

Journal of Natural Science and Textile Technology

Volume 2, Issue 1 (2023)
ISSN: 2789-9411

Journal homepage: textile.nub.ac.bd/page/53/Journal

[1]

A Study of Pivot Positioning Methods for Quicksort Algorithm

Towhidul Islam1,*, Zahin Mostakim1 and Md. Sanaullah Murad1

1 Department of Textile Engineering, Northern University Bangladesh, Dhaka 1230, Bangladesh

*Corresponding Author’s E-mail: towhidulislam133086@gmail.com

DOI: 10.5281/zenodo.8255601

KEYWORDS

ABSTRACT

Quicksort
Pivot
Algorithm
Random
Dual pivot

Traditionally deterministic algorithm for quicksort is used which gives O (n

log n) running time for an average case and O (n2) for the worst case, where n

is the number of elements to be sorted. If a randomized approach is used the

worst-case running time is reduced to O (n log n). The median of three

approaches for choosing pivot and multi-pivot approach like dual pivot also

improves the running time. In this paper, we analyze the effectiveness of

various pivot positioning methods. To achieve this, we take randomized

generated and shorted array of different sizes which provide us with enough

data to conclude.

1. INTRODUCTION

Any technique of placing objects

deliberately is known as sorting. It is

usually done in numerical order or

lexicographical order. Among different

algorithms, quicksort is very popular in

computer science. It is very fast and

requires very less additional space which is

based on the principle of the Divide and

conquer algorithm [1]. Divide and conquer

is an algorithmic strategy based on multi-

brunched recursion. It functions by

repeatedly splitting a problem into two or

more sub-problems of the same or similar

kind until they are straightforward enough

to be solved directly. After then, the sub-

problems' solutions are integrated to

formulate a solution to the main problem

[1].

The classical quicksort algorithm in [2] was

developed by Tony Hoare, which gives on

average O (n log n) comparisons to sort n

data by partitioning. Even though, it is rare,

in the worst-case scenario it gives O (n2)

comparison. Here, we take a pivot and place

all items smaller than the pivot in a position

on its left while placing all other items in a

position on its right. Quicksort is frequently

the most realistic choice for sorting since it

is highly effective on average, despite its

sluggish worst-case running time [1].

We can counter the worst-case situation by

random sampling and get a randomized

version of quicksort. Despite choosing a

pivot from one side, here, we randomly

choose a pivot and do the partitioning

process. For this approach, the impact of the

worst-case lessens and the average runtime

remains O (n log n) [3]. Another way to

Journal of Natural Science and Textile Technology
V 2(1), 2023, DOI: 10.5281/zenodo.8255601

[2]

counter the worst-case scenario is to use

the median of three approaches where the

pivot is chosen more carefully than picking

a random element from the subarray. It is

recommended by Robert Sedgewick [4]. We

determine the pivot as the median of a set

of three elements randomly selected from

the subarray.

Multi-Pivot Quicksort outlines quicksort

variations in which the input is divided into

k + 1 segments during the splitting stage

using k pivots. With a small constant

number of pivots, we can increase the

performance of classical quicksort. In this

paper, we have only discussed the dual

pivot approach [5] of the multi-pivot

quicksort. The concept behind the dual

pivot is that we may pick two items at

random and utilize them as pivots for

dividing the array. Dual pivot quicksort

does not seem to be quicker than a

conventional approach in terms of mean

values. But in practical cases, it is way more

efficient [6].

2. MATERIALS AND METHODS

The rest of this paper is organized as follows: in

section II, we describe classical quicksort,

randomized quicksort, a median of three

approaches, and dual-pivot quicksort.

Experimental results are reported in the

following section. Finally, in section IV, we

present our conclusions from these results.

2.1 Quicksort

Quicksort follows the following rules:

• Choose a pivot element. The final element in

the sorting box is what we utilize.

• Place any numbers smaller than the pivot to a

place on its left, and all other numbers to a

position on its right, as you go through the

sorting area. This is done by swapping elements.

• Assuming that the pivot is now in its sorted

location, we proceed with the divide-and-

conquer method by using the same algorithm on

both the part to the left and the part to the right

of the pivot.

Fig. 1 shows a visualization of the result of the

partitioning method using a single pivot. The

elements whose values are less than the pivot

element are placed on the left side of the pivot

and the remaining are on the right side. Now the

pivot is in its optimal position in the sorted

array. Further, we must apply this partitioning

method both at the left and the right side of the

pivot recursively.

Fig. 1: The position of elements regarding pivot

after applying the partition scheme.

2.2 Basic Quicksort

The quicksort's execution time is determined by

whether the partitioning is balanced or

unbalanced. Here balanced partitioning means

the sub-problems derived by the partitioning

scheme are relatively the same size. If the

difference between the sizes of the sub-array is

very high, then it is called unbalanced

partitioning. If the partitioning is balanced, the

algorithm will be more efficient. But this

phenomenon depends on which elements are

used as pivots for partitioning. It will exhibit the

best case. If the elements to be sorted are

already sorted or reversely sorted, then the

worst case will happen. When the algorithm

provides the most unbalanced partitioning

possible at every recursive level, then there is

one subproblem with n − 1 element and the

other with 0 elements. Thus, the time

complexity becomes O (n2) [1].

In the case of the best case, the problem is split

in the most evenly possible way. A problem

becomes two subproblems of the almost same

size. If the size of the array to be sorted is n, then

for the best case, the size of the subproblem is

no more than n/2. Intuitively, we can see that

the time complexity for the best case is O (n log

n).

2.3 Randomized Quicksort

In the randomized version of quicksort, we

modify the partition procedure to avoid the

worst case. At each step of the algorithm, we

choose the pivot randomly and then we

exchange an element with the pivot chosen from

Journal of Natural Science and Textile Technology
V 2(1), 2023, DOI: 10.5281/zenodo.8255601

[3]

the given array. Then we conventionally do the

partitioning and recursively sort the given array

[3].

In a randomized approach, no input can elicit

worst-case behavior. It is only possible if we get

“unlucky” numbers from the random number

generator. Here by the term “unlucky”, we are

stating the fact that there is a possibility of

getting the pivot elements in sorted order. But

the possibility is very low if using a good

randomization process. Randomization cannot

eliminate the worst case, but it can make it less

likely.

The performance of randomized quicksort can

be improved in various ways. If we pick a small

number of elements randomly and use the

median of these elements as the partition

element, then we can further improve the

randomization. These randomly chosen

elements are from a random sample of the

elements and it is expected to be an

approximate median of the whole problem set.

Thus, the problem set will be partitioned evenly

[3].

2.4 Median of Three Approaches

The median of the three approaches is a brilliant

way to avoid the worst case. It can also be used

to improve the randomized algorithm. In this

method, instead of choosing a pivot from a side

of the given array, we take the median of the

first, middle, and last elements of the array as a

pivot. Then we regularly do the partitioning

using that pivot. [4] We can further improve the

process by sorting those three items, not just

using the median as the pivot. This scheme

ensures that in the case of sorted data, the

process will remain optimal. In that case, the

median will be the middle element of the array

and the problem will be partitioned into two

subproblems of the same size.

The most balanced split will result from using

the overall median as a pivot, and the best run

time will follow. However, selecting the real

median takes time. To get a better approximate

median, we take a sample of three elements. It is

still possible to get the worst case in this

process, but it is more difficult to manipulate the

data into giving the worst case.

2.5 Dual Pivot Quicksort

In 2009, Yaroslavskiy [5] has given the following

more effective divide-and-conquer procedure

for quicksort using two pivots instead of one:

• Choose two pivot elements p1 and p2 where

p1 < p2.

• Then use partition algorithms and distribute

the elements into three parts, where the values

less than p1 will be in the first part, values

between p1 and p2 will be in the second part,

and values greater than p2 will be in the third

part.

• These steps are repeated recursively for each

of the three parts.

Fig. 2 shows us the state of the array after

applying a dual pivot scheme where the smaller

pivot P1 and the larger pivot P2 are respectively

in their optimal position. The elements whose

values are less than P1 are in the first part which

is at the left of P1. Values between P1 and P2 are

in the second part and values greater than P2

are in the third part which is at the right of P2.

Fig. 2: The position of elements regarding pivot

P1 and P2 after applying a dual pivot scheme

where P1 < P2.

Although the dual pivot scheme does more
comparisons than basic quicksort, this
procedure is more efficient than the classical
approach for sorting larger-sized primitive
unsorted arrays and can be easily adjusted for
other numeric strings and comparable types.
This is also effective for sorted arrays or arrays
with repeated elements [5]. We can further
apply special choice procedures for pivot
elements to improve this scheme.

3. RESULTS AND DISCUSSIONS

We implemented the discussed algorithms in

Java programming language using Netbeans 8.1.

We used HP Pavilion 14-e036tx notebook pc

with Intel(R) Core (TM) i7-4702MQ @ 2.2GHz

and 4 GB 1600 MHz DDR3 RAM.

3.1 Average Case Analysis

Table 1 shows us the runtime of different

variants of quicksort for random input

Journal of Natural Science and Textile Technology
V 2(1), 2023, DOI: 10.5281/zenodo.8255601

[4]

which resembles the average case runtime.

By taking random input, we lessened the

possibility of the worst case. Here the

column size means the number of elements

in the given array. Here the columns Basic,

Randomized, Median-of-3, and Dual refer to

the running time of classical, randomized,

median of three, and dual-pivot approaches

of quicksort which are measured in

nanoseconds.

Table 1. Average case running time of

different schemes of quicksort in

nanoseconds for different input sizes

Size Basic Randomized
Median-

of-3
Dual

103 4.45 2.35 2.74 7.64

104 1.76 6.65 2.25 7.45

105 1.17 5.46 1.86 4.46

106 3.27 2.07 4.36 1.17

107 2.78 1.18 1.27 2.17

108 2.99 1.99 1.08 2.18

Table 1 shows us the runtime of different

variants of quicksort for random input

which resembles the average case runtime.

By taking random input, we lessened the

possibility of the worst case. From the table,

we can deduce that all the other three

variants gave better running time than the

classical approach. Randomized, median of

three, and dual-pivot schemes improved the

performance as expected. But here

randomized approach did not perform as

well as the other two variants except for the

basic scheme. The lack of modification of

the randomized algorithm was responsible

for it. We can overcome this problem by

modifying the randomized algorithm and

making it more desirable.

3.2 Worst Case Analysis

In table 2 there is experimental data for a

worst-case running time in nanoseconds.

Here the column size means the number of

elements in the given array. The columns

Basic, Randomized, Median-of-3, and Dual

refer to the running time of classical,

randomized, median of three, and dual-

pivot approaches of quicksort. The input

data was taken in a way such that it was

already sorted. In this way, we ensured the

occurrence of the worst case.

Fig. 3: The position of elements regarding

pivot after applying the partition scheme

Table 2. The worst-case running time of

different schemes of quicksort in nanoseconds

for sorted data

Size Basic Randomized
Median-

of-3
Dual

103 5.45 2.25 1.95 4.85

104 2.36 1.45 6.46 2.46

105 1.997 8.25 4.56 2.17

106 1.38 1.058 1.47 4.87

107 1.19 1.029 8.67 3.68

108 1.210 1.0610 1.39 5.39

Journal of Natural Science and Textile Technology
V 2(1), 2023, DOI: 10.5281/zenodo.8255601

[5]

Fig. 4: The position of elements regarding

pivot after applying the partition scheme

In Fig. 4 we can see that all the other three

variants work better than the classical scheme

regardless of size. From table 2 we can further

deduce that for a small-sized array randomized

algorithm works better than the median of three

and the dual pivot approach. This happens

because the other two schemes need more

comparisons than the randomized algorithm.

Though dual pivot quicksort is not theoretically

as sound as the classical approach, this

procedure, and the median of three schemes

drastically improve the running time for larger-

sized arrays. So, these two approaches are

preferable for practical use.

4. CONCLUSION

In this paper, we investigated the impact of

different pivot positioning methods on

quicksort. We found that the median of the three

approaches gave the overall best running time.

But the dual pivot scheme is the best approach

for larger-sized problems in practice. If we

modify the randomized and dual pivot approach

according to the median of the three procedures,

we can hope to achieve a better result in the

future.

REFERENCES
[1] [Cormen, Thomas H. and Leiserson, Charles

E. and Rivest, Ronald L., and Stein, Clifford
Introduction to Algorithms, Third Edition.
The MIT Press, 2009.

[2] Hoare, C. A. R. “Algorithm 64: Quicksort’’
Commun. ACM, vol. 4, no. 7, pp. 321-327,
July 1961.

[3] Horowitz, Ellis. and Rajasekaran,
Sanguthevar. and Sahni, Sartaj
Fundamentals of Computer Algorithms,
Second Edition. Universities Press/Orient
Blackswan, 2008.

[4] Sedgewick, Robert “Implementing Quicksort
Programs’’ Commun. ACM, vol. 21, no. 10,
pp. 847–857, Oct. 1978.

[5] Yaroslavskiy, Vladimir “Dual-pivot
quicksort’’, Research Disclosure, 2009.

[6] Wild, Sebastian “Why Is Dual-Pivot
Quicksort Fast?’’ arXiv preprint
arXiv:1511.01138, 2015

