
3.1 Introduction: finite element analyses of
composite forming, why andwhere?

The finite element (FE) method is a relatively recent approach (Argyris, 1960) to

finding numerical solutions to physical problems, especially in the field of solid

and fluid mechanics. The method has been extended to some manufacturing

process simulations, in particular to metal forming (Wagoner et al., 1996) and

crash simulation (Halquist et al., 1985). Commercial software packages have

been developed that allow fairly efficient analyses for industrial cases. The FE

method often requires lengthy computation times, especially in manufacturing

process simulations, but advances in computer efficiency make this drawback

less important. The FE method is currently the most commonly used numerical

approach, but several other numerical methods (such as the Natural Element

Method (NEM) and Smooth Particle Hydrodynamics (SPH) (Sukumar et al.,

1998; Gingold et al., 1977)) have appeared or are being developed. All these

methods have the same goal, which is to give an approximated numerical

solution to a global physical problem from its governing equations.

The most commonly used approach for analysing composite forming pro-

cesses, and especially draping in woven composite reinforcements, is

`kinematical models' (Mark et al., 1956; Van Der Ween, 1991; Long et al.,

1994; Borouchaki et al., 2003). Several packages are commercially available,

such as FiberSIM and ESI-QuickFORM. This method is fairly efficient for hand

draping in classical prepreg fabrics, but the models do not account for load

boundary conditions, for possible sliding of the fabric in relation to the tools, or

the mechanical behaviour of the woven reinforcement, although constitutive

aspects have been introduced in some approaches (Long et al., 2001).

For a physical (or mechanical) analysis of a composite forming process, the

complete model must include all the equations for the mechanics, especially

equilibrium, constitutive equations, and boundary conditions. These equations

must be solved numerically, with some approximations. Finite element analysis

of the composite forming process includes modelling the tools, the contact and
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friction between the different parts, and above all, the mechanical behaviour of

the composite during forming. As mentioned above, problems of computation

time are reduced through improved processing capabilities. Better optimisation

of methods has also improved efficiency. The main problem for the FE approach

therefore lies in the requirement for accurate models of all the significant aspects

of the forming process. When the models are defined and implemented, an FE

analysis of a composite process gives detailed results concerning all the fields of

unknowns, such as displacement, strain, stress, tensions in the yarns, and

temperature, for any time during the process.

There are two main reasons for simulating the composite forming process.

The first concerns the process itself and its feasibility. The simulation can give

the conditions (for instance loads on the tools, initial orientation, type of

material, etc.) that will make the forming possible, and also describe any

possible defects after forming (wrinkles, porosities, yarn fractures, etc.). This is

similar to simulating metal forming. Secondly, and unique to composite forming

analysis, is the need to know at any point the directions and density of the fibres

after forming. A woven composite reinforcement can be formed on a double

curved shape because of the angle variations between warp and weft yarns, i.e.

the in-plane shear strains. These angle variations can be very large, up to 50ë,

consequently the yarn directions depend significantly on the forming process.

The directions and densities of fibres are also very important for analysing how

the composite part will behave in use, with regards to stiffness, damage, fatigue,

etc.

Fabric draping is not the only field in composite forming where FE analysis is

used. Another important field for composite manufacturing simulations concerns

mould filling in liquid composite moulding. In these processes, a liquid resin is

injected through a fibrous reinforcement that has been shaped previously in the

mould. Simulation of mould filling is usually based on the Darcy law (Darcy,

1856), associated with FE (or/and finite volume) approximations (Trochu et al.,

1993; Breard et al., 2005; Comas-Cardona et al., 2005). This flow analysis is

mainly influenced by draping, when the part is double curved, because the

permeability depends strongly on the angle between warp and weft yarns

(Fournier et al., 2005).

Although the above descriptions concern FE analysis of the entire composite

forming process, because of the multiscale nature of composites, it is necessary

to compute phenomena at lower scales. Analysing the deformations of a woven

unit cell permits us to understand and identify the mechanical properties of the

fabric as a whole (Boisse et al., 2001; HageÁge et al., 2005; Lomov et al., 2005),

and resin flow simulations in this woven unit determine the permeability overall

(Fournier et al., 2005; Laine et al., 2005). This chapter will focus on FE analysis

of composite reinforcement forming.
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3.2 Themultiscale nature of compositematerials and
different approaches for composite forming
simulations

3.2.1 Multiscale materials

Composite materials are made of fibres and matrix, and the fibre arrangements are

numerous. Fibres can be short (SMC, BMC, GMT, etc.) or continuous, as is the

case for composite structures that must withstand strong loads. Continuous fibres

can be simply juxtaposed, or unidirectional (UD), woven, juxtaposed and stitched

(non-crimp fabrics, NCF), braided, knitted or randomly oriented (mats). The

arrangement of fibres is very important and the materials resulting from the various

arrangements are very different. Composite materials are typically multiscale

materials because the architecture and the properties at lower scales strongly

influence the behaviour of the composite. This is true for composites during use,

but it is even more the case in the forming process because the lack of matrix (or of

matrix efficiency) renders the internal reinforcement architecture more essential.

Three scales can generally be distinguished in composite reinforcements. The

macroscopic scale is that of the composite part for which the forming is being

studied. The mesoscopic scale is an intermediate scale that concerns the yarn

architecture. Typically, it is the scale of the unit woven cell, or knitted cell in the

case of textile composites. Finally, the microscopic scale is that relating to the

numerous fibres that make up the yarns (or tows or bundles), for instance a

carbon yarn may contain 6000 fibres (in the case of the yarn in Fig. 3.14). The

arrangement and density of the fibres within the yarn affect its behaviour. Fibre

diameters for carbon, glass, aramid, polypropylene, etc., are usually between

5�m and 50�m.

3.2.2 Mechanism and specificity of composite forming

It is necessary to distinguish between composites with short fibres and

composites with continuous fibres. Short fibres improve the mechanical

properties of a material through the matrix, but this matrix remains the basic

element. Injection is one of the manufacturing technologies used for materials

with short fibres. The forming simulation in this case is a resin flow problem, but

with fibres that are oriented by the forming (Dumont et al., 2003; Chinesta et al.,

2005). In the case of continuous fibrous reinforcements, the reinforcements play

a major role in the mechanical behaviour of the composite, the main function of

the matrix being to prevent relative displacements of continuous filaments. This

type of composite is used where load-bearing is important. The forming of

composites with continuous reinforcements will be analysed below.

Forming of composite materials differs from that of materials such as metals

or polymers because it uses the fibre-matrix composition of the composite. The

forming process is performed in a state in which the matrix does not play a role.

48 Composites forming technologies



In Liquid Composite Moulding (LCM) processes, the reinforcement is shaped

before the resin is injected. Bending and in-plane shear are possible, thus double

curved shapes can be obtained. In the case of thermoset prepreg draping, the

matrix is present but is not solid because it is not yet polymerised, thus the

reinforcement can be deformed as well. For Continuous Fibres Reinforced

Thermoplastics (CFRTP) prepregs forming, the matrix is heated above the

melting temperature, and this permits deformation of the reinforcement as well

as the final forming. In these examples, the matrix is lacking or very weak and

the internal architecture of the fibrous reinforcement permits the forming to take

place. This is specific to composite materials and the forming modes are quite

different to those of metals. There are usually very small extensions in the fibre

directions, and the in-plane shear strains play a major role in forming. Codes for

simulating the composite forming process and the approaches that are used are

therefore specific to those materials.

3.2.3 Different approaches to FE analysis of composite forming

As described above, FE analysis of composite forming requires all the different

aspects involved in the process to be modelled, in particular that of the fibrous

reinforcement. This reinforcement can be with or without matrix, but as

discussed in Section 3.2.2, this matrix is weak and allows the reinforcement to

deform. The multiscale nature of the composite and of its fibrous reinforcement

means that there are different possible approaches for FE analysis of the forming

process.

The first approach considers the fibrous reinforcement as a continuum. The

reinforcement is not continuous at lower scales, but that is the case for most

materials under large strains (for instance a metal in plasticity), and a continuous

material superimposed on the fibrous material can be postulated. This makes the

assumption that there is no significant sliding between the fibres, i.e. that two

neighbouring points in the initial state remain close after forming, which can be

verified experimentally for most usual reinforcements. For instance, Fig. 3.1

(Boisse, 1994) shows a fibre woven fabric formed on a hemispherical, i.e. a

double curve, shape. A set of lines following the warp and weft directions have

been drawn on the fabric prior to forming. These lines become strongly curved

after forming but remain continuous, which implies that, due to the weaving,

there is no large sliding between warp and weft yarns (if there was, the lines

would have become discontinuous), and consequently that the continuous

approach is possible. The advantage of the continuous approach is that it can be

used in standard finite elements, although the constitutive model of the

continuum will have to convey the very specific mechanical behaviour of the

fibrous reinforcement. Such behaviour depends mainly on the fibre directions,

which change strongly during forming. Section 3.3 will demonstrate why the

approaches normally used for anisotropic metal forming cannot be used here.
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Other specific aspects of fibrous reinforcement mechanical behaviours, such as

crimp change and shear locking, should also be taken into account in the model.

The opposite approach is to see the fibrous reinforcement as a set of elements

at lower scales, such as the yarns, woven cells, fibres, etc. The FE analysis is

then concerned with those elements that are in contact or are linked by springs.

Although some approaches at the microscopic scale exist (Durville, 2002;

Duhovic et al., 2006), the large number of filaments means that it is more

realistic to analyse a small number of elements at the mesoscale (woven or

knitted cells, for instance), and it is not currently possible to analyse an entire

forming process. The advantage over the continuous approach is that the

description of the internal structure of the reinforcement naturally accounts for

some aspects of the material, such as the directions of the fibres. Nevertheless, it

is difficult to delineate models that are efficient enough at the mesoscale but

simple enough to be able to analyse a forming process. Continuous and

mesoscopic FE models are discussed in the next two sections.

3.3 The continuous approach for composite forming
process analysis

This approach assumes that the composite can be considered as a continuum

media during forming, consequently the mechanics of continuous media can be

used. This assumption is questionable, especially for stress. What is the stress in

a woven fabric? A stress tensor is defined as a function that gives in any point P

the stress vector d~F=dS for any normal vector. This is not clear if P is a point

within a woven fabric. It is therefore necessary to consider a continuous media

that is not exactly equal to the fibrous reinforcement, but that is homogenous and

has the same global mechanical behaviour. This is possible if (as seen in Section

3.1 Deformation of straight lines drawn on the fabric prior to forming.
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3.2.3 and Fig. 3.1) large sliding between the yarns is minimal. This method also

makes an approximation, and so the local quantities in the fibrous reinforcement

are only those of the continuous media on average.

The main difficulty in using the continuous approach is to capture the effects

of the fibre architecture and its evolution. There are many models (see Chapter

2). Most of them assume that the fibrous reinforcement is elastic while forming.

That is usually true for extensions in the fibre directions, but not usually true in

the other directions, such as in-plane shear, bending, and transverse compres-

sion. Nevertheless, the forming process is a more or less constant operation and

making this assumption doesn't change the result of the analysis greatly.

Continuous behaviour models that capture macro-level phenomena at lower

scales generally concern homogenisation, although homogenisation typically

refers to techniques applied to a two-scale periodic material, in which the

analysis of a unit cell reveals the properties of the homogenised material (Hsiao

et al., 1999; Peng et al., 2002). This approach is elegant but requires lengthy

computational times. Furthermore, extending it to non-linear problems is

difficult. Three continuous approaches used in FE analysis are described below.

3.3.1 Hypoelastic model for fibrous materials

In this method, fibres are considered to have a single direction. Approaches

traditionally developed in finite element codes (such as ABAQUS, for instance)

for anisotropic metal at large strains are based on Jaumann corotational

formulation (Dafalias, 1983; Gilormini et al., 1993) or the Green-Naghdi

approach (Dienes, 1979; Gilormini et al., 1993). In these models, a rotation is

used both to define an objective derivative for the hypoelastic law and to update

the othotropic frame. The rotations used in Green-Naghdi and Jaumann

derivatives are average rotations of the material. The polar rotation R is used in

Green-Naghdi:

R � FUÿ1 3:1

where F is the deformation gradient and U is a symmetrical strain tensor. In the

Jaumann approach, the rotation Q of the corotational frame is used. These well-

known approaches cannot be used for a fibrous material under large strains

because the update for the strong direction must follow the fibre direction

strictly. Figure 3.2 shows the evolution of the orthotropic direction in a finite

element analysis of the extension of a knitted fibrous material (HageÁge, 2004).

The analysis, using ABAQUS, uses the hypoelastic Green-Naghdi approach and

it can be seen that the orthotropic direction does not follow the fibre direction.

The following approach uses the rotation of the fibre denoted � (HageÁge,

2004; HageÁge et al., 2005). The initial orientation of the orthotropic axes fj 0g is
defined by a rotation tensor field O that transforms the unitary vectors of the

global basis {G}:
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j0
i � O �Gi 3:2

The material rotation D is then used to update the initial constitutive axes fj 0g
to the current constitutive axes fj tg (Fig. 3.3):

j t
i � D � j0

i 3:3

Some developments of equation (3.3) (Criesfield, 1991) lead to equations (3.4)

that explicitly give the constitutive axes fj tg as functions of the initial

constitutive axes fj 0g and the deformation gradient F:

j t
1 �

F � j0
1

kF � j0
1k

j t
2 � j0

2 ÿ
b2

1� b1
j0
1 � j t

1

ÿ �

j t
3 � j0

3 ÿ
b3

1� b1
j0
1 � j t

1

ÿ �

3:4

with bk � j t
1 � j0

k and bk 6� 1. In this formulation, the fibre direction, i.e. the

strong anisotropic direction, remains aligned with the first vector of fj tg. The
constitutive behaviour is then fully defined at each time point. In fact, the initial

constitutive tensor 0C has known components that can be computed with the

traditional engineer's constants:

0C �0 Cijklj
0
i 
 j0

j 
 j0
k 
 j0

l 3:5

The current constitutive tensor C can be deduced from 0
C by a rotational

transport based on the fourth order rotation tensor �:

C � K : 0C : KT 3:6

3.2 Orthotropic direction evolution in a Green-Naghdi analysis.
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� is the fourth order rotational tensor obtained from D:

8A K : A � D � A � DT 3:7

Consequently C is given by:

C � 0Cijklj
t
i 
 j t

j 
 j t
k 
 j t

l 3:8

The constitutive tensor C can be used in a hypo-elastic law written:

rr � C : D 3:9

D is the strain rate and rr is the objective derivative of the Cauchy stress

associated to the fibre rotation �.

rr � D � d
dt

DT � r � D
ÿ �

� DT 3:10

The cumulated tensorial strain tensor e and stress tensor r associated with such

an objective derivative are given by:

e � D �
Z t

0

DT � D � D dt

� �

� DT 3:11

r � D �
Z t

0

DT � C � D � D dt

� �

� DT 3:12

It can be shown that equation (3.11) will always give a logarithmic strain in the

strong anisotropic direction and that equation (3.12) ensures the summation of

the stress increments along this direction.

Finally, the use of the material rotation tensor D for the objective derivative

(3.10) and the evolution law (3.6) entails a consistent approach for fibrous media

with one strong anisotropic direction. Figure 3.4 shows FE analysis of the same

knitted material as Fig. 3.2, but uses the above approach implemented in

3.3 2D representation of the evolution of the constitutive axes fj tg.
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ABAQUS via a VUMAT routine (User Material routine) (HageÁge, 2004). In this

case the orthotropic direction remains strictly in the fibre direction and it has

been shown that the analysis is consistent with biaxial tension on knitted

material (HageÁge et al., 2005).

The above approach is carried out for a single fibre direction, although many

fibrous reinforcements, and especially woven fabrics, have two fibre directions.

The behaviour here is no longer orthotropic because there are very large angle

variations between the warp and weft directions due to in-plane shear. The

above formulation can be used by superposition on the same point for two

materials using their own fibre directions. Sliding between warp and weft

directions can be ignored because the two materials (warp and weft) are in the

same finite element. However, that does not take account of the interaction

between fibres, such as crimp changes. In order to extend the approach to two

fibre directions using rotation of the fibre, it is necessary to leave out the

rotational derivatives that lead to orthotropic frames. A Lie derivative based on

the deformation gradient F has been defined and implemented in ABAQUS. It is

not exactly F that is used, but FN, which gives the same directions but keeps the

unit vector with a norm equal to one. Examples of forming fabric simulations

have been analysed in HageÁge (2004). Figure 3.5 presents the different updates

for the material axis and the associated objective derivatives described in this

section.

3.3.2 Non-orthogonal constitutive models

In this method, the stress and strain of a continuous material are related to

fibrous reinforcement using the constitutive relation in a non-orthogonal frame

directed by the fibre directions. Models have been developed by Yu et al. (2002)

3.4 Orthotropic axes updated using the fibre rotation 4�.
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and Xue et al. (2003). They consider two yarn directions and use them to define

the non-orthogonal frame. The second model, Xue et al. (2003) is briefly

described here.

Figure 3.6 shows a local element of the continuum and the coordinates � and
� along the warp and weft directions. x0, y0 are orthogonal coordinates with

x0 � �. The stress components in theses two frames can be related:
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��� is not equal to ��� because �; � is non-orthogonal. The strains in the two

frames are also related:
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�� and �� are the normal strains along warp and weft directions, �� and �� are

the angular changes from the initial right-angle position. It can be assumed that

the biaxial tensile properties and in-plane shear properties are independent. It

has been shown experimentally that the biaxial tensions are affected only weakly

by in-plane shear (Buet-Gautier et al., 2001). The relation between stress and

strain components in the non-orthogonal coordinates can be supposed in the

form:

3.5 Material direction updates and objective derivatives (Hage© ge, 2004).
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D11, D22, D12, D21 are tension coefficients. D33 denotes the shear property. � is a

coefficient that stands for contributions from each stress to shear. The

constitutive equation can be expressed in the local orthogonal coordinates,

and then in the global orthogonal coordinates.

�r �x0y0 � T2DT3�e�x0y0 �r �xy � RT2DT3R
T �e�xy 3:16

R is the rotation matrix (3� 3) that gives the components of an in-plane second

order tensor in x; y from its components in x0; y0. Equation (3.16) is a constitutive

relation in the global frame using the properties in the fibre directions. The

components Dij of (3.15) can be identified from biaxial tests and in-plane shear

tests (Xue et al., 2003).

3.3.3 Amacro-mechanical model used in a commercial FE
code

The initial research and development work presented in this section was

undertaken within a European Brite Euram project (BE 5092). Developments

made under ESI PAM-STAMP led to the commercial FE code PAM-FORM,

dedicated to composite forming and especially to reinforced thermoplastics (De

Luca et al., 1998; Pickett et al., 2005).

An important point, frequently present in composite forming simulations,

concerns the interface between plies. Several plies are often shaped together,

especially in the case of reinforced thermoplastic composites. Each ply is kept

discrete using shell elements. The friction loads are the summation of dry

friction and viscous friction, see Fig. 3.7 (Pickett et al., 2005).

3.6 Orthogonal and non-orthogonal local frame and stress components on an

isolated element (Xue et al., 2003).
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The mechanical behaviour of the ply is likened to elastic fibres embedded in

a viscous resin (OÂ BraÂdaigh et al., 1993). Both resin longitudinal viscosity �L
and transverse viscosity �T can be included. For dry fabrics, viscosity is ignored.

The model can also be extended to NCF by modelling the stitching using spring

elements (Pickett et al., 2005). The simulation of the forming of a non-crimp

fabric on the floor pan of a car is presented in Fig. 3.8, conducted by the ESI-

Group using PAM-FORM within the European project TECABS.

3.4 Discrete or mesoscopic approach

The discrete approach is the opposite of the continuous approach, and considers

and models the components of fibrous reinforcement at low scale. These

3.7 Two stacked plies and the constitutive laws for composite sheet forming

(Pickett et al., 2005).

3.8 Simulation of the forming of a non-crimp fabric on the floor pan of a car

(PAM-FORMESI Group).
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components can be yarns, woven cells or stitching, and also sometimes fibres.

Because these elements are usually at the mesoscale (as defined in Section

3.2.1), the approach is also known as meso-mechanical modelling. Some

analyses have been proposed where all fibres are modelled (microscale

modelling) (Durville, 2002; Duhovic et al., 2006; Pickett, 2002), but the

number of fibres in a composite structure limits these computations to small sub-

domains, for instance a woven cell or a few braided or knitted loops. Work in the

field of discrete or mesoscopic analyses includes studies by Ben Boubaker et al.

(2002, 2005), Cherouat et al. (2001), Ramgulam et al. (2005) and Pickett et al.

(2005). A major difficulty lies in the description of the components at meso-

scopic scale, usually the woven yarns. A compromise must be found between a

precise description (which will be expensive from the computation time point of

view) and a simple description, where it is possible to compute the entire

forming process.

Beam and truss element are the more common descriptions for yarns

(Cherouat et al., 2001; Sharma et al., 2003; Skordos et al., 2005). Figure 3.9

shows the unit cell of a material made of four two-node trusses that represent the

tows, and one (or two) truss elements to model shear stiffness (Sharma et al.,

2003). This approach has been used to simulate hemispherical draping (Skordos

et al., 2005).

Masses and springs are used to model the woven reinforcement in Fig. 3.10

(Ben Boubaker et al., 2005). Springs are used to describe stretching, shear,

bending and also elastic foundations. Drape deformation of a square fabric on a

square surface has been performed using this model. The same authors seek to

account for the crimp variations and yarn interaction, but the model is restricted

to a plane cross-section and concerns a small number of woven cells.

Based on the above descriptions, a parallel can be drawn between fabric FE

analysis and truss or beam structures such as those in civil engineering. Beam or

truss elements can be used for FE analysis, but equivalent continuous models

3.9 Unit cell made of four trusses for tows and one truss for shear stiffness

(Sharma et al., 2003).
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have been defined in order to compute structures with very large numbers of

periodic beam patterns (Tollenaere et al., 1998). Nevertheless, the complexity of

the behaviour of a woven reinforcement cell is greater than that of a lattice cell.

In Pickett et al. (2005), meso-mechanical FE modelling of NCF uses 3D

elements for each yarn and bar element for stitching (Fig. 3.11). Friction contact

between tows and plies is taken into account. Although the complete model

probably needs extensive computational time, a forming process has been

simulated in this way (Pickett, 2005).

A point in favour of analysis at the mesoscopic scale lies in the strong

increase in computer efficiency. Some discrete models that only work on small

fabric parts will probably be used on a whole forming process in the near future.

3.5 Semi-discrete approach

The semi-discrete approach associates the FE method and a mesoscopic analysis

of the woven unit cell. Specific finite elements are defined that are made of a

discrete number of woven unit cells. The description of the fabric by finite

3.10 Discrete fabric model based on masses and springs (Ben Boubaker et al.,

2005).

3.11 A `representative cell' of the meso-mechanical model for NCF (Pickett et

al., 2005).
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elements assumes that two points of weft and warp yarns initially superimposed

remain superimposed after forming, i.e. there is no sliding between the yarns.

This has been experimentally shown in most forming cases, as shown in Section

3.2.3 (Fig. 3.1).

3.5.1 Simplified dynamic equation for fabrics

Fabrics classically used as textile composite reinforcements have yarns made of

thousands of small fibres, such as glass, carbon or aramid (Fig. 3.12a, b). Warp

and weft yarns are woven following classical weaves, plain, satin or twill (Fig.

3.12c). This constitution leads to a fabric with very specific mechanical

behaviour. Most of the rigidities are small or very small in comparison to tensile

stiffness in the yarn directions. The mechanical behaviour of the unit woven cell

for the model must be kept as simple as possible, i.e. must only account for

significant mechanical quantities. The model will have to describe the

specificities of textile reinforcement mechanical behaviour, especially:

· the non-linear tensile behaviour due to crimp interchange; and

· shear locking and the very different in-plane shear behaviour before and after

this locking angle.

The diameter of the glass, carbon or aramid fibres is very small (a few �m) with

regard to length. Consequently, the fibres can only be submitted to tension in

their longitudinal direction h1 (Fig. 3.12a). The yarns usually used for composite

reinforcements are composed of juxtaposed fibres in the same direction h1
(roving). Because relative sliding of the fibres is possible, the Cauchy stress state

in the yarn, as well as in the fibres, is in the form (Fig. 3.12a,b):

r � �11 h1 
 h1 3:17

The tension in the yarn can be defined as:

T11 �
Z

A

�11 dS T � T11 h1 
 h1 3:18

3.12 (a) Single fibre, (b) yarn made of juxtaposed fibres, (c) woven yarns.
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A is the section of the yarn. This tension is a better defined quantity than the

stress and is easier to measure. If a woven domain is considered (Fig. 3.12c), the

tension tensor is in the form:

T � T11 h1 
 h1 � T22 h2 
 h2 3:19

where h1 and h2 are the vectors in warp and weft directions. In order to account

for warp-weft interactions due to in-plane shear, i.e. warp-weft angle variations,

a couple C, normal to the fabric, is considered at each crossover, or set of

crossovers in the case of a more complex woven unit cell. Consequently, the

global simplified dynamic equation is:

Xncell

p�1

p�11�g� pT11L1 � p�22�g� pT22L2
ÿ �

�
Xncell

p�1
�pC p�g� ÿWext�g�

�
Z




� Èu � g dV 3:20

where e(g) � rsg � ���(g)h� 
 h� is the symmetrical gradient in the virtual

displacement g (� and � are indexes taking value 1 or 2). h1, h2 are the

contravariant vectors related to h1, h2, i.e. h� � h� � ���. L1 and L2 are the

lengths of the warp and weft yarns in the midplane of the fabric. (g) is the

virtual relative rotation between warp and weft fibres (or virtual shear angle).

ncell is the number of woven unit cells of the textile structure, pQ, which means

that the quantity Q is considered for the woven unit cell number p. uÈ is the

acceleration, � is the mass per volume of the fabric 
.Wext(g) is the virtual work

of the exterior prescribed loads.

To make an FE simulation of composite woven reinforcement forming based

on the above approach, it is necessary to be able to calculate the tensions T11 and

T22 and the shear couple C for a given strain field in the woven unit cell. It is

assumed that the tension does not depend on the shear angle and that the shear

couple does not depend on the axial strain, i.e. T11��11; �22�, T22��11; �22� and
C(). In Buet-Gauthier et al. (2001), biaxial tensile tests performed for different

angles between warp and weft yarns showed that the influence of this angle is

small and can be neglected. The second assumption (C only depending on ) is
probably less true (Dumont, 2003; Lomov et al., 2004), nevertheless, all the

currently available experimental results give the shear load as a function of the

shear angle without any information on the tensions, so the assumption C() will

be made by default. Bending stiffness is not taken into account. For single- or

few-layer textiles obtained by weaving yarns made of very small glass or carbon

fibres and used as composite reinforcements, this is a justified assumption in

most fabric forming processes.
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3.5.2 Experimental and virtual test for tensile and in-plane
shear behaviour

The weak form (3.20) requires knowledge of the two `tension surfaces'

T11��11; �22� and T22��11; �22�. These surfaces can be obtained from a biaxial

tensile test. Due to the weaving, the biaxial behavior of a fabric is complex and

generally non-linear. Some experiments have been described in Kawabatta et al.

(1973) and Buet-Gauthier et al. (2001). Biaxial tensile strains are prescribed to a

cross-shaped woven specimen (Fig. 3.13) with different strain ratios (denoted k)

in warp and weft directions. The tension measurements give the curve tensions

as a function of axial strain for different warp-weft ratios. From this set of

curves, the surface T����11; �22� for the given fabric can be extrapolated (Fig.

3.14). The tensile surfaces can also be obtained from three-dimensional FE

computations on a unit cell as shown in Fig. 3.14 (Gasser et al., 2000; Boisse et

al., 2001). These analyses are not classical, as the yarn is made of thousands of

fibres and the mechanical behaviour of this assembly is very specific. The

objective derivative based on the fibre rotation, as described in Section 3.3.1,

must be used in order to follow the fibre direction exactly (HageÁge et al., 2005).

As shown in equation (3.17), a single fibre, and consequently an isolated

yarn, can only be submitted to a tensile stress along its direction. When the yarns

are woven, the interactions between warp and weft can create other stresses in

the fabric. In-plane shear rigidity is of particular interest. It is very weak in most

cases and sometimes insignificant in comparison with tension stiffness (Boisse

et al., 2001). The in-plane shear behaviour of fabric has been studied

extensively, probably because it is the main deformation mode of fabrics

(McGuinness et al., 1997, 1998; Prodomou et al., 1997; McBride et al., 1997;

Cao et al., 2004).

3.13 Cross shape specimen and tensile curves for different warp weft strain

ratios k.
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The experimental in-plane shear behaviour of woven reinforcements can be

analysed using a classical picture frame device (Fig. 3.15). Optical strain

measurements can be taken at the macroscopic (pictures of the whole specimen),

mesoscopic (a few woven cells) and microscopic levels within a yarn (Dumont,

2003). They permit both strain measures independent of the device and help us

to understand the internal behaviour of the fabric during shearing. The strain

fields are computed using an image correlation method (Raffel et al., 1998;

Vacher et al., 1999). The macroscopic measures give the shear field versus the

load on the picture frame and allow the homogeneity of the shear in the

specimen to be checked. Figure 3.16 shows the load on the picture frame versus

the shear strain in the case of a glass plain weave. In zone 1, the load is weak and

the displacement field within the yarn (microscopic scale) shows that the yarn is

submitted to rotation without local strain. The global shear of the fabric is

entirely due to the relative motions of the yarns. The beginning of zone 2

corresponds to the shear-limit angle or shear-locking angle. The yarns start to be

in contact with their neighbour and are laterally compressed, partially (zone 2),

then totally (zone 3).

For a given shear angle  the couple C can be deduced from the tension load

on the picture frame. The power provided by the tension machine is assumed to

be equally distributed on all woven unit cells.

ncell C�� � F��V
and consequently

3.14 Tensile surface for a 2� 2 twill of carbon.
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C�� � a

ncell

���

2
p

2
cos



2
ÿ sin



2

� �

F�� 3:21

where a is the length of the side of the frame (between two pin-joints), F is the

load on the tension machine for a shear angle  and V is the speed of the tension

machine.

3.15 Shear frame device equippedwith an optical system.

3.16 Shear curve and optical analysis (Dumont, 2003).
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This shear curve can also be obtained from three-dimensional FE analysis on

a unit cell submitted to in-plane shear (Boisse et al., 2005b), although this

analysis is difficult due to the contact localisation beyond the shear-locking

angle.

3.5.3 A four-node finite element made of woven cells

From our knowledge of the tension surfaces �T11��11; �22� and T11��11; �22�� and
of the shear curve (C()), the simplified dynamic equation (3.5) permits us to

construct specific finite elements for fabric forming (Boisse et al., 2005a; Zouari

et al., 2006).

The four-node element is presented in Fig. 3.17. It is made of ncelle woven

cells. The directions of the yarns are those of the natural coordinates in the

reference element �1, �2, i.e. the directions of the sides of the element. There are

two main reasons for this. First, the numerical efficiency is improved because

the expressions of the interior load components are much simpler. Secondly, it

has been shown that, in the case of a material with two directions that are very

stiff in comparison with others (especially woven materials), the finite element

analyses can lead to locking if these directions are not those of the element sides

(Yu et al., 2004).

Because the computations are made using an explicit approach, the only

quantity needed is the elementary interior nodal load Fe
int that is related to the

interior elementary work W e
int:

3.17 Four node finite element made of woven cells.
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W e
int�g� �

Xncell
e

p�1
�p�11�g� pT11 pL1� � p�22�g� pT22 pL2 �

Xncell
e

p�1

p�g�pC

� �s�Feint�s 3:22

The nodal index s varies from 1 to 12 in the case of the four-node quadrilateral.

The symmetrical gradient of the virtual displacement is expressed in h1, h2

and g1, g2:

rsg � ���h� 
 h� � ����g
� 
 g� 3:23

g1, g2 is the covariant material base such as g� � @x=@�� and g� the related

contravariant vectors.

The strain interpolation components B��s are defined from the virtual strain

components ����:

���� �
@g

@��
� g� �

@N k

@��
�g��m�s � B��s�s 3:24

where k = integer part of �s� 2�=3 and m � sÿ 3�k ÿ 1�. To define the inter-

polation of the angle p�g�, a first order development is required. The rotation

between warp and weft yarns corresponding to the virtual displacement � is:

�g� � arccos
g1� � g2�
kg1�k kg2�k

 !

ÿ arccos
g1 � g2
kg1k kg2k

� �

3:25

where g� � @x=@�� and g�� � �@�x� g��=@�� are the material covariant vectors

respectively in the current and virtual configuration.

Denoting � � �g1; g2� and �� � �g1�; g2�� � �� �g� and neglecting the

second order terms, equation (3.12) can be approximated by:

�g� � @g

@�1
� cotg �

g1

kg1k2
ÿ g2

sin � kg1k kg2k

" #

� @g

@�2
� cotg �

g2

kg2k2
ÿ g1

sin � kg1k kg2k

" #

3:26

This gives the shear strain interpolation:

�g� � Bs�s 3:27

With:

Bs �
@N k

@�1
cotg �

�g1�m
kg1k2

ÿ �g2�m
sin �kg1k kg2k

" #

� @N
k

@�2
cotg �

�g2�m
kg2k2

ÿ �g1�m
sin �kg1k kg2k

" #

3:28
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From the strain interpolation coefficients B��s and Bs obtained in (3.11) and

(3.15), the virtual elementary interior load work is related to virtual

displacements:

W e
int�g� � �s

Xncell
e

p�1
kg1kÿ2 pB11s

pT11 � kg2kÿ2 pB22s
pT22 � pCpBs

 !

� �s�Fe
int�s 3:29

As shown in Boisse (1994), computation of the nodal interior loads does not

require the summation on all the woven cells of the element. Accounting for the

bilinear interpolation, the summation can be done on only four cross-overs, the

positions of which depend on the number of warp and weft yarns. If nc and nt are

the number of yarns in warp and weft directions, the position of the four cross-

overs are:

�1 � �ÿ1� �n2c ÿ 1��3n2c�
ÿ1

� �1=2
�2 � �ÿ1�� �n2t ÿ 1��3n2t �

ÿ1
� �1=2

3:30

and � are equal to 1 or 2. Consequently, the nodal interior load components can

be calculated by:

�Feint�s �
X2

�1

X2

��1

ncnt

4

B11s��1; �2�L1T11��1; �2�kg1��1; �2�kÿ2

�B22s��1; �2�L2T22��1; �2�kg2��1:�2�kÿ2

�Bs��1; �2�C��1; �2�

0

B
@

1

C
A 3:31

This expression is explicit, there is no matrix multiplication, no computation of

terms equal to zero (corresponding for instance to non-existent stiffness in

fabrics). Consequently, the numerical efficiency of the element is good.

3.5.4 Hemispherical forming of an unbalanced fabric

The hemispherical forming of a 2� 2 nylon twill is analysed in this section.

This type of fabric is used in the automotive industry (Dumont, 2003). It exhibits

a very unbalanced tensile behaviour in warp and weft directions (Fig. 3.18). The

shear behaviour of this fabric has been analysed experimentally using the picture

frame test. Its rigidity has been investigated using two straight segments, whose

slopes are k1 � 0.03mmN/rd and k2 � 0.095mmN/rd with a critical shear angle

c � 0:5rd. Tests of hemispheric sheet-forming have been carried out by F.

Dumont in the S3MEM composites laboratory of the University of Nottingham

(Daniel et al., 2003). The forming process was simulated using two approaches,

tension only, and tension plus shear. The results of these two simulations as well

as the experimental final shape are shown in Fig. 3.19. The experimental

deformed shape is very different in warp and weft directions. The warp direction

(vertical in Fig. 3.19 and corresponding to the most rigid yarns), shows

significant sliding of fabric in the matrix. In the weft direction, there is no visible
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sliding. The yarns are strongly stretched. At the summit of the hemisphere, an

initially square quadrilateral becomes a rectangle with a side ratio equal to 1.8

(Fig. 3.19a). Both simulations give a value of this ratio close to the experimental

value (Figs 3.19b and 3.19c). The deformation of the hemispherical part is

computed well by both approaches.

The asymmetry of the deformed shape in warp and weft directions is obtained

by both approaches. The main difference concerns the wrinkles. In the tension

plus shear approach, the shear strain energy leads to the appearance of wrinkles

in the plane region of the preform, whereas for tension only, there are no

wrinkles. The shapes are in good agreement with those of the experimental

preform (Figs 3.19a and 3.19c). There are no wrinkles in the hemispherical zone

and the two approaches give close results in this region. But there are regions

where the shear angle is higher than the shear-limit angle. When the shear

3.18 Characteristics of the woven reinforcement, in tension (warp and weft

direction), and in shear.
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3.19 Deformed shape after the hemispheric forming in the experimental case (a), simulation in tension only (b) and in tension

plus shear (c).



energy is taken into account, the minimisation of the total deformation energy

leads to an out-of-plane solution, i.e. the wrinkles (Fig. 3.19c). The contribution

of shear behaviour is mainly in describing the state after the appearance of

wrinkles. At this stage, the relative rotations between warp and weft yarns are

reduced. For instance, the maximum shear angle is 38ë in Fig. 3.19c as opposed

to 50ë in Fig. 3.19b. This value (38ë in the case of tension plus shear analysis) is

in good agreement with angles measured experimentally (37ë). It should be

pointed out that the mesh used in Fig. 3.19c (tension plus shear) is finer than that

used in Fig. 3.19b (tension only). These meshes can be used because their

thickness does not change the solution significantly. The mesh size can be much

finer in the case of tension plus shear because the wrinkles that appear in this

case need much smaller elements in order to describe the wrinkles correctly,

without using any perturbation methods or initial imperfections.

3.6 Multi-ply forming and re-consolidation
simulations

There are several composite forming processes in which the transverse

behaviour, i.e. the strain and stress across the thickness, is a major issue. That

is the case for Continuous Fibres and ThermoPlastic (CFRTP) matrix forming

processes (Maison et al., 1998). After heating at a temperature higher than the

melting point (Fig. 3.20a), forming is carried out using a punch and die process,

normally using a rubber on the die (Fig. 3.20b). Re-consolidation is obtained by

applying pressure on the punch (Fig. 3.20c). The objective of this last stage is to

remove any residual pores at the interface of the plies, which is critical for

products such as load-bearing aeronautical parts.

3.20 Different stages of forming. (a) Heating of the CFRTP. (b) Forming with

punch and die. (c) Reconsolidation phase. (d) Final part.

70 Composites forming technologies



3.6.1 Simulation of CFRTP forming processes

One of the main forming modes is the relative sliding between the plies. In order

to permit the necessary sliding, each ply is modelled as a set of shell elements.

An example is shown in Fig. 3.21 for a Z reinforcement made of ten plies that

slide during bending of the initially flat plate. The relative sliding between the

plies (Fig. 3.22) agrees with experimental results (Cheruet et al., 2002).

An important quality issue for the final part is the absence of pores in the

thickness of the composite. Any pores could be the source of a fracture during

the service life of the composite and must be avoided, particularly for

aeronautical applications. This is the reason behind the re-consolidation stage of

the forming process (Fig. 3.20). It has been shown that many gaps appear in the

material after the heating stage (Fig. 3.23) and these are removed by the pressure

applied during the re-consolidation phase (Fig. 3.24). This stage is essential to

3.21 Forming of a Z reinforcement. Forming stage (Cheruet et al., 2002).

3.22 Interply sliding during the forming stage (Cheruet et al., 2002).
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the final quality of the part. It can be analysed by an FE simulation to determine

if the stress through the thickness is sufficient to remove any pores.

3.6.2 Shell element with pinching

Re-consolidation has been studied by Lee et al. (1987) and some models for

local consolidation have been proposed. These studies have shown that re-

consolidation depends on the stress state in the laminate, and mainly on the

normal stress in the re-consolidation stage. This stress component is not present

in classical shell theory. Some finite elements with stress/strain through the

thickness have been proposed (Simo et al., 1990; Butcher et al., 1994;

Bletzinger et al., 2000). A shell element is used where a degree of freedom

through the thickness strain is introduced (Coquery, 1999; Cheruet et al., 2002).

The thickness stress is not equal to zero but is related to the thickness variation �

by the constitutive law. Assuming small rotations between two computation

steps, the displacement expression is (Fig. 3.25):

3.23 Material before and after the heating stage (Cheruet et al., 2002).

3.24 Material state after the re-consolidation stage (Cheruet et al., 2002).
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u � �uÿ ~z0X̂ t � �� z�X̂ t 3:32

If � � 0 then equation (3.32) leads to classical shell kinematics without

pinching. � is a additional pinching degree of freedom. The strain tensor

��u� � 1
2
�r�u� � rT�u�� can be derived from to the displacement (3.9).

In an orthogonal frame (ê1; ê2; ê3 � X̂) the membrane bending strain

components are:
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The transverse shears are:
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and the strain through the thickness (pinching) is:

f�33g � � 3:35

The transverse shear strains are modified by pinching. In contrast to the

classical shell, the normal stress through the thickness is not zero. It is deduced

from �33 � � using the compaction behavior law. It has been shown that this

element exhibits a `pinching' locking. To avoid this locking, it is necessary to

modify the constitutive relation in order to remove the coupling between

pinching and bending (Coquery, 1999; Cheruet et al., 2002). The example

presented in Fig. 3.26 (cantilever plate) shows the pinching locking obtained

with a complete behaviour law and the accurate result if pinching and bending

are not coupled. Analysis of the reason for this locking can be found in Soulat et

al. (2006).

3.25 Kinematics of the shell with pinching.
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3.6.3 Simulation of the forming and re-consolidation stage of a
Z profile

Using the shell element described above, the stress through the thickness is

computed for an initially flat ply which is formed into a Z shape (Fig. 3.21) and

then compacted.

During and at the end of the forming stage (Fig. 3.27), the stress through the

thickness is equal to zero in most areas except in the radius of the tools. That

confirms micrographic observations which have shown that consolidation only

occurs near the radius during the forming stage (Cheruet et al., 2002).

After the compaction phase, the entire part is in compression (Fig. 3.28). The

value of the stress through the thickness is related to the angle of the curved part

of the Z profile. In order to obtain an accurate value of the thickness stress, it is

important to used an efficient non-linear compaction law (Gutowski, 1985;

Baoxing et al., 1999).

3.26 Effectiveness of uncoupling bending-pinching.

3.27 Stress component through the thickness at the end of forming.
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3.7 Conclusions

Finite element analysis is probably the approach that will be used to simulate

composite forming processes in the future. These simulations are especially

important for composite materials because not only do they help determine the

feasibility of the forming process itself, but they also give fibre directions and

densities, which are essential for further analysis of the composite part in

service. The deformation modes of the composite during forming are related

mainly to the internal fibrous structure of the reinforcement, consequently the

forming modes are specific to these materials. Fibre extensions are usually

small, but large in-plane shear can occur.

At present, two approaches are used. The continuous approach involves defining

an equivalent continuous mechanical behaviour for the fibrous reinforcement at the

macroscopic level, and the discrete or mesoscopic approach models the components

of the reinforcement at the mesoscopic level. While most industrial analysis

currently uses the continuous approach, the mesoscopic approach will become more

common as analysts take advantage of computing improvements.

One point must be underlined at the end of this chapter. It concerns the

necessity for accurate tests (experimental or virtual) to determine the mechanical

properties of the materials, including friction. The FE method is a mechanical

approach and understanding the behaviour of the material during forming is

essential for the computations. Tests for composite reinforcements are not as well

established as those for metallic materials, for instance a cooperative benchmark

performed by several labs on in-plane shear properties has shown a large

variation in results for a glass fibre fabric used in automotive applications. This

area must be improved if FE analysis for composite forming is to be accurate.
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