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Preface 

Industrial food processing involves the production of added value foods 
on a large scale; these foods are made by mixing and processing different 
ingredients in a prescribed way. The food industry, historically, has not 
designed its processes in an engineering sense, i.e. by understanding the 
physical and chemical principles which govern the operation of the plant 
and then using those principles to develop a process. Rather, processes have 
been 'designed' by purchasing equipment from a range of suppliers and 
then connecting that equipment together to form a complete process. When 
the process being run has essentially been scaled up from the kitchen then 
this may not matter. However, there are limits to the approach. 

• As the industry becomes more sophisticated, and economies of scale are 
exploited, then the size of plant reaches a scale where systematic design 
techniques are needed. 

• The range of processes and products made by the food industry has 
increased to include foods which have no kitchen counterpart, such as 
low-fat spreads. 

• It is vital to ensure the quality and safety of the product. 
• Plant must be flexible and able to cope with the need to make a variety of 

products from a range of ingredients. This is especially important as 
markets evolve with time. 

• The traditional design process cannot readily handle multi-product and 
multi-stream operations. 

• Processes must be energetically efficient and meet modern environmen
tal standards. 

The problems of the food industry at the moment are very similar to those 
faced by the chemical process industries forty years ago. Design techniques 
which had proved able to cope with a small number of processes, based on 
well-tried plant units, were not able to cope with the requirements for new 
materials and more efficient production techniques. Chemical engineering 
is the profession which evolved to solve the design problems of the process 
industries. Chemical engineers have developed design techniques for con
tinuous process plant, both individual plant items such as heat exchangers 
and reactors, and whole flowsheets. Although the materials used by the 
food industry are more complex than those commonly used in the chemical 
industry and the product safety requirements are different from those re-
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quired of chemical plant, the principles used in the analysis and design of 
food and chemical plant are the same. 

Once a process has been designed, it must be operated and controlled in 
an efficient way. Chemical engineers have developed ways to monitor and 
analyse the behaviour of process plant. In conjunction with modern devel
opments in information technology, these concepts can be used to optimize 
the running of process plant. 

An increasing number of chemical engineers are being employed by the 
food industry, and thus a large number of people working in the industry 
are coming into contact with chemical engineering design techniques. The 
aim of this book is to outline the basic principles on which chemical engi
neering works and to develop those ideas into ways of studying food process 
plant. 

The book has its origin in a successful course which has been run in the 
Chemical Engineering Department at Cambridge since 1989, designed to 
give an introduction to chemical engineering principles to people working 
in the food industry but without a degree in chemical engineering. Over the 
years, the material in the book, first given as lectures and examples on 
the course, has evolved in response to the needs of the industry and to 
specific comments from the individuals on the course. 

There are two things that this book does not set out to do. 

• It does not aim to give a list of the processes used by the food industry 
and the equipment used to carry out those processes. Such a list is always 
out of date, as equipment is modified, and, more importantly, as novel 
processes are introduced. Rather, we seek to outline the physical princi
ples which underpin processing, such as heat, mass and momentum trans
fer and reaction engineering. 

• It does not describe the whole of chemical engineering. It is no longer 
possible to put the whole of chemical engineering into one book! Each 
chapter introduces topics on which whole books have been based. By 
reading this book and doing the worked examples, a good basic under
standing will be obtained; references are included so that those with 
specific needs can go further. 

The book is aimed at two groups: it will be useful both for those who are not 
chemical engineers and who are working in the food industry, and as a 
refresher for chemical engineers in the food industry. Using the written 
material, it is possible to examine food processing plant and to understand 
the design principles involved in heat transfer, mass transfer, mixing and 
reaction, which can be found in all plants. The aim of engineering, however, 
is efficient and economic design. We have included at the end a lengthy 
worked design example, which develops a flowsheet and plant items from 
an outline of a process. The example comes with supporting information on 
computer disk; increasingly, all design is computer based, and all profes-
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sionals in the food industry must be computer literate. The programs which 
come with this book allow a further demonstration of the physical princi
ples which we are trying to get over and reinforce the practical aspects of 
the subject. 

A note on units 

We have tried wherever possible throughout this text to conform to the SI 
system of units. Sometimes data has come in such a form that we have fallen 
below the standards which are imposed by the 'strict' SI system, and we 
have justified that to ourselves by noting that the 'real world' often appears 
ignorant of the SI system. Note that kJkg-1 K-l are the same numerically as 
Jkg-10C-l etc. The important point is to be consistent and, above all, always 
to check that equations and formulae are dimensionally correct. 
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F flow rate m3s-1 

F force N 
F imposed forcing function 
F fouling factor Km2W-l 

~ molar flowrate of compound j kmols-1 
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F(t) cumulative residence time distribution 
Fr Froude number 
FV future value 
G shear modulus for elastic deformation Pa 
G transfer function 
G' storage modulus Pa 
G" loss modulus Pa 
Gr Grashof number = pilpgV/f.12 
g acceleration due to gravity ms-2 
H closed-loop transfer function 
H,h height m 
H Henry's law constant Pam3kg-1 

"rlI humidity kg/kg 
W loss of head m 
W f standard heat of formation Jkmol-1 
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catalysed reaction or kgm-3 
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a solids volume fraction 
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~ shear rate constant 
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8 disturbance (Chapter 7) 
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8 loss angle rad 
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11= upper Newtonian viscosity Pas 
e angle rad 
e controller output (Chapter 7) 
e temperature K 
ew fraction of water in the material 
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K electrical conductivities in the x and y sm-1 

directions 
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