## **CHAPTER 4**

# Wet-laid Fibrous Media

The media discussed in Chapters 2 and 3 mainly involved fibres – natural and synthetic – made up into bulk materials by a variety of processes, all of which operate in the dry state. This chapter features the traditional papers and paper-like materials, made by deposition from a slurry in water. These wet-laid media also involve both natural and synthetic fibres.

## 4.1 Introduction

A typical and conventional definition of paper – the quintessential wet-laid material – is that it is a substance made from fibrous cellulose material, such as rags, wood or bark, treated with various chemicals and formed into thin sheets for writing, printing, wrapping and a wide variety of other uses. This definition is broadly valid as the history of paper is followed over many centuries, from its earliest recorded Chinese origins in the second century BC, right up until just a few decades ago; over this immensely long time span, the cellulose material varied considerably, depending on the plants available locally (e.g. jute, flax, straw, esparto grass, cotton linters, wood pulp) but was always a vegetable fibre.

This impressive continuity has been interrupted in recent years by two separate technological developments, necessitating that the scope of this chapter is widened accordingly. One of these is the manufacture of fibres of other materials that can be formed into paper-like sheets by adapting the conventional papermaking process; the outstanding example of this is the variety of glass fibre papers, which are of major importance in filtration. The other has evolved by exploiting the characteristics of the synthetic fibres formed by the extrusion of molten polymers; adaptation of this extrusion process enables these fibres to be formed directly into the paper-like sheets of the spunbonded media discussed in Section 3.5 of Chapter 3.

Also included in this chapter are the filter sheets that are used, for example, in special forms of filter press to clarify beverages such as beer and whisky or to sterilize pharmaceutical solutions. Traditionally these sheets closely resembled thick filter paper and, in fact. were made from a mixture of cellulose and asbestos fibres; recent years have seen asbestos displaced because of its health hazards.

## 4.2 Cellulose Papers

If, as is often said, the filter medium is the heart of any filter, then of the many types of media this is surely true of cellulose filter paper, which lies at the heart of filtration technology itself. Apart from its popularity as a highly versatile filter medium, the process by which paper is manufactured is itself dominated by filtration. Moreover, the two basic forms of papermaking machines (the cylinders of John Dickinson and the Fourdrinier wires which evolved from the invention of Louis Robert) are clearly the progenitors of the vacuum drum and horizontal belt filters widely used in the chemical and processing industries<sup>(1)</sup>.

As shown schematically in Figure 4.1. in essence the papermaking process comprises dispersing fibres to form a suspension in water, and then filtering this through a wire mesh to produce a thin mat, which can be compressed and dried. Whilst any fibrous material can potentially be processed in this way, the resultant sheet will only have sufficient strength to be usable if the fibres bond together, either because of their intrinsic properties or by impregnation of the sheet with a suitable adhesive or resin.

The preparation of the suspension is of crucial importance and typically involves a sequence of mechanical and chemical treatment stages to ensure that the original cellulose fibres are well separated from each other, and also that the structure of each fibre is partly disintegrated so that its surface is fibrillated (i.e. hairy). The possibility of achieving this state is apparent from the typical multilayered structure of cellulose fibres; the fibres are relatively coarse, about  $30 \ \mu m$ in diameter, but the fibrils are very much finer, their dimensions and numbers depending on the extent of the chemical and mechanical treatment.

By variation of this pretreatment process, and of the nature of the fibrous raw materials, the structure of paper made from cellulose fibres can be controlled to

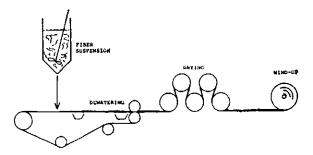



Figure 4.1. The basic wet-laid paper making process.

give a wide range of products of different permeabilities, porosities and strengths. The strength may be further enhanced by impregnating the paper with a suitable resin, especially for use under wet conditions, because absorption of water reduces the strength of untreated cellulose.

Multi-layer papers of different grades. possibly combining different materials (e.g. membranes) or including chemical reagents for specific functions, can be produced by lamination using a variety of binders and adhesives. An alternative approach pioneered by Whatman uses a single manufacturing operation to produce multi-layer graded density papers. which combine high dirt-holding capacity with low pressure drop characteristics: the practical benefits of this are illustrated by the experimental curves in Figure 4.2. showing how the life of a membrane filtering river water was maximized by a graded prefilter as compared with a conventional one of uniform density.

Although not, perhaps. in the mainstream of products covered by this Handbook, the paper used in domestic and commercial coffee filters should not be forgotten as a significant market for cellulose papers. This is marketed with bleached, and, increasingly, unbleached cellulose fibres.

## 4.2.1 Laboratory papers

The simple circular sheet of filter paper. familiar to chemistry students, and in analytical laboratories around the world, is an important outlet for cellulose filter papers (and also for glass fibre – see below).

It is appropriate to divide these papers into two broad categories. *Qualitative* filter papers are for use in qualitative analytical techniques aimed at identifying materials; they are accordingly also suitable for general use. *Quantitative* filter papers are for use in analytical techniques intended to quantify the composition of materials, where the purity and composition of the filter paper are of crucial importance.

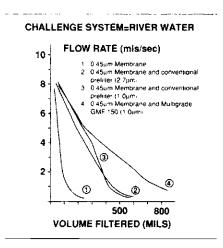



Figure 4.2. Effect of Whatman multi-layer prefilter (curve 4) on membrane life.

In respect of their 21 standard grades of this category. Whatman identified two ranges of qualitative papers (depending on whether or not they are wet strengthened) and three ranges of quantitative papers (depending on their ash content). Table 4.1 summarizes all five ranges and indicates their typical properties. Table 4.2 reproduces Whatman's notes giving guidance on their applications. Finally, Table 4.3 shows the typical trace element content both of two representative quantitative papers and, for comparison purposes, also of grade No.1 qualitative paper.

| Grade    | Particle<br>retention <sup>a</sup> | Air<br>rate <sup>b</sup> | (%) <sup>c</sup> | Thickness<br>(µm) | Basis<br>weight <sup>e</sup> | Wet<br>burst <sup>f</sup> | Dry<br>burst <sup>g</sup> | Tensile<br>strength <sup>r</sup> |
|----------|------------------------------------|--------------------------|------------------|-------------------|------------------------------|---------------------------|---------------------------|----------------------------------|
| Qualitat | ive                                |                          |                  |                   |                              |                           |                           |                                  |
| 1        | 11                                 | 10.5                     | 0.06             | 180               | 88                           | 0.3                       | 16                        | 39.1                             |
| 2        | 8                                  | 21                       | 0.06             | 190               | 103                          | 0.7                       | 16                        | 44.6                             |
| 3        | 6                                  | 26                       | 0.06             | 390               | 187                          | 0.5                       | 28                        | 72                               |
| 4        | 20                                 | 3.7                      | 0.06             | 205               | 96                           | 0.7                       | 10                        | 28.4                             |
| 5        | 2.5                                | 94                       | 0.06             | 200               | 98                           | 0.4                       | 21                        | 55.6                             |
| 6        | 3                                  | 35                       | 0.11             | 180               | 105                          | 0.3                       | 15                        | 39.1                             |
| General  | -purpose and we                    | t-strengthe              | ned qualita      | tive              |                              |                           |                           |                                  |
| 91       | 10                                 | 6.2                      | 0.2              | 205               | 71                           | 2                         | 18                        | 28                               |
| 93       | 10                                 | 7                        | 0.2              | 145               | 67                           | 2.6                       | 12                        | 38                               |
| 113      | 30                                 | 1.3                      | 0.2              | 420               | 131                          | 8                         | 24                        | 38.6                             |
| 114      | 23                                 | 5.3                      | 0.2              | 190               | 77                           | 8.9                       | 15                        | 42.1                             |
| Ashless  | quantitative                       |                          |                  |                   |                              |                           |                           |                                  |
| 40       | 8                                  | 19.3                     | 0.008            | 210               | 92                           | 0.5                       | 16                        | 46.7                             |
| 41       | 20                                 | 3.4                      | 0.008            | 215               | 84                           | 0.3                       | 10                        | 27.2                             |
| 42       | 2.5                                | 107                      | 0.008            | 200               | 100                          | 0.7                       | 25                        | 55.8                             |
| 43       | 16                                 | 8.9                      | 0.008            | 220               | 96                           | 0.6                       | 12                        | 38.2                             |
| 44       | 3                                  | 57                       | 0.008            | 176               | 77                           | 0.4                       | 44                        | 39.4                             |
| Hardene  | d low-ash quan                     | titative                 |                  |                   |                              |                           |                           |                                  |
| 50       | 2.7                                | 96                       | 0.015            | 115               | 97                           | 9.1                       | 33                        | 84                               |
| 52       | 7                                  | 11.4                     | 0.015            | 175               | 101                          | 8.3                       | 24                        | 71.5                             |
| 54       | 22                                 | 4.2                      | 0.015            | 185               | 92                           | 9.4                       | 18                        | 57.6                             |
| Hardene  | ed ashless quant.                  | itative                  |                  |                   |                              |                           |                           |                                  |
| 540      |                                    | 13.2                     | 0.007            | 160               | 88                           | 9                         | 20                        | 63                               |
| 541      | 22                                 | 3.8                      | 0.007            | 155               | 82                           | 5.3                       | 14                        | 43.4                             |
| 542      | 2.7                                | 69                       | 0.007            | 150               | 93                           | 9.2                       | 28                        | 82.6                             |

Table 4.1 Typical properties of Whatman cellulose filter papers<sup>1</sup>

<sup>a</sup> Particle retention in liquid filtration, based on challenge tests with suspensions of particles of known sizes, and is the size of particle in µm for which the filter will retain 98%.

<sup>b</sup> Air flow rate in s/100 ml/in<sup>2</sup>.

 $^{\rm c}$  – Ash % is determined by incineration of the cellulose filter at 900°C in air.

d Measured at 53 kPa.

e Basis weight of paper is in g/m<sup>2</sup>.

<sup>f</sup> Wet burst strength in psi.

g Dry burst strength in psi.

<sup>h</sup> Tensile strength (MD) in N/15 mm.

<sup>i</sup> Whatman International Ltd.

| Whatman grade        | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Qualitative filters  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Grade 1              | Medium retention and flow rate for routine laboratory applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Grade 2              | Slightly more retentive with a slower filtration speed than Grade 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Grade 3              | A thick paper with good loading capacity, fine particle retention and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      | increased strength. Particularly useful for flat Buchner funnels. The high                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | absorbency makes it a useful sample carrier.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Grade 4              | High flow rate with good retention of larger particles and gelatinous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      | precipitates.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Grade 5              | The most efficient qualitative paper for collecting small particles; slow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                      | flow rate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Grade 6              | Twice as fast as Grade 5 with almost as good particle retention. Often                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                      | specified for boiler water analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Wet strengthened     | Because the strengthening resins contain nitrogen, should not be used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| quantitative filters | in Kjeldahl estimations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Grade 91             | A general purpose creped filter for less critical routine analysis. Used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                      | worldwide to assay sucrose in cane sugar.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Grade 93             | Similar to Grade 91 but with a smooth surface.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Grade 113            | A creped filter with high loading capacity and the fastest flow rate of any                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                      | qualitative grade. This is the thickest filter paper in the range and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      | extremely                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                      | strong. It is ideal for use with coarse or gelatinous precipitates.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Grade 114            | A very strong paper with a smooth surface. Suitable for coarse or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      | gelatinous precipitates.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Ashless quantitative | 0.01% och marinum and that high anglith attack lintage Par                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| filters              | 0.01% ash maximum, produced from high quality cotton linters. For                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Juers                | routine quantitative techniques: ideal for a wide range of critical analytical filtration procedures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Grade 40             | A general purpose ashless filter paper with medium speed and particle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ordae xe             | retention. Typical applications include gravimetric analysis, the filtration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                      | of solutions prior to atomic absorption spectrophotometry and in air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                      | pollution monitoring.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Grade 41             | The fastest ashless filter paper: recommended for analytical procedures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                      | involving large particles or gelatinous precipitates, e.g. hydroxides of iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                      | or aluminium.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Grade 42             | The most efficient quantitative grade for collecting small particles and fine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                      | precipitates such as barium sulphate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Grade 43             | A moderately fast filter used in the analysis of foodstuffs and in soil analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Grade 44             | Thinner that the other filters in this series to give the lowest ash weight for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | any given circle size. Slightly less efficient than Grade 42 for collecting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                      | small particles but with a higher flow rate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Hardened low ash     | 0.025% ash maximum. The same is to the day of the state of the same is the sam |
| quantitative         | 0.025% ash maximum. The paper is treated with strong acid to produce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| filters              | high wet strength and chemical resistance. Particularly suited for Buchner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| داعاتير              | filtrations where its tough smooth surface makes it easy to recover<br>precipitates.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Grade 50             | precipitates.<br>The thinnest of all Whatman filter papers with a slow flow rate and good                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| State 50             | particle retention characteristics. The hardened surface is virtually free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | from loose fibres.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Grade 52             | The general purpose hardened surface filter paper with medium retention                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                      | and flow rate. Ideal for use with Buchner funnels or Whatman 3-piece filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                      | funnels.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Grade 54             | Very fast filtration for use with coarse and gelatinous precipitates.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      | · ····································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

 Table 4.2
 Whatman notes on applications of laboratory cellulose filter papers

#### Table 4.2 (continued)

| Whatman grade    | Comments                                                                                     |
|------------------|----------------------------------------------------------------------------------------------|
| Hardened ashless | 0.008% ash maximum. Acid hardened to give high wet strength                                  |
| filters          | and chemical resistance with extremely low ash content. The                                  |
|                  | tough surface makes these filters suitable for a wide range of critical                      |
|                  | filtration procedures.                                                                       |
| Grade 540        | The general purpose hardened ashless filter paper, with medium retention                     |
|                  | and flow rate. Frequently used in metal analysis.                                            |
| Grade 541        | High filtration speed for the retention of large particles and gelatinous                    |
|                  | precipitates in acid or alkaline solutions. The typical applications include                 |
|                  | protein determinations. cement analysis and the determination of fibre in animal foodstuffs. |
| Grade 542        | Efficient retention of small particles in solutions that would weaken                        |
|                  | conventional filter papers. The flow rate is slow but there are many critical                |
|                  | applications for this strong and very hard paper.                                            |

| Grade     | 1       | 42      | 542     |
|-----------|---------|---------|---------|
| Aluminium | < 0.05  | 2       | 1       |
| Antimony  | < 0.02  | < 0.02  | < 0.02  |
| Arsenic   | < 0.02  | < 0.02  | < 0.02  |
| Barium    | < 1     | < l     | < 1     |
| Boron     | 1       | 1       | 2       |
| Bromine   | 1       | 1       | 1       |
| Calcium   | 185     | 13      | 8       |
| Chlorine  | 130     | 80      | 55      |
| Chromium  | 0.3     | 0.3     | 0.7     |
| Copper    | 1.2     | 0.3     | 0.2     |
| Fluorine  | 0.1     | 0.2     | 0.3     |
| Iron      | 5       | 6       | 3       |
| Lead      | 0.3     | 0.2     | 0.1     |
| Magnesium | 7       | 1.8     | 0.7     |
| Manganese | 0.06    | 0.05    | < 0.05  |
| Mercury   | < 0.005 | < 0.005 | < 0.005 |
| Nitrogen  | 23      | 12      | 260     |
| Potassium | 3       | 1.5     | 0.6     |
| Silicon   | 20      | < 2     | < 2     |
| Sodium    | 160     | 33      | 8       |
| Sulphur   | 15      | < 5     | < 2     |
| Zinc      | 2.4     | 0.6     | 0.3     |

## Table 4.3 Typical trace element contents (µg/g) of Whatman cellulose filter papers\*

\*Whatman International Ltd

## 4.2.2 Industrial and general-purpose papers

Data relating to a range of cellulose filter papers produced for general industrial use, such as with filter presses, are listed in Table 4.4. Many of the grades, as indicated by the inclusion of 'w/s' in the grade designation, have their wet

|                  | Grammage <sup>b</sup><br>(g/m <sup>2</sup> ) | Filtration <sup>c</sup><br>Time (s) | Air <sup>d</sup><br>resistance<br>(Pa) | Dry<br>burst <sup>e</sup><br>(kPA) | Wet<br>burst <sup>f</sup><br>( <b>k</b> Pa) | Retention <sup>g</sup><br>size (µm) | Min <sup>h</sup><br>pore<br>(µm) | Mean <sup>h</sup><br>pore<br>(µm) |
|------------------|----------------------------------------------|-------------------------------------|----------------------------------------|------------------------------------|---------------------------------------------|-------------------------------------|----------------------------------|-----------------------------------|
| Creped cellulose |                                              |                                     |                                        |                                    |                                             |                                     |                                  |                                   |
| Hw/s             | 60                                           | 23                                  | 470                                    | 120                                | 50                                          | 25                                  | 7.9                              | 16.5                              |
| Bw/s             | <b>9</b> 0                                   | 72                                  | 1120                                   | 200                                | 75                                          | 10                                  | 6.1                              | 9.8                               |
| B140 w/s         | 140                                          | 28                                  | 370                                    | 180                                | 55                                          | 13                                  | 7.8                              | 14.2                              |
| WT w/s           | 180                                          | 132                                 | 880                                    | 300                                | 150                                         | 10                                  | 5.9                              | 10.8                              |
| ВТ               | 180                                          | 195                                 | 1700                                   | 240                                |                                             | 9                                   | 4.3                              | 8.0                               |
| Plain cellulose  |                                              |                                     |                                        |                                    |                                             |                                     |                                  |                                   |
| Thin white w/s   | 70                                           | 135                                 | 2020                                   | 250                                | 80                                          | 6                                   | 5.5                              | 8.1                               |
| Medium white w/s | 90                                           | 161                                 | 1900                                   | 200                                | 55                                          | 5                                   | 5.1                              | 7.4                               |
| Ew/s             | 140                                          | 320                                 | 2000                                   | 190                                | <b>9</b> 0                                  | 4                                   | 4.7                              | 7.3                               |
| Pw/s             | 225                                          | 749                                 | 4750                                   | 390                                | 180                                         | 2.5                                 | 3.3                              | 5.7                               |
| W26 w/s          | 225                                          | 89                                  | 710                                    | 240                                | 50                                          | 5                                   | 7.1                              | 12.0                              |
| TO w/s           | 280                                          | 459                                 | 3000                                   | 340                                | 150                                         | 3                                   | 3.9                              | 6.7                               |
| Plain synthetic  |                                              |                                     |                                        |                                    |                                             |                                     |                                  |                                   |
| V130             | 40                                           | <1                                  | 7                                      | 180                                | 86                                          | 160                                 |                                  |                                   |
| P150             | 50                                           | <1                                  | 8                                      | 180                                | 108                                         | 120                                 |                                  |                                   |
| P300             | 90                                           | 1.2                                 | 14                                     | 290                                | 150                                         | 50                                  |                                  |                                   |
| V300             | 90                                           | 1.2                                 | 14                                     | 290                                | 150                                         | 50                                  |                                  |                                   |
| R300             | 90                                           | 1.2                                 | 14                                     | 290                                | 150                                         | 50                                  |                                  |                                   |

Table 4.4 Typical properties of general purpose cellulose papers<sup>a</sup>

<sup>a</sup> Hollingsworth and Vose Company Ltd.

<sup>b</sup> Grammage: The mass per unit area expressed in grams per square metre (g/m<sup>2</sup>). For further details see BS 3432, ISO 536 and TAPPI 410.

<sup>c</sup> Water filtration time: Time in seconds (s) taken to collect 100 ml of water under a constant hydrostatic head. For further details see BS 6410.

<sup>d</sup> Air resistance: The pressure differential in pascals (Pa) measured across the paper when the linear air velocity is 10 m/min. See BS 6410.

<sup>e</sup> Dry burst: The maximum pressure in kilopascals (kPa) that can be sustained immediately before rupture by a circular area of dry paper. See BS 3137, ISO 2758. TAPPI 493, AFNOR 003-014.

<sup>f</sup> Wet pressure: Same as dry burst except that the paper is first soaked in water.

- <sup>g</sup> Retention size: The appropriate minimum size measured in micrometers ( $\mu$ m) of spherical particles 90% of which will be retained on clean paper under laboratory test conditions. The actual retention achieved under operating conditions will depend on the specific application, and will be influenced by type of particle and size distribution, fluid, surface tension, flowrate, pressure drop, etc. Through tortuous path depth filtration particles much smaller than the determined pore size of a filter medium may be retained.
- <sup>h</sup> Pore size: The minimum and mean flow pore size have been determined using a Coulter Porometer and Porofil wetting fluid, both of which are industry accepted standards for this test.

strength enhanced by impregnation with a bonding agent such as melamine formaldehyde. As shown, cellulose papers are commonly available in both smooth and creped forms; the purpose of creping is to improve the ease of handling, especially when the paper is wet. A useful visual summary of both properties and typical applications of these papers is provided by Figure 4.3.

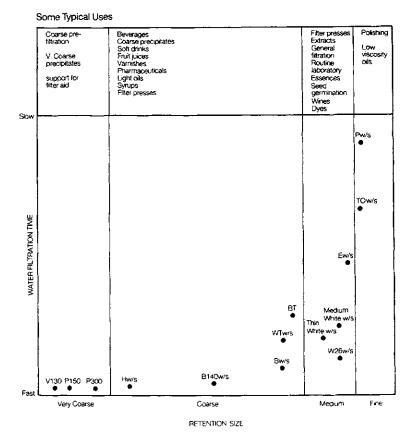



Figure 4.3. Overview of characteristics and applications of Hollingsworth and Vose Company Ltd industrial general purpose cellulose filter papers.

It is appropriate to note that the three coarsest papers included in both Table 4.4 and Figure 4.3 are not cellulose papers but spunbonded non-woven synthetic media, which are the subject of Section 3.5 of Chapter 3.

#### 4.2.3 Automotive cellulose papers

The diverse and demanding needs of the automotive industry, embracing oil, air and fuel systems of all types and sizes, have led to the development of a substantial variety of impregnated papers tailored for specific uses.

Examples from the product range of Hollingsworth and Vose are summarized in Table 4.5. These are available slit to any width up to 1.53 m, marked with parallel lines on the 'wire side' to denote the more retentive surface. Impregnants used include standard phenolic thermosetting resins as well as flame-retardant materials. Papers may be either plain or corrugated.

| Grade    | Impregnated <sup>b</sup><br>grammage<br>(g/m <sup>2</sup> ) | Nominal<br>volatile<br>content (%) | Nominal<br>resin<br>content (%) | Air resistance <sup>c</sup> |              | Pore <sup>d</sup><br>pressure<br>- (kPa) | Pore<br>thickness<br>(mm) | Retention <sup>e</sup><br>size (µm) | Corrugation depth (mm) | Typical<br>application |
|----------|-------------------------------------------------------------|------------------------------------|---------------------------------|-----------------------------|--------------|------------------------------------------|---------------------------|-------------------------------------|------------------------|------------------------|
|          | (9,)                                                        |                                    | content ( M)                    | ∆p20<br>(Pa)                | ∆p10<br>(Pa) | ()                                       | (******)                  |                                     |                        |                        |
| A31/131  | 130                                                         | 9                                  | 23                              | 70                          |              | 0.88                                     | 0.50                      | 46                                  | 0.22                   | Air/lube oil           |
| 354D/202 | 158                                                         | 7                                  | 26                              | 88                          | -            | 0.97                                     | 0.60                      | 38                                  | 0.30                   | Air/lube oil           |
| F00/254  | 174                                                         | 10                                 | 30                              | 92                          | -            | 0.98                                     | 0.66                      | 37                                  | 0.17                   | Hydraulic oil          |
| 754E/185 | 139                                                         | 6                                  | 26                              | 106                         | _            | 1.05                                     | 0.66                      | 33                                  | -                      | Flame ret. air         |
| 54E/122  | 127                                                         | 8                                  | 18                              | 100                         |              | 1.05                                     | 0.63                      | 33                                  | -                      | Air/lube oil           |
| 53E/131  | 144                                                         | 9                                  | 22                              | 108                         | _            | 1.02                                     | 0.52                      | 35                                  | 0.24                   | Spark erosion          |
| F1/185   | 168                                                         | 6                                  | 26                              | 120                         | _            | 1.06                                     | 0.76                      | 32                                  | -                      | Flame ret. air         |
| F1/131   | 165                                                         | 9                                  | 22                              | 124                         | -            | 1.07                                     | 0.62                      | 32                                  | 0.20                   | Air/lube oil           |
| 52C/129  | 155                                                         | 8                                  | 28                              | 120                         | -            | 1.06                                     | 0.70                      | 32                                  | -                      | Flame ret. air         |
| A44/245  | 141                                                         | 7                                  | 21                              | 140                         | -            | 1.12                                     | 0.49                      | 29                                  | 0.30                   | Fuel oil               |
| A146/122 | 138                                                         | 9                                  | 18                              | 200                         | -            | 1.18                                     | 0.60                      | 25                                  | -                      | Heavy duty air         |
| F3/128   | 157                                                         | 8                                  | 17                              | 205                         | -            | 1.23                                     | 0.56                      | 24                                  | 0.21                   | Spark erosion          |
| F3/254   | 187                                                         | 10                                 | 30                              | 210                         | -            | 1.23                                     | 0.60                      | 24                                  | 0.18                   | Hydraulic oil          |
| 149F/256 | 200                                                         | 7                                  | 22                              | -                           | 150          | 1.31                                     | 0.60                      | 23                                  | 0.32                   | High temp. oil         |
| A138/226 | 122                                                         | 7                                  | 20                              | -                           | 158          | 1.66                                     | 0.40                      | 11                                  | 0.25                   | Heavy duty air         |
| 009/255  | 138                                                         | 7                                  | 18                              | -                           | 162          | 1.72                                     | 0.45                      | 10                                  | 0.33                   | Heavy duty air         |
| F6/143   | 186                                                         | 9                                  | 15                              | -                           | 256          | 1.60                                     | 0.58                      | 14                                  | 0.20                   | Hydraulic/fuel         |
| A152/139 | 134                                                         | 9                                  | 15                              | _                           | 310          | 2.05                                     | 0.51                      | 8                                   | -                      | Hydraulic/fuel         |
| F8/143   | 188                                                         | 9                                  | 15                              | -                           | 510          | 2.52                                     | 0.57                      | 6                                   | 0.18                   | Hydraulic/fuel         |
| 143/208  | 224                                                         | 11                                 | 30                              | -                           | 580          | 2.60                                     | 0.70                      | 5                                   | -                      | Coalescer/<br>stripper |

## Table 4.5 Typical data for automotive cellulose filter papers\*

\* Hollingsworth and Vose Company Ltd.

<sup>b</sup> Impregnated grammage = typical weight as received.

 $\Delta p 10 = air pressure @ 10 m/min \Delta p 20 = air pressure @ 30 m/min.$ 

<sup>d</sup> Pore pressure = bubble point pressure.

\* Retention = appropriate minimum size spherical particles, 90% of which will be retained on clean paper under particular test conditions.

## 4.3 Glass Papers

The process for manufacturing glass paper is essentially the traditional wet-laid papermaking process shown in Figure 4.1, but with pretreatment adapted to suit the distinctive properties of glass microfibres. Some, but not all, of the significant physical differences between glass fibres and those of cellulose can be seen in Figure 4.4.

By comparison with cellulose, the glass fibres used are smaller in diameter and much longer, as well as being of a far simpler structure, which does not fibrillate but, because of the brittleness of glass, would disintegrate if subjected to the vigorous pretreatment methods needed for cellulose fibres. Fortunately, glass microfibres are commercially available in a range of controlled diameters, which can be roughly divided into four categories comprising superfine (<0.5  $\mu$ m), fine (0.5–2.0  $\mu$ m), coarse (2–4  $\mu$ m) and reinforcing (>4  $\mu$ m).

## 4.3.1 Manufacture of glass fibre

The production of glass paper begins with the selection of a blend of fibre sizes, together with appropriate bonding resins or sizings, which are then gently dispersed in water to form the required stock suspension, at a concentration usually of less than 1%.

The diameter of glass fibres varies according to the process by which they are manufactured, and is of crucial importance in determining the filtration efficiency of the glass papers, with the highest performance demanding the finest fibres. The modern processes have been characterized respectively as drawing, blowing, centrifugal and combined<sup>(2)</sup>; however the production of microfine glass fibres is only possible by two combined processes, centrifugal-blowing (the rotary process) and drawing-blowing (the flame attenuation process).

A leading manufacturer of glass microfibres, Johns Manville (having taken over Schuller, the original makers) spins them from molten glass by versions of the two combined processes. The Micro-Aire media are produced from a saucershaped spinner rotating at high speed; molten glass is ejected through fine holes in its perimeter wall, to meet a blast of cold air that solidifies the glass into relatively coarse and short fibres. These media are the basis of medium efficiency bag type air filters and are discussed further in Section 5.2 of Chapter 5.

Johns Manville's Micro-Strand Micro-Fibers comprise long fibres, which have some of the finest diameters of any filtration material, and are an ideal basis for glass paper. They are made by the 'pot and marble' process, whereby glass marbles are melted in a pot with a perforated base. As the emerging streams of molten glass solidify, they are kept soft by very hot gas, whilst they are stretched to finer diameters  $(0.25-3 \ \mu m)$ . They are available in three formulations, the chemical compositions of which are summarized in Table 4.6.

The two main formulations are tailored to meet specific end-use requirements; these are the 100 Series and 200 Series products, which are supplied in bulk form, with no binders or sizings. The 100 Series, with nominal fibre diameters of

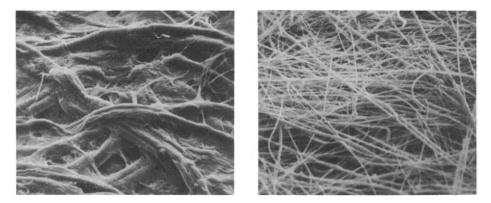



Figure 4.4. (a) Cellulose fibres in Whatman 42 filter paper at  $\times$  500 magnification: (b) glass microfibres in Whatman GF/D filter paper at  $\times$  500 magnification.

| Oxide                          | Nominal weight (%)        |                           |         |  |  |  |  |  |  |
|--------------------------------|---------------------------|---------------------------|---------|--|--|--|--|--|--|
|                                | 100 Series Type 475 fibre | 200 Series Type 253 fibre | Q-Fiber |  |  |  |  |  |  |
| SiO <sub>2</sub>               | 58.3                      | 65.5                      | 99.9    |  |  |  |  |  |  |
| Al <sub>2</sub> O <sub>3</sub> | 5.8                       | 3.1                       | < 0.05  |  |  |  |  |  |  |
| $B_2O_3$                       | 11.3                      | 5.3                       | < 0.01  |  |  |  |  |  |  |
| Na <sub>2</sub> O              | 10.1                      | 16.0                      | < 0.05  |  |  |  |  |  |  |
| K <sub>2</sub> O               | 2.9                       | 0.7                       | -       |  |  |  |  |  |  |
| CaO                            | 1.8                       | 5.9                       | < 0.02  |  |  |  |  |  |  |
| MgO                            | 0.3                       | 3.0                       | < 0.01  |  |  |  |  |  |  |
| BaO                            | 5.0                       | 0.01 (max)                | _       |  |  |  |  |  |  |
| ZnO                            | 4.0                       | _                         | _       |  |  |  |  |  |  |
| $Fe_2O_3$                      | -                         | _                         | < 0.01  |  |  |  |  |  |  |

Table 4.6 Chemical composition of Johns Manville Micro-Strand Micro-Fibers\*

<sup>a</sup> Johns Manville Inc.

| Table 4.7 | Range of fibre diameters of Johns Manville 100 Series Micro-Strand Micro-Fibers* |
|-----------|----------------------------------------------------------------------------------|
|-----------|----------------------------------------------------------------------------------|

| Product code | Fibre diameter range (µm) |         |         |  |  |  |  |  |
|--------------|---------------------------|---------|---------|--|--|--|--|--|
|              | Minimum                   | Nominal | Maximum |  |  |  |  |  |
| 90           | 0.21                      | 0.26    | 0.31    |  |  |  |  |  |
| 100          | 0.22                      | 0.32    | 0.47    |  |  |  |  |  |
| 102          | 0.24                      | 0.40    | 0.58    |  |  |  |  |  |
| 104          | 0.40                      | 0.50    | 0.60    |  |  |  |  |  |
| 106          | 0.50                      | 0.65    | 0.87    |  |  |  |  |  |
| 108A         | 0.72                      | 1.00    | 1.33    |  |  |  |  |  |
| 108B         | 1.26                      | 1.80    | 2.34    |  |  |  |  |  |
| 110X         | 2.00                      | 2.70    | 3.40    |  |  |  |  |  |
| 112X         | 3.00                      | 4.00    | 5.00    |  |  |  |  |  |
| CX           | 4.30                      | 5.50    | 6.70    |  |  |  |  |  |

<sup>a</sup> Johns Manville Inc.

 $0.26-5.5 \mu m$ , is designed for demanding air filtration applications; the ranges of fibre diameters for 10 standard grades are given in Table 4.7. The 200 Series, with nominal fibre diameters of  $0.76-5.5 \mu m$ , is a special higher silica formulation, combining exceptional chemical resistance with fine filtration for applications such as battery separators; the ranges of fibre diameters of four standard grades are given in Table 4.8.

Q-Fiber is an exceptionally pure fibrous silica material for specialized applications. As Table 4.6 shows, the nominal silica content of this is 99.9%. Q-Fiber is available with nominal diameters of  $0.5-4.0 \mu m$ ; it is both low density and non-crystalline.

| Product code | Fibre diameter rang | e (μm)  |         |
|--------------|---------------------|---------|---------|
|              | Minimum             | Nominal | Maximum |
| 206          | 0.60                | 0.76    | 0.96    |
| 210X         | 2.55                | 3.00    | 3.45    |
| 212X         | 3.20                | 4.10    | 5.20    |
| CX           | 4.30                | 5.50    | 6.70    |

Table 4.8 Range of fibre diameters of Johns Manville 200 Series Micro-Strand Micro-Fibers\*

<sup>a</sup> Johns Manville Inc.

| Table 4.9 | Properties of Whatman gl | ass microfibre laboratory filter papers <sup>i</sup> |
|-----------|--------------------------|------------------------------------------------------|
|-----------|--------------------------|------------------------------------------------------|

| Grade    | Particle<br>retention <sup>a</sup> | Air<br>rate <sup>b</sup> | Thickness<br>(µm) <sup>c</sup> | Basis<br>weight <sup>d</sup> | Wet<br>burst <sup>e</sup> | Tensile<br>strength <sup>f</sup> |
|----------|------------------------------------|--------------------------|--------------------------------|------------------------------|---------------------------|----------------------------------|
| GF/A     | 1.6                                | 4.3                      | 260                            | 53                           | 0.3                       | 5.5                              |
| GF/B     | 1.0                                | 12                       | 675                            | 143                          | 0.5                       | 6.4                              |
| GF/C     | 1.2                                | 6.7                      | 260                            | 53                           | 0.3                       | 6.6                              |
| GF/D     | 2.7                                | 2.2                      | 675                            | 121                          | 0.3                       | 6.4                              |
| GF/F     | 0.7                                | 19                       | 420                            | 75                           | 0.3                       | 8.9                              |
| 934-AH   | 1.5                                | 3.7                      | 435 <sup>g</sup>               | 64                           | 0.5                       | 4.1                              |
| QM-A     | 2.2                                | 6.4                      | 475                            | 87                           | 1.5                       | 7.3                              |
| GMF 150  | 1.2                                | 3.1                      | 730                            | 139                          | 1.4                       | 4.2                              |
| EPM2000  | 2.0                                | 4.7                      | 450                            | 85                           | 1.8                       | 6.3                              |
| Grade 72 | N/A <sup>h</sup>                   | 5                        | 800                            | 211                          | 0.6                       | 5.5                              |

Particle retention in liquid filtration, based on challenge tests with suspensions of particles of known sizes, and is the size of particle in μm for which the filter will retain 98%.

<sup>b</sup> Air flow rate in  $s/100 \text{ ml/in}^2$ .

Measured at 53 kPa.

<sup>d</sup> Basis weight of paper in g/m<sup>2</sup>.

<sup>e</sup> Wet burst strength in psi.

- <sup>r</sup> Tensile strength (MD) in N/15 mm.
- <sup>g</sup> Measured at 3.5 kPa.
- <sup>h</sup> Not applicable as medium is for adsorption from vapour phase.
- <sup>i</sup> Whatman International Ltd.

| Whatman<br>grade | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GF/A             | For high efficiency general purpose filtration: widely specified for air pollution monitoring.                                                                                                                                                                                                                                                                                                                                                                                                                      |
| GF/B             | Thicker than GF/A with higher wet strength and increased loading capacity.<br>Recommended for filtering concentrated suspensions of small particles and for<br>sampling techniques that require absorption of relatively large volume of liquid.                                                                                                                                                                                                                                                                    |
| GF/C             | The standard filter for many countries for the determination of suspended solids in<br>water. Widely used in biochemistry for cell harvesting, liquid scintillation counting<br>and binding assays. Provided in two formats, FilterCard and Filter Slide, for<br>automated laboratory filtration procedures. FilterCard is a circle of GF/C with a<br>lightweight polyester surround. Filter Slide surround is a more rigid polycarbonate<br>and is bar coded for automatic monitoring. Both can be dried at 105°C. |
| GF/D             | A general purpose membrane prefilter in sizes for most holders.                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| GF/F             | Retains smaller particles than other glass microfibre filters. Selected for critical applications. e.g. clarifying protein solutions and for filtering samples and solvents prior to HPLC.                                                                                                                                                                                                                                                                                                                          |
| 943-AH           | Smooth surface, high retention borosilicate glass microfibre filter that is binder free and will withstand temperatures over 500°C.                                                                                                                                                                                                                                                                                                                                                                                 |
| QM-A             | Very pure quartz (SiO <sub>2</sub> ) microfibre for monitoring trace levels of pollutants in air.<br>Heat-treated after manufacture to remove organic traces which may interfere with analyses. Recommended for ambient and high temperature (maximum $500^{\circ}$ C) sampling of stacks. flue outlets and aerosols. including acidic gases and airborne lead and inorganic compounds of lead.                                                                                                                     |
| GMF 150          | Graded density combining coarse and fine layers. Exceptionally good loading capacity with fast flow rates and fine particle retention; ideal where extended life is required, e.g. as membrane prefilter. Two types available, rated at 1 and 2 µm, to fit standard membrane holders.                                                                                                                                                                                                                               |
| EPM<br>2000      | Specially produced for high volume air samplers. Combines high chemical purity with rapid air flow and 99.999% retention efficiency for NaCl particles of mass median 0.6 $\mu$ m. Heat-treated after manufacture to remove organic traces which may interfere with analyses.                                                                                                                                                                                                                                       |
| Grade 72         | Cellulose and glass microfibre filter loaded with activated charcoal for iodine advection.                                                                                                                                                                                                                                                                                                                                                                                                                          |

Table 4.10 Whatman notes on applications of laboratory glass filter papers

## 4.3.2 Laboratory glass papers

The standard Whatman glass microfibre papers are made from long fibres of 100% borosilicate glass without any added binders. Their mechanical strength arises partly from the very high surface area of the submicrometre fibres, and partly from entanglement of the very long fibres.

Table 4.9 summarizes of the properties of the standard range of Whatman glass microfibre laboratory papers, while Table 4.10 reproduces Whatman's notes giving guidance on their applications.

These papers can be used at temperatures up to  $500^{\circ}$ C, and at low temperatures, without embrittlement or a significant change in performance. They are extremely white, with a brightness of 96% compared with 86% for cellulose (and 100% for magnesium oxide). Immersion in a liquid of similar refractive index, such as ethyl benzoate, renders them completely transparent.

By comparison with Table 4.1, it can be seen that the glass microfibre papers are thicker than the cellulose papers, with correspondingly lower retention sizes, but are generally less strong. They are used for air filtration (sampling and testing) as well as in liquid filtration situations.

## 4.3.3 Industrial and general-purpose glass papers

In addition to being strengthened by the inclusion of a binder such as latex, acrylic polymers or polyvinyl alcohol, these papers are usually made more robust by being laminated to a scrim of spunbonded material such as Reemay on one or both sides, thereby enhancing not only the strength but also the durability and pleatability. Typically this is done using a roto gravure laminator, which applies a hot melt adhesive in a dot matrix pattern to provide a strong bonding without significantly affecting the filtration characteristics.

Representatives of these are Lydall's Lypore media, of which the properties of the standard grades are summarized in Table 4.11. These are reported as being used primarily in high-efficiency/high-capacity hydraulic and lubrication oil elements for off-road vehicles. trucks and heavy machinery, as well as for industrial fluids and chemicals.

| Grade number                        | 9470   | 9215  | 9221 | 9220 | 9400 | 9224B | 9229B | 9381 | 9232 |
|-------------------------------------|--------|-------|------|------|------|-------|-------|------|------|
| Mean flow pore size <sup>b</sup>    | 3.1    | 3.8   | 6.1  | 7.4  | 8.8  | 13.0  | 16.4  | 23.0 | 30.0 |
| Basis weight $(g/m^2)$              | 78     | 78    | 78   | 75   | 75   | 81    | 81    | 73   | 70   |
| Thickness (mm)                      | 0.40   | 0.38  | 0.40 | 0.38 | 0.38 | 0.40  | 0.40  | 0.38 | 0.36 |
| Liquid filtration                   |        |       |      |      |      |       |       |      |      |
| Particle size (µm                   | 0.5    | 1     | 2    | 3    | 6    | 12    | 20    | 25   | 30+  |
| $(\bar{a} \text{ beta ratio} = 75)$ |        |       |      |      |      |       |       |      |      |
| (i.e. 98.67% removal                |        |       |      |      |      |       |       |      |      |
| efficiency)                         |        |       |      |      |      |       |       |      |      |
| Dirt holding capacity <sup>c</sup>  | -      | -     | 5.4  | -    | 7.4  | 9.3   | 11.6  | 13.2 | 9232 |
| $(mg/cm^2)$                         |        |       |      |      |      |       |       |      |      |
| Air filtration                      |        |       |      |      |      |       |       |      |      |
| DOP penetration (0.3 µm             | 0.0005 | 0.015 | 4.0  | 7.0  | 14   | 35    | 55    | 75   | 85   |
| particles @ 5.3 cm/s. %)            |        |       |      |      |      |       |       |      |      |
| Flow resistance @                   | 44     | 36    | 15   | 12   | 9    | 5     | 3.5   | 1.5  | 0.8  |
| 5.3 cm/s, mm WG                     |        |       |      |      |      |       |       |      |      |

| Table 4.11 | Typical properties of Lypore liquid filtration media <sup>a</sup> |
|------------|-------------------------------------------------------------------|
|------------|-------------------------------------------------------------------|

<sup>a</sup> Lydall Inc.

<sup>b</sup> Determined by Coulter Porometer 1.

<sup>c</sup> Multipass testing of flat sheet and element with hydraulic oil Mil 5606 containing 10 mg/l of AC fine test dust, at a flow rate of 176 l/m<sup>2</sup> min to a terminal pressure of 2 bar.

| Letter code | Scrim                                                 |
|-------------|-------------------------------------------------------|
| A           | 18 g/m <sup>2</sup> Reemay                            |
| В           | $97 \text{ g/m}^2$ woven glass cloth                  |
| С           | 16 g/m <sup>2</sup> Hollitex (calendered Reemay)      |
| D           | 28 g/m <sup>2</sup> Cerex                             |
| Е           | 32 g/m <sup>2</sup> Reemay                            |
| F           | $32 \text{ g/m}^2 \text{Cerex}$                       |
| G           | Tea bag non-woven                                     |
| Н           | 9232/1232                                             |
| Ι           | 9381/1381                                             |
| I           | 44 g/m <sup>2</sup> Reemay with FDA Adhesive no. 4165 |
| K           | $10 \text{ g/m}^2$ Cerex                              |
| 0           | No scrim                                              |

Table 4.12 Lypore laminated grade identification system<sup>a</sup>

<sup>a</sup> Lydall Inc.

As indicated in Table 4.11. Lydall utilize the Beta ( $\beta$ ) factor notation to indicate the efficiency of their liquid filtration media, where  $\beta$  is the ratio of the number of particles  $N_u$  greater than a defined size upstream of a filter to the number downstream  $N_d$ ; therefore  $\beta = N_u/N_d$  (this is also known as the Beta ratio). Each filter medium can be characterized by identifying the size of particle for which  $\beta$  has a particular value, such as  $\beta = 75$  as in Table 4.11. Efficiency may also be expressed as the percentage of particles removed by a filter medium:  $E(\%) = 100(\beta - 1)/\beta$ .

Most Lypore media comprise a single uniform layer, but some are of two-layer graded construction. The latter are thicker, with the upper (felt) side serving as a prefilter for larger particles and the finer lower (wire) side determining the final efficiency rating of the medium; in some cases, their dirt-holding capacities can be enhanced by 50-100%.

More complex laminated grades are identified by combining standard grade code numbers with the letter codes for the scrims listed in Table 4.12, a letter for the wire side scrim before a slash (/) and then a second letter to designate the scrim on the felt side. Thus 9220-A/O identifies a 9220 standard grade with an  $18 \text{ g/m}^2$  Reemay scrim on the wire side and no scrim on the felt side.

### 4.3.4 Battery separators

Battery separators constitute an important and very sophisticated market for a wide variety of specialist porous papers that are closely allied to filter papers (and do perform a kind of filtration function). A substantial proportion of these are based on glass microfibres, notably for lead acid batteries, but many other fibres are also used. For example, alumina competes with borosilicate glass in primary lithium cells, while in primary alkali cells the separators are manufactured from high-purity cellulose that has been treated with sodium hydroxide.

To withstand the associated stringent environment and demanding operating conditions, the chemical and physical properties of battery separator material have to be specially tailored. For example, the thicknesses required range from 100  $\mu$ m or less up to some 3 mm. Tensile strength is of crucial importance, both for battery manufacture processability and to ensure integrity of separators in use, while fineness of pore size benefits both strength and absorbency. As indicated above, Johns Manville's 200 Series Micro-Strand Micro-Fibers products are manufactured for this application (see Table 4.8).

This is an application for which membranes are being increasingly used, partly because of the ease with which membrane material can be tailored to match the electrolytic needs of the battery (or fuel cell).

### 4.3.5 Glass paper media for air filtration

Glass microfibre media are of crucial importance in filters for air. notably for those of high efficiency, variously known as HEPA (High Efficiency Particulate Air), ULPA (Ultra Low Penetration Air) and absolute; these correspond to the top end of the Eurovent scale, with ratings from EU 10 (85% efficient) to EU 17 (99.999995% efficient).

To achieve these increasingly high efficiencies, correspondingly fine fibres are required. For example, for this market, Johns Manville produce their 100 Series Micro-Strand Micro-Fibers, comprising 10 standard grades with nominal diameters from  $5.5 \,\mu\text{m}$  down to  $0.26 \,\mu\text{m}$  (see Table 4.7).

Papers made from microfibres such as these are strengthened either by use of a bonding resin or by laminating to a backing scrim. Fuller information is given in Chapter 5, which is devoted to air filter media.

## 4.4 Papers from Other Fibres

Here, as elsewhere in this Handbook, it is difficult to draw hard and fast lines between one type of filter medium and another. Thus it is now perfectly possible to use the wet-laying, or papermaking process to produce sheet materials from synthetic fibres, which look and feel like papers – but which could as easily have been classed in the chapter on non-woven media, since that is what they are. Fibre makers are looking to expand their markets into papermaking – and papermakers are looking for better materials for special needs within the paper industry.

Synthetic fibres have the advantage over cellulose that they can be made as long as the end-use requires, with uniform thickness – longer fibres are needed to make stronger papers. Synthetic fibres can be a great deal more resistant to some chemical solutions, especially to acids, and so can extend the range of filter paper applications to such solutions. Cellulose fibre gains or loses absorbed moisture according to the ambient conditions: it thus changes its dimensions and the paper may curl – whereas synthetic fibre paper will be dimensionally stable.

On the other hand, this very hygroscopicity enables cellulose fibres to bond together as they dry, so that cellulose fibre papers do not need the additional bonding process (adhesive or thermal) that will be necessary for synthetic fibres. The main disadvantage of synthetics, however, lies in their cost. Even reconstituted cellulose costs 3-5 times as much as raw cellulose, while the standard synthetics, such as amides, polyesters or acrylics, can cost 10 or 20 times as much. Synthetic fibre papers are thus reserved for special duties – amongst which is filtration.

## 4.4.1 Plastic fibres

The Japanese speciality papermaking company Tomoegawa Paper<sup>(3)</sup> was among the first to adapt the conventional wet-laid papermaking process so as to produce filter papers comprising 100% fibres of synthetic polymers (and also of metals). The fibre webs formed by filtration are bonded and strengthened by sintering. Representative of the resultant papers is the group of standard PTFE products summarized in Table 4.13.

Important properties of these papers are their moulding and laminating characteristics. Sheets can be moulded into different shapes and forms, such as

| Product                      | P-60 | Q-75 | R-125 | R-250 | R-350 | R-500 |
|------------------------------|------|------|-------|-------|-------|-------|
| Fibre diameter (µm)          | 15   | 25   | 35    | 35    | 35    | 35    |
| Sheet thickness (µm)         | 59   | 70   | 125   | 250   | 350   | 500   |
| Weight (g/m <sup>2</sup> )   | 41   | 40   | 82    | 190   | 280   | 360   |
| Density (g/cm <sup>3</sup> ) | 0.69 | 0.57 | 0.66  | 0.76  | 0.82  | 0.80  |
| Tensile strength             |      |      |       |       |       |       |
| $2MD^{b}(kg/15 mm)$          | 0.3  | 0.2  | 0.4   | 0.6   | 1.2   | 1.6   |
| $2CD^{c}$ (kg/15 mm)         | 0.2  | 0.1  | 0.3   | 0.4   | 0.8   | 1.2   |
| Bubble point                 |      |      |       |       |       |       |
| Min. pressure (kPa)          |      |      | 0.24  | 0.36  | 0.54  |       |
| Max. pore dia. (µm)          |      |      | 190   | 125   | 102   |       |
| Ave. pore dia. (µm)          |      |      | 43.5  | 41.8  | 35.2  |       |

<sup>a</sup> Tomoegawa Paper Company Ltd.

<sup>b</sup> MD = machine direction.

<sup>c</sup> CD = cross machine direction.

### Table 4.14 Wet-laid polyester media for liquid filtration\*

| Grade   | Weight<br>(g/m <sup>2</sup> ) |      | Air permeability<br>(l/m <sup>2</sup> /s) <sup>b</sup> | Water<br>permeability <sup>c</sup> | Tensile<br>strength <sup>d</sup> | Bubble<br>point (µm) | Mean flow<br>pore (µm) |  |
|---------|-------------------------------|------|--------------------------------------------------------|------------------------------------|----------------------------------|----------------------|------------------------|--|
| FFK2662 | 25                            | 0.28 | 2500                                                   | 714                                | 70                               | 270                  | 50                     |  |
| FFK2663 | 37                            | 0.30 | 1550                                                   | 443                                | 105                              | 250                  | 40                     |  |
| FFK2664 | 50                            | 0.37 | 1200                                                   | 343                                | 150                              | 180                  | 30                     |  |
| FFK2666 | 60                            | 0.50 | 1180                                                   | 337                                | 205                              | 120                  | 25                     |  |

\* Freudenberg Vliesstoffe KG, Filter Division.

<sup>b</sup> At 50 Pa.

<sup>c</sup> l/m<sup>2</sup> @ 200 mm WG.

<sup>d</sup> N/5 cm in machine direction.

cylinders. In addition, sheets of different pore size can be laminated to form a graded pore structure.

In 1992 the German papermaker Papierfabrik Schoeller & Hoesch introduced a range of special papers based on Lenzing's high-temperature P84 polyimide fibre. Four grades were offered, but production was short-lived.

A typical set of data for wet-laid polyester media, for liquid filtration, are shown in Table 4.14. These are intended for simple pressure filters used in industrial operations such as machine tool coolant separation.

Spunbonded media such as Reemay, mostly made from polyester or polypropylene, are frequently used in place of conventional cellulose paper for many applications, including filtration. Detailed information on this material is provided in Section 3.5 of Chapter 3.

## 4.4.2 Inorganic fibres

As mentioned above, Tomoegawa Paper<sup>(3)</sup> has made filter papers comprising 100% metal fibres by means of the conventional wet-laid papermaking process. As with polymer fibres, the webs of metal fibres formed by filtration are bonded and strengthened by sintering. Data for some typical sheets based on stainless steel fibres of 1.2 and 8  $\mu$ m in diameter are summarized in Table 4.15.

For many years prior to the recognition of its health hazards, asbestos was widely used in industry in a variety of forms and for many purposes, ranging from thermal insulation to filtration. Thick papers made from asbestos fibres incorporated cellulose as a bonding agent, thus forming the original versions of

|                              | Fibre dia | ımeter |      |      |        |      |      |      |
|------------------------------|-----------|--------|------|------|--------|------|------|------|
|                              | 1 µm      |        | 2 µm |      |        | 8 µm |      |      |
| Product                      | SS1-      | SS1-   | SS2- | SS2- | \$\$2- | SS8- | SS8- | SS8- |
|                              | 250L      | 250H   | 100L | 200L | 300H   | 250L | 200H | 300H |
| Weight (g/m <sup>2</sup> )   | 250       | 250    | 100  | 200  | 300    | 250  | 200  | 300  |
| Thickness (µm)               | 576       | 48     | 182  | 351  | 65     | 370  | 43   | 58   |
| Density (g/cm <sup>2</sup> ) | 0.4       | 5.0    | 0.6  | 0.6  | 4.6    | 0.7  | 4.7  | 4.5  |
| Tensile strength             |           |        |      |      |        |      |      |      |
| MD <sup>b</sup> kg/15 mm     | 1.1       | 9.5    | 1.3  | 2.8  | 12.8   | 2.1  | 3.3  | 4.9  |
| CD <sup>c</sup> kg/15 mm     | 0.9       | 7.4    | 1.0  | 2.6  | 8.1    | 1.6  | 2.6  | 3.0  |
| Elongation                   |           |        |      |      |        |      |      |      |
| MD (%)                       | 0.9       | 2.0    | 1.0  | 0.6  | 2.0    | 3.1  | 3.0  | 4.6  |
| CD (%)                       | 0.9       | 2.1    | 2.1  | 1.5  | 2.3    | 6.1  | 2.7  | 3.1  |
| Porosity (%)                 | 95        | 38     | 93   | 93   | 42     | 88   | 41   | 44   |

| Table 4.15 | Examples of | stainless steel | fibre papers <sup>a</sup> |
|------------|-------------|-----------------|---------------------------|
|------------|-------------|-----------------|---------------------------|

<sup>a</sup> Tomoegawa Paper Company Ltd.

<sup>b</sup> MD = machine direction.

<sup>c</sup> CD = cross machine direction.

the filter sheets that, for many years, were used to clarify beverages such as beer etc.; these are discussed in Section 4.5.

Other mineral fibres are usable safely for filtration media. Alumina fibre papers are available for high-temperature applications. These papers, with thicknesses of 0.5, 1, 2 and 3 mm and densities of  $140-200 \text{ kg/m}^3$ , are made from ICI's Saffil fibre and a combination of organic and inorganic binders. Saffil is a high-purity crystalline alumina, now marketed by J & J Dyson, stabilized by a small amount of silica; it is characterized by uniform fibre diameters (2-4  $\mu$ m) and the virtual absence of any non-fiberized material. After burn-out of the 5% of organic content, the composition of the papers comprises 94% alumina and 6% silica.

## 4.5 Filter Sheets

Filter sheets are superficially very similar to thick filter paper (in the range 2-6 mm). They are in fact made by the same wet-laid process and contain a substantial proportion of cellulose fibres, together with large quantities of other particulate or fibrous material, which confer a rougher texture, greater hardness and higher rigidity.

They function primarily by depth filtration, and are able to remove low concentrations of fine inert or biological particles from liquids, so as to clarify, polish or sterilize them, notably in the beverage and pharmaceutical industries. They are mostly used in rectangular form in special types of filter press (Figure 4.5), or in circular form in enclosed pressure filters (Figure 4.6), but are now increasingly popular as lenticular cartridges (Figure 4.7).

One face of a filter sheet is more dense and harder than the other. this being the face in contact with the wire belt on which the sheet is formed by drainage. This



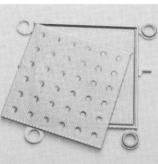



Figure 4.5. The sheet filter is like a conventional filter press but (a) of lighter construction with high quality finish, and (b) the plates easily dismantled for thorough cleaning.

hard face is used as the filtrate outlet, so that its finer pores can serve as a trap for any fibres that migrate through the sheet.

In the mid 1970s their composition was revolutionised to eliminate the health-threatening asbestos that they had contained since their origin in the early 1890s. The manufacture of sheets containing asbestos by the sole British producer, Carlson Filtration, is reported to have ceased in  $1988^{(4)}$ .

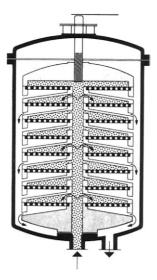



Figure 4.6. Seitz 'Radium' type A horizontal plate filter.




Figure 4.7. Zeta Plus filter cartridges.

## 4.5.1 History of filter sheets

Until quite recently, all commercially available filter sheets were derived from a mixture of cellulose and asbestos fibres that was first developed in Germany by the Seitz brothers early in the 1890s. In these sheets, the crucial component was the asbestos, which was found to be an exceptionally efficient filter medium, while the cellulose fibres controlled the structure and provided mechanical strength. These filter sheets contained 5-45% of asbestos, depending on the intended application. The fineness of the fibres could be varied to give very high surface areas of about  $15\ 000-35\ 000\ \text{cm}^2/\text{g}$ . Another important variable was the extent of fibrillation of the cellulose fibres, since increasing it increased the density of the sheet and reduced its porosity and permeability.

Incorporation of a bulky material such as diatomaceous earth provided another option for changing the permeability, while the thickness of a sheet was also significant. By exploiting these variables, a wide range of sheets could be produced, with gradations in both throughput rate and clarifying power, including harder and tighter sheets for low viscosity liquids such as water, and soft open sheets for very viscous liquids. In practice, performance depended on the duration of contact between the fibres and particles, which is a function of both the thickness of a sheet and the flow rate per unit area, as well as on the characteristics of the material being filtered.

Special grades of sheet incorporated reagents for specific ancillary functions, one example being polyvinyl pyrrolidone, the absorptive capacity of which for polyphenols stabilizes beers against chill and oxidation haze.

Of the various types of asbestos minerals, the one of importance in filtration was white asbestos, a hydrated magnesium silicate. It occurs in veins running through rocks of volcanic origin and is mined by open cast methods; the lumps so obtained are disintegrated and processed to separate the asbestos fibres from each other. These fibres are very fine, much finer than human hair, and generally are from 1.5 to 40 mm long but occasionally may be as long as 300 mm. A characteristic of them, which was only recognized and fully understood relatively recently, is that their surface carries a positive electrostatic charge (zeta potential), which imparts to asbestos fibres their unusual filtering properties (and is discussed in more detail later in this section).

Although some simple straining may also occur. these filter sheets primarily functioned by a depth filtration mechanism, whereby particles adhered, within the thickness of the sheets, to the positively charged surface of the asbestos fibres. It is this fact that explains the ability of the finest grades of sheet to trap particles well below 1  $\mu$ m in effective diameter.

Once it was realized that asbestos particles represented a serious health hazard, whether inhaled as a dust, ingested in a liquid or injected into the body in a parenteral drug, there was a remarkably rapid switch by all the then competing suppliers to the asbestos-free alternatives that are now the international norm.

When asbestos filter sheets first came under attack, their manufacturers defended their use, especially for the filtration of micro-organisms down to virus

size, and of highly concentrated protein solutions and other preparations with a high viscosity. This defence was based upon the non-availability of adequate alternatives, but material development soon resolved the problem. As early as 1974, Seitz introduced their own range of asbestos-free filter sheets to compete with novel media emerging from other manufacturers.

Carlson's development in turn of sheets based on (the then) ICI's Saffil alumina fibres, DuPont's potassium octatitanate Fybex fibres and calcined kieselguhr. all fell foul of the safety and health regulations concerning inhaleable dusts. In 1975 Carlson introduced their NA range of filter sheets that are not only asbestos-free sheets, but also contained no materials classified as dangerous.

## 4.5.2 Asbestos-free filter sheets

Carlson's original range of NA ('no asbestos') papers, based on natural kieselguhr, perlite and cellulose, has evolved over subsequent years to the seven grades listed in Table 4.16.

For filtering viscous fluids or those containing high levels of protein haze. Carlson produces the related BK series sheets detailed in Table 4.17, which have

| Grade                                             | NA30  | NA40  | NA50  | NA45  | NA70  | NA120 | NA130 |
|---------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Thickness (mm)                                    | 2.65  | 3.50  | 4.90  | 4.00  | 3.80  | 4.40  | 4.30  |
| Weight $(g/m^2)$                                  | 775   | 1025  | 1500  | 1200  | 1250  | 1550  | 1600  |
| Permeability (darcies)                            | 0.270 | 0.153 | 0.106 | 0.068 | 0.044 | 0.029 | 0.018 |
| Water flowrate (1/min/m <sup>2</sup><br>at 1 bar) | 800   | 450   | 300   | 250   | 200   | 80    | 40    |
| Mean pore size (µ) <sup>b</sup>                   | 2.8   | 2.6   | 1.7   | 1.9   | 1.6   | 0.9   | 0.8   |
| Max pore size $(\mu)^{b}$                         | 3.7   | 3.4   | 2.4   | 2.7   | 2.3   | 1.5   | 1.3   |

Table 4.16 Carlson asbestos-free NA series filter sheets<sup>a</sup>

\* Carlson Filtration Ltd.

<sup>b</sup> Bubble point measurement.

#### Table 4.17 Carlson asbestos-free BK series filter sheets<sup>a</sup>

| Grade                                             | BK 500 | BK1000 | BK1200 | BK1500 | BK2000      | BK2500 |  |
|---------------------------------------------------|--------|--------|--------|--------|-------------|--------|--|
| Thickness (mm)                                    | 4.00   | 4.00   | 4.50   | 4.90   | 4.70        | 4.25   |  |
| Weight $(g/m^2)$                                  | 1125   | 1250   | 1450   | 1450   | 1450        | 1425   |  |
| Permeability (darcies)                            | 1.250  | 0.488  | 0.310  | 0.232  | 0.144       | 0.065  |  |
| Water flowrate (1/min/m <sup>2</sup><br>at 1 bar) | 2080   | 930    | 510    | 480    | <b>41</b> 0 | 320    |  |
| Mean pore size $(\mu)^{b}$                        | 5.2    | 3.5    | 2.9    | 2.4    | 1.9         | 1.9    |  |
| Max pore Size $(\mu)^{b}$                         | 8.3    | 5.1    | 3.9    | 3.3    | 2.7         | 2.5    |  |

<sup>a</sup> Carlson Filtration Ltd.

<sup>b</sup> Bubble point measurement.

considerably higher throughputs than the NA series: with low density and high void volume, these are made from specially treated wood pulp.

Carlson's standard range of filter sheets is now the high-performance XE series, listed in Table 4.18. In addition to the basic formulation of cellulose with natural kieselguhr and perlite, XE sheets incorporate an advanced resin system, to give a higher total life with improved particle retention and clarity. With the exception of the XE170, 265, 350 and 375 versions, all the XE sheets are of the same carefully controlled thickness, enabling different grades to be readily interchanged in the same filter press configuration and seal thickness. Some typical performance data are given in Table 4.19. (The EE series matches the XE series, but is made from pure cellulose only, plus approved resins.)

Each of these three ranges of filter sheet can be supplied with increased wet strength (HH series), to enable them to cope with more demanding process requirements, or with reduced metal ion extractables (K series) or with both extra features (HHK series).

As well as these three ranges of sheets made for simple filtration, Carlson has three other types of sheet used for special processing purposes. The W2 media are used as support sheets either with a precoat, or where filter aid powders are used to increase the body of the filter cake. They are made of pure cellulose, with special resin binders, giving sheets of high wet strength, and corresponding durability. The other two types have solid particles held within the cellulose fibre matrix, to enable particular purification processes to be effected.

The Prop4 series of sheets contain PVPP (polyvinyl polypyrrolidone) powders. evenly dispersed throughout the sheet. PVPP has a particular affinity for polyphenols, and so can improve the stability of beer and wines. Once exhausted, the Prop4 sheets can be regenerated, *in situ*, by a chemical treatment, greatly extending the sheet's life.

In the Proc3 series, activated carbon granules are distributed throughout the sheet, enabling it to be used for removal of odours, colour, off-tastes and chlorine. Five grades are available, as shown in Table 4.20, differing in basis weight, carbon content and main sheet material. The LWT grades are suitable for lenticular cartridge manufacture, while versions are available with extra wet strength (HH versions) using special resins.

Seitz's quest for asbestos-free sheets has involved a major research programme, ultimately leading to a finely balanced combination of special procedures to upgrade cellulose fibres, the use of fine kieselguhr and perlite, and precisely dosed charge carriers which control the zeta potential. The company, now part of Vivendi/US Filter, consequently produces a very large range of filter sheets, comprising almost 100 different grades tailored to provide a precise answer to each specific application; their main standard grades are summarized in Table 4.21, while Table 4.22 provides guidance notes on the main categories, and examples of applications are given in Table 4.23.

Figures 4.8 and 4.9 indicate the size range of particles that, for practical purposes, can be removed by the various grades. The ability of appropriate grades to remove pyrogens and bacteria is illustrated respectively by Tables 4.24 and 4.25.

| Grade                                                | XE5  | XE10 | XE20 | XE50 | XE70 | XE90 | XE150 | XE170 | XE200 | XE265 | XE280 | XE350 | XE400 | XE675 | XE1200 | XE1700 |
|------------------------------------------------------|------|------|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|
| Thickness<br>(mm)                                    | 3.6  | 3.75 | 3.75 | 3.75 | 3.75 | 3.75 | 3.75  | 3.9   | 3.75  | 3.7   | 3.75  | 4.25  | 3.75  | 3.75  | 2.75   | 3.75   |
| Weight (g/m <sup>2</sup> )                           | 750  | 100  | 1925 | 1125 | 1125 | 1200 | 1200  | 1325  | 1275  | 1300  | 1300  | 1540  | 1270  | 1350  | 1425   | 1450   |
| Permeability<br>(darcies)                            | 1.79 | 0.74 | 0.49 | 0.2  | 0.16 | 0.11 | 0.068 | 0.055 | 0.047 | 0.040 | 0.035 | 0.027 | 0.025 | 0.015 | 0.008  | 0.006  |
| Water flowrate<br>(1/min/m <sup>2</sup><br>at 1 bar) | 3500 | 1050 | 820  | 650  | 600  | 370  | 290   | 200   | 230   | 180   | 190   | 110   | 130   | 70    | 30     | 20     |
| Mean pore size<br>(µ) <sup>b</sup>                   | 5.7  | 3.1  | 2.8  | 2.4  | 2.4  | 1.7  | 1.6   | 1.8   | 1.5   | 1.3   | 1.4   | 1.5   | 1.3   | 1.0   | 0.8    | 0.8    |
| Max pore size<br>(µ) <sup>b</sup>                    | 7.2  | 4.2  | 3.6  | 3.2  | 3.4* | 2.4  | 2.3   | 2.5   | 2.2   | 2.4   | 2.1   | 3.9   | 1.9   | 1.6   | 1.3    | 1.2    |

## Table 4.18 Carlson asbestos-free BK series filter sheets<sup>a</sup>

\* Carlson Filtration Ltd.

<sup>b</sup> Bubble point measurement.

Capitalizing upon a wider understanding of the influence of the zeta potential upon filtration efficiency. (the then) AMF Cuno introduced the Zeta Plus range of filter media, in the early 1970s, composed of cellulose and inorganic filter aids, and carrying the positive charge implicit in their name. These media are now mostly used in the form of Cuno's lenticular cartridge filters, illustrated in Figure 4.7, but also available in depth cartridge format.

Because of the wide availability now of media using zeta potential as a contributing factor to high filtration efficiencies, it is appropriate to summarize here the theoretical origins of the concept. The term arises from a theoretical model developed to explain the stability of a colloidal suspension of particles in water. The particles remain dispersed because they are repelled from each other by similar (i.e. all negative or all positive) electrical charges on their surfaces. The source of these charges may be ionization of soluble crystals, imperfections

| Liquid                    | Sheet grade                       | Flow rate<br>(l/min/m <sup>2</sup> ) | Cycle time<br>(h) | Total<br>throughpul<br>(m³/m²) |
|---------------------------|-----------------------------------|--------------------------------------|-------------------|--------------------------------|
| Whisky                    | XE5/XE35<br>(double) <sup>b</sup> | 3-6                                  | 8-10              | 1.4-3.6                        |
| London gin                | XE20-XE90                         | 16-24                                | 30-40             | 30-60                          |
| Deionized water           | XE50                              | 10-24                                | 8-40              | 5-60                           |
| Eau de Cologne            | XE90-XE200                        | 12-16                                | 4-8               | 3-8                            |
| Antibiotics               | XE1700                            | 0.3-1.5                              | Discarded af      | ter each batch                 |
| Sera                      | XE1700                            | 0.4 - 0.8                            | Discarded af      | ter each batch                 |
| Syrups for soft drinks    | PROC3                             | 4-8                                  | 3-4               | 0.7-2                          |
| Malt vinegar              | XE675                             | 9-18                                 | 5-20              | 2.5-22                         |
| Photographic<br>emulsions | XE5                               | 3–12                                 | 4-8               | 0.7-6                          |

Table 4.19 Typical performance data of Carlson XE filter sheets<sup>a</sup>

<sup>a</sup> Carlson Filtration Ltd.

<sup>b</sup> Two-stage filtration in series.

| Grade           | Basis weight<br>(g/m <sup>2</sup> ) | Carbon weight (g/m <sup>2</sup> ) | Other<br>constituents <sup>b</sup> |
|-----------------|-------------------------------------|-----------------------------------|------------------------------------|
| PROC3           | 1300                                | 585                               | C, K, R                            |
| PROC3 CX        | 1300                                | 780                               | C, R                               |
| PROC3 LWT       | 1000                                | 450                               | C, K, R                            |
| PROC3 CX<br>LWT | 1000                                | 600                               | C. R                               |
| PROC F          | 900                                 | 225                               | C, K, R                            |

Table 4.20 PROC3 activated carbon sheets<sup>a</sup>

<sup>a</sup> Carlson Filtration Ltd.

<sup>b</sup> C = cellulose, K = natural kieselguhr, R = resin.

| unit                        | Weight per<br>unit<br>area <sup>a</sup> (g m <sup>-2</sup> ) | Thickness"<br>(mm) |      | (l/mm/m <sup>2</sup> ) bacteria<br>retention | H <sub>2</sub> SO <sub>4</sub> s | olution ( | in 0.05 N<br>mg/m <sup>-2</sup> ) <sup>d</sup><br>or the low- |                  |                  |                     |       |
|-----------------------------|--------------------------------------------------------------|--------------------|------|----------------------------------------------|----------------------------------|-----------|---------------------------------------------------------------|------------------|------------------|---------------------|-------|
|                             |                                                              |                    |      |                                              |                                  |           | (CrU/cm)                                                      | Ca <sup>2+</sup> | Mg <sup>2+</sup> | Fe <sup>2+/3+</sup> | AI 3+ |
| SEITZ-EKS                   | 1350                                                         | 3.7                | 0.36 | 60                                           | ≥2.0                             | 30        | 109                                                           | < 2000           | < 500            | <75                 | < 400 |
| SEITZ-EK 1                  | 1300                                                         | 3.7                | 0.35 | 53                                           | ≥2.0                             | 40        | 10 <sup>8</sup>                                               | <1500            | < 500            | <75                 | < 400 |
| SEITZ-EK                    | 1300                                                         | 3.7                | 0.35 | 50                                           | ≥2,0                             | 70        | $10^{7}$                                                      | <1500            | < 400            | < 75                | < 400 |
| SEITZ-KS 50                 | 1300                                                         | 3.7                | 0.35 | 50                                           | ≥ <b>2</b> .0                    | 90        | $0.5 \times 10^{7}$                                           | <1500            | < 400            | <75                 | < 300 |
| SEITZ-KS 80                 | 1300                                                         | 3.7                | 0.35 | 50                                           | ≥2.0                             | 110       | 106                                                           | <1500            | < 400            | <75                 | < 300 |
| SEITZ-K 100                 | 1300                                                         | 3.7                | 0.35 | 50                                           | $\geq 2.0$                       | 150       | -                                                             | <1500            | < 400            | < 75                | < 300 |
| SEITZ-K 150                 | 1300                                                         | 3.9                | 0.33 | 48                                           | $\geq 2.0$                       | 190       | -                                                             | <1500            | < 400            | < 75                | < 300 |
| SEITZ-K 200                 | 1300                                                         | 3.9                | 0.33 | 48                                           | ≥2.0                             | 220       | -                                                             | < 1500           | < 400            | <75                 | < 300 |
| SEITZ-K 250                 | 1300                                                         | 4.0                | 0.32 | 48                                           | $\geq 2.0$                       | 520       | _                                                             | <1000            | < 300            | < 75                | < 300 |
| SEITZ-K 300                 | 1250                                                         | 4.2                | 0.30 | 48                                           | $\geq 2.0$                       | 800       | -                                                             | < 1000           | < 300            | <75                 | < 250 |
| SEITZ-K 700                 | 1250                                                         | 4.1                | 0.30 | 48                                           | $\geq 2.0$                       | 950       | -                                                             | <1000            | < 300            | < 75                | < 200 |
| SEITZ-K 800                 | 1250                                                         | 4.1                | 0.30 | 48                                           | ≥2.0                             | 1300      | -                                                             | <1000            | < 300            | < 75                | < 200 |
| SEITZ-K 900                 | 1250                                                         | 4.3                | 0.29 | 48                                           | ≥2.0                             | 1700      | -                                                             | <1000            | < 300            | < 75                | < 200 |
| SEITZ-T 120                 | 850                                                          | 2.9                | 0.29 | 45                                           | ≥2.0                             | 230       | -                                                             | < 750            | < 200            | < 50                | < 250 |
| SEITZ-T 500                 | 800                                                          | 2.7                | 0.30 | 40                                           | ≥2.0                             | 450       | -                                                             | < 750            | < 200            | < 50                | < 200 |
| SEITZ-T 750                 | 800                                                          | 2.7                | 0.30 | 42                                           | ≥2.0                             | 550       | -                                                             | < 750            | < 200            | < 50                | < 150 |
| SEITZ-T 850                 | 800                                                          | 2.7                | 0.30 | 42                                           | <u>≥2.0</u>                      | 950       | -                                                             | <750             | < 200            | < 50                | <150  |
| SEITZ-T 950(a) <sup>h</sup> | 800                                                          | 2.8                | 0.29 | 42                                           | ≥2.0                             | 1700      | -                                                             | < 750            | < 200            | < 50                | <150  |
| SEITZ-T 1000                | 950                                                          | 3.6                | 0.26 | 35                                           | ≥2.0                             | 3 500     | -                                                             | <750             | < 200            | < 50                | <100  |
| SEITZ-T 1500                | 800                                                          | 3.7                | 0.22 | 35                                           | ≥2.0                             | 7500      | -                                                             | <750             | < 200            | < 50                | < 100 |
| SEITZ-T 2100                | 700                                                          | 3.3                | 0.21 | 17                                           | ≥2.0                             | 10.200    | -                                                             | <750             | < 200            | < 50                | < 100 |
| SEITZ-T 2600                | 700                                                          | 2.9                | 0.24 | 1                                            | ≥2.0                             | 10 200    | -                                                             | < 750            | < 200            | < 50                | < 100 |
| SEITZ-T 3500                | 850                                                          | 4.6                | 0.18 | 17                                           | $\geq 2.0$                       | 13 000    |                                                               | <750             | < 200            | < 50                | < 100 |

## Table 4.21 Seitz asbestos-free filter sheets

| Designation                  | signation Weight per<br>unit<br>areaª (g m <sup>-2</sup> ) | Thickness <sup>a</sup><br>(mm) | weight <sup>a</sup> co | Max ash<br>content<br>(%) | content strength <sup>b</sup> (l/mm/m <sup>2</sup> ) bacteria<br>%) (10 <sup>2</sup> kPa) retention<br>capability<br>( <i>E. coli</i> in 0.4<br>NaCl solutio | bacteria<br>retention<br>capability<br>( <i>E. coli</i> in ().9%<br>NaCl solution) | H <sub>2</sub> SO <sub>4</sub> s | olution (        | in 0.05 N<br>mg/m <sup>-2</sup> ) <sup>d</sup><br>or the low- |                     |                  |
|------------------------------|------------------------------------------------------------|--------------------------------|------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------|------------------|---------------------------------------------------------------|---------------------|------------------|
|                              |                                                            |                                |                        |                           |                                                                                                                                                              |                                                                                    | (CFU/cm <sup>2</sup> )           | Ca <sup>2+</sup> | Mg <sup>2+</sup>                                              | Fe <sup>2+/3+</sup> | A1 <sup>3+</sup> |
| SEITZ-T 5500                 | 700                                                        | 4.5                            | 0.16                   | 1                         | ≥2.0                                                                                                                                                         | 25 000                                                                             | _                                | < 750            | < 200                                                         | < 50                | < 100            |
| SEITZ-EK ABF°                | 1300                                                       | 3.7                            | 0.35                   | 50                        | >2.0                                                                                                                                                         | 70                                                                                 | 107                              | <1500            | < 400                                                         | <75                 | < 400            |
| SEITZ-EKB ABF°               | 1350                                                       | 4.0                            | 0.34                   | 52                        | ~2.0                                                                                                                                                         | 90                                                                                 | 107                              | <1500            | < 400                                                         | < 75                | < 400            |
| SEITZ-KS 50 ABF <sup>e</sup> | 1350                                                       | 4.0                            | 0.34                   | 52                        | $\stackrel{-}{\geq}2.0$                                                                                                                                      | 115                                                                                | $0.5 \times 10^{7}$              | <1500            | < 400                                                         | < 75                | < 300            |
| SEITZ-KS 80 ABF®             | 1350                                                       | 4.0                            | 0.34                   | 52                        | ≥2.0                                                                                                                                                         | 170                                                                                | 106                              | < 1500           | <400                                                          | < 75                | < 300            |
| SEITZ-K 100 ABFC             | 1350                                                       | 4.0                            | 0.34                   | 52                        | = 2.0                                                                                                                                                        | 200                                                                                | _                                | <1500            | < 400                                                         | <75                 | < 300            |
| SEITZ-K 150 ABF              | 1300                                                       | 4.1                            | 0.32                   | 52                        | $\ge 2.0$                                                                                                                                                    | 350                                                                                |                                  | < 1500           | <400                                                          | <75                 | < 300            |
| SEITZ-K 200 ABF <sup>e</sup> | 1300                                                       | 4.1                            | 0.32                   | 52                        | $\ge 2.0$                                                                                                                                                    | 500                                                                                | -                                | <1500            | <400                                                          | <75                 | < 300            |
| SEITZ-P 20 <sup>f</sup>      | 1250                                                       | 4.0                            | 0,31                   | 17                        | ≥5.0                                                                                                                                                         | 350                                                                                | -                                | < 750            | < 200                                                         | < 50                | <150             |
| SEITZ-P 30 <sup>f</sup>      | 1250                                                       | 4.0                            | 0.31                   | 17                        | ≥4.0                                                                                                                                                         | 300                                                                                | -                                | < 750            | < 200                                                         | < 50                | <150             |
| SEITZ-0/400a <sup>h</sup>    | 900                                                        | 3.5                            | 0.26                   | 1                         | ≥5.0                                                                                                                                                         | 4250                                                                               | _                                | < 400            | < 100                                                         | < 30                | < 100            |
| PERMADUR                     | 900                                                        | 3.5                            | 0.26                   | 1                         | ≥5.0                                                                                                                                                         | 4250                                                                               | -                                | < 200            | <100                                                          | < 30                | < 100            |
| SEITZ-KS 50 Cg               | 1300                                                       | 3.7                            | 0.35                   | 50                        | ≥2.0                                                                                                                                                         | 90                                                                                 | $0.5 \times 10^{7}$              | < 350            | < 100                                                         | < 75                | < 300            |
| SEITZ-KS 80 Cg               | 1300                                                       | 3.7                            | 0.35                   | 50                        | $\geq 2.0$                                                                                                                                                   | 110                                                                                | 106                              | < 350            | <100                                                          | <75                 | < 300            |
| SEITZ-K 100 Cg               | 1300                                                       | 3.7                            | 0.35                   | 50                        | ≥2.0                                                                                                                                                         | 150                                                                                | -                                | < 350            | < 100                                                         | <75                 | < 300            |
| SEITZ-K 150 Cg               | 1300                                                       | 3.9                            | 0.33                   | 48                        | ≥2.0                                                                                                                                                         | 190                                                                                | _                                | < 350            | <100                                                          | < 75                | < 300            |
| SEITZ-K 250 Cg               | 1300                                                       | 4.0                            | 0.32                   | 48                        | ≥2.0                                                                                                                                                         | 520                                                                                | _                                | < 350            | <100                                                          | <75                 | < 300            |
| SEITZ-K 700 C <sup>g</sup>   | 1250                                                       | 4.1                            | 0.30                   | 48                        | ≥2.0                                                                                                                                                         | 950                                                                                | -                                | < 350            | <100                                                          | <75                 | < 200            |
| SEITZ-K 800 Cg               | 1250                                                       | 4.1                            | 0.30                   | 48                        | ≥2.0                                                                                                                                                         | 1300                                                                               | -                                | < 350            | <100                                                          | <75                 | < 200            |
| SEITZ-K 900 C <sup>r</sup>   | 1250                                                       | 4.3                            | 0.29                   | 48                        | ≥2.0                                                                                                                                                         | 1700                                                                               | -                                | < 350            | <100                                                          | <75                 | < 200            |
| SEITZ-SUPRAdur 5()           | 1250                                                       | 3.6                            | 0.35                   | 25                        | > 5.0                                                                                                                                                        | 110                                                                                | -                                | < 800            | < 200                                                         | <75                 | <100             |

## Table 4.21 (continued)

| Designation                               | Weight per<br>unit<br>area <sup>a</sup> (g m <sup>-2</sup> ) | Thickness <sup>a</sup><br>(mm) | Specific<br>weight <sup>a</sup><br>(g/cm) | Max ash<br>content<br>(%) | Bursting<br>strength <sup>b</sup><br>(10 <sup>2</sup> kPa) | n <sup>b</sup> (l/mm/m <sup>2</sup> ) bacteria H <sub>2</sub> S<br>Pa) retention (no | H <sub>2</sub> SO <sub>4</sub> s | olution (        | in 0.05 N<br>mg/m <sup>-2)d</sup><br>or the low- |                     |                  |
|-------------------------------------------|--------------------------------------------------------------|--------------------------------|-------------------------------------------|---------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------|------------------|--------------------------------------------------|---------------------|------------------|
|                                           |                                                              |                                |                                           |                           |                                                            |                                                                                      | (ero/enr)                        | Ca <sup>2+</sup> | Mg <sup>2+</sup>                                 | Fe <sup>2+/3+</sup> | AI <sup>3+</sup> |
| SEITZ-SUPRAdur 100                        | 1250                                                         | 3.6                            | 0.35                                      | 1                         | > 7.0                                                      | 170                                                                                  | _                                | < 700            | < 200                                            | < 50                | < 50             |
| SEITZ-SUPRAdur 200                        | 1200                                                         | 3.8                            | 0.32                                      | 1                         | > 4.()                                                     | 400                                                                                  |                                  | < 700            | < 200                                            | < 30                | < 50             |
| SEITZ-SUPRAdur 500                        | 950                                                          | 3.6                            | 0.26                                      | 1                         | >4,0                                                       | 1500                                                                                 | -                                | < 700            | < 200                                            | < 30                | < 50             |
| SEITZ-SUPRAdur 3000                       | 600                                                          | 2.3                            | 0.26                                      | 1                         | > 4.()                                                     | 1000                                                                                 | -                                | < 200            | <100                                             | < 30                | < 50             |
| SEITZ-SUPRA EK 1 P                        | 1300                                                         | 3.5                            | 0.37                                      | 52                        | $\geq 2.0$                                                 | 70                                                                                   | 107                              | < 2000           | < 400                                            | < 30                | < 400            |
| SEITZ-SUPRA 80 P                          | 1300                                                         | 3.7                            | 0.35                                      | 52                        | $\geq 2.0$                                                 | 170                                                                                  | 105                              | < 1500           | < 400                                            | < 75                | < 300            |
| SEITZ-EKS P                               | 1350                                                         | 3.7                            | 0.36                                      | 60                        | $\geq 2.0$                                                 | 30                                                                                   | 109                              | < 2000           | < 500                                            | < 75                | < 400            |
| SEITZ-KS 50 P                             | 1300                                                         | 3.7                            | 0.35                                      | 50                        | ≥2.0                                                       | 90                                                                                   | $0.5 \times 10^{7}$              | <1500            | < 400                                            | < 75                | < 300            |
| SEITZ-K 300 P<br>SEITZ-AKS 4 <sup>i</sup> | 1250                                                         | 4.2                            | 0.30                                      | 48                        | ≥2.0                                                       | 800                                                                                  | -                                | < 1000           | < 300                                            | < 75                | < 200            |
| With protective paper                     | 1050                                                         | 3.6                            | 0.29                                      | 20                        | ≥2.0                                                       | 250                                                                                  | -                                | < 1500           | < 300                                            | < 75                | < 250            |
| Without protective paper                  | 1050                                                         | 3.6                            | 0.29                                      | 20                        | ≥2.0                                                       | 1450                                                                                 |                                  | < 1500           | < 300                                            | < 75                | < 250            |

<sup>a</sup> The figures quoted should be regarded as a guideline.

Table 4.21 (continued)

<sup>b</sup> Bursting strength determined on a dry sample of area 10 cm<sup>2</sup>.

<sup>c</sup> Water permeability refers to differential pressure of  $\Delta p = 100$  kPa (1 bar).

 $^{d}$  By means of the method elutration with 0.05 N H<sub>2</sub>SO<sub>4</sub> all soluble and for practical purposes relevant ions are extracted.

<sup>e</sup> SEITZ-IK ABF through to SEITZ-K 200 ABF are special grades for the filtration of beer.

<sup>f</sup> SEITZ-P 20/SEITZ-P 30 filters are used for beer stabilization.

<sup>g</sup> SEITZ-K 900 C through to SEITZ-KS 50 C represent grades low in calcium and magnesium for the filtration of spirits.

<sup>h</sup> SEITZ-T 950(a) and SEITZ-0/400a are special grades with a very high wet strength.

<sup>i</sup> SEITZ-AKS4 sheets contain activated carbon, for removing colour, taste, lipids, etc.

of the lattice structure of crystals. or absorption of ions from the liquid phase. What is commonly known as the DLVO theory (from Derjaquin and Landau<sup>(5)</sup>, and Veerfey and Overbeek<sup>(6)</sup>) postulates that this results in the electrical double layer model shown in Figure 4.10.

| Seitz<br>designation | Comments                                                                                                                                                                                                                                                                                                                 |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| K series             | Standard cellulose/kieselguhr sheets for general use.                                                                                                                                                                                                                                                                    |
| T series             | Cellulose only sheets with low content of soluble Ca, Mg, Fe, Al ions. T120 to T950<br>have positive zeta potential and high adsorptive capacity. T1000 to T5500, which<br>have no zeta potential, are for coarse filtration, high throughput, high dirt holding<br>capacity. Good for viscous fluids and gel particles. |
| P series             | For pharmaceutical industry, guaranteed low in pyrogens. EKSP is preferred choice for maximum removal of organisms. Two SUPRA grades primarily used for retention of pyrogens.                                                                                                                                           |
| SUPRAdur             | Up to 40% polyolefine fibres, high mechanical and chemical resistance to aggressive materials. Functions mechanically.                                                                                                                                                                                                   |
| PERMADUR             | High proportion of polyolefine fibres. high wet strength regeneratable sheet for supporting precoats.                                                                                                                                                                                                                    |

 Table 4.22
 Guidance notes on application of Seitz filter sheets

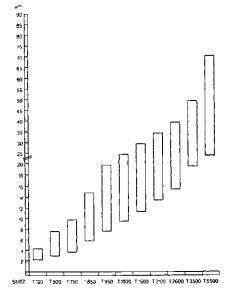



Figure 4.8. Nominal particle retention characteristics of Seitz T-series filter sheets for general industrial duties.

| Product                                   | Separating task.<br>Type of turbid matter                                      | SEITZ depth filters                              |
|-------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------|
| Aftershave                                | Removal of terpenes                                                            | SEITZ-K 300 - SEITZ-K 150                        |
| Agar-agar                                 | Undissolved components                                                         | SEITZ-K 150                                      |
| Alkyd resin                               | Gel corpuscles, swelling<br>substances                                         | SEITZ-T 5500                                     |
| Ammonia water                             | Turbid matter. iron<br>hydroxide                                               | SEITZ-K900 and kieselguhr dosage                 |
| Bath extract<br>(camomile)                | Fine turbid matter<br>in larger quantities                                     | SEITZ-K900 and kieselguhr dosage                 |
| Beer                                      | Normal turbid matter                                                           | SEITZ-K200 ABF – SEITZ-K 700                     |
|                                           | Kieselguhr                                                                     | SEITZ-0/400 Fa. PERMADUR                         |
|                                           | Stabilization                                                                  | SEITZ-P 29/SEITZ-P 30                            |
| Utility water                             | Normal turbidity                                                               | SEITZ-T 1 500                                    |
| Caprolactam melt                          | Removal of manganese dioxide                                                   | SEITZ-K 900 – SEITZ-K 700                        |
| Collagen solution                         | Final filtration prior to filling                                              | SEITZ-K 900                                      |
| Sodium hypochlorite                       | Impurities                                                                     | SEITZ-SUPRAdur 100                               |
| Disinfectants (alkaline)                  | Fine turbid matter, colloids                                                   | SEITZ-EKS                                        |
| Eau de Cologne/<br>Eau de Toilette        | Removal of terpenes<br>after the cooling process                               | SEITZ-KS 80 - SEITZ-KS 50                        |
| Electro-immersion<br>lacquer              | General polishing                                                              | SEITZ-T 5500 - SEITZ-T 2600                      |
| Enzyme solution<br>(containing cellulaze) | Polishing filtration                                                           | SEITZ-SUPRAdur CF 900 –<br>SEITZ-SUPRAdur CF EKS |
| Epoxy resin                               | Swelling components                                                            | SEITZ-K 900                                      |
| Vinegar                                   | Filtration after precoat filter                                                | SEITZ-K 250 - SEITZ-K 150                        |
| Liquid fertilizer                         | General polishing                                                              | SEITZ-K 900                                      |
| Tissue culture<br>solution                | Sterilization                                                                  | SEITZ-EKS                                        |
| Face lotion                               | Removal of terpenes                                                            | SEITZ-EKS                                        |
| Glycerine, 30%                            | Retention of activated carbon (Carboraffin)                                    | SEITZ-K900 - SEITZ-K300                          |
| Gum arabic                                | Removal of non-soluble<br>components                                           | SEITZ-T 2600                                     |
| Resin melts                               | Overpolymerized<br>overcondensed<br>components,<br>swelling and gel corpuscles | SEITZ-T 5500 – SEITZ 850                         |
| Cough syrup                               | Insoluble extract components                                                   | SEITZ-K 300 - SEITZ-K 250                        |
| Invert sugar<br>solution                  | Retention of activated carbon                                                  | SEITZ-K 100                                      |
| Coconut butter                            | Pressing residues.<br>slimy substances                                         | SEITZ-T 950                                      |
| Camomile<br>pressings                     | Filtration of the alcoholic decantate                                          | SEITZ-K 700 – SEITZ-K 300                        |
| Cheese rennet                             | Colloidal impurities                                                           | SEITZ-K 300                                      |
|                                           | Organism reduction                                                             | SEITZ-EK 1                                       |
| Catalysts, e.g.:<br>Raney Nickel          | Residual catalysts                                                             | SEITZ-K 900 - SEITZ-KS 50                        |
| Clear lacquer                             | <b>Colloidal impurities</b>                                                    | SEITZ-K 900                                      |
| Copper chloride<br>solution with HCl      | Residues from coatings                                                         | PERMADUR                                         |

 Table 4.23
 Typical applications of Seitz filter sheets

| Product                                                                              | Separating task.<br>Type of turbid matter              | SEITZ depth filters                 |  |  |
|--------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------|--|--|
| Molasses                                                                             | Foreign bodies                                         | SEITZ-K 150                         |  |  |
| Olive oil Fine particles from<br>pressing residues and<br>traces of H <sub>2</sub> O |                                                        | SEITZ-L 800                         |  |  |
| Plant pesticides                                                                     | Fine clarification to protect<br>nozzles from blocking | SEITZ-T 1500                        |  |  |
| Plant extracts                                                                       | Prevention of subsequent<br>clouding                   | SEITZ-K 250 – SEITZ-KS 80           |  |  |
| Phosphoric acid                                                                      | Clarification                                          | SEITZ-SUPRAdur 100                  |  |  |
| Ointment bases                                                                       | Prefiltration                                          | SEITZ-K 300                         |  |  |
| Soup seasoning                                                                       | Final filtration                                       | SEITZ-T 550                         |  |  |
| Wine                                                                                 | Normal turbid matter                                   | SEITZ-K 900 through to<br>SEITZ-EKS |  |  |
| Tin tetrachloride                                                                    | Removal of hydrolized components                       | SEITZ-SUPRAdur 500                  |  |  |

#### Table 4.23 (continued)

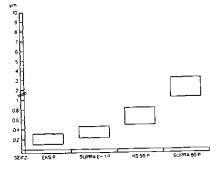



Figure 4.9. Nominal particle retention characteristics of Seitz P-series filter sheets for pharmaceutical duties.

The surface charge (negative in Figure 4.10) of the solid particle is balanced by a tightly held layer of ions of opposite charge (positive in Figure 4.10). Beyond this is an outer layer through which the ionic concentration (and hence the charge) decays with increasing distance, until the equilibrium conditions of the bulk of the liquid are attained. As a particle moves, or as a liquid flows past it, it continues to retain the tightly held layer of (positive) ions, but leaves behind the outer layer, separating from the latter at the plane of shear indicated in Figure 4.10. It is the potential at this plane that known as the zeta potential ( $\zeta$ ).

The magnitude of the zeta potential of a given filter medium, and therefore its adsorptive power, is not a fixed value but is dependent on a variety of related electrochemical phenomena, such as the nature and concentration of ions in the liquid being filtered. For example, Figure 4.11 is reproduced<sup>(7)</sup> to demonstrate how the performance of the sample of Zeta Plus is affected by changes in the pH, peaking in this example between pH 5 and 7.5.

| Depth filter   | Pyrogen conten                                                                     | t (EU ml <sup>-1</sup> ) <sup>a</sup> | Logarithmic<br>pyrogen                                     | Pyrogen<br>challenge<br>(EU cm <sup>-2</sup> ) | Total<br>pyrogen<br>retention<br>(EU cm <sup>-2</sup> ) |
|----------------|------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------|
|                | Unfiltrate                                                                         | Filtrate                              |                                                            | (20 m)                                         |                                                         |
| SEITZ-         | 60                                                                                 | 0.06                                  | 3                                                          | 282                                            | 282                                                     |
| SUPRA          | 600                                                                                | < 0.06                                | >4                                                         | $3.11 \times 10^{3}$                           | $3.11 \times 10^{3}$                                    |
| EK 1P          | 6000                                                                               | < 0.06                                | >5                                                         | 3.14×10 <sup>4</sup>                           | $3.14 \times 10^{4}$                                    |
|                | 6×104                                                                              | < 0.06                                | >6                                                         | $3.14 \times 10^{5}$                           | $3.14 \times 10^{5}$                                    |
|                | 6×10 <sup>5</sup>                                                                  | 6×10 <sup>5</sup>                     | 0                                                          | 3.14×10 <sup>6</sup>                           | $3.14 \times 10^{6}$                                    |
| Lipopolysaccha | aride: E. coli 055:B5                                                              | Filtration vel                        | ocity: $460  \mathrm{l}  \mathrm{m}^{-2}  \mathrm{h}^{-1}$ |                                                |                                                         |
| Pyrogen reduct | tion: $\frac{\text{EU ml}^{-1} \text{ unfiltr}}{\text{EU ml}^{-1} \text{ filtra}}$ |                                       |                                                            |                                                |                                                         |

| Table 4.24 | Pyrogen removal capability of Seitz-Supra EK1P filter sheets |
|------------|--------------------------------------------------------------|
|------------|--------------------------------------------------------------|

 $Pyrogen \ retention: \frac{(EU \ ml^{-1} \ unfiltrate - EU \ ml^{-1} \ filtrate) \times ml \ filtrate \ quantity}{cm^2 \ filter \ area}$ 

Sensitivity of reagent:  $0.05\,EU\,mI^{-1}$  medium: pure water

<sup>a</sup> EU = endotoxic units.

| ›Depth filters | Filtration medi<br>0.5% peptone<br>solution                               | um:                             | Filtration medi<br>physiological<br>saline solution                       | Test<br>organism                |                         |
|----------------|---------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------|---------------------------------|-------------------------|
|                | Specific<br>organism<br>challenge<br>(CFU cm <sup>-2</sup> ) <sup>a</sup> | Titer<br>reduction <sup>b</sup> | Specific<br>organism<br>challenge<br>(CFU cm <sup>-2</sup> ) <sup>a</sup> | Titer<br>reduction <sup>b</sup> |                         |
| SEITZ-EKS      | 5.2×10 <sup>9</sup>                                                       | 8.9×10 <sup>7</sup>             | 2.1×10 <sup>10</sup>                                                      | 1.7×10 <sup>9</sup>             | Pseudomonas<br>diminuta |
| SEITZ-EK 1     | 5.2×10 <sup>9</sup>                                                       | $2.0 \times 10^{7}$             | 4.7×10 <sup>9</sup>                                                       | $5.0 \times 10^{8}$             | ATCC 19146              |
| SEITZ-EK       | 7.9×10 <sup>8</sup>                                                       | 2.5×10 <sup>7</sup>             | $2.6 \times 10^{8}$                                                       | $6.4 \times 10^{8}$             | Serratia<br>marcescens  |
| SEITZ-KS 50    | $2.1 \times 10^{8}$                                                       | 4.2×10 <sup>6</sup>             | 2.6×10 <sup>9</sup>                                                       | $1.1 \times 10^{7}$             | ATCC 14756              |
| SEITZ-KS 80    | $2.1 \times 10^{8}$                                                       | $1.7 \times 10^{5}$             | $6.1 \times 10^{8}$                                                       | $1.6 \times 10^{6}$             |                         |

 Table 4.25
 Bacteria removal capability of Seitz filter sheets

<sup>a</sup>CFU=colony forming units.

<sup>b</sup>Titer reduction =  $\frac{\text{No. of organisms unfiltrate}}{\text{No. of organisms filtrate}}$  specific filtration velocity: 450 l m<sup>-2</sup> h<sup>-1</sup>.

A good illustration of the electrokinetic contribution to the filtration efficiency of Zeta Plus is provided by Figure 4.12. The upper curve shows the capture rate by Zeta Plus 90S for particles of sizes ranging downwards from 1.2  $\mu$ m; the lower curve resulted after the charge on the medium had been destroyed by treatment with strong alkali.

| Zeta Plus code | Comments                                                                                                                                                                            |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A              | Composed of cellulose+resin.                                                                                                                                                        |
| С              | Composed of cellulose+inorganic filter aids+resin. Suitable for chemical sterilization.                                                                                             |
| S              | Composed of cellulose+inorganic filter aids+resin. Suitable for sterilization by autoclaving or in-line steaming to 131°C                                                           |
| HT             | Composed of cellulose+inorganic filter aids+resin. HT indicates 'high tensile'<br>and 'high throughput'. Suitable for sterilization by autoclaving or in-line<br>steaming to 131°C. |
| AP, C. SP      | Pharmaceutical versions of A. C and S grades. Manufactured to procedures registered in the US FDA Drug Master File, with full tractability of all components.                       |
| LP             | Low endotoxin response cellulose+inorganic filter aids+resin. Pharmaceutical product as for AP, etc., above.                                                                        |
| CA, LA, SA     | Low aluminium extractable versions of C. S and LP grades.                                                                                                                           |
| Delipid        | For lipid removal. Composed of cellulose+inorganic filter aids+resin.                                                                                                               |
| Delipid LP     | Pharmaceutical versions of Zeta Plus Delipid grades. Manufactured to procedures registered in the US FDA Drug Master File, with full traceability of all components.                |
| U              | Composed of cellulose+resin. For filtration of utility oils.                                                                                                                        |
| UW             | Composed of cellulose+resin+water-absorbent layer. For filtration of utility oils.                                                                                                  |
| Zeta Carbon    | Composed of activated carbon+cellulose+resin.                                                                                                                                       |

Table 4.26 Characteristics of different formulations of Zeta Plus<sup>a</sup>

Cuno Incorporated.

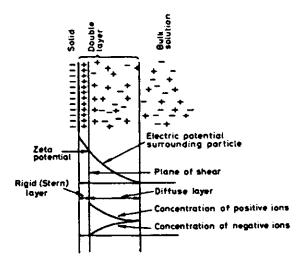



Figure 4.10. The electrical double layer model showing charges assembled around a negatively charged solid surface submerged in water.

Zeta Plus is available in a range of nine nominal grades of fineness, between roughly 10 and 0.1  $\mu$ m as indicated by Figure 4.13. There are various formulations as summarized in Table 4.26.

## 4.6 Selecting Wet-laid Media

The media described in this chapter have had two major uses: as filters in the laboratory for analytical purposes, and for industrial-scale filtration. The laboratory filters are available in cellulose or glass, and their behaviour and applications are well described in Sections 4.2.1 and 4.3.2.

The industrial filters employ paper media largely for air and gas filtration, and for liquid filtration the choice is usually for filter sheets rather than paper.

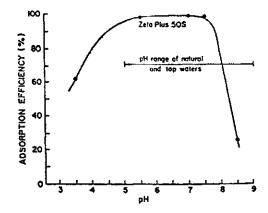



Figure 4.11. Influence of pH on the absorption efficiency of Zeta Plus 50S.

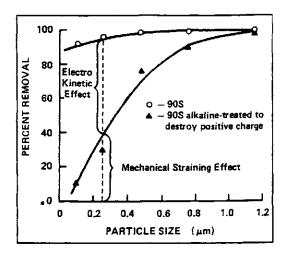



Figure 4.12. Demonstration of electrokinetic contribution to the filtration efficiency of Zeta Plus.

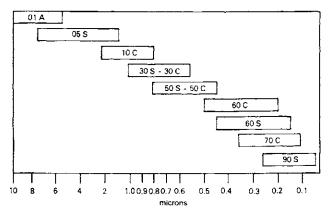



Figure 4.13. Nominal particle retention characteristics of Zeta Plus media.

although some automotive uses exist for papers in liquid filtration. Guidance to use of sheets is given in Tables 4.22 and 4.23.

The air media are most often employed in the pleated state, to increase useful filter area per unit volume of filter, and such filters are now increasingly using non-woven media, rather than paper. The choice among the available media is therefore largely a matter of cost.

## 4.7 References

1. D B Purchas (1973) 'One hundred years of the rotary vacuum filter', Filtration & Separation, 10(4), 429-38

2. N Scheffel (1994) 'Glass fibers: future media prospects', *Binzer Newsletter*, 14/94, J C Binzer Papierfabriek GmbH, and American Filtration Society Conference, Baltimore, MD

3. D Stepuszek and J Hirose (1993) 'High performance functional paper for use as filter media'. Advances in Filtration and Separation Technology. 7, 111–14, AFS

4. O Wilton (1992) 'Sheet filtration', Filtration & Separation, 29(1), 39-40

5. B-V Derjaquin and L Landau (1941) Acta Phys-Chem USSR, 14.633

6. E J W Veerfey and T J Overbeek (1948) *Theory of Stability of Colloids*. Elsevier Science

7. S Patel (1992) 'Charge modified depth filter – technology and evolution', *Filtration & Separation*, **29**, 221–6