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Traditionally deterministic algorithm for quicksort is used which gives O (n 

log n) running time for an average case and O (n2) for the worst case, where n 

is the number of elements to be sorted. If a randomized approach is used the 

worst-case running time is reduced to O (n log n). The median of three 

approaches for choosing pivot and multi-pivot approach like dual pivot also 

improves the running time. In this paper, we analyze the effectiveness of 

various pivot positioning methods. To achieve this, we take randomized 

generated and shorted array of different sizes which provide us with enough 

data to conclude. 

   

 

1. INTRODUCTION 

Any technique of placing objects 

deliberately is known as sorting. It is 

usually done in numerical order or 

lexicographical order. Among different 

algorithms, quicksort is very popular in 

computer science. It is very fast and 

requires very less additional space which is 

based on the principle of the Divide and 

conquer algorithm [1]. Divide and conquer 

is an algorithmic strategy based on multi-

brunched recursion. It functions by 

repeatedly splitting a problem into two or 

more sub-problems of the same or similar 

kind until they are straightforward enough 

to be solved directly. After then, the sub-

problems' solutions are integrated to 

formulate a solution to the main problem 

[1]. 

The classical quicksort algorithm in [2] was 

developed by Tony Hoare, which gives on 

average O (n log n) comparisons to sort n 

data by partitioning. Even though, it is rare, 

in the worst-case scenario it gives O (n2) 

comparison. Here, we take a pivot and place 

all items smaller than the pivot in a position 

on its left while placing all other items in a 

position on its right. Quicksort is frequently 

the most realistic choice for sorting since it 

is highly effective on average, despite its 

sluggish worst-case running time [1]. 

We can counter the worst-case situation by 

random sampling and get a randomized 

version of quicksort. Despite choosing a 

pivot from one side, here, we randomly 

choose a pivot and do the partitioning 

process. For this approach, the impact of the 

worst-case lessens and the average runtime 

remains O (n log n) [3]. Another way to 
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counter the worst-case scenario is to use 

the median of three approaches where the 

pivot is chosen more carefully than picking 

a random element from the subarray. It is 

recommended by Robert Sedgewick [4]. We 

determine the pivot as the median of a set 

of three elements randomly selected from 

the subarray.  

Multi-Pivot Quicksort outlines quicksort 

variations in which the input is divided into 

k + 1 segments during the splitting stage 

using k pivots. With a small constant 

number of pivots, we can increase the 

performance of classical quicksort. In this 

paper, we have only discussed the dual 

pivot approach [5] of the multi-pivot 

quicksort. The concept behind the dual 

pivot is that we may pick two items at 

random and utilize them as pivots for 

dividing the array. Dual pivot quicksort 

does not seem to be quicker than a 

conventional approach in terms of mean 

values. But in practical cases, it is way more 

efficient [6]. 

2. MATERIALS AND METHODS 

The rest of this paper is organized as follows: in 

section II, we describe classical quicksort, 

randomized quicksort, a median of three 

approaches, and dual-pivot quicksort. 

Experimental results are reported in the 

following section. Finally, in section IV, we 

present our conclusions from these results. 

2.1 Quicksort 

Quicksort follows the following rules:  

• Choose a pivot element. The final element in 

the sorting box is what we utilize.  

• Place any numbers smaller than the pivot to a 

place on its left, and all other numbers to a 

position on its right, as you go through the 

sorting area. This is done by swapping elements.  

• Assuming that the pivot is now in its sorted 

location, we proceed with the divide-and-

conquer method by using the same algorithm on 

both the part to the left and the part to the right 

of the pivot. 

Fig. 1 shows a visualization of the result of the 

partitioning method using a single pivot. The 

elements whose values are less than the pivot 

element are placed on the left side of the pivot 

and the remaining are on the right side. Now the 

pivot is in its optimal position in the sorted 

array. Further, we must apply this partitioning 

method both at the left and the right side of the 

pivot recursively. 

 
Fig. 1: The position of elements regarding pivot 

after applying the partition scheme. 

 

2.2 Basic Quicksort 

The quicksort's execution time is determined by 

whether the partitioning is balanced or 

unbalanced. Here balanced partitioning means 

the sub-problems derived by the partitioning 

scheme are relatively the same size. If the 

difference between the sizes of the sub-array is 

very high, then it is called unbalanced 

partitioning. If the partitioning is balanced, the 

algorithm will be more efficient. But this 

phenomenon depends on which elements are 

used as pivots for partitioning. It will exhibit the 

best case. If the elements to be sorted are 

already sorted or reversely sorted, then the 

worst case will happen. When the algorithm 

provides the most unbalanced partitioning 

possible at every recursive level, then there is 

one subproblem with n − 1 element and the 

other with 0 elements. Thus, the time 

complexity becomes O (n2) [1]. 

 

In the case of the best case, the problem is split 

in the most evenly possible way. A problem 

becomes two subproblems of the almost same 

size. If the size of the array to be sorted is n, then 

for the best case, the size of the subproblem is 

no more than n/2. Intuitively, we can see that 

the time complexity for the best case is O (n log 

n). 

 

2.3 Randomized Quicksort 

In the randomized version of quicksort, we 

modify the partition procedure to avoid the 

worst case. At each step of the algorithm, we 

choose the pivot randomly and then we 

exchange an element with the pivot chosen from 
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the given array. Then we conventionally do the 

partitioning and recursively sort the given array 

[3]. 

 

In a randomized approach, no input can elicit 

worst-case behavior. It is only possible if we get 

“unlucky” numbers from the random number 

generator. Here by the term “unlucky”, we are 

stating the fact that there is a possibility of 

getting the pivot elements in sorted order. But 

the possibility is very low if using a good 

randomization process. Randomization cannot 

eliminate the worst case, but it can make it less 

likely. 

The performance of randomized quicksort can 

be improved in various ways. If we pick a small 

number of elements randomly and use the 

median of these elements as the partition 

element, then we can further improve the 

randomization. These randomly chosen 

elements are from a random sample of the 

elements and it is expected to be an 

approximate median of the whole problem set. 

Thus, the problem set will be partitioned evenly 

[3]. 

 

2.4 Median of Three Approaches 

The median of the three approaches is a brilliant 

way to avoid the worst case. It can also be used 

to improve the randomized algorithm. In this 

method, instead of choosing a pivot from a side 

of the given array, we take the median of the 

first, middle, and last elements of the array as a 

pivot. Then we regularly do the partitioning 

using that pivot. [4] We can further improve the 

process by sorting those three items, not just 

using the median as the pivot. This scheme 

ensures that in the case of sorted data, the 

process will remain optimal. In that case, the 

median will be the middle element of the array 

and the problem will be partitioned into two 

subproblems of the same size. 

The most balanced split will result from using 

the overall median as a pivot, and the best run 

time will follow. However, selecting the real 

median takes time. To get a better approximate 

median, we take a sample of three elements. It is 

still possible to get the worst case in this 

process, but it is more difficult to manipulate the 

data into giving the worst case. 

 

2.5 Dual Pivot Quicksort 

In 2009, Yaroslavskiy [5] has given the following 

more effective divide-and-conquer procedure 

for quicksort using two pivots instead of one: 

• Choose two pivot elements p1 and p2 where 

p1 < p2.  

• Then use partition algorithms and distribute 

the elements into three parts, where the values 

less than p1 will be in the first part, values 

between p1 and p2 will be in the second part, 

and values greater than p2 will be in the third 

part.  

• These steps are repeated recursively for each 

of the three parts. 

Fig. 2 shows us the state of the array after 

applying a dual pivot scheme where the smaller 

pivot P1 and the larger pivot P2 are respectively 

in their optimal position. The elements whose 

values are less than P1 are in the first part which 

is at the left of P1. Values between P1 and P2 are 

in the second part and values greater than P2 

are in the third part which is at the right of P2. 

 
Fig. 2: The position of elements regarding pivot 

P1 and P2 after applying a dual pivot scheme 

where P1 < P2. 

 
Although the dual pivot scheme does more 
comparisons than basic quicksort, this 
procedure is more efficient than the classical 
approach for sorting larger-sized primitive 
unsorted arrays and can be easily adjusted for 
other numeric strings and comparable types. 
This is also effective for sorted arrays or arrays 
with repeated elements [5]. We can further 
apply special choice procedures for pivot 
elements to improve this scheme. 
 

3. RESULTS AND DISCUSSIONS 

We implemented the discussed algorithms in 

Java programming language using Netbeans 8.1. 

We used HP Pavilion 14-e036tx notebook pc 

with Intel(R) Core (TM) i7-4702MQ @ 2.2GHz 

and 4 GB 1600 MHz DDR3 RAM. 

 

3.1 Average Case Analysis 

Table 1 shows us the runtime of different 

variants of quicksort for random input 
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which resembles the average case runtime. 

By taking random input, we lessened the 

possibility of the worst case. Here the 

column size means the number of elements 

in the given array. Here the columns Basic, 

Randomized, Median-of-3, and Dual refer to 

the running time of classical, randomized, 

median of three, and dual-pivot approaches 

of quicksort which are measured in 

nanoseconds. 

 

Table 1. Average case running time of 

different schemes of quicksort in 

nanoseconds for different input sizes 

Size Basic Randomized 
Median-

of-3 
Dual 

103 4.45 2.35 2.74 7.64 

104 1.76 6.65 2.25 7.45 

105 1.17 5.46 1.86 4.46 

106 3.27 2.07 4.36 1.17 

107 2.78 1.18 1.27 2.17 

108 2.99 1.99 1.08 2.18 

 

 

Table 1 shows us the runtime of different 

variants of quicksort for random input 

which resembles the average case runtime. 

By taking random input, we lessened the 

possibility of the worst case. From the table, 

we can deduce that all the other three 

variants gave better running time than the 

classical approach. Randomized, median of 

three, and dual-pivot schemes improved the 

performance as expected. But here 

randomized approach did not perform as 

well as the other two variants except for the 

basic scheme. The lack of modification of 

the randomized algorithm was responsible 

for it. We can overcome this problem by 

modifying the randomized algorithm and 

making it more desirable. 

 

3.2 Worst Case Analysis 

In table 2 there is experimental data for a 

worst-case running time in nanoseconds. 

Here the column size means the number of 

elements in the given array. The columns 

Basic, Randomized, Median-of-3, and Dual 

refer to the running time of classical, 

randomized, median of three, and dual-

pivot approaches of quicksort. The input 

data was taken in a way such that it was 

already sorted. In this way, we ensured the 

occurrence of the worst case.  

 
Fig. 3: The position of elements regarding 

pivot after applying the partition scheme 

 

Table 2. The worst-case running time of 

different schemes of quicksort in nanoseconds 

for sorted data 

Size Basic Randomized 
Median-

of-3 
Dual 

103 5.45 2.25 1.95 4.85 

104 2.36 1.45 6.46 2.46 

105 1.997 8.25 4.56 2.17 

106 1.38 1.058 1.47 4.87 

107 1.19 1.029 8.67 3.68 

108 1.210 1.0610 1.39 5.39 
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Fig. 4: The position of elements regarding 

pivot after applying the partition scheme 

 

In Fig. 4 we can see that all the other three 

variants work better than the classical scheme 

regardless of size. From table 2 we can further 

deduce that for a small-sized array randomized 

algorithm works better than the median of three 

and the dual pivot approach. This happens 

because the other two schemes need more 

comparisons than the randomized algorithm. 

Though dual pivot quicksort is not theoretically 

as sound as the classical approach, this 

procedure, and the median of three schemes 

drastically improve the running time for larger-

sized arrays. So, these two approaches are 

preferable for practical use. 

 

4. CONCLUSION 

In this paper, we investigated the impact of 

different pivot positioning methods on 

quicksort. We found that the median of the three 

approaches gave the overall best running time. 

But the dual pivot scheme is the best approach 

for larger-sized problems in practice. If we 

modify the randomized and dual pivot approach 

according to the median of the three procedures, 

we can hope to achieve a better result in the 

future. 
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