gives a product identical with the starting material:⁵⁹⁵

Therefore, a Cope rearrangement can be detected only when the diene is not symmetrical about this bond. Any 1,5-diene gives the rearrangement; for example, 3-methyl-1,5-hexadiene heated to 300°C gives 1,5-heptadiene.⁵⁹⁶ However, the reaction takes place more easily (lower temperature required) when there is a group on the 3- or 4-carbon with leads to the new double bond being substituted. The reaction is obviously reversible⁵⁹⁷ and produces an equilibrium mixture of the two 1,5-dienes, which is richer in the thermodynamically more stable isomer. However, the equilibrium can be shifted to the right for 3-hydroxy-1,5-dienes,⁵⁹⁸ because the product tautomerizes to the ketone or aldehyde:

⁵⁹²Campos, P.J.; Soldevilla, A.; Sampedro, D.; Rodrguez, M.A. Org. Lett. 2001, 3, 4087.

⁵⁹³Mátrai, J.; Dransfeld, A.; Veszprém, T.; Nguyen, M.T. J. Org. Chem. 2001, 66, 5671.


⁵⁹⁴For reviews, see Bartlett, P.A. *Tetrahedron* **1980**, *36*, 2, 28–39; Rhoads, S.J.; Raulins, N.R. Org. React. **1975**, *22*, 1; Smith, G.G.; Kelly, F.W. Prog. Phys. Org. Chem. **1971**, *8*, 75, 153–201; DeWolfe, R.H., in Bamford, C.H.; Tipper, C.F.H. Comprehensive Chemical Kinetics, Vol. 9, Elsevier, NY, **1973**, pp. 455–461.

⁵⁹⁵Note that the same holds true for [1,j]-sigmatropic reactions of symmetrical substrates (18-28, 18-29).
 ⁵⁹⁶Levy, H.; Cope, A.C. *J. Am. Chem. Soc.* 1944, 66, 1684.

⁵⁹⁷For a review of the reverse Cope cyclization, see Cooper, N.J.; Knight, D.W. *Tetrahedron* 2004, 60, 243.

⁵⁹⁸For an exception, see Elmore, S.W.; Paquette, L.A. *Tetrahedron Lett.* 1991, 32, 319.

The reaction of 3-hydroxy-1,5-dienes is called the *oxy-Cope rearrangement*,⁵⁹⁹ and has proved highly useful in synthesis.⁶⁰⁰ The oxy-Cope rearrangement is greatly accelerated (by factors of $10^{10}-10^{17}$) if the alkoxide is used rather than the alcohol (the *anionic oxy-Cope rearrangement*),⁶⁰¹ where the direct product is the enolate ion, which is hydrolyzed to the ketone. A metal free reaction using a phosphazene base has been reported.⁶⁰² The silyloxy-Cope rearrangement has proven to be quite useful.⁶⁰³ An antibody-catalyzed oxy-Cope reaction is known,⁶⁰⁴ and the mechanism and origins of catalysis for this reaction have been studied.⁶⁰⁵ Sulfur substitution also leads to rate enhancement of the oxy-Cope rearrangement.⁶⁰⁶ Note that 2-oxonia Cope rearrangements have been implicated in Prins cyclization reactions (**16-54**).⁶⁰⁷

aza-Cope rearrangements are also known.⁶⁰⁸ In amino-Cope rearrangements, the solvent plays a role in the regioselectivity of the reaction.⁶⁰⁹ It has been suggested that this latter reaction does not proceed solely by a concerted [3.3]-sigmatropic rearrangement.⁶¹⁰

⁵⁹⁹Berson, J.A.; Walsh, Jr., E.J. J. Am. Chem. Soc. **1968**, 90, 4729; Warrington, J.M.; Yap, G.P.A.; Barriault, L. Org. Lett. **2000**, 2, 663; Ovaska, T.V.; Roses, J.B. Org. Lett. **2000**, 2, 2361. For reviews, see Paquette, L.A. Angew. Chem. Int. Ed. **1990**, 29, 609; Marvell, E.N.; Whalley, W., in Patai, S. The Chemistry of the Hydroxyl Group, pt. 2, Wiley, NY, **1971**, pp. 738–743.

⁶⁰¹Evans, D.A.; Nelson, J.V. J. Am. Chem. Soc. **1980**, 102, 774; Miyashi, T.; Hazato, A.; Mukai, T. J. Am. Chem. Soc. **1978**, 100, 1008; Paquette, L.A.; Pegg, N.A.; Toops, D.; Maynard, G.D.; Rogers, R.D. J. Am. Chem. Soc. **1990**, 112, 277; Gajewski, J.J.; Gee, K.R. J. Am. Chem. Soc. **1991**, 113, 967. See also, Wender, P.A.; Ternansky, R.J.; Sieburth, S.M. Tetrahedron Lett. **1985**, 26, 4319. For a study of isomerization of the parent substrate in the gas phase, see Schulze, S.M.; Santella, N.; Grabowski, J.J.; Lee, J.K. J. Org. Chem. **2001**, 66, 7247.

⁶⁰²Mamdani, H.T.; Hartley, R.C. Tetrahedron Lett. 2000, 41, 747.

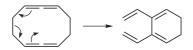
605 Black, K.A.; Leach, A.G.; Kalani, Y.S.; Houk, K.N. J. Am. Chem. Soc. 2004, 126, 9695.

⁶⁰⁶Paquette, L.A.; Reddy, Y.R.; Vayner, G.; Houk, K.N. J. Am. Chem. Soc. 2000, 122, 10788.

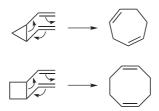
⁶⁰⁷See Rychnovsky, S.D.; Marumoto, S.; Jaber, J.J. Org. Lett. 2001, 3, 3815.

⁶⁰⁸Beholz, L.G.; Stille, J.R. J. Org. Chem. **1993**, 58, 5095; Sprules, T.J.; Galpin, J.D.; Macdonald, D. Tetrahedron Lett. **1993**, 34, 247; Cook, G.R.; Barta, N.S.; Stille, J.R. J. Org. Chem. **1992**, 57, 461. See Yadav, J.S.; Reddy, B.V.S.; Rasheed, M.A.; Kumar, H.M.S. Synlett **2000**, 487.

⁶⁰⁹Dobson, H.K.; LeBlanc, R.; Perrier, H.; Stephenson, C.; Welch, T.R.; Macdonald, D. *Tetrahedron Lett.* **1999**, *40*, 3119.


⁶¹⁰Allin, S.M.; Button, M.A.C. Tetrahedron Lett. 1999, 40, 3801.

⁶⁰⁰For a list of references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, *1999*, pp. 1306–1307.


⁶⁰³For a review, see Schneider, C. Synlett 2001, 1079.

⁶⁰⁴Braisted, A.C.; Schultz, P.G. J. Am. Chem. Soc. 1994, 116, 2211.

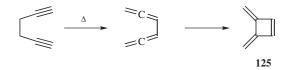
The 1,5-diene system may be inside a ring or part of an allenic system⁶¹¹ (this example illustrates both of these situations):⁶¹²

but the reaction does not take place when one of the double bonds is part of an aromatic system (e.g., 4-phenyl-1-butene).⁶¹³ When the two double bonds are in vinylic groups attached to adjacent ring positions, the product is a ring four carbons larger. This has been applied to divinylcyclopropanes and divinylcyclobutanes:⁶¹⁴

Indeed, *cis*-1,2-divinylcyclopropanes give this rearrangement so rapidly that they generally cannot be isolated at room temperature,⁶¹⁵ though exceptions are known.⁶¹⁶ When heated, 1,5-diynes are converted to 3,4-dimethylenecyclobutenes **125**.⁶¹⁷ A rate-determining Cope rearrangement is followed by a very rapid electrocyclic (**18-27**) reaction. The interconversion of 1,3,5-trienes and cyclohexadienes

⁶¹⁴Vogel, E.; Ott, K.H.; Gajek, K. *Liebigs Ann. Chem.* 1961, 644, 172. For reviews, see Wong, H.N.C.;
 Hon, M.; Tse, C.; Yip, Y.; Tanko, J.; Hudlicky, T. *Chem. Rev.* 1989, 89, 165, see pp. 172–174;
 Mil'vitskaya, E.M; Tarakanova, A.V.; Plate, A.F. Russ. Chem. Rev. 1976, 45, 469, see pp. 475–476.

⁶¹⁵Unsubstituted *cis*-1,2-divinylcyclopropane is fairly stable at -20°C: Brown, J.M.; Golding, B.T.; Stofko, Jr., J.J. *J. Chem. Soc., Chem. Commun.* **1973**, 319; Schneider, M.P.; Rebell, J. *J. Chem. Soc., Chem. Commun.* **1975**, 283.


⁶¹⁶See, for example, Brown, J.M. *Chem. Commun.* **1965**, 226; Schönleber, D. *Chem. Ber.* **1969**, 102, 1789;
 Bolesov, I.G.; Ii-hsein, U.; Levina, R.Ya. *J. Org. Chem. USSR* **1970**, 6, 1791; Schneider, M.P.; Rau, A. *J. Am. Chem. Soc.* **1979**, 101, 4426.

⁶¹⁷For reviews of Cope rearrangements involving triple bonds, see Viola, A.; Collins, J.J.; Filipp, N. *Tetrahedron* **1981**, *37*, 3765; Théron F.; Verny, M.; Vessière, R., in Patai, S. *The Chemistry of the Carbon–Carbon Triple Bond*, pt. 1, Wiley, NY, **1978**, pp. 381–445, pp. 428–430; Huntsman, W.D. *Intra-Sci. Chem. Rep.* **1972**, *6*, 151.

 ⁶¹¹Duncan, J.A.; Azar, J.K.; Beatle, J.C.; Kennedy, S.R.; Wulf, C.M. J. Am. Chem. Soc. 1999, 121, 12029.
 ⁶¹²Harris, Jr., J.F. Tetrahedron Lett. 1965, 1359.

 ⁶¹³See, for example, Lambert, J.B.; Fabricius, D.M.; Hoard, J.A. J. Org. Chem. 1979, 44, 1480; Marvell,
 E.N.; Almond, S.W. Tetrahedron Lett. 1979, 2777, 2779; Newcomb, M.; Vieta, R.S. J. Org. Chem. 1980,
 45, 4793. For exceptions in certain systems, see Doering, W. von E.; Bragole, R.A. Tetrahedron 1966, 22,
 385; Jung, M.E.; Hudspeth, J.P. J. Am. Chem. Soc. 1978, 100, 4309; Yasuda, M.; Harano, K.; Kanematsu,
 K. J. Org. Chem. 1980, 45, 2368.

(in **18-27**) is very similar to the Cope rearrangement, but in **18-27**, the 3,4 bond goes from a double bond to a single bond rather than from a single bond to no bond.

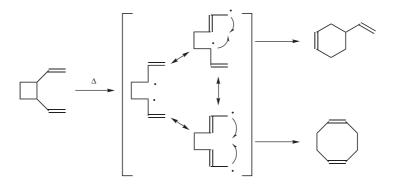
Like [2 + 2]-cycloadditions (p. 1220), Cope rearrangements of simple 1,5dienes can be catalyzed by certain transition-metal compounds. For example, the addition of PdCl₂(PhCN)₂ causes the reaction to take place at room temperature.⁶¹⁸ This can be quite useful synthetically, because of the high temperatures required in the uncatalyzed process.

As we have indicated with our arrows, the mechanism of the uncatalyzed Cope rearrangement is a simple six-centered pericyclic process.⁶¹⁹ Since the mechanism is so simple, it has been possible to study some rather subtle points, among them the question of whether the six-membered transition state is in the boat or the chair form.⁶²⁰ For the case of 3,4-dimethyl-1,5-hexadiene, it was demonstrated conclusively that the transition state is in the chair form. This was shown by the stereospecific nature of the reaction: The meso isomer gave the cis–trans product, while the (\pm) diastereomer gave the trans–trans diene.⁶²¹ If the transition state is in the chair form (taking the meso isomer, e.g.), one methyl must be "axial" and the other "equatorial" and the product must be the cis–trans alkene:

⁶¹⁸Overman, L.E.; Knoll, F.M. J. Am. Chem. Soc. 1980, 102, 865; Hamilton, R.; Mitchell, T.R.B.; Rooney, J.J. J. Chem. Soc., Chem. Commun. 1981, 456. For reviews of catalysis of Cope and Claisen rearrangements, see Overman, L.E. Angew. Chem. Int. Ed. 1984, 23, 579; Lutz, R.P. Chem. Rev. 1984, 84, 205. For a study of the mechanism, see Overman, L.E.; Renaldo, A.F. J. Am. Chem. Soc. 1990, 112, 3945.

⁶¹⁹For a mechanistic discussion, see Poupko, R.; Zimmermann, H.; Müller, K.; Luz, Z. J. Am. Chem. Soc. **1996**, *118*, 7995.

⁶²⁰For a discussion showing a preference for the chair conformation, see Shea, K.J.; Stoddard, G.J.; England, W.P.; Haffner, C.D. *J. Am. Chem. Soc*, **1992**, *114*, 2635. See also, Tantillo, D.J.; Hoffmann, R. *J. Org. Chem.* **2002**, *67*, 1419.


⁶²¹Doering, W. von E.; Roth, W.R.*Tetrahedron* **1962**, *18*, 67. See also, Hill, R.K.; Gilman, N.W. *Chem. Commun.* **1967**, 619; Goldstein, M.J.; DeCamp, M.R. *J. Am. Chem. Soc.* **1974**, *96*, 7356; Hansen, H.; Schmid, H. *Tetrahedron* **1974**, *30*, 1959; Gajewski, J.J.; Benner, C.W.; Hawkins, C.M. J. Org. Chem. **1987**, *52*, 5198; Paquette, L.A.; DeRussy, D.T.; Cottrell, C.E. J. Am. Chem. Soc. **1988**, *110*, 890.

There are two possible boat forms for the transition state of the meso isomer. One leads to a trans-trans product;

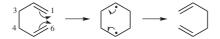
the other to a cis–cis alkene. For the (\pm) pair the predictions are just the opposite: There is just one boat form, and it leads to the cis–trans alkene, while one chair form ("diaxial" methyls) leads to the cis–cis product and the other ("diequatorial" methyls) predicts the trans–trans product. Thus the nature of the products obtained demonstrates that the transition state is a chair and not a boat.⁶²² While 3,4-dimethyl-1,5-hexadiene is free to assume either the chair or boat (it prefers the chair), other compounds are not so free. Thus 1,2-divinylcyclopropane (p. 1661) can react *only* in the boat form, demonstrating that such reactions are not impossible.⁶²³

Because of the nature of the transition state⁶²⁴ in the pericyclic mechanism, optically active substrates with a stereogenic carbon at C-3 or C-4 transfer the chirality to the product (see p. 1673 for an example in the mechanistically similar Claisen rearrangement).⁶²⁵ There are many examples of asymmetric [3,3]-sigmatropic rearrangements.⁶²⁶

⁶²²Preference for the chair transition state is a consequence of orbital-symmetry relationships: Hoffmann,
R.; Woodward, R.B. *J. Am. Chem. Soc.* **1965**, 87, 4389; Fukui, K.; Fujimoto, H. *Tetrahedron Lett.* **1966**, 251.

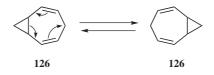
⁶²³For other examples of Cope rearrangements in the boat form, see Goldstein, M.J.; Benzon, M.S. J. Am. Chem. Soc. 1972, 94, 7147; Shea, K.J.; Phillips, R.B. J. Am. Chem. Soc. 1980, 102, 3156; Wiberg, K.B.; Matturro, M.; Adams, R. J. Am. Chem. Soc. 1981, 103, 1600; Gajewski, J.J.; Jiminez, J.L. J. Am. Chem. Soc. 1986, 108, 468.

⁶²⁴See Jiao, H.; Schleyer, P.v.R. Angew. Chem. Int. Ed. **1995**, 34, 334; Özkan, I.; Zora, M. J. Org. Chem. **2003**, 68, 9635.


⁶²⁵For a review of Cope and Claisen reactions as enantioselective syntheses, see Hill, R.K., in Morrison, J.D. Asymmetric Synthesis, Vol. 3, Academic Press, NY, *1984*, pp. 503–572, 503–545.

⁶²⁶For a review, see Nubbemeyer, U. Synthesis 2003, 961.

1664 REARRANGEMENTS


Not all Cope rearrangements proceed by the cyclic six-centered mechanism.⁶²⁷ Thus *cis*-1,2-divinylcyclobutane (p. 1661) rearranges smoothly to 1,5-cyclooctadiene, since the geometry is favorable. The trans isomer also gives this product, but the main product is 4-vinylcyclohexene (resulting from **18-31**). This reaction can be rationalized as proceeding by a diradical mechanism,⁶²⁸ although it is possible that at least part of the cyclooctadiene produced comes from a prior epimerization of the *trans*- to the *cis*-divinylcyclobutane followed by Cope rearrangement of the latter.⁶²⁹

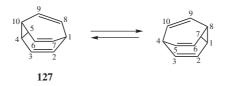
It has been suggested that another type of diradical two-step mechanism may be preferred by some substrates.⁶³⁰ Indeed, a nonconcerted Cope rearrangement has been reported.⁶³¹ In this pathway,⁶³² the 1,6 bond is formed before the 3,4 bond breaks:

This is related to the *Bergman cyclication* that was introduced in 18-27.

It was pointed out earlier that a Cope rearrangement of the symmetrical 1,5-hexadiene gives 1,5-hexadiene. This is a *degenerate Cope rearrangement* (p. 1563). Another molecule that undergoes it is bicyclo[5.1.0]octadiene

⁶²⁷The diradical character of the Cope rearrangement transition state has been studied. See Staroverov, V.B.; Davidson, E.R. J. Am. Chem. Soc. 2000, 122, 186; Navarro-Vázquez, A.; Prall, M.; Schreiner, P.R. Org. Lett. 2004, 6, 2981.

⁶²⁸Hammond, G.S.; De Boer, C.D. J. Am. Chem. Soc. 1964, 86, 899; Trecker, D.J.; Henry, J.P. J. Am. Chem. Soc. 1964, 86, 902. Also see, Dolbier, Jr., W.R.; Mancini, G.J. Tetrahedron Lett. 1975, 2141; Kessler, H.; Ott, W. J. Am. Chem. Soc. 1976, 98, 5014. For a discussion of diradical mechanisms in Cope rearrangements, see Berson, J.A., in de Mayo, P. Rearrangements in Ground and Excited States, Academic Press, NY, 1980, pp. 358–372.


⁶²⁹See, for example, Berson, J.A.; Dervan, P.B. J. Am. Chem. Soc. **1972**, 94, 8949; Baldwin, J.E.; Gilbert, K.E. J. Am. Chem. Soc. **1976**, 98, 8283. For a similar result in the 1,2-divinylcyclopropane series, see Baldwin, J.E.; Ullenius, C. J. Am. Chem. Soc. **1984**, 96, 1542.

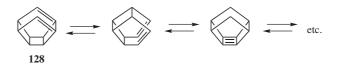
⁶³⁰Doering, W. von E.; Toscano, V.G.; Beasley, G.H. *Tetrahedron* 1971, 27, 5299; Dewar, M.J.S.; Wade, Jr., L.E. J. Am. Chem. Soc. 1977, 99, 4417; Padwa, A.; Blacklock, T.J. J. Am. Chem. Soc. 1980, 102, 2797; Dollinger, M.; Henning, W.; Kirmse, W. Chem. Ber. 1982, 115, 2309; Kaufmann, D.; de Meijere, A. Chem. Ber. 1984, 117, 1128; Dewar, M.J.S.; Jie, C. J. Am. Chem. Soc. 1987, 109, 5893; J. Chem. Soc., Chem. Commun. 1989, 98. For evidence against this view, see Gajewski, J.J. Acc. Chem. Res. 1980, 13, 142; Morokuma, K.; Borden, W.T.; Hrovat, D.A. J. Am. Chem. Soc. 1988, 110, 4474; Halevi, E.A.; Rom, R. Isr. J. Chem. 1989, 29, 311; Owens, K.A.; Berson, J.A. J. Am. Chem. Soc. 1990, 112, 5973.

⁶³¹Roth, W.R.; Gleiter, R.; Paschmann, V.; Hackler, U.E.; Fritzsche, G.; Lange, H. *Eur. J. Org. Chem.* **1998**, 961; Roth, W.R.; Schaffers, T.; Heiber, M. *Chem. Ber.* **1992**, *125*, 739.

⁶³²For a report of still another mechanism, featuring a diionic variant of the diradical, see Gompper, R.; Ulrich, W. Angew. Chem. Int. Ed. **1976**, *15*, 299.

(126).⁶³³ At room temperature, the NMR spectrum of this compound is in accord with the structure shown on the left. At 180°C, it is converted by a Cope reaction to a compound equivalent to itself. The interesting thing is that at 180°C the NMR spectrum shows that what exists is an equilibrium mixture of the two structures. That is, at this temperature the molecule rapidly (faster than 10^3 times per second) changes back and forth between the two structures. This is called *valence tautomerism* and is quite distinct from resonance, even though only electrons shift.⁶³⁴ The positions of the nuclei are not the same in the two structures. Molecules like **126** that exhibit valence tautomerism (in this case, at 180°C) are said to have *fluxional* structures. It may be recalled that *cis*-1,2- divinylcyclopropane does not exist at room temperature because it rapidly rearranges to 1,4-cycloheptadiene (p. 1661), but in **126** the *cis*-divinylcyclopropane structure is frozen into the molecule in both structures. Several other compounds with this structural feature are also known. Of these, *bullvalene* (**127**) is especially interesting.

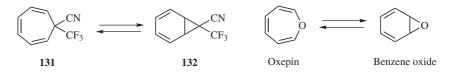
The Cope rearrangement shown changes the position of the cyclopropane ring from 4,5,10 to 1,7,8. But the molecule could also have undergone rearrangements to put this ring at 1,2,8 or 1,2,7. Any of these could then undergo several Cope rearrangements. In all, there are $\frac{10!}{3}$ or >1.2 million tautomeric forms, and the cyclopropane ring can be at any three carbons that are adjacent. Since each of these tautomers is equivalent to all the others, this has been called an infinitely degenerate Cope rearrangement. Bullvalene has been synthesized and its ¹H NMR spectrum determined.⁶³⁵ At -25° C, there are two peaks with an area ratio of 6:4. This is in accord with a single non-tautomeric structure. The six are the vinylic protons and the four are the allylic ones. But at 100°C the compound shows only one NMR peak, indicating that we have here a truly unusual situation where the compound rapidly interchanges its structure among 1.2 million equivalent forms.⁶³⁶ The ¹³C NMR spectrum of bullvalene also shows


⁶³³Doering, W. von E.; Roth, W.R. Tetrahedron 1963, 19, 715.

 ⁶³⁴For reviews of valence tautomerizations, see Decock-Le Révérend, B.; Goudmand, P. Bull. Soc. Chim.
 Fr. 1973, 389; Gajewski, J.J. Mech. Mol. Migr. 1971, 4, 1, see pp. 32–49; Paquette, L.A. Angew. Chem. Int. Ed. 1971, 10, 11; Domareva-Mandel'shtam, T.V.; D'yakonov, I.A. Russ. Chem. Rev. 1966, 35, 559, 568; Schröder, G.; Oth, J.F.M.; Merényi, R. Angew. Chem. Int. Ed. 1965, 4, 752.

⁶³⁵Schröder, G. Chem. Ber. 1964, 97, 3140; Merényi, R.; Oth, J.F.M.; Schröder, G. Chem. Ber. 1964, 97, 3150. For a review of bullvalenes, see Schröder, G.; Oth, J.F.M. Angew. Chem. Int. Ed. 1967, 6, 414.

⁶³⁶A number of azabullvalenes (**127** containing heterocyclic nitrogen) have been synthesized. They also have fluxional structures when heated, though with fewer tautomeric forms than bullvalene itself: Paquette, L.A.; Malpass, J.R.; Krow, G.R.; Barton, T.J. *J. Am. Chem. Soc.* **1969**, *91*, 5296.


only one peak at 100°C.637

Another compound for which degenerate Cope rearrangements result in equivalence for all the carbons is *hypostrophene* (**128**).⁶³⁸ In the case of the compound *barbaralane* (**129**)⁶³⁹ (bullvalene in which one CH=CH has been replaced by a CH₂):

there are only 2 equivalent tautomers.⁶⁴⁰ However, NMR spectra indicate that even at room temperature a rapid interchange of both tautomers is present, although by about -100° C this has slowed to the point where the spectrum is in accord with a single structure. In the case of *semibullvalene* (130) (barbaralane in which the CH₂ has been removed), not only is there a rapid interchange at room temperature, but even at -110° C.⁶⁴¹ Compound 130 has the lowest energy barrier of any known compound capable of undergoing the Cope rearrangement.⁶⁴²

⁶³⁷Oth, J.F.M.; Müllen, K.; Gilles, J.; Schröder, G. *Helv. Chim. Acta* 1974, 57, 1415; Nakanishi, H.; Yamamoto, O. *Tetrahedron Lett.* 1974, 1803; Günther, H.; Ulmen, J. *Tetrahedron* 1974, 30, 3781. For deuterium nmr spectra, see Poupko, R.; Zimmermann, H.; Luz, Z. J. Am. Chem. Soc. 1984, 106, 5391. For a crystal structure study, see Luger, P.; Buschmann, J.; McMullan, R.K.; Ruble, J.R.; Matias, P.; Jeffrey, G.A. J. Am. Chem. Soc. 1986, 108, 7825.

⁶³⁸McKennis, J.S.; Brener, L.; Ward, J.S.; Pettit, R. J. Am. Chem. Soc. 1971, 93, 4957; Paquette, L.A.; Davis, R.F.; James, D.R. Tetrahedron Lett. 1974, 1615.

⁶³⁹For a study of sigmatropic shiftamers in extended barbaralanes, see Tantillo, D.J.; Hoffmann, R.; Houk, K.N.; Warner, P.M.; Brown, E.C.; Henze, D.K. J. Am. Chem. Soc. 2004, 126, 4256.

⁶⁴⁰Barbaralane was synthesized by Biethan, U.; Klusacek, H.; Musso, H. Angew. Chem. Int. Ed. 1967, 6, 176; by Tsuruta, H.; Kurabayashi, K.; Mukai, T. Tetrahedron Lett. 1965, 3775; by Doering, W. von E.; Ferrier, B.M.; Fossel, E.T.; Hartenstein, J.H.; Jones Jr., M.; Klumpp, G.W.; Rubin, R.M.; Saunders, M. Tetrahedron 1967, 23, 3943; and by Henkel, J.G.; Hane, J.T. J. Org. Chem. 1983, 48, 3858.

⁶⁴¹Meinwald, J.; Schmidt, D. J. Am. Chem. Soc. **1969**, 91, 5877; Zimmerman, H.E.; Binkley, R.W.; Givens, R.S.; Grunewald, G.L.; Sherwin, M.A. J. Am. Chem. Soc. **1969**, 91, 3316.

⁶⁴²Cheng, A.K.; Anet, F.A.L.; Mioduski, J.; Meinwald, J. J. Am. Chem. Soc. 1974, 96, 2887; Moskau, D.; Aydin, R.; Leber, W.; Günther, H.; Quast, H.; Martin, H.-D.; Hassenrück, K.; Miller, L.S.; Grohmann, K. Chem. Ber. 1989, 122, 925. For a discussion concerning whether or not semibullvalenes are homoaromatic, see Williams, R.V.; Gadgil, V.R.; Chauhan, K.; Jackman, L.M.; Fernandes, E. J. Org. Chem. 1998, 63, 3302. The molecules taking part in a valence tautomerization need not be equivalent. Thus, NMR spectra indicate that a true valence tautomerization exists at room temperature between the cycloheptatriene **131** and the norcaradiene **132**.⁶⁴³ In this case, one isomer (**132**) has the *cis*-1,2-divinylcyclopropane structure, while the other does not. In an analogous interconversion, benzene oxide⁶⁴⁴ and oxepin exist in a tautomeric equilibrium at room temperature.⁶⁴⁵

Bullvalene and hypostrophene are members of a group of compounds all of whose formulas can be expressed by the symbol $(CH)_{10}$.⁶⁴⁶ Many other members of this group are known. Similar groups of $(CH)_n$ compounds exist for other evennumbered values of "*n*".⁶⁴⁶ For example, there are 20 possible $(CH)_8^{647}$ compounds,⁶⁴⁸ and five possible $(CH)_6$ compounds,⁶⁴⁹ all of which are known: benzene, prismane (p. 220), Dewar benzene (p. 1641), bicyclopropenyl,⁶⁵⁰ and benzvalene.⁶⁵¹

An interesting example of a valence tautomerism is the case of 1,2,3-tri-*tert*butylcyclobutadiene (p. 74). There are two isomers, both rectangular, and ¹³C NMR spectra show that they exist in a dynamic equilibrium, even at $-185^{\circ}C$.⁶⁵²

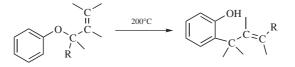
⁶⁴³Ciganek, E. J. Am. Chem. Soc. 1965, 87, 1149. For other examples of norcaradiene–cycloheptatriene valence tautomerizations, see Görlitz, M.; Günther, H. Tetrahedron 1969, 25, 4467; Ciganek, E. J. Am. Chem. Soc. 1965, 93, 2207; Dürr, H.; Kober, H. Chem. Ber. 1973, 106, 1565; Betz, W.; Daub, J. Chem. Ber. 1974, 107, 2095; Maas, G.; Regitz, M. Chem. Ber. 1976, 109, 2039; Warner, P.M.; Lu, S. J. Am. Chem. Soc. 1980, 102, 331; Neidlein, R.; Radke, C.M. Helv. Chim. Acta 1983, 66, 2626; Takeuchi, K.; Kitagawa, T.; Ueda, A.; Senzaki, Y.; Okamoto, K. Tetrahedron 1985, 41, 5455.

⁶⁴⁴For a review of arene oxides, see Shirwaiker, G.S.; Bhatt, M.V. Adv. Heterocycl. Chem. 1984, 37, 67.
 ⁶⁴⁵For reviews, see Maier, G. Angew. Chem. Int. Ed. 1967, 6, 402; Vogel, E.; Günther, H. Angew. Chem. Int. Ed. 1967, 6, 385; Vogel, E. Pure Appl. Chem. 1969, 20, 237. See also, Boyd, D.R.; Stubbs, M.E. J. Am. Chem. Soc. 1983, 105, 2554.

⁶⁴⁶For reviews of rearrangements and interconversions of (CH)_n compounds, see Balaban, A.T.; Banciu, M. J. Chem. Educ. **1984**, 61, 766; Greenberg, A.; Liebman, J.F. Strained Organic Molecules, Academic Press, NY, **1978**, pp. 203–215; Scott, L.T.; Jones, Jr., M. Chem. Rev. **1972**, 72, 181. See also, Maier, G.; Wiegand, N.H.; Baum, S.; Wüllner, R. Chem. Ber. **1989**, 122, 781.

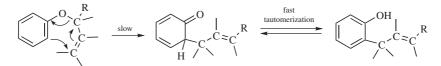
⁶⁴⁷For a review of strain in (CH)₈ compounds, see Hassenrück, K.; Martin, H.; Walsh, R. *Chem. Rev.* **1989**, 89, 1125.

⁶⁴⁸The structures of all possible (CH)_n compounds, for n = 4, 6, 8, and 10, are shown in Balaban, A.T; Banziu, M. J. Chem. Educ. **1984**, 61, 766. For a review of (CH)₁₂ compounds, see Banciu, M.; Popa, C.; Balaban, A.T. Chem. Scr., **1984**, 24, 28.


⁶⁴⁹For reviews of valence isomers of benzene and some related compounds, see Kobayashi, Y.; Kumadaki, I. *Top. Curr. Chem.* 1984, 123, 103; Bickelhaupt, F.; de Wolf, W.H. *Recl. Trav. Chim. Pays-Bas* 1988, 107, 459.

⁶⁵⁰For a study of how this compound isomerizes to benzene, see Davis, J.H.; Shea, K.J.; Bergman, R.G. J. Am. Chem. Soc. **1977**, 99, 1499.

⁶⁵¹For reviews of benzvalenes, see Christl, M. Angew. Chem. Int. Ed. **1981**, 20, 529; Burger, U. Chimia, **1979**, 147.

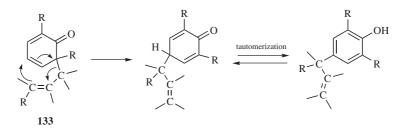

⁶⁵²Maier, G.; Kalinowski, H.; Euler, K. Angew. Chem. Int. Ed. 1982, 21, 693.

18-33 The Claisen Rearrangement⁶⁵³

Allylic aryl ethers, when heated, rearrange to *o*-allylphenols in a reaction called the *Claisen rearrangement*.⁶⁵⁴ If both ortho positions are filled, the allylic group migrates to the para position (this is often called the *para-Claisen rearrangement*).⁶⁵⁵ There is no reaction when the para and both ortho positions are filled. Migration to the meta position has not been observed. In the ortho migration, the allylic group always undergoes an allylic shift. That is, as shown above, a substituent α to the oxygen is now γ to the ring (and vice versa). On the other hand, in the para migration there is never an allylic shift: The allylic group is found exactly as it was in the original ether. Compounds with propargylic groups (i.e., groups with a triple bond in the appropriate position) do not generally give the corresponding products.

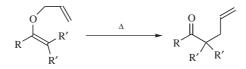
The mechanism is a concerted pericyclic [3,3]-sigmatropic rearrangement⁶⁵⁶ and accounts for all these facts. For the ortho rearrangement:

Evidence is the lack of a catalyst, the fact that the reaction is first order in the ether, the absence of crossover products when mixtures are heated, and the presence of the allylic shift, which is required by this mechanism. A *retro*-Claisen rearrangement is known and its mechanism has been examined.⁶⁵⁷ The allylic


⁶⁵³For a reiview of the Claisen rearrangment since about 1910, see Castro, A.M.M. *Chem. Rev.* 2004, 104, 2939.

⁶⁵⁴For reviews, see Fleming, I. Pericyclic Reactions, Oxford University Press, Oxford, 1999, pp. 71–83;
Moody, C.J. Adv. Heterocycl. Chem. 1987, 42, 203; Bartlett, P.A. Tetrahedron 1980, 36, 2, see pp. 28–39;
Ziegler, F.E. Acc. Chem. Res. 1977, 10, 227; Bennett, G.B. Synthesis 1977, 589; Rhoads, S.J.; Raulins,
N.R. Org. React. 1975, 22, 1; Shine, H.J. Aromatic Rearrangements; Elsevier, NY, 1969, pp. 89–120;
Smith, G.G.; Kelly, F.W. Prog. Phys. Org. Chem. 1971, 8, 75, 153–201; Hansen, H.; Schmid, H. Chimia, 1970, 24, 89, Chem. Br. 1969, 5, 111; Jefferson, A.; Scheinmann, F. Q. Rev. Chem. Soc. 1968, 22, 391;
Thyagarajan, B.S. Adv. Heterocycl. Chem. 1967, 8, 143; Dalrymplem D.L.; Kruger, T.L.; White, W.N., in
Patai The Chemistry of the Ether Linkage, Wiley, NY, 1967, pp. 635–660.

⁶⁵⁵For a discussion of regioselectivity, see Gozzo, F.C.; Fernandes, S.A.; Rodrigues, D.C.; Eberlin, M.N.; Marsaioli, A.J. *J. Org. Chem.* **2003**, 68, 5493.


 ⁶⁵⁶For isotope effect evidence regarding the nature of the concerted transition state, see McMichael, K.D.;
 Korver, G.L. J. Am. Chem. Soc. 1979, 101, 2746; Gajewski, J.J.; Conrad, N.D. J. Am. Chem. Soc. 1979, 101, 2747; Kupczyk-Subotkowska, L.; Saunders, Jr., W.H.; Shine, H.J. J. Am. Chem. Soc. 1988, 110, 7153.
 ⁶⁵⁷Boeckman, Jr., R.K.; Shair, M.D.; Vargas, J.R.; Stolz, L.A. J. Org. Chem. 1993, 58, 1295.

shift for the ortho rearrangement (and the absence of one for the para) has been demonstrated by ¹⁴C labeling, even when no substituents are present. Studies of the transition-state geometry have shown that, like the Cope rearrangement, the Claisen rearrangement usually prefers a chair-like transition state.⁶⁵⁸ When the ortho positions have no hydrogen, a second [3,3]-sigmatropic migration (a Cope reaction) follows:

and the migrating group is restored to its original structure. Intermediates of structure **133** have been trapped by means of a Diels–Alder reaction.⁶⁵⁹ The rearrangement of aryl allyl ethers is facilitated by Ag–KI in hot acetic acid,⁶⁶⁰ and by AlMe₃ in water.⁶⁶¹ A solid-phase reaction of polymer-bound substrate undergoes the Claisen rearrangement with microwave irradiation.⁶⁶²

Allylic ethers of enols (allylic vinylic ethers) also undergo the Claisen rearrangement;⁶⁶³ in fact, it was discovered with these compounds first:⁶⁶⁴

In these cases of course, the final tautomerization does not take place even when R' = H, since there is no aromaticity to restore, and ketones are more stable than enols.⁶⁶⁵ Catalytic Claisen rearrangements of allyl vinyl ethers are well known.⁶⁶⁶

 ⁶⁵⁸Wunderli, A.; Winkler, T.; Hansen, H. *Helv. Chim. Acta* 1977, 60, 2436; Copley, S.D.; Knowles, J.R. J.
 Am. Chem. Soc. 1985, 107, 5306. Also see, Yoo, H.Y.; Houk, K.N. J. Am. Chem. Soc. 1994, 116, 12047;
 Kupczyk-Subotkowska, L.; Saunders, Jr., W.H.; Shine, H.J.; Subotkowski, W. J. Am. Chem. Soc. 1993, 115, 5957; Kupczyk-Subotkowska, L.; Subotkowski, W.; Saunders, Jr., W.H.; Shine, H.J.; J. Am. Chem. Soc. 1992, 114, 3441.

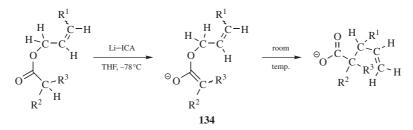
⁶⁵⁹Conroy, H.; Firestone, R.A. J. Am. Chem. Soc. 1956, 78, 2290.

⁶⁶⁰ Sharghi, H.; Aghapour, G. J. Org. Chem. 2000, 65, 2813.

⁶⁶¹Wipf, P.; Ribe, S. Org. Lett. 2001, 3, 1503.

⁶⁶²Kumar, H.M.S.; Anjaneyulu, S.; Reddy, B.V.S.; Yadav, J.C. Synlett 2000, 1129.

⁶⁶³For a review, see Ziegler, F.E. Chem. Rev. 1988, 88, 1423.


⁶⁶⁴Claisen, L. Berchte. 1912, 45, 3157.

⁶⁶⁵However, it has proved possible to reverse the reaction, with a Lewis acid catalyst. See Boeckman Jr., R.K.; Flann, C.J.; Poss, K.M. *J. Am. Chem. Soc.* **1985**, *107*, 4359.

⁶⁶⁶For a review, see Hiersemann, M.; Abraham, L. Eur. J. Org. Chem. 2002, 1461.

The use of water as solvent accelerates the reaction.⁶⁶⁷ A microwave induced reaction on silica gel is known⁶⁶⁸. The mechanism is similar to that with allylic aryl ethers.⁶⁶⁹ Allyl allene ethers undergo a Claisen rearrangement when heated in DMF to give the expected diene with a conjugated aldehyde unit.⁶⁷⁰ Butenolides with a β -allylic ether unit undergo Claisen rearrangement–Conia reaction⁶⁷¹ cascade to give an oxaspiro heptane with β -keto lactone comprising the five-membered ring.⁶⁷² Allylic esters of β -keto acids undergo a Claisen rearrangement in what is known as the *Carroll rearrangement*⁶⁷³ (also called the *Kimel–Cope rearrangement*⁶⁷⁴), and the reaction can be catalyzed by a ruthenium complex.⁶⁷⁵

It is possible to treat ketones with allyl alcohol and an acid catalyst to give γ , δ unsaturated ketones directly, presumably by initial formation of the vinylic ethers, and then Claisen rearrangement.⁶⁷⁶ In an analogous procedure, the enolates (**134**) of allylic esters [formed by treatment of the esters with lithium isopropylcyclohexylamide (LICA)] rearrange to γ , δ -unsaturated acids.⁶⁷⁷ Allylic alcohols can be treated with a catalytic amount of mercuric acetate, and in the presence of an excess of allyl vinyl ethers give an alkene–aldehyde via a Claisen rearrangement.⁶⁷⁸

⁶⁶⁷Grieco, P.A.; Brandes, E.B.; McCann, S.; Clark, J.D. *J. Org. Chem.* **1989**, *54*, 5849. The effect of water on the transition state has been examined; see Guest, J.M.; Craw, J.S.; Vincent, M.A.; Hillier, I.H. *J. Chem. Soc. Perkin Trans.* **2 1997**, 71; Sehgal, A.; Shao, L.; Gao, J. *J. Am. Chem. Soc.* **1995**, *117*, 11337.

⁶⁶⁸Kotha, S.; Mandal, K.; Deb, A.C.; Banerjee, S. Tetrahedron Lett. 2004, 45, 9603.

⁶⁶⁹For discussions of the transition state, see Gajewski, J.J.; Jurayj, J.; Kimbrough, D.R.; Gande, M.E.; Ganem, B.; Carpenter, B.K. *J. Am. Chem. Soc.* **1987**, *109*, 1170. For MO calculations, see Vance, R.L.; Rondan, N.G.; Houk, K.N.; Jensen, F.; Borden, W.T.; Komornicki, A.; Wimmer, E. *J. Am. Chem. Soc.* **1988**, *110*, 2314; Dewar, M.J.S.; Jie, C. *J. Am. Chem. Soc.* **1989**, *111*, 511.

670 Parsons, P.J.; Thomson, P.; Taylor, A.; Sparks, T. Org. Lett. 2000, 2, 571.

⁶⁷¹For a review of the Conia-ene reaction, see Conia, J.M.; Le Perchec, P. Synthesis 1975, 1.

⁶⁷²Schobert, R.; Siegfried, S.; Gordon, G.; Nieuwenhuyzen, M.; Allenmark, S. Eur. J. Org. Chem. 2001, 1951.

⁶⁷³Carroll, M.F. J. Chem. Soc. **1940**, 704, 1266; Carroll, M.F. J. Chem. Soc. **1941**, 507; Ziegler, F.E. Chem. Rev. **1988**, 88, 1423.

674Kimel, W.; Cope, A.C. J. Am. Chem. Soc. 1943, 65, 1992.

⁶⁷⁵Burger, E.C.; Tunge, J.A. Org. Lett. 2004, 6, 2603.

⁶⁷⁶Lorette, N.B. J. Org. Chem. 1961, 26, 4855. See also, Saucy, G.; Marbet, R. Helv. Chim. Acta 1967, 50, 2091; Marbet, R.; Saucy, G. Helv. Chim. Acta 1967, 50, 2095; Thomas, A.F. J. Am. Chem. Soc. 1969, 91, 3281; Johnson, W.S.; Werthemann, L.; Bartlett, W.R.; Brocksom, T.J.; Li, T.; Faulkner, D.J.; Petersen, M.R. J. Am. Chem. Soc. 1970, 92, 741; Pitteloud, R.; Petrzilka, M. Helv. Chim. Acta 1979, 62, 1319; Daub, G.W.; Sanchez, M.G.; Cromer, R.A.; Gibson, L.L. J. Org. Chem. 1982, 47, 743; Bartlett, P.A.; Tanzella, D.J.; Barstow, J.F. J. Org. Chem. 1982, 47, 3941.

⁶⁷⁷Ireland, R.E.; Mueller, R.H.; Willard, A.K. J. Am. Chem. Soc. 1976, 98, 2868; Gajewski, J.J.; Emrani, J. J. Am. Chem. Soc. 1984, 106, 5733; Cameron A.G.; Knight, D.W. J. Chem. Soc. Perkin Trans. 1 1986, 161.
 See also, Wilcox, C.S.; Babston, R.E. J. Am. Chem. Soc. 1986, 108, 6636.

⁶⁷⁸Tokuyama, H.; Makido, T.; Ueda, T.; Fukuyama, T. Synth. Commun. 2002, 32, 869.

Alternatively, the silylketene acetal $R^3R^2C=C(OSiR_3)OCH_2CH=CHR^1$ is often used instead of **134**.^{677,679} This rearrangement also proceeds at room temperature. By either procedure, the reaction is called the *Ireland–Claisen rearrangement*.⁶⁸⁰ Note the presence of the negative charge in **134**. As with the oxy-Cope rearrangement (in **18-34**), negative charges generally accelerate the Claisen reaction,⁶⁸¹ although the extent of the acceleration can depend on the identity of the positive counterion.⁶⁸² The reaction proceeds with good syn selectivity in many cases.⁶⁸³ The Ireland–Claisen rearrangement has been made enantioselective by converting **134** to an enol borinate in which the boron is attached to a chiral group.⁶⁸⁴ The Ireland–Claisen rearrangement can be done with amide derivatives also.⁶⁸⁵

A number of expected analogs of the Claisen rearrangement are known, for example, rearrangement of ArNHCH₂CH=CH₂,⁶⁸⁶ of *N*-allylic enamines ($R_2C=CRNRCR_2CR=CR_2$),⁶⁸⁷ of allylic imino esters, $RC(OCH_2CH=CH_2)=NR^{688}$ (these have often been rearranged with transition-metal catalysts⁶⁸⁹), and of RCH=NRCHRCH₂CH=CH₂. These rearrangements of nitrogen-containing compounds can be called *aza-Claisen rearrangements*,⁶⁹⁰ but are often called

⁶⁷⁹Ireland, R.E.; Wipf, P.; Armstrong III, J.D. J. Org. Chem. 1991, 56, 650.

⁶⁸¹See, for example, Denmark, S.E.; Harmata, M.A.; White, K.S. J. Am. Chem. Soc. 1989, 111, 8878.

⁶⁸²Koreeda, M.; Luengo, J.I. J. Am. Chem. Soc. **1985**, 107, 5572; Kirchner, J.J.; Pratt, D.V.; Hopkins, P.B. Tetrahedron Lett. **1988**, 29, 4229.

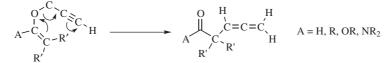
⁶⁸³Mohamed, M.; Brook, M.A. *Tetrahedron Lett.* **2001**, 42, 191. For a discussion of boat or chair preferences, see Khaledy, M.M.; Kalani, M.Y.S.; Khuong, K.S.; Houk, K.N.; Aviyente, V.; Neier, R.; Soldermann, N.; Velker, J. *J. Org. Chem.* **2003**, 68, 572.

⁶⁸⁴Corey, E.J.; Lee, D. J. Am. Chem. Soc. 1991, 113, 4026.

⁶⁸⁵Tsunoda, T.; Tatsuki, S.; Shiraishi, Y.; Akasaka, M.; Itô, S. *Tetrahedron Lett.* **1993**, *34*, 3297. Also see, Walters, M.A.; Hoem, A.B.; Arcand, H.R.; Hegeman, A.D.; McDonough, C.S. *Tetrahedron Lett.* **1993**, *34*, 1453.

⁶⁸⁶Marcinkiewicz, S.; Green, J.; Mamalis, P. *Tetrahedron* **1961**, *14*, 208; Inada, S.; Ikado, S.; Okazaki, M. *Chem. Lett.* **1973**, 1213; Schmid, M.; Hansen, H.; Schmid, H. *Helv. Chim. Acta* **1973**, *56*, 105; Jolidon, S.; Hansen, H. *Helv. Chim. Acta* **1977**, *60*, 978.

⁶⁸⁷Ficini, J.; Barbara, C. *Tetrahedron Lett.* 1966, 6425; Ireland, R.E.; Willard, A.K. J. Org. Chem. 1974, 39, 421; Hill, R.K.; Khatri, H.N. *Tetrahedron Lett.* 1978, 4337; Anderson, J.C.; Flaherty, A.; Swarbrick, M.E. J. Org. Chem. 2000, 65, 9152. For the reverse of this rearrangement, see Wu, P.; Fowler, F.W. J. Org. Chem. 1988, 53, 5998.


⁶⁸⁸For examples, see Synerholm, M.E.; Gilman, N.W.; Morgan, J.W.; Hill, R.K. J. Org. Chem. 1968, 33,
 1111; Black, D.S.; Eastwood, F.W.; Okraglik, R.; Poynton, A.J.; Wade, A.M.; Welker, C.H. Aust. J. Chem. 1972, 25, 1483; Overman, L.E. J. Am. Chem. Soc. 1974, 96, 597; Metz, P.; Mues, C. Tetrahedron 1988, 44,
 6841. See Gradl, S.N.; Kennedy-Smith, J.J.; Kim, J.; Trauner, D. Synlett 2002, 411.

⁶⁸⁹See Schenck, T.G.; Bosnich, B. J. Am. Chem. Soc. 1985, 107, 2058, and references cited therein.
 Palladium catalyzed: Jiang, Y.; Longmire, J.M.; Zhang, X. Tetrahedron Lett. 1999, 40, 1449; Donde, Y.;
 Overman, L.E. J. Am. Chem. Soc. 1999, 121, 2933; Anderson, C.E.; Overman, L.E. J. Am. Chem. Soc. 2003, 125, 12412.

⁶⁹⁰See Majumdar, K.C.; Samanta, S.K. *Tetrahedron* 2001, 57, 4955; Kirsch, S.F.; Overman, L.F.; Watson, M.P. J. Org. Chem. 2004, 69, 8101.

⁶⁸⁰For a recent example, see Dell, C.P.; Khan, K.M.; Knight, D.W. *J. Chem. Soc. Perkin Trans. 1* **1994**, 341. For a review, see Chai, Y.; Hong, S.-p.; Lindsay, H.A.; McFarland, C.; McIntosh, M.C. *Tetrahedron* **2002**, *58*, 2905.

*aza-Cope rearrangements*⁶⁹¹ as described in **18-34**. However, a palladium catalyzed aza-Claisen has been reported.⁶⁹² A so-called amine-Claisen rearrangement was reported for *N*-allyl indoles, when heated in the presence of BF₃•OEt₂.⁶⁹³ An *azo-Cope* rearrangement: CH₂=CHCR¹/₂ CR²/₂ N=NAr \rightarrow R¹/₂ C=CHCH₂NArN=CR²/₂ has been reported.⁶⁹⁴ Propargylic vinylic compounds give allenic aldehydes, ketones, esters, or amides:⁶⁹⁵

The conversion of allylic aryl thioethers $ArSCH_2CH=CH_2$ to *o*-allylic thiophenols is not feasible, because the latter are not stable, ⁶⁹⁶ but react to give bicyclic compounds. ⁶⁹⁷ However, many allylic vinylic sulfides do give the rearrangement (the *thio-Claisen rearrangement*). ⁶⁹⁸ Allylic vinylic sulfones, for example, H₂C=CRCH₂–SO₂–CH=CH₂, rearrange, when heated in the presence of ethanol and pyridine, to unsaturated sulfonate salts CH₂=CRCH₂CH₂CH₂SO₃⁻, produced by reaction of the reagents with the unstable sulfene intermediates CH₂=CRCH₂CH₂CH₂CH=SO₂. ⁶⁹⁹ Allylic vinylic sulfoxides rapidly rearrange at room temperature or below.⁷⁰⁰

As mentioned for the Ireland–Claisen rearrangement, asymmetric Claisen rearrangement reactions are well known.⁷⁰¹ Chiral Lewis acids have been designed for

⁶⁹⁶They have been trapped: See, for example, Mortensen, J.Z.; Hedegaard, B.; Lawesson, S. *Tetrahedron* **1971**, *27*, 3831; Kwart, H.; Schwartz, J.L. J. Org. Chem. **1974**, *39*, 1575.

⁶⁹⁷Meyers, C.Y.; Rinaldi, C.; Banoli, L. J. Org. Chem. **1963**, 28, 2440; Kwart, H.; Cohen, M.H. J. Org. Chem. **1967**, 32, 3135; Chem. Commun. **1968**, 319; Makisumi, Y.; Murabayashi, A. Tetrahedron Lett. **1969**, 1971, 2449.

⁶⁹⁸For a review, see Majumdar, K.C.; Ghosh, S.; Ghosh, M. Tetrahedron 2003, 59, 7251.

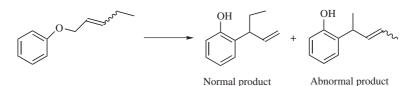
⁶⁹⁹King, J.F.; Harding, D.R.K. J. Am. Chem. Soc. 1976, 98, 3312.

⁷⁰⁰Block, E.; Ahmad, S. J. Am. Chem. Soc. 1985, 107, 6731.

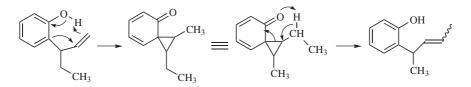
⁶⁹¹For a review, see Przheval'skii, N.M.; Grandberg, I.I. *Russ. Chem. Rev.* **1987**, *56*, 477. For reviews of [3,3]-sigmatropic rearrangements with heteroatoms present, see Blechert, S. Synthesis **1989**, 71; Winterfeldt, E. *Fortschr. Chem. Forsch.* **1970**, *16*, 75. For a review of [3,3]-rearrangements of iminium salts, see Heimgartner, H.; Hansen, H.; Schmid, H. Adv. Org. Chem. **1979**, *9*, pt. 2, 655.

⁶⁹²Uozumi, Y.; Kato, K.; Hayashi, T. *Tetrahedron Asymmetry*, **1998**, *9*, 1065; Mehmandoust, M.; Petit, Y.; Larchevêque, M. *Tetrahedron Lett.* **1992**, *33*, 4313. For a 3-aza-Claisen rearrangement, see Gilbert, J.C.; Cousins, K.R. *Tetrahedron* **1994**, *50*, 10671.

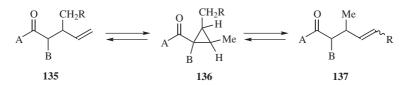
⁶⁹³ Anderson, W.K.; Lai, G. Synthesis 1995, 1287.


⁶⁹⁴ Mitsuhashi, T. J. Am. Chem. Soc. 1986, 108, 2400.

⁶⁹⁵For reviews of Claisen rearrangements involving triple bonds, see Schuster, H.F.; Coppola, G.M. *Allenes in Organic Synthesis*, Wiley, NY, **1984**, pp. 337–343; Viola, A.; Collins, J.J.; Filipp, N. *Tetrahedron* **1981**, *37*, 3765; Théron F.; Verny, M.; Vessière, R., in Patai, S. *The Chemistry of the Carbon-Carbon Triple Bond*, pt. 1, Wiley, NY, **1978**, pp. 421–428. See also, Henderson, M.A.; Heathcock, C.H. *J. Org. Chem.* **1988**, *53*, 4736.


⁷⁰¹For example, see Zumpe, F.L.; Kazmaier, U. *Synlett* **1998**, 434; Ito, H.; Sato, A.; Taguchi, T. *Tetrahedron Lett.* **1997**, *38*, 4815; Kazmaier, U.; Krebs, A. *Angew. Chem. Int. Ed.* **1995**, *34*, 2012. For asymmetric induction in the thio-Claisen rearrangement, see Reddy, K.V.; Rajappa, S. *Tetrahedron Lett.* **1992**, *33*, 7957.

this purpose.⁷⁰² In general, asymmetric [3,3]-sigmatropic rearrangements are well known.⁷⁰³


Ethers with an alkyl group in the γ position (ArO–C–C=C–R systems) sometimes give abnormal products, with the β carbon becoming attached to the ring:⁷⁰⁴

It has been established that these abnormal products do not arise directly from the starting ether, but are formed by a further rearrangement of the normal product:⁷⁰⁵

This rearrangement, which has been called an *enolene rearrangement*, a *homodienyl* [1,5]-*sigmatropic hydrogen shift* (see **18-29**), and a [1,5]-*homosigmatropic rearrangement*, involves a shift of three electron pairs over *seven* atoms. It has been found that this "abnormal" Claisen rearrangement is general and can interconvert the enol forms of systems of the types **135** and **136** through the cyclopropane intermediate **137**.⁷⁰⁶

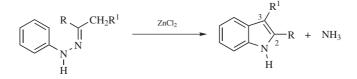
A = H, R, Ar, OR, and so onB = H, R, Ar, COR, COAr, COOR, and so on

⁷⁰²Maruoka, K.; Saito, S.; Yamamoto, J. J. Am. Chem. Soc. 1995, 117, 1165. See Sharma, G.V.M.;
 Ilangovan, A.; Sreevivas, P.; Mahalingam, A.K. Synlett 2000, 615. Yb: Hiersemann, M.; Abraham, L. Org. Lett. 2001, 3, 49. Rh: Miller, S.P.; Morken, J.P. Org. Lett. 2002, 4, 2743.

⁷⁰³For a review, see Enders, D.; Knopp, M.; Schiffers, R. Tetrahedron Asymmetry, **1996**, 7, 1847.

⁷⁰⁴For reviews of these abnormal Claisen rearrangements, see Hansen, H. *Mech. Mol. Migr.* **1971**, *3*, 177; Marvell, E.N.; Whalley, W., in Patai, S. *The Chemistry of the Hydroxyl Group*, pt. 2, Wiley, NY, **1971**, pp. 743–750.

⁷⁰⁵Habich, A.; Barner, R.; Roberts, R.; Schmid, H. *Helv. Chim. Acta* 1962, 45, 1943; Lauer, W.M.;
 Johnson, T.A. J. Org. Chem. 1963, 28, 2913; Fráter, G.; Schmid, H. Helv. Chim. Acta 1966, 49, 1957;
 Marvell, E.N.; Schatz, B. Tetrahedron Lett. 1967, 67.


⁷⁰⁶Watson, J.M.; Irvine, J.L.; Roberts, R.M. J. Am. Chem. Soc. 1973, 95, 3348.

1674 REARRANGEMENTS

Since the Claisen rearrangement mechanism does not involve ions, it should not be greatly dependent on the presence or absence of substituent groups on the ring.⁷⁰⁷ This is the case. Electron-donating groups increase the rate and electronwithdrawing groups decrease it, but the effect is small, with the *p*-amino compound reacting only $\sim 10-20$ times faster than the *p*-nitro compound.⁷⁰⁸ However, solvent effects⁷⁰⁹ are greater: Rates varied over a 300-fold range when the reaction was run in 17 different solvents.⁷¹⁰ An especially good solvent is trifluoroacetic acid, in which the reaction can be carried out at room temperature.⁷¹¹ Most Claisen rearrangements are performed without a catalyst, but AlCl₃ or BF₃ are sometimes used.⁷¹² In this case, it may become a Friedel–Crafts reaction, with the mechanism no longer cyclic,⁷¹³ and ortho, meta, and para products may be obtained.

OS III, 418; V, 25; VI, 298, 491, 507, 584, 606; VII, 177; VIII, 251, 536.

18-34 The Fischer Indole Synthesis

When arylhydrazones of aldehydes or ketones are treated with a catalyst, elimination of ammonia takes place and an indole is formed, in the *Fischer indole synthesis*.⁷¹⁴ Zinc chloride is the catalyst most frequently employed, but dozens of others, including other metal halides, proton and Lewis acids, and certain transition

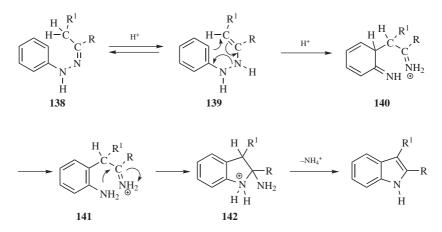
⁷⁰⁸Goering, H.L.; Jacobson, R.R. J. Am. Chem. Soc. **1958**, 80, 3277; White, W.N.; Gwynn, D.; Schlitt, R.; Girard, C.; Fife, W.K. J. Am. Chem. Soc. **1958**, 80, 3271; White, W.N.; Slater, C.D. J. Org. Chem. **1962**, 27, 2908; Zahl, G.; Kosbahn, W.; Kresze, G. Liebigs Ann. Chem. **1975**, 1733. See also, Desimoni, G.; Faita, G.; Gamba, A.; Righetti, P.P.; Tacconi, G.; Toma, L. Tetrahedron **1990**, 46, 2165; Gajewski, J.J.; Gee, K.R.; Jurayj, J. J. Org. Chem. **1990**, 55, 1813.

⁷⁰⁹For a discussion of the role played by solvent and substituents, see Gajewski, J.J. Acc. Chem. Res. **1997**, 30, 219. For solvent effects, see Davidson, M.M.; Hillier, I.H.; Hall, R.J.; Burton, N.A. J. Am. Chem. Soc. **1994**, 116, 9294.

⁷¹⁰White, W.N.; Wolfarth, E.F. J. Org. Chem. **1970**, 35, 2196. See also Brandes, E.; Greico, P.A.; Gajewski, J.J. J. Org. Chem. **1989**, 54, 515.

⁷¹¹Svanholm, U.; Parker, V.D. J. Chem. Soc. Perkin Trans. 2 1974, 169.

⁷¹²For a review, see Lutz, R.P. Chem. Rev. 1984, 84, 205.


⁷¹³For example, crossover experiments have demonstrated that the ZnCl₂-catalyzed reaction is intermolecular: Yagodin, V.G.; Bunina-Krivorukova, L.I.; Bal'yan, Kh.V. J. Org. Chem. USSR **1971**, 7, 1491.

⁷¹⁴For a monograph, see Robinson, B. *The Fischer Indole Synthesis*, Wiley, NY, **1983**. For reviews, see Grandberg, I.I.; Sorokin, V.I. *Russ. Chem. Rev.* **1974**, 43, 115; Shine, H.J. *Aromatic Rearrangements*, Elsevier, NY, **1969**, pp. 190–207; Sundberg, R.J. *The Chemistry of Indoles*, Academic Press, NY, **1970**, pp. 142–163; Robinson, B. *Chem. Rev.* **1969**, 69, 227. For reviews of some abnormal Fischer indole syntheses, see Ishii, H. *Acc. Chem. Res.* **1981**, *14*, 275; Fusco, R.; Sannicolo, F. *Tetrahedron* **1980**, *36*, 161.

⁷⁰⁷However, there are substituent effects, see Aviyente, V.; Yoo, H.Y.; Houk, K.N. *J. Org. Chem.* **1997**, 62, 6121.

metals have also been used. Microwave irradiation has been used to facilitate this reaction.⁷¹⁵ The reaction has been done using an AlCl₃ complex as an ionic liquid,⁷¹⁶ and solid-phase Fischer-indole syntheses are known.⁷¹⁷ Aniline derivatives react with α -diazoketones, in the presence of a rhodium catalyst, to give indoles as well.⁷¹⁸ Arylhydrazones are easily prepared by the treatment of aldehydes or ketones with phenylhydrazine (**16-2**) or by aliphatic diazonium coupling (**12-7**). However, it is not necessary to isolate the arylhydrazone. The aldehyde or ketone can be treated with a mixture of phenylhydrazine and the catalyst; this is now common practice. In order to obtain an indole, the aldehyde or ketone must be of the form RCOCH₂R' (R = alkyl, aryl, or hydrogen). Vinyl ethers, such as dihydrofuran, serves as an aldehyde surrogate when treated with phenylhydrazine and a catalytic amount of aqueous sulfuric acid to give an 3-substituted indole.⁷¹⁹

At first glance, the reaction does not seem to be a rearrangement. However, the key step of the mechanism⁷²⁰ is a [3,3]-sigmatropic rearrangement:⁷²¹

There is much evidence for this mechanism, for example, (1) the isolation of 142,⁷²² (2) the detection of 141 by ¹³C and ¹⁵N NMR,⁷²³ (3) the isolation of side products that could only have come from 140,⁷²⁴ and (4) ¹⁵N labeling experiments that showed

⁷¹⁵Abramovitch, R.A.; Bulman, A. Synlett **1992**, 795; Lipińska, T.; Guibé-Jampel, E.; Petit, A.; Loupy, A. Synth. Commun. **1999**, 29, 1349.

⁷¹⁶In AlCl₃–*N*-butylpyridinium: Rebeiro, G.LO.; Khadilkar, B.M. Synthesis **2001**, 370.

⁷¹⁷Rosenbaum, C.; Katzka, C.; Marzinzik, A.; Waldmann, H. Chem. Commun. 2003, 1822.

⁷¹⁸Moody, C.J.; Swann, E. Synlett 1998, 135.

⁷¹⁹Campos, K.R.; Woo, J.C.S.; Lee, S.; Tillyer, R.D. Org. Lett. 2004, 6, 79.

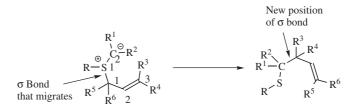
⁷²⁰For a mechanistic study, see Hughes, D.L.; Zhao, D. J. Org. Chem. 1993, 58, 228.

⁷²¹This mechanism was proposed by Robinson, G.M.; Robinson, R. J. Chem. Soc. 1918, 113, 639.

⁷²²Southwick, P.L.; Vida, J.A.; Fitzgerald, B.M.; Lee, S.K. J. Org. Chem. **1968**, 33, 2051; Forrest, T.P.; Chen, F.M.F. J. Chem. Soc., Chem. Commun. **1972**, 1067.

⁷²³Douglas, A.W. J. Am. Chem. Soc. 1978, 100, 6463; 1979, 101, 5676.

⁷²⁴Bajwa, G.S.; Brown, R.K. Can. J. Chem. 1969, 47, 785; 1970, 48, 2293, and references cited therein.


that it was the nitrogen farther from the ring that is eliminated as ammonia.⁷²⁵ The main function of the catalyst seems to be to speed the conversion of 138 to 139. The reaction can be performed without a catalyst.

There are alternative methods to produce indoles. Acetophenone reacts with 2-chloro nitrobenzene derivatives in the presence of a phenol and a palladium catalyst to give an indole.⁷²⁶

OS III, 725; IV, 884. Also see, OS IV, 657.

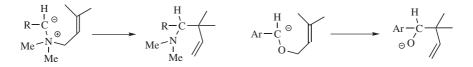
18-35 [2,3]-Sigmatropic Rearrangements

 $(2/S-3/) \rightarrow (1/5/)$ -sigma-Migration

Sulfur ylids bearing an allylic group are converted on heating to unsaturated sulfides.⁷²⁷ This is a concerted [2,3]-signatropic rearrangement⁷²⁸ and has also been demonstrated for the analogous cases of nitrogen ylids⁷²⁹ and the conjugate bases of allylic ethers (in the last case it is called the [2,3]-Wittig rearrangement).⁷³⁰ It has been argued that the [2,3]-Wittig rearrangement demands severe deformation of the molecule in order to proceed.⁷³¹ The SmI₂ compound has been shown to induce

⁷²⁵Clausius, K.; Weisser, H.R. Helv. Chim. Acta 1952, 35, 400.

⁷²⁶Rutherford, J.L.; Rainka, M.P.; Buchwald, S.L. J. Am. Chem. Soc. 2002, 124, 15168.


⁷²⁷For example, see Blackburn, G.M.; Ollis, W.D.; Plackett, J.D.; Smith, C.; Sutherland, I.O. Chem. Commun. 1968, 186; Trost, B.M.; LaRochelle, R. Tetrahedron Lett. 1968, 3327; Baldwin, J.E.; Hackler, R.E.; Kelly, D.P. Chem. Commun. 1968, 537, 538, 1083; Bates, R.B.; Feld, D. Tetrahedron Lett. 1968, 417; Kirmse, W.; Kapps, M. Chem. Ber. 1968, 101, 994, 1004; Biellmann, J.F.; Ducep, J.B. Tetrahedron Lett. 1971, 33; Ceré, V.; Paolucci, C.; Pollicino, S.; Sandri, E.; Fava, A. J. Org. Chem. 1981, 46, 3315; Kido, F.; Sinha, S.C.; Abiko, T.; Yoshikoshi, A. Tetrahedron Lett. 1989, 30, 1575. For a review as applied to ring expansions, see Vedejs, E. Acc. Chem. Res. 1984, 17, 358.

⁷²⁸For a review of the stereochemistry of these reactions, see Hoffmann, R.W. Angew. Chem. Int. Ed. **1979**, 18, 563.

⁷²⁹ For example, see Jemison, R.W.; Ollis, W.D. Chem. Commun. 1969, 294; Rautenstrauch, V. Helv. Chim. Acta 1972, 55, 2233; Mageswaran, S.; Ollis, W.D.; Sutherland, I.O.; Thebtaranonth, Y. J. Chem. Soc., Chem. Commun. 1973, 651; Ollis, W.D.; Sutherland, I.O.; Thebtaranonth, Y. J. Chem. Soc., Chem. Commun. 1973, 657; Mander, L.N.; Turner, J.V. J. Org. Chem. 1973, 38, 2915; Stévenart-De Mesmaeker, N.; Merényi, R.; Viehe, H.G. Tetrahedron Lett. 1987, 28, 2591; Honda, K.; Inoue, S.; Sato, K. J. Am. Chem. Soc. 1990, 112, 1999.

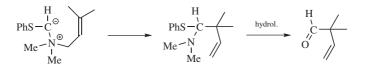
⁷³⁰See, for example, Makisumi, Y.; Notzumoto, S. Tetrahedron Lett. 1966, 6393; Schöllkopf, U.; Fellenberger, K.; Rizk, M. Liebigs Ann. Chem. 1970, 734, 106; Rautenstrauch, V. Chem. Commun. 1970, 4. For a review, see Nakai, T.; Mikami, K. Chem. Rev. 1986, 86, 885. For a list of references, see Larock, R.C. Comprehensive Organic Transformations, 2nd ed., Wiley-VCH, NY, 1999, pp. 1063–1067. ⁷³¹You, Z.; Koreeda, M. *Tetrahedron Lett.* **1993**, *34*, 2597.

a [2,3]-Wittig rearrangement.⁷³² The reaction has been extended to certain other systems,⁷³³ even to an all-carbon system.⁷³⁴

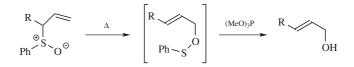
Since the reactions involve migration of an allylic group from a sulfur, nitrogen, or oxygen atom to an adjacent negatively charged carbon atom, they are special cases of the Stevens or Wittig rearrangements (18-21, 18-22). However, in this case the migrating group *must* be allylic (in 18-21 and 18-22 other groups can also migrate). Thus, when the migrating group is allylic, there are two possible pathways: (1) the radical-ion or ion-pair mechanisms (18-21, 18-22) and (2) the concerted pericyclic [2,3]-sigmatropic rearrangement. These can easily be told apart, since the latter always involves an allylic shift (as in the Claisen rearrangement), while the former pathway does not.

Of these reactions, the [2,3]-Wittig rearrangement in particular has often been used as a means of transferring chirality. The product of this reaction has potential stereogenic centers at C-3 and C-4 (if $R^5 \neq R^6$), and if the starting ether is optically active because of a stereogenic center at C-1, the product may be optically active as well. Many examples are known in which an optically active ether was converted to a product that was optically active because of chirality at C-3, C-4, or both.⁷³⁵ If a

⁷³²Kunishima, M.; Hioki, K.; Kono, K.; Kato, A.; Tani, S. J. Org. Chem. 1997, 62, 7542. Also see, Hioki,
K.; Kono, K.; Tani, S.; Kunishima, M. Tetrahedron Lett. 1998, 39, 5229. For an enantioselective [2,3]Wittig rearrangment, see Fujimoto, K.; Nakai, T. Tetrahedron Lett. 1994, 35, 5019.

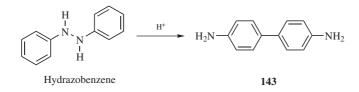

⁷³³See, for example, Baldwin, J.E.; Brown, J.E.; Höfle, G. J. Am. Chem. Soc. 1971, 93, 788; Yamamoto, Y.; Oda, J.; Inouye, Y. J. Chem. Soc., Chem. Commun. 1973, 848; Ranganathan, S.; Ranganathan, D.; Sidhu, R.S.; Mehrotra, A.K. Tetrahedron Lett. 1973, 3577; Murata, Y.; Nakai, T. Chem. Lett. 1990, 2069.
For reviews with respect to selenium compounds, see Reich, H.J., in Liotta, D.C. Organoselenium Chemistry, Wiley, NY, 1987, pp. 365–393; Reich, H.J., in Trahanovsky, W.S. Oxidation in Organic Chemistry, pt. C, Academic Press, NY, 1978, pp. 102–111.

⁷³⁴Baldwin, J.E.; Urban, F.J. Chem. Commun. 1970, 165.


 ⁷³⁵For reviews of stereochemistry in this reaction, see Mikami, K.; Nakai, T. Synthesis 1991, 594; Nakai, T.; Mikami, K. Chem. Rev. 1986, 86, 885, 888–895. See also, Nakai, T.; Nakai, E. Tetrahedron Lett. 1988, 29, 4587; Balestra, M.; Kallmerten, J. Tetrahedron Lett. 1988, 29, 6901; Brückner, R. Chem. Ber. 1989, 122, 193, 703; Scheuplein, S.W.; Kusche, A.; Brückner, R.; Harms, K. Chem. Ber. 1990, 123, 917; Wu, Y.; Houk, K.N.; Marshall, J.A. J. Org. Chem. 1990, 55, 1421; Marshall, J.A.; Wang, X. J. Org. Chem. 1990, 55, 2995.

suitable stereogenic center is present in \mathbb{R}^1 (or if a functional group in \mathbb{R}^1 can be so converted), then stereocontrol over three contiguous stereogenic centers can be achieved. Stereocontrol of the new double bond (*E* or *Z*) has also been accomplished.

If an OR or SR group is attached to the negative carbon, the reaction becomes a method for the preparation of β , γ -unsaturated aldehydes, because the product is easily hydrolyzed.⁷³⁶



Another [2,3]-sigmatropic rearrangement converts allylic sulfoxides to allylically rearranged alcohols by treatment with a thiophilic reagent, such as trimethyl phosphite.⁷³⁷ This is often called the *Mislow–Evans rearrangement*. In this case, the migration is from sulfur to oxygen. [2,3]-Oxygen-to-sulfur migrations are also known.⁷³⁸ The Sommelet–Hauser rearrangement (**13-31**) is also a [2,3]-sigmatropic rearrangement.

OS VIII, 427.

18-36	The E	Benzidine	Rearrangement
-------	-------	-----------	---------------

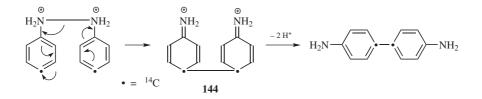
⁷³⁶Huynh, C.; Julia, S.; Lorne, R.; Michelot, D. Bull. Soc. Chim. Fr. 1972, 4057.

⁷³⁷Tang, R.; Mislow, K. J. Am. Chem. Soc. 1970, 92, 2100; Evans, D.A.; Andrews, G.C. Acc. Chem. Res.
 1974, 7, 147; Hoffmann, R.W. Angew. Chemie. Int. Ed., Engl., 1979, 18, 563; Sato, T.; Otera, J.; Nozaki, H. J. Org. Chem. 1989, 54, 2779; Bickart, P.; Carson, F.W.; Jacobus, J.; Miller, E.G.; Mislow, K. J. Am. Chem. Soc. 1968, 90, 4869.

⁷³⁸Braverman, S.; Mechoulam, H. Isr. J. Chem. **1967**, 5, 71, Braverman, S.; Stabinsky, Y. Chem. Commun. **1967**, 270; Rautenstrauch, V. Chem. Commun. **1970**, 526; Smith, G.; Stirling, C.J.M. J. Chem. Soc. C **1971**, 1530; Tamaru, Y.; Nagao, K.; Bando, T.; Yoshida, Z. J. Org. Chem. **1990**, 55, 1823.

When hydrazobenzene is treated with acids, it rearranges to give $\sim 70\%$ 4,4'diaminobiphenyl (143, benzidine) and $\sim 30\%$ 2,4'-diaminobiphenyl. This reaction is called the *benzidine rearrangement* and is general for N,N'-diarylhydrazines.⁷³⁹ Usually, the major product is the 4,4'-diaminobiaryl, but four other products may also be produced. These are the 2,4'-diaminobiaryl, already referred to, the 2,2'-diaminobiaryl, and the o- and p-arylaminoanilines (called semidines). The 2,2'- and *p*-arylaminoaniline compounds are formed less often and in smaller amounts than the other two side products. Usually, the 4,4'-diaminobiaryl predominates, except when one or both para positions of the diarylhydrazine are occupied. However, the 4,4'-diamine may still be produced even if the para positions are occupied. If SO₃H, COOH, or Cl (but not R, Ar, or NR₂) is present in the para position, it may be ejected. With dinaphthylhydrazines, the major products are not the 4,4'-diaminobinaphthyls, but the 2,2' isomers. Another side reaction is disproportionation to ArNH₂ and ArN=NAr. For example, $p_{,p'}$ -PhC₆H₄NHNHC₆H₄Ph gives 88% disproportionation products at 25°C.740

The mechanism has been exhaustively studied and several mechanisms have been proposed.⁷⁴¹ At one time, it was believed that NHAr broke away from ArNHNHAr and became attached to the para position to give the semidine, which then went on to product. The fact that semidines could be isolated lent this argument support, as did the fact that this would be analogous to the rearrangements considered in Chapter 11 (**11-28–11-32**). However, this theory was killed when it was discovered that semidines could not be converted to benzidines under the reaction conditions. Cleavage into two independent pieces (either ions or radicals) has been ruled out by many types of crossover experiments, which always showed that the two rings of the starting material are in the product; that is, ArNHNHAr' gives no molecules (of any of the five products) containing two Ar groups or two Ar' groups, and mixtures of ArNHNHAr and Ar'NHNHAr' give no molecules containing both Ar and Ar'. An important discovery was the fact that, although the reaction is always first order in substrate, it can be either


⁷³⁹For reviews, see, in Patai, S. *The Chemistry of the Hydrazo, Azo, and Azoxy Groups*, pt. 2, Wiley, NY, *1975*, the reviews by Cox, R.A.; Buncel, E. pp. 775–807; Koga, G.; Koga, N.; Anselme, J. pp. 914–921;
Williams, D.L.H., in Bamford, C.H.; Tipper, C.F.H. *Comprehensive Chemical Kinetics*, Vol. 9, Elsevier, NY, *1973*, Vol. 13, 1972, pp. 437–448; Shine, H.J. *Mech. Mol. Migr. 1969*, 2, 191; Aromatic Rearrangements, Elsevier, NY, *1969*, pp. 126–179; Banthorpe, D.V. *Top. Carbocyclic Chem. 1969*, *1*, 1; Lukashevich, V.O. *Russ. Chem. Rev. 1967*, *36*, 895.

⁷⁴⁰Shine, H.J.; Stanley, J.P. *J. Org. Chem.* **1967**, *32*, 905. For investigations of the mechanism of the disproportionation reactions, see Rhee, E.S.; Shine, H.J. *J. Am. Chem. Soc.* **1986**, *108*, 1000; **1987**, *109*, 5052.

⁷⁴¹For a history of the mechanistic investigations and controversies, see Shine, H.J. J. Phys. Org. Chem. **1989**, 2, 491.

first⁷⁴² or second⁷⁴³ order in [H⁺]. With some substrates the reaction is entirely first order in [H⁺], while with others it is entirely second order in [H⁺], regardless of the acidity. With still other substrates, the reaction is first order in [H⁺] at low acidities and second order at higher acidities. With the latter substrates fractional orders can often be observed,⁷⁴⁴ because at intermediate acidities, both processes take place simultaneously. These kinetic results seem to indicate that the actual reacting species can be either the monoprotonated substrate ArNHNH₂Ar or the diprotonated ArNH₂NH₂Ar.

Most of the proposed mechanisms⁷⁴⁵ attempted to show how all five products could be produced by variations of a single process. An important breakthrough was the discovery that the two main products are formed in entirely different ways, as shown by isotope-effect studies.⁷⁴⁶ When the reaction was run with hydrazobenzene labeled with ¹⁵N at both nitrogen atoms, the isotope effect was 1.022 for formation of **143**, but 1.063 for formation of 2,4'-diaminobiphenyl. This showed that the N–N bond is broken in the rate-determining step in both cases, but the steps themselves are obviously different. When the reaction was run with hydrazobenzene labeled with ¹⁴C at a para position, there was an isotope effect of 1.028 for formation of **143**, but essentially no isotope effect (1.001) for formation of 2,4'-diaminobiphenyl. This can only mean that for **143** formation of the new C–C bond *and* breaking of the N–N bond both take place in the rate-determining step; in other words, the mechanism is concerted. The following [5.5]-sigmatropic rearrangement accounts for this:^{745,747}

⁷⁴²Banthorpe, D.V.; Hughes, E.D.; Ingold, C.K. *J. Chem. Soc.* **1962**, 2386, 2402, 2407, 2413, 2418, 2429;
 Shine, H.J.; Chamness, J.T. *J. Org. Chem.* **1963**, 28, 1232; Banthorpe, D.V.; O'Sullivan, M. *J. Chem. Soc. B* **1968**, 627.

⁷⁴³Hammond, G.S.; Shine, H.J. J. Am. Chem. Soc. **1950**, 72, 220; Banthorpe, D.V.; Cooper, A. J. Chem. Soc. B **1968**, 618; Banthorpe, D.V.; Cooper, A.; O'Sullivan, M. J. Chem. Soc. B **1971**, 2054.

⁷⁴⁴Carlin, R.B.; Odioso, R.C. J. Am. Chem. Soc. **1954**, 76, 100; Banthorpe, D.V.; Ingold, C.K.; Roy, J. J. Chem. Soc. B **1968**, 64; Banthorpe, D.V.; Ingold, C.K.; O'Sullivan, M. J. Chem. Soc. B **1968**, 624.

⁷⁴⁵For example, see the "polar-transition-state mechanism:" Banthorpe, D.V.; Hughes, E.D.; Ingold, C.K. *J. Chem. Soc.* **1964**, 2864, and the "π-complex mechanism:" Dewar, M.J.S., in de Mayo, P. *Molecular Rearrangments*, Vol. 1, Wiley, NY, **1963**, pp. 323–344.

⁷⁴⁶Shine, H.J.; Zmuda, H.; Park, K.H.; Kwart, H.; Horgan, A.J.; Collins, C.; Maxwell, B.E. *J. Am. Chem. Soc.* **1981**, *103*, 955; Shine, H.J.; Zmuda, H.; Park, K.H.; Kwart, H.; Horgan, A.J.; Brechbiel, M. J. Am. Chem. Soc. **1982**, *104*, 2501.

⁷⁴⁷This step was also part of the "polar-transition-state mechanism".

The diion **144** was obtained as a stable species in super acid solution at -78° C by treatment of hydrazobenzene with FSO₃H–SO₂ (SO₂ClF).⁷⁴⁸ Though the results just given were obtained with hydrazobenzene, which reacts by the diprotonated pathway, monoprotonated substrates have been found to react by the same [5,5]-sigmatropic mechanism.⁷⁴⁹ Some of the other rearrangements in this section are also sigmatropic. Thus, formation of the *p*-semidine takes place by a [1,5]-sigmatropic rearrangement,⁷⁵⁰ and the conversion of 2,2'-hydrazonaphthalene to 2,2'-diamino-1,1'-binaphthyl by a [3,3]-sigmatropic rearrangement.⁷⁵¹

2,4'-Diaminobiphenyl is formed by a completely different mechanism, though the details are not known. There is rate-determining breaking of the N–N bond, but the C–C bond is not formed during this step.⁷⁵² The formation of the o-semidine also takes place by a nonconcerted pathway.⁷⁵³ Under certain conditions, benzidine rearrangements have been found to go through radical cations.⁷⁵⁴

C. Other Cyclic Rearrangements

18-37 Metathesis of Alkenes (Alkene or Olefin Metathesis)⁷⁵⁵

Alkene metathesis

 $CH_{3}CH=CHCH_{2}CH_{3} \xrightarrow{EtAlCl_{2}} CH_{3}CH=CHCH_{3} + CH_{3}CH=CHCH_{2}CH_{3}CH=CHCH_{2}CH_{3}$

When alkenes are treated with certain catalysts they are converted to other alkenes in a reaction in which the alkylidene groups ($R^1R^2C=$) have become interchanged by a process schematically illustrated by the equation:

⁷⁴⁸Olah, G.A.; Dunne, K.; Kelly, D.P.; Mo, Y.K. J. Am. Chem. Soc. 1972, 94, 7438.

⁷⁴⁹Shine, H.J.; Park, K.H.; Brownawell, M.L.; San Filippo, Jr., J. *J. Am. Chem. Soc.* **1984**, 106, 7077.

⁷⁵⁰Heesing, A.; Schinke, U. Chem. Ber. **1977**, 110, 3319; Shine, H.J.; Zmuda, H.; Kwart, H.; Horgan, A.G.; Brechbiel, M. J. Am. Chem. Soc. **1982**, 104, 5181.

⁷⁵¹Shine, H.J.; Gruszecka, E.; Subotkowski, W.; Brownawell, M.; San Filippo, Jr., J. *J. Am. Chem. Soc.* **1985**, *107*, 3218.

⁷⁵²See Rhee, E.S.; Shine, H.J. J. Am. Chem. Soc. 1986, 108, 1000; 1987, 109, 5052.

⁷⁵³Rhee, E.S.; Shine, H.J. J. Org. Chem. **1987**, 52, 5633.

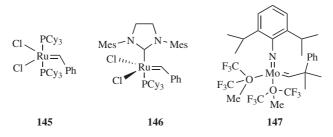
⁷⁵⁴See, for example, Nojima, M.; Ando, T.; Tokura, N. J. Chem. Soc. Perkin Trans. 1 1976, 1504.

⁷⁵⁵For reviews, see Grubbs, R.H. *Tetrahedron* **2004**, 60, 7117; Wakamatsu, H.; Blechert, S. *Angew. Chem. Int. Ed.* **2002**, 41, 2403; Schrock, R.R.; Hoveyda, A.H. *Angew. Chem. Int. Ed.* **2003**, 42, 4592.

The reaction is called *metathesis* of alkenes or *alkene metathesis* (*olefin metathesis*).⁷⁵⁶ In the example shown above, 2-pentene (either cis, trans, or a cis-trans mixture) is converted to a mixture of ~50% 2-pentene, 25% 2-butene, and 25% 3-hexene. The reaction is reversible⁷⁵⁷ and the alkene starting material and products exist in an equilibrium, so the same mixture can be obtained by starting with equimolar quantities of 2-butene and 3-hexene.⁷⁵⁸ In general, the reaction can be applied to a single unsymmetrical alkene, giving a mixture of itself and two other alkenes, or to a mixture of two alkenes, in which case the number of different molecules in the product depends on the symmetry of the reactants. As in the case above, a mixture of $R^1R^2C=CR^1R^2$ and $R^3R^4C=CR^3R^4$ gives rise to only one new alkene ($R^1R^2C=CR^3R^4$), while in the most general case, a mixture of $R^1R^2C=CR^3R^4$ and $R^5R^6C=CR^7R^8$ gives a mixture of 10 alkenes: the original 2 + 8 new ones. In early work, tungsten, molybdenum,⁷⁵⁹ or rhenium complexes were used, and with simple alkenes the proportions of products are generally statistical,⁷⁶⁰ which limited the synthetic utility of the reaction

⁷⁵⁶For monographs, see Drăguțn, V.; Balaban, A.T.; Dimonie, M. Olefin Metathesis and Ring-Opening Polymerization of Cyclo-Olefins, Wiley, NY, **1985**; Ivin, K.J. Olefin Metathesis, Academic Press, NY, **1983**. For reviews, see Feast, W.J.; Gibson, V.C., in Hartley, F.R. The Chemistry of the Metal-Carbon Bond, Vol. 5, Wiley, NY, 1989, pp. 199–228; Streck, R. CHEMTECH **1989**, 498; Schrock, R.R. J. Organomet. Chem. **1986**, 300, 249; Grubbs, R.H., in Wilkinson, G. Comprehensive Organometallic Chemistry, Vol. 8, Pergamon, Elmsford, NY, **1982**, pp. 499–551; Basset, J.M.; Leconte, M. CHEMTECH **1980**, 762; Banks, R.L. CHEMTECH **1979**, 494; Fortschr. Chem. Forsch. **1972**, 25, 39; Calderon N.; Lawrence, J.P.; Ofstead, E.A. Adv. Organomet. Chem. **1979**, 17, 449; Grubbs, R.H. Prog. Inorg. Chem. **1978**, 24, 1; Calderon N., in Patai, S. The Chemistry of Functional Groups: Supplement A pt. 2, Wiley, NY, **1977**, pp. 913–964; Acc. Chem. Res. **1972**, 5, 127; Katz, T.J. Adv. Organomet. Chem. **1977**, 16, 283; Haines, R.J.; Leigh, G.J. Chem. Soc. Rev. **1975**, 4, 155; Hocks, L. Bull. Soc. Chim. Fr. **1975**, 1893; Mol, J.C.; Moulijn, J.A. Adv. Catal. **1974**, 24, 131; Hughes, W.B. Organomet. Chem. Synth. **1972**, 1, 341; Khidekel', M.L.; Shebaldova, A.D.; Kalechits, I.V. Russ. Chem. Rev. **1971**, 40, 669; Bailey, G.C. Catal. Rev. **1969**, 3, 37.

⁷⁵⁷Smith III, A.B.; Adams, C.M.; Kozmin, S.A. J. Am. Chem. Soc. 2001, 123, 990.


⁷⁵⁸Calderon N.; Chen, H.Y.; Scott, K.W. *Tetrahedron Lett.* **1967**, 3327; Wang, J.; Menapace, H.R. *J. Org. Chem.* **1968**, *33*, 3794; Hughes, W.B. *J. Am. Chem. Soc.* **1970**, *92*, 532.

⁷⁵⁹For an example, see Crowe, W.E.; Zhang, Z.J. J. Am. Chem. Soc. **1993**, 115, 10998.; Fu, G.C.; Grubbs, R.H. J. Am. Chem. Soc. **1993**, 115, 3800.

⁷⁶⁰Calderon N.; Ofstead, E.A.; Ward, J.P.; Judy, W.A.; Scott, K.W. J. Am. Chem. Soc. **1968**, 90, 4133.

CHAPTER 18

since the yield of any one product is low. However, in some cases one alkene may be more or less thermodynamically stable than the rest, so that the proportions are not statistical. Furthermore, it may be possible to shift the equilibrium. For example, 2-methyl-1-butene gives rise to ethylene and 3,4-dimethyl-3-hexene. By allowing the gaseous ethylene to escape, the yield of 3,4-dimethyl-3-hexene can be raised to 95%.⁷⁶¹

The development of new catalysts have revolutionized this reaction, making it one of the most important methods available for synthesis. Tailoring the substrate to include two terminal alkenes leads to ethylene as a product, whose escape from the reaction drives the equilibrium to product. Many catalysts, both homogeneous⁷⁶² and heterogeneous,⁷⁶³ have been used for this reaction. Although there are several examples of the former, ruthenium complexes are the most important,⁷⁶⁴ while among the latter are oxides of Mo, W, and Re deposited on alumina or silica gel.⁷⁶⁵ The major breakthrough in these catalysts was the development of catalysts that are relatively air stable. The three most used catalysts are carbene complexes **145**⁷⁶⁶ and **146**⁷⁶⁷ (Grubbs catalysts I and II, respectively), and **147** (the Shrock catalyst).⁷⁶⁸ Catalyst **146** can be generated *in situ* from air stable

 ⁷⁶¹Knoche, H. Ger. Pat.(Offen.) 2024835, 1970 [*Chem. Abstr.*, 1971, 74, 44118b]. See also Chevalier, P.;
 Sinou, D.; Descotes, G. *Bull. Soc. Chim. Fr.* 1976, 2254; Bespalova, N.B.; Babich, E.D.; Vdovin, V.M.;
 Nametkin, N.S. *Doklad. Chem.* 1975, 225, 668; Ichikawa, K.; Fukuzumi, K. J. Org. Chem. 1976, 41, 2633;
 Baker, R.; Crimmin, M.J. Tetrahedron Lett. 1977, 441.

⁷⁶²First reported by Calderon N.; Chen, H.Y.; Scott, K.W. *Tetrahedron Lett.* **1967**, 3327. For a lengthy list, see Hughes, W.B. *Organomet. Chem. Synth.* **1972**, *1*, 341, see pp. 362–368. For a homogeneous rhenium catalyst, see Toreki, R.; Schrock, R.R. J. Am. Chem. Soc. **1990**, *112*, 2448.

⁷⁶³First reported by Banks, R.L.; Bailey, G.C. *Ind. Eng. Chem. Prod. Res. Dev.*, **1964**, *3*, 170. See also, Banks, R.L. *CHEMTECH* **1986**, 112.

⁷⁶⁴Gilbertson, S.R.; Hoge, G.S.; Genov, D.G. J. Org. Chem. **1998**, 63, 10077; Maier, M.E.; Bugl, M. Synlett **1998**, 1390; Stefinovic, M.; Snieckus, V. J. Org. Chem. **1998**, 63, 2808.

⁷⁶⁵For a list of heterogeneous catalysts, see Banks, R.L. Fortschr. Chem. Forsch. 1972, 25, 39, 41-46.

⁷⁶⁶Schwab, P.; Grubbs, R.H.; Ziller, J.W. J. Am. Chem. Soc. 1996, 118, 100.

⁷⁶⁷Scholl, M.; Ding, S.; Lee, C.W.; Grubbs, R.H. Org. Lett. 1999, 1, 953.

⁷⁶⁸Bazan, G.C.; Oskam, J.H.; Cho, H.-N.; Park, L.Y.; Schrock, R.R. J. Am. Chem. Soc. **1991**, 113, 6899, and references cited therein.

precursors. ⁷⁶⁹ Recyclable catalyst have been developed,⁷⁷⁰ and the reaction has been done in ionic liquids,⁷⁷¹ as well as supercritical CO_2^{772} (p. 414). Micro-wave-induced ring-closing metathesis reactions are known.⁷⁷³ Polymer-bound ruthenium catalysts⁷⁷⁴ and molybdenum catalysts⁷⁷⁵ have been used, and the **146** has been immobilized on polyethylene glycol, PEG).⁷⁷⁶ Efficient methods have been developed for the removal of ruthenium by-products from metathesis reactions.⁷⁷⁷ By choice of the proper catalyst, the reaction has been applied to terminal and internal alkenes, straight chain or branched. The effect of substitution on the ease of reaction is $CH_2 = > RCH_2CH = > R_2CHCH = > R_2C = .^{778}$ Note that isomerization of the C=C unit can occur after metathesis.⁷⁷⁹ Cross-metathesis^{780,781} (or symmetrical homo-metathesis⁷⁸²) of alkenes to give new alkenes

⁷⁶⁹Louie, J.; Grubbs, R.H. Angew. Chem. Int. Ed. 2001, 40, 247.

⁷⁷¹In bmim PF₆, 1-butyl-3-methylimidazolium hexafluorophosphate: Buijsman, R.C.; van Vuuren, E.; Sterrenburg, J.G. *Org. Lett.* **2001**, *3*, 3785. See Clavier, H.; Audic, N.; Mauduit, M.; Guillemin, J.-C. *Chem. Commun.* **2004**, 2282.

⁷⁷²Fürstner, A.; Ackerman, L.; Beck, K.; Hori, H.; Koch, D.; Langemann, K.; Liebl, M.; Six, C.; Leitner, W. J. Am. Chem. Soc. 2001, 123, 9000.

⁷⁷³Grabacia, S.; Desai, B.; Lavastre, O.; Kappe, C.O. J. Org. Chem. 2003, 68, 9136; Mayo, K.G.;
 Nearhoof, E.H.; Kiddle, J.J. Org. Lett. 2002, 4, 1567; Balan, D.; Adolfsson, H. Tetrahedron Lett. 2004, 45, 3089. For a solvent-free microwave-induced reaction, see Thanh, G.V.; Loupy, A. Tetrahedron Lett. 2003, 44, 9091.

⁷⁷⁴Yao, Q. Angew. Chem. Int. Ed. **2000**, *39*, 3896; Schürer, S.C.; Gessler, S.; Buschmann, N.; Blechert, S. Angew. Chem. Int. Ed. **2000**, *39*, 3898.

⁷⁷⁵Hultzsch, K.C.; Jernelius, J.A.; Hoveyda, A.H.; Schrock, R.R. Angew. Chem. Int. Ed. **2002**, 41, 589.

⁷⁷⁶A recyclable catalyst, see Yao, Q.; Motta, A.R. *Tetrahedron Lett.* 2004, 45, 2447.

⁷⁷⁷Ahn, Y.M.; Yang, K.; Georg, G.I. *Org. Lett.* **2001**, *3*, 1411; Cho, J.H.; Kim, B.M. *Org. Lett.* **2003**, *5*, 531. A scavenger resin has been developed, see Westhus, M.; Gonthier, E.; Brohm, D.; Breinbauer, R. *Tetrahedron Lett.* **2004**, *45*, 3141.

⁷⁷⁸For an explanation for this order, see McGinnis, J.; Katz, T.J.; Hurwitz, S. *J. Am. Chem. Soc.* **1976**, 98, 605; Casey, C.J.; Tuinstra, H.E.; Saeman, M.C. *J. Am. Chem. Soc.* **1976**, 98, 608. A model for selectivity has been proposed, see Chatterjee, A.K.; Choi, T.-L.; Sanders, D.P.; Grubbs, R.H. *J. Am. Chem. Soc.* **2003**, *125*, 11360.

⁷⁷⁹For example, see Schmidt, B. J. Org. Chem. **2004**, 69, 7672; Sutton, A.E.; Seigal, B.A.; Finnegan, D.F.; Snapper, M.L. J. Am. Chem. Soc. **2002**, 124, 13390.

⁷⁸⁰See La, D.S.; Sattely, E.S.; Ford, J.G.; Schrock, R.R.; Hoveyda, A.H. *J. Am. Chem. Soc.* **2001**, *123*, 7767.

⁷⁸¹Chatterjee, A.K.; Grubbs, R.H. Org. Lett. **1999**, *1*, 1751; Chatterjee, A.K.; Morgan, J.P.; Scholl, M.; Grubbs, R.H. J. Am. Chem. Soc. **2000**, 122, 3783; Fassina, V.; Ramminger, C.; Seferin, M.; Monteiro, A.L. Tetrahedron **2000**, 56, 7403; Randl, S.; Buschmann, N.; Connon, S.J.; Blechert, S. Synlett **2001**, 1547; Grela, K.; Bieniek, M. Tetrahedron Lett. **2001**, 42, 6425; Choi, T.-L.; Chatterjee, A.K.; Grubbs, R.H. Angew. Chem. Int. Ed. **2001**, 40, 1277; Arjona, O.; Csákÿ, A.G.; Medel, R.; Plumet, J. J. Org. Chem. **2002**, 67, 1380; Chatterjee, A.K.; Sanders, D.P.; Grubbs, R.H. Org. Lett. **2002**, 4, 1939; Hansen, E.C.; Lee, D. Org. Lett. **2004**, 6, 2035; BouzBouz, S.; Simmons, R.; Cossy, J. Org. Lett. **2004**, 6, 3465.

⁷⁸²Blanco, O.M.; Castedo, L. Synlett 1999, 557.

⁷⁷⁰Kingsbury, J.S.; Harrity, J.P.A.; Bonitatebus Jr., P.J.; Hoveyda, A.H. J. Am. Chem. Soc. **1999**, 121, 791.

can be accomplished with the modern metathesis catalysts. Monosubstituted alkenes react faster than disubstituted alkenes.⁷⁸³ A double metathesis reaction of a diene (also called domino metathesis⁷⁸⁴ or tandem metathesis⁷⁸⁵) with conjugated aldehydes has been reported,⁷⁸⁶ and a triple-metathesis was reported to for a dihydropyran with two dihydropyran substituents.⁷⁸⁷ Cross-metathesis of a terminal alkyne and a terminal alkenes (en-ynes)⁷⁸⁸ to give a diene has also been reported.⁷⁸⁹ Cross-metathesis of vinylcyclopropanes leads to an alkene with two cyclopropyl substituents.⁷⁹⁰ Vinylcyclopropane-alkyne metathesis reactions have been reported.⁷⁹¹ Cyclic alkenes can be opened, usually with polymerization using metathesis catalysts. Ring-opening metathesis generates dienes from cyclic alkenes.⁷⁹² Allenes undergo a metathesis reaction to give symmetrical allenes.⁷⁹³ The Grubbs catalyst is compatible with forming cyclic alkenes by ring-closing metathesis followed by treatment with hydrogen to give the saturated cyclic compound.⁷⁹⁴ An interesting variation reacts an α, ω -diene with a cyclic alkene. The combination of ring-opening metathesis and ring-closing cross-metathesis leads to ring expansion to give a macrocyclic nonconjugated diene.⁷⁹⁵

Dienes can react intermolecularly or intramolecularly.⁷⁹⁶ Intramolecular reactions generate rings, usually alkenes or dienes. Alkene metathesis can be

⁷⁸⁴Rückert, A.; Eisele, D.; Blechert, S. *Tetrahedron Lett.* 2001, 42, 5245.

- ⁷⁸⁵Choi, T.-L.; Grubbs, R.H. Chem. Commun. 2001, 26 48.
- ⁷⁸⁶BouzBouz, S.; Cossy, J. Org. Lett. 2001, 3, 1451; van Otterlo, W.A.L.; Ngidi, E.L.; de Koning, C.D.; Fernandes, M.A. Tetrahedron Lett. 2004, 45, 659.

⁷⁸⁷Sundararajan, G.; Prabagaran, N.; Varghese, B. Org. Lett. 2001, 3, 1973.

⁷⁸⁸For a discussion of (Z/E) selectivity and substituent effects, see Kang, B.; Lee, J.M.; Kwak, J.; Lee, Y.S.; Chang, S. J. Org. Chem. **2004**, 69, 7661. For a review, see Diver, S.T.; Giessert, A.J. Chem. Rev. **2004**, 104, 1317.

⁷⁸⁹For a review, see Poulsen, C.S.; Madsen, R. Synthesis 2003, 1. See Stragies, R.; Voigtmann, U.; Blechert, S. Tetrahedron Lett. 2000, 41, 5465; Yao, Q. Org. Lett. 2001, 3, 2069; Lee, H.-Y.; Kim, B.G.; Snapper, M.L. Org. Lett. 2003, 5, 1855; Giessert, A.J.; Brazis, N.J.; Diver, S.T. Org. Lett. 2003, 5, 3819; Kim, M.; Park, S.; Maifeld, S.V.; Lee, D. J. Am. Chem. Soc. 2004, 126, 10242; Tonogaki, K.; Mori, M. Tetrahedron Lett. 2002, 43, 2235. See also, Kang, B.; Kim, D.-h.; Do, Y.; Chang, S. Org. Lett. 2003, 5, 3041.

⁷⁹⁰Verbicky, C.A.; Zercher, C.K. Tetrahedron Lett. 2000, 41, 8723.

⁷⁹¹López, F.; Delgado, A.; Rodríguez, J.R.; Castedo, L.; Mascareñas, J.L. J. Am. Chem. Soc. **2004**, 126, 10262.

⁷⁹²See La, D.S.; Ford, J.G.; Sattely, E.S.; Bonitatebus, P.J.; Schrock, R.R.; Hoveyda, A.H. J. Am. Chem. Soc. **1999**, 121, 11603; Wright, D.L.; Usher, L.C.; Estrella-Jimenez, M. Org. Lett. **2001**, 3, 4275; Randl, S.; Connon, S.J.; Blechert, S. Chem. Commun. **2001**, 1796; Morgan, J.P.; Morrill, C.; Grubbs, R.H. Org. Lett. **2002**, 4, 67.

⁷⁹³Ahmed, M.; Arnauld, T.; Barrett, A.G.M.; Braddock, D.C.; Flack, K.; Procopiou, P.A. Org. Lett. 2000, 2, 551.


⁷⁹⁴Louie, J.; Bielawski, C.W.; Grubbs, R.H. J. Am. Chem. Soc. 2001, 123, 11312.

⁷⁹⁵Lee, C.W.; Choi, T.-L.; Grubbs, R.H. J. Am. Chem. Soc. 2002, 124, 3224.

⁷⁹⁶Kroll, W.R.; Doyle, G. *Chem. Commun.* **1971**, 839. For a review see Grubbs, R.H.; Miller, S.J.; Fu, G.C. *Acc. Chem. Res.* **1995**, 28, 446.

⁷⁸³For an example with a styrene derivative versus a terminal alkene in the same molecule, see Lautens, M.; Maddess, M.L. Org. Lett. 2004, 6, 1883.

used to form very large rings, including 21-membered lactone rings.⁷⁹⁷ Diynes can also react intramolecularly to give large-ring alkynes.⁷⁹⁸ Metathesis with vinyl-cyclopropyl-alkynes is also known, producing a ring expanded product (see **148**).⁷⁹⁹

The synthetic importance of ring-closing and ring-opening metathesis reactions has led to the development of several new catalysts.⁸⁰⁰ Catalysts have been developed that are compatible with both water and methanol.⁸⁰¹ The reaction is compatible with the presence of other functional groups,⁸⁰² such as other alkene units,⁸⁰³ carbonyl units,⁸⁰⁴ the alkene unit of conjugated esters,⁸⁰⁵ butenolides⁸⁰⁶ and other lactones,⁸⁰⁷ amines,⁸⁰⁸ amides,⁸⁰⁹ sulfones,⁸¹⁰ phosphine oxides,⁸¹¹ sulfonate esters,⁸¹² and sulfonamides⁸¹³

⁷⁹⁷Fürstner, A.; Langemann, K. J. Org. Chem. 1996, 61, 3942. Also see, Goldring, W.P.D.; Hodder, A.S.;
 Weiler, L. Tetrahedron Lett. 1998, 39, 4955; Ghosh, A.K.; Hussain, K.A. Tetrahedron Lett. 1998, 39, 1881.

⁷⁹⁸Chen, F.-E.; Kuang, Y.-Y.; Dai, H.-F.; Lu, L.; Huo, M. Synthesis 2003, 2629.

⁷⁹⁹Wender, P.A.; Sperandio, D. J. Org. Chem. 1998, 63, 4164.

⁸⁰⁰Schrock, R.R.; Hoveyda, A.H. Angew. Chem. Int. Ed. 2003. 42, 4592; Garber, S.B.; Kingsbury, J.S.;
 Gray, B.L.; Hoveyda, A.H. J. Am. Chem. Soc. 2000, 122, 8168; Grela, K.; Kim, M. Eur. J. Org. Chem.
 2003, 963; Conon, S.J.; Dunne, A.M.; Blechert, S. Angew. Chem. Int. Ed. 2002, 41, 3835; Zhang, W.;
 Kraft, S.; Moore, J.S. J. Am. Chem. Soc. 2004, 126, 329; Aggarwal, V.K.; Alonso, E.; Fang, G.;
 Ferrara, M.; Hynd, G.; Porcelloni, M. Angew. Chem. Int. Ed. 2001, 40, 1433. Also see, references cited therein.

⁸⁰¹Kirkland, T.A.; Lynn, D.M.; Grubbs, R.H. J. Org. Chem. 1998, 63, 9904.

⁸⁰²Oxygen and nitrogen-containing heterocycles can be prepared. For a review, see Deiter, S.A.; Martin, S.F. *Chem. Rev.* **2004**, *104*, 2199.

⁸⁰³Takahashi, T.; Kotora, M.; Kasai, K. J. Chem. Soc., Chem. Commun. 1994, 2693.

⁸⁰⁴Schneider, M.F.; Junga, H.; Blechert, S. *Tetrahedron* 1995, 51, 13003; Junga, H.; Blechert, S. *Tetrahedron Lett.* 1993, 34, 3731; Llebaria, A.; Camps, F.; Moretó, J.M. *Tetrahedron Lett.* 1992, 33, 3683.

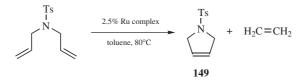
⁸⁰⁵Lee, C.W.; Grubbs, R.H. J. Org. Chem. 2001, 66, 7155.

⁸⁰⁶Paquette, L.A.; Méndez-Andino, J. Tetrahedron Lett. 1999, 40, 4301.

⁸⁰⁷Brimble, M.A.; Trzoss, M. Tetrahedron 2004, 60, 5613.

⁸⁰⁸Wright, D.L.; Schulte II, J.P.; Page, M.A. Org. Lett. 2000, 2, 1847; Dolman, S.J.; Sattely, E.S.; Hoveyda, A.H.; Schrock, R.R. J. Am. Chem. Soc. 2002, 124, 6991.

⁸⁰⁹Vo-Thanh, G.; Boucard, V.; Sauriat-Dorizon, H.; Guibé, F. *Synlett* **2001**, 37; Ma, S.; Ni, B.; Liang, Z. *J. Org. Chem.* **2004**, 69, 6305.


⁸¹⁰Yao, Q. Org. Lett. 2002, 4, 427.

⁸¹¹Demchuk, O.M.; Pietrusiewicz, K.M.; Michrowska, A.; Grela, K. Org. Lett. 2003, 5, 3217.

⁸¹²LeFlohic, A. ;Meyer, C.; Cossy, J.; Desmurs, J.-R.; Galland, J.-C. Synlett 2003, 667.

⁸¹³Hanson, P.R.; Probst, D.A.; Robinson, R.E.; Yau, M. *Tetrahedron Lett.* **1999**, 40, 4761; Kinderman, S.S.; Van Maarseveen, J.H.; Schoemaker, H.E.; Hiemstra, H.; Rutjes, F.P.J.T. *Org. Lett.* **2001**, *3*, 2045.

(see **149**).⁸¹⁴ Ether groups,⁸¹⁵ including vinyl ethers,⁸¹⁶ vinyl halides,⁸¹⁷ vinyl silanes,⁸¹⁸ vinyl sulfones,⁸¹⁹ allylic ethers,⁸²⁰ and thioethers⁸²¹ are also compatible. Asymmetric ring-closing metathesis reactions have been reported.⁸²² Asymmetric ring-opening metathesis has also been reported.⁸²³

Two cyclic alkenes react to give dimeric dienes,⁸²⁴ for example,

However, the products can then react with additional monomers and with each other, so that polymers are generally produced, and the cyclic dienes are obtained only in low yield. The reaction between a cyclic and a linear alkene can give an ring-opened diene:⁸²⁵

⁸¹⁴Fürstner, A.; Picquet, M.; Bruneau, C.; Dixneuf, P.H. Chem. Commun. 1998, 1315; Maier, M.E.; Lapeva, T. Synlett 1998, 891; Mori, M.; Sakakibara, N.; Kinoshita, A. J. Org. Chem. 1998, 63, 6082; O'Mahony, D.J.R.; Belanger, D.B.; Livinghouse, T. Synlett 1998, 443; Visser, M.S.; Heron N.M.; Didiuk, M.T.; Sagal, J.F.; Hoveyda, A.H. J. Am. Chem. Soc. 1996, 118, 4291.

⁸¹⁵Edwards, S.D.; Lewis, T.; Taylor, R.J.K. Tetrahedron Lett. 1999, 40, 4267.

⁸¹⁶Sturino, C.F.; Wong, J.C.Y. *Tetrahedron Lett.* **1998**, *39*, 9623; Rainier, J.D.; Cox, J.M.; Allwein, S.P. *Tetrahedron Lett.* **2001**, *42*, 179.

⁸¹⁷Chao, W.; Weinreb, S.M. Org. Lett. 2003, 5, 2505.

⁸¹⁸Schuman, M.; Gouverneur, V. Tetrahedron Lett. 2002, 43, 3513.

⁸¹⁹Kim, S.; Lim, C.J. Angew. Chem. Int. Ed. 2002, 41, 3265.

⁸²⁰Delgado, M.; Martín, J.D. *Tetrahedron Lett.* **1997**, *38*, 6299; Miller, S.J.; Kim, S.-H.; Chen, Z.-R.; Grubbs, R.H. J. Am. Chem. Soc. **1995**, *117*, 2108.

⁸²¹Leconte, M.; Pagano, S.; Mutch, A.; Lefebvre, F.; Basset, J.M. Bull. Soc. Chim. Fr. 1995, 132, 1069.

⁸²²Cefalo, D.R.; Kiely, A.F.; Wuchrer, M.; Jamieson, J.Y.; Schrock, R.R.; Hoveyda, A.H. J. Am. Chem. Soc. 2001, 123, 3139.

⁸²³Gillingham, D.G.; Kataoka, O.; Garber, S.B.; Hoveyda, A.H. J. Am. Chem. Soc. 2004, 126, 12288.

⁸²⁴Calderon N.; Ofstead, E.A.; Judy, W.A. J. Polym. Sci. Part A-1 1967, 5, 2209; Wasserman, E.; Ben-Efraim, D.A.; Wolovsky, R. J. Am. Chem. Soc. 1968, 90, 3286; Wolovsky, R.; Nir, Z. Synthesis 1972, 134.

⁸²⁵Wasserman, E.; Ben-Efraim, D.A.; Wolovsky, R. J. Am. Chem. Soc. **1968**, 90, 3286; Ray, G.C.; Crain,
 D.L. Fr. Pat. 1511381, 1968 [Chem. Abstr., **1969**, 70, 114580q]; Mango, F.D. U.S. Pat. 3424811, 1969
 [Chem. Abstr., **1969**, 70, 106042a]; Rossi, R.; Diversi, P.; Lucherini, A.; Porri, L. Tetrahedron Lett. **1974**,
 879; Lal, J.; Smith, R.R. J. Org. Chem. **1975**, 40, 775.

Alkenes containing functional groups⁸²⁶ do not give the reaction with most of the common catalysts, but some success has been reported with WCl_6 -SnMe₄⁸²⁷ and with certain other catalysts.

The reaction has also been applied to internal triple bonds:⁸²⁸

$$2 RC \equiv CR' \rightleftharpoons RC \equiv CR + R'C \equiv CR'$$

but it has not been successful for terminal triple bonds,⁸²⁹ although as noted above, molecules with a terminal alkene and a terminal alkyne react quite well. Ring-closing metathesis of alkene–alkynes leads to a cyclic alkene with a pendant vinyl unit (a diene).⁸³⁰ Intramolecular reactions of a double bond with a triple bond are known⁸³¹ and a tetracyclic tetraene has been prepared from a poly-yne-diene.⁸³²

The generally accepted mechanism is a chain mechanism,⁸³³ involving the intervention of a metal–carbene complex $(150 \text{ and } 151)^{834}$ and a four-membered ring

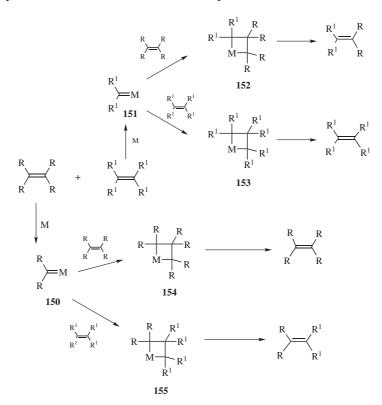
⁸²⁷First shown by van Dam, P.B.; Mittelmeijer, M.C.; Boelhouwer, C. J. Chem. Soc., Chem. Commun. 1972, 1221.

⁸²⁸Pennella, F.; Banks, R.L.; Bailey, G.C. Chem. Commun. 1968, 1548; Villemin, D.; Cadiot, P. Tetrahedron Lett. 1982, 23, 5139; McCullough, L.G.; Schrock, R.R. J. Am. Chem. Soc. 1984, 106, 4067; Fürstner, A.; Mathes, C. Org. Lett. 2001, 3, 221; Fürstner, A.; Mathes, C.; Lehmann, C.W. J. Am. Chem. Soc. 1999, 121, 9453; Fürstner, A.; Guth, O.; Rumbo, A.; Seidel, G. J. Am. Chem. Soc. 1999, 121, 11108; Brizius, G.; Bunz, U.H.F. Org. Lett. 2002, 4, 2829; Grela, K.; Ignatonska, J. Org. Lett. 2002, 4, 3747. For a review, see Tamao, K.; Kobayashi, K.; Ito, Y. Synlett 1992, 539.

⁸²⁹McCullough, L.G.; Listemann, M.L.; Schrock, R.R.; Churchill, M.R.; Ziller, J.W. J. Am. Chem. Soc. **1983**, 105, 6729.

⁸³⁰Mori, M.; Kitamura, T.; Sakakibara, N.; Sato, Y. Org. Lett. 2000, 2, 543; Kitamura, T.; Mori, M. Org. Lett. 2001, 3, 1161.

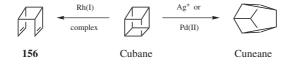
⁸³¹Trost, B.M.; Trost, M.K. J. Am. Chem. Soc. **1991**, 113, 1850; Gilbertson, S.R.; Hoge, G.S. Tetrahedron Lett. **1998**, 39, 2075.


832Zuercher, W.J.; Scholl, M.; Grubbs, R.H. J. Org. Chem. 1998, 63, 4291.

⁸³³For a discussion of the mechanism of ring-closing meththesis, see Sanford, M.S.; Ulman, M.; Grubbs,
 R.H. J. Am. Chem. Soc. 2001, 123, 749; Sanford, M.S.; Love, J.A.; Grubbs, R.H. J. Am. Chem. Soc. 2001, 123, 6543; Cavallo, L. J. Am. Chem. Soc. 2002, 124, 8965; Adlhart, C.; Chen, P. J. Am. Chem. Soc. 2004, 126, 3496.

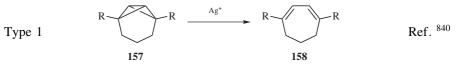
⁸³⁴For a review of these complexes and their role in this reaction, see Crabtree, R.H. *The Organometallic Chemistry of the Transition Metals*, Wiley, NY, *1988*, pp. 244–267.

 ⁸²⁶For a review, see Mol, J.C. CHEMTECH 1983, 250. See also, Bosma, R.H.A.; van den Aardweg,
 G.C.N.; Mol, J.C. J. Organomet. Chem. 1983, 255, 159; 1985, 280, 115; Xiaoding, X.; Mol, J.C.
 J. Chem. Soc., Chem. Commun. 1985, 631; Crisp, C.T.; Collis, M.P. Aust. J. Chem. 1988, 41, 935.


containing a metal⁸³⁵ (152–155).⁸³⁶ In the cross-metathesis reaction shown as an example, $R_2C=CR_2$ reacts with $R_2^1C=CR_2^1$ in the presence of a metal catalyst, M. Initial reaction with the catalyst leads to the two expected metal carbenes, 150 and 151. Metal carbene 151 can react with both alkenes to form metallocyclobutanes 152 and 153. Each of these intermediates loses the metal to form the alkenes, the product of metathesis $R_2C=CR_2^1$ and the one of the original alkenes. In a likewise manner, 150 reacts with each alkene to form metallocyclobutanes 154 and 155, which decomposes to $R_2C=CR_2$ and the metathesis product.

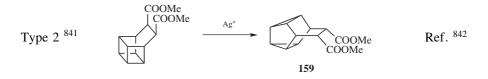
⁸³⁵For reviews of metallocycles, see Collman, J.C.; Hegedus, L.S.; Norton, J.R.; Finke, R.G. Principles and Applications of Organotransition Metal Chemistry, 2nd ed., University Science Books, Mill Valley, CA; 1987, pp. 459–520; Lindner, E. Adv. Heterocycl. Chem. 1986, 39, 237.

 ⁸³⁶For reviews of the mechanism, see Grubbs, R.H. Prog. Inorg. Chem. 1978, 24, 1; Katz, T.J. Adv. Organomet. Chem. 1977, 16, 283; Calderon N.; Ofstead, E.A.; Judy, W.A. Angew. Chem. Int. Ed. 1976, 15, 401. See also
 McLain, S.J.; Wood, C.D.; Schrock, R.R. J. Am. Chem. Soc. 1977, 99, 3519; Casey, C.P.; Polichnowski, S.W. J.
 Am. Chem. Soc. 1977, 99, 6097; Mango, F.D. J. Am. Chem. Soc. 1977, 99, 6117; Stevens, A.E.; Beauchamp,
 J.L. J. Am. Chem. Soc. 1979, 101, 6449; Lee, J.B.; Ott, K.C.; Grubbs, R.H. J. Am. Chem. Soc. 1982, 104, 7491;
 Levisalles, J.; Rudler, H.; Villemin, D. J. Organomet. Chem. 1980, 193, 235; Iwasawa, Y.; Hamamura, H. J.
 Chem. Soc., Chem. Commun. 1983, 130; Rappé, A.K.; Upton, T.H. Organometallics, 1984, 3, 1440; Kress, J.;
 Osborn, J.A.; Greene, R.M.E.; Ivin, K.J.; Rooney, J.J. J. Am. Chem. Soc. 1987, 109, 899; Feldman, J.; Davis,
 W.M.; Schrock, R.R. Organometallics, 1989, 8, 2266. OS 80, 85; 81, 1.


18-38 Metal-Ion-Catalyzed σ -Bond Rearrangements

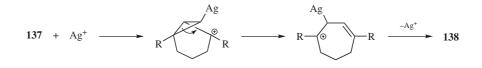
Many highly strained cage molecules undergo rearrangement when treated with metallic ions, such as Ag^+ , Rh(I), or Pd(II).⁸³⁷ The bond rearrangements observed can be formally classified into two main types: (1) [2+2]-ring

openings of cyclobutanes and (2) conversion of a bicyclo[2.2.0] system to a bicyclopropyl system. The molecule cubane supplies an example of each type (see above). Treatment with Rh(I) complexes converts cubane to tricyclo[4.2.0.0^{2.5}]octa-3,7-diene (**156**),⁸³⁸ an example of type 1, while Ag⁺ or Pd(II) causes the second type of reaction, producing cuneane.⁸³⁹ Other examples are

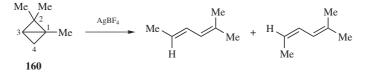


⁸³⁷For reviews, see Halpern, J., in Wender, I.; Pino, P. Organic Syntheses via Metal Carbonyls, Vol. 2, Wiley, NY, **1977**, pp. 705–721; Bishop III, K.C. Chem. Rev. **1976**, 76, 461; Cardin, D.J.; Cetinkaya, B.; Doyle, M.J.; Lappert, M.F. Chem. Soc. Rev. **1973**, 2, 99, 132–139; Paquette, L.A. Synthesis **1975**, 347; Acc. Chem. Res. **1971**, 4, 280.

⁸³⁸ Eaton, P.E.; Chakraborty, U.R. J. Am. Chem. Soc. 1978, 100, 3634.


⁸³⁹Cassar, L.; Eaton, P.E.; Halpern, J. J. Am. Chem. Soc. 1970, 92, 6336.

 ⁸⁴⁰Gassman, P.G.; Atkins, T.J. J. Am. Chem. Soc. 1971, 93, 4579; 1972, 94, 7748; Sakai, M.; Westberg,
 H.H.; Yamaguchi, H.; Masamune, S. J. Am. Chem. Soc. 1972, 93, 4611; Paquette, L.A.; Wilson, S.E.;
 Henzel, R.P. J. Am. Chem. Soc. 1972, 94, 7771.



159 is the 9,10-dicarbomethyoxy derivative of *snoutane* (pentacyclo[3.3.2.0^{2,4}.0^{3,7}.0^{6,8}] decane).

The mechanisms of these reactions are not completely understood, although relief of strain undoubtedly supplies the driving force. The reactions are thermally forbidden by the orbital-symmetry rules, and the role of the catalyst is to provide low-energy pathways so that the reactions can take place. The type 1 reactions are the reverse of the catalyzed [2 + 2] ring closures discussed at **15-63**. The following mechanism, in which Ag⁺ attacks one of the edge bonds, has been suggested for the conversion of **157** to **158**.⁸⁴³

Simpler bicyclobutanes can also be converted to dienes, but in this case the products usually result from cleavage of the central bond and one of the edge bonds.⁸⁴⁴ For example, treatment of **160** with AgBF₄,⁸⁴⁵

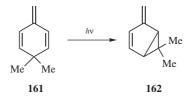
⁸⁴¹The starting compound here is a derivative of basketane, or 1,8-bishomocubane. For a review of homo-, bishomo-, and trishomocubanes, see Marchand, A.P. *Chem. Rev.* **1989**, *89*, 1011.

⁸⁴²See, for example, Furstoss, R.; Lehn, J.M. Bull. Soc. Chim. Fr. 1966, 2497; Dauben, W.G.; Kielbania Jr., A.J. J. Am. Chem. Soc. 1971, 93, 7345; Paquette, L.A.; Beckley, R.S.; Farnham, W.B. J. Am. Chem. Soc. 1975, 97, 1089.

⁸⁴³Gassman, P.G.; Atkins, T.J. J. Am. Chem. Soc. 1971, 93, 4579; Sakai, M.; Westberg, H.H.; Yamaguchi,
 H.; Masamune, S. J. Am. Chem. Soc. 1972, 93, 4611.

⁸⁴⁴Compound **157** can also be cleaved in this manner, giving a 3-methylenecyclohexene. See, for example, Dauben, W.G.; Kielbania Jr., A.J. J. Am. Chem. Soc. **1972**, 94, 3669; Gassman, P.G.; Reitz, R.R. J. Am. Chem. Soc. **1973**, 95, 3057; Paquette, L.A.; Zon, G. J. Am. Chem. Soc. **1974**, 96, 203, 224.

845 Paquette, L.A.; Henzel, R.P.; Wilson, S.E. J. Am. Chem. Soc. 1971, 93, 2335.


or $[(\pi-allyl)PdCl]_2^{846}$ gives a mixture of the two dienes shown, resulting from a formal cleavage of the C₁–C₃ and C₁–C₂ bonds (note that a hydride shift has taken place). Dienes can also be converted to bicyclobutanes under photochemical conditions.⁸⁴⁷

18-39 The Di- π -methane and Related Rearrangements

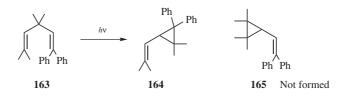
Di- π -methane rearrangement

1,4-Dienes carrying alkyl or aryl substituents on C- 3^{848} can be photochemically rearranged to vinylcyclopropanes in a reaction called the *di*- π -*methane rearrangement*.⁸⁴⁹ An example is conversion of **161** to **162**.⁸⁵⁰ For most

1,4-dienes it is only the singlet excited states that give the reaction; triplet states generally take other pathways.⁸⁵¹ For unsymmetrical dienes, the reaction is regio-selective. For example, **163** gave **164**, not **165**:⁸⁵²

⁸⁴⁶Gassman, P.G.; Meyer, R.G.; Williams, F.J. Chem. Commun. 1971, 842.

⁸⁴⁷Garavelli, M.; Frabboni, B.; Fato, M.; Celani, P.; Bernardi, F.; Robb, M.A.; Olivucci, M. J. Am. Chem. Soc. **1999**, *121*, 1537.


⁸⁴⁸Zimmerman, H.E.; Pincock, J.A. J. Am. Chem. Soc. 1973, 95, 2957.

⁸⁴⁹For reviews, see Zimmerman, H.E. Org. Photochem. **1991**, 11, 1; Zimmerman, H.E., in de Mayo, P. Rearrangements in Ground and Excited States, Vol. 3, Academic Press, NY, **1980**, pp. 131–166; Hixson, S.S.; Mariano, P.S.; Zimmerman, H.E. Chem. Rev. **1973**, 73, 531. See also: Roth, W.R.; WIldt, H.; Schlemenat, A. Eur. J. Org. Chem. **2001**, 4081.

⁸⁵⁰Zimmerman, H.E.; Hackett, P.; Juers, D.F.; McCall, J.M.; Schröder, B. J. Am. Chem. Soc. **1971**, 93, 3653.

 $^{^{851}}$ However, some substrates, generally rigid bicyclic molecules, (e.g., barrelene, p. 152, which is converted to semi-bullvalene) give the di- π -methane rearrangement only from triplet states.

⁸⁵²Zimmerman, H.E.; Baum, A.A. J. Am. Chem. Soc. **1971**, 93, 3646. See also, Zimmerman, H.E.; Welter, T.R. J. Am. Chem. Soc. **1978**, 100, 4131; Alexander, D.W.; Pratt, A.C.; Rowley, D.H.; Tipping, A.E. J. Chem. Soc., Chem. Commun. **1978**, 101; Paquette, L.A.; Bay, E.; Ku, A.Y.; Rondan, N.G.; Houk, K.N. J. Org. Chem. **1982**, 47, 422.

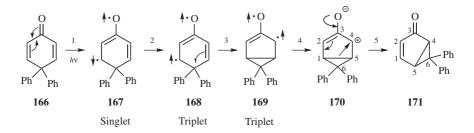
The mechanism can be described by the diradical pathway given⁸⁵³ (the C-3 substituents act to stabilize the radical), though the species shown are not necessarily intermediates, but may be transition states. It has been shown, for the case of certain substituted substrates, that configuration is retained at C-1 and C-5 and inverted at C-3.⁸⁵⁴

The reaction has been extended to allylic benzenes⁸⁵⁵ (in this case C-3 substituents are not required), to β , γ -unsaturated ketones⁸⁵⁶ (the latter reaction, which is called the *oxa-di-\pi-methane rearrangement*,⁸⁵⁷ generally occurs only from the triplet state), to β , γ -unsaturated imines,⁸⁵⁸ and to triple-bond systems.⁸⁵⁹

⁸⁵³See Zimmerman, H.E.; Little, R.D. J. Am. Chem. Soc. **1974**, 96, 5143; Zimmerman, H.E.; Boettcher, R.J.; Buehler, N.E.; Keck, G.E. J. Am. Chem. Soc. **1975**, 97, 5635. For an argument against the intermediacy of the •CH₂–cyclopropyl–CH₂• intermediate, see Adam, W.; De Lucchi, O.; Dörr, M. J. Am. Chem. Soc. **1989**, 111, 5209.


⁸⁵⁴Zimmerman, H.E.; Robbins, J.D.; McKelvey, R.D.; Samuel, C.J.; Sousa, L.R. *J. Am. Chem. Soc.* **1989**, *111*, 5209.

⁸⁵⁵For example, see Griffin, G.W.; Covell, J.; Petterson, R.C.; Dodson, R.M.; Klose, G. J. Am. Chem. Soc. 1965, 87, 1410; Hixson, S.S. J. Am. Chem. Soc. 1972, 94, 2507; Cookson, R.C.; Ferreira, A.B.; Salisbury, K. J. Chem. Soc., Chem. Commun. 1974, 665; Fasel, J.; Hansen, H. Chimia, 1982, 36, 193; Paquette, L.A.; Bay, E. J. Am. Chem. Soc. 1984, 106, 6693; Zimmerman, H.E.; Swafford, R.L. J. Org. Chem. 1984, 49, 3069.


⁸⁵⁶For reviews of photochemical rearrangements of unsaturated ketones, see Schuster, D.I., in de Mayo, P. *Rearrangements in Ground and Excited States*, Vol. 3, Academic Press, NY, *1980*, pp. 167–279; Houk, K.N. *Chem. Rev. 1976*, *76*, 1; Schaffner, K. *Tetrahedron 1976*, *32*, 641; Dauben, W.G.; Lodder, G.; Ipaktschi, J. *Top. Curr. Chem. 1975*, *54*, 73.

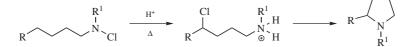
⁸⁵⁷For a review, see Demuth, M. Org. Photochem. 1991, 11, 37.

⁸⁵⁸See Armesto, D.; Horspool, W.M.; Langa, F.; Ramos, A. J. Chem. Soc. Perkin Trans. 1 1991, 223.
 ⁸⁵⁹See Griffin, G.W.; Chihal, D.M.; Perreten, J.; Bhacca, N.S. J. Org. Chem. 1976, 41, 3931.

When photolyzed, 2,5-cyclohexadienones can undergo a number of different reactions, one of which is formally the same as the di- π -methane rearrangement.⁸⁶⁰ In this reaction, photolysis of the substrate **166** gives the bicyclo[3.1.0]hexenone (**171**). Although the reaction is formally the same (note the conversion of **161** to **162**

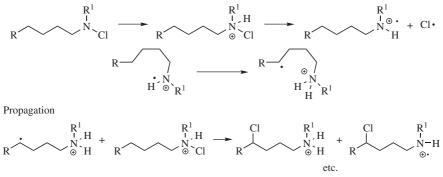
above), the mechanism is different from that of the di- π -methane rearrangement, because irradiation of a ketone can cause an $n \to \pi^*$ transition, which is of course not possible for a diene lacking a carbonyl group. The mechanism⁸⁶¹ in this case has been formulated as proceeding through the excited triplet states **168** and **169**. In step 1, the molecule undergoes an $n \to \pi^*$ excitation to the singlet species **167**, which cross to the triplet **168**. Step 3 is a rearrangement from one excited state to another. Step 4 is a $\pi^* \to n$ electron demotion (an intersystem crossing from $T_1 \to S_0$, see p. 339). The conversion of **170** to **171** consists of two 1,2 alkyl migrations (a one-step process would be a 1,3-migration of alkyl to a carbocation center, see p. \$\$\$): The old C₆-C₅ bond becomes the new C₆-C₄ bond and the old C₆-C₁ bond becomes the new C₆-C₅ bond.⁸⁶²

2,4-Cyclohexadienones also undergo photochemical rearrangements, but the products are different, generally involving ring opening.⁸⁶³


⁸⁶⁰For reviews of the photochemistry of 2,5-cyclohexadienones and related compounds, see Schaffner, K.; Demuth, M., in de Mayo, P. *Rearrangements in Ground and Excited States*, Vol. 3, Academic Press, NY, *1980*, pp. 281–348; Zimmerman, H.E. *Angew. Chem. Int. Ed. 1969*, 8, 1; Kropp, P.J. *Org. Photochem. 1967*, *1*, 1; Schaffner, K. *Adv. Photochem. 1966*, *4*, 81. For synthetic use, see Schultz, A.G.; Lavieri, F.P.; Macielag, M.; Plummer, M. *J. Am. Chem. Soc. 1987*, *109*, 3991, and references cited therein.

⁸⁶¹Schuster, D.I. Acc. Chem. Res. 1978, 11, 65; Zimmerman, H.E.; Pasteris, R.J. J. Org. Chem. 1980, 45, 4864, 4876; Schuster, D.I.; Liu, K. Tetrahedron 1981, 37, 3329.

⁸⁶²Zimmerman, H.E.; Crumine, D.S.; Döpp, D.; Huyffer, P.S. J. Am. Chem. Soc. 1969, 91, 434.

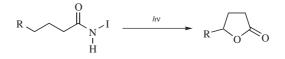

⁸⁶³For reviews, see Schaffner, K.; Demuth, M., in de Mayo, P. *Rearrangements in Ground and Excited States*, Vol. 3, Academic Press, NY, **1980**, p. 281; Quinkert, G. *Angew. Chem. Int. Ed.* **1972**, *11*, 1072; Kropp, P.J. Org. Photochem. **1967**, *1*, 1.

18-40 The Hofmann–Löffler and Related Reactions

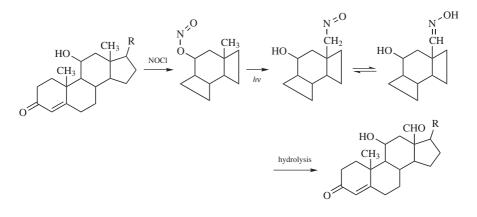
A common feature of the reactions in this section⁸⁶⁴ is that they serve to introduce functionality at a position remote from functional groups already present. As such, they have proved very useful in synthesizing many compounds, especially in the steroid field (see also, **19-2** and **19-17**). When *N*-haloamines in which one alkyl group has a hydrogen in the 4 or 5 position are heated with sulfuric acid, pyrrolidines, or piperidines are formed, in a reaction known as the Hofmann-Löffler reaction (also called the Hofmann-Löffler-Freytag reaction).⁸⁶⁵ The R' group is normally alkyl, but the reaction has been extended to R' = H by the use of concentrated sulfuric acid solution and ferrous salts.⁸⁶⁶ The first step of the reaction is a rearrangement, with the halogen migrating from the nitrogen to the 4 or 5 position of the alkyl group. It is possible to isolate the resulting haloamine salt, but usually this is not done, and the second step, the ring closure (10-31), takes place. Though the reaction is most often induced by heat, this is not necessary, and irradiation and chemical initiators (e.g., peroxides) have been used instead. The mechanism is of a free-radical type, with the main step involving an internal hydrogen abstraction.867

Initiation

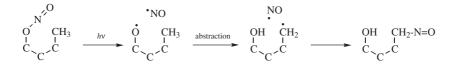
A similar reaction has been carried out on N-halo amides, which give γ -lactones:⁸⁶⁸


⁸⁶⁴For a review of the reactions in this section, see Carruthers, W. Some Modern Methods of Organic Synthesis 3rd ed.; Cambridge University Press: Cambridge, **1986**, pp. 263–279.

⁸⁶⁵For reviews, see Stella, L. Angew. Chem. Int. Ed. 1983, 22, 337; Sosnovsky, G.; Rawlinson, D.J. Adv. Free-Radical Chem. 1972, 4, 203, see pp. 249–259; Deno, N.C. Methods Free-Radical Chem. 1972, 3, 135, see pp. 136–143.


⁸⁶⁶Schmitz, E.; Murawski, D. Chem. Ber. 1966, 99, 1493.

⁸⁶⁷Wawzonek, S.; Thelan, P.J. J. Am. Chem. Soc. 1950, 72, 2118.

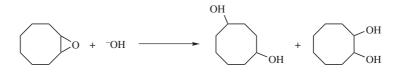

⁸⁶⁸Barton, D.H.R.; Beckwith, A.L.J.; Goosen, A. J. Chem. Soc. 1965, 181; Petterson, R.C.; Wambsgans, A. J. Am. Chem. Soc. 1964, 86, 1648; Neale, R.S.; Marcus, N.L.; Schepers, R.G. J. Am. Chem. Soc. 1966, 88, 3051. For a review of N-halo amide rearrangements, see Neale, R.S. Synthesis 1971, 1.

Another related reaction is the *Barton reaction*,⁸⁶⁹ by which a methyl group in the ∂ position to an OH group can be oxidized to a CHO group. The alcohol is first converted to the nitrite ester. Photolysis of the nitrite results in conversion of the nitrite group to the OH group and nitrosation of the methyl group. Hydrolysis of the oxime tautomer gives the aldehyde, for example,⁸⁷⁰

This reaction takes place only when the methyl group is in a favorable steric position.⁸⁷¹ The mechanism is similar to that of the Hofmann–Löffler reaction.⁸⁷²

⁸⁶⁹For reviews, see Hesse, R.H. Adv. Free-Radical Chem. **1969**, *3*, 83; Barton, D.H.R. Pure Appl. Chem. **1968**, *16*, 1.

⁸⁷⁰Barton, D.H.R.; Beaton, J.M. J. Am. Chem. Soc. 1961, 83, 4083. Also see, Barton, D.H.R.; Beaton, J.M.; Geller, L.E.; Pechet, M.M. J. Am. Chem. Soc. 1960, 82, 2640.


⁸⁷¹For a discussion of which positions are favorable, see Burke, S.D.; Silks III, L.A.; Strickland, S.M.S. *Tetrahedron Lett.* **1988**, *29*, 2761.

⁸⁷²Kabasakalian, P.; Townley, E.R. J. Am. Chem. Soc. **1962**, 84, 2711; Akhtar, M.; Barton, D.H.R.; Sammes, P.G. J. Am. Chem. Soc. **1965**, 87, 4601. See also, Nickon, A.; Ferguson, R.; Bosch, A.; Iwadare, T. J. Am. Chem. Soc. **1977**, 99, 4518; Barton, D.H.R.; Hesse, R.H.; Pechet, M.M.; Smith, L.C. J. Chem. Soc. Perkin Trans. **1 1979**, 1159; Green, M.M.; Boyle, B.A.; Vairamani, M.; Mukhopadhyay, T.; Saunders, Jr., W.H.; Bowen, P.; Allinger, N.L. J. Am. Chem. Soc. **1986**, 108, 2381. This is one of the few known methods for effecting substitution at an angular methyl group. Not only CH₃ groups, but also alkyl groups of the form RCH₂ and R₂CH can give the Barton reaction if the geometry of the system is favorable. An RCH₂ group is converted to the oxime R(C=NOH) (which is hydrolyzable to a ketone) or to a nitroso dimer, while an R₂CH group gives a nitroso compound R₂C(NO). With very few exceptions, the only carbons that become nitrosated are those in the position δ to the original OH group, indicating that a six-membered transition state is necessary for the hydrogen abstraction.⁸⁷³

OS III, 159.

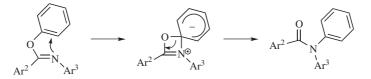
D. Noncyclic Rearrangements

18-41 Hydride Shifts

The above is a typical example of a transannular hydride shift. The 1,2-diol is formed by a normal epoxide hydrolysis reaction (**10-7**). For a discussion of 1,3 and longer hydride shifts (see p. 1572).

18-42 The Chapman Rearrangement

$1/O \rightarrow 3/N$ -Aryl-migration

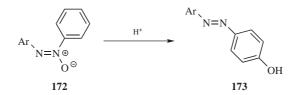


In the *Chapman rearrangement*, *N*,*N*-diaryl amides are formed when aryl imino esters are heated.⁸⁷⁴ Best yields are obtained in refluxing tetraethylene glycol dimethyl ether (tetraglyme),⁸⁷⁵ although the reaction can also be carried out without any solvent at all. Many groups may be present in the rings, for example, alkyl, halo, OR, CN, and COOR. Aryl migrates best when it contains electron-withdrawing groups. On the other hand, electron-withdrawing groups in Ar² or Ar³ decrease the reactivity. The products can be hydrolyzed to diarylamines, and

⁸⁷³For a discussion, see Nickon, A.; Ferguson, R.; Bosch, A.; Iwadare, T. J. Am. Chem. Soc. 1977, 99, 4518.

⁸⁷⁴For reviews, see Schulenberg, J.W.; Archer, S. Org. React. **1965**, *14*, 1; McCarty, C.G., in Patai, S. *The Chemistry of the Carbon-Nitrogen Double Bond*, Wiley, NY, **1970**, pp. 439–447; McCarty, C.G.; Garner, L.A., in Patai, S. *The Chemistry of Amidines and Imidates*, Wiley, NY, **1975**, pp. 189–240. For a review of 1.3 migrations of R in general, see Landis, P.S. *Mech. Mol. Migr.* **1969**, 2, 43.

⁸⁷⁵Wheeler, O.H.; Roman, F.; Santiago, M.V.; Quiles, F. Can. J. Chem. 1969, 47, 503.



this is a method for preparing these compounds. The mechanism probably involves an intramolecular⁸⁷⁶ aromatic nucleophilic substitution, resulting in a 1,3 oxygen-to-nitrogen shift. Aryl imino esters can be prepared from *N*-aryl amides by reaction with PCl₅, followed by treatment of the resulting imino chloride with an aroxide ion.⁸⁷⁷

$$Ar^{2} \xrightarrow{C}_{N} Ar^{3} + PCl_{5} \longrightarrow Ar^{2}_{C} Ar^{3} \xrightarrow{Ar^{1}O^{-}} Ar^{2}_{C} Ar^{3}$$

Imino esters with any or all of the three groups being alkyl also rearrange, but they require catalysis by H_2SO_4 or a trace of methyl iodide or methyl sulfate.⁸⁷⁸ The mechanism is different, involving an intermolecular process.⁸⁷⁹ This is also true for derivatives for formamide (Ar² = H).

18-43 The Wallach Rearrangement

The conversion of azoxy compounds, on acid treatment, to *p*-hydroxy azo compounds (or sometimes the *o*-hydroxy isomers⁸⁸⁰) is called the *Wallach rearrangement*.⁸⁸¹ When both para positions are occupied, the *o*-hydroxy product may be

⁸⁷⁶For evidence for the intramolecular character of the reaction, see Wiberg, K.B.; Rowland, B.I. J. Am. Chem. Soc. 1955, 77, 2205; Wheeler, O.H.; Roman, F.; Rosado, O. J. Org. Chem. 1969, 34, 966; Kimura, M. J. Chem. Soc. Perkin Trans. 2 1987, 205.

⁸⁷⁷For a review of the formation and reactions of imino chlorides, see Bonnett, R., in Patai, S. *The Chemistry of the Carbon–Nitrogen Double Bond*, Wiley, NY, **1970**, pp. 597–662.

⁸⁷⁸Landis, P.S. Mech. Mol. Migr. 1969, 2, 43.

⁸⁸¹For reviews, see Buncel, E. Mech. Mol. Migr. **1968**, 1, 61; Shine, H.J. Aromatic Rearrangements, Elsevier, NY, **1969**, pp. 272–284, 357–359; Cox, R.A.; Buncel, E., in Patai, S. The Chemistry of the Hydrazo, Azo, and Azoxy Groups, pt. 2, Wiley, NY, **1975**, pp. 808–837.

⁸⁷⁹See Challis, B.C.; Frenkel, A.D. J. Chem. Soc. Perkin Trans. 2 1978, 192.

⁸⁸⁰For example, see Dolenko, A.; Buncel, E. *Can. J. Chem.* **1974**, *52*, 623; Yamamoto, J.; Nishigaki, Y.; Umezu, M.; Matsuura, T. *Tetrahedron* **1980**, *36*, 3177.

obtained, but ipso substitution at one of the para positions is also possible.⁸⁸² Although the mechanism⁸⁸³ is not completely settled, the following facts are known: (1) The para rearrangement is intermolecular.⁸⁸⁴ (2) When the reaction was carried out with an azoxy compound in which the N–O nitrogen was labeled with ¹⁵N, *both* nitrogens of the product carried the label equally,⁸⁸⁵ demonstrating that the oxygen did not have a preference for migration to either the near or the far ring. This shows that there is a symmetrical intermediate. (3) Kinetic studies show that two protons are normally required for the reaction.⁸⁸⁶ The following mechanism,⁸⁸⁷ involving the symmetrical intermediate **175**, has been proposed to explain the facts.⁸⁸⁸

172 $\xrightarrow{H^{*}} Ar \xrightarrow{Ar} Ar \xrightarrow{\Theta} Ar \xrightarrow{\Theta} Ar \xrightarrow{H_{2}O} Ar \xrightarrow$

It has proved possible to obtain **174** and **175** as stable species in super acid solutions.⁷⁴⁸ Another mechanism, involving an intermediate with only one positive charge, has been proposed for certain substrates at low acidities.⁸⁸⁹

A photochemical Wallach rearrangement⁸⁹⁰ is also known: The product is the o-hydroxy azo compound, the OH group is found in the farther ring, and the rearrangement is intramolecular.⁸⁹¹

- ⁸⁸³For reviews, see Furin, G.G. *Russ. Chem. Rev.* **1987**, *56*, 532; Williams, D.L.H.; Buncel, E. *Isot. Org. Chem.* **1980**, *5*, 184; Buncel, E. *Acc. Chem. Res.* **1975**, *8*, 132.
- ⁸⁸⁴See, for example, Oae, S.; Fukumoto, T.; Yamagami, M. Bull. Chem. Soc. Jpn. 1963, 36, 601.
- ⁸⁸⁵Shemyakin, M.M.; Maimind, V.I.; Vaichunaite, B.K. Chem. Ind. (London) **1958**, 755; Bull. Acad. Sci. USSR Div. Chem. Sci. **1960**, 808. Also see Behr, L.C.; Hendley, E.C. J. Org. Chem. **1966**, 31, 2715.

⁸⁸⁶Buncel, E.; Lawton, B.T. Chem. Ind. (London) **1963**, 1835; Hahn, C.S.; Lee, K.W.; Jaffé, H.H. J. Am. Chem. Soc. **1967**, 89, 4975; Cox, R.A. J. Am. Chem. Soc. **1974**, 96, 1059.

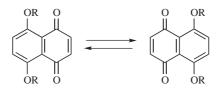
⁸⁸⁷Buncel, E.; Strachan, W.M.J. *Can. J. Chem.* **1970**, 48, 377; Cox, R.A. *J. Am. Chem. Soc.* **1974**, 96, 1059; Buncel, E.; Keum, S. *J. Chem. Soc., Chem. Commun.* **1983**, 578.

⁸⁸⁸For other proposed mechanisms, see Shemyakin, M.M.; Agadzhanyan, Ts.E.; Maimind, V.I.; Kudryavtsev, R.V. *Bull. Acad. Sci. USSR Div. Chem. Sci.* **1963**, 1216; Hahn, C.S.; Lee, K.W.; Jaffé, H.H. *J. Am. Chem. Soc.* **1967**, *89*, 4975; Hendley, E.C.; Duffey, D. *J. Org. Chem.* **1970**, *35*, 3579.

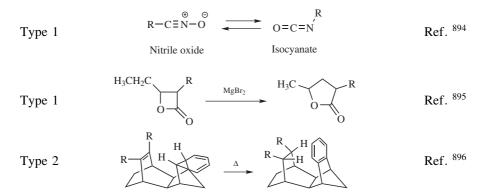
⁸⁸⁹Cox, R.A.; Dolenko, A.; Buncel, E. J. Chem. Soc. Perkin Trans. 2 **1975**, 471; Cox, R.A.; Buncel, E. J. Am. Chem. Soc. **1975**, 97, 1871.

⁸⁹⁰For a thermal rearrangement (no catalyst), see Shimao, I.; Hashidzume, H. *Bull. Chem. Soc. Jpn.* **1976**, 49, 754.

⁸⁸²See, for example, Shimao, I.; Oae, S. Bull. Chem. Soc. Jpn. 1983, 56, 643.


⁸⁹¹For discussions of the mechanism of the photochemical reaction, see Goon, D.J.W.; Murray, N.G.; Schoch, J.; Bunce, N.J. *Can. J. Chem.* **1973**, *51*, 3827; Squire, R.H.; Jaffé, H.H. *J. Am. Chem. Soc.* **1973**, *95*, 8188; Shine, H.J.; Subotkowski, W.; Gruszecka, E. Can. J. Chem. **1986**, *64*, 1108.

18-44 Dyotropic Rearrangements


1/C-Trialkylsilyl,2/O-trialkylsilyl-interchange

A *dyotropic rearrangement*⁸⁹² is an uncatalyzed process in which two σ bonds simultaneously migrate intramolecularly.⁸⁹³ There are two types. The above is an example of type 1, which consists of reactions in which the two σ bonds interchange positions. In type 2, the two σ bonds do not interchange positions. An example is

Some other examples are

A useful type 1 example is the *Brook rearrangement*,⁸⁹⁷ a stereospecific intramolecular migration of silicon from carbon to oxygen that occurs for

⁸⁹²Reetz, M.T. Angew. Chem. Int. Ed. 1972, 11, 129, 130.

⁸⁹³For reviews, see Minkin, V.I.; Olekhnovich, L.P.; Zhdanov, Yu.A. *Molecular Design of Tautomeric Compounds*, D. Reidel Publishing Co., Dordrecht, *1988*, pp. 221–246; Minkin, V.I. Sov. Sci. Rev. Sect. B *1985*, 7, 51; Reetz, M.T. Adv. Organomet. Chem. *1977*, *16*, 33. Also see Mackenzie, K.; Gravaatt, E.C.; Gregory, R.J.; Howard, J.A.K.; Maher, J.P. Tetrahedron Lett. *1992*, *33*, 5629.

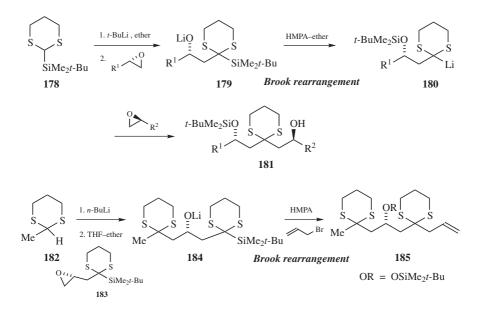
⁸⁹⁴See, for example, Taylor, G.A. J. Chem. Soc. Perkin Trans. 1 1985, 1181.

⁸⁹⁵See Black, T.H.; Hall, J.A.; Sheu, R.G. J. Org. Chem. **1988**, 53, 2371; Black, T.H.; Fields, J.D. Synth. Commun. **1988**, 18, 125.

⁸⁹⁶See Mackenzie, K.; Proctor, G.; Woodnutt, D.J. *Tetrahedron* 1987, 43, 5981, and references cited therein.

⁸⁹⁷For a review, see Moser, W.H. Tetrahedron 2001, 57, 2065.

(α -hydroxybenzyl)trialkylsilanes (**176**) in the presence of a catalytic amount of base.⁸⁹⁸ Formation of a Si–O bond rather than the Si–C bond drives the rearrangement, which is believed to proceed via formation of **177**, and does proceed with inversion of configuration at carbon and retention of configuration at silicon.⁸⁹⁹ A reverse Brook rearrangement is also known.⁹⁰⁰ The reaction has been extended to other systems. A homo-Brook rearrangement has also been reported.⁹⁰¹ Another variation is the aza-Brook rearrangement of α -silylallyl)amines.⁹⁰² The Brook rearrangement has been used in synthesis involving silyl dithianes.⁹⁰³ A Brook rearrangement mediated [6 + 2]-annulation has been used for the construction of eight-membered carbocycles.⁹⁰⁴



The Brook rearrangement has been used in two important synthetic applications, a multicomponent coupling protocol initiated by a Brook rearrangement involving silyl dithianes as mentioned, and anion relay chemistry (ARC) involving a Brook rearrangement. An example of the former is the conversion of the 2-silyl dithiane **178** to the anion with *tert*-butyllithium followed by ring opening of an epoxide to give **179**.⁹⁰⁵ Treatment with HMPA triggers a solvent-controlled Brook rearrangement that gives a new dithiane anion (**180**), which then reacts with a different epoxide to give the final product, **181**. An example of the anion relay chemistry treats dithiane (**182**) with *n*-butyllithium, and then **183** to give **184**.⁹⁰⁶ Subsequent treatment with a variety of electrophiles, such as allyl bromide, in HMPA, leads to **185** via a Brook rearrangement, and then alkylation of the resultant dithian anion. This reaction can be initiated by nucleophiles other

- ⁸⁹⁹Brook, A. G.; Pascoe, J. D. J. Am. Chem. Soc. 1971 93, 6224.
- ⁹⁰⁰Wright, A.: West, R. J. Am. Chem. Soc. **1974**, 96,3214; Wright, A.: West, R. J. Am. Chem. Soc. **1974**, 96, 3227; Linderman, J.J.; Ghannam, A. J. Am. Chem. Soc. **1990**, 112, 2392.
- ⁹⁰¹Wilson, S.R.; Georgiadis, G.M. J. Org. Chem. 1983, 48, 4143.
- ⁹⁰²Honda, T.; Mori, M. J. Org. Chem. 1996, 61, 1196.
- ⁹⁰³For examples, see Smith III, A.B.; Adams, C. M. Acc. Chem. Res. 2004, 37, 365; Smith III, A.B.; Kim, D.-S. Org. Lett. 2005, 7, 3247.
- ⁹⁰⁴Takeda, K.; Haraguchi, H.; Okamoto, Y. *Org. Lett.* **2003**, *5*, 3705; Sawada, Y.; Sasaki, M.; Takeda, K. *Org. Lett.* **2004**, *6*, 2277.
- ⁹⁰⁵Smith III, A.B.; Boldi, A.M. J. Am. Chem. Soc. **1997**, 119, 6925; Smith III, A.B.; Pitram, S.M.; Boldi, A.M.; Gaunt, M.J.; Sfouggatakis, C.; Moser, W.H. J. Am. Chem. Soc. **2003**, 125, 14435.
- ⁹⁰⁶Smith III, A.B.; Xian, M. J. Am. Chem. Soc. 2006, 128, 66.

⁸⁹⁸Brook, A.G. Acc. Chem. Res. 1974, 7, 77; Brook, A.G.; Bassendale, A.R., in de Mayo, P. Rearrangements in Ground and Excited States, Vol. 2, Academic Press, NY, 1980, pp. 149–227.

than dithiane anion. Or ganocuprates can be used, and the anion stabilizing group can be a nitrile. $^{907}\,$

⁹⁰⁷Private communication, Professor Amos B. Smith III, University Pennsylvania.