THOMAS LAUE

Named Organic *Reactions*

SECOND EDITION

WILEY

Named Organic Reactions 2nd Edition

Thomas Laue and Andreas Plagens

Volkswagen AG, Wolfsburg, Germany

Translated into English by Dr. Claus Vogel Leibniz-Institut für Polymerforschung Dresden, Germany

Copyright © 2005

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permereq@wiley.co.uk, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The Publisher is not associated with any product or vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data:

Laue, Thomas, 1960-

[Namen- und Schlagwort-Reaktionen der organischen Chemie. English] Named organic reactions / Thomas Laue and Andreas Plagens ; translated

into English by Claus Vogel.-2nd ed.

p. cm. Includes bibliographical references and index. ISBN 0-470-01040-1 (acid-free paper)—ISBN 0-470-01041-X (pbk. : acid-free paper) 1. Chemical reactions. 2. Chemistry, Organic. I. Plagens, Andreas, 1965- II. Title. QD291.L3513 2005 547'.2—dc22

2004028304

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-470-01040-1 (HB) ISBN 0-470-01041-X (PB)

Typeset in 10/12pt Times by Laserwords Private Limited, Chennai, India Printed and bound in Great Britain by TJ International, Padstow, Cornwall This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production.

Contents

Introduction to the 2nd Edition	ix
Acyloin Ester Condensation	1
Aldol Reaction	4
Alkene Metathesis	10
Arbuzov Reaction	14
Arndt-Eistert Synthesis	16
Baeyer–Villiger Oxidation	19
Bamford–Stevens Reaction	22
Barton Reaction	25
Baylis-Hillman Reaction	28
Beckmann Rearrangement	31
Benzidine Rearrangement	33
Benzilic Acid Rearrangement	35
Benzoin Condensation	36
Bergman Cyclization	39
Birch Reduction	43
Blanc Reaction	45
Bucherer Reaction	47
Cannizzaro Reaction	50
Chugaev Reaction	52
Claisen Ester Condensation	55
Claisen Rearrangement	58
Clemmensen Reduction	62
Cope Elimination Reaction	64
Cope Rearrangement	66
Corey–Winter Fragmentation	69
Curtius Reaction	71
1,3-Dipolar Cycloaddition	74
[2+2] Cycloaddition	77
Darzens Glycidic Ester Condensation	81
Delépine Reaction	83
Diazo Coupling	84
Diazotization	87
Diels-Alder Reaction	88
Di- π -Methane Rearrangement	96

vi Contents

Dötz Reaction	98
Elbs Reaction	102
Ene Reaction	103
Ester Pyrolysis	107
Favorskii Rearrangement	110
Finkelstein Reaction	112
Fischer Indole Synthesis	113
Friedel–Crafts Acylation	116
Friedel–Crafts Alkylation	120
Friedländer Quinoline Synthesis	124
Fries Rearrangement	126
Gabriel Synthesis	130
Gattermann Synthesis	133
Glaser Coupling Reaction	135
Glycol Cleavage	137
Gomberg–Bachmann Reaction	139
Grignard Reaction	142
Haloform Reaction	149
Hantzsch Pyridine Synthesis	151
Heck Reaction	154
Hell–Volhard–Zelinskii Reaction	159
Hofmann Elimination Reaction	161
Hofmann Rearrangement	166
Hunsdiecker Reaction	167
Hydroboration	169
Japp-Klingemann Reaction	173
Knoevenagel Reaction	176
Knorr Pyrrole Synthesis	180
Kolbe Electrolytic Synthesis	182
Kolbe Synthesis of Nitriles	184
Kolbe–Schmitt Reaction	185
Leuckart–Wallach Reaction	187
Lossen Reaction	188
Malonic Ester Synthesis	190
Mannich Reaction	194
McMurry Reaction	196
Meerwein–Ponndorf–Verley Reduction	199
Michael Reaction	201
Mitsunobu Reaction	204
Nazarov Cyclization	207
Neber Rearrangement	209
Nef Reaction	210

Norrish Type I Reaction Norrish Type II Reaction	212 215
Ozonolysis	218
Paterno–Büchi Reaction	221
Pauson–Khand Reaction	222
Perkin Reaction	225
Peterson Olefination	227
Pinacol Rearrangement	229
Prilezhaev Reaction	230
Prins Reaction	232
Ramberg–Bäcklund Reaction	235
Reformatsky Reaction	236
Reimer–Tiemann Reaction	238
Robinson Annulation	240
Rosenmund Reduction	244
Sakurai Reaction	246
Sandmeyer Reaction	248
Schiemann Reaction	249
Schmidt Reaction	251
Sharpless Epoxidation	254
Simmons–Smith Reaction	258
Skraup Quinoline Synthesis	260
Stevens Rearrangement	262
Stille Coupling Reaction	264
Stork Enamine Reaction	267
Strecker Synthesis	270
Suzuki Reaction	271
Swern Oxidation	274
Tiffeneau–Demjanov Reaction	277
Vilsmeier Reaction	280
Vinylcyclopropane Rearrangement	282
Wagner-Meerwein Rearrangement	285
Weiss Reaction	287
Willgerodt Reaction	289
Williamson Ether Synthesis	291
Wittig Reaction	293
Wittig Rearrangement	297
Wohl–Ziegler Bromination	299
Wolff Rearrangement	301
Wolff-Kishner Reduction	303
Wurtz Reaction	304
Index	307

Introduction to the 2nd Edition

Named reactions still are an important element of organic chemistry, and a thorough knowledge of such reactions is essential for the chemist. The scientific content behind the name is of great importance, and the names themselves are used as short expressions in order to ease spoken as well as written communication in organic chemistry. Furthermore, named reactions are a perfect aid for learning the principles of organic chemistry. This is not only true for the study of chemistry as a major subject, but also when studying chemistry as a minor subject, e.g. for students of biology or pharmaceutics.

This book—*Named Organic Reactions*—is not meant to completely replace an organic chemistry textbook. It is rather a reference work on named reactions, which will also be suitable for easy reading and learning, as well as for revision for an exam in organic chemistry. This book deals with about 135 of the most important reactions in organic chemistry; the selection is based on their importance for modern preparative organic chemistry, as well as a modern organic chemistry course.

In particular, the reactions are arranged in alphabetical order, and treated in a consistent manner. The name of the reaction serves as a heading, while a subtitle gives a one sentence-description of the reaction. This is followed by a formula scheme depicting the overall reaction and a first paragraph with an introductory description of the reaction.

The major part of each chapter deals with mechanistic aspects; however, for didactic reasons, in most cases not with too much detail. Side-reactions, variants and modified procedures with respect to product distribution and yields are described. Recent, as well as older examples for the application of a particular reaction or method are given, together with references to the original literature. These examples are not aimed at a complete treatment of every aspect of a particular reaction, but are rather drawn from a didactic point of view.

At the end of each chapter, a list of references is given. In addition to the very first publication, and to review articles, references to recent and very recent publications are often given. This is meant to encourage work with, and to give access to the original literature, review articles and reference works for a particular reaction. The reference to the very first publication on a reaction is aimed at the origin of the particular name, and how the reaction was explored or developed. With

x Introduction to the 2nd Edition

the outlining of modern examples and listing of references, this book is directed at the advanced student as well as doctoral candidates.

Special thanks go to Prof. Dr. H. Hopf (University of Braunschweig, Germany) for his encouragement and his critical reading of the manuscript. In addition, we are indebted to Dr. Claus Vogel and Heike Laue, as well as to those people who have helped us with suggestions to improve the text and keep it up-to-date.