
4.1 Introduction

Deformability of textile preforms plays a key role in the quality of a composite

part formed into a 3D shape and processed using liquid moulding techniques

such as resin transfer moulding (RTM). Ill-chosen placement of the preform,

disregarding its behaviour under heavy strain in complex deformation may result

in the preform wrinkling or even damage, deteriorating the performance of the

composite part. This explains the importance of predictive modelling of deform-

ability of textile preforms. The deformation modes of primary importance are in-

plane deformation (tension and shear) and compression of the preform.

Deformability of woven preforms in these modes is the subject of the present

chapter. Out-of-plane bending may also be considered, as it can affect internal

geometry of the preform, especially for small bending radii; a model of the

woven fabric bending can be found in refs 1 and 2. Naturally the deformability

of woven fabrics is also important for apparel textiles, and has attracted attention

of textile materials researchers. Works of Kawabata, Niva and Kawai,3±5 de

Jong and Postle,6 Hearle and Shanahan7 have established an approach to

mathematical modelling of deformation of woven fabrics, which can be

summarised by three principles.

First, the model uses deformations, rather than loads, as input for in-plane

deformation (for compression model the applied pressure is the input). An

overall deformation pattern is imposed over the woven fabric repeat (unit cell) to

change the spacing of the yarns in tension and the angle between them in shear.

As formulated by Komori and Ito,8 the unit cell is subject to transformation of

coordinates defined by the given deformation. The contacts between yarns stay

unchanged in tension, and experience rotation (not sliding) of the contacting

yarns in shear.

Second, the principle of minimum energy is applied to compute the internal

geometry of the deformed fabric. With the spacing and orientation of the warp

and weft given, the yarn paths are defined using one of available geometrical

models (Peirce's, elastica, splines, etc.), with crimp heights and dimensions of
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the cross-sections of the yarns (which can change under transversal force caused

by tension) as parameters. These parameters are calculated via the principle of

minimum total energy, associated with the yarn tension, bending and com-

pression. Tension of the yarn is computed using the experimental tension

diagram. Elongation of the yarn is estimated by the difference between yarn

length in the repeat before and after the deformation. Experimental bending and

compression diagrams are used to compute bending energy and resistance to

compression. All these experimental diagrams are non-linear. Application of the

principle of minimum energy to fibrous assemblies must be considered as

heuristic, as it can be applied rigorously to conservative systems only. This

means that frictional effects are not taken into account in the solution of the

minimisation problem. The internal friction between fibres in the yarns enters

the calculations via non-linear bending and compression diagrams. The inter-

yarn friction is absent in tension, and manifests itself in the rotation of the

contacting yarns in shear.

Third, the applied loads are computed via the balance between, on one hand,

the mechanical work done by the loads on deformations of the unit cell, and, on

the other hand, the sum of the change of the total energy of the deformed yarns

and the work of friction (if any).

In the papers cited above,3±7 and some others,9±14 the approach has been

successfully applied to plain woven fabrics. It has also been reported to work for

twills and satins.15 We will use this scheme for all three types of deformation

under consideration: compression, bi-axial tension and shear.

Returning to deformability of woven reinforcements for composites, one

finds quite a number of publications on modelling. The model complexities

range from simple empirical models to elaborate finite element descriptions.

Certain important points have been investigated, which were not covered by

earlier `apparel-oriented' models.

In studies of compression the attention was given to compressibility of the

reinforcement at high loads, which are characteristic of composite processing.

The compression curve is broken into three regions (low, medium and high

loads), each dominated by different phenomena.16±19 The nesting of layers of the

reinforcement is taken into account.17,20,21 Models of shear of woven reinforce-

ments22±29 have to consider very high shear angles (up to 60±70ë) occurring in

forming of complex 3D parts. This is dealt with by an introduction of models of

lateral compression of the yarns, which come into contact when the shear angle

reaches and exceeds the locking angle of the fabric `trellis'. The simple, but not

true-to-life concept of preserving the volume of the unit cell to calculate the

change of the thickness of fabric in shear, has been advanced to more correct

considerations of yarn compression.

Recently, finite element descriptions of deformability of textiles have been

introduced for bi-axial tension,30±37 shear38,39 and compression20 of woven

reinforcements (see Chapter 3). Based on the increasing power of computers,
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these approaches aim to describe in detail the 3D behaviour of the fabric con-

stituents including contact and friction and to obtain result fields at a local level.

Finite element modelling encounters two difficulties. First, the geometry of a

textile unit cell is very complex, and creating a solid model manually is not an

easy task. The solution is provided by the use of a textile geometry modeller as a

preprocessor, capable of creating a finite element model automatically.40±48

Second, the description of the material behaviour used in the finite element

model must realistically represent the actual behaviour of the fibrous assemblies

± yarns. Development of such a library of material models for textiles, available

in finite element packages, presents a serious challenge to researchers.

Models of textile deformability developed so far have built a solid foundation

for their generalisation, encapsulating the achievements of textile material

science in a modelling software tool, allowing wide variability of textile struc-

ture and yarn parameters, instrumented with visualisation features and able to

transfer the models of textile geometry into specialised micro-mechanical and

flow modelling software as well as into general purpose finite element packages.

Such a tool can be considered as a preprocessor for calculation of homogenised

properties ± permeability tensor and stiffness matrix ± of deformed textile

reinforcement. These properties, in their turn, are used as input to provide local

parameters in modelling of Darcy flow through the deformed preform and

structural finite element analysis of a 3D shaped composite part. This work is in

progress in Composite Materials Group in the Department MTM, K.U.

Leuven.21,49±57 It has resulted in the development of textile modelling software

WiseTex (http://www.mtm.kuleuven.be/Research/C2/poly/software.html). The

chapter describes models of deformability of woven fabrics implemented in

WiseTex. First versions of the models described here were developed in the early

1990s.58±63

4.2 Mechanical model of the internal geometry of
the relaxed state of a woven fabric

The comprehensive description of the model of the relaxed state of a woven

fabric can be found elsewhere.49,51,53,64 Here we state its main components used

in the simulation of the fabric deformation.

4.2.1 Weave pattern and elementary crimp intervals

A weave pattern (for one- and multilayered fabrics) is coded with matrix

coding.21,49,51,53 It allows separation of the crimped shape of the warp and weft

yarns into elementary bent intervals (Fig. 4.1), representing sections of the yarn

between interlacing sites. The shape of the yarn on an elementary interval is

described using a parameterised function z�x; h=p�, where z and x are

coordinates of the yarn middle line, h is the crimp height and p is the distance
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between the interval ends (spacing of the yarns). The shape z�x; h=p� for a given
relative crimp height h=p is computed using the principle of minimum bending

energy of the yarn on the interval and has the form:

z�x�h�1=2ÿ 3�x=p�2 � 4�x=p�3 � A�h=p��x=p�2��x=p� ÿ 1�2��x=p� ÿ 1=2�� 4:1

where the first term is a spline function, corresponding to the solution of the

linearised minimum energy problem, and the second term represents a

correction for a non-linear formulation. The function A�h=p� is calculated from

the solution of the minimum energy problem and is tabulated.

With this function known, the characteristic function F of the crimp interval

is computed, representing the bending energy of the yarn:

w � 1

2

Z p

0

B��� �z}�2

�1� �z0�2�5=2
dx � B����

p
F�h=p� 4:2

where B��� is the (measured experimentally) bending rigidity of the yarn, which

depends (non-lineary) on the local curvature ��x�, or, after the integration, on an

average curvature over the interval

�� �
�������������������������������������������

1

p

Z p

0

�z}�2

�1� �z0�2�5=2
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s

4:3

Function F�h=p� is also tabulated. With the function F known, the transversal

forces acting on the interval ends can be estimated as

Q � 2w

h
� 2B����

p2
p

h
F�h=p� 4:4

4.2.2 Compression of the yarns in the relaxed fabric

Warp and weft yarns in the relaxed fabric are compressed by the transversal

forces Q [4.4] according to experimental diagrams, measured on `virgin' yarns

4.1 Model of internal geometry (a) and tension (b) of woven fabric.

Virtual testing for material formability 83



d1 � d10�1�Q�; d2 � d20�2�Q� 4:5

where subscript `0' refers to the uncompressed state of the yarn, d1 and d2 are

dimensions of the yarn cross-section (Fig. 4.1). These dimensions and crimp

heights of the yarns are interconnected:

hWa � �Z � �dWa � dWe� ÿ �hWa
1 � hWe

2 �=2 4:6

where superscripts refer to the warp and weft yarns, subscripts `1' and `2' refer

to two weft yarns in different layers, �Z is the distance between fabric layers

(Fig. 4.1).

With crimp heights of weft yarns given, equations [4.4±4.6] provide a closed

system of non-linear equations for calculation of the transversal forces Q and

yarn dimensions d1 and d2.

4.2.3 Minimum energy problem ± calculation of theweft crimp
heights

The weft crimp heights are found using the principle of minimum bending

energy of the yarns inside the unit cell. It is written as

W� �
XNWa

i�1

X
KWa
i

k�1
wWa
ik �

XNWe

j�1

X
KWe
j

k�1
wWe
jk ! min 4:7

where subscripts i; j refer to different warp and weft yarns, k to the elementary

crimp interval of the warp/weft yarn, and energies of the elementary intervals

are calculated using (2). The minimum problem [4.7] is solved for the weft

crimp heights, with all other parameters defined inside the minimisation

algorithm obtained via solution of the system [4.4±4.6] for the given current

crimp heights. It takes about 1 s on 1GHz PC to compute parameters for a 3D

fabric with 20 yarns in the repeat, and about 0.05 s ± for a plain weave fabric.

4.3 Model of compression of woven fabric

4.3.1 Outline of the algorithm

When a fabric is compressed, the following changes in geometry take place:

· warp and weft yarns are compressed;

· the less crimped yarn system increases its crimp, and the more crimped

system reduces in crimp.

These two processes are treated in the model separately. This follows from the

assumption of an even distribution of the compressive force over warp/weft

intersections, because this assumption implies that force per intersection, which

compresses the yarn cross-sections and bends the yarns, is independent of any

changes of warp and weft crimp or cross-section dimensions.
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To compute compression of the yarns, the compression force per intersection

is evaluated:

Qc � F=�NWaNWe� 4:8

where F is the pressure force on fabric repeat. This value is added to all the Qij ±

transversal forces acting on the intersections and computed with [4.4], to

evaluate the dimensions of the yarns with [4.5]. Hence, both the compression

due to yarn bending and the compression due to external force are accounted for.

The algorithm presented above is then applied to yield the compressed

dimensions of the yarn cross-sections and the new values of the yarn crimp.

The change of crimp in compression (increasing for warp and decreasing for

weft, or vice versa) leads to a decrease of the fabric thickness. Therefore the

basic mechanical equation governing this process is

work of compressive force Q on change of thickness db

� change of bending energy of yarns dW 4:9

The compression of yarns has been accounted for before and the resulting

changed cross-section dimensions are `frozen', that is why the work of yarn

compression does not enter the balance [4.9].

Changes of the fabric thickness db and bending energy of the yarns dW

depend on the change of the set of weft crimp heights fdhWe
j g and therefore [4.9]

has a set of unknown variables. A reasonable assumption to cope with this

difficulty is: `The crimp changes in such a way as to provide the maximum

possible change of thickness'. This means that if the function b�fhWe
j g� is

considered (b being the fabric thickness), then changes of crimp will follow the

direction of the maximum slope (in the opposite direction):

fdh0ijg � ÿx grad b�fhWe
j g�

where x is computed to satisfy [4.9]; dashed values refer to changed crimp.

Equation [4.9] is then written as follows:

F � bb�fhWe
j g� ÿ b�fh0We

j g�c �
X

i;k

WWa�fh0We
j g� �

X

j;k

WWe�fh0We
j g�

ÿ
X

i;k

WWa�fhWe
j g� ÿ

X

j;k

WWe�fhWe
j g� 4:10a

h0We
j � hWe

j ÿ x � grad b�fhWe
j g� 4:10b

to be solved numerically for x, which should also satisfy

0 � hWe
j � h

We;max
j and b�fhWe

j g� ÿ b�fh0We
j g� � 0 4:11
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4.3.2 Compression of 2D laminates

Woven preforms are usually compressed in a mould as a stack of fabric layers,

which are not precisely positioned one against another, causing a geometric and

mechanical phenomenon of nesting. Nesting plays an important role in deter-

mining the permeability of the laminate and the mechanical properties of the

composite. Nesting causes a statistical distribution of the laminate properties,

both at different positions within a composite sample and between different

samples in a set of otherwise identical parts.

To calculate compression of a laminate, consider first compression of one

layer of the fabric. After the calculation described above, the dimensions and

placement of the yarns inside the unit cell of compressed fabric are known. The

placement hence defines the surface profile functions of the face and back

surface of the laminate (Fig. 4.2a):

hf �x; y� �
Z

2
ÿ zf �x; y�

hb�x; y� � zb�x; y� �
Z

2

4:12

where x; y; z are Cartesian coordinates, with the centre of the coordinate system

in the centre of the unit cell, Z is the fabric thickness, zf and zb are coordinates of

the face and back surface of the fabric. Equation [4.12] applies if there is a point

�x; y; z� inside the yarns or fibrous plies for the given �x; y�. If no such point

exists, then

hf �x; y� � hb�x; y� � Z

With the surface profile functions defined, it is easy to calculate the nesting

of the layers. Consider two identical layers of the laminate, with one layer

shifted relative to another by dx and dy in x and y directions (Fig. 4.2b). To

define the nested position, we must calculate the distance h� between centre

planes of the layers, when the yarns in the layers are just touching one another

and there is no inter-penetration of the yarns. When nesting is zero, h� � Z.

Consider a certain distance between centre planes h. The distance (depending on

the �x; y� position) between the back surface of the upper layer and the face

surface of the lower layer is

��x; y; h� � hÿ Z � hf �x; y� � hb�xÿ dx; yÿ dy�
Defining

���h� � min
x;y

��x; y; h�

we can compute the nesting distance h� as a solution of the equation

���h� � 0
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If the surface depth functions are defined on a finite mesh, these calculations

are easily performed if shifts dx, dy are done in integer mesh units. In this case

the calculations involve O�Nx � Ny� comparisons, Nx and Ny being the mesh

size in x and y directions.

For a laminate of L layers, the set of shifts dxl, dyl, l � 1 . . . L is defined, and

the algorithm is applied to one layer after another. When the nested positions of

layers are defined, the descriptions of the yarns and fibrous plies of the original

one-layer fabric are copied and positioned according to the in-plane shifts and

vertical placement of the layers (Fig. 4.2c). Note that the configuration shown in

Fig. 4.2 is subject to the translational symmetry transformation in the x±y plane,

and the apparent voids in the unit cell volume are actually filled by the yarns

belonging to the adjacent repeatable units.

Figure 4.2c compares the simulations with experiment for a glass fabric with

3.34 warp yarns/cm and 3.62 weft yarns/cm, 600 tex yarns, areal density

420 g/m2. The compressibility of the fabric has been studied by Lomov and

Verpoest,21 where the precision of the WiseTex compression model has been

validated. Consider laminates made of this fabric under a pressure of 1 MPa.

Comparison between an experimental cross-section of the laminate and a

result of the random simulation (Fig. 4.2c) reveals similarity between the

qualitative characteristics of the placement of the layers. In both cases, there

exist regions with high packing density of the yarns, where the local fibre

volume fraction is very high, and regions with high porosity, effectively

creating channels in the fabric. Figure 4.2c shows also the experimental data

on the thickness of the laminate with one, two, three and four layers,21 in

comparison with the results of Monte-Carlo simulations of the random

4.2 Nesting model: (a) Surface depth function hf ; (b) Shifted layers; (c)

Captured with X-ray microCT and computed cross-section of 25 ply laminate;

(d) thickness of laminate per layer vs number of layers.
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stacking of the fabric layers (size of the sampling 500). The experimental and

computed data correspond quite well.

4.3.3 Compression of 3D fabric

The algorithm described above does not preserve the length of the yarns after

compression, hence introducing an error on the final fabric geometry. In the

compaction of a 2D fabric this error is small and can be considered to be

negligible. When a 3D fabric is compacted, its z-yarns (going through the

thickness), deviate considerably from their paths, as the length of the yarn must

be preserved when the thickness of the fabric is reduced. In a 3D fabric with z-

yarns initially almost vertical, they will acquire S/Z shapes. If the interlacing

yarns are oblique, their initial slope is increased.

To describe such behaviour rigorously, one would have to account for all

kinds of contacts between yarns occurring during the compaction. This task may

be an interesting challenge for finite element modelling. In the present model,

implemented in WiseTex, a simple geometrical approach is followed. A spline

correction is added to the yarn path, with spline coefficients chosen as to

preserve the yarn length after the deformation. The result of the correction is

illustrated in Fig. 4.3, which shows the results of measurement and simulation of

compression of 3D glass fabric (yarns 4� 4� 33 tex, 35 yarns/cm in warp and

weft, areal density 3900 g/m2, weave is shown in the figure). The fabric is

proposed in Parnas et al.65 as a benchmarking case for study of RTM composite

processing. Compression of the fabric has been measured on the KES-F

(Kawabata Evaluation System) textile compression tester for the low load range

and on an Instron for higher loads. The input data on compressibility of the yarns

and their bending rigidity has been measured on KES-F. Other fabric data was

4.3 Compression of 3D fabric. Above: Compression diagram,measured (lines)

and computed (circle). Inset: Computed and observed shape of z-yarn at

300kPa.
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taken as specified in Parnas et al.65 We see that the described algorithm provides

a reasonable prediction of the compression diagram as well as the fabric internal

structure after compression.

4.4 Model of uniaxial and biaxial tension of woven
fabric

4.4.1 Outline of the algorithm

The algorithm described here is a generalisation of the method, proposed by

Kawabata et al.3,4 and Olofsson66 and widely used by other researchers for plain

weave fabrics (with possible extension to other 2D structures).15 The com-

putational scheme was also implemented into FEA.30,31 We apply the method to

a generalised description of an arbitrary weave, including 3D architectures.

Consider first a woven fabric under biaxial tension characterised by deforma-

tions in warp (x-axis) and weft (y-axis) directions ex � Y=Y0 ÿ 1, ey � X=X0 ÿ 1,

where X and Y are sizes of the fabric repeat, subscript `0' designates the

undeformed state. As discussed above, the internal structure of the fabric is

described based on weft crimp heights hWe
j and weft and warp cross-section

dimensions at the intersections dWa
ij and dWe

ji (subscripts designate different yarns

in the fabric repeat). These values change after the deformation. Tension of the

yarns induces transversal forces, which compress the yarns, changing the d values.

The same transversal forces change the equilibrium conditions between warp and

weft, which leads to a redistribution of crimp and change of crimp heights. When

the mentioned values in the deformed configuration are computed, the internal

geometry of the deformed fabric is built as explained above. Change of length of

the yarns determines their average (in the repeat) deformations, which, through the

tension-deformation diagrams of the yarns allow yarn tensions to be computed.

When summed, with yarn inclinations due to the crimp accounted for, the yarn

tensions are transformed into loads, causing the fabric deformations.

The key problem in biaxial modelling is the computation of the crimp heights

and transversal forces in the deformed structure. Assuming that the spacing of

the yarns in the fabric is changed proportionally to the change of the repeat size,

we compute the x and y positions of intersections of warp and weft in the

deformed structure. The configuration of the yarns in the crimp intervals

between the intersections is determined by these positions and (unknown) crimp

heights. Consider some values of the crimp heights. Then the geometrical model

determines the positions of the ends of crimp intervals (warp/weft intersections)

and bent shape of the yarns in the intervals.

The transversal forces are computed using the following formula (Fig.

4.1b):

Q � Qbend � T1 sin �1 � T2 sin �2 4:13
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where Qbend is the transversal force due to yarn bending [4.4], T1;2 are the yarn

tensions on two crimp intervals adjacent to the point of application of the

transversal force, �1;2 are the angles of inclination of the yarn on these crimp

intervals. We assume that the tension of the yarn can be computed based on the

average deformation e of the yarns (therefore T1 � T2):

T1 � T2 � T���; � � l ÿ l0

l0
4:14

where l is the yarn length. Note that T depends on yarn length after the

deformation, which in its turn depends on crimp heights and yarn dimensions.

The transversal forces compress the yarns according to an experimental

compression law [4.5]. When the yarn dimensions are computed and `frozen',

crimp heights are determined using the minimum energy condition:

W � Wbend �Wtens ! min

where Wbend and Wtens are the bending and tension energy of the yarns. The

former is computed summing up bending energies of the yarns in crimp intervals

between yarn intersections [4.7], the latter is the sum of tension energies of all

the yarns, which are computed using their (linear or non-linear) tension

diagrams and yarn deformations.

The computations described above determine one step in the iteration

process: starting from current values of the crimp heights we compute yarn

lengths, yarn tensions, transversal forces, yarn compressed dimensions and then

new values of the crimp heights. The full algorithm is depicted in Fig. 4.4.

If one side of the fabric is kept free (uni-axial tension, say, along the warp),

then the described algorithm has another, outer iteration loop, searching for

X < X0 (negative ey) which would lead to zero loads along the weft (y)

direction. This allows computing the Poisson coefficient for the fabric.

4.4.2 Comparison with finite element simulation and
experiment

Experimental biaxial tensile properties of balanced glass woven fabric (plain

weave, 2.2 yarns/cm, 1220 tex) and results of finite element (FE) analysis have

been reported in refs 32, 33 and 55. The main feature of FE calculations is the

specific mechanical behaviour of the single yarn, which is composed of

thousands of fibres with very small sections, which are very flexible and can

slide relative to others. The behaviour of the yarn is assumed to be orthotropic.

Shear moduli are very small. Young's moduli in the direction perpendicular to

the yarn are all very small in comparison to the modulus in the direction of the

yarn. A hypoelastic orthotropic model is used and the rotation of the orthotropic

frame (as well as the rotational objective derivative) is based on the rotation of

the yarn. The compression of the yarn is very important in biaxial tension,
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because the undulation variations directly depend on these thickness changes.

The transverse Young's modulus is assumed to be of the form.

E3 � E� � E0j�n33j�m11 4:15

E� is the transverse Young's modulus of the unloaded state. It is very weak

(nearly equal to zero) for the single yarns of the studied fabrics. The parameters

E0, m, n are determined using an inverse method from the biaxial test for equal

forces in the warp and weft direction (Fig. 4.5a). The results of the finite element

analysis are in good agreement with the experimental data.32±34

The current formulation of the approximate model (Fig. 4.4) does not

envisage the dependency of the yarn compression diagrams on the applied

tension. Therefore comparison of the experimental data and results of finite

element simulations can answer two questions:

· Does the iterative algorithm of Fig. 4.4, simplified vis-aÁ-vis finite element

modelling, provide results close to the latter (and to experiment)?

· What are the errors introduced by using compression diagrams obtained

without the yarn tension?

To answer these questions, WiseTex modelling of the tension of the fabrics,

described above, have been performed. The yarn tension resistance has been

taken from the experiment (Fig. 4.5). Bending rigidity of the yarns has been

Step 1. Set initial Step 1. Compute spacing
deformations and tensions. pWa0�1� �y�; pWe � pWe0�1� �x�:
Step 2. Compute Step 2. Set changes of weft crimp
dimensions of yarns and heights�hlj � 0.
transversal forces. Step 3. Compute fabric internal
Step 3. Compute length structure for hlj � hlj0 ��hlj .
of the yarns. Step 4. Compute average yarns
Step 4. Compute strains � � l=l0 ÿ 1.
deformations and tensions. Step 5. Compute yarns tensions
Step 5. Check convergence F � F���.
for the deformations. If not, Step 6. Compute transversal forces
go to Step 2. Q (due to bending and tension).

Step 7. Compute compression of the
yarns under the forcesQ. Check

Step 1. Set an convergence ofQ.
approximation fhWe

lj g. Step 8. Compute�hij using the
Step 2. Compute condition ofminimum of total
grad�WfhWe

lj g�. (bending plus tension) energy of
Step 3. Solve the the yarns in the repeat.
minimization problem in Step 9. Check convergence of�hlj ;
the gradient direction. if not, go to Step 3.
Step 4. Check the Step 10. Compute applied forces
convergence of fhWe

lj g; summing up the yarns' tensions.
if not, go to Step 2.

4.4 Biaxial tension algorithm.
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measured on KES-F to provide the value of 0.5Nmm2. The compression law

was derived from equation [4.15] using different constant levels of tension (�1).

These diagrams are referred as `Compression �1 � . . .%'.

Figure 4.5 shows the results. The calculations describe well the qualitative

difference between deformation regimes of uniaxial and biaxial tension. For the

uniaxial tension the error of calculations is small whatever compression diagram

is used. The standard textile compression tester can be used to gather input data

for simulation of this tension regime. For the biaxial tension the difference

between calculations with compression laws corresponding to different tensions

can be as large as 30%. A reasonable correlation is found when the compression

4.5 Computed and measured tension force: (a) biaxial (equal forces in warp

and weft direction) and (b) uniaxial tension.
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diagram used corresponds to the highest level of strain of the yarns. For the low

strain region the experimental curve corresponds better to the calculations with

compression diagrams for low tension, and vice versa for higher strain.

4.5 Model of shear of woven fabric

In formulating the model we again follow the approach outlined by S. Kawabata

in the 1970s,5 which is also used in more recent publications.22±25,67,68

Our aim is, given a value of the shear angle, , to compute the shear force, T,

in the presence of (pre)tension of the fabric. The tension is dealt with according

to the algorithms of the previous section, resulting in values of the tension of

yarns and transversal forces Q, associated with it [4.13]. Therefore we introduce

an important assumption: tension of the yarns and transversal forces are

computed for the non-sheared configuration and do not change during the shear

deformation. This may lead to errors of two types:

· Neglecting the forces in the direction of the yarns, developed during shear.

Using general equations, describing the plane stress-strain state of an equivalent

continuous membrane, these forces can be calculated as F� � T sin 2. With

pretension force in the order of 1N/mm, and shear forces of 0.010.1N/mm (see

the examples in Section 4.6.3 below), the corresponding error is a few percent.

· Change of the yarn tension due to the change of the angle of intersection of

the yarns, yarn dimensions, crimp heights during shear. These factors could

affect yarn tension (for the same overall deformation of the fabric in the

direction of the yarns) also by only a few percent.

Introducing an appropriate calculation loop could eliminate both errors. This

complication of the algorithms has not been deemed necessary, as overall

precision of the calculation of the shear force, connected with uncertainties of

the input data, is also not better than 10 to 20%.

Consider a sheared unit cell of a woven fabric (Fig. 4.6). For simplicity the

illustrations below show a plain weave unit cell. The equations are, however,

applied to elementary crimp intervals and the forces are summed for the actual

fabric repeat. An account is taken therefore of the differences imposed by the

weave pattern, as shown in comparison with experimental data below.

Consider a change of shear angle �. The mechanical work �A of the shear

deformation is (Fig. 4.6):

�A � TXY cos � 4:16

where X and Y are the dimensions of the unit cell; units of T are N/mm,

corresponding to the 2D nature (`membrane') of the problem. Usage of shear

force per unit length also has been proven experimentally to be a correct

normalisation procedure for the picture frame test.69 We will take into account

the following mechanisms of the yarns deformation, determining the shear
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resistance: friction; (un)bending; lateral compression; torsion; vertical displace-

ment. Accordingly the mechanical work A is subdivided:

�A � �Afriction ��Adisp ��Abending ��Atorsion 4:17

The lateral compression of the yarns is introduced via the transversal forces. We

do not consider intra-yarn friction here, as suggested in ref. 70. It is felt that this

factor is accounted for by the lateral compression calculations, but the question

needs more careful examination in future work, especially in the light of

experimental evidence of intra-yarn shear.71

The transversal forces, acting on the yarns and determining the friction

between them, are caused by tension and bending of the yarns [4.13]. During the

shear, yarns are subject to the lateral compression, which creates a pressure

inside yarns, which results in an additional component of the transversal force

acting on the yarns of the interlacing system. Therefore the transversal forces at

yarn intersections will be

Q � Qbending � Qtension � Qcompression 4:18

where the first two terms are computed with [4.4] and [4.13]. The last term is

calculated by the change of fibre volume fraction inside the yarn (Fig. 4.7a) and

experimental compression diagram of the yarn:

Qcompression � �PWa � PWe� � dWa2dWe2

where PWa and PWe are pressures inside warp and weft yarn, calculated as

P � P�Vf �d1; d2��
where the fibre volume fraction Vf is inversely proportional to the area of the

compressed cross-section with dimensions d1 and d2, and the dependency P�Vf �
is measured in the compression experiment.

4.6 Sheared unit cell of woven fabric.
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The components of the shear resistance are computed as follows.

Friction moment (Fig. 4.7b)

Mfriction � fQr; r � 2R

3
; R � 1

2

������������������

dWa2dWe2

p
4:19

�Afriction � Mfriction�

where f is the coefficient of friction, r is the effective radius of the zone of

friction for the normal force Q evenly distributed over a circle with radius R, d2
is the width of the intersecting warp and weft yarns.

The definition of R is an assumption, valid for flat, low crimp rovings, when

the contact zone of the yarns can be expected to cover all the yarn width. Leaf

and Sheta72 use a correction accounting for a possible lesser contact zone for

more rounded yarns. The accurate definition of the contact zone is out of scope

of the present model, hence introduction of the correction does not seem to be

justified. Note that assumption of wide contact [4.19] may lead to over-

estimation of Mfriction, whilst neglect of the curvature of the contacting surfaces

(more important for less flat yarns) leads to underestimation of it.

Comparisons73 of estimations by [4.19] with direct measurements of the friction

moment between two intersecting yarns by Kawabata,5 place the experimental

values within the range of the predictions, given uncertainties in the friction

coefficient values, and do not show systematic errors of equations [4.19].

4.7 Components of shear resistance: (a) lateral compression; (b) friction; (c)

torsion.
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Mechanical work of torsion (Fig. 4.7c)

�Atorsion � C��� ; � �
Z s

0

t � a� da

ds

� �

ds

where C is the torsional rigidity of the yarn, � is the full angle of torsion,

computed by integration of rotation of vector a, determining orientations of the

yarn cross-section axis, about the tangent to the yarn middle line t, over the yarn

length. Measurement of the torsional rigidity of yarns requires non-standardised

equipment,74 which is normally not suitable for heavy yarns used in composite

reinforcements. It the absence of direct measurement, it can be estimated as

C � B=�d2=2�, where B is the bending rigidity of the yarn, and d2 its width.75

Mechanical work of (un)bending of the yarns

�Abending �
1

2
B

Z S

0

d2�z

ds2

� �2

ds

where �z is the difference between the z-coordinate of the centre line of the yarn

before and after the deformation (at a given coordinate along the yarn s).

Mechanical work of vertical displacement of the yarns (this displacement goes

against the transversal forces Q)

�Adisp � Q � 1
l

Z

contact

�z � ds

where l is the yarn length, and the integration is performed over the contact

zones between warp and weft yarns, determined by the geometrical model.51,76

With the components of mechanical work [4.16] known, equation [4.15] is

integrated to yield the dependency T��. Note that the result of the calculation

depends on the applied tension (via Qtension). This dependency and comparison

of the model with experiment is discussed in detail in the next section.

4.6 Parametric description of fabric behaviour under
simultaneous shear and tension

Using the model outlined above, a designer can get input data for forming

simulations. However, getting input data for the model is also difficult, as this

involves testing of the yarns on specialised textile testing equipment. For some

classes of reinforcement materials it is possible to make a generic charac-

terisation of them, depending on a few parameters, and then, using the

theoretical model, produce analytical expressions for shear behaviour.
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4.6.1 Properties of glass rovings

Woven glass fabrics are a common reinforcement for composite materials. The

raw materials, glass rovings, are produced by different manufacturers (terms

rovings, yarns and tows are used below as synonyms). The results shown

here21,55,77 cover the full range of linear density from 150 to 5000 tex. All the

measurements were done on `virgin' (before weaving) rovings.

Width and thickness

The width of a roving was measured at 20 points along the yarn length on the

scanned (1200 dpi) images of rovings lying flat. The thickness of a roving was

determined by the extrapolation of the compression curve (see below) to zero

pressure. Measurements of the thickness with a calliper or a textile thickness meter

is done under a certain pressure (uncontrollable in the former and controlled in the

latter case) and therefore does not provide correct values for a free yarn. Figure

4.8a,b shows a summary of the results. The data are reasonably approximated by a

linear dependency of the roving width and thickness on the linear density.

Bending

Bending of rovings was also measured on KES-F. Single yarns were tested. In the

first stage of bending, the fibres tend to buckle, breaking the sizing and resulting in

a sharp increase of stiffness.21 Therefore the first loading cycle was discarded

from data processing. Sometimes the same phenomena occur when reversing the

direction of bending. In these cases the corresponding loading part of the curve

was also discarded. For each type of yarn three samples were tested; for each

sample three full bending cycles were performed and the second cycle was used in

the data processing using the standard KES-F routine: bending rigidity is

determined by the slope of the diagram between curvatures of 0.5 and 1.5 cmÿ1.
Figure 4.8c shows dependency of the bending rigidity on the linear density of the

yarns. The tested rovings have fibres of different diameter d (from 16 to 21m).

The scatter of 30% in the diameter gives a scatter of 300% in the bending rigidity

of the fibres (proportional to d4) and 70% in the bending rigidity of fibre bundles

with the same linear density, but with fibres of the different diameter (proportional

to d2 for the case of non-interacting fibres). This explains the significant deviation

of some data points from the average `master' curve for yarns with linear density

less then 1000 tex. However, the general agreement of the quadratic approxi-

mation of the `master' curve with the data is sufficiently high.

Compression

Compression of rovings was measured on KES-F apparatus, following the

routine prescribed by the KES-F manual. The maximum force used was 100 cN,
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4.8 Properties of glass rovings: (a) width; (b) thickness; and (c) bending

rigidity: points ± measurements, line ± linear/polynomial approximation; (d)

compression diagram: thin lines ±measurements for different rovings, thick line

± least square approximation with [4.20]; (e) tension: solid line ± non-linear,

dashed line ± linear region.
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which corresponds to the compression force per unit length (4mm under the

machine's head) of 25 cN/mm. For the thicker rovings a larger head was used,

which gives lower maximum force. For each type of yarn three samples were

tested, with three compression cycles for each yarn. Following Lomov and

Verpoest,21 the second cycle of compression was used for final results.

For simulation of the compression behaviour of the yarns in the model the

following data are needed: (1) dimensions of the yarn cross-section in free state

d10 and d20 (thickness and width of the roving, see above); (2) functions

�1 � �1�Q�, �2 � �2�Q�, �1 � d1=d10; �2 � d2=d20 [4.4]. The KES-F equipment

does not provide data for the yarn flattening. Therefore an empirical relationship

between �1 and �2 has been used:73

�2 � 1=�0:33l :

The compression curves for the different rovings (Fig. 4.8d) demonstrate a

significant scatter, without any recognisable trends relating to linear density or

the tow thickness. The average `master' diagram is built by the least square

approximation by the formula

�1 �
1� Q

Q0

� �a

�1min

1� Q

Q0

� �a ; �1min � 0:5583;Q0 � 0:0277; a � 1:7987 4:20

where Q0, a and �1min are the fitting parameters. The error of this approximation

is about 15% (R2 � 0:76).

Friction

The friction coefficient between roving and steel was measured on KES-F. The

obtained value f � 0:24 was retained as the value for roving-roving friction, as

it does not contradict with the literature data.22

Tension

Tension diagrams of the rovings were taken from the measurements in Boisse et

al.30 (Fig. 4.8e). We assume that the tension resistance of the rovings is

proportional to the linear density. The tension diagram has two regions: non-

linear, up to approximately 0.2% of strain and linear. The former represents

straightening of the fibres in the tow. The tow resistance to tension is a com-

bination of the (un) bending and tension resistance of the fibres. Proportionality

of the tension force to the linear density of the tow is equivalent to the

assumption that the waviness of the fibres is roughly the same in different

rovings. The linear part of the diagram corresponds to tension of the straight

fibres. The experimentally measured tensile modulus for this part of the diagram

is slightly less than the tensile modulus of glass fibres 28.3N/tex (72GPa).
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Summary of the `master' descriptions of the properties of glass rovings

The result of the parametrisation of the properties of glass rovings is shown in

Table 4.1. All the data necessary for the calculation of the shear diagram of a

roving, are given as functions of the roving linear density.

4.6.2 Parameterisation of the shear diagram

A woven fabric is characterised by weave pattern, weaving density, and warp

and weft yarn descriptions.

For the weave patterns, the three most widely used types were chosen for the

numerical experiments: plain, twill 2/2 and satin 5/2. These patterns represent

the range of the interaction intensity of the yarns in the weave: maximum

possible for plain weave, average for twill 2/2 and weak for satin 5/2. One can

expect a monotonic decrease of the shear resistance with weakening of the

interaction of the yarns.

For the weaving density, only square (� identical warp and weft parameters)

fabrics have been considered, being the most important practical case. Shear beha-

viour of non-balanced fabrics can be simulated using the same model, if needed. To

characterise the weaving density, a looseness factor s has been introduced:

Table 4.1 Averaged dependencies of properties of glass rovings on their linear
density t, tex

Property Formula

Thickness d1, mm d1 � 1:79E-04 � t � 1:69E-01

Width d2, mm d2 � 1:127e-03 � t � 1:758E� 00

Coefficient of compression, �1,
as function of compressive force �1 �

d1

d10

�
1� Q

Q0

� �a

�min

1� Q

Q0

� �a � const �t�;
per roving length [Q]�N/mm

�min � 0:5583;Q0 � 0:0277; a � 1:7987

Coefficient of flattening, �2, as
function of compressive force �2�Q� �

d2

d20

� ��1�Q��ÿ0:33 � const �t�
per roving length [Q] = N/mm

Bending rigidityB, N mm2 B � 1:85e-07 � t2 � 1:90E=04 � t
Coefficient of friction f f � 0:24

Tension diagram `force F vs
strain �', [F] = N/tex, [�]�% F �

0:9679 � �3 � 0:3931 � �2 ÿ 0:0026 � �;
� � 0:2%

0:278 � �ÿ 0:0339; � > 0:2%

8

<

:
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s � pÿ d2

d2
4:21

where p is the spacing of the yarns (inverse to the ends/picks count), d2 is the

yarn width. The looseness factor represents ratio of the width of the pores in the

fabric to the yarn width. The range s = (0.01, 0.02, 0.05, 0.075, 0.1, 0.2, 0.5, 1.0)

has been considered, where value s � 0 represents an extremely tight, and s � 1

an extremely loose fabric. The value of d2 in [4.16] can be calculated for a given

linear density of the yarns using the formula of Table 4.1.

Properties of glass rovings of a given linear density t are fully described by

the formulae of Table 4.1. Hence t is the only parameter needed to characterise

the warp and weft yarns (identical because of the assumption of square fabric

construction). The range of t for the numerical experiments was t = (100, 200,

500, 1000, 2000, 5000) tex.

Finally, the shear resistance (shear diagram T��) depends on the fabric

(pre)tension. Only equal tension of the warp and weft has been considered (the

case of non-symmetrical tension can be simulated with the same model if

needed). The pretension is characterised by the tensile strain of the fabric � � 0

to 1%. The maximum value of 1% corresponds to the start of a considerable

extension of the glass fibre (as opposed to the decrimping of the yarns)30,55 and

is not likely to be exceeded in the real forming processes.

The calculations followed the following steps for all combinations of

parameters:

· For a given linear density of the yarns t, calculate yarn width d1;

· Using a given looseness factor s, calculate spacing of the yarns p;

· Assign properties of the warp and weft yarns using the value of t and

formulae of Table 4.1;

· Build a geometrical model of non-sheared fabric of a given weave pattern,

calculated yarn spacing and calculated properties of the yarns;

· Apply the model of coupled biaxial tension and shear of the fabric for a given

pretension of the warp and the weft and calculate the shear diagram T��.
The numerical experiments resulted in a vast set of shear diagrams

T�;weave; t; s; ��. The diagrams for the different weaves were further processed

separately. The processing has been done in the following steps.

Shape of the shear diagrams

Consider a diagram T�� for a given set of parameters �t; s; ��, a typical example

of which is shown in Fig. 4.9. The diagram has been approximated with an

analytical expression

T�� � T0 � T1 tan
a 4:22

This formula [4.22] represents the main features of the shear behaviour:
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· Non-zero resistance from the very beginning of the shear ( � 0), caused by

the friction between the yarns

· Low shear modulus for low shear angles

G�� � dT

d
� aT1 tan

aÿ1�1� tan2�
!0
�! 0 �a > 1�

· Locking behaviour for high shear:

T�� �
!�=2���! 1;G��

!�=2���! 1

After fitting the calculated diagrams with [4.22], the value of a was found in

all cases to lie inside the interval (1 . . . 3), without any clear trend in dependency

on �t; s; ��. It was decided then to try to use the approximation [4.22] with a � 2

in all the cases. After refitting the data, the agreement between the

approximation

T�� � T0 � T1 tan
2 4:23

was found to be quite good. An example of the approximation is shown in Fig.

4.9. A certain systematic underestimation of the shear force by [4.19] in this

figure is explained by the fact that it refers to a certain combination of the

parameters t and s; for other combinations the constant value a � 2 leads to a

certain overestimation.

4.9 Simulated shear diagrams (points) and their approximation with equation

[4.23] ± lines. Plain weave, t � 500 tex, s � 0:05, � � 0(0.2)1% (shear

resistancemonotonically increases with the increase of pre-strain s).
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The value a � 2 and analytical expression [4.23] were used in all the

subsequent calculations. The coefficients in the equation [4.23] have a clear

mechanical meaning: T0 is the shear resistance at  ! 0, caused by friction

between the yarns, T1 determines the shear modulus

G�� � dT

d
� 2T1 tan �1� tan2�

Coefficients T0 and T1

Coefficients of the formula [4.23] depend on parameters �t; s; ��. To establish

these dependencies in a closed form, the calculated values of the coefficients

were tabulated:

T0 � T0�t; s; ��; T1 � T1�t; s; �� 4:24

and a regression analysis was performed over the whole set of the data. After

analysis of different representations of the regression formulae, the following

equations were chosen to fit the data:

ln T0 � b1 � b2 � ln t � b3 � ln s� b4 � ln �� b5 � �ln t�2 � b6 � �ln t � ln s�
� b7 � �ln t � ln �� � b8 � �ln s�2 � b9 � �ln s � ln �� � b10 � �ln ��2 4:25

ln T1 � c1 � c2 � ln t � c3 � ln s� c4 � ln �� c5 � �ln t�2 � c6 � �ln t � ln s�
� c7 � �ln t � ln �� � c8 � �ln s�2 � c9 � �ln s � ln �� � c10 � �ln ��2 4:26

Regression coefficients of the formulae [4.25] and [4.26] are given in Table

4.2. Figures 4.10 and 4.11 illustrate the quality of the fitting. The simulated

values (dashed curves) sometimes show significant variability for smaller

pretensions and looser fabrics, which can violate expected monotonic trends

Table 4.2 Coefficients of the regression equations [4.25, 4.26]

Plain Twill 2/2 Satin 5/2

b c b c b c

1 ÿ9.87 ÿ23.1 ÿ12.1 ÿ17.57 ÿ11.4 ÿ21.0
2 1.86 4.17 2.35 2.96 2.14 3.36
3 0.102 ÿ2.12 ÿ0.381 ÿ0.884 ÿ0.042 ÿ1.72
4 3.01 2.05 2.64 1.68 2.12 6.91
5 ÿ0.10 ÿ0.207 ÿ0.131 ÿ0.192 ÿ0.119 ÿ0.176
6 ÿ0.085 0.111 ÿ0.021 ÿ0.090 ÿ0.062 0.021
7 0.017 ÿ0.100 0.001 0.256 ÿ0.027 ÿ0.150
8 0.028 ÿ0.094 ÿ0.030 ÿ0.113 ÿ0.015 ÿ0.133
9 0.436 0.215 0.367 0.463 0.277 0.557
10 0.435 ÿ0.021 0.263 ÿ0.623 ÿ0.057 ÿ2.52
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(shear resistance increase with increase of the pre-strain and fabric tightness).

These variations are due to the approximate nature of the model and certain

instabilities in the iteration loop shown in Fig. 4.4, as well as errors in fitting the

diagrams with [4.23]. However, after fitting (therefore smoothening) of the

curves they become monotonic and exhibit the expected trends.

Parameterised analytical expressions [4.23±4.26] are ready to use in a user

subroutine of forming simulations for woven glass reinforcements.

4.10 Examples of the simulated dependencies T0 � T0�t; s; �� (dashed lines)

and regression curves [4.25] ± solid lines. Plain fabric.
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4.6.3 Comparison with experiments

Finally, the derived model [4.23±4.26] has to be compared with experimental

data. Obtaining input data of the fabric for such a comparison is straightforward:

the model requires parameters of the fabric normally provided by the

manufacturer: linear density of the yarns, weave structure and ends/pick count

(easily transformed into the looseness parameter s). Any publication of shear test

results contains these data, which allows comparison of the model prediction

with published results, without necessary thorough investigation of the fabric

internal geometry.

However, the remaining parameter of the model, the pretension of the yarns,

is not controlled in most cases of the picture frame test (see Chapter 1). To solve

this problem, in cases where the pretension is not given by the experimentalists,

an expected range of pretension strain values will be used in the comparison.

Table 4.3 summarises the test cases22,78 used for the comparison. Apart from

the data on the fabric construction, calculations require a value of pretension

strain. These data are not readily available. The values given in Table 4.3 were

obtained as follows.

In our own measurements78 we tried to estimate the strain of the fabric in the

picture frame measuring the distance between marks on the fabric, made before

it had been mounted in the frame and tensed by the wavy grips. This

measurement is not precise. The errors, caused by different sources (the main

ones being small displacements to be measured and fibrous surface of the yarns,

which cause the marks to widen), can be as high as 0.1 to 0.2% of the strain.

4.10 Continued
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Long22 provides the value of pretension force 1.1 N/mm for fabrics Long-1

and Long-2, and 0.69 N/mm for the fabric Long-3. Calculating the biaxial

tensile diagram of the fabrics, using the model described above and input data of

Tables 4.2 and 4.3, the pretension was estimated as 0.2% for the fabrics Long-1

(plain weave) and Long-2 (satin), and 0.1% for the twill fabric Long-3.

4.11 Examples of the simulated dependencies T1 � T1�t; s; �� (dashed lines)

and regression curves [4.26] ± solid lines. Twill 2/2 fabric.
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The model gives good predictions for the initial stage of shear, up to the

locking of the fabric structure (lower estimation of the locking angle is given by

a simple geometrical formula, Table 4.3): the set of experimental diagrams for

the estimated range of pre-strain agrees well with the calculations (Figs 4.12 and

4.13).

4.11 Continued

Table 4.3 Input data for comparison with experiments. Data on fabrics `Lomov' is
from ref. 78, `Long' is from ref. 22

Fabric ID Weave Linear Ends/ Loose- Geo- Pre-strain, %***
density picks ness metrical
of warp count, factors locking
andweft, yarns/cm s* angle,
t, tex ë***

Lomov-1 twill 2/2 280 4.4 0.11 27 first cycle 0.3. . .0.5,
second cycle 0.1. . .0.3

Lomov-2 plain 480 3.5 0.20 37 first cycle 0.4. . .0.6,
second cycle 0.2. . .0.4

Lomov-3 plain 1200 2.3 0.29 45 first cycle 0.5. . .0.7,
second cycle 0.3. . .0.5

Long-1 plain 1220 2.5 0.30 41 0.2
Long-2 satin 1450 2.7 0.32 41 0.2
Long-3 twill 2/2 2500 1.6 0.31 41 0.1

* Value of s is calculatedbasedon t value and averaged ends/picks count, using formulaeTable 4.1

** Geometrical locking angle � � arccos
d2

p
� arccos�1ÿ s�

*** See text for the explanation of estimation of the pre-strain
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4.12 Comparisonbetween calculated (curves) and experimental (points) data.

Fabrics Lomov-1. . .3.78
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4.12 Continued

4.13 Comparison between calculated (curves) and experimental (points) data.

Fabrics Long-1. . .3.22
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4.13 Continued
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After the locking of the structure (distance between the yarns in the sheared

fabric equal to the width of the yarns) the sharp increase of the shear resistance

is caused by the lateral compression of the yarns. The model accounts for this

phenomenon; however, the experimental diagram increases more steeply than

the one calculated according to the estimated pre-strain. The discrepancy can be

explained by two reasons. First, the `master' compression curve for the glass

rovings (Fig. 4.8d) is defined within a significant scatter of the experimental

diagrams; the flattening coefficient is estimated by an approximate formula.

These factors determine an approximate nature of the calculation of the lateral

compression, employed in the model. Second, for the higher shear one can

expect an increase of the tension of the fabric on the frame, which would

increase the shear resistance. The experimental diagram intersects calculated

iso-strain curves in the direction of increase of the pre-strain.

4.7 Conclusion: creating input data for forming
simulations

The theoretical methods described in this chapter and in Chapter 3 provide the

possibility to make predictions of the properties of textile reinforcements to be

used in forming simulations, producing constitutive descriptions of the

materials, as outlined in Chapter 2. The simulations of compressibility can

give estimations for the reinforcement thickness (hence fibre volume fraction in

the composite) in pressure-controlled resin infusion processes. Coupled shear±

biaxial tension simulation provides complex material response surfaces,

proposed in refs 32 and 33. Understanding of the scale of the tension-shear

coupling effects may help to understand the level of blank-holding forces

necessary to eliminate wrinkling.

Being approximate, such predictions are likely to be used for screening of a

priori unacceptable variants and for qualitative analysis of the manufacturing

process. For the latter, several challenges present themselves:

· Tension diagrams of textiles are definitely non-linear. Can a few percent of

low-tension strain make a difference for determination of blank-holding

conditions?

· Tension in different directions is coupled. Material models available in the

existing software packages do not account for this ± should they?

· Should the description of shear resistance in forming simulation account for

low shear force in the initial stage of shear? For real non-linear behaviour

after the geometrical locking angle, or is a simple `zero resistance ± locking ±

infinite resistance' model sufficient?

· The calculations shown in this chapter demonstrate a strong dependence of

the shear resistance on tension. This is not accounted for in the existing

forming software ± is it necessary to include this effect?

Virtual testing for material formability 111



· In general: Does a designer need to spend money, time and resources for

complex measurements of non-linear coupled compression-tension-shear

behaviour, or it is sufficient to use simpler material models in forming

simulations, with the accuracy of predictions enough for practical purposes?

Finally, the `virtual testing' can help to understand difficulties in non-

standardised measurements of biaxial tensile and shear resistance of textiles, and

inconsistencies of results obtained under different conditions, as described in

Chapter 13, opening the way for standardising the test apparatus and procedures.

4.8 References

1. Lomov, S.V., A.V. Truevtzev and C. Cassidy, A predictive model for the fabric-to-

yarn bending stiffness ratio of a plain-woven set fabric. Textile Research Journal,

2000. 70(12) 1088±1096.

2. Sagar, T.V. and P. Potluri, Computation of bending behavior of woven structures

using optimization techniques. Textile Research Journal, 2004. 74(10) 879±886.

3. Kawabata, S., M. Niwa and H. Kawai, The finite-deformation theory of plain weave

fabrics. Part I. The biaxial-deformation theory. Journal of the Textile Institute, 1973.

64(1) 21±46.

4. Kawabata, S., M. Niwa and H. Kawai, The finite-deformation theory of plain weave

fabrics. Part II. The uniaxial-deformation theory. Journal of the Textile Institute,

1973. 64(2) 47±61.

5. Kawabata, S., M. Niwa and H. Kawai, The finite-deformation theory of plain weave

fabrics. Part III. The shear-deformation theory. Journal of the Textile Institute, 1973.

64(2) 42±85.

6. de Jong, S. and R. Postle, A general energy analysis in fabric mechanics using

optimal control theory. Textile Research Journal, 1978. 48(3) 127±135.

7. Hearle, J.W.S. and W.J. Shanahan, An energy method for calculations in fabric

mechanics. Journal of the Textile Institute, 1978. 69(4) 81±110.

8. Komori, T. and M. Itoh, Theory of general deformation of fibre assemblies. Textile

Research Journal, 1991. 61(10) 588±594.

9. Anandjiwala, R.D. and G.A.V. Leaf, Large-scale extension and recovery of plain

woven fabrics. Part I. Theoretical. Textile Research Journal, 1991. 61(11) 619±634.

10. Anandjiwala, R.D. and G.A.V. Leaf, Large-scale extension and recovery of plain

woven fabrics. Part II. Experimental and discussion. Textile Research Journal, 1991.

61(12) 743±755.

11. Huang, N.C., Finite biaxial extension of completely set plain woven fabrics. Journal

of the Applied Mechanics, 1979. 46(9) 651±655.

12. Dastoor, P.H., S.P. Hersh, S.K. Batra and W.J. Rasdorf, Computer-assisted structural

design of industrial woven fabrics, Part III Modelling of fabric uniaxial/biaxial load

deformation. Journal of the Textile Institute, 1994. 85(2) 135±157.

13. Pastore, C.M., A.B. Birger and E. Clyburn, `Geometrical modelling of textile

reinforcements', in Mechanics of Textile Composites Conference, 1995, NASA

Hampton, Virginia. 597±623.

14. Christoffersen, J., Fabrics orthotropic materials with a stress-free shear mode.

Journal of the Applied Mechanics, 1980. 47(1) 71±74.

112 Composites forming technologies



15. Reumann, R.-D., Neuartiges Berechnungs-verfahren fuÈr das flaÈchenstructur-

abhaÈngige Kraft-Dehnungs-Verhalten textiler FlaÈchengebilde. Wissen. Z. Techn.

Univ. Dresden, 1988. 37(6) 163±169.

16. Chen, B. and T.-W. Chou, Compaction of woven-fabric preforms in liquid

composite molding processes single-layer deformation. Composites Science and

Technology, 1999. 59 1519±1526.

17. Chen, B. and T.-W. Chou, Compaction of woven-fanric preforms nesting and multi-

layer deformation. Composites Science and Technology, 2000. 60 2223±2231.

18. Chen, B., A.H.-D. Cheng and T.-W. Chou, A nonlinear compaction model for

fibrous preforms. Composites Part A, 2001. 32 701±707.

19. Chen, B., E.J. Lang and T.-W. Chou, Experimental and theoretical studies of fabric

compaction behaviour in resin transfer moulding. Materials Science and

Engineering, 2001. A317 188±196.

20. Kurashiki, T., M. Zako and I. Verpoest, `Damage development of woven fabric

composites considering an effect of mismatch of lay-up', in Composites for the

Future, Proceedings 10th European Conference on Composite Materials (ECCM-

10), 2002 Brugge. CD edition.

21. Lomov, S.V. and I. Verpoest, Compression of woven reinforcements a mathematical

model. Journal of Reinforced Plastics and Composites, 2000. 19(16) 1329±1350.

22. Long, A., `Process modelling for textile composites', in International Conference on

Virtual Prototiping EUROPAM 2000. 2000 Nantes. 1±17.

23. Long, A.C., M.J. Clifford, P. Harrison and C.D. Rudd, `Modelling of draping and

deformation for textile composites', in ICMAC ± International Conference for

Manufacturing of Advanced Composites. 2001, IOM Communications Belfast. 66±

76.

24. Long, A.C., F. Robitaille, B.J. Souter and C.D. Rudd, `Permeability Prediction for

Sheared, Compacted Textiles During Liquid Composite Modelling', in 13th

International Conference on Composite Materials (ICCM-13). 2001. Beijing, China.

25. Crookston, J.J., A.C. Long and I.A. Jones, Modelling effects of reinforcement

deformation during manufacture on elastic properties of textile composites. Plastics,

Rubber and Composites, 2002. 31(2) 58±65.

26. Harrison, P., J. Wiggers, A.C. Long and C.D. Rudd, `Constitutive modelling based

on meso and micro kinematics for woven and stitched fabrics', in Proceedings

ICCM-14. 2003 San Diego. CD edition.

27. Harrison, P., M.J. Clifford, A. Long and C.D. Rudd, A constituent-based predictive

approach to modelling the rheology of viscous textile composites. Composites Part

A, 2004. 35 915±931.

28. Harrison, P., M.J. Clifford and A.C. Long, Shear cheracterisation of viscous woven

textile composites A comparison between picture frame and bias extension

experiments. Composites Science and Technology, 2004. 64 1453±1465.

29. Liu, L., J. Chen and J.A. Sherwood, Two-dimensional macro-mechanics shear

models of woven fabrics. Composites Part A, 2004. 36 105±114.

30. Boisse, P., M. Borr, K. Buet and A. Cherouat, Finite element simulations of textile

composite forming including the biaxial fabric behaviour. Composites Part B, 1999.

28B 453±464.

31. Boisse, P., A. Cherouat, J.C. Gelin and H. Sabhi, Experimenal study and finite

element simulation of a glass fibre fabric shaping process. Polymer Composites,

1999. 16(1) 83±95.

Virtual testing for material formability 113



32. Boisse, P., K. Buet, A. Gasser and J. Launay, Meso/macro-mechanical behaviour of

textile reinforcements for thin composites. Composites Science and Technology,

2001. 61 395±401.

33. Boisse, P., A. Gasser and G. Hivet, Analyses of fabric tensile behaviour

determination of the biaxial tension-strain surfaces and their use in forming

simulations. Composites Part A, 2001. 32(10) 1395±1414.

34. Gasser, A., P. Boisse and S. Hanklar, Analysis of the mechanical behaviour of dry

fabric reinforcements. 3D simulations versus biaxial tests. Computational Materials

Science, 2000. 17 7±20.

35. Launay, J., K. Buet-Gautier, G. Hivet and P. Boisse, Analyse experimentale et

modeles pour le comportement mechanique biaxial des renforts tisses de composites.

Revue des composites et des materiaux avances, 1999. 9(1) 27±55.

36. Kuwazuru, O. and N. Yoshikawa, `Non-constitutive numerical modeling for plain-

weave fabrics', in Proceedings of 7th Japan International SAMPE Symposium &

Exhibition, November 13±16. 2001 Tokyo. 729±732.

37. Sakakibara, K., A. Yokoyama and H. Hamada, `Deformation mechanism of textile

under uni- and biaxial tensile loading', in Proceedings of 7th Japan International

SAMPE Symposium & Exhibition, November 13±16. 2001 Tokyo. 705±708.

38. Zouari, B., F. Dumont, J.L. Daniel and P. Boisse, `Analyses of woven fabric

shearing by optical method and implementation in a finite element program', in

Proceedings of the 6th ESAFORM Conference on material Forming. 2003 Salerno.

875±887.

39. Hivet, G., B. Laine and P. Boisse, `Consistent preprocessor for the unit woven cell

for meso-macro analyses of fabric forming', in Procedings of the 8th ESAFORM

Conference on Material Forming. 2005 Cluj-Napoca. 947±950.

40. Kondratiev, S., Finite element modelling of the spatial stress-strain state of textiles

and textile composites. Masters thesis, 2001, State Technical University St.-

Petersburg.

41. Van Genechten, B., Finite element modelling of textile composites. Masters thesis,

2002, Vrije Universiteit Brussel ± Katholieke Universiteit Leuven.

42. Robitaille, F., A.C. Long, I.A. Jones and C.D. Rudd, Authomatically generated

geometric descriptions of textile and composite unit cells. Composites Part A, 2003.

34(4) 303±312.

43. Robitaille, F., A. Long, M. Sherburn, C.C. Wong and C. Rudd, `Predictive modelling

of processing and performance properties of textile composite unit cells current

status and perspectives', in Proceedings ECCM-11. 2004. CD Edition.

44. Lomov, S.V., I. Verpoest, E. Bernal, F. Boust, V. Carvelli, J.-F. Delerue, P. De Luka,

L. Dufort, S. Hirosawa, G. Huysmans, S. Kondratiev, B. Laine, T. Mikolanda, H.

Nakai, C. Poggi, D. Roose, F. Tumer, B. van den Broucke, B. Verleye and M. Zako,

`Virtual textile composites software Wisetex integration with micro-mechanical,

permeability and structural analysis', in Proceedings of the 15th International

Conference on Composite Materials (ICCM-15). 2005 Durban. CD edition.

45. Lomov, S.V., X. Ding, S. Hirosawa, S.V. Kondratiev, J. Molimard, H. Nakai, A.

Vautrin, I. Verpoest and M. Zako, `FE simulations of textile composites on unit cell

level validation with full-field strain measurements', in Proceedings 26th SAMPE-

Europe Conference. 2005 Paris. 28±33.

46. Verpoest, I. and S.V. Lomov, Virtual textile composites software Wisetex

integration with micro-mechanical, permeability and structural analysis. Composites

114 Composites forming technologies



Science and Technology, 2005, 65 (15±16) 2563±2574.

47. Mikolanda, T., S.V. Lomov, M. Kosek and I. Verpoest, Simple use of virtual reality

for effective visualization of textile material structures, CODATA Prague Workshop

Information Visualization, Presentation, and Design, 2004, Prague. CD edition.

48. Lomov, S.V., E. Bernal, D.S. Ivanov, S.V. Kondratiev and I. Verpoest,

Homogenisation of a sheared unit cell of textile composites FEA and approximate

inclusion model. Revue europeÂenne des eÂleÂments finis, 14(6±7) 709±728.

49. Lomov, S.V., G. Huysmans, Y. Luo, R. Parnas, A. Prodromou, I. Verpoest and F.R.

Phelan, Textile Composites Modelling Strategies. Composites Part A, 2001. 32(10)

1379±1394.

50. Belov, E.B., S.V. Lomov, I. Verpoest, T. Peeters, D. Roose, R.S. Parnas, K. Hoes

and V. Sol, Modelling of permeability of textile reinforcements Lattice Boltzmann

method. Composites Science and Technology, 2004. 64 1069±1080.

51. Lomov, S.V., A.V. Gusakov, G. Huysmans, A. Prodromou and I. Verpoest, Textile

geometry preprocessor for meso-mechanical models of woven composites.

Composites Science and Technology, 2000. 60 2083±2095.

52. Lomov, S.V., I. Verpoest, T. Peeters, D. Roose and M. Zako, Nesting in textile

laminates geometrical modelling of the laminate. Composites Science and

Technology, 2002. 63(7) 993±1007.

53. Lomov, S.V., G. Huysmans and I. Verpoest, Hierarchy of textile structures and

architecture of fabric geometric models. Textile Research Journal, 2001. 71(6) 534±

543.

54. Lomov, S.V., A. Nakai, R.S. Parnas, S. Bandyopadhyay Ghosh and I. Verpoest,

Experimental and theoretical characterisation of the geometry of flat two- and three-

axial braids. Textile Research Journal, 2002. 72(8) 706±712.

55. Lomov, S.V., T. Truong Chi, I. Verpoest, T. Peeters, V. Roose, P. Boisse and A.

Gasser, Mathematical modelling of internal geometry and deformability of woven

preforms. International Journal of Forming Processes, 2003. 6(3-4) 413±442.

56. Lomov, S.V., B. Van den Broucke, F. Tumer, I. Verpoest, P. De Luka and L. Dufort,

`Micro-macro structural analysis of textile composite parts', in Proceedings ECCM-

11. 2004 Rodos. CD Edition.

57. Van den Broucke, B., F. Tumer, S.V. Lomov, I. Verpoest, P. De Luka and L. Dufort,

`Micro-macro structural analysis of textile composite parts case study', in

Proceedings of the 25th International SAMPE Europe Conference, March 30th±

April 1st. 2004 Paris. 194±199.

58. Lomov, S.V. and B.M. Primachenko, Mathematical modelling of two-layered woven

fabric under tension. Technologia Tekstilnoy Promyshlennosty, 1992(1) 49±53.

59. Lomov, S.V., Computer aided design of multilayered woven structures, part 1.

Technologia Tekstilnoy Promyshlennosty, 1993(1) 40±45.

60. Lomov, S.V., Computer aided design of multilayered woven structures, part 2.

Technologia Tekstilnoy Promyshlennosty, 1993(2) 47±50.

61. Primachenko, B.M., S.V. Lomov, V.V. Lemeshkov, O.P. Petrova and D.P.

Pizvanova, Computer aided design of multilayered woven structures, part 3.

Technologia Tekstilnoy Promyshlennosty, 1993(3) 42±45.

62. Lomov, S.V. and A.V. Gusakov, Modellirung von drei-dimensionalen gewebe

Strukturen. Technische Textilen, 1995. 38 20±21.

63. Lomov, S.V. and N.N. Truevtzev, A software package for the prediction of woven

fabrics geometrical and mechanical properties. Fibres & Textiles in Eastern Europe,

Virtual testing for material formability 115



1995. 3(2) 49±52.

64. Lomov, S.V., I. Verpoest and F. Robitaille, `Manufacturing and internal geometry of

textiles', in Design and manufacture of textile composites, A. Long, Editor. 2005,

Woodhead Publishing Ltd. 1±60.

65. Parnas, R.S., J.G. Howard, T.L. Luce and S.G. Adwani, Permeability

characterisation. Part 1 A proposed standard reference fabric for permeability.

Polymer Composites, 1995. 16(6) 429±445.

66. Olofsson, B., A general model of a fabric as a geometric-mechanical structure.

Journal of the Textile Institute, 1964. 55(11) T541±T557.

67. Daniel, J.L., D. Soulat and P. Boisse, `Shear and tension stiffness influence in

composites forming modelling', in Proceedings ESAFORM-2004. 2004 Trondheim.

301±304.

68. Lomov, S.V. and I. Verpoest, Model of shear of woven fabric and parametric

description of shear resistance of glass woven reinforcements. Composites Science

and Technology, 2006. 66 919±933.

69. Peng, X.Q., J. Cao, J. Chen, P. Xue, D.S. Lussier and L. Liu, Experimental and

numerical analysis on normalisation of picture frame tests for composite materials.

Composites Science and Technology, 2004. 64(1) 11±21.

70. Harrison, P., M.J. Clifford, A.C. Long and C.D. Rudd, `A micro-mechanical

approach to stress-prediction during shear for woven continuous fibre-reinforced

impregnated composites', in Proceedings of the 5th International ESAFORM

Conference on Material Forming, 2002 Krakow. 275±278.

71. Lomov, S.V., A. Willems, M. Barburski, T. Stoilova and I. Verpoest, `Strain field in

the picture frame test large and small scale optical measurements', in Proceedings of

the 8th ESAFORM Conference on Material Forming. 2005 Cluj-Napoca. 935±938.

72. Leaf, G.A.V. and A.M.F. Sheta, The initial shear modulus of plain-woven fabrics.

Journal of the Textile Institute, 1984. 75(3) 157±183.

73. Lomov, S.V., `Prediction of geometry and mechanical properties of woven technical

fabrics with mathematical modelling', in Dept. Mechanical Technology of Fibrous

Materials. 1995, SPbSUTD St. Petersburg.

74. Belov, E.B., S.V. Lomov, N.N. Truevtsev, M.S. Bradshaw and R.J. Harwood, Study

of yarn snarling. Part I Critical parameters of snarling. Journal of the Textile

Institute, Part 1 Fibre Science and Textile Technology, 2002. 93(4) 341±365.

75. Morton, W.E. and D.W.S. Hearle, Physical properties of textile fibres, The Textile

Institute, Manchester, 1993.

76. Lomov, S.V., G. Huysmans, Y. Luo, A. Prodromou, I. Verpoest and A.V. Gusakov.

`Textile geometry preprocessor for meso-mechanical and permeability modelling of

textile composites', in 9th European Conference on Composite Materials (ECCM-

9). 2000. Brighton IOM Communications.

77. Verpoest, I., G. Huysmans, Y. Luo, R.S. Parnas, A. Prodromou and S.V. Lomov,

`An integrated modelling strategy for processing and properties of textile

composites', in Proceedings of the 46th International SAMPE symposium and

exhibition May 6th±10th. 2001 Long Beach, California. 2472±2483.

78. Lomov, S.V., A. Willems, I. Verpoest, Y. Zhu, M. Barburski and T. Stoilova, Picture

frame of woven fabrics with a full-field strain registration. Textile Research Journal,

2006. 76(3) 243±252.

116 Composites forming technologies


