Chemical Engineering for the Food Industry

JOIN US ON THE INTERNET VIA WWW, GOPHER, FTP OR EMAIL:

WWW: http://www.thomson.com GOPHER: gopher.thomson.com ftp.thomson.com FTP:

A service of I(T)P

findit@kiosk.thomson.com EMAIL:

Chemical Engineering for the Food Industry

Edited by

P.J. FRYER School of Chemical Engineering University of Birmingham Birmingham, UK

D.L. PYLE Department of Food Science and Technology University of Reading Reading, UK

and

C.D. RIELLY Department of Chemical Engineering University of Cambridge Cambridge, UK

SPRINGER-SCIENCE+BUSINESS MEDIA, B.V.

© 1997 Springer Science+Business Media Dordrecht Originally published by Chapman & Hall in 1997

Typeset in 10 on 12 pt Times by Best-set Typesetter Ltd., Hong Kong

ISBN 978-1-4613-6724-6 ISBN 978-1-4615-3864-6 (eBook) DOI 10.1007/978-1-4615-3864-6

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the UK Copyright Designs and Patents Act, 1988, this publication may not be reproduced, stored, or transmitted, in any form or by any means, without the prior permission in writing of the publishers, or in the case of reprographic reproduction only in accordance with the terms of the licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of licences issued by the appropriate Reproduction Rights Organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to the publishers at the London address printed on this page.

The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made.

A catalogue record for this book is available from the British Library

Library of Congress Catalog Card Number: 96-85315

00

Printed on acid-free text paper, manufactured in accordance with ANSI/NISO Z39.48-1992 (Permanence of Paper)

Contents

	List of contributors	viii
	Preface	ix
	List of symbols	xii
1	· · · · · · · · · · · · · · · · · · ·	1
	D.L. PYLE	
	Introduction	1
	1.1 Material requirements and flows	3
	1.2 Energy balances	24
	1.3 Process economics Appendix 1.A: Some basic definitions	45 57
	Conclusions	57 60
	Further reading	61
2	Newtonian fluid mechanics	63
	R.M. NEDDERMAN	
	Introduction	63
	2.1 Laminar and turbulent flow	64
	2.2 Ideal fluids	67
	2.3 Laminar flows2.4 Dimensional analysis	78 85
	2.5 Turbulent flow	91
	Conclusions	103
	Further reading	104
3	Introduction to heat transfer	105
	A.N. HAYHURST	
	Introduction	105
	3.1 Heat conduction	106
	3.2 Heat transfer in flowing systems	120
	3.3 Heat exchange: more practical aspects Conclusions	131 151
	Further reading	151
4	Mass transfer in food and bioprocesses	153
	D.L. PYLE, K. NIRANJAN and J. VARLEY	100
	Introduction	153
	4.1 Why does transfer occur?	154
	4.2 Mechanisms	154

	 4.3 Equilibrium 4.4 Diffusion 4.5 Transient behaviour 4.6 Flowing systems 4.7 Interphase transfer 4.8 Aeration 4.9 Mass transfer limitations Conclusions Further reading 	155 159 165 167 177 184 188 193 194
5	Food rheology C.D. RIELLY	195
	C.D. RIELLI	
	Introduction	195
	5.1 Characteristics of non-Newtonian fluids	199
	5.2 Viscometric flows	213
	5.3 Application to engineering problems Appendix 5.A: Linear viscoelastic Maxwell element	226 229
	Appendix 5.B: Concentric cylinder viscometer	229
	Appendix 5.C: Cone and plate viscometer	230
	Conclusions	232
	References and further reading	232
6	Process design: heat integration P.J. FRYER	234
	Introduction	234
	6.1 Design of process plant	234
	6.2 Second-law analysis: heat integration	237
	6.3 Heat and process integration in the food industry	247
	Conclusions	248
7	Process control D.L. PYLE and C.A. ZAROR	250
	Introduction 7.1 What is the control problem?	250 251
	7.2 Block diagrams	251
	7.3 Process dynamics	260
	7.4 Multiple inputs and linearization	265
	7.5 Frequency response	269
	7.6 Feedforward and feedback control	270
	7.7 Types of controller action	284
	7.8 Control system design for complete plants Conclusions	291 293
	Further reading	293 294
8	Reactors and reactions in food processing	295
-	H.A. CHASE	
	Introduction	295 296
	8.1 Reactor types	296

8.1 Reactor types8.2 Physical chemistry of food reactions

299

vi

	8.3 Analysis of isothermal 'ideal' reactor systems	308
	8.4 Non-isothermal reactions	319
	8.5 Non-ideal flow and mixing in continuous reactors	320
	Conclusions	320
	References and further reading	329
	References and further reading	329
9	Thermal treatment of foods P.I. FRYER	331
	I.J. I'K LEK	
	Introduction	331
	9.1 Engineering principles	336
	9.2 Continuous processing: problems and solutions	346
	9.3 Fouling and cleaning in food process plant	365
	Conclusions	381
	References and further reading	382
10	Mining in food processing	383
10	Mixing in food processing	303
	C.D. RIELLY	
	Introduction	383
	10.1 Fundamentals of mixing	383
	10.2 Fluid-mixing equipment	389
	10.3 Power consumption in stirred tanks	396
	10.4 Miscible liquid blending operations	400
	10.5 Gas-liquid mixing	406
	10.6 Liquid-liquid dispersions and the creation of emulsions	414
	10.7 Solids suspension and solid-liquid mass transfer	416
	10.8 Scale-up of mixers from pilot trials	420
	10.9 Alternative mixing devices	422
	10.10 Mixing of particulate materials	426
	Conclusions	431
	References and further reading	431
11	Process design: an exercise and simulation examples	434
11	8 1	434
	C.A. ZAROR and D.L. PYLE	
	Introduction	434
	11.1 An integrated cheese plant: a design exercise	435
	11.2 Computer simulations	444
	Conclusions	453
	Overall conclusions	454
	Index	455
	IIIUEA	400

CONTENTS

vii

Contributors

H.A. Chase	Department of Chemical Engineering, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, UK.
P.J. Fryer	School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
A.N. Hayhurst	Department of Chemical Engineering, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, UK.
R.M. Nedderman	Department of Chemical Engineering, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, UK.
D.L. Pyle	Department of Food Science and Technology, University of Reading, Whiteknights, PO Box 226, Reading RG6 6AP, UK.
C.D. Rielly	Department of Chemical Engineering, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, UK.
J. Varley	Department of Food Science and Technology, University of Reading, Whiteknights, PO Box 226, Reading RG6 6AP, UK.
C.A. Zaror	Department of Chemical Engineering, University of Concepcion, Casilla 53-C, Correo 3, Concepcion, Chile.

Preface

Industrial food processing involves the production of added value foods on a large scale; these foods are made by mixing and processing different ingredients in a prescribed way. The food industry, historically, has not designed its processes in an engineering sense, i.e. by understanding the physical and chemical principles which govern the operation of the plant and then using those principles to develop a process. Rather, processes have been 'designed' by purchasing equipment from a range of suppliers and then connecting that equipment together to form a complete process. When the process being run has essentially been scaled up from the kitchen then this may not matter. However, there are limits to the approach.

- As the industry becomes more sophisticated, and economies of scale are exploited, then the size of plant reaches a scale where systematic design techniques are needed.
- The range of processes and products made by the food industry has increased to include foods which have no kitchen counterpart, such as low-fat spreads.
- It is vital to ensure the quality and safety of the product.
- Plant must be flexible and able to cope with the need to make a variety of products from a range of ingredients. This is especially important as markets evolve with time.
- The traditional design process cannot readily handle multi-product and multi-stream operations.
- Processes must be energetically efficient and meet modern environmental standards.

The problems of the food industry at the moment are very similar to those faced by the chemical process industries forty years ago. Design techniques which had proved able to cope with a small number of processes, based on well-tried plant units, were not able to cope with the requirements for new materials and more efficient production techniques. Chemical engineering is the profession which evolved to solve the design problems of the process industries. Chemical engineers have developed design techniques for continuous process plant, both individual plant items such as heat exchangers and reactors, and whole flowsheets. Although the materials used by the food industry are more complex than those commonly used in the chemical industry and the product safety requirements are different from those required of chemical plant, the principles used in the analysis and design of food and chemical plant are the same.

Once a process has been designed, it must be operated and controlled in an efficient way. Chemical engineers have developed ways to monitor and analyse the behaviour of process plant. In conjunction with modern developments in information technology, these concepts can be used to optimize the running of process plant.

An increasing number of chemical engineers are being employed by the food industry, and thus a large number of people working in the industry are coming into contact with chemical engineering design techniques. The aim of this book is to outline the basic principles on which chemical engineering works and to develop those ideas into ways of studying food process plant.

The book has its origin in a successful course which has been run in the Chemical Engineering Department at Cambridge since 1989, designed to give an introduction to chemical engineering principles to people working in the food industry but without a degree in chemical engineering. Over the years, the material in the book, first given as lectures and examples on the course, has evolved in response to the needs of the industry and to specific comments from the individuals on the course.

There are two things that this book does not set out to do.

- It does not aim to give a list of the processes used by the food industry and the equipment used to carry out those processes. Such a list is always out of date, as equipment is modified, and, more importantly, as novel processes are introduced. Rather, we seek to outline the physical principles which underpin processing, such as heat, mass and momentum transfer and reaction engineering.
- It does not describe the whole of chemical engineering. It is no longer possible to put the whole of chemical engineering into one book! Each chapter introduces topics on which whole books have been based. By reading this book and doing the worked examples, a good basic understanding will be obtained; references are included so that those with specific needs can go further.

The book is aimed at two groups: it will be useful both for those who are not chemical engineers and who are working in the food industry, and as a refresher for chemical engineers in the food industry. Using the written material, it is possible to examine food processing plant and to understand the design principles involved in heat transfer, mass transfer, mixing and reaction, which can be found in all plants. The aim of engineering, however, is efficient and economic design. We have included at the end a lengthy worked design example, which develops a flowsheet and plant items from an outline of a process. The example comes with supporting information on computer disk; increasingly, all design is computer based, and all profes-

PREFACE

sionals in the food industry must be computer literate. The programs which come with this book allow a further demonstration of the physical principles which we are trying to get over and reinforce the practical aspects of the subject.

A note on units

We have tried wherever possible throughout this text to conform to the SI system of units. Sometimes data has come in such a form that we have fallen below the standards which are imposed by the 'strict' SI system, and we have justified that to ourselves by noting that the 'real world' often appears ignorant of the SI system. Note that $kJ kg^{-1}K^{-1}$ are the same numerically as $J kg^{-1} °C^{-1}$ etc. The important point is to be consistent and, above all, **always** to check that equations and formulae are dimensionally correct.

Acknowledgements

This book has been developed over a number of years by the authors of the individual chapters in response to discussions with the many people in the food industry who have been on our course. We are deeply grateful for the feedback given, which has enabled us to improve the relevance of the material to industry needs.

The Editors wish to thank all of the authors for spending so much time developing this course, and transferring a vague idea into first a successful course, and then this book. They also thank all those who have suffered during its preparation.

List of symbols

Symbol	Definition	Units
A	area	m ²
A_{o}	area of orifice	
A	area under C-curve	kmolsm ⁻³
A	pre-exponential factor	_
а	specific area per unit volume	m ² / m ³
В	baffle width	m
Bi	Biot number	_
b	thickness	m
С	annual cash flow (Chapter 1)	£/yr
С	constant of integration	-
С	cook value	min
С	impeller clearance (Chapter 10)	m
$C_{\rm c}$	contraction coefficient	
$\dot{C_{\rm D}}$	discharge coefficient	
$C_{\rm max}$	maximum cook value	min
$C_{\rm v}$	velocity coefficient	
с	concentration	kmol m⁻³
Ē	mean concentration	kmol m⁻³
C _A	concentration of species A	kmol m ⁻³
c_{b}	bulk concentration	kmolm ⁻³
Ce	concentration of tracer in exit stream	kmol m⁻³
	from reactor	
$c_{\rm film}$	solubility in film	kmol m ⁻³
C _i	interfacial concentration	kmolm⁻³
$c_{\rm in}$	concentration of tracer in inlet stream	kmolm ⁻³
	to reactor	
C _s	surface concentration	kmolm ⁻³
с*	dimensionless concentration	-
C	final concentration	kmolm⁻³
c_0	initial concentration	kmol m⁻³
$c_{\rm D}$	drag coefficient	
C _f	friction factor	
\bar{c}_P	mean specific heat capacity	$J k g^{-1} K^{-1}$
C _P	specific heat capacity at constant pressure	$J k g^{-1} K^{-1}$

Symbol	Definition	Units
c_V	specific heat capacity at constant volume	$J k g^{-1} K^{-1}$
D	decimal reduction time	min
D	large diameter, such as pipe; common distance scale in dimensionless calculations	m
D	diffusion coefficient	$m^2 s^{-1}$
$D_{\rm a}$	axial diffusion coefficient	$m^2 s^{-1}$
D_{e}^{-}	effective diffusion coefficient	$m^2 s^{-1}$
$D_{\rm H}$	hydraulic mean diameter	m
d	small diameter, such as particle	m
d_{\max}	maximum bubble size	m
d_{32}	Sauter mean diameter	m
Da	Damköhler number	_
Ε	electric field strength	$\mathbf{V} \mathbf{m}^{-1}$
Ε	energy (Chapter 1)	J
Ε	extract flowrate	kg s ⁻¹
E_{a}	activation energy	$J kmol^{-1} K^{-1}$
$\vec{E(t)}$	residence time distribution	_
e	equivalent roughness size	m
е	error signal	
F	F-value: integrated lethality	min
F	flow rate	$m^{3}s^{-1}$
F	force	Ν
F	imposed forcing function	
F	fouling factor	Km^2W^{-1}
F_{i}	molar flowrate of compound j	kmol s ⁻¹
Ý _P	required process integrated lethality	min
$\dot{F(t)}$	cumulative residence time distribution	
Fr	Froude number	-
FV	future value	
G	shear modulus for elastic deformation	Pa
G	transfer function	
G'	storage modulus	Pa
G''	loss modulus	Pa
Gr	Grashof number = $\rho \Delta \rho g L^3 / \mu^2$	
g	acceleration due to gravity	m s ⁻²
H	closed-loop transfer function	
H,h	height	m
H	Henry's law constant	Pam ³ kg ⁻¹
4	humidity	kg/kg
ΔH	loss of head	m
$\Delta H_{ m f}$	standard heat of formation	J kmol ⁻¹
ΔH°_{R}	standard heat or enthalpy of reaction	J kmol ⁻¹

Symbol	Definition	Units
h	film heat transfer coefficient	W m ⁻² K ⁻¹
h	specific enthalpy (Chapter 1)	$J kg^{-1}$
$h_{ m fi}$	latent heat of fusion	J kg ⁻¹
$h_{\rm fg}$	latent heat of evaporation	J kmol ⁻¹
I	current (electrical)	А
i	fractional interest or discount rate	_
J	mass transfer rate	kmols ⁻¹
j	mass flux	kg m ⁻² s ⁻¹
, Ĵo	<i>j</i> -factor for mass transfer	ngm s
ль <i>ј</i> н	<i>j</i> -factor for heat transfer	
лн K	equilibrium constant	
K	overall mass transfer coefficient	$m s^{-1}$
K	partition coefficient	111.5
K K	-	Do of
	power law consistency index (Chapter 5)	Pas ⁿ
K _c	controller gain	13
K _m	Michaelis constant for enzyme-	kmol m ⁻³
	catalysed reaction	or kgm ⁻³
K _o	Monod constant	kmol m ⁻³
	· · · · · · · · · · · · · · · · · · ·	or kg m ⁻³
K _p	static gain (Chapter 7)	
k	film mass transfer coefficient	m s ⁻¹
k _L	liquid mass transfer coefficient	$m s^{-1}$
k _r	rate constant	S^{-1}
k_n	rate constant for reaction of order n	
k _s	solid mass transfer coefficient	$m s^{-1}$
L	Open loop transfer function	-
$L_{\rm d}$	detector length scale	m
$L_{ m E}$	energy lost per unit mass	J kg ⁻¹
L, l	length	m
М	flux of momentum	kg m s ⁻²
М	mass	kg
М	mean molecular mass	e
М	mixing index	_
m	Distribution coefficient	_
m_0	initial mass	kg
N	total molar flux	kmol m ⁻² s ⁻¹
N	impeller speed	
N _A	aeration number	rps
	ungassed power number	C
NPV	Net Present Value	£
N _Q	flow number	- D
N_1	first normal stress difference	Pa

xiv

Symbol	Definition	Units
$\overline{N_2}$	second normal stress difference	Pa
Nu	Nusselt number = hL/λ	
n	number	
n	power-law exponent in eqn (5.7)	-
Р	power input	W
Р	productivity	kg m ⁻³ s ⁻¹
Р	total pressure	Pa
Р	wetted perimeter of duct	m
P_{a}	atmospheric pressure	Pa
P_{o}	ungassed power unit	W
ΔP	pressure drop	Pa
Pr	Prandtl number = $\mu c_p / \lambda$	_
PV	present value	
р	partial pressure	Pa
p°	equilibrium vapour pressure	Pa
Q	heat flow	W
\tilde{Q}	Oxygen transfer rate (Chapter 4)	$kg m^{-3} s^{-1}$
\overline{Q}_{c}	process cooling (Chapter 6)	Ŵ
$\widetilde{Q_{c}}$	heat content	J
$\widetilde{Q}_{\rm G}$	heat generation rate (Chapter 9)	$W m^{-3}$
Q_{T}	Total heat (Chapter 1)	J
$Q_{\rm g}$	gas volumetric flowrate	$m^3 s^{-1}$
$\tilde{Q}_{\rm H}$	process heating (Chapter 6)	W
$\overline{Q}_{\rm L}$	liquid volumetric flowrate	m^3s^{-1}
q	heat flux	W m ⁻²
Ŕ	large radius	m
R	rate of oxygen consumption or demand	kg s ⁻¹
R	electrical resistance (Chapter 9)	Ω
R _F	fouling resistance	K m ⁻² W ⁻¹
$R_{\rm g}$	gas constant	$J mol^{-1} K^{-1}$
R _s	radius of sphere	m
r _A	rate of reaction per unit volume	kmol m⁻³ s⁻¹
	(described in terms of production of A)	
r	small radius	m
Re	Reynolds number = $\rho u_m D/\mu$ (different types	
	defined in text)	
S	selectivity	
S	solvent flowrate	kg s ⁻¹
5	pressure gradient	Pa m ⁻¹
Sc	Schmidt number = $\mu/\rho D$	
Sh	Sherwood number = kd/θ	_
St	Stanton number = $h/\rho u_m c_P$	

Ttank diameter (Chapter 10)mTtemperatureK or °C T_0 initial temperatureK T_1 liquid temperatureK $T_{\rm int}$ interface temperatureK $T_{\rm m}$ mean temperature of fluidK $T_{\rm ref}$ reference temperatureK $T_{\rm w}$ wall or water temperatureK $T_{\rm w}$ wall or water temperatureK $\Delta T_{\rm um}$ logarithmic mean temperatureK $\Delta T_{\rm min}$ minimum approach temperatureK ΔT temperature differenceK T_0 derivative action time (Chapter 7)s T_1 integral action time (Chapter 7)s T_1 integral action time (Chapter 7)s t times V velacity of flow through a quasitubular reactor U° clean heat transfer coefficientW m ⁻² K ⁻¹ U° clean heat transfer coefficientW m ⁻² K ⁻¹ U° clean heat transfer coefficientW m ⁻³ s ⁻³ V volumem ³ $V_{\rm m}$ mean velocityms ⁻¹ $v_{\rm m}$ centreline velocityms ⁻¹ $v_{\rm m}$ velocity of particlems ⁻¹ $v_{\rm m}$ temperaturefield and resistance of gel layer (Chapter 4) $M_{\rm m}$ hydraulic resistance of gel layer (Chapter 4)ms ⁻¹ $W_{\rm m}$ hydraulic resistance of mebrane (Chapter 4)ms ⁻¹ $w_{\rm m}$ hydraulic resistance of gel layer (Chapter 4)ms ⁻¹	Symbol	Definition	Units
$\begin{array}{llllllllllllllllllllllllllllllllllll$	T	tank diameter (Chapter 10)	m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Т		K or °C
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T_0	-	К
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			К
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			K
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			K
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			К
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T_s		К
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T_{w}		K
$\begin{array}{llllllllllllllllllllllllllllllllllll$		logarithmic mean temperature	K
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ΔT_{min}		К
$\begin{array}{llllllllllllllllllllllllllllllllllll$			
$\begin{array}{rcl} T_1 & \mbox{integral action time (Chapter 7)} & \mbox{s} \\ t & \mbox{time} & \mbox{s} \\ t & \mbox{time} & \mbox{s} \\ t & \mbox{average of the residence time distribution} & \mbox{s} \\ t & \mbox{average of the residence time distribution} & \mbox{s} \\ t & \mbox{average of the residence time distribution} & \mbox{s} \\ t & \mbox{residence time along the axis} & \mbox{s} \\ t & \mbox{internal energy (Chapter 1)} & \mbox{Jkg}^{-1} \\ U & \mbox{overall heat transfer coefficient} & \mbox{Wm}^{-2} K^{-1} \\ U^{\circ} & \mbox{clean heat transfer coefficient} & \mbox{Wm}^{-2} K^{-1} \\ U^{\circ} & \mbox{clean heat transfer coefficient} & \mbox{Wm}^{-2} K^{-1} \\ u & \mbox{velocity of flow through a quasitubular reactor} & \\ V & \mbox{volume} & \mbox{m}^{-3} K^{-1} \\ v & \mbox{volume} & \mbox{m}^{-3} K^{-1} \\ enzyme-catalysed reaction} & V \\ V & \mbox{volume of liquid in reactor} & \mbox{m}^{-3} K^{-1} \\ v_{n} & \mbox{mean velocity} & \mbox{m} S^{-1} \\ v_{n} & \mbox{mean velocity} & \mbox{m} S^{-1} \\ v_{p} & \mbox{velocity of particle} & \mbox{m} S^{-1} \\ v_{p} & \mbox{velocity ratio} & - \\ W & \mbox{blade width (Chapter 10)} & \mbox{m} \\ W_{m} & \mbox{my ork} & \mbox{J} \\ W_{m} & \mbox{my ork} & \mbox{J} \\ W_{m} & \mbox{my ork} & \mbox{s} flow rate (Chapter 1) & \mbox{kgs}^{-1} \\ w & \mbox{mass flow rate (Chapter 1)} & \mbox{kgs}^{-1} \\ w & \mbox{width} & \mbox{m} \end{array}$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		· - ·	S
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	ī	average of the residence time distribution	
	t _a		S
$\begin{array}{cccccc} U & \mbox{overall heat transfer coefficient} & Wm^{-2}K^{-1} \\ U^{\circ} & \mbox{clean heat transfer coefficient} & Wm^{-2}K^{-1} \\ u & \mbox{velocity of flow through a quasitubular reactor} \\ V & \mbox{voltage (Chapter 9)} & V \\ V & \mbox{volume} & m^3 \\ V_m & \mbox{maximum reaction rate for an} & \mbox{kmol}m^{-3}s^{-1} \\ enzyme-catalysed reaction} \\ V_r & \mbox{volume of liquid in reactor} & m^3 \\ v & \mbox{velocity} & \mbox{ms}^{-1} \\ v_1 & \mbox{centreline velocity} & \mbox{ms}^{-1} \\ v_{p} & \mbox{velocity of particle} & \mbox{ms}^{-1} \\ v_r & \mbox{velocity ratio} & - \\ W & \mbox{blade width (Chapter 10)} & \mbox{ms} \\ W_g & \mbox{additional resistance of gel layer (Chapter 4)} & \mbox{ms}^{-1} \\ W_m & \mbox{mass flowrate (Chapter 1)} & \mbox{kgs}^{-1} \\ w_1 & \mbox{volumetric flowrate} & \mbox{mass}^{-1} \\ w & \mbox{width} & \mbox{mass}^{-1} \\ \mbox{mass}^{-1} \\ w & \mbox{width} & \mbox{mass}^{-1} \\ \mbox{mass}^$			
$\begin{array}{cccccc} U^{\circ} & \mbox{clean heat transfer coefficient} & Wm^{-2}K^{-1} \\ u & \mbox{velocity of flow through a quasitubular reactor} \\ V & \mbox{voltage (Chapter 9)} & V \\ V & \mbox{volume} & m^3 \\ V_m & \mbox{maximum reaction rate for an} & \mbox{kmol } m^{-3}s^{-1} \\ & \mbox{enzyme-catalysed reaction} & V \\ V_r & \mbox{volume of liquid in reactor} & m^3 \\ v & \mbox{velocity} & \mbox{ms}^{-1} \\ v_1 & \mbox{centreline velocity} & \mbox{ms}^{-1} \\ v_m & \mbox{mean velocity} & \mbox{ms}^{-1} \\ v_{p} & \mbox{velocity of particle} & \mbox{ms}^{-1} \\ v_r & \mbox{velocity ratio} & - \\ W & \mbox{blade width (Chapter 10)} & \mbox{ms}^{-1} \\ W_g & \mbox{additional resistance of gel layer (Chapter 4)} & \mbox{ms}^{-1} \\ W_m & \mbox{mass flowrate (Chapter 1)} & \mbox{kgs}^{-1} \\ w_1, w_2 & \mbox{total material flows or flowrates (Chapter 1)} & \mbox{kgs}^{-1} \\ w_1 & \mbox{width} & \mbox{maximate material} $			
uvelocity of flow through a quasitubular reactorVvoltage (Chapter 9)VVvolume m^3 V_m maximum reaction rate for an enzyme-catalysed reaction $kmol m^{-3} s^{-1}$ V_r volume of liquid in reactor m^3 vvelocity $m s^{-1}$ v_1 centreline velocity $m s^{-1}$ v_w mean velocity $m s^{-1}$ v_v_p velocity of particle $m s^{-1}$ v_r velocity ratio $-$ Wblade width (Chapter 10)mWworkJ W_m mass flowrate (Chapter 1) $kg s^{-1}$ w_1, w_2 total material flows or flowrates (Chapter 1) $kg s^{-1}$ w_L volumetric flowrate $m^3 s^{-1}$		clean heat transfer coefficient	
V voltage (Chapter 9) V V volumem³ V_m maximum reaction rate for an enzyme-catalysed reactionkmol m ⁻³ s ⁻¹ m ³ V_r volume of liquid in reactorm³ v_r velocityms ⁻¹ v_1 centreline velocityms ⁻¹ v_m mean velocityms ⁻¹ v_{∞} terminal velocityms ⁻¹ v_{p} velocity of particlems ⁻¹ v_r velocity ratio- W blade width (Chapter 10)m W workJ W_m mass flowrate (Chapter 1)kg s ⁻¹ w_1 , w_2 total material flows or flowrates (Chapter 1)kg s ⁻¹ w_L volumetric flowratem³ s ⁻¹ w widthm	u		
V volumem³ V_m maximum reaction rate for an enzyme-catalysed reactionm³ V_r volume of liquid in reactorm³ v_r velocityms ⁻¹ v_1 centreline velocityms ⁻¹ v_m mean velocityms ⁻¹ v_{∞} terminal velocityms ⁻¹ v_p velocity of particlems ⁻¹ v_r velocity ratio- W blade width (Chapter 10)m W workJ W_g additional resistance of gel layer (Chapter 4)ms ⁻¹ W_m mass flowrate (Chapter 1)kg s ⁻¹ w_1 , w_2 total material flows or flowrates (Chapter 1)kg s ⁻¹ w_L volumetric flowratem³s ⁻¹ w widthm	V		V
menzyme-catalysed reaction V_r volume of liquid in reactor m^3 v velocity ms^{-1} v_1 centreline velocity ms^{-1} v_m mean velocity ms^{-1} v_{∞} terminal velocity ms^{-1} v_p velocity of particle ms^{-1} v_r velocity ratio $ W$ blade width (Chapter 10)m W workJ W_g additional resistance of gel layer (Chapter 4) ms^{-1} W_m hydraulic resistance of membrane (Chapter 4) ms^{-1} w mass flowrate (Chapter 1)kg s^{-1} w_1, w_2 total material flows or flowrates (Chapter 1)kg s^{-1} w_L volumetric flowrate m^3s^{-1} w widthmm	V		m ³
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$V_{ m m}$	maximum reaction rate for an	kmol m ⁻³ s ⁻¹
$\begin{array}{llllllllllllllllllllllllllllllllllll$		enzyme-catalysed reaction	
v velocityms ⁻¹ v_1 centreline velocityms ⁻¹ v_m mean velocityms ⁻¹ v_{so} terminal velocityms ⁻¹ v_p velocity of particlems ⁻¹ v_r velocity ratio- W blade width (Chapter 10)m W workJ W_g additional resistance of gel layer (Chapter 4)ms ⁻¹ W_m hydraulic resistance of membrane (Chapter 4)ms ⁻¹ w mass flowrate (Chapter 1)kgs ⁻¹ w_1, w_2 total material flows or flowrates (Chapter 1)kgs ⁻¹ w_L volumetric flowratem ³ s ⁻¹ w widthmm	V_{r}		m ³
v_m mean velocity $m s^{-1}$ v_{∞} terminal velocity $m s^{-1}$ v_p velocity of particle $m s^{-1}$ v_r velocity ratio $ W$ blade width (Chapter 10)m W workJ W_g additional resistance of gel layer (Chapter 4) $m s^{-1}$ W_m hydraulic resistance of membrane (Chapter 4) $m s^{-1}$ w mass flowrate (Chapter 1)kg s^{-1} w_1, w_2 total material flows or flowrates (Chapter 1)kg s^{-1} w_L volumetric flowrate $m^3 s^{-1}$ w widthm	v	-	m s ⁻¹
v_m mean velocitym s^{-1} v_{∞} terminal velocitym s^{-1} v_p velocity of particlem s^{-1} v_r velocity ratio- W blade width (Chapter 10)m W workJ W_g additional resistance of gel layer (Chapter 4)m s^{-1} W_m hydraulic resistance of membrane (Chapter 4)m s^{-1} W_m mass flowrate (Chapter 1)kg s^{-1} w_1, w_2 total material flows or flowrates (Chapter 1)m^3 s^{-1} w widthm	v_1	centreline velocity	
v_{∞} terminal velocitym s^{-1} v_{p} velocity of particlem s^{-1} v_{r} velocity ratio- W blade width (Chapter 10)m W workJ W_{g} additional resistance of gel layer (Chapter 4)m s^{-1} W_{m} hydraulic resistance of membrane (Chapter 4)m s^{-1} w mass flowrate (Chapter 1)kg s^{-1} w_{1}, w_{2} total material flows or flowrates (Chapter 1)kg s^{-1} w_{L} volumetric flowratem^{3} s^{-1} w widthmm		mean velocity	$m s^{-1}$
v_r velocity ratio-Wblade width (Chapter 10)mWworkJ W_g additional resistance of gel layer (Chapter 4)ms ⁻¹ W_m hydraulic resistance of membrane (Chapter 4)ms ⁻¹ w mass flowrate (Chapter 1)kgs ⁻¹ w_1, w_2 total material flows or flowrates (Chapter 1)kgs ⁻¹ w_L volumetric flowratem ³ s ⁻¹ w widthm			m s ⁻¹
v_r velocity ratio-Wblade width (Chapter 10)mWworkJ W_g additional resistance of gel layer (Chapter 4)ms ⁻¹ W_m hydraulic resistance of membrane (Chapter 4)ms ⁻¹ w mass flowrate (Chapter 1)kgs ⁻¹ w_1, w_2 total material flows or flowrates (Chapter 1)kgs ⁻¹ w_L volumetric flowratem ³ s ⁻¹ w widthm		•	$m s^{-1}$
Wblade width (Chapter 10)mWworkJ W_g additional resistance of gel layer (Chapter 4) ms^{-1} W_m hydraulic resistance of membrane (Chapter 4) ms^{-1} wmass flowrate (Chapter 1)kgs^{-1} w_1, w_2 total material flows or flowrates (Chapter 1)kgs^{-1} w_L volumetric flowrate m^3s^{-1} wwidthm	-		_
W workJ W_g additional resistance of gel layer (Chapter 4) $m s^{-1}$ W_m hydraulic resistance of membrane (Chapter 4) $m s^{-1}$ w mass flowrate (Chapter 1)kg s^{-1} w_1, w_2 total material flows or flowrates (Chapter 1)kg s^{-1} w_L volumetric flowrate $m^3 s^{-1}$ w widthm			m
$W_{\rm m}$ hydraulic resistance of membrane (Chapter 4)m s^{-1}wmass flowrate (Chapter 1)kg s^{-1} w_1, w_2 total material flows or flowrates (Chapter 1)kg s^{-1} w_L volumetric flowratem^3 s^{-1}wwidthm	W		J
$W_{\rm m}$ hydraulic resistance of membrane (Chapter 4)m s^{-1}wmass flowrate (Chapter 1)kg s^{-1} w_1, w_2 total material flows or flowrates (Chapter 1)kg s^{-1} w_L volumetric flowratem^3 s^{-1}wwidthm	W _a		m s ⁻¹
w mass flowrate (Chapter 1)kg s^{-1} w_1, w_2 total material flows or flowrates (Chapter 1)kg s^{-1} w_L volumetric flowrate $m^3 s^{-1}$ w widthm	W_{m}°		
w_1, w_2 total material flows or flowrates (Chapter 1)kg s^{-1} w_L volumetric flowrate $m^3 s^{-1}$ w widthm			
$w_{\rm L}$ volumetric flowrate ${\rm m}^3 {\rm s}^{-1}$ w widthm	W_{1}, W_{2}		
w width m			
			_

Symbol	Definition	Units
X	mixedness fraction	_
X_{A}	fractional conversion of component A	
x,y,z	deviation/perturbation variable (Chapter 7)	
<i>x</i> , <i>y</i> , <i>z</i>	distance	m
x,y,z	mass or mole fraction or concentration	
	(Chapters 1 and 4)	
x	output (Chapter 7)	
Y	yield coefficient	kg/kg
$Z_{\rm c}, Z_{\rm F}$	Z value: slope of the lethality or cooking curve	ĸ
α	solids volume fraction	_
α	thermal diffusivity = $\lambda/\rho c_P$	$m^2 s^{-1}$
β	shear rate constant	_
Г	torque	Nm
Ϋ́	shear rate or strain rate	S^{-1}
γ	strain	_
δ	disturbance (Chapter 7)	
δ	thickness	m
δ	loss angle	rad
ε′	dipole density	
Ė	elongational strain rate	S^{-1}
8	gas volume fraction	_
ζ	damping coefficient	
ή	upper Newtonian viscosity	Pas
θ	angle	rad
θ	controller output (Chapter 7)	
θ	temperature	К
θw	fraction of water in the material	
θ	dimensionless time	
κ	electrical conductivities in the x and y	$s m^{-1}$
	directions	
λ	relaxation time = μ/G (Chapter 5)	S
λ	thermal conductivity	$W m^{-1} K^{-1}$
μ _m	maximum growth rate for a microbial	h-1
	fermentation	
μ	viscosity	Pas
μ _a	apparent viscosity	Pas
μ _E	elongational viscosity	Pas
μ_0	lower Newtonian viscosity	Pas
μ* 	magnitude of complex viscosity	Pas
V	kinematic viscosity = μ/ρ	$m^2 s^{-1}$
ρ	density	kgm⁻³
ρ σ ²	variance	-
-	·	

LIST OF SYMBOLS

Symbol	Definition	Units
σ	normal stress	Pa
σ	surface tension (Chapter 10)	$N m^{-1}$
τ	shear stress	Pa
τ	system time constant	S
τ	wall sheer stress	Pa
τ _y	yield stress (Chapter 5)	Pa
φ	constant value of N_{po}	_
$\phi_{C,F}$	cook and sterility ratio	
ф	dispersed phase volume fraction	
ф	phase shift	
ω	frequency	rad s ⁻¹

xviii