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Introduction 

As well as the movement of heat, many processing operations involve mass 
transfer; this can be the extraction of a product, such as apple juice from 
apples, or the supply of a material such as the oxygen required by a bacterial 
fermentation. The principles of mass transfer are similar to those of heat 
transfer; however, the process is more complicated. This is for a number of 
reasons, not least because the range of species which may be transferred is 
much larger. The concept of equilibrium is also more difficult in mass 
transfer than in heat transfer; whilst for two bodies to be in thermal equilib­
rium they have to be the same temperature, two phases may be in equilib­
rium in mass transfer terms even if the concentration of the species 
transferring is different in both. Before the processes of mass transfer can 
be described, therefore, it is necessary to discuss the idea of equilibrium 
between phases, expressed by such ideas as the partition coefficient or the 
equilibrium constant. 

The previous chapter has shown that heat transfer in static (conduction) 
and in moving systems (convection) can be very different. The same applies 
to mass transfer. In a static system, such as the movement of moisture 
through to the surface of a solid, the governing process is diffusion; when 
the fluid is moving, the data are best expressed using mass transfer coeffi­
cients. This chapter introduces the concepts of mass transfer with reference 
to a number of specific examples, such as the problem of getting enough air 
into a fermentation to ensure that the bacteria will grow at the optimal rate. 

One of the key ideas of process engineering, that the rate of a process 
which occurs in several steps is controlled by the rate of the slowest step, 
was introduced in the previous chapter. Since mass transfer is usually a 
slower process than heat transfer, this idea is even more important. In 
studying any process, it is vital to identify the limiting condition; in drying, 
for example, the rate of internal diffusion within a solid will usually be much 
slower than the rate of mass transfer from the surface to the surrounding 
air. This limits the possibility of enhancing mass transfer by increasing the 
air velocity over a body, and thus the mass transfer coefficient. In addition, 
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many 'reaction' processes are in practice controlled by the rate of supply of 
reactants or the rate of removal of products from the reaction zone. The 
ideas developed in this chapter are thus directly useful in the design of 
processes and equipment. 

Mass transfer is concerned with the net movement of molecules in re­
sponse to a driving force. Operations depending on mass transfer are of 
great importance in the food industry in, most obviously, recovery and 
extraction processes, such as oil extraction from seeds, sugar from cane and 
beet, or the extraction of flavours and colours. However, there are many 
other operations where mass transfer plays a key role such as aeration, 
drying (where mass and heat transfer are intimately linked), and in biologi­
cal processes with immobilized cells or enzymes. In most of these processes 
fast transfer is a requirement; in others, such as in the use of packaging, it is 
important to eliminate transfer as far as possible. 

In many situations of importance there are significant analogies and 
interrelationships between the transfer of mass and the transfer of heat and 
momentum. In particular we shall see many connections between the mate­
rial in this chapter and that in Chapter 3 of this book on heat transfer 
processes. 

4.1 Why does transfer occur? 

Just as a ball rolls downhill when released or heat is transferred when 
temperatures are not uniform, so mass transfer also occurs when a system is 
not at equilibrium. If an oilseed is immersed in a solvent in which the oil is 
very soluble, oil will tend to move into solution in the solvent. If a packaging 
material is at all permeable gases on either side will tend - however slowly 
- to equilibrate. In other situations solvents move across semipermeable 
membranes under osmotic driving forces. Bulk flows will also transport 
molecules from one region to another. As we shall see, there are many 
mechanisms for transfer, and we must take care in defining the equilibrium 
conditions and the frame of reference for transfer. Order can be imposed on 
the study of mass transfer, however, by recognizing that in many situations 
the component flux (that is, the flowrate/unit area) is proportional to: 

• the driving force, that is, the distance from eqUilibrium, and 
• the reciprocal of the resistance to movement (which depends on the 

solute and the medium, such as the packaging film). 

4.2 Mechanisms 

In the real world molecules are never at rest; even in an otherwise totally 
stationary medium their random motion gives rise to diffusion. Diffusion is 
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usually a rather slow process, and not surprisingly it is slower with large 
molecules and as the surrounding medium becomes more viscous or solid. 
If we waited for diffusion to mix the contents of a cake mix we would wait 
for an awfully long time. This process is analogous to that of conduction in 
heat transfer. 

Fortunately for life on earth, mass transfer also occurs by convection: that 
is, by bulk motion. Sometimes this arises naturally when there is a low­
density region (perhaps because it is hotter) underneath one of higher 
density; in other situations convection is imposed, as in a mixing device (see 
Chapter 10 for a more detailed discussion), or as a result of mixing and 
movement due to turbulent eddies in the fluid. 

Before discussing these mechanisms in a little more detail we first con­
sider what we mean by equilibrium. 

4.3 Equilibrium 

4.3.1 The equilibrium state 

In an environment at rest in which there is only one physical phase, such as 
the liquid contents of a bottle of lemonade, and in the absence of any 
imposed potential gradients or driving forces, the equilibrium state is one of 
uniform concentration. Local variations in concentration will, even when 
the bottle isn't shaken, tend to disappear. If there is an imposed potential­
if the bottle is swung in a high-speed centrifuge for example, or there is an 
imposed electrical field - the equilibrium state is no longer necessarily 
uniform. 

In the simplest cases of transfer within a single phase, therefore, the 
driving force to restore equilibrium will usually be simply related to the 
local concentration gradients. 

However, most realistic situations involve two or more distinct phases in 
contact. The lemonade bottle initially contains a (small) gas phase and this 
phase and its components are also in equilibrium with the liquid. Thus the 
carbon dioxide in the gas is equilibrated with the dissolved species. Indeed, 
all the species in the recipe will be in equilibrium across the two phases; at 
equilibrium their chemical potentials are equal and, it is important to note, 
this no longer implies that the concentrations and relative proportions of 
the species in the two phases are the same. Indeed we capitalize on this fact 
in extraction processes such as solvent extraction. 

A convenient way of handling equilibrium processes is to define a parti­
tion or equilibrium coefficient. This relates the equilibrium concentrations 
(usually in molar units) of a given species or solute in the two phases: 

K=!. 
y 

(4.1) 
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where x, yare the mole fractions in phases 1, 2. 
It will be seen that K is a measure of the enrichment of the species, as a 

value other than 1 implies that the concentration in one phase is greater 
than that in the other. 

In the context of separation processes, where the differential extraction 
of different species is sought, the selectivity is important. This is defined as 
the ratio of the enrichments of two species. With two solutes A and B for 
example, with concentrations XA, etc. the selectivity is 

[XA/YA] / 
SAIB=[ / ]=KA KB 

x B YB 
(4.2) 

Thus, for example, a K-value of 100 implies a 100-fold higher concentration 
of the particular species in one phase over the other; an S-value of 1 implies 
no differential enrichment of one species over the other. 

While the K-values can be handled as if they were purely empirical 
constants, they can be related to more fundamental thermodynamic meas­
ures, as at equilibrium the chemical potentials of the various species in the 
different phases are equal. We shall look at some examples of the use of 
partition coefficients in subsequent sections. 

4.3.2 The equilibrium stage 

If the contact or processing time is sufficiently long for mass transfer to 
occur, or agitation sufficiently rapid, the system will approach equilibrium. 
The idea of an operation that has essentially reached equilibrium is an 
important one, and is particularly useful in analysing separation processes 
such as distillation, solvent extraction and evaporators. In Chapter 3, on 
heat transfer, we saw some ways of estimating whether transfer was fast or 
slow in relation to the processing time - that is, whether equilibrium is 
approached or not - and we shall develop similar ideas in relation to mass 
transfer in section 4.5. We shall be concerned there to estimate (roughly) a 
characteristic time (really a relaxation time or time constant) for mass 
transfer. Equilibrium will be approached if the characteristic time for 
mass transfer is short in comparison to the processing time. However, if 
mass transfer is relatively slow - that is, has a long characteristic time 
compared with other processes - equilibrium will not be approached and 
the process is likely to be controlled by the rate of transfer. First, let us see 
how the idea of an equilibrium stage can be developed and used. 

Consider first a single equilibrium stage, such as a solid/liquid or liquid/ 
liquid contactor. The stage either operates batchwise (with quantities F and 
S of feed and solvent) or continuously with feed rate F and pure solvent 
feed S. The concentrations of the species of interest are also indicated in 
Fig. 4.1. 



EQUILIBRIUM 

Feed Solvent 
I 

F,z 1$ 
I 

Contactor 
~ ---
I 
I 

t 
Extract Raffinate 

E,x R,y 

: Indicates streams in equilibrium 
i.e. X= Ky 

Fig. 4.1 The equilibrium stage. 

157 

If we assume that the feed and solvent phases are immiscible and mutu­
ally insoluble then 

F=R 

and 

S=E 

(These relationships are strictly true only when the extent of mass transfer 
is small or the concentrations are defined on a solute-free basis.) 

A mass balance on solute at steady state gives 

Fz = Ex + Ry (4.3) 

Now the equilibrium assumption implies that the phases leaving the stage 
have equilibrated, so that equation (4.1) applies to streams E and Rand 

x=Ky 

and from these two 

z 
(4.4) 

y= 1+EK/ F 

and 

Kz x=----;--
1+EK/ F 

(4.5) 

Lower values of y (that is, more complete extraction) can be achieved by 
high solvent/feed ratios and a high K-value. For a given partition coeffi­
cient, more complete extraction can be achieved by using higher solvent/ 
feed (' treat') ratios; unfortunately this will also give lower concentrations of 
the solute in the extract phase, so there is a trade-off between efficient 
recovery and concentration. 
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EXAMPLE 4.1 

An aqueous stream contains 10wt% (on a solute-free basis) of a compo­
nent that can be recovered by solvent extraction. The partition coefficient 
K = 2, and it is proposed to use a solvent/feed ratio of 2 in a single-stage 
extraction. Calculate the recovery and concentrations of the component in 
the extract and waste streams. 

As z = 0.1, substitution for K and ElF into equations (4.4) and (4.5) gives 
y = 0.02 and x = 0.04. 80% of the solute is recovered, but it is more dilute 
in the extract than in the feed. Doubling K or ElF would lead to an 
improved recovery, as y = 0.0111. If this was achieved by doubling ElF, 
the extract concentration xwould be 0.0222 (which is lower than in the first 
calculation); if K was doubled, x = 0.0444. In practice, of course, it is 
usually easier to change ElF than the partition coefficient. 

4.3.3 Multistage processes 

In practice, with a single stage it is difficult in general to achieve high 
extractions; an obvious extension to circumvent this is to add further stages 
to recover more solute (Fig. 4.2). In the first scheme, (a), the extract stream 
from stage 2 will presumably be rather dilute; alternatively it can itself be 
used as the solvent feed to stage 1, as shown in Fig. 4.2(b). In practice, this 
is commonly done; many stagewise extraction processes have similar, or 
more complicated, structures. 

The equilibrium stages need not necessarily be identified with separate 
pieces of equipment: a distillation or solvent extraction column with a set of 
plates inside is essentially a multistage countercurrent process. Surprisingly, 
perhaps, multistage equilibrium systems, for which the steady-state math­
ematical models are simply sets of algebraic equations, can often also be 
used as fair mathematical models for column-based separations, such as 
chromatographs, where the 'stage' is identified with a defined length of 
column. 

EXAMPLE 4.2 

Consider the two-stage process shown in Fig. 4.2(b), where in view of the 
equilibrium assumption XI = KYI andx2 = KY2 (assuming that the K-values 
are the same in the two stages). We assume the same values of z, ElF 
and K as in Example 4. 1. Calculate the unknown concentrations and the 
extraction yield. 

For the two-stage unit we can set up a mass balance over each unit, giving 

Fz- FY1 = EX1 - EX2 
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Fig. 4.2 Two multistage fiowsheets. 

and 

FY1 - FY2 = EX2 

where because of the assumption that equilibrium is achieved in both 
stages 

and 

X2 = KY2 

There are thus four linear equations for the four unknowns. Solving by 
repeated substitution gives 

Y1 = 0.0238 
X 1 = 0.0476 

Y2 = 0.00476 
x2 = 0.00952 

95% of the solute is now recovered, as a result of the addition of the extra 
stage. Further stages would give increased recovery. 

For a single-component system an n-stage process would be described by n 
material balance equations and n equilibrium relationships. The method 
illustrated above for a single species and constant K-values can be readily 
extended to multicomponent systems, ones where the K-values are not 
constant, and ones where the feed enters at an intermediate stage. There 
are many numerical and graphical techniques (of which the most famous 
is probably the McCabe Thiele method (e.g. King, 1984; Coulson and 
Richardson, Vol 2, 1977) for the solution of these problems. 

4.4 Diffusion 

As noted above, theories of mass transfer must account for two phenom­
ena: diffusion and convection. We first consider molecular diffusion: that is, 
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transfer in the absence of convection. The earliest classical experiment on 
diffusional exchange was carried out on the transfer between two reservoirs 
connected by a tube, the reservoirs initially having different concentrations 
of the component. These experiments showed clearly that the rate of mass 
transfer between the reservoirs was proportional to the cross-sectional area 
of the tube and to the concentration difference. In fact the result holds only 
for equimolar counterdiffusion (that is, where the flow of molecules in one 
direction is exactly balanced by a compensating flow of another species in 
the opposite direction); strictly, the finding is true for the flow relative to the 
net velocity. This result was subsequently embodied in Fick's law, which 
states that the flux j (that is, the flowrate per unit area, or the species 
velocity) is directly proportional to the local concentration gradient. Thus, 
as diffusion occurs down the gradient: 

j = -'[) dc 
dz 

(4.6) 

The constant of proportionality '[) is the molecular diffusion coefficent, 
which depends on the molecule and its environment. Note that in this 
equation the flux is measured in units such as molm-2 s-l, and the diffusion 
coefficient will be in m2 s-l. Fick's law has Fourier's law (equation (3.1» as 
its analogue in heat conduction, and we can draw on this in finding the 
solution to many common problems. 

Typical orders of magnitude of the diffusion coefficient are as follows 

Gases 
Liquids 
Solids 

10-5 

10-9 

10-12_10-14 

4.4.1 The effective diffusion coefficient 

While the diffusion coefficient of, say, sucrose in water is around 4.5 x 
1O-JO m2 s-1 (in fact its value depends on the concentration), its measured 
value in extraction from beet would be smaller than this, even if the cell 
walls were well and truly disrupted. This is one example of the way in which 
the effective diffusion coefficient might differ from the molecular co­
efficient; in a porous medium the measured coefficient will be significantly 
smaller than the molecular diffusion coefficient because of tortuosity effects 
(the more tortuous the region the more devious the route between two 
points) and because of the hindering effects of the surface of the pores on 
the molecule's random oscillations. There are many situations in food and 
biotechnology processing where the effective diffusion coefficient is the key 
parameter. Situations where movement is governed by Fick's law include 
processes such as oil extraction from seeds, the movement of salt in cheese, 
and the movement of solutes in immobilized pellets in biological reactors. 
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4.4.2 Transport across a film: 1 

Let us see how Fick's law can be used to describe the steady diffusional flow 
across a film of defined thickness L; the concentration of the species is kept 
constant on either side of the film as shown in Fig. 4.3. 

If the flow is steady (that is, doesn't vary with time), then the flux at any 
distance z into the film must be constant. Thus from equation (4.6) we can 
write 

. . hd' de ] = constant WIt Istance = a = -Z' -
dz 

and the concentration must therefore vary linearly with z across the film. 
The form of the linear variation can be seen intuitively or more formally 

by integrating the flux equation; using the two boundary conditions, this 
gives 

(4.7) 

Note that the concentration profile is independent of the diffusion coeffi­
cient: but a moment's thought will surely show that this is as it ought to be. 
The flux, however, does depend on Z' as it is given by the differential of 
equation (4.7): 

(4.8) 

The value of t) to use is its value in the film. This result is precisely analo­
gous to the steady-state heat conduction problem in section 3.1.1; equation 
(4.8) is mathematically identical to equation (3.2) for the heat flux: 

L .. 

Transfer 

Fig. 4.3 Mass transfer across a film. 



162 MASS TRANSFER IN FOOD AND BIOPROCESSES 

and, by analogy with Chapter 3, we can define a mass transfer coefficient 
k = 'OIL and write 

(4.9) 

Note that the mass transfer coefficient has the dimensions of velocity: 
ms-I • 

We can also introduce another important dimensionless group, analo­
gous to the Nusselt number in heat transfer, which we define as kdl'D, where 
d is a characteristic dimension (here the film thickness, L). In this problem 
the dimensionless group, called the Sherwood number, Sh, is therefore 

Sh= kL 
'0 

and from equation (4.9) we see that Sh = 1 for this problem (just as Nu = 1 
for the corresponding heat conduction problem). (Note, the requirement 
that j is constant with distance leads to dj/dz = 0 and thus to 'Dd2c!dz2 = 0, 
which is known as Fick's second law.) 

You might also consider how in a realistic situation the concentrations C1 

and C2 could be maintained constant. 

4.4.3 Steady diffusion from a sphere 

Another result of theoretical and practical importance, which can also be 
deduced by using the analogy with heat conduction, is that for steady 
diffusion into or out of a sphere in an infinite stagnant medium. (This might, 
for example, describe the supply of a nutrient to a microorganism, or the 
slow leaching of sugar from a spherical piece of beet.) 

Following the treatment of conductive heat transfer through a thick­
walled hollow sphere (section 3.1.2), the total rate of mass transfer past any 
radius r (Fig. 4.4) is 

where Fick's law is: 

j = -'0 dc 
dr 

(4.10) 

(4.6) 

Now, as I must be independent of r for there to be no accumulation of mass 
(that is, steady state) then (ct. equation (3.5»: 

j = _1_ = -'0 dc (4.11) 
41tr2 dr 

which can be integrated as in Chapter 3 to give an equation for the total rate 
of mass transfer between the spherical surfaces at 'I and '2: 

41t'D( C1 - c2 ) 
I = ...,-----'----i-

( 11 Ii - 1 /r2 ) 

(4.12) 
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Sphere radius: '1 

Fig. 4.4 Transfer from a sphere. 

For the particular case of mass transfer from a sphere of radius 'I into an 
infinite environment, i.e. r2 ~ 00, we obtain 

or 

That is, 

(4.13) 

where k (= V/r l ) is the mass transfer coefficient, and CI , C2 are the concentra­
tions at the sphere boundary and infinity respectively. (Of course, the same 
expression holds for transfer in the reverse direction.) In defining the Sher­
wood number for this situation it is, as with the Nusselt number, usual to use 
the sphere diameter (= 2rl ) as the characteristic length dimension, so that in 
this case 

EXAMPLE 4.3 

Sh= kD =2 
V 

(4.14) 

Calculate the maximum rate of uptake of glucose to a spherical bacterium 
of diameter (a) 1 Jim (= 10-6m) and (b) 100l1m (which is unrealistically 
large in practice) in a stagnant medium containing 100kgr0-3 glucose. 
Take the molecular diffusion coefficient of glucose in aqueous solution to 
be 6 x to- IOm2 £T1• 

In this situation we have Sh = 2 so that the mass transfer coefficient is 
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k= 1.210-3 ms-1, 0= 1~m 
k = 1.2 10-5 ms-1, 0 = 100~m 

Now the rate of mass transfer of glucose is 

J = n02k(100-c) 

where c is the glucose concentration at the bacterium surface; the maxi­
mum transfer rate to the organism will occur when the glucose is instan­
taneously consumed so that c = 0, and is 

J = n02k100 
= 1 .2n1 0-13 kg s-1, 0 = 1 ~m 
= 1.2n10-11 kgs-1, 0= 100~m 

Note how the mass transfer coefficient varies with 0-1, and the absolute 
rate of transfer varies directly with diameter. (You may like to carry this 
calculation a little further so as to estimate the maximum doubling time for 
the bacterium, assuming a yield coefficient of 1. Because the mass of the 
organism is proportional to 0 3, and the rate of nutrient uptake varies with 
o the growth rate falls dramatically with increasing diameter. We can 
conclude that while a small bacterium can happily achieve reasonable 
growth rates when nutrient is supplied by molecular diffusion only, the 
same would not be true of an elephant (Haldane, 1985). 

4.4.4 Transport across a film: 2 

The example in section 4.4.2 is not one that is easily realized in practice. As 
a more realistic example, consider what happens when the transported 
species is soluble in the film, as a gas might be in plastic packaging; specifi­
cally, let us assume that the solubility of the species in the packaging film, 
Cfilm , is related to its composition in the gas adjacent to the film, cgas ' (with 
which it is in equilibrium) by 

(4.15) 

where the partition coefficient K « 1; see Fig. 4.5. 
Consider now the steady transport of the component across the packag­

ing film from the interior, where its concentration is Cl , to the outside 
environment, where it can be assumed that its concentration is effectively 
zero. Then the previous result (equation (4.8» leads to 

. 'Z) K ] =- cl 
L 

(4.16) 

The mass transfer coefficient k written in terms of the overall driving force 
(= cl ) is K'Z)/ L. 

Thus we arrive at the result that the rates of diffusional loss across the 
film, or transfer into the packaged material (as the boundary conditions and 
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Fig. 4.5 Mass transfer across a film: 2. 

direction of movement can readily be reversed), are proportional to the 
effective diffusion coefficent of the species in the film and to its solubility in 
the film, while being inversely proportional to the film thickness. 

4.5 Transient behaviour 

The steady-state assumption gives considerable insight into transfer, but it 
is extremely restrictive. If oxygen, say, was diffusing across the packaging 
film the concentration in the pack would change with time, implying that 
one of the boundary conditions was not constant. So, too, the extraction of 
sugar from beet or coffee components from the bean imply a depletion of 
the extracted component with time. Many processes are time-varying. 

We can make some progress towards understanding this situation by 
extending the simple one-dimensional film model above. Because the local 
concentration changes with time we can no longer assume constant flux. 
Instead, consider a material balance on the diffusing species across a very 
thin element dz of the film (Fig. 4.6). 

Flux across plane z - flux across plane z + dz = accumulation in dz. That is: 

Using 

leads to 

-1'- +1'- =-xdz del del de 
dZ z dZ z+<lz dt 

e( z + dZ) = e( Z ) + de x dz + ... 
dz 

(4.17) 
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Fig. 4.6 Concentration profile for mass balance. 

which is precisely analogous to the equation for unsteady one-dimensional 
heat transfer, equation (3.9); "D in equation (4.17) corresponds to the thermal 
diffusivity a in the heat transfer equation. Thus many of the results ob­
tained for transient heat transfer can readily be adapted to the correspond­
ing mass transfer problem. For example, the results presented in Fig. 3.7 for 
the variation in the temperature distribution within a slab can be translated 
directly to the analogous mass transfer problem of a slab with initial uni­
form concentration Co immersed in a well-stirred environment such that 
thereafter the surface concentration is maintained at c" by substituting Co 
and Cs for To and Ts respectively. Instead of being 4atiP the dimensionless 
parameter (compare equations (3.9) and (4.17)) is now 4"DtW. As before, 
when 4"Dt1P = 2 (that is, an immersion time t = PI2"D) , the concentration 
profile is uniform: transfer is essentially complete. In other words, signifi­
cant mass transfer occurs while the processing time« PI2"D, so that the key 
concentrations will be changing during this transient period. However, for 
processing times> P12"D one can fairly assume that the system has come to 
equilibrium and that transfer is essentially complete. 

For example, for a sugar beet cassette slice 1 cm thick, the time for 
complete transfer of the sugar will be of order 2.5 x 105 s - that is, 70h -
assuming an effective diffusivity in the beet of 2 x 10-lO m2 s-1• 

In the same way, Fig. 3.8 can be transformed to show the transient 
concentration profiles inside a sphere of radius rs that is exchanging mass 
with a well-mixed external environment held at some concentration Cs' To 
do this we replace To by the initial concentration in the sphere, Co, and Ts by 
Cs; the characteristic dimensionless group is now Dtlr~, and the characteristic 
time for complete transfer is r~/2"D. 
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These characteristic times (= PI2V) for a plate of thickness I and a sphere 
of radius I respectively) give a fair measure of the time to reach equilibrium 
- the transient period - and are very useful indicators. For example, if a 
process lasts longer than the characteristic time, it can be considered to act 
as an equilibrium stage (see above). A transfer process will be to all intents 
and purposes steady over a time interval that is small in comparison with 
the characteristic time. For example, gas diffusion across a packaging film is 
so slow that over a period of an hour or so the change in concentration on 
either side of the film will be so small that the flux is given by equation (4.16) 
rather than the solution to equation (4.17). 

4.6 Flowing systems 

4.6.1 Bulk convection and diffusion 

As noted in the introduction to this chapter, few situations involving mass 
transfer are stagnant. Just as we stir the cup of tea to speed up the rate of 
dissolution and transfer, so many industrial processes involve fluids in mo­
tion, which inter alia enhance the rate of transfer: the liquid surrounding the 
cassettes of sugar beet or the coffee bean from which species are being 
extracted (by diffusion!) is invariably moving. From the discussion in Chap­
ter 3 of convective heat transfer we would expect analogous behaviour in 
the moving fluid insofar as mass transfer is concerned. And it is true that we 
can often usefully visualize mass transfer as occurring through the move­
ment of packets of fluid. Although there are important limits to the quan­
titative analogies that we can draw between the transfer of heat and mass, 
perhaps the single most useful point is that we can deal with both processes 
in terms of a transfer coefficient. 

4.6.2 Flowing systems: film theory 

As noted above, many real situations involve the coupled effects of convec­
tive motion - that is, where molecules are swept along by a moving fluid -
and diffusion. Turbulence and complex geometries make many of these 
situations rather difficult to analyse from first principles; however, it is 
possible to handle many complex problems in ways analogous to those used 
to deal with convective heat transfer. In particular, the simplest model for 
mass transfer is built around the film theory as developed in Chapter 2. In 
this theory it is assumed that all the resistance to mass transfer lies within a 
(more or less) thin boundary layer in the region between the bulk flow and 
its boundary: that is, it is assumed that all the concentration changes occur 
over this region. This is analogous to the assumption made in the treatment 
of heat transfer in Chapter 2 that transfer across the film was by pure 
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conduction. As with heat transfer we expect the film thickness L to vary 
with the operating conditions. The film model thus assumes a concentration 
profile (for transfer from the bulk to the solid boundary) of the form shown 
in Fig. 4.7. 

The concentration profile is given by the theory developed earlier for 
transfer across a film (section 4.4.2): 

(4.7) 

and the flux is given by 

j = ~ (c1 -c2 ) (4.8) 

which, as we saw, can be written 

j = k(c1 -c2 ) (4.9) 

where k (= VI L) is the mass transfer coefficient. 
We would expect the film thickness to depend on a variety of factors 

including the bulk flow velocity (or more likely the Reynolds number) 
and the physical properties of the fluid and the transported species. 
Typical calculated values for the film thickness in transfer to or from a bulk 
fluid to a sphere or gas bubble are around 104m for a gas and 1O-5 m for a 
liquid. 

Phase 1 1 Phase 21 

I Trans er 

C , 

(a) 

c 
Stagnant film 

c, 

(b) Bulk 

Fig. 4.7 The film theory. The interfacial region in each fluid phase (e.g. phase 1) is treated as 
a hypothetical stagnant film. Mass transfer occurs across this film by diffusion; there is no 
resistance to mass transfer in the remaining bulk region, so the concentration there is constant, 

as shown schematically in (b). 
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Values of the mass transfer coefficient k range very widely: from 10-2 to 
1 m S-l in gases and from 10--5 to 10--3 m S-l in liquids. The transfer coefficient 
in a porous medium could be up to a factor of ten smaller still (cf. the 
discussion earlier about effective and molecular diffusion coefficients). The 
stagnant diffusion situation sets a lower bound on the coefficient. 

It is important to realize that the film theory depends on a drastically 
simplified picture, and that there are more realistic and complicated theo­
ries and models available. According to the film theory (equations (4.8) and 
(4.9)) the mass transfer coefficient should be proportional to the diffusion 
coefficient; because of the range and magnitude of the diffusion coefficients 
encountered in practice it is not easy to test this theory, but the evidence 
available suggests that it is not true and that it is more likely that k varies 
with D2/3, as predicted by other more realistic models. 

4.6.3 Dimensionless groups 

In a typical situation we might expect the mass transfer coefficient k for 
forced convection in a given fluid to depend on the following five quantities 
(cf. section 3.2.1): 

L = a characteristic length dimension, e.g. a pipe or sphere diameter (m) 
Vrn = a characteristic mean velocity (ms-l) 
V = the molecular diffusivity (m2 s-l) 
p = the density of the bulk fluid (kg m-3) 

/-l = fluid viscosity (N s m-2) 

In addition, in processes driven by natural convection or density differences 
we should also include: 

g = gravitational acceleration (ms-2) 

dP = the density difference between the phases (kgm-3) 

Note that five independent quantities are needed to describe forced convec­
tion. Dimensionless analysis of the convective transfer situation leads to 

Sh = t(Re,Sc) 

where Sh is the Sherwood number = kLlV; Re is the Reynold number 
= pvll/-l; Sc is the Schmidt number = /-l/pV = v/V. 

We have already met the Sherwood number and commented on its 
similarity to the Nusselt number. The Schmidt number (cf. the Prandtl 
number) involves the ratio of the kinematic viscosity to the diffusivity of 
mass. Like the Prandtl number its value is around unity for most gases, but 
higher and more variable (typically 102-103) for liquids. (For example, Sc "" 
560 and 2250 for dissolved oxygen and sucrose in water respectively.) 

When a flow is developing - as in laminar flow along a pipe - the mass 
transfer coefficient might also depend on a second length dimension such as 
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the distance along the pipe, x. In this case, the correlation will also include 
a dependence on xl L. 

The treatment of natural convection adds an additional dimensionless 
group, the Grashof number: 

Gr= pApgV 
Jl2 

4.6.4 Some results and correlations 

Not surprisingly, many of the correlations developed for the simpler situa­
tions in mass transfer bear a striking resemblence to those for heat transfer. 

Flow in circular pipes. Application of the film model (section 3.2.2) to 
mass transfer between a flowing fluid and a pipe wall leads directly, for 
turbulent flow, to 

Sh = 0.04Re3/4 (4.18) 

The j-factor method (section 3.2.4), also for turbulent flows, assumes that 
the factors jD and jH for mass and heat transfer are equal and, in particular, 
equal to c/2, where Cf is the friction factor. Thus, while jH is defined by 
equation (3.17) (= St PrV3 ), here, for dilute systems, the analogous mass 
transfer equivalent, jD' is given by 

jD = (v: )Sc 2/3 

(where klvrn is a modified Stanton number). Thus 

jD = (~)SC213 = .s.. (4.19) 
Vrn 2 

SettingjD = jH and using the Dittus-Boelter equation for heat transfer (see 
section 3.2.5) gives its equivalent for mass transfer: 

Sh = 0.023Reo.8Sc°.33 (4.20) 

The same observations about the reliability and accuracy of these correla­
tions can be made as were noted in the earlier chapter on heat transfer. 

For laminar flow in a circular pipe a typical correlation has the form 

Sh = 1.61 ( ~ lResc r (4.21) 

which, for large xld ~ kxlt) = 3.65. The term in xld allows for the develop­
ment of the flow field along the pipe towards the fully developed parabolic 
velocity profile (see Chapter 2). This is very similar to equation (3.19). 
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Note that in laminar flow the mass transfer coefficient increases with 
Rel /3, while in turbulent flow the dependence is much stronger, the mass 
transfer coefficient varying with Reo.8• The equation corresponding to (4.21) 
for laminar flow over a flat plate is 

~ = O.332( x~p rs (:v J.333 (4.22) 

In equations (4.21) and (4.22) the mass transfer coefficient is an average 
over the pipe length x; it should be used in conjunction with a logarithmic 
mean driving force. 

Spheres, pellets and bubbles. Many situations of industrial importance 
involve transfer to or from solid, liquid or gaseous entities with a surround­
ing phase. Often, we can approximate these 'objects' by regular geometrical 
shapes such as spheres or cylinders (the assumption will be a fair one for 
peas, but less good for potatoes, which should not be seen as a modeller's 
argument for identical food products). 

We must distinguish between transfer inside and outside the object. For 
example, the extraction of coffee from ground beans in a packed bed 
involves at least two distinct mass transfer steps: first, transport of the 
extracted solutes through the bean to the surface; second, transport away 
from the bean and into the bulk, moving fluid. Usually, these processes will 
be dominated by different mechanisms and will occur at very different rates 
(Fig. 4.8). Movement within a porous or semiporous body, as in many solidi 
liquid extractions, or in adsorption processes, is normally dominated by 
(slow) diffusion; transfer away from the solid into the bulk liquid will 

Internal 

External 

1 Rigid interface 2 Mobile interface 

Diffusion 

Diffusion and 
convection 

Mechanisms 

2 

Diffusion and 
convection 

Depends on 
conditions 

Fig. 4.8 Mass transfer from a sphere. 
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typically involve convective transfer. If the 'object' is a gas bubble or liqui6 
droplet, internal transfer will involve convection, if the contents are in 
motion. Proteins or surfactants adsorbed on the fluid/fluid interface may 
add an additional barrier to transfer. 

The transfer rate will also depend on the relative proximity of other 
objects, as these can seriously modify the flow and concentration fields. In 
other words, the rate of mass transfer from a single bubble of diameter d 
will not be the same as that from the same-sized bubble rising in a swarm; 
transfer from a sphere in an infinite fluid is different from transfer from the 
same sphere in a packed bed. 

A few examples of some typical correlations for transfer from solid, 
liquid and gaseous spheres are given below. In these correlations the char­
acteristic length is the appropriate sphere diameter d. 

External transfer coefficient 

Rigid interface 
Single particles: 

Low Re, Sh = 2 as Re ~ 0 

More generally, Sh = 2 + bRe05 Sc°.33 

For larger particles at low Re: 

k = O.3(g~pV2/vpr 
Packed bed of particles: 

jD = 1.17 Re-M15 

(4.14) 

(4.23) 

(4.24) 

(4.25) 

where Re is defined in terms of the particle diameter (or the diameter of the 
equivalent sphere) and the superficial velocity in the bed. 

Mobile interface 

(4.26) 

Internal transfer coefficient 

Rigid sphere. Transfer is governed by the unsteady mass transfer equa­
tion (4.17). An approximate solution to the problem gives for short transfer 
times, i.e. early in the transfer process: 

Sh= 10 (4.27) 
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Mobile interface. Equation (4.26) also holds for this case. In this equa­
tion p and v are properties of the external phase; the value of 1) depends on 
the phase considered: that is, when calculating the external coefficient, 1) 

should correspond to diffusion of the solute in the external phase. When the 
internal coefficient is being computed, the appropriate value of 1) is that for 
the solute in the internal phase. 

EXAMPLE 4.4 

50 kg of sugar crystals have been left in the bottom of a cylindrical vessel, 
and it is decided to dissolve them by recirculating a large volume (5m3) of 
water through the bed of crystals. The superficial velocity of the liquid 
through the bed is 0.5ms-l. Assume that the crystals have an initial 
uniform equivalent diameter of 1 mm. The rate of mass transfer per unit 
area of crystal surface can be assumed to be given by 

kL {660-c) 

where c is the instantaneous concentration of sugar in solution and kL is 
the liquid-side transfer coefficient. 

How long will it take to dissolve the crystals? 
Assume: 

p(crystals) = 1200kgrn-3 
p = 1000kgrn-s 
~ = 1 mNsrn-2 

1)=5x 1(FIOm2 s-1 

Hence Re = 500 and Sc = 2000, based on the initial crystal size. 
From equations (4.19) and (4.25), 

jo = kSc2l3/vm = 1.17Re-<>·415 = 0.089 

and 

k= 0.00028 m S-1 

Now consider a single crystal, diameter Dc; then at any moment 

1200 d (1[03 /6) = -k 1[02 (660 - c) 
dt c L c 

Now the sugar solution is always very dilute, so we can assume c« 660, 
and thus 

d(Oc) = -3.3k 
dt L 

Integrating: 
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Dc(t) = Dc (0) - 3.3kLt 

and the time for complete dissolution is t = 0.3Dc(0)/ku where Dc(O) is the 
initial particle diameter. Hence t = 1.07s. You should consider whether 
basing the calculation of the mass transfer coefficient on the initial con­
ditions leads to an under- or overestimate of the dissolution time. 

4.6.5 Bulk flow and diffusion: concentration polarization 

In some situations the opposing effects of bulk flow and diffusion give rise 
to a phenomenon known as concentration polarization. As an example of 
this problem we discuss a simple model of a very important operation: the 
cross-flow ultrafilter. In this device (Fig. 4.9), which is frequently used for 
concentration or selective separation of macromolecules, process fluid is 
passed over a filtration membrane; as the pressure is higher in the feed side, 
there is a flow of permeate through the membrane, so that the feed-side 
solution (or retentate) leaving the membrane system will have a higher 
concentration of species unable to pass through the membrane. 

Now consider what happens to species - such as a protein - unable to pass 
through the membrane. We suppose that the species concentration in the 
bulk stream is cb; suppose also that the flowrate across the membrane is high 
in comparison to the permeate flow, so that the bulk concentration remains 
effectively constant in the membrane module. Recalling the basic fluid 
mechanics and heat transfer discussed above in Chapters 2 and 3, we 
assume that the stream flowing across the membrane comprises a well­
mixed turbulent core and a thin boundary layer (Fig. 4.10). We assume that 
the concentration changes occur across the thin film. The flowrate of perme­
ate is Q and the flux J of permeate is therefore QIA, where A is the 
membrane area; suppose that none of the protein species is transported 
across the membrane. 

If we consider the membrane as a porous body, then the permeate flux 
through it may reasonably be expected to follow Darcy's law (section 2.3.3): 

(4.28) 

Bulk flow Reten 
Feed . ----- -----.. --'" 

tate 

__ Membrane 
."'~ ,r. , 

Penneate 

Fig. 4.9 Cross-flow filtration. 
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mean velocity, vm ; concentration, C; 
Bulk flow ~ 

" r (~~L-.J .J ~ ( r z 

z =l------C; ¢ t 

f---- r---- t---
I I 

1 perme~te flux, 

Concentration, c(z) 

Fig, 4.10 Flows and concentration profile near the membrane. 

where AP is the pressure drop and W m is the hydraulic resistance of the 
membrane. As the discussion in Chapter 2 shows, this parameter depends 
on the membrane pore size distribution and void age fraction, as well as on 
the viscosity of the permeate, equation (2.50). 

The permeate, flowing at right angles to the bulk flow, transports dis­
solved species within it towards the membrane. If the protein concentration 
is c at some point in the boundary layer the bulk flux of the protein towards 
the membrane because of the permeate flow will thus be lc. However, the 
protein cannot pass through the membrane and will tend to accumulate in 
the boundary film; because the concentration therefore increases towards 
the membrane surface, protein, following Fick's law, will tend to diffuse 
back towards the bulk. Thus if a steady state is established and a steady 
concentration profile is established within the boundary layer the fact that 
there is no net transfer towards the membrane implies that the bulk flux and 
the back, diffusional flux (= -Z'dc/dz, by Fick's law, equation (4.6» must be 
equal: 

( ) Z'dc 
Jc z =---

dz 
(4.29) 

Integrating, and using the boundary conditions that c = Cb at the edge of the 
boundary layer, z = I and = Cm' say, at the membrane surface, z = 0 gives 

(4.30) 

or 

(4.31) 
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which relates the concentration at the surface to the permeate flux (Fig. 
4.11). 

Note that the higher the diffusion coefficient V and the thinner the 
boundary layer thickness I, the smaller is em for a given J. This results from 
the balance between the sweeping effect of the permeate flux J and the 
back-diffusional flow, which tends to reduce the concentration at the mem­
brane. We see that the concentration necessarily increases towards the 
membrane surface: a phenomenon called concentration polarization. We 
shall also see below that it can have significant consequences for the per­
formance of a cross-flow membrane. 

In practice it would be extremely difficult to measure the boundary layer 
thickness (if indeed it really exists other than in the model-maker's mind), 
and it is common to lump the the two terms V and I into one - a mass 
transfer coefficient k = vII - to give 

J = kln( ~: J (4.32) 

Note that here the mean driving force over the boundary layer is the log­
mean concentration difference. 

Now consider one of the predicted consequences of concentration polari­
zation. As we have seen, the theory predicts an inevitable increase in solute 
concentration towards the membrane. For a typical solute, such as a pro­
tein, there will be an upper limit (set by its solubility) to em. We write Cs to 
denote this saturation concentration; we further assume that the protein 
precipitates as a gel at this concentration, so that a gel layer forms at the 
membrane surface whenever em = es• From equation (4.30) we see therefore 
that there must be an upper limit to the permeate flux given by 

Gel layer 

Boundary layer 
region 

Bulk 

Distance from membrane, Z • 

Fig. 4.11 Concentration profile near the membrane. 
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1= kln( ~:) = constant (4.33) 

This may seem incompatible with the fluid mechanics, equation (4.28). 
However, one theory explains how the two phenomena can be reconciled 
by accepting that the protein layer itself offers resistance to the passage of 
permeate, so that instead of equation (4.28) we have 

1= M' 
Wm+Wg 

(4.34) 

where Wg is the additional resistance due to the gel layer, whose value 
(directly depending on the protein gel thickness) is such that equations 
(4.33) and (4.34) are satisfied simultaneously. If the pressure drop is in­
creased - as the operator would be likely to do in order to increase the flux 
- there will be a brief increase in flux followed by a new steady state as the 
the protein gel layer builds up further resistance (Fig. 4.12). 

The phenomenon whereby the permeate flux becomes independent of 
the applied pressure drop is an important and frustrating feature of polar­
ized membranes. 

4.7 Interphase transfer 

4.7.1 Overall resistances and coefficients 

As we have seen, many mass transfer operations involve more than one 
transfer step. First, we consider how a process involving a series of transfer 

Pressure drop across membrane • 

Fig. 4.12 Typical fiux-pressure-drop curve. 
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steps can be reduced to a simpler single-stage process. Then we discuss the 
general, related problem of identifying the rate-limiting step. The first 
problem is parallel to the classic heat transfer problem of producing an 
overall heat transfer coefficient to describe a process involving more than 
one identifiable resistance to transfer (for example, in a heat exchanger, 
conductive transfer through the tube wall, through a fouling layer, and the 
convective transfer within the process fluid). In dealing with such heat 
transfer problems and some - but by no means all- mass transfer problems 
it can be helpful to consider an electrical analogy involving resistances in 
series. For example, the two-stage process in Fig. 4.13 illustrates a simple 
circuit, where the current flow I is driven by potential (voltage) differences 
Vl - V2 and V2 - V3 across resistances Rl and R2. The current flow is given by 

I=~(~-V2) 
Rl 

(4.35a) 

I=.l..(V2-V;) 
R2 

(4.35b) 

As indicated in Fig. 4.13, we could represent heat or mass transfer processes 
in the same way. Thus the mass flux j across the transfer resistances would 
be given by 

j = ~(Cl -c2 ) = kt(cl -c2 ) 
Rl 

j = .l.. (cz - c3 ) = k2 (cz - c3 ) 
R2 

Rl 

V1• V2• V3 : voltage 
R1.R2 : resistance 
I : current 

I=V1-V2 = V2 -V3 

Rl R2 

1=(V1-V3) 

(a) (R1 + R2) 

(4.36a) 

(4.36b) 

Fig. 4.13 Resistances in series: (a) electrical resistances; (b) heat transfer; (c) mass transfer. 
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where ki and k2 are the mass transfer coefficients (that is, reciprocal 
resistances) for the two stages. 

The current flow indicated in Fig. 4.13a is readily found in terms of the 
overall voltage drop VI - V3 by mUltiplying equations (4.35a) and (4.35b ) by 
RI and R2 respectively and adding the two equations: 

I( RI + R2) = ~ - V; 
or 

(4.37) 

where the overall resistance R = (RI + R2)' 
Carrying out the same operations for the hypothetical mass transfer 

process: 

or 

j=(~+~J-I(CI-C3)=KL(CI -c3 ) 

Is k2 
where the overall mass transfer coefficient KL is defined by 

1 1 1 -=-+­
KL ki k2 

(4.38) 

(4.39) 

Note in particular that just as R ~ RI when R2 is small, so does K ~ ki when 
k2 is large (that is, the mass transfer resistance associated with step 2 is 
small), and KL ~ k2 when ki is large. 

The result corresponding to equation (4.39) for the overall heat transfer 
coefficient U in terms of the individual coefficients hI and h2 is 

111 -=-+- (4.40) 
U ~ h2 

While the procedure adopted above is correct in principle, it is not so 
easily applied to mass transfer problems because these often involve 
changes of phase (between water and a solvent, for example) between the 
different resistances. Because of the phase changes, solubility differences 
(see section 4.4.4 above) therefore imply concentration changes even at 
equilibrium in the region of the phase interface. We discuss that problem, 
and its solution summarized in Fig. 4.13c, in the following section. 

4.7.2 Interphase transfer: the two-film theory 

This theory, developed by Whitman, considers a solute being transferred 
across the interface between two separate adjacent phases. These could be 
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two immiscible liquids, a liquid and a gas (see section 4.8 below), or a gas 
and a membrane (see above). In each case it is assumed that the resistance 
to transfer in each phase lies in a film parallel to the plane interface. The 
concentration profile of the solute in the phases is shown in Fig. 4.14; 
because the solute does not have the same solubility in the two phases 
the interfacial concentrations are different. The diffusivity of the solute 
may also be different in the two phases, as may the film thicknesses L j and 
L z• 

The fluxes (that is, transfer rate per unit area of interface) in each phase 
are given by 

(4.41) 

and 

jz = kz(cZi -cz) (4.42) 

respectively. As in the previous section we wish to derive an expression for 
the flux in terms of the overall driving force (determined by Cj and cz). 

At steady state the fluxes in the two phases must be equal. In order to 
relate the interfacial concentrations we make another crucial assumption, 
that the concentrations at the interface are at equilibrium, so that 

(4.43) 

where m is the partition (solubility) coefficient between the two phases. 
Thus, as in the previous section, we can write for the flux j, which is the 

same in the two phases 

Interface 

Fig. 4.14 The two-film theory. 
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j -k- mCli -C2 
2 

j C2 
--=Cl · -­
mk2 1 m 

Adding equations (4.44) and (4.46) gives 

j=K{Cl-~) 
where the overall transfer coefficient Kl is given by 

1 1 1 
-=-+--
Kl kl mk2 

(4.44) 

(4.45) 

(4.46) 

(4.47) 

(4.48) 

Note the difference between this equation and equation (4.39): in particular 
note that the solubility m appears in the expression for the overall 
coefficient. Also, note that when kl «mk2' Kl ---? kl; when kl »mk2' Kl ---? 

mk2• 

It is also important to note that the overall driving force is not (cl - c2) but 
(cl - czlm). The reason for this is that the solubilities in the two phases are 
different and are therefore strictly incommensurate (that is, writing Cl - C2 is 
like writing 'apples minus oranges'). We can write the driving force as (cl -

ct), where cT (= czlm) is the concentration in phase 1 that would exist if it 
were in equilibrium with c2• 

It will also be seen that equation (4.45) correctly represents what happens 
when equilibrium between the two phases is achieved. Under these condi­
tions there is no net flux: the driving force is zero as then C2 = mCl' or Cl = cT. 

Thus the overall form of the two-film representation is 

(4.49) 

where Kl is given by equation (4.48) and the individual transfer coefficients 
are given by kl = "D/Ll and k2 = "DzlL2 respectively. 

(It is also possible to derive the flux equation in terms of a driving force 
based on the concentration in the second phase: C2 and mCl or c!. Depending 
on which procedure we follow we call the appropriate overall transfer 
coefficient Kl or K2.) 
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EXAMPLE 4.5 

Consider the solvent extraction of rape seed oil from a single seed, 
assumed diameter 1 cm, into a large pool of stagnant solvent. 

Assume the following data: 
Voidage fraction of seed = 0.5 
Effective diffusion coefficient of oil in the seed, 'De = 2.5 X 10-t°rrt2s-t 
Diffusion coefficient of the oil in the solvent, 'D = 1 (Fg rrt2 to t 
Partition coefficient between solvent and seed liquid, m = 20 
Mass transfer coefficients: 
Assume the internal coefficient is given by Sh = ktdIDe = 10 (equation 

(4.27)) 
The external coefficient is given by Sh = k~ID = 2 (equation (4.14)) 

(1) Calculate the overall mass transfer coefficient. 
(2) Calculate the rate of transfer of oil from a seed with initial oil content 
10gl-t. How much oil would be extracted in (a) 1 h, (b) 10h? 

First we calculate the internal and external transfer coefficients k1 and k2. 
The expression quoted for the internal coefficient is a useful approximation 
for the early stages of non-steady diffusion through a sphere (see section 
4.4.3). 

Internal coefficient 
From k1 cl/"De = 1 0 we find that k1 = 2.5 x 10-7 m S-l. 

External coefficient 
From k2d/'D = 2 we find k2 = 2 x 10-7 m S-l and mk2 = 4 x 10-6 m S-l. 

Thus from equation (4.48), the overall coefficient K1 is 

K1 =(~+_1_)-1 =(107 + 106 )-1 =2.35x10-7ms-1 
k1 mk2 2.5 4 

The rate of mass transfer at any moment is given by 

J = (Surface area of seed) x j 

where the flux j is given by equation (4.47); thus 

J=2.35X10-7 1t10-4(C1 - ~) 
The initial rate of transfer of oil from the seed is thus (per seed) 

= 7.4 x 10-10 kgs-1 

If we assume that the reservoir of solvent is large, so that its change in 
concentration is negligible, the rate of change in oil content c1 of the seed 
is given by 
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0.5( 1 0-2
) dC1 = -2.35 x 1 0-7 C 

6 dt 1 

That is, 

dC1 = -2.82 x 1 0-4 c 
dt 1 

Integrating, with initial condition c1 = 10 kg m-3 at t = 0: 

c1 =10 exp(-2.82x10-4t) 

Thus in 1 hand 10 h the oil concentration in the seed will have fallen to 
3.6 kg m-3 and 0.0004 kg m-3 respectively. 

4.7.3 Limiting resistances 

From both a practical and theoretical point of view it is interesting to know 
which, if any, of the mass transfer resistances is dominant or limiting. In 
Example 4.5 we can see that the transfer coefficient for the diffusion in the 
seed (k1) is 16 times smaller than the external contribution (mk2), so that the 
overall coefficient K is actually not very different from kl (2.35 x 10-7 as 
opposed to 2.5 x 1O-7 ms- j ). From a practical point of view this means 
that if we wish to increase the rate of transfer we should focus on the 
internal diffusional process rather than external transfer. For example, 
reducing the seed diameter by grinding would give a significant improve­
ment in the rate of transfer, whereas agitating the solvent surrounding the 
seed would have only a minor effect. It also implies (cf. Chapter 3) that the 
concentration gradients inside the seed are much greater than those outside 
(Fig. 4.15). 

In this situation we say that internal transfer controls or is limiting. 
Conversely, if mk2 « k j , K j is approximately equal to mk2' in which case 
external transfer is limiting. 

4.8 Aeration 

There are many very important practical operations involving transfer of a 
solute from a gaseous phase to a liquid, or vice versa. In particular, oxygen 
transfer from an injected air jet or stream of bubbles is a key operation in 
fermentation processes. We can develop expressions for the rate of oxygen 
transfer using the same procedure as in the sections above. 

We assume that there are only two significant resistances to mass trans­
fer: on the gas side, within the bubble or jet; in the liquid between the 
bubble-liquid interface and the liquid bulk. Again, we work in terms of the 
transfer rate per unit area of interface, which for simplicity is represented as 
a plane in Fig. 4.16 showing the oxygen concentration profiles. As is usual, 
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Fig. 4.16 Mass transfer from a bubble to a liquid. 
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partial pressure P is used as the measure of concentration in the gas phase. 
The dissolved oxygen concentration is denoted c. 

Thus, as in section 4.7.2, the oxygen fluxes in the two phases are written: 

(4.50) 

and 

(4.51) 

where kG and kL are the gas-side and liquid-side film mass transfer 
coefficients. 

The solubility or partition law for a gas such as oxygen in aqueous 
solution can be represented by Henry's law (cf. equation (4.43»: 

Pi = HCi (4.52) 

where H is Henry's constant. At this stage we should note that oxygen is 
only sparingly soluble in aqueous solution; at atmospheric temperature and 
pressure its solubility in equilibrium with air (that is, with a partial pres­
sure of 0.21atm) is around 10mgl-1, so that for oxygen H is around 
0.021 atmlmg-1. The value of H for a more soluble gas such as carbon 
dioxide is much smaller. 

Assuming eqUilibrium at the bubble-liquid interface, that is, 

(4.53) 

and following the same algebraic procedure as in section 4.7.2, in particular 
substituting pi H for Ci in equation (4.51), the steady flux of oxygen can thus 
be written in terms of an overall mass transfer and concentration driving 
force as 

(4.54) 

where the overall mass transfer coefficient is given by 

K _(~+_1 )-1 
L - kL HkG 

(4.55) 

and c* = p/H; that is, the concentration which would exist in the liquid if it 
were in equilibrium with the oxygen in the air bubbles. Typically, therefore, 
c* is around lOmgl-1. If the liquid phase is saturated then, of course, there 
is no net transfer. (If the liquid were sparged with, say, pure nitrogen so that 
the partial pressure of oxygen in the gas phase p = 0, equation (4.54) would 
describe the de-oxygenation of the liquid.) 

Alternatively, instead of substituting for Ci in equation (4.51), we could 
substitute Pi by HCi in equation (4.50), to arrive at an equation for the flux 
with partial pressure as the driving force: 
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(4.56) 

(4.57) 

A little algebraic manipulation shows that these two methods of represen­
tation are formally identical, although the first, in terms of the liquid-side 
properties (that is, with concentration as the driving force) is more con­
venient and common. 

The reason for this in the particular case of oxygen transfer to aqueous 
solutions is that typically kL is approximately 1O-5-10-4ms-\ while kG is 
approximately 9 x lO-4 mol cm-2 s-1 atm-1 (!) and, in this set of units, His 
approximately 8 x 105 atm cm3 mol-I, so that HkG is approximately 7ms-1• 

Thus we see that kGH » kL: transfer is controlled by the liquid-side 
behaviour and to a very good degree of accuracy KL = kv It must be 
emphasized that the same approximation may not be true with a more 
soluble gas such as carbon dioxide. 

For oxygen transfer, therefore, we can write 

j = kL (e* -e) (4.58) 

where kL is the liquid-side film coefficient. 
In a fermenter or aeration vessel of volume V the total interfacial area for 

transfer is a V, where a is the specific interfacial area; the oxygen transfer 
rate per unit volume of vessel is 

Q = kLa( e* -e) (4.59) 

Both kL and a depend on a range of factors, such as the physical properties 
of the liquid, the sparging and mixing conditions, and rather than correlate 
each parameter separately it is usual to use kLa as if it were a single 
parameter. Values of kLa for stirred sparged vessels range from 
10-5 to 10-2 s-\ but acceptable values are at the top end of this range. There 
are many correlations available for kLa in terms of geometrical and operat­
ing parameters such as air flowrate and specific power input to the vessel. A 
typical correlation for a stirred vessel (see Chapter 10) with coalescing 
bubbles is kLa = 2.6 x 1O-2(PIV)o.4U0.5 (S-l); like many other correlations this 
is restricted to a specific range of vessel sizes and water-like liquids, is not 
properly dimensionless, and so must be used with caution. 

EXAMPLE 4.6 

A liquid food contains 20mgl-1 of a volatile sparingly soluble compound 
responsible for an off-flavour. It is proposed to reduce the level of the 
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flavour to an acceptable level of 0.01 mgl-1 by sparging a weI/-mixed tank 
of the liquid with a large excess of air. Under these conditions, kLa = 
0.005~1. It can be assumed that the liquid is saturated with oxygen. How 
long will it take to reduce the off-flavour to the desired value? 

The rate of transfer of the flavour compound to the gas phase is, per unit 
volume: 

r=kLa(c-c*) 

where c is the dissolved concentration and c* its equilibrium concentration 
= p/H, where p is the partial pressure in the gas phase and H is Henry's 
constant. 

If a large excess of air is used, p - 0 and c* - O. 
Thus a mass balance on the compound in the liquid phase gives: 

dc 
-=-kLac 
dt 

that is, 

c = c(O)exp( -kL at) 

where c(0) is the initial concentration (= 20 mg 1-1). Substituting for c, c(O) 
and kLa gives t= 1520s, that is 25min. 

4.9 Mass transfer limitations 

We now consider the situation where mass transfer and reaction occur in 
series: such as when a substrate like oxygen or glucose is transported to a 
microorganism, oxygen diffuses across a packaging layer to be taken up by 
a foodstuff in a spoiling reaction, or substrate is transferred to an enzyme 
immobilized in a porous matrix. 

There are two ways of viewing the possible consequences of the interac­
tion between transport and reaction. The reaction may speed up transfer by 
removing the transported species as it arrives, thus effectively increasing 
the driving force (Fig. 4.17): this is what was assumed in the example of 
glucose transfer to a microorganism (section 4.4.3). Alternatively, the trans­
port process may not be able to deliver the reagent at anything like the rate 
at which it could potentially be reacted, so that the rate of reaction is 
controlled by the transfer process itself. In the following section we consider 
one important example to illustrate the phenomenon. 

4.9.1 Oxygen transfer in a fermenter 

We consider here the important question of oxygen transfer and oxygen 
limitation in a continuous fermenter (see Chapter 8 for the background to 
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Concentration 
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Reaction occurs here 

c 

I No reaction 

jl = k(c- c1) 

II Reaction removes solute 
so that c2 < c1 

since ~I = k(c- c2) 

then ~I > ~ 

Fig. 4.17 Enhanced mass transfer by mass reaction at boundary. 
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this problem). Consider unit volume of fermenter. At steady state the rate 
of oxygen transport from the air to the liquid (= Q) must exactly balance the 
rate of consumption or demand (R) by the growing organisms, which have 
concentration x kgm-3 in the fermenter. Assuming that the organism growth 
follows Monod kinetics (equation (8.13)) and that (dissolved) oxygen with 
concentration c is the growth limiting substrate, the cell growth rate per unit 
volume of fermenter is thus 

r = Ilmaxcx (4.60) 
x Ko +c 

where Ko is the Monod constant for oxygen. Further, assuming a constant 
yield coefficient Yo for cell growth in oxygen, the oxygen consumption rate 
necessary to sustain cell growth at rx must be 

R =!.L = Ilmaxcx (4.61) 
Yo Yo(Ko +c) 

Thus, using equations (4.58) and (4.60) and the fact that at steady state 
Q=R: 

kL a( c * -c) = Ilmaxxc 
Yo(Ko +c) 

(4.62) 

The oxygen concentration c in the fermenter is the solution to equation 
(4.62) for given kLa, c* and growth kinetic parameters. If the solution to 
equation (4.62) has c close to c* and >Ko, the rate of growth can be high, as 
under these conditions the specific growth rate 11 tends to Ilmax' However, if 
the solution to the equation is close to c = 0, microbial growth will be 
seriously slowed because of the limited rate of oxygen transfer. The solution 
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to equation (4.62) is represented graphically in Fig. 4.18. The intersections 
(a, b, etc.) between the straight lines representing oxygen supply, Q, and the 
curves for the consumption rate, R, are the solution points, and c(1), c(2) 
etc. the corresponding oxygen concentrations. 

Four situations are represented on the figure: 

Oxygen Oxygen Da Oxygen 
supply demand concentration 

a Qzlow Rl high High Low 
b Qzlow Rzlow Quite high Moderate/low 
c Ql high Rl high Moderate Moderate 
d Ql high Rzlow Low High 

An approximate idea of the importance or otherwise of transfer limitations 
can be obtained by comparing the maximum possible values of Q and R. 
The maximum value of Q, the oxygen transfer rate, occurs when the driving 
force is also maximum, i.e. c ~ 0, and is 

(4.63) 

The maximum demand or consumption rate of oxygen to sustain cell 
growth occurs when they are growing logarithmically, i.e. at Ilm.x> when c » 
Ko: 

I 
I 

, t 
c (1) c (2) c (3) 

Dissolved oxygen concentration, C 

Fig. 4.18 The oxygen balance. 
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l\n = ~maxX 
ax Yo 

(4.64) 

If the ratio Rma/Qmax « 1, there are unlikely to be problems due to oxygen 
transfer; however, if Rma/Qmax » 1, then oxygen transfer limitations are 
indicated. The ratio Rma/Qmax (= ~maxX/kLac*YO) is called the Damkohler 
number, Da, for which qualitative values are given in the table above. 

or 

To demonstrate this, equation (4.62) can be written 

( c) Da( c / c *) 
1 - ~ = (Ko / c *) + (c / c *) 

1- 1= Dal 
K+I 

Typically, K(= KoIc*) - 0.1; substituting this value and rearranging: 

f2 + (Da - 0.9)1 - 0.1 = 0 

(4.65) 

(4.66) 

For large Da, the solution to equation (4.66) is 1 = c/c* '" 0, so that the cell 
growth rate ~ (equation (4.60» is small. For small Da, the solution to 
equation (4.66) is I'" 1, so that ~ '" ~maX" 

EXAMPLE 4.7 

Microbial cells are to be grown in continuous culture such that the specific 
growth rate ~ = O.1Sf/1. The maximum specific growth rate for the organ­
ism is O.2f/1. What cell concentration would be achieved with kLa = 
O.OOOSs-t, if cell growth followed Monod kinetics under oxygen limitation 
with Ko = O. 1, and the yield coefficient Yo = 1 kg cell/kg oxygen consumed? 
Assume all other nutrients are in large excess and that c* = 10mgl-1. 

At steady state: 

so that 

Also 

II xc 
kL a( c * -c) = t"'max 

Yo(Ko +c) 

kLaYo(c * -c)(Ko + c) x = -..::..----''-'-----'-''---''---'-
~maxc 

or 

(4.67) 
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Hence c = 0.3 mg 1-1 ; then substituting for the known parameters, x = 
116.4 kg m-3 . Under these conditions Da » 1. 

Note that a lower value for kLa would lead to lower c and thus to a lower 
cell concentration at the same specific growth rate. 

A final example illustrates the application of the same reasoning to another 
biological situation. 

EXAMPLE 4.8 

A biosensor for the in-line measurement of glucose concentrations con­
sists of an ultra-thin film of enzyme immobilized onto a flat surface. The 
electrical output from the biosensor is directly proportional to the rate of 
enzymatic reaction of glucose on the sensor surface, which is given by 

keoc r=---
Km+ c 

In this equation r is the rate of reaction per unit area of biosensor surface; 
c is the glucose concentration - assumed uniform - at the enzyme film; eo 
is the enzyme concentration. 

Under the process conditions where the biosensor is used the rate of 
mass transfer of glucose to the surface is given by kdcb - c), where cb is 
the bulk glucose concentration, which it is hoped to measure. 

The parameters have the following values: 

keo = 5 x 10-4 kg glucose m-2 s-1 
Km = 0.01 kgm-3 
kL = 2.5 x 10-4ms-1 

(a) What is the Damk6hler number appropriate to this situation? 
(b) The biosensor is claimed to measure glucose concentrations from 
50 kg",3 down to O. 1 kg ",3, and it is claimed that high accuracy can be 
obtained. Is this true? What would be the observed glucose concentration 
(i.e. c) under these conditions? 

At steady state, per unit area of biosensor, the flux of glucose towards the 
sensor surface = rate of reaction on the surface; that is, 

kL(Cb - c) = keoc (4.68) 
Km+ c 

Hence Da = max reaction rate/max transfer rate = keo/ kL Ct, 
Thus when Ct, = 50 kg m-3 , Da = 1/25: there should be no serious transfer 

limitations. However, when cb = 0.1 kg m-3 , Da = 20: thus expect serious 
limitations, i.e. c < Ct,. 



CONCLUSIONS 193 

The concentration c at the sensor is calculated as follows. Rearranging 
the glucose balance equation (4.68) and substituting for kla etc. gives 

c2 + (2.01- cb)c - 0.01cb = 0 

with solution c= 47.99 kg m-3 , when c;, = 50kgm-3 

c = 0.0052 kg m-3 , when c;, = 0.1 kg m-3 

We conclude that the accuracy of the biosensor is fair in the first case (at 
higher bulk concentrations), but very poor at lower bulk concentrations 
where there are very severe transfer limitations, resulting in serious under­
estimation of the measured concentration. 

These examples illustrate how the physics of a process - in this case, the rate 
of mass transfer of a key nutrient - can determine the apparent kinetic and 
growth behaviour. The result can be generalized to many other important 
situations: in particular, ones involving immobilized enzymes and cells, 
where diffusional limitations on the rate of transfer can seriously constrain 
behaviour. 

Conclusions 

This discussion of some of the elements of mass transfer is no more than an 
introduction to a vast and hugely important subject. Here, we have only 
dealt with rather simple processes where concentration differences are the 
main driving force; we have dealt essentially with single rather than 
multicomponent transfer processes (and it should not be assumed that the 
effects of other solute transfers are merely additive); we have not touched 
on the very important situations, such as drying and the like, where heat and 
mass transfer are coupled. Some suggestions for further reading and study 
are given below. 

The processes of heat and mass transfer will have been seen to have much 
in common, despite the additional complications inherent in mass transfer 
operations. There is much in common between the processes of thermal 
diffusion (i.e. conduction) and mass diffusion, and the basic equations 
(Fourier's and Fick's laws respectively) are mathematically identical, so 
that solutions to many conductive heat transfer problems can be used, with 
the appropriate change of variable, for the equivalent mass transfer prob­
lem. Although these problems can generally be formulated in terms of an 
equivalent heat or mass transfer coefficient rather than a diffusion coeffi­
cient, this normally has little advantage for solving transient problems since 
it results in a time-varying transfer coefficient. 

As soon as interphase transfer is considered (such as in solvent extraction 
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or solute extraction from solids or oxygen transfer between air bubbles and 
a solution) the problems become more complex. Convective transfer (in 
which the Schmidt number plays a similar role to the Prandtl number in 
heat transfer) is also an important mechanism in mass transfer - convection 
is invariably much faster than pure diffusion. You should understand the 
principles of and analogies, in so far as they exist, between the two pro­
cesses. However, important differences between heat and mass transfer 
emerge. In both cases, the driving force for transfer is the deviation from 
equilibrium. In heat transfer, equilibrium always corresponds to equal tem­
peratures in the two phases. In mass transfer problems, equilibrium does 
not imply equal concentrations in the phases, since solubilities are not the 
same. A consequence is that whereas in heat transfer problems the overall 
transfer process can always be defined in terms of an overall heat transfer 
coefficient and an overall temperature difference, the equivalent mass 
transfer rate is proportional to an overall transfer coefficient multiplied by 
an effective driving force. Moreover, whilst the overall heat transfer coeffi­
cient is obtained by summing the individual resistances, the resistance terms 
in the overall mass transfer coefficient include a solubility multiplier. You 
should, after reading this chapter, know the basic principles behind formu­
lating overall mass transfer processes, and understand the meaning of a rate 
limiting process in this type of situation, and understand what it means to 
say that a combined process involving mass transfer and a reaction may be 
mass transfer limited. The other side of the same coin is that a reaction 
(which effectively increases the concentration driving force by removing a 
reagent) can enhance the rate of mass transfer. Most importantly, you 
should understand the implications of finding that transfer in one phase or 
another is rate-limiting, since this is the clue to improving the overall rate. 

It is also noteworthy that some transfer processes are very fast in relation 
to the residence time in the equipment. In this ideal situation, overall 
process yields are determined only by the equilibrium conditions. 
This situation forms the basis of equilibrium stage analyses, which are a 
convenient and powerful means of designing or assessing many transfer 
operations. 
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