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7.1 Introduction

7.1.1 Thermal conduction

Thermal transfer is a subject analyzing the energy change of a system. Of the
three main physical mechanisms for heat transfer, i.e. conduction, convection
and radiation, thermal convection refers to heat passing through the movement
of substances and, if occurring, it occurs only at the surface of a normal solid
material. The situation changes when we come to a fibrous material; as a
multiphase system, all the thermal transfer processes become possible,
depending on the construction and environmental conditions. Theoretically,
thermal conduction always happens as long as a temperature gradient is
present between a material system and the environment. When that temperature
gradient is small, heat transfer via radiation can be ignored. Furthermore, if
the fiber volume fraction is high enough, convection is suppressed by the
tiny pores between fibers. Consequently, thermal conduction turns out to be
the only or the most dominant heat transfer mechanism. Unlike many other
porous media, since the pores in a fibrous material are virtually all
interconnected, at low fiber volume fraction, heat loss due to convection can
become dominant, as in the case of wearing a loosely knitted sweater on a
windy day.

In the engineering field, because of such complexities, effective thermal
resistance is usually adopted to characterize thermal properties of fibrous
material systems by approximating a complex thermal process to an equivalent
thermal conduction process in normal solids (Martin and Lamb, 1987;
Satsumoto, Ishikawa et al., 1997; Jirsak, Gok et al., 1998). The other advantage
in dealing with the thermal conduction problem is that the mathematical
formulation of thermal conduction is better documented. The equations
governing different initial and boundary conditions have been more widely
explored and more analytical and numerical tools are thus made available
for ready applications.
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7.1.2 Similarity and difference between thermal
conduction and moisture diffusion

There are many similarities between thermal conduction and moisture diffusion.
Governing equations for both thermal conduction and moisture diffusion are
in the same form. Thus, analysis methods and results would be analogous for
both processes when system scale, material properties, and initial and boundary
conditions are similar. A more detailed comparison of conduction and diffusion
processes is available in the literatures (Crank, 1979; Bird, Stewart et al.,
2002). Macroscopic similarity between these two processes results from
microscopic physical mechanisms. Both of the processes are governed by
statistical behaviors of micro-particles’ (atoms, molecules, electrons) random
movement in the system. Thermal conduction deals with changes in system
internal energy; heat flow is a result of a change of system internal energy
due to spatial and temporal temperature differences. In this process, the
change of system energy is achieved by changing vibration, collision and
migration energy of the micro-particles. Moisture diffusion describes the
migration of water molecules and/or the assembly of water molecules in the
system. Thus, mass diffusivity of moisture in air is much larger than it is in
fibers, whereas the thermal conductivity of fibers is larger than that of air.
Furthermore, for most fibers, which are composed of polymers, anomalous
mass diffusion processes are observed due to the effects of water molecules
on large macromolecules. Although the governing equations for both processes
are built on a requirement for balance, thermal conduction is based on energy
conservation, and moisture diffusion requires mass conservation.

In this chapter, we focus mainly on continuum approaches to thermal
conduction and moisture diffusion. This means the micro-level interactions
will not be present in the formulations. The fibrous system will therefore be
treated as a continuum or several continua, characterized by macroscopic
material properties. Most analysis methods will be illustrated for thermal
conduction; analogies, to moisture diffusion condition whenever they exist,
will be mentioned. More detailed treatment of moisture diffusion, however,
such as anomalous diffusion in polymers, are briefly reviewed in Section
7.8.

7.2 Thermal conduction analysis

Generally, the goal of thermal transfer analysis is to determine the temporal
and spatial distributions of the scalar temperature field in a given system. To
achieve this, the governing equation, and the initial and boundary conditions
need to be formulated. Conceptually, detailed information about temperature
and derived variables of the system, such as heat flow rate and heat flux
through a given surface, will all be available from solutions of the governing
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equations with auxiliary conditions. Although formulation of the governing
equation for pure thermal conduction in a homogeneous system is rather
simple, a good understanding of the procedure not only illustrates the basic
idea about transport processes in general, but builds up fundamentals to
extend the analysis of heterogeneous systems such as fibrous systems.

When dealing with a physical process in homogeneous and isotropic
materials, it is implied that every differential part inside the system will
contribute the same response to the process. Thus, the governing equation
and bulk material properties can be derived based on one differential unit of
the material. Consider an arbitrary volume V of a homogenous and isotropic
material bounded by the surface A. The heat flow rate across the surface A,
is given by

–
A t

q n A
( )

  dÚ ◊ [7.1]

where n denotes the unit outward directed normal to A. Assuming no bulk
movement of the material, the transfer rate of thermal energy can be related
to the change rate of the internal energy in the volume V,
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where F is the heat generating rate inside volume V, including the adsorption
heat, condensation latent heat and so on. Applying the divergence theorem,
the surface integral can be changed into a volume integral, and Equation
[7.2] becomes
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Since the volume V is chosen arbitrarily, the governing equation is thus
given as
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However, as we have four unknown variables, e and qi (i = 1, 2, 3), with only
one equation now, additional equations have to be established.

First, the specific heat, i.e. heat capacity per unit mass, is introduced to
describe the relationship between the system’s internal energy and temperature
change. The specific heat of a material at constant volume is defined as
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[7.5]

The specific heat has dimensions of [energy][temperature]–1[mass]–1. Specific
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heats for general fibers are listed in Table 7.1 (Morton and Hearle, 1993).
The constitutive equation for heat flux is the well-known Fourier’s Law.
When in differential form,

q = – k—T [7.6]

where another material property is introduced, the thermal conductivity, k,
with dimensions [energy][time]–1[temperature]–1[length]–1. Thermal
conductivities of some polymer materials that are used as textile fibers are
listed in Table 7.2 (Morton and Hearle, 1993; Warner, 1995).

Strictly, Fourier’s Law is not a law of nature but an approximation, and
potentially it may lead to the problem that heat excitations would be transferred
with infinite speed (Ali and Zhang, 2005). However, Equation [7.6] does
have some theoretical basis, and has been widely and successfully used in
many science and engineering applications (Bird, Stewart et al., 2002).

Table 7.1 Specific heats of general fibers

Fiber Specific heat (J g–1 K–1)

Cotton 1.21
Rayon 1.26
Wool 1.36
Silk 1.38
Nylon 6 1.43
Polyester Terylene 1.34
Asbestos 1.05
Glass 0.80

Adapted from Morton and Hearle (1997)

Table 7.2 Thermal conductivity of polymer materials used in
textile fibers

Material Thermal conductivity
(mW m–1 K–1)

Poly(vinyl chloride) 160
Cellulose acetate 230
Nylon 250
Polyester 140
Polyethylene 340
Polypropylene 120
Polytetrafluoroethylene 350
PET 140
Glycerol 290
Cotton (cellulose) 70
Cotton bats 60
Wool bats 54
Silk bats 50

 Adapted from Morton and Hearle (1997)
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With the relationships shown above, the governing equation for thermal
transfer with temperature as the field variable is given by

rc
T
t

k Tv
∂
∂

Ê
ËÁ

ˆ
¯̃

— ◊ — =   ( ) + F [7.7]

This equation is valid for constant volume processes. For constant pressure
cases, however, a corresponding constant pressure specific heat, cp, should
be substituted. The difference between the two values is negligible for solids
yet relatively larger for liquids and gases (Carslaw and Jaeger, 1986; Bird,
Stewart et al., 2002). Considering the processes in fibrous systems in which
we are interested, the constant pressure form is obviously more appropriate.
For given material properties, the classical three-dimensional conduction
equation for constant pressure processes is obtained as

∂
∂
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t
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c p

 =  + 2a r
F [7.8]

where a, called the thermal diffusivity, is a combined material property with
the dimensions [length]2[time]–1. It is clear that thermal diffusivity has the
same dimensions as mass diffusivity D. The dimensionless ratio between
these two properties, called the Lewis number, indicates the relative ease of
thermal conduction versus mass diffusion transport in a material. This governing
partial differential equation shares the same form as the time-dependent
diffusion equation when F = 0. The corresponding steady-state equation is
in the elliptical form. The properties of these equations have been well
explored and can be found in books dealing with partial differential equations
(Haberman,1987; Arfken and Weber, 2005).

In order to obtain the distribution of temperature field, the boundary
conditions and initial condition are needed to determine the constants resulting
from integration of the governing differential equations. The initial condition
for transient thermal conduction is a given temperature distribution in the
form of

T(x, 0) = f (x) [7.9]

where f (x) is a known function whose domain coincides with the region the
material occupied. A solution of the governing equation, T(x, t) with t > 0,
has to satisfy the initial condition lim ( , )  ( ).

0t
T x t f x

Æ
Æ

The boundary conditions describe the physical behavior at the surface of
the material. They are determined from experiments at a given operation
environment. Three kinds of boundary condition are often used to approximate
real-world situations.

(i) Prescribed temperature
The prescribed temperature could be constant or a function of time,
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position or both of them. This boundary condition is mostly well explored
and is applicable to model conditions where material boundaries are in
contact with a well-controlled thermal environment, such as a thermal
guard plate.

(ii) Prescribed thermal flux across the boundary surface

This boundary condition implies k
T
n

g
∂
∂

 =  at the boundary surface, for
t > 0. When the prescribed function g is equal to zero, it represents an
insulated condition which is particularly important when fibrous materials
are used for thermal insulation.

(iii) Linear thermal transfer at the boundary surface
This boundary condition assumes that thermal flux varies linearly with
temperature difference between the boundary and the environment,
given by

k
T
n

h T T tenv
∂
∂

 + (  –  ) = 0 for  > 0 [7.10]

in which h is a positive measured variable called the surface heat
transfer coefficient. This boundary condition is generally referred to as
the ‘Newton’s law of cooling’ and describes a material cooled by an
external, well-stirred fluid. Also, it is applicable to black-body or near
black-body radiation at boundaries where the temperature difference
between the material and the environment is not too large.

There are still many other boundary conditions, including both linear and
non-linear forms. Some of them are listed in Carslaw and Jaeger (1986).
Choosing, or setting up, appropriate boundary conditions depends on one’s
understanding of the process and is critical for further analysis.

The thermal conduction governing equation with certain initial and boundary
conditions can be solved by both analytical and numerical methods. General
discussions about analytical methods and their results, such as separation
variables, integral transformation and Green functions methods, are available
in both applied mathematics and transport phenomena books (Carslaw and
Jaeger, 1986; Haberman, 1987; Bird, Stewart et al., 2002; Arfken and Weber,
2005). Numerical methods for thermal conduction problems, such as finite
difference and finite elements analysis, are also well developed (Shih, 1984;
Minkowycz, 1988). These results are critical not only for thermal analysis
but are also important for measurement of thermal conductivity. By carefully
setting up experiments, a one-dimensional steady-state heat transfer solution
has been applied widely to guide the static hot-plate thermal conductivity
measurement (Satsumoto, Ishikawa et al., 1997; Jirsak, Gok et al., 1998;
Mohammadi, Banks-Lee et al., 2003). Transient thermal conduction results
have also found their application in dynamic measurement of fabric thermal
conductivities (Martin and Lamb, 1987; Jirsak, Gok et al., 1998). In order to
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improve experimental design and data analysis, however, a deeper
understanding of these theoretical results and their limitations are required.

In fibrous materials, anisotropic characteristics are of predominant
importance. It is known that the longitudinal and lateral thermal conductivities
of a single fiber are significantly different owing to its anisotropic nature
(Woo, Shalev et al., 1994a,b; Fu and Mai, 2003). Furthermore, this directional
dependence of thermal conductivity is magnified in fiber assemblies due to
asymmetry packing of fibers. In this context, we would like to review some
fundamental characteristics of anisotropic thermal conductivity and its effects
on the conduction process.

The generalization of Fourier’s Law for anisotropic materials is given by

q = K · —T [7.11]

where k is the thermal conductivity tensor. In the Cartesian coordinate system,
it is written in matrix form as
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Depending on the system symmetry, the conductivity matrix can be simplified.
It has been proved that the thermal conductivity matrix is symmetrical,
based on Onsager’s principle of microscopic reversibility, i.e. krs = ksr for all
r and s. The other important aspect for the thermal conductivity tensor is the
transformation of the coordinate system. Assume that we try to consider a
new Cartesian system x¢, y¢ and z¢, whose directional cosines relative to the
old coordinate x, y, z system are (c11, c21, c31), (c12, c22, c32), (c13, c23, c33)
respectively. The components of conductivity tensor ¢kik  in the new system
are given by

¢k c c kik r s ri sk rs =  
=1

3

=1

3
S S [7.13]

These are just the transformation laws for a second-order tensor.
With the introduction of the thermal conductivity tensor, the governing

equation for homogenous anisotropic materials without heat generation is
given by
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It can be shown that a transformation to a particular Cartesian system x, h,
z leads to the simplified representation
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These new axes are called the principal axes of thermal conductivity and k1,
k2 and k3 are the principal conductivities. The directions of the principal axes
depend on the symmetry of the system in question. For an orthotropic system,
which has different conductivities k1, k 2 and k3 in three mutually perpendicular
directions, these directions coincide with the principal axes.

Different from isotropic materials, an important characteristic for heat
conduction in anisotropic media is that the heat flux vector does not locate
in the same direction as the temperature gradient. Thus, two thermal
conductivities at a given point P in an anisotropic material are defined. km is
defined as the conductivity in the direction of the flux vector at P, and
satisfies

q k
T
mm m = –
∂
∂ [7.16]

where qm and 
∂
∂

T
m

 are the flux and rate of change of temperature along the

direction of flux vector at point P.
Similarly, the conductivity normal to the isothermals at P, kn is defined by

relating the heat flux and rates of temperature change in the direction normal
to the isothermal at P,
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Relationships between these conductivities with principal conductivities are
also found. Assuming the flux vector has directional cosines (l, m, n) relative
to the principal axes of the conductivity, the conductivity in direction m, km,
is given by
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whereas the conductivity normal to isothermal kn, whose normal has direction
cosines (l¢, m¢, n¢) relative to the principal axes, is given by

kn = l¢2k1 + m¢2k2 + n¢2k3 [7.19]

Depending on the measurement method, km or kn will be measured (Carslaw
and Jaeger, 1986).
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For more discussion about the geometrical properties of thermal
conductivities and their effects on the thermal conduction process, one can
refer to the classic treatise by Carslaw and Jaeger (1986).

7.3 Effective thermal conductivity for fibrous

materials

7.3.1 Introduction

Fibrous materials are widely used in various engineering fields, such as
textile fabrics as reinforcements in fiber-reinforced composites, fibrous thermal
insulators, and fibrous scaffold in tissue engineering, to just name a few
(Tong and Tien, 1983; Tong, Yang et al., 1983; Christensen, 1991; Freed,
Vunjaknovakovic et al., 1994). Also, most biological tissues, e.g. tendons,
muscles, are intrinsically fibrous materials (Skalak and Chien, 1987). In
these applications, fibrous materials are often referred to as assemblies of
fibers. The behaviors of these fiber assembles are significantly different
from those of single fibers.

Systems with fibers are generally heterogeneous. For example, textile
fabrics are a mixture of fibers and air, and become a mixture of fibers and
water when fully wetted. Fiber-reinforced composite materials are composed
of a fiber assembly and matrix materials between fibers. Generally, we treat
these mixtures as a whole, heterogeneous material system and analysis of the
responses of these heterogeneous materials to external disturbances is our
objective in research for engineering applications. Clearly, internal structure,
properties of each component, and interactions among components, will
determine the behaviors of the whole heterogeneous material. Ideally, a fully
discrete analysis based on characterization of each fiber, interstitial materials
and interface conditions will provide the most detailed information for the
system. But the large number of fibers, often intricate internal structure, and
complex interactions of components render the discrete analysis very expensive,
if not impossible.

One way to overcome the difficulties in analysis of heterogeneous materials
is to try to find a hypothetical homogeneous material equivalent to the original
heterogeneous one (Bear and Bachmat, 1990; Christensen, 1991; Whitaker,
1999); the same external disturbances will lead to the same macro-responses.
The properties of this equivalent homogeneous material are denoted as ‘effective
material properties’. As soon as the effective material properties are determined,
the analysis of a heterogeneous material can be reduced to that of a
homogeneous one, a much easier case to tackle.

As in all mixed systems, some of the properties, such as the effective
density and specific heat in the thermal conduction case, can easily be obtained
by some form of averaging over the corresponding properties of each



Thermal and moisture transport in fibrous materials234

component. However, there are other system properties, including the effective
thermal conductivity, that depend not only on the properties of each component,
but also on the way those components are assembled into the whole system,
i.e. the internal structure and the interactions among the individual components.
Sometimes, the effective thermal conductivity can be measured directly. But,
there are often many difficulties and practical limitations in the experimental
approach. For example, when testing a fibrous material, many issues have to
be settled before the test can proceed, such as the time to reach a steady state,
influence of other thermal transfer processes, effect of applied pressure, and
so on. Also, the results only can be applied in certain environment ranges,
and costs are often expensive. Thus, prediction effective thermal conductivity
by setting up constitutive laws from component properties and structure is
still very attractive.

The most important and difficult task in prediction is characterization of
structure. The structure of fiber assemblies must be understood from several
aspects. Basically, information about the structure of a single fiber is needed,
including longitudinal and transverse length, and ratio between them, geometry
of cross-sections, crimp of fibers, and so on. After that, distribution of fibers
and connection between them are required information for the understanding
of fiber assembly structures. Depending on applications, fibers may be woven
into yarns and woven fabric forms or packed together into nonwoven form.
In the modeling process, an appropriate mathematical description has to be
introduced to account for different ways of assembling such as the geometrics
of yarns for woven fabrics (Dasgupta and Agarwal, 1992; Ning and Chou,
1995a,b) and orientation functions for the random packing of fibers (Pan,
1993, 1994; Fu and Mai, 2003).

The structure of interstitial materials among fibers may also contribute to
effective thermal conductivity. But no rules can be summarized unless the
particular system is given. The simplest term accounting for interaction between
the fiber assembly and other components is the volume fraction of each one.
Further interaction characterization needs a knowledge of interface properties,
such as contact resistance, continuity of thermal flux, and so on.

7.3.2 Prediction of the effective thermal
conductivity (ETC)

Due to the importance of effective thermal conductivity, much work has
been done in this field. Most of it has concerned research on porous media
and composite materials. The first major contribution should be attributed to
Maxwell (Bird, Stewart et al., 2002), who predicted the effective thermal
conductivity of composite materials with small volume fraction spherical
inclusions. During analysis, only one inclusion sphere embedded in an infinite
matrix was considered, with the assumption that the temperature field of a
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sphere is unaffected by presence of other spheres. The result is represented
by

k
k k k

k k
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1 2 1

2 1

 = 1 + 
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where, k1 and k2 are thermal conductivities of the matrix and inclusion spheres,
respectively. e is the volume fraction of spheres.

Generally, analysis for dilute particles tries to solve the problem

q = –k1—T, — · q = —2T = 0 in each phase [7.21]

n · k1—T = n · k2—T on interface A12

With given particle geometry and boundary conditions, the solution can be
found. And for isotropic materials the effective thermal conductivity is given
by

k
q
Teff  = –

· Ò
·— Ò [7.22]

where · Ò denote the average over the whole domain.
For large particle concentrations, Rayleigh (Bird, Stewart et al., 2002)

provides the results with spherical inclusions located in a cubic lattice and
square arrays of long cylinders. And Batchelor and Obrien (Batchelor and
Obrien, 1977) applied ensemble average and field analysis to dealing with
particles.

Prediction of the lower and upper bound of effective thermal conductivity
is the other important category of prediction methods (Miller, 1969; Schulgasser,
1976; Vafai, 1980; Torquato and Lado, 1991). Miller (1969) used an n-point
correlation function to characterize the structure of heterogeneous media. He
showed that the simple law of mixtures will be achieved when one-point
correlation is adopted, i.e. keff = ek1 + (1 – e)k2. In the same paper, three-
point correlation is also used to predict boundries for effective transport
properties of heterogeneous media with different geometrical inclusions.
Torquato and Lado (1991) predicted the effective conductivity tensor boundaries
for media, including oriented, possibly overlapping, spheroids, by noticing
the scaling relation between the spheroid and the sphere systems. With
incorporation of the probability occurrence of four different packing structures,
Vafai (1980) predicted the boundaries for microsphere packing beds. The
boundries for the transverse effective thermal conductivity of two-dimensional
parallel fibers F1, and three-dimensional dispersed fibrous materials F2 are
also found by Vafai (1980), given by

F H k k k F Heff1 1 2 2( , , )  ( / )  ( , , )e w e w≥ ≥
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where k1 is the larger of two component thermal conductivities, e is the
volume fraction of the component with property k1, w = k1/k2, i.e. w > 1, and
H is the cell geometry factors. H = 1/4 and 1/6 for two-dimensional parallel
and three-dimensional dispersed fibers, respectively.

An equivalent inclusion method is applied by Hatta and Taya (1985) and
by Ehen and Wang (1996) to predict effective thermal conductivity of a
misoriented short-fiber composite. The basic idea is replacement of the
inhomogeneity domain by a corresponding inclusion domain filled with a
uniformly distributed doublet. Then, the relationship between different
temperature gradients is given in index form,
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where km and kij
f  are thermal conductivities of matrix and fibers, respectively.
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is the temperature gradient related to the far field applied heat flux;
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 is the temperature gradient related to interaction

between inhomogeneities. By setting up a relationship between these
temperature gradients and applying Fourier’s law for each phase, the effective
thermal conductivity of the composite material is given by the relationship,
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where, 
∂
∂
T
x

t

j
 is the total (actual) temperature gradient and is related to the

temperature gradients mentioned above; W denotes the inhomogeneities domain
and · Ò means averaging over the whole composite body. Integration in the
above equation is performed by consideration of fiber orientation distribution.
Hatta and Taya (1985) and Chen and Wang (1996) present the results for
three-dimensional and two-dimensional misoriented short-fiber composites
with uniform distribution and cosine-type distribution.

There are still more methods for predicting effective thermal conductivity
of heterogeneous materials (Schulgasser, 1976; Nayak and Tien, 1978;
Furmanski, 1992). We will review thermal resistance network models, the
volume averaging method and the homogenization method in the following
three sections. For more detailed information, please refer to the review for
composite systems by Progelhof, Throne et al. (1976) and the review for
porous media by Kaviany (1995).

7.4 Prediction of ETC by thermal resistance

networks

The thermal resistance network method is based on the similarity between
thermal conduction and electrical conduction. By parallel or serial connecting
components of the system, a thermal resistance network is built up. This has
been successful applied in many multiphase systems. Hsu has predicted the
effective thermal conductivity of a packed particle bed by this method. With
appropriate treatment of the thermal resistance network, the particle
morphology, contacts between particles, and even the bi-porous structure of
particles, can all be incorporated into the model and provide fairly good
results (Hsu, Cheng et al., 1994; Cheng and Hsu, 1999; Chen, Cheng et al.,
2000). Applications of this method to the fibrous system are also found in
the literature; such materials as unidirectional fiber-reinforced composites
(Springer and Tsai, 1967), fabric-reinforced composites (Dasgupta and Agarwal,
1992; Ning and Chou, 1995a,b; Dasgupta, Agarwal et al., 1996), nonwoven
textile fabrics (Woo, Shalev et al., 1994a), and misaligned short-fiber-reinforced
composites (Fu and Mai, 2003). In the next part, procedures and results from
the application of the thermal resistance network method to the fibrous system
will be carefully reviewed.

The simplest application of this method to the fibrous system, such as
fiber-reinforced composite and textile fabrics, is prediction of the upper and
lower bound of effective thermal conductivity by parallel and serial arrangement
of each phase:

keff,upper = kfVf + kmVm, keff,lower = 1/(Vf /kf + Vm /km) [7.26]

The bounds resulting from this prediction are generally too wide to apply.
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The volume fraction alone is not enough to characterize the contributions of
the fibers and the matrix and interactions between them. More geometrical
description of each phase has to be introduced into the model to get reasonable
results. This implies that the structure characterization should be emphasized
during the modeling process.

As a first step for the thermal resistance network method, a unit cell is
chosen from the system. The unit cell is the smallest repeating pattern of the
fibrous system and represents all geometrical information at a microscopic
level. The thermal resistance network is built up by dividing the unit cell into
several components, which can be a single-phase material or a combination
of multi-phase materials. Based on certain assumptions of the thermal
conduction process and the structure of the unit cell, a thermal resistance
network can be built up by serial or parallel connection of the unit cells. For
a spatially periodic fibrous system, the effective thermal conductivity of the
unit cell is just the bulk effective properties of the system. But, the arrangement
of unit cells also contributes to system-level effective thermal conductivity
when the system is built up by spatially distributed unit cells.

The other important point in application of the thermal resistance network
model lies in the assumption of a thermal conduction process inside the unit
cell. Due to the geometry of the fibers and the complex packing pattern,
many fibrous materials are anisotropic, and effective thermal conductivity
has to be predicted for a given direction. Generally, the temperature gradient
is applied to the unit cell only along one direction. The surfaces of the unit
cell parallel to the one-dimensional heat flux are assumed to be insulated
surfaces (Springer and Tsai, 1967; Dasgupta and Agarwal, 1992; Ning and
Chou, 1995b; Cheng and Hsu, 1999). By solving this one-dimensional steady-
state thermal conduction problem, the effective thermal conductivity of the
unit cell in the conduction direction is obtained. Though thermal conduction
through the two phases’ interface is a multidimensional process, a one-
dimensional approximation is valid for most conditions because effective
thermal conductivity is an averaged bulk property. Our review of the thermal
resistance network method will start from a simple system – a unidirectional
fiber-reinforced composite. Springer and Tsai (1967) analyzed composites
with filaments arranged in the rectangular periodic array shown in Fig. 7.1.
Filaments were uniform in shape and size, also symmetrical about the x- and
y-axes. The unit cell was chosen straightforwardly as in Fig. 7.2. Due to the
structural symmetry, only two effective thermal conductivities need to be
evaluated. One was along the longitudinal direction of the fibers, keff.zz. The
other was the transverse effective thermal conductivity keff,t . The longitudinal
ETC, keff ,zz can be easily predicted by assuming a parallel arrangement of the
matrix and the fibers. On the other hand, the transverse ETC keff, t is predicted
by applying the thermal resistance network model. With the assumption of
one-dimensional thermal conduction, heat flows along the x-direction through
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7.1 Structure of unidirectional fiber-reinforced composites with
rectangular filaments arrangement. Adapted from Springer, G.S. and
S.W. Tsai, ‘Thermal conductivities of unidirectional materials’.
Journal of Composite Materials, 1967. 1: pp. 166–173.
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7.2 Unit cell used in effective thermal conductivity prediction.
Adapted from Springer, G.S. and S.W. Tsai, ‘Thermal conductivities
of unidirectional materials’. Journal of Composite Materials, 1967. 1:
pp. 166–173.



Thermal and moisture transport in fibrous materials240

three parallel components. The thermal resistance of each component in the
thermal resistance network is given by

R
l

A ki
i

i i
 = [7.27]

where li is the component dimension along the conduction direction; Ai is the
cross-sectional area orthogonal to the conduction direction; ki is the thermal
conductivity of the component. In the unit cell, three parallel components
are easily identified, shown in Fig. 7.2. Components 1 and 3 are composed
of purely matrix material and the thermal resistance of them is written by

1  + 1  = 
(2  –  )

21 3R R
b s wk

a
m [7.28]

where w is the length in the z-direction, and is constant for a unidirectional
system. The component 2 is a combination of matrix material and fiber, i.e.
the interphase between the matrix and the fiber, whose thermal resistance R2

may be calculated from the thermal resistance of an infinitely thin slice dy,

R
wdy
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Three components are connected in parallel. The thermal effective conductivity
of the unit cell is obtained from the relationship

1  = 
2

2
 = 1  + 1  + 1

1 2 3R
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[7.30]
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The effects of structure are shown in two ways. Firstly, the geometry of the
fibers is characterized by two variables: s, the maximum dimension of the
fiber in the y direction; and h(y), the width of the fiber at any given y. Both
are shown in the equation. Then the rectangular packing pattern of unit cells
exhibits its effect by parameters a and b. By choosing appropriate unit cells,
other regular packing patterns can be handled in the way similar to the above
derivation. Springer and Tsai (1967) predicted the effective thermal conductivity
of square fibers and cylindrical fibers in a square packing pattern.
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These results were compared with numerical calculations from the shear
loading analogy and experimental data (Springer and Tsai, 1967). Depending
on the thermal conductivity ratio between the fibers and the matrix, the
discrepancies between the two models and experiment data are different. But
the difference is generally less than 10%. Considering the simple derivation
procedure and resulting analytical equations, the thermal resistance network
provides a reasonably accurate method for unidirectional composite analysis.

As shown in the above example, structure characterization determines
effective thermal conductivity prediction. The importance of, and difficulties
in, structure modeling are well illustrated in the following reviews of woven
fabric composites (Dasgupta and Agarwal, 1992; Ning and Chou, 1995a,b
1998; Dasgupta, Agarwal et al., 1996).

7.5 Structure of plain weave woven fabric

composites and the corresponding unit cell

In order to simplify structure characterization, Ning and Chou (1995a,b,
1998) idealized the unit cell by replacement of the yarn crimp with linear
segments. Taking account of the symmetry of the unit cell, it is assumed that
transverse thermal conductivity can be predicted by analysis on a quarter of
the idealized unit cell. This implies that the interaction between the quarters
of the unit cell is negligible. In order to predict transverse effective thermal
conductivity, thermal conduction in the unit cell is assumed to be one-
dimensional, and heat flow lines to be all parallel to the z-axis. The unit cell
is partitioned into eleven components, with the characteristics that each
component is composed of a single material. Taking advantage of this partition
and simplified geometry, the thermal resistance of each component can be
calculated in simple algebraic form. The effective thermal conductivity of
the unit cell is obtained by constructing the thermal resistance network of
each component. Based on a structure periodicity assumption, the effective
thermal conductivity of the whole woven fabric composite is the same as a
single unit cell.
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The parameters in the above equation can be classified into two categories:
gw, gf, aw, af, hm, hf, h are geometrical characteristics of the unit cell and are
determined by the weave style. km, kd1, kd2 (d = w, f ) are the thermal
conductivities of resin matrix and impregnated warp and fill yarns with mean
fiber orientation angle q di  Taking into account the measurement of these
parameters, two more steps are needed for prediction closure. Yarn thermal
conductivity is predicted by assuming that yarns are unidirectional fiber-
reinforced composites with certain fiber orientations. Hence, these parameters
are predicted by

k k k d w f idi a di t di =  sin  + cos (  = ,    = 1, 2)2 2q q [7.35]

where ka and kt are the longitudinal and transverse thermal conductivity of
the yarns without fiber orientation and are calculated from the fiber and resin
thermal conductivity and fiber volume fraction in the yarn (Dasgupta and
Agarwal, 1992; Ning and Chou, 1995a,b; Dasgupta, Agarwal et al., 1996).
q di  is the mean fiber orientation angle with respect to the x- or y-axis, and
is measurable for given woven fabric composites.

Considering the geometrical characterization of the unit cell, the matrix
volume fraction hm is rather difficult to measure practically. The way to
overcome this difficulty is by relating this parameter to the fiber volume
fraction, h, in both composites and yarns.
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With these two additional equations, the transverse effective thermal
conductivity of plain weave woven fabric composites can be predicted from
all measurable parameters. The effects of volume fraction and weave style
on effective thermal conductivity are discussed for yarn-balanced fabric
composites and compared with other numerical and experimental results
(Ning and Chou, 1995a). The consistency of these data implies that the
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thermal resistance network method is robust and that the assumptions made
during derivation are valid under pure thermal conduction. Using the same
method and assumptions, Ning also successfully predicted the transverse
effective thermal conductivities of twill weave, four-harness satin weave,
and five- and eight-harness satin weave fabric composites. The results are
documented in the literature in their general form (Ning and Chou, 1998).

Dasgupta and Agarwal (1992) and Dasgupta, Agarwal et al. (1996) also
analyzed the woven fabric composites by a homogenization method and the
thermal resistance network model. The unit cell used in this work is shown
in Fig. 7.3. Instead of simplification by linear segment, vertical cross-sections
and undulation of yarns are approximated by circular arcs in Dasgupta’s
work. The effective thermal conductivity of the unit cell has to be calculated
from analysis of infinitesimal slices and numerical integration over the whole
unit cell domain because of the complex structure of the unit cell. The other
important point of this model is incorporation of correction for heat flow
lines. Based on observation from the homogenization analysis, Dasgupta
allowed the heat to flow preferably from transverse yarns to longitudinal
yarns when the resin had high thermal resistance. In-plane and out-of-plane
effective thermal conductivity of plain weave fabric composites are all predicted
in numerical form based on the thermal resistance network method. Comparison
of the homogenization method and experimental data shows good prediction
ability for the model.

Nonwoven fabric is the other important category of fibrous materials.
Fibers are spatially distributed and packed together to form a network structure.
The thermal conductivity of a single fiber, fiber volume fraction and orientation
of the fibers will determine effective thermal conductivity of nonwoven

e
2a
b

2a
e

h

c

c
d d

7.3 Unit cell of a balanced plain weave fabric-reinforced composites
lamina. The warp yarn and fill yarns are assumed to be identical.
Adapted from Dasgupta, A. and R.K. Agarwal, ‘Orthotropic Thermal-
Conductivity of Plain-weave Fabric Composites using a
Homogenization Technique’. Journal of Composite Materials, 1992.
26(18): pp. 2736–2758.
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fabric. Based on analysis of the unit cell, Woo, Shalev et al. (1994a) proposed
a model in terms of measurable geometry parameters to predict out-of-plane
effective thermal conductivity of nonwoven fabrics.

As shown in Fig. 7.4(a), the unit cell is chosen as two touching layers of
fiber assembly. The number of fibers oriented along the x- and y-axes are n
and m, respectively. Applying the thermal resistance network method, the
effective thermal conductivity of this unit cell is given by

Z

Z

d

d
nd Xf 1

md

y

1

1

q

f

7.4 (a) Idealized unit cell structure of nonwoven fabrics. (b)
Orientated unit cells simulating structure of real nonwoven fabrics.
Adapted from Woo, S.S., I. Shalev, and R.L. Barker, ‘Heat and
Moisture Transfer Through Nonwoven Fabrics.1. Heat-Transfer’.
Textile Research Journal, 1994. 64(3): pp. 149–162.



Thermal conduction and moisture diffusion in fibrous materials 245

k P k
P

V
k

P V k
eff,zz o a

o

f
o f a

 =  + 
(1 – )

 + (1 –  – )/

2

I

[7.37]

k V k V k
V k

V
k

eff ,xx f a f

f
f

a

 = (0.5 – )   + 0.5

2  + 
(1 – 2 )1 1 2

2 1
2

+ [7.38]

k V k V k
V k

V
k

eff,yy f a f

f
f

a

 = (0.5 –  )   + 0.5

2  + 
(1 –  2 )2 2 2

1
1

1

+ [7.39]

where Vf 1 and Vf 2 are the fiber volume fractions along the x- and y-directions;
k1 and k2 are the longitudinal and transverse thermal conductivities of a
single fiber; Po is the optical porosity of the unit cell, which corresponds to
the area fraction of through pores, given by

Po = 1 – nd – md + ndmd = 1 – Vf + (8/p)2Vf 1Vf 2 (7.40)

The nonwoven structure cannot be reconstructed by simply periodic packing
of the unit cell. Practically, the behavior of nonwoven fabrics will be better
represented by the unit cell with a certain orientation, shown in Fig. 7.4(b).
Because orientation distribution function is not introduced in Woo’s model,
the polar orientation angle q and azimuthal orientation angle f in the following
discussion should be considered as average quantities. The out-of-plane effective
thermal conductivity of nonwoven fabric is obtained by analysis of this
oriented unit cell,

keff,oz = keff,xx(cos2 f cos2q) + keff,yy(cos2 f sin2q)

+ keff,zz(sin2 q) [7.41]

The optical porosity depends on the thickness of the nonwoven fabric. Based
on this observation, Woo assumed that unit cells are regularly packed along
the fabric thickness direction for predicting whole fabric optical porosity

Pi = [1 – (8/p)Vf 1 – (8/p)Vf 2 + (8/p)2Ff 1Vf 2]L /(2d) [7.42]

With this correction, the out-of-plane effective thermal conductivity, i.e.
keff,oz is given by

keff,oz = ka{sin2 fPi – cos2f[cos2q (0.5 – Vf 1) + sin2q (0.5 – Vf 2)]}

+ k2 cos2 f (cos2qVf 1 + sin2qVf 2 + 0.5 cos2 f {cos2q /[2Vf 2

+ /k1 + (1 – 2Vf 2)/ka]} + sin2q /[2Vf 1/k1 + (1 – 2Vf 1)/ka]

+ sin2 f (1 – P1)
2/[Ff /k1 + (1 – Pi – Vf )/ka] [7.43]

This representation is rather clumsy and some parameters may not be
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measurable. Woo simplifies the above equation by structuring special nonwoven
fabrics in his research. For melt blow or spunbond nonwovens, the average
polar orientation angle is approximately zero. Also, an easily measurable
anisotropy factor is introduced to take account of the distribution of fibers
inside the unit cell,

a = Vf 1/Vf 2 [7.44]

The resulting out-of-plane effective thermal conductivities are given in the
form of measurable physical parameters,

keff,oz = ka sin2 fPi + k2 cos2 faVf /(1 + a) + sin2 f (1 – Pi)
2/

+ [Vf /k1 + (1 – Pi – Vf)/ka] + cos2 f (1 + a – a Vf)
2/

+ {(1 + a)[Vf /k1 + (1 – Vf)(1 + a)/ka]} [7.45]

and

Pi = [1 – (8/p)Vf + (8/p)2 Vf
2 a /(1 + a)2]L /(2d) [7.46]

In Woo’s work, a series of measurements for different nonwoven fabrics
have been made and have validated the prediction model (Woo, Shalev et al.,
1994a). It is seen from the above equation that the effective thermal conductivity
of nonwoven fabrics is influenced by many physical characteristics, such as
fiber volume fraction, anisotropic thermal conductivity of single fibers,
orientation of fibers, and so on. The contribution of these effects can be
obtained from parameter analysis and validated by experiments. However,
the present model is simplified by considering the structure of specific systems.
It is better to consider the prediction equation as a semi-experimental approach.

In some fibrous materials, such as short-fiber-reinforced composites and
textile fiber assemblies, the structure of the system is best described using
statistical distribution functions. Compared with mechanical property
prediction, analyzing effective thermal conductivity based on a statistical
approach is relatively rare (Hatta and Taya, 1985; Chen and Wang, 1996; Fu
and Mai, 2003). Among them, Fu and Mai (2003) present a simple model to
predict thermal conductivity of spatially distributed, short-fiber-reinforced
composites.

Depending on the researchers, different statistical distribution functions
have been employed to describe fiber distribution. Fu introduced two density
functions to account for fiber length and orientation distributions.
Fiber length distribution:

f (L) = abLb–1 exp(–aLb)   for   L > 0 [7.47]

Fiber orientation distribution:

g(q, f) = g(q) g(f)/sin q [7.48]
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where
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g(f) is defined in a similar way to g(q).
The parameters a, b, p, q are applied to represent the size and shape of the

distribution density function and can be measured for given composites.
As Fig. 7.5 shows, Fu’s model tries to predict effective thermal conductivity

along direction 1. The laminate analogy approach (Agarwal, 1990) is employed
to formulate the model. The original composite with distribution functions
f(L) and g(q, f) is illustrated in Fig. 7.5(a). Because only the thermal
conductivity in direction 1 is concerned, the original composite is first
approximated as a hypothetical composite with orientation distribution g(q, f)
= 0 as in Fig. 7.5(a). The next approximation step is treating the hypothetical
composite as a combination of laminates as seen in Figs. 7.5(b) and 7.5(c).
Shown in Fig. 7.5(d), the final ‘equivalent’ system is a series of lamina L(Lj,
qj), j = 1,2, . . . , m. Each lamina contains fibers with the same length Lj and
orientation angle qj.

Based on this laminate analogy approach, the thermal conductivity of
each laminate is predicted from the results of unidirectional fiber-reinforced
composites with a certain orientation angle. The Halpin–Tsai equation
(Agarwal, 1990) is applied in Fu’s work.
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where a = L /df is the aspect ratio of the fibers. Taking account of the
orientation of the fibers, the thermal conductivity of each laminate is given by

ki j = k1 j cos2 q j + k2 sin2 q j [7.51]

Assuming all laminates are connected in parallel with respect to direction 1,
the effective thermal conductivity of the composite is predicted by integration
with the distribution density functions,
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Parameter analysis is performed by Fu to evaluate the effects of volume
fraction, mean fiber length and mean fiber orientation angle on effective
thermal conductivity. For uniform length short fibers, the thermal conductivity
of two-dimensional and three-dimensional random fiber distributions is easily
predicted by the simplified distribution functions.

q

f
2

3

1

(a) (b)

(c) (d)

L(Ll, q1 = 0∞) L(L2, q2) … L(L1, qm = 90∞)L(L1) L(L2) … L(Ln)

7.5 (a) Real misaligned short-fiber-reinforced composites with orientation
distribution g (q, f). (b) Hypothetical composite with orientation
distribution g(q, f = 0). (c) Hypothetical composite treated as combination
of laminates L(Lj), and each laminate contains fibers of same length Lj.
(d) Each laminate is treated as a stacked sequence of lamina L(Lj, qj),
and each laminae contains fibers with same length Lj and orientation
angle q j . From Fu, S.Y. and Y.W. Mai, ‘Thermal conductivity of misaligned
short-fiber-reinforced polymer composites’. Journal of Applied Polymer
Science, 2003. 88(6): pp. 1497–1505. Reproduced with permission.
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k k keff D,2 1 2 = 1
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k k keff D,3 1 2 = 1
3

 + 2
3 [7.54]

Unfortunately, further discussion concerning distribution function effects is
not available in current literature. Improvement of the present statistical
model is still needed.

In this section, we have reviewed the prediction of the effective thermal
conductivity of fibrous materials by the thermal resistance network method.
With the assumption of a one-dimensional conduction process and easily
built thermal circuits, this method provides a simple and efficient way for
thermal conductivity prediction. Comparison with other methods and
experimental data also shows that reasonable accuracy can be achieved with
appropriate treatment of structures. The numerical, even analytical in some
cases, results from this relatively simple method, are believed to be very
useful for practical engineering and science applications.

7.6 Prediction of ETC by the volume averaging

method

Fibrous materials are not only multiphase but also multiscale systems. With
a glance at textile fabrics, several disparate length scales can be identified,
such as the diameter of fibers, the length of fibers, the distance between
fibers, the size of the whole fibrous system, and so on. Analysis of these
multiscale systems may have special challenges due to interactions between
different scales. Local volume averaging is a method to upscale the system
from the microscale to the macroscale. It has been widely applied in the field
of porous media. A well-known example is starting from the microscopic
Navier–Stokes equation to arrive at the macroscopic Darcy’s law for creeping
flow through porous media (Whitaker, 1969, 1999; Kaviany, 1995).

The volume averaging method is well suited for multiphase systems, such
as fibrous materials. Textile fibers can form network structures, even with a
very low fiber volume fraction. A fiber assembly can be treated as a single
continuum, which is called the solid phase in porous media study; the air or
water inside the voids between the fibers is referred to as the fluid phase. The
length scale, corresponding to the void in fibrous materials, should be the
average distance between fibers. Based on basic geometrical fibrous
characterization (Pan 1993, 1994), we can get this distance and relate it to
the general geometry parameters of the textile fibrous system. Thus, treatment
for general porous media may be applied to textile fabrics with appropriate
adjustment. In this section, we will review the basic ideas of the local volume
averaging method and its application to pure thermal conduction.
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The first step for the application of the volume averaging method is
finding an appropriate representative element volume (REV), also called
averaging volume, schematically shown in Fig. 7.6. Generally, averaged
properties, such as porosity, will depend on the chosen average volume. The
representative element volume in porous media is identified as a volume
range, in which averaging properties is independent of volume size, i.e.
adding or subtracting pores and solids does not change the average value.
Bachmat and Bear (1986; Bear and Bachmat, 1990; Bear, Buchlin et al.,
1991) provide detailed discussion about size of REV based on porous media
structure and statistical concerns. Representative element volume size is also
important for assumptions made during the volume averaging process and
will be discussed in following parts.

Volume averaged variables are defined by integration of micro-scale variables
over the whole REV. For any quantity y associated with the fluid, the volume
averaged value for the centroid of REV is defined in two ways: superficial
averaged  y  is

Iv

O

D

R

7.6 A typical representative element volume (REV) selected from
fibrous materials.
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where V = Vf + Vs;
and intrinsic averaged y is

· Ò Úy yf
f

f VV
dV

f

 = 1 . [7.56]

Generally, intrinsic averaged value is preferred because it is a better
representation of properties in the fluid phase. The relationship between
them is given by ·y Ò = e ·y Ò f differing by the porosity e. The same definitions
and operations are also applicable for solid phase variables. Throughout the
whole fibrous system, we can select REV and perform the volume averaging
operation point by point. Thus, new variables over the whole fibrous system
are defined. These variables from volume averaging methods have their
thermodynamic significance; for instance, discussion about volume averaged
temperature is available from Hager’s work (Hager and Whitaker; 2002).

Now, one question may be raised – why volume averaged temperature is
needed for thermal analysis of fibrous materials. The requirement for these
averaged variables lies on two sides, the intrinsic multiscale properties of the
fibrous system and the experimental measurement conditions. In previous
sections, we discussed only the point temperature field in homogeneous and
heterogeneous systems. But, point temperature is a microscale variable in a
multiscale system. That means that the characteristic length of a point
temperature in a fibrous system will be the size of fibers or the average
distance between fibers. From the whole system point of view, i.e. fabrics,
the point temperature fluctuates spatially with very high frequency. Detailed
information about point temperature will not only depend on boundary
conditions imposed on fabrics but also on short-length correlations between
fibrous system structures. On the other hand, volume averaged temperature
will provide much less frequent fluctuation over the whole fibrous domain
by smoothing out fluctuations over the REV, schematically illustrated in Fig.
7.7. Hence, volume averaged temperature is characterized by macroscopic
length and is appropriate for analyzing thermal response of whole fibrous
materials to certain excitations.

The other reason to adopt volume averaged temperature lies in the
measurement of temperature fields and setting up boundary conditions. In
most scientific and engineering applications, instruments used to measurement
temperature must have a measure window. Results from the instruments are
volume averaged temperature over the measurement window (Bear and
Bachmat, 1990; Bear, Buchlin et al., 1991). Furthermore, boundary conditions
in most scientific and engineering applications are not specified as point
temperature. They are generally specified in macroscopic variables; for example,
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area average temperature and heat flux are specified in heat plate methods
(Satsumoto, Ishikawa et al., 1997; Jirsak, Gok et al., 1998; Mohammadi,
Banks-Lee et al., 2003). The advantage of applying volume averaging methods
is gained by sacrifice of detailed microscopic information. This means that
this method is not efficient in predicting behavior at pore and fiber scale.
However, the thermal response of the fibrous system to macroscopic boundary
and initial conditions are most attractive information for us. Thus, the volume
averaging method is appropriate for this purpose.

The importance of volume averaging variables has been realized by textile
scientists and applied to the analysis of heat and mass transfer through
fabrics (Gibson and Charmchi, 1997; a,b; Fohr, Couton et al., 2002; de
Souza and Whitaker, 2003). However, the ability of the volume averaging
method to upscale the system and predict effective thermal conductivity of
the system is rarely found in fibrous materials references. In this section, we
will review procedures for the derivation of effective thermal conductivity
by the volume averaging method. Following the methods developed by
Whitaker (Whitaker, 1991, 1999; Quintard and Whitaker, 1993; Kaviany,
1995), the macroscopic governing equation and a closed solution for effective
thermal conductivity will be obtained for the system with special structures.

In the following discussion, fibers are assumed to be interconnected to
form a continuous phase, referred as the solid phase. Pores are assumed to be
fully saturated by air or water, then denoted as the fluid phase. Thermal
conduction is assumed to be the only dominant heat transfer process. Based
on these assumptions, the point governing equation can be written for each
phase as

7.7 Schematic illustration of point temperature and volume averaged
temperature fluctuation in the REV.
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in which the boundary conditions indicate that the temperature and the normal
component of the heat flux are continuous at the fluid–solid surfaces. Thermal
conductivity ks for the fibrous phase should be treated as a lumped parameter,
which includes bulk heat conductivity of single fibers and thermal contact
resistance between fibers. It is clear from observation of these equations that
two more boundary conditions at the fabric boundaries and one initial condition
are needed to explicitly solve the point temperature field. However, this
information is not generally available in the form of point temperature and is
not important for derivation of effective thermal conductivity. It will not be
shown in the following discussion.

Upscaling is achieved by performing volume averaging operations on the
above point governing equations. Due to the similarity between solid and
fluid phases, we will only discuss procedures for the fluid phase equation.
The resulting volume averaged equation for the fluid phase is given by
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where · Ò denote superficial volume averaging.
In order to obtain the macroscopic governing equation, the right-hand

side of the above equation must be related to the gradient of the volume
averaging temperature. This step is done by application of the spatial averaging
theorem, which has already been developed and well discussed by several
researchers (Whitaker, 1969, 1999; Gray, 1993; Slattery, 1999).

·— Ò —· Ò Úy y y =  + 1
V

n dA
A

sf
sf

[7.59]

·— ◊ Ò —· Ò ◊Ú   =  + 1   y y y
V

n dA
A

sf
sf

[7.60]

After applying the averaging theorem twice to the volume averaged governing
equation, the result is given by
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The last term in above equation corresponds to the interfacial heat flux at the
fluid and solid interface and will be handled with the information from the
solid phase. Now, the central problem turns out to be the integral of point
temperature over the fluid–solid interface. As shown by Slattery (1999) and
Whitaker (1999), this problem can solved by introducing spatial decomposition
of point temperature as

T T Tf f
f

f =  + · Ò ˜ [7.62]

After substituting decomposition form into the governing equation, the integral

term of the volume averaged temperature, 1
V

n T dA
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sf f
f

s f
Ú · Ò , needs to be

noticed. It is clear that this integral is evaluated from the volume averaged
temperature other than the centroid of the REV. This is an indication of non-
local transport phenomena. In order to get the local form-governing equation,
Taylor expansion and order of magnitude analysis is applied. The result is
given by
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with length scale constraints,

lf << r0   r L LT0
2

1 << e [7.64]

where lf is the characteristic length of the fluid phase, i.e. the average distance
between fibers; r0 is the size of REV and Le and LT1 are length scales resulting
from the order of magnitude estimates,
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Depending on the process under analysis, the structure of the porous medium
and the position inside the medium, these length scales may be different. As
we mentioned above, these constraints also show the importance of choosing
REV size. Identifying each length scale and validating constraints will be the
task of scientists and engineers for the governing equation derivation.

With satisfaction of the above length scale constraints, the macroscopic
governing equation for the fluid phase will be given by
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Following the same procedures, the macroscopic governing equation for the
solid phase can be written as

e r e( )  =    + 1  +c
T

t
k T

V
n T dAp s

s
s

s s
s

A
fs s

fs

∂· Ò
∂

— ◊ — · Ò
Ê

ËÁ
ˆ

¯̃

È

Î
Í
Í

˘

˚
˙
˙Ú ˜

1   
V

n k T dA
A

s f s s
sf

Ú ◊ — [7.67]

For a pure thermal conduction process, a local thermal equilibrium assumption
is often made to further simplify derivation (Whitaker 1991, 1999; Kaviany,
1995). The essence of local thermal equilibrium is assuming that the local
averaged temperature difference between two phases is negligible, i.e.
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The constraints for the validity of this assumption were first given by Carbonell
and Whitaker (1984) in the form of time scale and length scale constraints:
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It is clear that local thermal equilibrium assumptions will fail when very fast
transients are analyzed. As also shown in other references (Whitaker, 1991;
Quintard and Whitaker, 1993; Kaviany, 1995; Quintard, Kaviany et al., 1997),
local thermal equilibrium will not validate when significant heat generation
exists in the solid or fluid phase, such as adsorption heat and condensation
heat in fibrous systems. A two-equation model has to be applied under these
conditions. More effective thermal conductivity, Kfs and Ksf, may be introduced
to characterize heat flux in one phase generated by a temperature gradient in
the other phase.

In a fibrous system without significant heat generation in each phase, and
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pure thermal conduction analysis, governing equations for solid and fluid
phases can be added together to get
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where ·T Ò is volume average temperature and satisfies

·T Ò = e ·Tf Ò f + (1 – e) ·TsÒs

and with local thermal equilibrium assumption, ·T Ò = ·Tf Ò f = ·TsÒs.
The other advantage gained by adding the two equations together is the

elimination of interfacial heat flux terms. This is the result of heat flux
continuity boundary conditions at the solid–fluid interface. Interfacial boundary
conditions for point variables will affect the macroscopic governing equations.
This is a general characteristic of the multiphase, multiscale system because
the macroscopic averaged equation need include not only information in
each phase but also that at the interface.

At this point, one governing equation to describe the thermal conduction
process through porous medium is obtained. It is only valid for fibrous
materials with certain constraints satisfied. Comparing this result with the
fundamental thermal conduction equation, it is appealing to write the right-
hand side of Equation [7.70] in the form
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The central problem turns out to be finding the relationship between spatial
deviation temperature ˜ ˜T Tf s, , and volume average temperature ·T Ò. This is
generally referred to as the closure problem.

The solution of the closure problem represents our understanding about
transport processes, system structures and interactions between them. Several
closure schemes have been proposed by different researchers (Quintard and
Whitaker, 1993; Travkin and Catton, 1998; Hsu, 1999; Slattery, 1999; Whitaker,
1999). Slattery introduced a new variable named the thermal tortuosity vector
to represent deviation temperature effects. Based on dimensional analysis,
he set up correlations of that vector with experimental measured variables to
close the problem. On the other hand, Whitaker built up the governing equations
and boundary conditions for spatial deviation variables. With a certain
assumption of spatial periodic structure of the system, the general formulation
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is set and special closed solutions are obtained for the symmetrically structured
unit cell. In the following parts, we will review the way that Whitaker’s work
can be applied.

The governing equations for spatial deviation temperature is obtained by
subtracting the volume averaged macroscopic equation from the point governing
equation. Through order of magnitude analysis and certain assumptions, a
simplified result for T̃ f  is given by
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The further assumption is made that T̃ f  and T̃s  have quasi-steady fields.
Even when macroscopic heat conduction is unsteady, this assumption will be
generally valid. This can be understood by considering the constraints for
the quasi-steady assumption,
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Taking account of the fact that the macroscopic length scale is several orders
larger than the microscopic one, quasi-steady assumption will be validated
except for very quick transients. With this assumption, there is no heat diffusion
boundary layer inside the REV and governing equations are written as
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In order to solve the spatial deviation temperature through the whole domain,
two more boundary conditions at the system boundary surfaces are needed.
Obviously, this idea is not attractive. The difficulty is overcome by introducing
assumptions about the system structure. A spatially periodic structure with a
certain unit cell is concerned in the following analysis. The unit cell can be
arbitrarily complex and contains all local geometric information of the system.
But the size of a unit cell must never be larger than the averaging volume, i.e.
REV. When we think about practical applications in textile fabrics, such a
periodic structure assumption is rather accurate.

Since the system boundary conditions will affect the deviation temperature
field over a distance only in the order of the microlength scale, no consequence
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would be expected for prediction of bulk effective thermal conductivity.
Thus, the periodicity boundary condition is added to the closure problem:

˜ ˜ ˜ ˜T r l T r T r l T r if i f s i s(  + ) = ( ), (  + ) = ( ),    = 1,2,3 [7.75]

Based on the above discussion, the purpose of the closure problem is to try
to set up a relationship between the spatial deviation temperature and the
volume average temperature. A set of constitutive equations is proposed to
take account of this consideration,

˜ ˜T b T T b Tf f f s s s =    + ,    =    + ◊ —· Ò ◊ — · Òy y [7.76]

where bf and bs are referred as the closure variables. It also can be proved
that yf and ys are constants, which have no contributions to effective thermal
conductivity prediction. Thus, the problem becomes one of solving closure
variables in periodic unit cells.
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bf (r + li) = bf (r),  bs(r + li) = bs(r), i = 1,2,3 [7.77]

Depending on the structure of the unit cell, these equations can be solved
analytically or numerically. The effective thermal conductivity of the whole
material can be written in the form of closure variables:
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The closure problem has been solved by several researchers (Nozad, Carbonell
et al., 1985; Kaviany, 1995; Whitaker, 1999) in some simple unit cells. The
resulting effective thermal conductivity has been compared with other theories
and experimental data. Fairly good consistency is seen when the unit cell
represents the geometrical characteristics of the system.

As shown in the above discussion, the volume averaging method provides
a more rigorous treatment for thermal conduction through the multiphase,
multiscale system. However, special attention must be paid to required
constraints during formulation in order to guarantee validation of the theory.
Characterization of system structure is still needed to close the problem. As
a powerful theoretical approach, more complex physical phenomena, such as
adsorption, phase change, convection, can also be incorporated into the model
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with appropriate treatments (Quintard and Whitaker, 1993; Quintard, Kaviany
et al., 1997; Duval, Fichot et al., 2004). Thus, more physical insights into the
complex system and physical phenomena within it would be gained. Application
of the volume averaging method to predict the fibrous material’s effective
thermal conductivity has not been found in the current literature. However,
since thermal conduction through either dry fabrics or water-saturated fabrics
are special cases of the above formulations, simultaneous moisture and heat
transfer and air convection through fabrics can also be incorporated into the
model with the treatments similar to those in dry porous media (Whitaker,
1998). Better characterization of the structure of the fiber assembly and
choosing suitable models with certain constraints are important for taking
advantage of this powerful theoretical tool.

7.7 The homogenization method

The method of homogenization is another way to deal with multiscale or
multi-component systems. It is a rigorous mathematical method and is mainly
applied to periodic structures. Numerous successes have been reported in the
prediction of permeability of porous media (Hornung, 1997), mechanical
properties of composite materials (Sun, Di et al., 2003) and effective thermal
conductivity of fibrous materials (Dasgupta and Agarwal, 1992; Dasgupta,
Agarwal et al., 1996; Rikte, Andersson et al., 1999) using this technique.

When the homogenization scheme is applied, two length scales in the
heterogeneous materials are identified as (i) a macroscale indicating the
characteristic length of the whole material (ii) and a microscale representing
the periodical length of the microstructure. It is clear that the coefficients of
microscale governing the equations and the resulting solution will fluctuate
very rapidly. Mathematically, the homogenization method uses asymptotic
expansion and periodic assumption to approximate the original partial
differential equations with the equations that have slowly varying coefficients.
More detailed and general discussion is available in Bensoussan, Lions et al.
(1978).

In the homogenization method, a small positive parameter e is introduced
to represent the ratio between the two length scales. All the variables in the
heterogeneous media are considered to be related to e. By letting e Æ 0, the
system will be upscaled. There are many schemes that can be applied to
homogenizing fundamental thermal conduction equations. In this section,
we will follow the method that Hassani and Hinton (1998a) summarized to
explain the basic ideas and procedures of homogenization methods.

The macroscale and microscale are represented as x and y, respectively.
The relationship between them is y = x/e, where e is a parameter. The
fundamental thermal conduction equations are written as
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The superscript in the above equations implies we are interested in the
behaviors of a family of functions with e as the parameter. Heat flux qe and
temperature T e are treated as functions of both length scales x and y, whereas
thermal conductivity Ke and heat generating rate Fe are both assumed to be
macroscopically uniform and only vary in the small unit cell, i.e.

Ke(x, y)  = K(y)   and   Fe(x, y) = F(y)

The asymptotic expansion is applied to the heat flux and temperature variables
as

qe = q0(x, y) + eq1(x, y) + e2q2(x, y) + ... [7.80]

T e = T 0(x, y) + e T 1(x, y) + e 2T 2(x, y) + ... [7.81]

where, qi(x, y) and Ti(x, y) are all periodic on y and the length of the period
denoted as Y resulting from microscopic periodicity. By realizing x and y are
two independent variables, the gradient operator in this two-scale problem is
given by

— = —x + e—y [7.82]

By substituting asymptotic expanded variables into the governing equations
and collecting terms by power of e, we will get
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Because these equations need to hold for all e values, a series of partial
differential equations is given:
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It is clear from the above equations that q0 and T0 are functions of x only.
They represent the macroscopic behavior of heat flux and temperature. By
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relating them to each other, the macroscopic effective thermal conductivity
will be obtained. The higher terms, q i, T i (i ≥ 1) indicates the higher modes
of perturbation for the heat flux and temperature at macroscale resulting
from microscopic heterogeneities. When the macroscale is much larger than
the microscale, i.e. e is small enough, only contributions from q1

 and T1 need
to be considered.

Considering the equation for q0, it is obvious that the inhomogeneous
term —yT

1 needs to be evaluated at microscale. In Dasgupta’s work (Dasgupta
and Agarwal, 1992; Dasgupta, Agarwal et al., 1996), this problem is handled
by setting up appropriate boundary conditions for the unit cell discussed in
earlier sections and solving the boundary value problem with a finite element
method at unit cell scale. The resulting heat flux and temperature gradient
are volume averaged to get effective thermal conductivity. A comparison of
the results with the thermal resistor network model and experiments show
good consistency.

On the other hand, Hassani and Hinton (1998a,b) introduced a new function
c to formulate the problems at microscale and macroscale. After volume
averaging over the unit cell and applying y-periodic properties of q1 and T1,
the following homogenized results are obtained in the index form,
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where Y denotes the unit cell domain; a x( )  implies the volume average of
function a(x, y) over the unit cell; the function c is y-periodic and can be
solved from the equation,
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This equation can be solved analytically for the simple unit cell (Chang,
1982). When distribution of heterogeneity in the unit cell is complex, numerical
methods, such as finite element analysis must be adopted. Depending on the
specific system structure, different numerical schemes can be formulated
(Dasgupta and Agarwal, 1992; Dasgupta, Agarwal et al., 1996; Hassani and
Hinton, 1998b; Rikte, Andersson et al., 1999; Sun, Di et al., 2003). As soon
as the information about c is obtained, the effective thermal conductivity of
the whole heterogeneous material can easily be derived from the above
equation.
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7.8 Moisture diffusion

Moisture diffusion is the process during which water molecules migrate
through given materials. When we are only interested in mono-component
mass transfer, i.e. water, the diffusion process is quite similar to the thermal
conduction process, as discussed in the introduction section. Consequently,
for homogeneous materials, the results of certain thermal conduction problems
can be readily transcribed into solutions of the corresponding mass diffusion
process by changing parameters and variables (Crank, 1979).

For multi-component systems such as fibrous materials, the system diffusion
behavior is determined by the resultant of each, often different, behaviour of
the multi-components. For instance, in a fibrous material, moisture diffusivity
in the solid fiber is much smaller that in air, and the system behavior is not
equal to that of either fiber or air. Based on our knowledge, the effects of
moisture diffusion on fiber-reinforced composites may be negligible in most
ordinary science and engineering applications, because both fiber and matrix
show very high resistance to moisture diffusion. Furthermore, we will focus
on moisture vapor diffusion through textile fabrics in this section; the migration
of liquid water in fabrics is determined by other mechanisms and will not be
analyzed in the context of the diffusion process.

As discussed previously, textile fabrics are composed of fibers and air in
voids. Under certain concentration gradients, the main contribution to moisture
flux is from the diffusion process through the air voids. But, it has been
shown that adsorption of moisture by fibers will also affect the response of
fabrics to the moisture gradient (Wehner, Miller et al., 1988). It is hence
desirable to discuss the diffusion process in non-hygroscopic and hygroscopic
cases separately.

Non-hygroscopic fibers can be treated as an inert phase during the moisture
diffusion process. That implies this mass transfer process can be approximated
as one happening in a single-phase system such that a simple representation
is widely applied for porous media with an inert solid phase (Bejan, 2004),

Deff = e Da /t [7.90]

where Da is the moisture diffusivity in bulk air; e and t are porosity and
tortuosity, respectively. Intuitively, this simple equation is established by
treating e and t as correction terms, accounting for reduced diffusion area
and blockage of diffusion path. Tortuosity is a dimensionless parameter that
characterizes the deviation of the diffusion path from a straight one. For a
simple system, tortuosity can be calculated out. However, measurement is
needed when the structure is complex.

Analogous to the analysis of two-phase thermal conduction analysis, the
volume averaging method is applicable to such moisture diffusion problems
(Whitaker, 1999) and, moreover, the predicted effective moisture diffusivity
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depends only on the geometrical arrangement of fibers. With the assumption
that moisture molecules will diffuse along the surface of any intervening
fibers, Woo, Shalev et al. (1994b) thus predicted the moisture diffusivity in
non-hygroscopic nonwoven fabrics as

Deff = DaP + Da(1 – Vf – P) (1 – P)/(1 + sVf – P) [7.91]

where P is the optical porosity corresponding to the air fraction and s is a
fiber-shape factor introduced to characterize the tortuosity effects in nonwoven
fabrics. Fairly good consistency of prediction results and experimental data
implies that using both porosity and tortuosity is an acceptable approach in
characterizing moisture diffusion through non-hygroscopic fibrous materials.

However, many commonly used fibers, e.g. cotton and wool, are hygroscopic
and the responses of hygroscopic fabric under moisture gradients is much
more complex due to interactions between moisture and fibers (Downes and
Mackay, 1958; Nordon and David, 1967; Crank, 1979; Wehner, Miller et al.,
1988). After the initial wetting process, so that the system is in a steady state,
fibers are saturated and diffusion through the air void becomes a dominating
process, except that swollen fibers lead to a smaller free space. However,
experiments have shown that moisture sorption by hygroscopic fibers has to
be treated as a dynamic sink when transient behavior of fabrics is analyzed
(Wehner, Miller et al., 1988).
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where Ca and Cf are moisture concentrations in both void space and fibers,
respectively. Moisture concentration distribution in the system can be obtained
with information of moisture sorption kinetics, i.e. ∂Cf /∂ t. Sorption kinetics
are also described by a diffusion process as
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This formulation is not contradicted by neglection of the fibres’ contribution
for moisture flux through fabrics. In the analysis of the flux along the moisture
gradient, the time scale and the length scale for both diffusion in air and
fibers are the same. Hence, fibers with very low diffusivity provide only
negligible contribution to the macroscopic moisture flux. On the other hand,
sorption of moisture by fibers takes place at all fiber surfaces contacting
with moisture vapor. The small fiber diameter leads to a very high surface
area and small length scale for moisture diffusion into the fiber. Interactions
between these two scale diffusion processes cannot be neglected. A simple
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estimation of the time scale for them would qualitatively illustrate this point.
The characteristic time scale tc for the diffusion process can be defined as
(Crank, 1979; Wehner, Miller et al., 1988),

t
l
Dc
c = 
2

[7.94]

where D is a nominal diffusivity. Based on Wehner’s work (Wehner, Miller
et al., 1988), characteristic length scales lc for moisture diffusion through
void and fiber are estimated as 10 cm and 20 mm, respectively. Diffusivity in
bulk air is 0.25 cm2/s, and is 10–8 cm2/s inside the fiber! Thus, the characteristic
time scales for these two diffusion processes are both 400 seconds. Depending
on the length scales of the fabrics, larger differences may be observed but
not by much. Moreover, this simple estimation illustrates that moisture diffusion
through fibers must be treated as a part of the whole system dynamical
process due to the small length scale of fibers; and the contribution of diffusion
through fibers cannot be ignored when macroscopic transient diffusion behavior
is analyzed. Competition between these two processes will continue until
adsorbed water reaches the sorptive capacity of the fibers. As demonstrated
by experiments (Downes and Mackay, 1958; Wehner, Miller et al., 1988),
moisture sorptive capacity, diffusivity and diameter of fibers will all affect
the transient response of hygroscopic fabrics under moisture gradients.

In order to quantitatively characterize sorption behavior, moisture diffusion
into fibers must be analyzed in detail. But, the diffusivity in glassy polymeric
fibers, such as wools, is not constant or a simple function of moisture
concentration. A two-stage sorption behavior has been observed during moisture
ingress into wool fibers (Downes and Mackay, 1958; Nordon and David,
1967; Crank, 1979). It is characterized by an initial rapid uptake of moisture
obeying Ficken diffusion, and followed by a much slow sorption to approach
final equilibrium. Generally, this kind of process in glassy polymers is called
‘non-Ficken’ or ‘anomalous’ diffusion (Downes and Mackay, 1958; Crank,
1979) and dynamic change of glassy polymer structure with ingression of
moisture molecules is considered to be responsible for this anomalous behavior.
When moisture is absorbed by a glassy polymer, the swelling stresses will be
relaxed with time by accumulated movement of polymer chains. As the rate
of relaxation and moisture diffusion is comparable, uptake of moisture will
rise and lead to the second and slower sorption stage. Quantitative two-stage
sorption models based on stress relaxation and irreversible thermodynamics
have been found in the literature for specific systems, but no general model
is available to explain interactions between moisture diffusion and polymer
structure change (Downes and Mackay, 1958; Crank, 1979). In practical
applications, many researchers have characterized the two-stage sorption
behavior by a complex diffusivity resulting from regression of experimental
data (Nordon and David, 1967; Li and Holcombe, 1992; Li and Luo, 1999).
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Generation of latent heat is another consequence of moisture sorption by
fibers. The magnitude of sorption heat depends on the amount of moisture
absorbed and will affect the temperature field of the fabrics. This is where
moisture and heat transfer are coupled with each other. More detailed discussion
about these coupling effects will be discussed in other chapters.

In this section, we have mainly reviewed the special parts of moisture
diffusion through fibrous systems that may not be found in an equivalent
thermal conduction process. Firstly, moisture diffusion through non-hygroscopic
fabrics was explored, and the concept of tortuosity was introduced for prediction
of effective moisture diffusivity. For hygroscopic fabrics, interactions between
macroscopic diffusion through air voids and microscopic diffusion into fibers
were emphasized, mainly because adsorption of moisture vapor by fibers is
not negligible. Finally, two-stage fiber sorption behavior was illustrated using
the anomalous diffusion behavior of glassy polymers.

7.9 Sensory contact thermal conduction of porous

materials

We know that steel has a higher thermal conductivity than wood by touching
both materials with our hands. This simple technique can be deceiving,
however, when dealing with porous materials, for they are mixtures of solid
materials and air, often with vastly different thermal conductivities. Sawdust
feels much warmer than solid wood lumber, and this phenomenon is hard to
explain without appreciating the role that air is playing. When dealing with
the thermal conduction of fibrous materials, it is highly intuitive to think that
the thermal conductivity of the fibers would play a critical role. In fact, the
perceived warmth through contacting, results from our tactile sense and is a
reflection of contact transient, is actually related to the so-called effusivity
e r = k c p  of the material, where k is the thermal conductivity (W/m K), r
is the density (kg/m3) and cp is the specific heat capacity (J/kg K) of the
material. A surface with a higher effusivity value feels cooler. In fact, effusivity
deals with the heat exchange between substances through interfaces, whereas
conductivity describes the ability of that substance to transfer heat.

Obviously, the narrow range of the thermal conductivities k of various
textile fibers (0.1–0.3 W/m K) cannot account for the vast scope of the
cooling sensation received by touching different fabrics. It is the material
density r and the specific heat capacity cp that are responsible. Since both
are either determined by, or are heavily dependent upon, the structural details
of the fabric, this explains why fabrics made of the same fiber often exhibit
entirely different skin contact sensations.
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7.10 Future research

In this chapter, we carefully reviewed thermal conduction and moisture diffusion
through fibrous materials. Many methods and results have been developed
and documented in the literature but there are still many questions to be
answered.

In most methods, the periodic structure of fibrous materials is assumed.
Practically, characterization of structure based on a statistical description is
more attractive. Though much research work has been done in mechanical
fields, further investigation concerning the application of statistical methods
in transport through fibrous materials is warranted.

Fibrous materials are widely used in science and engineering fields mainly
due to special mechanical properties conferred by the structure of fiber
assemblies. Research in porous media has shown that structure change under
certain mechanical loadings will lead to change of effective thermal conductivity
(Chan and Tien, 1973; Bejan, 2004; Weidenfeld et al., 2004). Evaluation of
coupling effects between mechanical and transport responses under given
external conditions must be an interesting and challenging area for future
research.

Effective material properties mainly represent statistical average behaviors
of fibrous systems. Structure and responses in local space may be quite
different from that of bulk materials. In certain environments, the local extreme
values will determine the performance of a fibrous system (Ganapathy, Singh
et al., 2005). Fully discrete simulation is needed to get a detailed description
of the system. Due to the complex structures and interactions between them,
more advanced computation techniques and algorisms are still under
development and need more attention.
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8.1 Introduction

The clothing system plays an important role in human thermal responses
because it determines how much of the heat generated in the human body
can be exchanged with the environment. The heat and moisture transport
processes are not only of diffusion type but are also enhanced by the ventilating
motion of air through the fabric, initiated by the relative motion of the
human with respect to the environment. During body motion, the size of the
air spacing between the skin and the fabric is continuously varying with
time, depending on the level of activity and the location, thus inducing
variable airflow through the fabric. This induced airflow ventilates the fabric
and contributes to the augmentation of the rates of condensation and adsorption
in the clothing system and to the amounts of heat and moisture loss from the
body.

In this chapter, the relevant fabric properties and parameters during wind
and body motion are first described, followed by methods by which ventilation
rates can be estimated. Then mathematical modeling of the associated heat
and moisture transport in the clothing systems of walking humans is presented.
A description is also given of the means by which the fabric microscopic
heat and mass internal transport coefficients and macroscopic heat and mass
transport coefficients from the skin to the trapped air layer are determined.

8.1.1 Fabric structure and dry and evaporative
resistances

Fabrics are highly porous materials consisting mainly of solid fiber and air
void spaces. The porosity of most fabrics ranges from 50 to 95%, depending
on the fiber fineness, the tightness of the twist in the yarns, and the yarn
count (Morris, 1953). The dry resistance to heat transport of the fabric is
dependent upon the amount of still air entrapped in the interstices between
the fibers and yarns, since the conductivity of air is much lower than that of

8
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fiber materials (Fourt and Hollies, 1971). The solid fibers arrangement and
their volume in the fabric influence the fabric insulation more than the fiber
itself (Rees, 1941). The fiber properties have little influence on fabric insulation
since the volume percentage of the solid fiber is relatively small compared to
the volume of the entrapped air. Any fabric characteristics that would increase
the amount of still air in the fabric would also increase its dry resistance.
Thermal resistance of the fabric is usually negatively correlated with fabric
density. The dry heat resistance for indoor worn fabrics is reported by
McCullough et al. (1985, 1989) as follows:

RD = 0.015 ¥ ef [8.1]

where RD is the dry resistance of the fabric in m2◊K/mm◊W and ef is the
fabric thickness in mm.

Similar to dry heat transfer, vapor transfer in fabrics depends on the
physical properties of the entrapped air medium and on the arrangement of
the solid fibers. The solid fibers not only absorb/desorb moisture but they
also represent an obstacle for the vapor molecules on their way through the
fabric. Therefore, the vapor resistance of fabrics is expected to be larger than
that of an equally thick air layer and is expressed as an equivalent thickness
of still air that would give the same resistance to vapor transfer as that of the
actual fabric. This equivalent air thickness was found by McCullough et al.
(1989) to increase linearly with the fabric thickness for low-density fabrics,
and to some extent for dense fabric materials.

The dry and evaporative resistances are also related through the permeability
index, im, which was first proposed by Woodcock (1962). The relationship is
expressed by

im = (RD/RE)LR [8.2]

where RE is the evaporative resistance of the fabric in m2◊kPa / W and LR is
the Lewis ratio, which equals approximately 16.65 K / kPa at typical indoor
conditions.

8.1.2 Clothing ensemble and heat /moisture transport
from a stationary human body

A clothing ensemble acts as a barrier to heat and moisture transfer from the
skin because of the insulation provided by both the fabric material (dry and
evaporative resistances) and the entrapped air between the different fabric
layers and between the skin and the inner fabric layer. The clothing material
affects the heat loss because of its thermal resistance property and because
it acts as a barrier against thermal radiation and air currents in the environment.
The fabric material will also affect the moisture transport, depending on its
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weave construction, by acting as an obstacle to the moving water vapor
particles.

The amount of entrapped air between different garment layers in an ensemble
affects the insulation of the clothing ensemble. As the thickness of the trapped
air layer increases in a still-air environment and a stationary human body, the
insulation provided by the clothing will also increase. But once the trapped
air layer thickness reaches 1.0 cm, the insulation provided by the trapped air
layer will decrease because of the natural convective heat between the skin
and the garment layer (Rees, 1941).

The thickness of the trapped air layer depends primarily on the looseness
or tightness of the clothing ensemble. Loose-fitting clothing traps more air
within the garment compared to tight clothing. In addition, the body posture
will affect the trapped air layer thickness and thus its insulation. For example,
when sitting, the clothing layers compress the enclosed air layer and the
clothing ensemble insulation decreases. Havenith et al. (1990a) showed that
thicker ensembles had a greater insulation reduction than thinner ones when
a person is seated.

8.1.3 Clothing ensemble insulation during dynamic
conditions

Increasing the speed of the external air will reduce the thickness of the
boundary layer formed at the outer surface of the clothing ensemble and thus
reduce the resistance to convective heat and mass transfer to the external air.
External wind can also reduce the thickness of the trapped microclimate air
layer by compressing the garment layers and thus decreasing its resistance.
On the other hand, body motion will not only reduce the thickness of the
outer boundary layer by creating convective currents at the outer surface of
the clothing ensemble but it will also induce internal air current in garments.
Harter et al. (1981) called this particular aspect in clothing comfort ‘ventilation
of the microclimate within clothing’. Lotens (1993) derived empirically the
steady ventilation rate through apertures of clothing assemblies as a function
of the air permeability of the fabric and the effective wind velocity. The work
of Lotens also showed that, for a clothing ensemble that is made of impermeable
fabric materials with closed apertures, the vapor resistance at the skin and in
the microclimate decreases with walking speed and with wind speed.

When outside air penetrates the clothing, either via openings or through
the fabric material constituting the clothing, the reduction in the insulation
properties of the clothing is not only due to the increase in the circulation
underneath the clothing or at the surface of the clothing, but is also due to the
increase in the renewal rate in the micro-climate air layer between the skin
and the inner fabric surface. In addition, when air passes through the pores
of the fabric material, the insulating properties of the fabric will be reduced
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because the air trapped in the fibers is no longer stationary, allowing for
more convective heat and moisture exchange. Fabrics with large pores between
fibers are generally more permeable to air and hence are more likely to
undergo reduction in their thermal properties and to have greater internal
convection when subjected to an increase in the wind speed or body motion.
Hong (1992) reported dynamic insulation values at different walking speeds
of selected indoor clothing ensembles using a movable thermal manikin.
Reported experiments consider the case of a walking human wearing a long-
sleeve sweat suit ensemble (50% cotton, 50% polyester) and another wearing
a long-sleeve turtle neck cotton sweater and cotton jeans. The measured
standing and dynamic insulation values of the two ensembles showed a drop
in the dynamic insulation from standing insulation values by 25% and 37%,
respectively.

Another aspect of clothing insulation under dynamic conditions is the
periodic renewal of air in the fabric void space. Periodic movement of clothed
limbs causes air adjacent to the skin to flow through the fabric void space to
the environment and air from the environment to flow into the trapped layer
between clothing and skin. The periodic air flow through the fabric swings
between the environment temperature and the skin temperature and will not
be in thermal equilibrium with the fabric yarn. Microscopic convection takes
place in the void space to the fabric fiber and thus enhances further heat and
moisture loss from the human body. Ghali et al. (2002a, 2002b) reported
values for the microscopic internal transfer coefficients in a cotton fibrous
medium, based on a three-node fabric model that has a void space node and
divides the fabric yarn into an inner node and an outer node adjacent to the
void space.

8.1.4 The microclimate skin-adjacent air layer

Movement and wind increases the convective currents within loose garments
and may contribute to a cooling effect (Fanger, 1982). Loosely hanging
clothing entraps more air and thus will experience a greater decrease in its
insulation value in the presence of movement and wind compared to the tight
fitting clothing. However, when ensembles are constructed with more layers,
the difference in the insulation value between a loose- and tight-fitting garment
will be smaller (Havenith et al., 1990b). In addition, when garment openings
are added, more body heat and moisture exchange occurs with the environment.
Nielsen et. al (1985) showed a 10% decrease in intrinsic clothing insulation
with an open jacket as compared to a closed jacket during walking, with
wind velocity of 1.1 m/s, and an 8% reduction during walking with no wind.
Lotens and Havenith (1988) found that the vapor permeability of a rain suit
increased significantly in the presence of openings.

The thermal and moisture resistance of the fabric is relatively independent



Convection and ventilation in fabric layers 275

of permeability under still air conditions and no movement. With an increase
in air velocity and movement, fabrics with high permeability will experience
a higher reduction in their insulation value when compared to impermeable
fabrics (Fonseca and Breckenridge, 1965). For example, manufactured fur,
which is generally categorized as a highly permeable fabric, can be made
more insulative by lining it with a fabric of low permeability.

The effect of body motion (such as walking at different speeds, stepping,
and cycling) on clothing insulation has been studied by several researchers.
Up to 50% of the microclimate volume can be exchanged with the outside
air during each step (Vokac et al., 1973). Hong (1992) studied the insulation
values of 24 different types of indoor clothing on a movable manikin. She
found that the drop in the total insulation of the clothing ranged, depending
of the type of ensemble, from about 24% to 51% due to walking at 90 steps/
min, when compared with standing at zero wind. Ghaddar et al. (2003)
showed that a 50% increase in periodic ventilation frequency of a fabric
reduced its dynamic dry resistance by 23% and its evaporative insulation by
32%. When movement and wind were combined, the effect of movement
was greater than the effect of wind alone (Havenith, 1990a; Lotens, 1993.

8.2 Estimation of ventilation rates

Ventilation rate is the rate of air exchange with the environment in the
microclimate air layer between the skin and the clothing. The microclimate
air renewal takes place through penetration of air through the outer clothing
layer and through clothing apertures of the outer garment where the internal
air layer is connected to the environment at the legs, sleeves, neck, or waist.
The amount of ventilation depends on the wind and wearer motion. Few
studies have examined the microclimate internal air layer ventilation and
even fewer investigations have dealt with the mechanism of microclimate
ventilation and its effect on thermal response of the human–clothing system.
The complex pathways of the microclimate trapped air layer make it difficult
to extend the use of available empirical ventilation data to different
environments, clothing systems, and activity levels. Accurate estimation of
ventilation rates is an essential part for reliable modeling of the heat and
moisture transport processes of a walking, clothed human. Empirical
correlations for the estimation of ventilation rates are presented, followed by
a mathematical model derived from conservation principles for estimating
microclimate ventilation rates.

8.2.1 Lotens’s empirical model

The trace gas method is an effective experimental technique that has been
used to measure microclimate ventilation. Lotens (1993) used the tracer gas
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method to measure ventilation rates in tight- and loose-fitting ensembles of
open and closed apertures at various wind speeds and activity rates. The
tracer gas method involves injecting an inert gas (argon) at a fixed rate
through a perforated tubing system over the skin. At steady periodic conditions,
the gas concentrations and concentration gradient become stable. The total
volume flow rate renewal is calculated from the trace gas injection volume
flow rate Ytr (m

3/s), and from the measured concentrations in the distribution
system, the microclimate, and the environment as follows:

ṁ
C C

a
a

vent
in tr[  –  ] +  = 0r y [8.3]

where ṁvent  is the total ventilation rate in kg/s of clothed body surface, ra is
the air density (kg/m3), ytr is the trace gas volume flow rate, (m3/s), Cin is the
gas concentration in the distribution system (m3 Ar /m

3 air), and Ca is the gas
concentration in the microclimate measurement location, (m3 Ar /m

3 air). If
ventilation takes place only through the garment penetration, then the renewal
mass flow rate of air through the fabric is given by

ṁ
C Ca a

a
 = tr

[  –  ]
r y

•
[8.4]

where ṁa  is the normal mass flow rate of air through the fabric in kg/s of
clothed body surface, and C• is the gas concentration in the environment,
(m3 Ar/m3 air).

Lotens empirically derived mathematical correlations of ventilation rates
to effective wind velocity and air permeability of the outer fabric. Lotens’
(1993) correlation for ventilation through open apertures is given by

Vvent,a = 1.44 ¥ 10–4ueff [8.5]

where Vvent,a is the ventilation rate through apertures in m3/s◊m2 of clothed
body surface, ueff is the effective wind velocity (m/s). The correlation for
ventilation rate through outer fabric is given by

V wvent,
–5

eff
0.5+0.05 = 4.5  10 ( /0.16)¥ u a [8.6]

where Vvent,w is the ventilation rate due to air penetration of outer fabric in
m3/s◊m2 of clothed body surface, and a is the air permeability through the
outer fabric in l/m2◊s at 200 Pa pressure difference. The effective wind velocity
consisted of three parts,

ueff = unatl + uwind + uact [8.7]

where unatl is the wind velocity of natural convection (= 0.07 m/s for sitting
and 0.11 m/s for standing), uwind is the external wind speed (m/s), and uact is
the equivalent air velocity of motion (m/s). The equivalent air velocity nact

can be evaluated by the following expression for treadmill walking:



Convection and ventilation in fabric layers 277

uact = 0.67 ¥ uwalk [8.8]

where uwalk is the walking speed in m/s. The walking speed can be estimated
using Hong’s (1992) formula as follows:

u walk (mph) = 0.47
1056 +    –  0.114F H¥ [8.9]

where F is the stride frequency in steps/min, and H is the height of the
human subject in meters.

Lotens’ (1993) ventilation model has limited use since it was derived
from experimental considerations and was not based on first principles. The
model does not take into consideration the change in volume of the microclimate
air layer and the driving mechanism by which air flow is induced through
outer fabric or clothing apertures.

8.2.2 Mathematical modelling of ventilation

The normal air flow through the fabric is driven by pressure differences and
is dependent on the permeability of the fabric material. The permeability is
affected by the type of yarn, tightness of the twist in the yarn, count of yarn
and fabric structure. In general, the fabric permeability is experimentally
determined under a pressure difference of 0.1245 kPa. To get the airflow
passing through the fabric at other pressure differentials, the amount of
airflow is assumed to be proportional to the pressure differentials. At constant
fabric permeability, the airflow rate through the fabric between the trapped
air in the layer adjacent to the skin and the environment is then represented by

ṁ
Pay

a

m
aP P = (  – )

a r
D • [8.10]

where ṁay  is the normal flow rate through fabric, a is the fabric air permeability
in m3/m2◊s, DPm = 0.1245 kPa from standard tests on the fabric’s air permeability
[ASTM D737-75, 1983], Pa is the air pressure in the microclimate trapped
air layer between the human skin and the fabric (kPa), and P• is the outside
environment air pressure (kPa).

Li (1997) used the induced air flow through the fabric given in equation
[8.10] to study the impact of the normal passing flow on the heat and mass
transport by diffusion at the fabric (thermal equilibrium) and ultimately at
the skin in a multi-layer clothing system. Ghali et al. (2002c) developed a
periodic ventilation model valid for normal airflow through the fabric. The
microclimate air pressure is governed by the periodic movement of the fabric
boundary, which changes the size of the microclimate spacing between the
skin and the fabric, thus inducing variable airflow in and out of the fabric.
The 1-D model of Ghali et al. (2002c) assumed sinusoidal fabric motion as
an approximate model of the periodic change of air spacing layer thickness
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for a walking person. Human gait analysis shows repeated periodic pattern
of limb motion that can be approximated by a sinusoid (Lamoreux, 1971).
The normal periodic ventilation model is not applicable for clothed parts of
the body with open apertures at the sleeve, waist, or neck or for loose garment
fitting around slender body parts. The presence of open apertures induces air
flow parallel to the fabric surface during walking. For loosely fitted clothing,
airflow takes place in the angular direction in the microclimate air layer due
to gap height asymmetry between the cylindrical shaped body parts and the
clothing.

Li (1997) developed a 2-D model for parallel planar air flow between the
fabric layers using a locally fully developed laminar Poiseuille flow to relate
the parallel air flow to the driving pressure difference induced by open
apertures in clothed segments. The pressure drop at the opening is calculated
by applying Bernoulli’s equation from P• in the far environment to the
opening. The air mass flow rate per unit area in the parallel direction is given
by

ṁ Y P
xax a
a = –  kg/(s m )

2
2

12
r m

∂
∂

◊ [8.11]

Where Y is the gap height (m), m is the viscosity of air, and x is the coordinate
of the parallel direction (m). Ghali et al. (2004) integrated Li’s (1997) 2-D
parallel flow model with their 1-D periodic normal ventilation model of the
fabric. The reported reduction in sensible and latent heat loss of the Poiseuille
flow model of Ghali et al. (2004) due to an open aperture did not agree well
with the published empirical results of Lotens (1993). Both Li and Ghali et
al. models neglected the fluid inertia associated with the flow modulation
and reversal during the flow cycle in the parallel direction and hence limited
the Poiseuille model applicability to low Womersley number
(  = ( /2) /2W Yo w n  where w is the ventilation circular frequency, Y is the
air layer thickness, and n is the air kinematic viscosity. Ghaddar et al. (2005a)
assumed the microclimate parallel flow to be locally governed by Womersley’s
solution of time–periodic flow in a plane channel (Womersley, 1957). The
Ghaddar et al. model agreed well with the empirical ventilation results of
Lotens. Ghaddar et al. (2005b) extended the model to 3-D to predict ventilation
flow rates in the radial, angular, and axial directions, induced by periodic
motion of an inner cylinder, representing the body part with respect to a
surrounding outer clothing cylinder, for closed and open aperture clothing
systems. The model predictions of the time-averaged ventilation rates were
validated by experiments using the tracer gas method. The 3-D cylinder
periodic ventilation model of the microclimate will be discussed at length
since it is the first comprehensive dynamic model of microclimate periodic
ventilation.
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8.2.3 Microclimate air layer periodic ventilation model

Air mass balance

The formulation of the periodic ventilation model of Ghaddar et al. (2005b)
addresses the radial (normal) air flow through the outer fabric boundary; and
the modeling of the internal air layer motion in the axial direction due to the
presence of an open aperture and in the angular direction due to asymmetry
in microclimate thickness during the walking cycle. Figure 8.1 depicts the
schematic of the physical domain of the microclimate air-layer-fabric system
considered by Ghaddar et al. (2005b) where an enclosed air layer annulus of

Ambient air at T• and P•

q

Open to
atmosphere

Skin at Tskin and Pskin

Fabric boundary

Body cylinder Up and down
periodic motion

Lumped air layer at Ta, Pa and wa

Closed
end
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x = 0 x = LSide view
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Inner body cylinder

q = 0

may(q, x, t)
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Of
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q = p
Y(q, t) = Ym-DY sin (w t) cosq

x-direction is perpendicular to the plane of the diagram
Front view

Y

maq(q, x, t)

8.1 Schematic of the physical domain of the fabric–air layer–skin
system and the fabric model.
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thickness Y and length L separates the fabric boundary and the human skin.
The physical domain of the air-layer-fabric system represents a situation
where the skin boundary is a cylindrical impermeable surface of radius Rs

covered with an outer clothing cylindrical boundary of radius Rf. One end of
the domain at x = 0 is open to the atmosphere (loose clothing, openings at the
sleeves end or around the neck) and the other end at x = L is closed (no air
flow escapes from the annulus). The skin boundary moves in a sinusoidal
up-and-down motion at an angular frequency w that induces air movement
through the porous fabric. The flow of air is axial through the clothing
openings (sleeves, skirts, neck), radial (normal to the fabric) through the
clothing void spaces, and angular around the body segments. The fabric
thickness is ef. The frequency of the oscillating motion of the fabric is
generally proportional to the activity level of the walking human. The
microclimate air layer is formulated as an incompressible lumped layer.

The angular airflow is governed by a pressure differential, due to variation
of the microclimate air gap length Y (q, t) that drives the flow in q-direction.
The flow takes place in the narrow gap between the eccentric cylinders
during the motion cycle. A dimensionless amplitude parameter z is defined by

V = 
DY
Ym

[8.12a]

The eccentricity ec of the cylinders is time-dependent and is expressed in
terms of oscillation frequency w and amplitude DY as

ec = DY sin (w t)    (z < 1, no skin–fabric contact) [8.12b]

Some elementary geometry shows that the width of the gap Y between the
two circular cylinders can be approximated by

Y(q, t) = Ym[1 – z sin (w t) cos(q)]

(z < 1, no skin–fabric contact) [8.12c]

where Ym is the mean spacing between the human segment cylinder and the
fabric outer cylinder (Ym = Rf – Rs). No skin–fabric contact is present during
the period of motion when the amplitude ratio is less than unity (z < 1).
Contact can locally be present when the amplitude ratio is greater than or
equal to unity (z ≥ 1). The solution presented in this section covers only the
case when the amplitude ratio is less than unity.

The general air layer mass balance performed on an element of height Y,
thickness Rf dq, and depth dx is given by
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where ṁax  is the mass flux in the axial direction in kg/m2◊s, ṁaq is the mass
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flux in the angular direction, and ṁay  is the radial air flow rate. The boundary
conditions for the air flow are
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ṁ x Lax (  = , ) = 0q [8.14b]

ṁ xaq q( ,  = 0) = 0 [8.14c]

ṁ xaq q p( ,  = ) = 0 [8.14d]

where Equation [8.14b] is derived from the pressure drop at the opening by
applying Bernoulli’s equation from a state at P• in the far environment
(x Æ – •) to a state at Po and flow rate ṁ xax (  = 0, )q  at the opening, and CD

is the discharge loss coefficient at the aperture of the domain dependent on
the discharge area ratio of the aperture to the internal air annulus area.

Womersley flow model in axial and angular directions

The flow in the x-direction, driven by the time-periodic pressure gradient, is
treated as locally governed by Womersley time-periodic laminar channel
base flow (Womersley, 1957). The channel is assumed of sufficient length
for the flow to be fully developed and the slope ∂Y/(Rf ∂q) is small to permit
quasi-parallel flow in the angular direction within the annulus. With these
assumptions, the governing momentum equations in the axial and angular
directions respectively become
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where ux (y, t) and uq  (y, t) are the plane channel angular velocities for x- and
q-directions, and n is the kinametic viscosity of air in m2/s. The driving
pressure in the air layer is oscillating with the same frequency as the inner
cylinder motion but with a phase difference of (p /2). At the minimum spacing
position Ymin =Ym – DY and the maximum spacing position Ymax = Ym + DY,
the pressure in the air layer equalizes with P• before the radial flow changes
direction. The driving pressure gradients in the axial and angular directions
are given by
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where Lx and Lq are the pressure gradient amplitude parameters (Pa◊m2 /kg)
in the axial and the angular directions, respectively. Assuming a frequency-
separable transient solution, Equations [8.16a] and [8.16b] are written for an
oscillating laminar flow in a channel in x- and q-directions as follows:
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The dimensionless axial velocity ¢ux (y, t) = ux (y, t)/(Lx/w) and the dimensionless
angular velocity ¢uq (x, t) = uq (y, t)/(Lq /w) are found analytically as a function
of y, time t, and the physical parameters w and n (Straatman et al., 2002). By
prescribing a flow condition such as pressure or flow rate in either direction
at the same ventilation frequency w, the values of Lx and Lq can be determined
for any given channel height Y. The mass flow rate per unit area is then
calculated as a function of time at position x as follows:

˙ ˙¢m t m Y
Y

tax ax a
x( ) =  = 

2
( )r w
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where F is the dimensionless flow rate for a unit pressure gradient parameter
Lx, given by

F( ) = ( , )
–1

1

t u y t dyxÚ ¢ ¢ ¢ [8.18b]

where y¢ = 2y/Y. Similarly, the angular mass flow rate at any local angular
position q is found by integrating uq over the layer spacing Y as
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The air mass flow rate per unit depth ˙ ¢m tax ( )  is related to the pressure in the
channel through Equation [8.16] and the pressure at the opening through
Equation [8.14a]. The flow rate per unit width in the angular direction has
been related to the angular pressure gradient by combining the standard
lubrication theory in fluid dynamics (Acheson, 1990) and the Womersley
flow in a channel. Since the mass flow rate is modeled as a function of
pressure differences in r-, q-, and x-directions, the mass balance of the air
layer would result in the following pressure equation:
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Equations [8.16] and [8.19] were solved numerically by Ghaddar et al. (2005b)
for Pa(x,q, t), Lx and Lq at any discrete location within the air layer as a
function of time while satisfying the imposed boundary conditions given in
Equations [20.14a–d]. The angular–space–time-averaged value of the mass
flow rate in the radial direction can be integrated over half the period of
motion at any axial position as
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where t is the period of oscillation. The net flow in one period is zero. The
net ventilation rate inflow or outflow to the microclimate air layer through
the open aperture during half the period of motion is defined by
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where ṁo  is net flow rate through the open aperture.
Ghaddar et al. (2005b) conducted experiments using the tracer gas method

to measure time- and space-averaged air ventilation rates induced by inner
cylinder periodic motion within a fabric cylindrical sleeve at spacing amplitude
ratio with respect to the mean spacing of z = 0.8 for both closed and open
aperture cases. The predicted ventilation flow rates by the cylinder model of
Ghaddar et al. (2005b) agreed well with their experimental measurements of
total renewal rates for closed and open apertures. The agreement improved at
higher frequencies of ventilation.

8.3 Heat and moisture transport modeling in

clothing by ventilation

Ventilation can have a dominant effect on the thermal insulation of clothing
and the heat and moisture transport from the human body to the environment.
There have been many models simulating these transport processes to predict
sensible and latent heat loss from the skin. Most of these models started from
energy and mass balances at thermodynamic equilibrium and used the empirical
ventilation relationships developed by Lotens (1993). Lotens calculated the
sensible heat transport by air ventilation as

Q C m Ts p = vent˙ D [8.21a]

where Qs is the sensible heat loss by ventilation, W/m2, and Cp is the specific
heat capacity of air, J/kg·K and DT is the temperature difference between
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the locations where ventilation occurs. The latent heat transport of the
ventilation is

Q m hL fg = vent˙ [8.21b]

where QL is the latent heat loss by ventilation, W/m2 and hfg is the heat of
evaporation of water, kJ/kg.

The work of Lotens (1993) assumed that the microclimate trapped air
layers have the same average thickness in clothing ensembles, which is not
true in dynamic situations, and that ventilation will mostly affect the clothing
outer layer. The clothing model of Lotens consisted of four layers: a
homogenous undergarment clothing layer, a trapped air layer, an outer garment
and an adjacent external air layer. The trapped air layer was assumed to
consist of two adjacent air layers to the clothing and free moving air in-
between. The heat and vapor transmission that takes place by ventilation
through apertures and by penetration of air through the outer material reduces
clothing insulation. Motion affects internal convection coefficients in the
trapped layer and the adjacent external air layer. The combined effect is
already included in the effective wind speed (see Equation [8.7]). However,
it is difficult to understand how ventilation can be incorporated into the
dynamic clothing models if ventilation values are derived empirically for
specific clothing ensembles and limited dynamic conditions. Lotens (1993)
used the four-layer ventilation model to calculate the dry and heat loss from
the human body by diffusion and ventilation. He approximated the human
body by a vertical cylinder. The body is split in four parts: nude parts and
clothed parts with and without additional radiation. He calculated the total
heat transfer from the body, taking into account the clothing surface area.
The model was tested by experiments on subjects with four types of clothing
material, with the subjects participating in three activities: standing in still
air (ST), standing in wind at 1 m/s (STW), and walking at 4 km/hour in quiet
air (W). The reported measured average sensible heat flow in the absorbing
garment was 52 W/m2, 57 W/m2 and 104 W/m2 for activities of (ST), (STW)
and (W), respectively. The average latent heat loss measured in walking
condition was reported at 24 W/m2 compared to 9 W/m2 for standing in still
air. For a highly permeable fabric, the dry heat loss was 105 W/m2 for
walking conditions at metabolic rate of 148 W/m2 compared to 33 W/m2

during standing at an average metabolic rate of 60 W/m2. The dry heat loss
predictions of the Lotens model, compared to the experiments, were at rms
error of 10 to 12 W/m2. The measured apparent intrinsic insulation in Lotens’
experiment decreased by 46% from 0.16 in the standing activity to 0.085
m2K/W in the walking activity.

Ventilation affects both microscopic convection within the fabric and internal
convection coefficients between the human skin and the microclimate trapped
air layer between the fabric and the skin. It is of interest to develop a thermal
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model of the microclimate air layer from first principles which can capture
the physics of the flow and thermal transport and can be easily integrated
with clothing ventilation models. The model of Ghaddar et al. (2005b) of
heat and moisture transport by ventilation is derived from first principles and
is flexible enough to be applied to a wide variety of problems. In this section,
Ghaddar’s heat and moisture transport model of the microclimate heat layer
will be described, followed by the associated fabric ventilation model of
Ghali et al. (2002b), together with reported data on the fabric microscopic
internal transport coefficients and the internal and external convection
coefficients of adjacent air layers.

8.3.1 Microclimate air layer mass and heat balances
without fabric skin contact

The interaction of the fabric and the microclimate layer during periodic
motion is mainly due to the periodic renewal of the air in the void space of
the porous fabric. Ghaddar et al. (2005b) derived the mass and heat balances
in the microclimate air layer, as it interacts with the skin and the trapped air
in the fabric void space. Their derivation assumes that, during the oscillation
cycle, the air from the environment will pass through the fabric void at ṁay

(calculated from Equation [8.10]) into the air layer when the pressure in the
air layer Pa < P• and the air in the air layer will pass at ṁay  through the
fabric void space to the environment when Pa ≥ P•. The airflow into the air
spacing layer coming from the air void node of the fabric will have the same
humidity ratio as the air in the void space of the fabric, while the airflow out
of the air layer into the fabric void will carry the same humidity as the air
layer. The water vapor mass balance for the air spacing layer is given by
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where hm(skin-air) is the mass transfer coefficient between the skin and the air
layer, hm(o-air) is the mass transport coefficient from the fabric to air, Pa is the
water vapor pressure in the air layer, wa is the humidity ratio of the air layer,
Psk is the vapor pressure at the skin solid boundary, wvoid is the humidity ratio
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of the air void, ef is the fabric thickness, and D is the diffusion coefficient of
water vapor into air. The terms on the right-hand side of Equations [8.22a]
and [8.22b] are explained as follows: the first term represents the mass
transfer from the skin to the trapped air layer where the mass transfer coefficient
at the skin to the air layer is obtained from published experimental values of
Ghaddar et al. (2003, 2005b); the second term is the convective mass flow
coming through the fabric voids; the third and fourth terms represent the net
flux in the axial and angular directions; the fifth term is the water vapor
diffusion term from the air layer to the air in the fabric void due to the
difference in water vapor concentration; the sixth and seventh terms represent
vapor diffusion in angular and axial directions; and the final term is the mass
transfer from the air layer to the fabric in the axial direction. The final term
is significant only in the vicinity of the opening.

The energy balance of the air spacing of the fabric of Ghaddar at al.
(2005b) expresses the rate of change of the air–vapor mixture energy in the
air-layer in terms of: (i) the external work done by the environment on the air
layer, (ii) the evaporative heat transfer from the moist skin, (iii) the dry
convective heat transfer from the skin, (iv) the heat flow to or from the air
layer associated with ˙ ˙m may a, ,q , and ṁax , (v) the heat diffusion from void
air of the thin fabric to the air layer, and (vi) the angular conduction and
water vapor diffusion in the air layer. The energy balance of the air layer is
given by
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where Hp is the enthalpy of airflow into or from the air layer, defined by
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where hc(o-air) is the convection coefficient from the fabric to air, hm(o-air) is
the mass transport coefficient from the fabric to air, ka is the thermal conductivity
of air. Since the fabric void thickness is very small, conduction of heat from
the fabric void air to the trapped air layer is represented by the law of the
wall as given in the last two terms of Equation [8.23a]. The inner cylinder
skin condition can be specified at either constant skin temperature and humidity
ratio (Psk and Tsk are known), or constant flux condition at the surface. The
closed boundary at x = L is assumed adiabatic, while the open boundary
exchanges heat by conduction and convection to air at T•.

The solution of the mass and heat transport in the microclimate lumped
air layer at Ta and wa is coupled to the ventilated fabric through the fabric
void space air conditions at Tvoid and wvoid and to the human skin conditions
through the transport coefficients from the skin, which has known temperature
Tsk and vapor pressure Psk. In highly permeable porous fabric, the air
temperature and humidity in the void space are not equal to the fabric
temperature and humidity due to the ventilation effect. An appropriate fabric
model that takes into consideration the internal transport coefficients between
the air in the void space and the fabric solid yarn should be used for accurate
prediction of the ventilation effect on thermal response of the clothed human
body system. In the next section (8.3.2), a discussion of known fabric models,
and the reasons for adopting Ghali et al. (2002a and 2002b) three-node
fabric adsorption model to integrate with the microclimate ventilation model
are presented.

8.3.2 The fabric three-node ventilation model

Traditionally, ventilation models of heat and mass transfer through clothing
layers assumed instantaneous equilibrium between the local relative humidity
of the diffusing moisture and the regain of the fiber, and ignored the effect of
ventilation on the heat and moisture exchange between the microclimate of
the clothing and the ambient air. Jones et al. (1990) described a model of the
transient response of clothing systems, which took into account the sorption
behavior of fibers but assumed local thermal equilibrium with the surrounding
air. However, the hypothesis of local equilibrium was shown to be invalid
during periods of rapid transient heating or cooling in porous media as
reported by Minkowycz et al. (1999). Their results show that local thermal
equilibrium is not valid if the ratio of the Sparrow number to the Peclet
number is small for 1-D flow in a porous layer. In the absence of local
thermal equilibrium, the solid and fluid should be treated as two different
constituents as reported in the works of Vafai and Sozen (1990), Amiri and
Vafai (1994, 1998), Kuzentsov (1993, 1997, 1998), and Lee and Vafai (1999).
Under vigorous movement of a relatively thin porous textile material, air
will pass quickly between the fibers, invalidating the local thermal equilibrium
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assumption. Ghali et al. (2002a) studied the effect of ventilation on heat and
mass transport through fibrous material by developing a fabric two-node
absorption model (aided by experimental results on moisture regain of ventilated
fabric) to determine the transport coefficients within a cotton fibrous medium.
Their model was further developed and experimentally verified to predict
temporal variations in temperature and moisture content of the air within the
fiber in a multilayer three-node model (Ghali et al. 2002b). The analysis
presented here of airflow through the fabric is based on Ghali et al. (2002b)
while using a lumped layer of two fabric nodes and an air void node to
represent the fibrous medium. The model is simple and is applicable to
highly permeable, thin fabrics. Lumped parameters have commonly been
used in models of thin permeable fabrics (Farnworth, 1986; Jones and Ogawa,
(1993).

The three-node model lumps the fabric into an outer node, an inner node,
and an air void node. The fabric outer node represents the exposed surface of
the yarns, which is in direct contact with the penetrating air in the void space
(air void node) between the yarns. The fabric inner node represents the inner
portion of the ‘solid’ yarn, which is surrounded by the fabric outer node. The
outer node exchanges heat and moisture transfer with the flowing air in the
air void node and with the inner node, while the inner node exchanges heat
and moisture by diffusion only with the outer node. The air flowing through
the fabric void spaces does not spend sufficient time to be in thermal equilibrium
with the fabric inner and outer nodes. The moisture uptake in the fabric
occurs first by the convection effect from the air in the void node to the yarn
surface (outer node), followed by sorption/diffusion to the yarn interior (inner
node). The fabric model is best represented by a flow of air around cylinders
in cross flow, where the air voids are connected between the cylinders (yarns)
as shown in Fig. 8.2. The fabric is represented by a large number of these
three-node modules in cross flow, depending on the fabric effective porosity.
The fabric area is L ¥ W and the fabric thickness is ef. The airflow is assumed
normal to the fabric plane.

Effective heat and mass transfer coefficients, reported by Ghali et al.
(2002a, 2002b), Hco and Hmo for the outer node of the fabric, and the heat
and mass diffusion coefficients Hci and Hmi for the inner nodes of the fabric,
are used in the model in normalized form as follows:
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where Af is the overall fabric surface area, Ao is the outer-node surface area
exposed to air flow and Ai is the inner node area in contact with the outer node.

The time-dependent mass and energy balances were derived by Ghali
et al. (2002a) for the outer and inner nodes of the fabric yarn and for the air



Convection and ventilation in fabric layers 289

void node in terms of the heat and mass transport coefficients between the
penetrating air and the outer node and between inner and outer node. In the
derivation of the water vapor mass balances in the fabric and void space
nodes, the water vapor is assumed dilute compared with the air, and the bulk
velocity of the mixture is very close to the velocity of the air. This assumption
simplifies the mass balances by ignoring the effect of counter transfer of the
air and assuming constant total pressure of the system. According to ASHRAE
Handbook of Fundamentals (ASHRAE, 1997), no appreciable error is
introduced when diffusion of a dilute gas through an air layer is carried out.
The derivation included a term to correct for bulk motion of the fluid and its
value is typically between 1.00 and 1.05 for conditions of the ventilating air.
The water vapor mass balance in the air void node is given in Equations
[8.25a] and [8.25b] when air flow enters the fabric void from the environment
space to the microclimate layer (Pa < P•) and when air flow enters the fabric
void space from the microclimate layer to the environment (Pa > P•),
respectively, as
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8.2 Schematic of the three-node fabric model of Ghali et al. (2002b).
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where ef is the fiber porosity. The last two terms in the equations are the mass
diffusion terms within the fabric in angular and axial directions. The outer
fiber node and the inner fiber node mass balances are expressed in terms of
the fabric regain in Equations [8.26] and [8.27], respectively:
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where Ro is the regain of the outer node (the mass of moisture adsorbed by
the fiber outer node divided by the dry mass of the fiber outer node), Ri is the
regain of the inner node, and ¢Hmo  and ¢Hmi  are the mass transfer coefficients
between the outer node and the penetrating air and the outer node and the
inner node, respectively. The parameter g is the fraction of mass that is in the
outer node and it depends on the fabric type and the fabric porosity. The total
fabric regain R (kg of adsorbed H2O/kg dry fiber) is given by

R = g Ro + (1 – g)Ri [8.28]

In the model of Ghali et al. (2002a), the value of g is equal to 0.6.
The energy balance for the air vapor mixture in the air void node is given
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and He is given by

H
C T w h

C T w h

P x t P

P x t P
e

p fg

p a a fg

a

a

 = 
 + 

 + 
  

for

for
   

( , , ) < 

( , , )  

• • •

•

Ï
Ì
Ó ≥

q

q
[8.29b]

The heat transfer coefficient between the outer node and the penetrating air
in the voids is ¢Hco ,  and ka is the thermal conductivity of air. The last four
terms of the energy balance are heat diffusion terms in axial and angular
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directions. These terms are negligible when only normal flow through the
fabric is present.

The energy balance on the outer nodes gives
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where ¢Hci  is the heat diffusion coefficient between the outer node and the
inner node, hr is the linearized radiative heat exchange coefficient, and had is
the enthalpy of the water adsorption state. The density of the adsorbed phase
of water is similar to that of liquid water. The high density results in the
enthalpy and internal energy of the adsorbed phases being very nearly the
same. Therefore, the internal energy, uad, can be replaced with the enthalpy
of the adsorbed water. Data on had, as a function of relative humidity, is
obtained from the work of Morton and Hearle (1975).

The energy balance on the inner node gives
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The above coupled differential Equations [8.25] to [8.31] describe the time-
dependent convective mass and heat transfer from the skin–adjacent air layer
through the fabric, induced by the sinusoidal motion of the fabric. To solve
the equations for the fabric transient thermal response, the fabric void
microscopic transport coefficients, namely ¢ ¢H Hmo co, ,  and the inner node
diffusion coefficients ¢ ¢H Hmi ci, and , and the internal convection coefficients
from the skin to the air layer hm(skin-a) and hc(skin-a) must be known.

Microscopic fabric heat and mass transport coefficients Ghali et al. (2002c)
ventilation model does not assume local thermal equilibrium in the fiber. The
fabric microscopic transport coefficients ¢Hmo and ¢Hco were empirically
derived by Ghali et al. (2002a) for cotton fabric and were found to increase
linearly with the air normal mass flow rate through the fabric. Ghali et al.
(2002a) experiments were conducted inside environmentally controlled
chambers to measure the transient moisture uptake of untreated dry cotton
fabric samples subjected to airflow driven through the fiber by a bulk pressure
gradient generated by humid air at an elevated velocity impinging normal to
the fabric. The untreated cotton chosen by Ghali et al. (2002a) was
representative of a most commonly worn fabric. The ranges of flow rates per
unit area and ventilation frequencies considered by the reported study were
0.0077 to 0.045 kg/m2◊s and 25 to 35 rpm, respectively. Human gait analysis
(Lamoreux, 1971) shows that a walking speed of 0.9 m/s corresponds to 70
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steps/min or 35 rpm ventilation frequency. Ghaddar et al. (2005a) calculated
the minimum normal flow rate through the fabric ventilation three-node
model that could reproduce the fabric total regain and temperature obtained
by considering only diffusion transport based on fabric dry and evaporative
resistances. The diffusion transport model produces the lowest regain that
can physically take place in the fabric. At the mass flow rate of 0.0077 kg/
m2◊s, Ghaddar et al. (2005b) found that the fabric regain predicted by the
three-node fabric model is the same as the regain predicted by the diffusion
model. The effective microscopic heat and mass transfer coefficients between
the airflow in the fabric void and the outer node for cotton fabric are given
by Ghaddar et al. (2005b):

¢H mco a = 495.72  – 1.85693˙    W/m2◊K, ṁay  >  0.00777 kg/m2◊s
[8.32a]

¢Hco  = 2.0     W/m2◊K, ṁay  £ 0.00777 kg/m2◊s [8.32b]

¢ ¥ ¥H mmo a = 3.408  10  – 1.2766  10–3 –5˙  kg/m2◊kPa◊s,
ṁay  > 0.00777 kg/m2◊s [8.32c]

¢ ¥Hmo  = 1.3714  10 –5     kg/m2◊kPa◊s,   ṁay  £ 0.00777 kg/m2◊s
[8.32d]

The inner node transport coefficients to be used in the fabric model are as
reported by Ghali et al. (2002a) at ¢Hci  =1.574 W/m2◊K, and ¢Hmi  = 7.58 ¥
10–6 kg/m2◊kPa◊s.

Internal convection coefficients from the skin to the microclimate air
layer Several researchers have empirically estimated the internal convection
coefficients between the skin and the trapped air layer under dynamic conditions
initiated by motion. Lotens (1993) reported internal mass transport coefficients
in two-layer clothing at the skin to the clothing layer, for various garments
and apertures. Havenith et al. (1990a) reported data for a clothing ensemble
of cotton/polyester workpants, polo shirt, sweater, socks, and running shoes.
Their data on dynamic clothing insulation of skin surface air layer were
based on measurements of dry heat loss where the subject skin was wrapped
tightly with a thin, water-vapor impermeable, synthetic foil. Danielsson (1993)
reported internal forced convection coefficients for various parts of the body
for a loose-fitting ensemble at walking speeds of 0.9, 1.4 and 1.9 m/s. Ghaddar
et al. (2003, 2005b) experimental data on the convective transport coefficients
from the skin to the internal air layer were based on the evaporative heat loss
and the moisture adsorption in the clothing due only to normal ventilation
action of the fabric for both planar and cylindrical geometry of the fabric
boundary under periodic ventilation. The dry convective heat transport
coefficient from the skin to the lumped air layer hc(skin-air) was found from the
Lewis relation for air–water vapor mixtures (ASHRAE, 1997). Ghaddar
et al. (2003) experimental findings of convection coefficients are within 8%
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of the findings of Danielsson, at a walking speed of 0.9 m/s, for the trunk and
the arm parts of the body. The mean transport coefficients for a cylindrical
geometry are 29% lower than the planar normal periodic flow coefficients
reported by Ghaddar et al. (2005b). This is expected due to the reduced
normal ventilation rate and increased angular motion parallel to the inner
surface within the microclimate air layer annulus of the cylindrical geometry.
Table 8.1 presents a summary of transport coefficients reported by various
researchers for closed aperture high air permeable cotton clothing at various
walking speeds, external winds, or frequencies.

When internal ventilation convection coefficients are known at the skin,
then the steady periodic time-averaged sensible and latent heat losses per
unit area from the skin can be calculated, respectively, as
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In addition, the average overall dry resistance of clothing, IT (clo) and
evaporative resistance RE can be determined from the Jones and McCullough
(1985) definition of
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where Cl is the unit conversion constant = 6.45 cloW/m2 ∞C, and the clo
value is a standard unit for comparing clothing insulation.

External convection coefficients  Many researchers have estimated the heat
transfer coefficient at the external exposed surface of clothing subject to
elevated air velocities (Nishi and Gagge, 1970; Kerslake, 1972; Fonseca and
Breckenridge, 1965; Danielsson, 1993). They suggested formulae for
calculating the average convective coefficients from the human body for a
range of speeds and body postures in the form of

h ac o
b

( –air) eff =   ◊ u [8.35a]

where ueff is the effective wind velocity in m/s, b is a constant whose value
is close to 0.5, and a is a constant evaluated from the characteristic diameter
of the whole body, given by Danielsson (1993) as

a = 4.8 ¥ d – 0.33 [8.35b]
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294Table 8.1 Internal mean heat and mass transfer film coefficients to the air layer as reported by Lotens (1993), Havenith et al. (1990a,
1990b), Danielsson (1993), and Ghaddar et al. (2004, 2005b) for highly permeable cotton fabric

Lotens’ Data (1993) Havenith et al. (1990a and 1990b), Ensemble A.

Walking Wind speed hm(skin-fabric) Walking Wind speed hc(skin-a) hm(skin-a)

speed (m/s) (m/s) (kg/s·m2·kPa) speed (m/s) (m/s) (W/m2·K) (kg/s·m2·kPa)

0.2 0 7.96 ¥ 10–5 0.3 0 10.093 6.943 ¥ 10–5

0.694 10.69 ¥ 10–5 0.7 16.39 11.0 ¥ 10–5

1.388 12.79 ¥ 10–5 4.0 31.25 21.9 ¥ 10–5

0.7 0 9.07 ¥ 10–5 0.9 0 10.31 7.09 ¥ 10–5

0.694 12.68 ¥ 10–5 0.7 14.925 10.09 ¥ 10–5

1.388 13.24 ¥10–5 4.0 38.26 26.3 ¥ 10–5

Measured heat transport coefficient from the skin to the air layer, Danielsson (1993)

Walking speed (m/s) 0.9 1.4 1.9

hc(skin-air) (W/m–2·K): [Leg] 13.7 17.4 19.0
hc(skin-air) (W/m–2·K): [Trunk] 10.2 13.0 15.1
hc(skin-air) (W/m–2·K): [Arm] 11.3 15.0 17.2

Transport coefficient for planner oscillating fabric over planner wet skin, Ghaddar et al. (2003)

f (rpm) 27 37 54

hm(skin-air)  (kg/s·m2·kPa) 8.0 ¥ 10–5 8.16 ¥ 10–5 9.216 ¥ 10–5

hc(skin-air)  (W/m2·K) 11.6 11.9 13.265

Internal transport coefficient for cylindrical fabric and skin geometry, Ghaddar et al. (2005b)

f (rpm) 60 80

hm(skin-air) (kg/s·m2·kPa) 6.4 ¥ 10–5 7.54 ¥ 10–5

hc(skin-air) (W/m2·K) 9.4 11.05
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where d is 0.16 m. Fonseca and Breckenridge (1965) reported that wind
increases the heat transfer coefficient of outer clothing ensembles linearly
with the square root of the velocity. Their correlation is given by

h a bc (fabric– ) 1 1 eff =  + • u [8.36]

where a1 is due to effective radiation and natural convection and the second
term is due to forced convection.

8.3.3 Model extension for fabric–skin contact

The formulation of the periodic microclimate ventilation problem was solved
using the 3-D cylinder model of Ghaddar et al. (2005b) for closed and open
apertures at amplitudes of periodic motion that are greater than the mean
spacing of that between the clothing and the skin (DY < Ym), where the
amplitude ratio is smaller than unity (z < 1). For amplitude ratios greater or
equal to unity (DY ≥ Ym and z ≥ 1), the inner cylinder touches the fabric
cylinder. Ghaddar et al. (2005c) suggested additional modifications on the
ventilation model to include the region of contact shown in Fig. 8.3.

Ghaddar et al.’s (2005c) model assumed that, when the fabric cylinder is
in contact with the solid cylinder (skin) at the top (q = 0∞) or the bottom (q
= 180∞), both the fabric and the skin remain in touch at zero velocity for an
interval of time until the reversal in motion takes place. The contact is not a
point contact and is represented by a length of contact of the fabric spanning
about 10∞ around the cylinder surface at (q = 0∞) or (q = 180∞) due to
flattening that takes place in the fabric at the contact area as observed in the
experiments.

II

Non-contact air annulus

Fabric

Touch region I

Touch region I

Non-contact air annulus

II

8.3 Fabric–skin contact of Ghaddar et al. (2005c) model.
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The dimensionless air layer thickness Y ¢ is defined as
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Y t
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t
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 = (1 –   sin( ))z w [8.37]

If Y ¢ < 0, then Y ¢ is taken as zero. During the touch period, Y ¢ is frozen to
the value of Y ¢ at the time when touch starts in the motion cycle. The
modeling of heat and moisture transport covers two regions during contact.
The first region is the fabric–skin contact and the second region is a non-
contact air layer region that separates the fabric from the skin as shown in
Fig. 8.3. During skin fabric contact, the heat and mass transport problem in
the fabric of region I is solved as a transient diffusion problem of a thin
fabric with one surface suddenly exposed to a step change in temperature.
The contact takes place at the skin with both the fabric outer node and the air
void temperatures at a lower temperature than the skin surface. The weighted
fabric temperature is defined as
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where ef is the fabric porosity, g is the mass fraction of the fabric in the outer
node, Ti is the fabric inner node temperature, To is the fabric outer node
temperature, Ri is the fabric inner node regain, and Ro is the fabric outer node
regain. The lumping of the fabric inner, outer, and void nodes into one fabric
node has permitted the use of the experimentally established properties of
the fabric dry and evaporative resistances to estimate the heat and moisture
diffusion during the touch period (Jones and McCullough, 1985; McCullough,
1989). The mass and energy balances of the lumped fabric in the contact
region yields
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where R is the fabric regain (kg of H2O/kg of fabric), RD is the fabric dry
resistance which is equal to 0.029 m2◊K/W for cotton fabric, RE is the fabric
evaporative resistance equal to 0.0055 m2◊kPa/W for cotton fabric, hc(f-•) and
hm(f-•) are the external heat and mass transfer coefficients with the environment,
respectively. When the fabric departs from the skin boundary after contact,
the fabric inner node, outer node and void space will be in thermal equilibrium
at Tf and R.

In the non-contact microclimate air layer region II, the mass and energy
balances are given by
Mass balance
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The terms that appear in the energy balance include convective energy transport
to the fabric outer node by conduction and moisture adsorption and conduction
and mass diffusion terms in angular and axial directions to both the air layer
and the fabric void space. The energy balances on the outer nodes and inner
nodes of the fabric remain as previously described. The heat and moisture
transfer are assumed to occur by diffusion through the void space air at the
node in the fabric where the interface between the contact region and non-
contact region occurs. The instantaneous sensible heat loss Qs and latent heat
loss QL from the skin during the contact interval are given, respectively, in
the touch and the non-touch regions by

Contact region: Q
T T

Rs
sk f

D
 = 

 –  
/2

[8.42a]
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[8.42b]

Non-contact air layer region: Qs = hc(skin–air)(Tsk – Ta) + hr(Tsk – To) [8.43a]

QL = hm(skin–air)hfg(Psk – Pa) [8.43b]

The contact model assumes that no wicking is present in the fabric.

8.4 Heat and moisture transport results of the

periodic ventilation model

Ghaddar et al. (2005) presented results on heat and moisture transport using
their 2-D radial and angular flow ventilation model for closed apertures at
ambient conditions of 25 ∞C and 50% RH and at an inner cylinder isothermal
skin condition of 35 ∞C and 100% relative humidity. Simulations were
performed for a domain mean spacing Ym = 26 mm at different frequencies
and amplitude ratios for Rf = 6.5 cm and Rs = 3.9 cm. Their numerical
simulation results of the model predicted for closed and open aperture the
transient steady periodic mass flow rates in the radial and angular directions,
the fabric regain, the internal air layer temperature and humidity ratio, the
fabric temperature, the skin surface temperature, in addition to the sensible
and latent heat losses from the skin.

For a closed aperture cylinder model, Fig. 8.4a,b shows the Ghaddar et al.
(2005) ventilation model predictions as a function of the amplitude ratio z of
(a) the time–space-averaged total air flow renewal (kg/m2) in the microclimate,
(b) the time–space-averaged sensible and latent heat loss in W/m2 at f = 25,
40 and 60 rpm. The air renewal in the microclimate increases with increase
of the ventilation frequency and the corresponding sensible and latent heat
losses increase with increase in the ventilation frequency. However, at fixed
ventilation frequency, the air renewal rate and the total heat loss variation
with the amplitude ratio are affected by the fabric–skin contact occurrence
during the cycle. The maximum sensible heat loss occurs at z = 1 and
decreases very slightly with increased contact period within the studied range.

Introducing an aperture induces air renewal in the axial direction through
the opening. Figure 8.5 presents (a) the total ventilation rate versus the
amplitude ratio at different frequencies of motion; and (b) the time and q-
space-averaged radial flow rate variation in the axial direction at different
amplitude ratios for f = 25, 40, and 60 rpm at z = 0.8 and z = 1.4. The air
renewal through the opening increased with amplitude ratio up to z = 1,
when fabric–skin periodic contact takes place, and then the change in the
opening ventilation rate is negligible for z >1 (see Fig. 8.5a). At the opening
(x = 0), the radial ventilation rate approaches zero and a high gradient of
radial flow rate occurs within the first 10% of the opening even when contact
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is present for z > 1. For most of the domain interior, negligible axial flow
exists and the radial flow rate is constant. Figure 8.6 shows the variation of
the steady periodic time and angular-space-averaged (a) sensible and (b)
latent heat loss as a function of the axial position x for the ventilation frequencies
of 25, 40, and 60 rpm at z = 0.8 and z = 1.4. The maximum latent and
sensible heat loss takes place at the opening and the enhancement of the
local sensible heat loss at the open aperture compared to the closed end is
27.6%, 17.5%, and 15.1% at f = 25, 40, and 60 rpm, respectively. The local
latent heat loss at the opening increases by 17.4%, 12.7%, and 11.6% at
f = 25, 40, and 60 rpm, respectively when compared with latent loss at the
closed end.

The time- and space-averaged sensible and latent heat losses of the open
and closed aperture systems reported in Ghaddar et al.’s (2005b,c) work are
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8.4 Ventilation model predictions for a closed aperture as a function
of the amplitude ratio z of (a) the time–space-averaged total
ventilation rate in the microclimate, (b) the time–space-averaged
sensible and latent heat loss in W/m2 at f = 25, 40 and 60 rpm.
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8.5 Plot of (a) the total ventilation rate versus the amplitude ratio at
different frequencies of motion; and (b) the time and q-space-
averaged radial flow rate variation in the axial direction at different
amplitude ratios for f =25, 40, and 60 rpm at z = 0.8 and z = 1.4.

summarized in Table 8.2 at z = 1.4 and z = 0.8 for a domain of length 0.6 m.
The presence of the opening has minimal effect on the overall-time and
space-averaged heat loss due to the limited size of the region near the opening
where substantial axial flow renewal occurs. For an open aperture system at
z = 1.4, the overall total heat loss is slightly higher than for closed apertures,
giving an increase of 4.4%, 2.8%, and 2.2% at f = 25, 40, and 60 rpm,
respectively. Comparing the total heat loss for an open aperture system when
no fabric–skin contact is present (z = 0.8) to the case when periodic contact
occurs (z =1.4), it is found that the contact increases the heat loss by 9.6%,
8.6%, and 8.5% at  f = 25, 40, and 60 rpm, respectively. At higher frequencies,
the effect of the opening on the heat loss is reduced.
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8.6 The variation of the steady periodic time and angular-space-
averaged (a) sensible and latent heat loss as a function of the axial
position x for the ventilation frequencies of 25, 40, and 60 rpm at
z = 0.8 and z = 1.4.
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8.5 Extension of model to real limb motion

The presented model approach for clothing ventilation systems is fundamental
in its consideration of the periodic nature of air motion in the trapped layer
between skin and fabric from first principles that capture all the physical
parameters of the system. The ventilation model of Ghali et al. (2002c) and
Ghaddar et al. (2005b) provides an effective and fast method of providing a
solution of ventilation rates at low computational cost. This makes the model
attractive for integration with human body thermal models to better predict
human response under dynamic conditions. The 3-D motion within the air
layer and its interaction with the ambient air through the fabric and the
aperture is a complex basic problem. The use of Womersley flow in the axial
and angular directions has reduced the complexity of the solution and predicts
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realistic mass flow rates through the apertures. In long domains, the effect of
the aperture is localized. The model is not computationally exhaustive since
two independent 1-D ventilation models in the polar and axial directions are
used in addition to a lumped model of the air layer in the radial direction.

The 3-D dynamic ventilation model of the fluctuating airflow in the variable
size layer between the fabric and skin can easily be improved to account for
rotational (tilting) inner limb motion with respect to the joint within the
outer clothing, and the non-uniformity of the inner cylinder. The extension
of the model considers variation in the air layer size in the axial direction as
well as the angular direction. It should also consider the change in the external
pressure around the cylinder due to the combined motion of the fabric and
arm. The clothing ventilation model presented in this chapter is flexible, can
be used for different conditions and different clothing materials (provided
that their physical microscopic properties are known), and can be easily
combined with multi-segmented human body models.

8.6 Nomenclature

Af area of the fabric (m2)
Ai inner node area in contact with the outer node (m2)
Ao outer-node exposed surface area to air flow (m2)
Ca gas concentration in the microclimate measurement location, (m3

Ar /m
3 air)

Cf fiber specific heat (J/kg K)
Cin gas concentration in the distribution system (m3 Ar /m

3 air)
Cp specific heat of air at constant pressure (J/kg◊K)
Cv specific heat of air at constant volume (J/kg◊K)
D water vapor diffusion coefficient in air (m2/s)

Table 8.2 The time–space-averaged sensible and latent heat losses for closed and
open aperture systems for z = 1.4 and z = 0.8

Sensible heat loss W/m2 Latent heat loss W/m2

Frequency Closed Open aperture Closed Open aperture at
(rpm) apertures at x = 0 apertures x = 0

(2-D flow) (3-D flow) (2-D flow) (3-D flow)

z = 1.4
25 61.4 64.2 448.16 450.14
40 72.9 75.04 503.77 505.06
60 81.5 83.31 541.46 543.03

z = 0.8
25 63.08 67.3 401.1 401.97
40 73.4 77.3 451.1 457.004
60 81.81 84.36 492.25 492.79
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ef fabric thickness (m)
f frequency of oscillation of the inner cylinder in revolution per

minute (rpm)
F stride frequency (steps/min)
H height of the human subject (m)
had heat of adsorption (J/kg)

¢Hci normalized conduction heat transfer coefficient between inner node
and outer node (W/m2◊K)

¢Hco normalized convection heat transfer coefficient between outer node
and air flowing through fabric (W/m2◊K)

hc(f–•) heat transport coefficient from the fabric to the environment (W/
m2◊K).

hc(o-air) heat transport coefficient from the fabric to the trapped air layer
(W/m2◊K).

hc(skin-air) heat transport coefficient from the skin to the trapped air layer (W/
m2◊K).

hfg heat of vaporization of water (J/kg)
¢Hmi normalized diffusion mass transfer coefficient between inner node

and outer node (kg/m2◊kPa◊s)
¢Hmo normalized mass transport coefficient between outer node and air

void in the fabric (kg/m2◊kPa◊s)
hm(f-•) mass transfer coefficient between the fabric and the environment

(kg/m2◊kPa◊s)
hm(o-air) mass transfer coefficient between the fabric and the air (kg/

m2◊kPa◊s)
hm(skin-air) mass transfer coefficient between the skin and the air layer (kg/

m2◊kPa◊s)
im permeability index
ka thermal conductivity of air (W/m◊K)
L fabric length in x-direction (m)
LR Lewis relation, 16.65 K/kPa
ṁay mass flow rate of air in y-direction (kg/m2◊s)
ṁax mass flow rate of air in x-direction (kg/m2◊s)
ṁaq mass flow rate of air in q-direction (kg/m2◊s)
ṁo net flow rate through the open aperture (kg/s)
ṁvent total ventilation rate (kg/s per m2 of clothed body surface)
Pa air vapor pressure (kPa)
Pi vapor pressure of water vapor adsorbed in inner node (kPa)
Po vapor pressure of water vapor adsorbed in outer node (kPa)
Psk vapor pressure of water vapor at the skin (kPa)
P• atmospheric pressure (kPa)
Q heat loss (W/m2)
R total regain in fabric (kg of adsorbed H2O/kg fiber)
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RD fabric dry resistance (m2◊K/W unless specified in the equation per
mm of thickness)

RE fabric evaporative resistance (m2◊kPa/W)
Rf fabric cylinder radius (m)
Rs inner cylinder radius (m)
rpm revolutions per minute
t time (s)
T temperature (∞C)
Vvent,a ventilation rate through apertures in m3/s ◊m2 of clothed body surface
Vvent ventilation rate through outer fabric in m3/s ◊m2 of clothed body

surface.
w humidity ratio (kg of water/kg of air)
Y instantaneous air layer thickness (m)
Ym mean air layer thickness (m)

Greek symbols
e fabric emissivity
r density of fabric (kg/m3)
F periodic dimensionless flow rate parameter in x-direction
w angular frequency (rad/s)
Lx pressure gradient parameter in x-direction (Pa◊m2/kg)
Lq pressure gradient parameter in q-direction (Pa◊m2/kg)
a fabric air permeability (m3/m2◊s)
g fraction of mass that is in the outer node
n kinematic air viscosity (m2/s)
uact equivalent air velocity of motion
ueff effective wind velocity (m/s)
unatl wind velocity of natural convection, 0.07 m/s for sitting and 0.11

m/s for standing
uwalk walking speed (m/s)
uwind external wind speed (m/s)
t period of the oscillatory motion (s)
q angular coordinate
z amplitude ratio
Ytr trace gas mass flux, (m3/s)

Subscripts
a conditions of air in the spacing between skin and fabric
i inner node
o outer node
L latent
s sensible
sk conditions at the skin surface
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void local air inside the void
• environment condition.
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9.1 Introduction

Two decades ago, Whitaker presented a comprehensive theory for mass and
energy transport through porous media.1 This model, with some modifications,
is also applicable to fibrous materials. Whitaker modeled the solid portion of
the solid matrix as a rigid inert material which participates in the transport
process only through its thermal properties. In hygroscopic fibrous materials
the diffusion of water into the solid is a significant part of the total transport
process. The inclusion of the extra transport terms into and out of the solid
fibers necessitates extensive modifications of Whitaker’s original derivations.

9.2 Mass and energy transport equations

A typical control volume containing hygroscopic fibers is shown in Fig. 9.1.
A typical porous textile material may be described as a mixture of a solid

phase, a liquid phase, and a gaseous phase. The solid phase, s, consists of the

9
Multiphase flow through porous media

P.  G I B S O N, U.S. Army Soldier Systems Center, USA

9.1 Representative volume containing fibers, liquid, and gas phases.

Liquid phase (b) Solid phase (s) (solid
plus adsorbed/absorbed

liquid phase)

Averaging volume (V )

Gas phase (g)
(vapor plus
inert gas)
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solid material (usually a polymer, e.g. wool or cotton) plus any bound water
absorbed in the solid matrix. Hence, the solid phase density is dependent on
the amount of water contained in the solid phase.

The liquid phase b, consists of the free liquid water which may exist
within the porous medium. The liquid phase is a pure component, and its
density is assumed to be constant.

The gaseous phase, g, consists of water vapor plus the non-condensable
gas (e.g. air). The gas phase density is a function of temperature, pressure,
and vapor concentration.

The general conservation equations are as follows:

Continuity equation:

  

∂
∂

— ◊
r r
t

v +   ( ) = 0
v

[9.1]

Linear momentum equation:

  
r rDv

Dt
g

v
v

 =  +   — ◊ T [9.2]

Energy equation:

  
r t FDh

Dt
q

Dp
Dt

v = –    +  + :  + — ◊ —v v
[9.3]

In keeping with Whitaker’s derivation, we will neglect the viscous stress
tensor (T).

9.2.1 Point equations

s-phase – solid

The solid s-phase is a mixture of the dry solid (polymer) and any liquid or
vapor that has dissolved into it or been adsorbed onto its surface. This may
also result in a volume change for the solid phase (swelling). Swelling causes
a small velocity due to displacement, and it can be accounted for by using
the continuity equation:

  

∂
∂

— ◊
r rs

s st
v +   ( ) = 0
v

[9.4]

and for the two components of liquid (1) and solid (2), the species continuity
equation is:
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v

[9.5]
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The s-phase density is not constant, since it includes the density of the true
solid volume fraction plus the density of the liquid volume fraction contained
within the solid phase. The species densities are calculated on the basis of
the total phase volume. Hence, for the two species system:

r r r
s s s

 = 
 + 

 =  +  =  + 1 2 1 2
1 2

m m
V

m
V

m
V [9.6]

It is assumed that the dry density of the solid and the density of the liquid are
constant. They are denoted as rS and rL, respectively.

The solid phase can further be divided into the fraction taken up by the
liquid, and the fraction taken up by the solid:

e ss L  = 
Volume of liquid

Total  phase volume
[9.7]

The relations between the species densities and the solid and liquid densities
are:

rs = esLrL + (1 – esL)rS = r1 + r2 [9.8]

r1 = es LrL [9.9]

r2 = (1 – es L)rS [9.10]

The density and velocity of the mixture, in terms of the species densities, are
given as:

rs = r1 + r2 [9.11]

  r r rs s
v v v
v v v =  + 1 1 2 2 [9.12]

or

rs = esLrL + (1 – esL)rS [9.13]

  r e r e rs s s s
v v v
v v vL L L S =  + (1 –  )1 2 [9.14]

The species velocity is written in terms of the mass average velocity and the
diffusion velocity as:

  
v v v
v v ui i =  + s [9.15]

and therefore, the continuity equation becomes:
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v u i +   ( ) = –   ( ),    = 1, 2, 3, ...
v v

[9.16]

The diffusion flux may be written in terms of a diffusion coefficient as:

  
r r

r
rs s

s
i i

i
u
v

 = – D —Ê
ËÁ

ˆ
¯̃ [9.17]
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Hence, the continuity equation may be represented as:

  

∂
∂

— ◊ — ◊ —Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

r r r
r

rs s s
s

i
i

i

t
v i +   ( ) =   D ,  = 1, 2, 3, ...
v

[9.18]

For the purposes of comparing this model to other models developed for heat
and mass transfer through porous materials, it will be convenient to rewrite
these equations in terms of concentrations of water (component 1) in the
solid (component 2).

The concentration of water in the solid (Cs) is defined as:

C
m

m ms  = Mass of water
Mass of the solid phase

 = 
 + 

 = 1

1 2

1r
rs

[9.19]

Since liquid water (l) is the only material crossing into or out of the solid
phase, it is the most logical basis for the continuity equation:

  

∂
∂

— ◊ — ◊ —Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

r
r r r

rs s s
s

1
1

1 +   ( ) =   D
t

v
v

[9.20]

Depending on the treatment of the solid velocity, one can rewrite this equation
a couple of ways. If solid velocity is included, then the continuity equation
can be rewritten as:

  

r
e

e rs
s s s sL

L
L L st
v C

∂
∂

— ◊
È

Î
Í

˘

˚
˙ — ◊ — +   ( )  =   { D ( )}

v
[9.21]

or

  

∂
∂

— ◊e es
s s

L
Lt
v +   ( )
v

= 1 –   [ D ( )] + {   [D ( )]}
r
r e r

rs s s
S

L
L L s

S

L
L sC C

Ê
ËÁ

ˆ
¯̃

— ◊ — — ◊ — [9.22]

where

r1 = esLrL and rs = esLrL + (1 + esL)rS [9.23]

If solid velocity is neglected, the continuity equation becomes:

∂
∂

Ê
Ë

ˆ
¯ — ◊ — — ◊ —

e r
r e r

r
s

s s s
L S

L
L L s

S

L
L st

C C = 1 –    [ D ( )] + {   [D ( )]}

[9.24]

Momentum balance is expressed as:
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r r rs

s
s s s

s
s s

Dv
Dt

g
v
t

v v
v

v
v

v v
 =  +      + (   )— ◊ fi ∂

∂
◊ —Ï

Ì
Ó

¸
˝
˛

T

  =  +   rs s
v
g — ◊ T [9.25]

Jomaa and Puiggali neglected the convection term,2 and hence:

  
r rs

s
s s

∂
∂

— ◊
v

vv
t

g =  +   T [9.26]

There are two ways to address the mass average solid phase velocity. If the
thickness of the material under investigation does not change, then the total
volume remains constant, and the change in volume of the solid is directly
related either to the change in volume of the liquid phase or the change in
volume of the gas phase. Another approach is to let the total volume of the
material change with time. As the material dries out, and the total mass
changes, the thickness of the material will decrease with time, proportional
to the water loss. This total volume change with time can be translated into
the solid phase velocity. The two situations are illustrated in Fig. 9.2 for a
matrix of solid fibers undergoing shrinkage due to water loss.

Initially, the assumption is that the shrinkage behavior is like the first case
shown in Fig. 9.2. This means that mass average velocity must be included
in the derivations, and that the total material volume (or thickness in one
dimension) no longer remains constant.

Jomaa and Puiggali also give an equation for the solid velocity,2 in terms
of the intrinsic phase average (discussed later) as:

Case 1
Solid fiber shrinkage
results in bulk thickness
reduction and nonzero
mass average solid
velocity.

Case 2
Total bulk thickness and
volume do not change;
shrinkage of solid fiber
portion due to water
loss does not result in a
mass average soild
velocity.

9.2 Two methods of accounting for shrinkage/swelling due to water
uptake by a porous solid.
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· Ò
· Ò

∂
∂

· ÒÚv
t

dns
s

s

x

sr x
r x = 1

–1
0

[9.27]

where x is the generalized space coordinate, with the origin at the center of
symmetry, and n depends on the geometry (n = 1 – plane, n = 2 – cylinder,
n = 3 – sphere) according to the paper by Crapiste et al.3

The thermal energy equation is:

  
r t Fs

s
s s s

Dh
Dt

q
Dp
Dt

v = –    +  + :  + — ◊ —v v
[9.28]

Some simplifying assumptions can be made at this point by neglecting several
effects. For relatively slow flow through porous materials, one can neglect
the reversible and irreversible work terms in the thermal energy equation,
along with the source term, and expand the material derivative as:

  
r rs

s
s

s
s s s

Dh
Dt

h
t

v h q =  +    = –   
∂
∂

◊ —Ê
ËÁ

ˆ
¯̃

— ◊v v
[9.29]

It will be assumed that enthalpy is independent of pressure, and is only a
function of temperature, and that heat capacity is constant for all the phases.
We can replace the enthalpy by: h = cpT + constant, in the s-, b-, and

g -phases

The thermal energy equation can be represented as:

  
r rs

s s
s s s s s

∂
∂

◊ — — ◊
{( ) }

 + [   {( ) }] = –   
c T

t
v c T q

p
p

v v
[9.30]

or

  
rs s

s
s s s( )  +    = –   c

T
t

v T qp
∂
∂

◊ —Ï
Ì
Ó

¸
˝
˛

— ◊v v
[9.31]

Application of Fourier’s law yields

  
rs s

s
s s s s( )  +    = 2c

T
t

v T k Tp
∂
∂

◊ —Ï
Ì
Ó

¸
˝
˛

—v
[9.32]

or, for a multi-component mixture:

  

r rs s
s

s s s( )  +    =  –     2
=1

=

c
T
t

v T k T u hp j

j N

j j j
∂
∂

◊ —Ï
Ì
Ó

¸
˝
˛

— — ◊
Ê
ËÁ

ˆ
¯̃

v vS [9.33]

where ( )  =  ( )
=1

=

c cp j

j N
j

p js
s

r
rS

and the partial mass heat capacity and enthalpies ( ) , c hp j j  are given by the
partial molar enthalpy and the partial molar heat capacity divided by the
molecular weight of that component.
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b-phase – liquid

The continuity equation for the liquid phase is:

  

∂
∂

— ◊
r

rb
b bt

v +   ( ) = 0
v

[9.34]

For the thermal energy equation, as was done earlier, compressional work
and viscous dissipation are neglected:

  

Dp
Dt

v = :  =  = 0—v
b b bt F [9.35]

This reduces the thermal energy equation to:

  

rb
b

b b b
∂
∂

◊ —
Ê
ËÁ

ˆ
¯̃

— ◊
h

t
v h q +    = –   
v v

[9.36]

Assuming enthalpy only depends on temperature, the thermal energy equation
for the liquid phase is:

  

r
T

b b
b

b b b b( )  +    = 2c
t

v T k Tp

∂
∂

◊ —
Ê
ËÁ

ˆ
¯̃

—v
[9.37]

The liquid momentum equation will be discussed later in terms of a permeability
coefficient which depends on the level of liquid saturation in the porous
solid.

g-phase – gas

The gas phase consists of vapor and an inert component (air). Following the
assumptions made by Whitaker1 for this phase, the equations are as follows:
Continuity equation:

  

∂
∂

— ◊
r

rg
g gt

v +   ( ) = 0
v

[9.38]

and for the two components of vapor (1) + inert component (2), the species
continuity equation is:

  

∂
∂

— ◊
r ri

i it
v i +   ( ) = 0,    = 1, 2, ...
v

[9.39]

The density and velocity of the mixture are given as:

rg = r1 + r2 [9.40]

  r r rg g
v v v
v v v =  + 1 1 2 2 [9.41]
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The species velocity is written in terms of the mass average velocity and the
diffusion velocity as:

  
v v v
v v ui i =  + g [9.42]

Then the continuity equation becomes:

  

∂
∂

— ◊ — ◊
r

r rg
i

i i it
v u i +   ( ) = –   ( ),    = 1, 2, 3, ...
v v

[9.43]

The diffusion flux may be written in terms of a diffusion coefficient as:

  
r r

r
rg

g
i i

i
u
v

 = –  D—Ê
ËÁ

ˆ
¯̃ [9.44]

and the continuity equation may be represented as:
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v i +   ( ) =   D ,    = 1, 2, 3, ...
v

[9.45]

Due to incompressibility, the time-dependent term may be omitted. However,
the vapor portion may change with time due to condensation, evaporation, or
sorption/desorption. Thus, for the vapor component of the gas phase
(component 1):

  

∂
∂

— ◊ — ◊ —Ê
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ˆ
¯̃
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[9.46]

If gas phase convection is neglected (gas is stagnant in the pore spaces), the
continuity equation becomes:

∂
∂

— ◊ —Ê
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ˆ
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˛
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1 1
 =   D

t r
[9.47]

The thermal energy equation is given as:

  

r rg g
g

g g g( )  +    =  –    2
=1

=

c
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t
v T k T u hp i

i N

i i i

∂
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◊ —
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ˆ
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— — ◊ Ê
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ˆ
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v vS [9.48]

where ( )  =  ( ) ,
=1

=

c cp i

i N
i

p ig
g

r
rS

and the partial mass heat capacities and enthalpies ( ) , c hp i i  are again given
by the partial molar enthalpy and the partial molar heat capacity divided by
the molecular weight of that component.
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9.2.2 Boundary conditions

The phase interface boundary conditions derivation must be extensively
modified since the assumption of a rigid solid phase with zero velocity is no
longer valid. Therefore, expressions describing the boundary conditions for
the solid–liquid and solid–vapor interfaces are no longer simple. The
conventions and nomenclature for the phase interface boundary conditions
are given in Fig. 9.3.

Liquid–gas boundary conditions

The appropriate boundary conditions1 for the liquid–gas interface are:

  r rb b b bg g g g g bh v w n h v w n(  –  )   + (  –  )  
v r v v v v◊ ◊

  

= –    +  +    
=1

=v v v v v
q n q u h n

i

i N

i i ib bg g g br◊
È

Î
Í

˘

˚
˙ ◊

Ï
Ì
Ó

¸
˝
˛

S [9.49]

and

  r rb b bg g g g b(  –  )   + (  –  )   = 0
v v v v v v
v w n v w n◊ ◊ [9.50]

Continuous tangent components to the phase interface:

  
v v v v
v vb bg g g bl l   =   ◊ ◊ [9.51]

Species jump condition given by:

  r rg b b b bgi iv w n v w n i(  –  )   + (  –  )   = 0,    = 1
v v v v v v◊ ◊ [9.52]

  r g bi iv w n i(  –  )   = 0,    = 2, 3, ...
v v v◊ [9.53]

ng

ng s

w

g -phase
(vapor plus inert)

ns g

ns

s -phase (solid
plus liquid) V (t) = Vs(t) + Vg (t)

9.3 Typical volume containing a phase interface, with velocities and
unit normals indicated. Here, two phases (solid and gas) are shown.
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Solid–liquid boundary conditions

The boundary conditions for the solid–liquid interface are in similar form as
above except that the phase interface velocity is given by w2.

  r rs s s s b b b b bsh v w n h v w n(  –  )   + (  –  )  2 2
v v v v v v◊ ◊

  

= –    +  +    
1

=v v v v v
q n q u h n
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j j jb bs s s br◊
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˝
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S [9.54]

and

  r rs s s b b b bs(  –  )   + (  –  )   = 02 2
v v v v v v
v w n v w n◊ ◊ [9.55]

Continuous tangent components to the phase interface l:

  
v v v v
v vs s b b bsl l   =   ◊ ◊ [9.56]

Species jump condition given by:

  r rbs s s s bj jv w n v w n J(  –  )   + (  –  )   = 0,    = 12 2
v v v v v v◊ ◊ [9.57]

  r bsj jv w n j(  –  )   = 0,    = 2, 3, ...2
v v v◊ [9.58]

Solid–gas boundary conditions

The boundary conditions for the solid–liquid interface have different
expressions compared to the other interfaces because the interface is between
two multi-component phases. The phase interface velocity is given by w1:

  r rs s s s g g g g g sh v w n h v w n(  –  )   + (  –  )  1 1
v v v v v v◊ ◊
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[9.59]

and

  r rs s s g g g g s(  –  )   + (  –  )   = 01 1
v v v v v v
v w n v w n◊ ◊ [9.61]

Continuous tangent components to the phase interface l:

  
v v v v
v vs s g g g sl l   =   ◊ ◊ [9.61]

Species jump condition given by:

  r rs g g sj j i iv w n v w n i j(  –  )   + (  –  )   = 0,    = 1,    = 11 1
v v v v v v◊ ◊ [9.62]

  r s gj jv w n j(  –  )   = 0,     = 2, 3, ...1
v v v◊ [9.63]

  r s gj jv w n i(  –  )   = 0,     = 2, 3, ...1
v v v◊ [9.64]
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9.2.3 Volume-averaged equations

The volume-averaging approach outlined by Slattery4 is applied. In this
approach many of the complicated phenomena occurring due to the geometry
of the porous material are simplified. Three volume averages are defined.
They are:

Spatial average: Average of some function everywhere in the volume:

  

· Ò Úy y = 1
VV

dV [9.65]

Phase average: Average of some quantity associated solely with each phase:

  

· Ò Ú ÚT T dV T dVs s s
s

 = 1  = 1
V VV V [9.66]

Intrinsic phase average:

· Ò Ú ÚT
V

T dV
V

T dVs
s

s
s

s
s

s

 = 1  = 1
V V

[9.67]

Volume fractions for the three phases are defined as:

e e es
s

b
b

g
g

( ) = 
( )

V
,   ( ) = 

( )
V

,   ) = 
( )

V
t

V t
t

V t
t

V t
( [9.68]

The volume and volume fraction of the solid phase changing with time are
now changing with time.

It is assumed that the total volume is conserved, or that:

V = ( ) + ( ) + ( )V t V t V ts b g [9.69]

The volume fractions for the three phases are related by:

es (t) + eb (t) + e g (t) = 1 [9.70]

and the phase average and the intrinsic phase averages are related as:

es ·Ts Òs = ·Ts Ò [9.71]

Volume average for liquid b-phase

We will first examine the volume average for the b-phase. It is complicated
because of the three different phase interface velocities which must now be
included in the analysis.

The continuity equation for the liquid phase is:
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∂
∂

— ◊
r

rb
b bt

v +   ( ) = 0
v

[9.72]

Integrate over the time-dependent liquid volume within the averaging volume,
and divide by the averaging volume to obtain:

  

1
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 + 1
V

  ( )  = 0
( ) ( )V Vt t
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dV v dV
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r
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b bÚ Ú
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[9.73]

The first term of Equation [9.73] may be taken:

1
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( )

∂
∂

Ê
ËÁ

ˆ
¯̃Ú

rb
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t

dV
V t

[9.74]

and the general transport theorem applied5
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dV v ndS
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( ) ( ) ( )

 =  +   ( )Ú Ú Ú∂
∂

◊v v
[9.75]

Note that Y = 
∂
∂
rb

t
[9.76]

and using the modified general transport theorem results in:
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◊ ◊ÚÚ [9.77]

For the second term,

  

1
V

  ( )
( )V t

v dV
b

rb bÚ — ◊ v
[9.78]

We may use the volume averaging theorem as:

  

·— Ò — · Ò Ú Úy y y yb b b bs b bg
bs bg

 =  + 1
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 + 1
VA A

n dA n dA
v v

[9.79]

to rewrite the term as:
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v dV v v
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[9.80]
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noting that:

d
dt

dV d
dt tV t
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( )b
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· Ò [9.81]

The continuity equation for the liquid phase is rewritten as:
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∂

· Ò — ◊ · Ò ◊Út
v v w n dA

A
r r rb b b b b bg
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 +    + 1
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 (  –  )  
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[9.82]

Liquid density is constant, so that:

  · Ò · Òr rb b b b
v v
v v = [9.83]

·rb Ò = eb rb [9.84]

The liquid velocity vector may be used to calculate volumetric flow rates.
The flow rate of the liquid phase past a surface area may be expressed by:

  
Q v ndA

A
b b =   Ú · Ò ◊v v

[9.85]

The constant-density liquid assumption, Equation [9.84], allows the liquid
phase continuity equation to be rewritten as:
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[9.86]

The thermal energy equation for the liquid phase was given previously as:
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Adding the term 
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v
 to the left hand-side of Equation

[9.87] will result in:

  

∂
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— ◊ — ◊
t

h h v q( ) +   ( ) = –   r rb b b b b b
v v

[9.88]
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Following the same procedure used previously for the continuity equation
yields the following volume averaged equation:
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∂

— ◊ ◊Út
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[9.89]

Note that an additional term is present in comparison to Whitaker’s equations1

due to the solid–liquid interface velocity.
The enthalpy of the liquid phase can be expressed as:

h h c T Tpb b b b b =  + ( ) (  –  )∞ ∞ [9.90]

Accounting for the deviation and dispersion effects from the average properties
(marked with a tilde), and writing an expression for the two terms gives:
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It is recognized that the term 
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phase continuity equation, hence:
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so that:

  

∂
∂

— ◊ · Ò
e b

bt
v +   
v

  

= – 1
V

(  – )   + 1
V

 (  –  )  2
A A

v w n dA v w n dA
bg bs

b bg b bsÚ Ú◊ ◊
Ï
Ì
Ô

ÓÔ

¸
˝
Ô
Ǫ̂

v v v v v v

[9.93]
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The expression for the two terms 
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Substituting Equation [9.94] back into the thermal energy equation for the
liquid phase:
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Gray’s definition of the point functions for a phase property6 is defined:
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Therefore, the liquid phase thermal energy equation can be written as:
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Representing the heat flux term   – — ◊· Òv
qb  using Fourier’s law   (

v
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and applying the averaging theorem results in:
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It is relevant to use the intrinsic phase average temperature e b b
b· ÒT  for the

temperature field. This leads to:
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The thermal energy equation for the liquid phase may now be written as:

  
e r rb b b

b
b

b b b b
b( )  + )   c

T

t
c v Tp p

∂· Ò
∂

· Ò ◊ — · Ò(
v

  

+ (    + 1
V

 ( ) (  –  )  r rb b b b b b b b bg
bg

c T v c T v w n dAp
A

p) ˜ ˜ ˜— ◊ · Ò ◊Úv v v v

  

+ 1
V

 ( ) (  –  )  2
A

pc T v w n dA
bg

rb b b b bsÚ ◊˜ v v v

  

=   ( + 1
V

  + 1
V

 — ◊ — · Ò
È

Î
Í
Í

˘

˚
˙
˙

Ï
Ì
Ô

ÓÔ

¸
˝
Ô
Ǫ̂Ú Úk T T n dA T n dA

A A
b b b

b
b bs b bge

bs bg

v v

  

– 1
V

    –  1
V

   
A A

q n dA q n dA
bg bs

b bg b bsÚ Ú◊ ◊v v v v
[9.100]



Thermal and moisture transport in fibrous materials324

Volume average for gas g -phase

The gas phase continuity equation is identical, for the most part, to those
developed for the solid and liquid phases:
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The assumption of constant density for the liquid and solid phases simplified
the equations further. However, in the gas phase the density may depend on
the temperature and the pressure.

Applying Gray’s point functions6 together with the definition of the intrinsic
phase average to the gas phase continuity equation gives:
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The dispersion term in the gas phase can be neglected, hence:
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Since the gas is a multi-component mixture, in terms of species the continuity
equation is:
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The final form of the gas phase species continuity equation can be written as:
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If only the vapor component (component 1) is considered, the continuity
equation can be represented as:
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The corresponding thermal energy equation for the gas phase may also be
written as:
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Volume average for solid s-phase

The volume averaging procedure for the liquid phase was made general
enough so that the same equations are applicable to the solid phase. The
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differences are in the interface velocities; w2 is for the solid–liquid interface,
and w1 is for the solid–gas interface. Also the species continuity must be
accounted for. Since the two components (the liquid and the solid) are assumed
to have a constant density, the complications which arose in the gas phase
continuity equation will not be encountered here. The appropriate subscripts
for the solid phase will be added to the equations.

The solid phase density cannot be assumed constant, since this phase is a
mixture of the solid and the liquid components and their proportions can
change. However, the expressions are less complicated than the gas phase
density since it is assumed that each component’s density is constant.

The solid phase continuity equation is:
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and the species continuity equation is:
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The same derivation used for the gas phase can be followed, then:
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and the final form of the solid phase species continuity equation is:
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If one needs to track the liquid component (component 1) only, the continuity
equation may be expressed as:
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Furthermore, if the solid velocity is considered to be zero, the solid phase
continuity equation may be presented as:
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The corresponding energy equation for the solid phase can be written as:
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The continuity and thermal energy equations have been volume averaged for
all three phases. The various continuity equations are given in several forms.
They cover conditions such as non-zero solid velocity or tracing only the
liquid component.

9.3 Total thermal energy equation

The three phases are assumed to be in local thermal equilibrium so that:

·TsÒs = ·TbÒb = ·TgÒg = ·TÒ [9.115]

·TÒ ∫ es ·TsÒs + eb ·TbÒb + eg ·TgÒg = ·TsÒs = ·TbÒb = ·TgÒg [9.116]

Applying the equilibrium condition, the three individual phase equations can
be added to present a single energy equation. Except for the addition of extra
terms due to the solid–gas and solid–liquid phase interface velocities, this
equation is similar to that derived by Whitaker.1 The equation is written in
positive flux terms, i.e. liquid is evaporating into the gas phase, rather than
condensing.
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where the averaged density is obtained from:
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and a mass fraction weighted average heat capacity by:
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Equations [9.118] and [9.119] allow the first term in the thermal energy
equation to be written as:
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Then the interphase flux terms in the total thermal energy equation must be
considered. Interphase flux terms must include the exchange of mass between
the liquid and the gas, between the liquid and the solid, and between the gas
and the solid.

First the derivation for the liquid–gas interface is presented, and then the
other two interfaces are treated.

The jump boundary condition for the liquid–gas interface was shown
previously to be:
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It may be rewritten as:
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The jump boundary condition for the solid–gas interface was expressed
previously as:
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and this may be represented as:
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The jump boundary condition for the solid–liquid interface was given previously
as:
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and may be rewritten as:
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Using Equations [9.122], [9.124] and [9.126], we may write the interphase
flux terms in the total thermal energy equation as:
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The total thermal energy equation is now written as:
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Next, the phase interface velocities can be expressed in terms of enthalpies
of vaporization, sorption, and desorption.

The enthalpies for each phase were previously defined as:

h h c T Tj j p j =  + ( ) (  –  )∞ ∞
s s [9.129]

h h c T Tpb b b b b =  + ( ) (  –  )∞ ∞ [9.130]

h h c T Ti i p i =  + ( ) (  –  )∞ ∞
g g [9.131]

The intrinsic phase average temperatures, temperature dispersion, and overall
average temperatures are related by:

T̃ T Ts
ss s   –  = · Ò [9.132]

T̃ T Tb b
b

b =  –  · Ò [9.133]

T̃ T Tg g
g

g =  –  · Ò [9.134]

· Ò · Ò · Ò · ÒT T T Ts
s

b
b

g
g =  =  = [9.135]

One can use these relations to rewrite the integrands inside the volume
integrals on the left-hand side of the total thermal energy equation. The
result for the liquid–gas interface is:
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From the species jump conditions:

  r rg b b b bgi iv w n v w n i(  –  )   + (  –  )   = 0,  = 1
v v v v v v◊ ◊ [9.137]

  r g bi iv w n i(  –  )   = 0,  = 2, 3, ...
v v v◊ [9.138]

Note that the subscript 1 refers to the component (water) which is actually
crossing the phase boundary as it goes from a liquid to a vapor.
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From the species jump conditions one may write:

  r rs b b b bs1 1 2 2(  –  )   = – (  –  )  
v v v v v v
v w n v w n◊ ◊ [9.139]

Then, the integral may be restated as:
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The following definitions can be applied:

Dhvap (at temperature ·TÒ)

= {[  –   + ( ) (   –  ) –  ( ) (  –  )]}1 1h h c T T c T Tg p p
∞ ∞ ∞ ∞· Ò · Òb g b b [9.141]
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to rewrite the integral as:
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The corresponding terms for the phase interface between the solid and the
liquid are identical, except that the quantity Dhvap is no longer used. Instead,
the differential enthalpy of sorption7 is applied, which is given the notation
Ql . The differential heat of sorption is the heat evolved when one gram of
water is absorbed by an infinite mass of the solid, when that solid is at a
particular equilibrated moisture content. This is very similar to the heat of
solution or heat of mixing that occurs when two liquid components are
mixed. For textile fibers there is a definite relationship between the equilibrium
values of the differential heat of sorption and the water content of the fibers,
and those relationships can be used in the thermodynamic equations which
will be discussed in a later section.
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The solid–liquid interface integral term is thus given as:
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From the species jump conditions one may equate:

  r rs b b b bs1 1 2 2(  –  )   = – (  –  )  
v v v v v v
v w n v w n◊ ◊ [9.145]

or rewrite the integral as:
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One may use the following definitions:

Q1 (at temperature ·T Ò)

= [  –   + ( )  –  ) –  ( ) (  –  )]1 1h h c T T c T Ts p p
∞ ∞ ∞ ∞· Ò · Òb s b b( [9.147]
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to rewrite the original integral as:
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For the gas–solid interface, the heat of desorption for the vapor is equal to
the energy required to desorb the liquid plus the enthalpy of vaporization, as:

Qsv = Ql + Dhvap [9.150]

The derivation is exactly the same as for the other two interfaces, where the
only component crossing the phase interface is component 1 (water) and
hence, the integral is:
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where · Òṁsl  is the mass flux desorbing from the solid to the liquid phase,
· Òṁsv  is the mass flux desorbing from the solid into the gas phase, and
· Òṁlv  is the mass flux evaporating from the liquid phase to the gas phase.

The total thermal energy equation now becomes:
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One may simplify the total thermal energy equation based on an effective
thermal conductivity, and present the total thermal energy equation in a
much shorter form as:
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The effective thermal conductivity can be expressed in a variety of ways,1
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depending on the assumptions made with respect to the isotropy of the
porous medium, the importance of the dispersion terms, etc. The effective
thermal conductivity is also an appropriate place to include radiative heat
transfer, by adding an apparent radiative component of thermal conductivity
to the effective thermal conductivity to account for radiation heat transfer.

9.4 Thermodynamic relations

The gas phase is assumed to be ideal, which gives the intrinsic phase partial
pressures as:

· Ò · Ò · Òp R T ii i i
g gr =     = 1, 2, ... [9.154]

Noting that component 1 is water, and component 2 is air, one can present:

· Ò · Ò · Òr r rg
g g g =  + 1 2 [9.155]

· Ò · Ò · Òp p pg
g g g =  + 1 2 [9.156]

The differential heat of sorption, Ql , and the concentration of water in the
solid phase must now be connected. An example8 of a general form for Ql (in
J/kg), as illustrated in Fig. 9.4, can be expressed as a function of the relative
humidity f:

Ql (J/kg) = 1.95  10 (1 –  ) 1
0.2 + )
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[9.157]

The differential heat of sorption and the actual equilibrium water content in
the solid phase can then be connected further. For the two-component mixture
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9.4 Generic differential heat of sorption for textile fibers (sorption
hysteresis neglected).
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of solid (component 2) plus bound water (component 1) in the solid phase,
the density is given by:

·rsÒs = ·r1Òs + ·r2Òs [9.158]

One could make the assumption that mass transport in the textile fiber is so
rapid that the fiber is always in equilibrium with the partial pressure of the
gas phase, or is saturated if any liquid phase is present. This would eliminate
the need to account for the transport through the solid phase. There are a
variety of sorption isotherm relationships that could be used, including the
experimentally determined relationships for a specific fiber type, but a
convenient one8 is given by:

Regain ( ) = (0.55 ) 1
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 + 1
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R R f f f f
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[9.159]

Rf is the standard textile measurement of grams of water absorbed per 100
grams of fiber, measured at 65% relative humidity. One may rewrite this in
terms of the intrinsic phase averages for both phases as:
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If the assumption is that the solid phase is not always in equilibrium, one
may use relations available between the rate of change of concentration of
the solid phase and the relative humidity of the gas phase, an example of
which is given by Norden and David.9

The vapor pressure–temperature relation for the vaporizing b-phase can
be given as:
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This relation gives the reduction or increase in vapor pressure from a curved
liquid surface resulting from a liquid droplet influenced by the surface
interaction between the solid and the liquid, usually in a very small capillary.

In many cases, the Clausius–Clapeyron equation will be sufficiently accurate
for the vaporizing species, and the gas phase vapor pressure may be found
from:
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This vapor pressure–temperature relation is only good if the liquid phase is
present in the averaging volume. However, one may encounter situations
where only the solid phase and the gas phase are present. To get the vapor
pressure in the gas phase in this situation, one can use the sorption isotherm
and assume that the gas phase is in equilibrium with the sorbed water content
of the solid phase.

One can use any isotherm relation where the solid’s water content is
known as a function of relative humidity. The equation given previously is
one example:
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9.5 Mass transport in the gas phase

The volume average form of the gas phase continuity equation was found to
be:
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and the species continuity equation was given as:
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where the dispersion and source terms were omitted from the equation.
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If the mass flux from one phase to another is defined as:
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the expression for · Òṁsv  is similar. The gas phase continuity equation may
now be rewritten as:
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For the two species (1 – water, and 2 – air), the species continuity equations
are presented as:
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If the effects of the dispersion terms in the diffusion equations are neglected,
one may incorporate an effective diffusivity into the species continuity
equations, which are now given as:

  

∂
∂

· Ò — ◊ · Ò · Ò · Ò · Ò
t

v m mlv sv( ) +   ( ) –   –  1 1e r rg
g g

g
v ˙ ˙

=   D eff
1— ◊ · Ò —

· Ò
· Ò

Ê

ËÁ
ˆ

¯̃

Ï
Ì
Ô

ÓÔ

¸
˝
Ô
Ǫ̂

r r
rg

g
g

g
g [9.171]

  

∂
∂

· Ò — ◊ · Ò · Ò — ◊ · Ò —
· Ò
· Ò

Ê

ËÁ
ˆ

¯̃

Ï
Ì
Ô

ÓÔ

¸
˝
Ô
Ǫ̂t

v( ) +   ( ) =   D2 2 eff
2e r r r r

rg
g g

g g
g

g

g
g

v

[9.172]

The effective diffusivity will be dependent on the gas phase volume eg; as the
solid volume and the liquid volume fractions increase, there will be less



Thermal and moisture transport in fibrous materials340

space available in the gas phase for the diffusion to take place. One may
define the effective diffusivity as:

D
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e

t
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t
g g

[9.173]

where the effective diffusivity Deff is related to the diffusion coefficient of
water vapor in air (D12 or Da) divided by the effective tortuosity factor t.

A good relation for the binary diffusion coefficient of water vapor in air
is given by Stanish et al.10 as:
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To simplify, one could assume the tortuosity factor is constant, and let the
variation in the gas phase volume take care of the changes in the effective
diffusion coefficient.

Another simplification is to account only for the water vapor movement,
and hence the continuity equation becomes:
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9.6 Gas phase convective transport

It is often necessary to include forced convection through porous media – it
is an important part of the transport process of mass and energy through
porous materials. If gravity is neglected, the gas phase velocity is expressed
as:1

  
· Ò ◊ —· Òv
v Kg

g
g g g

g
m e r r = – 1   { [  –  ]}0 [9.176]

where the permeability tensor Kg is a transport coefficient. Equation [9.176]
is the general Darcy relation.11

There are other relations which pertain to gas flow through a porous
material. For example, the modified form of Darcy’s law:

  
—P

K
v +  = 0

m
g

v
[9.177]

The permeability coefficient K can be obtained experimentally. The
permeability may be modified to account for the decrease in gas phase
volume as the solid swells and/or the liquid phase accumulates. One can
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account for the variation of K as a function of the gas phase volume – the
approach used by Stanish et al.10

K Kdry
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g g
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Ê
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[9.178]

Relation [9.178] is a very simple model, and may be improved upon. Dullien11

presents a variety of relationships for the dependency of K on porosity; some
of his relations may be more realistic in the case of fibrous layers. It is also
possible to relate the change in the material permeability to the effective
tortuosity function t. This is useful, because t is affected by the same factors
related to the decrease in gas phase volume, and change in physical geometry,
that are needed to account for the Darcy’s law relations defining convective
gas flow.

9.7 Liquid phase convective transport

Whitaker’s derivation1 for the convection transport of the liquid phase is one
of the most complicated parts of his general theory. He accounts for the
capillary liquid transport, which is greatly influenced by the geometry of the
solid phase, and the changeover from a continuous to a discontinuous liquid
phase. His eventual transport equation, which gives an expression for the
liquid phase average velocity is quite complicated, and depends on several
hard-to-obtain transport coefficients. His final equation is given as:
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One advantage of Whitaker’s derivation is that it is almost completely
independent of the other transport equation derivations. This means that one
may use another expression for the liquid phase velocity if one can substitute
a relation that is more amenable to experimental measurement and verification.

One such relation is given by Stanish et al.10 The velocity is assumed
proportional to the gradient in pressure within the liquid. The pressure in the
liquid phase is assumed to be the sum of the gas pressure within the averaging
volume minus the capillary pressure (Pc):
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To use this type of relation, it is necessary to obtain an expression for the
capillary pressure as a function of saturation condition. It is also necessary
to determine when the liquid phase becomes discontinuous; where, at that
point, liquid movement ceases. These types of relations can be identified
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experimentally for materials of interest, or they may be found in the literature
for a wide variety of materials.

Capillary pressure Pc is often a function of the fraction of the void space
occupied by the liquid. Liquid present in a porous material may be either in
a pendular state, or in a continuous state. If the liquid is in a pendular state,
it is in discrete drops or regions that are unconnected to other regions of
liquid. If liquid is in the pendular state, there is no liquid flow, since the
liquid does not form a continuous phase. There may be significant capillary
pressure present, but until the volume fraction of liquid rises to a critical
level to form a continuous phase, there will be no liquid flow. This implies
that there is a critical saturation level, which we can think of as the relative
proportion of liquid volume within the gas phase volume that must be reached
before liquid movement may begin.

Experimentally measured liquid capillary curves often show significant
hysteresis, depending on whether liquid is advancing (imbibition) or receding
(drainage) through the porous material. A typical capillary pressure curve is
shown in Fig. 9.5.

We may take a definition for liquid saturation as:
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The point at which the liquid phase becomes discontinuous is often called
the irreducible saturation (sir).

12 When the irreducible saturation is reached,
the flow is discontinuous, which implies that liquid flow ceases when:

eb < sir[1 – (eds + ebw)] [9.182]

9.5 Typical appearance of capillary pressure curves as a function of
liquid saturation for porous materials.
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An empirical equation given by Stanish et al.10 suggests a form for the
equation for capillary pressure as a function of the fraction of void space
occupied by liquid:
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, where a and b are empirical constants [9.183]

For liquid permeability as a function of saturation:10
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where K s
b  is the liquid phase Darcy permeability when fully saturated.

Another way to construct a liquid phase transport equation is to consider
the moisture distribution throughout the porous material as akin to a diffusion
process. By combining the conservation of mass and Darcy’s equation, a
differential equation for the local saturation S may be written as:13

∂
∂

∂
∂

∂
∂

È
ÎÍ

˘
˚̇

S
t y

F s S
y

 = ( ) [9.185]

where the ‘moisture diffusivity’ is given by:

F s

K dP
dS

c

( ) = 
(  + )

b

b

b g

m
e e

Ê
ËÁ

ˆ
¯̃

Ê
Ë

ˆ
¯

[9.186]

If we rewrite the saturation variable S in terms of its original definition:
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the differential equation for liquid migration under the influence of capillary
pressure may be written as:
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Although we have these relations for the capillary pressures and permeability
as a function of saturation and irreducible saturation, it is often difficult to
obtain permeabilities for many fibrous materials. Wicking studies on fabrics
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are usually carried out parallel to the plane of the fabric by cutting a strip,
dipping one end in water, and studying liquid motion as it wicks up the
strip.14,15 However, wicking through fibrous materials often takes place
perpendicular to the plane of the fabric, where the transport properties are
quite different due to the highly anisotropic properties of oriented fibrous
materials such as fabrics.

The usefulness of the relations contained in Equations [9.181]–[9.188]
are that they allow one to model the drying behavior of porous materials by
accounting for both a constant drying rate period and a falling rate period. In
the constant drying rate period, evaporation takes place at the surface of the
porous material, and capillary forces bring the liquid to the surface. When
irreducible saturation is reached in regions of the porous solid, drying becomes
limited by the necessity for diffusion to take place through the porous structure
of the material, which is responsible for the ‘falling rate’ period of drying.
These effects are most important for materials that are thick, or of low
porosity. For materials of the porosity and thickness typical of woven fabrics,
almost all drying processes are in the constant rate regime, which suggests
that many of the complicating factors which are important for thicker materials
can be safely ignored. Studies on the drying rates of fabrics16–19 suggest that
simply assuming drying times proportional to the original liquid water content
are a good predictor of the drying behavior of both hygroscopic and non-
hygroscopic fabrics. Wicking processes perpendicular to the plane of the
fabric take place very quickly, and the falling rate period is very short once
most of the liquid has evaporated from the interior portions of fabrics.

9.8 Summary of modified transport equations

The set of modified equations which describe the coupled transfer of heat
and mass transfer through hygroscopic porous materials are summarized
below.

Total thermal energy equation:
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Liquid phase equation of motion:



Multiphase flow through porous media 345

  

· Ò
Ê
ËÁ

ˆ
¯̃

— · Ò · Òv
v

k
p p Pcb

b

b

g g
m = – (  +  –  )1 1 [9.190]

Liquid phase continuity equation:
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which can be rewritten as:
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Gas phase equation of motion:
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Gas phase continuity equation:
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Gas phase diffusion equations:
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Solid phase density relations:

·rsÒs = ·r1Òs + ·r2Òs [9.197]

rrrrr1 = esLrL [9.198]

r2 = (1 – esL)rS [9.199]

esS + esL = 1 [9.200]

Solid phase continuity equation:
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Solid phase equation of motion (for one-dimensional geometry):
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Solid phase diffusion equation (for vaporizing component):
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Volume constraint:

es(t) + eb(t) + eg(t) = 1 [9.204]

Thermodynamic relations:

·r1Òg = ·r1Òg R1·TÒ [9.205]

·r2Òg = ·r2Òg R2·TÒ [9.206]

·rgÒg = ·r1Òg + ·r2Òg [9.207]

·rgÒg = ·r1Òg + ·r2Òg [9.208]

If liquid phase is present, vapor pressure is given by:
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If the liquid phase does not exist, but the liquid component is desorbing from
the solid, the reduced vapor pressure in equilibrium with the solid phase
must be used. This relation may be determined directly from the sorption
isotherm for the solid:

· p1Òg = f ( ps, rl, rs, es L) at the temperature ·T Ò, only esL is unknown
[9.211]

Sorption relations (volume average solid equilibrium):
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The preceding list contains a total of 20 equations and 20 unknown variables,
which allow for the solution of the set of equations using numerical methods.
The 20 unknown variables are:
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Note that the aforementioned set of equations is accompanied with the
appropriate initial and boundary conditions.

9.9 Comparison with previously derived equations

The simplified system of partial differential equations given in the previous
section contains many equations with a large number of unknown variables.
Even for the simplified case of vapor diffusion, the system of equations is
quite confusing, and it is difficult to verify their accuracy other than by
checking for dimensional consistency. One way of checking their validity is
to see if they simplify down to more well-known diffusion equations for the
transport of water vapor in air through a porous hygroscopic solid. Such a
system of equations has been well documented by Henry,20 Norden and
David,9 and Li and Holcombe,21 who have used them to describe the diffusion
of water vapor through a hygroscopic porous material.

The same assumptions used by those previous workers will be made here
to transform the system of equations for the case of vapor diffusion (no
liquid or gas phase convection) to their system of equations. For clarity of
comparison, the same variables, notations, and units will be used.

The major simplifying assumptions are: (i) there is no liquid or gas phase
convection, (ii) there is no liquid phase present, (iii) the heat capacity of the
gas phase can be neglected, (iv) the volume of the solid remains constant and
does not swell, (v) the solid and gas phase volume fractions are both constant,
(vi) the thermal conductivity is expressed as a constant scalar thermal
conductivity coefficient, (vii) the gas phase diffusion coefficient is constant,
(viii) the transport is one-dimensional (e.g. x-direction).
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The total thermal energy equation becomes:
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The gas phase continuity equation becomes:
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The gas phase diffusion equation (component 1 – water vapor):
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simplified to:
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The solid phase continuity equation (component 1 – water):
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For the solid phase diffusion equation (component 1 – water), it is assumed
that the diffusional transport through the solid phase is insignificant compared
with the diffusion through the gas phase. This is a reasonable assumption
since the diffusion coefficient for water in a solid is always much less than
the diffusion coefficient of water vapor in air. Therefore, the diffusion equation
reduces to the continuity equation:
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Volume fraction constraint:

eg + es = 1; es = 1 – eg [9.221]

Thermodynamic relations:

·p1Òg = ·p1Òg R1·T Ò [9.222]

·p2Òg = ·r2Òg R2·T Ò [9.223]

·rgÒg = ·r1Òg + ·r2Òg [9.224]

·pgÒg = ·p1Òg + ·p2Òg [9.225]
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One can add Equations [9.218] and [9.219] together to obtain a single continuity
equation for water (component 1):
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which can be represented in terms of the gas phase volume fraction as:
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Application of the above assumptions reduces the large equation set down to
two main equations for the energy balance and the mass balance:
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To make the comparison easier with the existing equations of Henry,20 Norden
and David,9 and Li and Holcombe,21 one can rewrite the intrinsic phase
averaged equations in terms of the concentration variables – for water in the
solid (CF), and for water vapor in the gas (C):

C
m
VF  = 

mass of water in solid phase
solid phase volume

 =  = 1
1

s

s
sr [9.230]

C
m
V

 = 
mass of water in gas phase

gas phase volume
 =  = 

1
1

g

g
gr [9.231]

Since the definition of intrinsic phase average gives the same quantity as the
true point value, one may use the relations:

·r1Òs = ·CFÒs = CF [9.232]

·r1Òg = ·CÒg = C [9.233]

to rewrite the mass balance equation as:
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The diffusion coefficient for water vapor in air modified by the gas volume
fraction  and the tortuosity are used to obtain the effective diffusion coefficient
as:
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The thermal energy equation is:
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The energy equation may be modified by recognizing that the mass flux term
is contained in the solid phase continuity equation, such as:
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so that the thermal energy equation may now be rewritten as:
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Referring to the mass fraction weighted average heat capacity, Equation
[9.119],
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the thermal energy equation may be expressed as:
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If it is assumed that the heat capacity of the gas phase is negligible, then the
thermal energy equation becomes:
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Dividing the previous equations by the solid volume fraction yields.
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To be consistent with the notation of Li and Holcombe,21 (keff/es) is replaced
by K.

A volumetric heat capacity Cv is defined as:

Cv = ·r1Òs(cp)1 + ·r2Òs(cp)2 [9.242]
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The final thermal energy equation reduces to:
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The two simplified equations for the mass and energy balance are thus:
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As shown above, the general equations given in Section 9.9, with proper
assumptions, can be reduced to the equations derived by Henry,20 Norden
and David,9 and Li and Holcombe,21 for describing the diffusion of water
vapor through a hygroscopic porous material.

9.10 Conclusions

Whitaker’s theory of coupled heat and mass transfer through porous media
was modified to include hygroscopic porous materials which can absorb
liquid into the solid matrix. The system of equations described in this chapter
make it possible to evaluate the time-dependent transport properties of
hygroscopic and non-hygroscopic clothing materials by including many
important factors which are usually ignored in the analysis of heat and mass
transfer through textile materials. The equations allow for the unsteady capillary
wicking of sweat through fabric structure, condensation and evaporation of
sweat within various layers of the clothing system, forced gas phase convection
through the porous structure of a textile layer, and the swelling and shrinkage
of fibers and yarns.
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The simplified set of equations for heat and mass transfer, where mass
transport occurs due to diffusion within the air spaces of the porous solid,
was shown to reduce to the well-known coupled heat and mass transfer
models for hygroscopic fabrics, as exemplified by the work of Li and
Holcombe.21

9.11 Nomenclature

A area [m2]
asb Asb /V  surface of the s–b interface per unit volume [m–1]
Am(t) material surface [m2]
cp constant pressure heat capacity [J/kg · K]
Cp mass fraction weighted average constant pressure heat capacity

[J/kg · K]
CF concentration of water in a fiber [kg/m3]
Cs concentration of liquid in the solid phase [kg/m3]
CV volumetric heat capacity [kg/m3· K]
D gas phase molecular diffusivity [m2/sec]
Deff effective gas phase molecular diffusivity [m2/sec]
D diffusion coefficient [m2/sec]
Da diffusion coefficient of water vapor [m2/sec]
DLs diffusion coefficient of liquid in the solid phase [m2/sec]

  
r
g gravity vector [m/sec2]
h enthalpy per unit mass [J/kg]
h∞ reference enthalpy [J/kg]
hi partial mass enthalpy for the ith species [J/kg]
hsb heat transfer coefficient for the s–b interface [J/sec ·m2·K]
Dhvap enthalpy of vaporization per unit mass [J/kg]
k thermal conductivity [J/sec · m · K]
ke ∂ ·PcÒ/∂eb [N/m2]
k·TÒ ∂ ·PcÒ/∂ ·TÒ [N/m2·K]
K permeability coefficient [m2]
Kb Darcy permeability for liquid phase [m2]
Kb liquid phase permeability tensor [m2/sec]
Kg gas phase permeability tensor [m2/sec]
L total half-thickness of body model system [0.056 m]
m mass [kg]
· Òṁsl mass rate of desorption from solid phase to liquid phase per unit

volume [kg/sec-m3] 
  

· Ò ◊Úṁ v w n dAsl
A

 = 1
V

(  – )  2
s b

rs s s b
r r r

· Òṁsv mass rate of desorption from solid phase to vapor phase per unit
volume [kg/sec ·m3]
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· Òṁlv mass rate of evaporation per unit volume [kg/sec ·m3]
  
r
n outwardly directed unit normal
p pressure [N/m2]
pg total gas pressure [N/m2]
pa partial pressure of air [N/m2]
pv partial pressure of water vapor [N/m2]
ps saturation vapor pressure (function of T only) [N/m2]
Pc pg–pb, capillary pressure [N/m2]
p0 reference pressure [N/m2]
p1
∞ reference vapor pressure for component 1 [N/m2]

Q volumetric flow rate [m3/sec]
Q1 differential enthalpy of sorption from solid phase to liquid phase per

unit mass [J/kg]
Qsv enthalpy of vaporization from liquid bound in solid phase to gas

phase per unit mass [J/kg]

  
r
q heat flux vector [J/sec ·m2]
  
r
r position vector [m]
r characteristic length of a porous media [m]
Ri gas constant for the ith species [N ·m/kg ·K]
R universal gas constant [8314.5 N·m/(kg·K)]
Rf textile measurement (@f = 0.65), grams of water absorbed per 100

grams of fiber [fraction]
S saturation, fraction of void space occupied by liquid [fraction]
sir irreducible saturation; saturation level at which liquid phase is

discontinuous
T temperature [K]
T0 reference temperature [K]
T total stress tensor [N/m2]
t time [sec]

  
r
ui diffusion velocity of the ith species [m/s]
  
r
v mass average velocity [m/s]

  
r
vi velocity of the ith species [m/s]

  · Ò
r
vb volume average liquid velocity [m/s]

Vs (t) volume of the solid phase contained within the averaging volume
[m3]

Vb (t) volume of the liquid phase contained within the averaging volume
[m3]

Vg (t) volume of the gas phase contained within the averaging volume
[m3]

V averaging volume [m3]
V m(t) material volume [m3]
  
r
w velocity of the b-g interface [m/sec]

  
r
w1 velocity of the s-g interface [m/sec]
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r
w2 velocity of the s–b interface [m/sec]

Greek symbols

es (t) Vs /V , volume fraction of the solid phase
eb (t) Vb /V , volume fraction of the liquid phase
eg (t) Vg /v, volume fraction of the gas phase
esL VL/Vs , volume fraction of the liquid in the solid phase
esS VS/Vs, volume fraction of the liquid in the solid phase
eds Vds /V , volume fraction of the dry solid (constant)
ebw(t) Vbw /V , volume fraction of the water dissolved in the solid phase
F rate of heat generation [J/sec ·m3]
f pv/ps, relative humidity
  
r

l unit tangent vector
m shear coefficient of viscosity [N ·sec/m2]
mb viscosity of the liquid phase [for water, 9.8 ¥ 10–4 kg/m·s at 20 ∞C]
mg viscosity of the gas phase [kg/m·s]
r density [kg/m3]
rb density of liquid phase [kg/m3]
ri density of the ith species [kg/m3]
rds density of dry solid [for polymers typically 900 to 1300 kg/m3]
rw density of liquid water [approximately 1000 kg/m3]
rg density of gas phase (mixture of air and water vapor) [kg/m3]
rv density of water vapor in the gas volume (equivalent to mass

concentration) [kg/m3]
ra density of the inert air component in the gas volume (equivalent to

mass of air/total gas volume) [kg/m3]
t viscous stress tensor [N/m3]
t tortuosity factor

  

r
x thermal dispersion vector [J/sec ·m3]

x dummy integration variable
x a function of the topology of the liquid phase

Subscripts and superscripts

o denotes a reference state
i designates the ith species in the gas phase
l, L liquid
s, S solid
s designates a property of the solid phase
b designates a property of the liquid phase
g designates a property of the gas phase
sb designates a property of the s–b interface
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sg designates a property of the s–g interface
bg designates a property of the b–g interface

Mathematical symbols

d/dt total time derivative
D/Dt material time derivative
∂/∂t partial time derivative
·y Ò spatial average of a function y which is defined everywhere in space
·ybÒ phase average of a function yb which represents a property of the b

phase
·ybÒb intrinsic phase average of a function yb which represents a property

of the b  phase
ỹ b denotes dispersion/deviation from the average for that phase or quantity
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10.1 Introduction

It is appropriate to recollect the meaning of the word ‘automaton’, initially,
for a better understanding of the concept of cellular automata. The word
‘automaton’ (plural – ‘automata’) is derived from the Greek word ‘automatos’
meaning ‘acting of one’s own will, self-moving’. In ancient Egypt, the term
automaton was utilised for toys to demonstrate basic scientific principles.
During the period of the Italian renaissance, automaton was the term used
for mechanical devices, which were usually powered by wind or by moving
water. The concept of modern automata started with the invention of automated
animals (birds in a cage, mechanical ducks, etc.) and humanoids (robots).
Therefore, in general, automaton suggests self-operation of activities or
functions of an object in the absence of any permanent external governing
factor.

One of the most popular modern automata, which can be found at any
workplace, is a computer, forming an inseparable part of our life. However,
this chapter will be mainly focused on a new type of automata, the ‘cellular
automata’, which have received a lot of attention recently in the area of
modelling and simulation.

According to one of the definitions provided by encyclopaedia, a ‘cellular
automaton’ is a discrete model studied in computability theory and mathematics.
Another definition states that it is a simplified mathematical model of spatial
interactions in which each site, i.e. each cell or node of a two-dimensional
plane, is assigned with a particular state at every instance of time and it
changes stepwise automatically according to specific rules conditioned by
its own state and by the states of its neighbouring sites. In Section 10.1.1, the
ways by which cellular automata are used for modelling of physical phenomena
and for reincarnation of some other models will be discussed. A more detailed
definition of cellular automata and the difference between finite and cellular
automata will be given in Section 10.1.2. Physical principles of lattice gas
cellular automata will be described in Section 10.2. In the next Section, 10.3,

10
The cellular automata lattice gas approach

for fluid flows in porous media

D. L U K A S and L. O C H E R E T N A, Technical University of
Liberec, Czech Republic
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the reader will be introduced to various lattice gas models based on cellular
automata: models of Hardy, de Pazzis and Pomeau (HPP) and Frisch, Hasslacher
and Pomeau (FHP), along with their variations. Examples of computer
simulations based on the Frisch, Hasslacher and Pomeau models will be
presented in the Section 10.4, where physical phenomena such as fluid flow
in an empty canal and in a canal with porous fiber-like material will be
investigated. Lastly, Section 10.5 contains some suggestions and further
information.

10.1.1 Historical overview

Cellular automata have been invented independently many times and, as
indicated previously (Wolfram, 1983), have been used for different purposes
and under different names, viz. ‘tessellation automata’, ‘homogeneous
structures’, ‘cellular structures’, ‘tessellation structures’ and ‘iterative arrays’.
Some submit that cellular automata were introduced by John von Neumann
under the name ‘cellular space’ at the end of 1940s. Others say that cellular
automata were introduced by John von Neumann with his co-worker Stanislaw
Ulam (Toffoli, 1991; Wolf-Gladrow, 2000). Original and pioneering work in
this area was also done by Konrad Zuse around this time.

It is mentioned in literature that mainly two journeys took place during
the development of cellular automata. The first of them built up cellular
automata, originally perceived merely as ‘toy’ tools, into serious systems of
biological investigation and monitoring. Based on von Neumann’s works
about self-reproducing systems (von Neumann, 1963, 1966), these studies
have been developed in Lindenmayer, (1968), Herman, (1969), Ulam, (1974),
Kitagawa, (1974) and Rosen (1981), for example. The last one streamed into
computer problems (Sarkar, 2000). An excellent instance of the application
of cellular automata in biology is the game of ‘Life’, invented by John
Conway (Gardner, 1970). Examples of cell patterns obtained by Conway’s
game ‘Life’ are shown in Fig. 10.1. A system evolution after 80 time steps or
time units (t.u.) from an initial state has been considered there. It has been
shown that simple update rules may lead to the formation of complex cellular
patterns similar to living cell colonies, and plant and animal tissues. Several
theoretical studies and analyses, related to the properties of cellular automata,
augured their occurrence in modelling physical problems, especially in the
simulation of hydrodynamic phenomena. It has already been noted that, in
spite of simple update rules, cellular automata can display complex behaviour,
which makes this suitable for use as a simulation tool for the description of
many-particle or collective physical phenomena. The fully discrete model of
hydrodynamics, based on the cellular automata concept, was first introduced
by Hardy, de Pazzis and Pomeau (Hardy et al., 1973), nowadays known as
the HPP model. This model led to many interesting results, but it has had
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limited application because of its anisotropic behaviour. It was not refined
until 1986, when Frisch, Hasslacher and Pomeau designed their own ‘FHP’
model, based on a triangular lattice. Since then, application of the FHP
model in modelling hydrodynamic problems has led to the design of derivative
models. In the next sections, examples of such models and their usage in
transport phenomena through porous materials will be discussed.

10.1.2 Finite automata, cellular automata, and cellular
automata lattice gases

The phrase ‘cellular automaton’ usually indicates an infinite set of finite
automata, which are interrelated in a specific manner. A lattice gas cellular
automaton is a special case of cellular automaton. What do the terms finite
automaton, cellular automata, and lattice gas cellular automata mean in general
and in the realm of cellular automata? Definitions of these terms are provided
below.

Finite automata.   ‘Finite automata’ refers, in general, to a class of mathematical
models of processors, or a special class of programming languages, that are
characterised by having a finite number of states (Lawson, 2003), which
evolve in time and produce outputs according to rules depending on inputs
(Rivet and Boon, 2001). Similar definitions of finite automata can be found
in literature sources, which refer to principles of simulation, modelling and
programming. Taking this viewpoint, a finite automaton model consists of a
finite set of internal states Q = {q0, q1, …, qn}, where q0 is an initial state, of
a finite set of possible input signals A = {a1, a2, …, am}, and of a finite set

T = 1 t.u T = 10 t.u. T = 20 t.u. T = 30 t.u. T = 40 t.u.

T = 50 t.u T = 60 t.u. T = 70 t.u. T = 80 t.u.

10.1 Sets of patterns obtained in Conway’s game of ‘Life’ for various
time evolution steps T (courtesy of Jakub     Hruza).˙
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of possible output signals B = {b1, b2, …, bp} (Kudryavtsev, originally
KyppRBpeB, 1985). Elements of the aforementioned set Q indicate a state
space of the automaton, while sets A and B are the so-called alphabets
(Chytil, 1984). It is assumed that the finite automaton works at discrete time
moments, i.e. at discrete time steps t, t + 1, t + 2, etc. There exist two
functions that drive the work of the finite automaton with respect to time,
which are called transition functions. The first of them, denoted as j, determines
the state q (t + 1) of a finite automaton at an instant t + 1 if the previous
automaton’s state q (t) and actual input signals a(t) are known. Then q(t + 1)
= j (q (t), a(t)). The last-mentioned function y designates output signals b(t),
where b(t) = y (q(t), a(t)). An output signal of a finite automaton can be used
as an input signal for another automaton. Three possible methods of finite
automata representation are shown in Fig. 10.2. The term ‘individual automaton’
is used instead of ‘finite automaton’ in the realm of lattice gas cellular
automata models (Rivet, 2001). This notation will be followed hereafter.

Cellular automata.   According to Wolfram (1986), ‘cellular automaton’ is a
set of identical cells located in a regular and uniform lattice. A single cell is
considered to be an individual automaton. The main characteristics of a
finite automaton, mentioned above, relate to a cell of a cellular automaton.
Therefore, a cellular automaton can be represented by a set of synchronized
identical finite automata, which exchange their input and output signals with
predefined neighbourhoods in accordance to a connection rule, which is the
same for all finite automata in a particular model (Rivet, 2001). Purposely,
this definition does not contain any reference to the geometrical structure of
the lattice, as it is not important to know the distances or angles between
neighbours. However, it may be noted that all finite automata in a cellular
automaton are identical and frame a homogeneous structure having a uniform
internal structure and obeying the same evolution and connection rules. An
example of a two-dimensional cellular automaton is presented in Fig. 10.3.
Evolution rules are carried out in this case for the concrete transition function.

Lattice gas cellular automata.   As mentioned earlier (Frisch et al., 1986),
the points of view from which a fluid can be described are molecular, kinetic,
and macroscopic. The detailed behaviour of a fluid in a continuum at
macroscopic level is provided by partial differential equations, e.g. Navier–
Stokes equations for the flow of an incompressible fluid. Some other numerical
techniques, such as finite-difference and finite-element methods, are used
for transforming a continuum system into a discrete one (Chen et al., 1994).
The lattice gas models based on cellular automata are newer compared to the
numerical methods mentioned above. These models make it possible to describe
the behaviour of fluid systems at a molecular level under various microscopic
conditions. They are based on detailed information about individual particles,
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such as their positions, masses, and velocities and they provide output in
terms of molecular dynamics. Thus, lattice gas models entered into the history
as an alternative for modelling fluid systems.

It is a well-known fact from the molecular theory developed in the last
century that, in the equilibrium state, individual molecules in crystals fluctuate
around their average locations and that only occasionally do they jump out
to other locations; these are considered as fluctuations. These jumps occur
due to the molecule’s interaction with other molecules, when the system is
shifted from its equilibrium state by some agent. A remarkable idea was to
consider that a fluid has a structure similar to a crystal and that every liquid
molecule sits at some fixed point, having the same number of neighbouring
sites at a definite distance. These sites are either empty or occupied by a
molecule (Boublík, 1996). These spatially organized patterns of molecules
are in accordance with the term ‘lattice gas model’. Different types of lattice
gas models were proposed for a description of simple liquid behaviour.

10.2 Classical method of finite automata represented with state tree,
state diagram and an input–output table. The table of states
determines an initial state q0, final states and a transition function j.
For instance, from the second table line it is evident that, with the
instant state q(t) = q1 and the momentary input signal a(t) = 0, the
subsequent output state is q(t + 1) = j (q(t), a(t)) = q3. The original
root of the state tree arises from the initial state q0. The number of
links that come out from each cusp of the tree is equal to the total
number of input and output signals. Successors of each state are
created according to the input signals, using the transition functions.
Cusps of the state diagram agree with the states of automaton. Links
indicate the possible transitions between all possible states.

– Initial states

– Inputs

– Outputs

q0

q1q2

q0 q0q3 q3

q1 q2

0 1

1

1

0

0

State tree of finite automaton State diagram of finite automaton

q0 q1

q2 q3

0 0 00

1

1

1

1

0 1

q0 q2 q1

q1 q3 q0

q2 q0 q3

q3 q1 q2

1 0
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There are two distinct basic lattice gas models mentioned in the literature:
non-interacting and interacting. The non-interacting lattice gas is mentioned
in Kittel’s book (Kittel, 1977). This model is represented by a set of N non-
interacting atoms distributed over N0 lattice cells. Each cell is either occupied
or empty. This system does not have any kinetic energy or any energy due to
interaction. In spite of that, it found its application in statistical physics
because the non-interacting lattice gas model provides the correct shape of
the ideal gas state equation where the pressure is obtained as a partial volume
derivation of the system entropy. The interference of non-interacting lattice
gas models and models based on cellular automata possibly helped towards
a creation of interacting lattice gas models. Models, partly discrete with
respect to time and space, were well known from the point of view of biological
applications of cellular automata since the end of the 1960s. The first so-

10.3 Graphical interpretation of a cellular automaton: general
appearance of a lattice of cells, detailed configuration providing
status of neighbourhood cells of a reference cell, and application of a
transition function on input symbols (represented by all the states of
the neighbourhood) and an instantaneous state of the cell in
question at times t and t + 1.

Transition function The state of finite automaton
at time t

Input symbols as states of
neighbourhood finite automata

State of finite
automaton at time t + 1
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called classical lattice gases appeared as theoretical models for liquid–gas
transition around the late sixties and beginning of seventies (Stanley, 1971).
A moment-conserving lattice gas model started to be an object of interest in
hydrodynamics and statistical mechanics when Kadanoff and Swift proposed
their first discrete-velocity model (Kadanoff and Swift, 1968). They created
a version of the Ising model in which positive spins acted as particles with
momentum in one of the four directions on a square lattice, while negative
spins acted as holes. Particles were then allowed to collide each with other
or to exchange their positions with holes satisfying the conservation of energy
and momentum (Rothman and Zaleski, 1994). Thus, the first interacting
lattice gas models appeared at the beginning of the 1970s. The previously
mentioned HPP model (Section 10.1.1) was the first well-known interacting
lattice gas model, which reflected inception of current lattice gas models.

Lattice gas cellular automata belong to the general class of cellular automata,
thus sharing features characteristic to that class:

(i) Being one of the cellular automata, lattice gas cellular automata consist
of identical individual automata which are tied geometrically to the
nodes of a Bravais lattice, situated in a Euclidean space of dimension
D. Individual automata are also called ‘nodes’ in the purview of cellular
automata lattice gases.

(ii) The instantaneous state of lattice gas cellular automata depends on
the states of all individual automata. Each individual automaton can
inherit any one of the 2B states. The quantity B represents the number
of channels that correspond to the geometry of a lattice. These links
play a role of ‘communication channels’ between neighbouring lattice
nodes. Each channel may either be occupied by a fictitious particle or
remain empty, and so it has two possible states of existence.
Consequently, information about the channel’s occupation corresponds
to signals fed to individual automata.

(iii) The elementary evolution process of lattice gas cellular automata
takes place in regular discrete time steps and consists of two distinct
phases of evolution. The first of them is the collision phase. During
this phase, each individual automaton takes the new post-collision
state depending on input signals and transition rules. New states of
individual automata generate output signals for the next evolution
step. During the propagation phase, output signals of one automaton
are conveyed to its neighbouring nodes, i.e. neighbouring individual
automata, along the channels, thus, becoming a part of the input
signals for its neighbours during the next time step. We should emphasise
that all the changes in each of the individual automata of the lattice
gas cellular automata, transmit output signals simultaneously. The
transition rules are the same for all individual automata and do not
depend on their position.
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In Fig. 10.4 is sketched the two-dimensional lattice gas cellular automata
model based on the triangular Bravais lattice and the state of one individual
automaton in a pre-collision phase. Detailed description of the principles
and the terms related to the lattice gas cellular automata are furnished in the
sections of this chapter to follow.

10.2 Discrete molecular dynamics

At a microscopic level, physical fluids consist of discrete particles. The
particles of various fluids have variant shapes, masses, degrees of freedom,
chemical structure etc., as shown in Fig. 10.5. That is why the very microscopic
guise of collision events between and among them is quite likely to be
different. The structure of the individual molecules of physical fluids influences
the fluid density and formulates the concrete fashion of molecular interactions,
which can affect fluid viscosity. On the other hand, as is well known from
previous experiments, the general macroscopic behaviour of a fluid hardly
depends on the nature of the individual particles constituting that fluid. From
a theoretical point of view, significant variations of the molecular forms do
not alter the basic nature of the macroscopic equations governing fluid
dynamics. Those universal equations, such as the Navier–Stokes equation
describing fluid dynamics or the equation of continuity, are, in fact, quite
insensitive to microscopic details (Wolfram, 1986).

The next underlying property of fluids is based on the spatial scale
relationship between the mean free path of a particle after and before the

3

4

1

2

10.4 Two-dimensional lattice gas cellular automata with a selected
individual automaton highlighted will all details. The numbers
assigned to the highlighted automaton indicate: 1 – the central node;
2 – a link/channel that connects the central node and one of the
neighbouring nodes of the individual automaton; 3 – a moving
particle; 4 – an arrow representing the particle velocity vector.
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succeeding collision and the areas in which collision events occur. As mentioned
before (Succi, 2001), in a common collection of gas and liquid molecules,
the average inter-particle separation is much greater than the typical size of
an individual molecule, as is estimated by the ‘de Broglie length’; l = h/p,
where h is the Planck constant and p is a particle momentum. So the molecules
may be treated as point-like particles. Moreover, these point-like particles/
molecules interact via short-range potentials and the effective ranges of
interaction potentials are much smaller than the mean inter-particle separation.

The universality of fluid dynamics leads one to attempt to extend the
universality of the hydrodynamic to model fluids with even simpler microscopic
dynamics, molecular structure, and inter-molecular interactions than any
real fluid has. The gap between space scales of particles’ free movements
and particles’ interactions, i.e. collision events, opens up the possibility of
restricting the particle collisions strictly as localized events and of building
up this concept as a lattice model, aiming at drastic simplification of classic
Newtonian mechanics. From this, one can envisage a splendid fluid model
with few assumptions to accomplish it, such as, considering that the particles
travel only along the links in regular lattices, and that the inter-particulate
collisions occur only at lattice nodes. This super simplification brings about
a fully discrete model of hydrodynamics (Rothman and Zaleski, 1994), where
the discreteness concerns space, time, particle velocities and any other
microscopic observable physical quantities. Lattice gas cellular automata, as
these models are generally called, are, in fact, drastically simplified versions
of molecular dynamics. The cornerstone for this research has been laid by
Frisch et al. (1986) and Hardy et al. (1973).

It has been shown that lattice gas cellular automata, having continuity on
a large scale, can be described by the partial differential equations of
hydrodynamics. The Navier–Stokes system of equations (Landau and Lifschitz,
1987) is introduced below, in Equations [10.1] and [10.2]. The system of
continuity equation will be started with the law of mass conservation.

H2O

C6H13OH

10.5 Water and hexanol molecules have different structures.
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where t is time,   
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vector close to a point having positional coordinate (x, y, z) in a rectangular
Cartesian system, and r denotes the fluid’s density derived from its mass. The
symbol   
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containing unitary vectors   

r r
i j,  , and   

r
k , oriented along x, y and z axes

respectively.
The intrinsic Navier–Stokes equation relates the fluid’s elementary changes

in velocity at particular spatial locations with external forces, such as a force
field, a pressure drop, and viscous drag being their origin. Based on Newtonian
mechanics, this equation has to reflect conservation laws of momentum and
energy. For a non-compressive liquid, the equation takes the form:
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where p is the pressure, h is the dynamic viscosity, and U represents the
scalar potential due to an external field. Finally, D is the scalar product of   

r
—

and   
r

—  i.e. D =   
r r

— —  ◊ .
Ultimately, to comment briefly on the idea of a creation of a beneficial

lattice model of physical fluids with respect to the content of Chapter 14,
where formally similar lattice structures of fluids interacting with fibrous
materials, so-called ‘auto-models’, are introduced. Auto-models reflect the
universal behaviour of liquids with respect to equilibrium thermodynamic
laws, where the leading parameter is the surface tension and the underlying
microscopic phenomena are attractive and repulsive forces, primarily considered
as interaction energies between neighbouring molecules. This universality
also leads to the lattice models in Chapter 14.

10.2.1 Lattice as a discrete space

The advantages of quite a simple model of hydrodynamics, which has been
discussed above, will now be introduced. The spatial structure and the geometry
of the fluid model’s discrete space will be introduced at first. Lattices are
realised in various dimensions. Here, only one- and especially two-dimensional
lattices will be considered. A lattice consists of links, which will be referred
to as ‘channels’ henceforth, to evoke traffic paths for particle movements. It
also consists of nodes, where particles can collide. The channels connect the
neighbouring ‘nodes’. As a rule, several channels meet in one node and the
total number of channels that meet in a node is denoted by B, known as the
‘connectivity’. A node in a cellular automaton represents an individual



The cellular automata lattice gas approach for fluid flows 367

automaton, where inputs and outputs are realised through channels with
jumping particles. Nodes will be represented by their radius vectors   

r
xi  in a

desirably chosen coordinate system. The structure of a channel network pre-
describes the set of allowed particle velocities. Nodes connected directly by
a channel are neighbours and the set of all neighbouring nodes of the one in
question is called its ‘neighbourhood’. From the above it follows that the set
of all possible particle velocity directions destines the system of its
neighbourhoods since these directions link the neighbours. The distance
between nearest neighbours is denoted Dl, and this length is called the ‘lattice
unit’, expressed in units of l.u. The channel vector   

r
ei  is the unitary vector

connecting neighbouring nodes through the channel i. In brief, the site at the
centre is connected to its B neighbours by channels corresponding to the
unity vectors   

r
ei  through   

r
eB.

It is essential that such lattices be homogeneous and symmetric, as will be
explained in detail later on. Additionally, the issue of symmetry of the concerned
lattices is the major obstacle standing between the super-simplified discrete
lattice gas cellular automata and continuum hydrodynamics, thus drawing
one’s attention momentarily towards it.

Previous works with lattice models of hydrodynamics, introduced by Hardy,
de Pazzis, and Pomeau (Hardy, 1973, 1976), dealt with issues related to
problems of statistical mechanics, such as ergodicity and time correlations.
Unfortunately, they have only limited application because this class of lattice
gas models is limited to anisotropic hydrodynamics. Their anisotropic behaviour
will be briefly dealt with in Section 10.2.4, describing the collisions of a
lattice gas stream with a straight wall. The anisotropic properties of the HPP
model were the direct consequence of the choice of a square lattice. It seems
quite surprising that it took one decade to realise the direct consequences of
underlying lattice symmetry on the hydrodynamics of lattice models.
Fortunately, a very simple extension of the lattice shape to a triangular one
with hexagonal symmetry suffices to inspire a discrete model to describe the
macroscopic isotropic behaviour of hydrodynamics. The triangular lattice
for lattice gas cellular automata was first introduced by Frisch, Hasslacher
and Pomeau (Frisch, 1986). The lattice gas cellular automata based on square
or on triangular lattices will be explained in detail in Section 10.3.

Another necessity originating from the nature of cellular automata pertaining
to the discrete fluid models is the structural homogeneity of the underlying
lattices with respect to the neighbourhood of each node, which has to be
identical. Figure 10.6 depicts two regular and square lattices partly covering
a plane. One of these lattices has each of its odd rows shifted by a distance
equal to half the length of its elementary side, i.e. half of the lattice unit
(l.u.). A lattice without such a shift has identical neighbourhoods. This is the
reason behind the fact that only the lattice without any shift fulfils the
homogeneity conditions. The homogeneity conditions within a family of
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regular lattices may be verified from the definition of Bravais lattices (Ashcroft
and Mermin, 1976). The complete set of two-dimensional Bravais lattices is
introduced in Fig. 10.7.

As is mentioned by Rivet (2001), the Bravais lattice is essentially an
infinite one. For a lattice gas cellular automaton, it is considered that the
lattice is only a subset of the relevant Bravais lattice. The reason behind it is
quite simple: the memories of our computers have finite capacities and hence,
in practical applications, this lattice subset contains only a finite number of
lattice nodes.

10.6 Illustration of two rectangular lattices with unlike
neighbourhoods: The square lattice on the left-hand side is
homogeneous, having identical neighbourhoods surrounding it. The
neighbourhoods of the right-hand side rectangular lattice consist of
three nodes appearing in two configurations, as highlighted.
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10.7 All possible two-dimensional configurations of Bravais lattices.
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10.2.2 Discrete time

It makes sense to speak about time intervals of lattice gases. The aspect of
time dependence of lattice gases makes comparison of collective motions in
lattice gases with space- and time- dependent local flows in real fluids possible.
Time, as well as space of lattice gas cellular automata, is made discrete. The
particles jump from their starting nodes to their destination nodes coherently.
This synchronisation of jump of all particles constitutes the next step for the
fluid model simplification. Each of the pairs of starting and destination
nodes is connected by a channel colinear with the velocity vector of the
jumping particle. Briefly speaking, in the synchronised time-cycle, particles
hop to the nearest neighbour by the corresponding discrete vector   

r
vi .

The way to introduce a time unit into the lattice gas cellular automata
model is the next problem. According to Rivet (2001), the basic element of
a cellular automaton, an individual automaton forming the mathematical
model of a processor with a finite number of possible internal states, evolves
and produces output data according to a rule depending on input symbols
belonging to a finite set of the alphabet. The above definition directs one
towards a deterministic evolution rule for the internal state of an individual
automaton. Since the internal state of an individual automaton can change,
the automaton undergoes some kind of evolution and therefore the underlying
notion of the ‘past’ and a ‘future’ is derived. However, these primitive notions
do not necessarily imply a temporal structure for the automaton, since the
concept of a time interval between events and the evolutionary behaviour of
a cellular automaton as a whole is not included in the definition. That is why
it is imperative to discuss the consequence of local automata synchronisation
in a cellular automaton.

Synchronisation of a cellular automata model with respect to time makes
time the global parameter for all the nodes simultaneously. Therefore, there
must be a single clock for all nodes, which justifies the unified time run for
a lattice gas cellular automaton as a whole. The elementary synchronised
particle jumps in a lattice gas cellular automaton are repeated at regularly
spaced discrete time intervals. The time increment Dt between successive
jumps is called the ‘time step’, which is equivalent to a time unit abbreviated
as 1 t.u. For the time step, the relationship Dl = vDt holds true. This relationship
expresses the fact that a particle with velocity   

r
vi  present in the i th channel

at the node   
r
x  goes to the neighbouring node   

r r
x v ti + D  in 1 t.u. The collision

phase is considered as an instantaneous one without any consumption of
time. It means the time between succeeding collisions is D t.

The elementary evolution process of a lattice gas cellular automaton,
which occurs at each time step, is a sequence of two distinct phases: the
collision phase and the propagation phase. The order of these two phases is
immaterial regarding time evolution of the cellular automaton. The aspect
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that is of great importance is the transition between the phases. Section
10.4.2 is devoted to a deeper description of the propagation and collision
phases.

10.2.3 Discrete observables

Observables, i.e. the basic physical quantities of a lattice gas cellular automaton,
may be scalars, vectors or more generally tensors of arbitrary order. Basic
observables of lattice gas cellular automata are connected to a channel of an
index i and so they will be called ‘channel observables’ henceforth. A typical
channel observable is the number of particles   n xi ( )

r
 at a channel i of the

node   
r
x . The ‘value of the observable measured at node   

r
x ’ is the total

amount of the observable quantity present at node   
r
x . It is called the

‘microscopic density per node’ or simply its ‘microscopic density’ if the
observable is a scalar. If the observable is a vector, the value measured at a
node is called a ‘microscopic flux’.

The essential observable of a lattice gas is the number of particles, namely
the number of particles   n xi ( )

r
 at a channel i, i.e. the channel particle density,

and the total number of particles at a node 
  
S
i

B

in x
=1

 ( )
r

, which is the microscopic

particle density at that spot. Commonly, a constraint called the ‘exclusion
principle’ is imposed, which resembles Pauli’s exclusion principle in quantum
mechanics. The ‘exclusion principle’ of lattice gases says: No two particles
sitting at the same node can move along the same direction of the channel at
the same time. The existence or non-existence of a particle at a channel i
creates a two-bit ‘channel configuration space’ composed of two ‘channel
states’. The distribution of a set of particles on various channels of the
particular node defines the ‘local configuration space’. Regarding the exclusion
principle, the local configuration space consists of 2B various ‘local states’,
where B is the number of channels growing from a node.

The next scalar observable is the individual mass of a particle. The mass
assigned to any particle in a channel i at the node   

r
x  is denoted as   m xi i( )

r
.

The total mass   m x( )
r

 at the node   
r
x , i.e. microscopic mass density, is given

by the following formula:

  
m x m x n x

i

B

i i( ) =  ( ) ( )
=1

r r rS [10.3]

Symbol   
r
vi  is used to denote ‘velocity vectors’ of particles at a channel i. The

velocity vectors must have the same local symmetries as the lattice has; that
means the set of velocity vectors includes individual particle velocities that
are determined by the structure of the underlying lattice. This set of velocity
vectors remains globally invariant for all nodes in the lattice. The number of
channels outgoing from a node determines the maximal number of various
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velocity vectors. Moreover, some particles can rest in a node with zero
velocity. If the evolution rule involves exchanges of particles only with all
the nearest neighbours and if all the velocity vectors are non-zero, then the
model is said to be ‘homokinetic’, all velocity vectors having the same
modulus   v v = | |

r
. Two homokinetic models HPP and FHP-1 will be introduced

shortly in Section 10.3. Assuming a unit time step, the velocity vector of
each particle in a homokinetic model is given simply by the vector,

  
r r
v e l ti i = /D D .

From the above-mentioned observables, one can easily derive the rest of
the scalar and vector observables. To start with the scalars, the total kinetic
energy   E x( )

r
 at the node   

r
x , i.e. the microscopic density of kinetic energy,

is obtained from the following formula:

  
E x m x v x

i

B

i( ) = 1
2

  ( ) ( )
=1

2r r rS [10.4]

The microscopic density of potential energy   W x( )
r

 at a node   
r
x  holds the

following relation:

  
W x U x n x

i

B

i( ) = ( )  ( )
=1

r rS [10.5]

where U(x) is a scalar potential.
Among the vector observables, particle momentum 

r
pi  at the channel i is

given by:

  
r r r r r r
p x m x n x v xi i i i( ) = ( ) ( ) ( ) [10.6]

Component ‘a’ of momentum of a particle at the channel i is   p xia ( )
r

. The
total ‘a’ component of momentum at the node   

r
x  is then determined by the

formula [10.7]:

  
p x p x m x n x v x

i

B

i i

B

i i ia a a( ) =  ( ) =  ( ) ( ) ( )
=1 =1

r r r r rS S [10.7]

The microscopic momentum flux   
r r
p x( ) is written as

  

r r r r r r r r
p x p x m x n x v x

i

B

i i

B

i i i( ) =  ( ) =  ( ) ( ) ( )
=1 =1
S S [10.8]

Besides the channel and microscopic observables, there are space-averaged
quantities. The space averaging is carried out on a connected subset of the
underlying lattice. The set of all nodes in this subset is denoted as f. After
that, the space-averaged mass density m(f) is defined using the formula

  
m

N
m x

x
( ) = 1

( )
  ( )f f f

Sr
r

Œ
[10.9]
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where, N(f) is the total number of nodes in the lattice subset f. Finally, it
should be noted that macroscopic densities and macroscopic fluxes that are
space- or time–averaged are physically relevant.

The basic notions, definitions and fundamental visage of a lattice cellular
automata serve as equipment sufficient to continue with a description of
their kinetics or dynamics.

10.2.4 Propagation, conservation laws, and collision rules

The dynamics of lattice gas cellular automata consists of two essential phases:
propagation and collision. The propagation phase will be considered first, as
it is conceptually much easier to understand. Before the collision phase is
dealt with, the basic concept of lattice gas conservation laws will be adopted.
As will be shown hereafter, these conservation laws govern the discrete
dynamics of lattice gas cellular automata.

Propagation phase.   During the propagation phase, a particle is shifted from
one node to another, i.e. if a particle is present at any moment t in a node   

r
x ,

it is shifted to the neighbouring node in time t + Dt. It is notable here that the
neighbourhood is pre-described by all practicable velocity vectors   

r
vi , according

to a node-independent rule that covers the whole lattice. In practice, the
particle at the channel i is transferred during the propagation phase from the
node   

r
x  to the node   

r r
x v ti + D . Consequently, the state of the channel i remains

the same, but the node changes from   
r
x  to   

r r
x ei +  after the propagation. In

other words, the propagation phase carries the particle from channel i of the
node   

r
x  to the channel i of the node   

r r
x ei + .

The above description of the propagation phase raises the problem of
finite size Bravais lattice subsets that are used for lattice gas cellular automata
(as mentioned in Section 10.2.1). Indeed, if the lattice under the consideration
is finite, the node   

r r
x ei +  may be outside this finite lattice, even if the node

  
r
x  from which the particle departs is inside. There are various strategies to
solve this problem. One of the solutions is to introduce ‘periodic boundary
conditions’. More precisely, the part of the lattice on which the cellular
automaton for the lattice gas is implemented has to be a finite sub-region of
the underlying Bravais lattice, whose opposite sides can be connected to
form a loop. This wrapping of opposite sides of a finite lattice leads to a
periodic motion of the individual particles. The escaping particles return to
the finite lattice on the opposite sides of its boundaries. Periodic boundary
conditions influence the propagation phase only. Figure 10.8 gives more
details about it.

Another solution of the conflict between the theoretically infinite lattices
of cellular automata and limited memories of computers that confines one to
finite ones is to use ‘reflective boundary conditions’. Reflective boundary
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conditions are based on various types of particle collisions with walls that
constitute impenetrable boundaries of the finite subset of Bravais lattice or
with obstacles that represent the material of a porous or fibrous media. Since
these boundary conditions are collision based, it has been decided to describe
them in further detail in the subsection under the heading ‘Collision rules’.
It can be summarised that reflective boundary conditions constitute bouncing
of a particle from a wall back to the finite Bravais sub-lattice. The wall
remains fixed all the time. It absorbs some of the portion of the colliding
particle’s momentum, while the particle, after the collision, keeps its original
velocity modulus v.

The crucial feature of all the introduced boundary conditions is that they
keep all the particles in the game. It means that none of the particles in the

10.8 Periodic boundary conditions for two-dimensional square lattice
gas cellular automaton, as used for the HPP model, result in identical
collision and propagation occurring at the boundaries opposite each
other. A system with periodical boundary conditions may be
represented using fine-drawn joins. These joins transform the
originally plan or lattice of nodes into a 3-D body on which surface
the originally opposite boundaries of the lattice are joined together.
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vicinity of the boundary of a finite Bravais sub-lattice may escape; they
either reappear on the opposite side in the case of periodic boundary conditions,
or bounce back as a result of a collision with a wall satisfying the reflective
boundary conditions.

Conservation laws.   The propagation phase, except for the boundary conditions,
is the shapeless part of the lattice gas cellular automaton’s lifetime. Particles
move coherently towards their neighbouring nodes through the channels
with constant velocities. This phase is purely kinetic. Particle motion is
steady and linear during the abrupt and coherent jump. All the physical
quantities of the particles, except those depending on the positions of the
individual particles, are conserved. The lattice gas time during this phase, as
the time step is defined as D t = D l/v. As the particle motion inside the
channels has no relevance concerning the channels’ state of cellular lattice
gas automata, the time flux is discrete.

The next phase is very thrilling, when particles collide in an infinitely
small time instant. To obtain the reasonable lattice equivalent of a real fluid
dynamic, the conservation of particle numbers and conservation of their
momentum are considered. Both these laws are described further for local
collisions, i.e. inter-particle collisions at individual nodes. The results of
such local collisions are unaffected by any events occurring in other nodes.
For the conservation of the local particle number n and mass m in a node   

r
x ,

the following relations hold true:
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The initial distribution of the colliding particles in the node   
r
x  at individual

channels i’s is represented by   n xi ( )
r

, while their post-collision state in the
same node and channel is given by ‘new’   

n
in x( )

r
 values. A collision of the

particles in a node causes their redistribution possibly at all channels connecting
the node in question with its neighbours.

The local momentum conservation during the collision phase may be
expressed using its components   

n p xa ( )
r

 and   p xa ( )
r

 as:
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Therefore, the redistribution of particles in an individual node obeys the rule
of keeping the total momentum in this node constant. Rules governing
particulate collision depend on the chosen model of the cellular lattice gas.
Three such models will be introduced in Section 10.3.

Collision phase and collision rules.   Particle-conserving and momentum-
conserving local collision rules safeguard the correspondence of lattice gas
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cellular automata models with Navier–Stokes systems (Landau and Lifschitz,
1987). Their concrete form is elucidated here using the original idea of the
first and the simplest lattice gas cellular automaton introduced by Hardy, de
Pazzis and Pomeau (Hardy and Pomeau, 1972). The model’s title is also
abbreviated to HPP (Frisch et al., 1986; Rivet and Boon, 2001), as has been
mentioned earlier. This model is based on the two-dimensional regular square
lattice. All the particles have the same unitary modulus of velocity v and they
obey the exclusion principle. So the number of particles in a node spans from
zero to four. The full set of collision rules for the HPP model can be
reconstructed from the reduced set of two collision representatives with the
application of lattice symmetry and superposition of the particle distribution
obeying the exclusion principle. The representative collision events are depicted
in Fig. 10.9.

The collision process is said to be ‘microreversible’ (Rivet, 2001) if any
collision has the same probability as the reverse one, and this kind of collision
symmetry is called ‘detailed balance’. An original collision and the one
assigned reverse to it are depicted in Fig. 10.9 as (A) and (C).

The next vital notion to be discussed is that of ‘transitional probability’.
Transitional probability denotes the probability of an occurrence of a certain
post-collision state in the node as the consequence of a particular initial node
configuration. As a rule, the symmetric collisions, matching with the lattice
symmetry, have equal probabilities. The efficiency of lattice gas models to
scatter particles through their mutual collisions is evaluated in terms of
‘effective collision’. A collision is said to be an ‘effective collision’ when a

Y Y
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X
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10.9 Schematic representation of collision events as applicable for
the HPP model: Effective collisions (A) and (C) are microreversible.
Collisions involving one (B) and three particles (D) do not change the
velocity distribution of particles. The instantaneous positions of the
particles, at time t and at a subsequent moment t + Dt after one time
step, are shown.
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post-collision configuration at a node differs from its pre-collision configuration
at the same node (Rivet, 2001). To make this notion more lucid, some of the
non-effective collisions are also sketched in Fig. 10.9.

As has been mentioned in the beginning of this subsection, the symmetry
of lattice cellular gas models is a vital issue, as it ensures its resemblance
with continuum dynamics. Now, the anisotropic properties of a square, two-
dimensional, lattice gas automaton may be briefly illustrated using the effect
of a particle’s collision with a solid impermeable wall, as shown in Fig.
10.10. To start with, various reflection behaviours of particles colliding with
an impermeable obstacle will be introduced. Rivet (2001) introduced three
different kinds of reflective boundary conditions. There are called ‘no-slip’,
‘free-slip’, and ‘diffusive’ boundary conditions.

No-slip boundary conditions, on a microscopic level, represent a bounce-
back reflection of a particle colliding with a wall, i.e. with a wall particle.
When a particle reaches the wall, its momentum as a vector is changed with
central symmetry. In the centre of the symmetry is located a node where the
collision occurs. In other words, the gas particle velocity vector goes round
the half circle. Such a bounce-back collision conserves particle number and
particle kinetic energy, and results in zero average velocity on a slip of a
fluid flux in the vicinity of a wall, as each velocity vector at a time t belongs
to the same particle velocity vector but with the opposite orientation at a
succeeding time step t + D t.

Free-slip boundary conditions are realised by ‘specular reflection’.
Microscopically, the specular reflection refers to the mirror reflection of a
particle on a wall. The vector component of particle momentum, parallel to
the wall surface, is conserved during such a collision, while the normal
component of it is reversed. As a consequence, the cellular or lattice liquid
freely moves along the wall without any change of its velocity component
parallel to the wall. A point may be noted here, that it is quite troublesome
to find a reflective flat surface on a rugged wall and the reader is referred to
the work of Rivet (2001) for more details.

The diffusive boundary conditions are stochastic or statistical combinations
of bounce-back and specular reflections occurring with chosen probabilities.
All previously mentioned boundary conditions with respective types of
reflections, i.e. collisions with walls and obstacles, are depicted in Fig. 10.10.

Going back to the lattice and lattice hydrodynamics isotropy, non-slip
boundary collisions, realised by the bounce-back collision rule, are selected
to demonstrate the anisotropic behaviour of a square lattice gas flowing
along a flat wall in two-dimensional space. Two cases may be well
distinguished. The wall inside the implicit square lattice of the HPP model
may be either oriented along the channels in the lattice or inclined to this
direction by an angle of 45∞. In the first instance, a particle has no chance to
slow down the bulk flow because every time, a particle from the gas bulk
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10.10 The upper and middle part of this figure constitutes
impermeable walls, angled at 45∞ from the channel direction of the
square lattice of the HPP model. Three various reflective boundary
conditions that can appear are: (A) bounce-back reflection, (B)
specular reflection, and (C) diffusive reflection. An HPP model with
the wall parallel to a system of square lattice channels is depicted at
the bottom. All previously mentioned types of reflections are
indistinguishable with respect to the orientation of the impermeable
wall. Due to the perpendicular direction of the velocity of particles
colliding with the wall, there is no change in the particle momentum
parallel to the wall before and after collision. Hence, the orientation
of such a wall with respect to the lattice channels does not hinder
the fluid flux. The initial and subsequent states of the automata are
denoted with assigned time moments t and t + dt.
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flying to the wall, attacks the wall perpendicularly. These colliding particles
have zero component of velocity parallel to the wall surface. As a consequence,
the wall does not get any chance to break or encumber the adjacent tangential
flow. That is why a parabolic velocity profile typical to the laminar fluxes of
Newtonian fluids near the walls will not be achieved. It is noticeable that, for
the mutual orientation between the wall and the square lattice, the bounce-
back reflection is identical to the specular reflection, and also identical to the
diffusive reflections. This situation is depicted in Fig. 10.10. The same HPP
lattice gas with underlying square lattice behaves in a different way when a
wall is at 45∞ with one of the directions of the lattice channels. Falling
particles on the wall carry both perpendicular and parallel momentum
components with respect to the wall plane. During a bounce-back collision,
a particle reverses its parallel momentum component. In other words, the
wall will hinder a lattice gas flux caused by a prevailing movement of particles
along the wall. It is now time to organise the parabolic velocity profile. The
above-described behaviour of the HPP model is evidence of unsymmetrical
properties of lattice gases living on square lattices. It is intuitively felt that
such strict differences among various directions in triangular lattices with
hexagonal symmetry do not exist. Therefore, the more advanced lattice gas
cellular automata models have been developed on these triangular lattices.
Two of them, FHP-1 and FHP-2, are described in the next section and additional
details about them are mentioned in the Section 10.4.

10.3 Typical lattice gas automata

This section will introduce three classic lattice gas cellular automata models.
The last of them will be used further (in Section 10.4) to demonstrate its
utility for computer simulation of fibrous masses. Historically, the first lattice
model was introduced in the early 1970s by Hardy, de Pazzis and Pomeau.
They focused mainly on aspects of statistical physics. This model was based
on a two-dimensional square lattice (Hardy et al., 1973) and had its roots in
the earlier work of Hardy and Pomeau (1972). The same research group
introduced fifteen years later (Frisch et al., 1986) a lattice gas cellular automata
model, FHP-1, based on a triangular lattice with hexagonal symmetry. This
was the simplest structure producing proper large-scale dynamics that could
mimic the behaviour of a fluid. The last model that will be introduced in this
section, abbreviated FHP-2 model, is a variant of the foregoing one. Unlike
FHP-1, where all the particles were thought to move with velocities of
unitary modulus, FHP-2 model included a possibility of one particle at rest
in a node. The common feature of all previously mentioned lattice gas cellular
automata models is the choice of basic channel observable values. If mass,
velocity, momentum, energy, and time step are non-zero, they are all considered
as unitary in their respective units.
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10.3.1 Hardy, de Pazzis and Pomeau model

Let a two-dimensional square lattice having four channels at each node be
envisaged. Then, the connectivity B is equal to 4, as shown in Fig. 10.9.
Thus, each node has four neighbours. The distance Dl between neighbouring
nodes is uniform and equal to 1 l.u. All the particles in the model have the
same velocity modulus v of 1 (l.u./t.u). The masses mi of the particles are
equal and their value is taken as one unit mass (1 m.u). The model evolves
in two phases – propagation and collision. A particle streams from its original
node   

r
x  to its neighbouring one   

r r
x v ti + D  in the direction in which its velocity

  
r
vi  is directed during the propagation phase. During the collision phase, the
frontal collisions, i.e. the collisions of particles with opposite velocities,
result in a rotation of both the particles by 90∞, as illustrated particularly with
examples (A) and (C) in Fig. 10.9. Briefly speaking, the horizontal motion
of the particles arriving towards each other is changed to a vertical one when
they depart from each other after their mutual frontal collisions. These rotations
occur with probability one. It is to be noted that all other local states, denoted
as (B) and (D) in the same figure, remain unchanged due to the constraint of
momentum conservation. There are 24 different local configuration states of
this model and only two of them are effective, i.e. two of them lead to the
transition of the original state to the next local configuration state. One time-
step of the Hardy, de Pazzis and Pomeau model is depicted in Fig. 10.9.

The degree of crystallographic isotropy of the model is not sufficient to
produce large-scale isotropic dynamics that have been represented above
with the Navier–Stokes equations for physical fluids. The shortcomings of
this model are highlighted by the atelier of its designers with the following
words (Frisch et al., 1986): ‘When density and momentum are varied in
space and time, micro-dynamic equations emerge differently, understood for
HPP model and from the nonlinear Navier–Stokes equations in three respects.
These discrepancies may be classified as (i) lack of Galilean invariance, (ii)
lack of isotropy, and (iii) a crossover dimension problem.’ That is why more
advanced models had to be sought. Rivet (2001) glosses this historical
development as, ‘About ten years after the introduction of the HPP model,
the “anisotropy disease” has been cured by models based on the triangular
lattice.’ Some of the advanced models, developed initially, are discussed in
the next subsection.

10.3.2 Two of the Frisch, Hasslacher and Pomeau models

The first member of this group of models with isotropy, producing proper
large-scale lattice fluid dynamics, was introduced by Frisch et al. (1986).
Several versions of the Frisch, Hasslacher and Pomeau model have been
successively developed with the same geometrical lattice structure, but with
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different collision rules. Two of them will be described further, viz. the FHP-
1 and FHP-2 models.

The simplest model of this group, denoted the FHP-1 model, is based on
a triangular lattice structure with hexagonal symmetry, having unitary distance
Dl between the neighbouring nodes, and unitary modulus of particle velocities
v. Particles obey the exclusion principle. Hence, the maximum number of
particles in a node is six, equalling the number of neighbours, i.e. to the
connectivity B = 6. This limited number of simultaneous appearances of
particles in one node safeguards the implementation of the exclusion principle
on the model. The masses mi of all particles at each channel i are equal
1 m.u.

The propagation phase in the FHP-1 model proceeds in exactly the same
way as for the HPP model. A particle sitting originally in a node   

r
xi  with a

velocity   
r
vi  is moved along the channel i to the neighbouring node   

r r
x v ti i + D .

A substantial difference with the HPP model appears in the collision phase.
In FHP-1, two particles coming from opposite directions undergo a binary
collision with an output state rotated by +60∞ or –60∞, with equal probabilities.
Another remarkable aspect of the FHP-1 model, compared with HPP, is the
inclusion of three-particle collisions. When three particles meet simultaneously
in one node, having their mutual velocity vectors at an initial angular disposition
of 120∞, a collision takes place with a rotatory deflection of the velocity
vectors by 60∞. The rotation by –60∞ leads to an identical local state transition.
There are 26 (= b) possible various local states of the FHP-1 model and five
of them, viz. three two-particle and two three-particle collisions, are effective.
Hence, the collision efficiency of the model is 7.81%, as is obvious from
Fig. 10.11.

FHP-2 is a modification of the model FHP-1. As opposed to HPP and
FHP-1, this model includes the possibility of one rest particle at each node.
The propagation phase is the same as for the FHP-1 model and it has no
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10.11 Typical two- and three-particle collisions in FHP-1 model.
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influence on particles at rest. Particles at rest have zero values of velocity,
momentum, and energy. These particles do not belong to any channel and so
the exclusion principle is valid for this model too.

The collision rules of the FHP-2 model are similar to that of FHP-1 model
with the only difference that two additional events are considered in the
FHP-2. A moving particle arriving at a node with a rest particle produces a
pair of moving particles at angles +60∞ and –60∞, measured from the direction
of the incoming particle. The last additional collision event is the reverse to
the former. Two colliding particles in a node with their velocity vectors at
120∞ angle result in one resting particle and in one moving particle moving
in the direction of their original pre-collision momentum vector.

There exist 27(= b) various local states in the FHP-2 model out of which
only 22 are effective, as given in Fig. 10.12. Thus, the collision efficiency of
the model is 17.19%. Thanks to the effective collisions with resting particles,
FHP-2 does not conserve any kinetic energy. It is assumed that either the
energy is exchanged with an adjacent thermodynamic reservoir or the resting
particles vibrate with a vibrational energy equalling their original kinetic
one.

10.4 Computer simulation of fluid flows through

porous materials

In this section, the application of FHP-1 and FHP-2 lattice gas cellular
automata models to simulate fluid flows in porous media is introduced. The
section is divided into three subsections. To start with, a description of a
lattice gas algorithm for general-purpose computers is considered. The text
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10.12 Typical two- and three-particle collisions in FHP-2 model.
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then follows with two examples of computer simulations based on the FHP-
1 lattice gas model. The first of them is devoted to the study of two-dimensional
flow in an empty channel, the next one to fluid flow through a porous
medium that mimics a fibrous material forced by a certain pressure gradient.
Output data are compared with Darcy’s law relating values of flow rate and
pressure gradient. The final computer simulation is focussed on the FHP-2
lattice gas model to study a fluid flow in a channel under the influence of
outward vibrations transmitted to the fluid environment.

Fluid flow through a porous media, and especially through fibrous materials,
is a subject of wide interest. The textile industry encounters this phenomenon
during many production and finishing processes. In these circumstances,
permeability is the physical parameter of prime interest. Moreover, the
permeability measurement is one of the most important ways that enables an
evaluation of final products, as it provides concrete information about the
usability of a material for an application. For example, permeability is a
critical parameter for the application of fibrous materials such as filters,
barrier materials and sportive clothing. The invention of Gore-Tex materials
was based on an idea of combining various layers with different permeabilities
to reach optimal comfort with respect to the diffusion of water vapour outwards
and exclusion of external liquid droplets.

Modelling the generation and propagation of sound wave hangs together
with the study of acoustic properties of fibrous materials. New trends are, for
instance, looking for ultrasound applications in textile technology to enhance
traditional processes (Moholkar, 2002). Newly developing technologies are:
(i) application of ultrasound in textile pre-treatment and finishing processes
aiming to accelerate diffusion of liquids and gases into fibrous materials; (ii)
ultrasound treatment used for reducing the viscosity and surface tension of
resin systems involved in the production of fibre reinforced composites; (iii)
application of ultrasound for impregnation of fibrous nanomaterials, produced
by electrospinning, with highly viscous liquids (Ocheretna and Kostakova,
2005a).

10.4.1 Lattice gas algorithm

A large variety of computers ranging from personal computers to powerful
parallel processing supercomputers and a wide range of programming languages
explain the existence of the quanta of lattice gas algorithms that have been
implemented since 1985. The algorithm used in the present work is designed
for a general-purpose computer. It includes an unchangeable part that can be
used as a basis for each new algorithm, independent of the concrete choice
of a lattice gas model.

Each node of a lattice in the algorithm is conceived as a box with two
main sections. The first of them is intended for registration of an instantaneous
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state. The second one serves as a bin for information about the new state of
the cellular automaton in the next time step. When the new state of the
system is accepted and becomes the new instantaneous state, data from the
second sections are removed to the first ones so that the algorithm is ready
for the next evolution step. Each of the sections is divided further into several
shelves, where various prices of information about the node, related to the
chosen time step, are collected, such as information about the channel
occupation by particles, total number of particles in the node, and x- and y-
components of velocities for all particles in the node. This set of information
makes it possible to make all propagation and collision changes ‘simultaneously’
and to have comprehensive information about the system at any moment.

The lattice gas algorithm starts with the occupation of chosen lattice
nodes with solid stationary particles, which represent walls of a cavity or a
channel. They can also in personate the material of a porous medium,
particularly a fibrous material. Creation of fluid particles takes place on
resting free parts of a lattice, where no solid non-moving particles are present.
Each channel in each node takes either the value 1 or 0 at random, with pre-
described probability. The value 1 means the occupation of a channel with a
fluid particle, while the value 0 marks empty channels. Thereafter, the number
of fluid particles and x- and y-components of their total velocity in each node
are calculated. This information is stored in different arrays.

The main part of the lattice gas algorithm consists of collision and
propagation phases that repeat, subsequently. The algorithm starts with the
collision phase, which is carried out uniformly and practically simultaneously
in each lattice node s, excepting those occupied by a solid non-moving
particle. The collision phase consists of the following steps:

(i) Selecting the lattice node s0;
(ii) Detecting the input information about the number of particles n0 in

the node s0. If n 0 = 0 return to the Step 1. For the opposite case,
detecting the x-component vx and the y-component vy of the total
particle velocity   

r
v  in the node s0;

(iii) Keeping the new value of the particle number nn0 in the node equal to
the input value n0;

(iv) Choosing a channel i(i = 1, … , B) of the node s0 at random;
(v) If the channel is empty, then, occupying the selected channel i of the

node s0 with a particle, i.e. with the value 1, and reducing the parameter
nn0 by 1. In case the channel i is settled by a particle, going back to
Step 4;

(vi) Repeating Steps 4 and 5 till the parameter nn0 equals zero;
(vii) Calculating the x-component of the total particle velocity nvx of the

newly created configuration in the node s0. If the nvx in the node s0 is
not equal to the original input value vx, going back to Step 2;
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(viii) Calculating the y-component of the total particle velocity nvy of the
newly-proposed configuration in s0. If the nvy in this node is not equal
to the original input value vy, going back to the Step 2;

(ix) Registering the new information, i.e. the new configuration parameters’
the occupation of individual channels, nn0,i, 

nvx,i, and nvy,i, in the node
s0, into information fields. The newly obtained configuration conserves
the particle number and momentum components and thus can really
be considered as a new configuration for the node s0;

(x) Repeating the previous steps for all the lattice nodes.

The propagation phase comes after the collision phase and consists of the
following points in succession:

(i) Selecting a lattice node s0 and detecting the input information of this
node. Of particular interest now is the channel occupation;

(ii) Scanning through the channels of the node s0 subsequently, and looking
for the first occupied channel denoted here as i. If all channels are
empty, returning to Step 1;

(iii) If the channel i is occupied, then detecting the state of the neighbouring
node si, which communicates with the node s0 through the channel i.

(iv) If the node si is not occupied by a solid, stationary particle, relocating
the particle in the channel i from the node s0 to the neighbouring node
si so that the new particle number value nni in the node si extends by 1.
New values of the x-component nvxi and the y-component nvyi of velocity
in the node si are extended by vxi and vyi. If the node si is occupied by
a solid, unmoving particle, implementing reflection depending on the
chosen type of boundary conditions;

(v) Repeating the previous steps for all the other lattice nodes in a chosen
sequence.

Thus, the basic skeleton of the lattice gas algorithm for a general-purpose
computer, which has been used for further introduced simulation experiments,
has been detailed. There are also so-called ‘mobile parts’ of the algorithm
apart from the previously described skeleton of the algorithm. These mobile
parts have not been involved in those aforementioned steps. Each particular
simulation experiment includes, for instance, subroutines for the generation
of extra conditions. These subroutines provide, for example, pressure gradient,
gravity and vibration waves. Subroutines also ensure the formation of special
output data files.

10.4.2 Computer simulation of two-dimensional fluid flow
in porous materials

As mentioned in Section 10.1, the lattice gas cellular automata can describe
complex hydrodynamic phenomena in that they can substitute for Navier–
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Stokes equations. It is, then, quite natural to verify if the simulation model
fulfils the basic fluid-flow laws, for instance, Darcy’s law. This law was
named after the French engineer Henri Darcy (Rothman, 1988), who established
it empirically during the middle of the nineteenth century. He found that the
flow rate through a porous medium, including a fibrous one, is linearly
proportional to the applied pressure gradient. This law is valid for laminar
flows, where the Reynolds number is relatively small. In other words, the
law is valid for steady Poiseuille flows with parabolic velocity profiles in
free channels.

An elementary example of a fluid flow satisfying Darcy’s law is the three-
dimensional flow between two parallel plates. It is a simple model for the
flow through a single pore, the channel, which can be reduced to a two-
dimensional case due to its cross-sectional symmetry. Many researchers have
dealt with this problem. For example, Rothman in his work (Rothman, 1988)
studied two-dimensional Poiseuille flow as a function of the channel width
for various pressure gradients. The same dependence was of Chen’s interest
(Chen et al., 1991) for three-dimensional channel flows. Interesting problems
were solved by Yang a few years ago (Yang et al., 2000), based on the
Lattice–Boltzmann model, where the influence of various interactions between
the fluid and the channel walls was considered. In particular, one part of the
channel surface was wetted by a liquid while other parts repelled it. The first
simulation experiments of the present work are aimed at studying two-
dimensional fluid flows under the influence of various pressure gradients
and under conditions where the laminar character of the flow transits to a
turbulent one.

Fluid flow in a free two-dimensional channel.   The concrete implementation
of the lattice gas cellular automata that is used here is based on the FHP-1
model. The following values of channel parameters were chosen: the length
L of the channel was chosen to be 550 lattice units (l.u.). In principle, the
channel was infinitely long, thanks to the periodic boundary conditions applied
on its left and right sides. The width d of the channel was 160 3/2  l.u. Top
and bottom channel ends were composed of solid walls to restrict the flow.
The bounce-back reflections were pre-set for the fluid particle collisions
with solid wall particles. Fluid particles were generated in the free space
between the walls. The mass of each particle was one mass unit (m.u.). The
average microscopic mass density   m x( )

r
 was chosen to be 3.5 particles per

node.
Subsequently, the pressure gradient was varied to study the flow rate

versus pressure gradient relationship. A similar method, as used later in this
chapter, was exploited previously McNamara and Zanetti (1986) and Rothman
(1988), for the creation of a pressure gradient. The pressure gradient in that
work was created in terms of reversing particle momentum vectors with the
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chosen probability fx at all nodes of a vertical line of nodes, the length of
which was equal to the channel width d, located on the left side of the
horizontal channel. In fact, the parameter fx expressed the average change in
the x-component of the particle momentum at a particular node during one
time step or time unit (t.u.). This flipping mechanism acted merely on particles
with negative x-components of velocity pointing leftwards. The ‘total force’
applied on the line of nodes was, then, nfx, where n represented the number
of nodes in the line that spanned across the channel width. So the pressure
P applied at the left-hand channel side was accordingly (Rothman, 1988;
Lukas and Kilianova, 1996) expressed as P = nfx /d. That is why, dimensionally,
fx had to have the dimension derived from dimensions of pressure and length,
say, m.u. * l.u./t.u.2 The value of the pressure gradient was obtained as the
quotient of the ‘total force’ nfx and the product of the channel length and the
channel width L * d.

During the study, the system was allowed to relax, i.e. to evolve to a
steady state flow, after the start of each simulation. The steady flow rate was
achieved after about 10000 t.u. for parameter fx values ranging between
0.005-0.06 m.u. * l.u./t.u.2. The smaller the probability value fx, the longer
was the time period needed for achievement of a steady state flow. For
example, for fx = 0.005 – 0.012 m.u. * l.u./t.u.2 it took more than 13 000 t.u.,
as is evident from Fig. 10.13. The x-component of velocity was averaged
over the whole channel length L for each horizontal node layer over 5000
time steps in the steady-state region to obtain velocity profiles for various
pressure gradients. These computer-simulated outputs are presented in Fig.
10.14, exhibiting parabolic velocity profiles typical for Poiseuille flows.
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10.13 Volumetric flow rate of the channel flow as a function of time,
with various values of the parameter fx.



The cellular automata lattice gas approach for fluid flows 387

Twelve independent experiments were carried out, for which the parameter
fx varied from 0 to 0.06 m.u. * l.u./t.u.2. The pressure gradients corresponding
to these fx values were between 0 and 4.6 * 10–4 m.u./(t.u.2 * l.u.). This span
of pressure gradients provided flow rates within the interval 0-0.25 l.u./t.u.
The flow rate q was considered as a volumetric flow rate and could be easily
detected as   q vx = 

r
, where   

r
vx  is the average x component of velocity per

particle space, averaged over the entire lattice. The area where Darcy’s law
was valid for the investigated systems is shown in Fig. 10.15. It can be seen
that the linear dependence between flow rate and pressure gradient held for
low flow rates up to 0.1 l.u./t.u For this region, Darcy’s law was valid. When
the flow rate exceeded the value 0.15 l.u./t.u., the laminar flow probably
changed into a turbulent one which led to the deviation from the linear
relationship. This limit point depends, of course, on the channel width. The
wider the channel is, the smaller the pressure gradient value limit for linear
behaviour.

Fluid flow through two-dimensional fibrous materials.   Two-dimensional
fluid flow through a porous medium that mimics a fibrous material, represented
by a set of parallel pores, was studied in this experiment. The porous material
was placed at the middle of a channel of length L = 450 l.u. and of width
d = 250 3/2  l.u. The thickness of the model of the fibrous material was 90
l.u. and so it covered approximately one-fifth of the channel length. The
width of pores inside the porous material was chosen as 10 l.u., and the
distance between these equidistant and parallel pores was 18 l.u. The fluid
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flow in the channel was confined by solid walls, i.e. fibre surfaces, with the
same boundary conditions as were used in previous computer simulations.
The bounce-back reflections were exerted for fluid particle collisions with
the fibers of the porous material. The fluid particles were generated again
with a density of 3.5 particles per node. A pressure gradient was created in
the same way as described previously, with periodic boundary conditions on
the left and right sides of the channel. In the first series of computer simulations,
the model of the fibrous material was located in a vertical direction, i.e.
perpendicular to the direction of the fluid flow and the channel axis. In the
final group of experiments, porous material crossed the channel axis at an
angle 45∞. Pores in the two-dimensional models of a fibrous material pointed,
in both the cases, to the natural directions of the underlying triangular Bravais
lattice, for more details see Figs. 10.21 and 10.22. They were horizontal in
the first case, while they were inclined at 60∞ in the final one. The two
previously mentioned orientations of fibrous materials in channels enabled
variation of the inlet area of the fibrous material, keeping its internal geometrical
characteristics intact. Several interesting features of the flow through these
porous materials were exhibited during the computer simulations.

At the beginning of the simulations, the steady fluid flow states were
required for the next investigations. From Fig. 10.16, it is evident that the
system with vertical orientation of the porous membrane reached its steady
state just after 1000 t.u. The time requirement was more than 2000 t.u. when
the two-dimensional model of the fibrous material was orientated as shown
in Fig. 10.17. The development of temporal peaks of flow rate, which appeared
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for low time values, was notable. They came into being as a consequence of
the first strike of a group of fluid particles with the fibrous material, when
the x-components of momentum had been reversed on the left-hand side of
the channel with the probability fx. The flight was not hindered by any
porous medium other than the channel walls, which represented a gigantic
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10.16 Particle flow rate as a function of time for various values of the
parameter fx concerned with the fluid flow through a vertical two-
dimensional model of a fibrous material with horizontal pores.
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pore, until they reached the inlet side of the fibrous material. These peaks
were higher for simulations with a declined porous membrane.

The same method as described for the computer experiments with a free
channel was used for both the arrangements of porous membranes to obtain
the velocity profiles. Interesting behaviour in the case of vertical as well as
declined orientations of the fibrous layer, as demonstrated by computer
simulation outputs, can be seen in Figs 10.18 and 10.19. Evidently, the flow
was faster for the vertically orientated porous membranes than that for the
declined ones, under the same pressure gradient values. As a result, the first
case acquired the turbulent character at smaller pressure gradient values. It
may also be noted that the local average velocity maxima corresponded to
the positions of pores in the porous membrane. This effect is typical for
fluids that do not wet pore walls (Yang et al., 2000). In Fig. 10.19, the
velocity profiles of the system with the declined membrane may be noted
too. The two lower curves predicated a laminar flow since their shapes
resembled parabolic profiles. However, with increasing pressure gradient,
the fluid flow probably became turbulent. The deformation of the upper
curves could be explained quite simply. The declined layer of the fibrous
material was in contact with the channel walls on its top and bottom edges.
Two blind porous areas arose there. Particles that had been caught inside
those areas could not come out easily.

Both of those systems behaved in accordance with Darcy’s law, as was
confirmed by the computer simulation outputs presented in Fig. 10.20. A
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10.18 Velocity profiles for various values of the parameter fx
associated with the fluid flow through a vertical porous material. The
horizontal axis represents the position across the channel from the
axis y.
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nearly perfect linear dependence between the flow rate and the pressure
gradient was found in both cases. It seems to be reasonable that the flow rate
was higher when the inlet area of a porous medium was smaller, because
lower resistance of porous medium was experienced and the flow was not so
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10.19 Velocity profiles for various values of parameter fx regarding
fluid flow through declined layer of fibrous material.
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10.20 Linearity of flow rate versus pressure gradient relationships
validates Darcy’s law for fluid flows through vertical and declined
porous materials within the limits of the gradient values used for the
present purpose.
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tortuous. The velocity fields were monitored and expressed graphically for
both the systems for better understanding of these phenomena. Particle velocities
were space-averaged inside 5 l.u. ¥ 5 l.u. squares and, simultaneously, these
space-averaged velocities were time-averaged over 5000 t.u. inside steady-
state regions of flows. Velocity vector arrays were obtained for maximal
pressure gradients used for both systems. Local fluid flows were nearly
parallel to the channel walls at the middle of the channel, as is evident from
Fig. 10.21. In the interface between the free channel area and the porous
membrane appeared a reorganization of fluid velocity directions, because
the flow impacted on the solid parts of the fibrous material and the fluid
particles tried to stream to the pores inside the fibrous layer. The reorganization
of flow directions was even more evident in the regions of contact between
the channel walls and fibrous material than close to the channel axis. An
interesting situation appeared in the system with the declined membrane, as
is visible from Fig. 10.22. Flow was distorted in this case through a greater
part of the channel. The distortions took place on the upper as well as the
bottom channel areas, in front of, and behind, the fibrous material layer as
well, explained by previously described blind pores. On account of the
appearance of tortuous flow, the flow rate decreased compared to the system
where the membrane was placed along the vertical direction. It is also evident
from Fig. 10.22 that the local fluid flow in blind pores close to channel walls
was zero.

It has been mentioned in the introduction of this section that the investigation
is focused here mainly on the fluid flows through fibrous materials in order
to carry out a permeability study. Some interesting problems will be discussed

A

A

10.21 The field of velocity vectors for a fluid flow through a vertical
fibrous layer. The length of each vector corresponds to the space and
the time-averaged speed of the moving particles in a node at the
vicinity. The horizontal side of the rectangular figure is parallel to the
x-axis, while the vertical one has its direction identical to the y-axis.
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in the next part of this section, such as the sound wave motion through the
fibrous materials and porous media in general and its attenuation.

10.4.3 Computer simulation of fluid flow through fibrous
materials affected by sound vibrations

In this subsection, the results of computer simulations for fluid behaviour in
a free channel with a porous medium under the influence of vibrations will
be presented. Here, an algorithm based on the FHP-2 lattice gas cellular
automata model was used. A more detailed description of this model has
been given in the Section 10.3.2. The specificity of the algorithm used has
been described earlier (Ocheretna, 2005b). This algorithm created sound
excitations as harmonic plane waves that travelled through the fluid along
the channel and created variations as pressure waves. The pressure is, as a
rule, proportional to the particle density in the FHP-2 lattice gas cellular
automata model (Rothman, 1988).

Firstly, let the focus be on the transmission of a sound wave through a
fluid and on detection of attenuation of the sound wave in a free channel with
respect to various periods of vibration and densities of the fluid. The free
channel was created on a lattice with length L = 350 l.u. and width
d = 250 3/2  l.u. The two-dimensional channel was confined within solid
walls at its top and bottom sides. Between the walls, liquid particles were
generated. Computer simulation trials were performed for particle densities
1.2 and 3.5 particles per node. Specular reflections of fluid particles from
solid boundaries were used. A fictitious transmitter of harmonic signals was
located on the left-hand side of the channel. These computer experiments

A

A

10.22 The field of velocity vectors for a fluid flow through a declined
layer of fibrous material. The horizontal side of the rectangular figure
is parallel to the x-axis while the vertical one is directed towards the
y-axis.
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were carried out for five different periods T of sound waves: 10, 15, 30, 45
and 60 t.u. The simulation program included the action of a fictitious sound
transducer that was exerted at each time step based on an equation of harmonic
vibrations. The action of the transducer was converted into the probability of
deflections of fluid particles from their original positions within the transducer
area. Fluid particles were considered to bounce in the positive direction of
the x-axis if the value of the transducer displacements were positive, and
were similarly related for the negative values. The bouncing probability fx

inside the transducer area is, in fact, time dependent, and so, the bouncing
probability in the x-component of a particle’s momentum at a node during
one time step at time t is fx(t) = fx,max sin (2pt/T). As a consequence of the
discrete time of lattice gas cellular automata, probabilities fx(t) were coarse-
grained. Periodic boundary conditions on the left- and right-hand sides of the
channel were used.

Information about particle density in each node after the transducer was
obtained as an output of the computer simulation. In order to quantify the
attenuation coefficient and attenuation in general, the value of particle density
obtained for each column of nodes was traced as a function of distance from
the transducer (Ocheretna and Lukas, 2005c). Then the attenuation of the
pressure wave was clearly visible and the attenuation coefficient was
measurable, as shown in Fig. 10.23 (a) and (b). Firstly, maximal deflections
of the particle density about their average values were detected, as shown in
Fig. 10.23 (a). Then a regression curve was interlarded through the dots
obtained from the density profile, and the equation of the regression was
found, as shown in Fig. 10.23 (b). The attenuation coefficient k was taken
from the regression equation and, in the same way, was found for other

10.23 Comparison of attenuation coefficients in the free channel with
various values of time period T of waves for two different particle
densities.
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waves generated with different periods T. Relationships between the attenuation
of sound (pressure) waves and the transducer operational period T, which is
a reciprocal of the transducer frequency, are shown for two different fluid
densities in Fig. 10.23 (c). It can be seen that the sound waves of different
T’s were attenuated quickly in the system with high particle density. It is also
evident that waves of smaller period values T have the highest attenuation
coefficient, which means a more rapid extinction compared to those with
higher values of T.

The same channel size and boundary conditions were used for the other
computer simulations. Two-dimensional models of fibrous materials, with
regular internal structures, were placed adjacent to the transducer area. The
residual free part of the cavity was filled up with fluid particles at a density
of 3.5 particles per node. Having knowledge of the previous results, it was
decided to increase the period T up to 200 t.u. to prolong the life of a wave
before it was quenched. Figure 10.24 shows the density profiles of waves
which propagated through the regular chessboard-like fibrous material layers
of equal thickness but of various porosities: 0.678, 0.736, 0.795, and 0.833.
Density profiles of waves that travelled through the porous materials of
various thicknesses: 10, 30, 50, and 70 l.u., having the same porosity of
0.678, are presented in Fig. 10.25. It is quite clear that the absorption of a
wave depended on the structure and pore size of porous media. The attenuation
of a sound wave increased with decreasing porosity or with increasing thickness
of a porous material.

The concept used here could be used for an investigation into the behaviour
of real porous media, including fibrous materials. However, digital images of
real fibrous materials have to be carefully analyzed to exactly mimic their
internal morphology.

10.5 Sources of further information and advice

Interesting facts about cellular automata creation can be found in Hyötyniemi
(2004). More generalised information regarding the lattice gas cellular automata
may be obtained from some recently published monographs (Rothman and
Zaleski, 1997; Chopard and Droz, 1998) and review articles (Chen et al.,
1991; Boon, 1992). In this chapter, three basic models of lattice gas cellular
automata have been dealt with, but there exist many more. For instance, the
FHP-3 model is a further variant of the FHP-2 model (Rivet, 2001), where
the collision rules are designed to include as many collisions as possible to
achieve a collision efficiency of 59.4 %. The FHP-3 model was later modified
(Bernadin, 1990; McNamara, 1990; Hanon and Boon, 1997) in order to
study diffusion phenomena. The modifications involved consideration of
mixtures of two species of particles that were chemically inert to each other
and had identical mechanical properties. The model was called the ‘coloured
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10.24 Snapshots of particle density in waves that propagate down the x-axis through media of various porosities. The
grey rectangle represents the localization of porous media in the channel. The transducer operates in an area just before
the channel region is filled up by the model of the fibrous material.
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10.25 Instantaneous particle densities in waves propagating through
porous media of various thicknesses. Different degrees of grey
shades represent the gradual growth of the thickness of the model of
fibrous material. The transducer operates in an area just before the
channel region is filled up by the porous medium.

FHP’ model (i.e. CFHP). Grosfils, Boon and Lallemand (in Boon, 1992)
introduced in the beginning of the 1990s a lattice gas cellular automata
model with non-trivial thermodynamics that contained thermal effects. The
model was abbreviated as GBL following the initials of its developers. All
previously mentioned lattice gas cellular automata models were built up on
underlying two-dimensional lattices. The next evolution aimed at three
dimensions.

The frequently used three-dimensional lattice gas cellular automata model
with correct isotropy is the ‘face-centred-hyper-cubic’ model, FCHC. More
information is provided in papers by Henon (1987, 1989, 1992).

One of the main drawbacks of lattice gas cellular automata is their statistical
noise, hence, ‘lattice Boltzmann’ models have been developed to quench this
noise. The first lattice Boltzmann model was proposed by McNamara and
Zanetti (1988) and almost at the same time it was also introduced by Higuera
and Jimenz (1989). Some general books on lattice Boltzmann models were
written later (Wolf-Gladrow, 1999; Succi, 2001).

The most significant application of lattice gas cellular automata is on the
flow of heat and mass through porous media. Basic articles in this area have
been written by Rothman (1988, 1990) followed by Kohring (1991), Chen
et al. (1991a), and Lutsko et al. (1992). The first lattice Boltzmann simulation
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of porous media was performed on a cubic lattice (Foti et al., 1989). Generally
speaking, lattice gas cellular automata and lattice Boltzmann models are
considered to be the most suitable for simulating microhydrodynamic flows
through porous media (Koponen et al., 1998) and hence through fibrous
materials too.

Finally, let the two seemingly similar models in this book, viz. the lattice
gas cellular automata and the auto-models from Chapter 14, entitled, ‘Computer
simulations’, be compared. Lattice gas cellular automata are, in many respects,
akin to Markov random field models, especially in those cases where collision
rules are governed by transition probabilities (Rivet, 2001). Intuitively, a
lattice gas automaton with probabilistic transitions in the collision phase is
a spatial stochastic scheme, where the local configuration of a node is influenced
by that of its neighbouring nodes. The random variable of lattice gas automata
is a numeric integral code representing a local configuration, i.e. the local
distribution of particle velocity vector of the node in question. Both the
models have nearly identical geometry and formal descriptions of basic
notions (Lukas and Chaloupek, 1998) but the construction of their temporal
evolution is quite different. In other words, the great difference between the
lattice gas cellular automata and the auto-models appears in the rules governing
their dynamics. The auto-model dynamics are driven by subsequent alternations
of variable values in restricted number of cells/nodes. Generally, the dynamics
of auto-models that are used frequently allow only subsequent local changes
of a variable in an isolated cell/node or these variable values can be subsequently
exchanged in a couple of cells/nodes only. On the other hand, the collision
laws of lattice gas cellular automata, reflecting chosen conservation laws,
can be run in all lattice nodes simultaneously. The differences between the
two aforementioned discrete models reflect discontinuity in recently developed
theoretical tools describing equilibrium thermodynamics, such as the above
mentioned auto-models, and non-equilibrium thermodynamics, such as the
lattice gas cellular automata. Both the models could be used, obviously, for
the description of a system in an equilibrium state. Auto-models reflect
naturally inter-particle energy exchanges while lattice gas cellular automata
mimic conservation laws of chosen scalar as well as vector observables. A
more detailed discussion about the mutual relationship between the auto-
models, represented by the popularly known Ising model, and the cellular
automata, in general, can be found in Vichniac’s work (Vichniac, 1984).
Lastly, the auto-models and the lattice gas cellular automata may be pointed
out to be different from the point of view, purely formal, that the basic
element of a cellular automaton is known as a ‘node’, while the term ‘cell’
is used in the realm of the auto-model, as presented in Chapter 14.
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11.1 Introduction

Phase change in fabrics can result from moisture sorption/de-sorption processes
in the fiber, from moisture condensation/evaporation in the fabric air void
volume, and from the presence of micro-encapsulated phase-change paraffin
inside textile fabrics with melting and crystallization points set at temperatures
close to comfort values.

The structure of a fabric system consists of a solid fiber and entrapped air.
The ability of the fabric to transport dry heat is largely influenced by the
amount of entrapped air while the ability to transport water vapor is influenced
by the volume of the solid fiber and its arrangement. The solid fiber represents
an obstacle to the moving water vapor molecule, and tends to increase the
evaporative resistance of the fabric. In addition, the solid fiber serves to
absorb or de-absorb moisture, depending on the relative humidity of the
entrapped air in the microclimate and on the type of the solid fiber. For
example, wool fiber can take up to 38% of moisture relative to its own dry
weight. The moisture sorption/de-sorption capability of the fabric influences
the heat and moisture transport across the fabric and its dry and the evaporative
resistance. When fibers absorb moisture, they generate heat. The released
heat raises the temperature of the fiber, which results in an increase of dry
heat flow and a decrease in latent heat flow across the fabric. The opposite
effect takes place in the case of water vapor de-sorption. When thermal
conditions change at the fabric boundaries, the hygroscopic fabric experiences
a delayed effect on heat and moisture transport.

The water content of the fabric does not only include the absorbed water
in the solid fiber and the water vapor in the entrapped microclimate, but also
includes the liquid water that can be present in the void space. This liquid
water can originate from a moist source in which the liquid water is wicked
or it can result from condensation in the case where water vapor continues to
diffuse through a fully-saturated solid fiber. Similar to the sorption/de-sorption
of moisture, liquid condensation and evaporation influence the flow of heat
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and moisture across the fabric by acting as a heat source or sink in the heat
transfer process. In addition, condensation has a significant effect on thermal
comfort because of the uncomfortable sensation of wetness by humans.

With the advancement of technology, phase change occurrence in fabrics
is no longer limited to moisture sorption/de-sorption in the solid fiber and
moisture condensation/evaporation in the void space of the fabric, but it also
occurs by incorporating micro-encapsulated phase change materials (PCM)
inside textile fabrics. The introduction of PCM technology in clothing was
developed and patented in 1987 for the purpose of improving the thermal
performance of textile materials during changes in environmental temperature
conditions (Bryant and Colvin, 1992). PCMs improve the thermal performance
of clothing when subjected to heating or cooling by absorbing or releasing
heat during a phase change at their melting and crystallization points.

Since adsorption/de-sorption is addressed in Chapter 12 of this book, this
chapter will mainly take into consideration the effect of condensation and
the effect of using PCM in fabrics on the transport of heat and moisture
through fibrous medium, and their impacts on clothing properties and comfort.

11.1.1 Mechanism of moisture condensation/evaporation

For condensation to take place in a fibrous medium, a temperature gradient
should exist across the medium such that one side of the fibrous system is
directly exposed to a moist hot air environment or is being sprayed with
liquid water, while the other side of the fabric is subject to a low temperature.
In addition, the fibrous system should have a low water vapor permeability
to achieve condensation. This situation is common in the case of human
clothing systems, where clothing can be sandwiched between a hot humid
human skin and an outer lining fibrous layer of low water vapor permeability
exposed to a cold air stream.

When a dry hygroscopic fibrous layer is suddenly exposed to the above-
mentioned conditions, the water vapor originating at the hot side will diffuse
into the fibrous medium. First, there will be a rapid moisture uptake by the
dry solid fiber. The heat released as a result of adsorption by the fiber will
raise the temperature of the fibers and increase their water vapor pressure. As
a result, the vapor pressure gradient between the absorbed water and the
microclimate water vapor will be reduced, causing a slow down in the rate of
adsorption. The increase in the fiber diameter (swelling) due to moisture
uptake will lower the permeability of the fabric system to water vapor (see
Chapter 9 for discussion of sorption kinetics). The fabric will remain dry if
the water vapor pressure of the microclimate is greater than the water vapor
pressure of the bound water, and if the vapor concentration in the microclimate
is less than the saturation vapor concentration at the fabric local temperature.
When equilibrium between the absorbed water in the solid fiber and the
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microclimate is established, the diffused water vapor from the humid side
will be transferred to the environment without the occurrence of condensation.
In this case, the transient effect of absorption ends, but the dry and latent
heat transport from the hot humid source continues and the fibrous medium
does not become wet. If the vapor concentration is increased to a level such
that somewhere within the fibrous system moisture saturation is reached,
condensation will occur. The condition of saturation could be attained by
increasing the concentration of the water vapor in the microclimate, which
can be achieved by either increasing the water vapor concentration at the
warm side of the system or by lowering the permeability of the fabric to
water vapor. In addition, increasing the temperature gradient across the fabric
by lowering the temperature of the colder side will cause the condition of
saturation in the microclimate to occur at lower microclimate water vapor
concentration.

Condensation is a phenomenon that is more likely to take place when the
fibrous medium is exposed to large temperature differences and to a high
humid source that causes the local relative humidity of the microclimate to
reach 100%. Once the microclimate of the fibrous system attains saturation
while there is still extra moisture diffusing into it, condensation continues to
occur. Therefore, unlike the absorption process, which is transient in nature,
the condensation process is continuous.

Since condensation takes time, a state of transitory super-saturation may
exist in the microclimate causing the relative humidity to exceed 100%. Yet
this state of super-saturation does not last, and given enough time, the excess
moisture will condense, thus reducing the relative humidity to 100% (Jones,
1992). The condensation process will release the heat of condensation, affecting
both temperature and concentration gradients across the fabric. Condensation
in a fibrous medium can occur anywhere within the fibrous medium when
the local vapor pressure rises above the saturation vapor pressure at that
location temperature. The location of the condensation can be predicted by
utilizing the saturation vapor line and water vapor pressure line (Keighley,
1985; Ruckman, 1997). Figure 11.1 shows a schematic of water vapor pressure
variation against temperature of the fibrous medium (curve A) and the
corresponding saturation vapor pressure (curve B). Saturation line curve B
shows the water vapor pressure corresponding to 100% relative humidity at
a specific temperature. If the microclimate water pressure at that temperature
exceeds the saturation temperature, condensation will occur at that location.
There is a linear relation between saturated water vapor pressure and
temperature. At high temperatures, saturation vapor pressure is already high,
and for condensation to occur, the local water vapor pressure should be
greater than the saturation pressure. For that reason, condensation is more
likely to occur close to the colder boundary of the fibrous system.

Contrary to the case for condensation, evaporation of liquid water occurs
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when the relative humidity of the surrounding microclimate in the void space
is less than 100%. When liquid water exists in the fabric void space, a saturated
boundary layer is formed at the interface between the liquid and the
microclimate air. If the vapor pressure of this boundary is greater than the
vapor pressure of the microclimate air, then evaporation occurs. In this case,
the rate of moisture leaving the fibrous system is greater than the rate of
moisture going into the system. Evaporation of moisture in a fibrous system
usually moves from the warm moist boundary of the fibrous medium across
the gas-filled void space where it may condense or diffuse out of the fibrous
system, depending on the coupled moisture and temperature distributions.

11.1.2 Effect of condensation on clothing heat transfer
and comfort

Clothing is a crucial factor in determining human thermal comfort. The
purpose of clothing is to maintain a uniform body temperature under different
body activity levels and different environment temperatures. In addition,
clothing keeps the human body skin dry by preventing the accumulation of
sweat on the human skin and by allowing the perspired body water to flow
to the outside environment. In most comfortable environmental conditions at
low activity levels, the perspired sweat from the skin escapes through clothing
without the incidence of condensation since the rate of perspiration is low. At
higher activity levels, the perspiration increases to a level that may cause
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11.1 Schematic of the water vapor pressure distribution in a fibrous
medium against its temperature variation (curve A) and the
corresponding saturation vapor pressure distribution (curve B).
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condensation to occur within the clothing system. The occurrence of sweat
in the clothing system is generally affected by the vapor permeability of the
different fabric layers constituting the clothing ensemble, the skin vapor
concentration, and the environment temperature.

Comfortable clothing should not only provide human thermal comfort
sensation, but should also give the wearer a minimum awareness of this
comfort, as was suggested by Keighley (1985). The condensation of sweat
on the clothing layers affects both the human sensation of comfort and the
attentiveness of the wearer to the clothing ensemble. When condensation
occurs in clothing, the moisture permeability of the fabric decreases, allowing
more sweat to accumulate on the skin, thus affecting the human thermal
sensation of comfort. In addition, the pressure of the garment on the human
skin increases because of its increased weight. As a result, the awareness of
the clothing wearer increases and the clothing system will be considered
uncomfortable.

The condensation process liberates heat of condensation causing the local
clothing temperature to increase at the condensation location, thus changing
the temperature gradient across the clothing that existed prior to the
condensation process. In most cases, the temperature gradient across the
clothing system uniformly increases from the human skin to the outside
environment. As condensation occurs, the temperature gradient from the
skin to the location of condensation decreases and the temperature gradient
from the spot of condensation to the outside environment increases (Lotens,
1993). Since the heat of condensation at the human skin does not leave the
human clothing system because of the perspired moisture, it may be suggested
that the sweating process is thermally ineffective in providing the necessary
heat loss from the human body. But as was explained by Lotens (Lotens,
1993), the heat has already left the human skin and passed a good distance
in the clothing system away from the human skin, causing an increase in the
temperature of the outer clothing layer where condensation is more likely to
take place. The increase in temperature of the outer layer causes an increase
in the dry heat transport from clothing, which may compensate for the decrease
in the latent heat transport from the clothing system. However, in this case,
the clothing will be wet and will be considered uncomfortable.

11.1.3 Mechanism of phase change in PCM fabrics

Unlike the phase change mechanism in the condensation/evaporation process,
which depends on the moisture and temperature gradient across the fabric,
the mechanism of the phase change process in PCM fabrics is a temperature-
driven process. It mainly depends on the temperature and the type of the
PCM that is encapsulated in a protective wrapping or microcapsules of a few
microns in diameter. The microcapsules are incorporated into the fibers of



Phase change in fabrics 407

the fabric by the wet spinning process or coated onto the surface of the fabric
substrate (Pause, 1995). Microcapsules protect the PCM and prevent its
leakage during its liquid phase. PCMs are combinations of different types of
paraffin (octadecane, nonadecane, hexadecane, etc…), each with a different
melting and crystallization point. Changing the proportionate amounts of
each paraffin type can yield the desired physical properties (melting and
crystallization). When the encapsulated PCM is subject to heating, it absorbs
heat energy and undergoes a phase change as it goes from solid to liquid.
This phase change produces a temporary cooling effect. Similarly, when a
PCM fabric is subject to a cold environment where the temperature is below
the crystallization point, the micro-capsulated liquid PCM will change back
to the solid phase producing a temporary warming effect.

11.2 Modeling condensation/evaporation in thin

clothing layers

The theoretical modeling of the coupled heat and moisture transfer with
phase change in a clothing fibrous medium relies on extensive studies performed
by many researchers on the heat and mass transfer process in porous media.
Coupled heat and mass transfer with condensation/evaporation is of a special
importance to the building insulation industry and to the research studies on
energy conservation (Vafai and Sarkar, 1986; Vafai and Whitaker, 1986).
Condensation can lead to an increase in the thermal conductivity of the
insulating material, since the thermal conductivity of water is approximately
24 times that of the conductivity of the air. As a result, the insulating material
loses its basic role in the reduction of heat transfer and in conserving energy.
In addition, condensation usually results in corrosion and deterioration of
the quality of the insulating material. Most research on modeling heat and
mass transfer with phase change in porous media is applicable to highly
porous thin textile materials. The approach to modeling the condensation/
evaporation process in clothing was based on the fundamental studies of
Henry (1948) and the subsequent models that were developed by Farnwoth
(1986) and by Lotens et al. (1995) for highly porous media.

11.2.1 Farnworth model
Theoretical modeling of the combined heat and water vapor transport through
clothing with sorption and condensation started with the model of Farnworth
(1986). This model is a simplified expression of Henry’s model with restrictive
assumptions limiting the model applicability to a multi-layered clothing system
where each layer is characterized by a uniform temperature and moisture
content. The assumptions made by Farnworth were as follows.

(i) There is no convective airflow and/or convective transport of liquid.
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(ii) The mass of absorbed water is proportional to the relative humidity of
the microclimate with a restrictive upper limit of absorbed water vapor.
This assumption is important to limit the vapor pressure of the absorbed
water to its upper limit, which is the saturation water vapor pressure.

(iii) Clothing radiation can be neglected.

Based on the above assumptions, Farnworth derived the following conservation
equations for mass and heat transport, respectively:
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where Mi (kg) is the total moisture in the clothing layer which is the summation
of the liquid water present in the void space of the fabric layer and the
absorbed water vapor bound to the solid fiber of the fabric layer, Ci (J/kg · K)
is the heat capacity per unit area of the clothing layer, Ti (∞C) and Pi (kPa) are
the temperature and water vapor pressure of the clothing layer respectively,
Rd,i (m

2 · ∞C/W) and Re,i (m
2 ◊ kPa/W) are the dry and evaporative resistances

characteristic of each clothing layer, Qci (W/m2) is the quantity of heat per
unit area which is released in the layer because of moisture adsorption and
condensation, and i represents the layer index.

The model of Farnworth is easy to use but it is too simplistic to be applied
to the whole clothing system. The assumption of linear regain increase with
relative humidity presents a serious deficiency in the model. Moisture regain
at low and high relative humidity is far from being linear (Chapter 12). If the
empirical equilibrium relation between regain and relative humidity is used,
the model will still remain limited due to the lumped moisture content and
temperature value for each fabric layer. When condensation/ evaporation is
taking place, the Farnworth model cannot be used for studying the temperature
and moisture distribution inside a fibrous system.

11.2.2 Lotens model

The Lotens model is similar to the Farnworth model in its applicability to a
clothing ensemble system and in its ability to integrate the clothing model
with a nude human model (Lotens, 1993). However, the Lotens model presents
a simple physical condensation theory with its associated effects on moisture
distribution, temperature, and total heat transfer from the clothing ensemble.
The Lotens model can predict the thermal performance of permeable and
impermeable garments in cold and hot environmental conditions (Lotens
et al., 1995).
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Unlike the absorption phenomenon, which is a transient process lasting
for a limited time depending on the fabric hygroscopicity property, condensation
is a continuous process. According to Lotens (1993), this continuing nature
of condensation can actually simplify the modeling of the condensation
process and allow the incorporation of condensation in clothed human body
modeling. Lotens’ model divides the clothing system into: (i) an inner
underclothing layer; (ii) an outer clothing layer; and (iii) an outer air layer,
as shown in Fig. 11.2. The outer layer is characterized by a lower permeability
compared to the inner, underclothing layer, to allow condensation to occur.

Based on the mass and heat balance between the clothing layers and the
outer environmental air layer, the mass and heat transfer resistance network
is constructed, neglecting the ventilation mass and heat resistance and the
radiative heat transfer resistance.
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where Re is the evaporative heat resistance m2 · kPa/W, Rd is the dry heat
transfer resistance m2 · K/W, hfg is the heat of condensation and Y is the
condensation rate kg/m2 · s. When condensation occurs, P1 = Psat(T1), and
the three unknowns in the above equations, Y, P1 and T1 can be calculated.
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11.2 Lotens clothing system model.
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The above simple clothing ensemble model is integrated with the human
nude model by Lotens after taking into account the area increase because of
the clothing and the ventilation of the inner surface of the outer layer (Lotens,
1993).

The simple clothing model developed by Lotens explains the effect of the
condensation process on the dry and evaporative resistances of clothing. Dry
and evaporative heat transfer leaving the skin, (Qd, Qe), are not the same as
the heat dissipated to the outside environment during moisture condensation.
During the occurrence of condensation, the rate of moisture leaving the skin
is not equal to the moisture leaving the human clothing system, and thus
there will be an increase in the temperature of the clothing ensemble at the
spot of condensation. Consequently, the dry heat that is dissipated from the
human skin is not the same as the dry heat reaching the outside environment.
As a result of condensation, the apparent dry and evaporative resistances
(Rdt, Ret) can be calculated as follows:
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where Rdt is the apparent clothing ensemble dry heat transfer resistance
m2 · ∞C/W, and Ret is the apparent clothing ensemble evaporative heat resistance
m2 · kPa/W.

Because of condensation, the dry resistance becomes smaller and the
evaporative resistance becomes larger. In reality, condensation represents a
link between the dry and latent heat that leaves the human skin. Condensation
balances the decrease in the latent heat transfer by an increase in dry heat
transfer.

Experimental verification of Lotens condensation theory.   The condensation
theory has been validated by the experimental findings of Lotens and other
co-authors. Lotens’ aim was to experimentally determine the effect of
condensation on the latent and dry heat flows through different clothing
ensembles and the resulting effect on the apparent dry and evaporative heat
resistances. In the experiment of Van de Linde and Lotens (1983), the
condensation effect was tested on human subjects wearing impermeable
garments while exercising on a treadmill in the presence and absence of
sweat from the skin. The absence of sweat was achieved by wrapping the
subjects with plastic foil. Experimental findings showed that, in the absence
of sweat, the impermeable garments showed higher dry resistance. The lower
resistance of the garment in the presence of sweat is attributed to the presence
of sweat condensation. The condensation theory has also been checked by
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the experimental study of Havenith and Lotens (1984). In this study,
impermeable garments were compared to semi-permeable garments in terms
of their heat transport ability from human subjects exercising on a bicycle
ergo meter in an environment of 14 ∞C temperature and 90% relative humidity.
The experiments showed that the impermeable garments transport more dry
heat compared to the semi permeable garments and that their outer surface
temperature is higher due to sweat condensation. Van De Linde (1987) tested
the condensation theory on the ability of impermeable garments to transport
the body-generated heat for different exercise rates and ambient temperature.
While exercising in cool environmental conditions at 16 ∞C, the condensation
of sweat generated by the increased human subject work rate was reported to
increase the outer garment temperature and to reduce its dry resistance. The
same phenomenon was also observed at a higher environmental temperature
of 26 ∞C (Van De Linde, 1987).

Lotens (1995) performed numerical simulations to compare the accuracy
of his model with the experimental results and to determine the important
parameters that evoke condensation. He found that the skin vapor concentration,
the vapor resistance of the outer layer, and the air temperature are the important
parameters that evoke condensation.

11.3 Modeling condensation/evaporation in a

fibrous medium

From the simplified lumped models, it is clear that the effect of condensation
on the heat and moisture transfer is captured. These simple models are able
to describe the heat and mass transfer with condensation in the clothing
ensemble and can be easily integrated with the human thermal model. However,
they incorporate only the diffusion of heat and the diffusion of water vapor
within the clothing system, and they ignore convection of air and liquid
wicking. In addition, the lumped modeling approach relies on the physical
dry and evaporative resistance properties of the fabric, which may change
when condensation occurs. In the following section, a more accurate
mathematical modeling of condensation within fibrous medium is presented.

11.3.1 Mathematical modeling of condensation

Figure 11.3 is a schematic of a fibrous porous system model consisting of the
following: solid fiber, absorbed water vapor to the solid fiber, gaseous mixture
of water vapor and air, and liquid water in the void space. To correctly model
condensation/evaporation with sorption in a clothing system, the model should
include the following features:

∑ The ability to simulate heat and moisture in space and time without lumping
for the heat and concentration parameters.
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∑ A mechanism of the moisture water vapor movement that could take place
due to gradients in the partial water vapor and the convective airflow due
to pressure gradients across the clothing system. In situations when there
is no total pressure gradient, during sedentary human activity, water vapor
diffuses in a clothing ensemble by the driving force of the partial water
vapor pressure gradient between the human skin and the outside environment.
In movement conditions, pressure gradients can be induced across the
fabric leading to bulk moisture movement.

∑ Water liquid transport is driven by capillary forces and surface tension.
The inclusion of liquid transport is important for modeling coupled heat
and the moisture transfer process with condensation because liquid moisture
will affect the pore moisture content and the condition of saturation. In
addition, the transport of liquid moisture across textiles increases their
thermal conductivity, and thus affects the transport of heat across the
clothing system.

∑ The transport of energy that can occur by conduction, as well as convection
of the phases that are able to move, i.e. liquid water, water vapor and dry
air. The sorption/de-sorption of the hygroscopic fibers with their associated
heat of sorption should not be neglected because most textile fibers have
a certain degree of moisture absorption ability. The fiber absorption
characteristic significantly influences the heat and moisture transfer
processes.

The above-mentioned inclusions can simultaneously be incorporated with

11.3 The fibrous medium system model consisting of the solid fiber,
the water vapor absorbed by the solid fiber, the gaseous mixture of
water vapor and air, and liquid water in the void space.
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the theoretical development of the coupled heat and moisture processes and
condensation, after applying the following simplifying assumptions:

(i) The porous system is assumed to be in local thermal equilibrium. Local
thermodynamic equilibrium exists if the pore dimension of the fibrous
medium is very small;

(ii) the volume changes of the fibers due to changes in moisture content,
and therefore the porosity, is constant; and

(iii) the fibrous media is homogenous and isotropic.

With these assumptions, the governing equations of heat and moisture transport
with condensation/evaporation can be developed using the considerable research
work carried out in the literature by Gibson and Charmachi (1997), Zhongxuan
et al. (2004), and Xiaoyin and Jintu (2004). The formulation adapted from
Zhongxuan et al. (2004) will be presented in this section.

The water vapor conservation distribution is governed by the following
equation:
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where S is the liquid water volumetric saturation (liquid volume/pore volume),
e is the porosity of the fabric, rv is the density of water vapor, W is the
evaporation or condensation flux of water in the void space (kg/m3 · s), Cf is
the moisture concentration in the fiber (kg/m3), JvD is the mass flux of water
vapor by diffusion (kg/m2 · s), JvC is the mass flux of water vapor by bulk
flow (kg/m2 · s). The first term on the left-hand side of Equation [11.7] is the
storage term of the water vapor in the void space, the second term is the
absorbed water vapor stored in the solid fiber, and the third term, W, is the
evaporation/condensation term. The right-hand side of Equation [11.7]
represents the net diffusive and convective flows of water vapor. The moisture
absorbed in the solid fiber can be calculated by using the Fickian law of
diffusion as follows:
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where Df is the fiber diffusion coefficient and r is the radial coordinate. The
fiber diffusion coefficient primarily depends on the stage of absorption, the
rapid stage of moisture uptake, and the slower stage of absorption. The
moisture boundary condition at the fiber surface is determined by assuming
instantaneous moisture equilibrium with the microclimate air. Thus, the
moisture content at the fiber surface can be determined by the relative humidity
of the microclimate air and temperature. It can be obtained directly from the
moisture sorption isotherm of the fiber.
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The diffusion of water vapor flux in the voids is described by Stefen’s law
(Shuye and Guanyu, 1997) and can be represented by the following expression
after substituting for the diffusion coefficient of the water vapor in terms of
temperature and gaseous pressure:
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where Pa is the partial pressure of dry air and Pv is the partial pressure of
water vapor. The convective water vapor flux in the fibrous medium is

JvC = rvu [11.10]

Since Darcy’s law holds in the pore of the inter fiber, the convective velocity,
u, can be written as
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where k is the intrinsic permeability of the fibrous media, krg is the relative
permeability of the gas, mg is the dynamic viscosity of the water vapor, and
Pg = Pa + Pv is the gaseous pressure. The condensation/evaporation term W
of Equation [11.7] is given by Qing-Yong (2000) as
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where Sf is the specific area of the fabric, hw is the mass transfer coefficient,
Mw is the molecular mass of water vapor, R is the universal gas constant, and
Ps(T) is the saturation water vapor.

The liquid moisture mass conservation equation is given by
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where rw is the density of liquid moisture. The first term in Equation [11.13]
represents the storage of liquid water in the void, and the second term represents
the condensation/evaporation flux. The right-hand side of Equation [11.13]
represents the net capillary flow of liquid water and can be written (Nasrallah
and Perre, 1988) as
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where Krw is the relative permeability of the liquid water, mw is the dynamic
viscosity of the water, and Pc is the capillary pressure of the fabric function
of saturation and surface tension.
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The dry air mass conservation equation is:
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The first term in Equation [11.15] represents the dry air storage in the void
space, and the right-hand side first and second terms represent the diffusive
dry air mass flux and the convective dry air mass flux, respectively. The dry
air mass flux JaD is equal in magnitude to the water vapor diffusive mass flux
given by

JaD = –JvD [11.16]

and the convective air mass flux JaC can be expressed as
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where krg is the relative permeability of the gas and mg is the dynamic
viscosity of the gaseous phase.

The energy equation is represented by the following:
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where Cv is the volumetric heat capacity of the fabric (J/m3 ·K), Kc thermal
conductivity of the fabric (W/m ·K), l heat of sorption (J/kg), and Qc is the
heat flux of condensation or evaporation (J/m3·s). The first term in the
energy equation represents the heat storage term in the fabric, the second
term represents energy released by sorption, the third term represents the
heat released by condensation, and the right-hand side represents the net
conducted heat flow.

To solve the conservation Equations [11.7] through [11.18] of liquid
moisture, water vapor, dry air, and energy, initial and boundary conditions
need to be specified. The initial values of temperature, water vapor
concentration, degree of saturation, absorbed moisture in the solid fiber, and
the gaseous pressure in the fibrous medium should be known. In most practical
cases, the initial conditions are uniform throughout the medium. The boundary
conditions can be a constant temperature, saturation, and gaseous pressure or
can be a convective air flow condition. Uniform initial conditions for a 1-D
system can be expressed as

T(x, t = 0) = To, rv(x, t = 0) = rvo, S(x, t = 0) = So

Pg(x, t = 0) = pgo, Cf (x, t = 0) = f (rvo, To) [11.19]

while boundary conditions can be written as
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Other boundary conditions can be used depending on the physical system
under consideration.

11.4 Effect of fabric physical properties on the

condensation/evaporation process

11.4.1 Effect of vapor hydraulic permeability

The hydraulic conductivity of the fabric defines the ease with which water
vapor passes in the voids of the fibrous media. This factor is determined by
the permeability of the fabric to air flow when subject to a pressure difference.
The type of yarn count, twist, and weave affect the permeability and thus the
hydraulic conductivity of the fibrous media. For very small values of vapor
permeability, the moisture movement within the fibrous media is only by
diffusion. In such a case, it was found by Xiaoyin and Jintu (2004) that
moisture distribution for a fibrous media sandwiched between a hot moist
boundary and a cold boundary is close to a convex shape, with a relatively
small variation in moisture content. Increasing the vapor permeability will
lead to an increase in the amount of condensed water since more water will
be transported across the fibrous media. However, with larger values of
vapor permeability, the moisture content close to the warm boundary decreases
while the moisture content close to the cold boundary increases, resulting in
the occurrence of moisture condensation closer to the cold boundary. Fabrics
characterized by high porosity are more advantageous for thermal comfort
and heat loss than impermeable fabrics, because high porosity makes the wet
region of the fibrous media occur away from the skin while minimizing the
heat loss from the skin, since no condensation occurs in the fibrous media
adjacent to the skin.

11.4.2 Effect of liquid water permeability

The transport mechanism of liquid water in a fibrous media is governed by
its capillarity and by the liquid permeability of the fibrous medium. The
capillarity represents the driving force for the liquid movement, whereas the
permeability describes the ease with which water moves through the fibrous
medium. For a fibrous medium with zero permeability, the condensate liquid
moisture will be immobile. For higher liquid permeability values, the condensate
moisture will be mobile and the condensates will move from the region of
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higher moisture content towards the region of lower water content. The
findings of Xiaoyin and Jintu (2004) showed that, with the increase of liquid
moisture mobility, the moisture distribution of a fibrous media bounded by
the extreme boundary conditions of warm moist and cold dry conditions will
shift from concave to almost even. The mobility of the liquid moisture will
definitely affect both thermal comfort and heat loss from the skin or warm
boundary.

11.4.3 Effect of material hygroscopicity

As the hygroscopicity of the fabric increases, its moisture content will increase,
mainly due to the water absorbed into the solid fiber. In steady-state conditions,
this increase in moisture content leads to a decrease in the insulation value
of the fibrous material, and thus more heat loss is observed from the fibrous
medium (Xiaoyin and Jintu, 2004). However, during transient conditions,
hygroscopic wool battings have shown less condensation when compared to
non-hygroscopic battings of polypropylene (Jintu et al., 2004). For the same
boundary conditions across the battings assembly, Jintu et al. (2004) showed
that condensation starts after a short time for the propylene battings whereas
condensation starts to appear in the wool battings after 4 hours. Furthermore,
in transient conditions, the hygroscopicity of the fibrous medium decreases
the heat loss from the human skin because of the heat liberated by the
moisture absorption. Therefore, it is suggested that hygroscopic fabrics can
be advantageous for cold protective clothing in transient conditions.

11.4.4 Effect of pressure difference across the fibrous
medium

During exercise, the human limbs move back and forth forcing the renewal
of the microclimate air existing between the skin and the clothing layers.
The renewal of the microclimate air is driven by the pressure difference
between the microclimate environment and the outside atmospheric motion.
The pressure difference alternates between a positive value forcing the
microclimate air to be discharged out of the clothing system and a negative
value allowing atmospheric air to fill the space between the skin and the
human clothing ensemble. The atmospheric pressure gradient developed during
the limb motion will definitely affect the fibrous water vapor distribution and
to a lesser extent the liquid moisture distribution. The liquid water movement
is due to gradients in capillarity and to atmospheric pressures. Fengzhi et al.
(2004) found that water vapor concentration in the void space is largely
affected by the pressure difference and that the concentration of water vapor
was high at the location of the lower pressure. Fengzhi et al. (2004) also
found that the liquid water distribution was not significantly affected by
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atmospheric pressure, as was the case with water vapor when the atmospheric
pressure was increased from 1.0135 ¥ 105 Pa to 2.0135 ¥ 105 Pa.

11.5 Modeling heating and moisture transfer

in PCM fabrics

The effect of the phase change that takes place in PCM fabrics is transitory.
This transitory property is similar to sorption/de-sorption and different from
condensation/evaporation phenomena. It lasts for a finite time, determined
by the quantity of encapsulated paraffin and the thermal load impending on
the PCM fabric. When a PCM fabric is exposed to heating from the sun or
a hot environment, it will absorb this transient heat as it changes phase from
solid to liquid, and it will prevent the temperature of the fabric from rising
by keeping it constant at the melting point temperature of the PCM. Once the
PCM has completely melted, its transient effect will cease and the temperature
of the fabric will rise. In a similar manner, when a PCM fabric is subject to
a cold environment, where the temperature is below the crystallization
temperature, it will interrupt the cooling effect of the fabric structure by
changing from liquid to solid, and the temperature of the fabric will stay
constant at the crystallization temperature. Once all the PCM has crystallized,
the fabric temperature will drop, and the PCM will have no effect on the
fabric’s thermal performance. Thus, the thermal performance of a PCM depends
on the phase temperature, the amount of PCM that is encapsulated, and the
amount of energy it absorbs or releases during a phase change.

Research studies on quantifying the effect of PCMs in clothing on heat
flow from the body during sensible temperature transients were conducted
by Shim (1999) and Shim et al. (2001). Shim et al. (2001) measured the
effect of one and two layers of PCM clothing materials on reducing the heat
loss or gain from a thermal manikin as it moved from a warm chamber to a
cold chamber and back again. Their results indicated that the heating and
cooling effects lasted approximately 15 min and that the heat release by the
PCM in a cold environment decreased the heat loss by 6.5W for the one layer
PCM clothing and 13.5W for the two-layer PCM clothing, compared to non-
PCM suits. Shim and McCullough (2000) experimentally studied the effects
of PCM-ski ensembles on the comfort of human subjects during exercise,
and they found no appreciable effect of PCM material on comfort compared
to non-PCM-ski clothing. The study of Shim and McCullough (2000) on the
effect of PCM-ski ensembles on exercise was done after conditioning the
human subjects inside cold environmental chambers.

The transport processes of heat and moisture from the human body are
enhanced by the ventilating motion of air through the fabric initiated by the
relative motion of the human with respect to the environment. Periodic renewal
of the air adjacent to the skin by air coming from the environment has a
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significant effect on the heat loss from the body and on comfort sensations.
When sudden changes in the environmental air take place, it is desirable to
delay the adjacent air temperature swings to reduce sudden heat loss or gain
from the body. During exercise in cold environments, there is a periodic
ventilation of the skin adjacent layer. Cold environmental air is pumped
inside the clothing ensemble, while warm air heated by the human skin is
forced to move out. During the air passage into and out of the clothing
system, the moving air is intercepted by the PCM fabrics. It is questionable
whether the PCM fabric is actually able to regenerate itself during exercise
at steady-state environmental conditions, and whether the PCM fabric can
act as a heat exchanger between the incoming cold air and the leaving warm
air. The study of Ghali et al. (2004) addressed this question by performing
experiments to investigate the effect of PCMs on clothing during periodic
ventilation. The study of Ghali et al. (2004) also included a model and a
numerical investigation of the transient effect of the phase change material
during the sinusoidal motion pattern of the fabric induced by body movement
upon exercise. In their work, PCMs were incorporated in a numerical three-
node model (Chapter 8), for the purpose of studying their transient effect on
body heat loss during exercise when subjected to sudden environmental
conditions from warm indoor air to cold outdoor air. In deriving the energy
balance for the fabric, the following assumptions were made: (i) the PCM is
homogeneous and isotropic; (ii) the thermophysical properties of the PCM
are constant in each phase; (iii) the phase change occurs at a single temperature;
and (iv) the difference in density between solid and liquid phases is negligible.

The study findings of Ghali et al. (2004) indicated that the heating effect
lasts approximately 12.5 minutes, depending on the PCM percentage and
cold outdoor conditions. The heat released by PCMs decreased the clothed-
body heat loss by an average of 40–55 W/m2 depending on the ventilation
frequency and the crystallization temperature of the PCM. A typical PCM
percentage of the total mass of the fabric is about 20%. It is not recommended
by the textile industry to increase the percentage of PCM because it will
increase the cost of the fabric as well as its weight. The 20% is actually
representative of what is used by industrial manufacturers.

The sensitivity of the PCM fabric performance to the amount of the PCM
present in the fabric was also considered in the work of Ghali et al. (2004).
The PCM percentage, a, was found to affect the length of time of the period
during which the phase change process takes place but had negligible effect
on the sensible heat loss from the skin when compared to non-PCM fabric.
The reported durations of the phase change effect corresponding to a = 0,
20%, 30% and 40% PCM are 0, 8.23 min, 12.26 min and 16.6 min, respectively,
due to a change from an indoor environment at 26 ∞C and relative humidity
of 50% to an outdoor environment at 2 ∞C and relative humidity of 80%. The
experimental results of Ghali at al. (2004) revealed that, under steady-state
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environmental conditions, the oscillating PCM fabric has no effect on the
dry fabric resistance, even though the measured sensible heat loss increases
with the decreasing air temperature of the environmental chamber. When a
sudden change in ambient temperature occurs, the PCM fabric delays the
transient response and decreases body heat loss. PCM has no effect on thermal
performance of the fabric during exercise in steady-state environmental
conditions.

11.6 Conclusions

Phase change is a phenomenon that occurs in a fibrous medium as a result of
sorption/de-sorption of fiber moisture, condensation/evaporation of moisture
in the void place, and melting/solidification of PCM when incorporated into
the fabric structure. Both melting/solidification of PCM and sorption/de-
sorption of fiber moisture processes are transitory in nature. Both are important
in the study of transient thermal sensations of human subjects in changing
environmental conditions. Their effect on the thermal performance of the
fabric primarily depends on the hygroscopicity of the fabric, the amount of
encapsulated PCM, and other environmental factors. Modeling the heat and
moisture transfer for the sorption/de-sorption phenomena should include the
diffusion process of moisture into the fiber, the diffusion of moisture in the
void space, and the convective flow of moisture. Other complications are
important in modeling sorption/de-sorption and include the change of the
fabric permeability due to moisture sorption (Gibson, 1996) and the need to
consider different temperatures for the different phases that constitute the
fabric structure.

The condensation/evaporation phase change process is different from the
other phase change phenomena by its steady-state nature. Evaporation and/
or condensation take place depending on the temperature and moisture
distribution. The condensation process continues provided that there is a
supply of moisture and that the void water vapor pressure exceeds saturation.
The condensation phenomenon is relevant to the study of thermal comfort
since it leads to the loss of the main role of clothing in keeping the human
body dry. It also affects the thermal performance of fabrics by decreasing the
dry resistance of the fabric and increasing the fabric’s evaporative resistance.
Modeling condensation/evaporation is more complicated than modeling
sorption/de-sorption. In addition to including diffusive and convective moisture
vapor, modeling condensation should also include the liquid flow of moisture.
Current research models describing condensation account for all complicated
factors such as hygroscopic sorption, convective and diffusion of moisture,
capillary flow of liquid moisture, and coupled diffusion of heat and mass
flow. However, efforts to incorporate such a detailed condensation clothing
fibrous model with the human thermal model have relied on simple human
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thermal physiology models (Gibson, 1996) while the detailed human thermal
physiology models that are integrated with condensation clothing models
have relied on simple clothing condensation models (Lotens, 1993).

11.7 Nomenclature

Cf moisture concentration in the fiber (kg/m3)
Ci heat capacity per unit area of the clothing layer (J/kg · K)
Cv volumetric heat capacity of the fabric (J/m3·K)
Df fiber diffusion coefficient (m3/s)
hfg heat of vaporization (J/kg)
hw mass transfer coefficient (m/s)
JaC convective dry air mass flux (kg/m2 · s)
JaD diffusive dry air mass flux (kg/m2 · s)
Jl net capillary liquid moisture flow (kg/m2 · s)
JvC mass flux of water vapor by bulk flow (kg/m2 · s)
JvD mass flux of water vapor by diffusion (kg/m2 · s)
k intrinsic permeability (m2)
Kc thermal conductivity of the fabric (W/m ·K)
krg relative permeability of the gas
Krw relative permeability of the liquid water
Mi total moisture in the clothing layer i (kg)
Pa partial pressure of dry air (kPa)
Pc capillary pressure (kg/m ·s2)
Pi water vapor pressure of clothing layer i (kPa)
Ps skin vapor pressure (kPa)
Psat saturation pressure (kPa)
Pv partial pressure of water vapor (kPa)
Qc heat flux of condensation or evaporation (J/m3· s)
Qci condensation/absorption heat release (W/m2)
Qd dry heat transfer (W/m2)
Qe evaporative heat transfer (W/m2)
Rd,i fabric dry resistance of clothing layer i (m2 ·∞C/W)
Rdt apparent fabric dry resistance (m2 · ∞C/W)
Re,i fabric evaporative resistance of clothing layer i (m2 kPa/W)
Ret apparent fabric evaporative resistance (m2 ·kPa/W)
S liquid water volumetric saturation (liquid volume/pore volume)
Sf specific area (1/m)
Ti temperature of the clothing layer (∞C)
W evaporation or condensation flux of water in the void space

(kg/m3 · s)
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Greek symbols

a PCM percentage of total fabric mass (%)
Y condensation rate (kg/m2 · s)
e porosity of the fabric.
mg dynamic viscosity (kg/m · s)
mw dynamic viscosity of water (kg/m · s)
l heat of sorption (J/kg)
rv water vapor density (kg/m3)
rw water liquid density (kg/m3)
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This chapter focuses on phase-change phenomena associated with the
adsorption of moisture into fibers, the condensation of moisture onto fibers,
and the release or absorption of heat associated with this change of phase.
First, a set of mathematical relationships is developed that describes these
interactions. These relationships may be somewhat simplified compared to
the relationships developed in other chapters so that it is easier to focus on
the heat and moisture interactions. However, every effort is made to point out
any limitations associated with this simplification. The equations are also
developed so that they are based on variables, properties, and other parameters
that are readily measured or readily obtained. These equations are then presented
in a finite difference form that has been proven effective in modeling heat
and moisture interactions in clothing systems.

12.1 Introduction

Each fiber in a fibrous media continually exchanges heat and moisture with
the air in the microclimate immediately surrounding it, as shown in Fig.
12.1. In addition, there will be radiation heat exchanges with other fibers and
other surfaces. These radiation exchanges are not addressed in the present
chapter but may be important in certain situations, especially in fibrous
media with a low fiber density or with high temperature gradients. The heat
and moisture exchanges between the fiber and the surrounding environment
are the focus of this chapter.

When there is a temperature difference between a fiber and the air in the
surrounding microclimate, a net heat flow results; this exchange is generally
well understood, at least in principle. Similarly, if there is difference between
the water vapor pressure at the fiber surface and the water vapor pressure in
the air in the surrounding microclimate, there will be a net exchange of
moisture. For a given fibrous material, the vapor pressure at the surface
depends upon the amount of moisture adsorbed onto that surface and the
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temperature of the fiber. The amount of moisture on the fiber is not limited
by adsorption, however. When the fiber becomes saturated with respect to
the adsorption state, i.e. it has adsorbed as much moisture as it can, additional
moisture may condense as a liquid onto the surface of the fiber. Depending
on the nature of the fibrous media, large amounts of water condensate may
be held on the surface of the fiber.

The liquid on the surface may be relatively immobile and trapped in
place, or may be transported within the fibrous media by capillary pressure.
This capillary pressure transport is not addressed in the present chapter but
is addressed in other chapters. Generally, the moisture adsorbed onto a fiber
is considered to be immobile and can only move by exchange with the air in
the surrounding microclimate. While not well understood or documented, it
is possible that the adsorbed moisture becomes mobile when the fiber is
nearly saturated with adsorbed moisture. There could then be some transport
along the fiber in this situation.

There is sometimes confusion with respect to the use of the term ‘saturated’
with regard to moisture in a fibrous media. When a fiber has all of the
moisture adsorbed that it can hold in the adsorbed state, it is said to be
saturated. Similarly, when a fibrous media is fully wetted with liquid, it is
said to be saturated. In the present chapter, both forms may be used with the
context making it clear what which form is intended.

Fibrous media

Radiation exchange
with other fibers or
surfaces outside the
media

Moisture exchange
with microclimate

Heat exchange
with microclimate

12.1 Heat and moisture between a fiber and its microclimate.
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12.2 Moisture regain and equilibrium relationships

It is customary to refer to the adsorbed moisture content of fibrous material
as ‘moisture regain’. The moisture regain is defined as the mass of moisture
adsorbed by a fiber divided by the dry mass of the fiber. The dry mass of the
fiber is the mass of fiber when it is in equilibrium with completely dry air,
even though some fibers may contain a residual amount of moisture in this
state. The mass of moisture adsorbed does not include this residual moisture
in the dry state (Morton and Hearle, 1993). Mathematically, the regain (R) is
defined as

R = 
Mass at given condition – Mass at dry condition

Mass dry condition

It is customary to express regain as a percentage.
The equilibrium moisture regain of most fibrous material depends primarily

on the relative humidity of the air in the ambient microclimate surrounding
a fiber. That is, the equilibrium regain will be nearly the same at different
temperatures if the ambient relative humidity is the same. Ambient temperature
and atmospheric pressure can have a small impact independent of relative
humidity. However, relative humidity is clearly the dominant variable for
most terrestrial applications at common indoor and outdoor environmental
temperatures. At more extreme conditions, such as might occur in
manufacturing processes, the relationship between relative humidity and
regain may not hold.

Figure 12.2 presents standardized relationships for moisture regain for a
number of common fibers (Morton and Hearle, 1993). In general, natural
fibers tend to have higher regains than manufactured fibers, with some of the
latter fibers having nearly negligible regain. The regains shown in Fig. 12.2
are for raw fibers. A variety of surface finishes and other treatments are often
applied to raw fibers to impart desired properties. While generally not applied
for the purpose of changing moisture regain characteristics, some treatments
can impact the moisture regain curve and care must be used in applying the
equilibrium relationships in Fig. 12.2, especially for fibers that have very
low regains in the raw state.

The curves in Fig. 12.2 stop at 100% relative humidity, as the regain is
defined in terms of adsorbed moisture. Once the ambient microclimate relative
humidity reaches 100%, liquid water may condense on the fiber. In terms of
actual moisture present on a real fiber, the curves do not terminate at the
values shown in Fig. 12.2. Rather, the curves actually become vertical and
can extend to very large values, depending on the nature of the fibrous
media. For individual fibers, it is difficult to define an upper limit. For fibers
in a fibrous media, the upper limit is controlled by a number of factors
including the porosity of the media and its structure.
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12.3 Sorption and condensation

The heat of adsorption describes the amount of energy that is released when
water vapor in the air is adsorbed onto the fiber surface. Similarly, this same
amount of energy must be added when moisture is desorbed from the fiber.
The heat of adsorption is not a constant, even for a given fiber, but depends
on the environmental conditions under which the adsorption or desorption
occurs. The primary factor affecting the heat of adsorption is the microclimate
relative humidity and, for most applications at normal environmental
temperatures and pressures, heat of adsorption can be treated as a function of
humidity alone.

Figure 12.3 shows the heat of adsorption for several fibers. It is seen that,
as the microclimate relative humidity becomes high, the heat of adsorption
becomes equal to the heat of vaporization. The heat of sorption is often
divided into two components: the heat of vaporization and the ‘heat of wetting’.
The heat of wetting is the added heat that is released above and beyond the
heat release that would occur if the vapor simply condensed. Or viewed
differently, it is the heat that is released if liquid water is added to a fiber. In
Fig. 12.3, it is the distance between the heat of adsorption curve and the heat
of vaporization line. It is often more convenient to present data in terms of
the heat of wetting as it allows the large heat of vaporization, which is the
same for all fibers, to be subtracted.
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As can be seen from Fig. 12.3, the heat of sorption for a given relative
humidity does not vary greatly from fiber to fiber, especially when one
considers the large heat of vaporization component that is common. Given
the inaccuracies associated with many fibrous media heat and mass transport
calculations, it is often adequate to simply use a common heat of sorption
curve for all fibers.

12.4 Mass and heat transport processes

For steady-state conditions where any moisture on the fiber is immobile,
there will be no net moisture exchange between the fiber and the air in the
surrounding void space in the media. In this steady-state condition, there is
no need to address heat–moisture interactions associated with moisture phase
change. However, there are many situations where there is a net exchange of
moisture between the fiber and the void space and it is necessary to develop
mathematical descriptions of these processes. While relationships describing
the heat and moisture transport between the fiber and the immediate void
space can be developed, these processes are generally not the limiting factors
in the transport phenomena. The high surface area associated with the fiber–
microclimate interface results in minimal restriction to moisture and heat
transport, and local equilibrium between the fiber and the surrounding
microclimate is achieved over the time-scale of most applications for fibrous
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media; or it is at least an acceptable approximation. The factors limiting the
heat and moisture interchanges are the restrictions of heat and vapor transport
in the bulk fibrous media.

A transient, one-dimensional moisture balance gives the following
relationship at any location in the media:

∂
∂

∂
∂

R
t

m
x

  = –r [12.1]

where R is the regain (kg H2O per kg of dry fabric), r is the bulk density of
the dry porous media (kg/m3), m is the vapor moisture flux through the
media (kg/s m2), t is time (s), and x is distance along the dimension of
interest (m).

This formulation ignores the water vapor in the air in the void space in the
media. Normally, the amount of moisture stored in this phase is small compared
with the regain. Additionally, it does not play an important role in the heat
and moisture interactions and thus is ignored in the equations developed in
this chapter.

The vapor moisture flux is proportional to the vapor partial pressure flux
for most fibrous media and the relationship can be written as

m
P
x

 = –j ∂
∂ [12.2]

where P is the vapor pressure (kPa), and j is the vapor permeability of the
media (kg/s m kPa)

While it is customary to use concentration gradients rather than vapor
pressure gradients as the driving force for vapor diffusion, the vapor pressure
gradients are equally valid and are more convenient for this application (Fu,
1995). The vapor permeability, j , is an empirical parameter that describes
the overall ability of vapor phase moisture to be transported through the
media and is equal to the inverse of the vapor resistance per unit thickness
(ASTM, 2005a).

Equations [12.1] and [12.2] combine to give a moisture balance in terms
of partial pressure:

∂
∂

∂
∂

R
t

P
x

r j = 2

2

[12.3]

The right-hand term expands directly to three dimensions, but the one-
dimensional form is retained here for simplicity.

A one-dimension, transient energy balance can be written in similar fashion

∂
∂

∂
∂

∂
∂

T
t

c
q
x

Q
m
xSr = –  –  [12.4]
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where T is the temperature (∞C), c is the heat capacitance of the bulk fibrous
media (kJ/kg ∞C), q is the heat flux through the media (kW/m2), and QS is the
heat of adsorption (kJ/kg).

Several terms in the transient energy balance that are normally negligible
have been omitted in Equation [12.4] to yield a relatively simple expression.
Equation [12.4] should be acceptably accurate as long as there are no extreme
temperature gradients in the porous media.

The heat flux through the fibrous media is proportional to the temperature
gradient and the relationship can be written as

q k
T
x

 = –
∂
∂ [12.5]

where k is the thermal conductivity of the fibrous media (W/mK).
It should be noted that the thermal conductivity, above, is for the air–fiber

combination that makes up the fibrous media and can be determined
experimentally (ASTM, 2005b). Equations [12.5] and [12.2] combined with
Equation [12.4] allow the energy balance to be expressed in terms of the
temperature gradient and the vapor pressure gradient:

∂
∂
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c k T
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Q P
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2

2

2

2 [12.6]

Equations [12.3] and [12.6] then describe the transient energy and mass
balances at a location within a fibrous media. These equations also describe
the transport of heat and vapor through the media. These equations are
coupled in that there is a relationship between P, T, and R. Using the
approximation that fiber is in moisture and thermal equilibrium with the
immediately surrounding void space, this relationship is defined by the curve
for the particular fiber in question in Fig. 12.2. Note that relative humidity is
a unique function of P and T. Similarly, there is also a relationship between
QS and P and T, with that relationship being defined by the appropriate heat
of adsorption curve such as is shown in Fig. 12.3.

In order to solve Equations [12.3] and [12.6], appropriate boundary
conditions, empirical relationships for equilibrium regain, and empirical
relationships for heat of adsorption are required. In addition, the values of
the bulk density, heat capacitance, thermal conductivity, and vapor permeability
must be known. The thermal conductivity and the vapor permeability generally
must be determined experimentally for the fibrous media of interest. One
way to measure these parameters is to use a sweating hotplate (ASTM,
2005a; ISO, 1995). The bulk density can be measured experimentally (ASTM,
2005b). Thermal capacitance of the media can estimated with reasonable
accuracy if the fiber content is known:

c = cF + RcL [12.7]
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where cF is the thermal capacitance of the fiber (kJ/kg K), and cL is the
thermal capacitance of liquid water (kJ/kg K).

The air in the void space in the media is again ignored in Equation [12.7]
and the equation is valid as long as the bulk density of the media is much
greater than the density of air, which is true for nearly all applications. It
should also be noted that the liquid term is based on the approximation that
the thermal capacitance of a fiber increases with adsorbed moisture as if the
adsorbed moisture is in the liquid state. This approximation is sufficiently
accurate for all but the most precise calculations.

12.5 Modeling of coupled heat and moisture

transport

Modeling the coupled heat flow requires appropriate boundary conditions to
be established and Equations [12.3] and [12.6] to be solved. Fortunately, the
equations are generally well bounded and well behaved, and the simplest of
numerical methods may be used to solve the equations with acceptable accuracy.
For modeling purposes, these equations can be written in finite difference
form:
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where Dt is the integration time step (s), Dx is the distance step in the x-
direction (m), fi  is the local relative humidity (fraction), i refers to a specific
discrete location in the x direction, P(f, T) is the equilibrium vapor pressure
for the fibrous media at the local relative humidity and temperature (kPa),
and Qs(f) is the heat of sorption for the fibrous media at the local relative
humidity, (kJ/kg).

The local relative humidity, fi is determined from the adsorption equilibrium
curve for the media, such as in Fig. 12.2, corresponding to the local regain.
This relative humidity value is then used to determine the equilibrium pressure
from

P(f, T) = f (R) Ps(T) [12.10]

where f (R) is the relative humidity corresponding to the local regain R from
the equilibrium relationship (fraction) and Ps(T) is the saturation pressure of
water at local temperature T (kPa).

This same value of relative humidity is also used to determine the heat of
sorption from the heat of sorption curve for the media, such as in Fig. 12.3.

Given initial conditions of temperature and regain, T and R, throughout
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the media, appropriate boundary conditions, the equilibrium relationships
such as in Fig. 12.2, and the heat of sorption information such as in Fig. 12.3,
Equations [12.8]–[12.10] can be used to step through time and model the
media response fully representing the interactions between heat and moisture.
Time steps as small as 0.1 second or less may be required for clothing
applications when boundary conditions change rapidly. However, the simplicity
of the time-based solution puts little demand on computational capability,
and transient solutions for complex systems can be readily solved. For thin
fabric layers, it is often sufficient to use only a single increment in the x-
direction. For thick fabric layers or fiber fillings, only a small number of
increments in the x-direction is generally quite sufficient to obtain solutions
of acceptable accuracy; generally, less than ten increments is adequate.

Equations [12.8] and [12.9] can be readily expanded to three dimensions.
The single dimension form is presented here for simplicity. For many clothing
applications, the radial direction from the body is usually the dominant
direction for heat and moisture fluxes and local, one-dimensional
representations are usually acceptable as long as the local variations in clothing
and boundary conditions are addressed.

Equation [12.3] and [12.6] and, consequently, Equations [12.8] and [12.9]
apply only when the moisture adsorbed or condensed onto the fiber is immobile.
This limitation prevents these equations from being considered general
representations of mass transport in fibrous media. Once the media contains
sufficient moisture for this condensed moisture to become mobile and be
transported in significant amounts by capillary pressure gradients, the air in
the microclimate surrounding the fiber is saturated, f = 1, and the heat and
moisture interaction phenomenon becomes one of condensation or evaporation.

Establishing the necessary boundary conditions is often the most difficult
aspect of modeling heat and moisture interactions with fibrous media. Without
proper boundary conditions, the equations described previously are of limited
value. Each application is unique and it is not feasible to address all boundary
condition situations that might be encountered with fibrous media. The
following discussion addresses boundary conditions in a layered, cylindrical
system which is typical of clothing applications and is depicted in Fig. 12.4.

The nomenclature for Fig. 12.4 follows:

qc is the conduction or convection heat transfer to/from a surface (W/m2),
qr is the radiation between two surfaces or between a surface and the

surrounding environment (W/m2),
m is the vapor flux to/from a surface (kg/s m2),
r is the characteristic radius of the respective layer (m),
the i subscript refers to the inner surface of a layer,
the o subscript refers to the outer surface of a layer,
the s subscript refers to the body surface, and
the e subscript refers to the surrounding environment.
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Each layer of porous media (e.g. fabric) is shown divided into a number of
sub-layers that could correspond to Dx in the finite difference solution. The
radius of each layer is characterized by a single value. This simplification is
acceptable as long as the layer thickness is less than about one-fourth of the
radius. The intervening air layers may present substantial resistance to heat
and moisture transport and, consequently, are important in the overall modeling
of the system. They do not normally contribute appreciably to the storage of
heat or moisture and, thus, simplified modeling is usually acceptable even
for transient applications. Figure 12.4 shows all of the boundary conditions
for heat and mass transport in a two-layer system. These boundaries can be
represented in several ways for finite difference solutions. Figure 12.5 shows
one form that is compatible with Equations [12.8] and [12.9].

In the simplest representation, the air can be treated as a single lumped
resistance to heat or water vapor transport. For this situation, the boundary
conditions shown in Fig. 12.5 take the following form:
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12.4 Depiction of boundary conditions for a two-layer radial system.
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where qo1 is the total heat flux from the outer surface of layer 1 (W/m2), qi2

is the total heat flux to the inner surface of layer 2 (W/m2), hc,1-2 is the
overall heat conduction/convection heat transfer coefficient for the air layer
(K/W m2), hr,1-2 is the linearized radiation heat transfer coefficient for the air
layer (K/W m2) (see ASHRAE, 2005), mo1 is the vapor mass flux from the
outer surface of layer 1 (kg/s m2), mi2 is the vapor mass flux from the inner
surface of layer 2 (kg/s m2), and hm,1-2 is the mass transfer coefficient for the
air layer (kPa m2 s/kg).

Note that the r/r0 terms are included to account for the increasing area at
increasing distances in the radial direction. Equations [12.8]–[12.10] plus
Equations [12.11] and [12.12] for each air layer along with time-dependent
values for temperature and vapor pressure for the body surface and the
environment allow calculation of the time-dependent heat and vapor flows in
the porous media system, fully accounting for the heat and moisture phase
change interactions.

12.6 Consequences of interactions between heat

and moisture

Equations [12.8] and [12.9] show a clear coupling between moisture and
heat in porous media. In particular, Equation [12.9] shows that any increase
in regain results in an increase in temperature and vice versa. The heat of
sorption is large and, consequently, only small changes in regain can result

12.5 Boundary condition detail between layers 1 and 2.
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in large temperature changes. Since heat flows are driven by the temperature
gradients, the adsorption and desorbtion of moisture by the media has a large
impact on the heat fluxes through the media as well.

It has been know for many years that moisture sorption and desorption
can impact body heat loss and affect perceptions of the thermal environment
(Rodwell et. al. 1965). This effect has been modeled for clothing systems
using the above equations and has been measured experimentally as well
(deDear et. al., 1989; Jones and Ogawa, 1992). The effect is so large that a
person dressed in clothing made of highly adsorptive fibers such as wool or
cotton can experience a short-term change in heat loss from the body of the
order of 50 W/m2 when going from a dry environment (e.g. 25% rh) to a
humid environment (e.g. 75% rh), even when the temperatures of both
environments are identical. This effect is relatively short-lived and may only
last for 5–10 minutes but is sufficient to elicit a strong change in thermal
sensation and plays a large role in the perceived effect of humidity on comfort
in many situations. A lesser, but still important, effect can persist for
30 minutes to an hour for some moderately heavy indoor clothing made of
highly adsorptive fibers.

This interaction is particularly important for the drying of porous media.
The transport of adsorbed moisture from a porous media is driven by the
vapor pressure gradient. A negative vapor pressure gradient from the media
to the surroundings will result in transport of water vapor from the media to
the surroundings. The source of this water vapor is moisture adsorbed on the
fibers. As the moisture is released and the regain decreases, there is a cooling
effect on the media, as quantified by Equations [12.8] and [12.9]. Only a
very small decrease in regain results in a large cooling effect. This small
decrease in regain has minimal impact on the local equilibrium relative
humidity (refer to Fig. 12.2). However, the large change in temperature has
a big impact on the saturation pressure. The net result is a big decrease in
local vapor pressure (refer to Equation [12.10]). The end result is that the
cooling effect nearly eliminates the partial pressure gradient that is driving
the moisture removal and, in the absence of a heat source, drying proceeds
at a very low rate. The drying of a porous media is almost always limited by
heat transfer and this effect is why thick media can take hours of even days
to dry.

For fibers such as polypropylene or polyethylene that adsorb very little
moisture, the interaction of heat and moisture is very minimal unless the
conditions are such that condensation occurs. In the case where condensed
moisture is present, but still relatively immobile, the equations presented in
this chapter still apply and the strong interaction between heat and moisture
will be present.
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