WOODHEAD PUBLISHING IN TEXTILES

Biodegradable and sustainable fibres

Edited by R. S. Blackburn

Biodegradable and sustainable fibres

Related titles from Woodhead's textile technology list:

Regenerated cellulose fibres (ISBN-13: 978-1-85573-459-3; ISBN-10: 1-85573-459-1)

Bast and other plant fibres (ISBN-13: 978-1-85573-684-9; ISBN-10: 1-85573-684-5)

Green composites (ISBN-13: 978-1-85573-739-6; ISBN-10: 1-85573-739-6)

Environmental impact of textiles (ISBN-13: 978-1-85573-541-5; ISBN-10: 1-85573-541-5)

Handbook of nonwovens (ISBN-13: 978-1-85573-603-1; ISBN-10: 1-85573-603-9)

Details of these books and a complete list of Woodhead's textile technology titles can be obtained by:

- visiting our website at www.woodheadpublishing.com
- contacting Customer Services (e-mail: sales@woodhead-publishing.com; fax: +44 (0) 1223 893694; tel.: +44 (0) 1223 891358, ext. 30; address: Woodhead Publishing Limited, Abington Hall, Abington, Cambridge CB1 6AH, England)

Biodegradable and sustainable fibres

Edited by R. S. Blackburn

The Textile Institute

CRC Press Boca Raton Boston New York Washington, DC

WOODHEAD PUBLISHING LIMITED Cambridge England Published by Woodhead Publishing Limited in association with The Textile Institute Abington Hall, Abington, Cambridge CB1 6AH, England www.woodheadpublishing.com

Published in North America by CRC Press LLC, 6000 Broken Sound Parkway, NW, Suite 300, Boca Raton, FL 33487, USA

First published 2005, Woodhead Publishing Limited and CRC Press LLC © 2005, Woodhead Publishing Limited; 2005, Chapter 13 © Mary M. Brooks

The authors have asserted their moral rights.

Every effort has been made to trace and acknowledge ownership of copyright. The publishers will be glad to hear from the copyright holders whom it has not been possible to contact concerning the following: Figs 10.1–10.14, 13.1, 13.4, 13.6, 13.8, 13.9, 13.11 and 13.12.

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. Reasonable efforts have been made to publish reliable data and information, but the authors and the publishers cannot assume responsibility for the validity of all materials. Neither the authors nor the publishers, nor anyone else associated with this publication, shall be liable for any loss, damage or liability directly or indirectly caused or alleged to be caused by this book.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming and recording, or by any information storage or retrieval system, without permission in writing from Woodhead Publishing Limited.

The consent of Woodhead Publishing Limited does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from Woodhead Publishing Limited for such copying.

Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation, without intent to infringe.

British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library.

Library of Congress Cataloging in Publication Data A catalog record for this book is available from the Library of Congress.

Woodhead Publishing Limited ISBN-13: 978-1-85573-916-1 (book) Woodhead Publishing Limited ISBN-10: 1-85573-916-X (book) Woodhead Publishing Limited ISBN-13: 978-1-84569-099-1 (e-book) Woodhead Publishing Limited ISBN-10: 1-84569-099-0 (e-book) CRC Press ISBN 0-8493-3484-5 CRC Press order number: WP3484

The publishers' policy is to use permanent paper from mills that operate a sustainable forestry policy, and which has been manufactured from pulp which is processed using acid-free and elementary chlorine-free practices. Furthermore, the publishers ensure that the text paper and cover board used have met acceptable environmental accreditation standards.

Project managed by Macfarlane Production Services, Dunstable, Bedfordshire (email: macfarl@aol.com)

Typeset by Replika Press Pvt Ltd, India Printed by T J International Limited, Padstow, Cornwall, England iV

Contents

	Contributor contact details	xi
	Introduction	XV
	R S BLACKBURN, University of Leeds, UK	
1	Microbial processes in the degradation of fibers	1
	P M FEDORAK, University of Alberta, Canada	
1.1	Introduction	1
1.2	Background and terminology	1
1.3	Incubation conditions used for studying biodegradation	
	of fibers and films	8
1.4	Sources of microorganisms and enzymes for laboratory	
	incubations	12
1.5	Analytical methods used to assess biodegradation of	
	fibers and films	17
1.6	Examples of types of bonds that are susceptible to	
	enzymatic attack	24
1.7	Future trends	29
1.8	Acknowledgements	31
1.9	References	31
2	Bast fibres (flax, hemp, jute, ramie, kenaf, abaca)	36
	R Kozlowski, P Baraniecki and J Barriga-Bedoya, Institute of Natural Fibres, Poland	
2.1	Introduction	36
2.2	Flax	37
2.3	Hemp	51
2.4	Jute	60
2.5	Ramie	70
2.6	Kenaf	78
2.7	Abaca	81

2.8 2.9	Comparison of fibre properties References	86 86
3	Alginate fibers	89
	J M MURI and P J BROWN, Clemson University, USA	
3.1	Introduction	89
3.2	The chemical nature of alginate materials	92
3.3	Physical properties of alginate-based materials	96
3.4	Industrial applications of alginates	100
3.5	Fabrication of alginates as useful flexible substrates in	
	medical textile-based products	101
3.6	Alginates in bioengineering	105
3.7	References	107
4	Cellulosic fibres and fabric processing	111
	D CIECHAÑSKA, Institute of Chemical Fibres, Poland and P NOUSIAINEN, Tampere University of Technology, Finland	
4.1	Introduction	111
4.2	Life cycle assessment (LCA)	112
4.3	The mechanisms of enzymatic reactions on wood and	120
4.4	cellulose Biodogradability of cellulose fibres in taxtile blands	120 131
4.4 4.5	Biodegradability of cellulose fibres in textile blends Biotechnology for manufacture and modification of	131
4.5	cellulosic fibres	133
4.6	Enzyme applications in fabric and dyestuff processing	140
4.7	Hygienic and medical fibres	144
4.8	Future trends	150
4.9	References	151
5	Lyocell fibres	157
	P White, M Hayhurst, J Taylor and A Slater, $Lenzing^{\circledast}$ Fibers Ltd, Derby, UK	
5.1	Introduction	157
5.2	Process description	159
5.3	Lyocell sustainability	165
5.4	Lyocell fibre properties	171
5.5	Lyocell in textiles	172
5.6	Lyocell – a versatile, high performance fibre for	101
57	nonwovens	181
5.7 5.8	Marketing Future trends	187 188
5.8 5.9	Sources of further information	188
5.1		100

6	Poly(lactic acid) fibers	191
	D W FARRINGTON, Consultant, UK, J LUNT, S DAVIES, NatureWorks LLC, USA and R S BLACKBURN, University of Leeds, UK	
6.1	Introduction	191
6.2	Chemistry and manufacture of PLA polymer resin	192
6.3	PLA fiber properties	197
6.4	Applications	200
6.5	Environmental sustainability	211
6.6	Future trends	218
6.7	References	219
7	Poly(hydroxyalkanoates) and poly(caprolactone)	221
	I CHODÁK, Polymer Institute of the Slovak Academy of Sciences, Slovakia, and R S BLACKBURN, University of Leeds, UK	
7.1	Introduction	221
7.2	PHA-based oriented structures	222
7.3	Poly(caprolactone)-based fibres	232
7.4	Structure of drawn fibres	235
7.5	Thermal properties	236
7.6	Enzymatic and hydrolytic degradation	237
7.7	Other biodegradable and sustainable polyesters	238
7.8	Application of polyester-based biodegradable fibres	239
7.9	Future trends and concluding remarks	241
7.10	References	242
8	The route to synthetic silks	245
	F VOLLRATH and A SPONNER, University of Oxford, UK	
8.1	Introduction	245
8.2	Silk structures	245
8.3	Development of fibre: the feedstock	248
8.4	Development of fibre: spinning	255
8.5	Performance characteristics	256
8.6 8.7	Applications	262
8.8	Future trends	262
8.9	Acknowledgements References and sources of further information	264 264
9	Biodegradable natural fiber composites	271
9.1	A N NETRAVALI, Cornell University, USA Introduction	271
9.1 9.2	Biodegradable fibers	271
9.3	Biodegradable resins	279
		/

viii	Contents	
9.4 9.5 9.6 9.7	Soy protein-based green composites Conclusions and future trends Acknowledgements References	295 304 304 305
10	Biodegradable nonwovens	310
	G BHAT, University of Tennessee, USA and H RONG, Johnson Controls Inc., USA	
$10.1 \\ 10.2 \\ 10.3 \\ 10.4 \\ 10.5 \\ 10.6 \\ 10.7 \\ 10.8 \\ 10.9 \\ 10.10 \\ 10.11 \\ 10.12$	Introduction Nonwoven fabrics Fiber consumption in nonwovens Web formation methods Web bonding techniques Technology and relative production rate Recent research on biodegradable nonwovens Applications of biodegradable nonwovens Flushable nonwovens Leading producers of nonwovens Sources of further information and advice References	310 311 314 315 319 321 322 336 337 338 338 340
11	Natural geotextiles	343
11.1 11.2 11.3 11.4 11.5 11.6 11.7	C LAWRENCE, University of Leeds, UK and B COLLIER, University of Tennessee, USA Introduction Fundamental aspects of geotextiles Fibres used for natural geotextile products Fibre extraction and preparation Production of natural geotextile products Measurement of the properties of natural geotextiles References	343 344 345 351 355 362 365
12	Conversion of cellulose, chitin and chitosan to filaments with simple salt solutions H S WHANG, N AMINUDDIN, Fiber and Polymer Science Program, USA, M FREY, Cornell University, USA, S M HUDSON and J A CUCULO, Fiber and Polymer Science Program, USA	367
12.1 12.2	Introduction Cellulose in liquid ammonia/ammonium thiocyanate	367
12.3	solutions Fibers from chitin and chitosan	368 380
12.4	Future trends	393
12.5	Sources of further information	394

12.5 Sources of further information

12.6	References	395
13	Soya bean protein fibres – past, present and future M M BROOKS, University of Southampton, UK	398
13.1	Introduction	398
13.2	The soya bean plant	398
13.3	Naming regenerated protein fibres	400
13.4	The need for new fibre sources	401
13.5	Generalised method for producing soya bean fibre in the	
	mid-twentieth century	413
13.6	Contemporary research into alternative protein fibre	
	sources	420
13.7	Contemporary methods for producing fibres from soya	
	bean protein	422
13.8	Fibre characteristics	425
13.9	Identifying soya bean protein fibres	428
13.10	Degradation behaviour	431
13.11	A truly biodegradable and ecological fibre?	434
13.12	Conclusion	434
13.13	Acknowledgements	435
13.14	References	435
Index		441

Contributor contact details

(* = main contact)

Introduction

Dr Richard S. Blackburn Green Chemistry Group Centre for Technical Textiles University of Leeds Leeds LS2 9JT UK

Tel: +44 (0)113 343 3757 Fax: +44 (0)113 343 3704 E-mail: r.s.blackburn@leeds.ac.uk

Chapter 1

Dr Phillip M. Fedorak Biological Sciences Building University of Alberta 114 St–89 Ave Edmonton Alberta Canada T6G 2M7

Tel: (780) 492-3670 Fax: (780) 492-9234 E-mail: phil.fedorak@ualberta.ca

Chapter 2

Dr Ryszard Kozlowski*, Przemyslaw Baraniecki and Jorge Barriga-Bedoya Institute of Natural Fibres ul. Wojska Polskiego 71 B 60630 Poznań Poland

E-mail: sekretar@inf.poznan.pl

Chapter 3

Dr J. M. Muri and Dr Philip J. Brown* Clemson University School of Materials Science & Engineering Clemson University 265 Sirrine Hall Clemson, SC 29634-0971 USA

E-mail: pjb@clemson.edu

Chapter 4

Dr Danuta Ciechañska* Institute of Chemical Fibres ul. M. SkŚodowskiej-Curie 19/27 90-570 Łódź Poland

E-mail: dciechan@iwch.lodz.pl

Professor Pertti Nousiainen* Kuitumateriaalitekniikka Institute Tampere University of Technology PO Box 527 33101 Tampere Finland

E-mail: pertti.nousiainen@tut.fi

Chapter 5

Patrick White MBE, Dr Malcolm Hayhurst, Jim Taylor* and Andrew Slater Lenzing Fibers Limited 1 Holme Lane Spondon Derby DE21 7BP UK

Tel: 01332 682359 E-mail: j.taylor@lenzing.com

Chapter 6

Mr David W. Farrington* Beech Edge 7 The Common Quarndon Derby DE22 5JY UK

E-mail: davidwfarrington@btopenworld.com Dr Richard S. Blackburn* Green Chemistry Group Centre for Technical Textiles University of Leeds Leeds LS2 9JT UK

Dr James Lunt and Mr Steve Davies NatureWorks LLC 15305 Minnetonka Boulevard Minnetonka MN 55345 USA

Chapter 7

Dr Ivan Chodak* Slovak Academy of Sciences Centre of Excellence CEDEBIPO 872 36 Bratislavia Slovakia

E-mail: upolchiv@savba.sk

Dr Richard S. Blackburn* Green Chemistry Group Centre for Technical Textiles University of Leeds Leeds LS2 9JT UK

Chapter 8

Professor Fritz Vollrath* and Professor Alexander Sponner Department of Zoology University of Oxford South Parks Road Oxford OX1 3PS UK

E-mail: fritz.vollrath@zoology.oxford.ac.uk

Chapter 9

Dr Anil N. Netravali Cornell University 9 St Joseph Lane Ithaca NY, 14850 USA

E-mail: ann2@cornell.edu

Chapter 10

Professor Gajanan S. Bhat* Department of Material Science and Engineering University of Tennessee Knoxville TN 37996 USA

E-mail: gbhat@utk.edu

Dr Haoming Rong Materials Process Engineer Johnson Controls, Inc., Holland MI 49423 USA

Chapter 11

Dr Billie J. Collier* Associate Vice Chancellor for Research Compliance Director, Textiles and Nonwovens Development Center 1534 White Avenue University of Tennessee Knoxville TN 37996 USA

Tel: 865-974-2474 Fax: 865-974-7400 E-mail: bcollier@utk.edu Professor Carl Lawrence* Centre for Technical Textiles University of Leeds Leeds LS2 9JT UK

E-mail: c.a.lawrence@leeds.ac.uk

Chapter 12

Dr Hyun Suk Whang, Dr Norman Aminuddin, Dr Samuel M. Hudson* and Dr John A. Cuculo Fiber and Polymer Science Program North Carolina State University College of Textiles 2401 Research Drive Box 8301 Raleigh NC 27695 USA

E-mail: sam_hudson@ncsu.edu

Dr Margaret Frey Cornell Center for Materials Research 627 Clark Hall of Science Cornell University Ithaca NY 14853 USA

Chapter 13

Mary M. Brooks Textile Conservation Centre University of Southampton Park Avenue Winchester Hampshire SO23 8DL UK

Tel: 02380 597100 E-mail: m.m.brooks@soton.ac.uk xiv