
17 Quality by Design

INTRODUCTION
It has long been a principle of scientific discovery that a rational strategy is
essential to a clear understanding of phenomena and to the creation of knowl-
edge. Engineering processes present a level of complexity with respect to
operating variables that contribute to their efficiency and reproducibility and
challenge the ability to design experiments sufficiently robust to probe the range
of operating conditions to identify optimal parameters.

The approach to statistical experimental design will be described in the
next chapter (chap. 18). Several higher-level considerations will be outlined in
the following discussion to allow sufficient definition of any process before it is
subjected to experimental evaluation.

REGULATORY INITIATIVE
In recent years several regulatory agencies have indicated their desire to have
Quality by Design tools adopted to justify the various processes employed in the
production of a pharmaceutical product to manage risk associated with the
quality of the product. Notable among these are the guidances of the U.S. Food
and Drug Administration and the relevant guidances (Q8–10) of the Interna-
tional Conference on Harmonization of Technical Requirements for Registration
of Pharmaceuticals for Human Use (ICH). Figure 17.1 depicts the relationships
beween the ICH quality chapters and their intent to (i) use quality systems, such
as process analytical technology or measurement and control of operating var-
iables, in (ii) risk analyses, which establishes priority of these measurements
through (iii) statistically designed experiments in product development that
identifies variable parameters and acceptable variances with respect to mea-
sured and monitored phenomena.

Consideration of each of these items allows process space to be defined.
That is the range of input variable control that is required to minimally impact
on the quality of the product and thereby ensure the uniformity and reprodu-
cibility of the final product derived from the various processes employed.

Quality by design is a systematic approach to development that begins
with predefined objectives and emphasizes product and process understanding
and process control on the basis of sound science and quality risk management
(Pharmaceutical development Annex to ICH, Q8, 2007).

Quality by Design is

n scientific, risk-based, holistic and proactive approach to pharmaceutical
development;

n deliberate design effort from product conception through commercializa-
tion; and

n full understanding of how product attributes and process relate to product
performance.
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TOOLS FOR PROCESS DEVELOPMENT
Thorough documentation of all potential variables in a process is essential to
defining the objectives of any experiments. It is rarely the case that a single
individual has the capacity to create the database necessary to support this
activity. Consequently, a variety of brainstorming tools intended to facilitate
identification of all variables by a group of people involved in the process
development have been designed. These include, but are not limited to, mind
mapping and fishbone (Ishikawa) diagrams. It is important to use a tool that is
most convenient and facilitates the thought process of the group. A mind map
considers the way in which paths from an outer region of ignorance to a central
well-defined process are characterized by the impinging variables as shown in
Figure 17.2. A fishbone diagram defines a process as a linear phenomenon
in which variable impinge on a line leading to a clearly defined output as shown
in Figure 17.3. Depending on the stage of assessment and the intent of the
review either of these approaches might be expected to give a thorough pre-
liminary understanding of the process under consideration.

It is important to the process that all opinions are welcome, no judgment is
placed on the priority of the input variable or that premature blocking (analysis)
of the variables occurs. In this manner all parties who might be able to con-
tribute to the discussion are encouraged and any dominant personalities are set
aside for the purpose of the initial review. Only when all opinions have been
rendered and a list of potential variables has been collected is the second step of
blocking the variables, in terms of their dependency or their proximity, or dis-
tance from, the final output, undertaken. Again this should be reviewed by the
group for general agreement on the framework of relationships of the variables
under consideration.

FIGURE 17.1 International

Conference on Harmonization

Quality by Design Guidances.
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Once a framework has been constructed, a judgment is made regarding
the potential significance of each input variable to place emphasis in the
experimental design on the potentially most significant variables. All minor
variables are then controlled within defined limits to mitigate their contribution
to the overall outcome of the subsequent experiments.

FIGURE 17.3 Schematic illustrating the fishbone approach to capturing input variables and

their relationship to output properties.

FIGURE 17.2 Schematic illus-

trating the approach to mind

mapping.
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This approach has several valuable implications as follows for the process
development:

1. It maximizes the potential of identifying all relevant variables.
2. It builds confidence in the group that all factors have been considered.
3. It allows a range of expertise to be brought to bear, which minimizes the

potential to overlook factors.
4. Involves several opportunities to review and reevaluate before conducting

time-consuming and sometimes expensive experiments.
5. Allows a rational experimental design that will lead to definition of process

space.

To achieve these objectives appropriate statistical methods (chap. 18) and
methods of obtaining data on the process are required, preferably with an ability
for real-time monitoring and control through process analytical technology
(chap. 19).
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18 Statistical Experimental Design

INTRODUCTION
Statistical experimental design has been employed for optimization of complex
multivariate processes central to pharmaceutical product development for sev-
eral decades (Box et al., 1978; Cochran and Cox, 1957). The intent of experimental
design is to rapidly and efficiently study many parameters to identify the
combination of conditions that most efficiently and reproducibly generates a
product with desired properties. These properties are most frequently uniform
and reproducible drug delivery from a stable dosage form, but can extend to
more subtle phenomena such as control of particular physicochemical proper-
ties or even cost and time efficiency of the process.

The general evolution of experimental design techniques begins with
conventional randomized or Latin square approaches, factorial design and
fractional factorial design, which yields significant and useful information with
regard to the limits of input variables with respect to particular output prop-
erties. The results of these studies can be employed to identify regions of
combinations of input parameters, so-called design space, that give rise to
desirable output properties. Assessment by central composite experimental
design yields more information regarding the curvature of design space, ulti-
mately leading to complete response surface maps, which allow interpolation of
changes in output as a continuous dependent function of the independent
variable inputs. The following sections will describe each of these approaches in
more detail. All lead to the concept of process design space, which leads to
normal operating range from which product specifications can be developed.

Once input variables have been identified, according to the approach
described in chapter 17, experiments can be designed that evaluate their con-
tribution to the critical quality attributes of the product under development.
Therefore, it is important to identify the output parameters and the techniques
(see chap. 19) that will be employed to measure these properties to allow their
response to the input variables to be characterized. Having considered these
practical elements of the experimental design, the statistical approach has then
to be selected for its relevance to the process under consideration.

SAMPLING
Before any experiments are conducted, the researcher must be aware of the
limitations of sampling. The usefulness of any analytical method is based on
the adequacy of sampling from the original population. Sampling techniques
range in complexity from random methods through stratified sampling to
spatial and adaptive sampling (Thompson, 2002). Sampling can be invasive, for
example, thieves to remove samples from batches of powder blend, or non-
invasive, as exemplified by laser optical techniques for particle sizing or spec-
troscopy, which are limited by the viewing volume usually dictated by the
dimensions of the laser. The bias introduced by unrepresentative sampling can
be sufficient to impair decisions and lead to erroneous conclusions about a
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process. Consequently, representative sampling is a prerequisite to process
analysis.

The use of statistics in quality control is not novel. Indeed the principles
were established 70 years ago (Deming, 1938; Shewhart, 1939). These methods
have since been incorporated into concepts of statistical process control
(Oakland and Followell, 1986).

The basic principles of statistical analysis are beyond the scope of this
volume and are the subject of a large number of foundational texts. In the realms
of experimental design, Box, Hunter, and Hunter published the seminal text on
“Statistics for Experimenters” in 1978. This remains a readable and informative
text for those beginning to develop statistical tools to investigate processes with
numerous variables.

Statistical methods mitigate the experimental difficulties associated with
error (noise), confusion of correlation and causation, and complexity of the
effects studied. There are many sources of experimental error that can be
overcome with adequate experimental design and analysis. Frequently, exam-
ples of apparent correlations occur when two variable exhibit similar patterns
that may exist because of their independent relationship to a third variable.
Sound principles of experimental design, specifically randomization, provide a
sound basis for deducing causation. Effects are sometime so complex that they
do not conform to linearity or additive interpretation. Certain experimental
designs allow for interactive and nonlinear effects to be estimated with little
transmission of experimental error.

RANDOMIZED AND LATIN SQUARE DESIGNS
Allotting treatments to units by chance is the simplest layout of data for analysis.
Specifically, if a treatment is to be applied to four units then randomization gives
every group of four units in the experimental product an equal probability of
receiving the treatment. The units should also be processed randomly at sub-
sequent stages, where the order is likely to affect the results. For example, time
of day, or season of the year, the samples are taken may influence processes that
are susceptible to ambient conditions such as light, temperature, and humidity if
these conditions are not controlled effectively. The advantages of this approach
are complete flexibility, as any number of treatments and replicates may be
employed, and ease of statistical analysis even if the numbers of replicates for
some units or whole treatments are missing. Relative loss of information due to
missing data is smaller than other designs. Criticism of this approach related to
the loss of accuracy that occurs as a result of the whole variation is uniformly
distributed across treatments and units and enters into the experimental error.
The error can be reduced by use of different designs. The error can be reduced
by introducing randomized blocks. The experimental product is divided into
groups, each of which constitutes a single trial or replication. Using the example
above, product could be blocked for time of day sample was taken to assign
error specifically to ambient conditions.

For Latin square designs, treatments are grouped into replicates in two
different ways. This approach effectively gives two dimensions to the analysis
and the design assigns treatments to positions designated in a row or column of
the design. Every row and every column of the square is a complete replication.
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The effect of this double grouping is elimination from the errors all differences
among rows and columns. Thus, the Latin square design provides more
opportunity than random blocks for reduction of error by planning.

FACTORIAL DESIGN
The effects of a number of different factors are explored simultaneously in
factorial designs. The treatment consists of all combinations that can be formed
from the different factors. The simplest case is one in which each factor is
considered at two levels. This is described as a 2n factorial design. For example, a
simple spray drying process requires consideration of input solution concen-
tration and flow rate, airflow rate, and temperature, four factors. If each factor is
studied at a high and low level, then this is described as a 24 factorial design.

The advantages of factorial experiments relate to their purpose. The intent
is frequently to investigate the effects of each factor over some preassigned
range that is covered by the levels of that factor, and not specifically to discover
the combination of factors that results in the maximum or minimum response.
Where the factors are independent, the statistical analysis is straightforward.
However, where the factors are not independent there this additional infor-
mation is to be gained through confounding analysis.

Factorial experiments are useful for exploratory experiments where the
objective is rapid determination of the effects of a number of factors over a
designated range; investigations of interactions among effects of several factors,
all combinations of factors give the most information in this regard; experiments
designed to lead to recommendations over a broad range of conditions. Where
the objective is the latter recommendations, subsidiary factors may be brought
into an experiment to test the principal factors under various conditions to those
that are encountered in the population to which recommendations are to apply.

Fractional Factorial Design
Often full factorial designs are beyond the resources of the investigator, or the
level of precision obtained is substantially higher than required. In a 26 factorial
design, each main effect is an average of 32 combinations of other factors. It is
possible that it would be sufficient to conduct a four- or eightfold replication and
a partial experiment might be considered. Information is lost in this approach to
experiments in particular with respect to interactions between factors.

There are hazards associated with this approach. The results of such
experiments may be misinterpreted, particularly if the interactions that have
been assumed to be negligible are not. The impact of this problem depends on
decisions made from the results. In a screening study this may not have a huge
impact where the implications for a fundamental research program could be
very serious. In general, it is unadvisable to rely heavily on fractional factorial
design as a tool for investigation unless the risk of being misled by the occur-
rence of factor interactions is considered small.

Central Composite Design
The designs above consider linear (first-order) relationships between levels of
particular factors. However, the relationships between levels of factors may be
related through nonlinear functions, the simplest of which is a quadratic
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response surface (second order) that can emerge from central composite designs
(CCDs) based on factorial analysis. CCDs test additional factor combinations.
CCD can be fitted into a sequential program of experimentation. The experiment
starts with an exploratory 2n factorial design to which a linear response surface
is fitted. If the center of the first experiment is close to a point of maximum
response, combinations of factors can be selected orthogonally to one of the
original factorial designs to indicate the curvature of the response surface.
Figure 18.1 illustrates the way factor combinations would be selected.

RESPONSE SURFACE MAPS
Extending the CCD model to a broad range of combinations of factors and levels
allows for a continuous nonlinear surface to be plotted graphically that allows
prediction of the response to variation in the factors (Myers and Montgomery,
1995). In the previous example, the response surface study begins when the
process is near the optimum. At this point, it is desirable to accurately
approximate the true response function within a small region around the opti-
mum, recognizing that the true response exhibits curvature near this location.
Sequential experiments are performed within some region of variable space
identified as the operability region (OR). It is unlikely that the entire OR would
be explored. Usually a region of interest (experimentation) around inflections in
the OR will be investigated. The objectives of response surface methodology are
generally mapping over a particular region of interest; optimization of the
response; or selecting operating conditions to achieve specifications.

DESIGN SPACE
The distinction that can be made between a single response surface map and
true process design space is that the latter is dynamic and begins when the drug
is conceived and evolves over the entire life cycle of product (Fig. 18.2) (Lepore
and Spavins, 2008).

The foregoing discussion was intended to outline the philosophy behind
statistical approaches to experimental design and their relevance to pharma-
ceutical process optimization. The reader is referred to the texts cited and the
broader foundational literature for thorough discussion of the mathematical

FIGURE 18.1 Central composite design (CCD)

based on three factors (x, y, z axes). O, factorial

design factor combinations; X, additional orthogo-

nal factor combinations to complete the CCD.
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approach and examples of statistical designs. In addition, it should be noted that
there are numerous computer software packages available that once familiar
with the fundamentals can be employed to design and analyze experiments.

FIGURE 18.2 Design space devel-

opment.
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19 Process Analytical Technology

To maximize the control over any process in pharmaceutical product develop-
ment, information is required on the way in which the product is responding to
changes in manufacturing variables. Historically, the information was derived
from data obtained on the nature of batches produced under particular manu-
facturing conditions. Knowledge of the batch properties were employed to
modify the manufacturing conditions to ensure that the product was closely
controlled to designated quality specifications.

In recent years, analytical methods and their application have improved to
the point that real time in process measurements can be taken and fed back
through control systems to the input parameters to allow for continuous mon-
itoring and control of processes.

In earlier chapters, examples of the major unit operations in pharmaceu-
tical manufacturing were outlined. These processes will now be considered with
anecdotal evidence from the literature of methods that might lead to closer
control of the product quality and thereby conform to recent regulatory direc-
tives to consider such methods as part of the Quality by Design (QbD) initiative.

The Food and Drug Administration has issued a guidance document on
Process Analytical Technology (PAT) (Zu et al., 2007). Processes may be divided
into batch and continuous approaches. These processes can be monitored by in
situ, real time, and/or feedback control analyses to assure the quality of the
product (Fig. 19.1).

PAT necessarily begins with the manufacture of active pharmaceutical
ingredient (API) and any additives and understanding their properties (Byrn
et al., 2006; Hlinak et al., 2006). Important methods in this context address the
presence of impurities (including moisture), degradation products (stability),
component compatibility, and crystallinity (polymorphism). Near infrared
spectroscopy has been applied in situ, real time to address the chemical com-
position of API or additive during manufacture (Mendendorp et al., 2006). Near
infrared laser Raman spectroscopy has been employed to monitor polymeriza-
tion process (Francisco et al., 2006). A variety of particle sizing methods can be
employed, but those that are in situ, real time employ laser scattering methods.
Dosage form manufacturing can be optimized by direct methods of monitoring
the variables involved in drying, mixing/blending (Portillo, et al., 2008), gran-
ulation (Papp et al., 2008), filling, compression (Askeli and Cetinkaya, 2008; Soh
et al., 2007), and coating (Bose et al., 2006; Cogdill et al., 2007). For more
sophisticated dosage forms, compatibility with packaging components is also
required, but this is likely to have been considered during the preliminary
experimental design optimization steps.

PAT arguably is at the intersection of design space (considered in chap. 18)
and control strategy, these being the major elements of QbD. These topics have
been described in Product Quality Lifecycle Implementation initiative of the
International Society for Pharmaceutical Engineering (Drennan, 2008). Topics of
interest in this initiative have been described in the Journal of Pharmaceutical
Innovation.
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Figure 19.2 presents the most prominent decisions required to evaluate
the criticality of variables in process development. Decisions (diamonds) are
made based on the business decision in foundational classification (above
dotted line), and risk assessment in developmental classification (below dotted

FIGURE 19.1 Critical steps in API manufacture. Source: Modified from Byrn et al. (2006).

FIGURE 19.2 Decision tree to define levels of criticality. Source: Modified from Garcia et al. (2008).
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line) that pass through a filter (rectangle) to criticality designations (rounded
rectangle). With respect to criticality, those variables that are not critical have
not been demonstrated to impact on safety or efficacy or factor into critical
quality attributes (CQA) as defined by ICH Q(8) R and consequently do not
have to be included in design space. Critical variables are those that are known
to impact safety, efficacy, or other measures of biological disposition or com-
pliance. Critical process parameters if varied beyond a certain range have a
direct and significant influence on CQAs. These properties must be controlled
within predesignated range to ensure final product quality. The empty symbol
represents an alternative designation for attributes that may impact the
product but represent a low risk. The designation of low risk is based on an
indirect impact on safety and/or efficacy alone or in combination with other
variables; mitigated risk; and knowledge transfer from noncritical variables
requiring additional evaluation.

It has been suggested that criticality can be reduced to fundamental ele-
ments of severity, occurrence, and detection in a compounding manner (Nosal
and Schultz, 2008). These terms can be related to experimental design (frequency
and variation) and analytical capability (detection). During the life cycle of the
product clear differentiation of levels of criticality is required to address a
control strategy based on process variables, material attributes, and their rela-
tionship to quality measures.
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20 Conclusion

In the previous edition of this volume a conclusion was not presented. Even for
the novice to pharmaceutical process engineering the technical and practical
review presented was structured in a self-explanatory manner and represented
the summary of thinking over many decades in chemical and mechanical
engineering. A conclusion would have added little to enlighten the reader.

This edition is intended to suggest that while many of the engineering
principles described previously have not changed and, indeed, are as relevant as
they have ever been, the control of the quality of the product in a demonstrable
and scientifically sound fashion has become a substantial consideration in the
way that processes are managed. The Quality by Design (QbD) principles
espoused by regulatory bodies, unlike the fundamental engineering consid-
erations, are evolving and are based on relatively new developments in the
fields of multivariate statistics and risk management. The danger in introducing
these novel concepts to an introduction to engineering principles is to dilute the
clarity and well-defined nature of the former with the more general essence of
the latter. However, it would be irresponsible to suggest, particularly to those
coming to this topic for the first time or with limited background, that engi-
neering principles alone are of relevance to pharmaceutical process engineering
at this juncture. There can be no question that the most substantial future
developments will be in new methods of analysis or data collection that can be
applied through QbD strategies involving information management and sta-
tistical assessment to deliver rapid solutions to processing problems and in all
probability to give real-time control of the variations in product output by
manipulation of input variables.

It would be difficult to do justice to the principles of QbD, statistical exper-
imental design, and Process Analytical Technology (PAT) without expanding
the present text to a series of volumes on pharmaceutical process engineering.
However, by including them as overviews, sufficient attention is given to these
topics to give the novice a framework from which to continue to evolve an
understanding, as their importance in product development activities increases.

In concluding this volume, a model is proposed for the relationship between
the various components described and their application to process develop-
ment. Figure 20.1 depicts the unit operations, shown originally in Figure 20.1 of
chapter 1, and indicates the role that well-designed experiments followed by
monitoring and control strategies may play in assuring the quality of the
product and, thereby, ensuring both the safety and efficacy of dosage forms
released for use in disease therapy.

The future of pharmaceutical process engineering will relate closely to
developments in material science, analytical and information technology. It is
anticipated that many new developments, particularly with respect to bio-
technology, will be driven by efficiency in resource utilization, time, and
expense to address the medical needs of more narrowly defined patient pop-
ulations, as pharmacogenomics and the principles of individualized dosing
begin to drive requirements for smaller but more controlled production than
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that of the 20th century. Indeed, while it may be many years before it is a
common strategy, it can be anticipated that following statistically designed
optimization, continuous processes under direct feedback monitoring and con-
trol could routinely be used to produce product on any required scale (for
example, gram to many kilogram quantities) to supply the demand without the
need for serious depletion or accumulation of stock based on the arbitrary scale
of batch production. Linking production to demand based on well controlled
and predictable manufacturing represents an efficient commercial strategy.

FIGURE 20.1 Monitoring and control of elements of the manufacturing process relating to

product quality.
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