
5 Food rheology 
C.D. RIELLY 

Introduction 

Fluids such as air and water have simple flow properties which are not 
functions of the previous process history of the material. Food materials are 
more complex, however, and their flow properties may be strong functions 
of the way in which they have been previously processed. For example, the 
flow behaviour of a yoghurt is a function of the bonding between the 
molecular chains of the protein aggregates which constitute it; if those 
bonds are disrupted by stirring or pumping, the flow properties of the 
material may change. This can be seen clearly by comparing a set and 
stirred yogurt bought from a supermarket and containing the same ingredi­
ents; the set material behaves essentially as a solid, whilst the stirred 
yoghurt has properties more like a liquid. 

This chapter outlines approaches to the study of food rheology, the 
science of flow and deformation of materials. The simple fluids described up 
to now have had viscosities which are not functions of the fluid conditions: 
these are called Newtonian fluids. A series of models exist to describe more 
complicated, non-Newtonian, fluid systems, where the apparent viscosity 
changes with the process history and current conditions of the system. If the 
flow properties of a fluid can be described satisfactorily by such a model, 
then it is possible to carry out the sort of calculations introduced in Chapter 
2, i.e. to predict flow rates, pressure drops and velocity distributions within 
systems. 

Foodstuffs may exhibit non-Newtonian behaviour because they contain 
long-chain molecules, or solid particles, whose interactions depend on the 
rate at which the material is deformed. In some cases, the textures of water­
based food products may be enhanced by addition of a polymer thickener: 
for example, addition of carboxymethyl cellulose (cmc) solutions to fruit 
drinks, or addition of xanthan gum to sauces or soups. These additives 
make the product appear 'thicker', something which in the mind of the 
consumer may be allied to higher concentration or better quality. However, 
they can also cause unacceptable changes to the foodstuff: the presence of 
'wobbliness' caused by a large amount of elasticity, or 'stringiness' caused 
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by having a large extensional viscosity (see section 5.1.5) may detract from 
the visual appearance of the product and its mouthfeel. The choice of these 
additives, from a rheological point of view, is critical to the formulation of 
textured foodstuffs, and one scientific method of determining the effect of 
various food additives on the perceived quality of food materials is to 
measure their flow behaviour in well-defined viscometric tests. In this chap­
ter we shall discuss various concepts of non-Newtonian rheology and the 
engineering methods available to characterize the flow behaviour of com­
plex food materials. Finally, we shall demonstrate how the various non­
Newtonian constitutive equations can be incorporated into the solution of 
some engineering problems in the food processing industries. 

Characterization 

Many food materials have distinct physical properties in addition to their 
nutritional value, and it is often these rheological characteristics that make 
a significant contribution to the overall quality of the product. For example, 
to the consumer, the flow characteristics of tomato sauce pouring from a 
bottle may be as important as the taste; similarly the mouthfeel of a yoghurt 
(determined by its rheological properties) probably contributes as much to 
the pleasure of eating as does the flavour! It is therefore essential to be able 
to characterize the physical characteristics of the food in an exact and 
scientific way. Rheological testing may be carried out to ensure intermedi­
ate or final product quality control during prolonged batch or continuous 
operation (using in-line viscometers, which are accurate and can measure 
some non-Newtonian features of the fluid). It is also important to be able to 
correlate measured rheological parameters against consumer preference, 
allowing suitable choice of viscosity enhancers and giving a better under­
standing of ingredient functionality for new products. In the longer term it 
may be possible to correlate rheological characteristics against organoleptic 
properties determined by a taste panel, thereby producing a continuous and 
reproducible measurement of food texture. 

Engineering processes 

The rheological properties obtained from viscometric tests may be repre­
sented in terms of a constitutive equation (an equation relating material 
properties) describing the relationship between the rate of strain in the fluid 
and the applied shear stress. Solution of the momentum equations (see 
Chapter 2 for a discussion of Newtonian fluid mechanics) for fluid flow 
requires a knowledge of such a constitutive relation and allows prediction 
of the fluid flow behaviour in a number of engineering applications. Once 
foods have been rheologically characterized, then the same fluid mechanics 
approaches may (in principle) be used for non-Newtonian fluids, but using 
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a different form of the constitutive equation relating the shear stress to the 
strain rate. In some cases it may be possible to treat the fluid as a Newtonian 
liquid, but in others this assumption could give seriously misleading predic­
tions. We shall discuss the various forms of non-Newtonian behaviour 
and show which constitutive equations are best suited to model various 
rheological characteristics. Worked examples are used to illustrate use of 
these methods in realistic engineering problems: for example, calculation 
of the pressure drop for flow of a non-Newtonian fluid through a long 
pipeline. 

Shear forces and viscosity 

A fluid in motion can sustain both shear and normal stresses, which are 
determined by the rate of strain and physical properties of the fluid. A 
normal stress is one that acts perpendicular to a hypothetical plane (pres­
sure is an example of an isotropic normal stress), whereas a shear stress 
acts tangentially to a plane. In this chapter we are mainly concerned with 
shear stresses. An example of a simple shear flow is shown in Fig. 5.1: fluid 
is sheared between a fixed lower plate and an upper plate moving at a 
velocity v. 

For this situation, Newton's law offtuid friction relates the shear stress in 
the fluid, 'tyx, to the velocity gradient, dv)dy: 

't yx = )lYyx =)l ddvx =)l~ (5.1) 
y a 

where)l is a coefficient of viscosity, and i'yX is the rate of strain (alternatively 
called the shear rate). In this simple case the rate of strain is equal to the 
velocity gradient dv)dy, and the shear stress acting in the fluid is constant. 
However, in general 'tyx depends on the distance y from the wall: for exam­
ple, in pipe flow (see section 2.3.2), the shear stress increases linearly from 
zero on the pipe centreline to the wall shear stress value. 

The SI units for viscosity are Pa s, or alternatively N s m-2, the shear stress 
is given in Pa or N m-2 and the shear rate is in S-l. Many older texts use 

Plate moving at velocity 

::si2tIG 
Stationary plate 

Fig. 5.1 Simple shear flow between two flat plates. 
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centipoise (cP) as the unit of viscosity, which is often convenient as water 
has a coefficient of viscosity at 25°C of almost exactly 1 cPo To convert to SI 
units (which are used throughout this book) we use 1cP = 0.001 Pas. For 
Newtonian fluids the symbol ~ represents the absolute viscosity; a kin­
ematic viscosity, v = ~/p is also sometimes used in fluid mechanics and has 
units of m2 s-1• 

Steffe (1992) gives some examples of the wide range of viscosities cov­
ered by Newtonian food fluids: water, O.OOlPas; coffee cream, O.OlPas; 
vegetable oil, O.lPas; and honey 10Pas. 

In more complicated three-dimensional flows there are six shear stresses 
and three normal stresses acting within the fluid. Figure 5.2 shows the 
stresses acting on three orthogonal faces of an element of fluid in Cartesian 
coordinates. The stresses aU' ayy and azz are known as the normal stresses, 
and for a Newtonian fluid in shear flow are equal to the isotropic pressure 
within the fluid, such that 

and 

~-~=O ~~ 
The shear stresses acting on the plane in the z direction (shown shaded) are 
'tzx and 'tzy-

Thus for the simple shear flow of Fig. 5.1, 'tyx = ~i'yx and 'txz = 'tyZ = O. Note 
that the first subscript indicates the direction of the plane in which the shear 
stress lies and the second gives the direction in which it acts. By considering 
the moments of the forces due to shearing stresses it is also easy to show 
that 

and (5.3) 

so that there are really only six independent stresses within the fluid. 
For most of the flows considered in this chapter it will be sufficient to work 

Fig. 5.2 Shear stresses and normal stresses acting in a fluid. 
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with one-dimensional fluid motion, and in this case we shall simply 
represent the appropriate shear stress by 't and the shear rate by y. The 
reader is referred to Barnes et ai. (1989), Tanner (1985) or Tritton (1988) 
for more detailed discussions of three-dimensional rheology and fluid 
mechanics. 

For Newtonian fluids the viscosity in equation (5.1) is a constant material 
property. However, the fluids that we shall consider in the remainder of this 
chapter have some internal structure, such that the viscosity depends on the 
rate at which the fluid is sheared; the viscosity may also depend on the time 
or history of the flow deformation. These are called non-Newtonian fluids, 
and in the next section we shall examine how the apparent viscosity, f.L.(y), 
defined by 

(5.4) 

changes with time and shear rate. In the notation used here, f.L. is the 
apparent viscosity of a non-Newtonian fluid at shear rate y, whereas f.L 
represents a Newtonian coefficient of viscosity. 

In the simple shear flow of Fig. 5.1 the shear rate in the fluid can be 
altered by changing either the separation of the plates or the velocity of the 
moving plate. For a non-Newtonian fluid the ratio 'talv = f.L. would not be 
constant, and would depend on the shear rate y = via, whereas for a 
Newtonian fluid 'talv = f.L would be independent of y. This shear-dependent 
behaviour may be desirable in the formulation of a food product and is 
described in the following section. 

5.1 Characteristics of non-Newtonian fluids 

The characteristics of fluid flow behaviour described in this section are 
divided into a number of categories: 

1. time-independent behaviour, in which the apparent viscosity is inde­
pendent of the duration or previous history of the deformation; 

2. time-dependent viscous behaviour, in which the viscosity changes with 
time of deformation, but the fluid exhibits no elastic effects; and 

3. linear viscoelastic behaviour, in which the fluid exhibits some of 
the characteristics of a viscous liquid and some of those of an elastic 
solid. 

These characteristics of non-Newtonian materials are discussed in terms of 
simple viscometric flows, such as the simple shear flow shown in Fig. 5.1. 
The final discussion in this section considers extensional flows, which 
involve no shearing, and it will be seen that again food materials exhibit 
different characteristics from those of Newtonian fluids. 
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5.1.1 Time-independent shear-thinning and shear-thickening fluids 

The range of shear rates that a food fluid may experience during manufac­
ture and consumption is large. For example, Table 5.1 shows shear rates for 
some typical operations (adapted from Barnes et al., 1989), covering ten 
orders of magnitude. 

In each operation the same fluid is expected to behave in a quite different 
manner. For example, during spreading the fluid should have a low appar­
ent viscosity, but during chewing or swallowing it should have a higher 
value of 11 .. which gives a better mouthfeel. This is a fluid that exhibits 
shear-thinning behaviour, in which the viscosity decreases with increasing 
shear rate. Examples of such fluids are fruit purees, chocolate and meat 
pastes. 

Figure 5.3 shows typical shear-thinning behaviour of a non-Newtonian 
fluid. At rest, the fluid has a microstructure (due either to interactions 
between particles within the fluid or to entanglement of macromolecules) 
that, as the fluid is sheared, is gradually broken down. In some cases the 
rheological behaviour is found to be independent of time, which means 
that this breakdown must be reversible, such that the structure is able to 
reform: that is, under steady shear conditions, time-independent non­
Newtonian behaviour is a result of an equilibrium between the structural 
breakdown and reformation processes. As the shear rate increases, 
the equilibrium number of interactions or entanglements decreases, result­
ing in a lower apparent viscosity. This also means that when the rate of 
strain is decreased, a higher apparent viscosity is obtained as the structure 
recovers. 

For the typical shear-thinning fluid of Fig. 5.3 there are two regions of 
Newtonian behaviour in which the viscosity is approximately constant, 
plus a region of decreasing, shear-thinning viscosity. Commonly, the shear­
thinning region spans several decades of shear rate. The zero shear stress 
viscosity 110 corresponds to the viscosity of the fully structured fluid, whereas 
the high shear rate viscosity 11= corresponds to that of the base fluid: that is, 
after all the structure has been broken down. 

Table 5.1 Typical shear rates for food operations 

Operation 

Settling of fine suspensions 
Draining under gravity 
Extrusion 
Pipe flow 
Chewing and swallowing 
Mixing or stirring 
Spreading 

Typical range of y (S-I) 

10-6 to 10-4 

10-1 to 101 

10° to 102 

10° to 103 

101 to 102 

101 to 103 

102 to 104 

Examples 

Salad dressings 
Vegetable oils 
Snack foods, cereals 
Chocolate, sauces 
Most foodstuffs! 
Fruit squashes 
Margarine, butter 
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Fig. 5.3 Typical shear-thinning behaviour: (a) viscosity versus shear rate; (b) shear stress 
versus shear rate. 

Cross (1965) developed a first-order model for the rates of breakdown 
and reformation of the structural interactions in a shear-thinning fluid, 
resulting in the following constitutive equation: 

Ila -11= _ 1 

110-11= l+a(yf 
(5.5) 

Equation (5.5) is able to describe the whole range of shear-thinning behav­
iour including the Newtonian plateau; however, it requires fitting four 
parameters, 11=, 110' a and n, to experimental data for Ila or 't versus 1'. 

Often, however, it is sufficient to correlate these rheological data for shear 
stress versus shear rate over a limited range of shear rates using a simple 
power-law expression. Over the region of shear thinning - that is, for the 
range of viscosities 11=« Ila «11o - equation (5.5) becomes approximately 

't ()n-l Ila = -;- = K l' 
'Y 

(5.6) 
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or 

(5.7) 

where K is the consistency index and n is the power-law exponent. These 
relationships are compared with Newtonian behaviour in Fig. 5.4. 

For shear-thinning fluids the exponent n typically lies in the range 0.2-1, 
with n = 1 corresponding to a Newtonian liquid (compare equations (5.1) 
and (5.5». Note that equation (5.7) is simply an engineering representation 
of the rheological behaviour over a given range of shear rates, and it would 
be unwise to extrapolate the power law outside this range into either the 
upper or lower Newtonian regions shown in Fig. 5.3. Usually the power-law 
equation would be reasonably accurate over two decades of shear rate 
(Nielsen, 1977). 

Some examples of power-law rheological behaviour are given in Table 
5.2 (data from Steffe, 1992). The power-law index gives a simple measure of 
the degree to which the fluid is non-Newtonian. For example, a value of 
n close to unity would act almost as a Newtonian fluid, whereas banana 

100 

o 20 40 60 80 
Shear rate, y (1 Is) 

4 
Ci) 
til a.. g .. 
:::l. 

>. 2 
~ 
0 Newtonian 1i! 
:> Shear-thickening 

n>1 
0 

0 20 40 60 80 
Shear rate, y (1 Is) 

Fig. 5.4 Comparison of some typical Newtonian, shear-thinning and shear-thickening 
power-law fluids and a Bingham plastic fluid. 
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Table 5.2 Power-law parameters for various food fluids 

Food fluid T n K Range ofy 
(0C) (-) (Pasn) (S-I) 

Banana puree 22 0.28 107.3 28-200 
Apple sauce 26 0.45 7.32 0.78-1260 
Mayonnaise 25 0.60 4.2 40-1100 
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Fig. 5.5 Typical shear-thickening behaviour of a concentrated suspension of non-aggregating 
particles. 

puree, which has a very low index, would exhibit extreme shear-thinning 
behaviour. 

It is also possible for deformation of a fluid to cause rearrangement of its 
microstructure that results in an increase in viscosity with increasing 
shear rate. Shear-thickening fluids are less common than those with 
shear-thinning behaviour, although most concentrated suspensions of non­
aggregating solid particles show some shear-thickening behaviour, given 
the correct conditions. For example, cornflour pastes and some honeys 
exhibit shear-thickening behaviour (Steffe, 1992). The explanation offered 
by Reynolds (1885) is that at rest the voidage fraction of the suspension is 
at a minimum and there is only just sufficient liquid to fill the voids between 
particles. At low shear rates the liquid lubricates the motion of one particle 
past another and the apparent viscosity is small. However, at larger shear 
rates the dense packing of the material is broken up, and the suspension 
dilates (the voidage fraction increases). There is now insufficient liquid to 
lubricate each particle and the apparent viscosity of the particulate mixture 
increases. 

Figure 5.5 shows typical shear-thickening behaviour for a concentrated 
suspension of particles. Note that there is some shear-thinning behaviour 
at low shear rates and that shear thickening occurs over less than one 
decade of y. In this region, shear-thickening fluids can also be represented 
by the power law of equation (5.5), but with an exponent of n > 1 (see 
Fig. 5.4). 
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The next class of non-Newtonian fluids to be considered is Bingham 
plastic fluids, which appear to require a yield shear stress 'ty to be exceeded 
before fluid deformation takes place: that is, they contain a sufficiently rigid 
(solid-like) structure that any stress less than the yield stress can be resisted 
and no continuous motion results. Below the yield stress the material be­
haves as an elastic solid and stores energy at small strains; at stresses above 
the yield stress the structure disintegrates and the fluid deforms as a 
Newtonian fluid under an applied stress 't - 'ty• The constitutive equation for 
these fluids is 

and 

Y= 0 (5.8) 

and they have the stress-strain rate relationship shown in Fig. 5.4. As the 
Bingham fluid acts as an elastic solid for 't < 'ty, then it may be more 
appropriate to write the constitutive equation as 

and 

't = Gy (5.9) 

where G is a shear modulus for elastic deformation (analogous to Hooke's 
constant for an elastic spring). The concept of a yield stress fluid is useful in 
many practical engineering applications (see section 5.4), but its existence is 
dubious; often, viscometric measurements cannot be made at a sufficiently 
low shear rate to determine whether a yield stress exists, or if there is 
extreme shear-thinning behaviour and a very large zero shear viscosity, in 
the limit, y ~ o. Figure 5.3(b) shows that if the measurements had been 
terminated at a strain rate of about 1 s-1, then no lower Newtonian region 
would have been observed and extrapolation to y ~ 0 would suggest that 
the fluid possessed a yield stress. Barnes et al. (1989) discuss this question 
and conclude that there is no yield stress for dilute solutions and suspen­
sions, but for materials such as ice cream or margarine the flow at very low 
applied stresses is so slow that motion cannot be observed and there is still 
some doubt as to the existence of 'ty• For many engineering situations, 
however, the assumption of Bingham plastic behaviour is a useful approxi­
mation, as will be illustrated in section 5.3.1. 

The constitutive equations given above for time-independent fluids are 
the simplest available that characterize shear thinning, shear thickening and 
yield stress behaviour. Many other empirical equations have been pro­
posed, but their use in solving engineering problems is algebraically more 
difficult than the simple Cross, power law and Bingham equations. Tanner 
(1985, p. 15) presents a number of alternative constitutive equations. The 
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Herschel-Bulkley equation is a useful model for fluids exhibiting both a 
yield stress and shear-thinning behaviour: 

(5.10) 

Equation (5.10) now contains three fitted parameters, of which the yield 
stress is difficult to determine. The most common method of estimating the 
yield stress is to extrapolate the shear stress versus shear rate curves to 
y~ 0, but this is fraught with the difficulties of obtaining reliable data at low 
shear rates. Steffe (1992) discusses various other methods of estimating the 
yield stress. Non-linear regression to find the yield stress gives a result that 
is highly dependent on the form of the constitutive equation chosen to 
represent the data. 

It is now generally accepted that molten chocolate can be modelled as 
a Casson fluid (Casson, 1959), which obeys a rheological equation of the 
form 

(5.11) 

The following example, adapted from the calculation presented by Steffe 
(1992), illustrates the problem of estimating the yield stress and fitting the 
other model parameters to a given form of constitutive equation. 

EXAMPLE 5.1 

Using the following rheological data for molten chocolate at 40°C 
(Prentice and Huber, 1983) obtain estimates of the yield stress using: 

250.0 

200.0 

'2 e:. 150.0 t-> 

l 
100.0 j 

CIl 

50.0 

0.0 
0.0 

o Experiments 
----_.. Bingham 
--Herschel-Bulkley 
- - -Casson 

Shear rate, t (s·l) 

20.0 

Fig. 5.6 Example 5.1: comparison of regression lines for molten chocolate. 
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(a) the Bingham plastic equation; (b) the Herschel-Bulkley equation; and 
(c) the Casson equation. 

't Y 't Y 
(Pa) (S-l) (Pa) (S-l) 

0.099 28.6 6.4 123.8 
0.140 35.7 7.9 133.3 
0.199 42.8 11.5 164.2 
0.390 52.4 13.1 178.5 
0.790 61.9 15.9 201.1 
1.6 71.4 17.9 221.3 
2.4 80.9 19.9 235.6 
3.9 100.0 

The following equations were fitted using a non-linear regression 
method (for the case of the Bingham plastic, only data in the range 
y = 0.79-19.9 S-1 were fitted). 

Model 'tv K n R2 
(Pa) (Pasn) 

Bingham 60.4 8.96 0.997 
Herschel-Bulkley 33.0 25.5 0.69 0.995 
Casson 30.5 2.19 0.996 

Figure 5.6 shows that the Casson and Herschel-Bulkley equations give 
an almost indistinguishable fit to the data over the whole range of shear 
rates, and the two equations predict comparable yield stresses. The 
Bingham equation considerably overestimates the yield stress, partly 
because of the assumption of constant viscosity and partly because 
the low shear rate data were ignored to improve the overall fit of the 
equation. 

5.1.2 Time-dependent non-Newtonian fluids 

The fluids discussed in section 5.1.1 show no variation in rheological 
behaviour with the time that shearing is applied, or with repeated deforma­
tion: that is, all of their microstructure is recoverable and breakdown of 
structural interactions is a reversible process. The rheological behaviour 
of many real fluids also depends on the duration of the applied shear 
rate, as well as its magnitude. In this section we shall consider inelastic 
fluids with time-dependent behaviour; time-dependent effects may also 
result from the material having some elastic properties, similar to Hookean 
solids. 
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Fig.5.7 Time-dependent non-Newtonian behaviour. This fluid shows hysteresis, characteristic 
of thixotropy during a ramp test. 

Thixotropic behaviour is obtained from shear-thinning fluids in which no 
equilibrium is established between the structural breakdown and reforma­
tion processes, such that the number of structural interactions decreases 
continuously with time and the material suffers a permanent change as a 
result of shearing (for example, starch pastes, gelatins and mayonnaise). 
Figure 5.7 shows hysteresis loops typical of a thixotropic material for a test 
in which the shear rate is ramped up and then ramped down over the same 
time period. For a shear-thinning time-dependent material, initially, the 
shear stress would increase less than linearly with time. At the midpoint of 
the ramp test, the shear stress would decrease with time, but the pattern of 
behaviour would not be a simple reversal of the initial rise. The hysteresis 
loop for the shear stress is typical of thixotropic materials: here, because the 
material is both shear-thinning and time-dependent, the viscosity decreases 
continuously with time. 

Similarly, rheopectic behaviour can be obtained with shear-thickening 
fluids in which the apparent viscosity increases with time of deformation. 
Typically this only occurs at low shear rates, as at higher shear rates 
the microstructure of the fluid is broken down irreversibly and does not 
reform. 

Constitutive models such as the Herschel-Bulkley equation may be 
adapted to allow for thixotropic effects by introducing a structural 
parameter A (Tiu and Boger, 1974): 

(5.12) 

The structural parameter has a value A = 1 at t = 0 and may be described by 
a second-order decay equation: 

dA =-k (A-A) 
dt 1 e 

for (5.13) 

where Ae is the final value for complete breakdown of the structure and kl 
is a rate constant that depends on the shear rate. Experiments in which the 
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fluid is sheared at various constant shear rates may be used to find values of 
k j , t..e, 'tY' K and n; Tiu and Boger (1974) describe these methods applied to 
a study of the thixotropic behaviour of mayonnaise. 

5.1.3 Linear viscoelastic fluids 

It was noted in the introduction that complex, structured fluids, such as 
foodstuffs, behave neither as pure Newtonian liquids, nor as Hookean 
solids: that is, they simultaneously show viscous and elastic behaviour, and 
hence are known as viscoelastic fluids. A Hookean solid behaves as a 
perfect spring, such that the shear stress (or force) applied is proportional to 
the shear strain (or extension). Many polymeric liquids deform in a 
viscoelastic way; their long chain molecules interact, forming chemical or 
physical cross-links. A deformation of one part of the fluid is transmitted 
throughout space to all other entangled chains and the fluid shows some 
elastic properties. These interactions can give rise to elasticity within the 
polymer network, large elongational viscosities (see section 5.1.5) and nor­
mal stress differences (see section 5.1.4), as well as shear-thinning behav­
iour. Viscoelasticity can give rise to a variety of effects: for example, in 
stirred flows, viscoelasticity can result in rod climbing (the Weissenberg 
effect) and flow reversal, which are described in section 10.4.4; and in 
extrusion processes die-swell is due to elastic effects (see section 5.1.4). 

We begin by describing linear viscoelastic materials. By linear we mean 
that the mathematical principle of superposition can be applied to the 
system. The conditions required are: 

1. the stress response of the material is proportional to the magnitude 
of the applied strain; and 

2. the stress response is invariant to time translation; delaying the applica­
tion of the strain signal by a time T results in the same measured stress, 
but also delayed by a time T. 

These conditions are only likely to be satisfied by small strain deformations; 
non-linear behaviour would result from large strains. 

Before we discuss methods of measuring this type of time-dependent 
response to deformation it is useful to examine a simple analogue model 
for linear viscoelastic behaviour. It is convenient to suppose that the fluid 

Fig. 5.8 A series-coupled spring and dash pot model: a single Maxwell element. 
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can be represented by elements exhibiting purely viscous and purely 
elastic behaviour. Appendix 5.A gives the derivation of a linear Maxwell 
viscoelastic material, comprising a series-coupled Hookean spring and 
Newtonian dashpot, as shown in Fig. 5.8. Here the spring has a shear 
modulus G and the dashpot contains fluid with viscosity fl. For the series 
combination shown, the shear stress in each element is the same, but the 
total shear strain is the sum of the shear strain in each part. 

This model results in the linear differential equation (Appendix 5.A), 

d't + ~ = Gy (5.14) 
dt A 

where A = fllG is the relaxation time. Equation (5.14) may be integrated 
to give 

(5.15) 

showing that the shear stress at time t depends on the previous history of the 
deformation Y(t') from t' = -00 to t' = t. (t' is a dummy integration variable 
and is used to distinguish the present time t from all previous times t'.) 

The choice of a single spring in series with a single dashpot is simple but 
quite arbitrary; many other combinations of springs and dashpots have 
been formulated to give different viscoelastic responses. For example, the 
Voigt model comprises a parallel-coupled spring and dashpot combination. 
In practice, a single Maxwell element does not give a satisfactory represen­
tation of linear viscoelastic behaviour. However, because of the linear 
nature of equation (5.14) it is possible to superimpose a number of solutions 
from n parallel Maxwell elements (Fig. 5.9), each with its own relaxation 
time Ai and shear modulus Gi to give the generalized model 

(5.16) 

We can now apply this integral constitutive equation to predict linear 
viscoelastic behaviour for a number of deformation histories. Initially we 
consider a steady shear rate applied to a single Maxwell element: 

Y(t') = Yo -oo<t'<t (5.17) 

Substitution of equation (5.17) into equation (5.15) and integration gives 

't(t) = flYo (5.18) 

So, the linear viscoelastic fluid behaves as a simple Newtonian under steady 
shear. This is one of the drawbacks of using linear models, as many 
real viscoelastic food fluids also exhibit shear-thinning behaviour, and the 
ratio 'tly should decrease with increasing shear rate: non-linear models 
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Iln 

Fig. 5.9 An analogue model of a linear viscoelastic fluid: n parallel Maxwell elements. 

are required to represent this behaviour, but are beyond the scope of this 
book. 

Now let us consider the cessation of the steady shear at time t' = 0: 

Y(t') = Yo 

Y(t') = 0 

t'<0 

t'~0 (5.19) 

Substituting equation (5.19) into equation (5.15) and integrating yields 

1:(t)=IlYo t<O 

1:(t) = Il Yo exp( -±) t~ 0 
(5.20) 

The plot of equation (5.20) in Fig. 5.10 shows that even after deformation 
has stopped the fluid is able to sustain shear stresses, but that they decay 
exponentially to zero with a relaxation time A. 

This viscoelastic behaviour is quite different from that of a Newtonian 
fluid and is due to the existence of elastically loaded molecular entangle­
ments, even after fluid motion has ceased. Figure 5.10 also shows the 
behaviour of (i) a Newtonian fluid where the shear stress drops to zero as 
soon as the rate of deformation ceases, and (ii) an elastic solid where the 
shear stress remains constant at the value at the cessation of shearing, which 
corresponds to Gy, where y is the final strain. 
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Shear rate, "I Shear stress, 'C Elastic solid 

(a) o Tune (b) o Tune 

Fig. 5.10 Stress relaxation following the cessation of steady shear. 

A! res! Under shear 

Fig. 5.11 Normal stresses generated by anisotropic structure under shear. 

5.1.4 Normal stress differences 

One part of the definition of a Newtonian fluid is that the normal stress 
differences are zero in simple shear flow (see equation (5.2»: 

Nl = O"xx - O"yy = 0 

and 

(5.21) 

For linear viscoelastic fluids these normal stresses are also zero; they arise 
as second-order terms in i' and are associated with non-linear viscoelastic 
effects. Physically, the explanation for these normal stress differences is 
that at high shear rates the microstructure of the fluid becomes anisotropic 
(direction-dependent). Consider the schematic of a dilute polymer solution 
in Fig. 5.11: at rest the molecular envelope may be taken to be spherical 
and contains a number of entangled polymer chains, which are randomly 
oriented in space. Under shear the envelope deforms to an ellipsoidal 
shape and the molecules are stretched and partially aligned in the x 
direction. 

The restoring forces in this deformed microstructure are anisotropic, 
such that usually the largest normal stress would be erxx: that is, in the 
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direction of the flow. This leads to a positive first normal stress difference, 
Nl = O'xx - O'yy > 0; generally the second normal stress difference N2 = O'yy - O'zz 

is much smaller than the first, IN21 « N1, and is of secondary importance. 
Over a range of strain rates the first normal stress difference may be written 
as a power-law function of y: 

(5.22) 

and it is not unusual for the ratio Nit to be greater than 1, indicating a 
highly elastic state (Barnes et al., 1989). 

The existence of normal stress differences can give unusual flow effects in 
industrial applications (see also section 10.4.4). For instance, a rod rotating 
in a Newtonian fluid would cause a depression of the free surface because 
of formation of a surface vortex. In a viscoelastic fluid the normal stress 
differences causes a phenomenon known as the Weissenberg effect, in 
which the fluid actually climbs the rotating rod. Normal stress effects can 
also cause reversal of the flow pattern direction in impeller-driven tanks. In 
extrusion processes the phenomenon of die swell is due to the relaxation of 
nOfl:p.al stresses on exit from the die, and can give an increase in diameter of 
the extrudate by a factor of 2 or 3. 

5.1.5 Elongational viscosity effects 

Consider the element of fluid shown in Fig. 5.12, which is being stretched 
along its x axis at a constant rate av)ax = £. In a purely elongational flow 
all the shear stresses are zero, 'txy = 'txz = 'tyZ = 0, and the normal stress 
components are equal in the y and z directions, O'yy = O'zz (by symmetry). If 
the fluid is incompressible, its volume must be conserved, so that for an 
axisymmetric flow 

and 
avy avz E 
-=-=--ay az 2 

(5.23) 

(see Tritton (1988) for an explanation of the continuity equation for three­
dimensional flow). 

The normal viscous stress differences are given by 

(5.24) 

where IlE is the elongational viscosity. In general, the elongational viscosity 
depends on the elongational strain rate E and time. For a Newtonian fluid in 
uniaxial extensional flow the ratio of extensional to the shear viscosity is 
constant, IlE/1l = 3, but for non-Newtonian fluids IlE may increase (tension 
thickening) or decrease (tension thinning) with increasing t Moreover, non­
Newtonian fluids can have very large ratios of elongational to shear viscosity 
(orders of magnitude greater than for Newtonian fluids). These effects 
become very important in flows with converging streamlines (as shown in 
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increasing width 
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ElongationaI rate of strain = £ = ~:: 

Fig. 5.12 An element of fluid undergoing elongational flow. 
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: 

Fig. 5.12), where elongation of fluid elements takes place. For example, in 
the entrances to dies during extrusion, the flow is substantially changed by 
having a large elongational viscosity. Elongational flows also take place in 
valve homogenizers (used for emulsion formation), where the elongational 
strain is extremely efficient at causing droplet breakup. One of the more 
remarkable demonstrations of the effect of a large elongational viscosity 
is the open siphon experiment in which fluid can be sucked up from a 
reservoir, even though the tube is above the liquid free surface. 

5.2 Viscometric flows 

In the previous section we discussed some of the characteristics of non­
Newtonian fluids under flow conditions in which either the rate of strain ror 
the shear stress 1: was controlled. In this section we shall examine the types 
of equipment suited to generating these flows and their use in determining 
rheological parameters in the constitutive equations. The flows described 
are known as visco metric as they are simple and well defined and are 
usually designed so that there is a controlled shear rate in a single direction. 
These flows would always be in the laminar flow regime (see Chapter 2). 
There are numerous devices for measuring the rheological behaviour of 
fluids, but here we shall concentrate only on those in which the rate of strain 
may be directly controlled. Devices such as the falling sphere or U-tube 
viscometer do not allow application of a prescribed shear rate and are really 
only suitable for use with Newtonian fluids. Many books (e.g. Steffe, 1992) 
describe the application of these measurement devices to Newtonian food 
fluids. 

5.2.1 Measurement of shear viscosity: the concentric cylinder viscometer 

Figure 5.1 shows an idealized simple shear flow between two flat plates, of 
which one is stationary and the other moves at a velocity v. The same flow 
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field can be generated using the narrow-gap, concentric cylinder device 
shown in Fig. 5.13. 

If the gap width '2 - '1 is small compared with the inner radius '1' then the 
shear rate between the cylinders is approximately uniform and can be 
controlled by altering the rotational speed (J) (rads-1) of the inner cylinder 
(see Appendix 5.B) 

for ..2>0.96 (5.25) 
'2 

Thus we shall assume that y is independent of , in the narrow gap. 
The shear stress in the fluid can be deduced from a measurement of the 

torque r 1 on the inner cylinder: 

r 
't = _1_ (5.26) 

21t'IL 

(Other arrangements in which the outer cylinder rotates with the inner 
stationary, or in which the torque on the outside cylinder is measured, are 
also possible.) The design of these viscometers usually incorporates a re­
cessed top and bottom to the inner cylinder so that the fluid shear stress acts 
only on the side walls. Using the definition of the apparent viscosity, given 
in equation (5.4), then (see Appendix 5.B for full analysis) 

T 
L 

1 

~. (Y) = f= 4;~L['~ -:~ l (5.27) 

r2 I 
, , , , , , , , , , 
, CJ) , 

Stational)' 
outer 
cylinder 

Fig. 5.13 Geometry of a concentric cylinder viscometer. 
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For food materials, in particular with suspended solid particles, it may not 
be possible to use a narrow-gap device, in which case the shear rate would 
vary with radius. Kreiger and Maron (1954) showed that for a power-law 
fluid the shear rate at the inner cylinder is 

. 200 

11 = ( 2!n) n 1-h/r2) 
(5.28) 

and the viscosity at this shear rate is 

(5.29) 

For a power-law fluid, the shear stress on the inner cylinder is 

(5.30) 

and taking logs of equation (5.30) gives 

(5.31) 

The second term on the right-hand side of equation (5.31) is independent of 
rotational speed, so a plot of In( 'tl ) versus In 00 has a slope n and an intercept 
related to the consistency index K. An alternative form of analysis is given 
in Example 5.2 below. 

With wide-gap devices there is a danger that above a critical rotational 
speed Taylor vortices, a form of flow instability, may form in the gap, 
disturbing the simple shear flow pattern (see Tritton, 1988, p. 260). Meas­
urements from such an unstable flow would not be performed in a simple 
shear field and would not yield useful information. 

EXAMPLE 5.2 

A concentric cylinder Couette viscometer is used to measure the 
rheological properties of a tomato juice. The inner cylinder rotates at a 
speed of N revolutions per second; the torque on the inner cylinder is 
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measured. The inner cylinder has a radius r1 = O.025m and length O.04m. 
The outer cylinder has a radius r2 = O.026m. Find an appropriate time­
independent constitutive equation that represents the fluid rheology over 
the range of applied shear rates. 

N (rps) 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 
r 1 (N m x 10-3) 2.37 3.58 5.72 7.80 1.04 1.49 1.97 2.64 4.09 

Convert the above data to strain rates and shear stresses using, respec­
tively, equations (5.25) and (5.26). Note that the ratio r/r2 = 0.96, so the 
approximate form of equation (5.25) will suffice, and the shear rate may be 
assumed to be constant across the annular gap. Calculation of the appar­
ent viscosity at each rotational speed shows that indeed this material 
exhibits shear-thinning behaviour. 

co (rad S-1) 0.063 0.13 0.31 
Y (s-1) 1.57 3.14 7.85 
't (N m-2) 1.51 2.28 3.64 
/J-a (Pas) 0.959 0.725 0.464 

0.63 
15.7 
4.97 
0.316 

1.26 
31.4 

6.61 
0.210 

3.14 
78.5 

9.48 
0.121 

6.28 
157.0 
12.51 
0.080 

12.57 
314.1 
16.80 
0.053 

31.42 
785.3 
26.02 
0.033 

Plotting the shear stress versus the shear rate on a log-log plot reveals 
that a power-law model would be suitable (Fig. 5.14). Linear regression of 
the data gives that 

't = 1 .37 'f.44 for 1.0S-1 <y< 1000s-1 

= 1.37 -YO.44 for 1.0 s-l < ·r < 1000 s·l . 

f 
: I 
In 10 ....................................•................................ 

~ I 
J:: 
(/) 

• 

Shear rate, y (5-1) 

Fig. 5.14 Log-log plot for shear stress versus shear rate for a power-law fluid. 
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Final remark the data for this example was 'artificially' created from the 
Cross model, using the form 

Jla - 0.01 
0.2-0.01 

illustrating that equation (5.5) reduces approximately to the simple power­
law form over the range of shear rates where shear-thinning behaviour is 
exhibited. However, extrapolation of the power-law outside this range of y 
could give erroneous results. 

5.2.2 Measurement of shear viscosity: capillary flow viscometers 

For Newtonian fluids in laminar flow the pressure drop per unit length 
of capillary, IlPIL, is related to the volumetric flowrate WL by the Hagen­
Poiseuille equation (equation (2.37)) and the viscosity may be calculated 
from 

(5.32) 

Unfortunately, the shear rate within the fluid depends on radial position: 

y = _ Mr (5.33) 
2LJl 

and so this device is more difficult to use with non-Newtonian fluids. 
Walters (1975) shows that the shear rate at the wall (r = a) is given by 

Y = 4WL (l+.!. dlnwL ) 
w 1ta3 4 4 dln'tw 

(5.34) 

where the term in the bracket is known as the Rabinowitch correction. The 
wall shear stress 'tw is related to the pressure gradient by 

aM 
't --­

w - 2 L 

Piston movement 

Fig. 5.15 Capillary flow viscometer. 

(5.35) 
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SO that the viscosity at the wall shear rate is 

( .) rca 4M/L 

Ila 'Yw = 8w (l+..!.. dlnwL ) 

L 4 4 dln'tw 

(5.36) 

Thus by measuring MIL versus WL the apparent viscosity of the fluid may 
be deduced. Additional problems associated with entrance effects are dis­
cussed by Mackley (1988) and Steffe (1992). Example 5.3 below shows how 
these equations may be used to characterize data from food fluids in capil­
lary flow viscometers. 

EXAMPLE 5.3 

The following data were collected for orange juice concentrate in a 2 mm 
diameter capillary viscometer with a length of 0.25 m. Find the power-law 
index and consistency index from these data. 

Raw data Calculated data 

wL t:.P (Pa) 'tw Yw 
(m3 s-1) (Pa) 

1.0 x 10-7 1.75 X 10' 34.9 135.8 
2.0 x 10-7 3.03 X 10' 60.5 271.6 
3.0 x 10-7 4.13 X 10' 82.5 407.4 
4.0 x 10-7 5.27 X 10' 105.3 543.1 
5.0 x 10-7 6.10x10' 122.0 678.9 
6.0 x 10-7 7.18x10' 143.5 814.7 
7.0 x 10-7 8.16 X 10' 163.1 950.5 
8.0 x 10-7 9.26 X 10' 185.2 1086.3 
9.0 x 10-7 9.86 X 10' 197.2 1222.1 
1.0x10-6 1.06 x 105 212.0 1357.8 

The tube length to diameter ratio is very large, so that end effects can be 
neglected. The first step is to calculate the wall shear stress, 'tw from 
equation (5.35) and then to plot wL versus 'tw on a log-log plot (Fig. 
5.16(a)). The slope of this line gives the Rabinowitch correction 

dlnwL = 1.266 
dln'tw 

This allows the wall shear rate to be calculated from equation (5.34); a 
further regression of the wall shear stress versus the wall shear rate on 
log-log axes (Fig. 5.16(b)) gives the power law exponent and consistency 
index as 

n = 0.79 and K= 0.72Pasn 
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/ -: 

101 .J 

102 103 104 

(a) Wall shear stress, 'tw (Pa) (b) Wall shear rate, t (S-l) 

Fig. 5.16 Example 5.3: plot (a) is used to find the Rabinowitch correction and plot (b) is used 
to find the power-law parameters. 

5.2.3 Cone and plate visco meters 

Figure 5.17 shows the geometric arrangement of this viscometer: the fluid is 
held between a cone and a plate; the plate rotates at an angular frequency, 
(0 (rads-I ), while the cone remains stationary; the torque r on the cone is 
measured using a transducer. Provided that the cone angle S is small «4°), 
then the shear rate in the liquid is uniform and given by 

The shear stress is given by 

. (0 
Y=­

tanS 

3r 
't=--

21tR3 

(5.37) 

(5.38) 

and so the viscosity may be calculated from (see Appendix 5.C for details) 

(5.39) 

5.2.4 Parallel plate viscometer 

The parallel plate viscometer (see Fig. 5.17) operates in a similar way to the 
cone and plate device, except that the shear rate in the gap is no longer 
uniform and analysis for non-Newtonian fluids becomes more difficult (see 
Barnes et al., 1989). 

5.2.5 Measurement of viscoelastic properties 

Cone and plate and parallel plate viscometers are suitable for determining 
the shear viscosity of time-independent non-Newtonian fluids, but their 
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Top plates attached to torque measurement device 

Fig. 5.17 Cone and plate and parallel plate viscometers. 

Parallel 
plates 

main advantage is in oscillatory mode, for the measurement of viscoelastic 
properties. The lower plate is made to oscillate at a frequency 00 (rads-I ), 

giving a sinusoidally varying strain in the fluid, with a maximum amplitude 
of 'Yo: 

'Y = 'Yo sinrot (5.40) 

Differentiating equation (5.40) with respect to time gives the strain rate 
as 

. d'Y . 
'Y = - = 'Yo 00 cos rot 

dt 
(5.41) 

The shear stress, deduced from torque measurements, on the upper plate 
also varies sinusoidally, at the same frequency as the strain oscillation, but 
shifted out of phase by an angle 0: 

't = 'to sin(rot + 0) (5.42) 

or 

't = 'to coso sin(rot) + 'to sino cos(rot) (5.43) 

where 'to is the maximum shear stress. At this point it is worth noting that if 
the material was a Hookean elastic solid, the angle 0 would be zero as the 
shear stress would be in phase with the strain oscillation. Hooke's law for a 
solid material is 
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't = 0= Gyo sin(oot) (5.44) 

where G is the shear modulus and y is the shear strain. 
However, if the material was a Newtonian fluid, the shear stress would be 

'!t/2 radians out of phase with the strain oscillation as 

't = ~y = ~y 000 cos( oot) 

=> 't = ~Yooo sin( oot+~) (5.45) 

To characterize the elastic and viscous components, we define the elastic 
storage modulus G' from the in-phase component of the stress in equation 
(5.43): 

't 
G'=~coso 

Yo 
(5.46) 

and the loss modulus G" from the out-of-phase component of stress: 

G" = ~sino 
Yo 

(5.47) 

For a perfectly elastic Hookean solid the shear stress (0 = 0) and shear strain 
would be related by equation (5.44), giving an elastic storage modulus of 
G' = G and a loss modulus of G" = O. Compare this with the response of a 
Newtonian viscous liquid (0 = '!t/2), which has an elastic storage modulus of 
G' = 0 and a loss modulus of G" = ~oo. Thus the relative values of the moduli 
G' and G" from oscillatory tests yields information about the degree of 
elastic and viscous behaviour exhibited by the food material. 

We can also define a complex viscosity ~*, the magnitude of which is 

(G'2 + G"2 y/2 
I~ *1 = -'------'--

00 
(5.48) 

This is akin to the apparent viscosity defined in equation (5.4). These three 
parameters may then be used to describe the viscoelastic characteristics of 
a fluid. For most polymers, structured fluids and foodstuffs, G', G" and I~*I 
are all functions of the oscillation frequency, and possibly also the strain 
amplitude Yo and time. 

The bulk and storage moduli may now be examined for a simple linear 
viscoelastic fluid, such as that discussed in section 5.1.3. For a single 
series-coupled Maxwell element the storage and loss moduli and complex 
viscosity are given by (see Appendix 5.A) 

G' = ...,--G_A_2OO_2 -;-

(1 + 1..2(0 2 ) 

(5.49) 
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G"= G')...oo 
(1 + ')...200 2 ) 

(5.50) 

I~*I= G')... 
(1 + ')...200 2 l/2 (5.51) 

Figure 5.18 shows a schematic plot of these parameters for a single element, 
which can be compared with Figs 5.19 and 5.20, which show some typical 
strain and frequency sweeps for a polymeric foodstuff and a gel or suspen­
sion foodstuff. The Maxwell element represents linear viscoelastic behav­
iour in which G' and G" are independent of the magnitude of the strain 
'Yo' G' is a monotonically increasing function of dimensionless frequency 
00')..., which becomes constant at high dimensionless frequency, and G" 
has a maximum at 00')... = 1. Figure 5.18 shows that at low dimensionless 
frequencies (slow deformation rates) the behaviour is viscous in nature (G' 
« G"), whereas at high dimensionless frequencies elastic effects dominate 
(G'« G"). 

Figures 5.19 and 5.20 show that both the polymeric and gel foodstuffs 
show linear viscoelastic behaviour at low strains (G' and G" are independ­
ent of the magnitude of the maximum strain 'Yo), but non-linear response at 
higher strains. The gel foodstuff (yoghurt, for example) shows four separate 
regions (Steventon et al. 1991): 

Dimensionless Frequency, oi). 

G" 
110-1 ....;;0'--_________ _ 

~ ~ 10-2 -G-' ----------­
]"8 -
'J~::E 10-3 G 

Fixed frequency, oi). = 0.1 
. 10-4 CI-_--''--_-L..._--' __ -'-_-..L:I 

10-2 10-1 100 101 

Strain,"( 0 

Fig. 5.18 Frequency and strain sweeps for a single Maxwell element. 
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Fixed Strain 'Yo Fixed Frequency Cll 

Frequency Cll 

Fig. 5.19 Typical frequency and strain sweeps for a polymeric foodstuff. 

'" Fixed Strain 'Yo 
~ 

Fixed Frequency Cll 

" :; 
'8 '8 
~ G' ~ G' 

~ ~ 
1Il .s 

.; 

~ &{. GU 

i ~ 
<I.l <I.l (1) 

Frequency Cll Strain 'Yo 

Fig. 5.20 Typical frequency and strain sweeps for a gel or suspension foodstuff. 

1. a linear viscoelastic region in which G' and G" are constant and the 
material is predominantly elastic (G' » G"); 

2. a non-linear region in which G" is fairly constant and G' starts to 
decrease, indicating breakdown of the elastic structure; 

3. where G' and G" cross over after the full elastic structure has been 
broken and the material becomes more viscous; and 

4. where viscous behaviour dominates (G" » G'). 

It is clear that the single Maxwell element does not correspond to the 
behaviour of real polymeric foodstuffs. However, many parallel Maxwell 
elements with time constants Ai and shear moduli Gi give an improved 
representation of real frequency-sweep behaviour (see Fig. 5.21) but not of 
the effect of strain on the loss and storage moduli. For n Maxwell elements 
the separate solutions of equations (5.49)-(5.51) can simply be added be­
cause of the linear nature of the constitutive equation: 

n G ~2 2 
G' = L ill.iOO 

i=1 (1 + 1..7002 ) 
(5.52) 

(5.53) 



224 FOOD RHEOLOGY 

Fixed Strain 10 Fixed Frequency m 
gj gj 

I ~ 
" G' 

3 '" '" j 

t &{. G" 
§ 

'" '" 
Frequencym Strain 'Yo 

Fig. 5.21 Typical frequency and strain sweeps for n Maxwell elements. 
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Fig. 5.22 Frequency and strain sweeps for a Newtonian fluid. 
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Fig. 5.23 Frequency and strain sweeps for a Bingham plastic. 

and 

1 *1= ~ G)"i 11 k.. 1/2 
i=l (1 + 1.,1002 ) 

(5.54) 

For comparison, the frequency and strain sweeps for Newtonian and 
Bingham fluids have been included in Figs 5.22 and 5.23. For a Newtonian 
fluid the storage modulus should be close to zero, whereas the loss modulus 
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should be proportional to the viscosity of the fluid and to the frequency. 
Both G' and G" should be independent of the strain. This can be compared 
with the Bingham plastic, which exhibits elastic solid behaviour at small 
strains, and purely viscous behaviour at strains above the elastic limit. 

Example 5.4 below shows how data from an oscillatory test in a cone and 
plate viscometer can be used to derive storage and loss moduli and Maxwell 
model parameters. 

EXAMPLE 5.4 

Tomato ketchup was sheared between the cone and plate of an oscillatory 
rheometer: the cone angle was e = 0.07 rad (4°) and the plate radius was 
R = 12.5 mm. The maximum amplitude of the oscillation was <1>0 = 0.009 
rad. The data below give the maximum torque r max and phase angle 8 
relative to the oscillatory strain 

'Y = 'Yo sin rot 

At any radius rthe maximum strain is given by the maximum displacement 
divided by the distance between cone and plate. That is: 

=~=~= 0.009 =0.13 
'Yo rtane tane tanO.07 

which is independent of radius and thus the shear stress also should not 
be a function of r. The torque is given by 

R 21tR3't 3r 
r= j21tr2'tdr=--::::}'t =~ 

o 3 0 21tR3 

From equations (5.46) and (5.47) 

't 
G' = ----.£.cos8 

'Yo 
and G"=~sin8 

'Yo 
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Calculating the storage and loss moduli gives the fifth and sixth columns 
of the table below. 

Raw data Calculated data 

(0 rmax 0 'to G G' 
(rad s-') (Nm) (rad) (N m-2) (N m-2) (N m-2) 

0.200 1.69 x 10-4 0.126 41.23 3.19x102 4.03 x 10' 
0.600 1.85 x 10-4 0.142 45.33 3.50 x 102 4.98 X 10' 

We shall attempt to use these data to fit a single element Maxwell model 
of the form 

G' = G'A}(f)2 

(1 + ')..2 (f) 2 ) 

G" = GA(f) 
(1 + ')..2(f)2) 

The first data set at (f) = 0.2 rad S-1 gives G = 324 N m-2 and ').. = 39.6 s, 
whereas the second data set at (f) = 0.2 rad S-1 gives G = 357 N m-2 and 
').. = 11.7s, which are not in particularly good agreement. The reasons for 
this discrepancy are that: (a) a single Maxwell element is not sufficient to 
characterize the behaviour of most viscoelastic food stuffs; and (b) the 
maximum strain in this case is 13%, which is likely to be outside the range 
of linear behaviour. 

5.3 Application to engineering problems 

Non-Newtonian fluid rheology can lead to quite different flow behaviour 
from that of Newtonian fluids and has a profound effect on parameters such 
as pressure drop in pipeline flow, heat and mass transfer, mixing rate (see 
section 10.4.4) and residence time distribution. Some of the more dramatic 
observable changes have already been discussed in section 5.1. We shall 
conclude this chapter by applying some non-Newtonian constitutive equa­
tions to the problem of predicting the pressure drop for power-law and 
Bingham plastic fluids flowing through pipes. 

5.3.1 Non-Newtonian pipe flows 

As an example we consider flow of a power-law fluid through a round pipe, 
and we draw on the approach used in section 2.3.2. A force balance on a 
cylindrical element, as in Fig. 2.11, yields 
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r dP 
1=--

2 dL 

where now 

For convenience we shall call the pressure gradient 

dP AP 
s=--=-

dL L 
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(5.55) 

(5.56) 

(5.57) 

noting that the pressure gradient has a negative value, but that the pressure 
drop AP is treated as being positive. Then 

(5.58) 

Integrating equation (5.58), using the boundary condition that Vx = 0 at 
r= a, 

v,(r) = I(;~ fdr =(2~ r l=f:' -a :') (5.59) 
The volumetric flowrate may be obtained by integrating the velocity profile 
across the pipe: 

a a (Jl/n (n+l n+l ) 
wL = f 21trvx (r)dr = f 21tr ~ _n_ r ---;;- - a ---;;- dr 

o 0 2K 1+n 
(5.60) 

Integrating gives 

W =~ Ksa 3n+1 ( J
l/n 

L 3n+ 1 2 
(5.61) 

Solving for the pressure drop gives 

(5.62) 

Substituting for the pressure gradient in equation (5.59) gives 

(5.63) 

Figure 5.24 shows equation (5.63) plotted for various values of n, the power­
law index. The important consequences of these for process engineering 
design are as follows. 
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Fig. 5.24 Comparison of velocity profiles for Newtonian and non-Newtonian fluids. 

• The residence time distribution of the fluid depends on the value of n. For 
n < 1 the velocity profile in Fig. 5.24 becomes flatter, resulting in more 
plug flow-type behaviour (see section 8.3). Similarly for n > 1 (shear 
thickening) the velocity profile becomes sharper, and a broader distribu­
tion of residence times would result. 

• The pressure drop depends on the pipe radius a to the power -(3n + 1), 
so for a Newtonian fluid dPldL oc a-4 whereas for n = t, then dPldL oc 

a-2, which would have important consequences for scale-up of a pipe flow. 
• Heat transfer transfer coefficients may be directly correlated with the 

friction factor, which is related to the wall shear rate (see section 3.2, 
Reynolds, film and j-factor analogies) . Thus shear-thinning behaviour 
can increase heat transfer rates, at the same throughput. 

As a further example we shall investigate the behaviour of a Bingham 
plastic fluid in pipe flow. Following the same approach as above we can 
show that at a radius less than ry, given by 

r=~ 
y !1P/ L 

(5.64) 

the fluid stress does not exceed the Bingham yield stress and the material 
moves as a central plug through the pipeline. At radii greater than ry the 
fluid behaves as a Newtonian fluid and has a parabolic velocity profile, as 
shown in Fig. 5.25. Again, the residence time distinction and pressure drop 
are affected by the non-Newtonian behaviour of the fluid. Serious problems 
can occur with Bingham plastic fluids in more complex flow geometries: 
stagnant regions form where the fluid stress does not exceed the yield stress, 
resulting in poor rates of mixing and heat transfer. 
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Fig. 5.25 Bingham plastic pipe flow velocity profile. 

5.3.2 Complex fluid flow problems 

Using the examples above it should now be obvious that laminar flow 
problems may be solved using similar approaches to those for a Newtonian 
fluid, but replacing the shear stress terms with a suitable non-Newtonian 
constitutive equation. The examples considered here are simple, one­
dimensional problems, to which there are analytical solutions. For complex 
engineering geometries, the flows may be fully three-dimensional, or un­
steady, and an algebraic solution to the resulting set of equations may not 
be possible. This is also true of many Newtonian flows; however, recent 
advances in computational fluid dynamics have resulted in a number of 
commercial software packages that are able to calculate numerical solu­
tions to these problems. These packages solve the Navier-Stokes and con­
tinuity equations (the full three-dimensional equations of fluid motion) and 
are able to handle simple rheological models, such as a power-law fluid. The 
ability to perform calculations with viscoelastic fluids is limited, although a 
few (more academic) packages are available. Currently much research is 
being carried out on the appropriate forms of constitutive equation to 
model real non-linear viscoelastic materials and also to extend the current 
techniques of fluid mechanics to higher Reynolds number flows, even into 
the turbulent regime. 

Appendix 5.A Linear viscoelastic Maxwell element 

Referring to Fig. 5.7, the total shear stress and strain are 

(AS.I) 
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'Y = 'Yl + 'Y2 

. 't1 
'Yl =­

G 

d't 't G' -+-= 'Y dt A 

where A = Il/G is a relaxation time. 

(A5.2) 

(A5.3) 

(A5.4) 

(A5.5) 

(A5.6) 

Solving this first-order ordinary differential equation using an integrating 
factor: 

t (t-tlJ 't (t) = G 1 exp -T 1(t') dt' (A5.7) 

Suppose now that 

'Y = 'Yo sin rot (A5.8) 

giving a strain rate of 

1 = 10 ro cos rot (A5.9) 

which on substitution into equation (A5.7) and integrating gives 

( ) GA2ro2 . GAro 
'tt = (I+A2ro 2) 'Yosmrot+(I+A2ro2) 'Yo cos rot (A5.1O) 

or 

't(t) = G''Yo sin rot + G"'Yo cos rot (A5.11) 

Appendix S.B Concentric cylinder viscometer 

Referring to Figs 5.12 and 5.26: 

. (r+dr) (ro+dro)-(r+dr) ro dro 
'Y= =r--

dr dr 
(A5.12) 
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r 

Fig. 5.26 Fluid motion in a circular path. 

In steady shear 

r j = -21trz'tL 

where 't is the fluid shear stress at radius r, and 

't = !laY 

If the gap is small, then yand !la are almost constant. Then 

3 dro -rj 
!lar dr = 21tL 
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(A5.13) 

(A5.14) 

(A5.15) 

and integrating using the boundary conditions ro = ro at r = rj and ro = 0 at 
r = rz gives 

(A5.16) 

The shear stress varies as 

y = (2ro/ rZ )(rir~) "" rj ro 
(r~-rr) rZ-rj 

(A5.17) 

for rj /rz > 0.96. 

Appendix S.C Cone and plate viscometer 

Referring to Fig. 5.14, in a cone and plate viscometer, the shear rate is 
constant, independent of radius r: 

. ror ro 
y = r tan e = tan e (A5.18) 

The torque acting on an elemental area of 21tr dr is 

. 21tr2 roll 
dr = 21trz !la ydr = a dr 

tan e (A5.19) 
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Integrating from r = 0 to r = R gives 

Conclusions 

3r tanS 
11. = 2rtR3()) 

(A5.20) 

In the introduction to fluid mechanics in Chapter 2, the discussion centred 
on two idealized models of a fluid: one in which it could be assumed to be 
frictionless and the other in which it was assumed to have Newtonian 
properties. A Newtonian liquid is one whose rheology is described by a 
single constant parameter - its viscosity. 

Many food materials don't fall into either of these categories, and instead 
also exhibit some of the properties we usually associate with deformable or 
elastic solids. This chapter has dealt with ways of characterizing and classi­
fying such non-Newtonian fluids. The quantitative models for these fluids, 
that is the relationships between the shear stress (or apparent viscosity) and 
shear rate are known as the constitutive equations. You should understand 
the difference between fluids whose properties are time-independent and 
time-dependent. Three principal categories of time-independent fluid were 
introduced here: shear thinning, shear thickening and Bingham plastics. 
The latter are fluids which behave like solids when the shear is small, but 
begin to flow or yield at some critical shear stress. This chapter should have 
given some physical insight into why these different types of behaviour exist 
as well as introducing some of the simpler mathematical models to describe 
them. Two different types of time-dependent behaviour were also intro­
duced. Thixotropic and rheopectic fluids are examples of the first, in which 
changes in the physical structure lead to changes in viscosity with time. 
Another category of fluid exhibits both Newtonian and elastic properties, 
and this also results in a response to deformation which is time-dependent. 
These are the viscoelastic fluids. As well as meeting these different classes 
of fluid and real examples of food materials which approximate to them, 
you will have encountered some of the more common methods of measur­
ing their properties, that is of estimating the parameters in the constitutive 
equations. The final part of the chapter shows how the behaviour of some 
of these fluids in simple pipe flow can be predicted using the methods of 
Chapter 2. As a result you should be able to recognize how the velocity 
distribution of a fluid being pumped along a pipe depends on its rheology, 
and how the power requirements for pumping can be predicted. 
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