
WOODHEAD PUBLISHING IN TEXTILES

Nanofibers and nanotechnology in textiles

Edited by P. J. Brown and K. Stevens

Nanofibers and nanotechnology in textiles

The Textile Institute and Woodhead Publishing

The Textile Institute is a unique organisation in textiles, clothing and footwear. Incorporated in England by a Royal Charter granted in 1925, the Institute has individual and corporate members in over 90 countries. The aim of the Institute is to facilitate learning, recognise achievement, reward excellence and disseminate information within the global textiles, clothing and footwear industries.

Historically, The Textile Institute has published books of interest to its members and the textile industry. To maintain this policy, the Institute has entered into partnership with Woodhead Publishing Limited to ensure that Institute members and the textile industry continue to have access to highcalibre titles on textile science and technology.

Most Woodhead titles on textiles are now published in collaboration with The Textile Institute. Through this arrangement, the Institute provides an Editorial Board which advises Woodhead on appropriate titles for future publication and suggests possible editors and authors for these books. Each book published under this arrangement carries the Institute's logo.

Woodhead books published in collaboration with The Textile Institute are offered to Textile Institute members at a substantial discount. These books, together with those published by The Textile Institute that are still in print, are offered on the Woodhead website at: www.woodheadpublishing.com. Textile Institute books still in print are also available directly from the Institute's website at: www.textileinstitutebooks.com.

Nanofibers and nanotechnology in textiles

Edited by

P. J. Brown and K. Stevens

The Textile Institute

CRC Press Boca Raton Boston New York Washington, DC

WOODHEAD PUBLISHING LIMITED Cambridge, England Published by Woodhead Publishing Limited in association with The Textile Institute Woodhead Publishing Limited, Abington Hall, Abington Cambridge CB21 6AH, England www.woodheadpublishing.com

Published in North America by CRC Press LLC, 6000 Broken Sound Parkway, NW, Suite 300, Boca Raton, FL 33487, USA

First published 2007, Woodhead Publishing Limited and CRC Press LLC © 2007, Woodhead Publishing Limited The authors have asserted their moral rights.

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. Reasonable efforts have been made to publish reliable data and information, but the authors and the publishers cannot assume responsibility for the validity of all materials. Neither the authors nor the publishers, nor anyone else associated with this publication, shall be liable for any loss, damage or liability directly or indirectly caused or alleged to be caused by this book.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming and recording, or by any information storage or retrieval system, without permission in writing from Woodhead Publishing Limited.

The consent of Woodhead Publishing Limited does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from Woodhead Publishing Limited for such copying.

Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation, without intent to infringe.

British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library.

Library of Congress Cataloging in Publication Data A catalog record for this book is available from the Library of Congress.

Woodhead Publishing ISBN 978-1-84569-105-9 (book) Woodhead Publishing ISBN 978-1-84569-373-2 (e-book) CRC Press ISBN 978-1-4200-4449-2 CRC Press order number: WP4449

The publishers' policy is to use permanent paper from mills that operate a sustainable forestry policy, and which has been manufactured from pulp which is processed using acid-free and elementary chlorine-free practices. Furthermore, the publishers ensure that the text paper and cover board used have met acceptable environmental accreditation standards.

Typeset by Replika Press Pvt Ltd, India. Printed by TJ International Limited, Padstow, Cornwall, England

iv

Contents

Contributor contact details	xiii
Nanofiber production	
Electrospinning of nanofibers and the charge injection method	3
D. R. SALEM, Charge Injection Technologies Inc., USA	
Introduction	3
Principles of electrostatic atomization	3
Electrospraying and electrospinning by the capillary	
method	5
Electrospraying and electrospinning by the charge	
5	12
References	20
Producing nanofiber structures by electrospinning for tissue engineering	22
F. K. Ko, The University of British Columbia, Canada and M. R. GANDHI, Drexel University, USA	
Introduction	22
Fabrication of nanofibrous scaffolds	28
Characterization of nanofibrous scaffolds	30
Cell-scaffold interaction	36
Summary and conclusion	42
	43
References	43
Continuous yarns from electrospun nanofibers	45
E. SMIT, U. BÜTTNER and R. D. SANDERSON, Stellenbosch University, South Africa	
Introduction	45
	 Nanofiber production Electrospinning of nanofibers and the charge injection method D. R. SALEM, Charge Injection Technologies Inc., USA Introduction Principles of electrostatic atomization Electrospraying and electrospinning by the capillary method Electrospraying and electrospinning by the charge injection method References Producing nanofiber structures by electrospinning for tissue engineering F. K. Ko, The University of British Columbia, Canada and M. R. GANDHI, Drexel University, USA Introduction Fabrication of nanofibrous scaffolds Characterization of nanofibrous scaffolds Cell-scaffold interaction Summary and conclusion Acknowledgments References Continuous yarns from electrospun nanofibers E. SMIT, U. BUTTNER and R. D. SANDERSON, Stellenbosch University, South Africa

vi Contents

3.2	Using electrospun nanofibers: background and terminology	45
3.3	Controlling fiber orientation	48
3.4	Producing noncontinuous or short yarns	49
3.5	Producing continuous yarns	52
3.6	Summary and future trends	66
3.7	Sources of further information and advice	67
3.8	References	68
4	Producing polyamide nanofibers by electrospinning	71
	M. AFSHARI, R. KOTEK and A. E. TONELLI, North Carolina State University, USA and DW. JUNG, Hyosung Corporation, South Korea	
4.1	Introduction	71
4.2	The electrospinning process	71
4.3	Properties of electrospun nanofibers	73
4.4	Measuring the effects of different spinning conditions and the use of high molecular weight polymers on the	
	properties of electrospun nanofibers	75
4.5	Improving the properties of electrospun nanofibers:	
	experimental results	77
4.6	Conclusions	85
4.7	References	87
5	Controlling the morphologies of electrospun nanofibres	90
	T. LIN and X. G. WANG, Deakin University, Australia	
C 1		0.0
5.1	Introduction The electrominging process and fibre membelsory	90
5.2 5.3	The electrospinning process and fibre morphology	91 93
5.5 5.4	Polymer concentration and fibre diameter Fibre bead formation and fibre surface morphology	95 96
5.5	Controlling fibre alignment and web morphologies	100
5.6	Bicomponent cross-sectional nanofibres	100
5.7	Future trends	103
5.8	Acknowledgements	107
5.9	References	108
5.9	Keletences	108
Part II	Carbon nanotubes and nanocomposites	111
6	Synthesis, characterization and application of carbon	
	nanotubes: the case of aerospace engineering	113
	M. REGI, University of Rome 'La Sapienza', Italy	
6.1	Introduction	113

6.2	The development and structure of carbon nanotubes	115
6.3	Synthesis of carbon nanotubes	124
6.4	Characterization techniques	140
6.5	Purification techniques	152
6.6	The use of carbon nanotubes in aerospace engineering	157
6.7	Nanostructured composite materials for aerospace	
	applications	162
6.8	Nanostructured solid propellants for rockets	170
6.9	Frequency selective surfaces for aerospace applications	175
6.10	Other aerospace applications of carbon nanotubes	182
6.11	Conclusions	184
6.12	Acknowledgments	184
6.13	References	185
7	Carbon nanotube and nanofibre reinforced polymer	
	fibres	194
	M. S. P. SHAFFER, Imperial College London, UK and	
	J. K. W. SANDLER, University of Bayreuth, Germany	
7.1	Introduction	194
7.2	Synthesis and properties of carbon nanotubes	197
7.3	Developing nanotube/nanofibre-polymer composites	201
7.4	Adding nanotubes and nanofibres to polymer fibres	206
7.5	Analysing the rheological properties of	
	nanotube/nanofibre-polymer composites	208
7.6	Analysing the microstructure of nanotube/nanofibre-	
	polymer composites	212
7.7	Mechanical, electrical and other properties of	
	nanocomposite fibres	216
7.8	Future trends	221
7.9	References	222
8	Structure and properties of carbon nanotube-polymer	
	fibers using melt spinning	235
	R. E. GORGA, North Carolina State University, USA	
8.1	Introduction	235
8.2	Producing carbon nanotube-polymer fibers	236
8.3	Thermal characterization	237
8.4	Fiber morphology	238
8.5	Mechanical properties of fibers	245
8.6	Conclusions and future trends	251
8.7	Sources of further information and advice	252
8.8	Acknowledgments	252
8.9	References	253

9	Multifunctional polymer nanocomposites for industrial applications	256
	S. J. Bull, University of Newcastle, UK	
9.1	Introduction	256
9.2	The development of functional polymer nanocomposites	257
9.3	Improving the mechanical properties of polymer	
0.4	nanocomposites	258
9.4	Improving the fire-retardant properties of polymer	260
9.5	nanocomposites Improving the tribological properties of polymer	200
7.5	nanocomposites	262
9.6	Case-study: development of a nanocomposite sliding	
	seal ring	265
9.7	Enhancing the functionality of polymer nanocomposites	273
9.8	Conclusions	275
9.9	Acknowledgements	275
9.10	References	275
10	Nanofilled polypropylene fibres	281
	M. SFILIGOJ SMOLE and K. STANA KLEINSCHEK, University of Maribor, Slovenia	
10.1	Introduction	281
10.2	Polymer layered silicate nanocomposites	282
10.3	The structure and properties of layered silicate	••••
10.4	polypropylene nanocomposites	284
10.4 10.5	Nanosilica filled polypropylene nanocomposites Calcium carbonate and other additives	289 291
10.5	Conclusion	291
10.0	References	293 293
Part I	II Improving polymer functionality	299
11	Nanostructuring polymers with cyclodextrins	301
	A. E. TONELLI, North Carolina State University, USA	
11.1	Introduction	301
11.2	Formation and characterization of polymer-cyclodextrin-	
	inclusion compounds	302
11.3	Properties of polymer-cyclodextrin-inclusion compounds	304
11.4	Homo- and block copolymers coalesced from their	200
11.5	cyclodextrin-inclusion compounds Constrained polymerization in monomer-cyclodextrin-	308
11.3	inclusion compounds	310
	inclusion compounds	510

viii Contents

11.6	Coalescence of common polymer-cyclodextrin-inclusion	
	compounds to achieve fine polymer blends	311
11.7	Temporal and thermal stabilities of polymers	
	nanostructured with cyclodextrins	312
11.8	Cyclodextrin-modified polymers	313
11.9	Polymers with covalently bonded cyclodextrins	314
11.10	Conclusions	316
11.11	References	316
12	Dyeable polypropylene via nanotechnology	320
	Q. FAN and G. MANI, University of Massachusetts Dartmouth, USA	
12.1	Introduction	320
12.2	Dyeing techniques for unmodified polypropylene	321
12.3	Modified polypropylene for improved dyeability using	
	copolymerization and other techniques	323
12.4	Polyblending and other techniques for improving	
	polypropylene dyeability	324
12.5	Dyeing polypropylene nanocomposites	326
12.6	Using X-ray diffraction analysis and other techniques to	
	assess dyed polypropylene nanocomposites	334
12.7	Conclusions	345
12.8	Acknowledgments	346
12.9	References	346
13	Polyolefin/clay nanocomposites	351
	R. A. KALGAONKAR and J. P. JOG, National Chemical Laboratory, India	
13.1	Introduction	351
13.2	Organomodification of clays	354
13.3	Polymer/clay nanocomposites	356
13.4	Polypropylene/clay nanocomposites	360
13.5	Polyethylene/clay nanocomposites	367
13.6	Higher polyolefin/clay nanocomposites	372
13.7	Conclusions	374
13.8	References	381
14	Multiwall carbon nanotube-nylon-6 nanocomposites	
	from polymerization	386
	Y. K. KIM and P. K. PATRA, University of Massachusetts Dartmouth, USA	
14.1	Introduction	386
14.2	Nanocomposite synthesis and production	387
14.3	Characterization techniques	388
	1	

Х	Contents
~	Contents

14.4	Properties of multiwall carbon nanotube–nylon-6	201
145	nanocomposite fibers Conclusions	391 404
14.5 14.6	Acknowledgments	404
14.7	References	405
1		100
Part IV	Nanocoatings and surface modification techniques	407
15	Nanotechnologies for coating and structuring of textiles	409
	T. STEGMAIER, M. DAUNER, V. VON ARNIM, A. SCHERRIEBLE, A. DINKELMANN and H. PLANCK, ITV Denkendorf, Germany	
15.1	Introduction	409
15.2	Production of nanofiber nonwovens using electrostatic	410
15.3	spinning Anti-adhesive nanocoating of fibers and textiles	410 417
15.4	Water- and oil-repellent coatings by plasma treatment	418
15.5	Self-cleaning superhydrophobic surfaces	421
15.6	Sources of further information and advice	427
15.7	References	427
16	Electrostatic self-assembled nanolayer films for cotton fibers	428
	G. K. Hyde and J. P. HINESTROZA, Cornell University, USA	
16.1	Introduction	428
16.2	Principles of electrostatic self-assembly for creating	
	nanolayer films	428
16.3	Advantages and disadvantages of electrostatic	
	self-assembly	431
16.4	Substrates used for electrostatic self-assembly	432
16.5	Polyelectrolytes used for electrostatic self-assembly	434
16.6	Analyzing self-assembled nanolayer films on cotton	436
16.7	Conclusions: functional textiles for protection, filtration	
	and other applications	439
16.8	References	440
17	Nanofabrication of thin polymer films	448
	I. LUZINOV, Clemson University, USA	
17.1	Introduction	448
17.2	Macromolecular platform for nanofabrication	449
17.3	'Grafting from' technique for synthesis of polymer films	451
17.4	'Grafting to' technique for synthesis of polymer films	455

17.5	Synthesis of smart switchable coatings	458
17.6	Synthesis of ultrahydrophobic materials	464
17.7	Conclusions	466
17.8	Acknowledgments	466
17.9	References	467
18	Hybrid polymer nanolayers for surface modification of fibers	470
		470
	S. MINKO and M. MOTORNOV, Clarkson University, USA	
18.1	Introduction: smart textiles via thin hybrid films	470
18.2	Mechanisms of responsive behavior in thin polymer films	471
18.3	Polymer-polymer hybrid layers	478
18.4	Polymer-particles hybrid layers	484
18.5	Hierarchical assembly of nanostructured hybrid films	485
18.6	Future trends	489
18.7	Sources of further information and advice	490
18.8	Acknowledgment	490
18.9	References	490
19	Structure-property relationships of polypropylene	
	nanocomposite fibres	493
	C. Y. Lew, University of Oxford, UK and G. M. McNally, Queen's University Belfast, UK	
19.1	Introduction	493
19.2	Materials, processing and characterisation techniques	495
19.3	Structure and morphology	497
19.4	Phase homogeneity and spinline stability	502
19.5	Optical birefringence and infrared activation	505
19.6	Crystallisation behaviour and mechanical performance	509
19.7	Exfoliation by extensional flow deformation	513
19.8	Conclusions	514
19.9	References	515

Contributor contact details

(* = main contact)

Editors

P. J. Brown and K. Stevens 265 Sirrine Hall School of Materials Science and Engineering Clemson University Clemson SC 29634 USA

e-mail: pjb@clemson.edu e-mail: ksteven@clemson.edu

Chapter 1

David R. Salem Charge Injection Technologies Inc. Present address: Nanoproducts Corporation 14330 Longs Peak Court Longmort CO 80504

e-mail: dsalem@chargedinjection.com dsalem@nanoproducts.com

Chapter 2

F. K. Ko* Advanced Materials and Process Engineering Laboratory (AMPEL) Department of Materials Engineering The University of British Columbia 113–2355 East Mall Vancouver BC, Canada V6T 1Z4

e-mail: frank.ko@ubc.ca

M. R. Gandhi School of Biomedical Engineering Sciences and Health System Drexel University Philadelphia PA 19104 USA

e-mail: milind@drexel.edu

Chapter 3

E. Smit*, U. Büttner and R. D. Sanderson UNESCO Associated Centre for Macromolecules & Materials Department of Chemistry and Polymer Science Stellenbosch University Private bag X1 Matieland 7602 South Africa

e-mail: asmit@sun.ac.za rds@sun.ac.za

Chapter 4

M. Afshari*, R. Kotek and A. E. Tonelli College of Textiles North Carolina State University Raleigh NC 27695-8301 USA

e-mail: mehdi_afshari@yahoo.com alan_tonelli@ncsu.edu richard_kotek@ncsu.edu

Dong-Wook Jung Hyosung Corporation South Korea

Chapter 5

T. Lin* and X. G. Wang Centre for Material and Fibre Innovation Faculty of Science and Technology Deakin University Geelong Victoria 3217 Australia

e-mail: tong.lin@deakin.edu.au

Chapter 6

M. Regi (PhD) University of Rome 'La Sapienza' Department of Aeronautics and Astronautics Engineering Via Eudossiana 18 00184 Roma Italy

e-mail: marco.regi@uniroma1.it

Chapter 7

M. S. P. Shaffer* Department of Chemistry Imperial College London London SW7 2AZ UK

e-mail: m.shaffer@imperial.ac.uk

J. K. W. Sandler Polymer Engineering University of Bayreuth D-95447 Bayreuth Germany

e-mail: Jan.Sandler@uni-bayreuth.de jan.sandler@basf.com

XV

Chapter 8

R. E. Gorga Fiber and Polymer Science Program Department of Textile Engineering, Chemistry and Science Campus Box 8301 North Carolina State University Raleigh NC 27695-8301 USA

e-mail: regorga@ncsu.edu

Chapter 9

S. J. Bull School of Chemical Engineering and Advanced Materials University of Newcastle Newcastle upon Tyne NE1 7RU UK

e-mail: s.j.bull@ncl.ac.uk

Chapter 10

M. Sfiligoj-Smole* and K. Stana Kleinschek University of Maribor Faculty of Mechanical Engineering Smetanova 17 SI 2000 Maribor Slovenia

e-mail: majda.sfiligoj@uni-mb.si

Chapter 11

A. E. Tonelli Fiber and Polymer Science Program North Carolina State University Campus Box 8301 Raleigh NC 27695-8301 USA

e-mail: alan_tonelli@ncsu.edu

Chapter 12

Q. Fan* and G. Mani Department of Materials and Textiles University of Massachusetts Dartmouth North Dartmouth MA 02747 USA

e-mail: qfan@umassd.edu

Chapter 13

R. A. Kalgaonkar and J. P. Jog* Polymer Science and Engineering Division National Chemical Laboratory Dr Homi Bhabha Road Pasahan Pune – 411008 India

e-mail: jp.jog@ncl.res.in ra.kalgaonkar@ncl.res.in

Chapter 14

Y. K. Kim and P. K. Patra* Department of Materials and Textiles College of Engineering University of Massachusetts Dartmouth 285 Old Westport Road North Dartmouth MA 02747 USA

e-mail: ppatra@umassd.edu ykim@umassd.edu

Chapter 15

T. Stegmaier*, M. Dauner, V. Von Arnim, A. Scherrieble, A. Dinkelmann and H. Planck Institut für Textil- und Verfahrenstechnik Denkendorf Koerschtalstrasse 26 D-73770 Denkendorf Germany

e-mail: thomas.stegmaier@itvdenkendorf.de

Chapter 16

G. K. Hyde and J. P. Hinestroza* Cornell University Fiber Science Program Ithaca NY 14850 USA

e-mail: jh433@cornell.edu

Chapter 17

I. Luzinov School of Materials Science and Engineering 161 Sirrine Hall Clemson University Clemson SC 29634-0971 USA

e-mail: luzinov@clemson.edu

Chapter 18

S. Minko* and M. Motornov Clarkson University Department of Chemistry 8 Clarkson Ave Potsdam NY 13699 USA

e-mail: sminko@clarkson.edu

Chapter 19

C. Y. Lew* Department of Engineering Science University of Oxford Engineering and Technology Building Parks Road Oxford OX1 3PJ UK

e-mail: andy.lew@eng.ox.ac.uk

G. M. McNally Polymer Processing Research Centre Queen's University Belfast Ashby Building Stranmillis Road Belfast BT9 5AH UK