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Introduction 

Up to now, most of the examples studied have been for plants in a steady 
state; conditions in the process have not been changing. In practice, no 
process is in a steady state; processes are always unsteady and require 
continual control action to keep the product within specification. Process 
control requires accurate measurement of process parameters, together 
with some understanding of the ways that changes to the inlet conditions of 
the process will affect the product. When a process is designed, it is impor­
tant that it be easy to control; it is best to consider the controllability of a 
plant at the outset, rather than attempting to design a control system after 
the rest of the plant has been developed. 

This chapter introduces the ideas of process control. Of necessity this is a 
mathematical subject, but the principles are easy to understand. Once the 
objectives of a control system have been identified, then it is possible to 
develop a control model for the process, which identifies the outputs to be 
controlled and the input variables which can be changed. Depending on 
how well the process is understood, different types of control model can be 
developed; if the process can be accurately modelled then it may be possible 
to produce a feed-forward model in which the effect of changes in input 
variables on the output can be directly predicted; however, if the process is 
not well-understood, then feedback control, in which the change in output 
conditions with changes in inputs is measured and then used to change the 
inputs, may be the only one possible. Feedforward control is more efficient 
and rapid in theory, but requires much better knowledge of the process, and 
therefore is rarely used in practice. Analysis of process controllability can 
also help suggest how to design processes to be more easily controlled. As 
always in food processing, the better understood is a system, the more likely 
it is to be operated in a profitable manner. 

More and more, computers are being used for 'on-line' control; it is now 
possible to carry out data processing, optimization and the adjustment of 
process and control parameters in real time. Hierarchical control structures, 
in which process control and overall process management are closely inte-
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grated, are now becoming common. These structures encompass conven­
tional control techniques at the lowest level of the process, through produc­
tion control right through to management policy. At the process level 
the data are processed through software control algorithms and the control 
signals are fed back to the process. In this sense the computer can be seen 
as a replacement for traditional control systems. The application of on­
line control will undoubtedly continue apace, with huge implications for 
process efficiency. Nevertheless, the basic principles of process control 
theory will remain valid, and they will be the focus of this introductory 
chapter. 

Although there are many types of control problem and many different 
reasons for needing to control a process, two preconditions for any control 
scheme are that: 

1. it must be possible to measure some key indicators; and 
2. it must be possible to alter or correct the process behaviour in a predict­

able and stable way by manipulating one or more inputs. 

For example, the composition of a blender product stream might be 
controlled by altering the ftowrate of one of the input streams, or biscuit 
quality may be controlled by manipulating the heat input to part of the 
oven. Sometimes it is easy to see which input must be manipulated: the 
obvious way to control the temperature of a heated vat is to manipulate 
the heat input. In other cases, such as in controlling a batch dough mixer, it 
is more difficult to see how to control the process. Measurement is a very 
important issue for the food industry, but unfortunately there is no space 
here to discuss such problems: instead the focus will be mainly on issue (2): 
modelling and controlling processes. Within that framework, the primary 
emphasis will be on controlling continuous rather than batch or discrete 
processes. 

Some aspects of the material in this chapter are illustrated in the control 
simulation included on the disk accompanying this text. The example simu­
lates the feedback control of a continuous well-mixed heater, and details of 
the model and the simulation are given in section 11.12. 

Some sections of this chapter (7.4-7.6 in particular) are more mathemati­
cal than the others and can be omitted on a first reading. Sections 7.1-7.3 
introduce some key concepts of linear systems. Sections 7.7 and 7.8 are 
concerned respectively with some common controller types and actions 
(whose principles should be understood) and with a few issues involved in 
controlling complete processes as opposed to single units. 

7.1 What is the control problem? 

There are several stages in developing an adequate control strategy for a 
process. These include: 
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• defining the main control objectives; 
• defining appropriate control structures (identifying potential distur­

bances and defining what to measure and what to manipulate) at the level 
of individual units and the whole process; 

• specifying the appropriate control laws (relations between the measure­
ment and the magnitude and rate of change of the control variables); 

• translating the definition into hardware and software. 

7.1.1 Control objectives 

Classical control theory has traditionally concentrated on two classes of 
control objective. The first is to maintain a key parameter constant in the 
face of disturbances. For example, it might be necessary to maintain the fat 
content of a milk stream at a constant value despite batch-to-batch varia­
tions. There are many problems of this type (called the regulator problem) 
in continuous processes. In extreme cases control may actually be needed to 
stabilize the plant in the face of disturbances. Sometimes the uncontrolled 
process output changes because of fluctuations in process inputs, such as the 
raw materials quality or feedrate, or because of changes in demand for 
process services such as the steam supply. Some of these fluctuations could 
be rapid, or high-frequency; others may be much slower, such as variations 
in the outside temperature. Some may occur as more-or-Iess random vari­
ations about a mean value; others may result from longer-term changes. 
The food industry is particularly prone to fluctuations in raw material 
quality and supply. 

An obvious first strategy in dealing with this sort of problem is to try to 
eliminate or minimize those disturbances that can be controlled. For exam­
ple, changes in flow or composition can often be reduced or damped by the 
judicious use of intermediate storage or buffer tanks. 

The second type of control problem, sometimes called the servo problem, 
arises with processes where the conditions have to change. In many opera­
tions, such as batch mixers and cookers, or batch fermentations, it is neces­
sary to sequence the addition or rate of addition of some components or to 
adjust an operating parameter - such as mixing speed or heat input - to 
achieve the desired product quality. The essential problem is to 'steer' the 
process along a more-or-Iess defined path towards a final objective, in 
contrast to the regulator problem, where the aim is to remain within a small 
region of the desired steady state. The same problem also arises when a 
change in production volume or quality is called for. It may also arise in a 
different guise if the process performance changes (for example, because of 
exchanger fouling). Many processes rely on historical or design information 
to provide the basis for sequencing: typically - as embodied in many simple 
programmable logic controllers (PLCs) - valves or motors are switched on 
or off at predetermined times. This sort of process does not have any built­
in mechanism for corrective control action. 
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It is often assumed that accuracy is synonymous with process control. 
This is not always true: sometimes all that is needed is to maintain some 
parameter within a broad band. With a storage tank, for example, it is 
usually sufficient to ensure that the vessel doesn't overflow or run dry. More 
generally, means must be found to ensure that a process, or chain of pro­
cesses, doesn't run out of key inputs during the production cycle. At the 
process level, this is called material balancing. 

It will be appreciated, then, that there exists a range of control objectives. 
From the cases mentioned above it will be clear that it is necessary to 
consider the dynamic behaviour of the process, and how this is modified by 
the control system. This presupposes a process model. Linear models usu­
ally suffice for regulatory control, but non-linear models may be needed 
when significant changes in operating conditions are involved, such as in 
servo control. Here we shall concentrate on some basic ideas of classical 
theory, which developed around linear single input single output (or SISO) 
systems. 

Three complementary methods have traditionally been used. Time do­
main methods, which typically examine the system response to (for exam­
pie) a step disturbance, focus on the transient behaviour using criteria such 
as the rise and settling times, degree of oscillation in response, overshoot 
and offset as the basis for design and tuning. In frequency domain methods 
the system's response and stability are characterized in terms of its fre­
quency response, bandwidth, and gain and phase margins (which measure 
how close the system is to unstable, highly oscillatory behaviour). The 
importance of these two methods stems essentially from the use of transfer 
functions to describe system behaviour, and the ease with which they can be 
manipulated algebraically. However, a disadvantage is that, in dealing with 
complex systems, they lead to mathematically high-order functions. Root 
locus methods, which provide a bridge between the two other methods, are 
the basis of a third set of techniques. Here we shall touch on the first two 
methods only. First, however, we outline some typical control structures. 

7.1.2 Some basic control structures 

We can illustrate some of the basic concepts involved in process control by 
considering the control of a single unit, in this case a continuous mixer­
blender (Fig. 7.1(a». In this example two (liquid) streams with different fat 
contents X and Y are blended continuously to produce a product stream 
with fat content Z. We assume that the principal objective is that Z should 
be controlled as closely as possible. For this example we assume that X> Y, 
so that Y < Z < X. In the regulatory problem, the desired value of the outlet 
fat content is constant. The servo problem corresponds to the case when a 
new fat product is desired: that is, Z changes. For simplicity, most of the 
discussion below focuses on the regulatory problem, but we shall see that it 
is also relevant to the situation where the desired fat content is changed. 
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Fig. 7.2 Feedforward control of blender: (a) process flowsheet; (b) block diagram of control 
loop. AnC: analysis controller. 

First we have to devise a control structure: what to measure and what to 
manipulate. Suppose that all flowrates and fat contents can be measured. 
The only possible manipulated variables are the two inlet flowrates and the 
mixer speed or motor power. Changing the mixer speed cannot, of itself, 
alter the average exit fat content; all it can do is affect the quality of the 
blend. This leaves us with the flowrates as possible manipulated variables. 
In theory, if the feed fat contents and flowrates were measurable, one or 
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both of the inlet flows could be altered so as to ensure constant outlet fat 
content. For example, it would be possible to measure the fat contents X 
and Y, and one feedrate, say F l , and then adjust the flow of the other stream 
F2 to maintain Z constant. This would be a feedforward control scheme. In 
order to implement it one needs to know how F2 (the manipulated variable) 
affects the other variables. A simplified version of a feedforward scheme, 
built around the assumption that significant disturbances would only occur 
in the fat content of stream 1 (that is, X), is shown in Fig. 7.2(a). Note that, 
without taking additional measurements, it couldn't be guaranteed that Z 
was actually at its desired value as, for example, Fl might deviate from its 
assumed value, or the actual value of F2 could be in error. An analogy might 
be a rally driver who had such confidence in her navigator that she relied 
only on instructions read from the map. 

An alternative scheme would involve measuring the outlet fat content Z 
and then, depending on whether Z was below or above its desired value, 
adjusting the feedrate of streams Fl or F2 to restore Z to its target value. (A 
similar process could be used independently to control the quality of the 
blend by manipulating the mixer power.) The principle behind the fat 
content control scheme is shown for one adjusted flowrate only in Fig. 
7.3(a). In practice there would also be a time lapse between realizing that Z 
was drifting from its desired value and being able to do something about it 
before it was too late. Assuming that the dynamic problem is not a serious 
limitation it will be recognized that this scheme - feedback control- has the 
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Fig. 7.3 Feedback control of blender: (a) process ftowsheet; (b) block diagram of 
control loop. 
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Fig. 7.5 Cascade control: (a) feedforward cascade; (b) feedback cascade. 

intuitive advantage that it is based on the actual parameter that it is desired 
to control. A rough analogy is the strategy we use to adjust the heater 
setting in the shower: we trim the setting more or less violently in response 
to the sensation on the top of our head. We soon learn to compensate for 
the delay between changing the setting and feeling hotter or colder. The full 
scheme involving the two manipulated streams (that is, changing the flows 
of stream 1 or 2 depending on whether an increase or decrease in Z was 
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required) would be known as split-range control, as different manipulated 
variables may be used depending on the measured deviation in Z. 

In feedforward control (Fig. 7.2) a control signal alters the setting of the 
valve controlling the flow F2• As noted above, this involves the assumption 
that the valve stem moves to precisely the correct position to give the 
desired flow. Many valves are equipped with positioners to ensure this. A 
more secure system would employ a secondary feedback loop. Figure 7.4 
illustrates a flow control loop in which the reading from a measurement 
device just downstream from the valve is compared with the desired value 
or set point. Figure 7.5 shows how a secondary loop could modify the set 
point of the flow control loop in response to changes in the measured fat 
content X (or, in a feedback system, Z). Such a 'nested' scheme is called 
cascade control. 

Sometimes, when two or more streams are blended, it is their flowrates 
that are subject to change rather than their compositions, and then the 
desired output consistency will be assured by using ratio control to hold the 
flows in a fixed ratio to each other (Fig. 7.6). 

All feedback schemes involve comparison of a measured output with its 
desired value or set point, which in the discussion above is assumed con­
stant. If it is desired to change from one output fat content to another or to 
change the flowrate of a particular stream in some way, this could be 
achieved by changing the set point either stepwise or in a programmed way. 
A good design will then ensure that the system output is able to track this 
change: which, of course, is an example of servo control. 

Most of these loops (and, indeed of those used in practice) have a single 
controlled input and a single output (SISO schemes). However, the fact that 
more complicated arrangements might be needed can be realized by look­
ing at another feature of the blender: that is, the existence of multiple 
'linkages' between the various inputs and some or all of the outputs. As 
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shown schematically in Fig. 7.7, changing either of the input flows will lead 
to a change in both the product flowrate and its composition; however, 
changes in the inlet composition only affect the composition and not the 
flowrate of the output stream. Where the interactions are weak, this 
presents no problem, and the whole system can be controlled by a set of 
independent SISO control loops. In other cases control system design must 
take account of the multi variable nature of the process in order to ensure 
that the desired objectives are met. 

The ideal design consists of the minimum set of independent control 
loops. It is tempting to attempt to control everything, whether it is strictly 
necessary or not. Figure 7.8, showing a continuous liquid buffer tank, illus­
trates two important considerations. First, any control system must be 
feasible: the scheme shown, which implies independent control of the inlet 
flow, the level in the separator and the outlet flowrate, is clearly impossible, 
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as there are insufficient degrees of freedom for all three variables to be 
independent of each other. Controlling the inlet flow and the level means 
that the outlet flowrate cannot also be varied independently. Second, as 
noted above, precise control is often not necessary. For example, it usually 
necessary to control the liquid level in a holding tank only within wide 
margins, as all that is needed is to ensure that the tank doesn't overflow or 
empty. Recognition of this can provide an important degree of flexibility in 
a system. It is recommended that, before detailed control of quality meas­
ures is undertaken, consideration be given first to ensuring adequate mass 
balancing throughout the plant: that is, to ensuring that pumps are always 
fed and that storage and process vessels don't run dry. Most important of all 
is to define the control objectives! 

From the examples above we can distinguish between the following types 
of parameter or variable. 

• Disturbances, such as the inlet concentration X. These fall into two 
categories: those that are measurable and those that aren't. Note that it 
would be very dangerous to assume that there was only one disturbance: 
in the case of the blender, we must ask what would happen if the inlet 
flowrate of milk did change? 

• State variables, which are indicators of the state of the process, and which 
may include some measured variables (such as the outlet concentration 
Z) or outputs. Not all of these variables may be measurable on line; it may 
be possible to infer some from other readings or by computation. In what 
follows it will normally be assumed that the measured values provide 
analogue rather than either/or (open/closed, for example) information. 

• Manipulated or controlled variables, such as the flowrate Fz. 

Note also that in each case there has to be an appropriate control law: that 
is, a defined relation between the measured variable (or realistically its 
variation from the desired or target value) and the magnitude (and rate) of 
the change in the manipulated variable. In the example of the shower, the 
amount by which we change the heater setting in response to the sensation 
of burning reflects the control law, which we have learned through hard 
experience. You will see that this law reflects the model of the system: we 
would respond in one way with a modern, fast -acting shower and in another 
with an older less powerful type. 

Two other features of control systems should also be noted. The first, 
obvious, point is that the control signals in a plant, such as flowrates, are 
constrained and not limitless. The second point is that control loops must be 
integrated into the emergency/alarm system appropriate to the plant. 
Alarms need to be built in to protect against process or control system 
failure; control valves should be chosen so that, wherever possible, they fail 
safe; overrides to shut down process flows in an emergency must also be 
built in. 
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7.2 Block diagrams 

We can represent the control schemes described above by means of their 
block diagrams. For linear systems (see below) we shall see that this method 
of representation is a very powerful tool for control system analysis. 

For example, Figs 7.2(b) and 7.3(b) are block diagrams for the 
feedforward and feedback schemes for blender control. The boxes, or 
blocks, represent the various components in the control loop. Each block 
has one or more inputs (such as a flowrate) and an output (for example, a 
composition or, from a transducer, an electrical signal); the arrowed lines 
show the direction of signal flow (that is, input ~ output). Most control 
systems will have blocks corresponding to the following hardware units: 

• the process unit (the blender, holding tank etc.); 
• a process sensor; 
• a unit (the comparator) where the measured output is compared with the 

desired value (put in by the operator) to generate an 'error' signal; 
• the controller itself, which, in response to the error signal, sends a signal 

to the final element: 
• an actuator (most typically a valve) whose output is the manipulated 

control variable, usually a flowrate. 

In practice the comparator and controller form a single unit, which 
might nowadays be a computer or programmable logic controller (PLC) 
device. 

The algebra of block diagrams, which is the basis for many techniques for 
analysing control systems, is developed further in section 7.6.4. 

7.3 Process dynamics 

Processes and instruments can never react instantaneously to changing 
inputs. A few types of dynamic behaviour recur very frequently; these can 
be used to characterize many more complex processes and to explain the 
elementary principles of regulatory process control. 

Two of these - the first-order lag and the dead-time or transportation lag 
- are particularly important. The difference between them can be grasped 
qualitatively by comparing the behaviour of a constant-volume well-mixed 
tank and a pipe (Fig. 7.9). 

Consider the effects of a change (assumed a step jump) in the composi­
tion of the inlet stream to the two units. The first device is well mixed, so 
that, instantaneously, the compositions of the output stream and the aver­
age composition in the vessel are the same. As we shall see in Chapter 8, 
well-mixedness implies a very broad spread (from zero to infinity) in the 
residence times of individual material elements. A change in the composi-
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Fig. 7.9 (a) First-order and (b) transportation lags. 

tion of the inlet flow will therefore be sensed immediately in the outlet 
because of the short residence time of some material. However, the full 
consequences of the inlet change will only be seen some time later. In 
contrast, material is assumed to be transported without axial mixing along 
the length of the pipe in Fig. 7.9(b); no change in outlet composition is 
expected until the transportation lag time has elapsed. We now examine 
these two systems quantitatively. 

7.3.1 First-order systems 

As illustrated in Fig. 7.9(a) we assume one input and outlet stream, flowing 
at a constant rate F through the unit whose volume is V. This could, for 
example, represent a holding tank for a continuous milk feed whose compo­
sition (protein or fat concentration), fluctuates. x and z are the instantane­
ous concentrations of the species of interest in the inlet stream and the 
vessel (and in the outlet). The only disturbance considered is a change in 
inlet concentration x. An instantaneous species balance is, in words: 

That is, 

or 

Rate of accumulation = flowrate in - flowrate out 

Vdz 
--=Fx-Fz 

dt 

'tdz 
-+z=x 
dt 

(7.1) 

(7.2) 
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Fig. 7.10 Step response of: (a) a first-order system; (b) dead time. z, is the final value of the 
output z(t). 

This is a first-order system (as it is described by a first-order linear ordinary 
differential equation). 't is the system time constant: here it is the mean 
residence time, VIP. 

If the system is subjected to a step change of magnitude x(O) in the inlet 
concentration, the response (which is readily checked by back-substitution) 
is 

z(t) = x( 0)[ 1-exp( -t/ 't)] (7.3) 

where the final value of the outlet concentration is, of course, the same as 
the inlet, x(O). The response, z(t), is shown in Fig. 7.10(a) for two different 
values of 'to The larger the system time constant, the slower the response. 
Note that the effects of the change in inlet concentration are observed 
immediately in the outlet stream, where the initial rate of change in concen­
tration is x(O)/'t. Two useful results are that z reaches 63.2 % of its final value 
within one time constant and 95% within three time constants. 

Many simple processes (such as the flow response of a holding tank or a 
simple thermocouple) demonstrate, or approximate to, first-order dynam­
ics: that is, they are characterized by a single time constant. 
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7.3.2 Dead times or transportation lags 

Now compare the result above with a dead time or transportation lag (Fig. 
7.9(b» (sometimes also called the distance/velocity lag). A pipeline with 
turbulent flow is a good approximation to this. Equation (7.1) no longer 
holds, as the contents are not perfectly mixed. A first approximation to the 
flow behaviour is that the contents flow at a constant mean horizontal 
velocity u = FlA through the process unit, just as in the plug flow reactor 
(Chapter 8, section 8.3.3). A is the pipe cross-sectional area. A change in 
inlet concentration propagates through the unit with velocity u, appearing 
unaltered in magnitude at the exit a time Llu = VI F later. Thus, although the 
system has the same characteristic time constant as the well-mixed process, 
its behaviour is very different (Fig. 7.10(b ». With a first-order system the 
first effects of an input change are seen immediately in the outlet stream, 
although the full effect is not seen until a few time constants have elapsed. 
With a pure time delay there is no attenuation in the outlet signal, and there 
is no intimation of a disturbance until one time constant has elapsed. In the 
case examined here, a step change in inlet concentration would result in the 
same final exit concentration from both systems. 

7.3.3 Series of lags 

The step response of a system comprising a first-order lag preceded or 
followed by a dead time 't j would follow the curve given by equation (7.3) 
but shifted by a time 't j , as shown in Fig. 7.11(a): 

z(t) = 0, t < 'tJ 

z(t) = x(o){ l-exp[-(t - 'tj)/'t]}, (7.4) 

This has significant implications for control system design. If a measuring 
element is placed some distance downstream from the process, the lag 
between a change occurring and its effects being recognized can have 
serious consequences for control quality. 

It will be obvious intuitively that a system of first-order lags in series 
would give rise to an increasingly sigmoidal series of responses to a step 
input to the first unit, as shown qualitatively in Fig. 7.11(b). The response to 
a step input can never give rise to an oscillatory response. 

7.3.4 Second-order lags 

Examples of the second-order (or quadratic) system that are often quoted 
include a damped oscillator and the U-tube manometer. An example of the 
first would be a load cell. The force on the load cell is resisted by a restoring 
force from the spring (proportional to its compression) and a viscous damp-
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ing force, proportional to the rate of compression or movement of the cell. 
A force balance on both these systems leads to an equation of the form 

't2 d2x +1;dx +x=F(t) 
dt 2 dt 

(7.5) 

where x is the deflection (output) and F is the imposed, forcing function. 
A feature of this is that the step response, sketched in Fig. 7.12, shows 

regions of non-oscillatory, or over-damped, response corresponding to 1; > 
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1, and increasingly oscillatory (or underdamped) behaviour as I; decreases 
for I; < 1. The frequency of this oscillation is related to the two parameters 
"C and I; by CO"C = ,J(1 - 1;2). In the absence of any viscous damping the system 
behaves as a simple harmonic oscillator with natural frequency co = 1h. Two 
first-order lags in series (for example, one holding tank feeding another) 
give non-oscillatory behaviour, and exactly correspond to a system with 
I; > 1. 

In practice, this form of response is far more important than the two 
examples quoted might suggest, because many closed-loop control systems 
behave in a qualitatively similar way. The choice of control parameters is 
often governed by a search for an appropriate compromise between the 
speed of response (favoured by lower values of I; and "C) and the extent of 
oscillatory response that is acceptable. 

7.4 Multiple inputs and linearization 

All the examples above are based on linear processes. If, in the example 
used to develop the idea of a first-order lag, the flowrate F was allowed to 
vary, however, the system would be non-linear because of the product 
terms F(t)x(t) and F(t)z(t). Many processes are inherently non-linear: for 
example, the output (pressure signal) from an orifice flowmeter varies with 
(flowrate)2 (equation (2.14»; the flow through an orifice or valve is, by the 
same token, proportional to (pressure drop)O.5. However, it is always possi­
ble to approximate the process by a linearized model to allow the use of the 
large body of linear theory. This process is illustrated here. This section and 
the following example can be omitted on a first reading. 

Consider the well-stirred blender shown in Fig. 7.1(a). We assume that 
the materials are incompressible, that the volume is maintained constant 
and that all flows and compositions may vary with time. Instantaneous 
material balances on the flows of total material and of fat both have the 
form: 

Rate of accumulation = Sum of flows in - Sum of flows out 

which, with the constant volume assumption, give 

and 

~(t)+F2(t) = F(t) 

v ~~ = ~ (t )X(t) + F2(t)Y(t) - F(t)Z(t) 

= ~ X + F2 Y - (FI + F2)Z 

(7.6) 

(7.7) 

(7.8) 

for the total flow and fat respectively. The explicit dependence on time has 
been suppressed in equation (7.8), where equation (7.6) has been used to 
eliminate the outlet flow F. 



266 PROCESS CONTROL 

If all of the inlet compositions or flowrates vary with time, equation (7.8) 
is non-linear. It is often hard to solve, and does not have a general solution. 
If the only disturbances were due to changes in the fat compositions X and 
Y, equation (7.8) would be a linear first-order differential equation with 
constant coefficients (A, B, e), of form 

dZ = AZ(t) + BX(t) +eY(t) 
dt 

However, the equation can be reduced to an approximate linear form in all 
the variables by working in terms of changes (or deviations) rather than the 
absolute values of the variables. To do this we write each variable in the 
form 

w(t) = W(O)+w(t) 
where W(O) is the initial (assumed steady) value and w(t) is its deviation 
from the initial value. For example, we write 

X(t) = X(O)+x(t) 
and 

~(t) = ~(O)+ h(t) 
It is also assumed that w(t) is small, so that, where necessary, products of 
small variables (such as fl(t)X(t» can be neglected to eliminate non-linear 
terms. Thus equation (7.8) becomes 

V~~ =[~(O)+ h][X(0)+x]+[F2(0)+ f2][Y(0) + Y] 

- [~(O)+ h + F2(0)+ f2 ][Z(O) + z] (7.9) 
Some of the terms in equation (7.9) cancel because at steady state 

(7.10) 

Substituting from (7.10) in (7.8) and neglecting the small terms fIx, flY, flZ, 
and f2Z gives the general linearized dynamic model: 

V~~ = [X(O)-Z(O)]h + [Y(0)-Z(0)]f2 +~(O)x 
+ F2(0)y-[~(0)+F2(0)]Z 

which has the linear form 

dz V - = Ah + Bf2 + ex + Dy - Ez 
dt 

(7.11) 

(7.12) 
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Suppose, for example, that all the inputs are constant except the fat compo­
sition of stream 1; equation (7.11) reduces to the simple first-order equation 

v ~; = l\ ( 0 )x - [ l\ ( 0 ) + Fz ( 0 )]z 

which can be written in the simpler form (cf. equation (7.2» 

dz 
1:-+Z= Kpx 

dt 

(7.13) 

(7.14) 

where, as before, 1: is the system time constant, here = V/[FJ(O) + FiO)] 
= V/F(O). The constant Kp = FJ(O)/F(O); this is the 'static' gain. 

If the system is subjected to a step change of magnitude x(O) in the inlet 
fat content, the response is as before: 

z(t) = z(oo)[l-exp(-th)] (7.15) 

where the final value of the outlet fat content z( 00) = K~(O). 
The time constant for changes in exit fat content (the blender volume 

divided by the flowrate) is the same for all possible disturbances in the 
model. However, changes in inlet flowrate are reflected by instantaneous 
changes in the outlet flowrate F. 

The assumption that fluctuations are small is often justified in the analysis 
of control systems, on the grounds that a well-designed regulatory control 
scheme will ensure that deviations are kept small. It is less likely to be 
generally true, however, when set point changes are introduced, as in the 
case of so-called servo control, as this often implies significant changes in 
operation. 

EXAMPLE 7.1: THE DYNAMICS OF A HOLDING TANK 

A tank, cross-sectional area 1 W, is used as a buffer tank. The steady­
state flow through the tank is 0.1 w min-I; the output flow is related to 
the liquid height in the tank by F 0 = O.1"1'H. How would the outlet flow and 
liquid height respond to a step change in inlet flowrate from O. 1 to 
O.12wmin-l? 

We first derive the general linearized model for a holding tank, using the 
symbols defined in Fig. 7.13, with 

Fo = K "I' H (7.16) 

Small changes in flowrate from the steady value fo are related to small 
changes in liquid height h by taking the first terms in the Taylor series 
expansion of equation (7.16): 

Fo(O)+fo = K"I'H(O)[1+ O.5h/H(O) + ... ] 
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H 

Fo= KJH 

Fig. 7.13 Example 7.1: flow through a holding tank. 

That is, 

(7.17) 

where Rv is the linearized resistance of the outlet valve. 
A linearized input-output relation for the flows through the tank then 

follows directly by substituting for h = Rio (equation (7.17)) into the mass 
balance: 

That is, 

or 

A dh = f-f 
dt I 0 

df 
't_o +f =f 

dt 0 I 

(7.18) 

(7.19a) 

(7.19b) 

The system time constant 't = ARv = 2AH(0)/F(0) = 2V/F(0). (The factor 2 
appears here as a consequence of the non-linear flow/height relation.) 
Variations in the liquid height follow the equation 

(7.20) 

which, not surprisingly, has the same time constant but a different 'static' 
gain Kp. 

Here, K = 0.1 and to = 0.05h, the valve resistance Rv = 20 min m-2, and 
the time constant = 20 min. The step change in inlet flow thus results in: 

(7.21a) 
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and 

(7.21 b) 

The liquid height would change by 0.4 m; it would reach 0.25 m within 
20 min and be almost steady at its new value within 1 h of the change. If 
the tank were much smaller or the steady flowrate higher, the speed of 
response (measured by the time constant) would be correspondingly 
faster. 

7.5 Frequency response 

The example above illustrates the ideas underpinning time domain analysis. 
The principles of frequency response analysis are briefly illustrated here. 
This section may be omitted on a first reading. We consider the response of 
a first-order system governed by equation (7.2) or (7.14) to a sinusoidal 
input x = x(O) sin O)t. Here 0) is measured in radians/time; it is related to the 
frequency 1 (cycles/unit time) by 0) = 2nf Once the immediate, transient, 
effects of the disturbance have died down, it can be shown that the output 
z(t) itself settles down to an oscillatory form given by 

z(t) = A sin( O)t + <\» (7.22) 

where the amplitude of z(t) is 

(7.23a) 

and the phase shift is: 

<\> = -tan-l (on:) (7.23b) 

The physical significance of A and <\> is illustrated in Fig. 7.14. 
Note the following. 

• The output is also a sine wave with the same frequency as the input. 
• The output amplitude is reduced from its steady-state or asymptotic 

value (= KpX(O)) by a factor 1/(1 + on2)0.5: the higher the frequency, or 
the smaller the system time constant (that is, the faster it is able to 
respond), the greater is the reduction in the output amplitude, reflecting 
the combination of resistance and capacity in the system. 

• The output signal lags the input by an angle <\>, or a time <\>/3601 = n<\>/1800). 

The effect of the process dynamics on the magnitude of the outlet is very 
important. Consider the effect of the holding tank on the outlet flow, for 
example: here Kp = 1. When the frequency of fluctuations in the inlet flow 
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Input x(~ 
-I 1- Lag=1tcj>/180ro 

Amplitude 

~ 
-t 

I- Cycle time = 1/t -I Time---

Fig. 7.14 Response to sinusoidal input. 

is low in relation to the tank time constant (that is, 0)« 111), the magnitude 
of oscillations in the outlet will be the same as those in the inlet and there 
will be no time lag between them. If the frequency of the disturbances is 
high, the tank-valve system exerts a significant damping effect, reducing the 
magnitude of the variations. For example, if 0) = 11't, the outlet flow oscilla­
tions are reduced by a factor 1I-v2; if 0) = 10/1, the amplitude is reduced to 
approximately one tenth of its inlet value. This is why buffer tanks, if 
correctly designed, can significantly reduce fluctuations, and effectively 
decouple one part of a process from the remainder downstream. 

It also explains why, if a system is disturbed by, or expected to cope with, 
quickly varying variables, it is important to ensure that the dynamics of the 
various process elements (sensors and the like) are also fast. A thermocou­
ple with a time constant of 1 s will have no problem in accurately following 
the changes of bulk temperature in a large vat of sauce; it may be less 
satisfactory in coping with a small gas-fired oven. 

7.6 Feedforward and feedback control 

We now return to a discussion of the control systems introduced earlier in 
section 7.4. To simplify matters we base the discussion around the blender 
control problem. This section may also be omitted on a first reading. 

7.6.1 Feedforward control 

First, consider feedforward control of the blender output, with the single 
feedforward scheme shown in Fig. 7.2. In order to respond to a variation in 
X it is necessary to know how X and Z depend on F2• In other words, we 
need a model of the process, which has already been derived above: 

(7.6) 
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v ~~ = ~(t )X(t) + Fz(t)Y(t) - F(t )Z(t) 

=~X +FZY -(~ +Fz)Z 
for the total flow and fat respectively. 
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(7.7) 

(7.8) 

The objective of the control scheme is to ensure that the effects of 
deviations in X are eliminated from Z. It is further assumed that neither FI 
nor Y varies from its steady value FI(O) or YeO). How then should Fz be 
changed when a change in the inlet fat content X is detected, to ensure that 
Z remains at its steady value (that is, dZldt = O)? The answer from equation 
(7.8) is that dZldt = 0 provided Fz is 

F (t) = /{(O)X(t)-/{(O)Z(O) 
z Z(O)- Y(O) 

The flowrate of the added stream should always be proportional to the inlet 
fat content X. It is obvious in this case that the change in flowrate (= f) is 
also proportional to the change in fat content: 

where 

K = ----,--,-/{-,-( 0...:.....,) -:­

c Z(O)-Y(O) 

(7.24) 

(7.25) 

This is an example of proportional feedforward control. Note that the 
value of Kc, the controller gain, is fixed. If the model is wrong, or the 
flowrate FI is different from the value assumed in calculating Kc, the control 
system won't respond correctly to changes in inlet fat content, and the 
controlled value of X will be different from its desired value. The flow 
must also respond immediately to changes in X to achieve the desired 
objective. 

EXAMPLE 7.2: FEEDFORWARD CONTROL 

Consider a continuous blender, capacity 100 kg, with the following steady 
design conditions: 

FlO) = 1000kgll1 

X(O) = 0.06kg fat/kg milk 
Y (0) = 0.01 kg fat/kg milk 
Z(O) = 0.05kg fat/kg milk 
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The fat content X(t) of the stream inlet F 1 may val}' between 0.05 and 
0.07kg/kg. Design a proportional feedforward system to ensure that Z 
remains constant. 

From the steady-state version of the mass balances (equations (7.6) and 
(7.9»: 

F2 (0) = 250kgh-1 

Then from equation (7.25): 

and F(O) = 1000kgh-1 

K = 1000 = 25 000 kg 
c 0.04 kg fat/kg milk 

Suppose that the inlet fat content jumps instantaneously from 0.06 to 
0.061 kg/kg; then F2 must also change instantaneously by f2 = (25000) 
(0.001) = 25 kg h-l, so that F2 = 275 and F = 1275 kg h-l, to ensure the 
correct value of Z. 

However, if the blender was actually working with an inlet milk flow 
different from the assumed value of 1000 kg h-1, or the fat content of 
stream F2 was not 0.1 kg/kg, or the proportional control constant was not 
25000, Zwould not be at its desired value, unless the control action was 
changed to allow for this. 

Example 7.2 shows the power of feedforward control. However, for it to be 
effective every disturbance must be measured and the plant model must be 
accurate. It is useless, however, in the face of unmeasured plant distur­
bances, and is sensitive to the accuracy of the plant model. 

7.6.2 Feedback control 

Some of the key features of any feedback control system can be discussed 
by first exploring the behaviour of a process whose dynamics are so fast 
that, in a first analysis, they can be neglected. As noted earlier it is con­
venient to work in terms of changes in key variables rather than their 
absolute values, not least because it allows us to work with linear models: 
the object of the control scheme is then, if possible, to reduce the deviation 
in the measured output to zero. Consider the flow control loop in Fig. 7.4. 

In the absence of any control a disturbance 0 in the pressure upstream or 
downstream causes a change f in the uncontrolled flowrate, where 

f= Kp10 (7.26) 

(Kpl would be positive for upstream pressure changes and negative for 
downstream fluctuations.) 

With control the effect of the disturbance is compensated by a movement 
in the valve opening. The measured value f is compared with its desired 
value (the set point) 1*; the difference between these two, the error signal 
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e = f* - f, is the input to the controller. The output from the controller 
causes the valve opening to change to compensate the measured deviation. 
We assume that a proportional controller is used: that is, a controller whose 
output 0 = Kce. Further, we assume that the valve itself is linear so that its 
output flow q = KvO. As we are neglecting dynamic effects, the pipe between 
the valve and measuring point has no effect on the flowrate (that is, with no 
disturbance, f = q; the gain of the pipe or process, Kp = 1). Then 

f= Kp18 + q 

= Kp18 + KvKce 

= K p18 + KvKc (t* - f) 
Rearranging: 

(7.27a) 

(7.27b) 

(7.27c) 

(7.28) 

This is the 'closed loop' relationship: that is, when the process is controlled, 
between changes in the flowrate, the disturbance and the set point. Note 
that the effect of feedback control is to reduce the sensitivity of the output 
to the input changes. Comparison of equations (7.26) and (7.28) shows that, 
for a given disturbance, the outlet flow is reduced from its 'open-loop' value 
(its value without feedback control) by 1/(1 + KvKc). If the pipe had a static 
gain Kp this term would become 1/(1 + KpKvKc). 

At first sight, perhaps the most surprising feature is that it is not possible 
with this control scheme to ensure perfect control. For example, if the 
system is upset by a disturbance that remains at a finite value, then f must 
also be finite. If the set point is changed, the output flow f can never exactly 
equal its desired value! However, the higher the value of the proportional 
control constant or gain (that is, the more sensitive the control action), the 
lower the value of f. The larger KvKc is the smaller is the effect of a 
disturbance, as for large KvKc' f"" (K/KvKc)8; also, the outlet approaches 
the set point more closely as f"" f*. The phenomenon whereby the output 
is always slightly displaced from the desired value is a general feature of all 
proportional feedback control schemes. It is known as offset. The reason 
for offset is that the flow generated by the valve to counteract the effects of 
disturbances must result from a finite change in the measured variable: if 
there was no change there would be no control action. One implication of 
this is that we should look to other forms, apart from proportional control, 
of control action. 

EXAMPLE 7.3: FEEDBACK BLENDER CONTROL 

A single feedback control loop, shown in Fig. 7.3, is used to control the 
same blender as in Example 7.2. What proportional control constant will 
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ensure that the outlet fat content Z remains within 0.001 kg/kg of its 
desired value in the face of disturbances in the fat content, X, of stream 1 
of up to 0.01 kg/kg? 

The diluent flowrate F2 is manipulated in response to measured changes 
in the outlet fat concentration Z (Fig. 7.3) by altering the flowrate in direct 
proportion to the error signal. As before the steady compositions and 
flowrate are: 

F1(0) = 1000kgh-1 

X(O) = 0.06 kg/kg 
F2(0) = 250 kg h-1 

Y(O) = 0.01 kg/kg 
F(O) = 1250kgh-1 

Z(O) = 0.05 kg/kg 

It is assumed that all process dynamics are very fast, so that even when 
inputs are changing the process is always at the corresponding steady 
state. 

First we require the closed loop relationship, analogous to equation 
(7.28), between z, xand f2 (working with perturbation variables, as before). 
From the fat balance (equation (7.11», setting dz/dt = 0 because of the 
quasi-steady state assumption: 

F(O)z = [Y(O) - Z(0)]f2 + F,(O)x 

That is, 

z = -0.000032'2 + 0.8x (7.29) 

which is the model for the block marked 'blender' in Fig. 7.3. The flowrate 
from the combination of controller and valve is proportional to the error 
signal; that is, 

f2 = KcKAz* -z) 

so that the closed-loop relationship is: 

That is, 

z = -0.000032KcKAz* -z) + 0.8x 

z = -0.000032KcKA1 + 0.000032KcKv t z* 

+ 0.8( 1 + 0.000 032K cK v t x 

(7.30a) 

(7.30b) 

(7.31) 

Thus, for constant set point, i.e. z* = 0 and for a change in inlet fat content 
x = 0.01 kg/kg, the condition from equation (7.31) for z to vary by only 
0.001 kg/kg is that: 

1 + 0.000032K"Kv = 8 

That is, 

KcKv = 218750kgh-1/(kgjkg) 
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A higher value will ensure a smaller offset from the ideal, Z = O. With this 
control setting the relation between z and the desired value (correspond­
ing to servo control) is z = (7/8)2". That is, there would be a steady offset 
of 0.1252" following a change 2" in the set point. 

Note that, as in the first example of proportional feedback control, 
the term (1 + KpKcKv)-1 plays a crucial role in determining the system 
sensitivity. 

7.6.3 Dynamics and control 

Now we consider how the process dynamics affects feedback control. Intui­
tively we might expect the controlled variable to respond to a step change 
in a disturbance or set point by settling down to the value predicted from 
the static analysis. This will usually be true, provided the control system is 
stable (which can only be established from analysis of the dynamics); how­
ever, it will also be clear intuitively that the dynamics of the process and the 
various units in the feedback loop, such as the measuring element, must 
affect the control behaviour. 

Again, we consider the example of the mixer-blender, but with the 
important difference from Example 7.3 that the dynamics of the blender 
itself are included. We assume that all other parts of the closed loop have 
very fast dynamics in comparison with the blender. 

Thus the appropriate open-loop model is now a linearized dynamic 
model for the blender. Again we consider only one disturbance (x) and one 
manipulated variable (f2)' Then equation (7.6) becomes 

f2(t) = f(t) 
and equation (7.11) is 

v :; = [Y(0)-Z(0)]f2 + r;(O)x - F(O)z 

= Af2 + r;(O)x -F(O)z 
where A = YeO) - Z(O). As before 

f2 = KcKv{Z*-Z) 

so that 

(7.32a) 

(7.32b) 

(7.32c) 

(7.30a) 

(7.33) 

Equation (7.33), describing the closed loop, has exactly the same first-order 
form as the open-loop system (equation (7.14», with the exception that 
there are two possible 'forcing' functions or inputs, z* and x. For example, 



276 PROCESS CONTROL 

if we wish to examine the response of the system to a step change only in the 
inlet fat content x (so that z* = 0), equation (7.33) becomes 

't ~~ + z(t) = Kx(t) (7.34) 

where the time constant 't = V/[ F(O) + AKcKvl and the closed-loop static gain 
K = Fl(O)/[F(O) + AK~vl. These can be compared with the corresponding 
open loop values (equation (7.14» 't = V/ F(O) and Kp = Fl (0)/ F(O). Feedback 
proportional control reduces the apparent time constant for the system -
that is, speeds up the response - and reduces the ultimate effect of a 
permanent change on the output, without eliminating it completely, as the 
offset = Kx(O). 

EXAMPLE 7.4 

Consider the same blender as in Example 7.3. Compare the open- and 
closed-loop responses to step and sinusoidal changes in the inlet fat 
content, X, with the same control setting as in the previous example. As 
before the steady compositions and f/owrates are: 

F,(O) = 1000kglr' 
X(O) = 0.06kg/kg 

F2(O) = 250kglr' 
Y(O) = 0.01 kg/kg 

The open-loop characteristics are (see equation (7.14)): 

F(O) = 1250 kg Ir' 
Z(O) = 0.05kg/kg 

't = F~O) = 0.08min and K = F;(O) = 0 8 
P F(O) . 

As in the previous example, KcKv = 218750kgh-l/(kg/kg). Note that, in 
equation (7.33), A = Z(O) - Y(O) = 0.04 kg/kg and AKcKv = 8750kgh-1• 

The time constant of the controlled system is (equation (7.34)), 't = 
0.01 min, and K = 0.1: both reduced eightfold from the open-loop values. 
The response of the system to a step change in inlet fat content x(O) = 
0.01 kg/kg is, from equation (7.3): 

z(t) = Kx(0){1- exp-tj't} 

=0.008{1-exp-12.5t} (open loop) 

= 0.001{ 1- exp-1 OOt} (closed loop) 

The step responses of the uncontrolled (open loop) and controlled (closed 
loop) blender are shown in Fig. 7.15. 
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Without control 

With control 

o Time 

Fig. 7.15 Example 7.4: step response of blender, with and without control. 

Note that, as expected, the final value of z is the value calculated from 
the static analysis. We can also easily obtain the responses of the system 
to sinusoidal changes in inlet fat content. We assume the same distur­
bance amplitude (=0.01) as the step disturbance. The amplitude Izl and 
the phase shift <I> of the output concentration calculated from equations 
(7.23a) and (7.23b) (namely Izl = Kpx(0)/[1 + ro2t2]o.5 and <I> = -tan-1(0yc)) are 
tabulated below for disturbance frequencies ro = 1 and 1000 rad min-1 

respectively: 

Izl 
<I> 

Frequency, co 

1000 

Open loop Feedback Open loop Feedback 

0.008 
4.60 

0.001 
0.60 

0.0001 
89.30 

0.0001 
84.20 

When the disturbance varies slowly, the amplitude of the controlled 
outlet fat content is the same as the steady result following a step change; 
however, for a rapid disturbance the combined effect of the process 
dynamics and the feedback loop is the virtual complete elimination of the 
disturbance, even though it does now lag the input by almost 90°. Note, 
too, that with this control setting the main improvement over the uncon­
trolled system is seen at lower frequencies. This is because the blender 
itself 'irons out' high-frequency disturbances. 

Remember that the great advantage of feedback control is that its efficacy 
does not depend on being able to measure or even identify the principal 
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disturbances. Although the example above was developed on the assump­
tion that there was only one disturbance, the same qualitative behaviour 
would result if the system was upset by changes in any of the other inputs, 
such as the flowrate Fl' 

Note also that the results above all depend on the assumption of propor­
tional control; below we shall discuss what other forms of controller 
action are available and how they might be expected to influence process 
behaviour. 

7.6.4 Block diagram representation: the algebra of closed loops 

In the examples above, the input-output relationships for the controlled 
system were found by incorporating equations to represent the propor­
tional control action into the unsteady-state model. Long-winded math­
ematical derivations for each new problem can be avoided by deriving 
input-output relationships directly from a block diagram representation of 
the system. It will be seen that this allows some of the key results above to 
be generalized. 

Block diagrams for various control schemes are shown in some of the 
diagrams above. The blocks or boxes usually represent a piece of equip­
ment such as the process itself, the controller or a valve. The arrowed lines 
represent the direction of signal flow, which does not always coincide with 
the direction of material flow; for example, fluctuations in downstream 
pressure could act as a disturbance to the flow control system in Fig. 7.4. 
Nevertheless, this is properly represented as an 'input' (= 8 in Fig. 7.4) to the 
process, affecting the 'output': the measured flow. 

The lines in the block diagram represent the 'signals' (flowrates, tempera­
tures etc.) and their direction. The signals (and the blocks) must obey the 
rules of dimensionality: we can add two flowrates but not a flowrate and a 
temperature. Junctions of lines represent addition and subtraction of sig­
nals, as shown in Fig. 7.16. 

For linear systems each block represents an operator on the input, de­
fined so that output = G x input, i.e. e = Glq etc. The transfer function G has 
the dimensions of [output]/[input]. For example, if the input is a flowrate 
(kgh-l) and the output is a temperature (Qq, G has the units Qc/(kgh-l). 

The input and output variables (for example x, y and z in Fig. 7.16) are 
always defined as deviation or perturbation variables, which are therefore 
zero at steady state. In the simplest cases the transfer function G is a 
constant, but it can in fact be any operator, or combination of operators, 
that obeys the rules of linearity: namely, that if a is a constant the output y 
corresponding to an input ax [i.e. G x (ax)] is y = aGx, and that G x (x + z) 
= Gx + Gz. For example, the differential operators d/dt (= D), d2/dt2 (= D2) 
etc. are linear operators. G need not be a scalar quantity: multivariable 
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Fig. 7.16 Block diagram and signal flow notation. 
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Fig. 7.17 A feedback control system. 

systems can be represented by vectors of inputs and outputs linked by 
transfer function matrices. 

Consider Fig. 7.17(a), representing a typical feedback control system. 
The transfer functions G1 and G2 represent the process: they relate changes 
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in the controlled flow q and the disturbance 0 to the uncontrolled process 
output. Without feedback and with q = 0 the output would be y = G2o. We 
can easily derive the closed-loop transfer functions between the output, the 
disturbance and the set point, since 

Now the error e is 

so that 

or 

That is, 

y = Glq + G20 

= GlGvGce + G20 

e = w* - Gmy 

y = Hlw* + H 2o 

(7.35a) 

(7.35b) 

(7.36) 

(7.37) 

(7.38) 

(7.39) 

This is the closed-loop transfer function for the system. If the set point is 
constant and unchanged, w* = 0 and y = H 2o. Each of the individual closed­
loop transfer functions Hl and H2 has the same structure: 

H = Product of transfer functions between input and output 
1 + Product of all transfer functions within the loop 

We call the product term in the denominator, G)GvGcGm, the system open­
loop transfer function, L. 

Thus the closed-loop transfer function H between any input Xl and any 
other signal X2, such as the controlled output, defined by X2 = Hx) is (with 
negative feedback) 

H=SiL 
1+L 

(7.40) 

where Gf is the product of the transfer functions between the input and the 
output in the direction of signal ftow (that is, the forward path transfer 
function). Positive feedback (generating a signal e = w* + w) produces a 
closed-loop transfer function of form G/(1 - L), which is often unstable, 
as the control signal reinforces rather than cancels the effect of the 
disturbance. 

Note that the two block diagrams in Fig. 7.17 are exactly equivalent 
provided that Gl G3 = G2• 

In general, the larger the value of L the more effective is the control loop 
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in attenuating the effects of a disturbance on the output (as in Fig. 7.17(a) 
y = G»/[1 + L]), and the closer does the output track the set point, for a 
given G2• We can apply the same reasoning - that the smaller the magnitude 
of GzI(1 + L) the better - to the dynamic behaviour of a control system. In 
this case the system frequency response is particularly useful; recall from 
Example 7.4 that the ratio of the amplitudes or magnitudes of output and 
input sinusoids is frequency-dependent. The amplitude or modulus of Gzi 
(1 + L) must be considered as a function of frequency. (For most (proper) 
systems the amplitude of any transfer function tends to the static gain (K) 
at low frequencies and towards zero at high frequencies.) 

The denominator term 1 + L, which is called the characteristic equatiou, 
plays a very important role: the classical methods of stability analysis and 
control system design are based around this equation. 

7.6.5 Feedback and feedback system sensitivity 

One important feature of feedback control is its influence on the system 
sensitivity. Consider a system (Fig. 7.18) with output y and input x; Gf is the 
forward path transfer function. In the absence of feedback, y = Gfx or 
y/x = Gf • 

Differentiation and a little algebra lead to the open-loop result that 

[d(Y/X)] = dGf 

(y/x) OL Gf 

(7.41) 

With feedback, y = G f x/(1 + L) = G f x/(1 + GfG), where G is the feedback 
transfer function. Thus 

(7.42) 

x 

W': + y 

Fig. 7.18 Simple closed loop. 
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Differentiating with respect to Gf gives the closed-loop result: 

[d(Y/X)] 
(y/x) CL 

(7.43) 

which « dG/Gf for GfG = L » l. 
The ratios d(y/x)/(y/x) and dG/Gf are sensitivity coefficients. Equation 

(7.43) shows the improvement (reduction) in sensitivity of the relation 
between x and y - that is, [d(y/x)/(y/x)]cL - because of feedback. The 
sensitivity of the closed loop is less than the sensitivity of the open 
loop. Also, the sensitivity of the closed loop to a small change (or modelling 
error) in the forward path transfer function dG/Gf is low. These are most 
important results: they tell us (what we have already seen above in the 
discussion of the proportional gain) that the larger L (that is, GP) the 
better in terms of control performance; it also tells us that the result is 
normally not very sensitive to modelling errors in the process transfer 
function (unlike feedforward control, which is extremely sensitive to the 
model). 

7.6.6 Feedback cancellation and stability 

Figure 7.19 shows a generalized SISO feedback control loop. In the absence 
of feedback the process output y = Yp is due solely to the effect of the 
disturbance. 

With feedback control the output is the sum of yp and the compensating 
output Yc. Ideally, Yc = -yp as this would ensure that y = O. Now consider how 
Yc and yp are related: to do this we can apply the general result for the 
closed-loop transfer function (equation (7.40» to give 

.Y'= 0 + e 

y 

Fig. 7.19 Cancelling signals in feedback control. 
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(a) 

Time 

(b) 

Fig. 7.20 Cancelling effect of controller input: (a) perfect and (b) imperfect cancellation of 
effect of disturbance. 

(7.44) 

(7.45) 

For any disturbance Yc ~ -Yp provided L» 1. When the dynamics of all the 
elements in the loop are fast the transfer functions G), Gv etc. are constants 
(the static gains K), Kv etc.) and, theoretically, it is possible to realize the 
ideal of cancelling the disturbance, provided only that the static open loop 
gain KL = K)KvKcKm is very large. This is illustrated in Fig. 7.20 for a 
sinusoidal Yp. The two outputs cancel each other exactly. 

However, to be realistic we cannot neglect all the process dynamics. 
Earlier we saw that the effect of the system dynamics is to change either or 
both of the amplitude and the phase angle between the input and output 
signals (a dead time introduces a phase shift only; first-order and higher 
transfer functions also change the gain). Figure 7.20 also illustrates qualita­
tively how this can affect the behaviour: the net output Y is now longer zero 
(in fact it is also a sine wave with the same frequency as Yp). Moreover, when 
the phase shift (which is in general frequency-dependent) reaches 180°, the 
two signals Yc and Yp are exactly out of phase, and the feedback control 
reinforces the effects of the disturbance. This situation is potentially unsta­
ble and many of the classical control design methods were evolved to ensure 



284 PROCESS CONTROL 

that stability is ensured. Although the mathematics involved is beyond the 
scope of this text we can note that a system in which L has only first-order 
dynamics (such as a proportional controller and a first-order process) can 
never become unstable as the maximum phase shift is, as we have seen, 90°. 
Systems of higher order than 2 or where a dead time is present may, 
however, become unstable with feedback control. Good design will always 
attempt to minimize any dead times occurring in the loop. 

7.7 Types of controller action 

So far, all the discussion has centred on the use of proportional control, 
partly because we have wanted to avoid unnecessary difficulties with the 
mathematics. However, we have come across one limitation on propor­
tional action: the existence of offset. High proportional gain leads to lower 
offset, but it may lead towards instability, or be impractical. In the following 
section we briefly summarize some other types of control action. The simu­
lation accompanying this book will be found useful in illustrating some of 
the ideas mentioned below. 

7.7.1 On-off control 

If the gain Kc of a proportional controller is made very high, its output 
switches from one extreme to another in response to very small variations 
in the error signal. Effectively, then, the valve operated by the controller 
will either be fully open or fully closed according to whether the error signal 
is negative or positive. (Note that the analyses above did not allow for the 
constraints to which valves are subject in practice.) In practice, on-off 
control is implemented by a simple switching relay. It has several advan­
tages: it is cheap; response is usually rapid as the control is either fully on or 
off; and it is simple (but the relay must be robust to go through many 
thousands of switching operations). A disadvantage is that the quality of 
control is usually inferior to that achieved with continuous controllers. It is 
a form of control that will be familiar to many readers from their domestic 
heating systems. Anyone who has played with the thermostat on such a 
system will know that the relay doesn't switch on and off immediately the 
temperature rises above or drops below the thermostat setting: this would 
result in continuous high-frequency chattering. Instead there is a small dead 
zone over which the relay is insensitive. 

Figure 7.21 illustrates an on-off controller, together with the effect of the 
dead band on its behaviour. Figure 7.22 shows how an on-off controller 
could be used to control the continuous blender that we have examined 
above. Rather than switch between zero and maximum flow of the control 
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Controller output Controller output 

100% I--_(O_N_) __ 100% 
(ON) 

-90 eo 

Error signal Error sign al 

-----10% 0% 
(OFF) (OFF) - -Dead band 

Wide dead band 

Time 

Fig. 7.21 On-off controller: ideal and with dead band. 

stream F2 it is often convenient, as shown here, to maintain a steady 'back­
ground' flow with an additional stream as the controlled input. 

7.7.2 Integral action: eliminating offset 

Although offset can sometimes be effectively eliminated by making Kc as 
high as possible, in practice the system dynamics often make this impossi­
ble, as increasing the controller gain can lead to increasingly oscillatory 
behaviour and ultimately to instability. It can also lead, as we have seen 
above, to violent swings in the valve stem position. However, if the control­
ler output signal depends not only on the actual value of the error signal e 
but on its time integral, then offset can be removed, as the signal to the 
valve will continue to increase so long as the deviation continues. This is 
known as integral action, and is usually implemented in combination with 
proportional control as a proportional pins integral (P + I) controller whose 
ideal output is 

(7.46) 

T] is the integral action time. (Its inverse is called the reset rate.) The 
smaller its value is the more significant is the integral term. The disadvan-
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Desired value 
Z' .-----, 

(b) 
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e On-off control 

z 

Disturbance X 

Fig. 7.22 On-off feedback control of blender: (a) process flowsheet; (b) block diagram of 
control loop. 

tage of integral action is that, for a given proportional gain, it tends to make 
the system response more oscillatory and unstable. 

At this stage readers should find it helpful to experiment with the control 
simulation on the disk accompanying this book and discussed in section 
11.12. The example allows the step response of a stirred tank heater (a first­
order system) to be examined with and without feedback control. The open 
loop system has a time constant of 10 min. The controlled behaviour can be 
examined with proportional or proportional plus integral control; the con­
sequences for control performance and stability of a dead time within the 
control loop can be examined in some detail. 

7.7.3 Derivative action: speeding up response 

Another common type of controller action is realized by adding to the 
controller output a term that is proportional to the rate of change of the 
error signal. The idea is to speed up the control system response to devia­
tions. This type of controller signal is, not unnaturally, called derivative 
action; a simple ideal two-term (P + D) controller would have an instanta­
neous output: 

(7.47) 
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TD is the derivative action time: the larger its value is the greater is the 
weight given to the derivative signal. The effect of derivative action is to 
decrease oscillatory tendencies and to speed up the response (for example, 
by reducing the settling time following a step disturbance). It does not, 
however, alter the offset. The derivative action time must be chosen with 
some care: too high a value can produce an over-sensitive response from the 
controller, whereby every noisy fluctuation provokes a change in the con­
troller output and in the correcting element. 

7.7.4 The three-term controller 

The classical three-term or P + I + D controller involves contributions, 
which can be tuned at the controller panel or, nowadays, at the control 
computer, from all three terms: 

(7.48) 

In practice real controllers are approximations to, rather than exact realiza­
tions of,these ideal types. They will incorporate constraints on the control 
parameters, and hardware or software approximations to the derivative and 
integral terms. Nonetheless, the main principles outlined above remain 
valid. 

Many methods exist for 'tuning' standard controllers - that is, selecting 
the most appropriate values of the control parameters - but the techniques 
used are beyond the scope of this chapter. Where approximate process 
models are available, probably the most widely used methods are those, like 
the Ziegler-Nicholls criteria, based on frequency response analysis; details 
are found in all the standard texts (see further reading section). Root locus 
methods are also used. Alternatively, in the absence of a process model, an 
approximate model can be identified experimentally, and used as the basis 
for controller tuning. In any event, a satisfactory set of controller settings 
will ensure process stability, while also ensuring a rapid, but not over­
oscillatory, response to process disturbances or changes in set point. In 
practice, the final values of the controller settings are established on line by 
trial and error around the design values. 

Figure 7.23 shows qualitatively how the different control modes influence 
the dynamic behaviour. The addition of integral action removes the offset 
associated with proportional control, but at the expense of increased oscil­
lation, for the same proportional control constant. Derivative action will 
improve the system response over that of the two-term P + I controller. The 
behaviour of a proportional and a P + I controller can be compared and 
contrasted by using the simulation with this book. Further comparison will 
be found in many of the standard textbooks referred to in the bibliography. 
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Time 
P+I+D action 

Fig. 7.23 Qualitative step responses of various systems. 

7.7.5 Adaptive control 

The classical methods for linear systems design can be unsatisfactory for 
processes with parameters that change with time, such as a heat exchanger 
subject to fouling, or for non-linear processes, where the assumption that 
only small changes occur is not valid; at some point the relative insensitivity 
of feedback loops to process changes is no longer sufficient, and control 
performance may deteriorate with time. Sometimes, inherent non­
linearities can be effectively cancelled by incorporating a compensating 
non-linear element in the control loop. The correct choice of control valve 
characteristics (that is, the precise relation between valve lift and flowrate) 
is a good example. Adaptive controllers respond to changes in the process 
by automatically adjusting their parameters, such as the proportional gain, 
so as to compensate for variations in the process characteristics: This is one 
area where theoretical ideas from a couple of decades ago are now a 
practicality because of developments in computer hardware and software. 

Another area where on-line computation helps is in coping with situa­
tions where key process outputs are not measurable but, provided good 
process models are available, can be inferred using 'soft sensors' from other 
measurements. Some areas where inferential techniques have been used in 
control include the control of fermenters and distillation columns (where 
key concentrations can be inferred from temperatures, flows and pres­
sures). Some of these techniques use mechanistic process models; others are 
based on 'black box' statistical models, using techniques including neural 
networks. 

7.7.6 Multivariable control 

Many processes have several inputs and outputs (MIMO [= mUlti-input 
multi-output] in control jargon), and the first problem is to choose the best 
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set of connections between the measurements and the manipulated vari­
ables. Figure 7.7 shows the continuous blender (excluding the level) as a 
MIMO system; note that changes in inlet flowrate affect both the output 
flow and fat content, while changes in the inlet fat contents affect only the 
outlet fat composition. As described earlier, a possible feedback strategy 
(illustrated schematically) would be to control the product quality by vary­
ing the flowrate of one stream. The flow of the other stream could be 
controlled independently or (not shown) used to control the level of the 
contents on the blender. In either case, the output flow cannot be control­
led, as its (average) value is determined by the two input flows. An ideal 
control system will have the minimum number of single-input single-output 
loops; these loops should be non-interacting, in the sense that when one 
loop is active it doesn't influence (or worse, conflict with) another; the 
response of the system should be fast, direct and stable. Sometimes process 
interactions are such that this ideal cannot be realized. Often, intuition and 
a basic understanding of the way the process operates is enough to develop 
an appropriate control structure, as in the blender example. Another exam­
ple, showing two schemes to control the temperature and level of a continu­
ous liquid heater, is illustrated in Fig. 7.24. Whether it is possible to control 
the input flow (Li) depends on the operations (if any) further upstream, 
illustrating the point that the whole system and its dynamics must be 
considered. 

Quantitative methods now exist to guide MIMO system design: the sim­
plest of these, such as the relative gain array method, essentially try to 
establish the control configuration on the basis of the relative sensitivity 
(that is, the gains) of the various interconnections. Other methods apply 
frequency response methods to the whole system. Useful rules of thumb in 
selecting the control configuration include the following. 

• Select manipulated variables that have a direct and fast effect (usually 
implying a high gain) on the controlled variable. 

0-----o :--------------~ 

51 I 

~-----_0 ~-----_0 
Fig. 7.24 Two configurations for heater control. L i, L o' output flows; S, steam rate; Q, heat 

input; e, disturbance. 
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Fig. 7.25 Continuous fermenter: decoupling inputs. 

w+1 + Y1 

(a) 

(b) 

Fig. 7.26 Block diagram of interacting system. 

• Where possible, avoid interactions between control loops. 
• Minimize time delays within the loops. 

Sometimes interactions can be decoupled by careful engineering design. 
For example, the performance of a continuous fermenter can depend both 
on the inlet substrate concentration and the feed f10wrate (that is, the 
dilution rate). Scheme (a) in Fig. 7.25, to control the residual substrate 
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concentration by changing the dilution rate via the inlet fiowrate, is less 
than ideal for this reason, as the two variables cannot be changed independ­
ently. However, scheme (b), in which a highly concentrated stream of 
substrate is used as an additional feed (but with very low fiowrate), allows 
almost complete decoupling of the two effects, as concentration and 
fiowrate can be manipulated independently of each other. 

Alternatively, whole or partial uncoupling can often be achieved by 
appropriate control system choice. Figure 7.26 shows a block diagram to 
illustrate a coupled or interacting system. When the transfer functions G A 

and GB are small the degree of interaction is also small. When it is not 
possible to eliminate such interactions through engineering design it may 
nevertheless be possible to reduce the interaction or even eliminate it by 
appropriate design of cross controllers to 'cancel out' the effects of the 
interactions G A and GB• 

7.8 Control system design for complete plants 

Most modern processes involve a number of operations in series or which 
follow in sequence. The best procedure is to consider the process unit by 
unit, as dynamic considerations suggest that attempts to close the loop 
around the whole plant (strategy (a) in Fig. 7.27) will be less satisfactory 
than the alternative (b) of a sequence of separately controlled units. 

Of course, the implications for successive units must be taken into ac­
count because, as we have seen, only a limited number of independent 
control schemes is possible for any given unit. Often it is convenient to 
engineer a degree of uncoupling between successive units by introducing 

----------------~---------------~ 
(a) 

--...... -rt: I G1 ~ G2 H G3 H G4 h-

(b) 

I 
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--- .... -_ .. --- ..... -_ .. --- ...... -_ .. --- ...... -_ .. 

Fig. 7.27 Feedback control of a multi-unit process: (a) single closed loop; (b) sequence of 
separately controlled units. 
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Fig. 7.28 Alternative control schemes for spray drier. 

intermediate storage or buffer tanks. An important part of the system 
design is to ensure that material balance requirements can always be satis­
fied without process vessels overflowing or running dry, and that suitable 
alarms and overrides are incorporated into the control structure to cope 
with unforeseen problems such as failure in the supply of one of the 
services. 

Some other aspects are illustrated by the control of a continuous spray 
drier (Fig. 7.28). The principle disadvantage of scheme (a) stems from the 
time delay between the output measured temperature and the control 
input; with large scale units this would be likely to give rise to poor system 
performance. Scheme (b) is much better from this point of view, since the 
time delays are reduced. It is important in any event to ensure that the final 
measuring element is as close to the feed as practicable. Thus if possible the 
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temperature element would be sited between the drier and the cyclone (i.e. 
at Tz) rather than after the cyclone at T3• In practice any system should 
incorporate an override on the exhaust temperature to shut down the plant 
or switch to a water feed if this temperature became too high. 

Conclusions 

Process control, which has been introduced in this chapter, is essentially 
concerned with making the best use of information in order to ensure that 
processes work efficiently, that product quality is maintained and that ex­
cursions from the desired operating conditions are minimized. Three types 
of information - all imperfect - might be available: measurements on some 
of the process inputs and their properties; measurements on some of the 
process conditions or 'outputs' in the language of control engineering (tem­
peratures, pressures, product flowrates or quality measures such as colour, 
etc); and, finally, models of how the process is expected to behave. This 
chapter has introduced some of the methods and ideas underlying the 
theory and practice of control engineering, in putting these different types 
of information to best use. 

Inevitably, control is concerned with transient behaviour, and this leads 
to mathematical complications; this chapter has tried as far as possible to 
avoid unnecessary mathematics, so as to stress the underlying principles. 
From the first part of the chapter you should have learned about the 
different types of control objective and their importance. You should also 
have seen how to represent processes in terms of block diagrams, in which 
the blocks or boxes represent operations and the directed lines connecting 
them represent the signal or information flows; later in the chapter the 
algebra of these diagrams was explained. You should also have seen how 
the dynamics of processes (even very complex ones) can be classified into 
a number of simple types or models. Two types of control system -
feedforward and feedback - are discussed in some detail: you should under­
stand the differences between them and their relative advantages and disad­
vantages. You should also understand the main types of controller action, 
and their significance. It is important to stress that these principles remain 
valid whether the controller itself is an old-fashioned pneumatic device, or 
a more up to date programmable logic controller or even a fully-fledged 
computer control system. Finally, you should also be aware of some of the 
questions that need to be asked about ways of controlling a complete plant. 

Like other chapters, we have not tried to describe the hardware or the 
technology. Any further study of this field would need to include the rapidly 
developing technology of computer-based data gathering and process con­
trol and of sensor technology. 
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Further reading 

From the large number of texts concerned with process control the following may be found 
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Hill, New York. 
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edn, McGraw-Hill, New York. 
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York. 
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Wiley, New York. 
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Prentice-Hall, Englewood Cliffs, NJ. 


