
CHAPTER 1

Residence Time Distributions

E. BRUCE NAUMAN

Rensselaer Polytechnic Institute

1-1 INTRODUCTION

The concept of residence time distribution (RTD) and its importance in flow
processes first developed by Danckwerts (1953) was a seminal contribution to
the emergence of chemical engineering science. An introduction to RTD theory
is now included in standard texts on chemical reaction engineering. There is also
an extensive literature on the measurement, theory, and application of residence
time distributions. A literature search returns nearly 5000 references containing
the concept of residence time distribution and some 30 000 references dealing
with residence time in general. This chapter necessarily provides only a brief
introduction; the references provide more comprehensive treatments.

The residence time distribution measures features of ideal or nonideal flows
associated with the bulk flow patterns or macromixing in a reactor or other
process vessel. The term micromixing, as used in this chapter, applies to spatial
mixing at the molecular scale that is bounded but not determined uniquely by
the residence time distribution. The bounds are extreme conditions known as
complete segregation and maximum mixedness. They represent, respectively, the
least and most molecular-level mixing that is possible for a given residence time
distribution.

Most of this handbook treats spatial mixing. Suppose that a sample of fluid
is collected and analyzed. One may ask: Is it homogeneous? Standard measures
of homogeneity such as the striation thickness in laminar flow or the coefficient
of variation in turbulent flow can be used to answer this question quantitatively.
In this chapter we look at a different question that is important for continu-
ous flow systems: When did the particles, typically molecules but sometimes
larger particles, enter the system, and how long did they stay? This question
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2 RESIDENCE TIME DISTRIBUTIONS

involves temporal mixing, and its quantitative answer is provided by the RTD
(Danckwerts, 1953).

To distinguish between spatial and temporal mixing, suppose that a flow
system is fed from separate black and white streams. If the effluent emerges
uniformly gray, there is good spatial mixing. For the case of a pipe, the uniform
grayness corresponds to good mixing in the radial direction. Now suppose that
the pipe is fed from a single stream that varies in shade or grayness. The effluent
will also vary in shade unless there is good temporal mixing. In the context of
a pipe, spatial mixing is equivalent to radial mixing, and temporal mixing is
equivalent to axial mixing.

In a batch reactor, all molecules enter and leave together. If the system is
isothermal, reaction yields depend only on the elapsed time and on the initial
composition. The situation in flow systems is more complicated but not impos-
sibly so. The counterpart of the batch reaction time is the age of a molecule.
Aging begins when a molecule enters the reactor and ceases when it leaves. The
total time spent within the boundaries of the reactor is known as the exit age, or
residence time, t. In real flow systems, molecules leaving the system will have a
variety of residence times. The distribution of residence times provides consider-
able information about homogeneous isothermal reactions. For single first-order
reactions, knowledge of the RTD allows the yield to be calculated exactly, even
in flow systems of arbitrary complexity. For other reaction orders, it is usually
possible to calculate fairly tight limits, within which the yield must lie (Zwi-
etering, 1959). If the system is nonisothermal or heterogeneous, the RTD cannot
predict reaction yield directly, but it still provides a general description of the
flow that is not easily obtained by velocity measurements.

Residence time experiments have been used to explore the hydrodynamics
of many chemical processes. Examples include fixed and fluidized bed reac-
tors, chromatography columns, two-phase stirred tanks, distillation and absorption
columns, and trickle bed reactors.

1-2 MEASUREMENTS AND DISTRIBUTION FUNCTIONS

Transient experiments with inert tracers are used to determine residence time
distributions. In real systems, they will be actual experiments. In theoretical
studies, the experiments are mathematical and are applied to a dynamic model of
the system. Table 1-1 lists the types of RTDs that can be measured using tracer
experiments. The simplest case is a negative step change. Suppose that an inert
tracer has been fed to the system for an extended period, giving Cin = Cout = C0

for t < 0. At time t = 0, the tracer supply is suddenly stopped so that Cin = 0
for t > 0. Then the tracer concentration at the reactor outlet will decrease with
time, eventually approaching zero as the tracer is washed out of the system.
This response to a negative step change defines the washout function, W(t). The
responses to other standard inputs are shown in Table 1-1. Relationships between
the various functions are shown in Table 1-2.
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4 RESIDENCE TIME DISTRIBUTIONS

Table 1-2 Relationships between the Functions and Moments of the RTD

Definition Mathematical Formulation

Relations between the
distribution functions f(t) = dF

dt
= −dW

dt

F(t) =
∫ t

0
f(t′)dt′

W(t) =
∫ ∞

t
f(t′)dt′

Moments about the origin µn =
∫ ∞

0
tnf(t) dt = n

∫ ∞

0
tn−1W(t) dt

First moment = mean
residence time

t =
∫ ∞

0
tf(t) dt =

∫ ∞

0
W(t) dt

Moments about the mean µ′
n =

∫ ∞

0
(t − t)nf(t) dt = n

∫ ∞

0
(t − t)n−1W(t) dt + (−t)n

Dimensionless variance of
the RTD

σ2 = µ′
2

t2
=

∫ ∞

0
(t − t)2f(t) dt

t2
=

2
∫ ∞

0
tW(t) dt

t2
− 1

A good input signal, usually a negative step change, must be made at the
reactor inlet. The mixing-cup average concentration of tracer molecules must be
accurately measured at the outlet. If the tracer has a background concentration,
it is subtracted from the experimental measurements. The flow properties of the
tracer molecules must be similar to those of the reactant molecules, and the
change in total flow rate must be insignificant. It is usually possible to meet
these requirements in practice. The major theoretical requirement is that the inlet
and outlet streams have unidirectional flows, so that once the molecules enter the
system they stay in until they exit, never to return. Systems with unidirectional
inlet and outlet streams are closed so that a molecule enters the system only
once and leaves only once. Most systems of chemical engineering importance
are closed to a reasonable approximation.

Among RTD experiments, washout experiments are generally preferred since
W(∞) = 0 will be known a priori but F(∞) = C0 must usually be measured.
The positive step experiment will also be subject to errors caused by changes
in C0 during the course of the experiment. However, the positive step change
experiment requires a smaller amount of tracer since the experiment will be
terminated before the outlet concentration fully reaches C0. Impulse response
experiments that measure f(t) use still smaller amounts.

The RTD can be characterized by its moments as indicated in Table 1-2. The
most important moment is the first moment about the mean, known as the mean
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residence time and usually denoted as t:

t =
∫ ∞

0
tf(t) dt =

∫ ∞

0
W(t) dt = mass inventory in the system

mass flow rate through the system
= hold-up

throughput
(1-1)

Thus t can be found from inert tracer experiments. It can also be found from
measurements of the system inventory and throughput. Agreement of the t’s
calculated by these two methods provides a good check on experimental accuracy.
Occasionally, eq. (1-1) is used to determine an unknown volume or an unknown
density from inert tracer data.

Roughly speaking, the first moment, t, measures the size of an RTD, while
higher moments measure its shape. One common measure of shape is the dimen-
sionless second moment about the mean, also known as the dimensionless vari-
ance, σ2 (see Table 1-2). In piston flow, all particles have the same residence
time, so σ2 = 0. This case is approximated by highly turbulent flow in a pipe. In
an ideal continuous flow stirred tank reaction, σ2 = 1. Well-designed reactors in
turbulent flow have a σ2 value between 0 and 1, but laminar flow reactors can
have σ2 > 1.

Note that either W(t) or f(t) can be used to calculate the moments. Use the
one that was obtained directly from an experiment. If moments of the highest
possible accuracy are desired, the experiment should be a negative step change
to get W(t) directly.

1-3 RESIDENCE TIME MODELS OF FLOW SYSTEMS

Figure 1-1 shows the washout functions for some flow systems. The time scale
in this figure has been converted to dimensionless time, t/t. This means that the
integrals of the various washout functions all have unit mean so that the various
flow systems can be compared independent of system size.

1-3.1 Ideal Flow Systems

The ideal cases are the piston flow reactor (PFR), also known as a plug flow
reactor, and the continuous flow stirred tank reactor (CSTR). A third kind of ideal
reactor, the completely segregated CSTR, has the same distribution of residence
times as a normal, perfectly mixed CSTR. The washout function for a CSTR has
the simple exponential form

W(t) = e−t/t (1-2)

A CSTR is said to have an exponential distribution of residence times. The
washout function for a PFR is a negative step change occurring at time t:

W(t) =
{

1 t < t
0 t > t

(1-3)
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Figure 1-1 Residence time washout functions for various flow systems.

The derivative of a step change is a delta function, and f(t) = δ(t − t). Thus, a
piston flow reactor is said to have a delta distribution of residence times. The
variances for these ideal cases are σ2 = 1 for a CSTR and σ2 = 0 for a PFR,
which are extremes for well-designed reactors in turbulent flow. Poorly designed
reactors and laminar flow reactors with little molecular diffusion can have σ2

values greater than 1.

1-3.2 Hydrodynamic Models

The curve for laminar flow in Figure 1-1 was derived for a parabolic velocity
profile in a circular tube. The washout function is

W(t) =



1 t < t/2
t2

4t2
t > t/2

(1-4)

Equation (1-4) is a theoretical result calculated from a hydrodynamic model,
albeit a very simple one. It has a sharp first appearance time, tfirst, where the
washout function first falls below 1.0. Real systems, such as that for the static
mixer illustrated in Figure 1-1, may have a fuzzy first appearance time. For the
fuzzy case, a 5% response time [i.e., W(t) = 0.95] is used instead. Table 1-3
shows first appearance times for some laminar flow systems.
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Table 1-3 First Appearance Times in Laminar Flow Systems

Geometry tfirst/t

Equilateral–triangular ducts 0.450
Square ducts 0.477
Straight, circular tubes 0.500
Straight, circular tubes (5% response) 0.513
16 element Kenics mixer (5% response) 0.598
Helically coiled tubes 0.613
Annular flow 0.500–0.667
Parabolic flow between flat plates 0.667
40 element Kenics mixer (5% response) 0.676
Single-screw extruder 0.750
Helical coils with changes in the direction of centrifugal force >0.85

Flow patterns in the Kenics static mixer are too complicated to determine
the residence time distribution analytically. Instead, experimental measurements
were fit to a simple model. The model used for the Kenics mixer in Table 1-3
assumes regions of undisturbed laminar flow separated by planes of complete
radial mixing, there being one mixing plane for every four Kenics elements.
Simpler models are useful for systems in turbulent flow.

A system with a sharp first appearance time and σ2 < 1 can be approximated
as a PFR in series with a CSTR. This model is used for residence times in a
fluidized bed reactor. If the system has a fuzzy first appearance time and σ2 ≈ 1,
the tanks-in-series model or the axial dispersion model can be used. These models
are used for tubular reactors in turbulent flow. The tanks-in-series is also used
when the physical system consists of CSTRs in series, and it may be a good
approximation for a single CSTR with dual Rushton turbines.

Tubular polymerization reactors frequently show large deviations from the
parabolic velocity profile of constant viscosity laminar flow. The velocity pro-
file of a polymerizing mixture can be calculated by combining the equations
of motion with the convective diffusion equations for heat and mass, but direct
experimental verification of the calculations is difficult. One way of testing the
results is to compare an experimental residence time distribution to the calculated
distribution. There is a one-to-one correspondence between velocity profile and
RTD for well-developed diffusion-free flows in tubes. See Nauman and Buffham
(1983) for details.

1-3.3 Recycle Models

High rates of external recycle have the same effect on the RTD as high rates of
internal recycle in a stirred tank. The recycle system in Figure 1-2a can represent
a loop reactor or it can be a model for a stirred tank. The once-through RTD must
be known. In principle, it can be measured by applying a step change at the reactor
inlet, measuring the outlet response, and then destroying the tracer before it has
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Figure 1-2 Recycle reactor: (a) flow diagram; (b) washout function for a 3 : 1 recy-
cle ratio.

a chance to recycle. A more elaborate analysis allows its estimation from tracer
experiments performed on the entire system. In practice, mathematical models for
the once-through distribution are generally used. The easiest way of generating
the composite distribution is by simulation. As a specific example, suppose that
the reactor in Figure 1-2a is a tube in laminar flow so that the once-through
distribution is given by eq. (1-4). Results of a simulation for a recycle ratio of
q/Q = 3 are shown in Figure 1-2b. This first appearance time for a reactor in a
recycle loop is the first appearance time for the once-through distribution divided
by q/Q + 1. It is thus 0.125 in Figure 1-2b and declines rather slowly as the
recycle ratio is increased. However, even at q/Q = 3, the washout function is
remarkably close to the exponential distribution of a CSTR. More conservative
estimates for the recycle ratio necessary to approach the behavior of a CSTR
range from 6 to 100. The ratio selected, of course, depends on the application.
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1-4 USES OF RESIDENCE TIME DISTRIBUTIONS

The most important use of residence time theory is its application to equipment
that is already built and operating. It is usually possible to find a tracer together
with injection and detection methods that will be acceptable to a plant manager.
The RTD is measured and then analyzed to understand system performance. In
this section we focus on such uses. The washout function is assumed to have an
experimental basis. Calculations using it will be numerical in nature or will be
analytical procedures applied to a model that reproduces the data accurately. Data
fitting is best done by nonlinear least squares using untransformed experimental
measurements of W(t), F(t), or f(t) versus time, t. Eddy diffusion in a turbulent
system justifies exponential extrapolation of the integrals that define the moments
in Table 1-2. For laminar flow systems, washout experiments should be continued
until at least five times the estimated value for t. The dimensionless variance has
limited usefulness in laminar flow systems.

1-4.1 Diagnosis of Pathological Behavior

An important use of residence time measurements is to diagnose abnormalities
in flow. The first test is whether or not t has its expected value (i.e., as the
ratio of inventory to throughput). A lower-than-expected value suggests fouling
or stagnancy. A higher value is more likely to be caused by experimental error.

The second test supposes that t is reasonable and compares the experimental
washout curve to what would be expected for the physical design. Suppose that
the experimental curve is initially lower than expected; then the system exhibits
bypassing. If the tail of the distribution is higher than expected, the system
exhibits stagnancy. Bypassing and stagnancy often occur together. If an experi-
mental washout function initially declines faster than expected, it must eventually
decline more slowly since the integrals under the experimental and model curves
must both be t. Bypassing and stagnancy are most easily distinguished when the
system is near piston flow and the idealized model is a step change. They are
harder to distinguish in stirred tanks because the comparison is made to an expo-
nential curve. When a stirred tank exhibits either bypassing or stagnancy, σ2 > 1.
Extreme stagnancy will give a mean residence time less than that calculated as
the ratio of inventory to throughput. Bypassing or stagnancy can be modeled
as vessels in parallel. A stirred tank might be modeled using large and small
tanks in parallel. To model bypassing, the small tank would have a residence
time lower than that of the large tank. To model stagnancy, the small tank would
have a longer residence time. The side capacity model shown in Figure 1-3 can
also be used and is physically more realistic than a parallel connection of two
isolated tanks.

1-4.2 Damping of Feed Fluctuations

One generally beneficial consequence of temporal mixing is that fluctuations in
component concentrations will be damped. The extent of the damping depends on
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   Side CSTR
  Volume = Vside

Q
Cin

Q
Cout

Main CSTR
 Volume = Vmain

q
Cout

q
Cside

Figure 1-3 Side capacity model for bypassing or stagnancy in a CSTR.

the nature of the input signal and the residence time distribution. The following
pair of convolution integrals applies to an inert tracer that enters the system with
time-varying concentration Cin(t):

Cout(t) =
∫ ∞

0
Cin(t − t′)f(t′) dt′ =

∫ t

−∞
Cin(t)f(t − t′) dt′ (1-5)

A piston flow reactor causes pure dead time: a time delay of t and no damping. A
CSTR acts as an exponential filter and provides good damping provided that the
period of the disturbance is less than t. If the input is sinusoidal with frequency
ω, the output will also be sinusoidal, but the magnitude or amplitude of the ripple
will be divided by

√
1 + (ωt)2. Damping performance is not sensitive to small

changes in the RTD. The true CSTR, the recycle reactor shown in Figure 1-3,
and a recently designed axial static mixer give substantially the same damping
performance (Nauman et al., 2002).

1-4.3 Yield Prediction

In this section we outline the use of RTDs to predict the yield of homogeneous
isothermal reactions, based on the pioneering treatments of Danckwerts (1953)
and Zwietering (1959) and a proof of optimality due to Chauhan et al. (1972).
If there are multiple reactants, the feed stream is assumed to be premixed.
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1-4.3.1 First-Order Reactions. Suppose that the reaction is isothermal,
homogeneous, and first order with rate constant k. Then knowledge of the RTD
allows the reaction yield to be calculated. The result, expressed as the fraction
unreacted, is

aout

ain
=

∫ ∞

0
e−ktf(t) dt = 1 − k

∫ ∞

0
e−ktW(t) dt (1-6)

Here, ain and aout are the inlet and outlet concentrations of a reactive compo-
nent, A, that reacts according to A → products. Use the version of eq. (1-6) that
contains the residence time function actually measured, W(t) or f(t).

Equation (1-6) provides a unique estimate of reaction yields because the first-
order reaction extent depends only on the time that the molecule has spent in the
system and not on interactions or mixing with other molecules. Reactions other
than first order give more ambiguous results because the RTD does not measure
spatial mixing between molecules that can affect reaction yields.

1-4.3.2 Complete Segregation. A simple generalization of eq. (1-6) is

aout =
∫ ∞

0
abatch(t)f(t) dt = 1 − k

∫ ∞

0
abatch(t)W(t) dt (1-7)

where abatch(t) is the concentration in a batch reactor that had initial concentration
ain. This equation can be used to calculate the conversion of any reaction. It
assumes an extreme level of local segregation; there is no mixing at all between
molecules that entered the system at different times. Molecules that enter together
leave together and remain in segregated packets while in the system. Figure 1-4a
illustrates this possibility for a completely segregated CSTR.

1-4.3.3 Maximum Mixedness. The micromixing extreme opposite to com-
plete segregation is maximum mixedness and is the highest amount of molecular
level mixing that is possible with a fixed residence time distribution. The conver-
sion of a unimolecular but otherwise arbitrary reaction in a maximum mixedness
reactor is found by solving Zwietering’s differential equation (Zwietering, 1959):

da

dλ
+ f(λ)

W(λ)
[ain − a(λ)] + RA = 0 (1-8)

where RA = RA(a) is the reaction rate. The boundary condition is that a must
be bounded for all λ > 0. The outlet concentration, aout, is found by evaluating
the solution at λ = 0. For the special case of an exponential distribution, the
solution of eq. (1-8) reduces to that obtained from a steady-state material balance
on a perfectly mixed CSTR. A maximally mixed CSTR is the classic CSTR of
reaction engineering. In the case of a delta distribution, eqs. (1-7) and (1-8) give
the same answer. Reactors in which the flow is piston flow or near piston flow
are insensitive to micromixing.
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(a)

(b)

Figure 1-4 Extremes of micromixing in a stirred tank reactor: (a) Ping-Pong balls circu-
lating in an agitated vessel, the completely segregated stirred tank reactor; (b) molecular
homogeneity, the perfectly mixed CSTR.

1-4.3.4 Yield Limits. Equations (1-7) and (1-8) provide absolute limits on the
conversion of most unimolecular reactions and many reactions involving multiple
reactants, provided that the feed is premixed. There are three ideal reactors: piston
flow, the perfectly mixed CSTR, and the completely segregated CSTR. Calculate
the yields for all three types and the yield for a real system will usually lie within
the limits of these yields. Measure the residence time distribution and eqs. (1-7)
and (1-8) will provide closer limits. This is illustrated in the worked example that
follows. A unique calculation of yield for any reaction other than first order is
impossible based only on residence time data. It requires a micromixing model
such as those developed by Bourne and co-workers (Baldyga et al., 1997). Such
models are needed especially when the feed is unmixed or when there is a
complex reaction with one or more fast steps. A CSTR cannot be considered
well mixed unless the (internal) recycle ratio is very high and molecular-level
mixing by molecular diffusion is rapid.

Example 1-1. You have been asked to improve the performance of an existing
polymerization reactor. Initially, you know only that it operates at an input flow
rate of 10 000 lb/hr, gives a conversion of 62 ± 1% at a nominal operating
temperature of 140◦C, and reportedly once gave a higher conversion. The reactor
drawings show a complicated arrangement of stirring paddles and cooling coils.
The design intent was to approximate piston flow, but a detailed hydrodynamic
analysis would be impractical. The drawings do show the working volume of
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the reactor, and you calculate that the fluid inventory should be about 12 500 lb.
Thus you estimate t = 1.25 hr.

The company library contains the original kinetics study for the polymer-
ization, and it seems to have been done well. The major reaction is a self-
condensation with rate eq. RA = −ka2, where aink = 4 hr−1 at 140◦C. The frac-
tion unreacted in an isothermal batch reactor at t would be

aout

ain
= 1

1 + ainkt

assuming that piston flow in the plant reactor gives aout/ain = 0.167, just like the
batch reactor.

For a CSTR at maximum mixedness, aout/ain = 0.358. In principle, this result
is found by solving eq. (1-8), but the result is the same as for a perfectly
mixed CSTR.

For a segregated stirred tank, aout/ain = 0.299. This result is found by solving
eq. (1-7) subject to an exponential distribution of residence times. The measured
result, aout/ain = 0.38, is worse than any of the ideal reactors! There are several
possibilities:

1. The RTD lies outside the normal region. In particular, there may be by-
passing.

2. The laboratory kinetics are wrong.
3. The kinetics are right, but the calculated value for ainkt is too high. This

in turn leads to two main possibilities: (a) The actual temperature is lower
than the measured temperature; or (b) the estimated value of t is too high.

The good engineer will consider all these possibilities and a few more. Temper-
ature errors are very common, particularly in viscous, low thermal conductivity
systems typical of polymers; and they lead to sizable errors in concentration.
However, measured temperatures are usually lower than actual rather than higher.

Suppose you decide that the original kinetic study was sound, that there are
no apparent changes in the process chemistry, and that the analytical techniques
are accurate. This makes flow distribution or mixing a likely culprit. Besides,
you would like to see just how that strange agitation/cooling system performs
from a flow viewpoint.

Suppose you find an inert hydrocarbon that is not normally present in the
system, which is easily detected by gas chromatography and can be tolerated
in the product stream. You arrange for the tracer injection port and the product
sampling ports to be installed during a maintenance shutdown. It is important that
the tracer be well mixed in the inlet stream. Otherwise, it might channel though
the system and give nonrepresentative results. You accomplish this by injecting
the tracer at the suction side of the transfer pump that is feeding the reactor.
You also dissolve a little polymer in the tracer stream to match its viscosity
more closely to that of the reactor feed. Having carefully prepared, you perform
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Figure 1-5 Experimental RTD data for Example 1-1.

a tracer washout experiment and obtain the results shown in Figure 1-5. The
mean residence time is determined by integrating under the experimental washout
curve and gives t = 59 s. This is much less than the calculated value of 1.25 hr.
You arrange for the reactor to be opened and find that it is partially filled with
cross-linked polymer. When this is removed, the conversion increases to 74%:
aout/ain = 0.26. A new residence time experiment gives t = 1.25 hr as expected,
and shows that the washout curve closely matches that for two stirred tanks
in series:

f(t) = 4t exp(−2t/t)

t

Now eqs. (1-7) and (1-8) can be used to calculate more precise limits on reac-
tor performance. The results are aout/ain = 0.290 for complete segregation and
aout/ain = 0.287 for maximum mixedness. Thus, as is typical of most industrial
reactions, the extremes of micromixing provide tight limits on conversion. Since
the actual result is outside these limits, something else is wrong. Quite likely it
is the measured temperature that now seems too low.

1-4.4 Use with Computational Fluid Dynamic Calculations

Although they are increasingly popular, computational fluid dynamic (CFD) cal-
culations are notoriously difficult to validate: Model equations may be available
to the user, but the source code is typically proprietary, experimental data for
comparison may be impossible to obtain, and the sheer volume of data available
from the simulations makes complete and meaningful validations extremely dif-
ficult. Velocity measurements are difficult. Pressure drop measurements are easy
but insensitive to the details of the flow. The RTD is a more sensitive test, but
it is not unique since the RTD is derived from a flow-averaged velocity profile
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rather than the spatially resolved velocities that are predicted by CFD. Further,
an experimental RTD will include effects of eddy or molecular diffusion that are
not reliability captured by current CFD codes. Most CFD codes use convergence
acceleration techniques that cause numerical diffusion that is an artifact of the
computation. Numerical diffusion mimics molecular or eddy diffusion, although
to an indeterminate extent.

Modern CFD codes are used routinely to calculate residence time distribu-
tions in complex flow systems such as static mixers. Care must be taken to
sample according to flow rate rather than spatial position, and the number of par-
ticles must be surprisingly large for accurate results, particularly for the chaotic
flow fields found in motionless mixers. The simulation of the recycle curve in
Figure 1-2b used 218 tracer particles. The tail of the washout functions provides
a demanding test for freedom from numerical diffusion. In the complete absence
of diffusion, residence time distributions in laminar flow have slowly decreasing
tails that give infinite variances. Specifically, they have algebraic tails for which
W(t) decreases as t−2 so that all moments higher than the first diverge. Dif-
fusion will cause the distributions to have rapidly decreasing exponential tails.
The conclusion is that improvements in CFD codes and still faster computers
are needed for accurate design calculations in complex geometries. Residence
time calculations will be a useful tool for their validation. The situation becomes
even more difficult when the equations of motion are combined with convective
diffusion equations to estimate reactions yields and heat transfer. We antici-
pate significant near-term improvements in CFD codes, but they are now at the
cutting edge of technology and have not yet become everyday tools for the
practicing engineer.

1-5 EXTENSIONS OF RESIDENCE TIME THEORY

Residence time measurements are easiest in single-phase systems having one inlet
and one outlet, but extensions to more complex cases are discussed in the General
References. The RTD can be measured by component on an overall basis. Individ-
ual RTD’s per inlet, per outlet, and per phase can also be measured. Most of the
concepts discussed in this chapter can be applied to unsteady-state systems. The
material leaving the systems at any time will have a time-dependent distribution
of residence time. Analytical and numerical solutions are possible for a variable-
volume CSTR, allowing calculation of time-dependent RTDs and reaction yields
in a system subject to fluctuations in flow rate. For isothermal, solid-catalyzed
reactions, the contact time distribution is the analog of the residence time dis-
tribution. It can be measured using adsorbable tracers. The results can be used
to predict reaction yields or the upper and lower bounds of reaction yields. The
thermal time distribution applies to nonisothermal homogeneous systems. It is a
conceptual tool useful for optimizing the performance of nonisothermal tubular
reactors and extruder reactors. Improved CFD codes will allow its calculation in
static mixers and other complex geometries used for simultaneous heat transfer
and reactor.
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NOMENCLATURE

Roman Symbols

a concentration of component A
abatch concentration of component A in a batch reactor
ain inlet reactant concentration
amix reactant concentration after the mixing point in a recycle reactor
aout outlet reactant concentration
C concentration of inert tracer
Cin inlet tracer concentration
Cout outlet tracer concentration
f differential distribution function of residence times
F cumulative distribution function of residence times
k reaction rate constant
q internal flow rate or recycle flow rate
Q volumetric flow rate through the system
RA reaction rate of component A
t residence time
tfirst first appearance time
t mean residence time
V volume
W residence time washout function

Greek Symbols

λ residual life, the time variable in Zwietering’s differential equation
µn nth moment of the residence time distribution
σ2 dimensionless variance or residence times
ω frequency of input disturbance
� dummy variable of integration
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2-1 INTRODUCTION

Turbulence is central to much of liquid mixing technology and all of the typical
processes (reaction, mass transfer, heat transfer, liquid–liquid dispersion, gas
dispersion, solids suspension, and fluid blending) are dramatically affected by
its presence. An understanding of the nature of turbulence is needed to deal
with the interactions between turbulent fluctuations and mixing processes. With-
out an understanding of these basic physical phenomena, reliable predictions
of performance can be difficult to achieve. Simple scale-up rules can be hope-
lessly inadequate. Unfortunately, the physics of turbulence still evades a general
mechanistic description; and the flow in a stirred tank is complicated further
by recirculation, strong geometric effects, and instabilities on several scales of
motion. In this chapter we focus on providing a physical understanding of both
turbulence and the tools that we use to understand its effects on process results.

The primary objective is to translate our current understanding of turbulence
into an engineering context, providing the reader with a set of tools that can be
used to solve practical mixing problems. In each section we begin with discussion
of a central concept in turbulence and follow this with application of the idea to
a practical problem, putting the concept into a practical context. Several facets
of the turbulence problem are examined, in order to:

• Provide an engineering description of turbulence in terms of length and
time scales.

Handbook of Industrial Mixing: Science and Practice, Edited by Edward L. Paul,
Victor A. Atiemo-Obeng, and Suzanne M. Kresta
ISBN 0-471-26919-0 Copyright  2004 John Wiley & Sons, Inc.
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• Illustrate the implications of these length and time scales for industrial
mixing operations.

• Review the implications of isotropy and other approximate theoreti-
cal treatments.

• Consider the nature and implications of various experimental measures of
the flow.

• Summarize the strengths and limitations of turbulence models and compu-
tational fluid dynamics (CFD) in general in the context of the design of
mixing equipment.

In this chapter the topic of turbulence is broken down into four sections. First,
in Section 2-2, the application of turbulence scaling principles to reactor design
is discussed, to clarify for the reader the role played by the turbulent motions.
In Section 2-3 we dig deeper into the description of turbulence, considering the
various time and length scales involved in the description of turbulent flow, the
scaling arguments that are used for engineering estimates, and how these esti-
mates are related to the flow field. The information that is lost in the time averages
and scaling arguments is revisited from the perspective of experimental and the-
oretical approximations of the flow in Section 2-4. Finally, the mathematical
approach to the problem, the modeling of turbulence, is discussed in Section 2-
5. The text is aimed at readers with no advanced training in fluid mechanics,
and explanations of theoretical concepts are liberally interspersed with examples.
Those with more experience will find summaries at the end of each section; they
may also find a review of the more subtle concepts useful. Although the chapter
can be read from beginning to end, it is also designed for independent reference
to a specific subtopic. We begin by clarifying the initial definitions that we will
need to discuss turbulence and the mixing operation.

2-2 BACKGROUND

2-2.1 Definitions

These definitions are provided for the readers’ reference. The case of B being
mixed into a continuous A is used for the purpose of illustration.

2-2.1.1 Turbulence. An exact mechanistic definition of turbulence is lim-
ited by our understanding of its nature. Indeed, there can be no exact definition
until we have exact understanding. However, as engineers, we need a working
definition to ensure that we are all talking about the same thing.

We first look at the history of this moving target. The first historical phase was
phenomenological theories where turbulence was defined by specific mechanistic
concepts developed by researchers such as Prandtl. This led, for example, to the
Prandtl mixing length. Taylor then suggested that statistical theory be applied to
develop a more general view of turbulence. He proposed that the mechanism of
turbulence is so complex that we cannot formulate a general model on which to
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base an analysis unless we restrict the meaning of turbulent motion to an irregular
fluctuation about a mean value (Brodkey, 1967, pp. 260–261). Any motion that
might have a regular periodicity (e.g., that from an impeller in a mixer) could
not be considered as part of the turbulent motion. Within this context the eddy
cascade picture of turbulence and time-averaged models like the k–ε model
emerged. Frustration with this view has lead to the current concept of coherent
structures in turbulence.

The coherent structure approach to turbulence is diametrically opposite to the
statistical approach. Such coherent structures (e.g., ejections, sweeps, hairpin vor-
tices, etc.) are to be distinguished from large scale organized motions that are
forced upon the system externally. Today, coherent structures concepts are being
extended to incorporate periodic structures generated by forcing or by geometry
in the system. These forced structures can be generated, they evolve, and they
interact with the natural turbulent coherent structures. In this context, coherent,
regular structures are a feature of many turbulent flows, including mixing layers,
and shed vortices can be included as part of our definition. To capture these
structures, however, we are forced to adopt a more direct approach to the mod-
eling, such as direct numerical simulation or large eddy simulation. Praturi and
Brodkey (1978) offered the following commentary: “A mechanistic picture of
turbulence cannot be treated on the average since such flows are dynamic. Many
models can satisfy a long time-average picture. Emerging from this approach is
the conclusion that turbulence can only be described as an evolving dynamic
system. Reliable mechanistic models of turbulent shear flows that will enable
reasonable predictions to be made should then be possible.”

From the modeling perspective all flows, whether laminar, transitional, or tur-
bulent, can be fully described by the Navier–Stokes equations with or without
time dependency and with the restrictions of imposed geometry and appropri-
ate boundary conditions. This suggests that there is no mechanistic difference
between the flow regimes. Turbulent flow is simply a very complicated manifes-
tation of the same physics that drives laminar flow.

Throughout this book, strong distinctions are made between laminar and tur-
bulent mixing. The operation and design of mixing equipment in these two flow
regimes are, in fact, quite different. Why? The flow for a given geometry and
set of boundary conditions is a continuous development from very low Reynolds
numbers (laminar operation) to very high ones (fully turbulent operation). At a
low Reynolds number (Re), viscosity dominates, infinitesimal disturbances are
damped out, and we have laminar flow. At a very high Re, inertial forces dom-
inate, changes in viscosity have no effect on process results, and infinitesimal
disturbances grow into a myriad of complex interacting structures so complex
that we call it turbulence. With this complexity of interactions comes rapid dis-
persion and mixing. Somewhere between the extremes is a transitional region
where both inertial and viscous forces play a role. Although our understanding
of laminar mixing is imperfect and our understanding of turbulent mixing lim-
ited, our understanding of transitional flow and mixing is restricted to the simplest
of cases.
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Within this context, we offer the following working definitions of turbulence:

• Turbulence is a state of fluid motion where the velocity fluctuates in time
and in all three directions in space. These fluctuations reflect the complex
layering and interactions of large and small structural elements, such as
vortices, sheets, ejections, and sweeps of a variety of shapes and sizes. In
turbulent flows, scalar fields are rapidly dispersed compared to their laminar
counterparts. At the time of writing, there is no completely acceptable way
to model complex turbulent flow.

• Fully turbulent flow is an asymptotic state at very large Reynolds numbers.
In fully turbulent flow, the velocity fluctuations are so intense that inertial
forces overwhelm viscous forces. At all but the smallest scales of motion,
viscous forces (and molecular diffusivity) become negligible. In fully tur-
bulent flow, drag coefficients (e.g., friction factors and power numbers) and
dimensionless blend times approach constant values. As is also the case
in laminar flow, velocity profiles scale exactly with characteristic length
and velocity scales. These conditions allow significant simplifications in
modeling and design.

2-2.1.2 Mixing Mechanisms

• Dispersion or diffusion is the act of spreading out (B is dispersed in A).

• Molecular diffusion is diffusion caused by relative molecular motion and is
characterized by the molecular diffusivity DAB.

• Eddy diffusion or turbulent diffusion is dispersion in turbulent flows caused
by the motions of large groups of molecules called eddies; this motion is
measured as the turbulent velocity fluctuations. The turbulent diffusivity,
Dt, is a conceptual analogy to DAB but is a property of the local flow rather
than of the fluid.

• Convection (sometimes called bulk diffusion) is dispersion caused by
bulk motion.

• Taylor dispersion is a special case of convection, where the dispersion is
caused by a mean velocity gradient. It is most often referred to in the case
of laminar pipe flow, where axial dispersion arises due to the parabolic
velocity gradient in the pipe.

2-2.1.3 Measures of Mixedness

• Scale of segregation is a measure of the large scale breakup process (bulk
and eddy diffusivity) without the action of diffusion, shown in Figure 2-1a.
It is the size of the packets of B that can be distinguished from the sur-
rounding fluid A.

• Intensity of segregation is a measure of the difference in concentration
between the purest concentration of B and the purest concentration of A in
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(a)

(b)

(c)

Figure 2-1 Intensity and scale of segregation: (a) reduction in scale of segregation;
(b) reduction in intensity of segregation; (c) simultaneous reduction of intensity and scale
of segregation.

the surrounding fluid1 shown in Figure 2-1b. Molecular diffusion is needed
to reduce the intensity of segregation, as even the smallest turbulent eddies
have a very large diameter relative to the size of a molecule.

A reduction in intensity of segregation can occur with or without turbulence;
however, turbulence can help speed the process by reducing the scale of segre-
gation, thus allowing more interfacial area for molecular diffusion. The scale of
segregation is typically reduced by eddy motion while molecular diffusion simul-
taneously reduces the intensity of segregation, as shown in Figure 2-1c. When
diffusion has reduced the intensity of segregation to zero, the system is consid-
ered completely mixed.2 Two examples illustrate the importance of the scale of
segregation:

1. In a jet injection reactor with liquid or gaseous feeds and a solid product,
the solid is formed at the interface between A and B. The final particle

1 The term intensity of segregation is also used by Danckwerts as a measure of the age of a fluid at
a point (i.e., the backmixing or residence time distribution problem).
2 A more careful consideration of the completely mixed condition would have to consider the scale
of the probe volume relative to the scale of the molecules, or the largest acceptable striation in the
fluid.
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size is a strong function of the rate of reduction of segregation in the
reaction zone.

2. In the mixing of pigment into paint for automotive finishes, the color qual-
ity depends on the scale of segregation of the pigment. If the scale of
segregation is too large, the color is uneven, but if the scale and intensity
of segregation are too small, the color loses its brightness and becomes
muddy. This result is perhaps surprising; it is due to the reduced ability of
an individual pigment particle to scatter light.

2-2.1.4 Scales of Mixing

• Macromixing is mixing driven by the largest scales of motion in the fluid.
Macromixing is characterized by the blend time in a batch system.

• Mesomixing is mixing on a scale smaller than the bulk circulation (or the
tank diameter) but larger than the micromixing scales, where molecular and
viscous diffusion become important. Mesomixing is most frequently evident
at the feed pipe scale of semibatch reactors.

• Micromixing is mixing on the smallest scales of motion (the Kolmogorov
scale) and at the final scales of molecular diffusivity (the Batchelor scale).
Micromixing is the limiting step in the progress of fast reactions, because
micromixing dramatically accelerates the rate of production of interfacial
area available for diffusion.3 This is the easiest way to speed up contact at
the molecular level, since the molecular diffusivity is more or less fixed.4

We now proceed to our first exploration of turbulence in mixing applications:
an evaluation of the time and length scales that are important for reactor design.

2-2.2 Length and Time Scales in the Context of Turbulent Mixing

For reactor design we would like to know how molecular diffusion and turbulent
motions interact to bring molecules together. Turbulence can be used to break
up fluid elements, reducing the scale of segregation. Energy is required for the
generation of new surface area; so the limiting scale of segregation is associated
with the smallest energy-containing eddies. These eddies are several times larger
than the Kolmogorov scale,5 η, and even the smallest scales of turbulence are
much larger than a single molecule. As a result, even the smallest eddies will
contain pockets of pure components A and B. Depending on the scale of observa-
tion, the fluid may appear well mixed; however, reaction requires submicroscopic

3 The rate of diffusion is most frequently expressed as koLa. koL is essentially determined by physical
properties of the fluids; a is increased by micromixing.
4 For most liquids and gases the viscosity is greater than or equal to the molecular diffusivity
(Sc = ν/DAB ≥ 1), so it is easier to spread motion than molecules. Molten metals are a notable
exception to this rule.
5 See Section 2-3.
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homogeneity, where molecules are uniformly distributed over the field. Molecules
must be in contact to react. Turbulence alone cannot provide this degree of mix-
ing. Molecular diffusion will always play an important role. Molecular diffusion,
however, is very slow,6 so the mixing process is critically dependent on both
bulk mixing and turbulent diffusion to reduce the scales over which molecular
diffusion must act. To accomplish chemical reactions, we need the initial bulk
mixing, efficient turbulence, and molecular diffusion for the final molecular con-
tact. Example 2-1 illustrates the impact of turbulence and molecular diffusion on
mixing and reaction using a simplified physical model.

When mixing involves a chemical reaction, there are added complexities that
depend on how the reactants are introduced into the mixing system. When a
single stream is introduced and mixing occurs between fresh elements and older
elements of the fluid, the mixing occurs in time and is called self-mixing or
backmixing. When two streams enter a reactor and mixing occurs between the
streams, two cases must be considered. If the reactants are all in one stream
(premixed or initially together), the second stream acts as a diluent. With no
mixing between the streams, the reaction proceeds as given by the kinetics. If,
however, mixing dilutes the reactant concentrations and the order of the reaction
is greater than 1, the dilution will depress the reaction rate. If the reactants are
in separate streams (unmixed or initially segregated ), molecular diffusion must
take place for reaction to occur. In the last case, turbulence, molecular diffusion,
and kinetics all interact to establish the course of the reaction. This is the critical
turbulent mixing and kinetics problem that has received so much attention in
the literature.

For chemical reactions in a known mixing field, the critical time scale depends
on the relative rates of mixing and reaction. The limits of fast, slow, and inter-
mediate reaction rates determine the relative importance of mixing and kinetics,
as shown in Figure 2-2. Fast chemical reactions proceed as quickly as turbu-
lence and molecular diffusion can bring the components together. The mixing
rate dominates. Slow chemical reactions proceed much more slowly than any
of the mixing time scales and are governed solely by reaction kinetics. For the
important group of intermediate reaction rates, the reaction, diffusion, and mixing
rates interact, and modeling is required. Example 2-2 illustrates these limits.

Example 2-1a: Y-Tube—Identifying the Role of Various Mixing Mechanisms.
A mixing Y-tube configuration (Figure 2-3a) was suggested for mixing two
gaseous streams. The original reaction was studied in a 1

4 in. bench scale reactor.
The experimental results showed excellent selectivity and excellent conversion.
The final plant design was to be a 12 in. tubular reactor, requiring a 48 : 1 scale-
up. Because of the large scale-up factor, it was decided that a pilot scale would
be tested. For this, a 2 in. reactor was designed and built (Figure 2-3b), which
amounted to an 8 : l scale-up.

A series of experiments in the pilot unit revealed that the pilot reactor per-
formed poorly both in selectivity and in overall conversion. The flow rates were

6 This applies for Sc ≥ 1. See note 4.
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Figure 2-2 Relationship between mixing and reaction time scales for equipment design.

such that the flow was turbulent. Recognizing the need for turbulence in a tur-
bulent mixing system, the experimenter modified the pilot plant unit by adding
screens near the entry to promote mixing via turbulent generation, as shown in
Figure 2-3c. Contrary to expectations, the conversion and selectivity were further
reduced by the turbulence-promoting screens. We now revisit the problem, con-
sidering not just the amount of turbulence, but also the spectrum of turbulence
length scales.

Chemical reaction carried out in combination with mixing of the reactants
has, as a first requirement, the large scale bulk dispersion of A into B. Only
after this occurs can the finer scale mixing and molecular diffusion occur at a
reasonable rate. In the bench scale reactor, the two incoming streams interacted
vigorously and a grossly uniform mixture was obtained (Figure 2-3a). In sharp
contrast, the results for the 2 in. reactor (Figure 2-3b) showed material segre-
gation. The reaction occurred only on the interacting surface between the two
streams. When the turbulence generation screens were added (Figure 2-3c), the
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(a) 6 mm (1/4 in.) bench scale reactor

(b) Pilot scale mixing in 50 mm (2 in.) reactor without screens

(c) Pilot plant mixing in 50 mm (2 in.) reactor with screens

B

P

A

Figure 2-3 Mixing and reaction carried out in a Y-tube.

screens eliminated the large scale interactions, providing a less contorted sur-
face for reaction and thus further reduction of conversion. As a consequence
of the screens, the pilot scale reactor provided extremely well-mixed material A
and extremely well-mixed material B, but failed to bring A and B into contact.
The Y-tube configuration has poor bulk mixing and thus fails the first test in
Figure 2-2. An alternative geometry, such as a static mixer, T-junction, or stirred
tank must be used for large scale dispersion (see, e.g., Monclova and Forney,
1995, or Wei and Garside, 1997). The key criterion for success in bulk mixing
in a pipe is that the largest scale of segregation in the feed must be smaller than
the largest scale of motion in the mixing geometry (Hansen et al., 2000).

This simple geometry provides us with an opportunity to explore the impor-
tance of various mixing mechanisms. We have already seen the disastrous impact
of poor bulk mixing. Now, taking the length scale of the pipe, the problem is
broken down into simplified models of pure molecular diffusion and pure eddy
dispersion to clarify the interactions between these mixing mechanisms.
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Example 2-1b: Y-Tube—Limiting Case with No Eddy or Bulk Diffusion. What
time would be required to achieve 99% mixing in the Y-tube if the only active
mechanism was molecular diffusion? In this case there is poor bulk mixing
between the layers, as observed above, and there is no turbulent enhancement
of any mixing that does occur. Since we seek only the relative time scales, we
reduce the problem to the case of plug flow with no turbulent fluctuations. This is
clearly nonphysical,7 but it will isolate the scales of mixing due to pure molecular
diffusion. Since the materials are gaseous, we will assume equal-molal counter
diffusion with equal diffusivities of the two components.

The diffusion is one dimensional in the x-direction; thus the rate of diffusion
of A is written

∂CA

∂t
= DAB

∂2CA

∂x2
(2-1)

where CA is the concentration of species A. This is a common problem in chem-
ical engineering, and solutions can be found in Brodkey and Hershey (1988).
Probably the easiest approach for our purposes is to use the generalized chart
solutions based on the original work by Gurney and Lurie (1923) and further
improved upon by Heisler (1947). For our problem, each component must dif-
fuse across a half width (from the centerline to the wall). To create the conditions
required for 99% conversion of the reactants, we can take the “unaccomplished
change” as 0.01, the centerline or half-width position (n = 1), and no resistance
to transfer at the interface (m = 0). From the chart in Brodkey and Hershey
(1988, pp. 670–672), the dimensionless time for these conditions is

τD = DABt

L2 = 2.0 (2-2)

We have been told that the diffusivity of our gases is about 25% greater than
that of CO2 in air; thus, we use DAB = 2 × 10−5 m2/s. We use as the scale, L,
the half-width of the system. For the 1

4 in. bench unit, the diffusion time would
be about 4 s. This would increase to a little over 1 min for the 2 in. diameter
and to nearly 40 min for the 12 in. diameter commercial unit. At a Reynolds
number of 2000, these times would correspond to pipe lengths of 5, 40, and 230
m, respectively. Clearly, mixing by pure molecular diffusion is an upper limit
and would result in very long reactors.

If the mixing involves liquids rather than gases, the effect is more pronounced.
The molecular diffusion for liquids would be very much lower (i.e., DAB =
1 × 10−9 m2/s. Since t is inversely proportional to DAB, the time required will
increase by a factor of 2 × 104. The velocity in the liquid system will be lower

7 If there are no fluctuations, the flow is laminar and the velocity profile is parabolic. The parabolic
velocity profile will alter the diffusion characteristics, so this analysis is limited to a thought exper-
iment. The superficial velocity from plug flow is needed to convert the required diffusion time to a
distance down the reactor. To simplify the geometry without affecting the length scales significantly,
we consider two dimensional plug flow between parallel plates, rather than the tubular geometry in
the pipe.
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Table 2-1 Limiting Case of Equimolar Counterdiffusion

Slab Thickness
6 mm(
1
4 in.

) 50 mm
(2 in.)

305 mm
(12 in.)

Air: DAB = O(2 .00 × 10 −5 ) m2 /s, v = 1 .50 × 10 −5 m/s2 , Re = 2000 , Sc = O(1 )

Time to 99% diffused 1 s 1.1 min 39 min
Velocity in plug flow 4.7 m/s 0.6 m/s 0.1 m/s
Length of reactor 4.8 m 38 m 230 m

Water: DAB = O(1 .00 ×10 −9 )m2 /s, v = 1 .00 ×10 −6 m/s2 , Re = 2000 , Sc = O(1000 )

Time to 99% diffused 5.6 hours 15 days 1.5 years
Velocity in plug flow 0.3 m/s 4 cm/s 7 mm/s
Length of reactor 6.3 km 50.8 km 305 km

by a factor of 15, because the kinematic viscosity of water is 15 times lower than
that for air at the same Re. This does not make up for the slower diffusion and
would result in a bench scale unit over 6 km long! The results are summarized
in Table 2-1.

Example 2-1c: Y-Tube—Limiting Case with No Molecular Diffusion But Very
Small Turbulent Eddies. Components A and B must come into contact on a
molecular scale to react. If there is no diffusion, only a very thin monolayer of
the product will form at the interface in Figure 2-3c. Once formed, it blocks any
further reaction, since A and B cannot diffuse across the monolayer boundary.
The familiar organic chemistry experiment where nylon is formed at the inter-
face between sebacyl-chloride in tetrachloro-ethylene and an aqueous solution of
hexamethylene diamine is a practical example of such a system. It is a simple
geometric problem to obtain the interfacial area available per unit of length in our
model reactor. Taking the molecular thickness to be (dm = 1 Å) with a monolayer
of reacted molecules at the interface gives a conversion of 8 × 10−10 in the full
scale reactor. This is an extremely small fraction of the molecules present!

Let us allow instead extremely effective turbulence, and suggest that the small-
est scale of turbulence in our gas system is about (lt = 0.1 mm). You might call
this the smallest energy-containing eddy, if we knew what an eddy was. We
could also assume that this “eddy” is spherical, and that the volume of A inside
the eddies equals the volume of B outside the eddies. In our simplified physical
model, we assume that the reduction in scale of segregation happens immediately
on entering the pipe. It will quickly become clear that the length of pipe required
to accomplish the reduction in scale is not the limiting factor for our “perfectly
turbulent” nondiffusing reactor.

To calculate the maximum conversion in the perfectly turbulent reactor, we
calculate the volume of product on the surface of the eddies. The volume of
product is

Vproduct = π

6
[l3t − (lt − dm)3] = 1.57 × 10−18 m3
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and the remaining volume of A inside the eddy is

VA = π

6
(lt − dm)3 = 5.24 × 10−13 m3

which leaves a total remaining volume of reactants

VA+B = 2VA

Taking the ratio of volumes gives the conversion (assuming all molecules are
approximately the same size)

conversion = Vproduct

VA+B
= 1.5 × 10−6

Diffusion and other physical properties are not a factor in this estimate of con-
version. As long as the same Reynolds numbers and relative geometries are
maintained, it will not matter if the system is a gas or liquid.

This conversion is clearly not good enough, so we decide to increase the
turbulence and decrease the length scale, lt, by a factor of 10 (lt = 10 µm). This
improves the conversion by a factor of 10, to 1.5 × 10−5. The increase in power
consumption, however, increases with l4t , so the power requirement per unit mass
jumps from 33.75 W/kg to 0.3 MW/kg if our fluid is a gas.8 If our fluid is a
liquid, things are somewhat better because of the lower viscosity. In this case the
power consumption jumps from 0.01 W/kg to 100 W/kg. While pure molecular
diffusion was too slow, pure reduction of length scales gives disastrously low
conversions, regardless of the length of the reactor.

Before moving on, we need to remind ourselves that we have used a simplified
model of the physics. Our estimate ignores the fact that the packing of the
molecules in the volume and on the surface may be different. One expects that
this would be a small factor and not important in order-of-magnitude estimates.
It also assumes an eddy diameter that is very small and is near the lower limit
of turbulence, the Kolmogorov scale. Another possible estimate could use an
average eddy diameter. On the other hand, the dynamic nature of turbulence will
provide mixing between eddies, which can increase the effective surface area by
several orders of magnitude. Despite these approximations, this estimate shows
that very little reaction will occur without molecular diffusion. Now we consider
the case where initial bulk mixing, efficient turbulence, and molecular diffusion
for the final molecular contact are all present.

Example 2-1d: Y-Tube—Molecular Diffusion with Very Small Static Eddies.
This time, let us assume that diffusion can occur in the very small eddies formed
in Example 2-1c. Let us again assume that the smallest scale of turbulence is

8 This calculation is based on η as discussed in Section 2-3, with the same fluid properties as those
used in Example 2-1.
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(lt = 0.1 mm) and that the eddy is spherical. The spherical surface containing
A + B becomes thicker as a result of molecular diffusion. We assume that all
molecules within this thick surface will react.

For this example we combine the approaches used in Examples 2-1b and
2-1c, neglecting turbulent dispersion (see Section 2-3). Since the eddies are all
assumed to be at their minimum size, all we need to determine is the time needed
for the diffusion across an eddy radius (lt/2 = 0.05 mm) for 99% diffusion. If
the turbulence in the various test and commercial units does not change, the
calculation will be the same for all cases, as it is based on a fixed eddy size,
not on the system size. Of course, the total power will increase with the volume
of the system. The only real difference from Example 2-1b is that we need to
consider a sphere rather than a slab. The value of DABt/L2 drops from 2.0 to 0.56
(see Brodkey and Hershey, 1988, p. 680), giving a diffusion time of

τ = DABt

L2 = DABt

(lt/2)2
= 0.56

t = (0.56)(1 × 10−4 m/2)2

2 × 10−5 m2/s
= 7 × 10−5 s

on all scales of operation. This is, of course, a limiting estimate, which assumes
that the same thing happens in all eddies at the same rate. For any practical
gas reactor problem, this suggests that the combination of very efficient turbu-
lence with molecular diffusion on the smallest scales will provide a very efficient
reactor. Even if a more conservative eddy diameter of 1 mm is used, the time
needed for the gaseous system is 0.001 s, still small enough for any practi-
cal reactor.

For a liquid system the time needed to reach the mixing conditions for 99%
conversion is 1.4 s for the 0.1 mm diameter eddy and well over 2 min for an
average eddy size of 1 mm. Although the reduction in scale due to the simple
static model of turbulence has dramatically reduced the time needed to reach
99% diffusion, the time required is still long relative to the time scale of a fast
reaction. Although this model contains dramatic simplifications of the physics
for the purposes of a thought experiment, better models of the turbulence based
on scaling arguments can be implemented successfully for simple geometries
(Forney and Nafia, 2000). More realistic models of the turbulence are needed for
complex reactor design, and these are discussed in later sections. Before moving
to this discussion, we consider the impact of reaction kinetics on the problem,
given good bulk blending.

2-2.2.1 Interaction of Mixing Mechanisms: Summary of Example 2-1

• In the case of segregated feed of reactants A and B to a reactor, the bulk
mixing of the system needs to be addressed. The reactants need to be dis-
persed rapidly across the system and over a range of scales from the scale
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of the equipment to the point where individual molecules come into contact.
Localized fine scale mixing of streams that remain segregated on the large
scale contributes nothing to the overall mixing. (Example 2-1a)

• Diffusion alone, even in gas systems, is almost infinitely slow.
(Example 2-1b)

• No diffusion results in essentially no reaction, even with a very dramatic
reduction in the scale of segregation. (Example 2-1c)

• Adding molecular diffusion without eddy diffusion allows a crude estimate
of the combined effects of (static) turbulence and molecular diffusion. The
reduction in the time required for mixing on the molecular scale over previ-
ous cases is dramatic. For a gas system, this model is fast enough to reach
practical limits. For liquids, the improvement is large, but not large enough
to be realistic. (Example 2-1d)

• Although this example gives a dramatic illustration of the importance of all
three mechanisms (bulk mixing, turbulent reduction of the scale of segre-
gation, and molecular diffusion) to efficient mixing, a more realistic model
of the turbulence is needed for accurate analysis.

2-2.3 Relative Rates of Mixing and Reaction: The Damkoehler
Number

The outcome of a chemical reaction will depend on the rate of mixing compared
to the rate of reaction. Figure 2-2 shows the interaction of the process and the
key points to be considered. When the rate of reaction is slow compared to
the mixing time, the reaction is not affected by mixing because the mixing is
complete by the time significant reaction occurs (Example 2-2a). When the rate of
reaction is fast compared to the rate of mixing, the kinetics are mixing limited,
and the kinetics observed are effectively the mixing kinetics (Example 2-2b).
Where the rate of reaction is similar to the rate of mixing, there will be strong
interactions between the two rates (Example 2-2c). The relevant mixing time
scales and reaction time scales are needed to determine the importance of mixing
for a given reaction. In this chapter, only singular bimolecular reactions are
considered. Also of considerable interest are bimolecular reactions that are either
parallel-competitive (A + B → R, A + C → S) or series-competitive (A + B →
R, B + R → S). These cases are discussed further in Chapter 13. It should be
noted that what is said for the present single bimolecular case will apply equally
well to the first reaction of the more complex cases.

Example 2-2: Relative Rates of Mixing and Reaction. To illustrate the role
played by the turbulent scales across many different reactions, Toor (1969) and
Mao and Toor (1971) obtained experimental conversion data in two different pipe
flow reactors for a series of bimolecular reactions. Their results are combined
with velocity measurements made in identical reactors by McKelvey et al. (1975).
This allows us to compare various definitions of mixing time scales for pipe flow.
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The defining number for this discussion is the Damkoehler number (Da), the
ratio of mixing time to reaction time:

Da= mixing time

reaction time
= reaction rate

scalar dissipation rate
=krCB0

L1/2

u
=krCB0tmixing (2-3)

In the case of a bimolecular reaction with the concentration of A in large excess,
the term krCB0 is the reciprocal time required for the fraction of B remaining to
fall to one-half of the initial concentration. To obtain Da = 1 when the mixing
time is just equal to the reaction time, Mao and Toor (1971) defined the mixing
length as equal to L1/2 and the mixing time as equal to L1/2/U, where U is
the superficial velocity in the pipe. Their L1/2 must be determined from mixing
studies or from the equivalent fast reaction measurements.

It would be more convenient to use a mixing time that is not geometry specific.
A number of such times and Damkoehler numbers were compared by Brodkey
and Kresta (1999) using various local turbulence scales in the Toor reactor. All of
these times use local turbulence parameters or characteristic times. The position
at which these are evaluated for the two multitube reactors is at the point of
coalescence of the feed jets. It turns out that this is very close to Mao and Toor’s
(1971) characteristic half mixing length.

Independent of the turbulent time scale chosen, two distinct dividing points
appeared in the Damkoehler number, allowing the identification of the two lim-
iting cases of interest. Two of these measures are presented in Table 2-2 and
Figure 2-4. The first measure is the microscale time, given by tλ = (λ2/ε)1/3,
and the second is the eddy dissipation time, given by te = k/ε. The eddy dissi-
pation time (Spalding, 1971) is often used in reaction models (e.g., Forney and
Nafia, 1998). Results such as these are a clear indication of the general value
of these time constants, which in turn are based on turbulence scaling argu-
ments. Turbulence scaling arguments are addressed in more detail in Section 2-3.
For now, we accept these as given and focus on the three categories of reac-
tion rate.

(a) Slow reactions. This is the case where the reaction time is much longer than
the time needed to blend the reactants. There is plenty of time to complete the
mixing before the reaction makes any significant progress. Vassilatos and Toor
(1965) measured the progress of a slow reaction and were able to predict the
results accurately by assuming a homogeneous concentration field and applying
only the reaction kinetics. McKelvey et al. (1975) compared homogeneous calcu-
lations with calculations made using a known turbulent field. Their comparisons
showed that the effect of turbulence was indeed negligible. Mao and Toor (1971)
expressed the results in terms of a Damkoehler number based on the pipe diam-
eter (Da = krCB0Dp/u) such that for Da below 0.016, slow reaction conditions
will apply. For all of the Damkoehler numbers defined in Table 2-2, the lower
limits are on the order of 0.01. In this limit, turbulence is not important; the
reactor is truly well mixed and a homogeneous kinetic calculation is sufficient.
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Table 2-2 Damkoehler Numbers Based on Different Mixing Times

Mixing Time Scale
Mao
and Toor Taylor

Eddy
Dissipation

Definitions

Reaction rate (s−1) krCB0 krCB0 krCB0

Mixing time (s) tM = L1/2/u tλ = (λ2/ε)1/3 te = k/ε

Da DaM = krCB0
L1/2

u
Daλ = krCB0tλ Dak = krCB0te

Limits Based on Experimental Results

Dau (fast reaction limit) 100 30 150
Dal (slow reaction limit) 0.02 0.009 0.01

Experimental Results from Toor (1969) and Mao and Toor (1971), References Therein

Reaction kr (L/mol·s) DaM Daλ Dak

Fast Reactions (Diffusion Controlled)

HCl–NaOH 1.4 × 1011 1.7 × 107 5.2 × 106 3.2 × 107

−8.8 × 107 −1.2 × 107 −7.2 × 107

Maleic acid–OH− 3 × 108 3.3 × 104 1.0 × 104 6.2 × 104

Nitrilotriacetic
acid–OH−

1.4 × 107 2.2 × 103 6.7 × 102 4.1 × 103

Intermediate Reactions

CO2–2NaOH 8.32 × 103 3.05–6.94 0.93 5.7
CO2–nNH3 5.85 × 102 ∼0.1 0.023 0.030

Slow Reaction (Kinetics Controlled)

HCOOCH3–
NaOH

4.7 × 101 ∼0.01 0.0023 0.0030

(b) Fast reactions. When reactions are extremely fast, the time needed for a
reaction to occur is much smaller than the time needed to blend the reactants.
If two molecules can be brought together, they will react instantaneously. The
controlling mechanism is the mixing due to both turbulence and diffusion. If the
reactants are fed in stoichiometric balance, Toor (1962) has shown that the extent
of the reaction is a direct measure of the mixing. The upper limit for Mao and
Toor’s (1971) definition of the Damkoehler number (Da = krCB0Dp/u) is on the
order of 100. For the definitions of Da in Table 2-2, the upper limit ranges from
30 to 150. Above this limit, fast reaction conditions apply. Acid-base reactions,
which fall in this category, are often used as a means of measuring mixing times.

In addition to considering the limit of fast reactions, there is an effect of
stoichiometry on the results, assuming that reactants are fed in stoichiometric
ratio. Keeler et al. (1965) measured both mixing and fast reaction in the wake of
a grid over a range of stoichiometric feed ratios. The effect of stoichiometry was
also examined by Vassilatos and Toor (1965), who first assumed that mixing and
very fast reaction results were equivalent for a stoichiometry of unity and then
predicted the reaction at other stoichiometric ratios.
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Figure 2-4 Comparison of limits of Damkoehler number based on two different
time scales.

(c) Intermediate rates of reaction. In the outer limits of very slow and very fast
reactions, either mixing or kinetics becomes controlling and the other part of the
physics can be ignored in the model. This simplifies the problem dramatically.
In many real processing problems, however, both mixing and kinetics influence
the course of reaction. In this example, the relatively simple case of a reaction
in a pipe is used to illustrate our needs for the study of turbulent mixing.

Models reported in the literature have tended to focus on one of two parts of
the problem. Simple reaction models (e.g., reacting slabs, random coalescence-
dispersion, or multienvironment models) are designed to fit overall reaction data.
More complex theoretical approaches require a model of the turbulence (see
Section 2-5). The problem here is the adequacy of the turbulence model over a
wide range of flow conditions. There still is no theory that takes into account
structural aspects of turbulence with or without superimposed chemical reaction,
although steady progress is being made in this direction [some current approaches
are discussed by Fox (1998)].

As an example of what is needed, consider the models developed by McKelvey
et al. (1975) using kinetic data from Toor (1969) and Mao and Toor (1971).
McKelvey et al. (1975) measured the velocity field and mixing characteristics in
exactly the same multinozzle pipe reactor that was used by Toor and co-workers
to measure the kinetics. McKelvey et al. had two objectives. The first was to
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establish the velocity and concentration fields in reactors used by Vassilatos and
Toor (1965) to verify that turbulent mixing could be predicted from knowledge
of the turbulent field. The second was to model the progress of a single second-
order irreversible reaction where there is a significant impact of the dynamics of
mixing on the observed reaction kinetics.

McKelvey et al. first consider the mass balance equation for a second-order
reaction between species A and B [A + nB → (n + 1)P]. The equation for an
individual species A in a differential control volume is

accumulation of A + net bulk convection of A

= net diffusion of A − disappearance of A due to reaction

∂CA

∂t
+ (U ž ∇)CA = DAB∇2CA − krCACB (2-4)

CA and CB are the concentrations of species A and B. DAB, the diffusion coef-
ficient, and kr, the reaction rate, are constant. The system is assumed incom-
pressible and isothermal, and the scalar field has no effect on the velocity
field (variations in concentration, for example, do not induce velocity gradi-
ents). Reynolds decomposition is used to separate the velocity and concentration
fields into an average and fluctuating part. When these terms are substituted into
eq. (2-4), the resulting equation can be averaged9 to give

accumulation of A + mean convection due to mean gradients of A

+ convection due to cross-fluctuations of velocity and concentration

= bulk diffusion − reaction due to (mean field + fluctuating field)

∂CA

∂t
+ (U ž ∇)CA + (∇ ž ua) = DAB∇2CA − kr(CACB + ab) (2-5)

McKelvey et al. reduced this to a simplified form for the one dimensional
experimental reactor

mean convection in the x-direction = molecular diffusion in the x-direction

− reaction due to (mean field + fluctuating field)

Ux
dCA

dx
= DAB

d2CA

dx2
− kr(CACB + ab) (2-6)

The term ab is the fluctuating component of the concentration field. It is related
to the intensity of segregation and thus depends directly on the turbulent mix-
ing field. The axial change in CA cannot be determined without ab; however,
if ab could be estimated, the equation could be numerically integrated. Toor

9 See Brodkey and Hershey (1988, pp. 214–223) for a detailed presentation of the Reynolds aver-
aging procedure.
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(1969) showed that ab was the same for very slow reactions and very fast, stoi-
chiometrically fed, second-order reactions. The former is dominated by kinetics,
and the latter by mixing. With this as background, Toor hypothesized that “ab
is independent of the speed of the reaction when the reactants are fed in sto-
ichiometric proportion.” He pointed out that this could not be exactly true for
nonstoichiometric mixtures.

Based on this hypothesis, the measured intensity of segregation (Is, discussed
further in Section 2-3) was used for ab and the equation numerically integrated by
McKelvey et al. (1975). They examined three of five experiments performed by
Vassilatos and Toor (1965). The measured velocity and intensity of segregation
were used for Ux and Is in the integration. The stoichiometric ratio varied from
1.0 to nearly 3.9. The agreement between the computations and the conversion
experiments, shown in Figure 2-5, is remarkable, so for the simple second-order
homogeneous reaction where both mixing and kinetics are of importance, the
hypothesis of Toor clearly allows adequate predictions to be made. Mao and
Toor’s (1971) Damkoehler number should be between (0.02 < Da < 100) for
the intermediate reaction conditions to apply.

For more complex reactions that are consecutive in nature, a fully adequate
analysis is still lacking, but progress is being made. To adequately model the
progress of a reaction, the terms equivalent to ab must be determined, and these
depend in turn on the turbulent mixing. Where reactions depend on highly local-
ized concentrations, the time average fluctuations, ab, need to be modeled in
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Figure 2-5 Predicted conversion of an intermediate reaction where the turbulent mixing
field is known. (From McKelvey et al., 1975.)
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terms of probability density functions (PDF’s) and other properties of the fluc-
tuations. The simplified model used for the thought experiment in Example 2-1d
is hopelessly inadequate because it neglects both the dynamics and the range of
length scales present in a turbulent flow.

2-2.3.1 Importance of Turbulence in Modeling Reactions: Summary of
Example 2-2

• In very fast reactions, the measured rate of reaction is wholly dependent on
the rate of mixing. In this case, the mixing time is much longer than the
reaction time. (Example 2-2b)

• In very slow reactions, the mixing time has no effect on the kinetics of
reaction. The reaction takes much longer than the mixing. (Example 2-2a)

• Various Damkoehler numbers can be defined, preferably based on turbulence
characteristics rather than on geometry-dependent variables. Regardless of
the definition selected, there are definite limits of Da for the two limiting
cases of fast and slow reactions. (Example 2-2)

• For intermediate reaction rates, modeling of the turbulence is essential, as
the local concentration field is a function of the velocity field. The concen-
tration field will change, and the velocity field may change, as the reaction
proceeds. The fluctuating concentration field, in concert with the reaction
kinetics, determines the progress of the reaction. (Example 2-2c)

Turbulent mixing covers a broad spectrum of applications beyond the field of
reactions and reactor design, all of which are affected by the turbulence. Drop
breakup, off-bottom solids suspension, gas dispersion, bulk blending, and heat
transfer are all affected by the turbulent field. Without a better understanding of
this part of the physics, it is difficult to make progress in these areas. With this
broader objective clearly in mind, we now move forward to describe the key
characteristics of turbulent flow.

2-3 CLASSICAL MEASURES OF TURBULENCE

In this section we review the classical approaches to the problem of turbulence
and how they are applied in the field of mixing. For more detailed treatments, see
Brodkey (1967, Chap. 14), Tennekes and Lumley (1972), Hinze (1975), Baldyga
and Bourne (focusing on reactions in turbulent flows, 1999), Mathieu and Scott
(2000), and Pope (2000). We begin with a description of turbulence, building
up the model from the simple reduction of scale explored in Example 2-1c to
something that is more realistic. This realistic picture is very difficult to model in
its full complexity, so various ways of reducing the full physical complexity to
a manageable scale of difficulty must be considered. First, the idea of the turbu-
lence spectrum is discussed. This is a fingerprint of the scales of motion which are
present in a flow. The turbulence spectrum provides us with a simplified image of
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the flow10 and allows us to observe some general characteristics of turbulent trans-
port. These simplifications, in turn, lead to some special cases of turbulence (e.g.,
homogeneous, isotropic, or locally isotropic) which underlie most turbulence
modeling approaches used in computational fluid dynamics (CFD), and many
experimental approaches as well. Finally, scaling arguments are developed and
applied. The characteristic length and time scales that arise from scaling argu-
ments depend on the physics outlined earlier in the chapter. The simplicity of the
equations belies the challenges involved in successful scale-up and scale-down:
our objective is to provide some physical understanding of scaling principles and
some ground rules for their application. Now, we begin at the beginning with a
physical model of turbulence.

2-3.1 Phenomenological Description of Turbulence

Development of an understanding of turbulence requires consideration of the
details of turbulent motion. Much of our intuitive sense of fluid flow is based on
what we can observe with the naked eye, and much of this intuitive sense can
be applied to an understanding of turbulence, if we proceed with some care. We
begin with the classical definition of simple shear flow, as shown in Figure 2-6.
In this figure a Newtonian fluid is placed between two flat plates. The top plate
moves with velocity Vx, requiring a force per unit area of plate surface (F/A) to
maintain the motion. The force required is in proportion to the fluid viscosity,

Vx

Figure 2-6 Simple shear flow.

10 See Brodkey (1967, pp. 273–278) for a full development of the meaning of the spectrum.
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returning Newton’s law of viscosity:

τyx = F

A
= µ

∂U

∂y
= µ

�U

�y
(2-7)

For the simple laminar shear flow between two flat plates, a probe placed any-
where in the flow will register a velocity that is constant in time (Figure 2-7). A
probe placed in a stationary laminar recirculation zone will return the same result.

Now consider a stationary particle held in position by a stream flowing upward
at just the terminal velocity of the particle, as shown in Figure 2-8. The fluid far
away from the particle is in laminar flow, but in the wake of the particle,11 eddies
form. A two dimensional slice of the flow provides a picture that is similar, in
our intuitive context, to the surface currents behind a rock in a flowing stream.
The eddies are relatively stationary in space and are easy to observe. They are
typically round (or elliptical) in cross-section and maintain their size, which
invites our intuition to jump to the idea of a coherent12 spherical (or ellipsoidal)
eddy. We need to examine a general turbulent flow more carefully before making
that assumption.

The trademark of a turbulent or transitional flow is that the velocity fluctuates
in time,13 as shown in Figure 2-7. These fluctuations occur as eddies change or
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Figure 2-7 Velocity as a function of time in laminar and turbulent flow.

11 The wake is the downstream side of the particle, where the fluid flow is affected by the presence
of the particle.
12 A coherent structure in a flow field is one that maintains its shape but may evolve over time.
If the structure grows, the velocity will decay as a requirement of the conservation of momentum.
Stable coherent structures that maintain their shape, size, and velocity are often observed in lower
Reynolds number flows.
13 We defer the definition of transitional flow to Section 2-5.
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Figure 2-8 Turbulence in the wake of a particle: two dimensional cross-section.

move past the probe. Returning to our observations in a flowing stream or in a
pipe, a constant superficial velocity or local mean velocity can also be defined.
At any point in the flow, the signal can be averaged to give a repeatable mean,
although the details of the velocity signal fluctuations in any record are unique.
We might represent this situation as a series of rotating simple shear flows of
varying size, as shown in Figure 2-9, which are convected along with a velocity
Uc. In the figure, a very limited size range is shown, and the velocity profiles
are all linear. In a more realistic turbulent flow, a much broader range of eddy
sizes is observed, and the velocity profiles take on various nonlinear shapes in
response to the surrounding eddies. This image is left to the reader’s imagination.

The idea of many miniature shear flows that are rotating in space and being
convected across a probe seems like a useful one. This may allow us to make
a link between the three flow regimes (laminar, transitional, and turbulent), but
before adopting it, let’s clarify the assumptions that underlie this model. First,
we’ve assumed that the eddies do not change as they are convected along in the
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Uc

X0

Figure 2-9 Eddies of various sizes and velocities, each containing a component of sim-
ple shear. The convective velocity, Uc, and the integral length scale, X0, are arbitrary.

flow. If this were true, we could take a set of signals collected at X0 and back
out an exact picture of the flow at an instant in time. We could then calculate
instantaneous mean shear and deformation rates over the cross-section. This is
known as Taylor’s hypothesis (1921):

∂ui

∂x
= − 1

Uc

∂ui

∂t
(2-8)

On average, Taylor’s hypothesis will turn out to be quite useful, but it is a
dangerous one for the development of our intuition. Taylor’s hypothesis locks
the turbulent eddies into two dimensional symmetrical shapes, which stay in the
same place relative to each other as they rotate through space. To expand on our
intuitive images and understand the dynamic three dimensional component of tur-
bulence, we need to observe eddies in clouds on a windy day, or in stack plumes
and car exhausts on a cold day. The eddies are highly three dimensional. If one
eddy is observed as it is convected along at Uc, it rotates, changes shape, changes
size, and exchanges material with the surrounding fluid as it moves downstream.
Its life cycle is extremely dynamic. These characteristics are critical for turbulent
mixing, as they allow much more rapid cutting, folding, and incorporation of
new material than does Taylor’s image of frozen turbulence.14

The critical characteristics in our discussion of turbulence so far are that it
contains three dimensional eddies which have a wide range of sizes and shapes

14 To be fair to G. I. Taylor, he clearly limited this hypothesis to very short sampling times, thus min-
imizing some of these problems. His hypothesis is often applied as the best available approximation
over times that exceed the valid limits.



CLASSICAL MEASURES OF TURBULENCE 43

and which change dramatically over time. To complete the discussion, we need
to investigate the three dimensional aspect of the problem a bit more closely.

Return to the particle suspended in upward flow, but now instead of a particle,
consider a cylinder that is very long, placed perpendicular to Uc. A pragmatic
example of this is a dip pipe or cross-flow heat exchanger. At low Reynolds
numbers, the two dimensional wake of the cylinder will look the same in cross-
section as the particle wake in Figure 2-8, but the three dimensional eddy is quite
different from the deformed ellipsoid behind a particle. Now it is a long unstable
tube behind a pipe. The tubular eddy has a diameter similar to that of the pipe,
but it is very long in the third dimension. As the Reynolds number increases, the
wake will shed eddies of various sizes, many of them long and skinny. If the
velocity fluctuations are measured in the streamwise direction, the signal will be
similar to that in the particle wake, but in the transverse direction, the signal will
be affected by the long dimension of the eddies parallel to the pipe.

Another example of a three dimensional eddy arises in the boundary layer close
to the wall. In this layer, horseshoe eddies, turbulent spots, and turbulent bursts
separate from the wall and are swept into the bulk flow. Many of these eddies
have highly distorted dimensions, as shown in the simple example in Figure 2-10.
It is easy to imagine that for the single illustrated eddy, at least three distinct

A

B

C

Figure 2-10 Vortex in a boundary layer showing the different length scales (A, B, and
C) or wavenumbers contained in a single extended eddy: the wavelength (1/k = Uc/2πf)
is a single arbitrary dimension of a three dimensional time-varying structure.
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length scales (also measured as frequencies, or wavenumbers) could be observed
for different one dimensional slices through the flow at A, B, and C.

Next consider what will happen to a drop of immiscible fluid that is injected
into a turbulent velocity field. At the beginning, the drop may be spherical or
ellipsoidal, but it will quickly respond to the velocity field, and we assume that the
fluid and surface properties are such that it may deform very quickly in response
to the motion of surrounding eddies. When the drop is embedded in an “eddy”
that is much larger than its own characteristic diameter, it will be convected along
in the eddy with very little deformation (Figure 2-11a). However; when the drop
encounters eddies close to its own size, it will be deformed due to the interactions
between the drop and the eddies. It may be either torn apart by two co-rotating
eddies (Figure 2-11b) or elongated as it is squeezed between two counterrotating
eddies, (Figure 2-11c). Finally, when the drop encounters small eddies, packets
of its volume are torn away to mix with the surrounding fluid (Figure 2-11d ). If
there is no molecular diffusion, the minimum drop sizes will be limited to the
scale of the Kolmogorov eddies and the drop fragments generated on breakup.
Some of the drop fragments can be much smaller than the Kolmogorov scale
(Zhou and Kresta, 1998). The drop size distribution characterizes discrete drops
of fluid and reaches an equilibrium distribution after some (long) time. If, on

(a)

(b)
(c)

(d )

+

+

+

−

+

+
+

−

−

Figure 2-11 Scalar deformation in a turbulent field with surface tension between
the two phases: (a) convection by large eddies; (b) erosion by co-rotating eddies;
(c) elongation by counterrotating eddies; (d ) multiple scales of deformation.
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the other hand, there is significant molecular diffusion and no surface tension
between the two fluids, as is the case for blending of miscible liquids, the blob
of scalar fluid will deform continuously without breaking and the edges of the
blob will be smoothed out by molecular diffusion at the same time as turbulent
eddies deform and break the blob. After a fairly short time, no discrete blobs will
be observed. Both of these cases are illustrated in the drop breakup and blending
videos on the Visual Mixing CD affixed to the back cover of the book.

In the same way that relative length scales of eddies and blobs affect the
breakup of blobs, in multiphase flows the relative response times of particles and
eddies determine how particles interact with eddies (Tang et al., 1992). Although
we do not discuss this issue in detail, it is important to recognize two things:
(1) the relevant length scales for multiphase flows can be much more difficult to
scale accurately because of the complicated interactions between turbulence and
particles; and (2) where tracer particles are used in experiments, the scales of
motion that can be observed are a function of the particle size and characteristic
response time.

2-3.1.1 Nature of Turbulence: Summary of Section 2-3.1

• Turbulence is a dynamic three dimensional multiscaled phenomenon.
• Eddies are not spherical, and turbulence length scales are not characteristic

dimensions in the usual sense.
• Turbulence interacts with both scalars (dye, reactants) and dispersed phases

(bubbles, drops, and particles) according to the relative length and time
scales involved.

• The smaller the turbulent length scales, the finer the scale of micromixing,
and the faster the rate of mixing at the smallest scales of motion.

If we can hold onto some sense of the three dimensional dynamic character
of turbulent eddies, including the range of sizes that appear and how quickly
the eddies change in time, we can start to extract the questions we must ask
for applications of turbulence in mixing. In the next section we examine more
formal ways of characterizing turbulence.

2-3.2 Turbulence Spectrum: Quantifying Length Scales

In Section 2-2, we used Figure 2-7 to illustrate the instantaneous velocity versus
time signal and the mean velocity. A third velocity used widely for turbulent
flows is the root-mean-square (RMS) velocity, or the standard deviation of the
instantaneous velocity signal. Because the average fluctuation is zero by defini-
tion, the RMS velocity gives us an important measure of the amount or intensity
of turbulence, but many different signals can return the same mean velocity
and RMS fluctuating velocity,15 so more information is needed to characterize
the turbulence.

15 The RMS velocity is exactly equivalent to the statistical measure known as the standard deviation.
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If the velocity record is mean centered and transformed from the time domain
to the frequency domain using a Fourier transform, we obtain the energy spec-
trum. The energy spectrum is a measure of the amount of energy present at each
scale of motion. This allows us to take a fingerprint of the dominant frequencies
in the flow in terms of their energy content (E), or power spectral density (PSD),
as a function of wavenumber (k, in m−1) or frequency (f, in Hz or s−1). The spec-
trum gives the energy contained at each wavenumber, so the integral of the three
dimensional spectrum returns the turbulent kinetic energy (2k or q), and the inte-
gral of the one dimensional spectrum (in the j-direction) over all wavenumbers
returns the (j component of) RMS velocity, u2

j .
The length scales of turbulence are contained in the measured frequencies, but

the frequencies are a function of the mean velocity as well as of the rate of fluc-
tuation. To obtain a more scalable picture of the length scales of turbulence, the
measured frequencies are converted to wavenumbers using the mean convective
velocity and Taylor’s hypothesis:

k = 2πf

Uc
(2-9)

This application of Taylor’s hypothesis is not quite the same as the faulty example
given earlier, where we collected velocity versus time at X0 and used it to back
out the flow field at one instant in time. Now we are quantifying the time-
averaged conditions in the flow, using Taylor’s hypothesis to scale the spectrum
with the mean convective velocity. The turbulence spectra, which develop at
different mean velocities, can now be compared in terms of the wavenumbers
(length scales) that are present in the turbulent part of the flow. We only have
to assume that the eddies are coherent long enough to convect the largest length
scale across X0 in some repeatable time-averaged sense to justify using Taylor’s
hypothesis for scaling the spectrum.

To get a sense of the meaning of a wavenumber, consider a perfectly spherical
eddy. As the eddy is convected past a probe at a constant velocity, it will give
many different wavenumbers (frequencies), depending on where the sensor cuts
through the sphere. The measured spectrum of lengths for a sphere will range
from close to zero up to the diameter of the sphere. The three dimensional
irregular dynamic multiscaled eddies present in fully turbulent flows will produce
an analogous range of results. Wavenumbers are not physical lengths in the way
we are used to thinking about them, but they will prove very useful as a means
of scaling turbulence.

A typical spectrum for a stirred tank is shown in Figure 2-12b (Michelet,
1998). This spectrum is measured close to a Rushton turbine, where there are
strong fluctuations in the velocity due to the moving blades and the trailing
vortices, shown in Figure 2-12a (Yianneskis et al., 1987). The spectrum in
Figure 2-12b is scaled with fp, the blade passage frequency, so the blade passage
frequency and its harmonics are evident as sharp peaks in the spectrum at 1
and at 2. The blade passages have a strong directional preference and are often



CLASSICAL MEASURES OF TURBULENCE 47

(a)

(b)

−5/3

[m2/s]

f / fp

Figure 2-12 Trailing vortex behind the blade of a Rushton turbine shown in (a) (Yian-
neskis et al., 1993) has a mirror image on the lower side of the blade. The frequency
spectrum in (b) is normalized with the blade passage frequency and shows two peaks due
to the blade passages. The trailing vortices are shown in motion on the Visual Mixing
CD affixed to the back cover of the book.

removed from the signal before analysis of the turbulence. The reasons for this
are discussed in detail in Example 2-5. In some configurations, an additional
lower frequency is present at some fraction of the impeller speed, which must
also be removed before the turbulence can be accurately quantified (Roussinova
et al., 2000). Note that the range of length scales in the tank extends from T (the
largest dimension) over at least three orders of magnitude (a factor of 1000) to η,
and the measured frequencies in Figure 2-12b extend over a similar range. Using
log scales allows us to cover the wide range of both power and wavenumbers.

The slope of the spectrum at frequencies higher than the blade passage fre-
quency gives information about the distribution of energy across the turbulent
scales of motion. If the energy distribution is in equilibrium, all the energy that
enters the turbulent motion at large scales (i.e., in the form of low frequencies
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at the impeller) is dissipated at the same rate at the smallest scales of motion,
where viscous dissipation is most effective. Where equilibrium exists, the slope
in the equilibrium region must be − 5

3 on a log-log scale.16 It is evident from the
figure that this criterion is satisfied only over a small range of frequencies close
to the blades of a Rushton turbine.

The smallest scales of motion, or the smallest eddy dimensions, are charac-
terized using the Kolmogorov length scale:

η =
(

ν3

ε

)1/4

(2-10)

At this length scale, the viscous forces in the eddy are approximately equal
to the inertial forces due to turbulent velocity fluctuations. Somewhere close
to this length scale, the dissipation of energy becomes rapid, and the slope of
the spectrum increases dramatically, as shown in Figure 2-13. The Kolmogorov
length, η, is a defined length equal to the inverse of the Kolmogorov wavenumber.
It is used as a point of reference so that various conditions can be compared in
a consistent way, but it is only one of a whole range of turbulent length scales
which are present in any turbulent flow.

So what is the characteristic length scale of turbulence? This question is anal-
ogous to asking, “What is the diameter of an elephant?” We might say that
the Kolmogorov scale is analogous to the diameter of the elephant’s tail. Many

1/4
log ε

ν3





 1/4
log ε

νκ2







E(n)

Γ (n)

Slope (−1)

log n

Slope
5

3
−

lo
g 

Γ
(n

) 
or

 lo
g 

E
(n

)

Figure 2-13 Spectrum of velocity [E(n)] and temperature or concentration [�(n)] fluctu-
ation wavenumbers (m−1) in the equilibrium range of homogeneous isotropic turbulence
for the case of large Sc or Pr (modified from Batchelor, 1959). In the Batchelor scale, κ

is either the thermal diffusivity (k/ρCp) or the molecular diffusivity (DAB).

16 Note, however, that the converse is not true: A − 5
3 slope is not proof that equilibrium, or isotropy,

exists.
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other equally valid turbulent length scales have been defined, and we could say
that they are analogous to the size of the elephant’s trunk, ears, and legs. All
of these length scales are related to each other and to the size of the elephant
(the total energy in the spectrum) in a consistent and highly correlated way
from one elephant to the next. Despite this, no single length scale can uniquely
define the diameter of the elephant. In many cases of practical interest, the entire
range of length scales is important to the process, and apparently small changes
in the spectrum can make large changes in the process. An elephant without
a tail is a perfectly good elephant, unless the elephant’s main objective is to
swat flies!

2-3.2.1 Spectral Arguments for Scalar Mixing and Mass Trans-
fer. Batchelor (1959) used scaling arguments to determine the size of a pure
sphere of dye that will diffuse in exactly the time it takes the energy in an eddy
of size η to dissipate. This is called the Batchelor scale:

λB =
(

νD2
AB

ε

)1/4

and
η

λB
= Sc1/2 =

(
ν

DAB

)1/2

(2-11)

This analysis is limited to cases where the molecular diffusivity is slow relative to
the momentum diffusivity (kinematic viscosity), so that Sc ≥ 1. In the same way
that the Kolmogorov scale provides a limit where turbulent stresses are balanced
by viscous stresses, the Batchelor scale provides a limiting length scale where the
rate of molecular diffusion is equal to the rate of dissipation of turbulent kinetic
energy. Below this scale, distinct packets of dye will quickly be absorbed into
the bulk fluid by molecular diffusion, where our meaning of “quickly” is now
consistent between the energy dissipation and molecular diffusion.

Figure 2-13 shows the gross characteristics of the velocity and concentration
spectra. For a low viscosity liquid, Sc can be on the order of 1000, so the
Batchelor scale can be 30 times smaller than the Kolmogorov scale. The ultimate
scale of mixing needed for reaction is the size of a molecule, so in liquid-phase
reactions, molecular diffusion is critically important for the final reduction in
scale. For a gas, Sc is closer to 1, so the ratio is closer to 1, and the competition
between the turbulent reduction in scale and molecular diffusion occurs at the
same range of wavenumbers. The various length scales shown in Figure 2-13 are
also summarized in Table 2-3

So far, our discussion of length scales has focused on the smallest scales of
motion. At the larger scales of motion, Taylor (1921) considered the turbulent
dispersion of fluid particles by homogeneous isotropic turbulence in the absence
of molecular diffusion. In his model, each fluid particle leaving a point source
in a uniform velocity field is expected to deviate from the linear mean path in
a random manner, depending on the local nature of the turbulence. The RMS
deviation of the particle paths is observed as a continued divergence, spread, or
dispersion as the particles are carried downstream. This eddy motion occurs even
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Table 2-3 Useful Time and Length Scales Arising from Spectral Arguments

Usual Notation Name Physical Meaning

η =
(

ν3

ε

)1/4

Kolmogorov length scale Eddy size at which the viscous forces
are equal to the inertial forces.
Viscous dissipation becomes
important. Some authors place the
dissipation limit at 5η, where the
viscous forces reach 20% of the
inertial forces of turbulence.

tK =
(ν

ε

)1/2
Kolmogorov time scale Time it takes to dissipate the energy

contained in the smallest (η-sized)
eddies.

tB = tK ∝ η2

DAB
Batchelor time scale Time required for a pure scalar blob of

A to diffuse into pure B if the blob
diameter is η.

λB =
(

D2
ABν

ε

)1/4

Batchelor length scale
for mass transfer
where Sc is large

Size of a pure scalar blob that will
diffuse into pure surrounding fluid in
exactly tK.

in the absence of molecular diffusion. The spread of the plume size, L, for large
times (relative to the smallest scales of turbulence) can be approximated by

d(L2)

dt
= 2u2τE ≈ k2

ε
(2-12)

where τE is the integral of the particle velocity autocorrelation function (con-
stant for large integration times, but varying locally in the flow), and u, k, and
ε are local values that must be integrated over the path of the plume. The use
of k2/ε in this context should be considered a scaling approximation. It assumes
that the turbulence in the plume is at least locally isotropic and that it is uni-
form across the plume at any constant distance from the source. Inside the
spreading plume, whether or not molecular diffusion plays an important role,
the time-averaged concentration distribution will be Gaussian, making the reac-
tion kinetics aspect of the problem more complicated.17 This model is often the

17 A colleague working in the area of pollutant dispersion notes an important weakness of the time-
averaged approach: If the maximum concentration is a critical parameter, the average concentration is
not a useful result. Take, for example, the dispersion of H2S: If the local instantaneous concentration
exceeds a toxic limit, people on the ground will die. “Alive on the average” is not a useful result,
even if the average is very accurately determined! The necessary details of the distribution of
concentrations can be extracted from statistical or PDF models which account for the time-varying
characteristics of the concentration fluctuations.
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best we can do with the available data, but it is clearly a simplified view of the
physics.18

Taking a somewhat different approach, Corrsin (1957, 1964) considered the
overall decay of concentration fluctuations, c(t), in a homogeneous turbulent field
at high Re. In this case, the RMS fluctuations follow an exponential decay of
the form

c2(t) = c2(0) exp

(−t

τ

)
(2-13)

τ can be related to the physical properties of the fluid, ν and Sc, and the largest
scales of concentration fluctuations, Ls, as well as the rate of dissipation of
turbulent kinetic energy, ε. Corrsin integrated the approximate spectrum from
the wavenumber corresponding to the size of the largest blobs of pure A (k0)
to beyond 1/λB to obtain an estimate of the mixing time constant. The resulting
equations for both low and high Sc are given in Table 2-4. For liquids, Sc is large,
λB is smaller than η, and diffusion is very slow. The time constant increases due
to the action of diffusion (second term in the expression for τ), but this second
term is often small when compared to the magnitude of the first term, particularly
for low viscosity fluids. When Sc is near unity, as for gases, λB is approximately
equal to η, and the approximate spectrum is integrated from k0 to beyond η. For
the resulting equation to apply, Sc needs to be in the vicinity of 1; otherwise, the
equation will predict infinite mixing time.

Corrsin’s analysis was developed for an isotropic homogeneous turbulent field
but has been very successfully applied in pipe flow, both in terms of the shape of
the spectrum and in terms of the overall mixing time (see Example 2-1e). Others
have applied Corrsin’s scaling arguments in mixing tanks to determine the correct
dimensionless groups to apply for blend time correlations (see Example 2-3).
The key concept to understand from Table 2-4 is the relationship between the
concentration fluctuation field and the velocity fluctuation field. This relationship
is different for gases and liquids. The mixing time estimates in Table 2-4 allow
us to make some useful arguments about the length scales that are retained on
scale-up, and about the mass transfer time scales compared to the reaction time
scales in cases where micromixing dominates the process.

18 Going one step further, the combination of molecular diffusion with Taylor dispersion has also
been treated in Brodkey (1967, p. 326). Turbulent eddies carry what has to be mixed from one part of
the fluid to another, which accelerates the breakdown of blobs of pure A. At the same time, molecular
diffusion is enhanced by the increase in surface area and the steep gradients of concentration that
occur due to the action of the turbulent eddies. Using a statistical approach, the enhancement of
mixing due to turbulent dispersion can be described with a simple first-order solution:

mean-squared displacement of the interface = turbulent dispersion

+ result of interaction between turbulence and molecular diffusion

L2 = L2
0 + 2DABt

This equation describes the mean spread of a plume in uniform (plug) flow and is most relevant for
cases involving the dispersion of gases.
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Table 2-4 Effect of Schmidt Number on Concentration Length Scales and on Blend
Time

Schmidt Number
Sc = ν/DAB

Relative Length Scales
Sc1/2 = η/λB

Time Constant for Decay of
Concentration Fluctuations

Sc � 1
Molecular diffusivity

faster than momentum
diffusivity

η < λB

Smallest length scales
are in the velocity
field; not realizable

Sc = 1 or small
Equal diffusivities of mass

and momentum: typical
of gases

Equal length scales
Governed by turbulence:

τ =(
5

π

)2/3 2

3 − Sc2

(
L2

s

ε

)1/3

Sc � 1
Molecular diffusion slow:

typical of liquids

η > λB

Smallest length
scales are in the
concentration field

Mixing is slowed down by
the effects of molecular
diffusion:

τ = 1

2

[
3

(
5

π

)2/3 (
L2

s

ε

)1/3

+
(ν

ε

)1/2
ln(Sc)

]

The effect of Sc is usually
small, particularly for low
viscosity liquids

Example 2-1e: Realistic Models of Turbulent Mixing. Now that we have some
additional understanding of turbulent mixing of scalars, we can return to
Example 2-1 to consider a more realistic analysis. Example 2-1d considered
molecular diffusion across a single frozen eddy length scale. When we treat
the turbulent eddies as a fixed reduction in the scale of segregation, the dynamic
multiscaled nature of the turbulence is neglected. What we really need to know is
how eddies across the entire spectrum of length scales interact dynamically with
the concentration field in space and time. Because little is known about modeling
these dynamics directly, the problem is formulated in terms of statistical averages
in the theories developed by Taylor and by Corrsin.

Corrsin’s (1957, 1964) theory considers the time scale, τ, required for the
decay of the concentration fluctuations. This can be expressed in terms of the
intensity of segregation:

Is = c′2

c′2
o

= e−t/τ (2-14)

The intensity of segregation is a measure of the mixing accomplished. The inten-
sity is 1 when the components are unmixed and zero when they are fully mixed
(zero fluctuations). This intensity is a point measurement, not an average over
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the entire vessel. The time constants, τ, for low and high Sc are taken from
Table 2-4.

The macroscale of mixing, Ls, is not well established, so estimates for this,
and for ε, are needed. Brodkey (1967, p. 351) suggests

(
5

π

)2/3 (
L2

s

ε

)1/3

= 0.341
r0

u
(2-15)

for a pipe, where r0 is the radius of the feed pipe and u is the streamwise
RMS velocity. We will return to discuss the scaling arguments related to this
expression in the next section, but first we would like to test the estimate using
experimental evidence. McKelvey et al. (1975) established the velocity and con-
centration fields in the same pipe reactor as that used by Vassilatos and Toor
(1965; Example 2-2c). Their objective was to test the time constants for mixing
as predicted from velocity field measurements. This involved showing that there
was an equivalence of the mixing and very fast reaction rates in Toor’s reac-
tor.19 Figure 2-14 shows extremely good agreement between the mixing model
based on velocity measurements and the reaction rate results from Vassilatos
and Toor.

The general equivalence of time constants estimated over a wide variety of
experiments involving gases and liquids and a variety of geometries was shown
in a review by Brodkey (1975). He showed that nearly a 10 000 fold range in
mixing times could be adequately estimated if one has some idea as to the proper
value of r0 (the characteristic dimension) to be used. This lends some credibility
to Corrsin’s theory and motivates further examination of Ls and ε.

2-3.3 Scaling Arguments and the Energy Budget: Relating
Turbulence Characteristics to Operating Variables

To relate the Kolmogorov scale, η, to operating variables, we need to get a
measure of the rate of dissipation of turbulence kinetic energy per unit mass, ε.
The easiest way to do this is via scaling arguments and the use of characteristic
length and velocity scales. These scales are an important tool in engineering fluid
mechanics and deserve some explanation.

In fully turbulent flow, viscous forces become negligible relative to turbulent
stresses and can be neglected (except for their action at the dissipative scales of
motion). This has an important implication: above a certain Reynolds number, all
velocities will scale with the tip speed of the impeller, and the flow characteristics
can be reduced to a single set of dimensionless information, regardless of the fluid
viscosity. One experiment in the fully turbulent regime20 can be applied for all
tanks that are exactly geometrically similar to the model, at all Reynolds numbers

19 Toor (1962) hypothesized that mixing and very fast reaction rates are equivalent when the reactants
are stoichiometrically fed, and their stoichiometric ratio is 1.
20 See the discussion of whether the tank is fully turbulent when the impeller region is fully turbulent
in Section 2-5.
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Figure 2-14 Predicted intensity of segregation-based Corrsin-type analysis and Toor’s
hypothesis. (Data from McKelvey et al., 1975.)

in the fully turbulent regime, and for the full range of Newtonian working fluids.
For the stirred tank, the characteristic turbulent velocity and length scales are

uc = C′
uVTIP = CuND

Lc = CLD (2-16)

For now, the characteristic length scale Lc is assumed to scale with the impeller
diameter, not the tank diameter.21 If geometric similarity is observed and all
impeller dimensions are scaled with the impeller diameter (including details such
as blade thickness), the characteristic length scale (CLD) will scale any of the
impeller dimensions equally well; only CL will change. The constants Cu and CL

are a function of the impeller and tank geometry selected. For now, however, we
retain them as constants.

The dissipation, ε, is the rate of dissipation of turbulent kinetic energy. The
turbulent kinetic energy must scale with u2

c. The rate of dissipation of energy is

21 As long as strict geometric similarity is maintained, the only difference between D and T is a
constant. See Example 2-3 for further discussion.
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taken to scale with uc/Lc, the characteristic time scale of the flow. This gives

ε ∝ u3
c

Lc
= C3

uN3D2

CL

= A
C3

uN3D2

CL
(2-17)

Note the large sensitivity of ε to Cu, relative to its sensitivity to CL and A! When
the dissipation is estimated from experimental data, A is taken to be equal to 1,
uc is measured, and Lc is either determined from an integral energy balance, or
is estimated as some fraction of the impeller diameter. Direct measurements of
the dissipation are extremely difficult [see review by Kresta (1998)].

A second estimate of turbulence characteristics, which avoids the need for Cu,
is the power per unit mass of fluid in the tank. If the liquid depth, H, is equal to
the tank diameter, T:

P

ρVtank
= 4NpρN3D5

ρπT2H
∝ NpN3D2

(
D

T

)3

(2-18)

This scaling, however, introduces a factor of (D/T)3. This may work well where
the bulk characteristics of the flow dominate, but it is not an accurate mea-
sure of turbulence if local characteristics are needed. For the same power input
per unit tank volume, or holding eq. (2-18) constant with variations in impeller
type, diameter, and off-bottom clearance, Zhou and Kresta (1996a) provided an
extensive set of data and showed that the local dissipation can vary by up to
a factor of 100. This is illustrated for the Intermig on the Visual Mixing CD
affixed to the back cover of the book. The best order-of-magnitude estimate of
the maximum dissipation uses the swept volume of the impeller instead of the
total tank volume:

P

ρVimpeller
∝ NpρN3D5

ρD3 = NpN3D2 (2-19)

and gives the same scaling with N and D as the original estimate of the dissi-
pation. Note that this scaling suggests that the effect of C3

u/CL is characterized
by the power number, and that some fraction of the total energy is dissipated
in the impeller swept volume. This fraction depends on the impeller geometry
(Zhou and Kresta, 1996b). Figure 2-15 applies this scaling approach to measured
estimates of εmax for various tank geometries, showing that this scaling estimate
is accurate within a factor of 2 for four different impellers with power numbers
ranging from 0.3 to 6. The importance of using the swept diameter in calculations,
particularly for a PBT, is illustrated in the example below from Weetman (2002).

Example 2-3: Swept Diameter Calculation. In this example we consider two
PBT’s. The first is a standard geometry (W/D = 0.2, 45◦ blade angle or tip chord
angle). The second is a PBT with W/D = 0.5 and a tip chord angle (TCA) of
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Figure 2-15 Scaling of maximum local dissipation with the power per impeller swept
volume across a range of geometries. Use of the power per tank volume with exact
geometric similarity will give a similar result; however, when the geometry is varied,
values of the local dissipation can vary dramatically from one tank to another, even at
the same power per tank volume. (Modified from Zhou and Kresta, 1996b.)

30◦ to the horizontal. The blade length plus the hub radius is the perpendicular
dimension, but the swept diameter must be corrected for the projection of the tip
of the blade beyond the perpendicular radius.

Standard impeller (W/D = 0.2; TCA = 45◦; blade thickness = tb = 0.01D):

Dswept

D
= 1

{1 − [W cos(TCA)/D + tb sin(TCA)/D]2}0.5
= 1.0112

Pswept

P
= NpρN3D5

swept

NpρN3D5 =
(

Dswept

D

)5

= 1.057

εswept

ε
= NpN3D2

swept

NpN3D2 =
(

Dswept

D

)2

= 1.022

30◦, Wide-blade impeller (W/D = 0.5; TCA = 30◦; tb = 0.01D):

Dswept

D
= 1

{1 − [0.5 cos(30
◦
) + 0.01 sin(30

◦
)]2}0.5

= 1.112

Pswept

P
= (1.112)5 = 1.703

εswept

ε
= (1.112)2 = 1.237
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For a standard PBT the error is on the order of 5% if the perpendicular distance
is used. For the large-bladed impeller with a shallower angle, the errors are up
to 70%! This D also makes sense when measuring the primary flow with a laser
Doppler velocimeter for determination of the flow number (see Chapter 6). It
is very important in a mixing installation when one has to be concerned with
clearances from the tips of the blades.

Where does this leave us? We have three ways to estimate the dissipation
and the Kolmogorov length scale: The first requires experimental information
for Cu, CL, and A; the second uses the power number and the impeller swept
volume to get an estimate of the maximum local dissipation; the third uses the
total volume of the tank to get an estimate of the gross average dissipation and
introduces a factor of (D/T)3 into the equation. More recent detailed studies on
the Rushton turbine in particular (Michelet, 1998; Escudier, 2001) have shown
that these estimates are reasonably accurate over some portion of the impeller
discharge stream. All three methods will allow us to assess trends on scale-up,
where physical properties often remain constant, but dimensions and rotational
speeds change. The power per impeller swept volume is recommended as the
best practice estimate.

Example 2-4a: Blend Time. Now that we have ways to estimate ε and the char-
acteristic length scale Ls, we return to Corrsin’s equations in Table 2-4. Probably
the most important practical point is that the time constant of mixing scales with
(L2

s /ε)
1/3. All the rest of the terms in the equation for (Sc � 1) are either con-

stants or relatively minor effects of the Schmidt number. For mixing in a pipe,
we take the radius of the feed pipe, r0, as the initial integral length scale, and the
fluctuating velocity, u, as a measure of the turbulent energy. Thus we can write

ε ∝ u3

r0

τ ∝
(

L2
s

ε

)1/3

∝
(

r2
0r0

u3

)1/3

= r0

u

What are the practical implications of this result? The time constant goes up
(longer mixing times are needed) directly with an increase in the size of the
system and down with an increase in the turbulent RMS fluctuations. Stated in
dimensionless terms, the mixing length, L/D, depends on the turbulence intensity
in the pipe, U/u.

What about our underlying assumptions? We know from experimental mea-
surements that u/U is a weak function of Reynolds number. We can assume
that it is approximately constant. On scale-up at constant Reynolds number, the
dimension increases and U decreases; thus u must decrease also. For the same
scale-up, the largest concentration scales must also increase, as they scale with
r0. Substituting this back into the equation for τ, we see that the mixing time will
scale with the characteristic dimension squared. The mixing length is not quite
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so bad, as it will scale with τU, where U decreases on scale-up at constant Re.
This means that the mixing length will scale with the characteristic dimension,
L/D = constant. This is essentially a requirement of geometric similarity. The
only way to maintain a constant mixing time on scale-up is to increase the tur-
bulence. Keeping our eye on the important scale-up parameters certainly helps
us to understand mixing better.

Applying the same scaling arguments in a stirred tank, Ls is equal to some
fraction of D and ε is estimated using the power per impeller swept volume.
This gives

τ ∝
(

L2
s

ε

)1/3

∝
(

D2

NpN3D2

)1/3

= 1

N1/3
p N

Compare this with the general form of correlation for blend time in the tank from
Chapter 9, where the exponent n is 2 for axial impellers:

θB ∝ 1

N1/3
p N

(
T

D

)n

(2-20)

The correct dependence of θB on Np and N is suggested by the scaling arguments.
The effect of T/D can be extracted if we use a minimum dissipation instead of the
maximum dissipation, and set the integral length scale equal to the tank diameter
at the fully mixed conditions in the bulk:

uc,max ∝ (εmaxD)1/3 ∝ (NpN3D2D)1/3 = N1/3
p ND

uc,min ∝ N1/3
p ND

D

T
due to jet decay, so εmin ∝ u3

c,min

T
∝ NpN3D6

T4

τmax ∝
(

L2
s

εmin

)1/3

∝
[

T2

NpN3D2(D/T)4

]1/3

= 1

N1/3
p N

(
T

D

)2

Where T/D is held constant on scale-up, this result reduces to 1/(N1/3
p N). There

are many different ways to make the scaling arguments (see, e.g., Grenville et al.,
1995; Grenville and Tilton, 1996, 1997; or Nienow, 1997). The point is that the
end result agrees well with Corrsin’s approach. The most important thing to
recognize is that L2

s /ε, however it is estimated, must be constant on scale-up to
maintain constant blend time. If the dissipation (ε) is held constant on scale-up,
the blend time will always increase.

Example 2-4b: Scale-up with Exact Geometric Similarity. In this example we
consider the relationship between the spectrum of velocity fluctuations and the
micromixing scales. At the lab scale, a T = 0.25 m vessel is used to formulate a
homogeneous reaction in an aqueous phase. The fully baffled vessel is equipped
with a Rushton turbine impeller of D = T/2 at C = T/3 with Np = 5.0. The
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reaction proceeds as desired at N = 240 rpm. Scale-up to the plant vessel follows
exact geometric similarity, with T = 2 m. What is the appropriate N to use in
the plant?

We could calculate the bulk blend time in the lab and in the plant, but in this
case the process result requires a reaction. The reaction kinetics and molecular
diffusivity are constant on scale-up, so we must ensure that the Batchelor scale
is also preserved. The Batchelor scale can be defined using an estimate for the
dissipation:

ε ∝ (πND)3

Lc
∝ NpN3D2

λB =
(

νD2
AB

NpN3D2

)1/4

Setting the Batchelor scale equal in the lab and the plant gives

N3D2 = constant =
(

240

60 s

)3 (
0.25 m

2

)2

= 1.0 m2/s3

Nplant =
[

1.0 m2/s3

(2 m/2)2

]1/3 (
60

s

min

)
= 60 rpm

So the use of N = 60 rpm (or higher) and exact geometric similarity will ensure
that the Batchelor length scale for scalar mixing is preserved on scale-up.

Now check the Reynolds number and power consumption:

Replant = ND2

ν
= (1 s−1)(1 m)2

1 × 10−6 m2/s
= 106

Relab = (4 s−1)(0.125 m)2

1 × 10−6 m2/s
= 6.25 × 104

Both vessels are in the fully turbulent regime, so the scaling rules will hold. Thus,

(
P

Vtank

)
plant

= 4NpρN3D5

πT2H
= (4)(5.0)(1000 kg/m3)(1 s−1)3(1 m)5

(3.14)(2 m)2(2 m)

= 796 W/m3

(
P

Vtank

)
lab

= (4)(5.0)(1000 kg/m3)(4 s−1)3(0.125 m)5

(3.14)(0.25 m)2(0.25 m)
= 796 W/m3

Since we required a constant D/T and ε on scale-up, the power per unit vol-
ume is also forced to remain constant. The power consumption provides what is
considered intense agitation in both vessels.
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Notice that the value for the molecular diffusivity was never used in this
problem, because the physical properties were retained on scale-up!

Example 2-4c: Scale-up where Exact Geometric Similarity Is Not Maintained.
A more difficult case is one where geometric similarity is not maintained on scale-
up. In this case the lab scale vessel is a round-bottomed flask with a magnetic
stirrer, and an existing vessel with a PBT (T = 1 m, D = T/4, C = T/4, four
baffles, Np = 1.2) is to be used in the plant. The initial operating conditions set
N at 45 rpm (Re = 4.7 × 104), but there is excessive formation of by-product.
The chemists agree to run some scale-down experiments. The first experiment
uses exact geometric similarity and the same scaling principles as outlined in
Example 2-4b. The resulting product distribution matches the one obtained in
the plant. The new conditions in the lab are T = 160 mm, D = 40 mm, C = 40
mm, and N = 152 rpm.

On increasing N to 400 rpm in the lab, the desired product distribution is
obtained. This is an indication that there is interaction between the reaction kinet-
ics and the mixing. To keep N3D2 constant, N in the plant must be 118 rpm.
Unfortunately, the plant mixer has a fixed rpm. To keep a constant microscale,
we decide to change the impeller diameter:

NpN3D2 = constant N = 45 rpm

(400 rpm)3(0.04 m)2 = (45 rpm)3D2 D = 1.06 m

This is larger than the existing tank diameter, so it is necessary to change the
impeller geometry to something with a larger power number. Selecting a Rushton
turbine (RT), Np is taken equal to 5.0 (conservative), so

(1.2)(400 rpm)3(0.04 m)2 = 5.0(45 rpm)3D2 D = 0.52 m

This impeller diameter will fit in the existing tank. Now consider the relative
blend times:

θB,lab = 5.2

(400/60 s)(1.2)1/3

(
0.16 m

0.04 m

)2

= 11.7 s

θB,plant = 5.2

(45/60 s)(5.0)1/3

(
1.0 m

0.52 m

)2

= 15 s

We expect to see a longer blend time in the plant, so this is probably acceptable.
Both Reynolds numbers are in the turbulent regime and the fluids are the same, so
this looks like a feasible design. One remaining problem is that we have moved
from an axial impeller to a radial impeller, so the circulation patterns will change
dramatically. It will be much cheaper to test the effect of this change in a scaled-
down geometry than on the full plant scale! To complete the problem, we need
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to check the torque for the RT design versus the current operating conditions and
make sure that the equipment can support the increased load.

2-3.3.1 Summary of Scaling Arguments

• In applying Corrsin’s theory to real problems, we find that L2
s /ε, however it

is estimated, must be constant on scale-up. For a pipe, this requires scaling
with ro/u; for a tank where geometric similarity is preserved, it requires
scaling with 1/N1/3

p N. (Example 2-4a)
• Scale-up with exact geometric similarity (or scale-down) requires very little

empirical information. (Example 2-4b)
• Changing geometry on scale-up is a very complex undertaking that should

be avoided wherever possible. (Example 2-4c)
• The crux of any problem is to determine the critical length scales and then

to scale them correctly. (Example 2-4)

2-4 DYNAMICS AND AVERAGES: REDUCING THE DIMENSIONALITY
OF THE PROBLEM

In turbulent flow, mixing is to a large extent controlled by the turbulence. Con-
sequently, an understanding of turbulence per se is necessary before we can
analyze transport phenomena. Recalling our phenomenological description from
Section 2-3.1, turbulence is three dimensional, dynamic, and multiscaled, even
in its most ideal form. In a stirred tank, the picture is further complicated by

• Chaotic macroinstabilities on the scale of the tank turnover time
• Anisotropic, coherent trailing vortices on the scale of the blade width
• The potential lack of fully turbulent flow (failure of Reynolds number scal-

ing) in regions distant from the impeller
• The presence of internals and either gas or solid phases in the tank, which

further complicate the generation and dissipation of turbulence

These additional variables make the stirred tank extremely versatile, but also
make generalizations both difficult and dangerous. In this section we discuss
various ways of simplifying our descriptions of the flow and the turbulence and
illustrate where these simplifications have been applied successfully.

Example 2-5: Solids Suspension versus Uniform Distribution. It is sometimes
difficult to sort out exactly how each of the various length and time scales can
dominate a process. To investigate this idea, consider solids suspension versus
solids distribution in a tank. In the first case, our main interest is in making sure
that all the solids are suspended. This is the constraint, for example, in solids
dissolution, or leaching. In the second case it is important to have uniform solids
distribution throughout the tank. This would be the constraint for a slurry catalyst
or for continuous operation with slurry withdrawal at one point in the tank.
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Consider the results for off-bottom solids suspension first. In 1958, Zwietering
developed a correlation for the just suspended speed (Njs) of solids in a stirred
tank. Despite numerous attempts to improve on the correlation, the result remains
substantially unchanged. In 1978, Baldi et al. redeveloped the equation starting
from an analysis of the fluctuating velocities in the boundary layer at the bottom
of the tank. They argued that only the turbulent fluctuations can lift the solids off
the bottom so that they can be convected into the main flow. The close agreement
between their equation and Zweitering indicates that the governing mechanism
for off-bottom suspension is the scaling of turbulent fluctuations in the boundary
layer at the bottom of the tank.

A related problem is that of uniform solids distribution in the tank. Even when
the Njs criterion is met, solids are often not uniformly distributed throughout the
tank. The vertical distribution of solids is still not well understood. In some cases,
a sharp, stable interface forms above which there are few solids. The slip velocity
between the particles and the fluid will certainly play a role in solids distribution,
as will the upward velocity at the tank wall. To resolve this problem, a better
understanding of the vertical flow and macroinstabilities at the wall is needed.

A third case is the rate of solids dissolution: once the solids are fully suspended
(N > Njs), the rate of dissolution does not change significantly even if N is
increased. Why? The mass transfer at the surface of the particle is determined by
the boundary layer on the particle. The relative velocity between the particle and
the fluid is the slip velocity, and this is not strongly affected by the fluid velocity.
Once the particles are suspended, the slip velocity is approximately constant and
no significant further gains can be made. The governing mechanism for solids
dissolution is the slip velocity between the particle and the fluid.

These three cases illustrate the importance of considering the correct governing
mechanism when trying to determine the most useful simplification of the flow.

2-4.1 Time Averaging of the Flow Field: The Eulerian Approach

Before the advent of fast computers, the time-averaged approach to the flow
field was the only reasonable way to approach turbulent flows. In this approach,
data taken at a single point are averaged over a sampling time long enough to
provide a repeatable mean and RMS result. The only information available about
transient behavior is the statistics of the signal (rms velocity) and the frequency
spectrum. As long as the time scale of the process is longer than the time scale
of the averaging, this approach is likely to be successful. In some other limiting
cases (see Example 2-2b) the kinetics of the process are so fast that the mean
mixing rate is the governing rate, and once again progress can be made.

For a basic analysis of the problem, we can use the Reynolds equations, which
are the time-averaged form of the Navier–Stokes equations (see Section 2-5 and
Chapter 5). The major problem is to simplify the equations and obtain additional
relations between the unknowns. One idea to provide simplification is to assume
that turbulent fluctuations are random in nature and can therefore be treated by
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means of statistics. Thus we approach the problem from a rigorous statistical
theory into which we can introduce certain simplifying assumptions that will
allow us to reduce the equations and solve for some of the variables of interest.
The most important of these assumptions are defined and discussed in this section.
The models of turbulence that result are discussed in Section 2-5.

2-4.2 Useful Approximations

A necessary objective in turbulence analysis is to define a limited number of
simplifying assumptions that will simplify the problem while introducing only
small errors in the solution. Any assumption is permissible as long as the lim-
itations of the assumption are understood and taken into account. Let us begin
by assuming that eddies range continuously in size from the very smallest to
the largest, which are typically the same scale as the equipment. In the most
ideal case, the boundaries influence only the large eddies and transfer energy to
or from them. The larger eddies transfer their energy to the smaller eddies, and
so on, until the energy is transferred to the smallest of eddies. These smallest
eddies lose their energy by viscous dissipation. The five most useful assumptions
required to build and work with this model are:

1. Fully turbulent flow. At very high Reynolds numbers, the inertial forces
due to fluctuating velocities overwhelm the viscous forces, so the flow field
becomes independent of fluid viscosity. Mean velocity profiles scale with
a characteristic velocity and length scale, and drag coefficients (e.g., the
power number) become independent of Reynolds number.

2. Homogeneous turbulence. The turbulence is completely random and is
independent of position (i.e., RMS of u, v, w are constant over the field).
The three fluctuating components u, v, and w are not necessarily equal.

3. Full isotropy. The fluctuations have no directional preference at any scale
of motion. No gradients exist in the mean velocity.

4. Local isotropy. This assumption can be applied over a limited range of fre-
quencies or eddy sizes (not a limited volume of space). Over this restricted
range of eddy sizes, isotropy prevails. Eddies outside this range can be
highly anisotropic, and mean velocity gradients are permitted.

5. Turbulent shear flow. This flow is a modification of completely homoge-
neous flow to allow for shear stresses and for well-defined mean velocity
gradients, such as those found in a jet, a mixing layer, or a boundary
layer. Usually, one or two of the Reynolds shearing stresses (Section 2-5)
are zero.

The term homogeneous turbulence implies that the statistical characteristics
of the turbulent velocity fluctuations are independent of position. We can further
restrict the homogeneous system by assuming that the velocity fluctuations are
independent of the axis of reference (i.e., invariant to axis rotation and reflection).
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This is equivalent to saying that there is no directional preference in the fluctu-
ating field. This restriction leads to isotropic turbulence, which by its definition
is always homogeneous. To illustrate the difference between the two types of
turbulence, consider the RMS velocity fluctuations. In homogeneous turbulence,
the three components of the RMS velocity can all be different, but each value
must be constant over the entire turbulent field. In isotropic turbulence, spher-
ical symmetry requires that the fluctuations be independent of the direction of
reference, or that all the RMS values be equal. A bowl of peanuts or pretzels is
isotropic in a two dimensional sense: It is the same no matter how you look at
it or where you place the reference axis. The same is true (in three dimensions)
for isotropic turbulence. The branches and leaves on a tree, on the other hand,
have a specific arrangement, so moving the axis changes the image. The tree is
highly anisotropic.

True isotropic homogeneous flow requires that there be no directional prefer-
ence in the three dimensional flow. There can be no mean velocity gradients, thus
no shearing stresses. All three normal stresses must be equal, and all nonnormal
stresses (uv, vw) must be equal to zero. If the flow has no directional preference
and no coherent organized structures, there can be no correlation between com-
ponents of the fluctuating velocity. The normal components (uu, vv, ww), on the
other hand, will always be positive because they are squared terms. Experimen-
tally, such a flow can be obtained approximately in the turbulence developed
behind a properly designed grid. This restriction excludes consideration of the
trailing vortices in mixing vessels, which have a clearly defined orientation; it
also excludes flow anywhere in the tank where velocity gradients exist. There is
no possibility of seeing truly isotropic turbulence in a stirred tank.

While the fully isotropic assumption is not a good match to physical reality, the
implications of isotropy are profound for turbulence modeling and measurements.
Isotropy allows the entire turbulent spectrum to be defined from one component of
fluctuating velocity, because the flow is perfectly without directional preference.
It allows simplification of the equations to include only the normal stresses. It
also allows one to make spectral arguments to simplify the measurement of the
dissipation. This assumption is so powerful that it is often invoked in the hope
that it will be good enough for a first approximation, despite the fact that it is a
poor match for the full physical reality.

The area of turbulent study that holds the greatest interest for engineers is
turbulent shear flow. This flow is a modification of completely homogeneous
flow to allow for shear stresses and mean velocity gradients. Usually, one or
two of the Reynolds shearing stresses are zero. Turbulent shear flow in turn
may be divided into flows that are nearly homogeneous in the direction of flow
and those that are inhomogeneous in the direction of flow. It has been found
experimentally that the nearly homogeneous flows are those that are bounded, as
in pipe flow, while the inhomogeneous shear flows are unrestricted systems, such
as jets. Longitudinal homogeneity (or homogeneity in the direction of flow), arises
from the fact that in pipe flow, turbulence is generated along the wall and there
is no decay. Longitudinal decay arises from the dispersion of momentum and



DYNAMICS AND AVERAGES: REDUCING THE DIMENSIONALITY OF THE PROBLEM 65

the decay of streamwise velocity, as is observed in jets. One flow of importance
that has characteristics of both confined and free shear flows, depending on
the location of study, is boundary layer flow. The area near the wall is nearly
homogeneous in the direction of flow, and that near the bulk of the fluid is
inhomogeneous and spreads as the boundary layer grows. Turbulent shear flow
cannot be fully isotropic, but it may be locally isotropic.

Many misunderstandings have arisen due to a lack of care in distinguishing the
locally isotropic assumption from the isotropic or fully isotropic assumption. The
restriction of local isotropy can be applied over a limited range of frequencies or
eddy sizes (not a limited volume of space). The conditions for local isotropy state
that if the local Reynolds number (based on the turbulent length scale and the
fluctuating velocity, not on the equipment length scale D and the mean velocity)
is high enough, there may be a range of eddy sizes over which the turbulence
energy cascade is in equilibrium. Under these conditions, energy enters at the
top of the locally isotropic range of eddy sizes and is dissipated at the smallest
locally isotropic scales of motion with no losses of energy at the intermediate
scales. Over this range of eddy sizes, no memory of the oriented large scale
motions (i.e., the trailing vortices) remains, and there is no directional preference
in the flow. This condition extends up the cascade to some large eddy size l.
Below this limiting length scale, the flow can be treated as locally isotropic.
Eddies larger than l may still be highly anisotropic. It should be understood that
any conclusions that are valid for locally isotropic turbulence, are also valid for
fully isotropic turbulence over the same range of wavenumbers.

This discussion of the basic simplifying assumptions used to describe different
types of turbulence prepares the way for a better understanding and further inter-
pretation of turbulence in mixing vessels. The next example involves applications
of the five simplifying assumptions.

Example 2-6: Applications of the Simplifying Assumptions

(a) Homogeneous turbulence. Is ε = P/ρVtank? In the early days of mixing
research, there were very few data on the flow field, and some initial scaling
variables were needed. Based on the first law of thermodynamics, the energy
put into the tank can only be dissipated, since there is no energy out. Taking the
power input at the shaft and dividing it by the mass of fluid in the tank (P/ρVtank)
returns the same units as the rate of dissipation of turbulent kinetic energy per
unit mass. It is not a big leap to abbreviate P/ρVtank to ε, but is this physically
meaningful? Is it a useful representation of the turbulence?

When the jump is made from P/ρVtank to ε, an assumption that the turbulence
is homogeneous is implied. This assumption is clearly a poor one in a stirred
tank, where the levels of turbulence can vary by a factor of 100 from the impeller
to the bulk. Generation and dissipation are vastly different between the impeller
region and the regions away from the impeller. For shear-sensitive materials such
as cells, their survival depends more on the maximum shear they see than on the
average. In such cases, using P/ρVtank as some kind of an average dissipation is
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about as informative as saying that the average velocity in the tank is zero. So
why does P/ρVtank work so well as a correlating variable?

The success of P/ρVtank is actually restricted to cases where exact geometric
similarity is maintained. If this restriction is satisfied, P/ρVtank is really a scal-
ing basis, not an average dissipation. The local dissipation roughly scales with
NpN3D2, or the power per impeller swept volume, which differs by a factor of
(D/T)3 from P/ρVtank. If D/T is constant, the two approaches are equivalent. There
are many other good reasons for maintaining geometric similarity on scale-down,
so this is not a bad restriction to keep—we just have to be careful of the basis
for the argument.

Where the objective is to uncover the governing physics in the problem, the
effects of the local dissipation must be separated from the effects of other vari-
ables. To accomplish this, geometric similarity will often not be maintained, and
the best available scaling for the local dissipation is NpN3D2, or the power input
per unit of impeller swept volume.

(b) Fully turbulent flow. Scaling variables work when the flow is fully turbulent
and exact geometric similarity is maintained. When these two conditions are true,
the effect of fluid viscosity is negligible. The flow field can be made dimension-
less using a characteristic length scale and a characteristic velocity scale. Once
fully developed turbulence is satisfied, dimensionless velocities scale exactly with
the characteristic velocity. In a stirred tank, this velocity is the tip speed of the
impeller. Figure 2-16a shows the radial velocity profile in the discharge stream
of a Rushton turbine, scaled with the tip speed of the impeller. The velocity pro-
file is measured at three different rotational speeds and in three different fluids.
All of the data collapse onto one line. In Figure 2-16b, the local dissipation, ε,
below an Lightnin A310 impeller is scaled in the same way. Note that the last
place to attain this scaling in the impeller discharge is the velocity peak at the
tip of the impeller blades.

In Figure 6-14 the power number is constant and independent of Re for Re >

2 × 104. Similarly, the blend time scales exactly with N above the fully turbulent
Re (see Chapter 9). Viscosity no longer has any effect on the velocity field or
on the power draw. These dramatic simplifications are true only where the flow
is fully turbulent. Fully turbulent does not mean that the turbulence will be
fully homogeneous and the same everywhere. Processes that depend on local
conditions, such as cell survival and apparent chemical kinetics, will be affected
by the local variations that exist in mixing systems. Average quantities will work
only if they reflect the distribution of the quantity as well as the average quantity
(i.e., an average tank dissipation may be a valid parameter if when the average
is doubled, the maximum is also doubled). For this reason, maintaining exact
geometric similarity on scale-down is often critical.

(c) Local isotropy. Consider pipe flow at some relatively high Reynolds number.
Throughout the pipe, the viscous forces along the wall provide the conditions
necessary for turbulence formation. Rotation, very large vortices, or large eddies
arise from the interaction of the mean flow with the boundary. In a mixing vessel,
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Figure 2-16 Scaling of flow characteristics. (a) Scaling of velocity profiles with tip
speed in fully turbulent flow. (From Nouri et al., 1987.) (b) Scaling of dissipation with
N3D2 for the Lightnin A310 impeller, D = 0.475T. (From Zhou and Kresta, 1996b.)
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the equivalent viscous forces and large eddies are generated at the impeller and
baffles. The scale of these large eddies would be comparable to the pipe diameter,
the impeller diameter, or the tank diameter. In the earlier section on locally
isotropic turbulence, a model was proposed involving a cascade of energy from
large to progressively smaller eddies. Now consider that the walls affect the
largest fluid structures most strongly and lose their effect as the process moves
down the chain. At very high wavenumbers or small eddy sizes, the effect of the
boundaries is lost completely or is negligible. The small eddies are considered
independent of the boundaries or mean flow. Even though the system may be
inhomogeneous on the large scale, it may well be locally isotropic on the small
scale, and thus an equilibrium range and inertial subrange might still be found.
Over this range, and at the same local Re, the characteristics of the turbulence
in the pipe and the turbulence in the stirred tank should be indistinguishable.

Several indicators are used to assess whether the assumption of local isotropy
may be applied: the first is a high local Reynolds number, the second is a − 5

3 slope
in the frequency spectrum of the velocity signal, as tested in Figure 2-12, and the
third is equality of the three RMS components of velocity. The final rigorous test
of local isotropy is to transform the one dimensional energy spectrum measured
for one component of velocity (xx) to another direction (yy or zz), and compare
the results with the spectrum measured in that (yy or zz) direction. Michelet
(1998) performed the first test of this condition for the flow in a stirred tank.
Partial results from his work are shown in Figure 2-17. When applied to the flow
closer to the impeller, as shown in Figure 2-17a and c, local isotropy must be
considered an engineering approximation over a limited range of frequencies. As
the probe is moved out into the discharge stream in Figure 2-17b and d, however,
agreement quickly becomes very good. A similar growth in the extent of the − 5

3
region was shown by Lee and Yianneskis (1998).

(d) Turbulent shear flow. As a first step, a very brief contemporary picture of
turbulence in boundary layers and wall regions is provided. The flow can be
divided into a wall region, outer region or regions away from walls, and the
interactions that occur between the two regions. In wall regions (which would
include impellers and baffles), the production of turbulent kinetic energy occurs.
There are extensive studies of this for a variety of geometries. Often, there are
intermittent periods when the Reynolds stresses are high. This is associated with
an ordered sequence of events of ejections of low momentum fluid outward from
the boundary, interaction events, and sweeps of high momentum fluid toward the
area. For pipe and boundary layer flows, the entire sequence has been called a
burst phenomenon. The outer region is characterized by the overall flow. For large
systems, where boundary layers can form, these are the features that determine the
turbulent/nonturbulent interfaces. The highly three dimensional bulges along the
interface of boundary layers are vortical motions. Extensive measurements have
been made of the turbulence characteristics inside these structures. Studies on jets
and on the plane turbulent mixing layer have helped to uncover the basic features
of the large scale structures in these flows. Much of the flow in the stirred tank is
similar to jets, and there are valuable analogies to be made between this model
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Figure 2-17 Typical wavenumber spectra for a D = T/3 Rushton turbine with the blade
passages removed. Parts (a) and (c) are taken at the tip of the impeller blades (r = 0.3T/2).
Figures (b) and (d ) are in the discharge stream (0.7T/2). Parts (a) and (b) show only one
component of the wavenumber spectrum, Exx. Parts (c) and (d ) show the transformation
of the xx spectrum (smoother line) onto the measured yy and zz spectra. Local isotropy
quickly penetrates to high wavenumbers. (From Michelet, 1998.)

flow and the complicated recirculating flow in the tank (Fort, 1986; Bittorf and
Kresta, 2001; Bhattacharya and Kresta, 2002; Kresta et al., 2002), as illustrated
in Figure 2-18, and discussed in Section 10-3.2 in Chapter 10.

2-4.3 Tracking of Fluid Particles: The Lagrangian Approach

The Eulerian approach fails when there are significant variations of temperature
or concentration in the tank that affect the process kinetics. One example of this
is bioreactors, where cells may experience severe oxygen deprivation over large
parts of the tank, changing their growth kinetics (Yegneswaran et al., 1991).
A second example is crystallization (also discussed in Chapter 17), where the
supersaturation varies significantly from the feed zone to the bulk. The local
supersaturation determines growth and nucleation rates and thus the final par-
ticle size distribution and morphology (Baldyga et al., 1995; Wei and Garside,
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1997). To model the process results accurately in both these cases, the Lagrangian
experience of a fluid particle must be considered.

The Lagrangian approach follows a fluid particle over time as it moves through
the flow field. Simulated or experimental particles are injected into the field at
an arbitrary time and location. The particles are then tracked as they move under
the influence of the velocity field. The injected particles can be neutrally buoyant
or given a different density than of the fluid. In their most precise form, com-
puted particle paths should follow experimental full-field time-resolved velocity
vector data. Zhao and Brodkey (1998a) have illustrated the importance of using
time-resolved data for the opposed jet system. If the process time is long, the
mean concentration gradients are large, and/or the transient data are not impor-
tant, significant progress can be made using a time-averaged velocity field with
simple turbulent dispersion models (Bourne and Yu, 1994; Vivaldo-Lima et al.,
1998). A third approach is to use circulation time distributions (Yegneswaran,
1991; Roberts et al., 1995) with stochastic modeling to incorporate the effect of
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variations in the particle path. Two of the greatest difficulties lie in defining accu-
rate, reliable models of turbulent dispersion at intermediate (anisotropic) scales
and in modeling complex higher-order kinetics. Both of these phenomena may
well be present in cases where detailed modeling based on Lagrangian particle
paths is warranted.

2-4.4 Experimental Measurements

The full resolution of a turbulent mixing problem would require full field
measurements of three instantaneous velocity components over time [u(x,y,z,t),
v(x,y,z,t), w(x,y,z,t)], plus full field concentration(s) for each component
[c(x,y,z,t)]. This five dimensional space is not easily attainable with current
methods, and the postprocessing requirements of this quantity of data suggest
that some averaging will be required. In Section 2-3.4.1, we consider the
various common experimental methods and what dimensions of this problem
they measure.

2-4.4.1 Information Contained in Experimental Measurements

• Pointwise velocity as a function of time [u(t) or v(t) or w(t)]. Laser Doppler
velocimetry (LDV) is a single-point time series measurement, typically of
one or two velocity components. From these data we can extract mean and
RMS velocities, spectral information, and in the case of a two-component
instrument, a single Reynolds stress (uiuj). We cannot obtain much infor-
mation about the shape of large structures, or macroinstabilities in the flow,
because only one spatial location can be measured at a time.

• Pointwise velocity relative to the impeller blade [u(θ) or v(θ) or w(θ)]. Angle-
or phase-resolved LDV is still a single-point measurement but with the
addition of a shaft encoder, which records the shaft angle versus time. The
velocity versus time data are then sorted by angular position to give the
velocity relative to the impeller blade. These data can be used to uncover
cyclically appearing structures, such as the trailing vortices, and to define
angle-resolved values of the RMS velocity and (again if two components
are available) a single Reynolds stress. This information suggests that the
peak levels of turbulence are rotating with the blades in a very small area
behind the blades. Understanding this is important if we are to address the
mechanisms of drop breakup and cell destruction vis-a-vis the instantaneous
turbulence field.

• Two components of velocity as a function of time over a full plane of the flow
[u(x,y,t), v(x,y,t)]. Full-plane particle image velocimetry (PIV) provides a
full plane of velocity data with two components of the velocity at once.
The measuring volume is thin in the direction normal to the plane. This
is a problem if the component normal to the plane is large because the
particles will not stay in the illuminated plane long enough to register a
velocity. There are ways around this if the plane can be oriented to match
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the direction of the streamwise velocity, but in the highly three dimensional
stirred tank, this requires significant insight into the flow. A newer extension
of PIV can use two simultaneous views at two angles (stereoscopic imaging)
to give the third component of the velocity, but still within a narrow plane.

• Concentration as a function of time over a full plane of the flow
[c(x,y,t)]. Laser-induced fluorescence (LIF) provides a full plane of
instantaneous concentration data and can be very valuable where the
intermittency of concentration at the visible scales of motion must be
understood. It has been applied successfully to several low Reynolds number
mixing devices to elucidate mixing structures. Examples are given in
Chapter 3. Quantitative analysis of the images can be done by converting
light intensity to dye concentration at each pixel of data.

• Three components of velocity as a function of position in three dimensional
space [u(x,y,z,t), v(x,y,z,t), w(x,y,z,t)]. Particle tracking velocimetry (PTV)
tracks the image of several (up to 1000 (Guezennec et al., 1994; Zhao and
Brodkey, 1998b)) particles in a three dimensional volume over time, giving
the location of the particles over time. From the position records, three
components of velocity can be extracted for each particle at each time
step. If data are taken for a long enough time, the full time-averaged three
dimensional velocity field can be extracted with all six Reynolds stresses.
The time that is “long enough” can be very long if small numbers of
particles are used, because at one instant in time only 2 views in the tank are
measured, even though the full volume is recorded in the image. The success
of PTV requires extensive image analysis, efficient tracking algorithms, and
stereomatching techniques. The spatial resolution of this method is still low
compared to PIV methods.

• Three components of velocity as a function of position in three dimensional
space [u(x,y,z), v(x,y,z), w(x,y,z)]. Scanning PIV is a three dimensional
extension of planar PIV at a higher spatial resolution than is possible with
PTV. Time resolution in this method is more difficult than that for PIV,
because a finite time is needed to scan the tank before the light sheet
returns to the initial position. At least four of the six Reynolds stresses
can be resolved with this approach. Another approach to this measurement
is holographic PIV. None of these methods are commercially available at
the time of writing.

2-5 MODELING THE TURBULENT TRANSPORT

Modeling can prove to be far less costly to use in the long run than actual
mixing experiments, and may provide much more detailed information than is
available from experiments, so there is a large incentive to develop reliable
models of mixing processes. If the computed results do not adequately model the
real physical system, they will not be of much use, so any useful model must be
quantitatively validated.
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A key part of any mixing process model will be the turbulence model, and an
entire range of turbulence models has been developed in an effort to address
this problem (Table 2-5). In these models there is a clear trade-off between
complexity and representation of the underlying physics. The various theoretical
approaches can be formulated in wavenumber space or physical space; can use
long time averages, averages over specific structures, or no averages at all; and
will usually involve some closure approximation based on statistical reasoning,

Table 2-5 Summary of Approaches to Turbulence Modelinga

Model Physical Basis of the Model Drawbacks

Boussinesq approximation
• One equation with one

adjustable parameter
• Averaged over time and

all length scales

• One length scale
• Based on analogy to

laminar transport and
apparent viscosity

• Oversimplification of
the physics

• The apparent viscosity
is a function of the
flow field and of
position

Prandtl mixing length
• One equation with two

adjustable parameters
• Averaged over time and

all length scales

• One length scale
• Based on analogy to

mean free path in the
kinetic theory of gases

• Oversimplification of
the physics

• The assumption of a
linear velocity profile
does not match
physical reality;
however, the results
are surprisingly good
for the log-law region
of a pipe

Two-equation models (taking
the k–ε model as an
example)
• Two partial differential

equations with five model
constants

• Averaged over time, with
models for two locally
varying turbulent
quantities (k and ε)

• Assumes that the
three normal stresses
are equal and that all
cross-correlated
stresses are zero
(cross stresses may be
estimated after the
fact)

• Based on turbulent
kinetic energy balance
(k-equation) and a
model for the rate of
dissipation of
turbulent kinetic
energy (ε-equation)

• Variations have been
developed to model
subclasses of flows

• Five model constants
have been determined
for simplified flows

• Two-equation models
cannot accurately
model the effects of
anisotropy on the
large scale, although
the form of the model
may be useful for the
locally isotropic range
of turbulence

• k–ε model tends to be
overly diffusive

(continued overleaf )
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Table 2-5 (continued )

Model Physical Basis of the Model Drawbacks

Full Reynolds stress models
(ASM, RSM, or DSM)
• Model all six Reynolds

stresses
• Averaged over time

• Treat anisotropy in the
flow by modeling all
six Reynolds stresses
in their time-averaged
form

• Computationally
difficult

• Subject to problems
with convergence

• Grid independence is
difficult to attain

Large eddy simulations (LES)
• Model large scales and

small scales separately
• Average small scales

over time
• Allow transient (direct)

simulation of large scales

• Model the larger,
anisotropic scales of
turbulence using a
DNS approach,
following their motion
directly as it varies
in time

• Treat the subgrid
scales of turbulence as
isotropic and in
equilibrium: model
these scales using a
two-equation model
of turbulence

• Requirements for data
storage and data
processing are outside
the range of most
users

• No consensus has
emerged on subgrid
modeling
requirements

• Boundary conditions
at solid surfaces are
problematic

Direct numerical simulations
(DNS)
• Solve the full time

varying Navier–Stokes
equations for the three
dimensional field of
fluctuating velocities

• No averaging required

• Using only the
instantaneous form of
the Navier–Stokes
equations, solve the
flow field at each
instant in time, storing
full three dimensional
records of the
fluctuating velocity

• Sometimes called
a “numerical
experiment”

• Computationally
intensive

• Huge storage
requirements;
restricted to low Re

• Commercial versions
are unlikely

aEvery time a new problem is attempted, model results must be validated. The level of complexity
required in the model depends heavily on the level of accuracy and detail required in the results.

dimensional analysis, experimental evidence, or simplified conceptual modeling.
Many facets of the physics need to be addressed to accurately represent any
process of industrial importance. First, accurate models of the physics based on
fundamental understanding are needed, and second, the inherent dynamics of
turbulence, mixing, and reaction must be addressed.

2-5.1 Time-Resolved Simulations: The Full Solution

Since turbulence is by definition a time-varying phenomenon, the best hope for
full resolution of the physics is in transient, or time-resolved, simulations. Both
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direct numerical simulation (DNS) and large eddy simulations (LES) use the
governing equations directly without time averaging. These equations are the
Navier–Stokes equations, the continuity equation, the individual species balance
equations, and the energy balance equations. In such an approach there are as
many equations as unknowns, so the problem is deterministic and the equations
are, in principle, closed. However, the partial differential equations are nonlinear,
higher order, and coupled. Problems in numerical resolution can be extreme,
especially when DNS calculations are used.

The problem is complicated by the large range of length scales which are rele-
vant to the process results and by the highly three dimensional nature of the stirred
tank flow field, so simulation results that are grid- and time step–independent can
be extremely difficult to attain. At the time of writing, time-resolved simulations
are still in the province of the expert user. Despite this, a good deal of insight
into modeling issues can be gained from a brief explanation of this approach to
turbulence modeling.

2-5.1.1 Direct Numerical Simulation. The Navier–Stokes equations des-
cribe a momentum balance on a differential control volume at any instant in
time. They are exactly correct, at any instant in time, so in principle all that
is needed to solve turbulent flow is a transient solution of the Navier–Stokes
equations with appropriate initial and boundary conditions. This is the approach
used in DNS.

In a high Reynolds number turbulent flow, the changes with time can be very
rapid, and the range of scales is extreme. In Example 2-1c, the smallest eddy
was taken as 0.1 mm in a system that could be as large as 30 cm overall. The
range of length scales in this simple geometry is 1 : 3000. A full computational
domain would be 30003 = 2.7 × 1010 cells big, a number that is far too large for
present computers. The task is even more impressive when one realizes that the
simulation must be transient with adequate resolution in time. It takes a very large
computer indeed to do such modeling, even at low turbulent Reynolds numbers.
Present computations can only be applied to low Reynolds numbers in somewhat
simple geometries. Despite the lack of ability to do extremely detailed space and
time resolution calculations, calculations in more modest grid structures (still
fine when compared to LES) can be of use. In particular, when the geometry
is complex and local conditions (as discussed earlier) are not as critical, such
calculations could be very helpful in design.

In an ideal world, one could use DNS to reproduce the experimental flow
field that controls mixing, then obtain measures of the individual terms in the
Navier–Stokes equations on scales down to a small multiple of the grid size.
These terms determine the coupling between mixing (and of course kinetics and
heat transfer) with the instantaneous flow field. The results of these detailed, fully
coupled calculations could then be used to test and develop models for subgrid
scales in LES, and for other computational fluid dynamics (CFD) calculations
where average forms of the equations are used.
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2-5.1.2 Large Eddy Simulation. The second approach is to use large eddy
simulations. The limitations of this method are much less severe. The large scale
motions are computed in a manner similar to DNS but on a much coarser grid. The
scale might be as coarse as 1 : 30. The computational domain would then be 303 =
2.7 × 104, which would not be difficult with current machines. A grid several
times as fine as this would not be out of the question, and initial LES simulations
in stirred tanks have recently been reported (Bakker et al., 1998; Revstedt et al.,
1998; Derksen and van den Akker, 1999; Roussinova et al., 2001).

This modeling approach computes the larger scales of turbulence directly as
they vary in time and models the finer scales of turbulence. The LES modeling
technique has few assumptions, all of which can be modified to provide a match
between the experimental statistical measures and the more detailed large scale
results. The advantage of LES is that it is far less computationally demanding
than DNS, so that the computations can be pushed to higher Reynolds number
flows. The problem is to decide which, if any, of the subgrid models and filtering
techniques are adequate to represent the data. As in the DNS effort, one cannot
expect to match the data on an instantaneous basis, since any instantaneous
velocity record is expected to be unique; however, by tracking the statistics that
are important to the mixing process, the critical information can (in principle)
be extracted. Initial results are promising, showing excellent agreement between
experiment and simulation for the trailing vortices associated with a Rushton
turbine (Derksen and van den Akker, 1999) and macroinstabilities associated
with a pitched blade impeller in its resonant geometry (D = T/2, C/D = 0.5,
f = 0.186/N; Roussinova et al., 2001).

Example 2-7: Physical Implications of Large Scale Effects. Which eddies are
large eddies for mixing processes? Are the additional resources required to resolve
this level of detail, and to process detailed transient results, warranted? Bakker
et al. (1996) did a comparative study between PIV and time-averaged CFD for the
pitched blade impeller. While they were able to show good agreement between
the time-averaged flow fields, as shown in Figure 2-19a and b, the instantaneous
PIV results in Figure 2-19c show that the overall flow field does not resemble the
time-averaged result. Roussinova et al. (2003) showed that there is a single dom-
inant low frequency in the resonant geometry. Figure 2-19d shows the scaling of
the macroinstability frequency for the resonant tank geometry (PBT, D = T/2,
C = T/4, St = fMI/N = 0.186). When the off-bottom clearance is changed, the
frequency persists, but other frequencies may also appear. These macroinsta-
bilities can induce strong vibrations of the tank and in some cases can cause
breakage of vessel internals such as baffles, coupling bolts, and impeller shafts.
Recent LES animation results from Roussinova et al. (2003), included on the
Visual Mixing CD show the full complexity of this large scale variation. If the
desired process result responds on a longer time scale than the scale of the time
averaging (on the order of 10 s), as would be the case for a slow reaction or
for bulk blending, the additional details are averaged into the result. If, however,
the time scale of the process is shorter than the lifetime of these large eddies
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data and (c) instantaneous PIV data. (From Bakker et al., 1996.) (d ) Scaling of the
frequency of the macroinstability for the resonant geometry (PBT impeller: D = T/2,
C/D = 0.5, four baffles, fMI = 0.186N; Roussinova et al., 2003). The Strouhal num-
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but longer than the smallest scales of turbulence (e.g., intermediate reaction rates
with higher-order kinetics), the process result may be affected by the mesoscales
and it will be necessary to characterize these scales in order to make progress.
Feed stream jet intermittency, a good example of how mesomixing is affected
by large scale flow instabilities, is discussed further by Jo et al. (1994), Baldyga
et al. (1997), and Houcine et al. (1999).
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The next smallest scale of motion is the trailing vortices, shown in Figure 2-12
and animated on the Visual Mixing CD affixed to the back cover of the book.
These are well predicted by explicit impeller modeling, sliding mesh, and DNS
methods (Derksen and van den Akker, 1999). These coherent structures have
stimulated ongoing debate about allowable ways to model turbulence in stirred
tanks and have motivated many of the efforts to push this field forward. While the
long time scales involved in the transient breakup of liquid–liquid dispersions
point to the importance of these vortices and their presence certainly affects
the analysis of turbulence for the Rushton turbine, their physical implications
for other process results remain largely unexplored. For impellers other than the
Rushton turbine, these vortices are much weaker, or even nonexistent (Roussinova
et al., 2000).

The smallest intermediate scales that there is strong motivation to examine
with LES (or DNS) are the larger inertial or mesomixing scales. These feed into
the probability density functions used extensively by Fox (1998) to model the
interactions between turbulence and chemical reactions.

2-5.2 Reynolds Averaged Navier–Stokes Equations:
An Engineering Approximation

To reduce the modeling problem to a single steady solution, Reynolds formulated
time-averaging rules. Application of these rules yields a time-averaged form
of the Navier–Stokes and other equations, known as the Reynolds averaged,
or RANS, equations. These equations now relate time-averaged quantities, not
instantaneous time-dependent values. For this simplification, we pay a dear price
in that there are now more unknowns than equations.

The additional unknowns are the six Reynolds stresses, which are the nor-
mal or mean-squared values (autocorrelations) and cross-correlations of the three
components of fluctuating velocity:

Reynolds stresses = ρ


 uu uv uw

vu vv vw
wu wv ww


 (2-21)

The terms on the diagonal are the normal stresses or variances, and these squared
terms will always be positive. In an idealized flow with no directional prefer-
ences, they will all be equal. The off-diagonal elements are symmetric (uv = vu),
so only three of them are unique. If the turbulence has no directional prefer-
ence and there are no velocity gradients in the flow, the individual fluctuations
will be completely random and the covariances will be equal to zero. This
assumption of “no directional preference” or “isotropic turbulence” is an impor-
tant concept for understanding the different classes of time-averaged turbulence
models.22 With these two conditions, the six unknowns can be reduced to a
single unknown:

k = 1
2 (uu + vv + ww) (2-22)

22 See a more complete discussion of isotropy in Section 2-4.3.
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It turns out that this degree of simplification is too severe, and some way of
treating the cross-correlations must also be considered. Although complete texts
(Pope, 2000), and regular review articles (see, e.g., Launder, 1995) are written
on the subject of turbulence modeling, the reader will benefit from understand-
ing two important subsets of models. The simplest approach makes an initial
assumption that the Reynolds stresses can be modelled using k and its rate of
dissipation: these are the two-equation isotropic models, including the k–ε model.
A more general, but more complex approach models each of the Reynolds stresses
separately, allowing the development of anisotropy, or orientation of eddies, in
the flow.

2-5.2.1 Two-Equation Models of Turbulence. On application of Reynolds
time averaging, six new unknowns (the Reynolds stresses) appear in the momen-
tum equations. There are now more unknowns than equations, so the system of
equations is no longer closed. This is the closure problem of turbulence. Physical
flow models for the Reynolds stresses are needed to close the equations. Many
logical closure schemes have been proposed and have met with some success for
certain classes of flows, but there is no standard, fully validated approach to the
modeling of Reynolds stresses.

A stable starting point for the kinds of flows encountered in a stirred tank is
the k–ε model. This model assumes that the normal stresses are roughly equal
and are adequately represented by k. Two differential equations are used to model
the production, distribution, and dissipation of turbulent kinetic energy: the k-
equation, and the ε-equation. These equations were developed for free shear
flows, and experimentally determined constants are established for the model
parameters. One of these constants is used to relate local values of k and ε to an
estimate of (uv) using a modified turbulent viscosity approach:

uv = νt
∂U

∂y
= 0.09

k2

ε

∂U

∂y
(2-23)

Many variations on the k–ε model have been proposed and used, with varying
degrees of success. Some of them are designed for the prediction of separation
points, others incorporate some degree of anisotropy for cases where the flow is
highly swirling (e.g., cyclones), and still others are being developed for appli-
cation in multiphase flows. When a fully converged simulation using the k–ε

equation does not predict the physical phenomena of interest to the desired degree
of accuracy, other models should be considered.

One school of thought maintains that if the results do not have the desired
degree of accuracy, the model constants should be tuned to improve agreement
with experimental data. If the physical basis for the constants is considered care-
fully, and the adjustments based on an identifiable physical reason, the new
constants might have some hope of general usefulness. On the other hand, when
model constants are used as fitting parameters, the physical meaning of the tur-
bulence model is reduced and the objective of the simulations (hopefully, one of
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validating the models to allow prediction of the flow field under new conditions)
should be reassessed.

Example 2-8: Prediction of Gross Circulation Patterns Using CFD. If the main
objective of CFD modeling is determination of the mean flow patterns in the tank
or of macroscopic quantities such as the power number, RANS simulations can
provide good indications of the effects of changes in tank geometry and impeller
geometry on the time-averaged results. Agreement for laminar flow is very good
(Jaworski et al., 1998; Lamberto et al., 1999), while for fully turbulent flow the
reported results vary, with the quality of the results dependent partially on the
turbulence model and partially on the details of the grid and computational tech-
niques. In general, one may expect good qualitative prediction of experimental
trends where accurate experimental boundary conditions are used to model the
impeller (Kresta and Wood, 1991; Fokema et al., 1994; Bakker et al., 1996; Coy
et al., 1996; Harris et al., 1996; Armenante et al.,1997; Jaworski et al., 1998);
where the impeller is simulated directly using multiple reference frames (Har-
ris et al., 1996; Harvey and Rogers, 1996; Ranade and Dommeti, 1996; Ranade,
1997; Bhattacharya and Kresta, 2002); and where a sliding mesh is used to obtain
transient solutions (Jaworski et al., 1998; Micale et al., 1999).

Several conditions are needed for accurate RANS simulation of gross circu-
lation patterns:

• There must be fully turbulent flow at the impeller; Re > 2 × 104.
• If impeller boundary conditions are used, they should be obtained for exactly

the same geometry as is used in the simulation (Fokema et al., 1994).
• If a sliding mesh simulation is used, 20 or more rotations of the impeller

are needed for convergence (Jaworski et al., 1998).
• Even with a good preprocessor, the user must pay careful attention to

the layout of the grid. This is the single biggest factor affecting both
convergence and accuracy of the results. The bottom line is that more
cells are needed where large gradients are expected, usually close to the
impeller and close to the baffles. Each impeller modeling method has
its own gridding constraints in addition to the computational constraints
listed above.

2-5.2.2 Full Reynolds Stress Models. Full Reynolds stress modeling retains
all six Reynolds stresses throughout the solution of the balance equations. The
equations for these stresses are highly coupled and convergence is difficult. The
advantage of this approach is that all of the stresses are available to play a role
in the development of the flow field, and the transport of energy between com-
ponents can develop strong directional preferences and coherent structures. This
level of complexity in modeling is essential for very difficult, highly anisotropic
flows, such as those found in a cyclone.
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2-5.3 Limitations of Current Modeling: Coupling between Velocity,
Concentration, Temperature, and Reaction Kinetics

Even with the rapid progress currently underway in the modeling of velocity fields
for fully turbulent flow, the real objective remains the process result. The critical
physics lies in interactions between equations of motion and scalar transport
and the kinetics of reactions, crystal precipitation and growth, and other core
processes. These are coupled higher order sets of equations that need to be
solved simultaneously in a truly rigorous solution.

The alternative to this full solution is to take detailed velocity field calcula-
tions and extract critical information that can be applied over simplified zones.
The reacting fluid particle is then tracked as it moves through the time-averaged
(Eulerian) flow field. This Eulerian–Lagrangian approach has been followed by
several authors (Bourne and Yu, 1994; Wei and Garside, 1997), with impres-
sive results. The reader is referred to the review by Baldyga and Pohorecki
(1995) the text by Baldyga and Bourne (1999), and Chapter 13 for more dis-
cussion and information about coupling reaction kinetics information to flow
characteristics.

2-6 WHAT HAVE WE LEARNED?

• Turbulent blobs and their scalar counterparts are three dimensional, time-
varying structures of arbitrary shape. They are represented by the wavenum-
ber spectrum. Various portions of the spectrum, but not the whole spectrum,
can be retained on scale-up.

• Models that account for all of the physics of turbulence cannot presently
be solved for problems of practical interest. Turbulence models that can be
solved do not contain all the physics needed to accurately predict all aspects
of the velocity and turbulence fields.

• The effect of turbulence on scalars in the flow (c, T, reaction kinetics) is
strong, and is sensitive to the details of the velocity and turbulence fields.
Models that have been formulated to solve the combination of velocity
and scalar fields have not yet accounted for the multiplicity of interac-
tions between the fields, especially when complex reaction kinetics exist.
Steady progress continues in the application of full PDF models to these
problems.

• With a good phenomenological understanding of turbulence, many of the
gross problems in design and operations can be addressed, despite our
incomplete understanding of the physics. As engineers, it is often enough
to have a good understanding of the process. Once the crucial issues have
been identified, simpler scaling arguments can often provide a satisfactory
engineering solution to the problem.
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NOMENCLATURE

a fluctuating concentration of A (mol/L)
A proportionality constant, 1.0 for isotropic turbulence (−)
b fluctuating concentration of B (mol/L)
c concentration fluctuation (mol/L)
CA mean concentration of A (mol/L)
CB0 concentration of B at time 0 (mol/L)
CL length scale proportionality constant (−)
Cu velocity scale proportionality constant (−)
dm molecular diameter (m)
D impeller diameter (m)
Da Damkoehler number (−)
DAB molecular diffusivity of A in B (m2/s)
Dp pipe diameter (m)
Dt turbulent diffusivity (m2/s)
E energy content, or PSD power spectral density
f frequency (s−1)
H liquid depth (m)
Is intensity of segregation (−)
k turbulent kinetic energy per unit mass (m2/s2)
k wavenumber [2πf/Uc in eq. (2-9)] (m−1)
k0 wavenumber corresponding to largest scale of concentration (m−1)
kr reaction rate constant (units vary)
lt smallest turbulent scale (Example 2-1c) (m)
L length scale (m)
Lc characteristic length scale (m)
Ls Corrsin integral length scale (m)
L1/2 Mao and Toor mixing length (m)
N impeller rotational speed (rps)
Njs just suspended speed, solids (rps)
Np power number (−)
r distance in the radial direction (m)
r0 feed pipe radius (m)
Re Reynolds number (−)
Sc Schmidt number, ν/DAB (−)
t time (s)
te eddy dissipation time scale, k/ε (s)
tk Kolmogorov time scale, (ν/ε)1/2 (s)
tλ time scale based on Taylor microscale, (λ2/ε)1/3 (s)
T tank diameter (m)
u streamwise fluctuating velocity component (m/s)
uc characteristic turbulent velocity scale (m/s)
U mean velocity in the streamwise direction (m/s)
Uc convective velocity (m/s)
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v cross-stream fluctuating velocity component (m/s)
VTIP impeller tip speed, πND (m/s)
V volume (m3)
Vimpeller impeller swept volume (m3)
Vtank tank volume (m3)
w cross-stream fluctuating velocity component (m/s)
x distance in the x-direction (m)
y distance in the y-direction (m)
z distance in the z-direction (m)

Greek Symbols

ε rate of dissipation of turbulent kinetic energy per unit mass (m2/s3)
η Kolmogorov scale, (ν3/ε)1/4 (m)
θB blend time (s)
λ Taylor microscale of turbulence (m)
λB Batchelor length scale, (νD2

AB/ε)1/4 (m)
µ absolute viscosity (kg/m·s)
ν kinematic viscosity (m2/s)
ρ density (kg/m3)
τ mixing time constant (s)
τD dimensionless time for unsteady mass transfer [eq. (2-2)]
τyx shear stress on the y-plane in the x-direction (Pa)
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