AASHTO specifications 4–6 abaca fibres 259	Atterberg limits 114–15 average lot values 7
abrasion 30–1	
accelerated testing 54–9	barrier applications 181–98
access roads 148, 151	bituminous geosynthetics 181, 184
active geosynthetics 97, 104–23	canal liners 181, 189–90
civil and environmental	chemical durability 187
applications 120	choosing a system 187–8
and dewatering geotubes 122	clay geosynthetics 169–70, 182,
and electro osmosis 104, 105-13	184–6
and electrokinetic geosynthesis	connections to other structures 188
(EKG) 104–5, 113–19	construction 196–8
and enhanced lime migration 121	dams 190
evolution of 113–14	definitions 182–3
and horticulture 122	hydraulic applications 187, 188–90
and piling 121	installation 196
and remediation of contaminated	landfills 166–70, 191–6
sites 122	liquid containment 181, 188–9
and sewage treatments 122-3	mechanical properties 187
and shrinkage/swelling prevention	overliner protection 188
122	placement 196–7
and slope stability 121–2	polymeric geosynthetics 181, 183-
and trenching and excavation 121	4, 197
adhesive bonding 184	preparations 196
agricultural roads 151-2	quality assurance 197–8
agro industrial fibres see vegetable	railways 191
fibres	roads 191
anchorage capacity 27	seam performance 187–8
antioxidants 48-9	subgrade preparation 186
apparent opening size 28	tunnelling 190–1
applied stresses 41, 53	underliner drainage systems 186
applied voltage 109–10	welding polymeric GBRs 197
Arrhenius modelling 56–9	basal lining systems 192–4
artificial ground cover 265	basal reinforcements 98–9, 101, 247–8,
asphalt interlayers 154-5, 157	272–92
asphalt liners 169	analytical approach 273–4
ASTM International 69, 70–1, 73	factor of safety 273
Standard Manual 66–8	rotational stability analysis 274

Index

selection of reinforcement 278-81	column construction 203, 205, 209-
time strength envelope 275–8	10
see also slope stability	lateral extent 210–11
bast fibres 251	design steps 206–9
beam method 213, 222-4	disadvantages 206
bearing capacity 150	edge stability 210–11
bentonite (bentomats) see clay	feasibility evaluations 206
geosynthetic barriers	history of 202-5
biaxial tension tests 24	lateral spreading 207-8, 211-12
biological degradation 41, 51, 160	load transfer platform 202, 205,
of waste 165	212–24
bioreactors 194	composite liners 97, 98–100, 166–8,
bituminous geosynthetic barriers 181,	192
184	compressibility 24, 116–17
blankets 269–71	concrete pavements 152-4
bonding concepts 184	conductive geosynthetics 120
bridging zones 129–30	conformance tests 239
British Standards Institution (BS8006)	construction
212, 214–16	of barriers 196–8
burst strength 24–5	of filters 142–3
	quality assurance 238-40
canal liners 181, 189-90	of separators 161
capillary barriers 170	containment landfill 165
capping systems 166, 194-6, 264	core fibres 251
carbon black 43	cost based design 3–4
catenary method 213	costs of quality assurance 241
CE marking system 237	cover systems for landfill 166, 194–6,
cement based composites 250-1	264
CEN (European Committee for	cracking 41, 53, 171–2
Standardization) 69, 71–3	creep values 10–11, 30
Technical Committee 189 74	cross plane permeability 129–30, 133,
certificates of compliance 142, 238	135
chemical degradation 32, 41, 44–5, 160,	cut off walls 174
187	cut slope stabilization see slope stability
chemical and electrochemical tests 116	
chlorosulphonated polyethylene (SCPE)	dams 190
181, 183	degradation mechanisms 31–3
classification of vegetable fibres 251	applied stresses 41, 53
clay geosynthetic barriers 85–6, 169–70,	biological 41, 51, 160
182, 184–6	changes over time 41, 53–4
clogging 31, 134, 173	chemical 32, 41, 44–5, 160
co disposal landfill 165–6	delamination 41, 47–8
coastal environments 145	extraction 41
coir (coconut) fibres 251, 257, 271	hydrolysis 32, 41, 45–6, 47
collapse of subsurface voids 100–4	oxidation 32, 41, 48–51
Collin method 212–13, 220–4	radiation 41, 43–4
column supported embankments 201–	swelling 41, 45, 46–7
25	synergistic effects 41, 51–4
advantages 205–6	temperature 31–2, 52–3

ultraviolet (UV) light 33, 41, 42–3,	edge stability 210–11
52–3	EKG see electrokinetic geosynthesis
of waste 165, 194	(EKG)
see also durability; endurance	elastic deformation for subgrades 152
properties	electric warning systems 102
delamination 41, 47–8	electrical resistivity of soil 116
delivery of materials 143, 238	electro osmosis 104, 105–13
design 3–18	applied voltage 109–10
of column supported embankments	electro osmotic efficiency 108
206–9	electro osmotic permeability 108
by cost 3–4	electrolysis effects 112–13
failure probabilities 12–14, 16	energy requirements 108–9
of filter applications 134–42	pore water pressures 110–12
by function 8–11	electro osmotic testing 119
future practices 11–16	electrode drainage conditions 112
of geomembranes 172	electrokinetic geosynthesis (EKG) 104–
of landfill applications 170–2	5, 113–19
load and reduction factor design	chemical and electrochemical tests
14–16	116
past practices 3–4	compressibility and permeability
and quality assurance 235–6	tests 116–17
by specification 3, 4–8	electro osmotic testing 119
desiccation cracks 171–2	general classification tests 114–16
developing new standards 92	novel applications 121–2
dewatering geotubes 122	one dimensional consolidation
displacement measurement techniques	parameters 117
23	shear strength effective stress 117–
drainage systems 98–100, 173–4	19
underliner 186	shear strength total stress 117
vertical drains 98, 127	soil acceptability criteria 114–19
see also filter applications	soil electrical resistivity 116
duplication of standards 92	electrolysis effects 112–13
durability	electromigration 104
of barrier applications 187	electrophoresis 104
of geomembranes 168	elevated temperature accelerated testing
of polyamides 32, 39	56–9
of polyesters 39, 45–6	embankments <i>see</i> basal reinforcement;
of polyethylene (PE) 32, 36–8	column supported embankments
of polypropylene (PP) 32, 38	endurance properties 29–31
of polystyrene (PS) 39–40	abrasion 30–1
of poly(vinyl chloride) (PVC) 38	clogging 31
of separator applications 160	creep relaxation 30
and standardization 82–4	installation damage 29–30
of vegetable fibres 261–3	stress relaxation 30
see also degradation mechanisms;	energy requirements for electro osmosis
endurance properties	108–9
chairance properties	
earthen sealing layers 169	enhanced lime migration 121 environmental stress cracking 41, 53
earthen sealing layers 168 East Coast Main Railway 101	erosion control 247, 263–72
Lasi Coasi Maii Kaiiway 101	Crosion Condoi 277, 203-72

advantages of vegetable fibres 267–	flow rate reduction factors 10–11
8	forest roads 151-2
artificial ground cover 265	foundations 201–29
blankets 269–71	column supported embankments
by vegetation 264–5	201–25
installation 271–2	geosynthetic reinforced soil
meshes 269	foundations (GRSF) 225–9
nettings 268–9	France, separator standards 158
standardization 91	friction tests 26
water erosion 263–4	fruit fibres 251
esturian and coastal environments 145	functional design 8–11
extraction degradation 41	
	gas generation and management 174
factor of safety (FS) 9, 273	geocontainers 172
failure probabilities 12–14, 16	Geodetect system 101, 102-4
fibre Bragg grating (FBG) technique	geogrids 20
103	geojute see jute fibres
field inspections 143	geomembranes 25, 56, 168, 182
fill material 160, 161	design considerations 172
filter applications 6, 29, 97, 127–45	durability 168
bridging zones 129–30	standardization 87–90
clogging behaviour 134	geosynthetic reinforced soil foundations
compatibility requirements 129–30	(GRSF) 225–9
construction considerations 142–3	geotubes 122
cross plane permeability 129-30,	German method 212, 217–20
133, 135	German separator standards 158–9
delivery of geotextile rolls 143	grab tensile test 22–3
design criteria 134–42	gradient ratio tests 31
in esturian and coastal	grain size distribution 127–8, 129, 144
environments 145	Great Wall of China 250
field inspections 143	GRI (Geosynthetic Research Institute)
grain size distribution 127–8, 129,	specifications 7
144	ground penetrating radar 102
limited life geotextiles 245	guides 67
material properties testing 130–4	
non woven geotextiles 128	hazardous waste 164
piping 134	Helmholtz Smoluchowski theory 105–7
placement of the geotextile 143	hemp fibres 251, 258
pore size opening 131–3	high density polyethylene 37, 181
soil retention 127–8, 129, 134–5,	hindered amine light stabilizers (HALS)
136–40	43
specifications 141–2	horticultural applications 122
strength requirements 130, 133,	hydraulic applications 187, 188-90
134, 135, 140	hydraulic properties 27–9
temperatures in the filter 144–5	apparent opening size 28
ultra violet resistance 133–4	percentage open area 28
woven geotextiles 128-9, 133	permittivity 28–9
flax fibres 251, 256	porosity 27–8
flexibility 21	soil retention 29
· J	

standardization 79-82	lateral spreading 207-8, 211-12
transmissivity 29	leachate shafts 173–4
hydrolysis 32, 41, 45–6, 47	leaf fibres 251
	leak monitoring and detection 172, 239
index properties 19, 21, 131-4	limited life geotextiles 244–83
inert material landfill 164	basal reinforcement 101, 247-8,
installation	272–92
of barrier applications 196	erosion control 247, 263-72
damage caused by 29-30	filter applications 245
of erosion control 271–2	in road bases 245-6
and quality assurance 238-40	separation applications 245–7
ion migration 104	see also vegetable fibres
ISO (International Organization for	linear low density polyethylene 37–8
Standardization) 69, 72	liners for landfill applications 166–70,
Committee 221 on Geosynthetics	191–6
73–4	liquid containment 181, 188-9
	load and reduction factor design 14–16
jute fibres 251, 255, 268, 271	load transfer platforms 202, 205, 212–24
landfill applications 163–75, 191–6	beam method 213, 222-4
approval systems 193	British Standards Institution
basal lining systems 192–4	(BS8006) 212, 214-16
bioreactors and degradation 194	catenary method 213
capping systems 166, 194–6, 264	Collin method 212–13, 220–4
classes of landfill 164	German method 212, 217–20
co disposal landfill 165–6	global stability 224
containment landfill 165	reinforcement total design load 224
cut off walls 174	research needs 225
degradation of waste 165	settlement 224–5
design considerations 170–2	soil arching 213, 225
drainage systems 173–4	standardization 212–24
gas generation and management	Swedish method 212, 216–17
174	tension membrane theory 213-14,
inert material landfill 164	225
leak monitoring and detection 172,	low density polyethylene 38
239	
liner types 166–70, 191–6	manila hemp fibres 259
mechanical properties 171	manufacturing quality assurance 237
moisture transport 171–2	manufacturing specifications see
multibarrier system 163	specifications
permeability 170–1	MARV (minimum average roll value)
phases 166	7–8, 237
pollutant transport 171–2	mass measurements 20
pretreatment of waste 163-4	material performance 19, 21, 68, 131,
quality assurance 240	134
reactor landfill 165	material property requirements 67
safety analysis of liners 175	material property testing 19-33
slope stability 195–6	accelerated testing methods 54-9
waste separation 163-4	Arrhenius modelling 56–9

conformance tests 239	performance properties 19, 21, 68, 131
degradation mechanisms 31-3	134
endurance properties 29–31	permeability 129-30, 133, 135, 170-1
filter applications 130-4	electro osmotic 108
hydraulic properties 27–9	tests 116–17
index properties 19, 21, 131-4	permittivity 28–9
mechanical properties 21-7	physical properties 20–1
performance properties 19, 21, 131,	piling 121
134	pipe ageing 55
physical properties 20–1	piping 134
rate process method 55–6	pith fibres 251
seam/joint tests 238–9	placement
standardization 66, 67, 131	in barrier applications 196–7
stress limit testing 54–5	in filter applications 143
water absorption tests 46	plant fibres 251
mechanical properties 21–7	plastic pipes 54–5
of barrier applications 187	plasticizer mobility 47
burst strength 24–5	pollutant transport 171–2
compressibility 24	polyamides 32, 39
friction tests 26	polyesters 39, 45–6
of landfill applications 171	polyethylene (PE) 32, 36–8
pull out resistance 26–7	polymer solvent interactions 44
puncture strength 25–6	polymeric barriers 181, 183–4, 197
seam strength 24	polypropylene (PP) 32, 38
standardization 75–9	polystyrene (PS) 39–40
tear strength 25	poly(vinyl chloride) (PVC) 38
tensile properties 21–4	pond liners 181, 188–9
vegetable fibres 258–63	pore size opening 131–3
medium density polyethylene 37	pore water pressures 110–12
meshes 269	porosity 27–8
mineral liners 168–9	pretreatment of waste 163-4
minimum average roll value (MARV)	probability analysis 12–14, 16
7–8, 237	pull out resistance 26–7, 100
moisture transport 171–2	puncture strength 25-6
monitoring systems 102	
multibarrier system 163	quality assurance 233–42
multiple liners 169	and barrier applications 197–8
	benefits of 241
natural fibres see vegetable fibres	CE marking system 237
nettings 268–9	costs 241
non woven geotextiles 128	definitions 234
	in design 235–6
overliner protection 188	future trends 242
oxidation degradation 32, 41, 48–51	in installation and construction 238–40
parking lots 155–6	in landfill applications 240
paved roads 152-6	in manufacturing 237
pavements 152–4	reporting 239–40
percentage open area 28	responsibilities 234–5

third party reviews 235	placing of separation layer 161
visual inspections 238	railroads 156
quality control 234, 237	rutted surfaces 150-1
	standards 156–60
radiation degradation 41, 43–4	stone set paving 156
railways 156, 191	stress relief 154
rate process method 55-6	unpaved roads 151–2
reactor landfill 165	work platforms 152
reinforcements see basal reinforcements	settlement 224–5
remediation of contaminated sites 122	sewage treatments 122–3, 166
reports for quality assurance 239–40	shear strength effective stress 117–19
reservoirs 181, 188–9	shear strength total stress 117
responsibilities for quality assurance	shrinkage/swelling prevention 122
234–5	sisal fibres 251, 258
risk assessment 9, 12–14, 16, 175, 273	slope stability 121–2, 127, 128
roads 191	in landfill applications 195–6
access roads 148, 151	soil consolidation 110
agricultural roads 151–2	with vertical columns 205
elastic deformation for subgrades	see also basal reinforcements
152	smart geosynthetics 97, 100–4
embankments see column	sodium bentonite 184–5
supported embankments	soil
forest roads 151–2	acceptability criteria 114–19
limited life geotextiles 245–6	electrical resistivity 116
parking lots 155–6	erosion see erosion control
roll identification tags 142	reinforcement see basal
rotational stability analysis 274	reinforcements
rutted surfaces 150-1	retention and filter applications 29,
	127–8, 129, 134–40
safety analysis <i>see</i> risk assessment	soil arching 213, 225
sand drains 98	soil consolidation 110
Scandinavian countries, separator	solvents 44
standards 159	sorption layers 169
seam performance 24, 184, 187–8, 238–	specific gravity 20
9	specifications
seed hair fibres 251	average lot values 7
sensors 102	certificates of compliance 142, 238
separator applications 148–62	and design 3, 4–8
asphalt interlayers 154–5, 157	factor of safety (FS) 9, 273
bearing capacity 150	in filter applications 141–2
between coarse and fine grained	material performance 68
soil 148	material property requirements 67
concrete pavements 152–4	minimum average roll value
construction 161	(MARV) 7–8, 237
durability 160	standardization 67–8
fill material 160, 161	standardization 66–93
limited life geotextiles 245–7	of clay barriers 85–6
paved roads 152–6	developing new standards 92
placing of fill 161	duplication of standards 92

of durability properties 82–4	degradation 31–2, 52–3
of erosion control 91	elevated temperature accelerated
of geomembranes 87–90	testing 56–9
guides 67	in filters 144–5
of hazardous waste 164	tensile properties 21–4
history of 73–4	tension membrane theory 213–14, 225
of hydraulic properties 79–82	test methods see material property
of load transfer platforms 212-24	testing
of mechanical properties 75–9	thickness measurements 20-1
need for 66	third party reviews 235
of practice 67	time strength envelope 275–8
reviewing and revising existing	transmissivity 29
standards 74	trapezoidal tear test 25
of separator applications 156-60	trenching and excavation 121
for specifications 67–8	tunnelling 190–1
for test methods 66, 67, 131	
standards development organisations	ultraviolet (UV) light degradation 33, 41,
68–73	42–3, 52–3, 133–4
balanced membership structure 70-	underliner drainage systems 186
1	United Kingdom, separator standards
consensus process 69–70	159–60
international level 69	unpaved roads 151-2
voting process 70–3	
Stansted Airport 101	vegetable fibres 244, 248-63
stem fibres 251	abaca 259
stick fibres 251	advantages 252-3, 282-3
stiffness properties 21	in cement based composites 250-1
stone set paving 156	classification 251
storage of materials 238	coir (coconut) 251, 257, 271
straw fibres 251	durability 261–3
strength reduction factors 10–11	flax 251, 255
strength requirements 4–6, 130, 133–5,	hemp 251, 258
140	history as an industrial material
stress cracking 41, 53	248–51
stress limit testing 54–5	jute 251, 254, 268, 271
stress relaxation 30	length of fibre bundles 252
stress relief 154	manila hemp 259
structure of geosynthetics 20	production 252–8
subgrades	sisal 251, 258
elastic deformation 152	straw 251
preparation 186, 238	technical characteristics 258–63
subsurface voids 100–4	see also limited life geotextiles
Swedish method 212, 216–17	vegetation and erosion control 264-5
swelling degradation 41, 45, 46–7	vertical drains 98, 127
Switzerland, separator standards 159	visual inspections 238
synergistic effects 41, 51–4	void volumes 28
	voids, collapse of subsurface voids 100-
tear strength 25	4
temperature	voting process for standards 70–3

waste separation 163–4 water absorption tests 46 water erosion 263–4 weather monitoring 239 weathering resistance 160 weighted voting 71–3 welding polymeric GBRs 197 wick drains 98 work platforms 152 woven geotextiles 128–9, 133

xenon arc weatherometer 52-3