CHAPTER 6

Screens and Meshes

The several very different types of filter media gathered together in this chapter, woven meshes, perforated sheets and structures of shaped wires, have one main common feature – an accuracy of aperture size. Another common feature is that they are all made from metal, largely because abrasion is a normal problem in their application, although many forms are now available in plastic as well.

All the dry screening (sieving, sifting) operations are covered by the media in this chapter, as are almost all of the straining and coarse filtration applications.

6.1 Introduction

The prime feature of media made from meshes or screens is that of aperture shape – the size and shape of the apertures in the medium is critical for the intended application. The material of construction is less critical, although its high tensile strength may be vital as well.

There are three broad classes of media covered under this heading: woven meshes, sheets perforated with a variety of holes, and elements made up from preformed materials. Some overlap exists between the woven meshes of this chapter and the woven monofilament materials of Chapter 2.

6.2 Woven Wire Mesh

The weaving of wire is no different, in principle, from the weaving of any other yarn – as described in Chapter 2. The product is a roll of woven material, which then is processed in a variety of ways, to produce the components of a filter medium. The term wirecloth is frequently used to refer to meshes woven from finer grades of wire, while the term *bolting cloth* refers to lightweight versions of square mesh cloths, comprising those based on the finest wires.

A wide variety of wire meshes is produced by weaving monofilaments of either ferrous or non-ferrous metals in widths of about 1 m up to 2 m. Two main

categories can be distinguished. in terms of weave and of the shape of the apertures, as in Figure 6.1. One category utilizes plain weave with single wires of the same diameter for the warp and weft, to form rectangular apertures (the great majority being square); many of these are the screens typically used for sieving and sizing operations. The other category is 'zero aperture filter cloths', with the wires pressed closely together. These embrace a number of more complex weaves, such as dutch twills, which are commonly used in pressure and vacuum process filters.

Information on the metals used in wire mesh is given in Tables 6.1-6.7 (provided by Haver and Boecker). Each includes some guidance on resistance to corrosion, in terms of numerical values extending from 1 (= very good) to 5 (= poor); an added asterisk (*) indicates danger of localized corrosion.

Square	Rectangular	Rectangular	Zero Aperture
Aperture	"Oblong"	"Broad"	"Filter Cloth"

Figure 6.1. Some types of apertures in woven wire.

Table	6.1	Metals	for	woven	wire	cloth:	steel
Table	0.1	wietais	101	woven	wire	ciotu:	stee

Material	Material no.	Trade name	Frade name Max service temp.		Finest v wire di	Res	istan	ce agai	nst:	
			°C	₹F	mm	inch	Atmosphere	Sea water	l.yes	Acids
Plain steel	1.0010	Carbon steel	500	930	0.08	0.0030	5	5	2-4	4-5
Galvanized steel			200	39()	0.16	0.0065	3	5	2-4	4–5
Tinned steel			150	300	0.10	0.0040	5	5	2 - 4	4-5
Spring steel	1.0500	NIA-Steel High carbon steel	500	930	0.125	0.0050	5	5	3-4	4-5

Cr Ni Mo °C °F mm inch 1.4016 430 X 6 Cr 17 17 °C °F mm inch 1.4016 430 X 6 Cr 17 17 °C °F mm inch 1.4301 304 X 5 CrNi 1810 18 10 600 1110 0.016 0.0016 2 1.4301 304 X 2 CrNi 1911 19 11 600 1110 0.016 0.0016 1 1.4310 301 X 1 2 CrNi 177 17 7 600 1110 0.016 0.0006 1 1.4401 316 X 5 CrNimo 17122 17 12 2 600 1110 0.018 0.0020 1 1.4404 316 X 5 CrNimo 17122 17 12 2 600 1110 0.018 0.0020 1 1.4435 317L X 2 CrNimo 18143 18 14 3 600 1110 0.05 0.0020 </th <th>Material no.</th> <th>AISI</th> <th>Symbols</th> <th>Comp</th> <th>osition</th> <th></th> <th></th> <th>Max sei temp.</th> <th>rvice</th> <th>Finest w wire dia.</th> <th>eaving</th> <th>Resis</th> <th>tance ag</th> <th>ainst:</th> <th></th>	Material no.	AISI	Symbols	Comp	osition			Max sei temp.	rvice	Finest w wire dia.	eaving	Resis	tance ag	ainst:	
1.4016 430 X 6 Cr 17 17 500 930 0.04 0.0016 2 1.4301 304 X 5 CrNi 1810 18 10 600 11110 0.016 0.0016 1 1.4301 304 X 5 CrNi 1810 18 10 600 11110 0.016 0.0006 1 1.4310 301 X 12 CrNi 1911 19 11 600 11110 0.016 0.0006 1 1.4310 301 X 12 CrNi 177 17 7 600 11110 0.04 0.0016 1 1.4401 316 X 5 CrNimo 17122 17 12 2 600 1110 0.018 0.0020 1 1.4404 316L X 2 CrNimo 17122 17 12 2 600 1110 0.018 0.0020 1 1.4403 316L X 2 CrNimo 17122 17 13 2 600 1110 0.018 0.0020 1 1.4435 31				చ	ż	Mo	ļ	°.	5		inch	Atmosphere	Sea water	səky	Acids
1.4301 304 X 5 CrNi 1810 18 10 600 1110 0.016 0.0006 1 1.4306 304L X 2CrNi 1911 19 11 600 1110 0.016 0.0006 1 1.4310 301 X 12 CrNi 197 17 7 600 1110 0.04 0.0016 1 1.4541 231 X 6 CrNi 1810 18 10 Ti 700 1290 0.05 0.0020 1 1.4541 231 X 6 CrNi 1810 18 10 Ti 700 1290 0.05 0.0020 1 1.4401 316 X 5 CrNiMo 17122 17 12 2 600 1110 0.018 0.0007 1 1.4404 316L X 2 CrNiMo 18143 18 14 3 600 1110 0.05 0.0007 1 1.4457 316T X 6 GrNiMoT17122 17 12 2 Ti 700 1290 0.05 0.0020 1 1.4571 316T X 6 GrNiMoT17122 17 12 2 </td <td>1.4016</td> <td>430</td> <td>X 6 Cr 17</td> <td>17</td> <td></td> <td></td> <td>1</td> <td>500</td> <td>930</td> <td>0.04</td> <td>0.0016</td> <td>2</td> <td>4*</td> <td>2</td> <td>3-4</td>	1.4016	430	X 6 Cr 17	17			1	500	930	0.04	0.0016	2	4*	2	3-4
1.4306 304L X 2CrNi 1911 19 11 600 1110 0.016 0.0006 1 1.4310 301 X 12 CrNi 177 17 7 600 1110 0.04 0.0016 1 1.4541 231 X 6 CrNi 1810 18 10 Ti 700 1290 0.05 0.0020 1 1.4541 231 X 6 CrNi 1810 18 10 Ti 700 1290 0.05 0.0020 1 1.4401 316 X 5 CrNiMo 17122 17 12 2 600 1110 0.018 0.0007 1 1.4404 316L X 2 CrNiMo 18143 18 14 3 600 1110 0.05 0.0007 1 1.4457 317L X 2 CrNiMo 18143 18 14 3 600 1110 0.05 0.0020 1 1.4571 316Ti X 6 GrNiMoTi 17122 17 12 2 Ti 700 1290 0.05 0.0020 1	1.4301	304	X 5 CrNi 1810	18	10			600	1110	0.016	0.0006	1	*~	1-2	2-4*
1.4310 301 X12CrNi177 17 7 600 1110 0.04 0.0016 1 1.4541 231 X6CrNiTi1810 18 10 Ti 700 1290 0.05 0.0020 1 1.4401 316 X5CrNiMo17122 17 12 2 600 1110 0.018 0.0007 1 1.4404 316L X2CrNiMo17132 17 13 2 600 1110 0.018 0.0007 1 1.4435 317L X2CrNiMo18143 18 14 3 600 1110 0.05 0.0020 1 1.4571 316Ti X6GrNiMoTi17122 17 12 2 Ti 700 1290 0.05 0.0020 1	1.4306	304L	X 2CrNi 1911	19	11			600	1110	0.016	0.0006	1	*.	1-2	24*
1.4541 231 X 6CrNiTi1810 18 10 Ti 700 1290 0.05 0.0020 1 1.4401 316 X 5 CrNiMo17122 17 12 2 600 1110 0.018 0.0007 1 1.4404 316L X 2 CrNiMo17132 17 13 2 600 1110 0.018 0.0007 1 1.4435 317L X 2 CrNiMo18143 18 14 3 600 1110 0.05 0.0020 1 1.4457 316Ti X 6 CrNiMoTi17122 17 12 2 Ti 700 1290 0.05 0.0020 1	1.4310	301	X 12 CrNi 177	17	~			600	1110	0.04	0.0016	1	*~	7	2-4*
1.4401 316 X 5 CrNiMo 17122 17 12 2 600 1110 0.018 0.0007 1 1.4404 316L X 2 CrNiMo 17132 17 13 2 600 1110 0.018 0.0007 1 1.4404 316L X 2 CrNiMo 17132 17 13 2 600 1110 0.018 0.0007 1 1.4435 317L X 2 CrNiMo 18143 18 14 3 600 1110 0.05 0.0020 1 1.4571 316Ti X 6 GrNiMoTi 17122 17 12 2 Ti 700 1290 0.05 0.0020 1	1.4541	231	X 6 CrNiTi 1810	18	10		Τi	200	1290	0.05	0.0020	-	2*	×*	2-3*
1.4404 316L X.2 CFNiMo 17132 17 13 2 600 1110 0.018 0.0007 1 1.4435 317L X.2 CFNiMo 18143 18 14 3 600 1110 0.05 0.0020 1 1.4435 317L X.2 CFNiMo 18143 18 14 3 600 1110 0.05 0.0020 1 1.4571 316Ti X.6 CFNIMoTi 17122 17 12 2 Ti 700 1290 0.05 0.0020 1	1.4401	316	X 5 CrNiMo 17122	17	12	2		600	1110	0.018	0.0007	1	2*	2*	23*
1.4435 317L X.2 CrNiMo 18143 18 14 3 600 1110 0.05 0.0020 1 1.4571 316Ti X.6 GrNiMoTi 17122 17 12 2 Ti 700 1290 0.05 0.0020 1	1.4404	316L	X 2 CrNiMo 1 71 32	17	13	2		600	1110	0.018	0.0007	1	2*	2*	2-3
1.4571 316Ti X 6.0-NIMoTi 17122 17 12 2 Ti 700 1290 0.05 0.0020 1	1.4435	317L	X 2 CrNiMo 18143	18	14	~		600	1110	0.05	0.0020	1	2*	2*	2-3
	1.4571	316Ti	X 6 CrNiMoTi 17122	17	12	7	Ϊ	700	1290	0.05	0.0020	٦	7*	2*	2*

6.2.1 Square mesh

Listed in Table 6.9 is the range of square mesh wire meshes produced by one leading manufacturer, indicating which grades are available in specific metals. The tolerance of the aperture sizes specified varies according to the fineness of the cloth, as summarized in Table 6.8; a crucial factor in determining this is the tolerance of the diameter (including the extent to which it deviates from being truly round) of the wires from which the mesh is woven.

Crimping of the wires happens automatically as part of the weaving process, provided that the wires are sufficiently fine and ductile. With heavier and more rigid wires, however, such as those of high tensile steel for heavy-duty screens, a separate pre-crimping operation is necessary, both to form the desired apertures and to ensure appropriate stability during extended use. Various types of crimp are used, as outlined in Table 6.10.

Material no.	AISI	Symbols	Con	nposi	tion	Max se temp.	Max service temp.		weaving a.	Re ag	sist ain:	ance st:	
			Cr	Ni		°C	°F	mm	inch	Atmosphere	Sea water	Lyes	Acids
HB 253		HITHERM	21	11		1200	2190	0.025	0.0010	1	2*	1-2	2-3*
HB 165		Corresist	20	25		900	1650	0.10	0.0040	1	2	2	2
1.4841	310	X 15 CrNiSi 25 20	25	20	Si 2	1200	2190	0.05	0.0020	1	3*	2-3	2-4*
	314												
1.4742		X 10 CrAl 18	18		Al 1	1050	1920	0.05	0.0020	1	4*	2-3	2-4*

Table 6.4	Metals for	woven wire	cloth:	copper and alloys
-----------	------------	------------	--------	-------------------

Material		Material no.	Com	oositi	on	Max.: temp.	service	Finest v wire di	weaving a.	Re	sista	nce aj	gainst:
			Cu	Zn		°C	°F	mm	inch	Atmosphere	Sea water	Lyes	Acids
Copper	E-Cu	2.0060	99.9			150	300	0.050	0.0020	2	3	3	2-5
Brass	CuZn 37 Ms 63	2.0321	63	37		200	390	0.050	0.0020	5	5	3	4-5
Low	CuZn 20	2.0250	80	20		200	390	0.050	0.0020	4	4	2	2-5
brass	Ms 80												
Common	CuZn 10	2.0320	90	10		200	390	0.050	0.0020	2	3	2	2-5
bronze	Ms 90												
Phosphor bronze	CuSn 6	2.1020	94	t I	Sn 6 P	200	390	0.025	0.0010	1	2	3	2-5

6.2.2 'Zero aperture' filter meshes

The square mesh materials have a definite open area between successive warp or weft wires, however fine. The other main category of mesh has the wires as close

Material	Material Material no.		Compo	sition	Max s temp	ervice	Finest wire di	weaving a.	Res	istanc	e agai	inst:
			Ni		°C	°F	mm	inch	Atmosphere	Sea water	Lyes	Acids
Nickel		2.4106	≥98	Mn 0.3-1	250	480	0.036	0.0014	1	2	13	3-5
NiMn 1 Nickel Ni 99.2	Alloy 200	2.4066	≥99.2	Mn <0.03	250	480	0.036	0.0014	1	2–3	1–2	3-5
MONEL® Metal NiCu 30 Fe	Alloy 400 Niccoros Silverin	2.4360	<u>></u> 63	Cu 30 Fe	40 0	750	0.04	0.0016	1	1	2-3	15

 Table 6.5
 Metals for woven wire cloth: nickel and monel

Material		Material Con no.		npositio	n	Max ser	vice temp.	Finest wire d	seaving lia.
			Cr	Ni		°C	°F	mm	inch
Inconel 600	NiCr 15 Fe	2.4816	15	72		1050	1290	0.06	0.0023
Incoloy 825	NiCr 20 Mo	2.4858	20	38-46	Мо	900	1650	0.08	0.0030
Hastelloy C 4	NiMo 16 Cr 16 Ti	2.4610				1100	2012	0.05	0.0020
Titanium	995	3.7025			Ti 99.5	1000	1830	0.01	0.0020
Silver	Ag 900				Ag 99	300	570	0.04	0.0016
NiCr 80/20	U	2.4869	20	80	-	1250	2280	0.02	0.0008
Carpenter 20 CB 3	NiCr 20 CuMo	2.4660	20	37	Cu	950	1740	0.06	0.0023

Table 6.6 Metals for woven wire cloth: special metals

Tuble (), Motulo IoI (()) foll (() cloth, and all all all all all all all all all al	Table 6.7	Metals for woven wire cloth: aluminium and	alloys
--	-----------	--	--------

Material		Material no.	Com	position	Max.s temp.	ervice	Finest wire d	weaving ia.	Res	istan	ce agai	nst:
			Al	Mg	°C	۶F	mm	inch	Atmosphere	Sea water	Lyes	Acids
AlmG 5 AlMg 3 Al 99	Aluminoy	3.3555 2.3535 3.0205	95 97 99	5 3	180 180 180	360 360 360	0.05 0.08 0.16	0.0020 0.0030 0.0065	3 3 2	4 4 3	4-5 4-5 4-5	3-5 3-5 3-5

together as possible, thereby making the 'pore' diameter as small as possible. An illustration of the diversity of weaves embraced by this category, as typified by the 'Minimesh' range of Haver and Boecker, is provided by Figure 6.2. The diameters of the warp and weft wires are normally different.

For filtration purposes, the most widely used forms of woven wire are the dutch or hollander weaves, wherein the warp and weft are of different diameter, generally with a corresponding difference in the relative numbers of warp and weft wires. If the warp wires (i.e. those along the length of the loom) are thicker, the result is the 'plain dutch weave' of Figure 6.3; the alternative is for the weft wires (across the loom) to be the thicker, giving the 'reverse plain dutch weave' of Figure 6.4.

'Plain dutch weave' is also known as single plain dutch weave, basket weave. reps and corduroy. It forms a filter cloth that is easy to clean and has a low resistance to flow, but is of limited strength. 'Reverse plain dutch weave' is substantially stronger. and is in fact the strongest filter weave in commercial production; as a result, coupled with its good flow characteristics and high dirtholding capacity, it is widely used industrially.

By a similar combination of warp and weft wires of different diameters. two basic forms of twilled dutch weave are produced. The use of heavy warp wires results in 'dutch twilled weave' (Figure 6.5), which permits the production of the very finest grades of woven wire cloths, while also having the advantage of a very smooth surface on both sides; its disadvantage is a relatively high resistance to flow. With heavy weft wires, 'twilled reverse dutch weave' is formed (Figure 6.6); this offers less resistance to flow but with a corresponding decrease in micron retention characteristics and with rough surfaces on both sides.

Numerous variations exist around these basic weaves. Thus the Haver and Boecker range of wire cloths includes not only the four dutch weaves described above, but also 'broad mesh twilled dutch weave' in which the weft wires are not arranged to give a 'light-tight' cloth but have a preset spacing between them: because of this, the weft mesh count and the retention vary somewhat at intervals. Their patented Zig-Zag weave uses the same weave but involves a special sequence, which guarantees the highest possible accuracy and regularity of spacing.

Another variation is to use twisted bundles of fine wires in place of a single wire. This is particularly favoured in the manufacture of the wire belts that form the heart of papermaking machines. One version is 'twisted plain weave', with

(mm)	Average tolerance of apertures (%)
0.020-0.025	±7.5
0.032	±6.5
0.036-0.040	±5
0.056-0.067	±4.5
0.071-0.095	±4
0.100-0.170	±3.5
0.180-0.400	±3
0.425-1.600	±2.5
	(mm) 0.020-0.025 0.032 0.036-0.040 0.056-0.067 0.071-0.095 0.100-0.170 0.180-0.400 0.425-1.600

Table 6.8 Tolerance of aperture sizes of Bopp square-mesh wire cloths

Aperture size w	Wire diameter (mm) ddelete Open area (%) Fo	Meshª	Weight ^b	Stainless steel AISI 304/316	Phospho r bronze	Brass	Tinned steel	Galvanized steel	Plain steel	_
(mm)	- <u></u> ,		_ · · · · · ·							
16	3.2	69.4	1.3	6.77	x					
	2.5	74.5	1.4	4.29	x				х	
	2.0	79	L.4	2.82	x					
14	2.8	69.4	1.5	5.93	х					
12.5	2.5	69.4	1.7	5.29	х					
	2.0	74.5	1.8	3.50	х				x	
	1.6	79	1.8	2.31	х					
11.2	2.5	67	1.9	5.79	x					
	1.6	77	2	2.54	х					
10	2.5	64	2	6.35	х					
	1.8	72	2.1	3.49	x				x	
	1.5	77	2.2	2.18	х					
9	2.2	64	2.3	5.49	х					
8	2.0	64	2.5	5.08	х					
	1.6	69.4	2.6	3.39	x				x	
	1.25	74.5	2.7	2.15	х				х	
7.1	1.8	64	2.9	4.62	х					
	1.4	69.4	3	2.93	х					
6.3	1.8	60	3.1	5.08	x					
	1.4	67	3.3	3.23	х	x	x	х	X	х
	1.25	69.4	3.4	2.63					x	
	1.0	74.5	3.5	1.74	x					
5.6	1.6	60	3.5	4.52	x					
	1.25	67	3.7	2.90	x					
	1.12	69.4	3.8	2.38					x	
5.0	1.6	57.6	3.8	4.93	х					
	1.25	64	4.1 (4)	3.18	X	X	x	x	x	X
	0.9	72	4.3	1.74	x					
4.5	1.4	57.6	4.3	4.22	x					
	0.8	72	4.8	1.53						X
4	1.4	54	4.7	4.61	x					
	1.0	64	5.1(5)	2.55	x	x	x	x	x	X
255	0.71		7. +	1.36	x					
3.33	1.25	74	5.3	4.13	x				••	
	0.9	67	7.7 E 0	2.51	•				^	
2 25	0.0	67	5.8	1.07	х 					
3.37	1.25	51	58765	1.51	х х					
3.13	0.8	64	5.8(0)	7.06	* *	v	v	x	v	¥
	0.56	77	68(7)	1.07	N V	^	A	<i>°</i>	~	
28	1.12	51	6.5	1.07	v					
2.5	10	51	73	3.65	x x					
	0.71	60	7.9181	1.99	x	x	x	x	x	x
	0.5	69.4	8.5	1.06	x		-			
2.24	0.9	51	8,1 (8)	3.28	x					
	0.63	60	8.9(9)	1.77	x				х	
	0.36	74.5	9.8 (10)	0.64	x			х		
2	1.0	44.4	8.5	4.25	x					
	0.9	48	8.8 (9)	3.56	x					
	0.63	57.6	9.7 (10)	1.93	x					
	0.56	60	9.9 (10)	1.56		х	x	х	x	x
	0.32	74.5	10.9(11)	0.56	x			х		

Table 6.9 Bopp standard range of mesh wire cloths

Table 6.9 (continued)

Aperture size w	Wire diameter (mm) ddelete Open arca (%) Fo	Mesh*	Weight ^b	Stainless steel AISI 304/316	Phosphor bronze	Brass	Tinned steel	Galvanized steel	Plain steel	
(mm)										-
1.8	0.8	48	9.8 (10)	3.13	x					
	0.32	72	12	0.61	x			x		
1.6	1.0	38	9.8 (10)	4.88	x					
	0.8	44.4	10.6	3.39	х					
	0.5	57.6	12.1(12)	1.51	x	x	х	x	x	х
	0.36	67	13	0.84	х					
	0.28	72	13.5(14)	0.53				x		
1.5	0.22	77	14	0.34	x					
1.5	0.63	49.6	11.9(12)	2.37	x					
1.4	0.71	44.4	12	3.03	x					
	0.45	ס./.כ דד	13.7(14)	0.49	x			v		
	0.23	745	15.7(16)	0.40	v			~		
1 32	0.5	52.6	14	1 75	v v					
1.25	0.8	38	124	3.97	x v					
	0.63	44 4	13.5	2.68	x					
	0.4	57.6	15.4	1.23	x	x	x	x	x	х
	0.25	69.4	16.9(17)	0.53				х		
	0.22	72	17.3(17)	0.42	x					
1.18	0.63	42.5	14	2.78		x				
	0.22	71	18.1 (18)	0.44	x					
1.12	0.56	44.4	15.1(15)	2.37	x					
	0.45	51	16.2 (16)	1.64	х					
	0.36	57.6	17.2	1.11	x				x	
	0.25	67	18.5(19)	0.58				х		
	0.22	69.4	19	0.46	x					
1.06	0.22	68.6	19.8 (20)	0.48	x					
1	0.63	38	15.6(16)	3.10	x					
	0.56	41 44 4	10.3(10)	2.35		x				
	0.4	51	18.1(19)	1.12	x v					
	0.32	57.6	19.7(19)	0.98	v	v	¥	x	x	x
	0.22	67	21	0.50	n Y	~	~	x		
(ստ)		07		0.90	a			-		
950	0.2	68.2	22	0.44	х					
900	0.5	41	18.1(18)	2.27	х					
	0.36	51	20	1.30	x	x				
	0.2	67	23	0.46	x			x		
850	0.5	39.6	18.8	2.35						
	0.4	46.2	20	1.63	х					
	0.2	65.5	24	0.48	х					
800	0.5	38	19.5	2.44	x	x				
	0.32	51	23	1.16	х	x	x	x	x	х
750	0.2	64	25	0.51	x			x		
750	0.18	55	27	0.44	x			x		
/10	0.45	28 44 4	22	2.22	x	v				
	0.30	39.9 51	24	1.77	x	x			x	
	0.20	51 64	20 29	0.46	X V			x	^	
670	0.16	65.7	2,7 31	0.40	x v			x		
630	0.4	38	25	1.97	x	x		-		
	0.28	48	28	1.09	x					
	0.25	51	29	0.91	x	x	x	x	x	x
	0.16	64	32	0.41	x			x		

208 Handbook of Filter Media

Aperture size w	Wire diameter (mm) ddelete Open area (%) Fo	Mesh*	Weight ^b	Stainless steel AISI 304/316	Phosphor bronze	Brass	Tinned steel	Galvanized steel	Plain steel	
(µm)										-
600	0.4	36	25	2.03		x				
	0.16	62.3	33	0.42	x			x		
560	0.36	38	28	1.79	x					
	0.28	44.4	30	1.19	x					
- 10	0.16	60	35	0.45	x			x		
530	0.16	59	37	0.47	x			x		
500	0.32	58	31 (30)	1.59	x	x	_			
	0.25	44.4	34	0.49	x	x	x	x	x	x
475	0.16	37.0 56	30	0.49	x			x		
450	0.10	19	35	1 37	x v			*		
x 5.0	0.2	48	39 (4(1)	0.78	x					
	0.14	57.6	43	0.42	x			x		
425	0.28	36	36	1.41	-	x				
	0.14	56.6	45 (44)	0.44	x			x		
400	0.25	38	39 (40)	1.22	x					
	0.22	41	41 (40)	0.99	x	x	x	x	x	x
	0.18	48	44 (45)	0.71	x					
	0.14	54	47	0.46	x			x		
375	0.14	53	49 (50)	0.48	х					
355	0.22	38	44	1.07	x					
	0.18	44.4	47	0.77	x	x		x	x	
	0.14	51	51 (50)	0.50	x					
335	0.14	49.7	53 (54)	0.52	x					
315	0.2	38	49 (50)	0.99	x	х	x	x	х	х
	0.16	44.4	53	0.69	x					
100	0.112	54	59 (60)	0.37	x					
300	0.2	50	51	1.02		x				
280	0.112	22	51 (50)	0.39	x					
200	0.18	20	51 (50)	0.90	x	v				
	0.112	51	65 (64)	0.30	v	~				
265	0.112	52.7	70	0.35	x x					
250	0.2	31	56	1.13	x					
	0.16	38	62	0.79	x	x	x	x	x	x
	0.1	51	73(74)	0.36	x					
236	0.1	49.3	76	0.38	x					
224	0.18	31	63 (64)	1.02	x					
	0.16	34	66	0.85	х	x	х			
	0.1	48	78 (80)	0.39	х					
212	0.14	36	72	0.71		x				
	0.09	49.3	84	0.34	х					
200	0.16	31	71 (70)	0.90	x					
	0.14	34	75	0.73		x				
	0.125	38	28 (80)	0.61	x	x	x			
100	0.09	30	88 81 (00)	0.27	x					
190	0.09	~t0 21	31 (30) 70 (90)	0.57	х v					
100	0.125	34	79 (80) 83	0.78	x x	¥	x			
	0.09	44 4	94	0.38	x	•	4			
160	0.125	31	89 (90)	0.70	x					
	0.112	34	93	0.59	x	x				
	0.1	38	98 (100)	0.49	x	x	x			
	0.071	48	110 (105)	0.28	x					

Table 6.9 (continued)

210 Handbook of Filter Media

Table 6.9 (continued)

		··							
Aperture size w	Wire diameter (mm) ddelete Open area (%) Fo	Mesh ^a	Weight ⁶	Stainless steel AISI 304-316	Phosphor bronze	Brass	Tinned steel	Galvanized steel	Plain steel
(µm)			··· ·						
150	0.1	36	102 (100)	0.51	x				
140	0.112	31	101 (100)	0.63	x				
	0.1	34	106 (105)	0.53	x				
	0.09	38	110	0.45	x	x	x		
	0.063	48	125 (120)	0.25	x				
125	0.09	34	118(120)	0.48	x				
	0.08	38	124 (125)	0.40	x	x	x		
	0.063	44.4	135	0.27	x				
118	0.056	46	146 (145)	0.23	х				
112	0.08	34	132 (130)	0.42	x				
	0.071	38	139 (140)	0.35	x	x	х		
106	0.063	39.3	150	0.30	х				
	0.05	46.2	163(165)	0.20	x				
100	0.063	38	156 (150)	0.31	x	x	х		
	0.05	44.4	169 (165)	0.21	x	x			
95	0.045	46	181 (180)	0.18	x				
9()	0.063	34	166 (170)	0.33	x	x			
	0.056	38	174	0.27	x				
	0.04	48	195 (200)	0.16	x				
85	0.04	46.2	205 (200)	0.16	x				
80	0.056	34	187 (190)	0.29	х				
	0.05	38	195 (200)	0.25	x	x			
75	0.05	36	205 (200)	0.26	x				
	0.036	45.7	230	0.15	x				
71	0.05	34	210	0.26	x	x			
63	0.045	3-1	235	0.24	x	x			
	0.04	38	245 (250)	0.20	x	x			
	0.036	41	255	0.17	х				
56	0.04	34	265 (270)	0.21	x				
	0.036	38	275 (270)	0.18	x	x			
	0.032	41	290 (300)	0.15	x				
53	0.04	32.5	275(270)	0.22	x				
	0.036	35.5	285	0.19	x				
50	0.04	31	280	0.23	x	x			
	0.036	34	295 (300)	0.19	x	x			
	0.03	39	320 (325)	0.14	х				
45	0.036	31	315	0.20	х				
	0.032	34	330	0.17	x	x			
42	0.036	29	325	0.21	х	х			
40	0.032	31	355 (350)	0.18	х	х			
	0.025	38	390 (400)	0.12	x				
38	0.025	36.4	405 (400)	0.13	x				
36	0.028	31	395 (400)	0.16	x	х			
32	0.025	31	445 (450)	0.14	х				
25	0.025	25	510	0.16	x				
20	2.02	25	635	0.13	x				

^a True mesh count, in parentheses approximate mesh count.

^b Calculated with a density of 7.85 for steel: please multiply by 1.01 for stainless steel, by 1.125 for phosphor bronze, by 1.083 for brass CuZn 37. either the warp alone or both warp and weft composed of six strands of wire twisted around a core (known as a 'cable wire'). Another example is 'triple warp weave', with three wires twisted to form the warp of a plain weave: this is used for producing very thin papers.

The differences in weave affect the surface and depth structure of the resultant cloths and consequently also their performance characteristics in filtration, including their resistance to flow. For example, certain weaves favour surface filtration and facilitate cleaning by back washing, whilst others achieve higher particle retention efficiencies by utilizing depth filtration. Some of these factors are summarized in Table 6.11, while an overview of the relative retention characteristics of 'Minimesh' wire cloths is provided by Table 6.12. More detailed data in respect of the retention rating and permeability of the different weaves are given in Tables 6.13-6.17.

Туре	Destination	Comments	
A	Double crimp	The rough surface on both sides permits a very intensive screening of the material, thus resulting in high grain accuracy.	
В	Single intermediate crimp	Plain warp wires, weft wires with intermediate crimps between wire intersections.	
с	Double intermediate crimp	Warp and weft wires with intermediate crimps. This type of weave is used for relatively thin wires or for oblong or slot mesh screens.	
D	Lock crimp	Warp and weft pre-crimped on both sides. thus locking the wires securely in place. This type offers a uniform aperture during the service life of the screen.	
Е	Flat top screen	Wires are pre-crimped on one side only. leaving the other side flat. This minimizes friction on delicate feed material. Wear is equal over the whole upper surface of the screen.	
F	Pressure welded screen	Made from manganese steel wires and immovably locked together by pressure welding. The intersections remain in place until the wires are completely worn.	

Table 6.10 Types of crimp in weaving wire screens to DIN 4192 and ISO 4783/3^a

^a Haver & Boecker.

In Tables 6.13-6.17 air permeabilities are expressed as values of the factors Y and M, for use with the following equation:

$$P = YV + MV^2$$

where P = pressure difference across wire cloth (10⁻³ mbar); V = flow velocity of atmospheric air at 20°C (cm/s). This simple relationship may be adapted for the flow of other fluids (excluding non-Newtonian fluids such as polymer melts) by multiplying the calculated pressure difference P by the ratio of the viscosities of the fluid and air:

 $P_{\text{fluid}} = P \times (\text{viscosity of fluid})/(\text{viscosity of air})$

Oblong mesh, EGLA-5

HIFLO High capacity Fitter weave, Patented

SPW Single Plain dutch Weave

SPW but with double warp wires

DTW Dutch Twilled Weave

BMT Broad Mesh Twilled dutch weave

RPD Reverse Plain Dutch weave

DTW but with double warp wires

BMT-ZZ, Zig-Zag, Patented

TRD Twilled Reverse Dutch weave

Figure 6.2. Examples of weaves of 'Minimesh' metal filter cloths.

6.2.3 Composite mesh-based media

The term 'composite' implies the combination of different types of material into one filter medium. The different types would be assembled to give different filtration characteristics or extra strength (or both). Woven wire mesh is an excellent material for use in composite media, because of its strength, especially with larger wire diameters. Thus it is used to support delicate screens in basket centrifuges, and cloth belts in belt presses.

When used in combination with other wire meshes and sintered, a very good filter medium is produced – discussed later in this chapter – while meshes are also used to support metal membrane media – discussed further in Chapter 8.

An interesting composite medium, recently developed by GKD, is the 'Ymax' mesh-fibre composite. This has the basic strength of a wire mesh surface filter combined with the depth filtration characteristics of bundles of fibres. The basic mesh is woven from single wires, 0.1-7.0 mm in diameter, and this is interwoven by bundles of non-twisted finer wires. These, in hundreds per bundle, are 5-30 µm in diameter.

Figure 6.3. Plain dutch weave.

Figure 6.4. Reverse plain dutch twill.

Figure 6.5. Dutch twilled weave.

Figure 6.6. Twilled reverse dutch weave.

The material acts like a zero aperture mesh, in that there are no large pores between the basic wires. Larger particles are held on the surface, while smaller ones pass into the depth of the fibre bundles. The medium has porosities up to 60%, with retention figures from 3 to 100 μ m. Ymax, available as single pieces up to 3.5 m wide, and 20 m long, is non-compressible, thus maintaining the integrity of pore size and filtration efficiency. Its cost is said to be comparable with that of metal fibre or powder media.

6.2.4 Sintered mesh

Sintered wire mesh refers here to any material, made basically from woven wire mesh, that has been sintered at a temperature sufficient to cause localized melting at the contact points between warp and weft wires. The applied heat and pressure during the sintering process allows some localized molecular diffusion between the wires such that, when cooled, the structure has become much more rigid. This adds considerably to the value of the material as a filtration medium, and overcomes one of the main problems of wire mesh as a filter medium, its inability to withstand fatigue in operation.

Unsintered woven wire meshes suffer from instability, with relative movement or deformation of the wires, resulting from the stresses imposed by vibration, pulsating flow or high differential pressure. This can result in the deterioration of the rated filtration efficiency; abrasion of the wires and the consequent generation of metal particles that contaminate the material being filtered; the unloading of previously trapped particles into the filtrate; and structural failure.

These problems can be avoided by sintering the mesh, so greatly increasing the rigidity of the mesh, producing an extremely strong structure that is resistant to deformation. Sintering also enables the use of finer wires, leading to a higher open area, with a consequential decrease in resistance to flow, and an increase in dirt-holding capacity. Sintered media also have the great advantage that they can be cut and shaped without risk of local disintegration. in a way not possible with unsintered meshes.

The key feature of sintered wire mesh is that it involves one layer of woven mesh (and occasionally two) to act as the filtration medium, with others. where necessary, to give the whole medium adequate stiffness and mechanical support.

	SPW	HIFLO ^R	DTW	ВМТ	BMT ZZ	RPD	TRD
Surface filtration	•	•	•			•	
Depth filtration	-	_	ė	•	•	•	•
Surface smooth on both sides			é	•	•		
Macroscopic surface unevenness	•	•				•	٠
Higher tensile strength – wrap						٠	۲
Higher tensile strength - weft	•	•	•	•	•		
Easy cleaning by backwashing	•	•	-			٠	

Table 6.11 Influence of weave on cloth characteristic	Table 6.11
---	------------

^a Haver & Boecker.

1 Micron reten- tion ^a (μm)	2 Square mesh ISO 565 DIN 4189 w (mm)	3 Weave USA mesh	4 DTW mesh	5 BMT MBT ZZ mesh	6 SPW mesh	7 HIFLO ^w HB- code	8 RPD TRD HB- code	9 SPW+ DTW' twin warp	l Micron reten- tion (μm)
2			510×3600						2
3									3
4			400×2800						4
5									5
6			375×2300						6
8			325×2300	325×1900ZZ					8
10			250×1400					2/198× 1700 DTW 2W 10	10
11									11
12			200×1400	325×1600ZZ					12
14									14
15				250×1250ZZ			RPD		15
							15		• •
16									16
17							RPD 17		17
18			165×1400						18
20		635	165×1100	200. 1200		Hillo 20			20
22				200×1200					22
45 25	0.025	500		200×900 ZZ		1161.0.25	רוסס		23
23	0.025	500				пш0 2 э	75		23
28	0.028			165×80077			<u> </u>		28
30	0.020			10 7 × 000 22		Hiflo 30			
32	0.032	450		200×600ZZ					32
34					80×300				34
36	0.036		80×700			Hiflo 36			36
38		400							38
40	0.040			120×600	80×400	Hiflo 40	RPD 40		40
45	0.045	325				Hiflo 45		2/50× 250 SPW 2W 45	45
50	0.050			120×400		Hiflo 50			50
53		270							53
56	0.056								56
60							RPD		60
							60		
63	0.063	230			50×250	ŧ			63
70	a a c :					Hiflo 70			70
71	0.071		40×560		50×280	ŀ			71

 Table 6.12
 Micron retention^a of 'Minimesh' metal filter cloths^b

1 Micron reten- tion ^a (μm)	2 Square mesh ISO 565 DIN 4189 w (mm)	3 Weave USA mesh	4 DTW mesh	5 BMT MBT ZZ mesh	6 SPW mesh	7 HIFLO ^R HB- code	8 RPD TRD HB- code	9 SPW+ DTW twin warp	1 Micron reten- tion (μm)
75		200			40×200		TRD	2/24× 128	
							75	SPW 2W 75	75
80	0.080						RPD	2/30× 150	
							80	SPW 2W 80	80
85							RPD 85		85
9 0	0.090	170					RPD	3/12× 250	90
							90	DTW 3W 90	
95			30×360						95
100	0.10				30×150			3/12× 200 DTW 3W 100	100
106		140	20×260						106
112	0.112		28×500						112
118			24×300						118
125	0.125	120			24×110		TRD 125		125
140	0.14								140
150		100							150
160	0.16				20×160)			160
180	0.18	80							180
200	0.20	-			16×120	l .			200
212	0.224	70							212
224	0.224				14-110				224
250	0.25	60			14×110	T			250

Table 6.12 (continued)

^a The (absolute) micron retention is the diameter of the largest round particle just passing through the cloth. It can be determined by Glass Bead Test or Bubble Point Test or calculated theoretically.

^b Haver & Boecker.

It is not normally intended that a multi-layer sintered material should act as a depth filter – surface (and/or cake) filtration is the aim.

In its simplest form, a single layer of wirecloth, intended probably to be pleated for inclusion in a filter cartridge, will be sintered in order to guarantee that the spacings between the wires will not change during the pleating process. This is a very common use of sintering for wire mesh, with the pleated construction

HB-code	Nominal mesh count	Micron retentio	on	Equation factors for permeability performance			gth ^b	Weight ^c (kg/m ²)	Cloth thickness
		Nominal (µm)	Absolute (µm)	Y ^d	$M^{ m d}$	Warp wires N	Weft wires N	_	(11111)
SPW 34	80×300	25	32-36	3.78	0.06796	330	460	0.98	0.25
SPW 40	80×400	36	36-45	1.60	0.04908	310	430	0.82	0.23
SPW 45	2/50×250	30	42-48	8.88	0.04369	310	670	1.15	0.31
SPW 63	50×250	4()	56-63	4.38	0.01851	310	640	1.00	0.32
SPW 71	50×280	45	71-75	4.39	0.01530	310	680	1.00	0.32
SPW 75	40×200	56	75-80	3.86	0.01297	320	730	1.30	0.40
SPW 100	30×150	63	100-112	3.83	0.00905	420	870	1.60	0.50
SPW 125	24×110	80	112-125	1.79	0.02748	930	1600	2.70	0.67
SPW 140	22×140		140 - 170	2.13	0.02561	570	980	2.10	0.66
SPW 160	20×160		160-180	3.57	0.00511	300	870	1.55	0.50
SPW 180	20×150		170-190	3.21	0.00621	260	1100	1.60	0.55
SPW 200	16×120		200-210	3.68	0.00019	280	1320	1.95	0.64
SPW 240	14×110		220-240	3.02	0.02103	390	1500	2.15	0.72
SPW 250	12×95		240-260	3.81	0.00053	330	1440	2.30	0.79
SPW 260	14×88		280-300	2.99	0.00300	640	1650	3.15	0.76
SPW 280	10×90		270-290	3.16	0.01701	510	1750	2.50	0.93
SPW 300	12×64		280-300	3.66	0.00026	750	2620	4.10	1.21
SPW 360	8×85		330-350	3.11	0.00174	400	2100	2.50	0.93

Table 6.13 SPW (single plain dutch weave) filter cloths^a

" Haver & Boecker.

^b Tensile strength in Newtons for a 10 mm wide strip.
 ^c Weight is for stainless steel, density 1.4301.

e

Calculate permeability values from Y and M factors using equations in text. d

HB-code	Nominal mesh count	Micron retentio	on	Equation fact	ors for permeability performance	Tensile stren	gth ^b	Weight ^e (kg/m ²)	Cloth thickness
		Nominal (µm)	Absolute (µm)	Y^{d}	$M^{ m d}$	Warp wires N	Weft wires N		(11111)
HIFLO ^B 20	165×1100	n/a	19-20	9.84	0.02925	88	137	0.29	0.093
HIFLO ^R 25	80×1020	n/a	20-25	13.31	0.00733	160	251	0.49	0.165
HIFLO ^R 30	80×820	n/a	28-30	7.99	0.00657	152	182	0.41	0.158
HIFLO ^B 36	80×700	n/a	34-36	10.00	0.00090	251	204	0.60	0.210
HIFLO ^R 40	80×525	n/a	38-40	5.27	0.01562	182	270	0.53	0.186
HIFLO [*] 45	70×450	n/a	42-45	4.91	0.02323	329	345	0.80	0.240
HIFLO ^R 50	53×480	n/a	48-50	3.14	0.02225	188	296	0.72	0.250
HIFLO ^B 70	53×380	n/a	67-70	2.11	0.12525	200	335	0.82	0.260

Table 6.14 Patented HIFLO high capacity filter clotha

* Haver & Boecker.

^b Tensile strength in Newtons for a 10 mm wide strip.

^c Weight is for stainless steel, density 1.4301.
 ^d Calculate permeability values from Y and M factors using equations in text.

HB-code	Nominal mesh count	al Micron retention ount		Equation factor	s for permeability performance	Tensile stren	gth ^b	Weight ^c (kg/m ²)	Cloth thickness (mm)
		Nominal (µm)	Absolute (µm)	Y ^d	M ^d	Warp wires N	Weft wires N		(11111)
DTW 2	510×3600	<u>دا</u>	4–5	263.17	0.02525	92	250	0.30	0.06
DTW 4	400×2800	د1	5-6	231.47	0.22829	75	335	0.36	0.06
DTW 6	375×2300	1	6-7	210.93	0.07449	150	320	0.39	0.08
DTW 8	325×2300	2	7-8	172.55	0.15155	140	330	0.47	0.09
DTW 9	260×1550	3	8-10	151.0	0.18407	200	420	0.68	0.12
DTW 10	250×1400	4	11-12	126.93	0.15665	190	480	0.68	0.12
DTW12	200×1400	5	11-13	84.85	0.11646	220	480	0.75	0.14
DTW 14	130×700	8	13-15	168.33	0.49690	390	640	1.60	0.28
DTW 16	200×1120	9	15-17	127.17	0.21465	240	600	0.95	0.16
DTW 18	165×1400	10	15-18	44.08	0.07645	200	510	0.70	0.15
DTW 20	165×1100	12	20-21	68.19	0.11284	220	620	0.90	0.16
DTW 36	80×700	25	34-36	25.81	0.10202	210	860	1.20	0.26
DTW 71	40×560	50	71-80	13.91	0.06452	240	1300	1.70	0.39
DTW 95	30×360	80	95-106	6.12	0.02134	560	1650	2.60	0.54
DTW 100	30×250	53	100-112	1.60	0.17216	520	2340	3.20	0.65
DTW 106	20×260	100	110-120	2.16	0.11361	290	2200	3.10	0.67
DTW 112	28×500	85	106\426-112	1.06	0.01124	550	1420	1.95	0.46
DTW 118	24×300	90	112\426-118	1.80	0.12094	390	2040	2.85	0.63

Table 6.15 Dutch twill weave (DWT) metal filter cloth*

Haver & Boecker. а

Tensile strength in Newtons for a 10 mm wide strip. Weight is for stainless steel, density 1.4301. b

c

^d Calculate permeability values from Y and M factors using equations in text.

HB-code	Nominal mesh count	Nominal Micron retention nesh		Equation factor	rs for permeability performance	Tensile stren	gth ^b	Weight ^e (kg/m ²)	Cloth thickness (mm)
		Nominal (µm)	Absolute (µm)	Y ^d	$M^{ m d}$	Warp wires N	Weft wires N		()
BMT 8 ZZ	325×1900	6	6-8	85.63	0.09000	135	195	0.43	0.092
BMT 12 ZZ	325×1600	8	10-12	73.82	0.07341	120	245	0.45	0.094
BMT 15 ZZ	250×1250	12	13-15	42.72	0.07337	200	350	0.64	0.120
BMT 22	200×1200	14	20-22	41.17	0.02134	240	420	0.71	0.140
BMT 23	200×900	16	22-24	21.73	0.02699	160	460	0.64	0.140
BMT 23ZZ	200×900	16	22-24	10.12	0.01762	195	44()	0.64	0.148
BMT 28	165×800	15	24-28	11.02	0.03468	200	430	0.71	0.160
BMT 28 ZZ	165×800	15	24-28	10.04	0.02116	205	350	0.71	0.170
BMT 32	200×600	20	28-32	9.84	0.01816	170	290	0.50	0.150
BMT 32 ZZ	200×600	20	28-32	9.38	0.01721	105	180	0.50	0.144
BMT 40	120×600	28	38-42	2.29	0.03504	270	450	0.90	0.230
BMT 50	120×400	32	48-53	1.07	0.00048	290	400	0.75	0.240

Table 6.16 Broad mesh twilled weave (BMT) and BMT Zig-Zag filter cloth^a

" Haver & Boecker.

^b Tensile strength in Newtons for a 10 mm wide strip.

• Weight is for stainless steel. density 1.4301.

^d Calculate permeability values from Y and M factors using equations in text.

HB-code	Nominal mesh count	ninal Micron retention h count		Equation facto	rs for permeability performance	Tensile stren	gth ^b	Weight ^c (kg/m ²)	Cloth thickness
		Nominal (µm)	Absolute (µm)	Y ^d	M ^d	Warp wires N	Weft wires N		(mm)
RPD 15	720×150	15	16-20	35.63	0.01726	240	400	0.65	0.15
RPD17	630×130	17	20-24	30.95	0.02967	210	480	0.85	0.22
RPD 25	600×100	25	34-38	10.14	0.01751	220	440	0.80	0.23
RPD 40	290×75	40	53-58	12.94	0.03460	540	700	1.55	0.40
RPD 60	175×50	60	67-75	8.29	0.03479	570	1200	2.40	0.57
TRD 75	400×120	75	75-80	4.00	0.00520	360	230	0.73	0.24
RPD 80	130×35	80	95-105	8.25	0.01614	860	1250	3.10	0.77
RPD 85	175×37	85	100-106	3.81	0.00255	780	720	2.10	0.57
RPD 90	170×40	90	106-118	4.03	0.01569	890	770	2.10	0.57
TRD 125	260×40	125	112-125	1.12	0.16700	2220	580	2.25	0.62
RPD 400	84×14		450-530	0.33	0.01028	1630	1160	3.50	1.15
TRD 400	132×17		400-450	1.00	0.01686	6700	750	4.65	1.35
RPD 500	80×14		560-630	0.10	0.01123	1550	1160	3.40	1.18
TRD 500	72×15		500-600	0.02	0.01567	55 220	770	6.35	1.85

Table 6.17 Reverse plain dutch weave (RPD) & twilled reverse dutch (TRD) cloths^a

Haver & Boecker. a

^b Tensile strength in Newtons for a 10 mm wide strip.

¢

Weight is for stainless steel, density 1.4301. Calculate permeability values from Y and M factors using equations in text. d

allowing the packing of quite a large filtration area into a relatively small filter volume, as with papers or non-woven media.

A single-layer sintered mesh is essentially a surface filtration medium. However, depending on the gauge of the wires, and the weave, relatively high dirt-holding capacities may be achieved. Typical of these materials are Pall's range of Rigimesh media, the characteristics of which are summarized in Table 6.18. Higher dirt-holding capacities, and hence longer on-stream times, may be obtained by using laminates of several meshes with decreasing aperture sizes in the direction of filtrate flow, so that the resultant composite medium acts as a depth filter.

The best-known format for sintered wire mesh is the laminated form, which permits the construction of fine-pore surface filtration media of very high mechanical strength. A five-layer version is supplied by several companies, typically under a '...plate' brand name (indicative of its stiffness). However, laminated sintered wirecloth is available with any number of layers of material that the end-user cares to specify, from 2 to as many as 20. depending on whether the objective is give mechanical strength and rigidity to a very fine mesh, or to increase the dirt-holding capacity in depth filtration applications.

The standard five-layer format consists of a coarse top layer to protect the second layer, which is the actual filter medium. This will normally be a fine mesh, with apertures as small as a few micrometres. Below the filtering mesh will be a layer of coarser mesh to act as a flow distribution device, and below this will be two layers of much coarser mesh to act as support for the whole medium, as exemplified by Bopp's Poremet material, illustrated in cross-section in Figure 6.7. The supporting

Media grade	Micron	remova	ll rating	Nominal standard thickness (mm)	Permeability ^c		
	Liquid	service ^a	Gas service ¹	>		to air	to water
	98%	100%	98% removal by weight	100% removal			
Supramesh Z Riaimesh	1.5	15	0.5	2	0.28	147	1.8
K	5	18	3.5	13	0.15	520	84
I	10	25	6	18	0.15	1524	98
M	17	45	11	25	0.15	2456	118
R	40	70	30	55	0.28	4912	295
S	70	105	50	85	0.25	8038	393
Т	145	225	120	175	0.3	_d	_d
А	300	450	250	350	0.48	q	_ď

Table 6.18 Pall 'Rigimesh' and 'Supramesh' sintered metal media

^a Using AC dusts in water, efficiency measured by particle count.

^b Based on AC Fine Test Dust in air. Absolute retention rating based on particle count data.

^c l/dm² min⁻¹ @ 10 mbar pressure drop.

^d Properties not readable.

meshes enable the filtration to be carried out under a pressure differential across the medium that the filtering layer on its own would be unable to contain.

Poremet is available in a range of nominal filtration ratings from 2 to $60 \,\mu\text{m}$, which correspond to absolute (i.e. glass bead challenge ratings) of 5–75 μm . Technical data for these media are given in Table 6.19, while air and water flow rates are given in Figures 6.8 and 6.9, against pressure drop (these figures include curves for Bopp's other, more open, medium Absolta).

Sintered wire mesh is normally produced from stainless steels (304L and 316L being the most popular forms), but other metals are also available, such as phosphor bronze, while more exotic alloys, such as Hastelloy, can be supplied.

The five-layer format is quite stiff, and capable of supporting itself in quite large dimensions. It can also be machined and shaped like solid metal plate, and is available as tubes and as cylindrical cartridges.

A different form of composite combines sintered woven mesh with a layer of powder or fibre sinter-bonded to the upstream surface. An example of this is Pall's Supramesh Z, data for which are included in Table 6.18.

A sophisticated variant of this last type of composite provides the basis of Pall's PMM range of metal membranes, which are discussed further in Chapter 8.

6.2.5 Knitted mesh

By contrast with the structural forms produced by the weaving of filaments, knitting results in a mesh structure of asymmetrical interlocking loops as illustrated schematically in Figure 6.10. The knitted mesh emerges continuously from the machine as a stocking or flattened tube, and is thus a double-layered strip typically in widths up to 635 mm (Figure 6.11). This may then be subjected to a series of subsequent operations to form it into thick rigid pads for use either in filtration, notably as demisters, or in coalescers.

Meshes are knitted from one of. or a combination of, a wide variety of materials, including metals such as galvanized steel, stainless steels, aluminium, copper, nickel and its alloys, as well as polypropylene and fluorocarbon polymers. Filaments are generally circular in section, with diameters in the range 0.1-0.3 mm; a flattened section is possible with synthetic filaments, which increases the surface area.

Figure 6.7. Section through 'Poremet' multilayer media.

Although much of the discussion in this section relates to mesh knitted from metal wire, the text can largely be taken to refer also to plastic filament meshes, especially in the comments about the need for plastic mesh in the coalescing of dispersed organic liquids.

Knitted mesh is generally specified by the number of stitches per centimetre in the two directions, along and across the machine (A and B in Table 6.20 - which includes plastic as well as metal meshes). with 1-6 being the most widely used. The stitch can be lengthened or shortened during knitting, while the mesh can be stretched lengthways to produce a narrower stocking with longer and thinner stitches, or opened out to form a wider stocking with a shorter and wider stitch. Crimping, which may be either diagonal or herringbone, increases both the thickness and the stiffness of the mesh; it also increases the free volume and reduces the resistance to airflow.

Filter elements are formed from multiple layers of crimped or uncrimped mesh by laying, folding, rolling and (where appropriate), compressing the layers. Exploitation of the variables outlined above permits the manufacture of a very wide range of different grades, with surface areas per m^3 extending from about $100 m^2$ to more than 4000 m², with free volumes from 75 to 99.5%. Examples of rolls of uncrimped and crimped mesh and of some elements are shown in Figure 6.12.

6.2.5.1 Demisters

The particular use of knitted mesh in filtration is the removal of suspended liquid droplets in either a gas or a liquid stream. The structure of the mesh enables the captured droplets to coalesce into larger drops and then to drain out of the filter mass. The process is called demisting when done in the gas phase.

Poremet	Filter ratir	1g (μm)	Thickness (mm)	'hickness τ _s ^c c mm) (N/mm ²) (σ _B ^d (%)	Elongation (N/mm ²)	σs ^e (%)	Space void (g/dm²)	Weight
	Nominal ^a	Absolute ^b							
2	<2	5							
5	5	.10							
10	10	15	1.6-2.0	220-230					
15	15	20							
20	20	25			100-130	10-15	55-60	35	90-92
30	30	35							
40	40	50							
50	50	60	1.8-2.2	230-240					
60	60	75							

Table 6.19	Technical data	for Bopp 'Poremet	' multilayer media
------------	----------------	-------------------	--------------------

a Nominal filter rating: approximate value for cake filtration.

^b Absolute filter rating, determined by the glass beard test.

- ^c Shear strength τ_s determined by stamping related to the cross.
- ^d Breaking strength $\sigma_{\rm B}$ sections (thickness X).

^e Yield point σ_s at 0.2% elongation stressed length.

Table 6.21 summarizes the types of standard demisters recommended by KnitMesh for various typical industrial applications. Further information is provided in Section 5.4 of Chapter 5 in the discussion of media for air and gas filters.

6.2.5.2 Coalescers

Pads of mesh knitted from a single material are effective in removing dispersed droplets of an insoluble or immiscible liquid from a second liquid (e.g. oil droplets

Figure 6.8. Flow rates of air through 'Poremet' and 'Absolta' multilayer media.

Figure 6.9. Flow rates of water through 'Poremet' and 'Absolta' multilayer media.

from water or water droplets from oil), provided the droplets are larger than about $30 \ \mu m$. This corresponds to unstable *primary dispersions*, the two phases of which separate rapidly in the absence of agitation or shear.

The efficient functioning of a conventional coalescer of this type is dependent on the mesh filaments being preferentially wetted by the dispersed phase. This interaction between the liquid and the filament is related to the respective surface free energies, which vary considerably for different solids and liquids. Therefore, the material of the filaments must be selected to be compatible with the dispersed liquid; for example, aqueous liquids preferentially wet metals, which have high surface free energies. whereas organic liquids require filaments of low surface free energy, such as plastics.

By contrast, the KnitMesh DC coalescer combines both metal and plastic filaments in the one pad, to exploit the greatly enhanced coalescence observed to occur at 'junction points' where the two materials are in contact and produce a discontinuity of surface free energy. Variations of the filament type, filament diameter and stitch size provide a structure containing many such 'junction points'.

Advantages claimed for the KnitMesh DC coalescer include a higher separating efficiency due to the 'junction effect'. as well as higher flow rates and lower pressure drops. Moreover, the coalescer can be used with either phase dispersed, so that there is no loss of performance even if phase inversion occurs. Examples of

Figure 6.10. Illustration of mesh patterns formed by knitting.

Figure 6.11. Examples of stocking or double-layered knitted mesh.

Reference no.	Diameter of wire (mm)	Width as knitted (cm)	Number of stitches/cm			
			A	В		
Fine mesh – meta						
9002	0.11-0.15	1.6	3.5	4.4		
9022	0.11-0.15	2.2	4.0	5.9		
9028	0.11-0.15	6.4	3.5	3.1		
9046	0.11-0.15	6,4	3.5	4.7		
9035	0.11-0.15	8.3	4.0	3.4		
9001	0.11-0.15	8.3	4.0	4.3		
9029	0.11-0.15	13.0	4.0	5.5		
Medium-fine mes	sh–metal					
9037	0.15	3.8	2.8	3.7		
9077	0.15	23.0	2.4	3.2		
9059	0.15	32.0	2.4	3.1		
9055	0.15	50.0	2.4	4.2		
Standard mesh –	metal					
9017	0.25-0.28	5.4	1.6	1.9		
9043	0.25-0.28	5.7	1.6	2.1		
9041	0.25-0.28	13.7	1.6	1.5		
9033	0.25-0.28	14.3	2.0	1.8		
9056	0.25-0.28	23.0	2.0	1.8		
9030	0.25-0.28	32.0	2.0	1.8		
9063	0.25-0.28	40.0	2.0	1.7		
9052	0.25-0.28	50.0	2.0	1.6		
Coarse mesh – m	etal					
9039	0.25-0.28	17.0	1.6	0.74		
9057	0.25-0.28	23.0	1.6	0.90		
9036	0.25-0.28	35.0	1.6	0.80		
9066	0.25-0.28	40.0	1.6	0.85		
9054	0.25-0.28	50.0	1.6	0.80		
Fine mesh – plas	tic and fibre					
9029	0.13	12.0	5.0	6.0		
9062	0.13	14.0	6.7	4.3		
9059	0.13	36.0	2.7	2.8		
Standard mesh –	plastic and fibre			2.0		
9017	0.25	5.0	1.7	2.0		
9040	0.25	12.0	1.7	1.7		
9003	0.25	14.0	1.9	1.8		
9030	0.25	36.0	1.9	1.6		
9063	0.25	43.0	1.9	1.6		
9052	0.25	55.0	1.9	1.5		
9045	0.25	70.0	1.9	1.4		
Coarse mesh – p	lastic and fibre			1.4		
9039	0.25	13.0	1.6	1.0		
9036	0.25	33.0	1.6	0.9		
9049	0.25	64.0	1.6	0.8		
Extra coarse me 9049	sh–plastic and fibre 0.25	31.0	1.6	0.6		

Table 6.20 Examples of KnitMesh metal and plastic meshes

Figure 6.12. Examples of crimped stocking and multi-layer elements. (Photograph: KnitMesh Ltd)

Type no.	% free volume	free Density ^a Surface area Special materials blume (kg/m^3) (m^2/m^3) included		Special materials included	Applications
9001	97.6	192	680	None	Very high efficiency, very clean service
9033	97.6	192	400	None	Heavy duty
9032	97.6	170	350	None	For general use
9030	92.2	144	300	None	Standard. general purpose media
9030L2	98.2	144	500	None	High efficiency for fine
					entrainment
9059	98.7	107	380	None	Fine entrainment
9036	98.8	96	200	None	High velocity. dirty service
4530	98.8	96	200	None	High velocity. clean service
4536	99.1	72	150	None	Minimum pressure drop. dirty
					service
9036	93.0	185	1500	Glass wool	Coalescer – very fine mist
9048	95.0	128	1000	Glass wool	Coalescer – fine mist
9008	95.7	45.5	1050	Polypropylene	High performance – acid mist
9030	93.2	72	820	Polypropylene	
9036	95.8	44	495	Polypropylene	Acid mists and marine engine intakes with minimum pressure drop
9048	97.0	32	360	Polypropylene	
9033	94.0	290	1115	Glass wool/ss316	
9030	95.0	205	820	Glass wool/ss316	Fine mist where stainless steel is valid and minimum pressure drop is important
9036	96.0	138	525	Glass wool/ss316	
9048	94.0	128	820	Teflon FEP	Highly corrosive conditions
9048	95.1	85	725	Hostaflon ET	Highly corrosive conditions

Table 6.21 Applications of standard KnitMesh demisters

^a Density is for stainless steel. For nickel/copper alloys. add 13%.

System	Application	Coalescer type
Xylene-water	Condensation of vapour	DC 9201 SS/PPL
Ethylene dichloride-water	Condensation	DC 9201 Fibreglass PPL
Hydrocarbon-water	Steam stripping	DC 9201 SS/Hostaflon
Oil-water	Effluent oil separation	DC 9230 SS/PPL
Oil-water	Effluent oil separation	Composite DC 9201 SS/PPL/GW
Fatty acid-water	Contamination of wash water	DC 9201 SS/PPL
Diesel fuel-water	Washing operation	DC 9201 SS/PPL
Benzene-caustic solution	Entrainment	DC 9201 SS/PPL
Hexane-water	Extraction	DC 9201 SS/PPL
Propane-water	Extraction	DC9201 SS/Teflon
Vegetable fats-water	Fat sweetening. extraction process	DC 9201 SS/PPL

Table 6.22 Examples of applications of KnitMesh DC coalescer

Figure 6.13. Performance tests of KnitMesh DC9201 SS/PPL coalescer: flow rate versus pressure drop.

Figure 6.14. Performance tests of KnitMesh DC9201 SS/PPL coalescer: flow rate versus entrainment.

applications are given in Table 6.22. Figures 6.13 and 6.14 show the typical relationships between flow rate, pressure drop and entrainment for 1/1 kerosene-in-water and water-in-kerosene dispersions with mean drop size in the range $100-150 \,\mu\text{m}$, filtered through a $300 \,\text{mm}$ thick DC9201 SS/PPL coalescer.

6.3 Woven Plastic Mesh

Everything that has been written above about metal wire meshes can apply in principle to the use of plastic monofilament as warp and weft – whether as square mesh or 'zero aperture' weaves. The use of multifilament yarns is more common in plastic materials than for wire mesh. Even sintering is possible, although much less commonly used, despite the less rigid nature of the meshes, and hence the lower degree of accuracy of aperture, especially after use.

Data on monofilament plastic meshes are to be found in Section 2.3.2 of Chapter 2.

6.3.1 Coated plastic mesh

Interesting alternatives to conventional metal or plastic meshes are the 'Metalester' products of Saati, a manufacturer of an extensive range of precision woven monofilament meshes and fabrics. The Saatifil Metalester materials are hybrid materials, for which electrolytic techniques are used to deposit a coating of metal all over a polyester mesh substrate. The standard coating metal is nickel, but copper, silver, gold and platinum are also used.

The metal coating is stated to cover the plastic completely, and to result in a totally stable structure in which the individual filaments are bonded to each other at every intersection. Advantages claimed are freedom from the static problems common with plastic meshes, the ability to cut, bend and weld, as well as freedom from migration. Table 6.23 summarizes the standard grades, with apertures from 20 to $2000 \,\mu\text{m}$.

6.4 Perforated Sheets and Plates

Perforated sheets are produced by high-pressure presses that punch groups of holes through a metal sheet as it is indexed through the press. This process may leave very slight burrs around the edges of the holes on the underside of the sheets; when applied as a support for a filter cloth, it may therefore be advisable to orientate a perforated sheet accordingly.

Despite the extreme simplicity of this structure, the multiplicity of variations in the geometrical parameters associated with holes in sheets. combined with the different metals available, potentially permit the production of an immense variety of perforated metal sheets. In addition to the thickness and type of metal, the variable parameters include the shape of the holes, their size, the pattern in which they are arranged, the number of holes per unit area, and the distance

Reference no. ^b	2000/65	1180/57	545/44	403/35	285/47	200/43	146/39	109/38	76/29	65/34	52/27	43/26	36/22	31/19	25/16	23/11	20/12
Aperture (µm)	2000	1180	545	403	285	200	146	109	76	65	52	43	36	31	25	23	20
Meshes/cm	4.25	6.5	12	15	24	32	43	55	71	90	100	120	130	140	165	150	180
Thread dia. (µm)	500	385	260	260	120	100	80	64	55	40	4()	34	34	34	31	34	31
Thickness of fabric (µm)	990	800	470	550	235	172	140	120	100	69	70	66	67	62	68	75	64
Open area (%)	65	57	44	35	47	43	39	38	29	34	27	26	22	19	16	11	12
Weight (g/m ²)	225	210	184	235	84	75	60	51	51	32	37	33	37	40	35	43	4()

Table 6.23 Examples of 'Metalester' nickel coated polyester precision screens^a

SAATI SpA, and Sericol Ltd.
 All reference numbers should be prefixed MET.

between adjacent holes; various combinations of these parameters determine the percentage of open area.

Perforated sheets are used for some of the coarsest separation duties in industry – the grading of pebbles, for example – with hole diameters measured in centimetres, not millimetres, let alone micrometres.

At one time it was customary for suppliers to include literally hundreds or even thousands of items in their nominal list of standard products. By contrast, modern rationalization of manufacturing and stock control procedures has tended to result in a much shorter standard product range, tailored to careful analysis of the market, but to supplement this with producing special grades as required. For example, Table 6.24 lists the standard mild steel perforated sheets held in stock by one supplier and Table 6.25 is the same company's stock list of stainless steel and non-ferrous perforated sheets, all of these being based on round holes.

Plastic sheets can be perforated by the same pressing techniques as used to perforate metal, and more easily. Although limited ranges of plastic sheets were formerly available, they appear now only to be produced to special order partly because most perforated sheet applications are for dry screening of abrasive materials, to which plastic materials are not very resistant.

Pattern no.	Hole diameter	Pitch (mm)	Open area	Thickness of sheet (mm)				
	(mm)		(/4)	$2 \text{ m} \times 1 \text{ m}$	2.5 m×1.25 m			
3703A	1.10	2.00	27	I				
613	1.60	2.84	28	1.2/1.5				
82	1.96	3.07	36	1.2				
127	2.84	3.80	50	1.2/1.5				
109	2.46	3,97	36	0.91/1.2/1.5				
1614A	3.20	5.0	37	3.0				
1614	3.17	4.75	40	0.9/1.2/1.5				
694	4.75	7.14	40	0.9/1.2				
2136	3.17	6.35	23		3.0			
467	4.75	7.93	32	0.9/1.2/1.5/3.0	1.5/3.0/5.0			
214	6.35	8.71	47	1.2/1.5	1.2/1.5			
567	6.35	9.53	40	0.9/1.2/3.0	3.0/6.0			
600	6.35	12.70	23	6.0	5.0/6.0			
249	9.53	12.70	50	1.5				
252	9.53	14.27	40	3.0	3.0/5.0			
273	12.70	17.46	47	1.5/2.0				
497	12.70	19.05	40	3.0/6.0	3.0			
605	12.70	25.40	23	10.0				
285	22.20	27.00	61		3.0			
1024	25.40	34.90	48		6.0			

Table 6.24 Standard perforated mild steel sheets (round holes)*

^a Associated Perforators & Weavers Limited.

6.4.1 Expanded metal media

Expanded metal is made from metal sheets by a repetitive process that involves first cutting it to form a series of short slits, and then stretching the sheet to open up these slits into the characteristic diamond apertures of Figure 6.15. This may be followed by calendering so as to flatten the resultant metal strands from the sloping profile imposed on them during stretching.

Measurement of the dimensions of the apertures and the strands is defined in Figure 6.16 for both uncalendered mesh ('conventional') and for calendered mesh ('flattened'). Typical data for the finer grades of both types in various metals are given in Tables 6.26 and 6.27.

Plastic sheets can be expanded by the same slitting and stretching techniques as used to expand metal. Although limited ranges of plastic sheets are available.

Pattern no.	Hole diameter (mm)	Pitch (mm)	Open area (%)	Metal	Thickness (mm)	Stocked size (mm)
1533	0.55	1.02	26	Brass	0.45	1220×610
1762A	0.80	1.50	26	S/S 304	0.50	2000×1000
613A	1.50	2.60	30	S/S 304	1.0	2000×1000
441	2.16	3.00	46	Zinc	0.35	2440×915
668	2.46	4.75	24	Pre-galvanized	0.7	2500×1250
668	2.46	4.75	24	Pre-galvanized	1.2	2500×1250
951	3.17	5.33	32	Pre-galvanized	0.7	2500×1250
951	3.17	5.33	32	S/S 304	1.2	200×1000
951	3.17	5.33	32	S/S 304	0.9	2000×1000
1614	3.17	4.75	40	Aluminium	1.2	2000×1000
1614	3.17	4.75	40	S/S 304	1.5	2000×1000
694	4.75	7.14	40	Aluminium	1.2	2000×1000
467	4.74	7.03	32	S/S 304	1.2	2000×1000
567	6.35	9.53	40	s/S 304	2.0	2000×1000
567	6.35	9.53	40	S/S 304	1.2	2000×1000

Table 6.25 Standard stainless steel and non-ferrous perforated sheets (round holes)^a

^a Associated Perforators & Weavers Limited.

Figure 6.15. Examples of expanded metal mesh. (Illustration: The Expanded Metal Co. Ltd)

these products have largely been replaced by the extruded materials discussed below (Section 6.6).

6.4.2 Electrolytically formed sheets

The processes of photo-etching and electroforming are used by Stork Veco to produce a substantial range of finely perforated metal sheets. $15-1500 \mu m$ in thickness, and a smaller range of screens for continuous basket centrifuges. Photo-etching involves the removal of metal from a continuous sheet. while electroforming creates the perforated sheet by building up a layer of metal by depositing it upon a substrate. These two processes (plus laser cutting) provide a wide range of delicately structured items for industrial use, covering electric shaver foils to ink-jet orifice plates.

Photo-etching is applicable to almost all metals and their alloys. It begins with the production of a photo-mask in the precise shape of the required product, which is superimposed on a metal sheet. This sheet, already coated with a photoemulsion, will become the perforated plate. After exposure through the mask to suitable UV light, and subsequent development and washing of the coating, the unexposed parts of the photo-emulsion protect the metal during etching; if both

For flattened meshes dimensions of the aperture point to point are shown

Figure 6.16. Defining the dimensions of expanded metal meshes. (Illustration: The Expanded Metal Co. Ltd.)

LW^b SW^c W^d T^e NormalMax. I 941MM\$\$316/\$111.000.670.200.1532360.170957MM\$\$8316/\$111.500.920.220.1546540.1949268\$\$304/\$153.181.950.790.4612131.8999278\$\$8316/\$313.1751.810.2540.15260661.088901AAluminium3.181.810.280.3260661.2557078\$\$8304/\$154.752.380.560.4643511.2581220\$teel5.843.500.790.6042541.5701	iteet size (mm)	Sheet siz	Weight sheet	(%)	Open area	nd (mm)	Size of stra	Nominal aperture (mm)		Mesh no. Metal		Metal	Metal	Mesh no.
941MMSS316/S111.00 0.67 0.20 0.15 32 36 0.170 957MMSS316/S111.50 0.92 0.22 0.15 46 54 0.194 926SSS304/S15 3.18 1.95 0.79 0.46 12 13 1.899 927SSS316/S31 3.175 1.81 0.254 0.152 60 66 1.088 901AAluminium 3.18 1.81 0.28 0.32 60 66 1.255 707SSS304/S15 4.75 2.38 0.56 0.46 43 51 1.258 1 220Steel 5.84 3.50 0.79 0.60 42 54 1.570 1	W ^b SW ^c	L W ^b	(Kg)	Max.	Normal	Te	W ^d	SWc	LW ^b					
957MM SS316/S11 1.50 0.92 0.22 0.15 46 54 0.194 926S SS304/S15 3.18 1.95 0.79 0.46 12 13 1.899 927S SS316/S31 3.175 1.81 0.254 0.152 60 66 1.088 901A Aluminium 3.18 1.81 0.28 0.32 60 66 1.255 707S SS304/S15 4.75 2.38 0.56 0.46 43 51 1.258 1 220 Steel 5.84 3.50 0.79 0.60 42 54 0.570 1	212 Coil	212	0.170	36	32	0.15	0.20	0.67	1.00	SS316/S11	941MM			
926S SS304/S15 3.18 1.95 0.79 0.46 12 13 1.899 927S SS316/S31 3.175 1.81 0.254 0.152 60 66 1.088 901A Aluminium 3.18 1.81 0.28 0.32 60 66 1.255 707S SS304/S15 4.75 2.38 0.56 0.46 43 51 1.258 1 220 Steel 5.84 3.50 0.79 0.60 42 54 0.570 1	313 Coil	313	0.194	54	46	0.15	0.22	0.92	1.50	SS316/S11	957MM			
927S SS316/S31 3.175 1.81 0.254 0.152 60 66 1.088 901A Aluminium 3.18 1.81 0.28 0.32 60 66 1.255 707S SS304/S15 4.75 2.38 0.56 0.46 43 51 1.258 11 220 Steel 5.84 3.50 0.79 0.60 42 54 0.570 11	610 1070	610	1.899	13	12	0.46	0.79	1.95	3.18	SS304/S15	926S			
901A Aluminium 3.18 1.81 0.28 0.32 60 66 1.255 707S SS304/S15 4.75 2.38 0.56 0.46 43 51 1.258 1 220 Steel 5.84 3.50 0.79 0.60 42 54 1.570 1 6014 Aluminium 5.84 3.50 0.79 0.60 42 54 0.506 1	420 7620	420	1.088	66	60	0.152	0.254	1.81	3.175	SS316/S31	9278			
7078 SS304/S15 4.75 2.38 0.56 0.46 43 51 1.258 1 220 Steel 5.84 3.50 0.79 0.60 42 54 1.570 1 6014 Aluminium 5.84 3.50 0.79 0.60 42 54 0.506 1	610 7620	610	1.255	66	60	0.32	0.28	1.81	3.18	Aluminium	901A			
220 Steel 5.84 3.50 0.79 0.60 42 54 1.570 1 6014 Aluminium 5.84 3.50 0.79 0.60 42 54 0.506 1	250 1250	1250	1.258	51	43	0.46	0.56	2.38	4.75	SS304/S15	7078			
6014 Aluminium 5.84 3.50 0.79 0.60 47 54 0.506 1	200 610	1200	1.570	54	42	0.60	0.79	3.50	5.84	Steel	220			
001Λ (tunimum for 1.00 0.77 0.00 TZ T 0.000	200 610	1200	0.506	54	42	0.60	0.79	3.50	5.84	Aluminium	601A			
602A Aluminium 5.84 3.39 1.17 0.56 25 33 0.774 1	200 610	1200	0.774	33	25	0.56	1.17	3.39	5.84	Aluminium	602A			
2278 \$\$304/\$15 5.84 3.39 0.81 0.46 51 61 1.287 J	250 1250	1250	1.287	61	51	0.46	0.81	3.39	5.84	88304/815	2278			
2288 S\$304/S15 5.84 3.39 1.22 0.56 26 37 2.359 J	250 1250	1250	2.359	37	26	0.56	1.22	3.39	5.84	SS304/S15	2288			
209 Steel 10.24 5.64 1.55 1.00 42 55 4.800 J	220 915	1220	4.800	55	42	1.00	1.55	5.64	10.24	Steel	209			
351A Aluminium 10.24 5.64 1.55 0.90 42 57 1.496 J	220 915	1220	1.496	57	42	0,90	1.55	5.64	10.24	Aluminium	351A			
203 Steel 10.24 5.64 0.79 0.60 70 78 1.462 1	220 915	1220	1.462	78	70	0.60	0.79	5.64	10.24	Steel	203			
199 Steel 14.29 5.64 1.17 1.00 57 68 3.628 1	220 915	1220	3.628	68	57	1.00	1.17	5,64	14.29	Steel	199			
1968 \$\$304/\$15 14.29 5.64 1.33 0.90 45 57 3.862 1	250 915	1250	3.862	57	45	0.90	1.33	5.64	14.29	\$\$304/\$15	1968			
1978 \$\$304/\$15 14.29 5.64 1.33 0.70 56 74 3.003 1	250 915	1250	3,003	74	56	0.70	1.33	5.64	14.29	\$\$304/\$15	1978			
0798 Steel 19.05 7.43 1.70 1.00 52 65 10.687 2	440 1220	2440	10.687	65	52	1.00	1.70	7.43	19.05	Steel	0798			
0798A Aluminium 19.05 7.43 1.70 0.90 52 65 3.334 2	440 1220	244()	3.334	65	52	0.90	1.70	7.43	19.05	Aluminium	0798A			
07988 \$\$304/\$15 19.05 7.26 1.71 0.90 52 66 7.613 2	500 1250	2500	7.613	66	52	0.90	1.71	7.26	19.05	88304/815	07988			
1196 Steel 28.58 9.52 1.98 1.20 61 73 11.669	440 1250	244()	11.669	73	61	1.20	1.98	9.52	28.58	Steel	1196			
1196A Aluminium 28.58 9.52 1.98 1.20 61 73 4.019	440 1250	2440	4.019	73	61	1.20	1.98	9.52	28.58	Aluminium	1196A			
11978 S\$304/S15 28.58 9.53 2.24 0.90 55 75 7.569 2	500 1250	2500	7.569	75	55	0.90	2.24	9.53	28.58	SS304/S15	11978			
1296 Steel 30.48 11.72 2.36 1.20 62 76 11.282	440 1220	2440	11.282	76	62	1.20	2.36	11.72	30.48	Steel	1296			
1296A Aluminium 30.48 11.72 2.36 1.20 62 74 3.900 2	440 1220	2440	3.900	74	62	1.20	2.36	11.72	30.48	Aluminium	1296A			

Table 6.26 Conventional expanded metal mesh^a

^a The Expanded Metal Company Limited. ^b $LW = \log \dim ension of mesh$. ^c SW = short dimension of mesh. ^d W = width of strand.

 $^{\circ}$ T = thickness of strand.

Mesh no. Me	Metal	Nominal ape	rture (mm)	Size of str	and (mm)	Open area	(%)	Weight sheet	Sheet size	e(mm)
			LW ^b	SW ^c	W^{d}	T ^c	Normal	Max.	(Kg)	LW ^b
706F	Steel	2.79	0.81	0.76	0.58	26	26	3.360	1220	915
226F	Steel	3.81	2.03	0.79	0.58	46	46	1.570	1220	915
228SF	SS304/S15	3.00	1.00	1.22	0.56	19	19	2.359	1250	1250
217F	Steel	6.855	3.56	1.30	0.90	52	52	8.930	1220	2440
217AF	Aluminium	6.86	3.56	1.27	0.89	52	52	2.585	1220	2240
0974F	Steel	14.22	4.83	1.85	0.96	52	52	9.823	1220	2240
0974AF	Aluminium	13.97	4.83	1.80	0.89	52	52	3.066	1220	2440
0792SF	SS304/S15	14.22	4.58	1.83	0.86	53	53	3.360	1250	1250
197SF	SS304/S15	10.50	3.50	1.33	0.70	52	52	3.003	1250	1250
1276SF	\$\$304/\$15	25.00	8.00	1,98	1.09	57	57	6.542	2500	1250
1280F	Steel	24.38	7.11	2.39	1.14	57	57	10.836	2440	1220
1280AF	Aluminium	24.13	6.86	2.39	1.14	58	58	3.751	2440	1220
1282F	Steel	24.38	7.62	2.08	1.14	63	63	9.436	2440	1220

Table 6.27 Flattened expanded metal mesh^a

^a The Expanded Metal Company Limited. ^b LW = long dimension of mesh. ^c SW = short dimension of mesh. ^d W = width of strand.

• T = thickness of strand.

sides of the metal sheet are being etched simultaneously, the sheet is sandwiched between two precisely aligned photo-masks. After etching is complete, the photo-emulsion is stripped off prior to post-treatment operations such as protective plating and passivation.

Electroforming employs the same masking process, but now the unexposed parts of the photo-resist lacquer protect the surface of the substrate from deposition of the metal layer that will form the screen medium. The sheet of metal and unexposed resin form a matrix that serves as the cathode in an electrolytic bath, where metal from a pure metal anode deposits on the areas where the photo-resist was removed. A thick layer of photo-resist allows the deposition of a thick-film product, while a thin layer leads to the deposition of metal firstly within the spaces between the photo-resist, and then over its edges, to create an overgrow product. As with photo-etching, various post-deposition operations are possible, most commonly adding a hard protective layer of chromium.

The Stork range of screens for continuous centrifuges (as used mainly in the sugar industry) are deformable structures, and as such are supported in use on a coarse wire mesh backing screen. They are made in electroformed nickel, and are usually chrome plated. They range in thickness from 280 to 420 μ m, and have slots, rather than round holes, with slot widths between 40 and 130 μ m, as shown in Table 6.28.

The VecoStandard type of screen is for normal applications. with a mirrorsmooth working surface. Its conical holes reduce binding and clogging, while the slots can be oriented in the screen to suit the travel direction of the sugar crystals (Figure 6.17(a)). The VecoFlux type is for higher filtrate rates, with an open area double that of the standard screens or more, for a given slot size (Figure 6.17(b)), while the VecoLife screens are significantly thicker to give a longer screen life by reducing the deformation into the support screen (Figure 6.17(c)).

The other filtration media are rigid homogeneous structures, made mainly by electroforming. They have sharp separation characteristics, with perforations down to $10 \,\mu$ m, having a high throughput and being easily cleaned. The standard

Screen type	Slot size (mm)	Open area (%)	Thickness (mm)
VecoStandard A	0.04×1.67	4.2	0.31
	0.06×1.69	6.4	0.29
	0.09×1.72	9.6	0.28
	0.13×1.76	14.2	0.25
VecoStandard B	0.06×2.11	6.4	0.34
	0.09×2.14	9.6	0.32
VecoFlux	0.04 imes 2.18	9.6	0.33
	0.06×2.20	14.4	0.33
	0.09 imes 2.23	21.8	0.33
VecoLife	0.06×2.65	9.0	0.42
	0.09×2.68	13.5	0.42

Table 6.28 Technical specifications for Veco centrifuge screens*

*Stock Veco BV

range, called Veconic, has a smooth working surface. It is electroformed in pure nickel, but can be chrome plated. The perforations are sharp-edged and conical in cross-section; they may be round or slot-shaped. Veconic screens are available in standard sheet dimensions of 1 m by 1 m. The range of sizes is shown in Table 6.29 for round holes, and in Table 6.30 for slotted holes. The wide range in open area is to be noted.

(b)

(c)

Figure 6.17. Stork Veco centrifuge screens: (a) VecoStandard, (b) VecoFlux, (c) VecoLife.

The Veconic *plus* range of screens is made by a special. patented electroforming process, also from pure nickel, which permits the variation in sheet thickness with the same perforation dimensions. As with the Veconic screens, Veconic *plus* is available with round or slotted holes, in sheets 1 m by 1 m. Veconic *plus* has a

Hole diameter (mm)	Mesh no. ^b	Open area (%)	Thickness (mm)
0.02	125	1	0.09
0.04	125	4	0.08
0.06	125	8	0.07
0.10	40	2	0.25
0.13	40	4	0.23
0.15	50	8	0.18
0.20	40	9	0.20
0.25	50	23	0.12
0.30	20	5	0.45
0.35	30	16	0.25
0.40	30	21	0.18
0.45	30	27	0.16
0.50	25	23	0.20
0.75	20	33	0.20
1.00	15	33	0.20
1.50	12.5	52	0.20
2.00	9	48	0.28
2.50	7	45	0.42

Table 6.29 Stork Veco Veconic filter screens with round holes*

a Stork Veco BV.

^b Mesh number is the number of holes on a line 1 inch long, and on a line 1 inch long at 60° to the first.

Table 6.30	Stork Veco Veconic filter screens with slotted holes ^a

Siot dimensions (mm)	Mesh no.ª	Open area (%)	Thickness (mm)
0.04 × 1.10	60/15	6	0.17
0.06×1.66	40/10	6	0.28
0.08×1.67	40/10	8	0.27
0.10×1.70	40/10	11	0.26
0.13×1.72	40/10	14	0.24
0.1 3 × 2.36	28/7	9	0.34
0.15×3.50	17/5	7	0.75
0.18×2.42	28/7	13	0.30
0.20×2.46	28/7	16	0.29
0.25 × 2.49	28/7	20	0.26
0.30×3.65	17/5	14	0.59
0.35×3.70	17/5	17	0.54
0.40×3.75	17/5	20	0.49
0.50×3.85	17/5	25	0.43
0.75×4.10	17/5	41	0.30

Stork Veco BV.

^b Mesh number gives. first, the number of slots on a line 1 inch long, and then the number on a line 1 inch long at 90° to the first.

Hole diameter (mm)	Mesh no. ^b	Open area (%)	Thickness (mm)
0.03	125	2	0.15
0.03	125	2	0.30
0.03	125	2	0.50
0.04	125	4	0.15
0.04	125	4	0.30
0.04	125	4	0.50
0.06	125	8	0.15
0.06	125	8	0.30
0.06	125	8	0.50
0.08	125	14	0.15
0.08	125	14	0.30
0.08	125	14	0.50
0.10	80	23	0.20
0.10	80	23	0.35
0.10	80	23	0.50
0.15	80	20	0.20
0.15	80	20	0.35
0.15	80	20	0.50
0.20	50	14	0.20
0.20	50	14	0.35
0.20	50	14	0.50
0.25	50	22	0.20
0.25	50	22	0.35
0.25	50	22	0.50

Table 6.31 Stork Veco Veconic plus filter screens with round holes*

^a Stork Veco BV.

 $^{\rm b}$ $\,$ Mesh number is the number of holes on a line 1 inch long, and on a line 1 inch long at 60° to the first.

Slot dimensions (mm)	Mesh no. ^b	Open area (%)	Thickness (mm)
0.01×0.42	160/40	5	0.30
0.01×0.42	160/40	5	0.50
0.02×0.43	160/40	10	0.30
0.02×0.43	160/40	10	0.50
0.03×0.44	160/40	15	0.30
0.03×0.44	160/40	15	0.50
0.04×0.45	160/40	20	0.30
0.06×0.47	160/40	30	0.30
0.08×0.88	80/20	18	0.30
0.08×0.88	80/20	18	0.50
0.10×0.89	80/20	23	0.35
0.10×0.89	80/20	23	0.50

Table 6.32 Stork Veco Veconic plus filter screens with slotted holes^a

^a Stork Veco BV.

^b Mesh number gives, first, the number of slots on a line 1 inch long, and then the number on a line 1 inch long at 90° to the first.

greater thickness, and hence strength, and is supplied in the finer perforation sizes, as shown in Tables 6.31 and 6.32.

The Veronic range is made in the same way as the Veconic screens, but thicker, and hence stronger. It too is available in 1 m^2 sheets, with round and slotted perforations, but the range is much smaller, with 6 sizes of round hole (0.08-1.75 mm) and 7 slotted hole sheets (0.10-0.50 mm wide), but all have quite large open areas for the size of hole.

A small range of Vecopore screens. made from pure nickel by the same special electroforming process as Veconic *plus*, has fine holes $(20-50 \ \mu\text{m})$ with high mesh numbers, and consequently large open areas. These are available in sheets 500 mm by 600 mm.

The final member of the Stork Veco perforated sheet range is the Veconox range, made by photo-etching from AISI 316 stainless steel. These have quite large perforations – the slotted sheets having slot widths from 0.13 to 0.4 mm.

6.4.2.1 Track-etched sheets

A very specialised case of etched pores in a sheet of material relates to the formation of minute pores by the bombardment of the material by rays of subatomic particles, followed by the chemical etching of the material, to form pores at the sites where it was bombarded. This is a technique used for making specialized membranes, exemplified by Whatman's Nuclepore range, and is further discussed in Chapter 8.

6.4.3 Laser-cut sheets

The application of laser techniques provides the unique benefit of forming precision-cut micro-slots in hard, wear-resisting metals such as stainless steel. In this way holes can be formed in the sheet with widths narrower than the thickness of the metal. Laser-cut screens are intended for applications needing a high proportion of open area, and a resistance to clogging of the medium. The holes are usually slots, but circular holes can also be formed in this way. The slots

Figure 6.18. Cross section of 60 μm SSL slot (a) $\times 150$ magnification, showing high relief angle and extremely sharp edges. (Photograph: Laser Action Pty Ltd)

have sharp working edges, and the high relief angles act to prevent clogging. The smooth surface of the screen is an aid to fluid flow.

A typical format is available in the patented process developed in Australia by the Commonwealth Scientific and Industrial Organization, in cooperation with the Sugar Experimental Station Board. Commercialization of the resultant SSL (stainless steel laser-cut) screens and sieve products, and those of other metals such as titanium, is in the hands of LaserAction Pty: the products are available in the UK from Croft Engineering Services.

Figures 6.18 and 6.19 show the characteristic tapered form of the slots, with extremely sharp edges, a high relief angle and smooth working face, while Figure 6.20(a) reveals the narrowing of the slots at each end. Slot widths may be from 40 to 200 μ m corresponding to the high open areas listed in Table 6.33; as compared with conventional slotted screens, SSL slots are shorter and thinner on average (because

Figure 6.19. Smooth working face of 60 μ m SSL slot (a \times 260, showing sharp slot edges. (Photograph: Laser Action Pty Ltd)

(a)

(b)

Figure 6.20. Comparing, at the same magnification, the wear after 1350 h of operation of 60 μ m slots in (a) laser-cut screen and (b) electroformed chrome nickel screen. (Photograph: Laser Action Pty Ltd)

of their narrower ends), but are several times more numerous. The metal thickness is usually $20 \,\mu$ m; screens may be up to $0.9 \,m$ wide and as much as $2 \,m$ long.

Extensive full-scale side-by-side comparative trials are reported to have demonstrated the benefits of using SSL screens in centrifuges separating sugar crystals from molasses. Although they cost some four times more than conventional centrifuge screens, this is claimed to be more than offset by process savings accruing from higher yields of sugar because of a much greater resistance to wear by the tough SSL screens. This is illustrated in Figure 6.20, which compares SSL and conventional electroformed chrome nickel 60 μ m slot screens at the same magnification after 1350 hours of operation; the slots of the conventional screen are visibly much enlarged, whereas those of the SSL show little change in sharpness or width even at the high (\times 720) magnification in Figure 6.21.

6.5 Bar and Wire Structures

The remaining metal media in this chapter are fabricated from individual bars. or from rod or wire that has been processed to change its shape. The filter elements

Slot width (µm)	Maximum open area (%)
40	7.5
50	10.0
60	12.0
70	14.0
80	16.0
90	18.0
100	20.0
120	24.0

Table 6.33 SSL laser-cut screens^a

a Laser Action Pty Ltd.

Figure 6.21. High magnification (×720) of SSL slot after 1350 hoperation. (Photograph: Laser Action Pty Ltd)

made from these media are thus assembled rather than produced in sheets or rolls. As a result they are more expensive on a unit area basis than woven mesh or perforated sheet, and so are used where their particular combination of strength and accuracy of aperture size is necessary.

6.5.1 Looped wedge wire

Looped wedge wire (Figure 6.22) is made from round wire by a two-stage process. First it is looped at regular pitched intervals and then pressed so that the sections between consecutive loops are formed into deep wedge-shaped sections. The loops themselves are also pressed to flatten the sides into accurately sized spacing shoulders that butt together when the wires are assembled into panels using locking cross rods passed through the loops, as in Figure 6.23.

The width of the resultant slit apertures between adjacent wedge wires is determined by the extent to which the width across the spacing shoulders is greater than the width of the top face of the wedge profile. The strength of the assembled panels depends on the dimensions of the wedge sections, and on the diameter and pitching of the cross rods. All of these dimensional factors can be varied to suit the application.

Another important variable is the profile of the top surface of the wedge wires. the typical options being listed in Table 6.34, which includes comments on their applications. Table 6.35 summarizes the dimensions and profiles of wedge wires and the diameters and pitches of cross rods used by one manufacturer to produce the standard screens in Table 6.36 and the finer Mini-Wedge Wire screens in Table 6.37; whilst the latter are obviously less robust than standard wedge wire, they are many times stronger than equivalent fine woven meshes.

Looped wedge wire screens are available in a variety of different metals, as indicated by Table 6.38, which provides factors to convert the mild steel weights included in Table 6.36.

Figure 6.22. A looped wedge wire. (Photograph: CAE Trislot N.V.)

Figure 6.23. Looped wedge wire screen. (Photograph: CAE Trislot N.V.)

6.5.2 Welded wedge wire screens

Welded wedge wire, usually in 304 or 316 stainless steel but also in special metals such as Hastelloy, is produced by sophisticated automated welding techniques that permit preformed profiled wedge wires to be welded directly to

Section	Name	Code	Comment
VV	Flat top wedge wire	F	The most commonly used profile, giving good screening efficiency over the whole range in most applications. It is excellent for dewatering slurries and is extensively used in coal washeries.
	Conical top wedge wire	С	Designed particularly for fine mesh screens for dewatering slurries.
VV	Square top wedge wire	S	Suitable for the larger aperture screens used with highly abrasive materials.
VV	Riffle top wedge wire	R	Combines most of the dewatering qualities of both flat and conical top profiles, and is also widely used as an attractive non-slip finish for drainage grids and walkways.

Table 6.34 Typical profiles of wedge wire^a

Table 6.35 Profiles and dimensions of looped wedge wires^a

Profile ^b	Section no.	Profile		Cross rod		
		Width (mm)	Depth (mm)	Diameter (mm)	Pitch (mm)	
С	12	1.02	1.64	3.2	25.4	
С	16	1.37	2.20	4.8	38.1	
F	20	1.70	2.74	7.9	70	
F	23	1.93	3.07	7.9	70	
FCSR	28	2.33	3.83	7.9	70	
FCSR	32	2.66	4.32	7.9	70	
FCSR	33	2.77	4.50	7.9	70	
FCSR	35	2.90	4.70	7.9	70	
FCSR	39	3.28	5.31	7.9	70	
FCSR	42	3.50	5.72	7.9	70	
FCSR	44	3.66	5.90	7.9	70	
F	41	3.91	4.87	9.5	102	
FCSR	49	4.08	6.63	12.7	102	
FCSR	51	3.43	6.98	12.7	102	
FS	54	4.52	7.34	12.7	102	

^a Screen Systems Limited.

^b F = flat top; C = conical top; S = square top; R = riffled top.

deep section cross bars (Figure 6.24). As with looped wedge wire, considerable variation is possible in the profile and dimensions of the wedge wire, and also in the shape and dimensions of the cross bars. A representative list of the standard products of Screen Systems Ltd is reproduced in Table 6.39.

Apertures	Section	Open area	Apertures	Weight ^b
(mm)	no.	(%)	per metre	(kg/m²)
0.125	20P°	6.7	547	25.6
	2 3 P	6.0	486	29.4
	28P	4.8	407	34.4
	32P	4.3	358	38.6
0.25	20P	12.5	511	24.3
	2 3 P	11.1	46()	28.0
	28P	9.2	387	32.8
	32P	8.2	341	37.1
0.375	20	16.5	479	23.1
	23	15	433	26.7
	28P	12.7	367	31.6
	32P	11.3	328	35.9
	20	20.7	53	22.1
0.75	23	18.8	410	25.6
	28	16.1	351	30.4
	32P	14.4	315	34.7
1.0	23	25.2	370	23.7
	28	21.9	325	28.6
	32	19.8	292	32.6
	23	30.9	341	22.2
	28	27.2	300	26.7
	32	24.8	273	30.7
	49	17.5	197	54.3
1.25	35	26.9	243	32.4
1.5	23	38.8	292	19.8
1.75	28	34.7	259	23.9
	35	30.2	226	30.6
	49	23.4	177	49.8
	28	37.0	246	22.9
	35	32.6	215	29.1
2.0	39	32.8	189	32.9
	49	27.4	164	46.9
	63	24.8	137	53.5
2.5	42	36.0	166	33.3
	49	32.1	151	43.9
3.0	44	38.5	151	32.9
	51	35.9	136	43.6
	54	34.9	133	46.8
4.0	51	42.0	120	40.0
	54	41.0	117	42.5

Table 6.36 Standard looped wedge wire screens*

a Screen Systems Limited.

^b Mild steel. For other metals, multiply by factor in Table 6.38.

° P: for severe side loading, spacing pips can be provided.

The Trislot screens developed by Bekaert (but now available from Trislot) include a configuration in which the slots can be as small as $10 \ \mu\text{m}$. The total range of configurations comprises flat. curved. conical and tubular: it is a particular version of the last of these that makes the $10 \ \mu\text{m}$ slot possible. namely 'out-to-in' flow with tubes up to 70 mm in diameter. For all other versions and configurations, the smallest slot size is $50 \ \mu\text{m}$ (with an average tolerance of 10%).

A distinction is made between two versions of the spirally wound tubular configuration. depending on whether flow is intended to be out-to-in (Figure 6.25) or in-to-out (Figure 6.26). The 'slot tubes' of the former version were originally developed to serve as well screens, which required them to be large and heavy; subsequent developments have refined the construction and extended the applications, with Trislot tubes produced in standard nominal diameters from 30 to 620 mm. The minimum internal diameter of 'slotted cylinders' of the in-to-out configuration is 25 mm.

Apertures (mm)	Section no.	Open area (%)	Apertures per metre	Weight ^b (kg/m ²)		
0.10	12	8.3	890	15.3		
	16	6.4	685	20.9		
0.125	12	10.1	870	15.0		
0.25	12	18.2	785	13.8		
	16	14.3	615	19.3		
0.375	12	25.0	715	12.6		
	16	20.2	575	18.2		
0.50	12	30.5	655	11.9		
	16	24.8	535	17.2		
0.75	12	39.0	560	10.5		
	16	32.8	470	15.1		
1.0	16	39.0	425	14.4		

Table 6.37 Looped 'Mini-Wedge Wire' screens^a

* Screen Systems Limited.

^b Mild steel. For other metals, multiply by factor in Table 6.38.

Table 6.38	Weight conversion	factors for	various metals
------------	-------------------	-------------	----------------

Metal	Specific gravity	Conversion factor		
Magnesium/aluminium alloy	2.65	0.337		
17% chrome steel	7.70	0.980		
Mild steel	7.85	1.000		
Galvanized steel	7.85	1.000		
Stainless steel 18/8	7.90	1.006		
Brass	8.50	1.083		
Silicon bronze	8.54	1.088		
Phosphor bronze	8.70	1.108		
Monel	8.80	1.121		
Copper	8.90	1.133		

Johnson channel rod screens have a distinctive internal structure, as shown in Figure 6.27. These are available in a range of 10 standard sizes (internal diameters from 25 to 200 mm), with slot openings upwards from 75 μ m. They are used in the underdrain systems of sand filters with the claimed advantage of eliminating the need for several layers of graded support gravel beneath the sand bed (Figure 6.28).

Figure 6.24. Welded wedge wire screen. (Photograph: CAE Trislot N.V.)

Aperture ^b (mm)	Profile no.	Profile width (mm)	Profile depth (mm)	Open area (%)
0.25	28	2.2	4.5	10.2
	34	2.8	5.0	8.1
	42	3.4	6.5	6.8
0.53	28	2.2	4.5	18.5
	34	2.8	5.0	15.2
	42	3.4	6.5	12.8
0.75	28	2.2	4.5	25.4
	34	2.8	5.0	21.1
	42	3.4	6.5	18.1
1.0	28	2.2	4.5	31.1
	34	2.8	5.0	26.3
	42	3.4	6.5	22.7
1.25	28	2.2	4.5	36.2
	34	2.8	5.0	30.9
	42	3.4	6.5	26.9
1.5	28	2.2	4.5	40.5
	34	2.8	5.0	34.9
	42	3.4	6.5	30.6
1.75	28	2.2	4.5	44.3
	34	2.8	5.0	38.5
	42	3.4	6.5	34.0
2.0	28	2.2	4.5	47.6
	34	2.8	5.0	41.7
	42	3.4	6.5	37.0
2.5	28	2.2	4.5	53.2
	34	2.8	5.0	47.2
	42	3.4	6.5	42.4

fable 6.39	Welded	wedge	wire	screensa
------------	--------	-------	------	----------

^a Screen Systems Limited.

^b Apertures up to 10 mm are available.

Figure 6.25. 'Trislot' tubes for out-to-in flow. (Illustration: CAE Trislot N.V.)

Figure 6.26. 'Trislot' cylinders for in-to-out flow. (Illustration: CAE Trislot N.V.)

Figure 6.27. Wedge wire channel rod screen. (Illustration: Johnson Filtration Systems)

As an alternative to their stainless steel cylindrical screens for use in collector and distributor systems for sand filters (see Figure 6.27). Johnson Filtration Systems also produce a corresponding range of plastic screens (Figure 6.29). These are of sonic-welded PVC construction, tailored to integrate with standard PVC pipe fittings: the slot sizes extend from $150 \,\mu m$ to $3.175 \,mm$.

6.5.3 Bar screens

A screen surface can be formed by assembling a number of separated flat bars. The huge flat or sloping screens used for separating crushed ores in mineral processing works are often made in this way. A more delicate example of this structure is incorporated in the high-pressure screw press for dewatering rubber crumb shown in Figure 6.30. As can be seen, this is of very robust construction so as to withstand operating pressures up to some 1300 bar. The drainage cage is therefore built up from 28 cm long stainless steel bars laid side by side, with spacers between them, to give a replaceable cartridge; several such cartridges placed end to end make up the full length of the cage.

Figure 6.28. Johnson channel rod underdrain for sand filter.

Figure 6.29. PVC wedge wire cylindrical screen.

A quite different form of bar screen is the *sieve bend* used in the wet classification of slurries. The screen is mounted vertically, with a surface that is flat across the screen, but concave downwards from a vertical portion at the top. The bars are arranged across the screen, with slurry flow downwards across the face of the screen, and almost tangential at the top. Also known as the DSM screen (as sold by Dorr-Oliver), this filter can be used as a classifying device, separating fine solids from coarse.

6.6 Extruded Plastic Meshes

Extensive ranges of mesh and sheet products are manufactured in plastics by the Netlon extrusion process, and by the embossing and stretching process similar to that described in Section 2.2.2.4 of Chapter 2, there referring to the production of fibrillated tapes. Products of both of these processes have very wide application in industry, far beyond their use in filtration, where they are most often used for components of filter media systems, other than the medium itself.

6.6.1 Stretched sheet media

Meshes can be made by stretching an extruded film of polymer that has been weakened in a regular pattern. The process involves embossing the pattern into the film by passing it over rollers. on whose surfaces the pattern has been photoetched, as in gravure printing. The embossed film is then heated and stretched in one or more directions, thus causing the film to rupture in a structured way at

Figure 6.30. Assembling the bar screen cage of a high pressure screw press. (Photograph: The French Oil Mill Machinery).

the impressed indentations. Variation in type of polymer, film thickness, embossed pattern and stretching process all permit the manufacture of a wide range of products, from coarse net to fine membranes.

Examples of stretched film netting are provided by the Delnet products of Applied Extrusion Technologies Inc. Two different styles are available, respectively identified as the filament type and the boss type, illustrated in Figures 6.31 and 6.32. Typical data for the two types are included in Tables 6.40 and 6.41.

Stretched film membranes made in the same way are typified by the Goretex products described in Chapter 8.

6.6.2 Extruded mesh

Fully bonded plastic mesh and other netting can also be produced by the Netlon extrusion process. Although akin to melt spinning, this is a unique method for the production of a wide variety of integral meshes. It uses two concentric,

Figure 6.31. 'Delnet' plastic netting: filament type RB0707-30P ($a \times 10$ magnification.

Figure 6.32. 'Delnet' plastic netting: boss type AC530 ($a \times 30$ magnification.

Reference no.	RB0404-10P	RB0404-12P	RB0404-28P	RC0707-20P	RC0707-24P	RB0707-30P	R0412-10PR
Basis weight (g/m ²)	33.8	27.0	18.6	18.6	30.4	3().4	43.9
Filaments per cm							
Machine direction	8.3	8.3	6,3	22.4	22.4	19.7	23.6
Across machine	5.1	5.1	б.3	9.1	9.1	9.8	5.5
Thickness (µm)	254	203	152	127	127	114	267
Tensile strength (g/cm)							
Machine direction	1430	1430	733	268	214	357	1787
Across machine	1430	1430	733	1251	965	1251	1787
Permeability to air ^b	4886	4886	6835	3158	4051	3763	4147

Table 6.40 Examples of filament type 'Delnet' polypropylene nonwoven fabrics*

R

Applied Extrusion Technologies Inc. Air permeability, l/dm²/min (@ 20 mmWG. ь

Table 6.41 Examples of boss type 'Delnet' high density polyethylene nonwoven fabrics*

Reference no.	AC530	D218	D220	EXP167	KX215	P520HF	P520	P525	P530	P620	PQ214	PQ218	X215	X220	X230	X530	X550
Basis weight (g/m ²)	17.9	33.8	29.1	24.3	37.2	22.6	27.0	21.6	21.0	28.4	54.1	30.4	33.8	27.0	21.0	18.3	12.2
Filaments per cm Machine direction Across machine	9.8 11.8	9.1 4.3	7.9 4.7	10.2 11.8	5.1 5.5	$\begin{array}{c} 11.8\\ 11.0\end{array}$	12.6 13.8	13.4 11.0	8.7 14.2	16.1 15.7	4.3 4.7	4.3 4.3	5.5 4.7	4.3 4.3	3.9 4.7	9.4 9.8	8.7 9.4
Thickness (µm)	114	142	142	114	191	124	109	114	112	117	183	114	251	262	196	145	109
Tensile strength (g/cm) Machine direction Across machine	804 447	322 1948	447 1555	590 661	1215 1305	894 804	894 804	590 1019	876 375	822 894	1573 1072	1055 929	733 1198	715 661	447 465	536 357	518 447
Permeability to air ^b	3638	2246	3177	1910	6077	1709	1574	2438	3418	1546	3331	2294	3100	5818	6106	4090	5376

a

Applied Extrusion Technologies Inc. Air permeability, l/dm²/min (a=20 mmWG. b

counter-rotating heads. each extruding a set of filaments around its perimeter: the two sets of filaments overlay each other to form a continuous tube of netting, which is slit as required to make flat strips. The net pattern. square, diamond, etc., depends upon the angle between the heads, while post-treatment, such as stretching, can produce other aperture shapes.

The Netlon process was invented in 1955 by the British textile technologist Brian Mercer and is now exploited in various forms by manufacturers in more than 40 countries throughout the world. The resultant diversity of products

Figure 6.33. Basic principles of the Netlon counter-rotating dies and the formation of strands of extruded polymer.

have many applications, perhaps the most significant being as geotextiles in civil engineering, agriculture, horticulture and gardening, as well as in packaging.

The crucial component of the Netlon extrusion machine is the die head that, in the simplest version shown schematically in Figure 6.33, comprises two concentric counter-rotating dies, with a series of slots cut into the two edges or lips which are in contact with each other. When the slots are in register, the polymer melt is extruded as streams of double thickness; but rotation to bring them out of register causes each stream to be divided until they reunite as a slot in the inner die registers with the next one in the outer die. The result is the formation of a continuous mesh structure in tubular form, which is then drawn over a mandrel and subjected to stretching, slitting and quenching operations as required.

If the slots are regular and both dies are counter-rotated at the same speed, the mesh is of regular diamond pattern. Many variations are possible on this basic form, some of which are indicated in Figures 6.34. The characteristics of any particular mesh are largely determined by the profile and position of the slots (the precision of which is of crucial importance), the speed of rotation and the nature of the movement (which need not be constant).

A flat square mesh sheet is made as follows. One die is kept stationary, initially producing a diamond mesh with right-angled intersections. The tension of the sheet, as it is hauled off the extruder and passed under a roller set at 45° to the material path, causes the mesh to rotate as it is drawn down the mandrel. A cutter is set against this mandrel in such a position that it slits the material helically between a pair of adjacent strands, to form the desired flat square-meshed sheet.

The strands forming the mesh need not be of equal cross-section. Further variations, such as oscillation of one or both dies, permit a very wide range of figured pattern effects to be obtained. It is also possible to make a three-strand mesh by inserting a stationary die between the usual two rotating dies.

A highly important method of improving the strength, flexibility and lightness of Netlon mesh is by stretching the material, using rollers of varying speed and hot water as necessary; the stretching may be either longitudinally, transversely or both (i.e. biaxially), at production speeds up to 100 linear metres per minute.

Figure 6.34. Typical Netlon mesh patterns resulting from process variables.

The effect is to increase the mesh area and also to strengthen the material very considerably by molecular orientation.

Simple methods of orientation stretch the mesh strands but leave the intersections unorientated. However, it is possible to make the intersections with a cross-section that ensures that they also orientate under suitable stress.

Although polyolefins are the most common materials used, the Netlon process is applicable to numerous other polymers, including nylon, vinyls, polystyrene and elastomers. An indication of the diversity of products possible is given in Figure 6.35. The range extends from very fine and flexible meshes containing as many as 1500 strands per linear metre and weighing only 10 g/m², to rigid tubular or sheet structures with 7 mm thick strands.

Figure 6.35. Two examples of products of the Netlon process.

Filtration applications range from simple heavy weight meshes, used as coarse strainers and separators and as backing cloths in filter presses, through to very fine meshes with apertures below $0.5 \,\mu\text{m}$ serving as separators between media layers in pleated cartridges. Rigid tubes are ideal as the cores of some styles of cartridge; examples of variations in the specifications of these tubes are given in Table 6.42.

Other examples of this process are the polypropylene and polyethylene Plastinet products from AET (Figure 6.36). Depending upon the thickness of the filaments, normally from 0.4 to 6 mm in diameter, the resultant netting may be soft and flexible, ranging up to fully rigid structures. Strand counts can vary from 1.2 to 6.8 per cm. giving products that can be flexible, 'lay flat' tubes, or rigid tubes, or flat sheets 5-245 cm in width.

Structure number	Inside diameter (mm)	Outside (mm) (typical)	Apertu diamet (typica	ire size er (mm) d) MX×TD	Open area (typical) (%)	Polymer type	Weight	
10/87A	22(+0.5-0)	27	3.0	4.5	28	PP	88 (±5)	
52/95M	25(+1-0)	33	8.5	3.5	37	PP	130(±5)	
7057	0	33(+0-0.5)	2.5	3.8	27	HD	120(±5)	
7/96B	26(+0.5-0)	34.5	3.5	4.5	27	HD	$180(\pm 10)$	
52/95D	26.7(+1-0)	36	5.3	8.3	37	РР	150 (±5)	
X125B	27.6(+0.9-0)	35.5	5.3	3.7	28	PP	150(±5)	
X125A	27.7(+0.5-0)	34.8	4.2	3.7	37	РР	135(±5)	
X197A	30.5(+0.5-0)	36.4	5.6	5.0	29	PP	130(±5)	
52/95L	33(+1-0)	40.4	8.0	5.0	34	PP	150(±5)	
X193	38.2(+0.6-0)	43	6.4	6.2	44	PP	140(±5)	
4/88A	61(+0-0.5)	66	5.5	4.3	33	PP	$170(\pm 10)$	

Table 6.42 Specifications of typical Netion rigid tubes*

^a Netlon Ltd.

Figure 6.36. 'Plastinet' netting $\langle a \rangle \times 24$ magnification, ().34 mm strands/cm. (Photograph: Applied Extrusion Technologies, Inc.)

6.7 Selecting Screens and Meshes

The prime characteristics of screens and meshes from the point of view of filtration lie in their accuracy of separation. and in their operating features of resistance to high temperatures, corrosion and abrasion – these latter features referring essentially to metal media, although polymeric media can now operate at quite high temperatures. Thus they should be chosen where accuracy of size separation is an important requirement – the most obvious example being their use in sets of test sieves, used for analysing the particle size composition of a mixture of solids.

The presence in the feed slurry of chemically corrosive liquids or abrasive solids indicates that the first place to look for a suitable medium is among the materials covered in this chapter.

A high proportion of coarse filtration is done by woven mesh screens – in such devices as in-line strainers and inlet screens. There is a strong element of unattended operation in many of these applications, especially where the screens are automatically cleaned.

By virtue of the fact that these media largely operate by surface filtration, they are prone to the risk of plugging, where a particle lodges in a pore, thereby blocking it. This means that prolonged operation requires some form of backflushing to clear the plugged holes. However, the nature of these materials means that this cleaning operation is relatively easy – by shaking or rapping, by brushing, by pressurized water or by chemical cleaning.

The heaviest duties in separation in terms of abrasion. such as mineral dressing operations, are satisfied with bar screens and punched or milled perforated sheets, while, at the other extreme, in, say, the sifting of flour, fine wire or plastic meshes are required.

Apart from the finest levels of separation, which might require membranes, and situations where very high degrees of solid removal are required, then woven meshes and screens now offer a good choice to the filter designer. They include some of the strongest constructions, such as bar screens or laminated sintered wire mesh, and are, of course, widely used also as supports for other media.