
Part I
Textile structure and moisture transport
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The textile manufacturing process is remarkably flexible, allowing the
manufacture of fibrous materials with widely diverse physical properties. All
textiles are discontinuous materials in that they are produced from macroscopic
sub-elements (finite length fibers or continuous filaments). The discrete nature
of textile materials means that they have void spaces or pores that contribute
directly to some of the key properties of the textiles, for example, thermal
insulating characteristics, liquid absorption properties, and softness and other
tactile characteristics.

Fibrous materials can be defined as bulk materials made of large numbers
of individual fibers, so to understand the behaviors of fibrous materials, we
have to discuss issues related to single fibers. However, it should be noted
that the behavior of fibrous materials is remarkably different from that of
their constituent individual fibers. For instance, the same wool fiber can be
used to make a summer T-shirt or a winter coat; structural factors have to be
included to explain the differences.

1.1 Geometrical characterization of single fibers

1.1.1 The fiber aspect ratio

A fiber is, in essence, merely a concept associated with the shape or geometry
of an object, i.e. a slender form characterized by a high aspect ratio of fiber
length lf to diameter Df
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with a small transverse dimension (or diameter) at usually 10–6 m scale.

1.1.2 The specific surface

For a given volume (or material mass) Vo, different geometric shapes generate
different amounts of surface area by which to interact with the environment.
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For heat and moisture transport, a shape with higher specific surface Sv value
is more efficient.

For a sphere
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For a cube

s

V
v
c

o

 = 6
1
3

[1.3]

For a fiber (cylinder)
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That is, for a given volume Vo, a cubic shape will generate more surface area
than a spherical shape. However, since the fiber radius r can be an independent
variable as long as

lp r2 = Vo

remains constant, so
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reduces as the fiber length increases. In other words, theoretically, the specific
surface area for fiber sv

f  could approach infinite if r Æ 0 so l Æ •. This is
one of the advantages of nano fibers; also why the capillary effect is most
significant in fibrous materials.

It may be argued that a cuboid with sides a, b and c such that the volume
Vo = abc remains constant would have the same advantage, i.e.
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where we have used c
V
ab

o =  so that c and ab cannot change independently;

if we choose c Æ • then ab Æ 0, in other words, the cuboid becomes a fiber
with non-circular (rectangular) cross sectional shape.

1.2 Basic parameters for porous media

1.2.1 Total fiber amount – the fiber volume fraction Vf

For any mixture, the relative proportion of each constituent is obviously the
most desirable parameter to know. There are several ways to specify the
proportions, including fractions or percentages by weight or by volume.
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For practical purpose, weight fraction is most straightforward. For a mixture
of n components, the weight fraction Wi for component i (= 1, 2, …, n) is
defined as

W
M
Mi

i

t
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where Mi is the net weight of the component i, and Mt is the total weight of
the mixture.

However, it is the volume fraction that is most often used in analysis; this
can be readily calculated once the corresponding weight fractions Mi and Mt

and the densities ri and rt are known:
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For a fibrous material formed of fibers and air, it should be noted that,
although the weight fraction of the air is small, its volume fraction is not due
to its low density.

1.2.2 Porosity e
The porosity of a material is defined as the ratio of the total void spaces
volume Vv to the total body volume V:

e = 
V
V

v [1.9]

Obviously, the porosity e is dependent on the definition of the pore sizes, for
at the molecular level everything is porous. So, in the case of circular pore
shape, the porosity is a function of the range of the pore size distribution
from rmax to rmin
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where

f r d
dr

( ) = e [1.11]

is the so-called pore size probability density function (pdf) and satisfies the
normalization function.
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1.2.3 Tortuosity x
The tortuosity is the ratio of the body dimension l in a given direction to the
length of the path lt traversed by the fluid in the transport process,

x = 
l
l
t [1.12]

1.2.4 Pore shape factor d
The pore shape factor reflects the deviation of the pore shape from an ideal
circle. In the case of an oval shape with longer axis a and shorter axis b;

d = b
a

[1.13]

Apparently, d < 1.

1.3 Characterization of fibrous materials

Even for a fibrous material made of identical fibers, i.e. the same geometrical
shapes and dimensions and physical properties, the pores formed inside the
material will exhibit huge complexities in terms of sizes and shapes so as to
form the capillary geometry for transporting functions. The pores will even
change as the material interacts with fluids or heat during the transport
process; fibers swell and the material deforms due to the weight of the liquid
absorbed.

Such a tremendous complexity inevitably calls for statistical or probabilistic
approaches in describing internal structural characteristics such as the pore
size distribution as a prerequisite for studying the transport phenomenon of
the material.

1.3.1 Description of the internal structures of fibrous
materials

Fibrous materials are essentially collections of individual fibers assembled
via frictions into more or less integrated structures (Fig. 1.1). Any external
stimulus on such a system has to be transmitted between fibers through
either the fiber contacts and/or the medium filling the pores formed by the
fibers. As a result, a thorough understanding and description of the internal
structure becomes indispensable in attempts to study any behavior of the
system. In other words, the issue of structure and property remains just as
critical as in other materials such as polymers: with similar internal structures,
except for the difference in scales.



Characterizing the structure and geometry of fibrous materials 7

1.3.2 Fiber arrangement – the orientation probability
density function

Various analytic attempts have already been made to characterize the internal
structures of the fibrous materials. There are three groups of slightly different
approaches owing to the specific materials dealt with. The first group aimed
at paper sheets. The generally acknowledged pioneer in this area is Cox. In
his report (Cox, 1952), he tried to predict the elastic behavior of paper (a
bonded planar fiber network) based on the distribution and mechanical
properties of the constituent fibers. Kallmes (Kallmes and Corte, 1960; Corte
and Kallmes, 1962; Kallmes and Bernier, 1963; Kallmes et al., 1963; Kallmes
1972) and Page (Seth and Page, 1975, 1996; Page et al., 1979; Page and
Seth, 1980 a, b, c, 1988 Michell, Seth et al., 1983; Schulgasser and Page,
1988; Page and Howard, 1992; Gurnagul, Howard et al., 1993; Page, 1993,
2002) have contributed a great deal to this field through their research work
on properties of paper. They extended Cox’s analysis by using probability
theory to study fiber bonding points, the free fiber lengths between the
contacts, and their distributions. Perkins (Perkins and Mark, 1976, 1983a, b;
Castagnede, Ramasubramanian et al., 1988; Ramasubramanian and Perkins,
1988; Perkins and Ramasubramanian, 1989) applied micromechanics to paper
sheet analysis. Dodson (Dodson and Fekih, 1991; Dodson, 1992, 1996; Dodson
and Schaffnit, 1992; Deng and Dodson, 1994a, b; Schaffnit and Dodson
1994; Scharcanski and Dodson, 1997, 2000; Dodson and Sampson, 1999;
Dodson, Oba et al., 2001; Scharcanski, Dodson et al., 2002) tackled the
problems along a more theoretical statistics route.

Another group focused on general fiber assemblies, mainly textiles and
other fibrous products. Van Wyk (van Wyk, 1946) was among the first who
studied the mechanical properties of a textile fiber mass by looking into the
microstructural units in the system, and established the widely applied
compression formula. A more complete work in this aspect, however, was
carried out by Komori and his colleagues (Komori and Makishima, 1977,
1978; Komori and Itoh, 1991, 1994, 1997; Komori, Itoh et al., 1992). Through
a series of papers, they predicted the mean number of fiber contact points
and the mean fiber lengths between contacts (Komori and Makishima, 1977,
1978; Komori and Itoh, 1994), the fiber orientations (Komori and Itoh, 1997)
and the pore size distributions (Komori and Makishima, 1978) of the fiber
assemblies. Their results have broadened our understanding of the fibrous
system and provided new means for further research work on the properties
of fibrous assemblies. Several papers have since followed, more or less
based on their results, to deal with the mechanics of fiber assemblies. Lee
and Lee (Lee and Lee, 1985), Duckett and Chen (Duckett and Cheng, 1978;
Chen and Duckett, 1979) further developed the theories on the compressional
properties (Duckett and Cheng, 1978; Beil and Roberts, 2002). Carnaby and
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Pan studied fiber slippage and compressional hysteresis (Carnaby and Pan,
1989), and shear properties (Pan and Carnaby, 1989). Pan also discussed the
effects of the so called ‘steric hinge’ (Pan, 1993b), the fiber blend (Pan et al.,
1997) and co-authored a review monograph on the theoretical characterization
of internal structures of fibrous materials (Pan and Zhong, 2006).

The third group is mainly concerned with fiber-reinforced composite
materials. Depending on the specific cases, they chose either of the two
approaches listed above with modification to better fit the problems (Pan,
1993c, 1994; Parkhouse and Kelly, 1995; Gates and Westcott, 1999 Narter
and Batra et al., 1999).

Although Komori and Makishima’s results are adopted hereafter, we have
to caution that their results valid only for very loose structures, for if the
fiber contact density increases, the effects of the steric hinge have to be
accounted to reflect the fact that the contact probability changes with the
number of fibers involved (Pan, 1993b, 1995).

1.3.3 Characterization of the internal structure of a
fibrous material (Pan,1994)

A general fibrous structure is illustrated in Fig. 1.1. As mentioned earlier, we
assume that all the properties of such a system are determined collectively
by the bonded areas and the free fiber segments between the contact points
as well as by the volume ratios of fibers and voids in the structure. Therefore,
attention has to be focused first on the characterization of this microstructure,
or more specifically, on the investigation of the density and distribution of
the contact points, the relative proportions of bonded portions and the free
fiber segment between two contact points on a fiber in the system of given
volume V.

According to the approach explored by Komori and Makishima (1977,
1978), let us first set a Cartesian coordinate system X1, X2, X3 in a fibrous

Free length b

Volume V

1.1 A general fibrous structure.
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structure, and let the angle between the X3-axis and the axis of an arbitrary
fiber be q, and that between the X1-axis and the normal projection of the
fiber axis onto the X1X2 plane be f. Then the orientation of any fiber can be
defined uniquely by a pair (q, f), provided that 0 £ q £ p and 0 £ f £ p as
shown in Fig. 1.2.

Suppose the probability of finding the orientation of a fiber in the
infinitesimal range of angles q ~ q + dq and f ~ f + df is W(q, f) sin qdqdf
where W(q, f) is the still unknown density function of fiber orientation and
q is the Jacobian of the vector of the direction cosines corresponding to q and
f. The following normalization condition must be satisfied:

0 0
 ( , ) sin  = 1

p p
q f q f qÚ Úd d W [1.14]

Assume there are N fibers of straight cylinders of diameter D = 2rf and
length lf in the fibrous system of volume V. According to the analysis by
Komori and Makishima (1977), the average number of contacts on an arbitrary
fiber, n , can be expressed as

n
DNl

V
l

f
 = 

2
 

2

[1.15]

where l is a factor reflecting the fiber orientation and is defined as

I q f q f q f q
p p

 =  ( , ) ( , ) sin 
0 0Ú Úd d J W [1.16]

where

J d d( , ) =  ( , ) sin ( , , , )sin 
0 0

q f q f q f c q f q f q
p p

Ú Ú¢ ¢ ¢ ¢ ¢ ¢ ¢W [1.17]

(l, q, f)

q

f

1.2 The coordinates of a fiber in the system.
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and sin c = [1 – (cos q cos q ¢ + sin q sin q ¢ cos (  –  )) ]2
1
2f f ¢ [1.18]

c is the angle between two arbitrary fibers. The mean number of fiber contact
points per unit fiber length has been derived by them as

n n
l

DNl
V

I DL
V

Il
f

f
 =  = 

2
 = 2 [1.19]

where L = Nlf is the total fiber length within the volume V. This equation can
be further reduced to

n
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V

I D L
V

l
D

l
V
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f
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2

 = 
4

 8  = 8  
2p

p p [1.20]

where V D L
Vf  = 

4

2p  is the fiber volume fraction and is usually a given parameter.

It is seen from the result that the parameter I can be considered as an indicator
of the density of contact points. The reciprocal of nl is the mean length, b ,
between the centers of two neighboring contact points on the fiber, as illustrated
in Fig. 1.3, i.e.

b D
IVf

 = 
8

p [1.21]

The total number of contacts in a fiber assembly containing N fibers is then
given by

n N n DL
V

I = 
2

 =  
2

[1.22]

The factor 1
2

 was introduced to avoid the double counting of one contact.
Clearly these predicted results are the basic microstructural parameters and
the indispensable variables for studies of any macrostructural properties of a
fibrous system.

Contact points

Mean free length   b

1.3 A representative micro-structural unit.
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1.4 Mathematical descriptions of the anisotropy of

a fibrous material

As demonstrated previously, the fiber contacts and pores in a fibrous material
are entirely dependent on the way that the fibers are put together.

Let us take a representative element of unit volume from a general fibrous
material in such a way that a simple repetitive packing of such elements will
restore the original whole material.

Consider on the representative element a cross-section, as shown in Fig.
1.4, of unit area whose normal is defined by direction (Q, F), just as we
defined a fiber orientation previously. Here we assume all fibers are identical,
with length lf and radius rf. If we ignore the contribution of air in the pores,
the properties of the system in any given direction are determined completely
by the amount of fiber involved in that particular direction. Since, for an
isotropic system, the number of fibers at any direction should be the same,
the anisotropy of the system structure is reflected by the fact that, at different
directions of the system, the number of fibers involved is a function of the
direction and possesses different values.

Let us designate the number of fibers traveling through a cross-section of
direction (Q, F) as Y(Q, F). This variable, by definition, has to be
proportionally related to the fiber orientation pdf in the same direction (Pan,
1994), i.e.

Y(Q, F) = NW(Q, F) [1.23]

where N is a coefficient. This equation, in fact, establishes the connection
between the properties and the fiber orientation for a given cross-section.
The total number of fibers contained in the unit volume can be obtained by
integrating the above equation over the possible directions of all the cross-
sections of the volume to give

Fiber cut ends Apex circle r (Q, F)

Cross-section     
r

C  (Q, F)

1.4 The concept of the ‘aperture circle’ of various radii on a cross-
section. Adapted from Komori, T. and K. Makishima (1979).
‘Geometrical Expressions of Spaces in Anisotropic Fiber Assemblies.’
Textile Res. J., 49: 550–555.
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Y
Y Q F Y Q F Q F W Q F QÚ Ú Ú( , ) ( , )=  ( , )sin =

0 0
d d d N N

p p
[1.24]

That is, the constant N actually represents the total number of fibers contained
in the unit volume, and is related to the system fiber volume fraction Vf by
the expression

N
V

r l
f

f f

 = 2p
[1.25]

Then, on the given cross-section (Q, F) of unit area, the average number of
cut ends of the fibers having their orientations in the range of q ~ q + dq and
f ~ f + df is given, following Komori and Makishima (1978), as

dY = Y(Q, F)lf | cos c | W(q, f) sin qdqdf [1.26]

where, according to analytic geometry,

cos c = cos Q cos q + sin Q sin q cos (f – F) [1.27]

with c being the angle between the directions (Q, F) and q, f). Since the area
of a cut-fiber end at the cross-section (Q, F), —S, can be derived as

—S
rf

 = 
|cos |

2p
c

, [1.28]

the total area S of the cut-fiber ends of all possible orientations on the cross-
section can be calculated as

S d d S d( , )=        ( , )sin 
0 0

Q F Y W
p p

q f q f qÚ Ú ¥ ¥ ¥—

= ( , )  ( , )sin  = ( , )
0 0

2 2Y Q F W W Q F
p p

q fp q f q pÚ Úd d r l N r lf f f f

[1.29]

As S(Q, F) is in fact equal to the fiber area fraction on this cross-section of
unit area, i.e.

S(Q, F) = Af(Q, F), [1.30]

we can therefore find the relationship in a given direction (Q, F) between the
fiber area fraction and the fiber orientation pdf from Equations [1.29] and
[1.30]

Af (Q, F) = W(Q, F) N r lf fp 2  = W(Q, F)Vf [1.31]

This relationship has two practical yet important implications. First, it can
provide a means to derive the fiber orientation pdf; at each system cross-
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section (Q, F), once we obtain through experimental measurement the fiber
area fraction Af(a, F), we can calculate the corresponding fiber orientation
pdf W(Q, F) for a given constant Vf. So a complete relationship of W(Q, F)
versus (Q, F) can be established from which the overall fiber orientation pdf
can be deduced. Note that a fiber orientation pdf is by definition the function
of direction only. Secondly, it shows in Equation [1.31] that the only case
where Af = Vf is when the density function W(Q, F) = 1; this happens only
in the systems made of fibers unidirectionally oriented at direction (Q, F). In
other words, the difference between the fiber area and volume fractions is
caused by fiber misorientation.

The pore area fraction Aa(Q, F), on the other hand, can be calculated as

Aa(Q, F) = 1 – Af(Q, F) = 1 – W(Q, F)Vf [1.32]

In addition, the average number of fiber cut-ends on the plane, n(Q, F), is
given as

n q f q f q
p p

( , ) =      ( , )sin 
0 0

Q F Y WÚ Ú ¥ ¥d d d

= ( , )   | cos | ( , )sin 
0 0

N l d dfW Q F W
p p

q f c q f qÚ Ú
= 2

V

r
f

fp
 W(Q, F)°(Q, F) [1.33]

where

°( , ) =  | cos | ( , )sin 
0 0

Q F W
p p

q f c q f qÚ Úd d [1.34]

is the statistical mean value of | cos c |.
Hence, the average radius of the fiber cut-ends, r(Q, F), can be defined

as

r pn( , ) = 
, )
, )

 =  1
( , )

Q F Q F
Q F Q F

S
rf ° [1.35]

Since °(Q, F) £ 1 there is always r(Q, F) ≥ rf.
All these variables (S, n and r) are important indicators of the anisotropic

nature of the short-fiber system structure, and can be calculated once the
fiber orientation pdf is given. Of course, the fiber area fraction can also be
calculated using the mean number of the fiber cut-ends and the mean radius
from Equations [1.30] and [1.35], i.e.

Af (Q, F) = n(Q, F)pr2(Q, F) [1.36]
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It should be pointed out that all the parameters derived here are the statistical
mean values at a given cross-section. These parameters are useful, therefore,
in calculating some system properties, such as the system elastic modulus in
the direction whose values are based on averaging rules of the elastic moduli
of the constituents at this cross-section. As to the study of the local heterogeneity
and prediction of other system properties such as the strength and fracture
behavior, which are determined by the local extreme values of the properties
of the constituents, more detailed information on the local distributions of
the properties of the constituents, as deduced below, is indispensable.

1.5 Pore distribution in a fibrous material

In all the previous studies on fibrous system behavior, the system is assumed,
explicitly or implicitly, to be quasi-homogeneous such that the relative
proportion of the fiber and air (the volume fractions) is constant throughout
the system. This is to assume that fibers are uniformly spaced at every
location in the system, and the distance between fibers, and hence the space
occupied by air between fibers, is treated as identical. Obviously, this is a
highly unrealistic situation. In practice, because of the limit of processing
techniques, the fibers even at the same orientation are rarely uniformly spaced.
Consequently, the local fiber/air concentration will vary from point to point
in the system, even though the total fiber and air volume fractions remain
constant.

As mentioned above, if we need only to calculate the elastic properties
such as the modulus at various directions, a knowledge of Af (Q, F) alone
will be adequate, as the system modulus is a statistical average quantity.
However, in order to investigate the local heterogeneity and to realistically
predict other system properties such as strength, fracture behavior, and impact
resistance, we have to look into the local variation of the fiber fraction or the
distribution of the air between fibers.

In general, the distribution of air in a fibrous system is not uniform, nor
is it continuous, due to the interference of fibers. If we cut a cross-section of
the system, the areas occupied by the air may vary from location to location.
According to Ogston (1958) and Komori and Makishima (1979), we can use
the concept of the ‘aperture circle’ of various radius r, the maximum circle
enclosed by fibers or the area occupied by the air in between fibers, to
describe the distribution of the air in a cross-section, as seen in Fig. 1.4.

In order to derive the distribution of the variable r, let us examine Fig. 1.5
where an aperture circle of radius r is placed on the cross-section (Q, F) of
unit area along with a fiber cut-end of radius r(Q, F). According to Komori
and Makishima (1979), these two circles will contact each other when the
center of the latter is brought into the inside of the circle of radius r + r,
concentric with the former. The probability f (r)dr, that the aperture circle
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and the fiber do not touch each other, but that the slightly larger circle of
radius r + dr, does touch the fiber, is approximately equal to the probability
when n(Q, F) points (the fiber cut-ends) are scattered on the plane, no point
enters the circle of radius r + r, and at least one point enters the annular
region, two radii of which are r + r and r + r + dr.

When x fiber cut-ends are randomly distributed in a unit area, taking into
account the area occupied by the fiber, the probability that at least one point
enters the annular region 2p (r + r)dr is

2 (  + )
1 –  [ (  + )  –  ]2 2

x r dr

r

p r
p r pr

      (x = 0, 1, 2, …) [1.37]

and the probability of no point existing in the area p (r + r)2 – pr2 is

{1 –[p (r + r)2 – p r2]}x [1.38]

Then the joint probability, fx(r)dr, that no point is contained in the circle of
radius r + r but at least one point is contained in the circle of radius r + r +
dr, is given by the product of the two expressions as

fx(r)dr = 2xp (r + r)dr{1 – [p (r + r)2 – p r2]}x–1 [1.39]

Because the number of fiber cut-ends is large and they are distributed randomly,
their distribution can be approximated by the Poisson’s function

1.5 An aperture circle of radius r is placed on the cross-section (Q, F)
of unit area along with a fiber cut end of radius r (Q, F). Adapted
from Komori, T. and K. Makishima (1979). ‘Geometrical Expressions
of Spaces in Anisotropic Fiber Assemblies.’ Textile  Res. J., 49: 550–
555.

r + r
r + r + dr

r

dr

a fiber

r

Q F
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x
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Therefore, the distribution function of the radii of the aperture circles f(r) is
given by

f r dr
x

e f r dr
x
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x( )  =  
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= 2 (  + )
2 2– ( + )pn r pnr pn rr e e drr [1.41]

It can be readily proved that

0 0

– ( + ) –( )  = 2 (  + )  =  = 1
2 2 2 2

• •

Ú Úf r dr r e e dr e erpn r pnr pn r pnr pnr

So this function is valid as the pdf of distribution of the aperture circles filled
with air, or it provides the distribution of the air at the given cross-section.
The result in Equation [1.41] is different from that of Komori and Makishima
(1979), which ignores the area of fiber cut-ends and hence does not satisfy
the normalization condition.

The average value of the radius, r ( , )Q F , can then be calculated as

r rf r dr r r e e drr( , ) = ( )  = 2 (  + )
0 0

– ( + )2 2Q F
• •

Ú Ú pn r pnr pn r

=  2 (  –  )   
2 2 2

0

–e t t e dt etpnr pn pnrpn r
•

Ú ª

= 2  = 
20

2 – 2
2•

Ú pn
n

pn
pnr

t e dt et [1.42]

where t = (r + r) has been used in the integration. Similarly, the variance
Xr(Q, F) of the radius can be calculated as

X Q Fr r f r dr( , ) = ( )
0

2
•

Ú
= 2 (  + )  =  = 2 ( , )

0

2 – ( + )2 2
2•

Ú r r e e dr e rrpn r pn p n
pnr pn r

pnr
Q F

[1.43]
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Note that for a given structure, the solution of the equation

d
d

rX Q F
Q F
( , )

( , )
 = 0 [1.44]

gives us the cross-sections in which the pore distribution variation reaches
the extreme values, or the cross-sections with the extreme distribution non-
uniformity of the air material.

1.6 Tortuosity distributions in a fibrous material

The variable r specifies only the areas of the spaces occupied by the air
material. The actual volumes of the spaces are also related to the depth or
length of the pores. The tortuosity is thus defined as the ratio of the length
of a true flow path for a fluid and the straight-line distance between inflow
and outflow in Fig. 1.6. This is, in effect, a kinematical quantity as the flow
itself may alter the path.

In a fibrous system, the space occupied by air material is often interrupted
because of the existence or interference of fibers. If we examine a line of unit
length in the direction (Q, F), the average number of fiber intersections on
this line is provided by Komori and Makishima (1979) and Pan (1994) as

n(Q, F) = 2rf Nl f J (Q, F) = 2 ( , )
V

r
J

f

jp Q F [1.45]

where J(Q, F) is the mean value of | sin c |,

J d d( , ) =  |sin | ( , ) sin 
0 0

Q F W
p p

q f c q f qÚ Ú [1.46]

a parameter reflecting the fiber misorientation.

Free apex circle r (Q, F)

Tortuosity lt (Q, F)

1.6 Tortuosity in a fibrous material.
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Following Komori and Makishima (1979) at a given direction, we define
the free distance as the distance along which the air travels without interruption
by the constituent fibers, or the distance occupied by the air between two
interruptions by the fibers. Here we assume the interruptions occur
independently.

Suppose that n(Q, F) segments of the free distance are randomly scattered
along this line of unit length. The average length of the free distance, lm, is
given as

l
r Nl

n
V

nm
f f f

( , ) = 
1 –  

( , )
 = 

1 –  
( , )

2

Q F Q F Q F
p

[1.47]

According to Kendall and Moran’s analysis (1963) on non-overlapping intervals
on a line, the distribution of the free distance l is given as

f l dl
l

e dl
m

l
lm( )  = 1  

–
[1.48]

It is easy, as well, to prove that

0 0

– 1

( )  =  1   = 1
• •

Ú Úf l dl
l

e dl
m

lm [1.49]

This is also a better result than the one given by Komori and Makishima
(1979), for their result again does not satisfy the normalization condition.
We already have lm in Equation [1.47] as the mean of l, and the variance of
l is given by

X Q Fl
m

l
ml f l dl l

l
e dl lm( , ) = ( )  =  1   = 2

0

2

0

2
– 1

2
• •

Ú Ú [1.50]

These statistical variables can be used to specify the local variations of the
fiber and air distributions or the local heterogeneity of a system. Also, because
of the association of the local concentration of the constituents and system
properties, these variables can be utilized to identify the irregular or abnormal
features caused by the local heterogeneity in a system.

However, when dealing with a system with local heterogeneity, the system
properties are location dependent. Consequently, using the system or overall
volume fractions will not be valid, and the concept of local fiber volume
fraction is more relevant. Locations where the radius of the aperture circles
and the free distance possess the highest or lowest values will likely be the
most irregular spots in the system.
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1.7 Structural analysis of fibrous materials with

special fiber orientations

Since we have all the results of the parameters defining the distributions of
constituents in a fibrous system, it becomes possible to predict the irregularities
of the system properties. To demonstrate the application of the theoretical
results obtained, we will employ the two simple and hypothetical cases
below.

1.7.1 A random distribution case

For simplicity, let us first consider an ideal case where all fibers in a system
are oriented in a totally random manner with no preferential direction; the
randomness of fiber orientation implies that the density function is independent
of both coordinates q and f. Therefore, this density function would have the
form of

W(q, f) = W0 [1.51]
where W0 is a constant whose value is determined from the normalization
condition as

W 0  = 1
2p [1.52]

Using this fiber orientation pdf, we can calculate the system parameters by
replacing (Q, F) with (0, 0). The results are provided below to reveal the
internal structure of the material:

∑ cos c = cos (Q, q, F, f) = cos (0, q, 0, f) = cos q;
∑ sin c = sin q;

∑ °(Q, F) = 1
2

;

∑ J(Q, F) = 
4
p ;

∑ A Vf( , ) = 1
2

Q F p

∑ n
pp

( , ) = 
4 2Q F

V

r
f

f

;

∑ r ( , ) = 2Q F rf

∑ n
V
r
f

f
( , ) = 

2
Q F ;

∑ r
r

V
e

f

f

Vf

( , ) = 2Q F
p

p ;
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∑ X Q Fr
f

f

Vr

V
e

f

( , ) = 
4 2

2 2
p

p ;

∑ l r
Vm f

f
( , ) = 2 1  – 1Q F Ê

ËÁ
ˆ
¯̃

∑ X Q Fr j
f

r
V

( , ) = 8 1  – 12
2

Ê
ËÁ

ˆ
¯̃

;

The following discussion of several other system parameters provides detailed
information on the distributions of both the fibers and air in this isotropic
fibrous system. As seen from the above calculated results, for this given
fiber orientation pdf, all of the distribution parameters are dependent on the
system fiber volume fraction Vf and fiber radius rf, regardless of the fiber
length lf. Therefore, we will examine the relationships between the distribution
parameters and these two factors.

Figure 1.7 depicts the effects of these two factors on the number of fiber
cut-ends n per unit area on an arbitrary cross-section using the calculated
results. As expected, for a given system fiber volume fraction Vf, the thinner
the fiber, the more fiber cut-ends per unit area, whereas for a given fiber

n
(Cut ends/mm2)

800

600

400

200

0

rf = 5 ¥ 10–3 mm

rf = 10 ¥ 10–3 mm

rf = 10 ¥ 10–3 mm

Vf
0.2 0.4 0.6 0.8

1.7 Effects of fiber volume fraction Vf and fiber radius rf on the
number of fiber cut ends n per unit area. Adapted from Pan, N.
(1994). ‘Analytical Characterization of the Anisotropy and Local
Heterogeneity of Short-fiber Composites – Fiber Fraction as a
Variable.’ Journal of Composite Materials 28(16): 1500–1531.
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radius rf, increasing the system fiber volume fraction will lead to more fiber
cut-ends.

The distribution density function f (r) of the radius r of the aperture circles
is constructed based on Equation [1.41], and the illustrated results are produced
accordingly. Figure 1.8(a) shows the distribution of f (r) at three fiber radius

f (r)
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mm
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0
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vf = 0.4

vf = 0.6

vf = 0.2

0.02 0.04 0.06 0.08 0.1

1.8 Distribution of the aperture circles radius r in random case.
Adapted from Pan, N. (1994). ‘Analytical Characterization of the
Anisotropy and Local Heterogeneity of Short-fiber Composites –
Fiber Fraction as a Variable.’ Journal of Composite Materials 28(16):
1500–1531. (a) at three fiber radius rf levels while Vf = 0.6. (b) at three
Vf levels while rf = 5.0 ¥ 10–3 mm (c) variance Xr of r against Vf  (d)
the mean radius   r  against Vf.

(a)

(b)
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rf levels when the overall fiber volume fraction Vf = 0.6, whereas Fig. 1.8(b) is
the result at three Vf levels when the fiber radius is fixed at rf = 5.0 ¥ 10–3

mm.
It is seen in Fig. 1.8(a) when the fiber becomes thicker, there are more

aperture circles with smaller radius values. The pore sizes become less spread
out. Decreasing the overall fiber volume fraction Vf has a similar effect, as
seen in Fig. 1.8(b).

To verify the conclusions, the variance Xr of the aperture circle radius
distribution is calculated using Equation 1.43 as shown in Fig. 1.8(c). Again,
a finer fiber or a greater Vf will lower the variation of the aperture circle
radius r. Moreover, since the extreme fiber volume fractions are related to
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high variation of r values, we can define the allowable local fiber volume
fraction vLf1 and vL/2 to bound the allowable variance level Xro represented by
the dotted line in the figure, and the condition Xr £ Xro will in turn determine
the corresponding allowable fiber size rf and the system fiber volume fraction
Vf to avoid a massive number of large aperture circles.

Finally, Fig. 1.8(d) is plotted based on Equation [1.42], showing the average
radius r  of the aperture circles as a function of the system fiber volume
fraction at three fiber size levels. The average radius of the aperture circles
will decrease when either the fiber radius reduces (meaning more fibers for
the given fiber volume fraction Vf), or the system fiber volume fraction
increases.

The distribution function f (l) of the free distance l is formed from Equation
1.48, and the results are illustrated in Fig. 1.9(a) and (b). When increasing
either the fiber size rf or the system fiber volume fraction Vf, the number of
free distances with shorter length will increase and those with longer length

1.9 Distribution of the tortuosity length l in a random case. Adapted
from Pan, N. (1994). ‘Analytical Characterization of the Anisotropy
and Local Heterogeneity of Short-fiber Composites – Fiber Fraction
as a Variable.’ Journal of Composite Materials 28(16): 1500–1531.
(a) at three fiber radius rf levels; (b) at three Vf levels; (c) variance Xr
of the tortuosity length l; (d) the mean value lm against Vf.
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will decrease. Again, the allowable range of the free distances is defined by
the two local fiber volume fractions vL f1 and vL f 2.

The variance Xi of the free distance distribution as well as the critical
value Xlo is provided in Fig. 1.9(c), and the effects of rf and Vf on Xl are
similar but less significant compared to the case in Fig. 1.8(c). Furthermore,
it is interesting to see that, although the system dealt with here is an isotropic
one in which all fibers are oriented in a totally random manner with no
preferential direction, there still exist variations or irregularities in both r and
l, leading to a variable local fiber volume fraction vLf value from location to
location. In other words, the system is still a quasi-heterogeneous one.

Figure 1.9(d) shows the effects of the two factors on the average free
distance lm of the air material using Equation 1.49. It follows the same trend
as the average radius of the aperture circles, i.e. for a given fiber volume
fraction Vf, thinner fibers (more fibers contained) will lead to a shorter lm

value. A reduction of lm value can also be achieved when we increase the
system fiber volume fraction, while keeping the same fiber radius.

1.7.2 A planar and harmonic distribution

The planar 2-D random fiber orientation is of practical significance since
planar cases are independent of the polar angle. We can hence set in the
following analysis q = Q = p

2
. To illustrate the effect of the structural

anisotropy, let us assume a harmonic pdf as the function of the base angle f,
i.e.
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W(f) = W0 sin f [1.53]

where W0 again is a constant whose value is determined using the normalization
condition as

W 0  = 1
2

[1.54]

Using this fiber orientation pdf, we can calculate the system parameters to
illustrate the internal structure of the material. Because of the randomness of
fiber orientation, all the related parameters are calculated below:

∑ cos c = cos (f – F);

∑ sin  = 1 –  cos ( , ) = sin (  –  )2c f fQ Q ;

∑ ° ( ) = 1
2

 cos  + 
4

 sin F F Fp ;

∑ J ( ) = 
4

 cos  –  1
2

 sin F F Fp ;

∑ A Vf( ) = 1
2

 sin F F ;

∑ n
p

p( ) = 
4

sin cos  + 
2

 sin 2F F F F
V

r
f

j
( )
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1
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 sin 
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F F
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f

f
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( )F Fp ;
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f f
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V r
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(1 –  )

2 ( )

2 2 2

2 2

p
;

The system parameters as the functions of direction F are illustrated in Fig.
1.10(a) through Fig. 1.13. The fiber orientation pdf in Equation [1.53] indicates
a non-uniform fiber concentration at different directions, with lowest value
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at F = 0∞ and the highest at F = 90∞. This is clearly reflected in the
characteristics of the aperture circle radius r shown in Fig. 1.7.

Figure 1.10(a) illustrates the distribution of r at three selected directions,
and Fig. 1.10(b) provides the corresponding variance of r. In Fig. 1.10(a), r
value ranges with the widest span from 0 to infinity at direction F = 0∞, but
covers narrowest range at direction F = 90∞. Consequently, the mean radius
r  of the aperture circles shown in Fig. 1.10(c) reaches its maximum value
(approaching infinity) at direction F = 0∞ and descends to the minimum at F
= 90∞, whereas the variance in Fig. 1.10(b) is the highest at F = 0∞ and
lowest at direction F = 90∞ correspondingly. (For easy comparison, the
variance value at F = 18∞ direction is used in Fig. 1.10(b) to replace the
infinity value at F = 0∞.

Moreover, the average number of fiber cut-ends n(F) in Fig. 1.11 possesses
the minimum values at F = 0∞ but the maximum values at around 70∞ to 80∞,
and becomes slightly lower at the direction F = 90∞ due to the more severe
fiber-obliquity effect at high F levels.
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1.10 Distribution of the aperture circles radius r in an anisotropic
case. Adapted from Pan, N. (1994). ‘Analytical Characterization of the
Anisotropy and Local Heterogeneity of Short-fiber Composites –
Fiber Fraction as a Variable.’ Journal of Composite Materials 28(16):
1500–1531. (a) r at three cross-sections; (b) variance Xr of r at three
cross-sections; (c) the mean value   r  versus the direction F.
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The effect of the system fiber volume fraction Vf on r distribution is
depicted in Figs 1.10(b) and (c). It is easy to understand that increasing Vf

value will reduce the number of the aperture circles with larger r values,
causing lower variance of the r values in Fig. 1.10(b), and resulting in a
smaller value of the mean radius r  of the aperture circles in Fig. 1.10(c).

Furthermore, as specified above, either extreme of the r value will lead to
violation of the boundaries defined by the allowable local fiber volume
fractions vL f1 and vL f 2. It can hence be concluded from Fig. 1.10(a) that
direction F = 0∞ with most extreme r values is the weakest direction in the
system, while direction F = 90∞ with least extreme r values is the strongest
direction; a reflection of the anisotropic nature of this system. Additionally,
the vL f 1 and vL f 2 restraints can be translated into the allowable variance
value Xro in Fig. 1.10(b) which in turn determines the minimum allowable
system fiber volume fraction Vf so as to eliminate the excessive number of
large r aperture circles.

There is one more direction, F = 30∞, provided in Figs 1.10(a) and (b) for
comparison. It is deduced from the results that when F value decrease from
F = 90∞ to F = 30∞, the r distribution will shift towards the region of greater
values, leading to more larger aperture circles and fewer smaller ones. Overall,
reduction of F value in the present case results in greater variance or more
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1.11 Mean fiber cut ends n(F) versus the direction F. Adapted from
Pan, N. (1994). ‘Analytical Characterization of the Anisotropy and
Local Heterogeneity of Short-fiber Composites – Fiber Fraction as a
Variable.’ Journal of Composite Materials 28(16): 1500–1531.



Thermal and moisture transport in fibrous materials30

diverse r distribution as seen in Fig. 1.10(b). On the other hand, there are two
other parameters related to the fiber cut-ends and the air free length in the list
of calculated results:

°( ) = 1
2

 cos  + 
4

 sin F F Fp    and   J ( ) = 
4

 cos  –  1
2

 sin F F Fp

Both expressions reach their extremes at the direction F = 57.518∞.
Correspondingly, our predictions indicate that the average radius of the fiber
cut-ends, r(F), becomes the minimum in Fig. 1.12, while the average free
length lm(F) of the air material in Fig. 1.10(c) approaches its maximum at
this direction, because of the fact of too few fibers oriented in this direction.

Further evidence is provided in Figs 1.13(a) and (b). Figure 1.13(a) shows
the distribution of the free distance l at three directions at given fiber size rf

and total fiber quantity Vf. It is seen that l value is distributed over the full
spectrum from 0 to the infinity at the cross-section F = 57.518∞, again
because of the extremely small number of fibers associated with this direction,
leading to an excessively great range of l, and high variance value at this
direction as seen in Fig. 1.13(b). (For the same reason as above, the variance
at F = 72∞ instead of the infinity value at F = 57.518∞ is shown here.)

Likewise, the allowable range of the l value is indicated by the vL f1 and
vL f 2 boundary in Fig. 1.13(a), and the minimum system fiber volume fraction
Vf is given in Fig. 1.13(b) according to the condition Xl £ Xlo. It can be

1.12 Relative cut fiber ends r(F) versus the direction F. Adapted from
Pan, N. (1994). ‘Analytical Characterization of the Anisotropy and
Local Heterogeneity of Short-fiber Composites – Fiber Fraction as a
Variable.’ Journal of Composite Materials, 28(16): 1500–1531.
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speculated, based overall on Fig. 1.13, that when F < 57.518∞, contrary to
the case of r distribution in Fig 1.10, increasing F value will shift the l
distribution in the direction of greater value, and at the same time result in
greater variance. The trend will reverse once F > 57.518∞.

In addition, it can be concluded from Figures 1.10 to 1.13 that even at a
given cross-section F in the system, the parameters such as r and l are still
variables at different locations on the cross-section. In other words, this
system is both anisotropic and quasi-heterogeneous. It may suggest, based
on the above two general distribution cases, the spatial random and planar
harmonic, that quasi-heterogeneity is an inherent feature of fiber systems,
and it exists in all fiber systems regardless of the fiber distributions. Even for
a unidirectional fiber orientation, although it is possible to achieve a quasi-
homogenity at individual cross-sections, irregularities of local fiber volume
fraction between cross-sections still exist.
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1.13 Distribution of the tortuosity length l in an anisotropic case.
Adopted from Pan, N. (1994). ‘Analytical Characterization of the
Anisotropy and Local Heterogeneity of Short-fiber Composites - Fiber
Fraction as a Variable.’ Journal of Composite Materials 28(16): 1500–
1531. (a) l at three cross-sections; (b) the variance of l at three cross-
sections; (c) the mean value lm versus the direction F.
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1.8 Determination of the fiber orientation

It has to be admitted that, although the statistical treatment using the fiber
orientation pdf is a powerful tool in dealing with the structural variations, the
major difficulty comes from the determination of the probability density
function for a specific case. Cox (1952) proposed for a fiber network that
such a density function can be assumed to be in the form of Fourier series.
The constants in the series are dependent on specific structures. For simple
and symmetrical orientations, the coefficients are either eliminated or
determined without much difficulty. However, it becomes more problematic
for complex cases where asymmetrical terms exist. Pourdeyhimi et al. have
published a series of papers on determination of fiber orientation pdf for
nonwovens (Pourdeyhimi and Ramanathan, 1995; Pourdeyhimi, Ramanathan
et al., 1996; Pourdeyhimi and Kim, 2002). Because of the central limit
theorem, the present author has proposed (Pan, 1993a) to apply the Gaussian
function, or its equivalence in periodic case, the von Mises function (Mardia,
1972) to approximate the distribution in question, provided that the coefficients
in the functions can be determined through, most probably, experimental
approaches. Sayers (1992) suggested that the coefficients of the fiber orientation
function of any form be determined by expanding the orientation function
into the generalized Legendre functions. Recent work by Tournier, Calamante
et al. (2004) proposed a method to directly determine the fiber orientation
density function from diffusion-weighted MRI data using a spherical
deconvolution technique.

1.8.1 BET–Kelvin method for pore distribution

Litvinova (1982) proposed a method of determining some of these parameters
on the basis of the BET equation for a given sorption isotherm. In the beginning,
the sorption isotherm curve is almost linear (usually for 0.01 < M < 0.35).
When the capillary walls are covered by a monomolecular layer of liquid,
the BET equation can be written as follows:

a
M a cV

c
cV

w

w A A(1 –  )
 = 1  –   –  1 [1.55]

where M is the moisture content at sorbed air humidity aw, VA is the volume
of monomolecular layer and c is the constant resulting from thermal effect of
sorption. By plotting M vs. aw using given data, the above equation gives a
straight line on the graph with slope (c – 1)/cVA and intercept 1/cVA. It thus
allows calculation of the ‘volume’ of a monomolecular layer of water and
then the specific surface of porous body a (m2/g)

a = sVAN [1.56]

where s is the surface occupied by molecules and N is the Avogadro’s number.
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Strumillo and Kudra proposed another method by which we can calculate
the corresponding pore radius r and pore volume V (Strumillo and Kudra
1986). From the Kelvin–Thomson equation,

r
V

RT RH
m = 

2 cos 
 ln (1/ )

s g
[1.57]

where Vm is the molar volume. For a given relative humidity RH and the
corresponding value of the moisture content M on the desorption isotherm,
the radius of the pore can be calculated from above equation. Hence the
volume of pores of radius r filled with water can be expressed as (m3/kg of
dry material)

V M =  1
r [1.58]

Repeating these calculations for a range of RH, the function V = f (r) can be
obtained. By means of graphical differentiation, the pore size distribution
can be easily acquired.

For example, the sorption isotherm of a fiber mass is given in Fig. 1.14(a),
and the data is also listed in Table 1.1. We can then determine the integral
and differential curves of the pore size distribution for the fiber mass, given
the parameters in Equation [1.57] as s = 71.97 ¥ 10–3 N/M, Vm = 0.018 m3/
mole P = 0.101 MPa, T = 293 K, cos g = 0.928, R = 8314 J/mol. K), r = 998.2
kg/m3.

For each RH value we can find the corresponding moisture content M
from Fig. 1.14(a) Table 1.1. Then by using Equations [1.57] and [1.58], we
can calculate the pore radius r and the corresponding pore volume V as in
Table 1.1.

Table1.1 Results of calculations

RH r * 10–10 m M V * 105 m3

0.04 3.07 0.0390 3.91
0.06 3.51 0.0445 4.46
0.08 3.91 0.0505 5.06
0.10 4.29 0.0565 5.66
0.20 6.13 0.0750 7.51
0.30 8.20 0.0925 9.27
0.40 10.77 0.108 10.82
0.50 14.24 0.122 12.22
0.60 19.32 0.135 13.52
0.70 27.67 0.149 14.93
0.80 44.23 0.165 16.52
0.90 93.68 0.185 18.53

Adapted from Strumillo, C. and T. Kudra (1986)
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By plotting the data, we obtain the pore volume distribution V = f(r) curve
shown in Fig. 1.14(b) and differentiating the figure yields the differential
pore volume distribution curve in Fig. 1.14(c).
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1.14 BET–Kelvin method for pore distribution. Adapted from
Strumillo, C. and T. Kudra (1986). Drying: Principles, Applications and
Design. New York, Gordon and Breach Publishers. (a) the sorption
isotherm curve RH/M of a fiber mass; (b) the pore volume V/pore
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1.8.2 The Fourier transformation method for fiber
orientation

The fiber orientation function (ODF) can also be determined using the Fourier
transformation method. An image of a fibrous structure shows the special
arrangement of fibers in the form of brightness transitions from light to dark
and vice versa. Thus, if the fibers are predominantly oriented in a given
direction, the change in frequencies in that direction will be low, whereas the
change in frequencies in the perpendicular direction will be high. We use this
characteristic of the Fourier transformation to obtain information on the
fiber orientation distribution in the fibrous structure. Fourier transformation
decomposes an image of the spatial distribution of fibers into the frequency
domain with appropriate magnitude and phase values. The frequency form
of the image is also depicted using another image in which the gray scale
intensities represent the magnitude of the various frequency components.

In two dimensions, the direct Fourier transformation is given as

F u v f x y j ux vy dxdy( , ) = ( , ) exp [– 2 (  + )]
–

+

–

+

•

•

•

•

Ú Ú p [1.59]

where f (x, y) is the image and F(u, v) is its transformation, u refers to the
frequency along x-direction and v represents the frequency along the y-axis.

Since the Fourier transformation has its reference in the center, orientations
may be directly computed from the transformed image by scanning the
image radially. An average value of the transform intensity is found for each
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1.14 Continued



Characterizing the structure and geometry of fibrous materials 37

of the angular cells. Subsequently, the fiber orientation distribution function
(ODF) is determined by normalizing the average values with the total transform
intensity at a given annulus. A full description of this Fourier transformation
method can be found in Kim (2004).

1.9 The packing problem

Research on the internal structure and geometry of fibrous materials is still
very primitive. In order to understand the behavior of fibrous structures, we
have to better examine the micro-structure or the discrete nature of the
structure. Yet a thorough study of a structure formed by individual fibers is
an extremely challenging problem. It is worth mentioning that the problem
of the micro-geometry in a fiber assembly can be categorized into a branch
of complex problems in mathematics called ‘packing problems’.

Taking, for example, the sphere packing problem, also known as the
Kepler problem, based on the conjecture put forth in 1611 by the astronomer
Johannes Kepler (Peterson, 1998; Chang, 2004), who speculated that the
densest way to pack spheres is to place them in a pyramid arrangement
known as face centred cubic packing (Fig. 1.15). This statement has become
known as ‘Kepler’s conjecture’ or simply the sphere packing problem. To
mathematically solve the sphere packing problem has been an active area of
research for mathematicians ever since, and its solution remains disputable
(Stewart, 1992; Li and Ng, 2003; Weitz, 2004). Yet, it seems that sphere
packing would be the simplest packing case, for one only needs to consider
one characteristic size, i.e. the diameter of perfect spheres, and ignore the
deformation due to packing. Therefore it does not seem to be the case that

1.15 The Kepler conjecture – The sphere packing problem. Adapted
from Kenneth Chang, ‘In Math, Computers Don’t Lie. Or Do They?’,
The New York Times, April 6, 2004.



Thermal and moisture transport in fibrous materials38

the fiber packing problem, which obviously is much more of a complex
topic, can be solved completely anytime soon.
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Stereology is a unique mathematical discipline used to describe the structural
parameters of fibrous materials found in textiles, geology, biology, fibrous
composites, and in corn-grained solids, where fibre-like structures are created
by the edges of grains in contact with each other. This chapter is compiled
from lectures delivered to post-graduate students taking ‘Stereology of Textile
Materials’ at the Technical University of Liberec (Lukas, 1999), and is relevant
to students and researchers involved in interpreting flat images of fibrous
materials in order to explain their behaviour, or to design new fibrous materials
with enhanced properties. There are a number of excellent monographs on
stereology, ranging from the basic to the expert. This chapter outlines an
elementary technique for deriving most of the stereological formulae, avoiding
those demanding either lengthy explanations or a specialised mathematical
background. The chapter concentrates on the set of tools needed for a
geometrical description of fibrous mass, and provides comprehensive references
for further information on this relatively new field.

2.1 Introduction

Stereology was developed to solve various problems in understanding the
internal structure of three-dimensional objects, such as fibrous materials,
and especially textiles. The relevant geometrical features are mainly expressed
in terms of volume, length, surface area, etc. (detailed in Section 2.1.1), and
there are three main obstacles facing efforts to quantify these features. The
first two difficulties are practical in nature and the third theoretical.

(i) The internal structure of an opaque object can only be examined in thin
sections, comprising projections of its fibres. Sections of textile materials
may be cut using sharp tools, or created virtually by applying the
principles of tomography, confocal microscopy, etc.

(ii) The dimensions of an object under investigation are usually
proportionately much greater than the characteristic dimensions of its

2
Understanding the three-dimensional

structure of fibrous materials using
stereology
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internal structure; for instance, fibre diameters will be orders of magnitude
smaller that the width and the length of the fabric they form. Hence, it
is not practicable to study an entire object in detail.

(iii) Occasionally, investigators must determine an appropriate set of
geometrical parameters to describe real structures and their properties.
Specific parameters will be associated with either mechanical or
adsorption properties of fibrous materials.

Various disciplines require information on the internal structures of objects,
including biology, medicine, geology, material engineering and mathematics
itself. The evolution of methods to quantify structural features laid the
foundation for what is now known as stereology, and the concept has continued
to evolve since it was proposed in 1961 by a small group of scientists at
Feldberg in Germany, under the leadership of Hans Elias (Elias, 1963).

For the purposes of this chapter, the following definition of stereology is
used:

Stereology is a mathematical method of statistical selection and processing
of geometrical data to estimate geometrical quantities of an n-dimensional
object through measurements of its sections and projections, which have
dimensions less than n.

The relationship between the geometrical quantities of an n-dimensional
object and measurements of its sections and projections is quite logical and
familiar. Figure 2.1 reminds us of the procedure for ascertaining the volume
of a three-dimensional body. The volume of a three-dimensional body K, say
V(K), may be expressed by a definite integral, laid out as:

V K a z dz
H

( ) = ( )
0Ú [2.1]

where a(z) is the area of a planar cross-section of the body K and is perpendicular
to the z-axis. H is the longitudinal length of the projection of the body on the
z-axis. The left-hand side of the formula, i.e. the volume V(K), represents a
parameter of the three-dimensional object. The right-hand side reveals another
parameter of the body in question, a(z), which results from an analysis of its
flat cross-section. The two-dimensional parameter a(z) symbolises the area
of the flat section cut in the body K by a plane, normal to the z-axis, thus,
expressing its cross-sectional area as a function of z. Thus the relationship
between three- and two-dimensional parameters is established through
integration.

The above relationship may also be demonstrated through Cavalieri’s
principle. The conceptualisation was framed by Cavalieri, a student of Galileo
in the 17th century (Naas and Schmidt, 1962; Russ and Dehoff, 2000), for
two- and three-dimensional objects. For two dimensions, the principle states
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that the areas of two figures included between parallel lines are equal if the
linear cross-sections parallel to and at the same distance from a given base
line have equal lengths. For three dimensions, the principle states that the
volumes of two solids included between parallel planes are equal if the
planar cross-sections parallel to and at the same distance from a given plane
have equal areas. This is illustrated in Fig. 2.2. Cavalieri’s principle thus
provides further evidence of the relationship between the parameters of three-
and two-dimensional objects and their sections.

Cauchy’s formula for surface area also supports the existence of the
relationship between objects and their lower-dimension projections. According
to this formula, the surface area S(K) of a three-dimensional convex body K
is four times the mean area of its planar projection. This can easily be
verified by considering a sphere of radius R, whose surface area S is 4pR2,
and each of its planar projections has an area of pR2. These quantities are
proportional to each other, being related by a factor of 4. A similar relationship
for two-dimensional convex bodies will be established in Section 2.3.4. The
definition of a convex body will be specified in Section 2.1.1.

However, these attempts to colligate the dimensional aspects of objects
with their sections and projections are based only on geometry. Stereology
involves statistical methodology in combination with geometry and gives us
the ability to model geometrical relations where measurement is impractical
or even impossible. To understand the effectiveness of this method, it is
necessary to review an interesting experiment carried out in the 18th century.

2.1 Volume, V(K), of a three-dimensional body, K, being expressed as
a sum of the volumes of its elementary thin sections of thickness, dz,
that are parallel to the x–y plane. H is the length of the body K,
perceived as its upright projection on the z-axis.

z

K

dZ a (z ) H

y

x
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In 1777, the French naturalist Buffon was attracted by the probability, P,
that a randomly thrown needle, j, of length L( j) will hit a line among a given
set of parallel lines in a plane with each of the neighbouring lines separated
by a distance d, so as to conform to a precondition of d > L( j). The situation
is depicted in Fig. 2.3. Buffon (1777) deduced P as 2L( j)/(p * d). The
estimated value [P] of probability P, from a large number of throws, N, could

2 3 3

1

2.2 Illustration of Cavalieri’s principle: Volumes of the two solid
bodies included between parallel planes are equal if the
corresponding planar cross-sections (shown as 3) at any position
are equal and parallel to a given plane (shown as 1).

2

d

1L(j )

2.3 Buffon’s needle (shown as 1) of length L(j ) is located on a warp
of parallel lines (2), which are separated by a distance d.
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be estimated through a relative frequency of hits. Precisely, the value of P
equalled the limiting value of [P], while N tended to infinity, i.e. P P

N
 = lim [ ]

Æ •
.

The relative frequency, [P], was defined as:

[ ] = P n
N [2.2]

where n is the number of positive trials, and N the total number of throws.
From this relationship, an unbiased estimation of the distance between parallel
lines, [d] can be obtained. The concept of ‘estimators’ will be detailed in
sub-section 2.3.1.

[ ] = 
2 ( )

[ ]
 = 

2 ( )
d

L j
P

L j N
np p [2.3]

The above relation [2.3] will be used in Section 3.3.2 to estimate the lengths
of curves or fibrous materials in a plane.

Equation [2.3] can be verified by imagining a series of random needle
throws. The needle has to be thrown in such a way as to ensure equal
probabilities of its landing at various locations on the parallel lines in all
possible orientations. This can be done by throwing the needle repeatedly in
the same way, while rotating the parallel lines by an angle kp/M. For each
particular orientation of the lines, groups of equal number of trials are carried
out. Here, k is the sequence number of a particular group of trials and M the
total number of groups of trials. Equation [2.3] shows that the one-dimensional
geometrical parameter d may be estimated from the number of times Buffon’s
needle intersects a line. Since the intersection points are zero-dimensional,
the connection between dimensions of an object with those of its sections is
confirmed.

The next point noteworthy in the context of the Buffon’s needle problem,
concerns the Ludolf number p, which may be estimated statistically after
rearranging Equation [2.3] to obtain an expression of [p] as 2L( j) * N/(d * n)
and, subsequently, using known values of the other parameters. The value of
d has to be known exactly to estimate p. The Ludolf number is therefore
estimated using a known set of parameters of L( j), N, d, and n.

There are three different classes of analysis for investigating the internal
structures of a material, and the most appropriate method or combination of
methods is chosen for the particular problem at hand.

(i) The first class of analysis comprises estimations of the global geometrical
parameters of a structure or the total values of its individual components,
such as total volume, total length, and total numbers of particles. The
geometrical parameters do not depend on the shape or distribution of
the structure or its components in space. Accordingly, the corresponding
stereological methods are independent as far as shapes and spatial
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distribution of the structural features are concerned. This class of study
is characterised by estimations of total volumes, areas, lengths and
densities.

(ii) The second class of study involves estimating the properties of individual
parts and elements of a structure; for instance, estimating the distribution
function of a chosen particle parameter. Sizes of particles and their
projections are the most commonly measured parameters in this case.

(iii) The last class covers analyses of mutual spatial positions of structural
features. The above two classes of study are not influenced in any way
by the scatter of features in space. An analysis typical of this third class
involves evaluating the planar anisotropy of fibrous systems, and this is
described in more detail in Section 2.3.5. The importance of this area
of study was highlighted by Pourdeyhimi and Koehl (2000a), who
dealt with methods to examine the uniformity of a non-woven web. An
understanding of the mutual spatial location of fibres and yarns is vital
for the automatic recognition of fabric patterns, as described by Jeon
(2003). Inter-fibre distances in paper and non-wovens have been studied
by Dent (2001).

2.1.1 Structural features and their models

Textile engineering began with a classification of the various types of textiles,
either according to their corresponding technologies or according to their
most meaningful structural attributes, as described by Jirsak and Wadsworth
(1999). Stereology provides the scientific basis for describing structures and
their features, and these structural features are described below.

The notion of a ‘feature’ may be explained with reference to a complex
structure, such as that of a non-woven textile. Figure 2.4 shows a point-
bonded non-woven fabric made of thermoplastic fibres. The figure shows
rectangular regions where many fibres adhere together. These regions are
generally formed by the impacts of the rollers when the surface screen reaches
the temperature at which the thermoplastic fibres melt and bond to form the
fabric. These types of non-wovens are referred to as ‘point-bonded’. Although
the fibres are apparently randomly oriented, a deeper investigation reveals
their preferred orientation. Some of the fibres have more crimp than others,
and the distribution of the intra-rectangular bonded areas is nearly regular.
Inside the squares, however, there are holes, or pores. Pores are found among
the fibres as well, and the spatial distribution of the pores is irregular, as is
the distribution of fibres.

The internal components of fibrous materials show morphological and
dimensional variations along with a wide range of mutual spatial organisations,
and a reasonable simplification of the complexity of such a structure appears
unattainable. From a purely practical standpoint, a perfect description of the
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entire structure is unlikely to be helpful; it is more useful to examine the
components that are responsible for the property under examination. The
elements of the structure to be studied have to be spatially limited and
experimentally distinguishable, otherwise quantitative measurements are not
possible. The components that satisfy these conditions are called ‘structural
features’, or simply ‘features’, and the combination of these features makes
up the ‘internal structure’ of an object (Saxl, 1989).

The property(ies) of an object depend on its structure, which is studied or
explained in terms of measurements of structural parameter. Properties such

2.4 A point bonded nonwoven fabric, reinforced with thermoplastic
fibers. The square-form spots were created by a regular grid of
projections on one of the calender rollers. The projections, when
they reached the melting temperature of fibers, bonded the non-
woven material in the predetermined pattern of spots with the
thermoplastic fibres.
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as textile permeability are studied without reference to the types of materials
involved, as all materials trap gases and liquids, thus hindering their movement.
On the other hand, the tensile strength of a fibrous material is related to the
types of fibres and how they are bound.

The classification of structural elements as features also depends on how
a sample is processed for stereological measurements. Figure 2.5 shows two
different situations. Both diagrams display the same part of a blended fibrous
mass, the right-hand image (b) differing with respect to shades. While it is
not easy to distinguish between the two kinds of features in image a, it is
possible in b. An exact recognition of structural features is important for
processing images digitally. Koehl et al. (1998) developed a method for
extracting geometrical features from digitised cross-sectional images of yarns.

Researchers must select the features that will enable them to investigate
effectively the property of the object that is of interest. Features are mostly
three-dimensional formations, distributed in three-dimensional space, but
sometimes lower dimensions are more appropriate. One example of a lower-
dimension investigation is for extremely thin textiles, where the investigation
is restricted to their planar projections. Fibres may even be considered as
one-dimensional features, and thus zero-dimensional points, such as centres
of tiny dust particles in a fibrous filter, are features pertinent to the study of
their distribution. Cross-sections or projections of three-dimensional objects
may also be regarded as objects with their own intrinsic structure. In this
chapter, such cross-sections and projections will be regarded as ‘induced
structures’.

Mathematical descriptions of internal structures are necessary to create a
model of the feature that is both powerful enough to describe real objects

(a) (b)

2.5 Images of a fibrous object can have different kinds of features
with different colour combinations. As the fibrous structure in
(a) cannot be differentiated with respect to colour, it has only one
type of feature. On the other hand, different shades of colours of the
fibres in image (b) characterize it as a two-featured one.
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and simple enough to model based on standard rules and regulations. The
necessary attributes for this rarely coexist. The more generalised the model,
the fewer the regulations, and therefore a rather careful choice of the feature
model has to be carried out. Three models of features are described below,
including some of the conceivable mathematical complications related to
their usage, and their pertinence for describing fibrous materials.

(i) Compact sets
A compact set is a generalised model of structural features, and is
discussed here in the context of fibrous features. Fibrous features are
limited in space due to their well-defined boundaries, which therefore
allow the existence of an n-dimensional cube with finite edge lengths
that contains the chosen feature entirely. Therefore, fibrous features
may also be referred to as closed sets, and thus a general model of
structural features consists of limited and closed sets. Sets of points in
Euclidian space obeying these properties are called ‘compact sets’.

Some compact sets have rather curious properties, as demonstrated
by their characteristic finite volumes or areas, where determination of
surface areas or boundary lengths causes a range of problems. An
example of such a peculiar set is the von Koch flake. The base for its
construction is an abscissa, < 0, 1 >, known as the ‘initiator’. It is
divided into three equal sections, with the mid-section substituted by
two line segments of equal lengths. Each of the segments has a length
identical to that of the removed middle section. As shown in Fig. 2.6
(b), the segments meet together at an angle to form the vertex of an
equilateral triangle. Subsequent repetitions of these steps produce the
results shown in Fig. 2.6 (c). The basic unit, comprising a buckled line
with four sections of equal lengths, is called the ‘generator’. Each of
the four parts of the generator is replaced with a unit that is a diminished
version of the generator in the ratio of 1:3. The resulting pattern has 16
sections of equal length. If the same procedure is repeated infinitely
and each successive step ensures a reduction of the generator unit with
respect to the previous step by the same ratio, a von Koch’s curve is
obtained in the interval < 0,1 >. Using three initiators, joined together
in a triangle form, a similar process will result in the von Koch’s flake.
One of its construction stages is shown in Fig. 2.6 (d).

If the flake’s boundary is observed with a gradual increment of
magnification, newer details will start emerging in stages. This unique
feature, common to both von Koch’s curve and flake, is why determining
their length and area is problematic. Similarly, three-dimensional sets
can be constructed with very complex boundaries whose surface areas
and volumes are not easily determined. These unique objects are called
‘fractals’, as described by Mandelbrot (1997). To exclude sets with
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complex boundaries, the ‘convex body’, a more specific class of model
of feature, is used (see below).

Kang et al. (2002) investigated fibrous mass from the point of view
of fractals, to model fabric wrinkle. Summerscales et al. (2001) explored
Voronoi tessellation and fractal dimensions for the quantification of
microstructures of woven fibre-reinforced composites.

(ii) Convex bodies
Convex bodies are characterised by the shortest link connecting two

(a)

(b)

(c)

(d)

2.6 Von Koch curve and von Koch flake: Shows the initiator (a), and
the generator (b) to enable constructions of the curve (c) and the
flake (d). The parts (c) and (d) represent early stages of both the
constructions.
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arbitrary points. If the straight line linking the points is enclosed fully
inside the body, the body is then considered to be convex. Figure 2.7
illustrates three-dimensional convex and two-dimensional non-convex
bodies. This model of convex bodies is inadequate to describe fibrous
materials because the loops in the fibrous structure violate the model.

The concept of convex bodies, nevertheless, is significant in stereology
because simple rules govern their properties. Figure 2.8 shows
intersections of convex (a) and non-convex (b) two-dimensional bodies

2.7 A three-dimensional convex body (a), and a two-dimensional
non-convex body (b), obey the mutual relationship of the body and
the shortest line connecting two of its arbitrary points. The straight
link in-between the points has to lie fully inside the body to make it
a convex one.

(a) (b)

2.8 Intersections of a convex (a) and a non-convex two-dimensional
body (b) with straight lines. Number of intersections for a non-
convex body with such a line depends on the mutual position of the
body and the line.

(a) (b)
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with straight lines. A convex body can be intersected by a straight line
only once, and the intersection is itself convex. For a non-convex body,
the number of intersections depends on the mutual orientation and
position of the body and the straight line. For a non-convex body, an
intersection may not be convex, but may be composed of several isolated
parts. In other words, it is impossible to correlate the numbers of non-
convex bodies and intersections from only knowing the number of
intersections. The shortcomings of using convex bodies in describing
fibrous structures must be overcome by an additional model, the ‘convex
ring’, as described below.

(iii) Convex rings
A convex ring is defined as the union of a finite number of convex
bodies. Figure 2.9 shows some two-dimensional bodies that demonstrate
this concept, illustrating that not all convex rings are suitable for
describing real fibrous structures. For our purposes, features pertinent
to fibrous structures will be visualised in the context of convex
rings.

2.9 Two-dimensional bodies, so-called figures, belong to the set of
the convex ring. Using more and more appropriately chosen convex
bodies, one can create fibre-like objects either in two- or three-
dimensional space.
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2.2 Basic stereological principles

This section examines the geometrical characteristics of the volume of three-
dimensional bodies, in the context of mapping the volume of a three-
dimensional geometrical object with a set, R, of real numbers. A characterization
theorem demonstrates how many groups there are of geometrical characteristics
with the same set of attributes as the volume. Finally, we cite a generalised
notion of section, which will be used as a tool to open opaque three-dimensional
structures.

2.2.1 Content of convex ring sets and characterization
theorem

One of the most frequently used parameters of features is their n-dimensional
content, which generally refers to volume, surface area, and length. Accordingly,
volume is regarded as a three-content, area two-content, and length as one-
content in the parlance of stereology.

Now let us examine the generic properties of contents, along with the
parameters that define n-dimensional objects of a convex ring and have the
characteristic set of properties of content, using the example of the volume,
or the three-content, of a three-dimensional prism h. The volume, V(h), for
any element, h, of the set of all possible prisms, H, is defined simply by a
product of a, b and c, which exactly represent the lengths of the prism’s
perpendicular edges. As the set, H, of all prisms is connected to the set of
real numbers, representing volume, V(h), by means of ‘onto mapping’, the
volume may be deemed as a functional. Generally, a functional is defined as
the mapping of any set to a set of numbers. The well-known properties of
functional, V(h), are listed below:

(i) The functional, V(h), does not depend on the location and the orientation
of the prism, h, in space. This property is known as translational
invariance.

(ii) If splitting the original prism, h, gives rise to two non-intersecting prisms,
A and B, with at the most one common edge or side, then their corresponding
volumes, V(A) and V(B), fulfil the relation V(h) = V(A « B) = V(A) + V(B),
where the functional V(h) has its usual significance. The relation expresses
a simple additivity of the volume functional.

(iii) The functional, V(h), is positively defined, i.e., V(h) ≥ 0 for each prism,
h, from the set of prisms, H.

(iv) The functional, V(h), is normalised. Thus for each V(h), the properties
(i), (ii), and (iii) satisfy a functional V¢(h) = a · a · b · c, where a is the
normalisation factor and a > 0. When the value of a attains unity, then
V(h) has a unit value for a unit cube, with each of its edges, a, b and c
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having unit length. Commonly, the normalization parameter a is taken
to be one.

A fascinating theorem pertaining to convex bodies and convex ring sets
gives a solution for the total number of linearly independent functionals of
n-dimensional bodies in n-dimensional spaces that fulfil the same list of
properties (i)–(iv) as does the volume V. A detailed explanation of the solution
was given by Hadwiger (1967). Sera (1982) brought in a characterization
theorem to state that every such body had just (n + 1) linearly independent
invariant characteristics, so-called ‘invariant measures’. Saxl (1989) listed a
specially chosen set of such measures for convex bodies and bodies from
convex rings. An edited version of the list for convex ring bodies is provided
in Table 2.1. The only characteristic that will not be discussed in this chapter
is the integral of the mean curvature of the surface of three-dimensional
bodies. In Table 2.1, this characteristic is highlighted in italics. Euler–Poincaré
characteristics will be described in Section 2.3.3.

2.2.2 Sections and ground sections

Usually, the terms ‘section’ and ‘ground section’ refer to a two-dimensional
section of a three-dimensional body. This concept can, however, be generalised.
Using different kinds of sections to investigate various materials is highly
advantageous, because they help us to analyse the internal structure of objects
that are otherwise imperceptible. Taking care to prepare the sections
appropriately preserves the original mutual positions of the features in different
materials.

The notion of a section can be generalised as the intersection of a three-
dimensional object with a two-dimensional space, i.e. the plane of a section
made by a cutting tool or by the movement of a grindstone in the case of a

Table 2.1 List of linearly independent and invariant structural characteristics, also
known as invariant measures, for objects of various dimensions from the convex
ring

Linearly independent invariant structural characteristics (invariant measures)
n-content (n-1)-content (n-2)-content (n-3)-content

3 Volume Surface area Integral of the Euler–Poincaré
mean curvature characteristics
of the surface

2 Area Perimeter length Euler–Poincaré
characteristics

1 Length Euler–Poincaré

0 Euler–Poincaré characteristics
characteristicsD
im

en
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ground section. Two-dimensional sections may also be generated on the
focal plane of a confocal microscope (Lukas, 1997). Therefore, the general
definition of a section may be based on the intersection of an object under
investigation, with another body having dimensions equal to or less than that
of the investigated object. By choosing the dimensions of the different bodies,
various types of sections can be obtained.

Sections obtained from the intersection of two three-dimensional bodies
are called three-dimensional sections or, more frequently, thin sections.
Normally, this kind of section has the shape of a layer between two parallel
planes, as shown in Fig. 2.10 (a). Section 2.4.4 uses thin sections to evaluate
the average values of curvature and torsions of linear features. Block-like
three-dimensional sections, which will be described in detail in Section 2.4.5,
are used as dissectors for counting isolated parts of internal structures.

A two-dimensional section is obtained by intersecting a three-dimensional
body with a plane, as shown in Fig. 2.10 (b). The intersection of a three-
dimensional body with a straight line results in a one-dimensional section, as
is depicted in Fig. 2.11 (a). The intersection of a three-dimensional body
with a point located on a line, as shown in Fig. 2.11 (b), produces a section
of zero dimensions. Figures can have two-, one- and zero-dimensional sections,
while curves can have only one and zero-dimensional sections.

Figure 2.12, where a part of fibrous structure is embedded in a block of
region W, demonstrates the kinds of information about three-dimensional
structures that is available from various sections. According to the

2.11 One-dimensional (a) and zero-dimensional cross-sections (b) of
a three-dimensional body.

(a) (b)

2.10 Three-dimensional (a) and two-dimensional (b) cross-sections of
a three-dimensional object.

(a) (b)
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2.12 A three-dimensional object A in a region W and its various
cross-sections: (a) shows a three-dimensional cross-section with the
induced structure embedded in it; (b) shows a two-dimensional
cross-section with the induced structure; (c) shows a one-
dimensional cross-section to which belongs the induced structure
composed of a piece of a line; (d) shows a zero-dimensional cross-
section represented by a point.

(a)

(b)

(c)

(d)

W

A
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characterization theorem and Table 2.1, four common characteristics can be
assigned to the structure in this figure. The characteristics are the volume,
surface area, the integral of the mean curvature of the surface expressed in
terms of length, and the Euler–Poincaré characteristic taken here for
convenience as the number of isolated convex parts of the object.

The three-dimensional section is also a three-dimensional structure and
contains information about all four aforementioned characteristics of the
structure. The fewer the dimensions of the section, the less information it
contains. The correspondence between information conveyed by a section
and the geometrical parameters of the original structure can be shown using
a three-dimensional fibrous object enclosed in a three-dimensional region W
such as that in Fig. 2.12(a). The set of independent parameters of the structure
A comprises the volume, surface area, length of the very thin fibres (because
thin fibres have only length as their physical dimension, they play a role very
similar to the integral of the mean curvature of the surface. More information
about integrals of curvature can be found in Saxl (1989)), and the number of
isolated parts of the structure. The independence of the parameters implies
that none of them can be expressed using linear combinations of the remaining
ones. This independency can be explained using their dissimilar physical
dimensions. Denoting the physical dimension of the length as L1, dimensions
of the volume, the surface area, and the number of isolated structural parts
take the form of L3, L2 and L0, respectively. The three-dimensional section of
A, as depicted in Fig. 2.12(a), contains the induced structure of the three-
dimensional object, and so contains information about all four independent
parameters.

The two-dimensional section carries information about only three
parameters, because its induced structure is described using only the three
independent measures of surface area, boundary length and number of isolated
parts. Since the number of isolated non-convex bodies of a convex ring
cannot be estimated from their sections of lower dimensions, it is impossible
to determine the number of isolated parts of an original structure with this
type of section. This is because the number of intersections in a convex ring
is manifold and does not depend solely on the total number of bodies there.
It also depends on the position and orientation of the section, as was indicated
in Fig. 2.8 for two-dimensional convex bodies.

One-dimensional sections contain information about length and the number
of isolated line segments described on them as induced structures. As before,
it is not possible to estimate the number of isolated bodies of the original
structure from this type of section. Zero probability of an intersection of a
straight line with a line or a curve cannot be used also to estimate the feature
length of an original structure. The one-dimensional fibre here represents all
parameters with a physical dimension L1 including integrals of the surface
main curvature.
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Finally, the zero-dimensional section, or point, contains information only
about the volume of an original structure because the probability of a point
section intersecting with points, curves and surfaces embedded in a three-
dimensional space, is zero.

The above statements concerning the information contained in various
sections of a three-dimensional object are summarised in Table 2.2. Guidelines
for interpreting Table 2.2 are given below:

(i) The second row in the table shows the three-dimensional structural
parameter, which is volume with a physical dimension of L3. The row
expresses that each type of section can be used to estimate this parameter.

(ii) The fourth row includes sections specifically used to measure one-
dimensional parameters, such as length with the physical dimension
L1. As has been observed before, the probability of a one-dimensional
body intersecting with a line or a point section in three-dimensional
space is nil. Hence, such a parameter can only be estimated from three
and two-dimensional sections.

(iii) The fourth column corresponds to sections of one dimension. This type
of section provides intersections among two- and three-dimensional
features with a non-zero probability. Thus, one-dimensional sections
are useful for estimating the volumes and surface areas of three-
dimensional bodies.

The above analysis may be extended to any object of arbitrary dimensions
through Equation [2.4]. This equation associates the dimension of an induced
structure, the dimension of a structural feature, and the dimension of a body
used to create sections, with that of an investigated body. Here, the dimension
of an investigated body is the same as that of the space occupied by it. The
term d(a) stands for the dimension of a structural feature, a , of an investigated
body, A, having dimension d(A). The structural feature, a, under consideration
occasionally stands for the surface of a three-dimensional body. Therefore,
d(a) and d(A) have values of 2 and 3, respectively. Structural features and

Table 2.2 Dimensions of structural parameters of a three-dimensional object and
dimensions of bodies from which their sections are created to determine the
dimensions of induced structures on sections. For three-dimensional objects, the
dimensions of the body used to carry out sectioning are equal to dimensions of
the corresponding sections

Structural parameters of three- Dimension of the sectioning bodies
dimensional objects (and their ——————————————————
dimensions) 3 2 1 0

Volume (3) 3 2 1 0
Surface area (2) 2 1 0
Length (1) 1 0
Euler–Poincaré characteristics (0) 0
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their structural parameters have the same dimensions. This principle has
already been used in Table 2.2. The term d(b ) denotes the dimension of a
body, b, from which sections of the investigated body, A, are created. For
instance, b may be considered as a straight line with a dimension, d(b ), of 1.
Finally, d(a « b ) describes the dimension of the induced structure created
out of an intersection of the structural feature, a, and the surface of the body,
b. The dimensional terms d(a), d(A), d(b ) and d(a « b ) are related by the
following formula, as introduced by Wiebel (1979). All the data in Table 2.2
can be derived from it.

d(a « b ) = d(a) + d(b ) – d (A) [2.4]

The above relation is easily verified in the context of this chapter. The three-
dimensional body, A, with the dimension, d(A), of 3, has the dimension of
the surface area of its relevant feature, a, as d(a), having a value of 2. If the
feature is examined with the one-dimensional body, b, having the dimension,
d(b ), ascribed with a value of 1, the induced structure a « b, which is
created by the intersection of the surface, a, of the three-dimensional body,
A, and the straight-line, b, takes the form of a point. Consequently, its dimension
is d(a « b) = 0. By assigning the above-mentioned values for the corresponding
terms on the right-hand side, the relationship is verified.

The above relationship may be extended to objects having fewer than
three dimensions. If A is any two-dimensional area embedded with a fibrous
system (material) a, then the relevant term d(A), has a value of 2. Accordingly,
the internal structure consists of a one-dimensional fibrous system, a,
characterised by a value of d(a) as 1. A body, b, with a dimension, d(b ), of
0, may be used, hopefully, to estimate the length as a geometrical parameter
of the internal structure, which consists of one-dimensional fibrous material
a. Fitting the values into the equation gives the value of d(a « b ) as –1,
which is ignored due to its physical insignificance. A similar argument explains
the empty box of the row for the surface area in Table 2.2.

2.2.3 Lattices and test systems

Measuring part of an object, X, can be facilitated by incorporating a test
system that is composed of a regular lattice of fundamental regions along
with a regular distribution of probes. A lattice of fundamental regions consists
of regions a0, a1, a2, . . . , an with the following attributes:

(i) Each of the fundamental regions, ai, contains at the most one point of an
n-dimensional space.

(ii) All fundamental regions are distributed regularly in space with respect
to translational symmetry. Thus each fundamental region, ai, can be
exactly displaced to any other region, aj, and the displacement vector
consists of a linear combination of basic lattice vectors. Multiplication
constants in this linear combination are integers.
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The most common lattices of fundamental regions consist of squares, oblongs,
triangles, hexagons, etc. According to the attribute (i), tightly packed lattices
in a plane comprise fundamental regions whose boundaries are partly open,
to preclude overlapping of the boundary points. Lattices of fundamental
regions are illustrated in Fig. 2.13.

Test systems are constructed so that set B is encompassed by each
fundamental region, where B is distributed in the lattice with the same
translational symmetry as that of the spatial distribution of the fundamental
regions in the lattice. This means that the local view for each fundamental
region is identical with the others. The set B is known as a probe, and is
generally represented as points, curves or figures. As described in Section

a0 a1 a2

ai

Fundamental region

a0 a1 a2

ai
Fundamental region

Fundamental region

a0 a1 a2

ai

(a)

(b)

(c)

2.13 Three examples of two-dimensional lattices of fundamental
regions: a square lattice (a), a lattice with the fundamental region of
parallelogram type (b), and a hexagonal lattice (c).
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3.4.5, dissectors are the only systems that are based on the use of three-
dimensional probes.

To model a probe on a transparent sheet or a foil, marking tools leave
behind trails and spots whose respective widths and diameters are significantly
thick; therefore, these spots and trails do not correspond to points or one-
dimensional lines. The same argument is valid for grids, lines, and points
created by graphics software on monitor screens. An uncertainty therefore
persists about the precision of the presumed intersections of the probes used
to study structural features. Figure 2.14 demonstrates this imprecision. To
counter this problem, a pointed probe in a testing system is expressed as an
intersection of the edges of two mutually perpendicular trails. A one-
dimensional curvilinear probe is represented by the chosen edge of a trail.

The positions of the probes must be in a uniform random distribution with
respect to the object under examination, in order to arrive at an unbiased
estimation of the selected structural parametric value. In other words,
stereological measurements are carried out in a series of uniform random
and isotropic sections. Pertaining to a body, A, and a test section, T, there are
uniform random sections A « T corresponding to a point, X Œ T, randomly
located in A with the same probability of appearing at each region of A,
provided that the isotropic orientation of T in three-dimensional space remains
unaffected by the position of X in A. An analogous definition may be framed
for two-dimensional space, whereas for one-dimensional space the only
condition is the uniform randomness. Two of uniform random and isotropic
cross-sections of three-dimensional object are portrayed in Fig. 2.15(a).

Uniform random and isotropic sections are, in fact, obtained by micro-
photographs or micro-images. These are subsequently used to measure the
chosen parameters of the internal structures, using testing systems as sketched
in Fig. 2.15(b). The position of the testing system in the section has to be

1

2

(a) (b)

2.14 Inaccuracy of a point and a curve probe using a pencil trail,
where thickness of trails hinder clarity of intersection of a point or a
line with an object or its boundary, is depicted (a). The point (1) and
the line probe (2) can be more sharply represented by edges of trails,
as is highlighted in (b) using bold lines.
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uniform random and isotropic. Due to the translational symmetry of the test
system, a point Y, chosen from the object section, can be displaced in a
uniform random manner on a selected fundamental area, a0, of the test
system. For each new position of the point Y, a rotation of the testing system,
with respect to the section, may be carried out simultaneously. The angular
positions of the testing system must be isotropic.

In some cases, the efficacy of a stereological measurement is enhanced by
integral testing systems (Jensen and Gundersen, 1982). In this chapter, integral
testing systems will be used for estimating the surface areas of three-
dimensional objects and the lengths of curves in three-dimensional space in
Sections 2.4.2 and 2.4.3. The word ‘integral’ here implies the simultaneous
usage of several types of probes (points, lines, figures) in a test system. An
example of a fundamental region of an integral test system is shown in Fig.
2.16. A synopsis of various kinds of testing systems and their notations is
included in Wiebel (1979).

(a) (b)

T2

T1

A

X

X

Y

ao

2.15 Application of uniform random and isotropic sections for
measurements of geometrical parameters of internal structure of the
object A. Two such sections, A « T1 and A « T2, created by two
plains T1 and T2, are depicted in (a). Cross-sections A « Ti are used
for measurements with test systems that are uniform random and
isotropic in their locations on these sections. One such instance with
respect to a cross-section of object A is shown in the part (b). Dark
gray objects in (b) represent cross-sections of the inner structure
of A.
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2.3 Stereology of a two-dimensional fibrous mass

Here we describe selected methods for stereological measurements of two-
dimensional fibrous materials. In particular, we estimate the geometrical
parameters of an entire structure according to the area, length, and count of
selected structural features, and define the Euler–Poincaré characteristic.
Circular granulometry is introduced as a typical example of the second class
of tasks for structural analysis. We will focus on one property of the individual
parts of the structure, namely the distribution of particles using a typical
length scale. The last example introduced in this section concerns the planar
anisotropy of plain fibrous systems, which is a typical example of the third
group of structure analysis problems, describing the mutual space distribution
of structural features. This distribution will be represented by mutual fibre
orientation, not taking into account the distances between them.

2.3.1 Point counting method for area and area density
measurement

Volumes and volume densities of fibrous masses determine several of their
properties, including air permeability, tensile strength and filtration efficiency.
Glagolev (1933) and Thompson (1930) demonstrated that the cross-sectional
area of a three-dimensional object is related to a random point counting
procedure conducted on its two-dimensional section. Glagolev and Thompson

a

b

c

1

2.16 Fundamental region of an integral test system containing three
point probes (arrows are pointing towards them): A curve probe of
the length c, an excluding line (1), see Section 2.3.3, and a two-
dimensional probe of oblong shape with edge lengths a and b.
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worked in the field of geology. A similar method was independently introduced
in biology by Chalkley (1943). Two-dimensional parameters of two-
dimensional objects, the areas of figures, can be estimated using their zero-
dimensional sections. The probe has to be a point or a finite set of points in
a test system. For such sections, the following example shows a point counting
method.

Using a two-dimensional reference region W and a two-dimensional object
B that is embedded fully or partly in W, we will solve the question of how to
estimate the area of B inside W using uniform random zero-dimensional
sections. As a reference region, we can consider a microphotograph or a part
of it. The situation is shown in Fig. 2.17. We start with the probability p that
a uniform random point in W intersects the object B.

p
S B
S

 = 
( )
( )W [2.5]

The area of the region W is here denoted as S(W) and the particular area of
the object B that is embedded in the region W is S(B). The probability p is
expressed as the ratio of two surfaces and hence it is called a geometrical
probability. Carrying out n measurements with the point probe we derive
from Equation [2.5] np = nS(B)/S(W). The number of non-empty intersections,
denoted as I, is equal to np. Then we obtain

I
n

S B
S

  
( )
( )

@ W [2.6]

Due to the finite number of trials, we only estimate the probability p as I/n,
so the left-hand side of Equation [2.6] does not represent the exact value of
p but a very good estimation of the fraction S(B)/S(W) that is equal to p.
From Equation [2.6] we can draw two conclusions. Knowing the area S(W)

B

W

2.17 A two-dimensional space containing a region W, within which
parts of an object B are embedded.
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exactly, we can estimate the area S(B), or we can estimate the area density
S(B)/S(W) of the object B inside W directly. But first we will state the notation
for estimating a feature parameter value.

We have mentioned that, for instance, p is estimated using the fraction I/n.
This can be expressed as p @ I/n. Without additional explanation, however, this
does not tell the reader which quantities in the relationship are measured with
complete or high accuracy, and which of them are estimated. Here the estimated
quantity is p while I and n are measured accurately. To underline these facts,
we write [p] = I/n which we understand as – p is estimated as the fraction of
known values I and n, and the symbol [p] denotes the estimator of p.

Let us return to Equation [2.6]. If we know exactly the area of the reference
region W, which is, as a rule, the area of our micro-photograph or monitor
screen, we can express from Equation [2.6] the estimator [S(B)] of the area
S(B) inside W as:

[ ( )] =  { )S B I
n

S W [2.7]

When our interest is focused on the B area density S(B)/S(W) inside region
W, we can state from Equation [2.6] its estimator in the following form:

[ ( )]
[ ( )]

 = 
S B
S

I
nW [2.8]

We have written the left-hand side of Equation [2.8] in the form [S(B)]/
[S(W)] rather than [S(B)/S(W)] because S(B) is in fact estimated with I and
S(W) is estimated using n. The measurement procedure can be improved
using a test system with zero-dimensional probes. When we wish to estimate
the total area of B inside the region W, or the area density of B within W, we
have to cover W with the test system as sketched in Fig. 2.18. The number of
hits I on the figure B by test system point probes is equal to 4 in this example.
These hits are denoted using empty squares. The total number n of point
probes falling into W is 14 in this case, and these hits are marked either by
empty squares or by black circles. The situation in Fig. 2.18 leads to the
approximate value of the area density [S(B)]/[S(W)] = 0.286, a poor estimate
from only one particular position of the test system. We can enhance the
accuracy of our measurement significantly by increasing the number of uniform
random and isotropic trials.

The point counting method for estimating area and area density of figures
in the reference region is in fact a direct extension of the well-known method
based on square grids and counting the number of squares that are fully
contained within B, as shown in Fig. 2.19. However, this method is less
accurate than the point counting method. Increasing the accuracy of the grid
method by measuring squares that are only partly contained in B is more
laborious than using the Glagolev and Thompson point counting method.
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2.3.2 Buffon’s needle and curve length estimation

A thorough investigation of a fibrous mass often requires information about
total fibre length or fibre length density. The influence of fibre length and

B

W

2.18 A test system having one point probe at left bottom corner of
each of its fundamental regions (indicated by arrows), covering the
region W completely with embedded objects, B. Hits of probes with B
are denoted with squares and residual probes in W are encircled in
black. A very rough estimation of area density of B in W may be
calculated here as [S(B)]/[S(W)] = 4/14 = 0.286.

B

A

2.19 A simple estimation of area covered by B using a square grid
and counting the areas of fundamental squares fully embedded in B.
If the area of a grid cell is A, then S(B) stands for the particular case
shown in the figure, having an estimated value of 8A.
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fibre distribution on the strength of fibres in yarns, and the relation between
cross-sectional counts of fibres and their length, have been investigated by
Zeidman and Sawhney (2002). This subsection examines how to estimate the
length L(C) of one-dimensional linear features, i.e. curves, embedded into
two-dimensional space, or into a plane. It will be shown, based on Buffon’s
needle problem, that [L(C)] = (p /2)dI, where d is the distance between
equidistantly spaced parallels and I is the number of intersections between
the curve and the system of parallels.

Buffon’s needle, as described in Section 2.1, identifies the probability p
with which a uniform random and isotropic abscissa j, the so-called Buffon’s
needle, of length L ( j ), touches the warp of equidistant parallels under the
condition that the needle falls on it and nowhere else. The relation L ( j ) < d
ensures, at maximum, one hit for each trial. Figure 2.20 shows this in more
detail. If the mutual orientation of the needle and the warp is fixed, this
suggests that the needle is uniformly random, but anisotropic. We initially
select its orientation perpendicular to the warp lines. The probability P of the
anisotropic needle hitting one of the parallel lines is given as the fraction
L( j )/d, which follows from the concept of geometrical probability given as
the ratio of the areas of two point sets. The first set is composed of the
locations of a chosen fixed point on the needle for all possible trials when the
needle hits the warp, and the second consists of the area of the point set
created by all locations of the same selected point on the needle for all
possible trials. Thanks to the warp periodicity, we can restrict our attention
to the region between two pairs of neighbouring parallel warp lines, so we
consider nothing outside such bands. Both bands are parallel with the warp
lines. The first has width equal to the needle length L( j) and the latter has the
width d that fills the entire space between neighbouring parallel lines. The
lengths of both bands can be taken as equal, so we only need to take
the widths into account. With the aid of Fig. 2.20 we can conclude that P =
L( j)/d.

d

L(j ) j

y F

2.20 Buffon’s needles are anisotropically distributed and are all
perpendicular to the parallel warp lines. The distance between
parallels is d and the Buffon’s needle length is L(j ). A hit of a needle
with one of the warp lines is denoted by a small circle. The
probability of the hit is evaluated from the ratio L( j )/d. On the right
part of the figure is depicted a declined needle that makes an angle q
with parallels. Its projection on the normal to the warp lines is y.
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Repeating the process for a needle with some chosen fixed angle q to the
parallel warp lines, as shown in Fig. 2.20, instead of the needle’s length, we
will be concerned with its parallel projection y on the direction perpendicular
to the straight lines that make up the warp. For y = L( j ) sin (q) we can write
the probability Pq of hits by the angled needle as:

P
y
d

L j
dq

q
 =  = 

( ) sin ( )
[2.9]

The last step in solving Buffon’s needle problem is to consider isotropic
orientations of a uniform random needle. Here we need to calculate the
average value for L ( j ) sin (q)/d, where L( j ) and d are constants. Using the
well-known formula for the mean value f a b< , >  of a function f (x) on an

interval < a, b > written as f
b a

f x dxa b
a

b

< , >  = 1
 –  

 ( )Ú , we obtain the final

relation for the probability of hits of a uniform random and parallel needle
as:

p
L j

d
d

L j
d

L j
d

 = 
( )

 sin  = 
( )

 [– cos ]  = 
2 ( )

0
0p q q p q p

p
pÚ [2.10]

where b – a = p – 0 = p is the length of the interval in question.
Before we extend Buffon’s problem to the estimation of curve length in a

plane, let us look at the formula for the mean value of a function on an
interval. We have introduced geometrical probability as a generally accepted
approach and now we can describe the geometrical interpretation of the
mean value of a function. Imagine a very thin aquarium containing fine sand.
We will arrange the sand into the shape of sin q on the interval < 0, p  >. The

volume of the sand pile is proportional to 
0

sin 
p

q qÚ d  (see Fig. 2.21). Tapping

the aquarium gently will produce a flat block of sand from the previously
sinusoidal heap. We have destroyed our original curve but the height of the
sand in the aquarium is now equal to the average value of the function in
question and, moreover, the volume of sand (which is conserved) is now
easily expressed as p < , >f a b . Equilibrating both formulae for the volume of
the sand, we obtain a formula from which the average function value f a b< , >

on the interval < 0, p > can be easily derived as p q qp

p
  = sin < , >

0
f da Ú .

We will now investigate a curve in a plane of total length L(C). Imagine
the curve is divided into very short straight segments of equal length; these
segments can be taken as Buffon’s needles with uniform lengths L( j ). Unlike
previous discussions of the Buffon’s needle problem, here j denotes the j-th
piece from the total number of n linear pieces composing the curve. Length
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L( j) is shorter than the distance d between parallel straight lines. The warp
now represents our test system. We overlap the curve with this test system as
shown in Fig. 2.22. As the curve is composed of n Buffon’s needles, it means
nL ( j ) = L(C ), and the number of hits I of the curve in the uniform random
and isotropic system of parallels will be equal to the n-multiple of the probability
p in Equation [2.10]:

I n p n
L j

d
L C

d
 = [ ] = 

2[ ( )]
 = 

2[ ( )]
p p [2.11]

The only measurement done with the curve overlapping the test system
provides us with a very pure estimation of L(C) from a single trial. The
derivation of the formula [2.10] for p was based on uniform random and
isotropic needles, so we have to carry out a lot of measurements to ensure
this condition by rotating and shifting the warp and by counting and averaging
all the hits. These experiments provide us with a more exact estimation of

f (Q) = sin(Q)2

1

0 0
p p

f ·0,pÒ

2.21 A sinusoidal sand pile in a narrow aquarium is streamed using a
gentle percussion to create a flat block. The sand volume is
conserved during the motion.

d = 0.01m

C

n

12

2.22 A curve C is approximated using a set of straight pieces. Their
lengths are assumed nearly equal. The number of hits I of the curve
C and the warp lines in this case is 10. Hence a rough estimation of
the curve length L(C ) from a single trial is pd10/2, as given by
Equation [2.11].
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[L(C)]. From Equation [2.11], the final formula for curve length estimation
in two-dimensional space can be easily derived as:

[ ( )] = 
2

L C
dIp

[2.12]

where I  is the average number of hits per single measurement calculated
from numerous uniform random and isotropic trials of test system position
with respect to a curve.

The equidistant and parallel system of lines represents a lattice of
fundamental regions, each of them being oblong in shape as the lines are
restricted to a plane. The area of a particular oblong between neighbouring
parallels represents a fundamental region. In each fundamental region, there
is only one piece of a line as a probe, represented by one of the parallels.

2.3.3 Feature count in two-dimensional space and the
Euler–Poincaré characteristic

Feature count is useful for instance in identifying an economic wool fibre
where scale frequency plays an important role, as shown by Wortham et al.
(2003). The count of fuzz and pill formation on knitted samples as a function
of enzyme dose for treatment has been investigated by Jensen and Carstensen
(2002) and is another example of the importance of feature count techniques
for fibrous materials. Before we discuss the stereological method for estimating
feature count in two-dimensional space, we will describe the Euler–Poincaré
characteristic n (A). This characteristic is the functional that evaluates the
connectivity of compact sets, which is why it can also be used for convex
ring sets. The connectivity of a set A can be defined in various ways that
reflect an intuitive view. We will use an approach similar to that described by
DeHoff and Rhines (1968), Wiebel (1979) and Saxl (1989), aiming at a
visual and rigorous introduction of the Euler–Poincaré characteristic. We
take the position that a set composed of two disjoined cubes has the same
value of connectivity as another set consisting of two disjoined spheres. In
addition, we note that connectivity does not depend on the size of the bodies
involved. On the contrary, it depends on the numbers of holes and cavities in
the bodies and on their nature, which is consistent with the number of isolated
parts of the body boundaries. We distinguish between open holes, for example
a hole created by a perforation of a sphere, and a closed cavity, which results
in the sphere having a boundary composed of two isolated parts.

The degree of connectivity depends on the behaviour of a body with
respect to a section. If we draw a curve that lies in a plane on the body’s
surface, then we can extract the part of the body that lies within this plane
and is restricted by the curve on the boundary. A sphere without holes or a
sphere with a closed cavity are both broken up by such a section. A sphere
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with an open hole only breaks in some cases, and is hence the more connected
set. These situations are sketched schematically in Fig. 2.23. The numerical
value of the Euler–Poincaré characteristic n depends also on the dimension
of the set.

Generalising the above leads us to the following rules for the determination
of Euler–Poincaré characteristic values:

(i) For a one-dimensional set A composed of N isolated curves, n (A) = N.
(ii) The two-dimensional set B consisting of N isolated parts with total

number of N¢ cavities (in two-dimensional space cavities are always
closed) has the Euler–Poincaré value n(B) = N – N¢.

(iii) For the three-dimensional set C of N isolated parts with the total number
of N≤ open holes and N¢ closed cavities, n (C) = N + N¢ – N≤.

(a)

(b)

2.23 The sphere without an open hole detaches into two parts after
each cutting, followed by withdrawal of the sphere part lying within
this section and restricted by its planar curve on the spherical
surface (a). The sphere with an open hole does not disintegrate after
such cutting (b).



Understanding the three-dimensional structure 73

This gives us the result that, for a circle with a cavity and for a sphere with
an open hole, n = 0. An arbitrary single body or figure without holes or
cavities has a Euler–Poincaré characteristic equal to one, which is why the
Euler–Poincaré characteristic is identical to the feature count for objects
without any holes. The connectivity of a sphere with a closed cavity is
evaluated as n = 2.

Saxl (1989) introduces the Euler–Poincaré characteristic by having the
boundary of a half space in such a position that the origin of the coordinate
system lies within it, and the investigated structure A lies fully in the right-
hand of the half space as drawn in Fig. 2.24. The boundary is swept from the
left to the right side along the perpendicular axis. The boundary is plane in
three-dimensional space, a line in two-dimensional space and a point in one-
dimensional space. We count the values of the left-hand side limit

Sweeping boundary
y

A

0
X1 X2 X3 X4 X5 X6 X7 X8 Xu(X)

2

1

0

lim (u–u(X–e))
eÆ0+

X1 X2 X3 X4 X5 X6 X7 X8 X

1

–1
X1 X2 X3 X4 X5 X6 X7 X8 X

u=3–2=1

2.24 Euler–Poincaré characteristics as introduced by Serra (1976) and
Saxl (1989). The Euler–Poincaré characteristic value of the object A is
equal to 1.



Thermal and moisture transport in fibrous materials74

lim  ( ( ) –  (  –  ))
0+e

n n e
Æ

x x  composed of the subtraction of the Euler–Poincaré
characteristic values of the induced structure in sections of the moving boundary
with the investigated structure, in cases where the limit values are non-zero.
The subsequent stages of this method are shown in Fig. 2.24.

Now to discuss the problems of counting features notwithstanding the
number and the nature of the holes they contain. To estimate features in a
selected area of a two-dimensional structure, we use a test system with the
so-called excluding line introduced by Gundersen et al. (1988). A probe A in
this system is two-dimensional and as a rule it has an oblong shape. Its area
will be denoted here as S(A). The excluding line is an infinite straight line
running along a portion of the boundary of probe A which changes direction
twice. The excluding line falls particularly on two neighbouring sides of the
oblong A. The mutual position of probe A and the excluding line is shown in
Fig. 2.25. This probe is inserted into a lattice of fundamental regions to
create a test system. The estimation of the feature count NA in a certain area
of the object is conducted according to the following procedure:

(i) Count all figures (i.e. all isolated parts of the object) that have non-
empty intersections with a chosen probe A and at the same time have
no hits with the excluding line. Their count is denoted as Q.

(ii) Repeat this measurement for each probe in the test system and for all
its uniform random and isotropic positions with respect to the fixed
object.

The estimation of the total count of features N in the reference region W is
then:

[ ] = 
( )

( )
N

QS
S A

W
[2.13]

where Q is the feature count per probe of area S(A) and S(W) is the area of
the reference region.

The estimator of the feature count area density [N]/[S(W)] in the object is
simply:

[ ]
[ ( )]

 = 
( )

N
S

Q
S AW [2.14]

The estimation accuracy increases with the number of uniform random and
isotropic trials conducted in different test system positions.

2.3.4 Linear characteristics of convex ring sets and
circular granulometry

For many practical applications, it is valuable to introduce a numerical linear
parameter that estimates the representative size of structural features. For
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example, Neckar and Sayed (2003) described pores between fibres in general
fibre assemblies with particular focus on their linear characteristics, such as
pore dimension, perimeter and length. Pore length and radius were used by
Miller and Schwartz (2001) as critical parameters for a forced flow percolation
model of liquid penetration into samples of fibrous materials. Lukas et al.

1
A1 A2

2 10
 m

m

A4
A3

2.25 Test system for estimation of particle numbers: The grey
particles are counted exclusively. The residual ones either hit the
excluding lines or have no intersection with fundamental regions and
are not counted, according to the counting procedure. Excluding
lines are in bold (1). Two-dimensional probes (2) are arranged in a
lattice of fundamental regions. The rough estimation of the feature
count density [N]/[S(W)] from this particular trial comes out to be Q/S
= 15/(4S(A)), where S = Â S(Ai) = 4S(A) is the area of all the oblong
probes used for the purpose.
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(1993a) compared the breadth and diameter of maximal pores in thin non-
woven fabric with their radius values measured using the bubble counting
method. Cotton fibre width and its distribution using image analysis was
measured by Huang and Xu (2002). Farer et al. (2002) studied fibre diameter
distribution in melt-blown non-woven webs. Brenton and Hallos (1998)
investigated the size distribution, morphology, and composition of dust particles
gathered from the vicinity of various commonly performed processes in
industrial wool fibre preparation. Here we discuss the estimation of breadth
w, diameter d and width t of structural features, and then introduce the
effective method for estimating diameter known as circular granulometry.

Consider an n-dimensional body A, part of a convex ring, and an arbitrary
direction   

r
u  as is sketched in Fig. 2.26. The support plane is taken as that

which creates the boundary of the ‘smallest’ half space that contains the
body A in the direction   

r
u , hence it touches A. Since this half-space unfolds

from the support plane in the direction   
r
u , there is no part of A in the residual

half-space. For each support plane perpendicular to the chosen direction   
r
u ,

there is a parallel twin for the opposite direction –  
r
u . We will denote the

distance between the two support planes as the breadth w(A,   
r
u ) of a body A

in the direction   
r
u , and consequently also in the direction –  

r
u . The isotropic

average of breadths w(A,   
r
u ) is denoted as   w A u( , )

r
, where all   

r
u  directions

have the same weight.

  w A w A u( ) = ( , )
r

[2.15]

The maximum breadth value is diameter d(A) and the minimum is width
t(A). Extending this to n < 3 dimensions is straightforward.

As an example, we will calculate the average breadth w S( ) of the square
S with side length a (see Fig. 2.27). For the breadth w of square S we have:

u –u

A

w (A)

A

d (A)

t (A)

2.26 Linear characteristics of a set A of a convex ring having breadth
w (A), width t(A), and diameter d(A). Supporting planes are
perpendicular to     

r
u  and       –

r
u .
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  w S u a( , ) = 2 cos 
r a [2.16]

Taking periodicity into account, we will consider only p /2 rotations of the
twin support lines with respect to the square. The isotropic average value of
w(S,   

r
u ) in the interval of   

r
u  directions < 0, p /2 > is:

w S a d a( ) = 2  2 cos  = 2 2 [sin ]
– /4

/4

– /4
/4

p a a p a
p

p

p
pÚ

= 2 2 2
2

 = 4a a
p p [2.17]

Noting the above relationship between square S perimeter O(S) = 4a and its
average breadth w(S), then for a square, O(S) = p w(S). The same relation
holds for a circle C with perimeter O(C) = 2p r and with average breadth
w(C) = 2r. The general relation:

O(B2) = p w(B2) [2.18]

is valid for all two-dimensional convex sets B2; hence their average breadths
are commonly calculated from their perimeters.

Circular granulometry is a simple method for estimating diameter d in the
distribution of two-dimensional particles or projections of three-dimensional
ones. The method is based on a special type of test system consisting of
circles of various diameters. Stereotypes of circles are commonly used, with
diameters expanding equidistantly in steps of one millimetre. Then we select
at random a particle from the magnified image and assign to it the smallest
circle that can fully contain that particle. We count the numbers of particles
assigned to circles of various diameters and we plot their total relative counts

2.27 The breadth w (S,     
r
u ) of a square S.

a

a

    
r
u

      w u( )
r

S

a
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pd as a histogram that estimates the probability densities or probability
distribution function. The probability density histogram expresses the
appearance of the particle diameter in the interval (di – Dd, di), where Dd is
the incremental step used for the construction of the circle stereotypes. An
example of circular granulometry analysis is indicated in Fig. 2.28.

2.3.5 Analysis of planar anisotropy of two-dimensional
fibrous structures

Fibrous materials often present as thin, nearly planar fibrous systems; for
instance thin webs, sheets, some yarn tangles, woven and knitted textiles,

d1 d2 d3 d4

Test system of circles
d4

d1
d2

d4

d2
d3

d3

d2

d4

d2

d1

d2
d1

p

1/4

5/12

1/6

1/4

d
d1 d2 d3 d4
Probability density histogram

2.28 Circular granulometry: To randomly chosen particles of an
investigated structure are assigned the smallest circles from the test
system that can circumscribe the chosen particles completely. The
special test system, represented here by stereotypes of circles with
various diameters, is shown in the right upper corner. The histogram
relates the frequencies of estimated particle diameters with the
diameters.



Understanding the three-dimensional structure 79

and vessels in bladders. Planar fibre systems can also be projections of three-
dimensional fibrous materials. The intensity of light scattering and its
distribution in non-woven fabric as a function of fibre mass arrangement in
space has been studied by Zhou et al. (2003). Pourdeyhimi and Kim (2002)
outlined the theory and application of the Hough transform (Hough, 1962) in
determining fibre orientation distribution in a series of simulated and real
non-woven fabrics. Farer and colleagues (2002) studied fibre orientation in
melt-blown non-woven webs. A general model of directional probability in
homogeneous, anisotropic non-woven structures was presented by Mao and
Russel (2000), in which fibre diameter, porosity and particularly fibre-
orientation distribution were considered as structural parameters. A method
for non-destructive fibre tracing in a three-dimensional fibre mass using X-
ray microphotography was developed by Eberhardt and Clarke (2002).
Karkkainen and colleagues (2002) developed stereological formulae based
on the scaled variation of grey shades in digital images of fibrous materials
to estimate the rose of directions. Thin fibrous systems can also be modelled
and analysed using established theory of fibre processes, as is described
thoroughly in Stoyan et al. (1995).

In this section, we describe the simple graphical method for evaluating
planar fibre mass anisotropy introduced by Rataj and Saxl (1988), beginning
with a discussion of planar anisotropy.

Imagine a curve or a thread of total length L fully embedded in a plane
thanks to its negligibly small diameter. It is understood for anisotropy that
equal angle intervals (bi, b i + D b ) do not contain equal lengths of thread
elements pointing to the corresponding directions (see Fig. 2.29). A parameter
of anisotropy is therefore the angular density of the thread f (b ) governing

180∞

90∞

Db
0∞

270∞

2.29 The left-hand side of the figure represents a thread of a total
length L. The broken segments of the thread have an orientation
within an angular interval (– Db, + Db ) of an equidistant net of angles
as shown on the right-hand side.
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the particular length of the thread L(b, b + Db) leading up to the interval (b,
b + Db):

L L f d( ,  + ) =  ( )
+

b b b b b
b

b b
D

D

Ú [2.19]

where L is the total thread length. The density function f (b ) is known as the
rose of directions or the texture function.

There are additional experimental methods that enable us to estimate the
rose of directions f (b). The direct method, as indicated in Fig. 2.29, was
described by Sodomka (1981). According to this procedure, we first identify
the part of the thread with the highest curvature. Inside this part, we demarcate
a piece of the thread for which tangent directions vary within the interval
± 1

2 Db. The remaining part of the thread is then divided into elements of
equal length, this length being determined by the length of the section in the
most curved part of the thread. Each such thread element will be counted to
a corresponding angular interval (b i, b i + Db). The fractions Nb /N, where
Nb are the counts inside the interval (b i , b i + Db ) and N is the total number
of counts, give the estimations for values of the rose of directions.

It is clear that experimental implementation of this procedure would be
laborious and time-consuming. Its advantage, however, is the clarity with
which it helps us introduce the notion of the rose of directions. More effective
methods for estimating fibrous planar anisotropy are based on measuring a
rose of intersections (Rataj and Saxl, 1988). The rose of intersections is
obtained using the method shown in Fig. 2.30(a, b) and in Table 2.3. The
rose of directions is constructed from rose of intersection data by a simple
graphical construction using a Steiner compact in the following five steps:

(i) Place a net of angles drawn on a transparent foil over the structure
being studied, or a computer-aided net over the image on a monitor
screen. An example of such a net is shown in Fig. 2.30(a). The net
consists of arms of equal length that intersect each other at their central
points, and the number of arms has to be equal to or smaller than 18,
otherwise the method does not produce sufficiently stable, or reproducible,
results. The angular distance among all arms is equal to p divided by
the number of arms. The example in Fig. 2.30(a) has four arms with the
angular distance p /4.

(ii) Count the intersections of the fibrous features with each arm separately,
as shown in Fig. 2.30(b). Repeat this measurement in uniform randomly
chosen parts of the fibrous structure, keeping the orientation of the
angular net strictly fixed. Take the direction of a line in the object and
its images and denote it as direction 0∞. One of the arms of the net of
angles must then be parallel with this line for each measurement. Put
together the total number of intersections for each arm into a table such
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as Table 2.3. The intersection count data can then be expressed graphically
in a polar diagram, known as the rose of intersections. Rotate the rose
of intersections by the angle p/2 clockwise or anticlockwise or shift
values in the table. The fibres are not orientated up or down, so it is not

b4

b 3

b2

b 1 = 0∞

(a) (b)

0∞

(c)

d

c

b

a

(d)

b4

b3

b2

b1

b

c

a
d

2.30 Construction of a rose of directions using a simple graphical
method: A net of angles is composed of equal arm lengths (a);
intersections of a net of angles with a planar fibrous structure and a
chosen direction in it (b); Steiner compact of side lengths a, b, c, d
with arrow pointing towards bi, belonging to the side c (c); a rose of
directions (d).

Table 2.3 The values of the rose of intersections for the fibrous system as
depicted in Fig. 2.30(b). The last column of the figure contains values of
this rose after rotation by p /2, used for construction of the Steiner
compact in Fig. 2.30(c)

Angle Rose of intersections values p /2 rotated values

0∞ 3 3
45∞ 4 3
90∞ 3 3

135∞ 3 4
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important to distinguish between those fibre segments that point in
direction b or b + p. Hence the angular density f (b ) is the periodic
function with the period p. Clockwise and anticlockwise rotations of
the rose of intersections differ by p /2 + p/2 = p, and this periodicity
provides us with the same information about f (b ).

(iii) Plot the count number from the rotated rose of intersection data into a
polar diagram, using an appropriate scale, to obtain the p /2 rotated
geometrical interpretation of a rose of intersections.

(iv) Raise verticals from each point of the p /2 rotated rose of intersections
to obtain a polygon restricted to containing the origin of the polar
diagram. This polygon must be convex and centrally symmetric, and is
known as the Steiner compact (see Fig. 2.30(c)). The distance between
neighbouring vertices, i.e. the Steiner compact side length, is the
estimation of the angular density f (b i) of the rose of directions value
for a direction identical to the direction of the side in question. Hence,
using the length of the side pointing in the direction b i we can estimate
the angular density f (b i) within the interval b i ± 1/2 · Db.

(v) Construct arcs with their centres in the polar graph to finish the rose of
directions. Each arm of these arcs is proportional to the length of the
corresponding side of the Steiner compact. Similarly, like the Steiner
compact, the rose of directions must also be centrally symmetric. The
resultant rose of directions for our example is depicted in Fig. 2.30(d).
To normalise the construction, we have used a scale where the total
length value of the arms of the rose of directions is equal to 1.

Figure 2.31 shows us various simple planar curve systems, a regular square
grid, a grid of rectangles and a system of circles. Each grid is shown with its
rose of directions. The reader is invited to estimate them using the simple
graphical method described above. We should point out that, for each
measurement, the net of angles must be fully embedded into the fibrous
system. The reader will probably observe some nearly negligible angular
density values estimated for directions that are not present in the system.
That is the cost paid for the method’s simplicity.

2.4 Stereology of a three-dimensional fibrous mass

Adding a dimension helps us to fully appreciate the power of using stereological
methods to estimate three-dimensional parameters of features from
measurements of their two- and lower dimensional sections. Here, we introduce
methods for estimating volumes, surfaces, lengths and their densities in
three-dimensional reference regions. We then describe methods for estimating
average curvature and torsion of fibrous materials in three-dimensional space.
Finally we discuss feature counts.



Understanding the three-dimensional structure 83

2.4.1 Estimation of volume and volume density

To illustrate the importance of volume estimations, we refer to the fact that
pore volume or pore volume density are critical parameters in the air
permeability of fibrous materials, as has been shown for instance by
Mohammadi et al. (2002). Fibre bulk density heavily influences the
compressibility of fibrous materials, as shown by Taylor and Pollet (2002) or
in classic work on this topic by Van Wyck (1964). The porosity of a fabric
and the volume fraction of fibres were considered critical parameters for
coupled heat and liquid moisture transfer in porous textiles by Li and colleagues
(2002). The point counting method introduced by Glagolev and Thompson
to estimate the areas of figures was actually aimed at ultimately estimating
volumes, and we will now extend the results discussed above to three-
dimensional space in order to estimate volumes and volume densities of real
fibrous objects.

(a)

(b)

(c)

2.31 Roses of directions belonging to various fibre structures: a
regular square grid (a); a rectangular frame (b); a system of
circles (c).
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Imagine a three-dimensional reference region W and an object Y embedded
in it, as shown in Fig. 2.32. The conditional probability p with which a
uniform random point A in W has a non-empty intersection with the object Y
is given by the relation:

p
V Y
V

 = 
( )
( )W [2.20]

where V(W) is the volume of the reference region W and V(Y) is the volume
of the object Y to be estimated. The geometrical probability p of the hit is
equal to the fraction of the aforementioned volumes V(Y)/V(W). When we
carry out n measurements with the uniform random point in the three-
dimensional region W, it will hit the object I times, where I is close to the
product pn; in other words I/n estimates p. Hence, by knowing the volume
V(W) with sufficient accuracy, we can express the estimation of the volume
[V(Y)] of the object Y as:

[ ( )] =  ( )V Y I
n

V W [2.21]

The volume fraction is hence estimated by:

[ ( )]
[ ( )]

 = 
V Y
V

I
nW [2.22]

To improve the efficiency of three-dimensional volume and volume fraction
measurements, as a rule we use uniform random two-dimensional sections
on which we carry out zero-dimensional sections, i.e. point hit trials, using
test systems. This procedure is indicated in Fig. 2.33 for a single measurement.
To enhance the accuracy of our measurements, we have to take further two-

A
W

2.32 In a reference region is embedded a three-dimensional object Y.
A point A represents a zero-dimensional section in the region W that
does not strike the object Y.

Y
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dimensional sections of the body and apply more trials on them using the test
system. All trials must be uniform, random and isotropic.

Measurements of volume density correspond with a fundamental principle
of stereology that was proved long before this mathematical discipline was
established in 1961. The French geologist Delesse (1847) showed that the
volume densities of various components making up rocks can be estimated
from random ground sections by measuring the relative areas of their profiles.
The same statement is contained in Equation [2.22] because the right-hand
side is identical with the right-hand side of Equation [2.8] for area density
estimation, and we claimed that with the test system of point probes we
made our measurements on planar, i.e. two-dimensional, sections. That is
why:

[ ( )]
[ ( )]

 = 
[ ( )]
[ ( )]

 = 2

2

V Y
V

S Y
S

I
nW W [2.23]

where [S(Y2)]/[S(W2)] is taken as the average value from a series of
measurements carried out on a sufficient number of uniform random two-
dimensional sections of W and Y. Quantities Y2 and W2 represent induced
structures of Y and W on the two-dimensional sections. Symbols I and n have
the same meanings as before.

Another approach for deriving the Delesse principle is based on integration,
as introduced in the integral relation [2.1] commenting on the definition of
stereology. Having a function of both cross-sectional areas SY (z) and SW(z)
for Y and W using the same incremental step Dz, we obtain:

2.33 A two-dimensional section of a reference region W with
embedded objects, Y (a), consists of two parts of the two-
dimensional section (b). The cross-section is overlapped with a test
system containing zero-dimensional probes at the bottom right-hand
corner of the fundamental zones, as highlighted by arrows. The total
number, N, of probes in the test system is 44 and the number of hits
with Y as I = 16. The volume density can be roughly estimated as
[V(Y)/V(W)] to be I/n = 16/44 = 0.364 from this measurement.

(a)

Y

(b)

W

Y

W
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The term of the left of Equation [2.24] is the mean value of the fraction of
areas. Integrals in Equation [2.24] have been estimated using a finite number
H/Dz of sections, where H is the total height of the reference region W and
Dz is the step, i.e. the constant distance between parallel and neighbouring
sections. For more details see Fig. 2.34. The relation [2.24] is independent of
the choice of z-axis direction and hence estimation of volumes and volume
densities can be carried out on one series of parallel sections, which is
unusual in stereology since sections must normally be isotropic.

2.4.2 Surface area and surface area density of three-
dimensional features

Surface and surface area density estimations are critical for explaining the
sorption characteristics of a fibrous mass. Kim and colleagues (2003) carried
out research on fibre structure and pore size in wiping cloths. The filtration
properties of fibrous materials with respect to their surface areas were
investigated by Lukas (1991).

W

Z

H

Sz (Y)

DZ

2.34 Delesse’s principle: The volume density V(Y)/V(W) is estimated
through the average value of area densities Sz(Y)/Sz(W).

Y

Sz (W)
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To describe a stereological method for surface area estimation, we start
with the three-dimensional reference region W of volume V(W). In this volume
is placed a three-dimensional body with surface Y and of surface area S(Y).
We will use a test needle T of length L(T) to estimate the surface area S(Y).
Assume the needle is uniform, random and isotropic in W, being the region
to which the appearance of the needle is restricted. The isotropy of the
needle means that if we moved its lower point to the origin of a coordinate
system, the upper point hits the small area dm on a sphere with radius
r = L(T) with the probability p1 for which:

p
d

r1 2 = 
2

m
p

[2.25]

Taking one small, flat piece y on the surface Y with the area S(y), then the
whole area S(Y) is built of n such elementary surface pieces y. The probability
p2 with which the uniform random and completely anisotropic needle T, i.e.
a needle with fixed orientation, hits y in a region W will be expressed as a
geometrical probability. The probability of the hit p2 is now given by the
fraction of two volumes. The first is the volume of a point set composed of
locations of the needle fixed point (let it be located on its lower edge) for all
cases when the needle hits the small area y. The second volume is that of W.
This volume is proportional to all possible locations of the fixed point of the
needle. The first volume, the small area y, and the needle, are depicted in Fig.
2.35. For p2, the following is true:

2.35 The probability of intersection of the needle T (having a fixed
orientation in space) and a small surface piece y is proportional to
the volume V = S(y)L(T)/cos Q. 

    
r
uy  is perpendicular to y and     

r
ut  of

unitary length lies in the needle direction.
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p
S y L T

V2  = 
( ) ( )/cos /

( )
q

W [2.26]

where S(y)L(T)/cos q/ is the volume of the first point set when T hits y.
Straight brackets denote the absolute value of the cosine of angle q that
contains the needle and the normal perpendicular to the small area y. All we
have to do now is to express the average value of p for uniform random
positions and isotropic orientations of the needle, which means we have to
express the average value of the function /cos q/, where all needle directions
will have equal weight. To do that we return to the area dm on the sphere and
consider the sphere radius r = 1. Envisage the situation depicted in Fig. 2.36,
which helps us to obtain the relation dm = sin q dF dq. The total area covered
by all dm’s for various needle orientations is one half of the unit sphere
surface area 2p. One half of the sphere surface is used here because we do
not wish to distinguish between up and down orientation of the needles. The
dm elements are of various areas for various q as can be seen in Fig. 2.36.
The area dm is much smaller near the sphere’s apex than in the vicinity of the
sphere’s equator. Considering the geometrical interpretation of a function
average value on a chosen interval; here we have a two-dimensional interval
2p which has the shape of one half of the unitary sphere surface. In the
interval value, r2 is implicit because r = 1. This interval is determined using
angles F and q in Fig. 2.36. The function for which the average is sought is
/cos q/. The factor sin q in the relation dm = sin q d F dq tells us how the area
dm varies with various values of the angle q, representing various attitudes
on the sphere. The interval for q is <0, p /2> and F is from <0, 2p >. The

sin q d F

sin q

dm

r = 1

q dq

d FF

2.36 A small piece of surface dm on a sphere has its area expressed
in terms of angles F and q.
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average value of /cos q/ for an isotropic needle on the interval 2p is then
given by:

/ d
A

cos / = 1
2

 /cos /  q p q mÚ
= 1

2
  /cos /  sin 

0

2

0

/2

p q q q
p p

Ú Úd d dF F

= /cos /  sin  = 
1
2

 sin  = 1
20

/2
2

0

/2p p

q q q qÚ È
ÎÍ

˘
˚̇

d [2.27]

The first integral in the relation is taken over one half of the unitary sphere
surface denoted here as A.

Now we substitute this result into Equation [2.26] to obtain p as the
average value of p2 with respect to the isotropic orientation of the needle:

p
S y L T

V
S y L T

V
 = 

( ) ( ) /cos /
( )

 = 
( ) ( )
2 ( )

q
W W [2.28]

The relation [2.28] is valid for each surface piece y. All y’s cover the whole
surface Y. To sum the probability p for the total number n of y’s we obtain:

np I
L T
V

S y
L T S Y

Vi

n

i =  = 
( )

2 ( )
  ( ) = 

( ) ( )
2 ( )=1W WS [2.29]

where the product of the probability p and the number N of elementary areas
y is expressed as the number of hits I between the needle of length L(T) and
surface Y. We estimate p from a finite number of measurements. That is why
the estimation of the surface S(Y) for known volume V(W) has the shape:

[ ( )] = 
2 ( )

( )
S Y

IV
L T

W
[2.30]

For the surface density [S(Y)]/[V(W)] of Y in the three-dimensional reference
region W we can write:

[ ( )]
[ ( )]

 = 
2
( )

S Y
V

I
L TW [2.31]

For measurements using a test system containing the total length L of all
needles, I is the total number of all hits belonging to the total length L of all
needles. Hence the formula [2.31] is valid for test systems after the substitution
of L for L(T) according to this new meaning of I.

We will now demonstrate the use of an integral test system to estimate the
surface area S(Y) of a surface Y that is embedded in a three-dimensional
region W. We prepare uniform random and isotropic sections from our specimen
and then we place over them the integrated test system as shown in Fig. 2.37.
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The total length L of the needles inside W is estimated by the count Q of
needle reference points that fall inside W rather than by time-consuming
measurements of the needle length if they are only partly involved in W. The
estimation of the total needle length in W is then L = L(T )Q.

We can also estimate S(Y ) from two-dimensional sections of Y, denoted
Y2, using Buffon’s needle. We simply substitute the distance d between
parallels in Equation [2.12] with S(W2)/L, where W2 is now the reference area
of the two-dimensional section of W and L is the total length of parallel lines
lying in W2. The substitution into [2.12] gives us [L (Y2)] = p S(W2)I/(2L).
Here, L(Y2) is the perimeter length of Y2. The surface area S(Y) is then
estimated according to [2.30], using the following formula for known V(W):

[ ( )] = 
4[ ( )]

[ ( )]
( )2

2
S Y

L Y
S

Vp W W [2.32]

or the surface density S(Y)/V(W) in the reference region W can be estimated as:

[ ( )]
[ ( )]

 = 
4[ ( )]

[ ( )]
2

2

S Y
V

L Y
SW Wp [2.33]

The surface area S(W2) can be measured by point counting methods using
zero-dimensional probes in an appropriate test system.

2.4.3 Length and length density in three-dimensional
space

Linear, fibre-like structures in biological tissues support a wide variety of
physiological functions, including membrane stabilisation, vascular perfusion,

2.37 A three-dimensional object X, e.g. a fibrous mass, has its
surface denoted here as Y (right side of the figure). The number of
intersections between test needles and the surface Y of the object X
to estimate the surface area S(Y) can be realised through two-
dimensional sections (left-hand side of the figure). The number of
intersections of point probes with cross-section of the region W is
denoted by Q (Q = 9 in this case). Q estimates the total needle length
L in a particular section as L = Q · L(T). The number of hits of test
needles with Y is I = 2. Hence, a rough estimation of the surface
density from the measurement is [S(Y )]/[V(Y) = 2I /(QL(T) = 4 /(9L(T )).

W

Y

Y

Y

A

Y
X

X X

X
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and cell-to-cell communication; thus stereological estimations of the parameters
of fibre-like three-dimensional structures are of primary interest. Smith and
Guttman (1953) demonstrated a stereological method to estimate the total
length density of linear objects based on random intersections with a two-
dimensional sampling probe. The method presented by Mouton (2002) uses
spherical probes that are inherently isotropic to measure the total length of
thin nerve fibres in the dorsal hippocampus of the mouse brain. Hlavickova
et al. (2001) studied bias in the estimator of length density for fibrous features
in a three-dimensional space using projections of vertical slices. Cassidy
(2001) estimated the total length of fibres in a fibrous mass simultaneously
with the count of fibres, providing an estimation of average fibre length that
was used to investigate fatigue breaks in wool carpets.

Consider a fibre mass composed of negligibly thin fibres. We treat this
fibrous system as a curve C of a total length L(C ) in the three-dimensional
reference region W, having the volume V(W). To estimate the curve length,
we will use a test tablet T of known area S(T ). This test tablet T will sit inside
W uniform random and isotropic positions. For T this means, accordingly
with remarks in Section 2.2.3:

(i) the chosen fixed point X of T is uniform random in the reference region
W; and

(ii) the orientation of the testing surface T is isotropic independent of the
position of T in W, which means in this case that the normal vector   

r
uT

perpendicular to T is isotropic in three-dimensional space. This situation
is shown in Fig. 2.38.

ut

ut

Y
X T

T

X

W

2.38 A reference region W of volume, V (W), contains a fibrous system
Y of a total length, L (Y). The length, L(Y ), is estimated from the
number of intersections, I, between Y and a test piece of a plane,
whose surface area is S(T ). Two uniform random and isotropic
positions of T are indicated in the figure.
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Imagine an element c of the curve C of length L(c) which is so short that it
can be considered to be straight, appearing together with the uniform random
and isotropic tablet T in W. The probability p that T will be hit by c is the
same as in the subsection below dealing with the estimation of a three-
dimensional object and its surface area. For the current example, we exchange
S(T ) for S(Y ), and L(c) for L(T ) in Equation [2.28]. In other words, the
testing probe becomes the measured object and vice versa. Using these
substitutions, we obtain the following formula for the hit probability:

p
S T L c

V
 = 

( ) ( )
2 ( )W [2.34]

From this relation we derive the formula for estimating the length L(C) of
the curve C using the sum over all its elements ci. We suppose that there are
n such elements constituting C, thus:

I
S T
V

L c
i

n

i = 
( )

2 ( )
  ( )

=1W S [2.35]

where I is the number of hits represented by the product np and S
i

n

iL c
=1

 ( )  is

equal to the total curve length L(C ). We estimate L(C ) from a finite number
of measurements, and hence we can write from Equation [2.35] the relation:

[ ( )] = 
2 ( )

( )
L C

IV
S T

W
[2.36]

This relation is desirable for known volumes V(W) of the reference region.
The length density of the curve C in the reference region W is then estimated
as:

[ ( )]
[ ( )]

 = 2
( )

L C
V

I
S TW [2.37]

To estimate the curve length or the curve length density in a three-dimensional
reference region W using testing systems, we first have to prepare uniform
random and isotropic sections of a three-dimensional sample, as suggested
in Fig. 2.39. We then use test systems with two-dimensional probes and the
excluding line. For these measurements, I is the total number of cross-
sections of the curve in all two-dimensional probes, and S(T ) is estimated as
count Q of the fixed points in each probe that hits the section of W under
investigation. The area of the two-dimensional probe is denoted a. We can
then write:

[ ( )]
[ ( )]

 = 2L C
V

I
aQW [2.38]
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W

a

(a)

(b)

(c)

4 
m

m

a

2.39 An isotropic and uniform random two-dimensional section of a
reference region W is sketched (a) while the used test system with
excluding lines is given by (b). The area of each two-dimensional
probe of the test system is a. The total number of objects, counted
by the test system is denoted as I while p is the total number of two-
dimensional probes with area a used to count particles, as shown in
(c). A rough estimation of the length density from only one
measurement in a particular case is [L(C)] /[V (W)] = 2I /S (T ) = 4 /
(2S(T)).

c

c
c c

c

c c
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2.4.4 Average curvature and average torsion of linear
features in three-dimensional space

Understanding torsion and curvature values in three-dimensional space is
important where the compression behaviour of fibrous materials is critical,
for instance in some furniture and automotive applications. The method
described here was first introduced by DeHoff (1975). Wool fibre curvatures
were calculated by Munro and Carnaby (1999) from their internal geometry
and shrinkage. We introduce the notions of curvature and torsion of fibres in
three-dimensional space, and then describe the count method for estimating
average values, without deriving the respective formulae. Curvature is usually
considered in studies of the compression behaviour of a fibrous mass (Beil
et al., 2002), while torsion is generally ignored. Changes in both these values
during the compression of a very small fibrous mass were estimated in Lukas
et al. (1993).

Curvature and torsion are local characteristics of curves in three-dimensional
space. The latter vanishes when the curve is fully embedded in a plane. Our
definitions of the curve and its torsion are based on the osculation plane, the
osculation circle, the tangent, the normal and the binormal. We start by
investigating the vicinity of a point A on a curve in three-dimensional space
as shown in Fig. 2.40. As well as point A, two points B and C are located on
the same curve so that A is between them. These three points determine the
circle going through all of them. The limit circle for B Æ A and C Æ A is the

z

b t

C
r

n

S

x

A

B

y

2.40 A curve in three-dimensional space with three points A, B, C
that determines the osculation circle with centre at S. The tangent     

r
t

and the normal vector     
r
n  lie in the osculation plane whilst the

binormal vector     
r
b  is perpendicular to it.
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osculation circle to the curve in the point A. This osculation circle determines
the osculation plane. The normal vector   

r
n  to the curve is embedded in this

plane, which is unitary, has its origin in the point A and points in the direction
A to S, where S is the centre of the osculation circle.

The unitary vector lying in the osculation plane that is perpendicular to
the normal   

r
n  is the tangent vector   

r
t  of the curve in point A. Both these

orthogonal vectors   
r
n  and   

r
t  determine the next unitary vector   

r
b  which is

perpendicular to them. This vector is denoted as binormal of the curve in
point A. By shifting point A along the curve by distance dl, the orientation
of all these three vectors   

r
n ,   

r
t  and   

r
b  can be changed. The new vectors

between the shifted point and the original one generally contain non-zero
angles. We will denote the angle between tangents as dq and the angle that
contains binormals as dg. The curvature k at point A is defined as

k d
d

 = q
l [2.39]

and is equal to 1/r where r is the radius of the osculation circle belonging to
point A on the curve. The torsion t at point A has the defining relation:

t g
l = 

d
d

[2.40]

From the definitions, it is clear that the curvature relates to orientation changes
of the tangent while torsion is related to orientation changes of the binormal.
The average values of curvature k  and torsion t  along a curve of total
length L are then expressed as average values of functions on the interval
(0, L) in the following manner:

k
L

k d
L

 = 1  ( )
0Ú l l    t t l l = 1  ( )

0L
d

L

Ú [2.41]

Stereological estimations and measurements of these average values are
based on the investigation of projections of thin sections of a fibrous mass as
depicted in Fig. 2.41. The average value of torsion t  is estimated from the
relation:

[ ] = 
2

t p I
N

A

L
[2.42]

where IA is the number of inflex points in a unit area of the projection. The
inflex points are marked as squares in Fig. 2.41 and they represent those
points on the curve where the centre of the osculation circle belonging to the
planar projection of the curve jumps from one side of the curve to the other.
For instance, the letter ‘S’ has one such point in its centre while ‘C’ and ‘O’
have no inflection points. The quantity NL is the average number of intersections
between the testing line and the curve per unit length of the testing line, as
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shown in Fig. 2.41. These testing lines have to be uniform random and
isotropic.

The average value of curvature k  is estimated using the formula:

[ ] = 
2

k
T
N

A

L

p
[2.43]

The symbol TA denotes the average count of the tangential positions of a
sweeping testing line per projection unit area. We refer to a tangential position
as that where the sweeping line first touches the curve. The sweeping line is
moved slowly across the projection, perpendicular to a previously chosen
direction. The average number of counts is then calculated from all isotropic
orientations and directions along which the sweeping line has moved. The
count of tangential positions for each orientation of the sweeping line is then
divided by the area of the sample projection (across which the line has
swept), to obtain TA. Some tangential positions of the sweeping line are
shown in Fig. 2.41.

2.4.5 Feature count and feature count density:
dissectors

The introduction of dissectors into stereology represents a major turning
point for this discipline. Dissectors, described by Gundersen (1988b), can,
without exaggeration, be considered a methodological conception as significant
as the contributions of Delesse, and Glagolev and Thompson.

b = 5 cm

Test line

a 
= 

3 
cm

Thin section of a reference region W

Projection of a thin section

2.41 Projection of a thin section containing linear features, i.e. fibres.
The tangential positions of a test line, moved along the fibres, are
denoted by triangles. Inflection points are marked with small squares
and hits of the fibres with the test line are denoted using empty
circles. A rough estimation of the average torsion from one particular
measurement is     [ ]

r
t  = p IA /(2NL) = (p 9 /(ab))/(4 /a), while that of the

average curvature is     [ ]k  = pTA /(2NL) = (p 7/(ab))/(4 /a).
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Table 2.1 (Section 2.2.2) shows that only three-dimensional probes can
measure the feature count in three-dimensional space. Unlike the methods
described above, dissectors consist of three-dimensional probes and hence
they cannot be expressed using two-dimensional test systems.

The use of dissectors is demonstrated in Fig. 2.42. The dissector can be
envisaged as a prism-shaped three-dimensional probe. The base of this prism
A has surface area S(A), and it has height h. The volume of the dissector D
is then V(D) = S(A)h. Critical parts of the dissector are the so-called excluding
walls. In Fig. 2.42, parts of these excluding walls are shown using different
shades. The excluding walls are infinite plains that involve three mutually
perpendicular walls of the prism. Using the dissector consists of determining
an object count NV belonging to the dissector’s volume V(D). The decision
procedure for counting concrete features is similar to the feature count method
in two-dimensional space, viz. that given in Section 2.3.3, where we used
test systems with the excluding line. Here, we count only features that fulfil
the following requirements:

(i) The object has a non-empty intersection with the dissector’s prism.
(ii) The object does not touch any of the three excluding walls.

The unbiased estimation of object count volume density NV is then:

[ ] = 
( )

N I
V DV [2.44]

where I is the number of counted objects in the dissector D that respect the
conditions (i) and (ii).

In the example in Fig. 2.42, we count only particles 1, 2, 3 and 4 because
the others have either an empty intersection with the dissector’s prism or

2.42 The dissector D on the figure of volume V(D) = hS(A) has height
h and base A of area S(A). Parts of three excluding walls are shaded
grey. Only particles No. 1, 2, 3 and 4 are counted in D as the rest hit
the excluding walls. The volume density of the object count for this
particular case may be estimated as [NV]
= I/V(D) =4/V(D).

h
 =

 2
 c

m

2 6

3

54

A
1
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D
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they touch at least one of the excluding walls. Measurements have to be
repeated using a number of uniform random dissectors. Counting long fibrous
features is extremely arduous as we have to follow an entire fibre outside the
dissector prism to make sure that the fibre does not hit one of the excluding
walls. The best way to count fibres is to count their origins and divide the
final count by two, because each fibre has two ends.

2.5 Sources of further information and advice

We have introduced a number of stereological methods useful for investigating
fibrous materials, focusing mostly on explaining the basic stereological tools.
We have not covered the statistical side of processing experimental data,
which is broadly described in Russ (2000), Saxl (1989) and Elias and Hyde
(1983). Recent information about stereology and its application regarding
fibrous materials can be found in the Journal of Microscopy, the official
journal of the International Society for Stereology, and in the Textile Research
Journal and The Journal of The Textile Institute.

We refer the reader to the following recent works for a greater understanding
of stereology: Baddeley (2005), Coleman (1979), Ambartzumian (1982),
Russ (1986), Hilliard (2003), Mouton (2002), Underwood (1981), Vedel
Jensen (1998) and DeHoff (1968).

Stereological methods could be also useful for identifying fabric defects
in a dynamic inspection process. A dynamic inspection system for fast image
acquisition with a linear scan digital camera is described by Kuo (2003).
Changes in appearance due to mechanical abrasion may be evaluated with
respect to changes in image texture properties, as has been shown by Berkalp
et al. (2003).
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3.1 Introduction

From the general engineering approach, water flow in solid porous media
should be treated as a problem of hydromechanics. Thus the fundamental
laws, such as the continuity or conservation equations, the rheological
conditions and the Navier–Stokes equations supposedly govern the phenomena.
However, several unique characteristics of fluids transport in fibrous materials
render these tools nearly irrelevant or powerless. For instance, except
during the wet processing period where higher speed flow may be encountered,
low speed, low viscosity and small influx of the fluids make such issues as
the interactions between fluids and solid media much more prevalent over
the fluids flow problem itself; the pore size, often so tiny as to be on the
same scale level as the free molecular path length in the fluid, highlights
the need for consideration of the so-called molecular flow, where problems
such as absorption and capillary action dominate. In other words, a more
microscopic view and associated approaches become indispensable.

Further, if our focus is mainly on fluid transport in porous media during
static or quasi-static conditions, it raises another question related to the
phase change. The solid fibrous media may cause some of the fluids (e.g.
moist air) to condense back to liquid phase, which in turn brings out other
issues such as capillary condensation, moisture absorption, associated change
of the properties and behaviors of the fibrous materials, and generation of
sorption heat.

The above issues and discussions in fact dictate the content and focus of
this chapter.

3
Essentials of psychrometry and

capillary hydrostatics

N. P A N and Z. S U N, University of California, USA
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3.2 Essentials of psychrometry (Skaar, 1988; Siau,
1995; Morton and Hearle, 1997)

3.2.1 Atmosphere and partial pressures

Our unique ambient environment conditions provide a proper combination
of such factors as air, moisture, temperature, and pressure indispensably
suitable for life on earth. The whole system is a dynamic one in which every
physical entity constantly interacts with others, yet maintains the equilibrium
most of the time for our survival and prosperity. Moisture is one of the three
states in which water manifests itself and its existence and behavior in the
atmosphere is one of the fundamental issues in our discussion.

It is common knowledge that the dry air surrounding us comprises a
mixture of gases, the approximate percentages of which are shown in Table
3.1; these are known as the dry gases of the atmosphere. Based on this
composition, the molecular mass of dry air is calculated as 28.9645. For a
given atmospheric conditions, the dry gases will inevitably absorb water
moisture and become a humid mixture termed the moist air. Psychrometrics
deals with the thermodynamic properties of moist air and uses these properties
to analyze conditions and processes involving moist air.

In dealing with the connection of behaviors between the system and its
constituents, our problem here is rare where the Rule of Mixtures is actually
valid – that is, the water vapor is completely independent of the dry atmospheric
gases in that its behavior is not affected by their presence or absence. For
instance, in moist air, the dry gases and the water vapor behave according to
Dalton’s law of Partial Pressures, i.e. they act independently of one another
and the pressure each exerts combines to produce an overall ‘atmospheric
pressure’ patm.

patm = pg + pv

where pg and pv are termed the partial pressures of the dry gases and of the
water vapor, respectively. From the ideal gas laws, the partial pressures are

Table 3.1 The approximate percentage
(composition) of dry air

Nitrogen 78.0840%
Oxygen 20.9476%
Argon 0.9340%
Carbon dioxide 0.0314%
Neon 0.001818%
Helium 0.000524%
Methane 0.0002%
Sulfur dioxide 0 to 0.0001%
Other 0.0002%
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related to other thermodynamic variables such as the volume V and temperature
T of the constituent i as

piVi = niRTi = NikTi [3.1]

where the subscript i = atm, g or v, respectively.

∑ n = number of moles
∑ R = universal gas constant
∑ N = number of molecules
∑ k = Boltzmann constant = 1.38066 ¥ 10–23 J/K

= R/NA, NA – Avogadro’s number = 6.0221 ¥ 1023/mol

Since the mole fraction (xi) of a given component in a mixture is equal to the
number of moles (ni) of that component divided by the total number of moles
(n) of all components in the mixture, then the mole fractions of dry air and
water vapor are, respectively:
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By definition, xa + xv = 1.
However, upon the changing of environment conditions, the mass of water

vapor will change due to condensation or evaporation (also known as
dehumidification and humidification respectively), but the mass of dry air
will remain constant. It is therefore convenient to relate all properties of the
mixture to the mass of the dry gases rather than to the combined mass of dry
air and water vapor.

The evaporation of water is a temperature-activated process and, as such,
the saturated vapor pressure psv (the maximum of pv) may be calculated with
relatively good precision using an Arrhenius-type (Skaar, 1988; Siau, 1995)
equation:

p A E
RTsv  =  exp –( ) [3.4]

where psv = saturated water vapor pressure, A = constant; E = escape energy.
The equation in fact offers the relationship between vapor saturation and the
ambient temperature, and increasing temperature will lead to a greater saturated
vapor pressure psv.

For instance, with increasing temperature there is an increase in molecular
activity and thus more water molecules can escape from the liquid water and
be absorbed into the gas. After a while, however, even at this increased
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temperature, the air will become fully saturated with water vapor so that no
more water can evaporate unless we again increase the temperature. The
pressure produced by the water vapor in this fully saturated condition is
known as the saturated vapor pressure (psv) and, since at a given temperature
the air cannot absorb more water than its saturated condition, the saturated
vapor pressure is the maximum pressure of water vapor that can occur at any
given temperature.

3.2.2 Percentage saturation and relative humidity

To describe the water vapor concentration in the atmosphere, the most natural
way is to determine its volume or weight in a given volume of the air.
However, the obvious difficulties in actually handling the vapor volume or
weight prompt other more feasible measures for the purpose. The first one is
the Percentage Saturation PS

PS
h
h

v

sv
(%) =   100¥ [3.5]

where hv is the actual mass of vapor in a unit volume of the air and hsv is the
saturated vapor mass. So the PS value indicates the degree of saturation of
the atmosphere at a given temperature.

Another more frequently used measure is the relative humidity (RH),
defined based on the ratio of the partial vapor pressures

RH(%) =   100
p
p

v

sv
¥ [3.6]

For most practical purposes, the ratio of the partial vapor pressures is very
close to the ratio of the humidities, i.e.

h
h

p
p

v

sv

v

sv
  ª [3.7]

or

RH ª PS [3.8]

Although the relative humidity and the percentage saturation have been treated
as interchangeable in many applications, it is often useful to remember their
differences.

3.2.3 Dew-point temperature (Tdp)

Since the molecular kinetic energy is greater at higher temperature, more
molecules can escape the surface and the saturated vapor pressure is
correspondingly higher. Besides the two characteristic temperatures which
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affect the state of water, namely, the ice point and boiling point, the dew
point temperature is yet another one. This is the temperature at which the
saturation state (RH = 100%) of the mixture of air and water vapor during a
cooling process, at constant pressure and without any contact with the liquid
phase, is reached. If the temperature drops lower than this point, water vapor
will begin to condense back into liquid water as indicated by the arrow A in
Fig. 3.1.

3.3 Moisture in a medium and the moisture

sorption isotherm

3.3.1 Moisture regain and moisture content

Similar to the case of vapor in the atmosphere, we need to find a way to
specify the amount of total moisture in a material. If we can determine the
weight D of dry material and weight W of moisture in the material, there are
two definitions commonly used in the textile and fiber industries (Morton
and Hearle, 1997).

Moisture regain (R)

R W
D

(%) =   100¥ [3.9]

Moisture content (M)

M W
W D

(%) = 
(  + )

  100¥ [3.10]

It is obvious that R > M and relation between R and M:

M
o

is
tu

re
 a

b
so

rb
ed

P = constant
RH = 100% RH = 50%

RH = 25%

A

V
ap

o
r

Temperature

B
Liquid

Tdp

3.1 Dew temperature and relative humidity.



Essentials of psychrometry and capillary hydrostatics 107

R
M

M
(%) = 

(%)

1 – 
(%)

100
Ê
Ë

ˆ
¯

and

M
R

R
(%) = 

(%)

1 + 
(%)

100
Ê
Ë

ˆ
¯

[3.11]

Note that in literature, as well as in our discussion hereafter, the terms of
both moisture regain and moisture content are often treated as interchangeable.

Equilibrium moisture content (EMC) is the moisture content at which the
water in a medium is in balance with the water in the surrounding atmosphere.
Although the temperature and relative humidity of the surrounding air are
the principal factors controlling EMC, it is also affected by species, specific
gravity, extractives content, mechanical stress, and previous moisture history.
The curve relating the equilibrium moisture content of a material with the
relative humidity at constant temperature is called the sorption isotherm. A
collection of moisture sorption isotherms of several fibers is provided in Fig.
3.2 (Morton and Hearle, 1997). At a given set of standard atmospheric
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3.2 Sorption isothermals for various fibers. From Morton, W. E. and
J. W. S. Hearle (1997). Physical Properties of Textile Fibers. UK, The
Textile Institute.
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Table 3.2 Moisture sorption data for major fibers

Moisture absorption of fibres

Material Recommended Absorption Difference in
allowance or regain (%) desorption and
commercial regain (65% R.H., absorption
or conventional 20∞C)† regains (65%
allowance* (%) R.H., 20∞C)†

Cotton 8.5 7–8 0.9
Mercerized cotton – Up to 12 1.5
Hemp 12 8 –
Flax 12 7 –
Jute 13.75 12 1.5
Viscose rayon 13 12–14 1.8
Secondary acetate 9 6, 6.9 2.6
Triacetate – 4.5 –
Silk 11 10 1.2
Wool 14–19 14, 16–18 2.0
Casein – 4.1 1.0
Nylon 6.6, nylon 6 53/4 or 61/4 4.1 0.25
Polyester fibre 1.5 or 3 0.4 –
Acrylic fibre – 1–2 –
Modacrylic fibre – 0.5–1 –
Poly(vinyl chloride) – 0 –
Poly(vinyl alcohol) – 4.5–5.0 –
Glass, polyethylene – 0 –

Adapted from Morton and Hearle (1997)
* As given in B.S. 4784:1973; other standardizing organizations may quote
different values.
† The earlier measurements were at 70∞F (21.1∞C).

conditions, the EMC for each fiber type is a constant, and hence is termed as
‘official’ or ‘commercial’ regain for trading purpose (Morton and Hearle,
1997). Table 3.2 shows the data including the ‘commercial’ regains for some
common textile fibers (Morton and Hearle, 1997).

3.3.2 Moisture sorption isotherm

The relationship between the moisture content in a material and the ambient
relative humidity at a constant temperature yields a moisture sorption isotherm
when expressed graphically. Determination of a moisture sorption isotherm
is the general approach for characterizing the interactions between water and
solids. This isotherm curve can be obtained experimentally in one of two
ways (see Fig. 3.3).

(i) An adsorption isotherm is obtained by placing a completely dry material
into various atmospheres of increasing relative humidity and measuring
the weight gain due to water uptake;
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(ii) A desorption isotherm is found by placing an initially wet material
under the same relative humidities, and measuring the loss in weight.

The adsorption and desorption processes are both referred to as the sorption
behavior of a material, and are not fully reversible; a distinction can be made
between the adsorption and desorption isotherms by determining whether
the moisture levels within the material are increasing, indicating wetting, or
whether the moisture is gradually lowering to reach equilibrium with its
surroundings, implying that the product is being dried.

On the basis of the van der Waals adsorption of gases on various solid
substrates, Brunauer et al. (1938) classified adsorption isotherms into five
general types (see Fig. 3.4). Type I is termed the Langmuir, and Type II the
sigmoid-shaped adsorption isotherm; however, no special names have been
attached to the other three types. Types II and III are closely related to Types
V and IV, respectively. For the same adsorption mechanisms, if they occurred
in ordinary solids, Types II and III depict two typical isotherms. If, however,
the solid is porous so that it has an internal surface, then the thickness of the
adsorbed layer on the walls of the pores is necessarily limited by the width
of the pores. The form of the isotherm is altered correspondingly; Type II
turns into Type V and Type III corresponds to Type IV (Gregg and Sing,
1967). Moisture sorption isotherms of most porous media are nonlinear,
generally sigmoidal in shape, and have been classified as Type II isotherms.
Caurie (1970), Rowland (in Brown, 1980), Rao and Rizvi (1995) and Chinachoti
and Steinberg (1984) explained the mechanisms and material types (mainly
foods) leading to different shapes of the adsorption isotherms. Morton and
Hearle have collected most comprehensive experimental results regarding
the moisture sorption behaviors (e.g. Fig. 3.3) of fibrous materials including
moisture sorption isotherms for various fibers. Al-Muhtaseb et al. published

Moisture
regain R (%)

Desorption

Absorption

0 RH (%)
T = constant

Moisture regain R (%)

Desorption

Hysteresis

Time

Absorption

3.3 Two ways of depicting the sorption isotherms and hysteresis.
From Morton, W. E. and J. W. S. Hearle (1997). Physical Properties of
Textile Fibers. UK, The Textile Institute.
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a comprehensive review on moisture sorption isotherm characteristics (Al-
Muhtaseb et al. 2002). For interpretation purposes, a generalized moisture
sorption isotherm for a hypothetical material system may be divided into
three main regions, as detailed in Fig. 3.5 (Al-Muhtaseb, et al. 2002).

Region A represents strongly bound water with an enthalpy of vaporization
considerably higher than that of pure water. A typical case is sorption of
water onto highly hydrophilic biopolymers such as proteins and
polysaccharides. The moisture content theoretically represents the adsorption
of the first layer of water molecules. Usually, water molecules in this region
are un-freezable and are not available for chemical reactions or as plasticizers.

Region B represents water molecules that are less firmly bound, initially
as multi-layers above the monolayer. In this region, water is held in the solid
matrix by capillary condensation. This water is available as a solvent for
low-molecular weight solutes and for some biochemical reactions. The quantity
of water present in the material that does not freeze at the normal freezing
point usually is within this region.

In region C or above, excess water is present in macro-capillaries or as
part of the liquid phase in high moisture materials. It exhibits nearly all the
properties of bulk water, and thus is capable of acting as a solvent. The
variation in sorption properties of materials reported in the literature is caused

RH (%)

Moisture regain R (%)
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3.4 Different moisture sorption behaviors. Reprinted from Brunauer,
S., P. H. Emmett, et al. (1938). ‘Adsorption of gases in multimolecular
layers.’ Journal of the American Chemical Society 60: 309. With
permission from American Chemical Society.
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by property variations, pretreatment, and differences in experimental
techniques adopted (gravimetric, manometric or hygrometric) (Saravacos,
et al. 1986).

The mechanisms of moisture sorption, especially in hydrophilic fiber
materials, are further complicated by a continuous change of the structure of
the fibers owing to swelling (Preston and Nimkar, 1949). High internal
temperature change caused by heat of sorption with large amounts of moisture
also introduces more difficulties to the kinetics of the moisture sorption
(Urquhart and Williams, 1924).

3.3.3 Water activity and capillary condensation

In describing the state of any medium, the free energy (DG) of the system is
one of the most important parameters along with temperature T, volume V,
concentration c and pressure p. On a molar basis, the free energy becomes
the chemical potential F (cal/mole), and is defined as

F = Fo + RT ln a [3.12]

where R = gas constant and T = absolute temperature in ∞K. The dimensionless
variable a is termed the thermodynamic activity of the medium, which as
reflected clearly in the equation, determines the system energy at a given
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3.5 Three main regions in a generalized moisture sorption isotherm.
Reproduced with permission from Al-Muhtaseb, A. H., McMinn,
W. A. M. and Magee, T.R.A. (2002). ‘Moisture sorption isotherm
characteristics of food products: a review.’ Trans. IChemE, Part C, 80:
118–128.
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temperature. A substance with a greater a value is thermodynamically more
active.

The water activity aw is a measure of the energy status of the water in a
specific system such as in the air or in a fiber mass. Different materials
systems will generate different aw values. As a potential energy measurement
aw is a driving force for water movement from regions of high water activity
to regions of low water activity. In other words, the water activity is the
cause for water (liquid or moisture) transport in porous media (Berlin, 1981;
Luck, 1981; Van den Berg and Bruin, 1981).

There are several factors that control water activity in a system, and they
have been summarized mathematically in the well known Kelvin equation
(McMinn and Magee, 1999) as

a
p
p

ew
v

sv

M
r RT =  = 
–2 g

r [3.13]

where M = molecular weight of water, g = surface tension; r = density of
water, T the absolute temperature and r the capillary radius. Although there
have been questions on the validity of the Kelvin equation, it has been
proven (Powles, 1985) that the equation is valid to a few per cent even for
temperatures approaching the critical temperature and for microscopic drops
insofar as homogeneous thermodynamics is valid. One word of caution is
that according to Equation [3.13], aw Æ 0 when r Æ 0, i.e. an adequately low
aw would require a capillary radius too small to be practical; a lower boundary
should thus be observed in specific cases.

On open surfaces, moisture condensation sets in when saturation vapor
pressure has been reached. However, it follows from the Kelvin equation that
the vapor saturation pressure reduces inside capillaries of narrower sizes. As
a result, for the same vapor pressure, the saturation point becomes lower in
smaller pores so that water condenses inside the pores. This means that the
tightest pores will be filled first with condensed liquid water. This ‘pre-
matured’ condensation in pores is termed the capillary condensation. This is
an extremely important phenomenon widely observable in our daily life. The
process of such condensation continues until vapor pressure equilibrium is
reached, i.e. up to the point at which the vapor pressure of the water in the
surrounding gaseous phase is equal to the vapor pressure inside the pores.

Further, from Equation [3.13], several major factors which can lower the
water activity aw value are identified. Temperature is an obvious one and
there is a special section later in this chapter on its influence.

Next, the nature of the material system the water is in; including the
impurities or dissolved species (e.g. salt or dyestuff) in liquid water which
interact in three dimensions with water through dipole–dipole, ionic, and
hydrogen bonds, leading to the associated colligative effects which will alter
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such properties as the boiling or freezing point and vapor pressure. Raoult’s
Law (Labuza, 1984) sometimes is used to account for these factors. In a
solution of Nw moles water as the solvent and Ns moles of dissolved solute,

a
N

N Nw
w

w s
 =  

 + 
a [3.14]

where a is termed the activity coefficient and a = 1 for an ideal solute. The
presence of the solute Ns reduces the water activity aw and thus leads to the
colligative effects.

Also the surface interactions in which water interacts directly with chemical
groups on un-dissolved solid ingredients (e.g. fibers and proteins) through
dipole–dipole forces, ionic bonds (H3O

+ or OH–), van der Waals forces and
hydrogen bonds, as reflected by the change of the surface tension (Taunton,
Toprakcioglu et al., 1990; Duran, Ontiveros et al., 1998).

Finally, the structural influences, which are reflected through the capillary
size r where water activity is less than that of pure water because of changes
in the hydrogen bonding between water molecules.

It is a combination of all these factors in a material that reduces the energy
of the water and thus reduces the water activity as compared to pure water
(Al-Fossail and Handy, 1990; Hirasaki, 1996; Reeves and Celia, 1996; Tas,
Haneveld et al., 2004).

3.3.4 Water activity and sorption types

As described in the Kelvin equation, moisture trapped in the small pores exerts
a vapor pressure less than that of pure water at the given temperature. In other
words, water has a lower activity once trapped inside a material system. The
solids in which this effect can be observed exhibit so-called hygroscopic
properties. The phenomenon of hygroscopicity can be interpreted by a sorption
model such as the Brunauer, Emmett and Teller (BET) Equation (Brunauer,
Emmett et al., 1938) which proposes a multi-molecular sorption process as
shown in Fig. 3.6, based on the different levels of the water activity aw.

∑ aw £ 0.2, formation of a monomolecular layer of water molecules on the
pore walls

∑ 0.2 < aw < 0.6, formation of a multi-molecular layers of water molecules
building up successively on the monolayer;

∑ aw ≥ 0.6, the process of capillary condensation takes place as described by
the Kelvin equation.

3.3.5 Pore size effects

Just as indicated in the Kelvin equation, the wetting mechanisms change
with the pore sizes r.
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∑ Pore size < 10–7m – capillary-porous bodies within which the moisture is
maintained mainly through surface tension

∑ Pore size >10–7m – porous bodies within which the gravitational forces
have to be considered, apart from the capillary forces

On the other hand, taking into consideration the mechanism of liquid and
gaseous phase motion, the assumed value of 10–7m is of the same order as
the mean free path of water vapor under atmospheric pressure. Luikov (Luikov,
1968; Strumillo and Kudra, 1986) divided capillaries into micro-capillaries
with radii less than 10–7m.

Therefore, in the micro-capillaries in which the free path is larger than the
capillary radius, gas is transported by means of ordinary diffusion, i.e. chaotic
particle motion. In micro-capillaries, the capillary tubes filled up with liquid
due to capillary condensation on capillary walls, with a mono-molecular
liquid layer of about 10–7m thick formed. In the case of polymer adsorption,
the layers formed on the opposite capillary walls can be joined and the whole
capillary volume is filled with a liquid phase.

Macro-capillaries with radii bigger than 10–7m are, on the other hand,
filled up with liquid phase only when they are in a direct contact with liquid
– no more capillary condensation. Such a division into macro- and micro-
capillaries has been confirmed by Kavkazov (Kavkazov, 1952; Luikov, 1968;
Strumillo and Kudra, 1986) who observed that capillary-porous bodies of

3.6 Various kinds of moisture in a material. Reprinted from Brunauer,
S, P. H. Emmett et al. (1938). ‘Adsorption of gases in multimolecular
layers.’ Journal of the American Chemical Society 60: 309. With
permission from American Chemical Society.
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r > 10–7 m did not absorb moisture from humid air, but on the contrary
released the moisture into atmosphere.

It is worth mentioning that when vapor and temperature equilibrium are
obtained, the water activity in the atmosphere is now equal to the relative
humidity of surrounding air, i.e.

a
p
p
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sv

v

sv
 =    = 

RH(%)
100

ª [3.15]

This equation connects a material property, the water activity, with the ambient
condition. The more tightly water is bound with the material, the lower its
activity aw becomes. Equation [3.15] has wide implications and applications.
For instance, the moisture sorption isotherm can be expressed in two ways;
moisture regain ~ relative humidity presents how the ambient condition affects
the moisture in the material, as in many fiber related cases (Morton and
Hearle, 1997); whereas moisture regain ~ water activity reveals the
interconnection between the two material properties.

3.4 Wettability of different material types

Leger and Joanny (1992), Zisman (1964) and de Gennes (1985) have each
written an extensive review on the liquid wetting subject. The following is
just a brief summary of what been dealt with by them. Based on the cohesive
energy or surface tension, there are two types of solids (de Gennes, 1998).

∑ Hard solids – covalent, ionic or metallic bonded, high-energy surfaces
with surface tension gSO ~ 500 to 5000 erg/cm2;

∑ Weak molecular crystals – van der Waals (VW) forces, or in some special
cases, hydrogen bonds bonded, low-energy surfaces, with gSO ~ 50 erg/
cm2.

3.4.1 Typical behaviors of high-energy surfaces

Most molecular liquids achieve complete wetting with high-energy surfaces.
Assuming that chemical bonds control the value of gSO, while physical ones
control the liquid/solid interfacial energies, when there is no contact between
the solid and liquid, the total energy of the system is gSO + g where g is the
surface tension of the liquid. However, once the solid and liquid are in
contact, the interfacial energy becomes

gSL = gSO + g – VSL [3.16]

Here the term –VSL describes the attractive van der Waals interactions at the
S/L interface. Similarly, when bringing two portions of the same liquid together,
the system energy changes from 2g to
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gLL = 2g – VLL = 0 [3.17]

where –VLL represents the L/L interfacial attractions. Thus the spreading
parameter S, which measures the energy difference between the bare solid
and the solid covered with the liquid, is defined as (de Gennes, 1985)

S = gSO – (gSL + g) = –2g + VSL = VSL – VLL [3.18]

and the complete wetting (S > 0) occurs when

VSL > VLL [3.19]

That is, the high energy surfaces are wetted by molecular liquids, not because
gSO is high, but rather because the interfacial attraction between the solid and
liquid VSL is higher than the attraction between the liquid and liquid VLL.

3.4.2 Low-energy surfaces and critical surface tensions

For solids of low-energy surface, wetting is not complete. A useful way of
representing these results is to plot the contact angle cos q versus the liquid
surface tension g (See Fig. 3.7 for example). Although in many cases we
never reach complete wetting so that cos q = 1, we can extrapolate the plot
down to a value g = gc when cos q = 1; g > gc indicates a partial wetting and
g < gc a total wetting (de Gennes et al., 2003).

In general, we expect gc to be dependent on both the solid and liquid.

CH3

(CH2)n
Si

Cl ClCl
H

Si + + + + +
Glass

g (dyn/cm)20 gc 22 24 26

cosq
1
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3.7 The contact angle versus the liquid surface tension; From
Brochard-Wyart, F., ‘Droplets: Capillarity and Wetting’, in Soft Matter
Physics, M. Daoud, C.E. Williams, Editors. 1999, Springer: New York.
p. 1–45. With kind permission of Springer Science and Business
Media.
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However, when dealing with simple molecular liquids (where VW forces are
dominant), Zisman (1964) observed that gc is essentially independent of the
nature of the liquid, and is a characteristic of the solid alone. Typical values
of gc are listed in Table 3.3. So if we want to find a molecular liquid that wets
completely a given low energy surface, we must choose a liquid with surface
tension g £ gc. This critical surface tension gc is clearly an essential parameter
for many practical applications.

In general, the chemical constitutions of both the solid S and liquid L
affect the wetting behavior of the S/L system (Zisman, 1964), and some
concluding remarks are listed below.

(i) Wettability is proportional to the polarity of a solid;
(ii) The systems of high gc (Nylon, PVC) are those wettable by organic

liquids.
(iii) Among systems controlled by VW interactions, we note that CF2 groups

are less wettable (less polar) than CH2 groups. In practice, many protective
coatings (antistain, waterproofing etc.) are based on fluorinated systems.

Usually, glassy polymers, when exposed to a range of relative humidities,
show differing absorption behavior at low and high relative humidities (i.e.
low or high activities of the penetrant species) (Karad and Jones, 2005). At
low activities, sorption of gases and vapors into glassy polymers is successfully
described by a dual mode sorption theory, which assumes a combination of
Langmuir-type trapping within pre-existing holes and Henry’s Law type
dissolution of penetrant into the glassy matrix. At high activities, strong
positive deviations from Henry’s Law are observed, which indicated that the
sorbed molecules diffuse through the macromolecular array according to a
different mechanism (Jacobs and Jones, 1990).

In fact, the high cohesive energy of water leads to a phenomenon of
cluster forming in nonpolar polymers. The water molecule is relatively small
and is strongly associated through hydrogen bond formation. This combination
of features distinguishes it from the majority of organic penetrants. As a
result, strong localized interactions may develop between the water molecules
and suitable polar groups in the polymer. On the other hand, in relatively
nonpolar materials, clustering or association of the sorbed water is encouraged.
Rodriquez et al. (2003) confirmed that polymers having strong interactions

Table 3.3 The critical surface tension gc for some polymers

Nylon PVC PE PVF2 PTFE

gc (mN/m) 46 39 31 28 18

Reprinted from Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls,
Waves. pp. 21, de Gennes, P. G., Brochard-Wyart, F. and Quere, D. Copyright
(2003), with kind permission of Springer Science and Business Media
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with water have negligible degrees of water clustering, while the more
hydrophobic polymers exhibit a higher degree of clustering.

The quantitative description of penetrant diffusion into micro-heterogeneous
media has evolved over the last three decades and has become known as the
dual mode sorption theory. Based on Meares’ (1954) concept of microvoids
in the glassy state, Barrer et al. (1958) suggested two concurrent mechanisms
of sorption – ordinary dissolution and ‘hole-filling’.

Brown (1980) concluded through an extensive study that, at low partial
pressures or relative humidities, water is distributed uniformly throughout
the polymers, but probably preferentially where hydrogen bonding is possible.
At higher pressures, chains of water molecules form at hydrogen bonding
sites. The initial sorption process can be described by a conventional solution
theory and the enhancement process can be viewed as one of occupancy of
sites.

3.4.3 Retention of water inside a sorbent

All the natural fibers have groups in their molecules that attract water, referred
to as the hydrophilic groups (Morton and Hearle, 1997). However, after all
the hydrophilic groups have absorbed water molecules directly, the newly
arrived water molecules may form further layers on top of the water molecules
already absorbed. These two groups of water molecules are termed the directly
and indirectly attached water, as shown in Fig. 3.8. The former is firmly
bonded with the sorbent and hence is limited in movement and exhibits
physical properties significantly different from those of free, or bulk, water
(Berlin, 1981).

According to Luck (1981), bound water has a reduced solubility for other
compounds, causing a reduction in the diffusion of water-soluble solutes in
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3.8 Direct and indirect water. Adapted from Morton, W. E. and
J. W. S. Hearle (1997). Physical Properties of Textile Fibers. UK, The
Textile Institute.
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the sorbent, and a decrease in diffusion coefficient with decreasing moisture
content. The decreased diffusion velocity impedes drying processes because
of slower diffusion of water to the surface. Some of the characteristics of
bound water include a lower vapor pressure, high binding energy as measured
during dehydration, reduced mobility as seen by nuclear magnetic resonance
(NMR), non-freezability at low temperature, and unavailability as a solvent
(Labuza and Busk, 1979). Although each of these characteristics has been
used to define bound water, each gives a different value for the amount of
water which is bound. As a result of this, as well as the complexities and
interactions of the binding forces involved, no universal definition of bound
water has been adopted. Indirectly attached water groups whose activity is in
between those of the directly attached water and the free liquid water are
held relatively loosely. In fact, this division of two water groups inside a
sorbent forms the basis on which the first theory on moisture sorption was
constructed in 1929 by Peirce (1929).

3.5 Mathematical description of moisture sorption

isotherms

Water transport in porous material systems can be classified into three categories
(Rizvi and Benado, 1984).

(i) Structural aspects: to describe the mechanism of hydrogen bonding
and molecular positioning by spectroscopic techniques;

(ii) Dynamic aspects: to study molecular motions of water and their
contribution to the hydrodynamic properties of the system;
The use of these two approaches is restricted by the limited information
on the theory of water solid interactions.

(iii) Thermodynamic aspects: to understand the water equilibrium with its
surroundings at a certain relative humidity and temperature. Since
thermodynamic functions are readily calculated from sorption isotherms,
this approach allows the interpretation of experimental results in
accordance with a statement of theory (Iglesias et al. 1976).

Various theories have been proposed and modified in the past centennial to
describe the sorption mechanisms of individual fiber materials (Barrer, 1947;
Hill, 1950; Taylor, 1954; Al-Muhtaseb et al., 2002). Langmuir (1918) developed
the classical model for adsorption isotherms which is applicable for gases
adsorbed in a monolayer on material surfaces. Largely based on Langmuir’s
work, Brunauer et al. (1938) derived a widely used model for multi-layer
adsorption. Independently, Peirce introduced in 1929 a model which is based
on the assumption of direct and indirect sorption of water molecules on
attractive groups of the fibrous materials (Peirce, 1929); and a theory also
dealing with fibrous materials, in which the interaction between water and
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the binding sites was classified into three types of water with different
associating strengths, was later proposed by Speakman (1944). Young and
Nelson (1967) developed a complete sorption–desorption theory, starting
from the assumption of a distinct behavior of bound and condensed water.

The moisture uptake leads to swelling of hygroscopic cellular fibers, a
dimensional change due to breaking of inter- and intra-molecular hydrogen
bonds between the cellular molecules (Gruber, Schneider et al., 2001). Also
the equilibrium moisture isotherms show a distinct hysteresis between the
sorption and desorption cycle, indicating structural changes of the fiber caused
by the interaction with water (Hermans, 1949).

Labuza (1984) noted that no single sorption isotherm model could account
for the data over the entire range of relative humidity, because water is
associated with the material by different mechanisms in different water activity
regions. Of the large number of models available in the literature (Van den
Berg and Bruin, 1981), some of those more commonly used are discussed
below, a most recent account referring to Sánchez-Montero et al. (2005).

3.5.1 Selected theories on sorption isotherm

Amongst several brilliant pieces of work, Peirce proposed in 1929 one of the
earliest mathematical models to describe the absorption process. Given the
simplicity of his treatment, the model is surprisingly robust in comparison
with the more sophisticated models that followed. Peirce first divided the
absorbed water molecules into two parts, directly and indirectly attached
water molecules:

C = Ca + Cb [3.20]

where C, Ca and Cb are the total, direct and indirect water molecules absorbed
per available absorption site. The value C in fact is related to the moisture
regain R by

R
CM

M
w

o
 = k [3.21]

where Mw, Mo are the molecular weights of water and of per absorption site,

respectively, and k = 
W
W

t

o
 , and Wt, Wo are the total masses of the material

and of all absorption sites. Peirce then derived the expressions for both Ca

and Cb

Ca = 1 – e–C [3.22]

and

Cb = C – Ca = C – 1 + e–C [3.23]
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So that

C
R

 = 
3
100

k
[1.24]

By replacing the moisture regain with the ratio of pressures, and working out
the result for the coefficient k for a case of soda-boiled cotton, Equation
[3.20] was turned into

1 –  = (1 –  0.4 ) –5.4p
p

C ev

sv
a

Cb [3.25]

A comparison between the experiments and predictions is shown in Fig. 3.9
(Peirce 1929).

The Brunauer–Emmett–Teller (BET) model (Brunauer, Emmett et al.,
1938) has been the most widely used method for predicting moisture sorption
by solids. An important application of the BET isotherm is the surface area
evaluation for solid materials. In general, the BET model describes the isotherms
well up to a relative humidity of 50%, depending on the material and the type
of sorption isotherm. The range is limited because the model cannot describe
properly the water sorption in multilayers due to its three rather crude
assumptions (Al-Muhtaseb et al. 2002):

(i) the rate of condensation on the first layer is equal to the rate of evaporation
from the second layer;
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3.9 Comparison of Peirce’s theory with experiment. Soda-boiled
cotton at 110∞C. From Peirce, F. T. (1929). ‘A two-phase theory of the
absorption of water vapor by cotton cellulose.’ Journal of Textile
Institute 20: 133T.
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(ii) the binding energy of all of the adsorbate on the first layer is equal;
(iii) the binding energy of the other layers is equal to those of the pure

adsorbate.

However, the equation has been useful in determining an optimal moisture
content for drying and storage stability of materials, and in the estimation of
the surface area of a material (Van den Berg, 1991). The BET equation is
generally expressed in the form:

a
R a R R

aw

w o o
w(1 –  )

 = 1  +  –  1
a

a
a [3.26]

where R is the moisture regain, Ro is the monolayer moisture regain, aw is the
water activity, and a is approximately equal to the net heat of sorption. The
advantage of this expression is that the RHS of the equation is a linear
function of aw or the relative humidity. A plot of the equation in comparison
with experimental data of various fibers is seen in Fig. 3.10 (Morton and
Hearle, 1997). Dent in 1977 proposed a revised theory in which he improved
the BET model by lifting the assumption that the binding energy of the other
layers is equal to those of the pure adsorbate: this led to a better prediction
(Dent, 1977).

Hailwood and Horrobin (1946) developed a model in which the first
vapor layer of water molecules was treated as being chemically bonded with
the polymer groups and the successively absorbed water was viewed as
solution inside the polymer. Their final result yielded:
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[3.27]

where R is the moisture regain of the polymer; M the molecular weight of the
polymer group; K1 is the equilibrium constant; and K is the ratio of the
masses of the water solution and water vapor. By choosing the last three
constants for best fitting with experimental data, they achieved a close
agreement between the theoretical predictions and the testing data for both
wool and cotton fibers, as illustrated in Fig. 3.11 (Hailwood and Horrobin,
1946).

In order to analyze the sorption isotherm over a wider range of relative
humidities, a model, known as the Guggenheim–Anderson–de Boer (GAB)
theory, was also proposed by Guggenheim (1966), Anderson (1946) and de
Boer (1968), based on some modified assumptions of the BET model, including
the presence of an intermediate adsorbed layer having different adsorption
and liquefaction heats and also the presence of a finite number of adsorption
layers. The GAB equation provides the monolayer sorption values and could
also be used for solid surface area determinations. At the same time, the
equation covers a broader range of humidity conditions (Timmermann, 2003).
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Both BET and GAB methods have become very popular in food science,
where the theory of mono and multilayer adsorption is applied to the sorption
of water by a wide variety of dehydrated foods. The two theories are often
expressed in the same format; the BET equation

W
W cp p

p p p p cp p
m o

o o o
 = 

/
(1 –  / )/(1 –  /  + / )

[3.28]

and the GAB equation
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[3.29]

where W is the weight of adsorbed water, Wm the weight of water forming a
monolayer, c the sorption constant, p/po the relative humidity and k the
additional constant for the GAB equation. Using gravimetrically obtained
data, the constants in the two equations were obtained by an iterative technique,
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so that both methods were applied in Roskar and Kmetec (2005) to evaluate
the sorption characteristics of several excipients. Microcalorimetric analysis
was also performed in order to evaluate the interaction between water and
the substances. As shown in Fig. 3.12 from (Roskar and Kmetec, 2005), the
experiments showed excellent agreement between data and the BET model
up to 55% RH, confirming the previous conclusion and the GAB model over
the entire humidity range, indicated also by high values of the statistical
correlation coefficients in Roskar and Kmetec (2005). Furthermore,
microcalorimetric measurements suggested that the hygroscopicity of solid
materials could be estimated approximately using these approaches.

A kinetic study of moisture sorption and desorption on lyocell fibers was
recently conducted by Okubayashi et al. (2004). The authors summarized
the various moisture sorption modes as shown in Fig. 3.13 and discussed the
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3.11 Comparison between the experiments and predictions.
Reproduced by permission of the Royal Society of Chemistry from
Hailwood, A. J. and S. Horrobin (1946). ‘Absorption of water by
polymers: analysis in terms of a simple model.’ Trans. Faraday Soc.
42B: 84.
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3.12 Moisture sorption isotherms of Kollidone CL fitted by the BET
(dotted line) and GAB (solid line) models to the experimental data
(Roskar and Kmetec, 2005). With kind permission from the
Pharmaceutical Society of Japan.
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3.13 A schematic diagram of direct and indirect moisture sorption
onto external surface (1), amorphous regions (2), inner surface of
voids (3), and crystallites (4). Reprinted from Carbohydrate Polymers,
58, Okubayashi, S., U.J. Griesser, and T. Bechtold, ‘A kinetic study of
moisture sorption’, 293–299, Copyright (2004), with permission from
Elsevier.

results of quantitative and kinetic investigations of moisture adsorption in a
man-made cellulose lyocell fiber by using a parallel exponential kinetics
(PEK) model proposed by Kohler, Duck et al. (2003). A mechanism of water
adsorption into lyocell is applied by considering the BET surface area, water
retention capacity and hysteresis between the moisture regain isotherms and
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is compared to those of cotton fibers. The simulation curves showed good
fits with the experimental data of moisture regain in both sorption isotherms
(Fig. 3.14) and sorption hysteresis (Fig. 3.15).

The enthalpy change (DH) provides a measure of the energy variations
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3.14 Equilibrium moisture sorption and desorption isotherms of
lyocell (black) and cotton (white) at 20 ∞C. Reprinted from
Carbohydrate Polymers, 58, Okubayashi, S., U.J. Griesser, and T.
Bechtold, ‘A kinetic study of moisture sorption’, 293–299, Copyright
(2004), with permission from Elsevier.

3.15 Effects of relative humidity on hysteresis between sorption and
desorption isotherms for lyocell (black) and cotton (white) at 20 ∞C.
Reprinted from Carbohydrate Polymers, 58, Okubayashi, S., U.J.
Griesser, and T. Bechtold, ‘A kinetic study of moisture sorption, 293 –
299, Copyright (2004), with permission from Elsevier.
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occurring on mixing water molecules with sorbent during sorption processes,
whereas the entropy change (DS) may be associated with the binding, or
repulsive, forces in the system and is associated with the spatial arrangements
at the water–sorbent interface. Thus, entropy characterizes the degree of
order or randomness existing in the water-sorbent system and aids interpretation
of processes such as dissolution, crystallization and swelling. Free energy
(DG), based on its sign, is indicative of the affinity of the sorbent for water,
and provides a criterion as to whether water sorption is a spontaneous (–DG)
or non-spontaneous process (+DG) (Apostolopoulos and Gilbert, 1990).

The relation between differential enthalpy (DH) and differential entropy
(DS) of sorption is given by the equation (Everett, 1950):

ln  = –  + a H
RT

S
Rw

D D [3.30]

where aw is water activity; R is universal gas constant (8.314 J mol–1K–1) and
T is temperature (K). From a plot of ln (aw) versus 1/T using the equilibrium
data, DH and DS values were determined from the slope and intercept,
respectively. Applying this at different moisture contents (X) allowed the
dependence of DH and DS on moisture content to be determined (Aguerre,
et al. 1986).

3.5.2 Moisture sorption hysteresis

As in many nonlinear complex phenomena, there is hysteresis in the moisture
sorption process, typically depicted by the different paths on a regain–time
curve between absorption and desorption isotherm processes. Taylor (1952,
1954) has shown that hysteresis occurs even in cycles at low relative humidities.

The interpretations proposed for sorption hysteresis can be classified into
one, or a combination, of the following categories (Arnell, 1957; Kapsalis,
1987):

(i) Hysteresis in porous solids: for instance in polymers, the uneven breaking
and reforming of the cross-links due to capillary pressure during the
absorption and desorption processes causes the hysteresis (Urquhart
and Eckersall, 1930; Hermans, 1949; Morton and Hearle, 1997).

(ii) Hysteresis in non-porous solids: this is observed in materials such as
protein, where the theory is based on partial chemisorption, surface
impurities, or phase changes (Berlin, 1981);

(iii) Hysteresis in non-rigid solids: this is observed in materials such as in
single fibers, where the theory is based on changes in structure due to
swellings which hinder the further penetration of the moisture (Meredith,
1953; Ibbett and Hsieh, 2001).

Given the complexity of the issue, a more effective way to analyze the
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sorption hysteresis is to investigate the hysteresis in the contact angle during
sorption processes. Any wetting process is extremely sensitive to heterogeneities
or chemical contamination and one of the most spectacular manifestations of
the inhomogeneity is the contact angle hysteresis (Leger and Joanny, 1992).

On a real solid surface one almost never measures the equilibrium contact
angle given by Young’s law, but a static contact angle that depends on the
history of the sample. If the liquid–vapour interface has been obtained by
advancing the liquid, (after spreading of a drop, for example) the contact
angle has a value qA larger than the equilibrium value; if, on the contrary, the
liquid–vapour interface has been obtained by receding the liquid (by retraction
or aspiration of a drop), the measured contact angle qR is smaller than the
equilibrium contact angle in Fig. 3.16. Even when the solid surface is only
slightly heterogeneous, the difference qA – qR can be as large as a few
degrees; in more extreme situations, when the spreading liquid is not a
simple liquid but a solution, differences of the order of 100 degrees have
been observed (Leger and Joanny, 1992).

Contact angle hysteresis explains many phenomena observed in everyday
life. A raindrop attached to a vertical window should flow down under the
action of its weight; on a perfect window the capillary force exactly vanishes.
On a real window, in the upper parts of the drop the liquid has a tendency to
recede and the contact angle is the receding contact angle; in the lower parts
of the drop, the liquid has a tendency to advance and the contact angle is the
advancing contact angle; the difference in contact angles creates a capillary
force directed upwards that can balance the weight (Leger and Joanny, 1992).

The most common heterogeneities that are invoked to explain contact
angle hysteresis are roughness and chemical heterogeneities due to
contamination that we discuss in more detail below. Any kind of heterogeneity
of the solid may, however, create contact angle hysteresis: examples are the
porosity of the solid or the existence of amorphous and crystalline regions at
the surface of a polymeric solid. Another source of contact angle hysteresis
may come from the liquid itself; when it is not a simple liquid but a solution,
the irreversible adsorption of solutes leads to strong hysteretsis effects. The
following are just two examples of various models proposed for specific
surfaces.

3.16 Advancing and receding contact angles.

Advancing

qA qR
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(i) Contact angle hysteresis on a rough surface   The early models to
describe contact angle hysteresis considered surfaces with parallel or
concentric groves (Mason, 1978). The simplest example is that of a
surface with a periodic roughness in one direction u = uo sin qx when
the contact line is parallel to the groves in the y direction. In this
geometry, Young’s law can be applied locally and leads to a contact
angle between the liquid–vapour interface and the local slope of the
solid qo. The apparent contact angle q is, however, the angle between
the liquid–vapour interface and the average solid surface. If quo < 1:

q q =  –  o
du
dx

[3.31]

For stability reasons, in an advancing experiment, the contact angle
must increase; q thus reaches its maximum value q = qo + quo and the
contact line must then jump one period towards the next position where
this value can be attained; the advancing contact angle is thus

qA = qo + quo [3.32]

Similarly, in a receding experiment, the contact angle must decrease
and the receding contact angle is the lowest possible contact angle

qR = qo – quo [3.33]

This very simple model thus leads to contact angle hysteresis Dq = qA

– qR = 2quo and predicts jumps of the contact line between equilibrium
positions. It, however, contains some unrealistic features.

(ii) Surface with a single defect   Far away from the contact line, the
liquid–vapour interface is flat and shows a contact angle qA. Following
Young’s arguments, the extra force due to the defects on the contact
line is gLV(cos qo – cos qA). The dissipated energy for one defect is

D = UgLV (cos qo – cos qA) [3.34]

where U is the advancing speed. This dissipated energy is due to the
jump of the contact line on the defects and may be thus calculated
directly. The number of defects swept per unit time and unit length of
the contact line is nU and WA is the surface energy

D = nUWA [3.35]

Comparing these two expressions we obtain the advancing angle as

gLV (cos qo – cos qA) = nWA [3.36]

Similarly in a receding experiment,

gLV (cos qo – cos qR) = nWR [3.37]

The contact angle hysteresis is then



Thermal and moisture transport in fibrous materials130

gLV (cos qR – cos qA) = n(WA + WR) [3.38]

For a smooth defect we thus predict a contact angle hysteresis gLV

(cos qR – cos qA)
This dilute defect model has several important limitations; it is restricted
to small contact angles, to small distortions of the contact lines (that
we have assumed approximately flat) and to extremely dilute defects.

3.5.3 Heat and temperature effects on sorption isotherm

When a material absorbs water, heat is released, depending on the state of
the water. For liquid water, this heat is denoted as Ql, or Qv for vapor. The
two differ by the condensation heat Qc at constant temperature, i.e.

Qv = Ql + Qc [3.39]

There are two ways to describe or calculate the heat released (Watt and
McMahon, 1966; Morton and Hearle, 1997; Mohamed, Kouhila et al., 2005).

(i) The differential heat of sorption Q(J per gram of water absorbed): Heat
evolved for l gram water to be completely absorbed by a material of
infinite mass at a given moisture regain level R. Data for some fibers
are shown in Table 3.4 (Morton and Hearle, 1997).

(ii) The integral heat of sorption W (J per gram of dry material): Heat
evolved for l gram dry mass to be completely wet (absorption from the
liquid state) at a given moisture regain level R as shown in Fig. 3.17 for
several fibers (Morton and Hearle, 1997).

W Q dR
R

R

l

s

¥ Ú 100(%) = [3.40]

where RS is the saturation moisture regain at the constant temperature;

Table 3.4 The differential heat of sorption for some fibers

Differential heats of sorption (kJ/g)

Relative humidity (%)

Material 0 15 30 45 60 75

Cotton 1.24 0.50 0.39 0.32 0.29 –
Viscose rayon 1.17 0.55 0.46 0.39 0.32 0.24
Acetate 1.24 0.56 0.38 0.31 0.24 –
Mercerized cotton 1.17 0.61 0.44 0.33 0.23 –
Wool 1.34 0.75 0.55 0.42 – –
Nylon* 1.05 0.75 0.55 0.42 – –

Adapted from Morton and Hearle (1997)
*From sorption isotherms.
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or

Q dW
dRl  = –100 [3.41]

Heat evolved from 0 to 65% RH for major fibers is provided in Fig.
3.18 (Meredith, 1953).
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3.17 The integral heat of sorption for some fibers. From Morton,
W. E. and J. W. S. Hearle (1997). Physical Properties of Textile Fibers.
UK, The Textile Institute.

3.18 Heat evolved from 0 to 65% RH for major fibers. From Meredith,
R. (1953). From Fiber Science. J. M. Preston. Manchester, The Textile
Institute: p. 246.
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The differential heat of sorption is the amount of energy above the heat of
water vaporization associated with the sorption process. This parameter is
used to indicate the state of absorbed water by the solid particles. Free
energy and differential heat of sorption are commonly estimated by applying
the Clausius–Clapeyron equation to sorption isotherms (Kapsalis, 1987; Yang
and Cenkowski, 1993):

ln  = 1  –  12

1 1 2

a
a

Q
R T R

s È
ÎÍ

˘
˚̇

[3.42]

where ai is the water activity at temperature Ti 
 ∞K, Qs the heat of sorption

in cal/mole, a function of the moisture content. There is no analytical way to
determined Qs other than to conduct tests at two temperature levels to determine
the moisture sorption isotherms, from which Qs can be derived (Labuza,
1984). R the gas constant = 1.987 cal/mole ∞K, aw value increases as T
increases at a constant moisture content. In describing a moisture sorption
isotherm, one must specify the temperature and hold it constant. Morton and
Hearle (1997) have shown by using the equation that an increase in moisture
regain Da of 0.6 causes the temperature to increase by 10.3 ∞C.

Although, in theory, this sorption heat can serve as a thermal buffer for
clothing materials (for evaporation of sweat from a hot body absorbs the heat
to more or less chill the body), in practice, sweat often blocks the air flow
channels in the clothing, and causes fiber swelling which in turn reduces the
free pores in the clothing. Both hinder the ‘breath-ability’ of the clothing.
Furthermore, the sorption heat can be a safety hazard for materials storage.
The collective sorption heat can raise the temperature to the burning point!
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4.1 Introduction

Surface tension, wicking and wetting are among the most frequently observed
phenomena in the processing and use of fibrous materials, when water or any
other liquid chemical comes into contact with and is transported through the
fibrous structures.

The physical bases of surface tension, wetting and wicking are molecular
interactions within a solid or liquid, or across the interface between a liquid
and a solid.

Wetting/wicking behaviors are determined by surface tensions (of solid
and liquid) and liquid/solid interfacial tensions. Curvature and roughness of
contact surface are two other critical factors for wetting phenomena, especially
in the case of wetting in fibrous materials. These factors and their effects on
wetting phenomena in fibrous materials will also be discussed.

4.2 Wetting and wicking

4.2.1 Wetting

The term ‘wetting’ is usually used to describe the displacement of a solid–air
interface with a solid–liquid interface. When a small liquid droplet is put in
contact with a flat solid surface, two distinct equilibrium regimes may be
found: partial wetting with a finite contact angle q, or complete wetting with
a zero contact angle (de Gennes, 1985), as shown in Fig. 4.1.

The forces in equilibrium at a solid–liquid boundary are commonly described
by the Young’s equation:

gSV – gSL – gLV cos q = 0 [4.1]

where gSV, gSL, and gLV denotes interfacial tensions between solid/vapor,
solid/liquid and liquid/vapor, respectively, and q is the equilibrium contact
angle.

4
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The parameter that distinguishes partial wetting and complete wetting is
the so-called spreading parameter S, which measures the difference between
the surface energy (per unit area) of the substrate when dry and wet:

S = [Esubstrate]dry – [Esubstrate]wet [4.2]

or S = gSo – (gSL + gLV) [4.3]

where gSo is surface tension of a vapor-free or ‘dry’ solid surface.
If the parameter S is positive, the liquid spreads completely in order to

lower its surface energy (q = 0). The final outcome is a film of nano-scale
thickness resulting from competition between molecular and capillary forces.

If the parameter S is negative, the drop does not spread out, but forms at
equilibrium a spherical cap resting on the substrate with a contact angle q. A
liquid is said to be ‘mostly wetting’ when q £ p /2, and ‘mostly non-wetting’
when q > p /2 (de Gennes et al., 2004). When contacted with water, a surface
is usually called ‘hydrophilic’ when q £ p /2, and ‘hydrophobic’ when
q > p /2.

4.2.2 Wicking

Wicking is the spontaneous flow of a liquid in a porous substrate, driven by
capillary forces. As capillary forces are caused by wetting, wicking is a
result of spontaneous wetting in a capillary system (Kissa, 1996).

In the simplest case of wicking in a single capillary tube, as shown in Fig.
4.2, a meniscus is formed. The surface tension of the liquid causes a pressure
difference across the curved liquid/vapor interface. The value for the pressure
difference of a spherical surface was deduced in 1805 independently by
Thomas Young and Pierre Simon de Laplace, and is represented with the so-
called Young–Laplace equation (Adamson and Gast, 1997):

D gP
R RLV = 1  + 1

1 2

Ê
Ë

ˆ
¯ [4.4]

For a capillary with a circular cross-section, the radii of the curved interface
R1 and R2 are equal. Thus:

Vapor
Liquid

q q

Solid

(a) (b) (c)

4.1 A small liquid droplet in equilibrium over a horizontal surface:
(a) partial wetting, mostly non-wetting, (b) partial wetting, mostly
wetting, (c) complete wetting.
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DP = 2gLV/R [4.5]

where R = r/cos q [4.6]

and r is the capillary radius. As the capillary spaces in a fibrous assembly are
not uniform, usually an indirectly determined parameter, effective capillary
radius re is used instead.

4.3 Adhesive forces and interactions across

interfaces

The above discussions show that both wicking and wetting behaviors are
determined by surface tensions (of solid and liquid) and liquid/solid interfacial
tensions. These surface/interfacial tensions, in macroscopic concepts, can be
defined as the energy that must be supplied to increase the surface/interface
area by one unit. In microscopic concepts, however, they originate from such
intra-molecular bonds as covalent, ionic or metallic bonds, and such long-
range intermolecular forces as van der Waals forces and short range acid–
base interactions. Therefore, the physical bases of wetting and wicking are
those molecular interactions or adhesive forces within a solid or liquid, or
across the interface between a liquid and a solid. These adhesive forces
include Lifshitz–van de Waals interactions and acid–base interactions.

4.3.1 Lifshitz–van der Waals forces

Molecules can attract each other at a moderate distances and repel each other
at a close range, as denoted by the Lennard–Jones potential:

r

R

q

4.2 Wicking in a capillary.

h
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w r A
r

C
r

( ) =  –  12 6 [4.7]

where w(r) is the interactive potential between two molecules at distance r,
and A and C are intensities of the repellency and attraction, respectively.

The attractive forces, represented by the second term at the right-hand
side of Equation [4.7], are collectively called ‘van der Waals forces’. They
are some of the most important long-range forces between macroscopic
particles and surfaces. They are general forces which always operate in all
materials and across phase boundaries. Van der Waals forces are much weaker
than chemical bonds. Random thermal agitation, even around room temperature,
can usually overcome or disrupt them. However, they play a central role in
all phenomena involving intermolecular forces, including those interactions
between electrically neutral molecules (Israelachvili, 1991; Good and
Chaudhury, 1991).

When those intermolecular forces are between like molecules, they are
referred to as cohesive forces. For example, the molecules of a water droplet
are held together by cohesive forces. The cohesive forces between molecules
inside a liquid are shared with all neighboring atoms. Those on the surface
have no neighboring atoms beyond the surface, and exhibit stronger attractive
forces upon their nearest neighbors on the surface. This enhancement of the
intermolecular attractive forces at the surface is called surface tension, as
shown in Fig. 4.3.

Intermolecular forces between different molecules are known as adhesive
forces. They are responsible for wetting and capillary phenomena. For example,
if the adhesive forces between a liquid and a glass tube inner surface are
larger than the cohesive forces within the liquid, the liquid will rise upwards
along the glass tube to show a capillary phenomenon, as shown in Fig. 4.2.

To derive the van der Waals interaction energy between two bodies/surfaces
from the pair potential w(r) = –C/r6, Hamaker (1937) introduced an additivity
assumption that the total interaction can be seen as the sum over all pair

Surface tension
Gas

Liquid

4.3 Liquid surface tension caused by cohesive forces among liquid
molecules.
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interactions between any atom in one body and any atom in the other, thus
obtaining the ‘two-body’ interaction energy, such as that for two spheres
(Fig. 4.4(a)), for a sphere near a surface (Fig. 4.4(b)), and for two flat
surfaces (Fig. 4.4(c)) (Israelachvili, 1991). And the Hamaker constant A is
given as a function of the densities of the two bodies:

A = p 2Cr1r2 [4.8]

Hamaker’s theory has ever since been used widely in studies of surface–
interface interactions and wetting phenomena, although there have been
concerns about its additivity assumption and ignorance of the influence of
neighboring atoms on the interaction between any atom pairs (Israelachvili,
1991; Wennerstrom, 2003).

The problem of additivity is completely avoided in Lifshitz’s theory
(Garbassi et al., 1998; Wu, 1982; Wennerstrom, 2003; Israelachvili, 1991).
The atomic structure is ignored, and interactive bodies are regarded as dielectric
continuous media. Then the van der Waals interaction free energies W between
large bodies can be derived in terms of such bulk properties as their dielectric
constants and refractive indices. And the net result of a rather complicated
calculation is that Lifshitz regained the Hamaker expressions in Fig. 4.4, but
with a different interpretation of the Hamaker constant A. An approximate
expression for the Hamaker constant of two bodies (1 and 2) interacting
across a medium 3, none of them being a conductor (Israelachvili, 1991;
Wennerstrom, 2003), is

A
hv n n n n

n n n n n n n n
e

1,2
1
2

3
2

2
2

3
2

1
2

3
2 1/2

2
2

3
2 1/2

1
2

3
2

2
2

3
2 1/2

 = 
3 (  –  )(  –  )

8 2 (  + ) (  + ) [(  + ) + (  + ) ]

+ 3
4

 – 
 + 

 –  
 + 

1 3

1 3

2 3

2 3
kT

e e
e e

e e
e e [4.9]

where h is the Planck’s constant, ve is the main electronic adsorption frequency
in the UV (assumed to be the same for the three bodies, and typically around
3 ¥ 1015 s–1), and ni is the refractive index of phase i, ei is the static dielectric
constant of phase i, k is the Boltzmann constant, and T the absolute temperature.
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4.4 Van der Waals interaction free energies between selected bodies.
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Alternatively, from a macroscopic view, the creation of an interface with
interfacial free energy g12 by bringing together two different phases from
their infinitely separately states, characterized by their surface energies g1

and g2, results in a molecular reorganization in the surface layers of each
phase, as well as in interphase molecular interactions. These effects can be
expressed thermodynamically as the work of adhesion, Wa:

Wa = g1 + g2 – g12 [4.10]

It was suggested by Fowkes that the equilibrium work of adhesion between
two surfaces for a system involving only apolar interactions (Fowkes, 1962)
is:

Wa = 2(g1g2)
1/2 [4.11]

Combining Equations [4.10] and [4.11], we obtain:

g12 = g1 + g2 – 2(g1g2)1/2, i and j apolar

= (  –  )1 2
2g g [4.12]

For greater generality, polar components should be taken into consideration.
This will be examined in the following section.

4.3.2 Acid–base interactions

While Lifshitz–van der Waals (LW) interactions (g LW) represent the apolar
component of interfacial forces, acid–base (AB) interactions (g AB) account
for the polar component. Hydrogen bonds constitute the most important
subclass of acid–base interactions. The Lifshitz–van der Waals/acid–base
approach, or acid–base approach for short claimed that, for any liquid or
solid, the total surface tension g can be uniquely characterized by these two
surface tension components (van Oss, 1993; Good, 1992; Good et al., 1991):

g = g LW + g AB [4.13]

This approach came into existence when the thermodynamic nature of the
interface was re-examined by van Oss et al. (1987a) in the light of Lifshitz
theory. The apolar interaction between a protein and a low energy surface
solid is repulsive and hence solely the apolar interaction cannot explain the
strong attachment of biopolymer on the low energy solid. A polar term,
short-range interaction, later called Lewis acid–base (AB) interaction, was
introduced to explain the attraction.

The LW component in Equation [4.13] can be derived by Equation [4.12].
AB interactions, on the other hand, are not ubiquitous as are LW interactions.
They occur when an acid (electron acceptor) and a base (electron donor) are
brought close together. Accordingly, the acid–base surface tension component
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comprises two non-additive parameters: acid surface tension parameter g +

and base surface tension parameter g –:

g g gAB = 2 + – [4.14]

The AB interactions across an interface may be expressed in the form

g g g g g12 1
+

2
+

1
–

2
–= (2  – )(  – )AB [4.15]

The existence of acid–base interactions can substantially improve wetting
and adhesion. The high energy associated with acid–base interactions is due
to their short range (2–3A) Coulombic forces.

The interfacial tension for solid/liquid systems, therefore, can be obtained
through a combination of Equations [4.12]–[4.15] (van Oss, 1993; Kwok
et al., 1994):

g g g g g g g g gSL S L S
LW

L
LW

S L S L =  + –  2 ( ) – 2 ( ) – 2( )1/2 + – 1/2 – + 1/2 [4.16]

It is well known that surface tensions of liquids may readily be measured
directly by force methods such as the Wilhelmy plate or the du Nouy ring.
However, there is no well-accepted direct method to measure the surface
tensions of solid polymers. When using the Young’s equation [4.1] to derive
the solid surface tension from liquid surface tension and contact angle, a
valid approach to determine interfacial tensions between liquid and solid is
very important. The acid–base approach has therefore been used frequently
to estimate the solid surface tensions (Kwok et al., 1994, 1998; van Oss et
al., 1990) or interfacial adhesion (Greiveldinger and Shanahan, 1999;
Chehimi et al., 2002).

In order to calculate the solid surface tension components from the acid–
base approach, Equation [4.16] combined with Young’s Equation [4.1] yields
(Lee, 1993):

g q g g g g g gL S
LW

L
LW

S L S L(1 + cos ) = 2 ( ) + 2( ) + 2( )1/2 + – 1/2 – + 1/2 [4.17]

under the assumption that vapor adsorption is negligible.
From Equation [4.17], the solid surface tension components, g gS

LW
S, +

and g S
–  can be calculated by simultaneous solution of three equations if the

measurement of contact angles with respect to three different liquids is known
on the solid substrates. Three liquids of known surface tension components
( ,  and )+ –g g gL

LW
L L  are also required. Usually, the van der Waals component

g S
LW  can be first determined by using an apolar liquid. Then two other polar

liquids can be used to determine the acid–base components of the solid, g L
+

and g L
–  (Kwok et al., 1994; van Oss et al., 1990).
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4.4 Surface tension, curvature, roughness and their

effects on wetting phenomena

There has been numerous research work published on the wetting process on
solid surface, including several comprehensive reviews (Good, 1992; de
Gennes, 1985), which cover topics from contact angle, contact line, liquid–
solid adhesion, wetting transition (from partial wetting to complete wetting)
and dynamics of spreading. However, wetting of fibrous materials becomes
an even more complex process as it involves interaction between a liquid and
a porous medium of curved, intricate and tortuous structure, yet with a soft
and rough surface, instead of a simple solid, flat and smooth surface.

4.4.1 Surface tension and wettability

From studies on the bulk cohesive energy, we learn that there are two main
types of solids: hard solids (bound by covalent, ionic or metallic) with so-
called ‘high energy surfaces’, and weak molecular crystals (bound by van
der Waals forces, or in some cases by acid–base interactions) with ‘low
energy surfaces’. The surface tension, gsv, is in the range of 500 to 5000 mN/
m for high energy surfaces, and 10 to 50 mN/m for low energy surfaces
(Fowkes and Zisman, 1964). Most organic fibers belong to the ‘low energy
surfaces’ category.

Most molecular liquids achieve complete wetting with high-energy surfaces
(de Gennes, 1985). In the idealized case where liquid–liquid and liquid–
solid interactions are purely of the van der Waals type (no chemical bonding
nor polar interactions), solid–liquid energy could be deducted as follows:

If a semi-infinite solid and a semi-infinite liquid are brought together,
they start with an energy gLV + gSo, and end in gSL, as the van der Waals
interaction energy VSL between solid and liquid is consumed. This process
can be expressed as:

gSL = gSo + gLV – VSL [4.18]

To a first approximation, the van der Waals couplings between two species
are simply proportional to the product of the corresponding polarizabilities
a (de Gennes, 1985):

VSL = kaSaL [4.19]

Similarly, if two liquid portions are brought together, they start with energy
2gLV, and end up with zero interfacial energy:

2gLV – VLL = 0 [4.20]

The same applies to solids:

2gSo – VSS = 0 [4.21]
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Equation [4.3] combined with [4.18]–[4.21] gives:

S = gSo – (gSL + gLV) = VSL – VL L = k(aS – aL)aL [4.22]

Therefore, a liquid spreads completely if aS > aL so as to make S positive.
Low-energy surfaces can give rise to partial or complete wetting, depending

on the liquid chosen (de Gennes, 1985). The empirical criterion of Zisman
(Zisman, 1964; de Gennes et al., 2004) is that each solid substrate has a
critical surface tension gC, and there is partial wetting when the liquid surface
tension g > gC and total wetting when g < gC.

The critical surface tension can be determined by the so-called Zisman
plot. A series of homologous liquid (usually n-alkanes, with n the variable)
is chosen for the study. Cos q as a function of g is plotted to give the critical
surface tension, as shown in Fig. 4.5 (de Gennes et al., 2004; de Gennes,
1985).

Equation [4.22] is an interpretation of spreading coefficient S in terms of
van der Waals forces only. To extend the wetting criteria for liquid/solid
interfaces to include both long-range and short-range interactions, two key
parameters are used: the effective Hamaker constant Aeff and the spreading
coefficient S (Brochard-Wyart et al., 1991; Lee, 1993). The effective Hamaker
constant describes the long-range interactions:

Aeff = ASL – ALL [4.23]

And the spreading coefficient S contains contributions from short-range
interactions in its original expression [4.3]. It is also important to note that
both S and Aeff are independent variables, and both can have positive or
negatives values.

Using two parameters, S and Aeff, as wetting criteria, results in four
possibilities of wetting behaviors:

(i) S > 0 and Aeff > 0, complete wetting. A small droplet put in contact with
a flat solid surface spreads out and forms a thin ‘pancake’ film, as
shown in Fig. 4.6(a).

cos q

1

0
g C g  of n-alkanes (mN/m)

4.5 A typical Zisman plot to determine critical surface tension g C.
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(ii) S > 0 and Aeff < 0, pseudo partial wetting. The final equilibrium state of
the liquid drop is a spherical cap with a precursor film, as shown in Fig.
4.6(b).

(iii) S < 0 and Aeff > 0, partial wetting. The solid around the droplet is dry.
The liquid profile is hyperbolic and curved downward, as shown in Fig.
4.6(c).

(iv) S < 0 and Aeff < 0, partial wetting. The solid around the droplet is dry.
The liquid profile is hyperbolic and curved upward, as shown in Fig.
4.6(d).

Over the past two decades, considerable interest has developed in the field
of acid–base, or electron acceptor/donor theory and their applications in
evaluating surface and interfacial tensions, as described in the previous section.
One of the appealing features of the concept based on acid–base theory is
that it introduces the possibility of negative interfacial tensions, as exist in
spontaneous emulsification or dispersion phenomena. Negative interfacial
tensions were impossible within the confines of van der Waals bonding (van
Oss et al., 1987b; Leon, 2000).

4.4.2 Curvature and wetting

Wetting of fibrous materials is dramatically different from the wetting process
on a flat surface, due to the geometry of the cylindrical shape. A liquid that
fully wets a material in the form of a smooth planar surface may not wet the
same material when presented as a smooth fiber surface.

Brochard (1986) discussed the spreading of liquids on thin cylinders, and
stated that, for nonvolatile liquids, a liquid drop cannot spread out over the
cylinder if the spreading coefficient S is smaller than a critical value Sc,

Thin pancake
Precursor film

Droplet

(a) S > 0 and Aeff > 0 (b) S > 0 and Aeff < 0

Dry Dry

(c) S < 0 and Aeff > 0 (d) S < 0 and Aeff < 0

4.6 Various kinds of wetting.

Drop Drop
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instead of 0. At the critical value Sc, there is a first-order transition from a
droplet to a sheath structure (‘manchon’). The critical value was derived as

S
a
bc  = 3

2

2/3

g Ê
Ë

ˆ
¯ [4.24]

where a is the molecular size, b is the radius of the cylinder.
There was also plenty of research work on the equilibrium shapes of

liquid drops on fibers (Neimark, 1999; McHale et al., 1997, 1999, 2001;
Quere, 1999; Bauer et al., 2000; Bieker and Dietrich, 1998; McHale and
Newton, 2002). It was reported that two distinctly different geometric shapes
of droplet are possible: a barrel and a clam shell, as shown in Fig. [4.7].

In the absence of gravity, the equilibrium shape of a drop surface is such
that the Laplace excess pressure, across the drop surface is everywhere constant,
as shown in Equation [4.4]. (McHale et al. (2001) solved this equation for
the axially symmetric barrel shape subject to the boundary condition that the
profile of the fluid surface meets the solid at an angle given by the equilibrium
contact angle q:

D g q
P

n

x n
LV = 

2 (  –  cos )
(  –  1)1

2 [4.25]

where n = x2/x1, is the reduced radius as shown in Fig. 4.7(a).
Their (McHale et al., 1999) solution for the barrel shape droplet was

subsequently used to compute the surface free energy, defined as

F = gLVALV + (gSL – gSV)ASL [4.26]

where ALV and ASV are the liquid/vapor and solid/liquid interfacial areas,
respectively.

In contrast to the barrel-shape droplet problem, no solution to Laplace’s
equation for the asymmetric clam-shell shape is reported except for such
numerical approaches as finite element methods (McHale and Newton, 2002).
There are, however, papers discussing the roll-up (barrel to clam-shell) transition
(McHale et al., 2001, McHale and Newton, 2002) in the wetting process on
a fiber.

4.7 Equilibrium liquid droplet shapes on a fiber.

x1
x2

(a) Barrel shape (c) Clam-shell shape

Fiber
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In addition, there is work with respect to gravitational distortion of barrel-
shape droplets on vertical fibers (Kumar and Hartland, 1990). To represent
the heterogeneous nature of fibrous materials in the wetting process, Mullins
et al. (2004) incorporated a microscopic study of the effect of fiber orientation
on the fiber-wetting process when subjected to gravity, trying to account for
the asymmetry of wetting behavior due to fiber orientation and gravity. The
theory concerning the droplet motion and flow on fibers is based on the
balance between drag force, gravitational force and the change in surface
tension induced by the change in droplet profile as the fiber is angled. As a
result, there comes out an angle where droplet flow will be maximized.

In reality, fibrous materials are porous media with intricate, tortuous and
yet soft surfaces, further complicating the situation. As a result, a precise
description of the structure of a fibrous material can be tedious. Therefore,
much research work has adopted Darcy’s law, an empirical formula that
describes laminar and steady flow through a porous medium in terms of the
pressure gradient and the intrinsic permeability of the medium (Yoshikawa
et al., 1992; Ghali et al., 1994; Mao and Russell, 2003):

u K p = – m — [4.27]

where u is the average velocity of liquid permeation into the fibrous material,
m the Newtonian viscosity of the liquid, K the permeability, and —p the
pressure gradient. In the case of wetting, the driving pressure is usually the
capillary pressure as calculated by the Laplace equation. The permeability K
is either determined by experiments or by the empirical Kozeny–Carman
relations as a function of fiber volume fraction (Mao and Russell, 2003).

Darcy’s law reflects the relationship of pressure gradient and average
velocity only on a macroscopic scale. To reach the microscopic details of the
liquid wetting behavior in fibrous media, various computer simulation
techniques have been applied in this field to accommodate more complexity
so as to investigate more realistic systems, and to better understand and
explain experimental results.

Molecular Dynamics (MD) and Monte Carlo (MC) are best-known, standard
simulation formulae emerging from the last decades (Hoffmann and Schreiber,
1996) and, accordingly, most of the simulation for clarifying liquid wetting
behaviors falls into these two categories.

Fundamentally, wetting behaviors of liquids in fibrous materials stem
from interactions between liquid/solid and within the liquid at the microscopic
level. The most important task for the various models and simulations is,
therefore, to define and treat these interactions.

In Molecular Dynamics, all potentials between atoms, solid as well as
liquid, are described with the standard pairwise Lennard–Jones interactions:
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where r is the distance between any pair of atoms i and j, eij is an energy
scale (actually the minimum of the potential), and sij is a length scale (the
distance at which the potential diminishes to zero).

Large-scale MD simulations have been adopted to study the spreading of
liquid drops on top of flat solid substrates (Semal et al., 1999; van Remoortere
et al., 1999). If the system contains enough liquid molecules, the macroscopic
parameters, such as the density, surface tension, viscosity, flow patterns and
dynamic contact angle, can be ‘measured’ in the simulation.

However, the computational cost for MD simulations is huge, as they are
dealing with the individual behaviors of a great number of single molecules.
And, the application of MD simulations for liquid spreading on a fiber or
transport in intricate fibrous structures is still pending, although there are
already reports on microscopic understanding of wetting phenomena on
cylindrical substrates for simple fluids whose particles are governed by
dispersion forces and are exposed to long-ranged substrate potentials (Bieker
and Dietrich, 1998). Based on a microscopic density functional theory, the
effective interface potential for a liquid on a cylinder has been derived.

To solve the problem of huge computation, simulation techniques have
been invented to cope with the so called ‘cell’, or small unit of the system,
instead of single molecules. The statistical genesis of the process of liquid
penetration in fibrous media can be regarded as the interactions and the
resulting balance among the media and liquid cells that comprise the ensemble.
This process is driven by the difference of internal energy of the system after
and before a liquid moves from one cell to the other.

In the 1990s, Manna et al. (1992) presented a 2D stochastic simulation of
the shape of a liquid drop on a wall due to gravity. The simulation was based
on the so called Ising model and Kawasaki dynamics. Lukkarinen et al.
(1995) studied the mechanisms of fluid droplets spreading on flat solids
using a similar model. However, their studies dealt only with flow problems
on a flat surface instead of a real heterogeneous structure. Only recently has
the Ising model been used in the simulation of wetting dynamics in
heterogeneous fibrous structures (Lukas et al., 1997; Lukas and Pan, 2003;
Zhong et al., 2001a, 2001b).

As a ‘meso-scale’ approach, stochastic models and simulations deal with
discrete and digitalized cells or subsystems instead of individual molecules.
They lead to considerable reduction of computational cost, naturally.

4.4.3 Surface roughness and wetting

The Young’s Equation [4.1] describes the mechanical balance at the triple
line of the three-phase solid–liquid–vapor system. However, the equilibrium
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contact angle q in the equation can be obtained only experimentally on a
perfectly smooth and homogeneous surface. In the real world, the roughness
and heterogeneity of the solid surface produces the contact angle hysteresis
(de Gennes, 1985):

Dq = qa – qr ≥ 0 [4.29]

The advancing angle qa is measured when the solid–liquid contact area
increases, while the receding angle qr is measured when the contact area shrinks,
as shown in Fig. 4.8. The equilibrium contact angle lies between them:

qr < q < qa [4.30]

The most important source of contact angle hysteresis is the surface roughness.
Early studies on the effect of surface roughness concentrated on periodic
surfaces, such as a surface with parallel grooves (Cox, 1983; Oliver et al.,
1977). In the simplest case where the triple line is parallel to the grooves, as
shown in Fig. 4.9, the energy barrier for liquid spreading over a ridge of the
rough surface can be computed numerically. When the grooves are rather
deep, vapor bubbles may be trapped at the bottom of the grooves, as shown
in Fig. 4.9(b). These vapor bubbles would lead to much smaller barriers,
which was also observed in experimental work. With the increase of roughness,
that is, with the increase of the depth of the grooves, there is first a corresponding
decrease of receding angle qr; but when the grooves become deep enough, qr

increases as the entrapped vapor bubbles reduce the barriers (de Gennes,
1985).

Triple line

Liquid

Liquid

Vapor
bubble

Solid

Solid

Triple line

(a) (b)

4.9 Wetting of rough surfaces without and with vapor bubbles.

Advancing RecedingLiquid

qa qr

4.8 Advancing and receding contact angles for a liquid on a solid
surface.

Solid
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A more realistic representation of a rough surface is a random surface
(Joanny and de Gennes, 1984). The irregularities of the surface can be defined
in a random function h(x, y). Consider a single ‘defect’, which is defined as
a perturbation h(x, y) localized near a particular point (xd, yd) and with finite
linear dimension d, as shown in Fig. 4.10. A triple line becomes anchored to
the defect. Far from the defect, the line coincides with y = yL. An approximation
of the total force f exerted by the defect on the line is:

f y dxh x ym m( ) = ( , )
– •

•

Ú [4.31]

Assuming a Gaussian defect,
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The force f(ym) is also Gaussian:
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In equilibrium, the force expressed in Equation [4.33] is balanced by an
elastic restoring force fe, which tend to bring ym back to the unperturbed line
position yL. Assume that this has the simple Hooke form:

fe = k(yL – ym) [4.34]

Therefore:

k(yL – ym) = f (ym) [4.35]

The equation can be solved graphically in Fig. 4.11. When the magnitude of
the defect h0 is small, there is only one root ym for any specified yL, and no

y

d ym

yd

Triple line

yL

yd X

4.10 A triple line anchored in a defect.
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hysteresis. If h0 reaches a certain threshold, there are three roots for a specified
yL, and hysteresis occurs. This means that weak perturbation create no
hysteresis. Accordingly, for a good determination of equilibrium contact
angle, a surface with irregularities below a certain threshold would be enough
if an ideal surface is not available.

The above arguments can be further extended to a dilute system of defects.
However, it only applies to defects with diffuse edges. The case of shaped
edge defects, where the function h(x, y) has step discontinuities, is a completely
different story. Hysteresis can happen for very small h0.

An alternative approach to study the influence of surface roughness on the
contact angle hysteresis is to examine the Wenzel’s roughness factor rW,
defined as (Wenzel, 1936):

r
A
A

A
bl

W  =  =   1real

geom

real ≥ [4.36]

where Areal is the real area of the rough solid surface of width b and length
l. And the measured contact angle, or Wenzel angle qW, is given by

cos qW = rW cos q [4.37]

Introducing equation [4.37] into the Young’s equation [4.1]:

rW(gSV – gSL) = gLV cos qW [4.38]

An empirical ‘friction force’ F was used by good (1952) to explain the
contact angle hysteresis:

rW(gSV – gSL) = gLV cos qa + F [4.39]

rW(gSV – gSL) = gLV cos qr – F [4.40]

F reflects the influence of the surface roughness on the triple line. If F is
assumed to be the same for both wetting and de-wetting processes, it is
obtained that

4.11 Equilibrium positions of a triple line in the presence of a local
defect.

f
k (ym – yL)

f (ym)
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2rW(gSV – gSL) = gLV (cos qa + cos qr) [4.41]

Combining Equations [4.37], [4.38] and [4.41] gives an expression to derive
the equilibrium contact angle from the advancing and receding angles:

cos  = 
cos  + cos 

2
q q qa r

Wr
[4.42]

According to Equation [4.36], the Wenzel roughness factor rW can be determined
by appropriate scanning force microscopy (SFM) (Kamusewitz and Possart,
2003) or atomic force microscopy (AFM) (Semal et al., 1999) measurement
of the surface topography of the solid. In general, it is agreed that contact
angle hysteresis increases steadily with the microroughness of the solid surface.

4.5 Summary

Surface tensions, wicking and/or wetting are among the most frequently
encountered phenomena when processing and using fibrous materials. Wetting
is a process of displacing a solid–air interface with a solid–liquid interface,
while wicking is a result of spontaneous wetting in a capillary system.

The physical bases of surface tension, wetting and wicking are those
molecular interactions within a solid or liquid, or across the interface between
liquid and solid. These adhesive forces include the Lifshitz–Van de Waals
interactions and acid–base interactions. The Lifshitz–Van de Waals (LW)
interactions are general, long-range forces which always operate in all materials
and across phase boundaries. The Lewis acid–base (AB) interactions are
polar, short-range interactions that occur only when an acid (electron acceptor)
and a base (electron donor) are brought close together. Existence of acid–
base interactions can substantially improve wetting and adhesion between
two surfaces.

Wetting and wicking behaviors are determined by surface tensions (of
solid and liquid) and liquid/solid interfacial tensions. Curvature and roughness
of contact surfaces are two critical factors for wetting phenomena, especially
in the case of wetting in fibrous materials, which are porous media of intricate,
tortuous and yet soft, rough structure. A liquid that fully wets a material in
the form of a smooth planar surface may not wet the same material when
presented as a smooth fiber surface, let alone a real fibrous structure. To
reach the microscopic details of the liquid wetting behaviors in fibrous media,
various computer simulation techniques have been applied in this field to
accommodate more complexity so as to investigate more realistic systems,
and to better understand and explain experiment results. On the other hand,
the surface roughness is the most important source of contact angle hysteresis.
In general, it is agreed that contact angle hysteresis increases steadily with
microroughness of solid surface.
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5.1 Introduction

Wetting of fibrous materials is important in a diverse range of applications in
textile manufacture such as desizing, scouring, bleaching, dyeing and spin-
finish application, cleaning, coating and composite manufacture. Clothing
comfort also depends on wetting behavior of fibrous structure. In fibre
composites, the adhesion between the fibers and resin is influenced by the
initial wetting of the fibers by resin, which governs the resin penetration into
the voids between the fibers and subsequently the performance of the
composites. On the other hand, surgical fabrics should not let liquid and
solid particles pass through easily. Wetting processes are considered extremely
important in the application of fibrous filters, where wetting of the fibre
surface is the key mechanism for the separation of two different liquids from
their mixture; for instance, in separating oil from sea-water during a cleaning
process after an oil spillage. Wetting and wicking behavior of the fibrous
structures is a critical aspect of the performance of products such as sports
clothes, hygiene disposable materials, and medical items.

Wetting is a complex process complicated further by the structure of the
fibrous assembly. Fibrous assemblies do not meet the criteria of ideal solids.
Most practical surfaces are rough and heterogeneous to some extent. Fibers
are no exception to this. In addition, curvature of fibers, crimps on fibers,
and orientation and packing of fibers in fibrous materials make evaluation of
wetting phenomena of fibrous assemblies more complicated.

5.2 Surface tension

A molecule on the surface of a liquid experiences an imbalance of forces due
to the presence of free energy at the surface of the liquid which tends to keep
the surface area of the liquid to a minimum and restrict the advancement of
the liquid over the solid surface. This can be conceived as if the surface of a
liquid has some kind of contractable skin. The surface energy is expressed

5
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per unit area. Precise measurement of surface energy is not generally possible;
the term surface tension refers to surface energy quantified as force per
length (mN/m or dynes/cm). For a liquid to wet a solid completely or for the
solid to be submerged in a liquid, the solid surfaces must have sufficient
surface energy to overcome the free surface energy of the liquid.

When a liquid drop is placed on an ideal flat solid surface (i.e. smooth,
homogeneous, impermeable and non-deformable), the liquid drop comes to
an equilibrium state corresponds to minimization of interfacial free energy
of the system. The forces involved in the equilibrium are given by the well-
known Young’s equation:

gSV – gSL = gLV cos q [5.1]

The terms gSV, gSL, and gLV represent the interfacial tensions that exists between
the solid and vapor, solid and liquid and liquid and vapor respectively. The
last term is also commonly referred as the surface tension of the liquid. q is
the equilibrium contact angle. The term ‘gLV cos q ’, is the ‘adhesion tension’
or ‘specific wettability’. Young’s equation has been widely used to explain
wetting and wicking phenomena.

Contact angle is the consequences of wetting, not the cause of it, and is
determined by the net effect of three interfacial tensions. For a hydrophilic
regime, gSV is larger than gSL and the contact angle q lies between 0 and 90∞,
i.e. cos q is positive. For a hydrophobic regime, gSV is smaller than gSL, and
the contact angle lies between 90∞ and 180∞. With increasing wettability, the
contact angle decreases and cos q increases. Complete wetting implies a zero
contact angle, but equating q = 0 may lead to incorrect conclusions and it is
better to visualize that, when the contact angle approaches zero, wettability
has its maximum limit.1 A lower contact angle for water wets the surface and
at high contact angle water run off the surface. According to Adam,2 equilibrium
condition cannot exist when the contact angle is zero, and Equation [5.1]
does not apply.

The equilibrium contact angle is the single valued intrinsic contact angle
described by the Young equation for an ideal system. An experimentally
observed contact angle is an apparent contact angle, measured on a macroscopic
scale, for example, through a low-power microscope. On rough surfaces, the
difference between the apparent and intrinsic contact angles can be
considerable.3

Immersion, capillary sorption, adhesion, and spreading are the primary
processes involved in wetting of fibrous materials. A solid–liquid interface
replaces the solid–vapor interface during immersion and capillary penetration/
sorption. For spontaneous penetration, the work of penetration has to be
positive. Work of adhesion, WA, is equal to the change of surface free energy
of the system when the contacting liquid and the solid are separated:

WA = gSV + gLV – gSL = gLV (1 + cos q) [5.2]
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During spreading, the solid–liquid and liquid–vapor interfaces increase, whereas
the solid–vapor interface decreases. For spreading to be spontaneous, the
work of spreading or the spreading coefficient, WS, has to be positive, which
is related as:

WS = gSV – gLV – gSL [5.3]

5.3 Curvature effect of surfaces

5.3.1 Wetting of planar surfaces

For a sufficiently small drop of a partial wetting or non-wetting liquid placed
on a planar surface, gravity effects can be neglected. For such a drop, hydrostatic
pressure inside the drop equilibrates and the drop adopts a shape to conform
to the Laplace law:

DP = gLV(1/R1 + 1/R2) [5.4]

where DP is the pressure difference between two sides of a curved interface
characterized by the principal radii of curvature R1 and R2. The drop shape
would be spherical. For complete wetting of a flat surface, this pressure can
be reduced towards zero by simultaneously increasing both R1 and R2

conserving the volume of the liquid.

5.3.2 Wetting of curved surfaces

A fluid that fully wets a material in the form of smooth planar surface may
not wet the same material if it is presented as a smooth fiber form. On a flat
surface, vanishing contact angle is a sufficient condition for the formation of
a wetting film. On a chemically identical fiber surface, the indefinite spreading
is inhibited and the equilibrium is not necessarily a thin sheathing film about
the fiber, but can have a microscopic profile. This shows that vanishing
contact angle is not a sufficient condition for the formation of a wetting film
on a fiber. The Laplace excess pressure inside a liquid drop resting on a fiber
is:

1  + 1  = 
R R

P
II^

D
g [5.5]

The two radii of curvature R^ and RII of a drop, are measured normal to and
along the fiber axis respectively. For a droplet on a fiber, the radii of curvature
cannot both be increased while maintaining the volume of liquid. It is necessary
to reduce one radius of curvature as the other is increased. Nevertheless, the
excess pressure given by the Laplace law can still be reduced toward zero,
although not to zero, by making RII negative. The other radius R^ cannot be
reduced below the radius of curvature of the fiber; a minimization of the
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excess pressure can be obtained while maintaining finite values for the radii
of curvature.

5.3.3 Wetting of fiber surfaces

In the case of fiber, three distinct droplet configurations are observed, as
shown in Fig. 5.1: a series of axisymmetrical ‘barrel’ shaped (unduloid)
droplets around the fiber, commonly connected by a film in the order of a
nanometer (Configuration I); axially asymmetric ‘clam-shell’ shaped droplets
around the fiber (Configuration II), the flow usually being broken into distinct
droplets by Rayleigh instability; and a sphere for a non-wetting liquid
(Configuration III). The droplet-on-fiber system becomes a droplet-on-a-
plane-surface in the limiting case of an extremely large fiber radius (very
low fiber curvature). It has been shown that barrel-shaped droplets, even
under vertical fibers, becomes axially asymmetric under the influence of
drag forces.4

On a fiber, the equilibrium shape of a barreling droplet is only approximately
a spherical cap rotated about the axis of the fiber. Under certain conditions,
the curvature goes through a point of inflexion as it approaches the solid
surface at the three-phase interface, before then changing the sign of curvature
as shown in Fig. 5.2.

For a high-energy fiber, when the diameter of the fiber reduces, the inflection
angle increases and the transition to the lower value of contact angle occurs
very rapidly as the drop profile nears the fiber surface. This makes the
measurement of contact angle difficult. An improved estimation of the
equilibrium contact angle can be obtained by measuring the inflection angle,
and the reduced length and thickness of the droplets.

Transition or roll-up from one conformation to other can occur. It is
reported that for large drops with contact angle < 90∞, barrel shapes will be
stable for any fiber radius.7 The parameters that influence the roll-up process
have been investigated by Briscoe et al.5 Increasing the parameters of contact

Configuration I
(Barrel)

Configuration II
(Clamshell)

Configuration III (Non-
wetting droplets)

5.1 Droplets shapes on fiber. Reprinted from Colloids and Surfaces,
Vol. 56, B. J. Briscoe, K. P. Galvin, P. F. Luckham, and A. M. Saeid, pp.
301–312, Copyright (1991), with permission from Elsevier.
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angle, surface tension of liquid and diameter of fibers, or reducing the volume
of the droplets favors change of confirmation of droplets from Configuration
I to III. Local surface anomalies due to chemical or physical heterogeneity
can lead to two completely different droplet profiles on the same fiber.

5.3.4 Role of droplet shapes in wet fiber filtration

The formation of droplets of different shapes has a significant role in influencing
the efficiency of wet-fiber filters in removing sticky and viscous particles.
During wet filtration of solid or liquid aerosols, droplets attached to the
fibers are observed to rotate under the influence of induced airflow. Barrel-
shaped droplets, being smaller in size, rotate as a rigid body and the droplets
laden with particles frequently flow down the fiber under gravity. The larger
droplets, i.e. clamshells, have significant capacity to contain particulates, but
rotate like less rigid bodies and can flow-off the fiber rather than flowing
down with entrained particles. This is not advantageous in self-cleaning as it
is likely to lead to re-entrainment of the particles back into the air stream.8

5.4 Capillarity

Transport of a liquid into a fibrous assembly may be caused by external
forces or by capillary forces only. In most of the wet processing of fibrous
materials, uniform spreading and penetration of liquids into pores are essential
for the better performance of resulting products.9 Capillarity falls under the
general framework of thermodynamics that deals with the macroscopic and
statistical behavior of interfaces rather than with the details of their molecular
structure.10 The interfaces are in the range of a few molecular diameters.

5.2 Geometrical parameters for the description of a drop on a single
fiber. X1 is the fiber radius; X2, the maximum drop height; q, the
contact angle; q1 the inflection angle; and L the drop length
‘Reprinted from International Journal of Adhesion and Adhesives,
Vol. 19, S. Rebouillat, B. Letellier, and B. Steffenino, pp. 303–314,
Copyright (1999), with permission from Elsevier’.
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Wicking is one example of the more general set of phenomena termed
‘capillarity’. For wicking to be significant, the ratio of solid–liquid (SL)
interfacial area to liquid volume must be large. Wicking can only occur when
a liquid wets fibers assembled with capillary spaces between them. The
resulting capillary forces drive the liquid into the capillary spaces, increasing
the solid–liquid interface and decreasing the solid–air interface. For the
process to be spontaneous, free energy has to be gained and the work of
penetration has to be positive, i.e. gSV must exceed gSL.

5.4.1 Capillary flow

When a liquid in a capillary wets the walls of the capillary, a meniscus is
formed. The pressure difference DP across the curved liquid–vapor interface
driving the liquid in a small circular capillary of radius r, is related as:

DP = 2gLV cos q /r [5.6]

For a positive capillary pressure, the values of q have to be between 0∞ and
90∞. Accordingly, the smaller the pore size, the greater is the pressure within
the capillary, and so the smallest fill first. During draining of the capillary
under external pressure, the smaller pores drain last. For most systems, wicking
does not occur when the contact angle is between 90 to 180∞. According to
Marmur,11 partial penetration of the capillary can occur even if the contact
angle is 90∞, provided the pressure within the bulk of the liquid is substantial
enough to force the liquid into the capillary. This occurs only when the liquid
reservoir is small, i.e. a drop of liquid. In a drop of liquid, the radius of
curvature of the drop can be high enough such that the pressure directly
outside of the capillary is increased, and thus the pressure difference, leading
to penetration of liquid into the capillary.

The flow in a porous medium is considered as flow through a network of
interconnected capillaries. The Lucas–Washburn equation12 is widely used
to describe this flow,

dh dt
r

h
r gLV

L/  = 
 cos 

4
 –  /82g rq

h h [5.7]

The first term on the right side of the equation accounts for the spontaneous
uptake of liquid into the material while the second term accounts for the
gravitational resistance. The second term in the above equation is negligible
if either the flow is horizontal or r is very small (r 2 = 0). The term h is the
distance that the liquid has traveled at time t; and rL and h are the density
and viscosity of the liquid, respectively. When the capillary forces are balanced
by the gravitational forces, liquid rise stops and equilibrium is reached as
given by:

gLV cos q 2p r = p r2 rL gh [5.8]
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Hence, equilibrium wicking height is:

heq = 2gLV cos q /rrLg [5.9]

The linear rate of liquid flow (u) is:

u = dh/dt = rgLV cos q /4h h [5.10]

5.4.2 Wicking in fibrous materials

In the case of capillarity in fibrous assemblies, the term ‘wicking’ is used in
a broader practical sense to describe two kinetically different processes: a
spontaneous flow of a liquid within the capillary spaces accompanied by a
simultaneous diffusion of the liquid into the interior of the fibers or a film on
the fibers.13 If the penetration of liquid is limited to the capillary spaces and
the fibers do not imbibe the liquid, the wicking process is termed ‘capillary
penetration’ or ‘capillary sorption’. Swelling of the fibers caused by the
sorption of the liquid into the fibers can reduce capillary spaces between
fibers and change the kinetics of wicking. The interpretation of wetting
results can be misleading if the effects of sorption in fibers or finishes on
fibers are overlooked.14

For a theoretical treatment of capillary flow in fabrics, the fibrous assemblies
are usually considered to have a number of parallel capillaries. The advancement
of the liquid front in a capillary can be visualized as occurring in small
jumps. The fibrous assembly is a non-homogeneous capillary system due to
irregular capillary spaces having various dimensions and discontinuities of
the capillaries leading to small jumps in the wetting front. The capillary
spaces in yarns and fabrics are not uniform, and an indirectly determined
effective capillary radius has to be used instead of the radius r.15

Fibers in textile assemblies form capillaries of effective radius re so the
horizontal liquid transport rate becomes:

h
r t

k tLV a e
s

2  = 
cos 
2

 = 
g ¢q

h [5.11]

where ks is the capillary liquid transport constant for the penetration of a
liquid into a definite fiber assembly.16

Equation [5.11] applies only to a system where the free surface of the
liquid reservoir feeding the capillary tube is substantially flat, i.e. the capillary
pressure on the reservoir surface is zero.17 According to Lucas–Washburn,
neglecting gravitational forces, the wicking height h is directly proportional
to the square root of time t :18

h = (rgLV cos q /2t 2 h)1/2t1/2 = k t1/2 [5.12]

where ht is the actual distance traveled, t is the tortuosity factor.
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The Lucas–Washburn equation is used primarily to describe flow into
vertically hung materials and it has been shown to be a good estimate of the
flow rate within many textile materials. According to the Lucas–Washburn
equation, the liquid uptake into the material is in direct correlation with the
product of gLV and cos q. If the contact angle is very large, use of surfactants
will improve liquid uptake; on the other hand, if the initial contact angle
before addition of surfactant is very low, adding surfactant only reduces the
value gLV to a greater extent than it increases the cos q value. As a result, the
product gLV cos q reduces, lowering the wicking rate.

The Lucas–Washburn equation has been extended for the case of radial
expansion of a wicking liquid originating at the centre of a flat sample,
relating liquid mass uptake mA, the distance traveled by the liquid L and a
constant K as19:

dmA/dt = (K/mA) – L [5.13]

Most textile processes are time limited, and often the rate of wicking is
therefore very critical. However, the wicking rate is not solely governed by
interfacial tension and the wettability of the fibers, but by other factors as
well. The mechanisms of water transport for an isolated single fiber differs
from water sorption in a fiber bundle or assembled fibers where capillary
spaces exist.20 Ito and Muraoka21 have reported that water transport is
suppressed as the number of fibers in the yarn decreases. When the number
of fibers is greater, water moves along even untwisted fibers. But when the
number of fibers is reduced, wicking occurs only for twisted fibers and, if
reduced further, wicking may not occur at all. This indicates that sufficient
number and continuity of pores are important for wicking.

5.4.3 Wicking in yarns

A yarn may be assumed to have oriented cylindrical fibers. Lord22 has discussed
a theory for yarn wicking. Using hydraulic radius theory for an assembly of
parallel cylindrical fibers, the value of the hydraulic mean radius rm is:
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A correction factor Kc is applied in the above equation for cases when the
fibers are not cylindrical or inclined to the axis of the yarn. In the above
equation: Af is area of fluid between fibers of a yarn, Kp is packing factor, rf

= radius of fiber, and n = number of fibers in the yarn cross-section. Equivalent
wicking height is given by:
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For a given fiber and liquid, 2gLV cos q /rLgrf is constant, and hence,
ha(KcKp)

–1

Both Kc and Kp are functions of twist multiple, fiber type, and packing
and migration of fibers in the yarn, which are related to yarns produced by
different technologies.

The presence of smaller pores at the core of the open-end yarn wicks dye
solution to a greater height. The wicking rate and equilibrium height observed
for ring yarn is higher than that of compact yarns. This indicates that the
number of pores, pore size and continuity are important factors in yarn
wicking.23 The orientation of fibers in a yarn influences wicking. In air-jet
textured yarns, the presence of long, drawn-out loops such as floats and arcs
offers a less tortuous path for the liquid to travel; as a result, a greater
percentage of floats and arcs leads to a higher wicking height. The equilibrium
wicking height and wicking rate are higher for air-jet textured yarn than for
the corresponding feeder yarn. Equilibrium wicking height initially increases
and then decreases with increasing tension on the yarns during wicking. The
initial increase in height is due to partial alignment of the filaments; further
increase in tension may bring the filaments closer to each other, reducing the
capillary radii and possibly discontinuity in the capillaries.24 The packing
density of the filaments influences more greatly the wicking in crenulated
viscose filaments than in circular nylon filaments. Viscose filaments under
loose condition show abnormally high wicking; when the packing of filaments
increases, the crenulations mesh like gear teeth, the open space reduces
greatly without any corresponding reduction in the yarn diameter, and thus
the wicking rate diminishes.17

5.4.4 Wicking in fabrics

When a liquid drop is placed on a fabric, it will spread under capillary
forces. The spreading process may be split conveniently into two phases: I
liquid remains on the surface, and II liquid is completely contained within
the substrate, as suggested by Gillespie.25 For two-dimensional circular
spreading in textiles during phase II, Kissa26 developed Gillespie’s equation
to propose the following exponential sorption:

A = K(gLV/h)uVmtn [5.16]

where A is the area covered by the spreading liquid, K is the capillary sorption
coefficient, h is the viscosity of the liquid, V is the volume of the liquid, t is
the spreading time.

Wicking occurs when a fabric is completely or partially immersed in a
liquid or in contact with a limited amount of liquid, such as a drop placed on
the fabric. Capillary penetration of a liquid can therefore occur from an
infinite (unlimited) or limited (finite) reservoir. Wicking processes from an
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infinite reservoir are immersion, transplanar wicking, and longitudinal wicking.
Wicking from a limited reservoir is exemplified by a drop placed onto the
fabric surface.

5.4.5 Porosity of fabrics and spreading of liquids

The porosity f of material is defined as the fraction of void space within the
material.27

f = 1 – (rF /rf) [5.17]

where rf is the density of the fiber and rF is the density of the fabric; the
latter is the ratio of fabric weight to thickness. The maximum liquid absorption
capacity Cm is:

Cm = [(rlf)/rf(1 – f)] [5.18]

where, rl is the liquid density.
The pores within the structure are responsible for the liquid flow through

a material and the size and connectivity of the pores in the fabric influence
how fast and how much liquid is transported through the material. Hsieh et
al., 28,29 reported that, in the case of woven, non-woven and knitted fabrics,
a distribution of pore sizes along any planar direction is expected. Hsieh27

has also shown that with poor wetting, many pores in fabrics are not filled
by water due the effect of reduced cos q in driving the water into the pores,
e.g. with polyester fabric.

When liquid moves into a fiber assembly, the smaller pores are completely
filled and the liquid then moves to the larger pores. The sizes and shapes of
fibers as well as their alignment will influence the geometric configurations
and topology of the pores, which are channels with widely varying shape and
size distribution and may or may not be interconnected.29–31

The shape of fibers in an assembly affects the size and geometry of the
capillary spaces between fibers and consequently the wicking rates. The
flow in capillary spaces may stop when geometric irregularities allow the
meniscus to reach an edge and flatten.15 The distance of liquid advancement
is greater in a smaller pore because of the higher capillary pressure, but the
mass of liquid retained in such a pore is small. A larger amount of liquid
mass can be retained in larger pores but the distance of liquid advancement
is limited. Therefore, fast liquid spreading in fibrous materials is facilitated
by small, uniformly distributed and interconnected pores, whereas high liquid
retention can be achieved by having a greater number of large pores or a high
total pore volume.27

Wicking is affected by the morphology of the fiber surface, and may be
affected by the shape of the fibers as well. Fiber shape does not affect the
wetting of single fibers. However, the shape of the fibers in a yarn and fabric
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affects the size and geometry of the capillary spaces between the fibers, and
consequently the rate of wicking.3 Randomness of the arrangement of the
fibers in the yarns considerably influences the amount of water and transport
rate of the fabrics. The same factor also seems to control the ease of wetting
of the surface of fabrics.

Non-woven fabrics are highly anisotropic in terms of fiber orientation,
which depends greatly on the way in which the fibers are laid (random,
cross-laid and parallel-laid) during web formation and any further processing.
The in-plane liquid distribution is important in spreading the liquid over a
large area of the fabric for faster evaporation of perspiration in clothing or
maximum liquid drawing capacity of the secondary layer of baby diapers.

Classical capillary theory, based on equivalent capillary tubes applied for
yarns and woven fabrics, is inadequate to study the liquid absorption in non-
wovens.32 The former structures are compact with a porosity in the range of
0.6–0.8 and have better defined fiber alignment, whereas non-wovens have
porosity generally above 0.8 and as high as 0.99 in some high-loft structures.
Further, wicking in woven fabrics is mainly concerned with liquid movement
in between the fibers in the yarn33 and the larger pores that exist between the
yarns are therefore less important34. The structure of non-wovens is markedly
different from the traditional structures in that they have larger spaces between
fibers, and high variation of size, shape and length of capillary channels.32

Orientation of fibers in non-wovens is found to influence the in-plane liquid
transportation in different directions.

To characterize the capillary pressure during liquid transportation in non-
woven fabrics, instead of using the pore size, an alternative theory was
developed by Mao and Russell35,36 based on hydraulic radius theories proposed
by Kozeny37 and Carman.38 In hydraulic radius theories the channels usually
have a non-circular shape and the hydraulic radius is defined by the surface
area of the porous medium. Mao and Russell employed Darcy’s law39 to
quantify the rate of liquid absorption in non-woven fabrics. Based on Darcy’s
law, they related specific or directional permeability of sample k(q) in m2 in
the direction q from reference and angle of fiber with respect to reference a
as:
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where d is the fiber diameter, f is the volume fraction of solid material, W is
the fiber orientation distribution probability function that defines the
arrangement of fibers within the fabric. S and T are functions in terms of f.
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By assuming that the capillary pressure in the fabric plane is hydraulically
equivalent to a capillary tube assembly in which there are a number of
cylindrical capillary tubes of the same hydraulic diameter, the equivalent
hydraulic diameter DH (q) was formulated. Using the equivalent hydraulic
diameter DH (q) in the Laplace equation, the capillary pressure in the direction
q in the fabric was calculated. For a given contact angle b, wicking rate V (q)
was shown as:
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Fiber diameter, fiber orientation distribution and fabric porosity are the
important structural parameters that influence the spreading rate of liquid in
non-wovens. The anisotropy of liquid absorption in non-woven fabric largely
depends on a combination of the fiber orientation distribution and the fabric
porosity. Konopka and Pourdeyhimi40 carried out experiments on non-woven
fabrics to study in-plane liquid distribution using a modified GATS apparatus
and found that fiber orientation factor is the dominant factor in determining
where the liquid will spread in the material. Kim and Pourdeyhimi41 simulated
in-plane liquid distribution in non-wovens using the above equation and
found reasonable agreement between the simulated and experimentally
observed results.

Fiber orientation factor influences the rate of spreading in different directions
as well as the mass of liquid transported in the dynamic state. The spreading
of liquid in a thermally bonded non-woven is more elliptical than that in the
woven, which is closer to isotropic.

5.5 Surface roughness of solids

The wetting of surfaces involves both chemistry and geometry. Geometry
can be either local, in the form of rough or patterned surfaces, or it can be
global, in the form of spheres, cylinders/fibers, etc. Amplification of
hydrophobicity due to surface roughness is frequently seen in nature. Water
droplets are almost spherical on some plant leaves and can easily roll off
(lotus effect or super hydrophobic effect), cleaning the surface in the process.
There are many applications of artificially prepared ‘self-cleaning’ surfaces.
A drop placed on a rough surface can sit either on the peaks or wet the
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grooves, depending on how it is formed, determined by the geometry of the
surface roughness. One that sits on the peaks will have a larger contact angle
with higher energy. It has ‘air pockets’ along its contact with the substrate;
hence it is termed a ‘composite contact’. It is this type of surface that is
desirable in applications such as ‘self-cleaning’ surfaces.

Wenzel42 studied the wetting behavior of a rough substrate. The apparent
contact angle of a rough surface q * depends on the intrinsic contact angle
(Young’s contact angle) q, and the roughness ratio, r (called ‘Wenzel’s
roughness ratio); the latter is the ratio of rough to planar surface areas.

cos q * = r cos q [5.21]

The underlying assumption of the above relationship is that hydrophilic
surfaces that wet (q < 90∞) if smooth will wet even better if rough. According
to this relationship, if roughness is increased, the apparent contact angle will
decrease. This much-quoted equation immediately suggests that:

if qs < p /2 then qro < qs; but if qs > p /2 then qro > qs

qs is the contact angle for a smooth or ideal surface and qro the contact angle
for a rough surface.

5.5.1 Heterogeneity of surfaces

In the case of chemically heterogeneous smooth surface consisting of two
kinds of small patches, occupying fractions f1 and f2 of the surfaces, then the
apparent contact angle is:10

gLV cos q * = f1(gS1V – gS1L) + f2(gS2V – gS2L) [5.22]

Alternatively,

cos q* = f1 cos q1 + f2 cos q2 [5.23]

In the case of microscopically heterogeneous surfaces, forces rather than
surface tensions are averaged,10 hence:

(1 + cos q*)2 = f1(1 + cos q1)2 + f2(1 + cos q2)2 [5.24]

In the case of a rough surface or a composite surface, such as a fabric,
incompletely wetted by a liquid, if fw is the area fraction of substrate that is
wetted and fu is the fraction of unwetted (open area of fabric) surface
(i.e. 1 – fw), then in Equation [5.22] gS2V is zero (due to air entrapment) and
gS2L is simply gLV; wettability of such surfaces is then expressed by Equation
[5.37]43:

cos q * = fw cos q – fu [5.25]

If the contact angle is large and the surface is sufficiently rough, the liquid
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may trap air so as to give a composite surface with the relation as given by
Cassie:44

cos q* = rfw cos q – fu [5.26]

Alternatively, Cassie and Baxter45 have shown that:

cos q* = fs (1 + cos q) – 1 [5.27]

where fs is the surface fraction and, 1 – fs is the air fraction. q* > q unless
the roughness factor is relatively large.

Several workers have found that the apparent contact angle for water
drops on paraffin metal screens, textile fabrics, and embossed polymer surfaces
does vary with fu in approximately the same manner predicted by Equation
[5.25]. The Wenzel and Cassie states for a drop on a hydrophobic textured
surface are shown in Fig. 5.3.

Shuttleworth and Bailey47 have pointed out that a rough surface causes
the contact line to distort locally, which give rise to a spectrum of micro-
contact angles near the solid surface. Consequently, q*, will be less than or
greater than q according to the expression:

q* = q ± a [5.28]

where a is the maximum angle (±) of the local surface, representing the
roughness. In contrast to Wenzel’s relationship, the above equation predicts
that the apparent contact angle will increase as roughness increases. This
discrepancy in the predicted effects of roughness on wetting has been
investigated experimentally by Hitchcock et al. They approximated Wenzel’s
roughness ratio and a as:

r = 1 + c1(R/l)2   and   a = tan–1 (c2R/l) [5.29]

where c1 and c2 are constants, and R and l are RMS surface height and
average distance between surface asperities, respectively.

For several liquids and a variety of solid substrates, they found agreement
with the predictions of Shuttleworth and Bailey47 in that wetting decreased

(a) (b)

5.3 Two possible states for a drop on a hydrophobic textured surface:
(a) Wenzel state; and (b) Cassie’s state ‘Reprinted from
Microelectronic Engineering, Vol. 78–79, M. Callies, Y. Chen, F. Marty,
A. Pépin, and D Quéré, pp. 100–105, Copyright (2005), with
permission from Elsevier’.

q* q*
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with increased roughness ratio with the exception of a few examples (improved
wetting with increased roughness, i.e. Wenzel’s behavior). However, Johnson
and Dettre49 and Nicholas and Crispin50 working on ‘very well-wetting systems’
found Wenzel’s behavior.

5.5.2 Global geometry of surfaces

Nakae et al.51 studied water wetting a paraffin surface made of hemispherical
and hemi round-rod close-packed solids. The Wenzel’s roughness factors were
1.6 and 1.9 for these surfaces, respectively, and were found to be independent
of the radii of the spheres and cylinders. When the height roughness of the
hemi-cylindrical surfaces was increased, the contact angle increased initially
and then decreased when the roughness was increased beyond 50 mm.

5.5.3 Chemically textured surfaces

Shibuichi et al.52 carried out experiments on the effect of chemical texturing
of a surface on contact angle as a function of wettability of the solid. They
plotted the measured cos q* as a function of cos q determined on a flat
surface of the same material and varied using different liquids. Their results
are shown in Fig. 5.4.

As soon as the substrate becomes hydrophobic (q > 90∞), cos q* sharply
decreases, corresponding to a jump of contact angle q* to a value of the
order of 160∞. On the hydrophilic side, the behavior is quite different: in a
first regime, cos q* increases linearly with cos q, with a slope larger than 1,

1

0

–1

co
s 

q*

–1 0 1
cos q

5.4 Experimental results of the Kao group (from Shibuichi et al. [52].
The cosine of the effective contact angle q* of a water drop is
measured as a function of the cosine of Young’s angle q (determined
on a flat surface of the same material and varied using different
liquids). ‘Reprinted from Colloids Surfaces A: Physicochemical and
Engineering Aspects, Vol. 206, J. Bico, U. Thiele, and D. Quere, pp.
41–46, Copyright (2002), with permission from Elsevier’.
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indicating improved wetting with a rough surfaces in agreement with Wenzel’s
relation. In a second regime (small contact angles), cos q* again increases
linearly with cos q, with a much smaller slope. Complete wetting of rough
surfaces (q* = 0∞) is only reached if the substrate itself becomes wettable
(q = 0∞).

These successive behaviors have been modeled and explained by Bico et
al.53 In the super-hydrophobic regimes, when a liquid is deposited on a
model surface, air is trapped below the liquid, inducing a composite interface
between the solid and liquid as Cassie’s state. The condition for stability for
this state is:

cos q < ( f – 1)/(r – f ) [5.30]

where f is the fraction of the solid–liquid interface below the drop (dry
surface). For a very rough surface, r is very large, and cos q < 0∞ expresses
the usual condition for hydrophobicity. For a Young’s contact angle q between
90∞ and the threshold value given by the Equation [5.30], air pockets should
be metastable.

For hydrophilic solids, the solid–liquid interface is likely to follow the
roughness of the solid as gSV > gSL, which leads to a Wenzel contact angle as
in Equation [5.21]. As r > 1 and q < 90∞, Equation [5.21] implies q* < q: the
surface roughness makes the solid more wettable. The linear relation found in
Equation [5.21] is in good agreement with the first part of the hydrophilic side.

5.5.4 Roughness and surface-wicking

A textured solid can be considered as a 2D porous material in which the
liquid can be absorbed by hemi-wicking (surface wicking), which is
intermediate between spreading and imbibitions (0∞ < q < 90∞). When the
contact angle is smaller than a critical value qcr, a film propagates from a
deposited drop, a small amount of liquid is sucked into the texture, and the
remaining drop sits on a patchwork of solid and liquid – a case very similar
to the super-hydrophobic one, except that here the vapor phase below the
drop is replaced by the liquid phase. In a partial wetting, as shown in Fig.
5.5, the top of the spikes remain dry as the imbibition front progresses.

If f is the solid fraction in dry state, then q < qcr with:

cos qcr = (1 – f )/(r – f ) [5.31]

For a flat surface, r = 1 and qcr = 0, indicating spreading at vanishing of the
contact angle. For a rough surface, r > 1 and f < 1, so that condition in the
above equation defines the critical contact angle qcr in between 0∞ and 90∞.
The nature of the texture determined by r and f decides if condition in
Equation [5.31] is satisfied or not. If the surface composition is such that 90∞
> q > qcr, the solid remains dry beyond the drop, and Wenzel’s relation
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applies. If the contact angle is smaller than qcr, a film develops in the texture
and the drop sits upon a mixture of solid and liquid, as shown in Fig. 5.6.

For the hemi-wicking case:

cos q* = f (cos q – 1) + 1 [5.32]

This shows that the film beyond the drop has improved wetting (q* < q), but
it does so less efficiently than with the Wenzel scenario. The angle deduced
from Equation [5.32] is significantly larger than the one derived from Eq
[5.21]. When the film advances, it smooths out the roughness, thus preventing
the Wenzel effect from taking place.

Roughness of a surface can influence wicking on that surfaces. It is very
common that fibrous materials encounter roughness on surfaces and walls of
pores. The driving force for such surface wicking depends on the geometry
of the grooves, the surface tension of the liquid, and the free energies of the
solid–gas and solid–liquid interfaces.54

5.5.5 Hemi-wicking in fabrics

In a fabric, the distance between the most advanced and less advanced liquid
front gets larger with time in most imbibition processes. In fabrics, the
distances between the yarns are larger than the ones between the fibers. The
liquid in between fibers propagates much faster than that between the yarns.

Liquid

Air

Front

dx

Solid

5.5 Liquid film invading the texture of a solid decorated with spikes
(or micro channels). The front is marked with an arrow. In the case of
partial wetting, the tops of the spikes remain dry. ‘Reprinted from
Colloids Surfaces A: Physicochemical and Engineering Aspects, Vol.
206, J. Bico, U. Thiele, and D. Quere, pp. 41–46, Copyright (2002),
with permission from Elsevier’.

q*

5.6 A film invades solid texture; a drop lies on a solid/liquid
composite surface. The apparent contact angle q* lies between 0∞
and q (contact angle on a flat homogeneous solid). ‘Reprinted from
Colloids Surfaces A: Physicochemical and Engineering Aspects, Vol.
206, J. Bico, U. Thiele, and D. Quere, pp. 41–46, Copyright (2002),
with permission from Elsevier’.
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Fabric as a porous material can be modeled as a tube decorated with spikes,
as shown in Fig. 5.7.

The observed phenomena in fabrics can be explained based on this model.
Considering the length scales being much smaller than the capillary rise, the
wetting liquid should invade both the tube itself (between yarns) and the
texture (between fibers) if the condition of Equation [5.31] is satisfied. The
texture acts as a reservoir for the film and hence the film propagates faster
along the decorations than in the tube. Different capillary rises are likely to
take place in such a tube. The film in between the fibers propagates faster
than the main meniscus, which leads to a broadening of the front as times
goes on. The main meniscus moves along a composite surface and the apparent
contact angle for it is given by Equation [5.32]. The dynamics of the rise of
the main meniscus are influenced by this contact angle. As the texture affects
the value of the apparent contact angle, the value deduced from the dynamics
of the rise can be different, and sometimes anomalously lower, than the one
measured on the flat surface of the same material.

Pezron et al. 55 performed experiments on wicking in cotton woven fabrics
to see the relationship between the mass of the liquid absorbed and square
root of time, to test the validity of the Lucas–Washburn equation. The graph
for m vs. t1/2 displayed a non-linear relationship. The m vs. t1/2 could be
represented by two straight lines; one that wicks the liquid inside the fabric
structure and the other, surface wicking due to alveoli which could not
absorb liquid to a great height because of their large capillary size. When the
fabric surface was coated with a gel to eliminate the alveoli, the m vs. t1/2

displayed a linear relationship.

5.7 Tube decorated with spikes, as an example of the modeling of a
porous material ‘Reprinted from Colloids Surfaces A:
Physicochemical and Engineering Aspects, Vol. 206, J. Bico, U.
Thiele, and D. Quere, pp. 41–46, Copyright (2002), with permission
from Elsevier’.
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Liquid spreading rate in a non-woven is influenced by surface wicking
during the in-plane wicking test using GATS (Grammetric Absorbency Test
System), when plates are placed below, or on top of, or at both faces of, the
fabric. The added capillaries increase the wicking rate due to surface wicking.
The shape of the liquid spreading in a non-woven is not affected by the extra
capillaries when material distribution is uniform throughout the non-woven
fabric. However, non-uniform distribution of material influences the shape
of the liquid spread.40

5.5.6 Roughness anisotropy and grooves

If the roughness geometry is isotropic, then the drop shape is almost spherical
and the apparent contact angle of the drop is nearly uniform along the contact
line. If the roughness geometry is anisotropic, e.g. parallel grooves, then the
apparent contact angle and the shape of the drop is no longer uniform along
the contact line56. For the case of a composite contact of a hydrophobic drop,
the apparent contact angle in a plane normal to the grooves is larger than the
one along the grooves. This is a consequence of the squeezing and pinning
of the drop in the former and the stretching of the drop in the latter planes,
respectively. Both these apparent contact angles are usually larger than the
intrinsic values of the substrate material (i.e. the one for the smooth surface).
Wenzel and Cassie’s equations are insufficient to understand this anisotropy
in the wetting of rough surfaces.

Yost et al.57 demonstrated that, in extensive wetting, the arc length of
wetting has a fractal character which is shown to arise from rapid flow into
groove-like channels in the rough surface. This behavior is due to the additional
driving force for wetting exerted by channel capillaries, resulting in flow
into and along the valleys of the nodular structure. Several workers have
shown that continuous paths of internodular grooves having a > q would
explain the profuse wetting on rough surfaces. It has been shown that rough
substrates having a < q do not show Wenzel behavior.

Flow in a straight V-shaped groove has been modeled. When the straight
walls of the groove are oriented at an angle of a to the surface and the liquid
fills the groove to a depth y, the curvature of the liquid surface (1/R) becomes:

1/R = sin (a – (q) tan a/y [5.33]

This shows that flow into the groove can only occur if a > q. This clearly
emphasizes that fluid is drawn only into grooves satisfying this inequality
and provides an alternative path to its derivation originally provided by
Shuttleworth and Bailey. Further, it was shown that the area of spreading of
the liquid, A(t) is related as:

A(t) = bDt [5.34]
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where b is a proportionality coefficient including a tortuosity factor; the
diffusion coefficient D is found to increase with a. This lends support to the
notion that extensive wetting and spreading is driven by capillary flow into
the valleys of rough surfaces.

5.5.7 Roughness of fibrous materials

Fabrics constructed from hydrophobic microfilament yarns have higher contact
angles than others. Aseptic fabrics (sterilized) have mostly higher contact
angles than non-aseptic fabrics.

Rough surfaces may facilitate fast spreading of liquid along troughs offered
by the surface roughness. Alkaline hydrolysis causes pitting of the surface of
polyester fibers and improves their wettability, as indicated by contact angle
measurements.58 The enhanced wettability is due to an increase in either the
number or the accessibility of polymer hydrophilic groups to water and/or an
increase in the roughness of the sample surfaces.

Hollies et al.,16 reported that differences in yarn surface roughness give
rise to differences in wicking of yarns and fabrics made from the yarns.
Increase in yarn roughness due to random arrangement of its fibers gives rise
to a decrease in the rate of water transport, and this is seen to depend on two
factors directly related to water transfer by a capillary process: (i) the effective
advancing contact angle of water on the yarn is increased as yarn roughness
is increased; (ii) the continuity of capillaries formed by the fibers of the yarn
is seen to decrease as the fiber arrangement becomes more random. The
measurement of water transport rates in yarns is thus seen to be a sensitive
measure of fiber arrangement and yarn roughness in textiles assemblies.16

Plasma-treated polypropylene melt-blown webs develop surface roughness
as a result of chemical reactions and micro etchings on fiber surfaces. However,
it has been pointed out that the improved water wettability after plasma
treatment is due to the increased polarity of the surface; surface roughness is
not a primary reason for improved wettability, but may increase it.59

5.5.8 Wetting of textured fabrics

The natural hydrophobicity of surfaces can be enhanced by creating texture
on them, especially if the surfaces are microtextured. Surfaces that are rough
on a nanoscale tend to be more hydrophobic than smooth surfaces because
of the extremely reduced contact area between the liquid and solid, analogous
to so-called ‘lotus-effect’ (repellency of lotus leaves).60 This gives a self-
cleaning effect to surgical fabrics, i.e. particles adhering to the fabric surface
are captured by rolling water due to the very small interfacial area between
the particle and the rough fabric surface.61 Super hydrophobic surfaces can
be created using a nanofiber web made from hydrophobic materials. In this
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kind of structure, the apparent contact angle q* will be very high since the
fraction of the surface in contact with the liquid fs may be very low, coupled
with a high intrinsic contact angle q as evident from Equation [5.27]; a drop
placed on them easily rolls-off without wetting the surface and subsequently
hindering wicking in the material.

Electrospun nanofibrous webs have potential application as barriers to
liquid penetration in protective clothing systems for agricultural workers.
Research work is in progress to create microporous web made from nanofibers
such as cellulose acetate and polypropylene laminated with conventional
fabric for this application.62 It is envisaged that the microporous web with
small pore sizes will prevent liquid penetration, and the laminate will provide
a selective membrane system that prevents penetration of pesticide challenged
liquids while allowing the release of moisture vapor to provide thermal
comfort.

5.6 Hysteresis effects

For an ideal surface wet by a pure liquid, the contact angle theory predicts
only one thermodynamically stable contact angle. For many solid–liquid
interactions, there is no unique contact angle and an interval of contact
angles is observed. The largest contact angle is called ‘advancing’ and the
smallest contact angle is called ‘receding’. The work of adhesion during
receding is larger. Liquid droplets placed on a surface may produce an advancing
angle if the drop is placed gently enough on the surface, or a receding angle
if the deposition energy forces the drop to spread further than it would in the
advancing case. Hysteresis occurs due to a wide range of metastable states as
the liquid meniscus scans the surface of a solid at the solid–liquid–vapor
interface. The true equilibrium contact angle is impossible to measure as
there are free energy barriers between the metastable states. It is essential to
measure both the contact angles and report the contact angle hysteresis to
fully characterize a surface. The hysteresis effect can be classified in
thermodynamic and kinetic terms. Roughness and heterogeneity of the surface
are the sources of thermodynamic hysteresis. Kinetic hysteresis is characterized
by the time-dependent changes in contact angle which depend on deformation,
reorientation and mobility of the surface, and liquid penetration. Difference
in hysteresis among fibers sheds light on the differences that exist in their
chemical and physical structures.63

5.6.1 Characterization of hysteresis

Wetting hysteresis can be characterized in three different ways: the arithmetic
difference between the values of the advancing and receding contact angles
�q = qa – qr; the difference between the cosines of the receding and advancing
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contact angles Dcos q = cos qr – cos qa; and a dimensionless form,64 referred
to as ‘reduced hysteresis’ H,

H = (qa – qr)/qa [5.35]

Wetting hysteresis is also characterized as the ratio of the work of adhesion
in the receding mode to that in the advancing.

5.6.2 Hysteresis on micro-textured surfaces

On micro-textured surfaces, the contact angle hysteresis is affected by the
state of the drop. The Wenzel state is characterized by a huge hysteresis in
the range of 50∞ to 100∞ which makes it very sticky compared to the Cassie
state, which is very slippery because of its low hysteresis (in the range of 5∞
to 20∞). This is due to the fact the drop interacts with many defects on the
surface in the first case, whereas it hardly feels the surface and can easily roll
off in the second case.46

5.6.3 Hysteresis on fibrous materials

Since fibrous materials are complicated by surface roughness and heterogeneity,
the measured (apparent) contact angle exhibits hysteresis and the advancing
contact angle is usually employed in discussions of wicking.65 Surface
contamination, roughness, and molecular structure of fibers are the factors
responsible for wetting hysteresis.66 The wetting index while receding is
governed mostly by the chemical make-up of the fiber; the index during
advancing is affected additionally by the physical and morphological structures
which include molecular orientation, crystallinity, roughness, and surface
texture.

Whang and Gupta67 tested wetting characteristics of chemically similar
cellulosic fibers, viz. cotton, regular rayon (roughly round but crenulated
shape), and trilobal-shaped rayon, using the Wilhelmy technique. The contact
angles during receding for these fibers are similar due to their similar chemical
structures. The wetting hysteresis for cotton, regular rayon and trilobal rayon
were 1.06, 1.25 and 1.01, respectively. Very little or no hysteresis values for
the trilobal rayon fiber and high values for regular rayon fiber may be explained
on the basis of chemical purity, cross-sectional morphologies, and orientation
of molecules in the fibers. The trilobal rayon fibers had high purity, were
smoother and had more homogeneous surfaces than regular rayon fibers.
These differences are partly responsible for the difference in the hysteresis
values of the two rayon fibers. Pre-wetting and absorption can also influence
hysteresis for some fibers.63,68 Surface contamination of fibers can also cause
hysteresis.69
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5.7 Meniscus

When a fiber is dipped in a fluid, a meniscus is formed on it. When it is
withdrawn, the meniscus is deformed, and a layer of fluid covers the fiber
and is entrained with it. Two regions of meniscus can be described, as shown
in Fig. 5.8. The dynamic region is high above the meniscus where the fluid
layer is nearly constant and the hydrodynamic equations can be simplified
and solved; and the static meniscus region is near the surface of the fluid
bath, where the capillary equation of Laplace is integrated.

The Landau–Lavich–Derjaguin (LLD) theory forecasts the limit film
thickness h0, present on an inclined plate withdrawn from a liquid bath, by
matching the curvature between the apex of the static meniscus and the
bottom of the steady-state region of the dynamic regime using the expression:

h0 = (0.945/(1 – cos a0)
1/2)(hv0/gLV)2/3(gLV/rg)1/2 [5.36]

where a0 is the inclination angle in degrees of the plate with the horizontal; v0

is the plate velocity, and g is the gravity constant. The second term represents the
capillary number and the final term is related to the inverse of the bond number.

5.7.1 Meniscus on single fiber

Rebouillat et al.70 extended their work to a meniscus on an inclined fiber and
showed that
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5.8 Withdrawal of a fiber from a bath of wetting liquid: the static
meniscus is deformed and strained for a length L and a layer of
constant thickness ho covers the fiber above the meniscus. Reprinted
from Chemical Engineering Science, Vol. 57, S. Rebouillat, B.
Steffenino, and B. Salvador, pp. 3953–3966, Copyright (2002), with
permission from Elsevier’.
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h R h Ca0 0
2/3

0/(  + ) = 1.34 / 1 –  cos a [5.37]

where R is the fiber radius and Ca is the capillary number expressed as
(hv0/gLV)

The fluid radii in the dynamic meniscus region S and in the constant
thickness region S0 are related by the expression:

S = S0 + B exp (–z/E) [5.38]

where B and E are the parameters of the model and z is the distance along the
fiber from the level of the liquid bath.

It is shown that, for a monofilament withdrawn from a bath of liquid, with
increasing meniscus height, fluid radius decreases and for a given rise of
liquid on the withdrawing fiber, the larger the withdrawal speed of the fiber,
the larger is the fluid radii in the dynamic region.

5.7.2 Meniscus on multifilament

In the case of a multifilament, the complexity comes essentially from the
influence of the porosity existing inside the structure between the filaments,
which increases the surface of contacts as compared with a monofilament of
the same size. Using images, it was shown that, at low velocity, the fluid
seems to be dragged inside the fibers; that is to say, the structure seems to be
swollen under the capillary suction effect. Nevertheless, at high speeds, the
porous structure may become saturated and fluid is dragged around the
cylinder composed of the multifilaments, internal fluid filling the porosity
formed by the filament structure.

The ratio of fluid thickness on the fiber to radius of the fiber is found to
be similar for monofilament and multifilament when the fiber is withdrawn
at highspeeds, as if the multifilament fibers behave like a cylinder of apparent
radius encompassing the majority of the filaments. The height of the dynamic
meniscus L for velocities 20–120 m/min is expressed as:

L h h Ro = ( (  + )0 [5.39]

Wiener and Dejiová30 modeled the curvature of the meniscus during wicking
in multifilament yarns. The curvature of the liquid along the fibers is infinite
and the radius of the curved meniscus between the fibers R, by simplifying
the Laplace equation, yields DP = gLV/R. When the capillary pressure driving
the liquid front is balanced by the hydrostatic pressure, rLgh, then R is:

R = gLV /rLgh [5.40]

According to the above equation, the curvature of the liquid surface increases
(or radius decreases) as the liquid rises to a greater height between the fibers.
This is shown in Fig. 5.9.
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5.8 Instability of liquid flow

Flow of liquid under certain conditions experiences instability. Instability of
liquid flow influences the uniformity of coating of fibrous materials, including
spin–finishes on synthetic filament yarns and filling of voids between fibers
during fiber–composite production. Droplet formation occurs on fibers due
to flow instability. During wet filtration, aerosol particles are captured by the
liquid drops formed on the fibers rather than being directly captured by the
fibers, and by providing sufficient liquid, the filter is self-cleaning and filtration
efficiency is greatly increased.

5.8.1 Curvature of cylindrical surfaces

A uniform cylindrical bubble possesses a critical length beyond which it is
unstable toward necking in at one end and bulging at the other. This length
equals the circumference of the cylinder. A cylinder of length greater than
this critical value thus promptly collapses into a smaller and a larger bubble.
The same is true of a cylinder of liquid, i.e. a stream of liquid emerging from
a circular nozzle.10 A fluid film layer flowing either on the outside or inside
of a vertical cylinder is more unstable than on a vertical plane wall. The
stability of the flow on the cylindrical wall is characterized by the curvature
of the free surface rather than that of the cylinder.71 As the radius of the
cylinder decreases, flow becomes more unstable. Even when the liquid is at
rest, the layer of fluid is unstable because of the disturbance of the wave
number beyond a certain critical value. With increasing curvature of the film,
the range of unstable wave numbers and the wave number of the most amplified
wave increase. For low curvature, the wave number of the most amplified

(A)

(B)

(C)

Liquor Fiber Surface of liquor

5.9 Influence of hydrostatic negative pressure or liquid height on the
curvature of meniscus in a parallel fiber bundle. Height increases
from C to B and then to a maximum height A (From Wiener and
Dejiova, Autex Research Journal.30
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wave decreases with the Reynolds number or Weber number, while for high
curvatures it increases.

5.8.2 Fluid jets

A slow-moving, thin, cylindrical stream of water undergoes necking-in,
becomes non-uniform in diameter and eventually breaks up into alternately
smaller and larger droplets. This is an example of capillary break-up (a
column of liquid in a capillary) and it is commonly known as Rayleigh
instability.

A stream or jet of fluid emerging from a circular nozzle undergoes a
process of necking-in, leading to break-up of the jet into alternate smaller
and larger drops72,73. Weber73 considered the break-up of a jet of fluid and,
according to his theory, the most rapidly growing mode is given by:

2p a /l = 0.707 [1 + (9h2/2rg LVa)1/2]–1/2 [5.41]

where a is the initial radius of the liquid cylinder, h is the viscosity of the
fluid, and l is the wave length of the disturbance.

For a cylindrical jet, Rayleigh calculated that the most unstable disturbance
wavelength, l , is about nine times the radius of the jet. In the case of a thin
annular coating of liquid on the inside of a capillary, the disturbance is much
faster than the case where liquid completely fills in the capillary. The liquid
film breaks up into droplets of equal length more quickly. A standing wave
develops, which grows in amplitude until droplets are producted.74

Ponstein75 studied jets of rotating fluids and observed that an increasing
angular velocity decreases the stability of a solid jet and increases the stability
of a ‘hollow infinitely thick’ jet. Investigations of annular jets with both
surfaces free, showed that, in some cases, non-axially symmetric disturbances
are more stable than axially symmetric ones, whereas in non-rotating jets, only
axially symmetric disturbances are unstable. Tomotika76 considered a cylinder
of bi-component fluids (one liquid surrounded by the other). The most rapidly
growing mode of disturbance is given by: 2p a/l = 0 if the ratio of viscosities
is either zero or infinite and 2p a/l π 0 for finite values of the ratio.

5.8.3 Marangoni effect

Surface tension gradient on a liquid, known as the ‘Marangoni effect’, leads
to an erratic and slow wicking rate of the liquid. Spin finishes are applied to
synthetic fibers to control friction during downstream processes. Spin finishes
are multicomponent liquid systems containing surfactant and are applied to
yarns moving at high speeds. For uniform spreading of the finish within the
yarn structure, it is important that the rate of wicking be high and the finish
film not retract due to lack of adhesion as the carrier evaporates during the
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storage of yarn packages. It is observed that the absorption of surfactant
molecules on the fiber surface at the wicking front results in a decrease in the
surface energy of the fiber and an increase in the surface tension of the
liquid, with a concomitant decrease in the cosine of the contact angle and
capillary forces. Equilibrium conditions are re-established when the surfactant
molecules diffuse from the more concentrated regions into less concentrated
region (leading edge of the meniscus).77 These effects, often termed transient
effects, arise due to depletion and replenishment of surfactants at the liquid
surface. The overall results of adsorption of surfactant molecules and surface
tension gradient of liquid is erratic wicking behavior and a lower wicking
rate. This depletion effect is more pronounced in dilute solutions and decreases
as concentration of surfactant increases. The concentration of surfactant needed
to overwhelm the depletion is equal to, or in excess of, critical micellar
concentration.

5.8.4 Dewetting process

The rupture of a thin film on the substrate (liquid or solid) and formation of
droplets, can be understood as dewetting: it is the opposite process of spreading
of a liquid on a substrate, i.e. S < 0. Dewetting is one of the processes that
can occur at a solid–liquid or liquid–liquid interface. Dewetting is an unwanted
process in applications such as lubrication, protective coating and printing,
because it destroys the applied thin film. Even in the case of S < 0, the film
does not dewet immediately if it is in a metastable state, e.g. if the temperature
of the film is below the Tg of the polymer forming the film. Annealing of the
film above its Tg increases the mobility of the polymer chain molecules;
dewetting starts from randomly formed holes (dry patches) in the film. These
dry patches grow and the material is accumulated in the rim surrounding the
growing hole, a polygon network of connected strings of material forming.
These strings then can break-up into droplets by the process of ‘Rayleigh-
instability’.

Dewetting of resin on glass fiber has to be controlled during composite
manufacture. It has been shown that the presence of high surface energy
components on the glass surface (treated with finishes) tends to resist dewetting
of the receding fluid front, lowering the receding angle.78

5.8.5 Fiber coating

Droplet formation can occur in the case of coating of synthetic fibers with
water for lubrication. Droplets can be formed on the inside of fiber assemblies
from the thin liquid coating left behind either when the liquid drains from the
tube or larger air bubbles pass through the tube.79 In order to give cohesion
between multifilaments to prevent them from being damaged in further
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operations or imparting lubrication and specific surface properties (hydrophilic,
hydrophobic, functional etc.) in textile applications, fiber impregnation process
is used. This process is usually done by passing the material through a liquid
bath. The impregnation speed is of the order of 10 m s–1. Rebouillat et al.70

studied the high-speed fiber impregnation fluid layer formation on mono-
and multifilaments. During high-speed impregnation, the predominant
phenomenon is inertia followed by surface tension, viscosity and then gravity.
At high speeds, the inertia effect tends to drag more quantities of fluid on the
substrate and the meniscus takes a critical size; the capillary forces perpendicular
to the fiber are no longer negligible and drops are formed as various forces
tend to minimize the fluid surfaces. These formed drops are dragged under
the effect of inertia.

5.9 Morphological transitions of liquid bodies in

parallel fiber bundles

The fundamentals of non-homogeneous liquid flow dealing with thin films
on flat surfaces, capillary instability and surface gradient effects have been
well researched. A few attempts have been made to exploit non-homogeneous
flow for practical applications involving fibrous materials in the areas of
fiber coating, wet filters and development of liquid-barrier fabrics.

Wetting phenomena occurring between two or three equidistant, parallel
cylinders have been studied.62 By changing the ratio of spacing d between
the cylinders and radii r of the cylinders, different morphologies can be
observed for liquid shapes between the cylinders. As the ratio d/r is increased,
one can observe that the morphology of the liquid changes from ‘disintegrated
column’ to ‘unduloid shape’ through ‘channel-filling column’ (Fig. 5.10).

5.10 Morphology of liquid for three-cylinder system.62
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This observation has a far-reaching impact on designing liquid-barrier fabrics
by manipulating the pore size of nanofiber webs.

5.10 Sources of further information and advice

Many works of a significant nature have been published on the wetting of
solids rather in the fiber wetting field. Little work has so far been done
dedicated to the gas filtration of liquid aerosols using fiber filters. Most of
the studies reported on wet filtration are on a macroscopic level investigating
the efficiency of the wetted fiber filter without examining the actual processes
occurring inside the filter. Microscopic works in the area of wet filters to
enhance the understanding of the physical phenomena have been carried out
by Mullins et al.8 in developing the model for the oscillation of clamshell
droplets in the Reynolds transition flow region; Mullins et al.80 on dynamic
effects of water build-up on the fiber, flow down the fiber leading to a self-
cleaning effect, fiber rewetting and cake removal after evaporative drying;
and Contal et al.81 on a qualitative description of clogging of fiber filters by
liquid droplets in terms of the change in the mass of deposit on fibers vs.
pressure drop. Formation of barrel-shaped droplets is preferable to clamshell
to improve the efficiency of the wet filter. Fine wettable fibers favor the
barrel configuration for droplets. Future investigations should be directed
towards selection of fibers and their fineness, surface modification of fibers
by finishes/plasma treatment and the arrangement of these fibers in terms of
angle and spacing to design efficient wet fiber filters.

Another promising area of research involving fibers is the development of
liquid-barrier fabrics using nanofibers. Here again, little has been done except
a work wherein the theory of liquid-instability is applied to develop a model
for liquid instability between cylinder analogs to fibers.62

Methods of quantifying wetting of fibers, yarns and fabrics, effects of
various parameters influencing wetting phenomena and modeling of wetting
phenomena on fibrous materials including simulation are also very important
and these are reviewed in a monograph ‘Wetting and wicking in fibrous
materials’.82
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6.1 Introduction

The interaction of liquids with fibrous materials may involve one or several
physical phenomena (Skelton, 1976; Leger and Joanny, 1992; Keey, 1995;
Batch, Chen et al., 1996; Kissa, 1996). On the basis of the relative amount
of liquid involved and the mode of the liquid–fabric contact, the wicking
processes can be divided into two groups: wicking from an infinite liquid
reservoir (immersion, trans-planar wicking, and longitudinal wicking), and
wicking from a finite (limited) liquid reservoir (a single drop wicking into a
fabric). According to fiber–liquid interactions, the wicking processes can
also be divided into four categories: capillary penetration only; simultaneous
capillary penetration and imbibition by the fibers (diffusion of the liquid into
the interior of the fibers); capillary penetration and adsorption of a surfactant
on fibers; and simultaneous capillary penetration, imbibition by the fibers,
and adsorption of a surfactant on fibers. When designing tests to simulate
liquid–textile interactions of a practical process, it is essential to understand
the primary processes involved and their kinetics (Batch, Chen et al., 1996;
Perwuelz, Mondon et al., 2000; Baumbach, Dreyer et al., 2001).

One of the fundamental parameters which dictates the liquid–solid
interactions is the geometry of the solid, including the shape and relative
positions of the structural components in the system, as explicitly reflected
in the Laplace pressure law showing that the pressure drop is proportional to
the characteristic curvatures. Consequently, for the same material, its wetting
behavior will be different, in some cases drastically, when made into a film,
a fiber, a fiber bundle or a fibrous material, as demonstrated in this chapter.

6.2 Fundamentals

Surface tension only occurs at the interface, and is therefore determined by
both the media at the interface. Surface tension between two media (e.g. two
non-miscible liquids) A and B is termed as gAB, except in the case of a water/

6
Interactions between liquid and

fibrous materials

N. P A N and Z. S U N, University of California, USA
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air interface where the surface tension is often denoted simply as g. The
following are some of the liquid/solid interfacial relationships fundamental
to understanding the interactions between liquid and fibrous media. We will
restrict our discussion to the case of non-volatile liquids.

6.2.1 A liquid drop on a fiber – in shape or not in shape

There has been much research work on the equilibrium shapes of liquid
drops on fibers (Carroll 1976, 1984, 1992; McHale, Kab et al., 1997; Bieker
and Dietrich, 1998; McHale, Rowan et al., 1999; Neimark, 1999; Quere,
1999; Bauer, Bieker et al., 2000; McHale and Newton, 2002). In a complete
wetting case, a liquid drop will form a barrel shape covering the fiber as
shown in Fig. 6.1. Such a wetting liquid drop on a fiber of radius b has a
profile z(x) described by de Gennes et al. (2003) as

z

z

p
z b b

1 + 
 –  

2
(  –  ) = 

2
2 2

˙

D
g [6.1]

The maximum radius of the drop zmax = Rm when ż dz
dx

 =  = 0. The above

equation gives

D p
R b R bm m2

(  –  ) =  –  2 2

g  or R
p

bm  =  –  
D
D

g
[6.2]

Dp is the so-called over-pressure and roughly equals the Laplace capillary

pressure 
2
 + 
g

R bm
 for complete wetting (de Gennes et al., 2003).

6.2.2 Meniscus on a fiber – what if the fiber is standing
in water?

If a fiber is vertically inserted into a liquid bath, assuming the rise is very low
so that the effect of gravity on the liquid is negligible and there is a complete
wetting between fiber and the liquid, the liquid in the meniscus is in equilibrium
with the liquid bath so that Dp = 0. Equation 6.1 hence becomes

2b Rm

Z(x)

Fiber
x

6.1 A liquid drop forming a barrel shape covering a fiber.
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z

z
b

1 + 
 = 

2˙
[6.3]

At a height x, the vertical projections of forces is balanced 2p zyg cos q =
2p bg and tan q = ż. Bringing both conditions into the above equation yields
the solution of the profile of the meniscus

z b
x
b

 =  cosh Ê
Ë

ˆ
¯ [6.4]

This is a hanging chain equation known as a centenary curve (see Fig. 6.2).

6.2.3 The capillary number and the spreading speed –
dimensionless and dimensional

When a fiber is pulled out from a liquid at a speed V, the capillary force
causes some liquid to move with the fiber, yet the liquid viscosity h resists
any such movement. A dimensionless ratio of the two forces is called the
capillary number Ca:

C
V

a  = 
h

g [6.5]

A characteristic number with a dimension of speed

V C Vs a =  = 
h
g [6.6]

is called the spreading speed.

0

b
Z

q
z(x)

X

6.2 Liquid meniscus as a hanging chain or a centenary curve.
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6.2.4 Capillary adhesion – water serving as glue

Two glass surfaces can adhere to each other if there is a liquid drop in
between, as shown in Fig. 6.3. The Laplace pressure within the drop requires

Dp p p
R R R Ho w =  –  = 1  + 1  = 1  – cos 

/2
g g q

¢( ) Ê
Ë

ˆ
¯ [6.7]

where po and pw are the pressures in the air and water, respectively; g is the
liquid–air surface tension and q < p /2 to assure an attractive pressure Dp <
0. R and H are the radius of the liquid drop and the gap between the two
surfaces, respectively. The capillary adhesion Dp reduces into

D p
H

  
2  cos ª g q

[6.8]

if H << R. In the case of water as the liquid, with complete wetting q = 0,
R = 1 cm, H = 5 mm. The total adhesive force

F R
H

N  
2  cos 

 ~ 102ª p g q
[6.9]

enough to support more than one kilogram of weight!

6.2.5 Capillary length – when liquid weight is negligible

The capillary length lcl actually defines the ascending length of a liquid
beyond which the gravity or the density r of the liquid has to be considered
in analysis. Equating the Laplace pressure to the hydrostatic pressure,

g r
l

gl
cl

cl = [6.10]

or

l
gcl  = 

g
r [6.11]

where g is the gravitational acceleration. For any length scale < lcl, the liquid
weight can be neglected. For water, lcl ª = 2.7 mm and for most other liquids,
lcl ~ 1 mm.

6.3 Two glass surfaces adhered to each other by a liquid drop in-
between.
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6.2.6 Capillary rise in tubes – water climbing in a very
narrow tube

When a narrow tube of inner radius R is in contact with a liquid, the liquid
rises in the tube by a height H in the tube. The imbibition (or impregnation)
parameter defined by the solid–air and solid–liquid surface tensions

I = gsa – gsl [6.12]

To assure capillary rise, I > 0; the liquid is then referred to as a wetting
liquid. Based on Young’s relation

gsa – gsl = g cos q [6.13]

I > 0 is equivalent to q < p /2 as mentioned above. The factor I is closely
related to the spreading parameter S (Brochard, 1986) by,

I = S + g [6.14]

Therefore, the capillary rising criterion is more restrictive than that of the
spreading; if all other conditions remain the same, it is easier for a liquid to
rise in a capillary tube than to spread.

When H >> R, a very thin tube, the total energy E of the liquid column
due to the capillary rise can be calculated as

E R H g RHI = 1
2

 – 22 2p r p [6.15]

where the first term is the cost in terms of gravitational potential energy, and
the second term is the surface energy. Minimizing the total energy (and note
that I = g cos q ) yields the equilibrium (or Jurin’s) height:

H
gR

 = 
2  cos g q

r [6.16]

(i) H is the height a liquid of density r can climb in a small tube due to the
capillary effect. This value agrees with the experiments of Francis
Hauskbee (1666–1713). H is inversely proportional to R, and is
independent of the outer pressure and thickness of the tube wall.

(ii) I = g cos q and H share the same sign, I > 0, H > 0 capillary rises,
otherwise capillary descends.

(iii) H reaches maximum when q = 0. Further increase in I > g will lead to
S > 0; a microscopic film forms ahead of the meniscus.

(iv) When the condition H >> R is not true, corrections must be made in the
equation (de Gennes et al, 2003). Equation [6.16] is often referred to as
Jurin’s Law.

(v) If q ≥ p /2, H < 0, i.e. the liquid will not penetrate – a non-wetting
situation; the secret for Gore-Tex and other waterproof finishes.
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6.3 Complete wetting of curved surfaces

According to Brochard (1986) we define the complete wetting of a single
fiber of radius b as the state when the fiber is covered by a liquid ‘manchon’
or barrel, as this liquid geometry is less energy demanding than the nearly
spherical droplet sessile on the fiber. Let us denote by gSa, gSL and g the
surface tensions of the solid fiber, the solid/liquid interface, and the liquid
(or liquid/air), respectively. The liquid film thickness in the manchon
is represented by a parameter e. This liquid manchon formation occurs when
the so-called Harkinson spreading parameter S (Brochard, 1986), defined as

S = gSa – gSL – g [6.17]

reaches the critical value SCF derived in Brochard (1986).

S
e
bCF  = 
g

[6.18]

That is, the fiber will be covered by the liquid manchon in the case of the
following inequality

S S
e
bCF >  = 
g

[6.19]

Compared to the wetting of planes, the wetting of individual fibers is a more
energy-consuming process according to the Young Equation (Young, 1805),
as for complete wetting of a flat solid it only requires

S > 0 [6.20]

In other words, for a plane, the critical spreading parameter SCP holds

SCP = 0 [6.21]

From Equations [6.19] and [6.21] we see that it is obvious that liquids will
wet a solid plane more promptly than wet a fiber.

Next, let us examine the case of a fiber bundle formed by n parallel fibers
as seen in Fig. 6.4, each with a radius b. Let us focus on the less energy-
demanding case and assume that the manchon is a cylindrically symmetric
liquid body with an equivalent radius R, as shown in Fig. 6.5.

The equilibrium configurations of limited amounts of liquid in horizontal
assemblies of parallel cylinders have been introduced and described in detail
by Princen (Princen 1969, 1992; Princen, Aronson et al. 1980). The criterion
of complete wetting of a vertical fiber bundle dipped partially in a liquid will
be derived here by the comparison of the surface energy Wm of such a
manchon liquid geometry with the surface energy Wb of a dry fiber bundle.
For a length L of the dry fiber bundle,

Wb = 2pbnLgSa [6.22]
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whereas the same length of liquid formed manchon on the fiber bundle has
the surface energy

Wm = 2p bnLgSL + 2p RLg [6.23]

That is, the energy Wm is composed of both terms of the solid/liquid interface
and the liquid/air interface. The complete wetting sets in when the wet state
of the system is energetically more favorable compared with the dry one, i.e.
Wb > Wm. Or from previous equations

g g g
Sa SL

R
n b

 –   –  
  
  

 > 0
◊
◊ [6.24]

Inserting Harkinson spreading coefficient from Equation [6.17] into Equation
[6.24] yields

S R n b
n b

 =  –    
  

◊
◊ g [6.25a]

So the critical value SCb for the complete wetting of the bundle system is

S R n b
n bCb  =  –    
  

◊
◊ g [6.25b]

n = 7
R = 3b

Liquid

Fiber

R

b

6.4 A fiber bundle formed by n parallel fibers; From Lukas, D. and N.
Pan (2003). ‘Wetting of a fiber bundle in fibrous structures.’ Polymer
Composites 24(3): 314–322 with kind permission of the Society of
Plastics Engineers.

R

L

6.5 A liquid body with an equivalent radius R covering the fiber
bundle; From Lukas, D. and N. Pan (2003). ‘Wetting of a fiber bundle
in fibrous structures.’ Polymer Composites 24(3): 314–322 with kind
permission of the Society of Plastics Engineers.
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The radius of the manchon R could be smaller than the total sum of fibers
radii nb. Figure 6.4 shows us such an example when the cross-section of the
seven-fiber bundle is covered by a liquid cylinder. The value of SCb is clearly
only –4/7 g.

The above results show that it is highly probable to have a solid/liquid
system in which, on one hand, the liquid will wet a solid plane but not a
single fiber, and on the other hand, the liquid will wet a fiber bundle, even
before it does the solid plane. This, of course, is attributable to the familiar
capillary mechanism. However, the above simple analysis also explains the
excellent wetting properties of a fiber mass in terms of energy changes: the
consequence of the collective behavior of fibers in the bundle allows the
manchon energy Wm to decrease more rapidly with the fiber number n in the
bundle than the dry bundle energy Wb.

6.4 Liquid spreading dynamics on a solid surface

6.4.1 Fiber pulling out of a liquid – the Landau–Levich–
Derjaguin (LLD) law

When a fiber is pulled out of a liquid pool, it drags a liquid film of thickness
e along with it; a phenomenon resulting from several competing factors
including the interfacial surface tensions, liquid viscosity and density. According
to Derjaguin’s law (Derjaguin and Levi, 1943), when Ca << 1:

e l C
g

V V
gcl a   =  = 1/2ª g

r
h

g
h
r [6.26]

So the film thickness increases with the liquid viscosity and pulling out
speed, decreases with the weight of liquid, and yet is independent of the
liquid surface tension! Note the condition Ca << 1 to assure this is still in the
LLD visco-capillary regime, instead of a visco-gravitional one characterized
by Ca ≥ 1 (de Gennes et al., 2003).

The length of the dynamic meniscus ldm can be derived from the Landau–
Levich–Derjaguin (LLD) law to be related to both e and the capillary length
lcl

l eldm cl  µ [6.27]

When a drop of a liquid is put on top of a solid surface, there are two
competing effects. The interactions with the solid substrate make it energetically
favorable for the drop to spread such that it wets the surface. However,
spreading increases the area of contact between the liquid and vapor, which
also increases the surface energy between the drop and the vapor. When the
interaction with the solid surface dominates, one gets complete wetting, and
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when the surface tension term dominates, one gets partial wetting (Seemann,
Herminghaus et al., 2005).

Curvature effects due to the cylindrical geometry also play an important
role in the formation of liquid films from a reservoir on vertical fibers. Their
static and dynamic properties have been studied in detail by Quere and co-
workers (1988), both theoretically and experimentally.

6.4.2 Droplet spreading dynamics

Deposit a small drop of octane on a very clean glass, and record the change
of the drop radius R(t) as a function of time (see Fig. 6.6). Plot R(t) on log/
log paper. Check that R ~ ta, where a ª 0.1. If we replace the octane with a
silicone oil, or even water, provided only that it can wet the glass, we find
that all these liquids spread according to a universal law which does not
depend on the liquid

R = (Vst)
0.1 W0.3 [6.28]

where Vs is the spreading speed defined above and W is the liquid volume.
We might have expected spreading speed to increase with spreading parameter
S, but in fact on very clean glass, where S is large, or on silanized glass,
where S is practically zero, a silicone oil will spread at seemingly the same
speed! This mystery has recently been resolved by de Gennes. The spreading
droplet comprises a macroscopic part which has the shape of a spherical cap,
since the pressure reaches equilibrium very quickly in thicker regions. This
is characterized by a contact angle qd. The measured spreading speed is
independent of S! The effect of S is more subtle and passes unseen to the
naked eye, for around the spreading droplet there is a microscopic film,

Vs

qd

R(t)

Videocamera

6.6 Recording change of a liquid drop radius R(t) as a function of
time; From Brochard-Wyart, F., ‘Droplets: Capillarity and Wetting’, in
Soft Matter Physics, M. Daoud, C.E. Williams, Editors. 1999, Springer:
New York. pp. 1–45. With kind permission of Springer Science and
Business Media.
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known as the precursor film (see Fig. 6.7). This precursor film was first
observed by Hardy in 1919 (Hardy, 1919) during his work on lubrication,
when he noticed the motion of dust in front of a spreading droplet. However,
the detailed study of its structure and profile, using high-precision optical
techniques on the nanoscopic scale (ellipsometry), has been achieved only in
the last decade or so. This has revealed a tiered structure, which gives us
information about molecular forces (Heslot, Cazabat et al., 1989; Cazabat,
Gerdes et al., 1997). A direct visualization of the droplet and its surrounding
halo, obtained by an atomic force microscope, is shown in Fig. 6.8.

How can the spreading law be explained? The macroscopic force pulling
on the droplet is the unbalanced Young’s force

Macroscopic droplet

Precursor film

6.7 A close-up of a liquid precursor film; From Brochard-Wyart, F.,
‘Droplets: Capillarity and Wetting’, in Soft Matter Physics, M. Daoud,
C.E. Williams, Editors. 1999, Springer: New York. pp. 1–45. with kind
permission of Springer Science and Business Media.

6.8 A direct visualization of the liquid droplet and its surrounding
halo; From Brochard-Wyart, F., ‘Droplets: Capillarity and Wetting’, in
Soft Matter Physics, M. Daoud, C.E. Williams, Editor. 1999, Springer:
New York. pp. 1–45. With kind permission from Dr. Didier.
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Fd = gSO – (gSO + g cos q) = S + 1
2

2g q d [6.29]

This force includes two terms: S (very large) and 1
2

2g q d  (very small indeed;

104 times smaller than S for angles qd ª 1∞). We will neglect S! We shall
assume that the frictional force

F Vf
d

 = 
h

q [6.30]

on the fluid wedge balances the tiny contribution of 1
2

2g q d  to the total force.

We then obtain the experimentally established law for the spreading rate

V d = 3g
h q [6.31]

By using the capillary number, the macroscopic spreading law is universal in
reduced units:

Ca d  3ª q [6.32]

One of the major contributions of de Gennes to wetting dynamics is the
demonstration that the frictional force in the precursor film exactly balances S:

Ffil = S [6.33]

It is for this reason that, on a nanoscopic scale, S plays no role whatever in
the spreading. On the other hand, the greater S is, the more the precursor film
spreads out.

It is often said that we would have to wait as long as the age of the
universe for a droplet to spread out. Indeed, since the spreading speed varies
as q d

3 , while the droplet is flattening out, it must spread more and more
slowly. In consequence, it would take months for a micro droplet to spread
spontaneously over several square centimeters, even if the liquid were of
very low viscosity. It is thus easy to understand why spreading is forced in
industrial processes, so as to cover surfaces more and more quickly (at rates
of around the km/min).

Although liquids spread slowly in conditions of total wetting, they spread
much more quickly in partial wetting, because the dynamical contact angle
qd, which is always greater than the equilibrium one qe, remains large. The
spreading time te can be estimated using the dimensional law

Re e e = 3g
h q t [6.34]

where Re is the radius of the deposited droplet at equilibrium.

Re = 1 mm, 
g
h  ª 1m/s, qe ~ 1 rad, and te ~ 1 ms.
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6.5 Rayleigh instability

It is well known in the classical theory of capillarity that cylindrical jets are
unstable and break into small droplets as seen in Fig. 6.9 (Rayleigh instability)
(Sekimoto et al., 1987). This is also true for macroscopic films deposited on
fibers. The van der Waals interaction, however, stabilizes thin films on fibers
of radius b. A linear stability analysis performed by Brochard (1986) shows
that all films smaller than e = (ab)1/2 are stable, where a is the liquid molecular
size. This is particularly true both for the films in equilibrium with a reservoir
and for the equilibrium sheaths.

6.5.1 A static analysis

A droplet will not spread out along a horizontal fiber, and this is true even for
complete wetting (S > 0). Because of the cylindrical symmetry, the L /A
interface is more dominant than the L /S interface, and a sleeve distribution
is unstable (Brochard-Wyart, 1999). This is the reason for the so-called
Rayleigh instability. Thus in Fig. 6.9 when a fiber is coated by a liquid film,
the state is unstable and the film soon breaks down into small droplets, more
or less regularly spaced along the fiber, leaving only an extremely thin liquid
layer on the fiber owing to the intermolecular forces such as the van der
Waals actions as mentioned above, if the disjoining pressure according to
Derjaguin (Neimark, 1999) is negligible. The formation of such a droplet
chain from the initially continuous liquid film occurs in the cases of either
zero contact angle or complete wetting over a plane surface (Roe, 1957). In
other words, wetting behavior of fibers is typified by the instability or
breakdown of the liquid columns coating the fiber, first described by Plateau
(1869) and Rayleigh (1878), hence the term of Rayleigh instability.

In general the disintegration of a liquid jet with radius r is attributed to the
development of wave perturbations with various wavelengths l on the surface
of the liquid column, where l has to be greater than 2pr according to Roe
(1957). This perturbation will then trigger the disintegration of the liquid
cylinder at an avalanching rate. This phenomenon was later studied by several

6.9 A typical example of liquid Rayleigh instability; From Brochard-
Wyart, F., ‘Droplets: Capillarity and Wetting’, in Soft Matter Physics,
M. Daoud, C.E. Williams, Editor. 1999, Springer: New York. pp. 1–45.
With kind permission of Springer Science and Business Media.
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other authors both theoretically and experimentally; for instance by Roe
(1957), Tomotikav (1935) and Meister and Scheele (1967).

We will examine two parts of the process in the case of liquid coating a
fiber (i) the breaking down of a continuous liquid cylinder covering a fiber
and (ii) the detaching of the fragmented liquid droplets from the fiber. But
first we have to investigate some geometrical surfaces of revolution with a
constant mean curvature so as to establish a criterion at which liquid bodies
remain stable, followed by a rough reasoning on the instability of the liquid
film on a fiber, based on the energy conservation principle. Next, we will
discuss the evolution of wave instability of a pure liquid jet according to
Rayleigh (1878) so that the critical wavelength that sets off the liquid jet
breakdown will be derived.

A rough analysis of the Rayleigh instability can be conducted by associating
the initial shape of a liquid jet, a cylinder in our case, with the final shape of
a chain of droplets each with identical volume. For an incompressible liquid

p l pr r d0
2 3 = 4

3 [6.35]

where l r is the length of the cylinder with original radius ro that is converted
into one droplet of radius rd. This lr value, obtainable from the volume and
surface energy conservation laws, will be taken as the approximation of the
Rayleigh wavelength l. We then obtain

r rd o r
2 2

2
3

 = 3
4

 l( ) [6.36]

The energy of the liquid consists of the ones associated with the surface
tension g  F and the volume pressure pcV; where F is the corresponding liquid
surface area and V is the liquid volume, while pc denotes the capillary pressure.
The energy change before and after the disintegration of the liquid column
clearly satisfies:

2p r0l rg + p rol rg ≥ 4p g p gr rd d
2 2 + 8

3
[6.37]

From Equation [6.37] we find lr

l r
d

o

r
r

  20
9

2

≥ [6.38]

Now we substitute for rd
2  from Equation [6.36] into Equation [6.38] to obtain

l pr or r  
5 4
3

  1.96   
3

4 0≥ ª ◊ [6.39]

This result is consistent with the exact value obtained later for the Rayleigh
wavelength l = 2.88pro. A well-known similar inequality was first established
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experimentally by Plateau (1869), and he proceeded to the problem of oil
drops in water mixed with alcohol forming into cylinders and determined
that the instability starts to occur when the cylinder length, that is the wavelength
l, is between 1.99pro and 2.02p ro. There is another approach in the literature
(de Gennes, 2003) that provides us with a similar inequality l > 2p ro. We
can thus conclude that a drop with shorter wavelength than 2p ro cannot be
formed since the surface energy of the drop should always be lower than that
of the original smooth cylinder.

We have to stress that the exact value for the wavelength of the Rayleigh
instability cannot be derived based merely on the conservation of free energy,
for the transformation of a liquid body shape is coupled with the mutation of
its surface area, causing change of both energy and entropy at the liquid–gas
interface as discussed in Grigorev and Shiraeva (1990).

6.5.2 A more dynamic approach

The Rayleigh instability of liquid jets is the consequence of a temporal
development and magnification of the originally tiny perturbations, also known
as the capillary waves (de Gennes et al., 2003). We assume the perturbations
to be harmonic with an exponentially growing amplitude. While such a
perturbation is developing along a liquid jet, some of the liquid surface
energy turns into the kinetic energy associated with a liquid flow, thus causing
the cylindrical liquid column to be transformed into a chain of individual
droplets. We anticipate the perturbations to develop with various speeds,
depending on their wavelengths, and the perturbation that grows the most
will quickly prevail so as to determine the wavelength, or distance between
the neighboring droplets (Brochard, 1986). For practical purposes, we further
assume that the resulting wavelength is entirely determined by the earliest
state of the perturbations. We will develop more details of this idea below.

The perturbation wave propagates on the liquid column of the originally
cylindrical shape. By coinciding the column axis with the axis z of the
Cartesian coordinate system, the radius of the liquid body changes according
to our assumption above in space and time as

r = ro + aeqt cos (kz) [6.40]

where ro is a constant, and a denotes the initial amplitude of the perturbation.
The growing parameter for the surface wave is q, and k is the wave vector (k
= 2pl–1). For convenience, we will use in the following text a parameter a(t)
= aeqt. Given the assumption that the whole process is determined by the
early state of the perturbation, we take into account only the first non-zero
term in the expansions of surface and kinetic energies of the developing
perturbation.
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Our further procedure will be a qualitative one, working with the following
previously obtained findings. (i) The relevant parameters for the surface and
kinetic energy changes are those involved in Equation [6.38], which is our
first estimation of the Rayleigh wavelength. The relevant parameters include
the radius of the original cylinder ro, the wave vector k, and the amplitude
a (t) = a exp(–qt). (ii) According to the Plateau inequality [6.39] written in
the form rok < 0.996~1.012, or approximately rok < 1, the dimensionless
parameter ro k, will play a critical role in changes of surface and kinetic
energies. (iii) When the surface energy change is positive, there must be
rok > 1, and the change is negative when rok < 1 as dictated by the Plateau
inequality.

The surface energy change DW(t) per unit length of the liquid jet after
some mathematical manipulations in de Gennes et al. (2003) can be written
as

DW t t k ro( )  ( )(1 –  )2 2 2ª a [6.41]

The kinetic energy per unit length, DT = T1 – T2, has to contain a relevant
parameter proportional to the velocity squared. The only time-dependent
relevant parameter is a (t) = aeqt whose physical unit is length, and its time
derivation

d
dt

t t aqe q tqta a a( ) = ( ) =  = ( )˙ [6.42]

has the meaning of velocity. Therefore, we have DT proportional to ȧ 2 ( )t .
The dependence of DT with the remaining parameters k and ro has to be
estimated based on the kinetic energy required to transport an equal volume
of liquid an equal distance in the same time. The flux in a tube is proportional
to r2v and its energy to r2Lv2 where r is the radius of the tube and L is the
distance on which the liquid is transported through at average velocity v.
From the equality of fluxes in tubes with various radii r1 and r2 follows
v
v

r

r
1

2

2
2

1
2 =  and so the ratio of the kinetic energies T1 and T2 for different radii

r1 and r2 is

T
T

r

r
1

2

2
2

1
2 = [6.43]

So, the kinetic energy estimated here has to be inversely proportional to ro
2 .

The only way to incorporate the wave vector k into the equation so as to
comply with the constraint on the kinetic energy by the condition (ii), the
dependence on dimensional parameter rok, is to assume DT to be inversely
proportional to the square of k as well. The resultant estimation of the kinetic
energy of the perturbation is thus

DT r t
kro

o

  ( ) 1
( )

2 2
2ª pr ȧ [6.44]
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where r is the liquid mass density. The law of energy conservation, DT + DW
= 0, leads to the relation

q
kr

kr
o

o
2

2
21

( )
 + [1 –  ( ) ] = 0 [6.45]

with its extreme value for the growing parameter q given as the function of
the dimensionless product kro by the equation

d
dx

kr k ro o ( ) (  –  1) = 02 2 2 [6.46]

Equation [6.46] has the solution kro 1/2  = 0.707, where k = 2pl–1, which
provides us with the estimation of the Rayleigh wavelength lest = 2 2 pro =
2.83pro. The exact result for the Rayleigh wavelength is achieved by means
of Navier–Stokes such that Equation [6.46] can be expressed in terms of
(ikro) ( ( ))/ ( )¢J ikr J ikro o o o , where Jo(ikro) is the Bessel function of zero order,
and ¢Jo  is its first-order derivative, r is the cylindrical coordinate, and i
denotes the imaginary term. The maximum growing coefficient q then has
the value of 0.69 and the Rayleigh wavelength thus obtained is 2.88pro, in
good agreement both with results from Equation [6.46] and from (Rayleigh,
1878).

6.6 Lucas–Washburn theory and wetting of fibrous

media

6.6.1 Liquid climbing along a fiber bundle

Study of fiber wetting behavior is critical in prediction of properties and
performance of fibrous structures such as fiber reinforced composites and
textiles. On the other hand, the most often studied cases in physics for
wetting phenomena are the wetting of solid planes. Compared to the plane
wetting situation, the wetting of a fiber exhibits some unique features due to
the inherent fiber curvature (Brochard, 1986; Bacri, Frenois et al., 1988).
Brochard, for instance, derived the critical spreading parameter SCF for complete
fiber wetting transition and proved that this parameter is greater than that for
a plane of the same liquid/solid system. It means that liquids are more
willing to wet planes than individual fibers of the same material, due to fiber
curvature.

However, in spite of this higher inertia of wetting process of individual
fibers, one of the best known and most frequently used materials for liquid
absorption is fiber assemblies. Their excellent behavior during wetting processes
could be intuitively explained by the capillary effect due to their collectively
large inner surface area, but a more quantitative theory of fiber assembly
wetting at the microscopic level has yet to be fully developed.
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We attempt here to extend the approach presented by Brochard (Brochard,
1986; Brochard-Wyart and Dimeglio, 1987) and Bacri (Bacri, Frenois et al.,
1988; Bacri and Brochard-Wyart, 2000) obtained for single fiber wetting, to
the spreading of a liquid along a fiber bundle. We then develop a theory to
predict the ascension profile of a liquid along a vertical fiber bundle. The
non-linear relationship between the liquid profile and the bundle properties
observed experimentally will be predicted by the theoretical tool.

Brochard’s deduction of a liquid body profile in a wetting regime for a
single fiber is easily extendable to a small bundle of parallel fibers, with the
assumption of axial symmetry of the sessile liquid body. Our goal here is to
obtain the relationship between the liquid body profile F(x) measured from
the bundle to the liquid/air interface. The equivalent radius of the fiber bundle
is denoted above as R, and the bundle is vertically dipped into the liquid as
shown in Fig. 6.10.

0 g sa

R

F(x)

g

q
Liquid

x

g sl

6.10 A fiber bundle vertically dipped into the liquid; From Lukas, D.
and N. Pan (2003). ‘Wetting of a fiber bundle in fibrous structures.’
Polymer Composites 24(3): 314–322 with kind permission of the
Society of Plastics Engineers.
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The base for the derivation is the equilibrium of the projections onto the
bundle axis x of the capillary forces (Brochard, 1986). The particular force
projections taking part in the equilibrium include the one spreading the
liquid on a fiber caused by gSO, parallel with the bundle axis, the force due
to the fiber/liquid surface tension gSL, parallel with but opposite to gSO, and
the third one in the direction with an angle q from the x axis representing the
liquid surface tension g as illustrated in Fig. 6.10.

In Laplace force regime, the equilibrium of the capillary forces acting on
the liquid spread on the fiber bundle is

2p n · bgSO = 2p n · bgSL + 2p (F(x) + R) cos q. [6.47]

In our consideration, we neglect the gravity effects, since addition of a
gravitational term into Equation [6.47] will make it mathematically unsolvable.
Yet it has been indicated (Manna et al., 1992) that, for relatively short fibers
(£ 10 cm), the effects of the gravitational force are negligible.

Using the following relations

cos  = 1
1 + tan 2

q
q

[6.48a]

and

tan  = 
( )

 = ( )q d x
dx

x
F F ¢ [6.48b]

Equation [6.47] can be rewritten in the form of a differential equation,

R x

x
np

 + ( )

1 + ( )
 = 

2

F
F ¢

[6.49]

where p is a system constant

p b S =  + 1g
Ê
Ë

ˆ
¯ [6.50]

The solution of Equation [6.49] is the function F(x) that represents the
equilibrium profile of the liquid mass clinging onto the fiber bundle

F ( ) =  cosh
 – 

 –  x np
x x

np
RoÊ

Ë
ˆ
¯ [6.51a]

where xo specifies the peak point of the macroscopic meniscus. We can set xo

= 0 so that

F ( ) =  cosh  – x np x
np

RÊ
Ë

ˆ
¯    0 £ x < • (3.51b)

where x is the height along the fiber bundle but measured from the top of the
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liquid profile as shown in Fig. 6.11. It is clear that, in order to maintain the
solution of the equation meaningful, i.e. F(x) ≥ 0, first there has to be p > 0,
which translates into

S
g  > –  1   or gSO > gSL [6.52]

6.11 The liquid profile F(x) over a fiber bundle. From Lukas, D. and
N. Pan (2003). ‘Wetting of a fiber bundle in fibrous structures.’
Polymer Composites 24(3): 314–322 with kind permission of the
Society of Plastics Engineers. (a) F (x) distribution at different fiber
number n; (b) F(x)  distribution at different fiber radius b; (c) F(x)
distribution at different spreading ratio S/g.
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The physical implication of this inequity is obvious – a necessary condition
for wetting a fiber bundle is that the surface tension of the fiber gSO has to be
greater than the surface tension of the fiber/liquid, gSL.

Furthermore, from Equation [6.51b], we can see that there is a criterion
for determining the equivalent fiber bundle radius R, since F(x) ≥ 0 so that

R np x
np

   cosh£ Ê
Ë

ˆ
¯ [6.53]

As cosh(x) achieves the minimum when x = 0, and cosh(0) = 1, we have the
limit for R

R np nb S   =  + 1£ Ê
Ë

ˆ
¯g [6.54]

In the case R > np, the mathematical solution of F(x) no longer has physical
meaning. Shown in Equation [6.54], the spacing between fibers in the bundle is
limited by the spreading ratio S/g . By using Equation [6.52], i.e. S/g > –1, the
minimum value of the bundle radius R = Rmin > 0.

Furthermore, when x = 0, and cosh (0) = 1, then Equation [6.51b] gives
F(0) = np – R. It means that, according to Equation [6.54], beneath the liquid
meniscus with the hyperbolic cosine shape, there exists a microscopic liquid
film on the fiber bundle, whose thickness is

F(0) = np – R > 0 [6.55]

This may indicate that, at the point where the liquid mass profile starts,
i.e. x = 0, the liquid first coats the fiber bundle with a thin layer of thickness
np – R, a phenomenon similar to what is reported in Brochard (Brochard,
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1986) for the single-fiber wetting case. However, it is recommended that this
conclusion be verified in view of the omission of the gravitational effects in
the analysis.

Considering the upper limit for the bundle radius R = np in Equation
[6.55], the lower limit Fo(x) of the liquid profile F(x) in Equation [6.51b]
can be expressed in terms of the Harkinson spreading parameter S and the
liquid surface tension g:

F o x nb S x

nb S
nb S( ) =  + 1  cosh

 + 1
 –   + 1g

g
g

Ê
Ë

ˆ
¯ Ê

Ë
ˆ
¯

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

Ê
Ë

ˆ
¯  0 £ x £ •

[6.56]

That is, Fo(x) is a function of the height x, the spreading ratio S/g reflecting
the surface properties of liquid, the fiber, and the liquid/fiber interfacial
property, as well as the fiber parameters nb, as plotted in Fig. 6.11 based on
Equation [6.56] (which may be regarded as [6.51c] in the series).

In general, Fo(x) increases with x when other parameters are given. The effect
of the number of fibers in a bundle is seen in Fig. 6.11(a) where a small bundle
(small n value) will have a greater amplitude of Fo(x) at a given position x.

The fiber radius b has the similar influence on Fo(x), i.e. Fo(x) increasing
with b for a given x, except that it also determines the maximum value, Fm(x)
and the maximum height xm as seen in Fig. 6.11(b); when b is smaller, the
Fm(x) value as well as xm will be accordingly smaller. Figure 6.11(c) shows
that the same thing can be said about the effect of the spreading ratio S/g ; a
smaller ratio S/g results in a smaller Fm(x) and xm.

Once again, the solution to Equation [6.51] has a shortcoming resulting
from the exclusion of gravity in the analysis. The consequence is an
asymptotical behavior of F(x) that does not converge to the flat horizontal
surface of the liquid source perpendicular to the fiber bundle.

6.6.2 Lucas–Washburn theory

The first attempt to understand the capillary driven non-homogeneous flows
for practical applications was made by Lucas (1918) and Washburn (1921).
Good (1964) and Sorbie et al. (1995) have successively derived more
generalized expressions of the theory. The theory aroused public excitement
in England in 1999 about what is called dunking, or dipping a biscuit into a
hot drink such as tea or coffee to enhance flavor release by up to ten times
(Fisher, 1999).

Lucas–Washburn theory has been used in, and further developed for, the
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textile area by a few authors. Chatterjee (1985) dealt with these kinds of
flow in dyeing. Pillai and Advani (1996) conducted an experimental study of
the capillarity-driven flow of viscous liquids across a bank of aligned fibers.
Hsieh (1995) has discussed wetting and capillary theories, and applications
of these principles to the analysis of liquid wetting and transport in fibrous
materials. Several techniques employing fluid flow to characterize the structure
of fibrous materials were also presented in Hirt et al. (1987). Lukas and
Soukupova (1999) carried out a data analysis to test the validity of the
Lucas–Washburn approach for some fibrous materials and obtained a solution
for the Lucas–Washburn equation including the gravity term.

Non-homogeneous flows have also been studied using stochastic simulation
since the beginning of the 1990s. Manna, Herrmann and Landau (1992)
presented a stochastic simulation that generates the shape of a two-dimensional
liquid drop, subject to gravity, on a wall. The system was based on the so-
called Ising model, with Kawasaki dynamics. They located a phase transition
between a hanging and a sliding droplet. Then Lukkarinen (1995) studied
the mechanisms of fluid droplet spreading on flat solids, and found that in
the early stages the spreading is of nearly linear behavior with time, and the
liquid precursor film spreading is dominated by the surface flow of the bulk
droplet on the solid; whereas in the later stages, the dynamics of liquid
spreading is governed by the square root of time. A similar study of fluid
droplet spreading on a porous surface was also recently reported (Starov,
et al. 2003). First attempts to simulate liquid wetting dynamics in fiber
structures using the Ising Model have been done by Lukas et al. (Lukas,
Glazyrina et al., 1997; Lukas and Pan, 2003; Lukas et al., 2004), also by
Zhong et al. (Zhong, Ding et al., 2001, 2001a, though the simulation was
restricted to 2-D systems only.

For both scientific and practical purposes, the so-called wicking (or
absorbency) rate is of great interest. EDANA and INDA recommended tests
(EDANA, 1972; INDA, 1992) to determine the vertical speed at which the
liquid is moving upward in a fabric, as a measure of the capillarity of the test
material. The vertical rate of absorption is measured from the edges of the
test specimen strips suspended in a given liquid source. The resultant report
of the test contains a record of capillary rising heights after a time 10 s, 30 s,
60s (and even 300s if required). Gupta defined absorbency rate as the quantity
that is characterized based on a modification of the Lucas–Washburn equation,
and he then modified it to apply to a flat, thin, circular fabric on which fluid
diffuses radially outward (Gupta, 1997).

Miller and Friedman (Miller et al., 1991; Miller and Friedman, 1992)
introduced a technique for monitoring absorption rates for materials under
compression. Their Liquid/Air Displacement Analyser (LADA) measures
the rate of absorption by recording changes of the liquid weight when liquid
is sucked into a flat textile specimen connected to a liquid source.
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A more scientific definition of the wicking rate is based on the Lucas–
Washburn theory. This simple theory deals with the rate at which a liquid is
drawn into a circular tube via capillary action. Such a capillary is a grossly
simplified model of a pore in a real fibrous medium with a highly complex
structure (Berg, 1989). The theory is actually a special form of the Hagen–
Poiseuille law (Landau, 1988) for laminar viscous flows. According to this
law, the volume dV of a Newtonian liquid with viscosity m that wets through
a tube of radius r, and length h during time dt is given by the relation

dV
dt

r p p
h

 = 
(  –  )
8

4
1 2p

m [6.57]

where p1 – p2 is the pressure difference between the tube ends. The pressure
difference here is generated by capillarity force and gravitation. The contact
angle of the liquid against the tube wall is denoted as q, and b is the angle
between the tube axis and the vertical direction shown in Fig. 6.12. The
capillary pressure p1 has the value

p
r1 = 

2  cos g q
[6.58]

while the hydrostatic pressure p2 is

p2 = hzg cos b [6.59]

where g denotes the liquid surface tension, z is the liquid density, g is
gravitational acceleration and h, in this case, is the distance traveled by the
liquid, measured from the reservoir along the tube axis. This distance obviously
is the function of time, h = h(t), for a given system. When we substitute the

3

b

Q

r

h

2

1

6.12 A single fiber in a liquid pool; From Lukas, D. and N. Pan (2003).
‘Wetting of a fiber bundle in fibrous structures.’ Polymer Composites
24(3): 314–322 with kind permission of the Society of Plastics
Engineers.
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quantities p1, p2, and h(t) into Equation 6.57, expressing the liquid volume in
the capillary V as pr2h, we obtain the Lucas–Washburn equation

dh
dt

r
h

r g
 = 

 cos 
4

 –  
 cos 

8

2g q
m

z b
m [6.60]

For a given system as shown in Fig. 6.13(a), parameters such as r, g, q, m, z,
g, and b remain constant. We can then reduce the Lucas–Washburn Equation
[6.60] by introducing two constants

¢K
r

 = 
 cos 
4

g q
m ,   and   ¢L

r g
 = 

 cos 
8

z b
m [6.61]

into a simplified version

dh
dt

K
h

L =  –  ¢ ¢ [6.62]

The above relation is a non-linear ordinary differential equation that is solvable
only after ignoring the parameter L¢; this has a physical interpretation, when
either the liquid penetration is horizontal (b = 90∞), or r is small, or the rising

liquid height h is low so that ¢ ¢K
h

L >>  or L¢ Æ 0, the effects of the gravitation

field are negligible and the acceleration g vanishes. The Lucas–Washburn
Equation [6.62] could thus be solved with ease

h K t = 2 ¢ , [6.62]

6.6.3 Radial spreading of liquid on a fibrous material

Now we turn our attention back to Gupta’s (1997) approach to wicking rate
where a fluid from a point source in the centre of a substrate is spreading

h
1

T

3

h
2

w

T

(b)(a)

6.13 Two liquid spreading routes in fibrous materials. (a) liquid
spreading in radial directions; (b) liquid ascending vertically. Adapted
from Lukas, D. Soukupova, V., Pan, N. and Parikh, D. V. (2004).
‘Computer simulation of 3-D liquid transport in fibrous materials.’
Simulation-Transactions of The Society For Modeling and Simulation
International 80(11): 547–557.
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radially outward, instead of the ascending liquid front in a fibrous substrate
partially dipped into a liquid, as illustrated in Fig. 6.13(a) and (b), respectively.

It is useful now to transfer the Lucas–Washburn equation into a modified
version by replacing the distance h with liquid mass uptake m. Such a transition
is described in detail in Ford (1933) and Hsieh (1995). This manipulation
does not influence the fundamental shape of Equation [6.63], because the
relationship between h and m is linear for a circular tube of fixed cross-
section. Furthermore, for the radial spreading, the liquid mass mR = ph2TzVL

and for the ascending liquid front mA = whTzVL, denoting T as the thickness
of the substrate, and VL as the liquid volume fraction inside the substrate of
width w.

For the radial liquid spreading in a flat textile specimen, as in Fig. 6.13(b),
we can then write, using Equation [6.63]

Q
m

t
K T VR

L =  = 2p z¢ [6.64]

where Q is the liquid wicking (absorbency) rate used by Gupta (1997),
which is independent of time during the spreading process. Equation [6.64]
can be used to predict a drop radial spreading as shown in Fig. 6.14.

Let us now substitute liquid mass uptake mA into the original Lucas–
Wasbhurn Equation [6.62], with the result as

6.14 Radial spreading of a liquid drop. From Brochard-Wyart, F.,
‘Droplets: Capillarity and Wetting’, in Soft Matter Physics, M. Daoud,
C.E. Williams, Editors. 1999, Springer: New York. pp. 1–45. With kind
permission of Springer Science and Business Media.

R (t )
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dm
dt

K
m

LA

A
 =  –  [6.65]

The new constants K and L are

K = (wTzVL)2 K¢, L = wTzVLL¢ [6.66]

It is obvious that the constant K in the modified Lucas–Washburn Equation
Equation [6.65] is proportional to the wicking (absorbency) rate Q which is
defined in Equation [6.64], and from Equations [6.64] and [6.66] it follows that

Q
w T V

K
L

 = 2
2

p
z

[6.67]

Hence, the parameter K can be used as a measure of the spreading wicking
rate Q in the experiments when a fabric is hung vertically into a liquid. The
values of K and L can be derived from the slope and intercept of the dmA/dt
versus 1/mA.

On the other hand, Equations [6.62] and [6.65] can be solved in terms of
the functions t(h) or t(mA) without dropping the gravity term g, as shown by
Lukas and Soukupova (1999). For the liquid mass uptake Lucas–Washburn
Equation 6.65, one obtains for the ascending liquid front the relationship

t m
m
K

K
L

L
K

mA
A

A( ) = –  –   ln 1 –  2 ( ) [6.68]

Conversely, however, we are unable to acquire the inverse solution mA(t)
using the common functions.

The Lucas–Washburn approach presents an approximate but effective tool
to investigate the wicking and wetting behaviour of textiles despite the
complicated, non-circular, non-uniform, and non-parallel structure of their
pore spaces. It has been shown that Equations [6.62] and [6.65] hold for a
variety of fibrous media, including paper and textile materials [(Berg, 1989;
Everet et al., 1978) and 3-D pads (Miller and Jansen, 1982). Nevertheless,
this theory is unable to deal with issues such as the influence of structure,
e.g. fiber orientation and deformation, on wetting and wicking behavior of
fibrous media.

6.6.4 Capillary rise in a fibrous material

Wetting a fiber assembly is very different from wetting a single fiber, for the
specific surface areas in the two cases are very different. Instead of a single
dimension of fiber radius r, we have to deal with a medium of complex
surface structural geometry made of fibers and irregular pores.

For a medium with regular pore diameter dp, the specific surface area As

(m2/kg) is defined as the total surface area per kg of the medium, and can be
approximately calculated as



Thermal and moisture transport in fibrous materials214

A
ds

s p
  1@ r [6.69]

where rs is the solid density of the medium without any pores. For a pore
diameter dp = 10 mm and rs = 1 g/cm3, As is in the order of 100 m2/kg. This
value will be only 6 m2/kg if no pores exist.

If we know the volume fraction of the fibers Vf, then density of the fibrous
material is rsVf and the total specific surface area is

A A V
V
df s s f

f

p
 =   r @ [6.70]

Now consider a column made of this medium, with cross-sectional area S
and thus a wet volume Sh. When the height increases from h to h + dh, there
is a corresponding change in capillary energy

dEcap = AfSdh (gSL – gSa) [6.71]

and in liquid volume (assuming that all the pores are accessible by the liquid
of density rl)

dM = rl (1 – Vf)Sdh [6.72]

Associated with dM is a change in gravitational energy dEg

dEg = ghdM [6.73]

At equilibrium, the total energy change vanishes so that dEcap + dEg = 0, so
that the new height
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Although this result is completely analogous to Jurin’s law, it is expressed in
explicit macroscopic parameters of the fibrous materials. When pore diameter
dp = 10 mm, Vf = 0.5 and water is the liquid, this results in h = 10 cm!

6.7 Understanding wetting and liquid spreading

Leger and Joanny (1992), de Gennes (1985) and Joanny (1986) have each
written a comprehensive and excellent review on the liquid spreading
phenomena. Some of the relatively new developments and discoveries in
these reviews are summarized below.

6.7.1 The long-range force effects and disjoining
pressure

In a situation of partial wetting, the liquid does not spread completely and
shows a finite contact angle on a solid surface. Partial wetting behavior on
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perfect solid surfaces is well described by classical capillarity. Heterogeneities
of the solid surface lead to contact angle hysteresis. Experimentally, it is
very easy to tell the difference between partial wetting and complete wetting.
In the latter case, there exists a microscopic liquid film underneath the water
droplet covering the fiber, so that the contact angle q  = 0  (as mentioned in
Fig. 6.7) (Brochard–Wyart 1999).

In a complete wetting situation, the liquid forms a film on a solid surface
with a thickness in the mesoscopic range. The direct long-range interaction
between liquid and solid described by the so-called disjoining pressure governs
the physics of these films. Films of mesoscopic thickness also appear in the
spreading kinetics of liquids. These precursor films form ahead of macroscopic
advancing liquid fronts. The spreading kinetics is extremely slow. In fact, it
is only recently that it has been fully recognized that an essential aspect of
the physics of thin films, i.e. long range force effects, has to be added to
classical capillarity (Leger and Joanny, 1992). When a liquid spreads on a
solid or on another immiscible liquid, thin liquid zones always appear close
to the triple line. There, as soon as the thickness becomes smaller than the
range of molecular interactions, the interfacial tensions are not sufficient to
describe the free energy of the system: a new energy term has to be included,
which takes into account the interactions between the two interfaces (solid–
liquid and liquid–gas for a liquid spreading on a solid). This new free energy
contribution has a pressure counterpart which is the disjoining pressure
introduced by Derjaguin (1955) to describe the physics of thin liquid films.
It may dominate the spreading behavior, especially in situations of total
wetting in the late stages of spreading where thin films are likely to appear.

A recent paper by Rafai et al. (2005) has pointed out that wetting transition
proceeds in two schemes: the first-order process and the critical process,
depending on the thermal fluctuations, i.e. the competition between the short-
range interactions and the long-range van der Waals interactions. The sign of
the system’s Hamaker constant determines the outcome of the competition.
First-order implies a discontinuity in the first derivative of the surface free
energy. This discontinuity then suggests a jump in the liquid layer thickness.
Thus, at a first-order wetting transition, a discontinuous change in film thickness
occurs, such as in the case of Rayleigh’s instability. However, the critical
wetting is a continuous transition between a thin and a thick adsorbed film
at bulk two-phase coexistence.

6.7.2 Experimental investigation of the liquid wetting
and spreading processes

The macroscopic scales are the easiest to investigate and have been most
widely studied for a long time, either by observation through an optical
microscope or by contact angle measurements. With the development of
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computer image analysis, this can now be performed in an automated way
(Cheng, 1989), either for an advancing or a receding liquid front. A less
classical method, based on the use of the whole drop as a convex mirror
reflecting a parallel beam of light into a cone of aperture angle 2q has been
proposed by Allain et al. (1985), as it allows one to test simultaneously the
whole periphery of the drop. Sizes and thicknesses can be deduced from
direct observations through a microscope. If monochromatic light is used,
equal thickness fringes are quite a convenient way of investigating drop
profiles, with a vertical resolution of A/2n (A is the wavelength of the radiation
used and n the index of refraction of the liquid), the first black fringes being
located at a thickness of A/4n, i.e. typically 800 Å for visible light (Tanner,
1976). In order to investigate thinner parts of the drop, typical thin film
methods have to be used. As a liquid is present, methods requiring high
vacuum are inadequate.

Teletzke, Davis et al. (1988) have settled on a description of spreading,
including the long-range force contributions, which has stimulated a strong
activity in the field, both theoretically and experimentally. Decisive progress
has thus recently been achieved in the understanding of spreading and wetting
phenomena.

This progress has only been possible because of the parallel development
of very refined experimental techniques that allow the detailed investigation
of the properties of thin liquid films (Cazabat, 1990). As a spreading drop
may develop characteristic features at various thicknesses, ranging from
microscopic (a few Å) to macroscopic (larger than 0.1 mm), complementary
techniques have to be used in order to completely probe the spreading behavior.

6.7.3 The scale effects

One of the most interesting features is the variety of length scales involved
in these problems: macroscopic scales for liquid thicknesses larger than a
few thousand angstroms, mesoscopic scales for liquid thicknesses between
10 and 1000 Å, and even microscopic scales at the molecular level (de
Gennes et al., 2003).

At the macroscopic level the liquid is characterized by thermodynamic
quantities and the spreading kinetics have been described as a hydrodynamic
process. For simple liquids on ideal solid surfaces, the agreement between
theory and experiment seems rather good both for static and dynamic properties.
This is particularly true for Tanner’s (1976) law, giving the variation of the
dynamic contact angle with the advancing velocity that has been extensively
verified experimentally. The extension of this law to more complex situations
where the spreading is driven by other than the capillary forces, or to situations
where the spreading is unstable, also gives good quantitative descriptions of
the experimental results.
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On the other hand, the viscous effects predominate over inertial effects
when length scale becomes sufficiently small. Therefore, the dissipative
mechanism in destabilizing a liquid cylinder becomes dominant and has to
be considered (Schultz and Davis, 1982; Eggers, 1997). Another major
additional difficulty comes from the fact that the thickness may vary rapidly
with distance from the center of the drop, especially at mesoscopic scales.
High spatial resolution is then required and the number of available techniques
is not very large. Ellipsocontrast, i.e. observation under a microscope in
reflected polarized light, has proven to be very useful to probe thicknesses in
the range 100 Å and up, with a spatial resolution of 1 nm (Ausserre et al.,
1986); it is not however, up to now, fully quantitative. Ellipsometry (Azzam,
1977) appears to be the technique of choice, and tricks have been developed
to increase the spatial resolution (Leger, Erman et al., 1988; Heslot, Cazabat
et al., 1989). One has to notice, however, that it only gives access to the
product ne (n is the index of refraction of the liquid, e its thickness). X-ray
reflectivity has proven to be a unique tool to study spreading processes
(Daillant et al., 1988, 1990). The spatial resolution is poorer than in ellipsometry,
as grazing incidence is used, and the dimensions of the illuminated area of
the sample cannot be decreased below 100 nm ¥ 1 or 2 mm. It is, however,
a unique tool, because it gives access independently to three important
characteristics of the liquid film: its thickness, its density and its roughness.
It is thus valuable for microscopic scales and for studying the late stages of
spreading. Many other techniques have been used to visualize the presence
of thin liquid films, such as dust particle motion, vapor blowing patterns
(Hardy, 1919) and the use of fluorescent or absorbing dyes, but they can
hardly lead to quantitative profiles determination.

6.7.4 Heterogeneity

As in all surface phenomena, heterogeneities of the solid surface play an
important role which is only partially understood. There are several models
for contact angle hysteresis but very few quantitative experiments on this
matter. In the case of partial wetting, the spreading kinetics of a liquid on a
heterogeneous surface have been studied only in very artificial geometries
and the spreading law (relation between the contact angle and the advancing
velocity) on a strongly heterogeneous surface is not known either
experimentally or theoretically (Joanny, 1986).

In a case of complete wetting, the dynamic contact angle only depends
very weakly on the nature of the solid surface and heterogeneities play a less
important role. At the mesoscopic level, the properties of thin liquid films
are described by continuum theories that ignore the molecular nature of the
liquid and by macroscopic hydrodynamics; the long-range character of the
molecular interactions is then taken into account through the disjoining pressure.
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For liquids for which the interactions are well known, the calculated static
properties of the film are in very good agreement with the experimental
measurements: this agreement is extremely good for superfluid helium but it
is also satisfactory for van der Waals liquids such as silicone oils. The most
spectacular recent progress in this field is the important development of
surface scattering techniques such as X-ray reflection ellipsometry, which
now allows measurements of thicknesses with a precision of the order of
1Å or less; one should note, however, that the lateral resolution of these
techniques is in the micron range and that the measured thicknesses are
averaged over this size, thus eliminating heterogeneities of the film at small
sizes.

For many liquids, however, and in particular for water, the disjoining
pressure is only poorly known and this is a strong limitation of the theory.
Recent studies start to consider cases where the disjoining pressure is non-
monotonic. A qualitatively different spreading behavior is observed that is
not entirely understood. These very refined techniques have also been applied
to the study of precursor films that form ahead of spreading drops. Detailed
determinations of the precursor film profile have been made experimentally;
they are in qualitative agreement with the semi-microscopic theory but no
quantitative agreement has been obtained, the reason for that being unclear.

For liquids spreading on high energy surfaces, the continuum description
of the liquid breaks down in the last stages of the spreading where the
beautiful experiments of Heslot et al. (1998, a, b) have shown that the liquid
shows well-defined layers of molecular thickness. Some phenomenological
theories have been proposed to describe this layered spreading but a systematic
description of these experiments is far from being available. This looks like
a very promising subject for future studies.

6.7.5 For liquids other than water

Other extensions of the hydrodynamic theory than the one discussed here
have been made; for instance, to the spreading on a liquid substrate or to the
case where the external phase is not a vapor, or systems of immiscible
viscous liquids (Pumir, 1984; Joanny and Andelman, 1987). For more complex
liquids such as polymeric liquids or surfactant solutions, our understanding
of the spreading dynamic is poorer and further theoretical work is certainly
needed to understand in more detail the role of surface tension gradients and
the spreading hydrodynamics of polymer melts.

Finally, most of the theoretical studies of liquids spreading describe the
spreading as a purely hydrodynamic process and use classical hydrodynamics
down to liquid thicknesses of a few molecular diameters. In certain cases this
works surprisingly well (as is known from helium physics) but should certainly
be questioned for more complex liquids such as polymeric liquids or liquid
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crystals. Even for simple liquids, the spreading may involve non-hydrodynamic
processes such as the evaporation and re-condensation of the liquid (which
we have avoided, focusing on non-volatile liquids). This has received very
little theoretical attention but experimentally, volatile liquids often show an
instability when they spread (Williams, 1977).

We would like to finish this chapter using a paragraph by Herminghaus
(2005) in his preface for a recent special edition of J. Phys.: Condens.
Matter entirely devoted to the topic – ‘By the mid-nineties, the physics of
wetting had made its way into the canon of physical science topics in its full
breadth. The number of fruitful aspects addressed by that time is far too
widespread to be covered here with any ambition to completeness. The
number of researchers turning to this field was continuously growing, and
many problems had already been successfully resolved, and many questions
answered. However, quite a number of fundamental problems remained,
which obstinately resisted solution.’
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