
WOODHEAD PUBLISHING IN TEXTILES

Composites forming technologies

Edited by A. C. Long

Composites forming technologies

Related titles:

Geosynthetics in civil engineering

(ISBN-13: 978-1-85573-607-8; ISBN-10: 1-85573-607-1)

Geosynthetics are essential to civil engineering and have a multitude of applications. The first part of the book looks at design principles for geosynthetics, their material properties and durability, and the range of national and international standards governing their use. Part II reviews the range of applications for synthetics as well as quality assurance issues. There are chapters on geosynthetic applications as filters, separators and barrier materials, in improving building foundations and landfill sites, and as limited design life materials.

Multi-scale modelling of composite material systems (ISBN-13: 978-1-85573-936-9; ISBN-10: 1-85573-936-4)

This book focuses on the fundamental understanding of composite materials at the microscopic scale, from designing microstructural features to the predictive equations of the functional behaviour of the structure for a specific endapplication. The papers presented discuss stress- and temperature-related behavioural phenomena based on knowledge of physics of microstructure and microstructural change over time.

Durability of composites for civil structural applications (ISBN-13: 978-1-84569-035-9; ISBN-10: 1-84569-035-4)

This comprehensive book on the durability of FRP composites will make it easier for the practising civil engineer and designer to use these materials on a routine basis. It addresses the current lack, or inaccessibility, of data related to the durability of these materials, which is proving to be one of the major challenges to the widespread acceptance and implementation of FRP composites in civil infrastructure. The book should help further the acceptance of composites for civil structural applications by providing a source for practising engineers, decision makers, and students involved in architectural engineering, construction and materials, disaster reduction, environmental engineering, maritime structural technology, transportation engineering and urban planning.

Details of this book and a complete list of Woodhead's titles can be obtained by:

- visiting our website at www.woodheadpublishing.com
- contacting Customer Services (e-mail: sales@woodhead-publishing.com; fax: +44 (0) 1223 893694; tel.: +44 (0) 1223 891358 ext. 130; address: Woodhead Publishing Limited, Abington Hall, Abington, Cambridge CB21 6AH, England)

If you would like to receive information on forthcoming titles in this area, please send your address details to: Francis Dodds (address, tel. and fax as above; e-mail: francisd@woodhead-publishing.com). Please confirm which subject areas you are interested in.

Composites forming technologies

Edited by A. C. Long

CRC Press Boca Raton Boston New York Washington, DC

WOODHEAD PUBLISHING LIMITED

Cambridge England

Published by Woodhead Publishing Limited in association with The Textile Institute Woodhead Publishing Limited Abington Hall, Abington Cambridge CB21 6AH, England www.woodheadpublishing.com

Published in North America by CRC Press LLC 6000 Broken Sound Parkway, NW Suite 300, Boca Raton FL 33487, USA

First published 2007, Woodhead Publishing Limited and CRC Press LLC © 2007, Woodhead Publishing Limited
The authors have asserted their moral rights.

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. Reasonable efforts have been made to publish reliable data and information, but the authors and the publishers cannot assume responsibility for the validity of all materials. Neither the authors nor the publishers, nor anyone else associated with this publication, shall be liable for any loss, damage or liability directly or indirectly caused or alleged to be caused by this book.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming and recording, or by any information storage or retrieval system, without permission in writing from Woodhead Publishing Limited.

The consent of Woodhead Publishing Limited does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from Woodhead Publishing Limited for such copying.

Trademark notice: product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation, without intent to infringe.

British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library

Library of Congress Cataloging in Publication Data A catalog record for this book is available from the Library of Congress

Woodhead Publishing Limited ISBN-13: 978-1-84569-033-5 (book) Woodhead Publishing Limited ISBN-10: 1-84569-033-8 (book) Woodhead Publishing Limited ISBN-13: 978-1-84569-253-7 (e-book) Woodhead Publishing Limited ISBN-10: 1-84569-253-5 (e-book)

CRC Press ISBN-13: 978-0-8493-9102-6 CRC Press ISBN-10: 0-8493-9102-4 CRC Press order number: WP9102

The publishers' policy is to use permanent paper from mills that operate a sustainable forestry policy, and which has been manufactured from pulp which is processed using acid-free and elementary chlorine-free practices. Furthermore, the publishers ensure that the text paper and cover board used have met acceptable environmental accreditation standards.

Project managed by Macfarlane Production Services, Dunstable, Bedfordshire, England (macfarl@aol.com)

Typeset by Godiva Publishing Services Ltd, Coventry, West Midlands, England Printed by TJ International Limited, Padstow, Cornwall, England

Contents

	Contributor contact details	xi
	Introduction	XV
1	Composite forming mechanisms and materials characterisation A C LONG and M J CLIFFORD, University of Nottingham, UK	1
1.1	Introduction	1
1.2	Intra-ply shear	3
1.3	Axial loading	9
1.4	Ply/tool and ply/ply friction	10
1.5	Ply bending	12
1.6	Compaction/consolidation	14
1.7	Discussion	19
1.8	References	19
2	Constitute modelling for composite forming R AKKERMAN and E A D LAMERS, University of Twente, The Netherlands	22
2.1	Introduction	22
2.2	Review on constitutive modelling for composite forming	22
2.3	Continuum based laminate modelling	29
2.4	Multilayer effects	34
2.5	Parameter characterisation	35
2.6	Future trends	43
2.7	References	44

vi Contents	
-------------	--

3	Finite element analysis of composite forming P BOISSE, INSA de Lyon, France	46
3.1	Introduction: finite element analyses of composite forming, why and where?	46
3.2	The multiscale nature of composite materials and different	
	approaches for composite forming simulations	48
3.3	The continuous approach for composite forming process analysis	50
3.4	Discrete or mesoscopic approach	57
3.5 3.6	Semi-discrete approach	59 70
3.0 3.7	Multi-ply forming and re-consolidation simulations Conclusions	70 75
3.8	References	75
4	Virtual testing for material formability	80
	S V LOMOV, Katholieke Universiteit Leuven, Belgium	
4.1	Introduction	80
4.2	Mechanical model of the internal geometry of the relaxed state	
	of a woven fabric	82
4.3	Model of compression of woven fabric	84
4.4	Model of uniaxial and biaxial tension of woven fabric	89
4.5	Model of shear of woven fabric	93
4.6	Parametric description of fabric behaviour under simultaneous	0.0
	shear and tension	96
4.7	Conclusions: creating input data for forming simulations References	111 112
4.8	References	112
5	Optimization of composites forming	117
	W-R Yu, Seoul National University, Korea	
5.1	Introduction	117
5.2	General aspects of optimization	118
5.3	Optimization of composite forming	126
5.4	Conclusions	142
5.5	References	142
6	Simulation of compression moulding to form	
		144
	E SCHMACHTENBERG, Universität Erlangen-Nürnberg,	
	Germany and K SKRODOLIES, Institut für Kunststoffverarbeitu Germany	ng,
6.1	Introduction	144
6.2	Theoretical description of the simulation	145

	Contents	vii
6.3	Examples of use of the simulation	161
6.4	Measurement of the material data	172
6.5	References	174
6.6	Symbols	175
7	Understanding composite distortion during processing MR WISNOM and KD POTTER, University of Bristol, UK	177
7.1	Introduction	177
7.2	Fundamental mechanisms causing residual stresses and	1//
	distortion	177
7.3	Distortion in flat parts	181
7.4	Spring-in of curved parts	186
7.5	Distortion in more complex parts	192
7.6	Conclusions	194
7.7	References	195
8	Forming technology for composite/metal hybrids J SINKE, Technical University Delft, The Netherlands	197
8.1	Introduction	197
8.2	Development of composite/metal hybrids	198
8.3	Properties of fibre metal laminates	201
8.4	Production processes for fibre metal laminates	205
8.5	Modelling of FML	213
8.6	Conclusions	218
8.7	References	219
9	Forming self-reinforced polymer materials I M WARD and P J HINE, University of Leeds, UK and D E RILEY, Propex Fabrics, Germany	220
9.1	Introduction	220
9.2	The hot compaction process	220
9.3	Commercial exploitation	224
9.4	Postforming studies	225
9.5	Key examples of commercial products	232
9.6	Future developments	235
9.7	Acknowledgements	236
9.8	References	236

	_	
VIII	('On	tents

10	Forming technology for thermoset composites R PATON, Cooperative Research Centre for Advanced Composite Structures Ltd, Australia	239
10.1	Introduction	239
10.2	Practicalities of forming thermoset prepeg stacks	240
10.3	Deformation mechanisms in woven fabric prepeg	241
10.4	Tape prepreg	247
10.5	Forming processes	248
10.6	Tooling equipment	250
10.7	Diaphagm forming tooling	251
10.8	Potential problems	252
10.9	Process capabilities	253
10.10	Future trends	253
10.11	References	254
11	Forming technology for thermoplastic composites R BROOKS, University of Nottingham, UK	256
11.1	Introduction	256
11.2	Thermoplastic composite materials (TPCs) for forming	256
11.3	Basic principles of TPC forming technologies	262
11.4	Forming methods	264
11.5	Some recent developments	273
11.6	Conclusions	275
11.7	References	275
12	The use of draping simulation in composite design J W KLINTWORTH, MSC Software Ltd, UK and A C LONG, University of Nottingham, UK	277
12.1	Introduction	277
12.2	Zone and ply descriptions	277
12.3	Composites development process	278
12.4	Composites data exchange	281
12.5	Draping and forming simulation	282
12.6	Linking forming simulation to component design analysis	284
12.7	Conclusions	291
12.8	References	292

Con	itents	IX

13	Benchmarking of composite forming modelling techniques		
	JL GORCZYCA-COLE and J CHEN, University of		
	Massachusetts Lowell, USA and J CAO, Northwestern		
	University, USA		
13.1	Introduction	293	
13.2	Forming process and fabric properties	295	
13.3	Experimental	297	
13.4	Numerical analyses	313	
13.5	Conclusions and future trends	315	
13.6	Acknowledgements	316	
13.7	References and further reading	317	
	Index	318	

(* = main contact)

Editor

A.C. Long
School of Mechanical Materials and
Manufacturing Engineering
University of Nottingham
University Park
Nottingham NG7 2RD
UK

E-mail:

Andrew.Long@nottingham.ac.uk

Chapter 1

A.C. Long* and M.J. Clifford
School of Mechanical Materials and
Manufacturing Engineering
University of Nottingham
University Park
Nottingham NG7 2RD
UK

E-mail:

mike.clifford@nottingham.ac.uk

Chapter 2

R. Akkerman* and E.A.D. Lamers
 Construerende Technische
 Wetenschappen
 Universiteit Twente – CTW
 Postbus 217

7500AE Enschede The Netherlands

E-mail: r.akkerman@ctw.utwente.nl

Chapter 3

P. Boisse

Laboratoire de Mécanique des Contacts et des Solides UMR CNRS 5514 INSA de Lyon

France

E-mail:

Philippe.Boisse@insa-lyon.fr

Chapter 4

S. LomovDepartment of Metallurgy and Materials EngineeringKasteelpark Arenberg 44BE-3001 HeverleeBelgium

E-mail:

stepan.lomov@mtm.kuleuven.be

Chapter 5

W.-R. Yu

Dept. of Materials Science and Engineering College of Engineering Seoul National University San 56-1 Silim dong Gwanak-gu Seoul 151-744 Korea

E-mail: woongryu@snu.ac.kr

Chapter 6

E. Schmachtenberg Universität Erlangen-Nürnberg Lehrstuhl für Kunststofftechnik Am Weichselgarten 9 91058 Erlangen-Tennenlohe Germany

E-mail: Schmachtenberg@lkt.unierlangen.de

K. SkrodoliesInstitute of Plastics Processing at RWTH Aachen UniversityPontstraße 4952062 AachenGermany

E-mail: zentrale@ikv.rwth-aachen.de

Chapter 7

M. R. Wisnom* and K. D. Potter
Professor of Aerospace Structures
University of Bristol
Advanced Composites Centre for

Innovation and Science

Queens Building 0.64
University Walk
Bristol BS8 1TR
UK

E-mail: M.Wisnom@bristol.ac.uk

Chapter 8

J. Sinke

Faculty of Aerospace Engineering Technical University Delft Aerospace Materials and Manufacturing Kluyverweg 1 2629HS, Delft The Netherlands

E-mail: j.sinke@tudelft.nl

Chapter 9

I.M. Ward*, P.J. Hine and
D.E. Riley
IRC in Polymer Science &
Technology
School of Physics and Astronomy
University of Leeds
Leeds LS2 9JT
UK

E-mail: I.M.Ward@leeds.ac.uk p.j.hine@leeds.ac.uk Derek.Riley@propexfabrics.com

Chapter 10

R. Paton

Cooperative Research Centre for Advanced Composite Structures Ltd 506 Lorimer St, Fishermens Bend

506 Lorimer St, Fishermens Bend Port Melbourne, 3207 Australia

E-mail: r.paton@crc-acs.com.au

Chapter 11

R. Brooks

School of Mechanical Materials and Manufacturing Engineering University of Nottingham University Park Nottingham NG7 2RD UK

E-mail:

richard.brooks@nottingham.ac.uk

Chapter 12

J.W. Klintworth* and A.C. Long MSC Software Ltd MSC House Lyon Way Frimley Camberley Surrey GU16 7ER UK

E-mail:

john.klintworth@mscsoftware.com

Chapter 13

J.L. Gorczyca-Cole and J. Chen* University of Massachusetts Lowell One University Avenue Lowell, MA 01854 USA

E-mail: Julie_chen@uml.edu

J. Cao

Department of Mechanical Engineering Northwestern University 2145 Sheridan Road Evanston, IL 60208-3111 USA

E-mail: jcao@northwestern.edu