
5.1 Introduction

This chapter is concerned with the optimization of composite forming, especially

sheet forming, a manufacturing process that transforms a flat sheet of composite

or preform into a three-dimensional shape. Over the last decade, the process of

automated sheet forming for composites has emerged from the metal forming

process, making use of existing science and technology, and has overcome a

prolonged manufacturing process for composites. In the design of the forming

process it is vital to predict the deformation behavior of composite sheets, since

this helps to prevent defects that can develop as a result of forming tools

interacting with the composite materials. Numerous studies have been carried out

to develop mechanics models (e.g., Yu, 2002, 2005) that simulate the deforma-

tion behavior of composite sheets, and to combine these simulations to analyze

the forming behavior of composite sheets. Such models aim to optimize the

forming process for manufacturing composite parts with the minimum of defects.

This chapter provides the reader with an overview of the current state of

composite forming optimization studies. Optimization methodology in itself is a

well documented topic (Luenberger, 1989) and has been applied to many fields

ranging from product design and performance to manufacturing processes. In

general, the optimization of composite forming includes a cost analysis for

materials, energy, tooling and machinery, and a performance analysis, based on

variables such as high strength and stiffness considering the minimum weight

and thickness of the product. However, this chapter focuses on the optimization

of process parameters which can form composite sheets into complex three-

dimensional parts with no, or minimal defects. In addition, since many processes

are frequently too time consuming or too expensive for optimization based on

physical experimentation, researchers have increasingly relied on mathematical

models to simulate these processes. Advances in computational power have

enabled more extensive use of such models. Therefore, the current chapter

discusses optimization of composite forming using models that rely on

computational experiments.
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Since the literature on optimization studies of composite forming is still

limited compared to other manufacturing fields such as sheet metal forming, this

chapter discusses optimization strategies adopted in sheet metal forming, which

may be a good starting point for analyzing optimization strategies for composite

forming. In Section 5.2, general aspects of optimization methods are discussed

briefly to help the reader understand the mathematical aspect of optimization

methodology and identify the limitations of directly applying well-known

methods of optimization, such as the downhill simplex and conjugate gradient

method, to computational simulation experiments. Section 5.3 discusses

objective functions for the optimization of composite forming and the

methodological basis for this.

5.2 General aspects of optimization

5.2.1 Optimization methods

This subsection describes the mathematical aspects of optimization

methodologies in order to set the basis for the subsequent discussion in this

chapter. A thorough explanation of these methods can be found in many text

books (Luenberger, 1989; Press, 1992).

The first step in any optimization process is to determine an objective

function f that depends on one or more independent variables. The objective

function can represent any quantities pertinent to the relevant process, such as

manufacturing expenditure, cost and duration, physical properties such as

weight and thickness, mechanical performance variables such as strength and

modulus, and qualities of the formed product such as wrinkling and defects. The

optimization task involves obtaining suitable values for the independent

variables where the value of f is maximized or minimized. The tasks of

maximization and minimization involve the same process, since the minimiza-

tion of function f is equal to maximization of ±f. The objective function can be

expressed in an analytic form, although in practice it is often comprised of

discrete data which necessitates transformation of the data into a function of

independent variables using a regression model. The objective function is very

often assumed to be an unknown black box scenario with independent input

variables.

After the objective function is defined, the optimization procedure expedites

the search for independent variables sets where the objective function has a

minimum value. Many algorithms for effective searches have been developed.

These algorithms are categorized into two methodologies; first those that rely on

function value only, such as the downhill simplex (DS) method; and secondly

those that rely on such additional information as the gradient of the objective

function, as is the case with the conjugate gradient (CG) method. There follows

a brief discussion of the two methods (DS and CG) to understand the iterative
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nature of optimization as well as to help to choose a proper method for process

optimization using computational experiments.

Since the DS method requires function evaluation only without derivative

information, it may be not very efficient in a number of the function evaluations.

However, the DS method is frequently used in optimization procedures because

it directly searches for the minimum value of the objective function. A `simplex'

is a geometrical figure consisting, in N dimensions, of N+1 points and all their

interconnecting line segments (polygonal faces). In two dimensions, a simplex is

a triangle. The search process is described by the successive formation of a new

triangle. The search algorithm starts with the function evaluation of any three

design points. It is natural to move the highest point in the triangle to another

one when searching for the minimum value of a function. The algorithm for the

new triangle can be built in numerous ways, although four strategies in

particular are usually adopted, and these are shown in Fig. 5.1 (Press, 1992).

Visualization of the search process for an analytical function is helpful clearly to

understand an optimization scheme. The Rosenbrock function is chosen for the

purposes of this discussion.

The Rosenbrock function is characterized by one long curved valley as given

in Equation (5.1). See Fig. 5.2 for the mesh and contour plot for the two-

dimensional case (i.e., n � 2).

f �x� �
Xnÿ1

n�1
100�xi�1 ÿ x2i �

2 � �xi�2
� �

5:1

5.1 Possible outcomes for a step in the downhill simplex method.
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Implementation of the DS method provides the basic knowledge for optimiza-

tion. The details for computer implementation can be found in many text books

(e.g., Press, 1992) and optimization (or minimization) results for the Rosenbrock

function are shown in Fig. 5.3. Convergence speed is an important feature for

evaluating the performance of an optimization method since slow convergence

may indicate that the optimization method requires more function evaluations

than other methods, thereby increasing the costs of the optimization procedure.

5.2 Rosenbrock functions in two dimensions.
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As shown in Fig. 5.4, the convergence speed of the DS method is very slow,

implying that the method may not be cost-effective.

For process optimization procedures that use computational experiments, it is

important to reduce the number of simulations because a single simulation may

need a computation time of the order of hours, or sometimes even days, on a

modern workstation. Furthermore, parallel simulations, which enable different

sets of process parameters to be evaluated on separate computers simul-

taneously, can be incorporated into optimization schemes to reduce the actual

time for performing the optimization procedure. In this regard, the first N+1

points for the first simplex can be obtained using parallel simulation, but the

successive points for the new simplex are dependent on the previous results, and

cannot benefit from parallel simulation as a result. There are two ways of

reducing the computation time of process optimization; one way is to actually

reduce the number of simulations, as is the case with the conjugated gradient

(CG) method; another way is to utilize parallel simulations that are performed

on a clustered computer system.

The conjugated gradient (CG) method requires not just the value of the

objective function f(P) at a given N-dimensional point P, but also the gradient

rf �P�. The CG method consists of setting up a direction on which the

5.3 Implementation of DS for minimizing Rosenbrock function. The optimum

(minimum) point is (1,1). Number 4 in the circle is constructed by reflecting

number 1, and by forming a new simplex consisting of 2, 3, and 4 points.

Numbers 5 and 6 are also generated by reflecting and expansion, while

numbers 7 and 8 are searched by multiple contraction, and so on.
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minimization process is performed using a line search. For such directions, a

coordinate axis, such as, for example, (1,0) and (0,1) in a two-dimensional case,

can be chosen. However, successive minimization along coordinate directions is

known to be extremely inefficient since it can take many steps to get to the

minimum value through repeated crossing and re-crossing of coordinate

directions. To avoid the crossing and re-crossing of a direction, the GC method

mathematically defines a `non-interfering' direction (the so called `conjugate

direction'), along which the minimization process is not spoiled by subsequent

minimization along another direction.

Suppose that a movement takes place along some direction u to a minimum,

and it is now proposed to move along a new direction v. The condition that a

motion along direction v does not spoil the minimization along direction u may

be that the gradient at the previous minimum point in direction u stays

perpendicular to u because the gradient determines the new direction to be

searched. This condition can be mathematically expressed, with x1 and x2 being

design points (parameter sets) on the direction v:

rf �x1� � u � 0;rf �x2� � u � 0 5:2

�rf �x2� ÿ rf �x1�� � u � ��rf � � u � 0 5:3

Here, the variation of the gradient may be approximated by the following

Equation (5.4):

5.4 Convergence of downhill simplex(DS) and conjugate gradient (CG) for

the Rosenbrock function in the two dimensional case.
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��rf � � @2f

@xi@xj
�xjei � A � v 5:4

Finally, the `non-interfering' condition can be written as the following

Equation (5.5):

u � A � v � 0 5:5

When Equation (5.5) holds for two vectors u and v, it can be said to be

conjugate. Therefore, conjugate gradient methods consist of first determining

successive conjugate directions and then performing a one-dimensional

minimization process along the conjugate direction. For one-dimensional

minimization (line search), the `Golden section method' and `Brent's method'

without or with information of the first derivative of function are frequently

used. Furthermore, since the conjugate direction can be evaluated using the first

derivative of function (i.e., gradient rf �x�) without calculating the second

derivative of function as in Equation (5.4) (Luenberger, 1989), this optimization

method is called the conjugate `gradient' method. The searching process of CG

method along a new conjugate direction is illustrated in Fig. 5.5 for the two-

dimensional Rosenbrock function. As demonstrated in Fig. 5.4, the CG method

5.5 Implementation of CG method for minimizing a two-dimensional

Rosenbrock function. The optimum (minimum) point for the function is (1,1).

The first step is to set a conjugate direction on which minimization (line

minimization) is performed to generate the number 2. The second conjugate

direction at the number 2 is also determined and line minimization along the

direction is performed. This procedure continues until successive points get to

the minimum point.
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is a more effective optimization method than the DS method since it requires a

smaller number of function evaluations.

When the CG method is applied to optimization problems using computa-

tional experiments, parallel simulations need to be utilized to reduce the

optimization time. When determining new conjugate directions, the CG method

needs the gradient of function which can be calculated using parallel simula-

tions. In addition, line minimization can be performed based on function

evaluations that are provided using parallel simulations. Though a parallel

simulation scheme may be incorporated, CG methods may need many numbers

of iterations for successive searches, thereby increasing the optimization time. A

surrogate model can be used as an optimizer in order to benefit from parallel

simulations using computer modeling techniques. This is discussed below.

5.2.2 Optimization using a surrogate model

Process optimization can be performed using a surrogate model (Jakumeit, 2005;

Chengzhi, 2005). The surrogate model is referred to an approximate model

fitting sample data. In this optimization strategy, the first step is to determine the

parameter sets, X (design points), for which the simulation is performed. In the

second step, the objective value f �X� at the design points is used to build a

surrogate model as an approximation to the actual data. The third step is to

search for the minimum (or optimum) function of the surrogate model. Since the

surrogate model approximating sample data is an analytic function, the third step

of minimization can be performed quickly using the DS or CG method discussed

in Section 5.2.1. If the new optimum is close to the last optimum (convergence)

and if the estimate of the surrogate model is close to the results obtained by

following a complete simulation, the algorithm then stops, the assumption being

that the minimum point has been reached. Otherwise, the surrogate model is

improved in a further iteration by adding additional simulations at the new

points or by reducing the modeled region. This approach has an advantage over

the DS or CG method in that it can maximize the benefit of the parallel

simulations.

The responsive surface method (RSM) is a common method of building a

surrogate model (an approximate model) in which a polynomial function of

varying order (usually a quadratic function) is fitted to sample data using a

technique of least square regression (Myers, 2002). It can provide an explicit

functional representation of the sampled data which is obtained experimentally

or computationally. However, RSM has several limitations. It is unable to

predict multiple extrema. In addition, RSM was originally developed to model

data obtained from physical experiments which had a random error

distribution. Since computational experimentation is a deterministic process

(the input produces the same result), in statistical terminology random errors

are not present in computational experiments; RSM may not be a proper model
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for approximating deterministic (computational) data (Sacks, 1989).

Researchers have developed the Kriging method to overcome this limitation

(Sacks, 1989).

The Kriging method is very similar to RSM but provides an interpolation

modeling technique to approximate the results of the deterministic computa-

tional experiments. It consists of the sum of many local functions (frequently the

Gauss function) and one global function, which may be a polynomial as in RSM.

The local function is used to bridge the difference between the global function

and the simulation results using a maximum likelihood estimate, which allows

for capturing multiple local extrema. A more detailed description of the Kriging

method can be found in the work of Sacks (1989). The implementation of the

Kriging method can be carried out using the Matlab Kriging Toolbox which is

open to the public (Lophaven, 2002).

Figure 5.6 shows the response surface for a two-dimensional Rosenbrock

function, which was constructed using the Kriging method. The optimization is

now performed easily on the response surface that is analytically expressed, so

that any minimization algorithm (DS or CG method) can be utilized. Here, a

couple of issues arise when considering the Kriging response surface as an

optimizer. The first issue concerns the number of design points (parameter sets),

an issue is directly related to the number of simulations. Simply stated, the

answer may be `the more the better' since interpolation in the surrogate model is

improved as the volume of data increases. However, it is not possible to increase

the volume of data infinitely. Thus, a proper number of design points should be

set up for the first time (e.g., eight points) which can be determined by the

5.6 Response surface constructed using Kriging method for the two-

dimensional Rosenbrock function.
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parallel simulation capability. The optimization is then performed on the surface

that was constructed based on the first design points. If the result is not good

enough, the surrogate model can be improved by adding new design points with

which a new simulation can then be done. Such addition of new design points

can continue until it is no longer necessary to improve the response surface.

Such an algorithm is depicted in Fig. 5.7. Conceptually, this algorithm is not

difficult to understand for implementation. However, many algorithms exist in

practice and this indicates that a solid strategy for moving the design boundary

and for adding new design points during optimization should be established for

its wide application to composite forming.

5.3 Optimization of composite forming

This section describes objective functions and actual optimization methods for

composite forming. The first step in optimization study is to identify the

objective function. In general, several different objectives may compete with

each other, such as, for example, the manufacturing time and cost, and the

quality or performance of a formed product. Section 5.3.1 discusses objective

functions and provides a brief explanation of the composite forming process.

The section then focuses on the process optimization of composite forming,

including preform shape and the blank holding force (BHF).

5.7 Flowchart of an optimization strategy using surrogate models.
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5.3.1 Objective functions in composite forming

In composite forming, various processing parameters are pertinent to the

forming process. For thermoplastic and thermoset prepreg forming, the relevant

parameters can be classified as heat related, external force related, and material

shape related parameters. In the preform forming, heat related factors are not

relevant. As thermoforming methods for thermoplastic prepreg, the diaphragm

(Delaloye, 1995) and stamp forming (Hou, 1994) processes are well known.

Both forming processes consist of three stages; first the stage of heating

thermoplastic prepreg to a temperature for matrix flow, secondly the stage of

shaping and consolidating heated and flat prepreg into complex and curved

parts, and finally the cooling stage. As such, the thermoforming process needs

significant processing time for all the three stages, so that the first objective of

the thermoforming process may be to reduce the cycle time. Since the majority

of process time is related to the heating of prepreg, an objective for process

optimization may be to pursue a suitable heating method that can elevate the

temperature of prepreg as rapidly as possible. This optimization problem can be

solved by developing a heating unit that uses convection, conduction, or infrared

or a combination of these methods. Therefore, this optimization may be purely

related to the development of a mechanical heating unit.

The last stage of the thermoforming process, which will be discussed briefly

before the second stage of thermoforming is discussed in some detail, is the

cooling stage where two objectives compete for the optimization of the cooling

process. One objective is to allow the correct molecular arrangement for the

crystallization of the matrix and another is to shorten the cooling time in order to

reduce the cycle time. The optimization problem at this stage can be stated as

`minimizing the cooling time while allowing the resin matrix to orient and

crystallizes. The molecular movement and crystallization can be assessed as a

function of the cooling time and its profile in order to solve this optimization

problem.

In the second stage of thermoforming, the mechanical force by pressure (or a

vacuum) in the diaphragm or of the punch in the stamp forming is applied to the

heated and flat prepreg, shaping it into curved and complex parts. The fiber

reinforcement, especially continuous fiber, experiences compressive stress and

fibers may kink or buckle unless a mechanism is adopted that releases this

compressive stress. For the release of compressive force, a resin matrix allows

fibers to slip within a viscous media, and this requires that the material

temperature is maintained high enough to allow matrix flow. As such, the

shortening of processing time for the shaping, as well as for minimizing the heat

dissipation, may be necessary. In this respect, the objective in process

optimization may be `to find a proper pressure or stamp velocity for maintaining

matrix flow', and this optimization can be solved by measuring or calculating

heat transfer within prepreg as a function of the stamp or pressure velocity.
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Another useful method to prevent or relax compressive force is to apply tension

to the prepreg during shaping. In the diaphragm forming process, the biaxial

extension of the flexible diaphragm can impart tension to the prepreg, the extent

of which is determined by the material properties of the diaphragm. In the stamp

forming process, a blank holding force (BHF) is introduced through a blank

holder, and this offers a more flexible mechanism for tension control. Therefore,

the processing variable to be optimized in the shaping stages is mechanical force

and its profile, the extent of which can be determined through a selection of

diaphragm material or BHF.

The quality of a formed product can be characterized in terms of its thickness,

uniformity, fiber orientation, and by defects such as fiber breakage and in-plane

and out-of-plane buckling. The optimization problem in the shaping stage can be

rephrased in terms of `determining the processing variables (mechanical shaping

force and BHF) to minimize thickness diversity, fiber orientation diversity, fiber

breakage and wrinkling'. As more than one objective function is involved, the

optimization of the shaping process is by nature a multi-objective optimization

problem. Since the exact or analytic relationship between such objectives and

process variables is difficult, or even at times impossible, to derive, the relation-

ship is characterized as a `black box' relationship, indicating that actual values of

the objective functions are only obtained by virtual (computational) or actual

experiments. Each objective function in composite forming is described below.

Thickness diversity may be expressed by, for instance, Equation (5.6) as

follows:

H �
X

i�1
�hi ÿ �h�2 5:6

where i indicates material points, and hi and �h are its thickness and the average

of the thickness, respectively. The degree of fiber orientation distribution in the

formed parts is expressed in Equation (5.7) as follows:

� �
X

i�1
��i ÿ ���2 5:7

where i represents material points, and �i and �� are the fiber angle and the

average fiber angle in the formed part.

The objective function for fiber breakage is described by fiber strain,

providing a constraint for maximum allowable strain expressed in Equation (5.8)

as follows:

�f � �max or � � ��f ÿ �max� 5:8

where �f and �max are fiber strain in prepreg and the breaking strain of fiber

respectively.

An objective function for representing wrinkling or buckling is more complex

because it needs a criterion that predicts its occurrence in formed parts. Little
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literature has been dedicated to developing a wrinkling criterion. For woven

structures, wrinkling was reported to occur as the fiber angle approaches a

specific angle (jamming angle) (Prodromou, 1997). Certainly, this may be true

in that the main deformation mode in the woven reinforced prepreg or preform is

intra-shearing, and the yarns may buckle out as the shear deformation is not

possible due to warp and weft fiber touching each other. This is because

buckling facilitates the release of build-up stresses. In this case, the objective

function for wrinkling minimization may be as set out in Equation (5.9):

	 �
X

i

��i ÿ �jam�2; �i > �jam; otherwise 	 � 0 5:9

where i represents material points, and �i and �jam are the fiber angle and the

jamming angle. However, the above criterion may be not applicable to the

unidirectional lamina and other knitted reinforcements. In addition, wrinkling

can be observed even where the fiber angle between the warp and weft does not

reach the jamming angle, implying that the jamming angle is not the only

mechanism for wrinkling.

The optimization procedure can be performed by searching the minimum of

those objectives. The multi-objectives set out in Equations (5.6) to (5.9) can be

translated into a single objective function using the following weight factors set

out in Equation (5.10):

f � �iH � �2�� �3�� �4	 5:10

where �i are weight factors for each objective.

The design set of minimizing Equation (5.10) can be obtained using one of

the optimization methods described in Section 5.2. Since it is not unusual that

the systematic determination of the weight factors is not possible, the single

objective function in Equation (5.10) may be not proper; instead, a multi-

objective optimization method may be more appropriate.

It may be useful to review objective functions in other fields of forming. The

quality of a formed sheet of metal is assessed by severe thinning, which may

cause tearing, and by wrinkling. Since sheet metal forming involves the

stretching of thin sheets, the principal strains are used to predict where such

defects in a forming operation occur. Using experiments or theoretical

calculations, the region in which such defects may occur can be identified in

terms of principal strains, the limits of which can be expressed in a forming a

limit diagram as shown in Fig. 5.8. The optimization process in this case is to

`pursue a processing path and a preform shape in order that one of the material

points does not experience strains beyond the forming limit'. Mathematically,

the optimization process is equivalent to the minimization of a potential

representing the forming limit.

Composite forming has also adopted the technique of a similar forming limit

diagram. Researchers (Tucker, 1998) have studied a forming limit diagram for
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the random fiber mat to develop a shape optimization method. The key premise

in this forming limit diagram was that the defects of the forming random mat

preform can be quantified with a limit diagram obtained by multi-state loading

experiments as shown in Fig. 5.9. The forming limit diagram divides the strain

space represented by principal stretches, �1 and �2, into regions where defects

(wrinkle or tears) are likely to occur, and into regions of acceptable deformation

without such defects. Several experiments are performed to evaluate the points

U, P, and B which mark the boundaries of the acceptable regions of principal

strain. Points U, P and B can be determined from a uniaxial elongation test, a

pure shear test, and an equi-biaxial stretch test respectively. The boundary PB is

found from unequal biaxial stretching experiments performed using various

ratios of �1 to �2. More details can be found in a research paper by Tucker

(2003). In this case, the optimization of the forming process can be defined as

`finding process parameters that keep the local strain at every point in the

preform away from the boundaries UO and UPB'.

This section has outlined various objective functions involved in composite

forming, in particular for thermoplastic composite forming. For preform forming

without a resin matrix, the considerations pertinent to the first and third stages of

the process are not necessary because preform forming without a resin matrix

does not involve heat. Material flow or deformation is dependent on preform

5.8 Schematic formability limit diagram for sheet metal with critical regions for

crack, risk of crack, risk of wrinkles and wrinkles (Jakumeit, 2005).
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shape as well as other processing conditions. Both parameters should be

optimized for high quality composite forming, and concurrent optimization may

be possible using schemes set out in Equation (5.10), adding a shape parameter

for preform shape, such as, for example, the coefficients of a parametric curve

representing preform shape. However, a direct method for preform (prepreg)

shape optimization can be effectively formulated. A separate scheme for

optimizing both processing parameters is discussed in Sections 5.3.2 and 5.3.3.

5.3.2 Shape optimization using a direct method

The initial preform (blank) shape is known to determine the deformation

behavior of preform in forming. In the metal forming field, researchers have

performed many studies to design an initial blank shape with optimum

deformation for a specific product shape (e.g., Chung, 1992a, 1992b, 1997). The

basic aim of these studies is to define a path which produces a desired

homogeneous deformation with minimum plastic work. It is also assumed in the

studies that the formability of local material elements is optimum when they

deform following a minimum work path. An ideal process is then defined as the

one having local deformations that are optimally distributed in the final shape,

through which an ideal initial configuration is determined to form a specified

final shape.

5.9 Qualitative forming limit diagram, showing regions of acceptable

deformation, wrinkling, and tearing for random fiber mat (Tucker, 1998).
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In composite forming, the preform shape is also an important element in

determining the deformation shape. Experimental observation representing the

importance of the blank shape design was reported by O'Bradaigh (1997) who

formed several specimens modified from a square blank (APC-2 carbon/PEEK)

by cutting some corners and showed improved wrinkling behavior. By using a

diaphragm forming process a significant and positive correlation was found

between the shape of a blank and the wrinkling behaviour. Simulation results

have also demonstrated the effect of preform shape on the forming behavior

(Yu, 2005). As such, preform shape is an object to be optimized in the composite

forming process. A method of optimally designing a blank is now discussed.

In composite forming, limited research has been conducted on the blank

design for forming a specified product. One research study (Tucker, 2003)

performed an ideal forming analysis for a random fiber reinforcement by

utilizing the forming limit diagram. The researchers in this study determined a

potential representing the formability of the reinforcement obtained by measur-

ing the stretching behavior of the preform along several deformation paths and

then by setting an upper forming limit as shown in Equation (5.11):

W � ��1 ÿ 1�2 � ��2 ÿ 1�2 � �
2
c � c 5:11

where �1 and �2 are principal stretches, and � and c are penalty constant and a

vector describing the forming limit in Fig. 5.9.

The first two terms on the right-hand side in Equation (5.11) keep the

deformation state as close to the undeformed state as possible, assuming that

defects are directly linked to the deformation. This assumption is only valid for

composite preform because in sheet metal forming material needs to be

stretched to impart work-hardened behavior. The third term in Equation (5.11) is

a quadratic penalty function to enforce the forming limits of materials, which

were obtained experimentally. The constraint vector c contains those constraints

that are violated, while � is a non-negative penalty parameter controlling the

strength with which the forming limits are enforced. The researchers determined

a forming limit diagram for Vetrotex CertainTeed's U750 mat experimentally as

shown in Fig. 5.10. The potential was then minimized to seek an initial blank

shape based on the premise that an initial configuration is ideal if the

deformation of all elements within the initial blank resides within the forming

limit. The solution procedure for this method is explained briefly here following

the works of Chung (1992a, 1992b, 1997) and Tucker (2003).

Consider that a final shape to be formed is characterized by a surface

description, for example x3 � f �x1; x2�. Optimization for the blank design can be

summarized as a task of seeking an initial blank shape in terms of X1 and X2 if

the initial configuration is assumed as a flat sheet (i.e., X3 � 0). Alternatively,

the final shape is conveniently described by a finite element mesh fixed in the

global coordinates (x1; x2; x3) using surface coordinates. For the finite element
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meshes given, the blank shape optimization process involves inversely

calculating the initial coordinates of nodes of all elements in the final mesh.

Note that the unknown variables are X1 and X2 (in the initial configuration),

while general FE analysis aims to obtain x1, x2 and x3 based on X1 and X2. A

mapping function is introduced to calculate the initial configuration of the

elements. The mapping function includes non-physical energy representing

deviation from the forming limit, and can be expressed using the forming limit

diagram formula set out in Equation (5.12) as follows:

� �
Z

W ��1; �2�� �dV 0 5:12

Equation (5.12) can be expressed with the final configuration using Jacobian

between the initial and final configuration, as follows:

� �
Z

~W ��1; �2�
ÿ �

dV 5:13

where ~W��1; �2� �
1

�1�2
W ��1; �2�.

The stretch is determined when the initial (X1 and X2) and final (x1, x2 and x3)

configurations are given. Since in this case the final shape is given, the stretch is

a function of the initial coordinate. Since the mapping function represents a high

value for a portion of the blank which falls on the outside of the forming limit,

the optimization of the blank shape is mathematically equivalent to a

5.10 Contour plot of the formability function W for 750U random-fiber mat

where � � 100 (Tucker, 2003).
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configuration that makes the mapping function minimum. The minimum of

Equation (5.14) can be determined by requiring that the derivative of � with

respect to the initial sheet configuration be zero, as follows:

d�

dX
� 0 5:14

where X � �X1;X2�. Numerical simulation is performed by discretizing Equation

(5.13) using finite element approximation and by translating Equation (5.14) as

an n-dimensional equation (where n equals the total number of nodal points in the

final and initial mesh). The Newton-Raphson (NR) method is employed to find

the initial coordinates of element nodes corresponding to the final one. Since the

NR solution will converge only when a good initial guess for the solution

variables is provided, it is critical to choose a proper initial guess. The easiest way

for determining the initial shape is to project all the nodes on the final surface

onto the X-Y plane. However, this may make it difficult to converge to a solution,

particularly for deep curved structures. For the two fiber directional preform,

such as a woven structure, a flat pattern can be obtained from the iterative energy

minimization code (Long, 2002), which can be tried for the initial guess.

Figure 5.11 shows the final shape (box with flange preform) and the initial

blank shape as optimized using the direct method. As shown in Fig. 5.11, large

values of the formability function are observed in both the upper corner and in

the adjacent flange area, indicating possible defects in these two regions. The

optimal preform obtained in this work may not conform to the final shape in real

forming because this simulation does not consider processing conditions such as

the blank holding force and friction between tools and preform. Iterative

simulation could be further performed to include these processing conditions,

adjusting the initial blank shape to be more conformable to the final shape (Park,

1999). Recently, a new formulation considering the blank holding force and

friction has been developed in the metal forming field and this can also be used

in composite forming (Chung, 2000).

In this section, the shape optimization method, which does not rely on manual

input to drive the successive iteration for optimization, is discussed. To employ

this kind of optimization strategy for optimum blank design, a mapping function,

which can be based on formability or deformation theory (Chung, 1993) for

sheet metal, should be developed. For the continuous fiber preform, such a

mapping function may be formulated based on fiber angle limit, wrinkling

criterion, or fiber breakage.

5.3.3 Optimization of process parameters using iterative
optimization method

In the previous section, the optimization of preform shape, one of the important

process parameters, was discussed. Since other processing parameters are
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5.11 Target shape with contour plot of the formability function (left) and initial blank preform required to produce the optimal preform

(right) for the target shape (Tucker, 2003).



involved in composite forming besides preform shape, the quality of a formed

product can be improved by properly choosing processing parameters. Among

the many processing parameters, BHF is recognized as an important factor for

composite preform because less tension causes wrinkling in the preform due to

compressive stress, while too much tension can bring about fiber breakage. In

contrast to the preform shape optimization process, BHF can be optimized using

the iterative optimization method explained in Section 5.2. Through experi-

mental observations, the effect of BHF on the forming behavior is first

discussed.

The forming of non-crimp fabric (NCF) with tricot stitch is chosen as an

example for investigating the effect of BHF on the formed shape (Lee, 2006). As

shown in Fig. 5.12, the stitch pattern was introduced to hold the warp and weft

yarn together in such fabric. Due to the stitch, the fiber angle between the warp

and the weft in as-received NCF is a little deviated from 90ë, the actual fiber

angle measured being 97ë.

Stitch pattern and fiber orientation are known to be crucial factors in

determining the forming behavior of NCF. To address the effect of these two

factors on forming behavior, two square samples of 350mm � 350mm in

dimension were prepared cutting glass NCF using a die cutter; one sample

(TC_N) with the warp and weft aligned parallel to the edge of a square; the other

sample (TC_D) with the warp and the weft aligned in the diagonal of a square.

On each sample four different axes (ST90, Warp, ST, Weft) were marked on

which fiber angle and node displacement were measured at every 15mm interval

in order to quantify the deformation behavior of NCF. Note that the ST90 and

ST axes are referred to the directions perpendicular and parallel to the stitches

respectively. A hemispherical forming system was designed that is attachable to

a laboratory UTM (Universal Testing Machine-MTS). Figure 5.13 shows the

schematic diagram of the hemispherical forming station employed in this

discussion. The radius of the hemisphere punch was 75mm, and the area of the

blank holder was 0.017m2.

The punch stamps NCF into a hemispherical shape with a depth of 75mm

during one minute. Then, the formed NCF was hardened for 30 minutes using

5.12 Surface structure of an NCFwith tricot stitch.
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unsaturated polyester resin. The NCF was removed from the mold in order to

measure and characterize the formed shape. The local fiber angle change of the

formed NCF was measured by a goniometer, while node displacement was

recorded through spatial coordinates obtained using a three-dimensional

digitizer. The formed shape of NCF was quantified by measuring the shear

angle and arc length along four different axes of the formed NCF. For this

forming experiment, 19.4 kg of BHF was applied to both TC_D and TC_N

samples. Fiber angles on the warp and weft axes were rarely changed while they

were changed considerably on the ST90 and ST directions because compliance

to shear deformation in these directions was relatively large. Note that the fiber

angle change of ST90 axis was about 30ë around the equator where maximum

shear deformation was developed while 20ë of fiber angle change was observed

in the ST direction (see Fig. 5.14). Such an asymmetric shear angle pattern

might be caused by stitches because, as observed in the picture-frame shear test

(Long, 2002), the stitch structure determines shear resistance according to shear

direction.

It is interesting to note that the shear angle of ST and ST90 in TC_N was larger

than one of the same direction in the TC_D sample, while the fiber angle in the

fiber direction of both samples was little changed. This result clearly shows the

effect of blank shape on the forming behavior. If both samples had been prepared

in a circular blank shape, the fiber angle changes would have been the same

because the fiber orientation and stitches in them were the same. Since a square

blank shape was used in this experiment, the excess part of the square had a

different fiber orientation; fibers in the TC_N sample were aligned in a �45ë
direction based on the square diagonal while fibers in the TC_D sample were

aligned diagonally, making the shearing more difficult in the TC_D sample.

Figure 5.15 shows the formed shapes of NCF samples (TC_N and TC_D)

according to BHF. Two noticeable features of the BHF effect can be observed in

5.13 Schematic diagram of hemispherical forming process.
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both sample cases. For small BHF ((a) and (c) in Fig. 5.15), both samples (TC_N

and TC_D) were formed into a hemispherical shape with severe asymmetric

deformation and wrinkling around the equator. This was due to insufficient

tension applied to the NCFs during forming, in which compression stress was

developed in a circumferential direction. As BHF increased, the formed shape

changed dramatically into the symmetrical formed shape. From the experiments,

it may be concluded first that BHF is a very important factor in determining the

forming behavior of NCF and secondly that optimization of BHF may enable a

5.14 Fiber angle change in the ST90 and ST directions according to BHF (a)

TC____N and (b) TC____D.
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significant reduction in wrinkling. Wrinkle and in-plane buckling were observed

near the equator in the warp and weft fiber direction axes. To clearly investigate

wrinkling with high frequency and small magnitude, a slit laser shed light on the

surface of the formed sample. As shown in Fig. 5.16, the laser light was more

scattered around the equator of a hemispherical formed NCF where the wrinkles

were propagated severely. Note that for a region without wrinkles, or with fewer

wrinkles, the laser was more visible in a straight line. As BHF increased in the

5.15 Formed shapes of NCF (TC_N and TC_D samples).

5.16 Wrinkling visualization of formed NCF (TC_D sample).
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forming operation, laser scattering was reduced which indicated a reduction in

wrinkling. With this experiment, it can be confirmed that wrinkling in the

formed NCF can be reduced through the optimization of BHF.

As discussed so far, the blank holder force is a crucial factor in determining

the forming behavior of composite preform. Optimization of the blank holding

force can be performed based on experiments, but systematic optimization of

5.17 Figure blank holder force as a function of the drawing depth described by

seven parameters (Jakumeit, 2005).

5.18 Convergence behavior of the Kriging strategy for theSRAIL test of ametal

sheet (Jakumeit, 2005).
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BHF may need to include a variable BHF (Fig. 5.17) and segmented blank

holder (Fig. 5.19) whereby numerical simulations or computational experiments

are inevitable for including various ranges of blank holding force profiles. In the

sheet metal forming field in which the formability function (objective function)

5.19 The schematic diagram of the segmented blank holder (Chengzhi, 2005).

5.20 Stamped sheet metal under initial BHFs (left) and optimal BHFs (right)

(Chengzhi, 2005).

Optimization of composite forming 141



was well defined, the optimization of blank holding force has been endeavored

to minimize an objective function, which was constructed based on the form-

ability function, using the iterative algorithm described in the previous section.

Figures 5.18 and 5.20 demonstrate how well formed parts can be improved by

controlling BHF. Since the formability of composite preform has been less

established, future study for composite forming optimization should be

dedicated to developing an objective function that takes into account fiber angle.

5.4 Conclusions

In this chapter, optimization for composite forming was discussed with objective

functions which are essential elements in forming optimization. Among proces-

sing parameters in the composite forming process, preform (blank shape) and

BHF were identified as essential quantities which should be optimized for better

quality of formed preform. Actual methods for optimization were discussed,

which can be classified in terms of direct and indirect (iterative) methods. The

direct method is to formulate an objective function through a finite

approximation of an initial and final blank, and to calculate inversely the initial

configuration of preform corresponding to the final one, thereby excluding

successive manual inputs to drive an optimization iteration. Though the direct

method can save design time because it is not based on trial-and-error practices,

it cannot consider actual processing parameters, such as the variable BHF.

Indirect (or iterative) methods can be applied to the optimization of processing

parameters, though such methods need manual input to drive successive

iterations in the optimization process, necessitating an optimization method that

can utilize parallel simulations. For the successful implementation of both

methods, objective functions should be established that assess the quality of

formed parts in terms of processing parameters, and future research should be

focused in this direction for the optimization of composite forming.
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