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Controlling colourant formulation

J  H  X I N, The Hong Kong Polytechnic University, Hong Kong

8.1	 Introduction

Formulating colourant recipes to match target colours is not an easy task. 
Manual colour prediction often uses a trial and error method, for which the 
experience of the colourist is essential. The majority of colour matches also 
require colours to be matched not only under daylight, but also under other 
artificial light sources, typically cool white fluorescent (CWF) and incandes-
cent sources. A previous recipe archive is very useful for manual colour 
matching. A colourist would firstly search the previous recipe archive to 
find out the closest colour matching the target (or standard) and then make 
some adjustment to the recipe if the recipe colour is not the exact match 
to the target. However, this trial and error process can be lengthy and 
arduous even for a professional colourist.

Computer colourant formulation is an alternative method. The commer-
cial application of computer colour recipe formulation in textiles was first 
disclosed by Alderson et al. in 1961.1 The most well-known algorithms for 
colour recipe formulation are the two proposed by Allen, one for the single-
constant and the other for two-constant formulation.2,3 In recent years, 
computer colourant formulation has been widely applied, especially when 
supplying the coloured articles to companies with global sourcing practice, 
thanks to the formidable advance of the digital computer, especially the 
personal computer. This greatly improves the lead-time for the colour 
matching, especially when experienced colourists are not available. It has 
become a necessity for a modern dyehouse to install a computer colourant 
formulation system.

The flowchart of the coloured goods production process employing a 
colourant formulation system is illustrated in Fig. 8.1. The spectral reflect-
ance of a target colour is first measured using a spectrophotometer, and the 
colourant concentrations are computed using the colourant formulation 
system. These concentrations are used in the colouration process to produce 
the matching coloured goods. If the colour difference between the target 
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and the produced colour is too large to be accepted, the recipe should be 
corrected. As the dyeing and colour quality control processes are usually 
costly and time consuming, it is important and still very challenging for any 
colourant formulation system to be ‘right first time’ in colour matching with 
a generally acceptable colour difference.

8.2	 Colourant recipe formulation

Colour matching to a target depends not only on the formulation system 
but also on the accuracy of the recipe preparation, the repeatability of the 
dyeing process and the colour measurement process. There is a need for 
quality control at each step in the colouration and measuring processes. The 
core of the formulation system is based on the theory developed by Kubelka 
and Munk (K–M theory).4,5 As the theory involves quite a few assumptions 
that are necessary for the prediction of the colourant concentrations, the 
real dyes and pigments do not ideally conform to these assumptions. 
Therefore, the K–M theory is only an approximation to the real pigmented 
systems. Nevertheless, methods to improve the prediction accuracy are 
available in certain commercial colourant formulation systems. In addition, 
methods based on artificial intelligence can also be employed in recipe 
formulation. The scope of this chapter is delimited to the colourant formula-
tion of the textile materials. The colourant formulation for plastics and 
paints can be found elsewhere.9

8.2.1	 Kubelka–Munk Theory

When light passes through a pigmented layer, two things will happen: part 
of the light is absorbed by the pigments and the medium in which pigments 

Measure Spectral 
reflectance 

Colourant
formulation

system

Colour
difference

Spectral 
reflectance 

Colourant
concentrations

Measure 

Feed
back 

D
ye

 

Target colour

Produced colour

8.1  Flow chart of colour production process using colour recipe 
prediction.
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are dispersed; part of the light is scattered by the pigments. K–M theory is 
based on earlier research by Schuster,6 who studied the weakening of light 
from the stars by scattering and absorption before reaching the observer. 
However, pigmented systems are more complicated because of the interac-
tion between pigments, especially when the pigment loading is high. 
Therefore, K–M theory has to simplify the real situation in order to derive 
any useful mathematical equations. In practical colourant formulation, we 
are restricted to the following assumptions:

1.  diffuse illumination and diffuse viewing without polarisation of the 
light,

2.  a plane parallel surface of the object without light losses at the edges,
3.  the unit layers of the material are homogeneous and isotropic,
4.  the theory does not account for the presence of large particles, agglom-

eration or orientation of the particle in the layer, and
5.  optical contact with the next layer.

Figure 8.2 shows a simplified case of light passing through a very thin 
layer of thickness dx. We consider the downwards and upwards components 
of the incident light separately, and assume that the absorption coefficient 
is denoted by K and the scattering coefficient by S. Then, the downward 
flux (intensity I) is given as

dI = -KI dx - SI dx + SJ dx	 [8.1]

and the upward flux (intensity J) is given as

dJ = -KJ dx - SJ dx + SI dx	 [8.2]

We note that light loss through the edges is neglected. The internal reflec-
tion that exists when leaving an optically denser medium, e.g. light leaving 
from textile fibres, which is optically denser than air, is also neglected by 
the theory. Other assumptions such as uniform distribution of the pigments, 
etc., may also differ from the real situation.
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8.2  Schematic diagram of the simplified version of light passing 
through a finite colourant layer used in K–M theory.
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A series of the solutions can be obtained by solving the differential 
equations (eqn 8.1) and (eqn 8.2). These solutions and the examples of how 
they can be used are given by Judd and Wyszecki.8 In textile formulation, 
the solution can be even more simplified. Firstly, textile fabrics can be 
considered opaque because the measurements are made at sufficient thick-
ness of the fabric swatches. Secondly, the scattering coefficients of the 
textile dyes are negligible when compared with the substrate in which they 
are dissolved, so that only the scattering coefficient of the substrate needs 
to be considered. Thirdly, it can be assumed that the total absorption and 
scattering is the summation of those from each individual colourant, i.e. 
the absorption and scattering are additive. Hence, we obtain the following 
equation:

R• = 1 + (K/S) - [(K/S)2 + 2(K/S)]1/2	 [8.3]

and its inverse

	 [8.4]

where R• is the reflectance of a colour sample of optically infinite 
thickness.

In K–M theory, the absorption and scattering coefficients of a colour 
sample can be further represented using absorption and scattering coeffi-
cients of the individual pigments or dyes:

(K/S)mixture = (K/S)1 +  .  .  .  + (K/S)n	 [8.5]
	 = K1/Ssub +  .  .  .  + Kn/Ssub + Ksub/Ssub

where K1 to Kn are the absorption coefficients of the dyes, Ksub and Ssub are 
the absorption and scattering coefficients of the substrate, respectively.

From (eqn 8.3)–(eqn 8.5), it can be seen that, for a dye system, the reflect-
ance of the coloured sample can be predicted from only the ratio of the 
absorption coefficient of each dye in the mixture and the scattering coeffi-
cient of the substrate, i.e. Kn/Ssub. The various K/Ssub ratios may be consid-
ered as a single constant, which are commonly called ‘absorption coefficients’ 
in textile dye formulation, and the theory is therefore known as single- 
constant K–M theory.2

The absorption coefficient for a colourant is related to its concentration 
and, in many cases, the relationship is a non-linear one with the exhaustion 
decreasing with an increase in dye concentration. In practice, a range of 
concentrations will be used to obtain a so-called calibration database by 
dyeing, and an absorption coefficient is correlated to the corresponding dye 
concentration in the dyebath. Using this calibration database, the absorp-
tion coefficient at a given concentration can easily be found.
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8.2.2	 Calibration database

As described above, a calibration database is necessary for a formulation 
system to establish the relation between the K/S values and the concentra-
tions for each dye. Because formulations are based on the database, its 
preparation should be carried out using exactly the same substrate and 
dyeing conditions as those of the formulated recipes to be subsequently 
used. For example, if in the calibration database, plain woven cotton fabric 
is used as the substrate, the formulated recipe should be used only for the 
dyeing of the plain woven cotton fabric. Any change in substrate, whether 
it is the reflectance or the absorbance property, would be expected to give 
inaccurate results. The same is true for other conditions such as dyebath 
pH, temperature, liquor ratio, etc. One difficulty in that aspect is that labora-
tory dyeings that are used for preparing the database do not always repre-
sent the bulk production dyeings and there is often no clear relation between 
laboratory and bulk dyeings.

Since colour matching relies on the calibration database, accurate prepa-
ration of the database is essential. Any error in the database can subse-
quently affect the formulation. Good computer formulation systems should 
be able to detect abnormal points in the database preparation only if these 
points are scarce in comparison with the rest of the normal points.

The database consists of the calibration dyeings of each dye used in the 
system. Usually, six or more calibration dyeings are required for each dye 
in order to cover the concentration level of, say, from 0.05% to 2.0% of the 
weight of the fabric. The highest concentration level should comply with 
the recommendations of the dyestuff manufacturer. Additional errors may 
be introduced if a formulated recipe uses a dye at much below or much 
above the concentration range of its calibration dyeing.

An example of the acid dye on wool is given below. Figure 8.3 is the 
reflectance data of calibration samples at different concentrations plotted 
against wavelength. The K/S value of each calibration sample can be calcu-
lated according to (eqn 8.4), and its distribution against wavelength is 
plotted in Fig. 8.4. The K/S values against concentration at a maximum 
absorption wavelength of 520 nm are shown in Fig. 8.5. A non-linear rela-
tionship exists between the K/S value and the concentration of the colour 
sample.

In commercial computer colourant formulation systems, the K/S values 
and their corresponding concentrations for all calibration dyeings are 
stored. The recipe formulation function uses these values for linear inter-
polation.8,9 For example, at a concentration ctarget, the K/S value of the target 
is given by:

(K/S)target = (K/S)low + B[(K/S)high - (K/S)low]	 [8.6]
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8.4  K/S values of dye Ramazol Red 3BS at different concentrations 
plotted against wavelength.

where

B = (ctarget - clow)/(chigh - clow)	 [8.7]

and c is the dye concentration and the subscripts low and high denote the 
two neighbouring points in the calibration data.

In some cases, the use of second-order or third-order polynomial equa-
tions and curve-fitting techniques to find the correlation between the K/S 

8.3  Reflectance of dye Ramazol Red 3BS at different concentrations 
plotted against wavelength.
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values and concentration can smooth out certain fluctuation of the calibra-
tion dyeings to overcome dyeing errors, without the need for re-dyeing. 
However, if a calibration dyeing sample is far from the trend of the rest of 
the calibration samples, it should be re-dyed. Equation (8.8) below is an 
example of a third-order polynomial equation:

(K/S)target = a1c + a2c2 + a3c3 + Ksub/Ssub	 [8.8]

where a1, a2 and a3 are the coefficients. The coefficients are optimised from 
the calibration database and are stored by the system for use in recipe  
formulation. The K/S value for a given concentration can be found using 
(eqn 8.8).

Some early commercial systems may have taken the physical–chemical 
approach, which models the relationship between K/S and dye-in-fibre 
using the Langmuir isotherm for dye absorption, which results in a relation-
ship with two coefficients.10

8.2.3	 Recipe formulation

In this section, we discuss the colour recipe formulation of non- 
fluorescent textile samples, as the K–M theory cannot be applied to  
fluorescent materials. It is known that recipe formulation can be carried  
out using colorimetric and spectrophotometric matching algorithms.9 
Spectrophotometric matching algorithms minimise the reflectance differ-
ence between the target and prediction:

8.5  K/S values of the six Ramazol Red 3BS calibration data plotted 
against the dye concentration (g/l) at 520 nm.
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R Rλ λ
λ

, ,target prediction min−[ ] →∑ 2
	 [8.9]

where l represents wavelengths from 400 to 700 nm with a 20 nm interval. 
According to (eqn 8.4) and (eqn 8.9), we have the equation at wavelength l:

(K/S)l,target = (K/S)sub,l + (K/S)l,l +  .  .  .  + (K/S)n,l	 [8.10]

where n is the number of colourants in a mixture, which is usually equal  
to 3. In the case of a 20 nm interval, there are 16 simultaneous equations. 
This over-determined system can be solved using the least-squares 
method.

Though the spectrophotometric algorithm is very straightforward, it is 
restricted to a non-metameric match. In other words, the optical properties 
of the substrate and the dyes used by both the target and the match  
should be spectrally very similar, otherwise the algorithm will often give 
poor matching results. Another drawback is that human eyes are more 
sensitive to lights at certain wavelengths than at others in the visual spec-
trum. Thus, the reflectance differences at the wavelengths that are more 
sensitive to human eyes are more important in colour matching than others. 
The spectrophotometric curve matching does not take this into considera-
tion. Attempts can be made to give carefully selected weights at different 
wavelengths11:

w R Rλ λ λ
λ

2 2
, ,target prediction min−[ ] →∑ 	 [8.11]

where weights wl reflect the importance of different wavelengths for visual 
perception. It is reported that the spectrophotometric strategy is not as 
successful in diminishing colour difference for a particular illuminant as the 
colorimetric strategy.11 Nevertheless, the spectrophotometric strategy does 
produce more ‘balanced’ colour differences between different illuminants, 
and can therefore be used to reduce metamerism.

In most commercial systems, the colorimetric matching algorithm to 
minimise DX, DY, and DZ has now been universally adopted. This algorithm 
is based on the strategy

(DX, DY, DZ) Æ (0, 0, 0)	 [8.12]

Colorimetric matching is very effective because it minimises the colour 
difference directly. Smaller differences in DX, DY and DZ result in closer 
colour match. The drawback of colorimetric matching is that a match 
achieved under a particular illuminant (e.g. D65) may not be a match under 
another illuminant (e.g. A), especially when different types of dyes are 
involved. This type of match is the so-called metameric match, i.e. the 
reflectance curve of the predicted sample is very likely different from that 
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of the standard and, when plotted, these two reflectance curves have at least 
three cross-over points.

We show below how a three-dye recipe is formulated using colorimetric 
matching according to the following steps.

1.  Select the starting concentrations c1, c2 and c3.
2.  Use (eqn 8.6) or (eqn 8.8) (depending on how the system establishes 

the relation between K/S values and the concentrations) to obtain the 
K/S of each colourant in the mixture.

3.  Use (eqn 8.5) to obtain the K/S value of the mixture assuming these 
colourants are additive.

4.  Use (eqn 8.3) to calculate the reflectance of the predicted sample. The 
tristimulus values X, Y and Z can, thus, be obtained using the illuminant 
required for the matching.

5.  Calculate the colour difference between the standard and the match 
and if the colour difference is smaller than the tolerance, the recipe is 
found.

6.  If the colour difference is larger than the tolerance, the following matrix 
is devised:
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and in (eqn 8.14):
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where El is the illuminant spectral power distribution, x̄l, ȳl, and z̄l are the 
CIE standard observer functions, and ∂[(K/S)l]/∂ci can be obtained from 
(eqn 8.8) or by linear interpolation using (eqn 8.6), and

	 [8.16]

and thus

	 [8.17]

Hence, in (eqn 8.13) all the items are known and the differences for each 
colourant can be calculated by matrix inversion:

	 [8.18]

The new corrected recipe is then

	 [8.19]

Steps 1 to 6 are repeated until the colour difference between the standard 
and the prediction is within the tolerance limit.

The number of iterations required to obtain the desired recipe depends 
on the effectiveness of the starting concentration provided in Step 1. If  
the reflectance of the target is known, the starting recipe can be determined 
by Allen’s2 method, where the matrix expression of the starting recipe is 
given as

C = (TEDA)-1 TED(F - S)	 [8.20]

where C is the concentration matrix, T is the matrix composed of CIE 
standard observer functions, E is composed of the spectral power dis
tribution of the matching illuminant, D is composed of the element  
dRl/d[(K/S)l], A is composed of ∂[(K/S)l]/∂ci for each colourant, F is com-

d
d
K S

R
R

R

( )[ ] = −λ

λ

λ

λ

2

2

1
2

d
d

R
K S

R
R

λ

λ

λ

λ( )[ ]
=

−
2

1

2

2

∆
∆
∆

c

c

c

c
X

c
Y

c
Z

c
X

c
1

2

3

1 1 1

2 2
















=

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂∂

∂
∂

∂
∂

∂
∂

∂
∂























Y
c
Z

c
X

c
Y

c
Z

X

Y2

3 3 3

∆
∆
∆∆Z

















c c c

c c c
1 1

2

,

,

new 1,original

new 2,original

= +

= +

∆

∆ 22

3 3c c c,new 3,original= + ∆



146	 Total colour management in textiles

posed of the K/S values of the target and S is composed of the K/S values 
of the substrate.

The starting concentration determined by this method is often very close 
to the target. Usually, only several iterations are required to bring the colour 
difference within the tolerance limit. Commercial recipe formulation 
systems have the option to sort the predicted recipes according to the cost 
and the metamerism under a secondary illuminant.

8.2.4	 Recipe correction

After recipe formulation, a new colour sample can be produced according 
to the colourant concentrations suggested. Because of the influence of 
various variables in the dyeing process, the produced sample may not be 
acceptable and a recipe correction process may be needed.

Laboratory correction

Laboratory correction gives a fresh recipe according to what was obtained 
by previous dyeing. The new concentration calculation is as follows:

Cnew = Cpredicted ¥ Cused/Cbatch	 [8.21]

or

Cnew = Cpredicted + Cuse - Cbatch	 [8.22]

where Cnew is the corrected recipe, Cpredicted is the predicted recipe for the 
standard, Cused is the recipe used in dyeing, which may be equal to Cpredicted, 
and Cbatch is the recipe back-predicted for the batch dyeing result. Correction 
method (eqn 8.21) is called weighted (or ratio) correction and method  
(eqn 8.22) is called additive correction.

We note that the use of (eqn 8.21) and (eqn 8.22) above would give rela-
tively similar results for correcting small colour differences. However, for a 
large colour difference, (eqn 8.22) may give wrong results and the use of 
(eqn 8.21) is recommended. If a large colour difference exists between 
standard and batch, correction accuracy is limited. On the other hand, for 
a small colour difference, the correction accuracy is limited by the repeata-
bility of the dyeing process.

Production correction

Production correction predicts the additional amount of dyes to be added 
to the dyeing bath:

Cadd = Cnew - Cused	 [8.23]

where Cnew is calculated according to the laboratory correction via either 
weighted or additive methods. There is no ‘bleed-off’ included in the calcu-
lation. It may be added if bleeding is a problem.
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If a batch is already too dark compared with a standard, this correction 
for exhaustion dyeing will fail, meaning that the absorbed dyes should be 
stripped before correction. For continuous dyeing, dilutents need to be 
added to dilute the dye liquor. However, for a slight dark colour, the pro-
duction correction for exhaustion dyeing should correct hue difference and 
try to reduce the overall colour difference.

8.3	 Improvement of the formulation accuracy

In most current colour formulation systems, K–M theory is applied for 
recipe prediction. However, there are many situations in which the K–M 
recipe prediction cannot be used successfully. For example, the prediction 
result of fluorescent colourants is rather poor. This is mainly due to a break-
down of the K–M assumptions and the failure of the model to describe the 
optical behaviour of the colourants accurately. Moreover, it is necessary to 
prepare an accurate calibration database, which would greatly affect the 
prediction performance. However, sometimes an accurate database cannot 
be achieved because the samples prepared in the laboratory may not cor-
relate well with the actual dyehouse production samples. Even if the accu-
rate samples can be prepared, a new calibration database will need to be 
produced if there are changes in dyes and substrates, but for many dye-
houses this is prohibitively costly and time consuming.

Consequently, the K–M model has many limitations, which make the 
prediction unreliable in some cases. Drawbacks of the K–M model have 
motivated the colourists to develop other methods for recipe formulation. 
As we know, it is possible for a professional colourist to predict the colour-
ant concentrations with high accuracy even for fairly complex situations 
without being aware of the K–M theory. Colourists accumulate experience 
of the behaviour of colourants and have the ability to predict the recipe of 
a new colour shade from previous ones. Therefore, it is possible to use arti-
ficial intelligence techniques such as neural networks to mimic the behav-
iour of professional colourists.

8.3.1	 Artificial neural network12

The human brain is a neural network itself. The basic unit of the brain is 
the neuron, which is a special nerve cell and, although simple creatures may 
only possess a few thousand neurons, the human brain contains approxi-
mately 1012 neuron cells. What makes neurons different from other cells in 
the body is the way in which they are connected to each other. A neuron 
receives information from other neurons using its dendrites and sends 
information to other neurons using its axons. The synapse is the point where 
the axon of one cell meets the dendrite of another. One of the most impor-
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tant properties of the brain that we would like to mimic in computer 
systems is its ability to learn.

The neural network can be considered as a black box that is connected 
to the world by a series of inputs, which interacts with the world via a series 
of outputs. Inside the black box, a network system performs a mapping 
function between its input and output. The units of the neural network are 
connected by weights that can be modified and they perform a similar 
function to the connection structure in the brain. Figure 8.6 shows a sche-
matic diagram of the function of a single unit. The unit receives input Ii 
from n other units. The total input to the unit is the weighted sum of n 
inputs, that is the sum of each of the n inputs multiplied by the respective 
value of the weighted connections wi. The output O of the unit is then given 
by some transfer function f(·) of its weighted input. Thus, mathematically 
it can be written as

	 [8.24]

A typical non-linear transfer function is the sigmoid function

	 [8.25]

where x is the input of the unit. Non-linear transfer functions are usually 
due to the function’s ability to approximate complex mapping between 
input and output vectors, while linear transfer functions are sometimes used 
for units in the output layer.

There are many types of neural networks. The complexity of the neural 
network is determined by the problem to be solved. One of the simplest 
and most successful networks is the multi-layer perception (MLP). The 
MLP consists of simple processing units in layers. Each neuron receives an 
input and modifies it in a simple way to produce an output. The neural 
network will contain one or more hidden layers between the input and 
output layers, and the number of units in each layer also depends on the 
complexity of the problem. A simple structure of a neural network is shown 
in Fig. 8.7, which consists of an input layer, a hidden layer, and an output 
layer.

Before a neural network can be used to solve a given task, it must first 
be trained using known pairs of input and output vectors. The training 
process consists of adjusting the weights in the network so that, when a 
certain input is presented in the input layer, the output layer will produce 
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the desired output. Samples of input–output pairs are presented to the input 
and output layers of the network, respectively. The input vector is used to 
generate an output for each unit in the network, layer by layer, until an 
output is produced in the output layer. The error between the target output 
and the actual output is then calculated, and the network adjusts the weights 
to reduce this error. This is repeated until the network can accurately 
predict the correct output vectors for all the training samples. The process 
of presenting all training pairs to the network and assessing its accuracy of 
prediction is called an epoch. To reach a desired prediction accuracy, the 
training process may need several thousand or more epochs. There are 
several kinds of learning strategies in a neural network for error minimisa-
tion, among which back-propagation of the generalised delta rule may be 
the most well known. The trained network can then be used to calculate 
the output for given input vectors.

8.6  The generalised unit of a neural network.
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8.7  A simplified structure of a neural network.
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After the training process, a set of testing samples needs to be presented 
to the neural network in order to test its prediction accuracy. Input vectors 
of the test samples are presented to the neural network and the output 
vectors are then calculated. If the neural network is appropriately designed, 
the testing error should be comparable to the training error; otherwise, the 
neural network should be restructured and trained again. A common 
problem with MLPs is that they may be over-fitting the training data, i.e. 
producing a very small training error but a very large testing error. This 
problem arises when there are too many hidden units such that the network 
actually memorises the training samples rather than learns rules from them. 
In practice, the training and testing samples are drawn from the same popu-
lation, and the set of training samples is larger than that of the testing 
samples.

Previous publications on the use of artificial neural networks in colour 
recipe formulation of textile fabrics can be obtained from references 16 and 
17. As claimed by the authors,16,17 the use of neural networks offers several 
advantages over conventional recipe prediction using K–M theory.

1.  It is not necessary to prepare a special calibration database in order to 
use the neural network method. The network can be trained with real 
known production samples.

2.  The neural network can continue to learn after the initial training 
period, since future data for the production sample can be fed back into 
the system and this knowledge incorporated into the network. This 
gives the network the potential to adapt to changes in important factors 
such as water supply, substrate properties or colourant strengths.

3.  The network may be able to learn the behaviour of colourant systems 
for which the mathematical descriptions are complex. For example, 
fluorescent dyes are currently difficult to treat using standard K–M 
theory.

8.3.2	 Fluorescent colourant formulation using a  
neural network

A sample is said to be fluorescent if it contains electrons that can be excited 
by radiation at a low wavelength and emit radiation at a high wavelength. 
As the florescent colours can considerably enhance the whiteness and 
extend the colour gamut, they are widely utilised in fashion items. However, 
the K–M theory will break down in the colourant formulation of fluorescent 
dyes due to their anomalous optical behaviour. This section introduces fluo-
rescent colourant formulation by the use of a neural network.

For a fluorescent sample, some of the light incident on it is re-emitted 
with a change of wavelength. At each wavelength, the total re-emitted is 
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the sum of the reflection and the fluorescence emission components. In 
discussing the effects of fluorescence, three spectral radiance factor (SRF) 
terms need to be defined.9,13 The first one is the reflected SRF bS(l), which 
is a ratio of the radiance produced by reflection by a sample to that pro-
duced by the perfect reflecting diffuser identically irradiated. The second 
one is the luminescent SRF bL(l), which is also a ratio of the radiance pro-
duced by luminescence by a sample to that produced by reflection by the 
perfect reflecting diffuser identically irradiated. The third is the total SRF 
bT(l), which is the sum of the reflected SRF bS(l) and the luminescent SRF 
bL(l):

bT(l) = bs(l) + bL(l)	 [8.26]

In the above definition the term radiance factor is used instead of the 
reflectance factor, because the latter applies only to reflected light and not 
to fluorescent light.

According to the ASTM standard,14 the colour of fluorescent samples 
should be measured as they would be perceived when illuminated by day-
light. The recommended measurement geometry is the 45/0 (or equivalent 
0/45) illuminating and viewing geometry. In practice, the fluorescent colour 
is always measured using a spectrophotometer which employs polychro-
matic illumination of the sample and monochromatic detection of the 
radiant energy. Since fluorescent emission is related to the spectral energy 
distribution of the illuminant, usually a light source similar to D65 such as 
a xenon lamp is used in the spectrophotometer. The coating on the integrat-
ing sphere has an effect on the measurement as the fluorescent sample itself 
generates light at a long wavelength. Therefore, in measurement practice, 
the sample apertures on the integrating sphere should be as small as 
possible.

In the following, an experimental example will be presented for better 
understanding of the fluorescent colour recipe formulation based on a 
neural network. In the experiment, 86 samples, which are polyesters dyed 
with disperse dyestuffs, are used. Three dyes used were Palanil Brilliant 
Yellow GN, Palanil Red FD-BFY 200 and Dispersol Navy C-VS 300. The 
samples were dyed using the three-dye mixture with different concentra-
tions. The dyeing process was done in an Ahiba Nuance laboratory dyeing 
machine. The dyeing parameters are given in Fig. 8.8. The samples were 
measured using a Datacolor SF-600 spectrophotometer under the condition 
of illuminant D65 and 1964 10° observers according to the ASTM stand-
ard.14 The spectral range of the measurement is from 400 to 700 nm with a 
10 nm interval.

The recipe formulation is to predict the colourant concentrations based 
on the colour measurement results. Therefore, the input layer of the neural 
network was presented with the measured SRF bT(l), and the output layer 
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was fed with the concentrations of the three dyestuffs. In the investigation, 
60 samples were used for training, and the other 26 samples were used for 
testing. Neural networks with different hidden layers and hence different 
hidden units were constructed and their performances were compared. It 
was found that the network with a single hidden layer and 31 hidden units 
performed well. The relative prediction error of the network was calculated 
using the following equation:

	 [8.27]

For the 86 samples used in the experiment, the training error was 2.3%, and 
the testing error was 4.2%.

In addition to predicting colourant concentrations from SRF, the neural 
network can also be used to predict SRF from colourant concentrations. 
Bezerra and Hawkyard15 reported such research. They found that the pre-
dicted SRF curve was very close to the target SRF curve, with a mean 
CIELAB colour difference of 7.38.

8.4	 A case study for matching a target using a 
commercial colour recipe formulation system

Figure 8.9 shows the main and additional functions often provided by 
modern commercial colour formulation systems. In these systems, colour 
can be measured using various types of spectrophotometers and stored in 
the system. The measured colours can be reviewed or edited using a house-
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keeping function, e.g. the data management functions in Fig. 8.9. The colour 
specifications including reflectance, transmittance, CIEXYZ, and CIELAB 
can be evaluated. Colour quality evaluations including colour difference, 
whiteness, grey-scale rating, yellowness, etc. are performed in a quality 
control function. In some systems, the colour difference evaluation or visu-
alisation can be performed on a calibrated monitor screen in ‘what you see 
is what you get’ (WYSIWYG) manner, and the physical samples may not 
be needed. The method of monitor calibration can be found in Chapter 6. 
Some commercial systems are equipped with recipe optimisation functions 
using historical dyeing data. Shade sorting,18 a process to sort different 
batches with small colour differences into groups so that all batches within 
a group are an acceptable match to each other, may also be provided by a 
commercial colour formulation system.

In this section, we show the workflow of predicting the dye concentra-
tions to match a target colour (or standard) using the SCOPE® system19 
developed by Gain Associates Inc., Taiwan. The first step is to measure the 
target colour using a spectrophotometer, as shown in Fig. 8.10. Then, dye 
combinations are selected from a list of dyes for which the calibration 
database has been established as shown in Fig. 8.11. The parameters such 
as illumination/observer, colour formula and matching criteria can be 
defined as shown in Fig. 8.12. The colour formulation results given in Fig. 
8.13 show the predicted dyestuff concentrations, as well as the predicted 
colour differences under various illuminations. The predicted concentra-
tions are then used to produce an actual batch sample, which is then meas-
ured into the system before using the colour quality control function to 
determine if the batch is a satisfactory match to the target. Figure 8.14 shows 

Colour measurement

Monitor calibration 

Quality control  

Recipe formulation 

Recipe archiving 

Recipe optimisation 

Shade sorting 

Data management

Colour specification 

Main functions Additional functions

Calibration database

8.9  Functions integrated in commercial colour formulation systems.



154	 Total colour management in textiles

8.10  Colour measurement.

8.11  Selection of dyestuff combination.
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8.12  Parameter setting for colour formulation.

8.13  Colour formulation results.
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8.14  Selection of standard and batch colours for quality control.

the process of selecting a standard sample and a batch sample. Figure 8.15 
shows the colour difference results between the standard and the batch 
sample under various illuminations. The results indicate that the batch 
colour matches the standard colour well under the predefined colour toler-
ance (e.g. 0.7 DECMC(2:1) unit). If the colour quality of the batch is unaccept-
able, i.e. if the colour difference is larger than 0.7 DECMC(2:1) unit, further 
recipe corrections will be needed.

8.5	 Sources of further information and future trends

The colourant recipe formulation using a computer system is widely adopted 
in the textile industry and in other colour-related industries. In this chapter, 
we introduced the widely used K–M theory and the alternative method of 
using an artificial neural network for colourant formulation.

In the literature, various optimisation strategies have been presented for 
the K–M theory-based approach. For example, Sluban proposed a modified 
colorimetric algorithm to minimise the colour differences under several 
different illuminants.11,20 He also investigated colour sensitivity and cor-
rectability of colour-matching recipes.21,22 In the artificial neural network 
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approach, Mizutani et al. proposed a comprehensive evolutionary comput-
ing system integrating a neural network, fuzzy classification and a genetic 
algorithm.23 It is noted that both the K–M theory based and the neural 
network-based approaches only consider the optimisation problem from a 
mathematical viewpoint. In practice, however, the accuracy of recipe for-
mulation is not only affected by optimisation strategies, but also by the 
whole colouration process. Chen et al.24,25 studied the effects of simultane-
ous and separate changes of several dyeing parameters on the colours. In 
the colour industry, one of the major objectives is to reproduce colour 
samples with high right-first-time rate. To improve the prediction accuracy 
considerably, the complex interaction between dyestuffs and materials 
needs to be studied further, with the various parameters under close control. 
In some commercial systems, historic recipes are stored in a database and 
can then be used to improve the accuracy of new predictions. Recipe opti-
misation in these cases may use numerical methods. However, to improve 
the prediction accuracy further, more intelligent algorithms need to be 
investigated.
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