3 Introduction to heat transfer
AN. HAYHURST

Introduction

The importance of heat transfer in food processing is obvious; the changes
in food safety and palatability on heating are so marked that many food
processes are built around heat transfer. The physical principles which
underlie these processes are introduced here. Two modes of heat transfer
are discussed: thermal conduction through a stationary medium, and ther-
mal convection through a moving fluid. In the latter case, mixing of hot and
cold fluids is the main mechanism of heat transfer, which is usually more
rapid than thermal conduction.

Heat transter operations are usually carried out within some type of
specifically designed heat exchanger, such as shell-and-tube or plate ex-
changers. These units must be designed using equations which predict the
heat transfer rate. Some of these equations will use the dimensionless form
introduced in Chapter 2; they aim to predict the heat transfer coefficient
which relates the heat flux in a given situation to the temperature differ-
ence. Various equations are given here to illustrate simple models for heat
transfer and to allow simple design calculations to be made. The rate of heat
transfer can be related to the power input to the system and thus to the
pressure drop through it; models will be developed to take account of these
factors.

It is very rare that a single heat transfer process governs the heating of a
food material: usually heating or cooling occurs as a result of a combination
of processes. For example, in canning, steam condensing on the outside of
the can gives rapid heat transfer; but the heat must then be conducted slowly
into the food. The slowest process will control the overall heat transfer rate,
and identification of this process can simplify the design of process plant.
For example, the slowest process in the cooling of solids is usually that of
conduction of heat within the solid, so there is no point in enhancing heat
transfer between the outside of the solids and its surroundings, beyond the
point where it is no longer critical. This key point is often missed in indus-
trial practice. This chapter develops two ways of analysing the problem:
first, equations for calculating the overall combined effect of sequential heat

Chemical Engineering for the Food Industry. Edited by P.J. Fryer, D.L. Pyle and C.D. Rielly.
Published in 1997 by Blackie A & P, an imprint of Chapman & Hall, London.
ISBN 0 412 49500 7



106 INTRODUCTION TO HEAT TRANSFER

transfer resistances are developed, and secondly, a dimensionless group
which shows the relative significance of internal and external heat transfer
is derived. These principles are developed further in Chapter 9.

3.1 Heat conduction

3.1.1 Fourier’s law

The importance of heat transfer to food processing requires no emphasis
when both heating and chilling are such common operations. In addition,
freezing and sterilization are operations involving heat transfer. Initially we
shall consider the transfer of heat solely by conduction. Inevitably, heat
conduction oceurs from some hot region of space to some colder neighbour-
ing part. The physical law governing heat conduction within a solid or a
stationary fluid is most easily expressed by considering a long, thin metal
rod, as depicted in Fig. 3.1. In this one-dimensional situation, position is
characterized by the distance x from the left-hand end of the rod. Suppose
we begin with the left-hand end relatively hot, so that temperature varies
along the rod as shown in Fig. 3.1. This is for an initial time, ¢t = 0. If the rod
is left for an infinite time (f = e=), a uniform temperature profile (shown by
the broken line) will be reached. In general, the rate at which heat flows
past any plane along the rod is found to be proportional to the local
temperature gradient (d7/dx). This leads to Fourier’s law:

24T

- (3.1)

q =
where g is the rate at which heat flows through unit area per unit time; its
units are Jm?s! or Wm2? (i.e. those of a heat flux); d7/dx is the local
‘driving force’ for heat transfer (units Km™); and A is a constant of propor-
tionality, called the thermal conductivity, with units Wm-"K-1.

Termperature

1 x

Fig. 3.1 Initial and final temperature in a long heat-conducting rod.
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Table 3.1 Values of thermal conductivity, &, at 20°C

Substance A Substance A
(WmLK) {(Wm~K)

Silver 41 Mercury 8.8
Copper 386 Water 0.60
Aluminium 200 Ethanol 0.18
Iron 73 Olive oil 0.17
Stainless steel ~42 Benzene 0.15
Ice 2.0 Toluene 0.15
Glass (window) 0.8 Hexane 0.12
Brick (masonry) ~0.7 CCLF, 0.07
Wood ~0.3 CO, 0.015
Concrete (dry) 0.13 H, 0.18
Charcoal 0.05 0, 0.026
Asbestos 011 N, 0.025
Cork 0.045 Air 0.023
Carbohydrate .58 NH, 0.024
Apple (75% water) 0.51 H,0 vapour 0.023
Chicken meat 0.49 Banana (75% water) 0.48
Muscle 0.41 Human skin 037
Protein 020 Fat (.18

Figure 3.1 shows that d7/dx is negative and vet heat flows in a ‘positive’
direction; this is why the minus sign is included in equation (3.1). This can
be compared with the Hagen-Poiseuille equation (2.37) relating volumetric
flowrate to pressure gradient for laminar flow; again the minus sign appears.
Table 3.1 lists values of A for various substances at room temperature and
pressure. It is seen that A varies immensely for solids, but not much for
liquids, except for liquid metals and water, which are somewhat anomalous.
As for gases, A for H, and He is large, because these have small molecular
masses and sizes. Thus a larger heavy molecule like CO, has a smaller A
than air. The kinetic theory of gases provides a good theoretical basis for
predicting A for a pure gas and also mixtures of gases. Also, A for a gas is
independent of pressure, but increases with temperature. The value of A for
N, at 100°C is 0.031 Wm ' K-1, only slightly larger than that listed above.
Thus if heat is being conducted from 100 to 20°C in N,, it is sufficiently
accurate to use a mean A of (0.025 +0.031)/2 =0.028 Wm K. Some foods,
such as potato, have A close to that of their major constituents (in this case
water and carbohydrate). Otherwise, linear rules exist for predicting 4 for
heterogeneous mixtures, with the contribution from each component being
proportional to its volume fraction, as well as its value of A. For solids,
liquids and gases the thermal conductivity increases with temperature. This
is often not very significant for pure substances experiencing small changes
in temperature. However, because (for example) starch solution gels at
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around 60°C, the associated change in its thermal conductivity can be
appreciable.

3.1.2 Steady-state heat conduction

Most thermal processes in the food industry are non-steady-state ones
(because temperature changes with time), with, for example, the need to
freeze or sterilize a food. Unsteady-state processes are very complex math-
ematically; before dealing with them, we shall consider the simpler case of
constant temperatures, which do not vary with time. We now consider the
conduction of heat through an infinitely wide slab of material, which has
two parallel faces a distance L apart, as shown in Fig. 3.2. This geometry is
of relevance in both the thawing of meats and the heating of packet foods.
Suppose that the upper face is held at a fixed temperature T, whereas the
cooler, lower face is always at T, with T, > T,. The temperature within the
material will eventually reach a steady distribution, which does not change
with time; this is shown in Fig. 3.3, where x is now the distance from the
upper face. Heat flows from the hot face to the cold one at a rate given by
equation (3.1). Thus the heat flux is

i
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Fig. 3.2 A large slab of material with two parallel faces, distance L apart and at temperatures
T, and T,, with T, > T,.
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Fig. 3.3 Steady-state variation of temperature within the material of Fig. 3.2.
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dr _Mh-T)
2

In this situation g does not vary with x; otherwise heat would be accumulat-
ing or being lost somewhere, which is not possible here in the steady state.
Because g is not a function of x, equation (3.1) requires that d7/dx is
independent of x, i.e. g is a constant, so that temperature must vary linearly
with x from 7 at the top face to 7, at the lower side. It is now convenient
to introduce two new parameters. The first is a heat transfer coefficient /
defined by

q=hT,-T,) (3.2)

Equation (3.2) asserts that in this situation the heat flux g is proportional to
the applied temperature difference, or overall driving force, (T, — T), for
heat transfer. Hence # is simply a constant of proportionality and has units
of Wm2K-1. Comparison of the two preceding equations gives

h 7 (3.3)
The heat transfer coefficient turns out to be a very convenient way of
expressing measured heat fluxes as a function of an applied temperature
difference.

The second new parameter is a dimensionless group, which in general is
equal to Ad/A, where d is a characteristic dimension for the particular
problem. Here one can only take 4 = L, so that this group, called the Nusselt
number, is given by

_hL
A

Use of equation (3.3) yields Nu = 1 for this general problem.

Nu

EXAMPLE 3.1

A room in a house has one external wall, 6m x 3m. The temperature in the
room is 20°C; outside it is -6 °C. Calculate the rate of energy loss through
this external wall, given that it is 0.3m thick and made of brick (without a
cavity) with a thermal conductivity of 0.7Wnr1K-'.

_AT
thickness

=0.7><6><3x£5—=1.05kW
0.3

Rate of heat loss = A x Area x
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A similar analysis will now be carried out for the radial flow of heatin a very
long pipe with thick walls. The pipe is shown in Fig. 3.4. The inside wall is
held at a constant temperature T, (for example, by passing a mixture of
steam and boiling water through the pipe), while the outer wall is held at a
lower, but constant temperature 7,. Heat thus flows radially outwards.
Figure 3.4 shows an imaginary surface of radius r, with r, < r < r,. The rate
at which heat flows past this surface is O = 2rnrgL for length L of the pipe or
of the imaginary surface. Again, Q cannot be a function of r in the steady
state, so substitution into equation (3.1) leads to

go Q@ 4T
2nrL dr
or
Q r dr T
= | " —=-A|dT
2nl '[’1 r i
That is,
Q  (n)_
Tl 'rf_ =T, -T,) (3.4)

This enables  to be caiculated. Alternatively, the variation of T with r
within the pipe’s walls could have been calculated, using in addition

L - MT, - T)
2nl gy
The above definition of Q = 2rnrgL and equation (3.4) lead to

o  Mn-1)

= a constant

=rq=
L
2m ln[i]

Outer wall temperature = T,

Fig. 3.4 Long pipe with thick walls and length L, and the inside wall maintained hotter than
the cutside wall. Inner and outer radii are », and r,,
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50 that the product gr is a constant. This makes it now impossible to define
a unique heat transfer coefficient, h = g/AT, where AT =T, - T, and is the
applied temperature difference (the driving force) leading to heat transfer.
In fact, because gr is constant, we have to specify r in order to obtain a value
for h. Two possibilities arise. If we choose r=r,, then i referred to this inner
surface will be

A

h1 [
za
H

Alternatively, if we choose r = r,, then the heat transfer coefficient with
respect to the outer surface of the pipe would be

A

7, ln[:i}
1

As for the Nusselt number, we have:

hy =

hr 1
tyr= ;N = —=
atr=n u % ln(rz/ri)
hyty 1
tr= ;N = =
atr=r, U % ln(rz/r])

So although # depends on whether r = #, or r,, the corresponding Nu does
not. Herein lies a major importance of the Nusselt number.

EXAMPLE 3.2

In a nuclear reactor, the fuel elements may be considered to consist of
fong cylindrical rods of uranium oxide of diameter 8mm surrounded by a

8 mm

== 5"

285°C
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very thin layer of aluminium cladding. The elements are cooled by boiling
water at 285°C with a heat transfer coefficient of 35kW m2K-'. If heat
is generated uniformly throughout the uranium oxide at a rate of
760MW s, find the temperature of the cladding and the maximum tem-
perature in the uranium oxide. The thermal conductivily of uranium oxide
may be taken to be 2.3Wnr'K-'.

Consider unit length of rod.
Rate of heat transter from cylinder to water

=nXx8x10° x 35 x10%(T, — 285)

=%(8><10-3)2x760><106

= 38202W
T,-285=434=T, =328.4°C

Heat flux across imaginary cylinder of radius r (see diagram)

_ mr2 x760x108
2nr

_380x106r = -3, 37
dr

Therefore

380108 _[0
23 4103
380x10° (4x10-3)?

2.3 2
1321.7= T, —328.4

T,.. = 1650.1°C

Tona
rdr=—["dT
328.4

=T, —3284

As a final example of steady-state heat conduction, consider a hollow
sphere with thick walls; a cross-section is shown in Fig. 3.5. Again the inner
and outer radii are r, and r,, where the temperatures are held at 7, and T,
respectively. Assume 7, > 7, so that heat flows radially outwards past any
imaginary sphere of radius », where r, < r < r,. The total rate at which heat
passes this surface of radius r is

Q = 4nrig

where g is the heat flux (in Wm-?} at r. In the steady state Q is independent
of r, or else, for example, there might be a local accumulation of heat. In this
case equation (3.1) becomes
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Fig. 3.5 Cross-section of a spherical shell with thick walls. The inner surface is held at a
constant temperature T, while the outer surface is maintained at 7,.

0 dT
= =_h—= 35
1 4rr? dr (3)
or
Q—I'zﬁ_—x”dr
4?t rop? 7
or
(1 1
= |- |=MT -T .6
4n[r1 ] (1-7) (36)

Equation (3.5) shows that ¢ is proportional to 1//%, which again creates
problems when defining %. Thus

4 F4
= 67

so that A is a function of r and once again there is not one unique A for this
problem. The most interesting case is for r, — o, corresponding to heat
conduction from a sphere of radius r, into an infinite stagnant medium. In
this case equation (3.6) gives

Q
4y, B l(T‘ - Tz)

for T =T, at r, = c=. We can thus obtain 4 referred to r = r, from equation
(3.7) as

_9/(4mrt) 2

-1, h

When defining a Nusselt number it is traditional to use the diameter of the
sphere as the characteristic dimension. In this case
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Nu= =2 (3.8)

EXAMPLE 3.3

Estimate the heat transfer coefficient h for a sphere of diameterd = 25mm
surrounded by stagnant air, using A = 0.025Wnr'K-'.

Here Nu=2= ﬂ
A
Therefore
2\ 2x0.025
== — =, W -2 K1
= = 25x10s 2 OWm*K
EXAMPLE 3.4

Estimate h for a sphere of diameter d = 1mm in stagnant air.
Because h =« 1/d, from equation (3.8):

h=20x251=50Wm2K"

Note that, because h = 1/d, h becomes large for small spheres.

3.1.3 Problems of thawing and freezing foods

The problems are best illustrated by considering water {e.g. on a pond)
freezing, with the air above the ice inevitably at a temperature below the
melting point of ice. The situation is depicted in Fig. 3.6, where the interface
between the ice and water is at T, the melting point of ice (0°C). If A is the
area of the pond’s surface, the heat conducted through the ice to the air is
Aphgydx when the thickness of the ice increases by an amount dx. Here p is
the density of ice and A is its latent heat of fusion. The situation is similar
to that shown in Fig. 3.3, and once again d7/dx is constant between the
upper and lower surfaces of the ice. Substitution into Equation (3.1) yields

ok __, (Ty=1)
T Adr x

or

dx ;\‘(Tmp _ Ta)
dt phgx
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Air at T,
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7

Water at 0 °C

Fig. 3.6 Ice forming on a pond. At a time ¢ the thickness of the ice is x, but at a later time
(¢ + dt) the thickness has grown to x + dx.

If x = x; at £ = 0, then after a time ¢ the thickness grows to
2MT T
M - T) |

Phyg

which is obtained by integrating the previous equation. It is worthwhile
stressing that the above treatment has assumed: (a) only the removal of
latent heat is significant in this problem,; (b) all the physical properties (A, p,
hg) of ice can be taken not to vary with temperature; (c} the freezing front
is at a constant temperature; and (d) the system is in effect in a steady state.
It is worthwhile inserting the following numerical values: T, = ~10°C, p =
920kgm3, A =20Wm 'K, x, =0 and A; = 334kJkg . In this case the first
10mm of ice takes 768s (12.8min) to form, the second 10mm a further
38.4min, and so on.
As shown below, this approach can simply be applied to foods.

EXAMPLE 3.5

it is imtended to freeze a hamburger (of thickness 0.012m), which is
60wt% water, using air at —40°C on both sides. Estimate the freezing time
using the above approach. Will it be an over- or underestimate?

Data

Latent heat of fusion of water: 334kJkg™
Thermal conductivity of burger: 0.18Wm- K-
Density of burger: 870kgm-®

Since the burger has two sides, it is only necessary for the freezing front
from each side to move 0.006m into the food.
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/ Frozen burger / /
Freezing front at 0 °C

Unfrozen burger&\_\\
o ;x\\_\xx\ - Centre line

40 dx
=-A—=-h.x0.6p—
q X fi dt
400 dx , _ BOAt
—=X— 0r X°=
0.6hp ~ df 0.6h,p

0.6% 334 x10° x 870 x (0.012/2)°
80x0.18

The freezing time is

or 436s. This is an underestimate because heat transfer through the air
has been ignored. This is dealt with below in section 3.3.4. There are other
errors, such as the sensible heat (i.e. that associated with a change of
temperature, in contrast with latent heats, which are transferred without a
body changing temperature) being ignored. Thus a greater amount of heat
than that calculated above must be conducted through the burger to
reduce its temperature from above zero to almost —40°C. A more general
version of the above treatment is given in section 3.3.4.

3.1.4 Unsteady-state heat conduction

Previous problems have involved temperatures that are constant with time,
but vary in space. If unsteady-state processes (those that vary with time) are
considered, time derivatives must be taken into account, as well as spatial
ones. Comnsider the long thin metal rod of Fig. 3.1 with a temperature profile
that changes with time. The rod is shown in Fig. 3.7. The heat flux from left
to right at position x is g (= —Ad7/dx}. Let the heat flux in the same, positive,
direction at x + dx be g + dg. The increment between x and x + dx has a
volume Adx and mass Apdx, where A is the constant cross-sectional area
and p is density. The rate at which the heat content, or enthalpy, of this
increment of length decreases is

—Apdxc, %T =Adg

Here ¢, is the heat capacity of the rod per unit mass, so ¢, has units
Jkg'K. Note that g is the heat flux away from the origin, so that if dg is
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- x o

-+
g g+dg

Fig. 3.7 A long thin rod of cross-sectional area A, where the temperature varies both with
position x and with time.

positive, the increment cools. Thus the signs in the above equation are

correct and
aT oT
P CP[E)dx = dq = d(—?\‘ a—xJ

Here, as the temperature is a function both of distance and time, the
notation for partial differentiation is needed and leads to:

AT __1 af,or
ot pcpox| ox
If A is independent of temperature, this becomes

A _ b ¥T_ T

ot pcp dx? ox?
Here o (= A/pc,) is called the thermal diffusivity of the rod. Tts units are
m?s!, which also are those of kinematic viscosity and the diffusion
coefficient.

(3.9)

EXAMPLE 3.6

Estimate the thermal diffusivily for air and water, respectively, both at
20°C, given p = 1.29kgnt? for air and ¢, = 1005Jkg 'K~ for air and
Cp = 4.187Jkg ' K for water. Use the values of 4 in Table 3.1.

For air:

A 0025
pc, 1.29%1005

o= =1.9x105m2g

For water:

. 0.60
10° x 4.187 x 10°

The difference between the two values of o should be noted.

=1.4x107"m2s
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Fig. 3.8 Temperature distributions at various times within a slab of initial temperature T; and
surface temperatures of T, The numbers on the curves correspond to the values of 4oL

Equation (3.9} presents difficulties as far as obtaining simple analytical
solutions is concerned; in fact they only exist for a few problems. In general,
solutions can be obtained for equation (3.9), provided the boundary
conditions are specified, using computerized techniques. We shall just
present graphical solutions to a restricted number of problems. Consider
first the slab in Fig. 3.2. Suppose the entire material initially has a uniform
temperature T,, but at time ¢ = 0 the two faces are suddenly raised to a
temperature T,, which is then maintained at all subsequent times. Figure 3.8
is a plot of (T — T,(T, — T;,) against 2x/L for various values of 4ou/L2
It is clear from Fig. 3.8 that when 4ot/L? = 2.0, the material is uniformly
heated. This corresponds to a heating time of L2/2« for the slab. Similar plots
are given in Fig. 3.9 for a solid sphere which is initially at uniform tempera-
ture T;. From a time ¢ = O the surface of the sphere is held at a temperature
T, s0 that heat flows radially inwards. The curves in Fig. 3.9 are again of the
fractional temperature rise (T — T)/(T, — T,) against dimensionless radius
rir,, where r, is the sphere’s radius, for increasing values of ot/r2. Figure 3.9
shows that at a time when a/r2=0.5, the sphere is close to being at a uniform
temperature T,. Thus r¥2c is a characteristic heating time, proportional to
1/ce. Something more accurate is presented in the following example.
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Fig. 3.9 Temperature profiles at various times ¢ in a solid sphere of radius r,, with initial

temperature T, and constant surface temperature T,, The numbers on the curves are the values

of at/r?, where o = A/pc, is the thermal diffusivity of the solid. The graph thus gives information
on the temperature T at a distance » from the centre of symmetry.

EXAMPLE 3.7

A potato has the following properties:
A =0.50Wm'K!
p = 1100kgnr3
Cp = 3.5kJkg 'K
It may be considered to be boiled when its centre reaches 85°C, when
immersed in water boiling at 100°C. Estimate the time taken fo boil a
potato (initially at 20°C) of radius 25mm. Assume the potalo is spherical.
When the centre has reached 85°C:
T-T, _ 85-20
T,-T, 100-20
From Fig. 3.9 the ratio (T— To)/(T,— T,) =0.8125 at r= 0 when «#/r2=0.24.
Thus the boiling time is

fo 0.24 r?
a o

=0.8125

1100x 3.5x10°
0.50

=0.24%(25x102)" x
=11555=19.3min



120 INTRODUCTION TO HEAT TRANSFER
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Fig. 3.10 Plots of M3 (where M, is the initial mass of a turkey) against the cooking
time determined experimentaily. Conditions for cooking schemes A, B and C are given on
the graph.

Charts such as Figs 3.8 and 3.9 are useful in calculating the cooking or
freezing times of foods with simple geometries. The complex shapes of real
foods are often difficult to approximate; computer simulations are thus
necessary to predict their process times.

The above discussion can be taken a stage further. Consider the roasting
of a turkey. It turns out that the optimal cooking time is the minimum time
required to heat the centre of the bird to 70°C. This gives a reascnably
tender piece of meat with an exterior that is slightly overcooked, ie.
browned. If a turkey is assumed to be spherical, it will have an initial mass
equal to M, =4nrip/3 for an initial density p and mean radius r,,. As a result
t. = (3M,/4mp)'3. The above discussion indicates that o, /r2 will be a con-
stant, if ¢ is the time for the temperature (at the centre of the turkey) to
reach 70°C with a fixed oven temperature. Thus a graph of rZ against
roasting time ¢, should be a straight-line plot through the origin. This is seen
to be the case in Fig. 3.10, which is actually a plot of M3? (proporticnal to
r2) against cooking time. In each of the three cooking situations a straight-
line plot through the origin is obtained. Such charts are obviously useful for
predicting cooking times.

3.2 Heat transfer in flowing systems

Conduction of heat is slower than convective heat transfer, where heat is
mainly transferred by the movement of a fluid. Convective processes cannot
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be modelled analytically in the way conduction can; it is accordingly neces-
sary to construct more empirical models and also to devise correlations to
predict heat transfer rates. First we investigate the result of dimensional
analysis. This approach will be seen to identify some relevant parameters,
which in fact are dimensionless groups. Afterwards in sections 3.2.2 and
3.2.3 two oversimple models (the film model and the Reynolds analogy) are
described, because they bring out the relevant dimensionless groups, but
without being quantitatively precise.

3.2.1 Dimensional analysis

Here we consider one fluid flowing, so that the transfer of heat will be by
convection, as well as by conduction. Nevertheless, it is possible to use the
heat transfer coefficient, defined by g = #AT in equation (3.2). We begin by
considering the situation in Fig. 3.11. Here a cold fluid is passed through a
thin-walled pipe whose walls are maintained uniformly hot: for example, by
having steam condense on the exterior surface. Heat thus flows from the
pipe to the fluid inside it. It is possible to define a local heat transfer
coefficient h = g/AT for a point along the system. Here g is the local heat flux
and AT = (T, — T) is the difference between the wall and fluid temperatures
at the particular point. This parameter # is likely to depend on the following
seven quantities:

d = pipe’s internal diameter (m)

v = mean velocity of the fluid in the pipe (ms)
A = thermal conductivity of the fluid (Wm1K-")
p = density of the fluid (kgm=)

cp = specific heat capacity of the fluid (Jkg”K)
1 = viscosity of the fluid (Nsm2)

T = temperature of the fluid (K)

It has been assumed that the pipe’s length does not matter. Four of the
above (A, p, ¢, and p) are physical properties of the fluid being heated.
Dimensional analysis, as discussed in Chapter 2, leads to

_r Warm fluid

Cold Hot thin walls

fluid

Fig, 3.11 A fluid being heated by passing it through a pipe whose walls are maintained hot.
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Nu= f(Re, Pr) (3.10)
where

Nu=h—d

The three dimensionless groups are the Nusselt, Reynolds and Prandtl
numbers. They incorporate A and the above seven variables. The Nusselt
number gives &, the Reynolds number characterizes the nature of the fluid
flow (laminar or turbulent), and the Prandtl number is determined entirely
by the physical properties of the fluid being heated.
As a digression it is seen that
_ K PG ¥
Pr Y =2
where v = J/p is the kinematic viscosity of the fluid. Both v and o have
dimensions of m?s™. It turns out that Pr for all gases is close to unity.
However, for liquids Pr varies considerably, as seen from Table 3.2, where
the effects of p and A are clear. Note that food materials with high
viscosities, such as soups, will tend to have Pr greater than that of water.
It is common to introduce another dimensionless group, the Stanton
number. This is given by
h hd A p Nu

St =

Thus equation (3.10) could be re-written as

st = f(Re, Pr) (3.11)

Table 3.2 Values of Prandtl number for various liquids

Liquid Pr Comment
Mercury 0.0027 p is low, A high
Water 6

Kerosene 127

Glycerine 17000 it is high, A low

Liquid polymers >104
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Fig. 3.12 The film model of turbulent flow through a pipe. The fluid has two regions:

a turbulent core and a laminar layer adjacent to the walls. The velocity and temperature

profiles across the pipe are as shown, v, and T, being their mean values in the middle
of the fluid.

No new information is obtained by introducing St, only algebraic con-
venience. The dimensionless group St crops up quite naturally in a variety
of situations and so is sometimes used as an alternative to the Nusselt
number,

3.2.2 Film model

We now consider various theories of heat transfer to the fluid in Fig. 3.11
when it is in turbulent flow: that is, Re > 4000. It should be stressed that any
model, such as the film model, oversimplifies a situation in order that some
progress can be made in the analysis of a difficult problem. Thus sections
3.2.2 and 3.2.3 must not be taken too literally; they are intended only as
simplified pictures of a complex situation. The film model is depicted in Fig.
3.12. The assumption is a crude one and is that two regions exist in the
flowing fluid: a laminar region next to the walls, and a turbulent well-mixed
core for the fluid. The temperature and velocity profiles in a radial direction
within the fluid are also shown in Fig. 3.12. In this model all transfer
of momentum and heat occurs across a single layer of thickness 8, where
8 << d, the internal diameter of the pipe. The velocity gradient at the wall
is v/8, so that the shear stress in the fluid adjacent to the wall, assuming a
Newtonian fluid, is

From Fig. 3.11 the heat flux from the wall to the liquid is
MT, -T,)
T

so that the heat transfer coefficient is
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q A At

p— w

h= =
T,-T, & uv,

One can now derive the Nusselt number:

Nu=ﬂ—1wd=l To  PVud

Aouv, 2(%pv§,] M

Remembering the friction factor ¢; to be defined by 1, = c{pv%/2), this gives
c:Re
2

The friction factor is normally a function of Reynolds number only. In fact,
for 4000 < Re < 10° (turbulent flow within a pipe) the Blasius relation

Nu= (3.12)

¢, = 0.079Re" (3.13)
halds, so that equation (3.12) becomes
Nu = 0.040Re (3.14)

This is a particular from of equation (3.10), and is interesting in that it
predicts that Nu is independent of Pr. The very simple assumptions in the
film model should be noted, especially of there being heat transfer by
simple conduction across a boundary [ayer or film. The picture in Fig. 3.12
of high temperatures in the fluid adjacent to the wall is a useful one: for
example, in the study of fouling (see sections 3.3.3 and 8.3).

Equation (3.14) enables us to estimate Nu. If 4000 < Re < 1(¥, then from
equation (3.13} 0.01 > ¢, > 0.0044 and 20 < Nu < 220. The above model gives
h = A0, so that Nu = hd/h = d/6. Thus the Nusselt number is the ratio of the
two distances shown in Fig. 3.11. Thus, according to this model, heat is
conducted across a thin layer which has thickness roughly equal to 1/10th to
1/100th of the pipe’s radius. If Nu = 200 and the fluid is water flowing
through a pipe 30mm internal diameter, then 2 = 2004/d = 200 x 0.6/30
x 10-* = 4000 W m—2K-1. Alternatively,

_h

Md
is the ratio of two heat transfer coefficients: the actual 4 for the transfer of
heat (mainly by convection) from the walls of the pipe to the fluid; and A/d,

the heat transfer coefficient (see equation (3.3)) for conduction across a film
of constant thickness d. Finally, equation (3.12) can be recast to yield

Nu

St Pr= Cz—f (3.15)

Also, it should be mentioned that the film model provides a way of visual-
izing heat transfer situations in a simple way. Thus it is common to think of
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there being a film, across which there is a linear temperature profile. Of
couse, this is not strictly true, but it helps to think about problems generally.

3.2.3  Reynolds analogy

An alternative approach to the film model is the Reynolds analegy, which
takes a quite different, but simple, view as to what is important in a turbu-
lent fluid flowing close to a containing wall. Here the path of a tiny fluid
element is as shown in Fig. 3.13. The eddy stays in the bulk of the fluid and
occasionally transfers very rapidly to the wall, where it remains for a period
before suddenly transferring back to the body of the moving fluid. Let m be
the mass of eddies arriving at unit area of the wall per unit time. Because
there is no net mass transfer, m is also the mass of fluid returning to the
bulk from unit area of the wall per unit time. On moving from the bulk to
the wall the eddies bring a momentum in the x direction equal to my,_
{v., = mean bulk velocity of the fluid) and also a heat or enthalpy of mc,T,
(T, = mean temperature of fluid of heat capacity ¢;). The eddies returning
to the bulk do so with the properties of the fluid adjacent to the wall. They
thus bring x-wise momentum equal to mv,, where v, is the fluid velocity at
the wall. We shall take v, = 0. In addition, the eddies arriving in the bulk
fluid from the wall have heat mc,T,, where T, is the wall’s temperature.
Thus

Net momentum flux to the wall = mv,, =1,
Net heat flux from the wall = mc(T, - T,,) = ¢

and

- reer
—— X
Cold _—
T ——l—
fhuid
—

i aher i i A A P

Hot wall

Fig. 3.13 Assumed typical path of a fluid element inside a pipe or over a general surface, which
is hot enough to be transferring heat to the fluid.
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But
_ q
(Tw _Tm)
S0
T _ R
vm CP
and
T, _hk
PYVZ  PCpVn
or
C
St==L 3.16
: (3.16)

Equation (3.16) is the prediction of this model for turbulent flow and should
be compared with equation (3.15) from the film model. Of course, when Pr
=1 for a gas, there is no difference between equations (3.15) and (3.16).
However, for a typical liquid with Pr=up to 10, the difference is important.
In fact, h predicted by the Reynolds analogy is up to ten times larger than
that given by the film model. For viscous food fluids, the Reynolds analogy
and also the film model may predict & poorly, because the flow is probably
not turbulent. Nevertheless, note that so far we have examined two over-
simplified models of heat transfer in a turbulent fluid. The film model
assumes that heat conduction in the fluid adjacent to the wall is the control-
ling factor. In the other model, the Reynolds analogy, the random motion of
eddies is all important. We now ask the question: which model is nearer the
truth?

3.2.4 The j-factor analogy

By way of a recap, we have had so far that

St = f(Re, Pr) (3.11)
from dimensional analysis. The film model gave
St Pr= Cz—f (3.15)

whereas the Reynolds analogy resulted in

Cs

St=— 3.16
: (316)
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These last two equations are of the general form S$tPrt = ¢/2, where » is
either unity or zero. The j-factor analogy puts the truth somewhere between
equations (3.15) and (3.16), so that

St P = %f (3.17)

Thus the Prandtl number now appears raised to the intermediate power of
2/3. This result of what is called the j-factor analogy derives partly from
theoretical treatment: for example, of heat transfer from a plane surface
into a region of laminar flow. However, as seen below, it does give an
acceptable description of experimental measurements within their consid-
erable experimental errors. Thus we have a simple result in equation (3.17),
which derives from both theory and experiment. This is a common situa-
tion, whereby a simple result has been arrived at from a mixture of theory
and experiment. This approach has also borne fruit in analysis of mass
transfer, as noted in Chapter 4.

3.2.5 Experimental measurements

Measurements have been made of heat transfer rates to a turbulent fluid
flowing in pipes. For smooth, straight, clean circular pipes the result of
Dittus-Boelter (Kay and Nedderman, 1985) is

Nu = 0.023 Re® Pyo4 (3.18)

It has to be stressed that the reproducibility and precision of the measure-
ments are not good; there is an uncertainty of 30% in the magnitude of Nu
predicted by equation (3.18), which holds for Re > 5000. Equation (3.17) for
the j-factor analogy can be recast as

Nu = 0040 Re¥* Pr's

and predictions of Nu from these two equations give values of Nu in very
satisfactory agreement. The difference between Pr* and Pr'? is of no
consequence for liquids of Pr < 10, because 10°410'* =1.17 and 17% is well
within experimental accuracy. Thus in practice one would either use an
experimental correlation like equation (3.18), if one is available or use the
j-factor analogy. The film model and Reynolds analogy are only of historical
interest. The values of Nu for turbulent flow are much higher than those for
laminar flow in a pipe, for which the semi-theoretical result

Nu=186(Re. Pr. d/L)" (u/w,)"" (3.19)

of Sieder and Tate (Kay and Nedderman, 1985) holds. Here d/L is the ratio
of internal diameter to length for the pipe; the term arises because the
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steady state is established slowly for laminar flow. Indeed the fluid must
flow quite a distance (equal to around 25 internal diameters of the pipe)
before a parabolic velocity profile is established. The final term in equation
(3.19), W, is the ratio of the viscosity on the centreline of the fluid to that
at the walls. The difference arises because the fluid might well be hotter at
the walls, so that p > p,. Generally speaking Nu and A are some ten times
larger for turbulent than for laminar flow. For this reason laminar flow is
aveoided in heat transfer devices whenever possible. However, it was noted
above that some liquid foods, such as soups, are very viscous fluids, so that
they are unlikely to be in turbulent flow. In these cases, laminar flow is
unavoidable. Moreover, not only are food fluids viscous, they can be sensi-
tive to shear.

EXAMPLE 3.8

Air at 40°C flows with a mean velocity of 15ms inside a smooth tube of
internal diameter 2.4cm. Calculate the Reynolds number for the flow and
confirm that the flow is turbulent. Calculate the heat transfer coefficient
using Blasius’s law (¢, = 0.079Re%%) and.:

(a) Reynolds analogy (St = £¢,)

{b) the film mode! (StPr = £c,)

(c) the j-factor correlation {StPr¥? = ;c,)

{d) the Dittus—Boelter correlation (Nu = 0.023Re%¢Pr%4)

Data for air at 40°C

p=113kgm=
=190 x 10°Nsm-=2
¢, = 1006 Jkg-'K-!
A=0027Wm K"

uc, _1.90x10° x1006

Pr = =0.708
¥y 0.027
-2
Ae = 15x1.13x2.4x10 = 214105
1.9%x10-5

(N.B. Re > 2000, so it is turbulent.)
¢; =0.079 Re-¥* =6.531x 1073

15ms™
B, 24x102m S
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{a) Reynolds analogy

St=c, /2= h
pvCe
Therefore
-3
p = 8931X10% 4 13%15x1006
=557Wm=2K-
{b) Film model
1
St Pr=—c,
2
Therefore
h= 55.7
0.708
=787 Wm=2K-1

(c} Factor

St Pres = %c,

Therefore

55.7
(0.708)2’ s
=70.1Wm=2K-

(d) Dittus—Boelter

Nu = 0.023 Re® Pro4 = 58.4

Therefore

h =58.4><£=58.4x0'Oi
d 2.4x10-2

=657 Wm= K-

129
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EXAMPLE 3.9

Using the data for air in Example 3.8, derive the Nusselt number for
laminar flow inside a pipe with Re = 400, d/L = 102 and u/u, = 1.

Equation (3.19) gives
Nu =1.86(Re. Pr. d/L)"*
Therefore
Nu =1.86(400x0.708x102)" =1.3

Note that Nu is much lower for laminar flow than for turbulent flows. Of
course, Pr for a liquid can be larger than for a gas, which also affects Nu.

3.2.6  Other geometries

The above discussion related primarily to flow inside a circular pipe. How-
ever, pressure drops and hence ¢; have been measured for flow in rough
pipes, around bends, in coiled or non-circular pipes, and so on. If ¢; is known
from measuring the pressure drop in one of these situations, then St and 2
can be predicted by using the j-factor analogy, equation (3.17). This is a
particularly useful feature for internal flows. As for a fluid flowing over the
exterior of an object, such as a sphere or a cylinder, remember that the
above theories made an analogy between the transfer of heat and momen-
tum. Normally one measures a drag force when a fluid flows over an object
and in fact the drag force has two components: form drag and skin friction
drag. It is the latter skin frictional drag that is related to heat transfer and so
has to be isolated. Some useful correlations are as foliows:

1. For flow over a flat plate;
Nu = 0.66 Rel? P13 for Re < 10°
Nu = 0.036 Re%® Pri® for Re > 1P

2. For turbulent flow across the outside of a cylinder:
Nu = 0.38 Re®S7 Pri3
3. For flow over a sphere:

Nu =20+ 0.7Ret2 Pri?

This last result clearly contains two terms added together. The first term
is equation (3.8) for heat conduction with Re = 0 (no flow), whereas the
second term is due to convection with turbulence. The correlation, for a
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solid sphere with fluid flowing over its surface, is most useful for predict-
ing heat transfer rates in typical foods containing two phases of a solid
and a liquid.

4. For flow in a plate heat exchanger: these exchangers have complex
geometries, but are often made from stacks of flat plates, with alternately
hot and cold fluids in between the plates and their heat transfer correla-
tions are not generally published. Equations such as

Nu = 0.068 Reb7 Pro4

can be used, but only with caution, and for turbulent flow. Nevertheless,
an equation of the type Nu =/Re™ Pre is of the right form for a plate heat
exchanger, with the constants /, m and n depending on the particular
geometry.

3.3 Heat exchange: more practical aspects

331 Overall heat transfer coefficients

Consider the situation depicted in Fig. 3.14, which is a modification of Fig.
3.11. Cold liquid flows inside the thin-walled tube, whose walls are heated
by hot air blown over the external surface. Thus heat flows first from the hot
air to the pipe, followed by heat conduction through the pipe’s wall and
then finally there is heat transfer to the liquid flowing inside the tube. So far
we have developed expressions to predict # for the transfer of heat from the
hot air to the tube and also from the tube to the colder liquid flowing
internally. Figure 3.15 shows the rough shape of the plot of temperature
against radial distance from the axis of the system. Of course, Fig. 3.15
refers to one distance along the length of the tube. There the temperatures
of the bulk of the liquid, of the incident air and the wall are Ty, T, and Ty,
respectively. At this axial distance, one can write the local heat flux (per
unit area of wall) as

Fig. 3.14 A long thin-walled tube inside which flows a liquid and over which flows much
hotter air.
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Fig. 3.15 Radial temperature profile at some arbitrary point along the tube in Fig. 3.14.

g=hy(Ty-Ty)=h (Ty-T.) (3.20)

Here h, and k, are called the air-side and liquid-side heat transfer coeffi-
cients, respectively. In addition, an overall heat transfer coefficient, U, can
be defined using

q= U(TA - TL)
Thus U gives g in terms of the overall temperature difference between the

incident air and the liquid at this axial distance. Clearly T, and T both
increase with distance along the pipe. Equation (3.20) gives

T, Ty _fi\
and
q
Ty, —-T =—/—
W L hL

which on addition, to eliminate the unknown Ty, vield

I,-1, Z‘I['l_'*'iJEi

h, h U
Hence
1.1 (3.21)
v hy n

so that heat transfer coefficients in this case add by their reciprocals. If
h, >> h, then U = h, and heat transfer is air-side-controlled, so T, = Ty,.
Alternatively, if A, >> #, then U = h;; that is, heat transfer is liquid-side-
controlled, with T, = Ty,
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EXAMPLE 3.10

An oil-cooler consists of 100 thin-walled tubes each of 15mm internal di-
ameter operated in paralfel. The oif flows through the shell side of the heat
exchanger (that is, around the ouiside of the tubes) and the water flows
inside the tubes. The shell-side heat transfer coefficient is 1.2kWm2K,
whereas that on the water side is given by Nu = 0.023Re®Pr?4, Find the
water-side heat transfer coefficient and hence the overall heat transfer
coefficient when the flowrate of water is (a) 10kgs', (b) 20kgs.

Data for water

L =1x103Nsm?
A =061WmTK!
Cp = 4190 J kg 'K

{a) Flowrate 10kgs

Water-side: Nu = 0.023 Re®8 Pros
40
n(15x102)° x 103

-3
R9=M=103 >((3!.566><15><10
il 103

uc, 10 x4190
A 0.61

2
10kgs—1=%x100xvp:>v: = 0.566 ms-"

= 8488

Pr= =6.87

h.d

Nu = 0.023(8488)"° x 6.87%4 =69.1= :

Therefore

_ 69.1x0.61
¥ 15%x10°®
1

J o L y-satwmzk-
U~ 2810 ' 1200

=2810 Wm=2 K-

Qil

—_— 15 mm —_—

Water
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(b}  Flowrate 20kgs™'

Nu =868.1 x 208 = 120.3

_120.3x0.61
W 15%x10-2
1 1

1o 1 ] L y-geaWm2K-
U~ 4893 ' 1200

=4893Wm=—2 K-

3.3.2 Cylindrical pipe with thick wall

Suppose the wall in Figs 3.14 and 3.15 is thick enough for the temperature
difference between its inner and outer surfaces 1o be significant. As in Fig,
3.4 the inner and outer radii of the walls are r, and r,, where the tempera-
tures are T, and T, respectively. Equation (3.4), after adjustment for heat
flowing radially inwards (Q is negative), rather than outwards, gives

T,-T--2 .2
2ahL n

where () is the overall rate at which heat is transferred in a pipe of length L.
But from above

T.-7T,= L
2nrh, L

n-T. = o
2anh L

Addition of the above three equations yields

0 [LJF 1 +ln(rz/r1)]

nh nhy A

ATILT 2l
As for an overall heat transfer coefficient, again there is a choice, because
one has either
0 =2mrU,(T, - T, )L
or
Q =2mr,U, (T, - Ty )L
depending on whether the inner or outer radius is used as the reference

surface. Thus

11 11 +1n(rz/r1)

% rzUz—'ihL ryh, A

(3.22)
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Here U, is the overall heat transfer coefficient with respect to the inside
surface of the pipe, and U, is referred to the outer surface. Equation (3.22)
could be used for a thin-walled tube of radius r, but with lagging from r,
to r,.

EXAMPLE 3.11

Water flows at 2kgs~' along a circular pipe of 50mm internal diameter,
which is lagged with a 10mm thickness of ceramic fibre insulation (A =
0.2Wnr2K'). The heat transfer coefficient at the outer surface is
50 Wnmr2K-'. Using the Diftus—Boelter correlation (Nu = 0.023Re%8Pro%4) for
the inner surface, calculate the overall heat transfer coefficient: (a) based
on the outer surface area, (b) based on the inner surface area.

Data for water

n =1x10°Nsm=
A =081TWmK"
Cr = 4190Jkg 'K

{a) Outer surface area

a 211?LL(T2 - T1)
~ Infry/r)

dz
n41 vp for d, = 2r,

M

2kgs'=

2x4

v= d =1.019ms"
(50 x 10-)* x 1000

PR

To 50 mm 1 70 mm
2kgs n n
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-3
pr = MCe _10 X4190=6.869

A 0.61
-3
He=d1Vp250><10 X1'01QX1000=5.095x104
L 103

Nu = 0.023 % (5.095 x104)°? x 6.869%4 = 289.9 = i’_‘ﬂ%

ANu  289.9x0.61
= = =3536
d, 50x10-3

hW
Q=rdyLUy(T. ~T,) > T -T, =—2
- nd,LU,

Q
Q=50nd,L(T. ~T,) =T —T, =
ma (7. -To)=T.-T; 50md,L

(2)

QIn(d,/d,) 3)

)T, T =
MW=T,-T, o L

Q
Q=ndLx3536(T,-T)=>T,-T,=—~ 4
=X M-To)=>T-To 3536nd,L )

Add (2) + (3) + (4):

(T —T)=Q 1 +|n(d2/d1)+ 1
- e 50nd,L  2miL  3536nd,L

Therefore
11 Indy/d) 1
rd,LU, 50rd,L  2gAL  3536znd.L
1 1 N In(7/5) N 1
d,U, B0x70x103 2x0.2 3536x50x10-2
=1 0841241 11328
35 176.8
Therefore
1 =126 Wm=2K-!

Y2 = 2oxi09
%102 x1.1326

(b} Inner surface area

Write:
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Q=nd LU{T. - T,
So
d U, = d,U,
Therefore

- d2U2 7

U, =L x12.6=17.7Wm2 K-
d, 5

3.3.3 Fouling

The deposition of solids in heat exchangers can be a severe problem in food
processing (see section 9.3). Even the effect of thin layers on heat transfer
can be considerable. Consider the thin-walled tube of Fig. 3.14, for which
equations (3.20} and (3.21) apply. Suppose there is a very thin layer of
grease applied to the inner or outer surface of the tube. If the thickness of
the grease is 6 = 0.01lmm = 10um, equation {3.3) gives the heat transfer
coefficient for conduction through the grease as 4/8. Thus equation (3.21)
becomes

1 1 1 %

U hy, h A

Typical values are h, = 50Wm~K" and A, = 3600 W m~2K"", indicating that
for clean surfaces the resistance to heat transfer is almost all on the gas side.
This would give U = s, and Ty, = T, Grease has a typical value of A =
0.1 WmK-, so that now

1 1 1 10-3

U 50 3600 01
This gives UV =49.07 Wm=K-! with the grease, but U/ =49.32Wm=2K-! with
totally clean surfaces, The change in U/ in this case is not dramatic, because
U = h,. Nevertheless, the resistance to heat transfer across this very thin
layer of grease is comparable to that on the liquid side and is consequently
important. In general, fouling arises by corrosion and also the deposition of
algae; in food preparation, surfaces also scale by solid deposits from pro-
teins, sugars and fats undergoing heterogeneous reactions. The thicknesses
of these surface deposits are normally much in excess of the 10um assumed
here. For numerical examples with fouling, see Examples 3.14 and 3.15
below, where 8/ = F is called the fouling factor.

3.3.4 Freezing times

Having dealt with resistances to heat transfer in series, it is now possible to
take Example 3.5 and calculate more realistically the time to freeze an
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Air at T,

/ Surlace at T,
Frozen burgw// //
/ / / / / Freezing pointat T,
Unfrozen burger\\\\
AN \5\_\;\; - Central line

Fig. 3.16 Freezing of a beef burger: schematic diagram.

object, but now including #, the heat transfer coefficient between the cold
air and the exterior surface of the burger. The situation is shown in Fig. 3.16.
Again, the same assumptions will be made:

1. The heat being transferred is mainly the latent heat associated with
freezing, so that sensible heats (i.e. those associated with merely tem-
perature changes and equal to Jc,d7T) are negligible.

2. Heat transfer is one-dimensional in the burger and is through a frozen
layer of thickness x from a freezing front at 7,,, to the surface tempera-
ture T,

3. All physical properties are constant.

Considering unit area of the burger’s outer surface, the rates of heat
arrival and loss are equal. Therefore

mp s

q=h(TS*TA)=%(T -T,)

Thus

-9
SR VS

Addition of the last two equations eliminates T, and vields

1 x
Tmp_TA:AT:fI{Z-FE}

where AT is the temperature difference, as defined above.
But the heat flux ¢ is related to the rate of freezing; so

dx
=0, hp, —
q w ﬁps dr
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where 0, is the fraction of water {(by mass) in the burger of density p,. Also
dxf1_x|__AT
delh &) 8,hp,

Integration with the boundary condition that x = 0 for ¢ = 0 gives

£+ﬁ_ ATt
h 28 8 hp,

Thus the freezing time can be estimated. Likewise the treatment can be
modified to deduce the time to thaw an object.

3.3.5 Unsteady-state heat transfer revisited

Consider a particle (such as a potato), when it is rapidly immersed into a
hotter fluid such as boiling water. The situation is shown in Fig. 3.17. The
water is kept boiling at a temperature T, which exceeds T, the initial
temperature of the potato. In this situation it is usual to define a
dimensionless group, the Biot number, where

B = internal resistance to heat conduction inside potato

surface resistance to heat transfer from
the boiling water to the potato
_viaji_wh
A k A\

Toattime t=0

L~ Tw

Fig. 3.17 A potato, initially at temperature T, being immersed in boiling water at
temperature T,.
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where

t -
Y. volume of potato___ 1. = a characteristic length
A surface area of potato

and h is the heat transfer coefficient from the boiling liquid to the surface of
the potato. If the potato is spherical, then
- VvV _nd /6 d
A rmnd> 6
where d is the diameter. Thus the Biot number becomes
_hL _hd
A 6A
It can now be seen that if Bi is larpe (Bi > 40), then the dominant
resistance to the transfer of heat from the boiling water to the colder potato

Bi

Bi <0.1 Bi=1 Bi> 40
- —
” ~
. -

/ \ ¥i \

f . { |

1 \

3 (N ’|
o [} “ / 1 ~__ - T
§ — —
gl | N T | | | l, |
2 All resistance is Both resistances Resistances is intemnal
£ in the film are important heat conduction
|...

|
|

| o |
{c)

Distance

Fig. 3.18 Plots of temperature along a line through the centre of the potato (see text for
description) for increasing times (¢ = 0, 1, 3 arbitrary units), as well as for the cases of small,
intermediate and large Biot numbers. The film around the potato is also shown.
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is internal: that is, associated with heat conduction from the surface of the
potato towards its colder centre. This is shown in Fig. 3.18, which is a plot
of temperature versus distance through the centre of symmetry for increas-
ing times. Thus part (c) of Fig. 3.18 shows a thin external film, and the
surface temperature of the potato is always the temperature of the boiling
water. This situation, of Bi >> 1, has already been described in Fig. 3.9. It is
worth noting that alternative definitions of Bi exist, so that care must be
exercised to ascertain the precise definition. Thus B/ is often written as
Bi = hd/2A, so that the characteristic length is taken here to be d/2: that is,
the radius, rather than 4/6 as used above. Care always has to be taken to
ascertain this characteristic distance; thus elsewhere in other chapters d/2 is
used occasionally instead of d/6. This lack of consistency is common in the
literature and must be accepted as a fact of life.

EXAMPLE 3.12

Consider the polato in Example 3.7, but with a diameter of 20mm. Evalu-
ate Bi when immersed in vigorously boiling water, such that the transfer of
heat from the water to the potato is governed by Nu = 250. Given also that
the thermal conductivity of water is 0.6 W' K-, derive and comment on
the value of the Biot number.

. dh  Nui, 250x0.6
Bi=or ™ 6n  6x05

As Biis the ratio of the resistances to internal and external heat transfer,

the conclusion is that there is in effect no temperature gradient in the liquid

adjacent to the potato. However, there are temperature gradients in the

potato.

The other extreme of small Biot number is described in part (a) of Fig. 3.18.
Here, at a given time, the potato has the same internal temperature, inde-
pendent of position within it; also, the external film is thick. This situation
of Bi approaching zero is easy to analyse mathematically. The total rate of
heat transfer is

dr

hA(T, -T)=Vpc, N

where 7 is the temperature of the potato. Thus, using L = V/4 = d/6:

G T = (T -T)
dr Vpc, Lpc,

which leads to
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Finally, for the intermediate case, Bi = 1, one has the time-dependent heat
conduction equation (3.9), but modified for this three-dimensional situa-
tion, where position can be defined as a radius r. Also, an extra equation
couples the heat fluxes at the surface of the potato:

aT
hA(Tw ) TS) ) M[ngurmce

Here T, is the surface temperature of the potato. In this general case, the
solution gives temperature as a function of r and ¢ and is usually expressed
on charts.

3.3.6 Concentric tube heat exchanger

This simplest heat exchanger for the transfer of heat from one flowing fluid
to another is shown in Fig. 3.19. It is useful to analyse this simple idealiza-
tion. Hot fluid flows from left to right within the central tube of diameter d.
The flowrate is Wkgs™ and its specific heat capacity is CpJTkg ' K. Initially
its temperature is T,, which falls to T, but becomes T at a distance x (see
Fig. 3.19) along the system. Its temperature is taken to be T + 8T at a
distance x + 6x. As for the outer concentric tube, cold fluid flows within it
from right to left, so that this fluid is heated to a temperature 8, from 8,. This
fluid in the outer shell has flowrate wkgs™ and heat capacity c,J kg K-; its
temperatures at x and x + 8x are 6 and 6 + 86, respectively. The whole
system is lagged. The theory below can be made to cover the case of co-
current flow of the two fluids simply by reversing the sign of w. Consider the
increment of length dx in Fig. 3.19; the overall heat transfer coefficient is U.
Thus within this increment of length 8x the rate of heat transfer from the
inner to the outer fluid is

nddxU(T - 6)

This is the rate at which heat is lost by the inner fluid, i.e. -WC 8T, or
alternatively it equals the rate with which heat is gained by the outer fluid,
i.e. —wc,00. Hence

&x : * 82 {cold)

i
' X
1
i

"z. P T Y e T e N

Laggin ‘ '
a,} gging ¢

Fig. 3.19 A lagged heat exchanger with a concentric tube and outer shell for counter-current
fiow of two fluids.
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AT __nUd (g

ax | WC,
o _ nUd.
& e,

Now introduce AT = T'— 8, which is the local temperature difference: that is,
the local driving force leading to the transfer of heat. Subtraction of the
second from the first equation above gives

MLRUG{_L_LJAT
dx WC. wep
prdler) 11 [ dr
s AT WC, wc,

where L is the overall length of the heat exchanger and AT, and AT, are the
differences in temperature of the two fluids at the left- and right-hand ends,
respectively. Thus

AT, =T,-6, at x=0
AT, =T,-6, at x=L

and the above leads to

In AL =nlUdL 1 1
AT, WC, wcp

— AU 1 1

WC, wcp

where A = Lrd is the total surface area available for heat transfer. Once the
above heat exchanger is operating in the steady state, the overall rate with
which heat is transferred from the inner to the outer fluid is

Q= WC,(T, - T,) = we,(8, - 6,)

(3.23)

Hence

AT, - AT, =T, -6, -T, +8,

_ 1 1 (3.24)
_Q(WCP wc,,]

Equations (3.23) and (3.24) give

1:{ AT, J ] AU(AT, - AT,)
AT, Q
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or
AU(AT, - AT,)
In é_]i
AT,
Equation (3.25) is of the form @ = area for heat transfer x heat transfer
coefficient X mean temperature difference between the two fluids. This
latter quantity is seen from equation (3.25) to be the logarithmic mean

(AT),) of the AT at the two ends of the heat exchanger. Equation (3.25) is
thus

(3.25)

Q = AUAT,, (3.26)
with
_ AT, -AT,
™ In(AT;/AT,)

Equation (3.26) is a general result applicable to both co- and counter-
current flows. This is because the result is independent of the sign of w.
Also, an identical result is obtained for the case shown in Fig. 3.10, when the
wall temperature was maintained constant: for example, by having steam
condense on the outer surface. A special case arises in the above theory
when WC, = wep. Here T, — T, = 8, — 0, so that AT, = AT,. Here the
logarithmic mean of AT, and AT, is AT, so that O = UAAT,. A useful result
is that the logarithmic mean of AT| and AT, in general lies between their
arithmetic and geometric means.

EXAMPLE 3.13

Air flows at 0.002kgs™ through a 15mm diameter tube of length 1.2m.
The tube’s wall is maintained at 100°C and the air's inlet temperature is
25°C. Using the Dittus—Boefter correlation (Nu = 0.023Re#Pr°4), calcu-
late the heat transfer coefficient and the temperature of the air leaving the
tube. Why are these values unaffected by the thermal expansion of the
air?

Data for air (assume constant)

¢» = 1005JKg K-
p =1.8x 10Pas
Pr=0.74

ndvp
4

Total mass flow rate =w =
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100 °C

out

Therefore
pvd 4w d_ 4w
woomd? p whu
Hence Re is proportional to w only and 50 is not affected by any thermal
expansion of the fluid. Thus

Re =

4 x%0.002
Re =
x15x102%x1.8x105

Nu = 0.023R°8P°4 = 0.023 x 9431°8 x 0.74%4 = 30.8

=0431

Therefore

poNud _ Nupc, 30.8x1.8x10x1005
d d Pr 15x10°x0.74

=50.3Wm2K-"

100-25) - (100-T,,)

100-25
In| ————
100-T,

out

W(Tay ~To)en = malLh|

After cancelling, this gives:
| 100-25 | ndl Nui
100-7,,) we, d

Therefore T, is independent of pressure and so is unaffected by thermal
expansion. Now because

A=puc./Pr
_ -5
n 100-25 =1r;><1.2x130.8x1.8><10 ~1.414
100-T,, 0.002 x0.74
Therefore
_ 75 4112
100—Tom

T,.=81.76°C = 81.8°C
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EXAMPLE 3.14

Water flows at 60°C with a mass flowrate of 10kgs along a thin-walled
circufar pipe of 50mm internal diameter, which is surrounded by air at
20°C. The heat transfer cosfficient at the outer surface is 200Wm=2K-,
whereas at the inner surface, heat transfer is determined by the Dittus—
Boelter correlation (Nu = 0.023Re%5Pro4),

(a) Assuming that the tube wall is sufficiently thin for conduction to be
neglected, calculate the overall heat transfer coefficient and hence the
heat flux from the water.

(b) During use, a thin scale is deposited on the inner tube wall. If the
fouling factor for the deposit is 0.001m2 KW', calculate the percentage
reduction in the heat flux.

Data for water

p =1.5x102Pas
¢, = 4187 Jkg'K-"
o =06WmTK!

2
(@) 10kgs- =%vp
Therefore
v 4x10
X (5x10-2)* x1000
_pvd  1000x5.093x50x1073

=5.093ms"’

Re =169765
N 1.5x10-2
-3
pyoMCp _15x105x4187 -
A 0.6

Nu =0.023 x169765°8 x10.47°4 = 898.6 = th

Air

|

%
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_ 898.6x0.6
~ 50x10-°
1 1 1 1 1

— = -+ = +
U B Boee 200 10784

=10784Wm=2K-'

U=196.4 Wm2K"

Therefore
q= U(60 - 20) =7.854 KW m-=2

(b) Percentage reducticn due to fouling

11, 1
U hyw B

outer inner

+F

where F is the fouling factor

1

11
1.1 10 = U =164.1W m-=2 K-
U~ 500 o784 0" 2 U=1841WmEK

g =40 x 164.1 = 6.565 KWm

Percentage reduction in the heat flux, g

=16.41%

EXAMPLE 3.15

A corrosive drink flows at 0.4kgs™' and 100°C into a counter-current heat
exchanger, where it loses heat to a flow of cooling water. The water flows
at 0.3kgs’ and enters the exchanger at 20 °C. When newly instalied, the
heat exchanger has an overall heat transfer coefficient of 300Wnr2K-'
and the drink is cooled to 50°C. Calculate the outlet water temperature
and hence the surface area of the heat exchanger.

Corrosion occurs during operation, such that the overall heat transfer
coefficient decreases to 200Wm2K'. If the flowrates and inlet tempera-
tures are unaltered, calculate the outlet temperature of the drink.
Specific heat capacity (c,) data:

Water:c, = 4180Jkg 'K
Drink:Cp, = 3900Jkg K™

Qverall heat transfer rate = Q=WC,(T,-T,) =wc,(0,-6,)
Q= 0.4 x 3900 x (100 — B0) = 78KkW = 0.3 x 4180(8, — 20)
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0.3kgs' H,O

8,=20°C
0.4 kg s
Drink
T,=100°C WG,

T,=50°C

e W
p
8,

Therefore

0, = 82.2°C
AT, =100 - 82.2 =17.8°C; AT,=50 - 20 = 30°C

A7 . 30-178

Im _—Fj—:zs‘tl C
In —-
17.8

Q= AhAT,,
Therefore

_ 78x108

=——=11.1m?
300x23.4

After corrosion:

wee(0, - 20)=WC,(100-T,)=Q
0.3x4180(6, - 20) = 0.4 x 3900(100~T,,)
0,-20= 1.244(100-T,)
8, = 144.4-1.244T,
WC,(100-T,) =wc,(0,-20)=Q

Q Q
100-T,=——; 8, -20=
owe, WCp
(100-T,)—(8,-20)= AT, - AT,
_[ 1 1 }UA(A?}—ATE)
“10.4x3900 0.3x4180

( 1 J
I
2

AT 1 1
i 271 |- - 200 11.1=-0.3472
(ATJ (0.4><3900 0.3><4180) *

Therefore after cancelling (AT, — AT,)
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Therefore

AT, _ 70862 100=6; _ —44.4+1.244T,
AT, T, -20 T,—-20

0.7066 T, — 20 x 0.7066 = 44.4 + 1.2447T,
7.=56.3°C

3.3.7 Equipment for heat transfer

Section 9.2 examines more fully the types of heat transfer equipment used
in the food industry. In practice heat exchangers are more complicated than
that shown in Fig. 3.19. A typical but possibly simple one used in the
chemical industry is shown in Fig. 3.20. This achieves a large increase in the
area for heat transfer, which is the major difficulty with the heat exchanger
in Fig. 3.19. The fluid on the shell side of Fig. 3.20 has a flow affected by
baffles. These support the long tubes and also generate turbulence on the
shell side. Alternatively, the two fluids can be separated by plates, rather
than flowing through tubes; plate heat exchangers are widely used in pas-
teurization and sterilization plants. Figure 3.21 shows one of the more
complex heat exchangers used in the food industry. This is a scraped-
surface heat exchanger and is a modification of that in Fig. 3.19. There is an
outer concentric tube with one fluid flowing inside it. The inner region,
through which the other fluid flows from end to end, has a rotating shaft
(500-700 rpm) with blades attached. Thus the surface of the inner pipe
shown in Fig. 3.21 is maintained free of deposits. A heat exchanger such as
that in Fig. 3.21 can handle fluids containing solid particles up to 25mm in
size. Although the physical operation of these exchangers is complex, the
principles on which they operate are the same as those which govern the
simpler systems, such as that shown in Fig. 3.19.

Also, complicated heat exchangers can be analysed in a manner analo-
gous to that for the concentric tube heat exchanger shown in Fig. 3.19. Thus
the overall rate of heat transfer can be expressed in general as

]ll
1 — I — 1 1 |
sl - L M

[ ; T % 1 . | Y = 1\__‘

1 —— N
L T I M I ¥ 1 . 1 I 1 -

L) J X 4 ’_|
L Is. N 1 2 I FIV 1 7 ]

N 'Y P Lo, ——
T~ el | Fi el 1

t
' 7
l Baffles Flow path of

shell-side fluid

Fig. 3.20 A single-pass shell and tube heat exchanger.
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Fig. 3.21 Schematic diagram of a scraped-surface heat exchanger, together with a plan view of
the cross-section A-A.

O = AUYAT,,

where Y is a correction factor introduced into equation (3.26). Values of Y
are tabulated (for example, in Kay and Nedderman, 1985) for various
configurations, such as multipass heat exchangers.

As a final comment, it should be stressed that the chemical industry
usually insists (for economic reasons) that a local driving force for heat
transfer (AT) between two fluids should be at least 10°C. In the food
industry it is rarely possible to have AT as large as this, otherwise several
problems arise, such as fouling from one of the fluids undergoing chemical
change. The fact that AT < 10°C can accordingly result in heat exchangers
being relatively large and expensive. In addition, the use of AT < 10°C has
consequences when networks of heat exchangers are employed. These
matters are discussed further in Chapter 9.
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Conclusions

The two mechanisms of heat transfer which are most relevant to the ther-
mal operations in the food industry are conduction and convection. Heat is
transferred through the walls of a container or vessel and within solid foods
or stagnant fluids by conduction. You should understand the basic laws of
conduction, how to define the Nusselt number and why it provides a con-
venient dimensionless group to -describe the process. You should also un-
derstand how the basic laws of conduction can be applied both to steady
(i.e. time-invariant) and unsteady state processes, which are typical of many
food process operations such as canning, freezing, baking, etc.

You should also understand how the process of convection operates in
the transfer of heat in flowing systems. Under these conditions heat transfer
will depend on the Reynolds number(s) of the moving phase(s) and their
physical properties, as measured by a new dimensionless group, the Prandtl
number. You should understand how the heat transfer coefficient is defined
and some of the approaches to its prediction when heat transfer occurs
between a flowing gas or liquid and a solid surface.

In practice, for example in heat transfer across the walls in a heat ex-
changer or between a hot gas and a biscuit, various heat transfer processes
operate in series. You should understand how the processes of convection
and conduction can be combined to give an overall heat transfer coefficient.
The equations given here to calculate heat transfer coefficients again only
apply to particular situations, but the principle of combining the various
steps is general. The more complex case of radiative heat transfer is not
dealt with here, although many of the key concepts remain valid; radiation
can be combined with other processes as described here. The classical
problem of the transient heating of a solid by convection from a surround-
ing fluid was also analysed, and from this you should appreciate the signifi-
cance of the Biot number which can be used as a measure of the relative
importance of the external (convective) and internal (conductive) pro-
cesses. The idea of a limiting resistance, corresponding to the slowest or
rate-controlling process, is a very important one which will also be used in
the next chapter.

Some of the basic principles of heat exchanger operation and design were
also introduced and, as a result, you should know how to calculate the heat
transfer area for a given operation. This particular discussion is taken
further in Chapter 9, and is also illustrated by a realistic example in the disk
accompanying this book.

Further reading

As with fluid mechanics, all librartes contain many texts on introductory heat transfer.
Amongst these are:
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