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Series Preface

The present series is dedicated to drying, i.e. to the process of removing moisture
from solids. Drying has been conducted empirically since the dawn of the human
race. In traditional scientific terms it is a unit operation in chemical engineering.
The reason for the continuing interest in drying and, hence, the motivation for the
series concerns the challenges and opportunities. A permanent challenge is con-
nected to the sheer amount and value of products that must be dried – either to attain
their functionalities, or because moisture would damage the material during subse-
quent processing and storage, or simply because customers are not willing to pay for
water. This comprises almost every material used in solid form, from foods to
pharmaceuticals, fromminerals to detergents, from polymers to paper. Raw materi-
als and commodities with a low price per kilogram, but with extremely high
production rates, and also highly formulated, rather rare but very expensive special-
ties have to be dried.
This permanent demand is accompanied by the challenge of sustainable

development providing welfare, or at least a decent living standard, to a still-
growing humanity. On the other hand, opportunities emerge for drying, as well as
for any other aspect of science or living, from either the incremental or disruptive
development of available tools. This duality is reflected in the structure of the
book series, which is planned for five volumes in total, namely:

Volume 1: Computational tools at different scales
Volume 2: Experimental techniques
Volume 3: Product quality and formulation
Volume 4: Energy savings
Volume 5: Process intensification

As the titles indicate, we start with the opportunities in terms of modern compu-
tational and experimental tools in Volumes 1 and 2, respectively. How these oppor-
tunities can be used in fulfilling the challenges, in creating better and new products,
in reducing the consumption of energy, in significantly improving existing or
introducing new processes will be discussed in Volumes 3, 4 and 5. In this sense,
the first two volumes of the series will be driven by science; the last three will try to
show how engineering science and technology can be translated into progress.
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In total, the series is designed to have both common aspects with and essential
differences from an extended textbook or a handbook. Textbooks and handbooks
usually refer to well-established knowledge, prepared and organized either for
learning or for application in practice, respectively. On the contrary, the ambition
of the present series is to move at the frontier of �modern drying technology�,
describing things that have recently emerged, mapping things that are about to
emerge, and also anticipating some things that may or should emerge in the near
future. Consequently, the series is much closer to research than textbooks or hand-
books can be. On the other hand, it was never intended as an anthology of research
papers or keynotes – this segment being well covered by periodicals and conference
proceedings. Therefore, our continuing effort will be to stay as close as possible to a
textbook in terms of understandable presentation and as close as possible to a
handbook in terms of applicability.
Another feature in common with an extended textbook or a handbook is the

rather complete coverage of the topic by the entire series. Certainly, not every
volume or chapter will be equally interesting for every reader, but we do hope that
several chapters and volumes will be of value for graduate students, for research-
ers who are young in age or thinking, and for practitioners from industries that
are manufacturing or using drying equipment. We also hope that the readers and
owners of the entire series will have a comprehensive access not to all, but to many
significant recent advances in drying science and technology. Such readers will
quickly realize that modern drying technology is quite interdisciplinary, profiting
greatly from other branches of engineering and science. In the opposite direction,
not only chemical engineers, but also people from food, mechanical, environmen-
tal or medical engineering, material science, applied chemistry or physics, com-
puting and mathematics may find one or the other interesting and useful results
or ideas in the series.
The mentioned interdisciplinary approach implies that drying experts are keen to

abandon the traditional chemical engineering concept of unit operations for the sake
of a less rigid and more creative canon. However, they have difficulties of identifica-
tion with just one of the two new major trends in chemical engineering, namely
process-systems engineering or product engineering. Efficient drying can be
completely valueless in a process system that is not efficiently tuned as a whole,
while efficient processing is certainly valueless if it does not fulfil the demands of the
market (the customer) regarding the properties of the product. There are few topics
more appropriate in order to demonstrate the necessity of simultaneous treatment
of product and process quality than drying. The series will try to work out chances
that emerge from this crossroads position.
One further objective is to motivate readers in putting together modules (chapters

from different volumes) relevant to their interests, creating in this manner individ-
ual, task-oriented threads trough the series. An example of one such thematic thread
set by the editors refers to simultaneous particle formation and drying, with a focus
on spray fluidized beds. From the point of view of process-systems engineering, this
is process integration – several �unit operations� take place in the same equipment.
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On the other hand, it is product engineering, creating structures – in many cases
nanostructures – that correlate with the desired application properties. Such prop-
erties are distributed over the ensemble (population) of particles, so that it is
necessary to discuss mathematical methods (population balances) and numerical
tools able to resolve the respective distributions in one chapter of Volume 1.
Measuring techniques providing access to properties and states of the particle
system will be treated in one chapter of Volume 2. In Volume 3, we will attempt
to combine the previously introduced theoretical and experimental tools with the
goal of product design. Finally, important issues of energy consumption and process
intensification will appear in chapters of Volumes 4 and 5. Our hope is that some
thematic combinations we have not even thought about in our choice of contents will
arise in a similar way.
As the present series is a series of edited books, it can not be as uniform in either

writing style or notation as good textbooks are. In the case of notation, a list of
symbols has been developed and will be printed in the beginning of every volume.
This list is not rigid but foresees options, at least partially accounting for the habits in
different parts of the world. It has been recently adopted as a recommendation by the
Working Party on Drying of the European Federation of Chemical Engineering
(EFCE). However, the opportunity of placing short lists of additional or deviant
symbols at the end of every chapter has been given to all authors. The symbols used
are also explained in the text of every chapter, so that we do not expect any serious
difficulties in reading and understanding.
The above indicates that the clear priority in the edited series was not in

uniformity of style, but in the quality of contents that are very close to current
international research from academia and, where possible, also from industry.
Not every potentially interesting topic is included in the series, and not every
excellent researcher working on drying contributes to it. However, we are very
confident about the excellence of all research groups that we were able to gather
together, and we are very grateful for the good cooperation with all chapter
authors. The quality of the series as a whole is set mainly by them; the success
of the series will primarily be theirs. We would also like to express our acknowl-
edgements to the team of Wiley-VCH who have done a great job in supporting the
series from the first idea to realization. Furthermore, our thanks go to Mrs Nicolle
Degen for her additional work, and to our families for their tolerance and
continuing support.
Last but not least, we are grateful to the members of the Working Party on Drying

of the EFCE for various reasons. First, the idea about the series came up during the
annual technical and business meeting of the working party 2005 in Paris. Secondly,
many chapter authors could be recruited among its members. Finally, the Working
Party continues to serve as a panel for discussion, checking and readjustment of
our conceptions about the series. The list of the members of the working party with
their affiliations is included in every volume of the series in the sense of
acknowledgement, but also in order to promote networking and to provide access
to national working parties, groups and individuals. The present edited books are
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complementary to the regular activities of the EFCE Working Party on Drying, as
they are also complementary to various other regular activities of the international
drying community, including well-known periodicals, handbooks, and the Interna-
tional Drying Symposia.

June 2007 Evangelos Tsotsas
Arun S. Mujumdar
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Preface of Volume 3

The first two volumes of this series have treated �Computational tools at different
scales� and �Experimental techniques� that can empower �Modern Drying Tech-
nology� with the aim of producing superior products with better processes. Now, it is
time to turn from the means to the goal, treating �Product quality and formulation�
in Volume 3. This emphasis on the product is deliberate, because even the most
efficient process is not of real value, if not able to fulfill – if not push – the
requirements of the market. The topic is presented in seven chapters:

Chapter 1: Quality changes in food materials as influenced by drying processes
Chapter 2: Impact of drying on the mechanical properties and crack formation

in rice
Chapter 3: Characterization and control of physical quality factors during freeze-

drying of pharmaceuticals in vials
Chapter 4: In-line product quality control of pharmaceuticals in freeze-drying

processes
Chapter 5: Understanding and preventing structural changes during drying of gels
Chapter 6: Morphology and properties of spray-dried particles
Chapter 7: Particle formulation in spray fluidized beds

Chapter 1 refers to a big, utterly important group of products to be dried, namely
foods. It summarizes food properties, introduces the glass transition temperature as
a humidity dependent landmark between the glassy and the rubbery state of
amorphous materials, and discusses biochemical, physical and mechanical trans-
formations that can take place during drying. Furthermore, it connects drying with
quality changes during storage and with properties relevant to the final use of the
processed food.
One good example of what can happen after drying is the fissuring and breakage

of rice kernels due to stresses and strains that developed during the process.
Therefore, this example is used in Chapter 2 in order to show how the previously
discussed general principles can be cast into specific and precise characterization
methods and models for the preservation of the quality of a valuable but perishable
good.
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In Chapter 3 the focus is shifted to pharmaceuticals, specifically to active ingre-
dients with a high molecular weight, such as therapeutic proteins or enzymes. Such
compounds are usually produced biotechnologically, so that they often have to be
transformed from an aqueous solution to a solid form. This is commonly carried out
by freezing and then freeze-drying, in order to protect the complex molecular
structure from deterioration. The chapter discusses thoroughly, what kinds of
damage can occur during the process, and how they can be avoided. And, it shows
impressively, how intimate the interrelation of freeze-drying to the preceding
process of freezing is. This interconnection results from the fact that the solid
skeleton of freeze-dried cakes is created during freezing by the size and spatial
placement of the ice crystals. Such causality offers rich opportunities of beneficial
manipulation by changes in the freezing protocol, controlled nucleation or anneal-
ing, which are worked out in detail.
Though the degradation of pharmaceuticals during freeze-drying is not permissi-

ble too conservative an operation also should be avoided, because it is very expensive.
The key for resolving this dilemma between product quality and process efficiency is
monitoring and control. Consequently, methods that can be used for monitoring
and control during freeze-drying of pharmaceuticals are presented in Chapter 4.
This is done in a very comprehensive and precise way, distinguishing among
methods that refer to single vials, groups of vials, and the entire dryer for the
primary or the secondary period of drying. Close reference to process analytical
technology (PAT) is given throughout.
Gels are a class of materials with high porosity, very small primary particle size,

and a plethora of possible applications. However, such applications require that the
gels can be dried without destroying the structures which are generic for their
properties. This is not an easy task, because very small primary particles imply
very high capillary forces during drying, so that the material can crack and break.
Chapter 5 points out that convective drying may still be successful if applied in an
educated way, and compares with numerous alternatives, such as freeze-drying and
supercritical drying. Apart from the detailed discussion of processing options, the
preparation and the characterization of gel materials are elucidated.
Though the preservation of existing structures is a big goal, structures and the

conjugated properties can even be created by drying. This is always the case when
the removal of water or some other solute is accompanied by the formation of the
solid phase, as in spray drying, which is treated comprehensively in Chapter 6. This
chapter refers to solutions of components with a low or high molecular weight, as
well as to suspensions of small or large particles, and shows how drying conditions
and material properties influence the morphology of the resulting products. Meth-
ods of formulation by encapsulation of, for example, flavors or enzymes, are
presented in detail, including stability and quality of the obtained products.
The idea of formulation by drying is elaborated further in Chapter 7. Here, drying

after spraying on fluidized particles with the aim of producing agglomerates, layered
granules, or coatings is discussed. It is worked out on many examples, how the
processes and the products can be enhanced bymanipulation of material properties,
operating conditions, and apparatus design. The physical background is explained
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down to the molecular scale in order to derive conditions for adhesion around small
particle contacts. Understanding and characterization of properties relevant to the
processing or final use of the particles are, again, important issues. Furthermore,
modeling tools with different degrees of resolution and sophistication – such as
discrete particle modeling, Monte Carlo simulations, and neural networks – which
can separately or in combination support process and product development are
presented.
Readers looking for thematic threads within the Modern Drying Technology

series will easily recognize many, including those between the present:

– Chapter 1 and Chapter 2 of Vol. 2 (drying of foods)
– Chapters 2 and 5 and Chapters 3 and 4 of Vol. 1 (thermo-mechanics)
– Chapter 4 and Chapter 1 of Vol. 2 (monitoring)
– Chapter 5 and Chapter 3 of Vol. 2 (x-ray tomography)
– Chapter 6 and Chapter 5 of Vol. 1 (spray drying)
– Chapter 7 and Chapter 6 of Vol. 1, as well as Chapter 5 of Vol. 2 (fluidized bed
formulation)

Readers interested in transport phenomena at different scales will findmolecular,
pore-scale, particle-scale and particle system or processing equipment considera-
tions, as in every volume of the series, and those aiming at interdisciplinary
approaches will see clear links to food engineering, pharmaceutical technology,
biotechnology, mechanics, and material science. People looking for their specific
product may not be able to find it in the present volume, but they may learn from
methods and approaches successfully applied to other products. For a book without
encyclopedic ambitions, which aims at the educated use of modern scientific
methods in practice, this would be the biggest success.
As to the acknowledgements, for Volume 3 they are identical to those in the series

preface. We would like to stress them by reference and not repeat them here.

June 2011 Evangelos Tsotsas
Arun S. Mujumdar
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Recommended Notation

. Alternative symbols are given in brackets

. Vectors are denoted by bold symbols, a single bar, an arrow or an index (e.g.,
index: i)

. Tensors are denoted by bold symbols, a double bar or a double index (e.g., index:
i, j)

. Multiple subscripts should be separated by colon (e.g., rp;dry: density of dry
particle)

A surface area m2

aw water activity —

B nucleation rate kg�1 m�1 s�1

b breakage function m�3

C(K) constant or coefficient various
c specific heat capacity J kg�1 K�1

D equipment diameter m
D(d) diffusion coefficient m2 s�1

d diameter or size of solids m
E energy J
F mass flux function —

Fð _VÞ volumetric flow rate m3 s�1

f relative (normalized) drying rate —

f multidimensional number density —

G shear function or modulus Pa
G growth rate kg s�1

g acceleration due to gravity m s�2

H height m
H enthalpy J
H Heaviside step function —

h specific enthalpy (dry basis) J kg�1

hðaÞ heat-transfer coefficient Wm�2 K�1

~hðhNÞ molar enthalpy Jmol�1

Dhv specific enthalpy of evaporation J kg�1

I total number of intervals —

XXV



J numerical flux function —

J Jacobian matrix various
jð _m; JÞ mass flux, drying rate kgm�2 s�1

K dilatation function or bulk modulus Pa
kðbÞ mass transfer coefficient m s�1

L length m
MðmÞ mass kg
~MðM;MNÞ molecular mass kg kmol�1

_MðWÞ mass flow rate kg s�1

_mðJ; jÞ mass flux, drying rate kgm�2 s�1

_m volumetric rate of evaporation kgm�3 s�1

N number —

N molar amount mol
_NðWNÞ molar flow rate mol s�1

n molar density, molar concentration molm�3

n number density m�3

n outward normal unit vector
_nðJNÞ molar flux molm�2 s�1

P power W
P total pressure kgm s�2

p partial pressure/vapor pressure kgm s�2

of component
_QðQÞ heat flow rate W
_qðqÞ heat flux Wm�2

R equipment radius m
R individual gas constant J kg�1 K�1

~RðRNÞ universal gas constant J kmol�1 K�1

r radial coordinate m
r pore (throat) radius m
S saturation —

S selection function s�1

s boundary-layer thickness m
T temperature K, 8C
t time s
u velocity, usually in z-direction m s�1

u displacement m
V volume, averaging volume m3

_VðFÞ volumetric flow rate m3 s�1

v specific volume m3 kg�1

v general velocity, velocity m s�1

in x-direction
W weight force N
Wð _MÞ mass flow rate kg s�1

w velocity, usually in y-direction m s�1

X solids moisture content (dry basis) —
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x mass fraction in liquid phase —

x particle volume in population balances m3

x general Eulerian coordinate, coordinate m
(usually lateral)

x0 general Lagrangian coordinate m
~x(xN) molar fraction in liquid phase —

Y gas moisture content (dry basis) —

y spatial coordinate (usually lateral) m
y(v) mass fraction in gas phase —

~y(yN) molar fraction in gas phase —

z spatial coordinate (usually axial) m

Operators
r gradient operator
r. divergence operator
D difference operator

Greek letters
aðhÞ heat-transfer coefficient Wm�2 K�1

bðkÞ mass-transfer coefficient m s�1

b aggregation kernel s�1

d Dirac-delta distribution
dðDÞ diffusion coefficient m2 s�1

e voidage —

e emissivity —

e small-scale parameter for periodic —

media
e strain —

h efficiency —

u angle, angular coordinate rad
k thermal diffusivity m2 s�1

l thermal conductivity Wm�1 K�1

m dynamic viscosity kgm�1 s�1

m moment of the particle-size distribution various
n kinematic viscosity m2 s�1

p circular constant —

r density, mass concentration kgm�3

P
summation operator

s surface tension Nm�1

s Stefan–Boltzmann constant for Wm�2 K�4

radiative heat transfer
s standard deviation (of pore-size m

distribution)
s stress Pa
t dimensionless time —
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F characteristic moisture content —

w relative humidity —

w phase potential Pa
v angular velocity rad s�1

v(y) mass fraction in gas phase —

Subscripts
a at ambient conditions
as at adiabatic saturation conditions
b bound water
bed bed
c cross section
c capillary
cr at critical moisture content
D drag
dry dry
dp at dewpoint
eff effective
eq equilibrium (moisture content)
f friction
g gas (dry)
H wet (humid) gas
i inner
i,1,2,. . . component index, particle index
i,j,k coordinate index, i; j; k ¼ 1 to 3
in inlet value
l liquid (alternative: as a superscript)
m mean value
max maximum
mf at minimum fluidization
min minimum
N molar quantity
o outer
out outlet value
P at constant pressure
p particle
pbe population balance equation
ph at the interface
r radiation
rel relative velocity
s solid (compact solid phase), alternative: as

a superscript
S at saturation conditions
surf surface
V based on volume
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v vapor, evaporation
w water
w wall
wb at wet-bulb conditions
wet wet
1 at large distance from interface

Superscripts, special symbols
v volumetric strain
* rheological strain
* at saturation conditions
or hi average, phase average
a or hia intrinsic phase average

~ spatial deviation variable
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