++> ul bulwweibouy
pajualID-123Iq0

L
=
=)
=]
e

c
<)
22
d m
L

Robert Lafore

Object-Oriented Programming in G++,
Fourth Edition

Robert Lafore

SAMS

800 East 96th St., Indianapolis, Indiana 46240 USA

Copyright © 2002 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without written permission from the pub-
lisher. No patent liability is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in the preparation
of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of
the information contained herein.

International Standard Book Number: 0-672-32308-7
Library of Congress Catalog Card Number: 2001094813
Printed in the United States of America

First Printing: December 2001

04 03 02 01 4 3 2 1

Trademarks

All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams Publishing cannot attest to
the accuracy of this information. Use of a term in this book should not be
regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an “as is” basis. The author and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages
arising from the information contained in this book.

Executive EDITOR
Michael Stephens

AcQuISITIONS EDITOR
Michael Stephens

MANAGING EDITOR
Matt Purcell

PROJECT EDITORS
Angela Boley

Christina Smith

INDEXER
Rebecca Salerno

PROOFREADER
Matt Wynalda

TECHNICAL EDITOR
Mark Cashman

Team COORDINATOR
Pamalee Nelson

MEeDIA DEVELOPER
Dan Scherf

INTERIOR DESIGNER
Gary Adair

CoVER DESIGNER
Alan Clements

PAGE LAYoUuT
Ayanna Lacey

Overview

O 0 N AN N R W N =

e e e e o T N =
A N R WD = O

T Q m o Y Q w >

Introduction 1

The Big Picture 9

C++ Programming Basics 29

Loops and Decisions 75

Structures 131

Functions 161

Objects and Classes 215

Arrays and Strings 263

Operator Overloading 319

Inheritance 371

Pointers 429

Virtual Functions 503

Streams and Files 567

Multifile Programs 633

Templates and Exceptions 681

The Standard Template Library 725
Object-Oriented Software Development 801
ASCII Chart 849

C++ Precedence Table and Keywords 859
Microsoft Visual C++ 863

Borland C++Builder 871

Console Graphics Lite 881

STL Algorithms and Member Functions 895
Answers to Questions and Exercises 913
Bibliography 977

Index 981

Contents

Introduction

1

1

The Big Picture 9

Why Do We Need Object-Oriented Programming?ccceceveueneee. 10
Procedural Languages
The Object-Oriented Approach
Characteristics of Object-Oriented Languages.........c.cccoeeveerveincnnnne 16
ODBJECLS ..ttt ettt st 16
CLASSES ..t 18
TNhEIItANCE ...t 18
REUSADIIILY ..ottt 21
Creating New Data Types21
Polymorphism and Overloadingc..ccceceveineincneiincnincneeee 21
CHtand Cuoooi e 22
Laying the Groundworkcccccoeoiiiriiiiniiinieinceeeseeeeee e 23
The Unified Modeling Language (UML)cccccviiinineinccrncneeee 23
SUIMMATY ..ot 25
QUESLIONS ...ttt ettt ettt sttt ettt et et et sbesbesbenaeane 25

2 C++ Programming Basics 29

Getting Startedoocvevieiierieiereeeet e
Basic Program Construction

FUNCHONS ..ttt
Program Statements...........ceoveeuerierierienienieeee et 32
WRIESPACE.eeeieiieieeieete ettt 33
OULPUL USINZ COUT uviiiiiieriieiieieeieete ettt 33
SN CONSTANTS. ...cevvieiieiieieeieete ettt see e 34
DITECHIVES ettt sttt ettt sttt et 35
Preprocessor DITECHVESeivieieiieriinieniesitesie et 35
Header FIles.......ooiiiiiiiieieeieeeceeeeeee et
The using Directive
COMIMENLS 1.ttt ettt ettt ettt et e e st e st este e bt ebeenbeeseenneeneenanens

COMMENT SYNTAX 1.eeuvreiieiieiieiieieete et ettt sae st e s seee e enee
When to Use COMMENLSccocoueiiniiniiniiniiiiiieieieicieseeeee e
Alternative Comment SYNEAXcccvevverierieneeneenieeienrenieneeneenne
Integer Variablescooiiiiiiiiiiiieiieec e
Defining Integer Variables.........coccovcveiieniinienieniiiiecieireeeseeneee

Declarations and Definitions......
Variable NAMEScoooviieiiieiiieeieeeiee ettt ereeeare e 40
AsSIZNMENt StALEMENLSvevuvieiieiireeiieiieniierieerte et see e 40

Integer CONSTANLS ..cvevvereiriiriieiieitetceetertet ettt 41

OULPUL VATTAIONS ..c.vevreiieiiieterteeeceieeiteeeteereet ettt 41
The endl Manipulatorcccveoveviirenenininenieeeeeeeeeeese e 41
Other INteZEr TYPESveuveiiiiriiriireeeeteeteteeeteeeeee e 42
Character Variables ..o 42
Character CONStANTS...........oioviiiiiiiieiiee e 43
InitialiZationcooviiiiiiiii 44
Escape Sequences44
TNPUL WIth CEN weeiiiiiiicicc e 45
Variables Defined at Point of Usecccccoeviiiiiiiiininii 47
CaSCAINE << ettt 47
EXPIESSIONS ...oviuviniitintiniieiieieeitetet ettt ettt 47
Precedenceo 47
Floating Point TYPESc..coereriririiiiiiieieieeeeeeeeeeeeeeeee e 48
Type float....cccoenene .48
Type double and 10Ng dOUDLE ...cccoerererinieneniieiieieiererenre e 49
Floating-Point COnStantsc..cocvererenenenieieieienienenesesieniene 50
The const QUAlIfIer.......cccviiiiiiieiieeieeeee e 51
The #define DIr€Ctivecceiiiiiiiiiiiiiicecccceececce 51
TYPE DOOL ittt 51
The setw Manipulator........c.ccoceveeiiieiiniiniininenceeeeeeceese e 52
Cascading the Insertion OPeratorc..cocceceeeeeeieierienenenenienenne 54
Multiple Definitionsccceeceevierienenininineeieeeeeeeeeee e 54
The 1omANIP Header File..... .54
Variable Type SUMMArYccccoceeviiriiniiniininineneeeeeeeceeeenee e 54
unsigned Data TYPES ..cc.coevereririiieicicceeeee s 55
TYPE CONVETSION w..ovenriniiieienierieeiceiteet ettt 56
Automatic CONVEISIONSccccueiruiiiiiiiiiiiiieieieee e 57
CASES. .. e 58
ATIthmetic OPETatOrSco.evveveerieriiiieietitenteeteete ettt 60
The Remainder Operator61
Arithmetic Assignment OPEratorsc.ceeeeveereeieieierienenerenienenne 61
Increment OPETatorsccceecveveierienireniieeeieeeeeeteteee e 63
Library FUNCHONS ...c..coeviriririiriiiiiiectcceeeee e 65
Header Files........ooooiiiiiiiiiecece e 66
Library FIleS ...cc.coeoieiiiiieieiccccece e 66
Header Files and Library Filesc..cccocviviiiiiiiiiiininncncnee 67
Two Ways to USe #iNCLUAE ..co.eeuveiiriiriiriiniinieeieetteieeteteeeeesre e 67
SUIMMATY <.ttt ettt ettt s sae e 68

Questions... .
EXEICISES 1oiutiiiiiieeiie ettt ettt ettt et e et eeareeeaaeeeaneas 71

OBJECT-ORIENTED PROGRAMMING IN C++, FOURTH EDITON

3 Loops and Decisions 75

Relational OPEeratorsc..ceeeeeueeieienienienenieneneeieetetestesee e 76
00D ettt 78
The for Loop... .78
Debugging ANIMALIONcecveeerierierenieninieeeeetetetesteseese e sienieene 84
For LOOP VariationsSc..coevuereerererieieieienienieetceieeeeteresee e 84
The WNile LOOP ..coioiririiiiieicieeee ettt 86
Precedence: Arithmetic and Relational Operatorsc..c..ceceeeenee 89
The d0 LOOP..c.uiiiiiiieiieieeietetee ettt 91
When to Use Which LOOP.....cccoevierininininirieicicicieencrenenee 93
DECISIONS ...t 93
The if StatemMentcoccooiiuiiiiiiiiiceceeee e 94
The if...else StAtEMENtccccoviiiiiiiiiiiicireeree e 98
The else...if CONSIUCHONcocueruiuiiiiieiiiiiicceeeceereeeeenne 106
The switch Statementccocecviiiiiiiieiiiiieereeeree e 107
The Conditional OPeratorc..cocevererereereenienenieneneereneeeeeenns 111
Logical OPEIatorsc..coeruerueeieeieieiententiereereeteeitet et st see e sseeneens 114
Logical AND OPEratorccueeueruerererererereeeenieneennenresressesseeaeenns 115
Logical OR OPErator.........cuevevuerieriererenireeeeeeneeneenrenresresnesseeaeens 116
Logical NOT Operator ... 117
Precedence SUMMATYc..cocceveeienieniinininineeeeeeteresese e eieeneene 118
Other Control StatemMentsccceeuivveirieirineircee e 118
The break StateMENtcccoovueiiiiiiiieiiieere e 119
The continue StateMeNtccccoiuiviiiieiiiiieerceereeeeene 121
The goto Statementcc.eeeeviieeiiieieeeiee et 123
SUIMMATY ..ttt ettt b e bbb eae 123
QUESHIONS.eieuvieeiieeetee et e et et e et e e et e eteeestaeeeaeeeetaeesaseeenseeenseeeasneas 124
EXETCISES ...t 126

4 Structures 131

STUCTUIES c.eeneenteieteeteeteett ettt ettt ettt et sb e bbb i ene
A Simple Structure
Defining the Structure
Defining a Structure Variablec..coccooeeveevenenenineninencneee 134
Accessing Structure Members........c.cevverereeeenienienieneneeeneeeeeenes 136
Other Structure FEaturesccoceeeeerininiienienienicneneneseeceeeen 137
A Measurement EXamplecccocevereniniiiinienenincnceceeecee 139
Structures Within StruCturescocceceeveeeeienieneneneneneneeceeenes 141
A Card Game Example
Structures and ClasSesccuevuerererirerinieieiereserese e

ENUMETationsccoceoieuioiiiiniiieiicerceeceee e
Days of the Week.......ccooveiiieiiinininineneeeeeeeeeeeeeee
One Thing or ANOLhETcccoeriiririniririeteeeeeeseeeeeen

Organizing the Cards.........ccccovevererenerinieieiereneneseseeeeeeeeaeen 153
Specifying Integer Valuesc..cccceeeerenerieienicncneneneneececneee 155
INOt PErfect......c.coiuiiiiiiiicccce e 155
Other EXamPplesc..coeveriiiiniiniiiniieieeneeeeteccese e 155
SUIMMATY ..ottt ettt sre bbb b ees 156
QUESHIONS. ...t eeiee et et eteeetee e e e evee e teeeeaseeebeeeaseeeavesensneenaneas 156
EXEICISES ... 158

Functions 161
Simple FUNCHONSocuivuiriiiiieiieiieieeiereree e
The Function Declaration
Calling the FUNCHONcovviiiiiiiiniincnenceeceeeecee e
The Function Definitionccccoccoiiiiiiniiiiinincecrceeecene
Comparison with Library Functionscc.ccccevevveveninencncnenne. 166
Eliminating the Declaration.........c..c.ccvceverereenienicnieneninenenceene 166
Passing Arguments t0 FUNCHONS........ccevirvirieerieieieieienenenenieeiene 167
Passing CONSLANTSc.eeveeueeuieienienienienienereeeeeeee e 167
Passing Variables
Passing by Value
Structures as ATGUMENLSc..covevverrerrerirerieieriertenieneneenesseeeenees 171
Names in the Declarationc.cccccceveviiciiiiniincnecnccnceenne 176
Returning Values from FUnctionscecceveeeeeeieiiencncnienenencnenne 176
The return StatemMentccoceoeiiiiineiirceceercee e 177
Returning Structure Variablesc..coccververeeneeneniinininencncnee 180
Reference ATrgUMENLSc..coeeeeieierienieniiniinieeeeiteteteiesre e see s eieene 182
Passing Simple Data Types by Reference..........c.ccccevevinencnennnnne. 182
A More Complex Pass by Reference
Passing Structures by Referencecocceceveeveenieniencninencncnenne.
Notes on Passing by Reference.........c.ccocevveveeveincnieninincncncnenne.
Overloaded FUNCHONSccccooiiiiiiiiniinecceeeeeeeeeeeae
Different Numbers of Argumentsc..cccceceeveeveerenenenenenenene.
Different Kinds of Arguments........c.ccecevevereeeenienienenenenenenene
RECUISION ..eiiiiiiiiiicc e

Inline Functions
Default Arguments
Scope and Storage Class.........cecvevverererereneneneeeeeeeeesresre e
Local Variablesccoiiiiiiiiiiiecceeercce e
Global Variables............occoeviiiiniiiiicieeerce e
Static Local Variablescccocooiviiiiiiiniiiiiinceeeeeseeenne
STOTAZE ..ottt enees
Returning by Referencecccceoevvevinininenenieiiiciccncneneneeene
Function Calls on the Left of the Equal Signcccccoveveninennne. 207
Don’t Worry Yet

CONTENTS

vii

viii

OBJECT-ORIENTED PROGRAMMING IN C++, FOURTH EDITON

const Function ATGUMENLScceeerreerereririeeeeenienieneneseesseeeeneenee 208
SUMMATY <.ttt ettt be s eee 209
QUESHIONS. ...t ettt e et e et e et e eteeestae e ereeeteeesaseeenaeeessseensneas 210
EXEICISES .ttt ettt s 212

Objects and Classes 215

A SIMPLE CLASS ..ottt
Classes and ODJECS.....c.cevevueruerrenenininieeeetetesee e
Defining the Classcoceeveierieneneneneneeeeeeeseeereereee e
USING the ClaSS ..ccveeuieiieiieiieieienierienerierieeeete ettt
Calling Member Functions

C++ Objects as Physical Objects
Widget Parts as ObJectS......cc.coererererererieieieneieseseeeeeee e
Circles as ODJECES ..eeueeueeierieriiniinienieeieeieeie ettt

C++ Objects as Data TYPES ...cccvevvererererenenieeeteeeteesieeieeieeieeeenee

CONSITUCLOLS ...ttt
A Counter EXamplecocvevievienenenineniiieieeseeseeeeeeeeeeeeee
A Graphics Example
DESIIUCIOTS ..o

Objects as Function Argumentsc..coceeeveeeereenienieneeneneneneneeeenns
Overloaded CONSIIUCTOLSccuerverrerrerrerinieieienieneeneeseeseeseeeneeneenees
Member Functions Defined Outside the Classcc.cccevvevveviennene 236
ODbjects as ATZUMENLS ...cc.eeveruerrerrenrenrenenieeeerenteneeseeseessesseeseeneenees 237

The Default COpy CONSLIUCIOL «...cuveuvivireierinrieiieiiereienienienieniesieeieeneene 238

Returning Objects from FUnctionsc.ceceeceeeeievienicncnienieneneeeens 240
Arguments and ODJECEScc.evveruererererireeieierieieseeeee e 241

A Card-Game Example

Structures and Classes

Classes, Objects, and MEMmOTYc..cocevererereeierienienienenesreneeeieeeeenns 247

Static Class Data.........coeeieieieiinerenneree e 249
Uses of Static Class Dataccccocevererenerneeniencnineneeeneeeeee 249
An Example of Static Class Datac..cccceceveeveneninencnenenennne 249
Separate Declaration and Definitionc.ccccevvevevenencncnceeenee. 251

const and Classesc.ccoeverererereenene
const Member Functions
CONST ODJECLS .ottt

What Does It Al MEaN?.......cccccvueuenienininineeieieieieiesie e siesieeieeneene 256

SUIMMATY <.ttt ettt ettt sb e ae 257

QUESHIONS.eeeuvieeeiieeetee ettt ettt e eette e et e eeteeeetae e eteeeeseeeeaseeeseeeesraeanseas 257

EXEICISES 1oiuviiietiieeiee ettt ettt ettt e e et e e et e eeaae e aaeeenaeas 259

7 Arrays and Strings 263
Array Fundamentalscoceeeririiieniinineneeeeeeeeeee e
Defining ATTAYS ..c..ooveeeiriieiieiieieieteerere ettt
Array Elements
Accessing Array Elements.cccoevererenenencenienieniencnesceeeene
Averaging Array EIEmentscccocvvevereneniennienienieneneseeeeee
INitialiZiNg ATTAYS .eoveeveerieiieiieieieeesere ettt
Multidimensional AITaYSccccevererererenenierieieereese e
Passing Arrays to Functions
ATTAYS Of STIUCTUTES......evivieiieiieiieieieniesie ettt
Arrays as Class Member Dataccccooeverininieinieieicienenenenene
ATTAYS OF ODJECLS ..uvenieieienienieiiieitetetee ettt
Arrays of English Distances
ATTAYS OF Cards ..oueevieiiieiieiieiieieeesere et
CoSTANZS ottt ettt st b bbbt besaesbe b ene
C-String Variablescoeeieieierienenenereneeeetetee e
Avoiding Buffer OVerflow...........coceveverinineninicieecsenceceee
String CONSLANES. ...cververiereerreeiieieietetesteete sttt seea
Reading Embedded Blanksc.ccccovvevineneninniiniiniinenencnceee,
Reading Multiple Lines.........
Copying a String the Hard Wayc.cccccooenirniiniinininincncnee, 295
Copying a String the Easy Way.........cocvvevenenenninienienincnencnee 296
ATTAYS OF SEINZS .eovitiiieiieiieieieteeeee et 297
Strings as Class MEMDETScccoueruerrerinenenieieieieiesieneeseseeneen 298

A User-Defined String TYPecccoevverererenenenieieeeeseeeeiene 300
The Standard C++ string ClassS.........ccovveeieeeiiieeiieecieeeiee e, 302
Defining and Assigning string ObJectsc..ccceveeveerienenenennenne. 302
Input/Output with string ObJects.......ccocerererererrienienienereneeee 304
Finding string Objects.........

Modifying string Objects
Comparing string ObJECtScccceverererererinieeeeeseseeieaes 307
Accessing Characters in string ObJectS.......c..ceoeeveevierienenenennenne. 309
Other string FUNCtIONS...........cociiiiiiiiiiiccec e, 310

Exercises ...

8 Operator Overloading 319
Overloading Unary Operators
The operator Keywordccococeveineniiinicninicincnccnceecnecnee

Operator ATGUMENLSccceeieiiiiiiiinieniiiiieceeteeeeee e

CONTENTS

OBJECT-ORIENTED PROGRAMMING IN C++, FOURTH EDITON

Operator Return Valuesccccceevereninenenieieicicneneneseeecenees 323
Nameless Temporary ObJectsccccocevererereeneenieneninenenenene 325
Postfix NOtation..........occooiiiiiiiiiiiiiiiiiccccecce e 326

Overloading Binary OPeratorsc.ccocevverererereeneeneeneenenenenenennes 328
ATrithmetic OPETatorsc.ceveverierierererereneeeeeeteseesresreere e 328
Concatenating StriNEScecvevververerenerereneeeereetenenresresre e 332
Multiple OVerloadingc.ccceeevenenenenieneneenececeeeeeeeees 334
ComparisSOn OPETALOrS.......cc.veuvererrererererereeeeeeeeeerenresresresnennes 334
Arithmetic Assignment OPEratorsc..ceeveeeerueneervenrenenenenennes 337
The Subscript Operator ([1) «oeeceeerererererereereeeereeneenrenresesnennes 340

Data CONVETSIONoviuiiiiiiiiiiiiiicieieeeee e 344
Conversions Between Basic TYPesc.ccocveveeneeneenieninencncnenne. 344
Conversions Between Objects and Basic Typescccceceeerueeunee. 345
Conversions Between Objects of Different Classes 350
Conversions: When to Use What

UML Class DIa@ramscocceeeeeeeienueniinrinieeerieeeeeiereniesiesieniensenne
ASSOCIALIONScuiiiiiciiiecete e
NAVIZADILILY ..cnvinviiierieiieiieieete ettt

Pitfalls of Operator Overloading and Conversionc.ccocceceverueee 358
Use Similar Meaningscccceeveverenerereneneeneenieneenrennenesesennes
Use Similar SYNtaxccceceeeeeveevienenenenenineeceeeteeeseereseseeieeaes
Show ReStraint.........ccoiiiiiiiiiiiiiiiiccece e
AvOId AMDBIUILY ...oviviiieiieiieicicieenerer e
Not All Operators Can Be Overloaded ...

Keywords explicit and mutableccevererenerneeneenienienenrcnennenes
Preventing Conversions with eXplicit...c..coceoererereninenencnennes
Changing const Object Data Using mutableccccoceeenenennenne. 362

SUMMATY ..ottt sttt se bbb b eees 364

QUESHIONS. ...ttt e et et et e et e e tr e e ebeeetaeeeaseeebeeesseesaseeenseeenneas 364

EXEICISES ... 367

9 Inheritance 371

Derived Class and Base Classc.cocccvverieinciincnieencinereeeeeeenne 373
Specifying the Derived Classccccoceeveverenieiienicncnenenenescnees 375
Generalization in UML Class Diagrams..........cccccoeevvevenencncnnene. 375
Accessing Base Class MEmDETrsSc.ccocevereeeeeenienieniinenenienienes 376
The protected Access SPECIfiercocvererereeneenienieninenenceee 377

Derived Class CONSIIUCIOTScucveuerueuirierieiereeieieeeneseeeeeseeeseeneenens 380

Overriding Member FUNCHONSccccverereneneniiieieesccsceceee 382

Which Function Is Used?ccoccoiiiiiiiiiiiiiierceeeeeeeceae 383

Scope Resolution with Overridden Functions........c..ccccvcevevennennee. 384

10

Inheritance in the English Distance Classc..ccccocevieieiievienenicncnenne 384
Operation Of ENGLENcceeteieiieieienienienienienieeieeseeeeeeneesnessessennes
Constructors in DISTSIgN ..cccveeeevieeciieeciieeeieeeiee et e e e
Member Functions in DiStSigncccccceeeveeevieeiieeeieeeieeecree e
Abetting INheritancecccceceveevierenenenieneneneeeeceeeeeee

Class HICTarChiesccccceeeieeierieniesiesiereeeeie e
“AbSIract” Base Classc..cceeeveeeerierienieneeenieesreeieseeeeeseeseeseeens
Constructors and Member Functions

Inheritance and Graphics Shapesc.ccocevereeeninieieiienenencnenene

Public and Private INheritanceccoeeeeveereenerrieeseneee e

Access COmbINALIONSccoiueiririciiiiieerciecie e
Access Specifiers: When to Use Whatcccceceeeenieninencncnnenne.
Levels of INheritancec.ccccoccoiiiiiiiiniiiceccceeeececee
Multiple INKETILANCEcoevverieriiriiiiiieicieeeeeeeeeeeeee e
Member Functions in Multiple Inheritance...
private Derivation in EMPMULTc..cccveeeeeeeiueeeireeesseeeeneeenveeessseeeas
Constructors in Multiple Inheritance...........ccocceveevievieninencncnenne.
Ambiguity in Multiple Inheritance..........cccoceeveeeeirinienicnenencnenens
Aggregation: Classes Within Classesccceveeeeiecierienenienenenenenns
Aggregation in the EMPCONT Program........c..cccceceevvevveneenencncnncnne.
Composition: A Stronger AgEregationcecceveveevvenvenenenerennes
Inheritance and Program Developmentcc.coceceeievienencncncnenns
SUMIMATY ..ottt sttt sbesbe b v
Questions...
EXETCISES ...t

Pointers 429

Addresses and POINEETScccecvrueirenieinicieenceeceeesecceee e 430
The Address-0f OPErator &ceceeeeeerieriereneneeeeieeeteteseesesiesienae 431
Pointer Variablescccocoveriiiiieiinieencceeeeeee e 433
Syntax QUIbDIES.......coereririiiiieieteeeeen e 434
Accessing the Variable Pointed Toc.ccocevvereniiniiniininenencene, 436
POINLET t0 VOLA...uiuiiiiiiieiiieiirieiee et 439
PoINters and AITAYS......coceverereririeieieteteseee ettt ettt see e 440
Pointer Constants and Pointer Variablesccccocccveininecnnces 442
Pointers and FUNCHONSccccireiiiniiiniciierccceeeecceeeeeeeee 443
Passing Simple Variables..........ccccoeverenerenenenieieieeeseseeee 443
PaSSING ATITAYS . .eeuviviiintietieiieiiet ettt 446
Sorting Array EIEMENtSccccevvevuerienienineninieieteeeiesienieseeseeeea 448
Pointers and C-TyPe SINGSc..ceceeeerierienieneninieieieietetesee e 452
Pointers to String CONSLANtSccceverererenenieeieieieneneseeiene 452

Strings as Function Argumentscccceceeeeereeienienienenenenennens 453

CONTENTS

xi

xii

OBJECT-ORIENTED PROGRAMMING IN C++, FOURTH EDITON

1

Copying a String Using POInters..........coccvevererererneenienenencnnenes 454
Library String FUnCtionscccecueveveneneneneneeieeeeienesesnene 456
The const Modifier and Pointersccccooeoiiiiciincinineenns 456
Arrays of Pointers to SIringscccevererenenenenneenienienenenennene 456
Memory Management: new and deletecceceeveeeeieieienienenenenns 458
The new OPErator...........ccooieiiieiiiriciceccee e 459
The delete OPEratorccceeeeieierienieriereneneeeeeeee e 461
A String Class Using new462
PoInters t0 ODJECEScoererireririiiieieteteeteereeteete ettt 464
Referring to MEmDETSccceeeeieieienienierieneneeeeeeeeeeeeseie e 465
Another Approach t0 Newcceceevieviereniinenenreeeeeeeee 465
An Array of Pointers t0 ObDJECtscocevererererieneenieieieeneenenes 467
A Linked List EXample......c..cccevcereriiiiiiinienininieeeeeceeeeiesesie e
A Chain of POINEISceouiiieiiiiciceececcc e
Adding an Item to the List
Displaying the List Contents
Self-Containing Classes.......c.ceeeeerieienienenenenenieneeeeteseeseeseeneeas
AUZMENTING LINKLIST...cuveteetieneententenrereneesiesiesiesseeseeseeeensensensensenses
Pointers to POINLELSccviuiiiiriciiiicicceeecccce e
SOTtNG POINLETS ...eveviiiriiiiieiieieeteeeeeeei et
The person** Data TYPE ...ccceeveeuieieienienienenenereeeeeeeeeeeeie e
COmMPATING SINZS ...vevivierietieiieiietetertere ettt
A Parsing EXamplec.cocovireriniiiiiiiiieeeeeeeeeeeeee e
Parsing Arithmetic Expressions 479
The PARSE Programc.ceceeceeieiieiiinienineneneneecceeeeeeseienes 481
Simulation: A Horse Racecccccoocoiiiiiiniiiiiicccceee 484
Designing the Horse Race..........cccuevveveninininincniiicccccee 485
Multiplicity in the UMLcccoooiiiiiiiiininenenneeceeeeeeeee 489
UML State DIa@ramsccccecerererieieniinienienienreereeieestetetesiesieseeseenae 490
STALES ...ttt 491
Transitionscccceeeveenene 491
Racing from State to State........ccecveviererereneneneeeeeeeeseeene 492
Debugging POINLErs......cc.coeverieririiieieicteieesteeeeiceiceteee e 492
SUMIMATY ..ottt ettt sbe b b enes 493
QUESTIONSeieevieetie et ettt e et e et e e ettt e et e e eteeeetaeeeaseeeteeeaseeeaseeenseaenseeas 494
EXEICISESvuiiiiieieee e 497

Virtual Functions 503

Virtual FUNCHONS.ccviiiiieieciieciecieee ettt saeeseaens 504
Normal Member Functions Accessed with Pointers....................... 505
Virtual Member Functions Accessed with Pointers
Late Bindingcccccoviiiiiniiiicierciceeececeeeeee e 509

12

Abstract Classes and Pure Virtual Functionscccoccceiiin. 510
Virtual Functions and the person Classccccoeoveeevieeieecneeennen. 511
Virtual Functions in a Graphics Examplec.ccoccoevencnceiennne. 514
Virtual DestruCtOrs.c..cuiviuiiiiiiiieieiccececc e 517
Virtual Base CIassescccovioiiiiiiiiiiciicecieeceeeceseeseeene 518
Friend FUNCHONSccooiiiiiiiiiiiciccccneceeece 520
Friends as Bridgesccccoeeerirenenininicicicicnencresesceeeeee 520
Breaching the Walls........cccoceoerininininiiiiieneneneeseseeceeeeees 522
English Distance EXample........c.cocevererieiiencneneneneneneeeeeeeenee 522
friends for Functional Notationcccccceviiiiiiiiiinnininnns 526
Friend ClaSSes......ccooiiiiiiiiiiiiiiicrc e 528
Static FUNCHONS.ccoiiiiiiiiiicccce e 529
Accessing static FUNCHONScoceeerieiiienicnicneninenesceceeeee 531
Numbering the ODbJECESccccovevirererieieieienererereseseeeeeeeeeen 532
Investigating DeStrucCtorsc.eeereeieriereneneneneneeeeeeeeee e 532
Assignment and Copy Initializationcccceeveveeveneneneneneneenenenn 532
Overloading the Assignment OPeratorc..cocceevevereeeeeeneennes 533
The COpY CONSLIUCTOTouveureieierienienieeiteeeteeenrenreeresre e eeenene 536
UML Object DIagramscccceceeeeereeieienieneneneneneseeeeeeeennes 539
A Memory-Efficient String Classc.ccccoevenenenenenenicnncenene. 540
The this POINTETccooiiiiiiiiiiiiiicceeeeee e 547
Accessing Member Data with this.....c.cccceoeveninenenencncncenennee 547
Using this for Returning Values.........ccccccevvevenenenenencnceeenenne. 548
Revised STRIMEM Program
Dynamic Type Information.........c..coccverereeeinienienenineneneneeeereeene
Checking the Type of a Class with dynamic_cast ...c..cccceeeeeeueeneee 553
Changing Pointer Types with dynamic_cast....c.ccceveverercrceeennee 554
The typeid OPEeratorccccocevererererereeieeenienenreereereee e 556
SUMMATY <.ttt ettt ettt sa bbb nee

QUESTIONS.eeeeieeeiiie et eete e et e eette e et e e te e e eteeeeaeeeaeeeesseesnseeeaseesnseeenneas
Exercises ...

Streams and Files 567

SEAM ClASSES .vevvevieeieriieiieieeteeteeteeeeseesseesssesseesseesseeseesesnsessnenns
Advantages of Streams
The Stream Class Hierarchycccccoeveveninenininieieiccnicnene 568
The 108 CIaSS evieeieeieeieeieeie ettt ettt e e seeees 570
The istream ClassSccccevcveeiereerienieerieeneeie e eeeere e see e seeees 574
The 05tream ClassSccvvcveeiereerierieieeneese e eeeeae e seeees 575
The iostream and the _withassign Classescccecceevvercvervenerenne 576

Sream EITOTS ...oocviiiiieiieiieieee ettt ens
Error-Status BitScceeceecieeieiieeieseeeeeee e

Inputting Numbers

CONTENTS

xiii

Xiv
OBJECT-ORIENTED PROGRAMMING IN C++, FOURTH EDITON

Too Many Charactersc.ccocevereieiereeeniciniceeeeees e 579
No-Input INput.......ccovviiiiiiiiiiiiiiiie, 579
Inputting Strings and Characterscoccvceverereeeeneenienenenennenen 580
Error-Free DIStancescccocoeerieinicieeniciecceeeeceeesieeeeenee 580
Disk File I/O with Streamscccccooeiiiiiiiniinceeeceeeeeeeeeee 583
Formatted File /Occooooiiiiiiccecc e 583
Strings with Embedded Blanksccccevevenininieicncncncnenenene 586
Character I/O .
Binary I/O ..coooiiiiiii e
The reinterpret_cast OPerator.......c..coccecevererereeeenieneenieniennene
ClLoSING FIES ..ottt
ODbJECE I/O ettt
I/O with Multiple ObJECtSc.cecveiererieriereneneneeeeeeeeie e
File POINLELSccecuiiiiiiiiiiiiieieiceeeee e
Specifying the Position "
Specifying the OffSet........ccceveeviiiiereninininnneeeeeeeseee
The tellg() Functionccccoooiiiiiiiiiiiiicceeeeeceeeee e
Error Handling in File I/O ...c.ccocooiiiiiiiiiiiececeneee
Reacting to EITOrscoeeieirieiiieiiieeneneeeeceeeee e
ANAlyZING BITOTS ...oviviiieiiniiiieieieeererese e
File I/O with Member Functionsc.ccccoceeeoiniiinincinecnccenae
Objects That Read and Write Themselvesccccccevevencncnnenne.
Classes That Read and Write Themselvesccccooveeviincennee
Overloading the Extraction and Insertion Operators
Overloading for cout and cinccccevevenenienininicnnieeeccee
Overloading for Files.......ccooveiriiiiininininineneneccceeeeseeee
Memory as a Stream ODJECTc..ceeeeeieriinieniniinieeieeeeteietee e
Command-Line ATUMENLS.........coeeeeeerienienieninreeieeieeeetetesieniesienienae
Printer OULPULcc.eeuieiiiieierieniereree ettt
SUMIMATY ..ottt ettt et sbesbe e
Questions....
EXEICISES ...ttt

13 Multifile Programs 633

Reasons for Multifile Programscccccoevereninininieiieienicnenienee 634
Class LIDIariesccooeeveerieinieieenieieceeeeceeceeeeeiee e 634
Organization and ConceptualiZationc.cceceeveereerienienenenenenne. 635

Creating a Multifile Programcc.ccoevenenininininieieeicnenenene 637
Header Files........coooiiiiiiniiieeeneeceecceeeee e 637
DITECLOTY ..ottt sttt 637

Projects637

14

Inter-File CommuUNiCation.............cccciviiiiiiiiiiiiiiiieeieeeseeeeenne 638
Communication Among Source Filesc.ccocvveneninencnnenneennenne. 638
Header Files........occooiiiiiiiiiicccccecceeeeee
INAMESPACES ...envviereiriiienieeieeteett ettt sre et e

A Very Long Number Class
NUMDbETs S StrNEScoveviiiniiniinineeeeeeteeere e
The Class SPECIfIETccvevverererirenirecteeeereeeeee e
The Member Functions

The Application Program

A High-Rise Elevator Simulationccccecevveveneninenreneneneeeenenn
Running the ELEV Programc..cccceceevieiinienenenenenencnceceeenee
Designing the SYSIEMc..coeverrirereririeieieneneneseeseeeeee e
Listings fOr ELEV ..cc.cooiiiiiiiniiniiniineneeieeteecteteseeseesee e
Elevator SrateZyccoeeererenineneneeieteietenesesee e ees
State Diagram for the ELEV Program

SUMMATY <.ttt ettt ettt sr e bbb ne

QUESTIONSeeeeteeeitieeiee et e et e eette e et e e teeeetreesteeeaeeeesseeensaeeaseesaseeennnas

PIOJECES ettt

Templates and Exceptions 681

Function Templates.........ccceeeerierinienininineeieeeesesese e 682
A Simple Function Template.......c..cccceeeeeniinenenininenineneeiene 684
Function Templates with Multiple Argumentscccceceeceevennene 686

Class TeMPIALES ...cc.eeveeuieuieieiiienierererer ettt 690
Class Name Depends on CONteXtcceecveveerereneneneneneeeeneennes 694
A Linked List Class Using Templates........cccccocevereneneneneneennenn 696
Storing User-Defined Data TYPescccceeveveerenenenenencneeeeeennes 698
The UML and Templates.......c..coceverererienienieneneneneeeeeeeeeeeenee 702

EXCEPLIONS .. .ottt ettt 703
Why Do We Need EXCeptions?.........cccuevuevereneneneneeienienienienenne 703
EXCePtion SYNTAX......cccueierierienienierienenieetetete e
A Simple Exception EXamplec.ccocceveeviinieninininininenieieene
Multiple EXCEPLONS.....cc.eeuveieierienienienienieeeeeeteseeeeeereere e
Exceptions with the Distance Class
Exceptions with ArgUMEnts.........c.cceeeeeeenienieneneneneneeeeeeeeeenee
The bad_a110C ClIaSS ...ccveveeeeieriiereiereeieeie e ee e
EXCePtion NOES.....cc.eeieieieiirierererieeieetetetee ettt

SUMMATY <.ttt ettt et sb e bbb

QUESTIONS.eieeieeeiiie et ettt e et e eette e et e et e e eteeeeaeeeeteeeeabeeeataeeeaseeeareeennnas

EXEICISES 1oiuviiieitieetie ettt ettt et e e et e et e e etae e eateeereeeanas

CONTENTS

XV

XVi
OBJECT-ORIENTED PROGRAMMING IN C++, FOURTH EDITON

15 The Standard Template Library 725

Introduction to the STLcccooeiiiiiiiiiieieeeeeeeeeee e 726
CONLAINETS ..eveeneenieieientieteeteeit ettt sttt ettt be b enes 727
Algorithms... 732
TEETALOTS ..ot 733
Potential Problems with the STLcccccooccoiiiiininiiinieee 734

ALZOTIERIMS ..ottt 735
The find () AlZOTIthmcc.coeeiriiiiiiienieneeeeeee e 735
The count () AlZOTIthmcc.eoiiiiiiiiieniinenereeeee e 736
The sort () AlZOrithmccceeieiiiiiiiniinineneeeeeeeeee e 737
The search () AlZOTithmcccoeciiiienininineneneeeeeeee 737
The merge () AlZOTithimcoceeiiiiiiniiniineneneeeeee e 738
Function Objects 739
The for_each() AlZOrithmccooeveninenininneeeeeeee 742
The transform() AlZOrithmcccceveninininiininiceeeeee, 742

Sequence CONLAINETS.coeeieerieieieienienie ettt ettt sre b enes 743
VECLOTS ...ttt ettt ettt st sttt ettt sbe e 743
LLISES 1ottt 747
DIEQUES ...ttt 750

Iteratorscccoeevvniiiiicnnns 751
Iterators as Smart POINLers.......c..ccooueirieieincinicieiiccecereeeee 752
Iterators as an INterfacec.cocoveviveiinincincinecce e 753
Matching Algorithms with CONtainersc..c.cceceeveeveenveneneniennenne. 755
Tterators at WOrkcccceoveinieiininiciciecececce e

Specialized Ieratorsccceeeiririeiierienenererereeeeee e
[terator AdAPLELS ...cccoiveeririeieieieeerere ettt
Stream IeTatorsccooveireieirieieeeeiceee e

AsS0Ciative CONLAINETSouevveuirieuieieieiiieieiereeeteeerese e
Sets and Multisets

Maps and Multimaps

Storing User-Defined ObJectS........cccecvevierererereneneneeieieeeneesenienes 778
A Set of person OBJECScceeieieienierierenereeeeeeeteee e 778
A List Of person ODJECtS......cceeieierieriereneneneneeeeeeeeeesee e 782

FUNCHON ODBJECES ...c..euienieieienierieeieeiteteteee ettt 786
Predefined Function ObjJectscccevevereneneneneeieieieneneeieen 786
Writing Your Own Function Objects..........cccccevueenieunnene ... 789
Function Objects Used to Modify Container Behavior 794

SUMIMATY ..ottt sttt ettt sbesbe e 794

QUESTIONS. ...euvieereeeieeeieeieettesttesteestee st e teesseesseesseessessseesaesssesseesssensaensaens 795

EXEICISES ..uviiiietieetie ettt ettt e et e v e et e e eat e e eateeeteaenee s 797

XVii
CONTENTS

16 Object-Oriented Software Development 801
Evolution of the Software Development Processesc.ccoceveruenene 802
The Seat-of-the-Pants Process
The Waterfall Process
Object-Oriented Programming
MOdErn ProCESSEScouveuieuieienierienienienieciteeeeeeeereee e

Use Case DIagramsc.ccoeeeeerererenieieieneneneneseseeeeeeeenees
Use Case DeSCriptions.......coeeeeeeerereeieienienienenenesesiceceeeeenees
From Use Cases to Classes ...
The Programming Problem..........ccccoeeirieininieiiininencneneneeeeeeene
Hand-Written FOrms ..o
ASSUMPLONS .veeviviiieiieiieietententerte sttt ettt ebe s nene
The Elaboration Phase for the LANDLORD Programc..ccccecceeenee 812
ACHOTS...eiiiiiiiiiii s
USE CASES......eeiiiiiiiieieiecieie ettt st
Use Case Descriptions....
SCENATIOS ...ttt
UML Activity Diagrams
From Use Cases to Classes.........coooeeririciriciiinicinieeeeeeeseeeeneeenens
Listing the NOUNScocveieieriinenineneneceeeeeeeeeeeee e
Refining the LStccceviiiiirininiineeeceee e
Discovering AttribULEScoueverrererereeieieietererereeseeeeee e
From Verbs to Messages
Class DIagramccccevuevvevieneninenineneeeeereseesese e
Sequence Diagrams
WIiting the Code.......ooveviiiiiiiiiiiiiieeeeeeeeeeee e
The Header File..........ccooooiiiiiiiiiiiccccccecee
The .CPP FIles....c..cooiiiiicc e
More STIMPLfICAtiONScoevvererereririiieieeerceeeeeeee e
Interacting with the Programc..coccoceveeviniininininnnneiceeen 841
Final ThOUGRLS ...coveriiriiiiiiiiicicee e 843
Summary
Questions
PIOJECES ettt

A ASCIl Chart 849

C++ Precedence Table and Keywords 859
Precedence Tablecoceoeieriiniinininieiieeeeee e 860
KEYWOTAS ..ottt 860

xviii
OBJECT-ORIENTED PROGRAMMING IN C++, FOURTH EDITON

C Microsoft Visual C++ 863

Screen EIEMentsco.ccooiviiiniciiiicinceecceecece e 864
Single-File Programscocceceeoeeieiienieneneneneneseeeeeeeeeseesie e 864
Building an Existing File864
Writing @ New Filecccooiiiiiiiiiiiiiieeeeeeeesesee 865
BITOTS ..ottt 865
Run-Time Type Information (RTTI)c..cocevcereneiiiniiniiinicenne. 866
Multifile Programscccoceverererienieniinieneneeeeeeieeceetee e 866
Projects and WOTKSPACESc.ceveieierieniereneneneeceeeeeese e 866
Developing the Projectcccocevieveneneninnenneecceeseeen 867
Saving, Closing, and Opening Projects........c..cccceceevvevienenencnennen. 868
Compiling and Linkingccceceeveevienenenenennienceieieeeseeene 868
Building Console Graphics Lite Programs...868
DEDUZZING ...ttt 868
SINGIE-SEPPING ...ttt 869
Watching Variables ... 869
Stepping Into FUNCHONS. ..ot 869
Breakpointsccoeevererieinieieieteteesese ettt 870
D Borland C++Builder 871
Running the Example Programs in C++Builder...........cccceeeverenenenne 872
Cleaning Up the SCIeeNceceeerieieriinienienieeieeieeieeteteteie e 873
Creating a New Project............. ...873
Naming and Saving a Projectcccecvevueviereneneninieieieieesenienee 874
Starting with Existing Filesccccoccevieniininininiiieeeeceee 875
Compiling, Linking, and EXecutingccceeceeveeerieieienienienenienenne 875
Executing from C++Buildercccceveveneneneniniiieeeccee, 875
Executing from MS-DOSccciiiiiiiiineeeeeeeee 875
Precompiled Header Filescceveveninineneniiieieeeeeiee 876
Closing and Opening Projects....876
Adding a Header File to Your Projectccccecevevieiieiienienenenenenne 876
Creating a New Header Filecccooooiiiinininiiiiiecce, 876
Editing an Existing Header Fileccccocevveniniiiininiiccee, 876
Telling C++Builder the Header File’s Locationccccceceeuenenne. 877
Projects with Multiple Source Filesccoceverieiniinieiieienienienenene 877
Creating Additional Source Filesccccocvvereriiriienieninenencnene. 877
Adding Existing Source Files to Your Projectcccccccevenuinnne. 877
The Project Managercccceeeeeienieniereneneneneeeeeeeesee e 878
Console Graphics Lite Programs878
DEDUZZING ...ttt 878
SINGIE-SEPPING ..ottt 879
Watching Variablescccocveiririneneineneneeneeeeseeeeeeeeen 879
Tracing into FUNCtioNS........c.ccccoveerieinieinenicincieecceeeeeeee 879

BIeakpointscoccevueieinieinieieenieteiceeeseeteteee e 879

Console Graphics Lite 881

Using the Console Graphics Lite Routinesc.ccocceveeeeeeenienennene

The Console Graphics Lite FUNCtionscccccceeevenicneniencnneeneennene

Implementations of the Console Graphics Lite Functions
Microsoft COMPILETSccevvererereririiieieeeeceeeeee e
Borland Compilers.........cccevereninininininieieieeneneseseeseeeeeeen

Source Code LIStINGScocvevveriererererenineeeeteieneenresreereereeie e
Listing fOr MSOFTCON.Hccuevierierereninieeieeeneeneenteeressesnesneeneenene
Listing fOr MSOFTCON.CPPcc.coeruerieriermeemieeeieneenrenrenrensesiesaeennene
Listing fOr BORLACONHccuerueriererenienieieteienienresresresnesneeasennene
Listing fOr BORLACON.CPPcc.coererieriereemeeienieniensesrenresnesieeaeennene

STL Algorithms and Member Functions 895

ALZOTINMS ..o 896
Member FUNCHONScoeeueriiiiiiiiniinieeiieieeteteeee e 907
Iterators

Answers to Questions and Exercises 913

CRAPLET L.ttt
ANSWErS t0 QUESLIONScveevveriierrieriiesieesieerieereeteereeeeeeeesseeseeennas

CRAPLET 2.ttt ettt
ANSWers t0 QUESLIONSceeevverveerrieriieriieireesieesieeteereeeeeeesseeseeennas
SolUtions t0 EXEICISES ...cvveriieriieriieiieeitieie e eie e see e

CRAPLET 3 ...ttt ettt
ANSWers t0 QUESLIONScceeevverierrieriierieesteerieesreereereeeeseeesseesesenns

Solutions to Exercises
CRAPLET 4.ttt sttt eb ettt
ANSWErS t0 QUESLIONSceeevvervierriesiieriiesieesieesreereereeeeeaesseeseeennas
SolUtions t0 EXEICISES ...ovvveriieriieriieiieiieieeie et sie e
CRAPLET 5.ttt ettt sttt
ANSWErS t0 QUESLIONScceeevvereierrierieesiiesieesieereeieereeeeeeaessaeseeeneas
SolUtions t0 EXEICISES ...cvveiuieriieriieiiieiieieeie e eee e seeesae s
Chapter 6......c.ccccevveeneenennen.
Answers to Questions
SolUtions t0 EXEICISES ...ccveriiiriieriieieeiieie et eie et sae e
CRAPLET 7.ttt ettt et
ANSWErs t0 QUESLIONSceeevverveerriesiieriiesteesieereeieereeaeenessaeseseneas
SolUtions t0 EXEICISES ...ccveriieriieriieieeiieie e ete e seeeseeesve s
CRAPLET 8.ttt sttt
ANSWErS t0 QUESLIONScveevveriierrieriiesiiesteeieereeteereeeeeenessaesesennes
SolUtions t0 EXEITISES ...evveriieriieriieieeiieieeie e eee et sea e sieesve s
Chapter 9.....cccccoeveveennennnn
Answers to Questions
Solutions t0 EXEICISES ...ccverieriierrieieeiieieeie e et sie v

CONTENTS

Xix

Chapter 10....couiiuieiieiieieeeese ettt
Answers to Questions
Solutions to Exercises

Chapter 11 .cuioieiieiieieieee et
Answers to Questions
Solutions to Exercises

CRAPLET 12ttt
Answers to Questions
Solutions to Exercises

ChapLer 13 ittt
Answers to Questions

ChapLer 14 .. .ottt
Answers to Questions
Solutions to Exercises

Chapter 15....ccccooeverenenene
Answers to Questions
Solutions to Exercises

CRAPLET 10ttt
Answers to Questions

H Bibliography 977

AdVANCed CH .o 978
Defining DOCUMENLSc.coerieuirieiieieieiieicteieeeeeceeee et 978
The Unified Modeling Languageccccecevveinieininicineinceene 978
The History of C++ .
Other TOPICS ..eeveiieiieiieierieriestere ettt ettt

Index 981

Preface

The major changes to this Fourth Edition include an earlier introduction to UML, a new
section on inter-file communication in Chapter 13, and a revised approach to software develop-
ment in Chapter 16.

Introducing the UML at the beginning allows the use of UML diagrams where they fit
naturally with topics in the text, so there are many new UML diagrams throughout the book.
The section on inter-file communication gathers together many concepts that were previously
scattered throughout the book. The industry’s approach to object-oriented analysis and design
has evolved since the last edition, and accordingly we’ve modified the chapter on this topic to
reflect recent developments.

C++ itself has changed very little since the last edition. However, besides the revisions just
mentioned, we’ve made many smaller changes to clarify existing topics and correct typos and
inaccuracies in the text.

About the Author

Robert Lafore has been writing books about computer programming since 1982. His best-
selling titles include Assembly Language Programming for the IBM PC, C Programming Using
Turbo C++, C++ Interactive Course, and Data Structures and Algorithms in Java. Mr. Lafore
holds degrees in mathematics and electrical engineering, and has been active in programming
since the days of the PDP-5, when 4K of main memory was considered luxurious. His interests
include hiking, windsurfing, and recreational mathematics.

Dedication

This book is dedicated to GGL and her indomitable spirit.

Acknowledgments to the Fourth Edition

My thanks to many readers who e-mailed comments and corrections. I am also indebted to the
following professors of computer science who offered their suggestions and corrections: Bill
Blomberg of Regis University in Denver; Richard Daehler-Wilking of the College of
Charleston in South Carolina; Frank Hoffmann of the Royal Institute of Technology in
Sweden, and David Blockus of San Jose State University in California. My special thanks to
David Topham of Ohlone College in Fremont, California, for his many detailed ideas and his
sharp eye for problems.

At Sams Publishing, Michael Stephens provided an expert and friendly liaison with the details
of publishing. Reviewer Robin Rowe and Technical Editor Mark Cashman attempted with
great care to save me from myself; any lack of success is entirely my fault. Project Manager
Christina Smith made sure that everything came together in an amazingly short time, Angela
Boley helped keep everything moving smoothly, and Matt Wynalda provided expert proofread-
ing. 'm grateful to you all.

Acknowledgments to the Third Edition

I"d like to thank the entire team at MacMillan Computer Publishing. In particular, Tracy
Dunkelberger ably spearheaded the entire project and exhibited great patience with what
turned out to be a lengthy schedule. Jeff Durham handled the myriad details involved in inter-
facing between me and the editors with skill and good humor. Andrei Kossorouko lent his
expertise in C++ to ensure that I didn’t make this edition worse instead of better.

Acknowledgments to the Second Edition

My thanks to the following professors—users of this book as a text at their respective colleges
and universities—for their help in planning the second edition: Dave Bridges, Frank Cioch,
Jack Davidson, Terrence Fries, Jimmie Hattemer, Jack Van Luik, Kieran Mathieson, Bill
McCarty, Anita Millspaugh, Ian Moraes, Jorge Prendes, Steve Silva, and Edward Wright.

I would like to thank the many readers of the first edition who wrote in with corrections and
suggestions, many of which were invaluable.

At Waite Group Press, Joanne Miller has ably ridden herd on my errant scheduling and filled
in as academic liaison, and Scott Calamar, as always, has made sure that everyone knew what
they were doing. Deirdre Greene provided an uncannily sharp eye as copy editor.

Thanks, too, to Mike Radtke and Harry Henderson for their expert technical reviews.

Special thanks to Edward Wright, of Western Oregon State College, for reviewing and experi-
menting with the new exercises.

Acknowledgments to the First Edition

My primary thanks go to Mitch Waite, who poured over every inch of the manuscript with
painstaking attention to detail and made a semi-infinite number of helpful suggestions.

Bill McCarty of Azusa Pacific University reviewed the content of the manuscript and its suit-
ability for classroom use, suggested many excellent improvements, and attempted to correct
my dyslexic spelling.

George Leach ran all the programs, and, to our horror, found several that didn’t perform cor-
rectly in certain circumstances. I trust these problems have all been fixed; if not, the fault is
entirely mine.

Scott Calamar of the Waite Group dealt with the myriad organizational aspects of writing and
producing this book. His competence and unfailing good humor were an important ingredient
in its completion.

I would also like to thank Nan Borreson of Borland for supplying the latest releases of the
software (among other useful tidbits), Harry Henderson for reviewing the exercises, Louise
Orlando of the Waite Group for ably shepherding the book through production, Merrill
Peterson of Matrix Productions for coordinating the most trouble-free production run I’ve ever
been involved with, Juan Vargas for the innovative design, and Frances Hasegawa for her
uncanny ability to decipher my sketches and produce beautiful and effective art.

Tell Us What You Think!

As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we’re doing right, what we could do better, what areas you’d
like to see us publish in, and any other words of wisdom you’re willing to pass our way.

As an executive editor for Sams Publishing, I welcome your comments. You cane-mail
or write me directly to let me know what you did or didn’t like about this book—as well as
what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book,
and that due to the high volume of mail I receive, I might not be able to reply to every mes-
sage.

When you write, please be sure to include this book’s title and author’s name as well as your
name and phone or fax number. I will carefully review your comments and share them with the
author and editors who worked on the book.

E-mail: feedback@samspublishing.com

Mail:

Sams Publishing
201 West 103rd Street
Indianapolis, IN 46290 USA

Introduction

This book teaches you how to write programs in a the C++ programming language. However,
it does more than that. In the past few years, several major innovations in software develop-
ment have appeared on the scene. This book teaches C++ in the context of these new develop-
ments. Let’s see what they are.

Programming Innovations

In the old days, 20 or so years ago, programmers starting a project would sit down almost
immediately and start writing code. However, as programming projects became large and more
complicated, it was found that this approach did not work very well. The problem was com-
plexity.

Large programs are probably the most complicated entities ever created by humans. Because
of this complexity, programs are prone to error, and software errors can be expensive and even
life threatening (in air traffic control, for example). Three major innovations in programming
have been devised to cope with the problem of complexity. They are

e Object-oriented programming (OOP)
* The Unified Modeling Language (UML)

e Improved software development processes

This book teaches the C++ language with these developments in mind. You will not only learn
a computer language, but new ways of conceptualizing software development.

Object-Oriented Programming

Why has object-oriented programming become the preferred approach for most software pro-
jects? OOP offers a new and powerful way to cope with complexity. Instead of viewing a pro-
gram as a series of steps to be carried out, it views it as a group of objects that have certain
properties and can take certain actions. This may sound obscure until you learn more about it,
but it results in programs that are clearer, more reliable, and more easily maintained.

A major goal of this book is to teach object-oriented programming. We introduce it as early as
possible, and cover all its major features. The majority of our example programs are object-
oriented.

The Unified Modeling Language

The Unified Modeling Language (UML) is a graphical language consisting of many kinds of
diagrams. It helps program analysts figure out what a program should do, and helps program-
mers design and understand how a program works. The UML is a powerful tool that can make
programming easier and more effective.

OBJECT-ORIENTED PROGRAMMING IN C++, FOURTH EDITION

We give an overview of the UML in Chapter 1, and then discuss specific features of the UML
throughout the book. We introduce each UML feature where it will help to clarify the OOP
topic being discussed. In this way you learn the UML painlessly at the same time the UML
helps you to learn C++.

Languages and Development Platforms

Of the object-oriented programming languages, C++ is by far the most widely used. Java, a
recent addition to the field of OO languages, lacks certain features—such as pointers, tem-
plates, and multiple inheritance—that make it less powerful and versatile than C++. (If you
ever do want to learn Java, its syntax is very similar to that of C++, so learning C++ gives you
a head start in Java.)

Several other OO languages have been introduced recently, such as C#, but they have not yet
attained the wide acceptance of C++.

Until recently the standards for C++ were in a constant state of evolution. This meant that each
compiler vendor handled certain details differently. However, in November 1997, the
ANSI/ISO C++ standards committee approved the final draft of what is now known as
Standard C++. (ANSI stands for American National Standards Institute, and ISO stands for
International Standards Institute.) Standard C++ adds many new features to the language, such
as the Standard Template Library (STL). In this book we follow Standard C++ (in all but a few
places, which we’ll note as we go along).

The most popular development environments for C++ are manufactured by Microsoft and
Borland (Inprise) and run on the various flavors of Microsoft Windows. In this book we’ve
attempted to ensure that all sample programs run on the current versions of both Borland and
Microsoft compilers. (See Appendix C, “Microsoft Visual C++,” and Appendix D, “Borland
C++Builder,” for more on these compilers.)

What This Book Does

This book teaches object-oriented programming with the C++ programming language, using
either Microsoft or Borland compilers. It also introduces the UML and software development
processes. It is suitable for professional programmers, students, and kitchen-table enthusiasts.

New Concepts

OOP involves concepts that are new to programmers of traditional languages such as Pascal,
Basic, and C. These ideas, such as classes, inheritance, and polymorphism, lie at the heart of
object-oriented programming. But it’s easy to lose sight of these concepts when discussing the
specifics of an object-oriented language. Many books overwhelm the reader with the details of
language features, while ignoring the reason these features exist. This book attempts to keep an
eye on the big picture and relate the details to the larger concepts.

INTRODUCTION

The Gradual Approach

We take a gradual approach in this book, starting with very simple programming examples and
working up to full-fledged object-oriented applications. We introduce new concepts slowly so
that you will have time to digest one idea before going on to the next. We use illustrations
whenever possible to help clarify new ideas. There are questions and programming exercises at
the end of most chapters to enhance the book’s usefulness in the classroom. Answers to the
questions and to the first few (starred) exercises can be found in Appendix G. The exercises
vary in difficulty to pose a variety of challenges for the student.

What You Need to Know to Use This Book

You can use this book even if you have no previous programming experience. However, such
experience, in Visual Basic for example, certainly won’t hurt.

You do not need to know the C language to use this book. Many books on C++ assume that
you already know C, but this one does not. It teaches C++ from the ground up. If you do know
C, it won’t hurt, but you may be surprised at how little overlap there is between C and C++.

You should be familiar with the basic operations of Microsoft Windows, such as starting appli-
cations and copying files.

Software and Hardware

You will need a C++ compiler. The programs in this book have been tested with Microsoft
Visual C++ and Borland C++Builder. Both compilers come in low-priced “Learning Editions”
suitable for students.

Appendix C provides detailed information on operating the Microsoft compiler, while
Appendix D does the same for the Inprise (Borland) product. Other compilers, if they adhere
to Standard C++, will probably handle most of the programs in this book as written.

Your computer should have enough processor speed, memory, and hard disk space to run the
compiler you’ve chosen. You can check the manufacturer’s specifications to determine these
requirements.

Console-Mode Programs

There are numerous example programs throughout the book. They are console-mode programs,
which run in a character-mode window within the compiler environment, or directly within an
MS-DOS box. This avoids the complexity of full-scale graphics-oriented Windows programs.

OBJECT-ORIENTED PROGRAMMING IN C++, FOURTH EDITION

Example Program Source Code

You can obtain the source code for the example programs from the Sams Publishing Web site at
http://www.samspublishing.com

Type the ISBN (found at the front of the book) or the book’s title and click Search to find the
data on this book. Then click Source Code to download the program examples.

Console Graphics Lite

A few example programs draw pictures using a graphics library we call Console Graphics Lite.
The graphics rely on console characters, so they are not very sophisticated, but they allow
some interesting programs. The files for this library are provided on the publisher’s Web site,
along with the source files for the example programs.

To compile and run these graphics examples, you’ll need to include a header file in your pro-
gram, either MSOFTCON.H or BORLACON.H, depending on your compiler. You’ll also need to add
either MSOFTCON.CPP or BORLACON.CPP to the project for the graphics example. Appendix E,
“Console Graphics Lite,” provides listings of these files and tells how to use them. Appendixes
C and D explain how to work with files and projects in a specific compiler’s environment.

Programming Exercises

Each chapter contains roughly 12 exercises, each requiring the creation of a complete C++
program. Solutions for the first three or four exercises in each chapter are provided in
Appendix G. For the remainder of the exercises, readers are on their own. (However, if you are
teaching a C++ course, see the “Note to Teachers” at the end of this Introduction.)

Easier Than You Think

You may have heard that C++ is difficult to learn, but it’s really quite similar to other lan-
guages, with two or three “grand ideas” thrown in. These new ideas are fascinating in them-
selves, and we think you’ll have fun learning about them. They are also becoming part of the
programming culture; they’re something everyone should know a little bit about, like evolution
and psychoanalysis. We hope this book will help you enjoy learning about these new ideas, at
the same time that it teaches you the details of programming in C++.

INTRODUCTION

A Note to Teachers

Teachers, and others who already know something about C++ or C, may be interested in some
details of the approach we use in this book and how it’s organized.

Standard C++

All the programs in this book are compatible with Standard C++, with a few minor exceptions
that are needed to accommodate compiler quirks. We devote a chapter to the STL (Standard
Template Library), which is included in Standard C++.

The Unified Modeling Language (UML)

In the previous edition, we introduced the UML in the final chapter. In this edition we have
integrated the UML into the body of the book, introducing UML topics in appropriate places.
For example, UML class diagrams are introduced where we first show different classes com-
municating, and generalization is covered in the chapter on inheritance.

Chapter 1, “The Big Picture,” includes a list showing where the various UML topics are intro-
duced.

Software Development Processes

Formal software development processes are becoming an increasingly important aspect of pro-
gramming. Also, students are frequently mystified by the process of designing an object-
oriented program. For these reasons we include a chapter on software development processes,
with an emphasis on object-oriented programming. In the last edition we focused on CRC
cards, but the emphasis in software development has shifted more in the direction of use

case analysis, so we use that to analyze our programming projects.

C++ Is Not the Same as C

A few institutions still want their students to learn C before learning C++. In our view this is a
mistake. C and C++ are entirely separate languages. It’s true that their syntax is similar, and C
is actually a subset of C++. But the similarity is largely a historical accident. In fact, the basic
approach in a C++ program is radically different from that in a C program.

C++ has overtaken C as the preferred language for serious software development. Thus we
don’t believe it is necessary or advantageous to teach C before teaching C++. Students who
don’t know C are saved the time and trouble of learning C and then learning C++, an ineffi-
cient approach. Students who already know C may be able to skim parts of some chapters, but
they will find that a remarkable percentage of the material is new.

OBJECT-ORIENTED PROGRAMMING IN C++, FOURTH EDITION

Optimize Organization for OOP

We could have begun the book by teaching the procedural concepts common to C and C++,
and moved on to the new OOP concepts once the procedural approach had been digested. That
seemed counterproductive, however, because one of our goals is to begin true object-oriented
programming as quickly as possible. Accordingly, we provide a minimum of procedural
groundwork before getting to classes in Chapter 6. Even the initial chapters are heavily steeped
in C++, as opposed to C, usage.

We introduce some concepts earlier than is traditional in books on C. For example, structures
are a key feature for understanding C++ because classes are syntactically an extension of struc-
tures. For this reason, we introduce structures in Chapter 5 so that they will be familiar when
we discuss classes.

Some concepts, such as pointers, are introduced later than in traditional C books. It’s not nec-
essary to understand pointers to follow the essentials of OOP, and pointers are usually a stum-
bling block for C and C++ students. Therefore, we defer a discussion of pointers until the main
concepts of OOP have been thoroughly digested.

Substitute Superior C++ Features

Some features of C have been superseded by new approaches in C++. For instance, the
printf() and scanf () functions, input/output workhorses in C, are seldom used in C++
because cout and cin do a better job. Consequently, we leave out descriptions of these func-
tions. Similarly, #define constants and macros in C have been largely superseded by the const
qualifier and inline functions in C++, and need be mentioned only briefly.

Minimize Irrelevant Capabilities

Because the focus in this book is on object-oriented programming, we can leave out some fea-
tures of C that are seldom used and are not particularly relevant to OOP. For instance, it isn’t
necessary to understand the C bit-wise operators (used to operate on individual bits) to learn
object-oriented programming. These and a few other features can be dropped from our discus-
sion, or mentioned only briefly, with no loss in understanding of the major features of C++.

The result is a book that focuses on the fundamentals of OOP, moving the reader gently but
briskly toward an understanding of new concepts and their application to real programming
problems.

INTRODUCTION

Programming Exercises

No answers to the unstarred exercises are provided in this book. However, qualified instructors
can obtain suggested solutions from the Sams Publishing Web site. Type the ISBN or title and
click Search to move to this book’s page, then click Downloads.

The exercises vary considerably in their degree of difficulty. In each chapter the early exercises
are fairly easy, while later ones are more challenging. Instructors will probably want to assign
only those exercises suited to the level of a particular class.

The Big Picture CHAPTER

IN THIS CHAPTER

e Why Do We Need Object-Oriented
Programming? 10

¢ Characteristics of Object-Oriented
Languages 16

e C++and C 22
¢ Laying the Groundwork 23
¢ The Unified Modeling Language (UML) 23

10

Chapter 1

This book teaches you how to program in C++, a computer language that supports object-
oriented programming (OOP). Why do we need OOP? What does it do that traditional lan-
guages such as C, Pascal, and BASIC don’t? What are the principles behind OOP? Two key
concepts in OOP are objects and classes. What do these terms mean? What is the relationship
between C++ and the older C language?

This chapter explores these questions and provides an overview of the features to be discussed
in the balance of the book. What we say here will necessarily be rather general (although mer-
cifully brief). If you find the discussion somewhat abstract, don’t worry. The concepts we men-
tion here will come into focus as we demonstrate them in detail in subsequent chapters.

Why Do We Need Object-Oriented
Programming?

Object-oriented programming was developed because limitations were discovered in
earlier approaches to programming. To appreciate what OOP does, we need to under-
stand what these limitations are and how they arose from traditional programming
languages.

Procedural Languages

C, Pascal, FORTRAN, and similar languages are procedural languages. That is, each
statement in the language tells the computer to do something: Get some input, add
these numbers, divide by six, display that output. A program in a procedural language
is a list of instructions.

For very small programs, no other organizing principle (often called a paradigm) is needed.
The programmer creates the list of instructions, and the computer carries them out.

Division into Functions

When programs become larger, a single list of instructions becomes unwieldy. Few
programmers can comprehend a program of more than a few hundred statements
unless it is broken down into smaller units. For this reason the function was adopted
as a way to make programs more comprehensible to their human creators. (The term
function is used in C++ and C. In other languages the same concept may be referred
to as a subroutine, a subprogram, or a procedure.) A procedural program is divided
into functions, and (ideally, at least) each function has a clearly defined purpose and a
clearly defined interface to the other functions in the program.

The Big Picture

The idea of breaking a program into functions can be further extended by grouping a number
of functions together into a larger entity called a module (which is often a file), but the princi-
ple is similar: a grouping of components that execute lists of instructions.

Dividing a program into functions and modules is one of the cornerstones of structured pro-
gramming, the somewhat loosely defined discipline that influenced programming organization
for several decades before the advent of object-oriented programming.

Problems with Structured Programming

As programs grow ever larger and more complex, even the structured programming
approach begins to show signs of strain. You may have heard about, or been involved
in, horror stories of program development. The project is too complex, the schedule
slips, more programmers are added, complexity increases, costs skyrocket, the sched-
ule slips further, and disaster ensues. (See The Mythical Man-Month by Frederick P.
Brooks, Jr. [Addison Wesley, 1982] for a vivid description of this process.)

Analyzing the reasons for these failures reveals that there are weaknesses in the procedural
paradigm itself. No matter how well the structured programming approach is implemented,
large programs become excessively complex.

What are the reasons for these problems with procedural languages? There are two related
problems. First, functions have unrestricted access to global data. Second, unrelated functions
and data, the basis of the procedural paradigm, provide a poor model of the real world.

Let’s examine these problems in the context of an inventory program. One important global
data item in such a program is the collection of items in the inventory. Various functions access
this data to input a new item, display an item, modify an item, and so on.

Unrestricted Access

In a procedural program, one written in C for example, there are two kinds of data.
Local data is hidden inside a function, and is used exclusively by the function. In the
inventory program a display function might use local data to remember which item it
was displaying. Local data is closely related to its function and is safe from modifica-
tion by other functions.

However, when two or more functions must access the same data—and this is true of the most
important data in a program—then the data must be made global, as our collection of inven-
tory items is. Global data can be accessed by any function in the program. (We ignore the issue
of grouping functions into modules, which doesn’t materially affect our argument.) The
arrangement of local and global variables in a procedural program is shown in Figure 1.1.

11

3¥N1DId OIg IH]L

12

Chapter 1

_

Global variables
Accessible by any function
Accessible unhrb}gFunctiu'm kmihlemyby\ﬂmimﬂ
.. .

_ Local variables_, «__ Local variables ,

Function A Function B

FIGURE 1.1
Global and local variables.

In a large program, there are many functions and many global data items. The problem with
the procedural paradigm is that this leads to an even larger number of potential connections
between functions and data, as shown in Figure 1.2.

Global data Global data Global data
Function Function Function Function

FIGURE 1.2
The procedural paradigm.

This large number of connections causes problems in several ways. First, it makes a program’s
structure difficult to conceptualize. Second, it makes the program difficult to modify. A change
made in a global data item may necessitate rewriting all the functions that access that item.

The Big Picture

For example, in our inventory program, someone may decide that the product codes for the
inventory items should be changed from 5 digits to 12 digits. This may necessitate a change
from a short to a long data type.

Now all the functions that operate on the data must be modified to deal with a long instead of
a short. It’s similar to what happens when your local supermarket moves the bread from aisle
4 to aisle 7. Everyone who patronizes the supermarket must then figure out where the bread
has gone, and adjust their shopping habits accordingly.

When data items are modified in a large program it may not be easy to tell which functions
access the data, and even when you figure this out, modifications to the functions may cause
them to work incorrectly with other global data items. Everything is related to everything else,
so a modification anywhere has far-reaching, and often unintended, consequences.

Real-World Modeling

The second—and more important—problem with the procedural paradigm is that its
arrangement of separate data and functions does a poor job of modeling things in the
real world. In the physical world we deal with objects such as people and cars. Such
objects aren’t like data and they aren’t like functions. Complex real-world objects
have both attributes and behavior.

Attributes

Examples of attributes (sometimes called characteristics) are, for people, eye color
and job title; and, for cars, horsepower and number of doors. As it turns out, attributes
in the real world are equivalent to data in a program: they have a certain specific val-
ues, such as blue (for eye color) or four (for the number of doors).

Behavior

Behavior is something a real-world object does in response to some stimulus. If you
ask your boss for a raise, she will generally say yes or no. If you apply the brakes in a
car, it will generally stop. Saying something and stopping are examples of behavior.
Behavior is like a function: you call a function to do something (display the inventory,
for example) and it does it.

So neither data nor functions, by themselves, model real-world objects effectively.

The Object-Oriented Approach

The fundamental idea behind object-oriented languages is to combine into a single
unit both data and the functions that operate on that data. Such a unit is called an
object.

13

3¥N1DId OIg IH]L

14

Chapter 1

An object’s functions, called member functions in C++, typically provide the only way to
access its data. If you want to read a data item in an object, you call a member function in the
object. It will access the data and return the value to you. You can’t access the data directly.
The data is hidden, so it is safe from accidental alteration. Data and its functions are said to be
encapsulated into a single entity. Data encapsulation and data hiding are key terms in the
description of object-oriented languages.

If you want to modify the data in an object, you know exactly what functions interact with it:
the member functions in the object. No other functions can access the data. This simplifies
writing, debugging, and maintaining the program.

A C++ program typically consists of a number of objects, which communicate with each other
by calling one another’s member functions. The organization of a C++ program is shown in
Figure 1.3.

FIGURE 1.3
The object-oriented paradigm.

The Big Picture

We should mention that what are called member functions in C++ are called methods in some
other object-oriented (OO) languages (such as Smalltalk, one of the first OO languages). Also,
data items are referred to as attributes or instance variables. Calling an object’s member func-
tion is referred to as sending a message to the object. These terms are not official C++ termi-
nology, but they are used with increasing frequency, especially in object-oriented design.

An Analogy

You might want to think of objects as departments—such as sales, accounting, per-
sonnel, and so on—in a company. Departments provide an important approach to cor-
porate organization. In most companies (except very small ones), people don’t work
on personnel problems one day, the payroll the next, and then go out in the field as
salespeople the week after. Each department has its own personnel, with clearly
assigned duties. It also has its own data: the accounting department has payroll fig-
ures, the sales department has sales figures, the personnel department keeps records of
each employee, and so on.

The people in each department control and operate on that department’s data. Dividing the
company into departments makes it easier to comprehend and control the company’s activities,
and helps maintain the integrity of the information used by the company. The accounting
department, for instance, is responsible for the payroll data. If you’re a sales manager, and you
need to know the total of all the salaries paid in the southern region in July, you don’t just walk
into the accounting department and start rummaging through file cabinets. You send a memo to
the appropriate person in the department, then wait for that person to access the data and send
you a reply with the information you want. This ensures that the data is accessed accurately
and that it is not corrupted by inept outsiders. This view of corporate organization is shown in
Figure 1.4. In the same way, objects provide an approach to program organization while help-
ing to maintain the integrity of the program’s data.

OOP: An Approach to Organization

Keep in mind that object-oriented programming is not primarily concerned with the
details of program operation. Instead, it deals with the overall organization of the pro-
gram. Most individual program statements in C++ are similar to statements in proce-
dural languages, and many are identical to statements in C. Indeed, an entire member
function in a C++ program may be very similar to a procedural function in C. It is
only when you look at the larger context that you can determine whether a statement
or a function is part of a procedural C program or an object-oriented C++ program.

15

3¥N1DId OIg IH]L

16 Chapter 1

Sales Department

Sales data
Sales
Manager
Secretary
Personnel Department Finance Department
Personnel data Financial data
Personnel Chief Financial
Manager > Officer
Financial
Personnel Staff Assistant

FIGURE 1.4

The corporate paradigm.

Characteristics of Object-Oriented Languages

Let’s briefly examine a few of the major elements of object-oriented languages in
general, and C++ in particular.

Objects

When you approach a programming problem in an object-oriented language, you no
longer ask how the problem will be divided into functions, but how it will be divided
into objects. Thinking in terms of objects, rather than functions, has a surprisingly
helpful effect on how easily programs can be designed. This results from the close
match between objects in the programming sense and objects in the real world. This
process is described in detail in Chapter 16, “Object-Oriented Software
Development.”

The Big Picture

What kinds of things become objects in object-oriented programs? The answer to this is lim-
ited only by your imagination, but here are some typical categories to start you thinking:

Physical objects

Automobiles in a traffic-flow simulation
Electrical components in a circuit-design program
Countries in an economics model

Aircraft in an air traffic control system
Elements of the computer-user environment
Windows

Menus

Graphics objects (lines, rectangles, circles)
The mouse, keyboard, disk drives, printer
Data-storage constructs

Customized arrays

Stacks

Linked lists

Binary trees

Human entities

Employees

Students

Customers

Salespeople

Collections of data

An inventory

A personnel file

A dictionary

A table of the latitudes and longitudes of world cities
User-defined data types

Time

Angles

Complex numbers

Points on the plane

17

3¥N1DId OIg IH]L

18

Chapter 1

¢ Components in computer games
Cars in an auto race
Positions in a board game (chess, checkers)
Animals in an ecological simulation

Opponents and friends in adventure games

The match between programming objects and real-world objects is the happy result of combin-
ing data and functions: The resulting objects offer a revolution in program design. No such
close match between programming constructs and the items being modeled exists in a
procedural language.

Classes

In OOP we say that objects are members of classes. What does this mean? Let’s look

at an analogy. Almost all computer languages have built-in data types. For instance, a

data type int, meaning integer, is predefined in C++ (as we’ll see in Chapter 3,

“Loops and Decisions”). You can declare as many variables of type int as you need in

your program:

int day;

int count;

int divisor;

int answer;

In a similar way, you can define many objects of the same class, as shown in Figure 1.5. A
class serves as a plan, or blueprint. It specifies what data and what functions will be included
in objects of that class. Defining the class doesn’t create any objects, just as the mere existence
of data type int doesn’t create any variables.

A class is thus a description of a number of similar objects. This fits our non-technical under-
standing of the word class. Prince, Sting, and Madonna are members of the rock musician
class. There is no one person called “rock musician,” but specific people with specific names
are members of this class if they possess certain characteristics. An object is often called an
“instance” of a class.

Inheritance

The idea of classes leads to the idea of inheritance. In our daily lives, we use the con-
cept of classes divided into subclasses. We know that the animal class is divided into
mammals, amphibians, insects, birds, and so on. The vehicle class is divided into cars,
trucks, buses, motorcycles, and so on.

The Big Picture

FIGURE 1.5
A class and its objects.

The principle in this sort of division is that each subclass shares common characteristics with
the class from which it’s derived. Cars, trucks, buses, and motorcycles all have wheels and a
motor; these are the defining characteristics of vehicles. In addition to the characteristics
shared with other members of the class, each subclass also has its own particular characteris-
tics: Buses, for instance, have seats for many people, while trucks have space for hauling

heavy loads.

This idea is shown in Figure 1.6. Notice in the figure that features A and B, which are part of
the base class, are common to all the derived classes, but that each derived class also has fea-

tures of its own.

19

J¥NLId O1g IHL

20

Chapter 1

FIGURE 1.6
Inheritance.

In a similar way, an OOP class can become a parent of several subclasses. In C++ the original
class is called the base class; other classes can be defined that share its characteristics, but add
their own as well. These are called derived classes.

Don’t confuse the relation of objects to classes, on the one hand, with the relation of a base
class to derived classes, on the other. Objects, which exist in the computer’s memory, each

embody the exact characteristics of their class, which serves as a template. Derived classes

inherit some characteristics from their base class, but add new ones of their own.

Inheritance is somewhat analogous to using functions to simplify a traditional procedural pro-
gram. If we find that three different sections of a procedural program do almost exactly the
same thing, we recognize an opportunity to extract the common elements of these three sec-
tions and put them into a single function. The three sections of the program can call the func-
tion to execute the common actions, and they can perform their own individual processing as
well. Similarly, a base class contains elements common to a group of derived classes. As func-
tions do in a procedural program, inheritance shortens an object-oriented program and clarifies
the relationship among program elements.

The Big Picture

Reusability

Once a class has been written, created, and debugged, it can be distributed to other
programmers for use in their own programs. This is called reusability. It is similar to
the way a library of functions in a procedural language can be incorporated into dif-
ferent programs.

However, in OOP, the concept of inheritance provides an important extension to the idea of

reusability. A programmer can take an existing class and, without modifying it, add additional
features and capabilities to it. This is done by deriving a new class from the existing one. The
new class will inherit the capabilities of the old one, but is free to add new features of its own.

For example, you might have written (or purchased from someone else) a class that creates a
menu system, such as that used in Windows or other Graphic User Interfaces (GUIs). This
class works fine, and you don’t want to change it, but you want to add the capability to make
some menu entries flash on and off. To do this, you simply create a new class that inherits all
the capabilities of the existing one but adds flashing menu entries.

The ease with which existing software can be reused is an important benefit of OOP. Many
companies find that being able to reuse classes on a second project provides an increased
return on their original programming investment. We’ll have more to say about this in later
chapters.

Creating New Data Types

One of the benefits of objects is that they give the programmer a convenient way to
construct new data types. Suppose you work with two-dimensional positions (such as
x and y coordinates, or latitude and longitude) in your program. You would like to
express operations on these positional values with normal arithmetic operations,

such as

positioni = position2 + origin

where the variables position1, position2, and origin each represent a pair of inde-
pendent numerical quantities. By creating a class that incorporates these two values,
and declaring positioni, position2, and origin to be objects of this class, we can,
in effect, create a new data type. Many features of C++ are intended to facilitate the
creation of new data types in this manner.

Polymorphism and Overloading

Note that the = (equal) and + (plus) operators, used in the position arithmetic shown
above, don’t act the same way they do in operations on built-in types such as int. The
objects position1 and so on are not predefined in C++, but are programmer-defined

21

3¥N1DId OIg IH]L

22

Chapter 1

objects of class Position. How do the = and + operators know how to operate on
objects? The answer is that we can define new behaviors for these operators. These
operations will be member functions of the Position class.

Using operators or functions in different ways, depending on what they are operating on, is
called polymorphism (one thing with several distinct forms). When an existing operator, such
as + or =, is given the capability to operate on a new data type, it is said to be overloaded.
Overloading is a kind of polymorphism; it is also an important feature of OOP.

C++ and C

C++ is derived from the C language. Strictly speaking, it is a superset of C: Almost
every correct statement in C is also a correct statement in C++, although the reverse is
not true. The most important elements added to C to create C++ concern classes,
objects, and object-oriented programming. (C++ was originally called “C with
classes.”) However, C++ has many other new features as well, including an improved
approach to input/output (I/O) and a new way to write comments. Figure 1.7 shows
the relationship of C and C++.

Other useful features

Features to implement

object-oriented programming
Features not
commonly used
inC++

Features common
to Cand C++

FIGURE 1.7
The relationship between C and C++.

The Big Picture

In fact, the practical differences between C and C++ are larger than you might think. Although
you can write a program in C++ that looks like a program in C, hardly anyone does. C++ pro-
grammers not only make use of the new features of C++, they also emphasize the traditional C
features in different proportions than do C programmers.

If you already know C, you will have a head start in learning C++ (although you may also
have some bad habits to unlearn), but much of the material will be new.

Laying the Groundwork

Our goal is to help you begin writing OOP programs as soon as possible. However, as
we noted, much of C++ is inherited from C, so while the overall structure of a C++
program may be OOP, down in the trenches you need to know some old-fashioned
procedural fundamentals. Chapters 25 therefore deal with the “traditional” aspects of
C++, many of which are also found in C. You will learn about variables and 1/0,
about control structures such as loops and decisions, and about functions themselves.
You will also learn about structures, since the same syntax that’s used for structures is
used for classes.

If you already know C, you might be tempted to skip these chapters. However, you will find
that there are many differences, some obvious and some rather subtle, between C and C++.
Our advice is to read these chapters, skimming what you know, and concentrating on the ways
C++ differs from C.

The specific discussion of OOP starts in Chapter 6, “Objects and Classes.” From then on the
examples will be object oriented.

The Unified Modeling Language (UML)

The UML is a graphical “language” for modeling computer programs. “Modeling” means to
create a simplified representation of something, as a blueprint models a house. The UML pro-
vides a way to visualize the higher-level organization of programs without getting mired down
in the details of actual code.

The UML began as three separate modeling languages, one created by Grady Booch at
Rational Software, one by James Rumbaugh at General Electric, and one by Ivar Jacobson at
Ericson. Eventually Rumbaugh and Jacobson joined Booch at Rational, where they became
known as the three amigos. During the late 1990s they unified (hence the name) their modeling
languages into the Unified Modeling Language. The result was adopted by the Object
Management Group (OMG), a consortium of companies devoted to industry standards.

23

3¥N1DId OIg IH]L

24

Chapter 1

Why do we need the UML? One reason is that in a large computer program it’s often hard to
understand, simply by looking at the code, how the parts of the program relate to each other.
As we’ve seen, object-oriented programming is a vast improvement over procedural programs.
Nevertheless, figuring out what a program is supposed to do requires, at best, considerable
study of the program listings.

The trouble with code is that it’s very detailed. It would be nice if there were a way to see a
bigger picture, one that depicts the major parts of the program and how they work together.
The UML answers this need.

The most important part of the UML is a set of different kinds of diagrams. Class diagrams
show the relationships among classes, object diagrams show how specific objects relate,
sequence diagrams show the communication among objects over time, use case diagrams show
how a program’s users interact with the program, and so on. These diagrams provide a variety
of ways to look at a program and its operation.

The UML plays many roles besides helping us to understand how a program works. As we’ll
see in Chapter 16, it can help in the initial design of a program. In fact, the UML is useful
throughout all phases of software development, from initial specification to documentation,
testing, and maintenance.

The UML is not a software development process. Many such processes exist for specifying the
stages of the development process. The UML is simply a way to look at the software being
developed. Although it can be applied to any kind of programming language, the UML is espe-
cially attuned to OOP.

As we noted in the Introduction, we introduce specific features of the UML in stages through-
out the book.

* Chapter 1: (this section) introduction to the UML

* Chapter 8: class diagrams, associations, and navigability

» Chapter 9: generalization, aggregation, and composition

* Chapter 10: state diagrams and multiplicity

* Chapter 11: object diagrams

» Chapter 13: more complex state diagrams

» Chapter 14: templates, dependencies, and stereotypes

* Chapter 16: use cases, use case diagrams, activity diagrams, and sequence diagrams

The Big Picture

Summary

OOP is a way of organizing programs. The emphasis is on the way programs are
designed, not on coding details. In particular, OOP programs are organized around
objects, which contain both data and functions that act on that data. A class is a tem-
plate for a number of objects.

Inheritance allows a class to be derived from an existing class without modifying it. The
derived class has all the data and functions of the parent class, but adds new ones of its own.
Inheritance makes possible reusability, or using a class over and over in different programs.

C++ is a superset of C. It adds to the C language the capability to implement OOP. It also adds
a variety of other features. In addition, the emphasis is changed in C++ so that some features
common to C, although still available in C++, are seldom used, while others are used far more
frequently. The result is a surprisingly different language.

The Unified Modeling Language (UML) is a standardized way to visualize a program’s struc-
ture and operation using diagrams.

The general concepts discussed in this chapter will become more concrete as you learn more
about the details of C++. You may want to refer back to this chapter as you progress further
into this book.

Questions

Answers to these questions can be found in Appendix G. Note that throughout this
book, multiple-choice questions can have more than one correct answer.

1. Pascal, BASIC,and Care p__ languages, while C++isano___
language.
2. A widget is to the blueprint for a widget as an object is to
a. a member function.
b. a class.
C. an operator.
d. a data item.
3. The two major components of an object are ___ and functions that
4. In C++, a function contained within a class is called
a. a member function.
b. an operator.
c. a class function.

d. a method.

25

3¥N1DId OIg IH]L

26

Chapter 1

5. Protecting data from access by unauthorized functions is called

Which of the following are good reasons to use an object-oriented language?
a. You can define your own data types.

b. Program statements are simpler than in procedural languages.

¢. An OO program can be taught to correct its own errors.

d. It’s easier to conceptualize an OO program.

model entities in the real world more closely than do functions.

8. True or false: A C++ program is similar to a C program except for the details of

10.

12.

13.

14.

coding.

Bundling data and functions together is called _

When a language has the capability to produce new data types, it is said to be
a. reprehensible.

b. encapsulated.

c. overloaded.

d. extensible.

. True or false: You can easily tell, from any two lines of code, whether a pro-

gram is written in C or C++.

The ability of a function or operator to act in different ways on different data
types is called

A normal C++ operator that acts in special ways on newly defined data types is
said to be

a. glorified.

b. encapsulated.

c. classified.

d. overloaded.

Memorizing the new terms used in C++ is
a. critically important.

b. something you can return to later.

c. the key to wealth and success.

d. completely irrelevant.

The Big Picture

15. The Unified Modeling Language is
a. a program that builds physical models.

b. a way to look at the organization of a program.

c. the combination of C++ and FORTRAN.

d. helpful in developing software systems.

27

JUNLId O1g IHL

C++ Programming Basics CHAPTER

IN THIS CHAPTER

¢ Getting Started 30

e Basic Program Construction 30
e Output Using cout 33

¢ Directives 35

e Comments 36

¢ Integer Variables 38

e Character Variables 42

¢ Input with cin 45

¢ Floating Point Types 48

e Type bool 51

¢ The setw Manipulator 52
¢ Variable Type Summary 54
e Type Conversion 56

¢ Arithmetic Operators 60

¢ Library Functions 65

30

Chapter 2

In any language there are some fundamentals you need to know before you can write even the
most elementary programs. This chapter introduces three such fundamentals: basic program
construction, variables, and input/output (I/O). It also touches on a variety of other language
features, including comments, arithmetic operators, the increment operator, data conversion,
and library functions.

These topics are not conceptually difficult, but you may find that the style in C++ is a little
austere compared with, say, BASIC or Pascal. Before you learn what it’s all about, a C++ pro-
gram may remind you more of a mathematics formula than a computer program. Don’t worry
about this. You’ll find that as you gain familiarity with C++, it starts to look less forbidding,
while other languages begin to seem unnecessarily fancy and verbose.

Getting Started

As we noted in the Introduction, you can use either a Microsoft or a Borland compiler with
this book. Appendixes C and D provide details about their operation. (Other compilers may
work as well.) Compilers take source code and transform it into executable files, which your
computer can run as it does other programs. Source files are text files (extension .CPP) that cor-
respond with the listings printed in this book. Executable files have the .EXE extension, and can
be executed either from within your compiler, or, if you’re familiar with MS-DOS, directly
from a DOS window.

The programs run without modification on the Microsoft compiler or in an MS-DOS window.
If you’re using the Borland compiler, you’ll need to modify the programs slightly before run-
ning them; otherwise the output won’t remain on the screen long enough to see. Make sure to
read Appendix D, “Borland C++Builder,” to see how this is done.

Basic Program Construction

Let’s look at a very simple C++ program. This program is called FIRST, so its source file is
FIRST.CPP. It simply prints a sentence on the screen. Here it is:

#include <iostream>
using namespace std;

int main()

{
cout << "Every age has a language of its own\n";
return 0;

}

Despite its small size, this program demonstrates a great deal about the construction of C++
programs. Let’s examine it in detail.

C++ Programming Basics

Functions

Functions are one of the fundamental building blocks of C++. The FIRST program consists
almost entirely of a single function called main (). The only parts of this program that are not
part of the function are the first two lines—the ones that start with #include and using. (We’ll
see what these lines do in a moment.)

We noted in Chapter 1, “The Big Picture,” that a function can be part of a class, in which case
it is called a member function. However, functions can also exist independently of classes. We
are not yet ready to talk about classes, so we will show functions that are separate standalone
entities, as main() is here.

Function Name

The parentheses following the word main are the distinguishing feature of a function. Without
the parentheses the compiler would think that main refers to a variable or to some other pro-
gram element. When we discuss functions in the text, we’ll follow the same convention that
C++ uses: We’ll put parentheses following the function name. Later on we’ll see that the
parentheses aren’t always empty. They’re used to hold function arguments: values passed from
the calling program to the function.

The word int preceding the function name indicates that this particular function has a return
value of type int. Don’t worry about this now; we’ll learn about data types later in this chapter
and return values in Chapter 5, “Functions.”

Braces and the Function Body

The body of a function is surrounded by braces (sometimes called curly brackets). These
braces play the same role as the BEGIN and END keywords in some other languages: They sur-
round or delimit a block of program statements. Every function must use this pair of braces
around the function body. In this example there are only two statements in the function body:
the line starting with cout, and the line starting with return. However, a function body can
consist of many statements.

Always Start with main()

When you run a C++ program, the first statement executed will be at the beginning of a func-
tion called main (). (At least that’s true of the console mode programs in this book.) The pro-
gram may consist of many functions, classes, and other program elements, but on startup,
control always goes to main (). If there is no function called main() in your program, an error
will be reported when you run the program.

In most C++ programs, as we’ll see later, main () calls member functions in various objects to
carry out the program’s real work. The main () function may also contain calls to other stand-
alone functions. This is shown in Figure 2.1.

31

N

sJlIsvg
DNINWVYYD0Yd

+4+)

32

Chapter 2

main ()

Calls to other functions
o e || G
Member Function — Member Function
Member Function \——= Member Function

FIGURE 2.1
Objects, functions, and main().

Program Statements

The program statement is the fundamental unit of C++ programming. There are two statements
in the FIRST program: the line

cout << "Every age has a language of its own\n";
and the return statement
return 0;

The first statement tells the computer to display the quoted phrase. Most statements tell the
computer to do something. In this respect, statements in C++ are similar to statements in other
languages. In fact, as we’ve noted, the majority of statements in C++ are identical to state-
ments in C.

A semicolon signals the end of the statement. This is a crucial part of the syntax but easy to
forget. In some languages (like BASIC), the end of a statement is signaled by the end of the
line, but that’s not true in C++. If you leave out the semicolon, the compiler will often
(although not always) signal an error.

C++ Programming Basics

The last statement in the function body is return ©;. This tells main() to return the value O to
whoever called it, in this case the operating system or compiler. In older versions of C++ you
could give main() the return type of void and dispense with the return statement, but this is
not considered correct in Standard C++. We’ll learn more about return in Chapter 5.

Whitespace

We mentioned that the end of a line isn’t important to a C++ compiler. Actually, the compiler
ignores whitespace almost completely. Whitespace is defined as spaces, carriage returns, line-
feeds, tabs, vertical tabs, and formfeeds. These characters are invisible to the compiler. You can
put several statements on one line, separated by any number of spaces or tabs, or you can run a
statement over two or more lines. It’s all the same to the compiler. Thus the FIRST program
could be written this way:

#include <iostream>

using

namespace std;

int main () { cout
<<

"Every age has a language of its own\n"

5 return

0;}

We don’t recommend this syntax—it’s nonstandard and hard to read—but it does compile cor-
rectly.

There are several exceptions to the rule that whitespace is invisible to the compiler. The first
line of the program, starting with #include, is a preprocessor directive, which must be written
on one line. Also, string constants, such as "Every age has a language of its own", can-
not be broken into separate lines. (If you need a long string constant, you can insert a back-
slash (\) at the line break or divide the string into two separate strings, each surrounded by
quotes.)

Output Using cout

As you have seen, the statement
cout << "Every age has a language of its own\n";

causes the phrase in quotation marks to be displayed on the screen. How does this work? A
complete description of this statement requires an understanding of objects, operator overload-
ing, and other topics we won’t discuss until later in the book, but here’s a brief preview.

33

N

sJlIsvg
DNINWVYYD0Yd

+4+)

34

Chapter 2

The identifier cout (pronounced “C out”) is actually an object. It is predefined in C++ to corre-
spond to the standard output stream. A stream is an abstraction that refers to a flow of data.
The standard output stream normally flows to the screen display—although it can be redirected
to other output devices. We’ll discuss streams (and redirection) in Chapter 12, “Streams and
Files.”

The operator << is called the insertion or put to operator. It directs the contents of the variable
on its right to the object on its left. In FIRST it directs the string constant "Every age has a
language of its own\n" to cout, which sends it to the display.

(If you know C, you’ll recognize << as the left-shift bit-wise operator and wonder how it can
also be used to direct output. In C++, operators can be overloaded. That is, they can perform
different activities, depending on the context. We’ll learn about overloading in Chapter 8,
“Operator Overloading.”)

Although the concepts behind the use of cout and << may be obscure at this point, using them
is easy. They’ll appear in almost every example program. Figure 2.2 shows the result of using
cout and the insertion operator <<.

Variable
—

J\f\/\./\"'cout___*_' << |-
o

FIGURE 2.2
Output with cout.

String Constants

The phrase in quotation marks, "Every age has a language of its own\n",is an example
of a string constant. As you probably know, a constant, unlike a variable, cannot be given a
new value as the program runs. Its value is set when the program is written, and it retains this
value throughout the program’s existence.

As we’ll see later, the situation regarding strings is rather complicated in C++. Two ways of
handling strings are commonly used. A string can be represented by an array of characters, or
it can be represented as an object of a class. We’ll learn more about both kinds of strings in
Chapter 7, “Arrays and Strings.”

C++ Programming Basics

The '\n' character at the end of the string constant is an example of an escape sequence. It
causes the next text output to be displayed on a new line. We use it here so that the phrases
such as “Press any key to continue,” inserted by some compilers for display after the program
terminates, will appear on a new line. We’ll discuss escape sequences later in this chapter.

Directives

The two lines that begin the FIRST program are directives. The first is a preprocessor directive,
and the second is a using directive. They occupy a sort of gray area: They’re not part of the
basic C++ language, but they’re necessary anyway

Preprocessor Directives

The first line of the FIRST program
#include <iostream>

might look like a program statement, but it’s not. It isn’t part of a function body and doesn’t
end with a semicolon, as program statements must. Instead, it starts with a number sign (#).
It’s called a preprocessor directive. Recall that program statements are instructions to the com-
puter to do something, such as adding two numbers or printing a sentence. A preprocessor
directive, on the other hand, is an instruction to the compiler. A part of the compiler called the
preprocessor deals with these directives before it begins the real compilation process.

The preprocessor directive #include tells the compiler to insert another file into your source
file. In effect, the #include directive is replaced by the contents of the file indicated. Using an
#include directive to insert another file into your source file is similar to pasting a block of
text into a document with your word processor.

#include is only one of many preprocessor directives, all of which can be identified by the ini-
tial # sign. The use of preprocessor directives is not as common in C++ as it is in C, but we’ll
look at a few additional examples as we go along. The type file usually included by #include
is called a header file.

Header Files

In the FIRST example, the preprocessor directive #include tells the compiler to add the source
file IOSTREAM to the FIRST.CPP source file before compiling. Why do this? IOSTREAM is an exam-
ple of a header file (sometimes called an include file). 1t’s concerned with basic input/output
operations, and contains declarations that are needed by the cout identifier and the << operator.
Without these declarations, the compiler won’t recognize cout and will think << is being used
incorrectly. There are many such include files. The newer Standard C++ header files don’t have
a file extension, but some older header files, left over from the days of the C language, have
the extension .H.

35

N

sJlIsvg
DNINWVYYD0Yd

+4+)

36

Chapter 2

If you want to see what’s in IOSTREAM, you can find the include directory for your compiler
and display it as a source file in the Edit window. (See the appropriate appendix for hints on
how to do this.) Or you can look at it with the WordPad or Notepad utilities. The contents
won’t make much sense at this point, but you will at least prove to yourself that IOSTREAM is a
source file, written in normal ASCII characters.

We’ll return to the topic of header files at the end of this chapter, when we introduce library
functions.

The using Directive

A C++ program can be divided into different namespaces. A namespace is a part of the pro-
gram in which certain names are recognized; outside of the namespace they’re unknown. The
directive

using namespace std;

says that all the program statements that follow are within the std namespace. Various program
components such as cout are declared within this namespace. If we didn’t use the using direc-
tive, we would need to add the std name to many program elements. For example, in the FIRST
program we’d need to say

std::cout << "Every age has a language of its own.";

To avoid adding std:: dozens of times in programs we use the using directive instead. We’ll
discuss namespaces further in Chapter 13, “Multifile Programs.”

Comments

Comments are an important part of any program. They help the person writing a program, and
anyone else who must read the source file, understand what’s going on. The compiler ignores
comments, so they do not add to the file size or execution time of the executable program.

Comment Syntax

Let’s rewrite our FIRST program, incorporating comments into our source file. We’ll call the
new program COMMENTS:

// comments.cpp

// demonstrates comments

#include <iostream> //preprocessor directive
using namespace std; //"using" directive

C++ Programming Basics

int main() //function name "main"
{ //start function body
cout << "Every age has a language of its own\n"; //statement
return 0; //statement
} //end function body

Comments start with a double slash symbol (//) and terminate at the end of the line. (This is
one of the exceptions to the rule that the compiler ignores whitespace.) A comment can start at
the beginning of the line or on the same line following a program statement. Both possibilities
are shown in the COMMENTS example.

When to Use Comments

Comments are almost always a good thing. Most programmers don’t use enough of them. If
you’re tempted to leave out comments, remember that not everyone is as smart as you; they
may need more explanation than you do about what your program is doing. Also, you may not
be as smart next month, when you’ve forgotten key details of your program’s operation, as you
are today.

Use comments to explain to the person looking at the listing what you’re trying to do. The
details are in the program statements themselves, so the comments should concentrate on the
big picture, clarifying your reasons for using a certain statement or group of statements.

Alternative Comment Syntax

There’s a second comment style available in C++:
/* this is an old-style comment */

This type of comment (the only comment originally available in C) begins with the /* charac-
ter pair and ends with */ (not with the end of the line). These symbols are harder to type (since
/ is lowercase while * is uppercase) and take up more space on the line, so this style is not
generally used in C++. However, it has advantages in special situations. You can write a multi-
line comment with only two comment symbols:

/* this

is a

potentially

very long

multiline

comment

*/

This is a good approach to making a comment out of a large text passage, since it saves insert-
ing the // symbol on every line.

37

N

sJlIsvg
DNINWVYYD0Yd

+4+)

38

Chapter 2

You can also insert a /* */ comment anywhere within the text of a program line:

funci()
{ [/* empty function body */ }

If you attempt to use the // style comment in this case, the closing brace won’t be visible to
the compiler—since a // style comment runs to the end of the line—and the code won’t com-
pile correctly.

Integer Variables

Variables are the most fundamental part of any language. A variable has a symbolic name and
can be given a variety of values. Variables are located in particular places in the computer’s
memory. When a variable is given a value, that value is actually placed in the memory space
assigned to the variable. Most popular languages use the same general variable types, such as
integers, floating-point numbers, and characters, so you are probably already familiar with the
ideas behind them.

Integer variables represent integer numbers like 1, 30,000, and —27. Such numbers are used for
counting discrete numbers of objects, like 11 pencils or 99 bottles of beer. Unlike floating-
point numbers, integers have no fractional part; you can express the idea of four using integers,
but not four and one-half.

Defining Integer Variables

Integer variables exist in several sizes, but the most commonly used is type int. The amount of
memory occupied by the integer types is system dependent. On a 32-bit system such as
Windows, an int occupies 4 bytes (which is 32 bits) of memory. This allows an int to hold
numbers in the range from —2,147,483,648 to 2,147,483,647. Figure 2.3 shows an integer vari-
able in memory.

While type int occupies 4 bytes on current Windows computers, it occupied only 2 bytes in
MS-DOS and earlier versions of Windows. The ranges occupied by the various types are listed
in the header file LIMITS; you can also look them up using your compiler’s help system.

Here’s a program that defines and uses several variables of type int:

// intvars.cpp

// demonstrates integer variables
#include <iostream>

using namespace std;

int main()
{
int vari; //define vari
int var2; //define var2

vari = 20; //assign value to vari
var2 = varil + 10; //assign value to var2
cout << "var1+1@ is "; //output text

cout << var2 << endl; //output value of var2
return 0;

}

C++ Programming Basics

Name of variable

/

FIGURE 2.3

Variable of type int in memory.

Type this program into your compiler’s edit screen (or load it from the Web site), compile and

link it, and then run it. Examine the output window. The statements

int varit;
int var2;

define two integer variables, var1 and var2. The keyword int signals the type of variable.
These statements, which are called declarations, must terminate with a semicolon, like other

program statements.

You must declare a variable before using it. However, you can place variable declarations any-
where in a program. It’s not necessary to declare variables before the first executable statement
(as was necessary in C). However, it’s probably more readable if commonly-used variables are
located at the beginning of the program.

39

N

sJlIsvg
ONININYYDOYY

+4+)

40

Chapter 2

Declarations and Definitions

Let’s digress for a moment to note a subtle distinction between the terms definition and decla-
ration as applied to variables.

A declaration introduces a variable’s name (such as var1) into a program and specifies its type
(such as int). However, if a declaration also sets aside memory for the variable, it is also
called a definition. The statements

int varit;
int var2;

in the INTVARS program are definitions, as well as declarations, because they set aside memory
for var1 and var2. We’ll be concerned mostly with declarations that are also definitions, but
later on we’ll see various kinds of declarations that are not definitions.

Variable Names

The program INTVARS uses variables named vari and var2. The names given to variables (and
other program features) are called identifiers. What are the rules for writing identifiers? You
can use upper- and lowercase letters, and the digits from 1 to 9. You can also use the under-
score (_). The first character must be a letter or underscore. Identifiers can be as long as you
like, but most compilers will only recognize the first few hundred characters. The compiler dis-
tinguishes between upper- and lowercase letters, so Var is not the same as var or VAR.

You can’t use a C++ keyword as a variable name. A keyword is a predefined word with a spe-
cial meaning. int, class, if, and while are examples of keywords. A complete list of key-
words can be found in Appendix B, “C++ Precedence Table and Keywords,” and in your
compiler’s documentation.

Many C++ programmers follow the convention of using all lowercase letters for variable
names. Other programmers use a mixture of upper- and lowercase, as in IntVar or dataCount.
Still others make liberal use of underscores. Whichever approach you use, it’s good to be con-
sistent throughout a program. Names in all uppercase are sometimes reserved for constants
(see the discussion of const that follows). These same conventions apply to naming other pro-
gram elements such as classes and functions.

A variable’s name should make clear to anyone reading the listing the variable’s purpose and
how it is used. Thus boilerTemperature is better than something cryptic like bT or t.

Assignment Statements

The statements

vari = 20;
var2 = varil + 10;

C++ Programming Basics

assign values to the two variables. The equal sign (=), as you might guess, causes the value on
the right to be assigned to the variable on the left. The = in C++ is equivalent to the := in
Pascal or the = in BASIC. In the first line shown here, var1, which previously had no value, is
given the value 20.

Integer Constants

The number 20 is an integer constant. Constants don’t change during the course of the pro-
gram. An integer constant consists of numerical digits. There must be no decimal point in an
integer constant, and it must lie within the range of integers.

In the second program line shown here, the plus sign (+) adds the value of var1 and 10, in
which 10 is another constant. The result of this addition is then assigned to var2.

Output Variations

The statement

cout << "vari+1@ is ";

displays a string constant, as we’ve seen before. The next statement
cout << var2 << endl;

displays the value of the variable var2. As you can see in your console output window, the out-
put of the program is

var1i+10 is 30

Note that cout and the << operator know how to treat an integer and a string differently. If we
send them a string, they print it as text. If we send them an integer, they print it as a number.
This may seem obvious, but it is another example of operator overloading, a key feature of
C++. (C programmers will remember that such functions as printf () need to be told not only
the variable to be displayed, but the type of the variable as well, which makes the syntax far
less intuitive.)

As you can see, the output of the two cout statements appears on the same line on the output
screen. No linefeed is inserted automatically. If you want to start on a new line, you must
insert a linefeed yourself. We’ve seen how to do this with the '\n' escape sequence. Now
we’ll see another way: using something called a manipulator.

The endl Manipulator

The last cout statement in the INTVARS program ends with an unfamiliar word: endl. This
causes a linefeed to be inserted into the stream, so that subsequent text is displayed on the
next line. It has the same effect as sending the '\n' character, but is somewhat clearer. It’s an

41

N

sJlIsvg
DNINWVYYD0Yd

+4+)

42

Chapter 2

example of a manipulator. Manipulators are instructions to the output stream that modify the
output in various ways; we’ll see more of them as we go along. Strictly speaking, endl (unlike
‘\n") also causes the output buffer to be flushed, but this happens invisibly so for most pur-
poses the two are equivalent.

Other Integer Types

There are several numerical integer types besides type int. The two most common types are
long and short. (Strictly speaking type char is an integer type as well, but we’ll cover it sepa-
rately.) We noted that the size of type int is system dependent. In contrast, types long and
short have fixed sizes no matter what system is used.

Type long always occupies four bytes, which is the same as type int on 32-bit Windows sys-
tems. Thus it has the same range, from —2,147,483,648 to 2,147,483,647. It can also be written
as long int; this means the same as long. There’s little point in using type long on 32-bit sys-
tems, since it’s the same as int. However, if your program may need to run on a 16-bit system
such as MS-DOS, or on older versions of Windows, specifying type long will guarantee a
four-bit integer type. In 16-bit systems, type int has the same range as type short.

On all systems type short occupies two bytes, giving it a range of —32,768 to 32,767. There’s
probably not much point using type short on modern Windows systems unless it’s important
to save memory. Type int, although twice as large, is accessed faster than type short.

If you want to create a constant of type long, use the letter L following the numerical value,
as in

longvar = 7678L; // assigns long constant 7678 to longvar

Many compilers offer integer types that explicitly specify the number of bits used. (Remember
there are 8 bits to a byte.) These type names are preceded by two underscores. They are
__int8, __int16, _ int32, and _ int64. The _ int8 type corresponds to char, and (at least in
32-bit systems) the type name __int16 corresponds to short and __int32 corresponds to both
int and long. The __int64 type holds huge integers with up to 19 decimal digits. Using these
type names has the advantage that the number of bytes used for a variable is not implementa-
tion dependent. However, this is not usually an issue, and these types are seldom used.

Character Variables

Type char stores integers that range in value from —128 to 127. Variables of this type occupy
only 1 byte (eight bits) of memory. Character variables are sometimes used to store numbers
that confine themselves to this limited range, but they are much more commonly used to store
ASCII characters.

C++ Programming Basics

As you may already know, the ASCII character set is a way of representing characters such as

‘a', 'B', '$', '3"', and so on, as numbers. These numbers range from 0 to 127. Most Windows
systems extend this range to 255 to accommodate various foreign-language and graphics char-

acters. Appendix A, “ASCII Table,” shows the ASCII character set.

Complexities arise when foreign languages are used, and even when programs are transferred
between computer systems in the same language. This is because the characters in the range
128 to 255 aren’t standardized and because the one-byte size of type char is too small to
accommodate the number of characters in many languages, such as Japanese. Standard C++
provides a larger character type called wchar_t to handle foreign languages. This is important
if you’re writing programs for international distribution. However, in this book we’ll ignore
type wchar_t and assume that we’re dealing with the ASCII character set found in current ver-
sions of Windows.

Character Constants

Character constants use single quotation marks around a character, like 'a' and 'b'. (Note that
this differs from string constants, which use double quotation marks.) When the C++ compiler
encounters such a character constant, it translates it into the corresponding ASCII code. The
constant 'a' appearing in a program, for example, will be translated into 97, as shown in
Figure 2.4.

/.

Name of variable *

" Character *a" stored in memory

FIGURE 2.4

Variable of type char in memory.

43

N

sJlIsvg
ONININYYDOYY

+4+)

44

Chapter 2

Character variables can be assigned character constants as values. The following program
shows some examples of character constants and variables.

// charvars.cpp

// demonstrates character variables
#include <iostream> //for cout, etc.
using namespace std;

int main()
{
char charvari = 'A'; //define char variable as character
char charvar2 = '"\t'; //define char variable as tab
cout << charvart; //display character
cout << charvar2; //display character
charvari = 'B'; //set char variable to char constant
cout << charvart; //display character
cout << '\n'; //display newline character
return 0;
}
Initialization

Variables can be initialized at the same time they are defined. In this program two variables of
type char—charvari and charvar2—are initialized to the character constants 'A' and '\t"'.

Escape Sequences

This second character constant, '\t', is an odd one. Like '\n', which we encountered earlier,
it’s an example of an escape sequence. The name reflects the fact that the backslash causes an
“escape” from the normal way characters are interpreted. In this case the t is interpreted not as
the character ‘t’ but as the tab character. A tab causes printing to continue at the next tab stop.
In console-mode programs, tab stops are positioned every eight spaces. Another character con-
stant, '\n', is sent directly to cout in the last line of the program.

Escape sequences can be used as separate characters or embedded in string constants. Table 2.1
shows a list of common escape sequences.

TaBLE 2.1 Common Escape Sequences

Escape Sequence Character
\ a Bell (beep)
\'b Backspace

\ f Formfeed

C++ Programming Basics

45
TABLE 2.1 Continued
Escape Sequence Character
\'n Newline
\r Return
\ ot Tab
\ A Backslash
\ ! Single quotation mark
\ Double quotation marks 2
\ xdd Hexadecimal notation
=
wa
Since the backslash, the single quotation marks, and the double quotation marks all have spe- bR
.o . . n =
cialized meanings when used in constants, they must be represented by escape sequences when w2
we want to display them as characters. Here’s an example of a quoted phrase in a string con- =

stant:

cout << "\"Run, Spot, run,\" she said.";
This translates to

"Run, Spot, run," she said.

Sometimes you need to represent a character constant that doesn’t appear on the keyboard,
such as the graphics characters above ASCII code 127. To do this, you can use the '\xdd' rep-
resentation, where each d stands for a hexadecimal digit. If you want to print a solid rectangle,
for example, you’ll find such a character listed as decimal number 178, which is hexadecimal
number B2 in the ASCII table. This character would be represented by the character constant
"\xB2'. We’ll see some examples of this later.

The CHARVARS program prints the value of charvar1 ('A') and the value of charvar2 (a tab). It
then sets charvari to a new value ('B'), prints that, and finally prints the newline. The output
looks like this:

A B

Input with cin

Now that we’ve seen some variable types in use, let’s see how a program accomplishes input.
The next example program asks the user for a temperature in degrees Fahrenheit, converts it to
Celsius, and displays the result. It uses integer variables.

+4+)

46

Chapter 2

// fahren.cpp

// demonstrates cin, newline
#include <iostream>

using namespace std;

int main()

{

int ftemp; //for temperature in fahrenheit

cout << "Enter temperature in fahrenheit: ";

cin >> ftemp;

int ctemp = (ftemp-32) * 5 / 9;

cout << "Equivalent in Celsius is: " << ctemp << '\n';
return 0;

}
The statement
cin >> ftemp;

causes the program to wait for the user to type in a number. The resulting number is placed in
the variable ftemp. The keyword cin (pronounced “C in”) is an object, predefined in C++ to

correspond to the standard input stream. This stream represents data coming from the keyboard

(unless it has been redirected). The >> is the extraction or get from operator. It takes the value
from the stream object on its left and places it in the variable on its right.

Here’s some sample interaction with the program:

Enter temperature in fahrenheit: 212
Equivalent in Celsius is: 100

Figure 2.5 shows input using cin and the extraction operator >>.

Variable

FIGURE 2.5

Input with cin.

C++ Programming Basics

Variables Defined at Point of Use

The FAHREN program has several new wrinkles besides its input capability. Look closely at the
listing. Where is the variable ctemp defined? Not at the beginning of the program, but in the
next-to-the-last line, where it’s used to store the result of the arithmetic operation. As we noted
earlier, you can define variables throughout a program, not just at the beginning. (Many lan-
guages, including C, require all variables to be defined before the first executable statement.)

Defining variables where they are used can make the listing easier to understand, since you
don’t need to refer repeatedly to the start of the listing to find the variable definitions.
However, the practice should be used with discretion. Variables that are used in many places in
a function are better defined at the start of the function.

Cascading <<

The insertion operator << is used repeatedly in the second cout statement in FAHREN. This is
perfectly legal. The program first sends the phrase Equivalent in Celsius is: to cout, then it
sends the value of ctemp, and finally the newline character '\n'.

The extraction operator >> can be cascaded with cin in the same way, allowing the user to
enter a series of values. However, this capability is not used so often, since it eliminates the
opportunity to prompt the user between inputs.

Expressions

Any arrangement of variables, constants, and operators that specifies a computation is called
an expression. Thus, alpha+12 and (alpha-37)*beta/2 are expressions. When the computa-
tions specified in the expression are performed, the result is usually a value. Thus if alpha is 7,
the first expression shown has the value 19.

Parts of expressions may also be expressions. In the second example, alpha-37 and beta/2 are
expressions. Even single variables and constants, like alpha and 37, are considered to be
expressions.

Note that expressions aren’t the same as statements. Statements tell the compiler to do some-
thing and terminate with a semicolon, while expressions specify a computation. There can be
several expressions in a statement.

Precedence

Note the parentheses in the expression

(ftemp-32) * 5 / 9

47

N

sJlIsvg
DNINWVYYD0Yd

+4+)

48

Chapter 2

Without the parentheses, the multiplication would be carried out first, since * has higher prior-
ity than -. With the parentheses, the subtraction is done first, then the multiplication, since all
operations inside parentheses are carried out first. What about the precedence of the * and /
signs? When two arithmetic operators have the same precedence, the one on the left is exe-
cuted first, so in this case the multiplication will be carried out next, then the division.
Precedence and parentheses are normally applied this same way in algebra and in other com-
puter languages, so their use probably seems quite natural. However, precedence is an impor-
tant topic in C++. We’ll return to it later when we introduce different kinds of operators.

Floating Point Types

We’ve talked about type int and type char, both of which represent numbers as integers—that
is, numbers without a fractional part. Now let’s examine a different way of storing numbers—
as floating-point variables.

Floating-point variables represent numbers with a decimal place—like 3.1415927, 0.0000625,
and —10.2. They have both an integer part, to the left of the decimal point, and a fractional part,
to the right. Floating-point variables represent what mathematicians call real numbers, which
are used for measurable quantities such as distance, area, and temperature. They typically have
a fractional part.

There are three kinds of floating-point variables in C++: type float, type double, and type
long double. Let’s start with the smallest of these, type float.

Type float

Type float stores numbers in the range of about 3.4x10-38 to 3.4x1038, with a precision of
seven digits. It occupies 4 bytes (32 bits) in memory, as shown in Figure 2.6.

The following example program prompts the user to type in a floating-point number represent-
ing the radius of a circle. It then calculates and displays the circle’s area.

// circarea.cpp

// demonstrates floating point variables

#include <iostream> //for cout, etc.
using namespace std;

int main()

{

float rad; //variable of type float
const float PI = 3.14159F; //type const float

cout << "Enter radius of circle: "; //prompt

cin >> rad; //get radius

C++ Programming Basics

float area = PI * rad * rad; //find area

cout << "Area is " << area << endl; //display answer
return 0;

}

/ ———— 4 bytes
T

Name of variable *

FIGURE 2.6
Variable of type float in memory.

Here’s a sample interaction with the program:

Enter radius of circle: 0.5
Area is 0.785398

This is the area in square feet of a 12-inch LP record (which has a radius of 0.5 feet). At one
time this was an important quantity for manufacturers of vinyl.

Type double and long double

The larger floating point types, double and long double, are similar to float except that they
require more memory space and provide a wider range of values and more precision. Type
double requires 8 bytes of storage and handles numbers in the range from 1.7x10-308 to
1.7x10308 with a precision of 15 digits. Type long double is compiler-dependent but is often
the same as double. Type double is shown in Figure 2.7.

49

N

sJlIsvg
ONININYYDOYY

+4+)

50

Chapter 2

FIGURE 2.7

Variable of type double.

Floating-Point Constants

The number 3.14159F in CIRCAREA is an example of a floating-point constant. The decimal
point signals that it is a floating-point constant, and not an integer, and the F specifies that it’s
type float, rather than double or long double. The number is written in normal decimal
notation. You don’t need a suffix letter with constants of type double; it’s the default. With
type long double, use the letter L.

You can also write floating-point constants using exponential notation. Exponential notation is
a way of writing large numbers without having to write out a lot of zeros. For example,
1,000,000,000 can be written as 1.0E9 in exponential notation. Similarly, 1234.56 would be
written 1.23456E3. (This is the same as 1.23456 times 103.) The number following the E is
called the exponent. It indicates how many places the decimal point must be moved to change
the number to ordinary decimal notation.

The exponent can be positive or negative. The exponential number 6.35239E-5 is equivalent to
0.0000635239 in decimal notation. This is the same as 6.35239 times 10-5.

C++ Programming Basics

The const Qualifier

Besides demonstrating variables of type float, the CIRCAREA example also introduces the qual-
ifier const. It’s used in the statement

const float PI = 3.14159F; //type const float

The keyword const (for constant) precedes the data type of a variable. It specifies that the
value of a variable will not change throughout the program. Any attempt to alter the value of a
variable defined with this qualifier will elicit an error message from the compiler.

The qualifier const ensures that your program does not inadvertently alter a variable that you
intended to be a constant, such as the value of PI in CIRCAREA. It also reminds anyone reading
the listing that the variable is not intended to change. The const modifier can apply to other
entities besides simple variables. We’ll learn more about this as we go along.

The #define Directive

Although the construction is not recommended in C++, constants can also be specified using
the preprocessor directive #define. This directive sets up an equivalence between an identifier
and a text phrase. For example, the line

#define PI 3.14159

appearing at the beginning of your program specifies that the identifier PI will be replaced by
the text 3.14159 throughout the program. This construction has long been popular in C.
However, you can’t specify the data type of the constant using #define, which can lead to pro-
gram bugs; so even in C #define has been superseded by const used with normal variables.
However, you may encounter this construction in older programs.

Type bool

For completeness we should mention type bool here, although it won’t be important until we
discuss relational operators in the next chapter.

We’ve seen that variables of type int can have billions of possible values, and those of type
char can have 256. Variables of type bool can have only two possible values: true and false.
In theory a bool type requires only one bit (not byte) of storage, but in practice compilers
often store them as bytes because a byte can be quickly accessed, while an individual bit must
be extracted from a byte, which requires additional time.

As we’ll see, type bool is most commonly used to hold the results of comparisons. Is alpha
less than beta? If so, a bool value is given the value true; if not, it’s given the value false.

51

N

sJlIsvg
DNINWVYYD0Yd

+4+)

52

Chapter 2

Type bool gets its name from George Boole, a 19th century English mathematician who
invented the concept of using logical operators with true-or-false values. Thus such true/false
values are often called Boolean values.

The setw Manipulator

We’ve mentioned that manipulators are operators used with the insertion operator (<<) to mod-
ify—or manipulate—the way data is displayed. We’ve already seen the endl manipulator; now
we’ll look at another one: setw, which changes the field width of output.

You can think of each value displayed by cout as occupying a field: an imaginary box with a
certain width. The default field is just wide enough to hold the value. That is, the integer 567
will occupy a field three characters wide, and the string "pajamas" will occupy a field seven
characters wide. However, in certain situations this may not lead to optimal results. Here’s an
example. The WIDTH] program prints the names of three cities in one column, and their popula-
tions in another.

// width1.cpp

// demonstrates need for setw manipulator
#include <iostream>

using namespace std;

int main()

{
long pop1=2425785, pop2=47, pop3=9761;

cout << "LOCATION
<< "Portcity
<< "Hightown
<< "Lowville
return 0;

}

Here’s the output from this program:

<< "POP." << endl
<< popl << endl
<< pop2 << endl
<< pop3 << endl;

LOCATION POP.
Portcity 2425785
Hightown 47
Lowville 9761

Unfortunately, this format makes it hard to compare the numbers; it would be better if they
lined up to the right. Also, we had to insert spaces into the names of the cities to separate them
from the numbers. This is an inconvenience.

Here’s a variation of this program, WIDTH2, that uses the setw manipulator to eliminate these

C++ Programming Basics

problems by specifying field widths for the names and the numbers:

// width2.cpp
// demonstrates setw manipulator
#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

/] for setw

long pop1=2425785, pop2=47, pop3=9761;

cout <<
<<
<<
<<

<<

setw(8) << "LOCATION"
"POPULATION" << endl
setw(8) << "Portcity"
setw(8) << "Hightown"
setw(8) << "Lowville"

return 0;

}

The setw manipulator causes the number (or string) that follows it in the stream to be printed
within a field n characters wide, where n is the argument to setw(n). The value is right-
justified within the field. Figure 2.8 shows how this looks. Type long is used for the population
figures, which prevents a potential overflow problem on systems that use 2-byte integer types,

<<

<<
<<
<<

setw(12)

setw(12) << popl << endl
setw(12) << pop2 << endl
setw(12) << pop3 << endl;

in which the largest integer value is 32,767.

—setw(8)—<—L0CATION

[setuHZ)-‘—PﬂFULﬁﬂﬂﬂ

12 LI

FIGURE 2.8

Field widths and setw.

53

sJlIsvg
ONININYYDOYY

N

+4+)

54

Chapter 2

Here’s the output of WIDTH2:

LOCATION POPULATION

Portcity 2425785
Hightown 47
Lowville 9761

Cascading the Insertion Operator

Note that there’s only one cout statement in WIDTH]1 and WIDTH2, although it’s written on mul-
tiple lines. In doing this, we take advantage of the fact that the compiler ignores whitespace,
and that the insertion operator can be cascaded. The effect is the same as using four separate
statements, each beginning with cout.

Multiple Definitions

We initialized the variables pop1, pop2, and pop3 to specific values at the same time we
defined them. This is similar to the way we initialized char variables in the CHARVARS example.
Here, however, we’ve defined and initialized all three variables on one line, using the same
long keyword and separating the variable names with commas. This saves space where a num-
ber of variables are all the same type.

The 1omaniP Header File

The declarations for the manipulators (except endl) are not in the usual I0STREAM header file,
but in a separate header file called IoMANIP. When you use these manipulators you must
#include this header file in your program, as we do in the WIDTH2 example.

Variable Type Summary

Our program examples so far have used four data types—int, char, float, and long. In
addition we’ve mentioned types bool, short, double, and long double. Let’s pause now
to summarize these data types. Table 2.2 shows the keyword used to define the type, the
numerical range the type can accommodate, the digits of precision (in the case of floating-
point numbers), and the bytes of memory occupied in a 32-bit environment.

TABLE 2.2 Basic C++ Variable Types

Numerical Range Digits of Bytes of
Keyword Low High Precision Memory
bool false true n/a 1
char —128 127 n/a 1

short -32,768 32,767 n/a 2

C++ Programming Basics

55
TaBLE 2.2 Continued
Numerical Range Digits of Bytes of
Keyword Low High Precision Memory
int —2,147,483,648 2,147,483,647 n/a 4
long —2,147,483,648 2,147,483,647 n/a 4
float 34x10738 3.4x10% 7 4
double 1.7 x 107308 1.7 x 10308 15 8
unsigned Data Types
By eliminating the sign of the character and integer types, you can change their range to start 3
at 0 and include only positive numbers. This allows them to represent numbers twice as big as £
the signed type. Table 2.3 shows the unsigned versions. ¢

TaBLE 2.3 Unsigned Integer Types

Numerical Range Bytes of
Keyword Low High Memory
unsigned char 0 255 1
unsigned short 0 65,535 2
unsigned int 0 4,294,967,295 4
unsigned long 0 4,294,967,295 4

The unsigned types are used when the quantities represented are always positive—such as
when representing a count of something—or when the positive range of the signed types is not
quite large enough.

To change an integer type to an unsigned type, precede the data type keyword with the key-
word unsigned. For example, an unsigned variable of type char would be defined as

unsigned char ucharvar;

Exceeding the range of signed types can lead to obscure program bugs. In certain (probably
rare) situations such bugs can be eliminated by using unsigned types. For example, the follow-
ing program stores the constant 1,500,000,000 (1.5 billion) both as an int in signedvar and as
an unsigned int in unsignvar.

// signtest.cpp

/| tests signed and unsigned integers
#include <iostream>

N

DNININVYYDOYY
+4+)

56

Chapter 2

using namespace std;

int main()
{
int signedvar = 1500000000; //signed
unsigned int unsignVar = 1500000000; //unsigned

signedVar = (signedvVar * 2)

3; //calculation exceeds range
unsignVar = (unsignVar * 2) 3

; //calculation within range

~ ~

cout << "signedVar " << signedVar << endl; //wrong
cout << "unsignVar = " << unsignVar << endl; //OK
return 0;

}

The program multiplies both variables by 2, then divides them by 3. Although the result is
smaller than the original number, the intermediate calculation is larger than the original num-
ber. This is a common situation, but it can lead to trouble. In SIGNTEST we expect that two-
thirds the original value, or 1,000,000,000, will be restored to both variables. Unfortunately, in
signedvar the multiplication created a result—3,000,000,000—that exceeded the range of the
int variable (-2,147,483,648 to 2,147,483,647). Here’s the output:

signedVar = -431,655,765
unsignVar = 1,000,000,000

The signed variable now displays an incorrect answer, while the unsigned variable, which is
large enough to hold the intermediate result of the multiplication, records the result correctly.
The moral is this: Be careful that all values generated in your program are within the range of
the variables that hold them. (The results will be different on 16-bit or 64-bit computers, which
use different numbers of bytes for type int.)

Type Conversion

C++, like C, is more forgiving than some languages in the way it treats expressions involving
several different data types. As an example, consider the MIXED program:

// mixed.cpp

// shows mixed expressions
#include <iostream>

using namespace std;

int main()
{
int count = 7;
float avgWeight = 155.5F;

C++ Programming Basics

double totalWeight = count * avgWeight;
cout << "totalWeight=" << totalWeight << endl;
return 0;

}

Here a variable of type int is multiplied by a variable of type float to yield a result of type
double. This program compiles without error; the compiler considers it normal that you want
to multiply (or perform any other arithmetic operation on) numbers of different types.

Not all languages are this relaxed. Some don’t permit mixed expressions, and would flag the
line that performs the arithmetic in MIXED as an error. Such languages assume that when you
mix types you’re making a mistake, and they try to save you from yourself. C++ and C, how-
ever, assume that you must have a good reason for doing what you’re doing, and they help
carry out your intentions. This is one reason for the popularity of C++ and C. They give you
more freedom. Of course, with more freedom, there’s also more opportunity for you to make a
mistake.

Automatic Conversions

Let’s consider what happens when the compiler confronts such mixed-type expressions as the
one in MIXED. Types are considered “higher” or “lower,” based roughly on the order shown in
Table 2.4.

TABLE 2.4 Order of Data Types

Data Type Order

long double Highest
double

float

long

int

short

char Lowest

The arithmetic operators such as + and * like to operate on two operands of the same type.
When two operands of different types are encountered in the same expression, the lower-type
variable is converted to the type of the higher-type variable. Thus in MIXED, the int value of
count is converted to type float and stored in a temporary variable before being multiplied by
the float variable avgWeight. The result (still of type float) is then converted to double so
that it can be assigned to the double variable totalweight. This process is shown in Figure 2.9.

57

N

sJlIsvg
DNINWVYYD0Yd

+4+)

58

Chapter 2

totalWeight = count =+ avgWeight;
PO TS R ——— i [11555 ||
double int float
temporary variable
1 Temporary variable ?:0 ’ —= % 2 Multipiication of
created; value temporary variable;
converted to fioat float fioat+float
temporary variable
float 3 Result in temporary variable

totalWeight

I 7 e
double 4 Result converted to
double, assigned
o totalWeight

FIGURE 2.9

Data conversion.

These conversions take place invisibly, and ordinarily you don’t need to think too much about
them; C++ automatically does what you want. However, sometimes the compiler isn’t so happy
about conversions, as we’ll see in a moment. Also, when we start to use objects, we will in
effect be defining our own data types. We may want to use these new data types in mixed
expressions, just as we use normal variables in mixed expressions. When this is the case, we
must be careful to create our own conversion routines to change objects of one type into
objects of another. The compiler won’t do it for us, as it does here with the built-in data types.

Casts

Casts sounds like something to do with social classes in India, but in C++ the term applies to
data conversions specified by the programmer, as opposed to the automatic data conversions
we just described. Casts are also called type casts. What are casts for? Sometimes a program-
mer needs to convert a value from one type to another in a situation where the compiler will
not do it automatically or without complaining.

There are several kinds of casts in Standard C++: static casts, dynamic casts, reinterpret casts,
and const casts. Here we’ll be concerned only with static casts; we’ll learn about the others,
which are used in more specialized situations, in later chapters.

C++ Programming Basics

C++ casts have a rather forbidding appearance. Here’s a statement that uses a C++ cast to
change a variable of type int into a variable of type char:

aCharVar = static_cast<char>(anIntvar);

Here the variable to be cast (anIntVvar) is placed in parentheses and the type it’s to be changed
to (char) is placed in angle brackets. The result is that anIntvar is changed to type char
before it’s assigned to aCharvar. In this case the assignment statement would have carried out
the cast itself, but there are situations where the cast is essential.

Recall that in the SIGNTEST example an intermediate result exceeded the capacity of the vari-
able type, resulting in an erroneous result. We fixed the problem by using unsigned int
instead of int. This worked because the intermediate result—3,000,000,000—would fit in the
range of the unsigned variable.

But suppose an intermediate result won’t fit the unsigned type either. In such a case we might
be able to solve the problem by using a cast. Here’s an example:

// cast.cpp

/] tests signed and unsigned integers
#include <iostream>

using namespace std;

int main()
{
int intVar = 1500000000; //1,500,000,000
intvar = (intVar * 10) / 10; //result too large
cout << "intVar = " << intVar << endl; //wrong answer
intVar = 1500000000; //cast to double
intvVar = (static_cast<double>(intvar) * 10) / 10;
cout << "intVar = " << intVar << endl; //right answer
return 0;
}

When we multiply the variable intvar by 10, the result—15,000,000,000—is far too large to
fit in a variable of type int or unsigned int. This leads to the wrong answer, as shown by the
output of the first part of the program.

We could redefine the data type of the variables to be double; this provides plenty of room,
since this type holds numbers with up to 15 digits. But suppose that for some reason, such as
keeping the program small, we don’t want to change the variables to type double. In this case
there’s another solution: We can cast intVar to type double before multiplying. This is some-
times called coercion; the data is coerced into becoming another type. The expression

static_cast<double>(intVar)

59

N

sJlIsvg
DNINWVYYD0Yd

+4+)

60

Chapter 2

casts intVar to type double. It generates a temporary variable of type double with the same
value as intVvar. It is this temporary variable that is multiplied by 10. Since it is type double,
the result fits. This result is then divided by 10 and assigned to the normal int variable intVar.
Here’s the program’s output:

intVar = 211509811
intVar = 1500000000

The first answer, without the cast, is wrong; but in the second answer, the cast produces the
correct result.

Before Standard C++, casts were handled using quite a different format. Instead of
aCharVar = static_cast<char>(anIntVar);

you could say

aCharVar = (char)anIntVar;

or alternatively

aCharVar = char(anIntvar);

One problem with these approaches is that they are hard to see; the syntax blends into the rest
of the listing. They are also hard to search for using a Find operation with your source code
editor. The new format solves this problem: static_cast is easy to see and easy to search for.
These old casts still work, but their use is discouraged (or deprecated, to use the technical
term).

Casts should be used only when absolutely necessary. They are a controlled way of evading
type safety (which means making sure that variables don’t change types by mistake) and can
lead to trouble because they make it impossible for the compiler to spot potential problems.
However, sometimes casts can’t be avoided. We’ll see some examples of situations where casts
are necessary as we go along.

Arithmetic Operators

As you have probably gathered by this time, C++ uses the four normal arithmetic operators +,
-, *, and / for addition, subtraction, multiplication, and division. These operators work on all
the data types, both integer and floating-point. They are used in much the same way that they
are used in other languages, and are closely analogous to their use in algebra. However, there
are some other arithmetic operators whose use is not so obvious.

C++ Programming Basics

The Remainder Operator

There is a fifth arithmetic operator that works only with integer variables (types char, short,
int, and long). It’s called the remainder operator, and is represented by the percent symbol (%).
This operator (also called the modulus operator) finds the remainder when one number is
divided by another. The REMAIND program demonstrates the effect.

// remaind.cpp

// demonstrates remainder operator
#include <iostream>

using namespace std;

int main()

{

cout << 6 % 8 << endl /] 6
<< 7 % 8 << endl /7
<< 8 % 8 << endl /@
<< 9 % 8 << endl /] 1
<< 10 % 8 << endl; /] 2

return 0;

}

Here the numbers 610 are divided by 8, using the remainder operator. The answers are 6, 7, 0,
1, and 2—the remainders of these divisions. The remainder operator is used in a wide variety
of situations. We’ll show examples as we go along.

A note about precedence: In the expression
cout << 6 % 8

the remainder operator is evaluated first because it has higher precedence than the << operator.
If it did not, we would need to put parentheses around 6 % 8 to ensure it was evaluated before
being acted on by <<.

Arithmetic Assignment Operators

C++ offers several ways to shorten and clarify your code. One of these is the arithmetic
assignment operator. This operator helps to give C++ listings their distinctive appearance.

The following kind of statement is common in most languages.
total = total + item; // adds "item" to "total"

In this situation you add something to an existing value (or you perform some other arithmetic
operation on it). But the syntax of this statement offends those for whom brevity is important,
because the name total appears twice. So C++ offers a condensed approach: the arithmetic
assignment operator, which combines an arithmetic operator and an assignment operator and

61

N

sJlIsvg
DNINWVYYD0Yd

+4+)

62

Chapter 2

eliminates the repeated operand. Here’s a statement that has exactly the same effect as the pre-
ceding one.

total += item; // adds "item" to "total"

Figure 2.10 emphasizes the equivalence of the two forms.

item;

total + = item;

FiGure 2.10

Arithmetic assignment operator.

There are arithmetic assignment operators corresponding to all the arithmetic operations: +=,
-=, *=, /=, and %= (and some other operators as well). The following example shows the arith-
metic assignment operators in use:

// assign.cpp

// demonstrates arithmetic assignment operators
#include <iostream>

using namespace std;

int main()

{

int ans = 27;

ans += 10; //same as: ans = ans + 10;
cout << ans << ", ";
ans -= 7; //same as: ans = ans - 7;
cout << ans << ", ";
ans *= 2; //same as: ans = ans * 2;
cout << ans << ", ";

C++ Programming Basics

ans /= 3; //same as: ans = ans / 3;
cout << ans << ", ";

ans %= 3; //same as: ans = ans % 3;
cout << ans << endl;

return 0;

}
Here’s the output from this program:
37, 30, 60, 20, 2

You don’t need to use arithmetic assignment operators in your code, but they are a common
feature of the language; they’ll appear in numerous examples in this book.

Increment Operators

Here’s an even more specialized operator. You often need to add 1 to the value of an existing
variable. You can do this the “normal” way:

count = count + 1; // adds 1 to "count"
Or you can use an arithmetic assignment operator:
count += 1; // adds 1 to "count"

But there’s an even more condensed approach:
++count; // adds 1 to "count"

The ++ operator increments (adds 1 to) its argument.

Prefix and Postfix
As if this weren’t weird enough, the increment operator can be used in two ways: as a prefix,

meaning that the operator precedes the variable; and as a postfix, meaning that the operator fol-

lows the variable. What’s the difference? Often a variable is incremented within a statement
that performs some other operation on it. For example

totalWeight = avgWeight * ++count;

The question here is this: Is the multiplication performed before or after count is incremented?
In this case count is incremented first. How do we know that? Because prefix notation is used:

++count. If we had used postfix notation, count++, the multiplication would have been per-
formed first, then count would have been incremented. This is shown in Figure 2.11.

63

N

sJlIsvg
DNINWVYYD0Yd

+4+)

Chapter 2

Prefix:
totalWeight

avgWeight * ++count;

totalWeight avgWeight count
1) | [— i 7 l
2 | [— Mss 1 8 1= increment
y [= s = | 8 | Mutiply
Postfix:

totalWeight avgWeight * count++;

totalWeight avgWeight count
[T S | 7 1
y [mms) = [t = | 7 | Muiiply
— R—
3y | 1088.5 | | 155.5 | [8 | = Increment

FIGURE 2.11

The increment operator.

Here’s an example that shows both the prefix and postfix versions of the increment operator:

// increm.cpp

// demonstrates the increment operator
#include <iostream>

using namespace std;

int main()
{
int count = 10;
cout << "count=" << count << endl; //displays 10
cout << "count=" << ++count << endl; //displays 11 (prefix)
cout << "count=" << count << endl; //displays 11
cout << "count=" << count++ << endl; //displays 11 (postfix)
cout << "count=" << count << endl; //displays 12
return 0;
}

Here’s the program’s output:

count=10
count=11

C++ Programming Basics

count=11
count=11
count=12

The first time count is incremented, the prefix ++ operator is used. This causes the increment
to happen at the beginning of the statement evaluation, before the output operation has been
carried out. When the value of the expression ++count is displayed, it has already been incre-
mented, and << sees the value 11. The second time count is incremented, the postfix ++ opera-
tor is used. When the expression count++ is displayed, it retains its unincremented value of 11.
Following the completion of this statement, the increment takes effect, so that in the last state-
ment of the program we see that count has acquired the value 12.

The Decrement (--) Operator
The decrement operator, - -, behaves very much like the increment operator, except that it sub-
tracts 1 from its operand. It too can be used in both prefix and postfix forms.

Library Functions

Many activities in C++ are carried out by library functions. These functions perform file
access, mathematical computations, and data conversion, among other things. We don’t want to
dig too deeply into library functions before we explain how functions work (see Chapter 5),
but you can use simple library functions without a thorough understanding of their operation.

The next example, SQRT, uses the library function sqrt () to calculate the square root of a num-
ber entered by the user.

/1] sqrt.cpp

// demonstrates sqrt() library function
#include <iostream> //for cout, etc.
#include <cmath> //for sqrt()

using namespace std;

int main()

{

double number, answer; //sqrt() requires type double

cout << "Enter a number: ";

cin >> number; //get the number
answer = sqrt(number); //find square root
cout << "Square root is "

<< answer << endl; //display it
return 0;

}

65

N

sJlIsvg
DNINWVYYD0Yd

+4+)

66

Chapter 2

The program first obtains a number from the user. This number is then used as an argument to
the sqrt () function, in the statement

answer = sqrt(number);

An argument is the input to the function; it is placed inside the parentheses following the func-
tion name. The function then processes the argument and returns a value; this is the output
from the function. In this case the return value is the square root of the original number.
Returning a value means that the function expression takes on this value, which can then be
assigned to another variable—in this case answer. The program then displays this value. Here’s
some output from the program:

Enter a number: 1000
Square root is 31.622777

Multiplying 31.622777 by itself on your pocket calculator will verify that this answer is pretty
close.

The arguments to a function, and their return values, must be the correct data type. You can
find what these data types are by looking at the description of the library function in your com-
piler’s help file, which describes each of the hundreds of library functions. For sqrt (), the
description specifies both an argument and a return value of type double, so we use variables
of this type in the program.

Header Files

As with cout and other such objects, you must #include a header file that contains the decla-
ration of any library functions you use. In the documentation for the sqrt () function, you’ll
see that the specified header file is CMATH. In SQRT the preprocessor directive

#include <cmath>
takes care of incorporating this header file into our source file.

If you don’t include the appropriate header file when you use a library function, you’ll get an
error message like this from the compiler: ‘sqrt’ unidentified identifier.

Library Files

We mentioned earlier that various files containing library functions and objects will be linked
to your program to create an executable file. These files contain the actual machine-executable
code for the functions. Such library files often have the extension .LiB. The sqrt () function is
found in such a file. It is automatically extracted from the file by the linker, and the proper
connections are made so that it can be called (that is, invoked or accessed) from the SQRT pro-
gram. Your compiler takes care of all these details for you, so ordinarily you don’t need to
worry about the process. However, you should understand what these files are for.

C++ Programming Basics

Header Files and Library Files

The relationship between library files and header files can be confusing, so let’s review it. To
use a library function like sqrt (), you must link the library file that contains it to your pro-
gram. The appropriate functions from the library file are then connected to your program by
the linker.

However, that’s not the end of the story. The functions in your source file need to know the
names and types of the functions and other elements in the library file. They are given this
information in a header file. Each header file contains information for a particular group of
functions. The functions themselves are grouped together in a library file, but the information
about them is scattered throughout a number of header files. The I0STREAM header file contains
information for various I/O functions and objects, including cout, while the CMATH header file
contains information for mathematics functions such as sqrt (). If you were using string func-
tions such as strcpy (), you would include STRING.H, and so on.

Figure 2.12 shows the relationship of header files and library files to the other files used in
program development.

The use of header files is common in C++. Whenever you use a library function or a prede-
fined object or operator, you will need to use a header file that contains appropriate declara-
tions.

Two Ways to Use #include

You can use #include in two ways. The angle brackets < and > surrounding the filenames
IOSTREAM and CMATH in the SQRT example indicate that the compiler should begin searching for
these files in the standard INCLUDE directory. This directory, which is traditionally called
INCLUDE, holds the header files supplied by the compiler manufacturer for the system.

Instead of angle brackets around the filename, you can also use quotation marks, as in
#include "myheader.h"

Quotation marks instruct the compiler to begin its search for the header file in the current
directory; this is usually the directory that contains the source file. You normally use quotation
marks for header files you write yourself (a situation we’ll explore in Chapter 13, “Multifile
Programs”). Quotation marks or angle brackets work in any case, but making the appropriate
choice speeds up the compilation process slightly by giving the compiler a hint about where to
find the file.

Appendix C, “Microsoft Visual C++,” and Appendix D, “Borland C++Builder,” explain how to
handle header files with specific compilers.

67

N

sJlIsvg
DNINWVYYD0Yd

+4+)

68

Chapter 2

Source file Library header file

#include <somelib.h>

User header file

#include
- “myprog.h"
Compiler
Object file Library file
Linker

l

FIGURE 2.12
Header and library files.

Summary

In this chapter we’ve learned that a major building block of C++ programs is the function. A
function named main() is always the first one executed when a program is executed.

A function is composed of statements, which tell the computer to do something. Each state-
ment ends with a semicolon. A statement may contain one or more expressions, which are
sequences of variables and operators that usually evaluate to a specific value.

Output is most commonly handled in C++ with the cout object and << insertion operator,
which together cause variables or constants to be sent to the standard output device—usually
the screen. Input is handled with cin and the extraction operator >>, which cause values to be
received from the standard input device—usually the keyboard.

Various data types are built into C++: char, int, long, and short are the integer types and
float, double, and long double are the floating-point types. All of these types are signed.
Unsigned versions of the integer types, signaled by the keyword unsigned, don’t hold negative
numbers but hold positive ones twice as large. Type bool is used for Boolean variables and can

C++ Programming Basics

hold only the constants true or false.

The const keyword stipulates that a variable’s value will not change in the course of a pro-

gram. Strictly speaking, the variable is no longer a variable but a constant.

A variable is automatically converted from one type to another in mixed expressions (those
involving different data types) and by casting, which allows the programmer to specify a con-

version.

C++ employs the usual arithmetic operators +, -, *, and /. In addition, the remainder operator,

%, returns the remainder of integer division.

The arithmetic assignment operators +=, +-, and so on perform an arithmetic operation and an
assignment simultaneously. The increment and decrement operators ++ and - - increase or

decrease a variable by 1.

Preprocessor directives consist of instructions to the compiler, rather than to the computer. The
#include directive tells the compiler to insert another file into the present source file, and the
#define directive tells it to substitute one thing for another. The using directive tells the com-

piler to recognize names that are in a certain namespace.

If you use a library function in your program, the code for the function is in a library file,
which is automatically linked to your program. A header file containing the function’s declara-

tion must be inserted into your source file with an #include statement.

Questions

Answers to these questions can be found in Appendix G.

1.

A

Dividing a program into functions

a. is the key to object-oriented programming.
b. makes the program easier to conceptualize.
c. may reduce the size of the program.

d. makes the program run faster.

A function name must be followed by

A function body is delimited by

Why is the main() function special?

A C++ instruction that tells the computer to do something is called a

69

N

sJlIsvg
DNINWVYYD0Yd

+4+)

70

Chapter 2

10.

11.

12.

13.
14.
15.

16.
17.

Write an example of a normal C++ comment and an example of an old-fashioned /*
comment.

. An expression

a. usually evaluates to a numerical value.

b. indicates the emotional state of the program.

c. always occurs outside a function.

d. may be part of a statement.

Specify how many bytes are occupied by the following data types in a 32-bit system:
a. Type int

b. Type long double

c. Type float

d. Type long

True or false: A variable of type char can hold the value 301.
What kind of program elements are the following?

a. 12

b. 'a’

c. 4.28915

d. Jungledim

€. Jungledim()

Write statements that display on the screen

a. the character 'x'

b. the name Jim

c. the number 509

True or false: In an assignment statement, the value on the left of the equal sign is always
equal to the value on the right.

Write a statement that displays the variable george in a field 10 characters wide.
What header file must you #include with your source file to use cout and cin?

Write a statement that gets a numerical value from the keyboard and places it in the vari-
able temp.

What header file must you #include with your program to use setw?

Two exceptions to the rule that the compiler ignores whitespace are and

18.

19.
20.
21.

22.
23.

C++ Programming Basics

True or false: It’s perfectly all right to use variables of different data types in the same
arithmetic expression.

The expression 11%3 evaluates to
An arithmetic assignment operator combines the effect of what two operators?

Write a statement that uses an arithmetic assignment operator to increase the value of
the variable temp by 23. Write the same statement without the arithmetic assignment
operator.

The increment operator increases the value of a variable by how much?

Assuming var1 starts with the value 20, what will the following code fragment print out?

cout << vari--;
cout << ++varit;

24. In the examples we’ve seen so far, header files have been used for what purpose?
25. The actual code for library functions is contained in a file.
Exercises

Answers to the starred exercises can be found in Appendix G.

*1

*2.

*3.

. Assuming there are 7.481 gallons in a cubic foot, write a program that asks the user to

enter a number of gallons, and then displays the equivalent in cubic feet.

Write a program that generates the following table:

1990 135
1991 7290
1992 11300
1993 16200

Use a single cout statement for all output.

Write a program that generates the following output:

10

20

19
Use an integer constant for the 10, an arithmetic assignment operator to generate the 20,
and a decrement operator to generate the 19.

Write a program that displays your favorite poem. Use an appropriate escape sequence
for the line breaks. If you don’t have a favorite poem, you can borrow this one by Ogden
Nash:

Candy is dandy,
But liquor is quicker.

71

N

sJlIsvg
DNINWVYYD0Yd

+4+)

72

Chapter 2

. A library function, islower (), takes a single character (a letter) as an argument and

returns a nonzero integer if the letter is lowercase, or zero if it is uppercase. This func-
tion requires the header file CTYPE.H. Write a program that allows the user to enter a let-
ter, and then displays either zero or nonzero, depending on whether a lowercase or
uppercase letter was entered. (See the SQRT program for clues.)

. On a certain day the British pound was equivalent to $1.487 U.S., the French franc was

$0.172, the German deutschemark was $0.584, and the Japanese yen was $0.00955.
Write a program that allows the user to enter an amount in dollars, and then displays this
value converted to these four other monetary units.

. You can convert temperature from degrees Celsius to degrees Fahrenheit by multiplying

by 9/5 and adding 32. Write a program that allows the user to enter a floating-point num-
ber representing degrees Celsius, and then displays the corresponding degrees
Fahrenheit.

. When a value is smaller than a field specified with setw(), the unused locations are, by

default, filled in with spaces. The manipulator setfill() takes a single character as an
argument and causes this character to be substituted for spaces in the empty parts of a
field. Rewrite the WIDTH program so that the characters on each line between the location
name and the population number are filled in with periods instead of spaces, as in

Portcity..... 2425785
. If you have two fractions, a/b and c/d, their sum can be obtained from the formula
a c a*d + b*c
O = e e eeaaa
b d b*d

For example, 1/4 plus 2/3 is

1 2 1*3 + 4*2 3+ 8 11

4 3 4*3 12 12
Write a program that encourages the user to enter two fractions, and then displays their
sum in fractional form. (You don’t need to reduce it to lowest terms.) The interaction

with the user might look like this:
Enter first fraction: 1/2
Enter second fraction: 2/5
Sum = 9/10
You can take advantage of the fact that the extraction operator (>>) can be chained to
read in more than one quantity at once:

cin >> a >> dummychar >> b;

10.

11.

12.

C++ Programming Basics

In the heyday of the British empire, Great Britain used a monetary system based on
pounds, shillings, and pence. There were 20 shillings to a pound, and 12 pence to a
shilling. The notation for this old system used the pound sign, £, and two decimal points,
so that, for example, £5.2.8 meant 5 pounds, 2 shillings, and 8 pence. (Pence is the plural
of penny.) The new monetary system, introduced in the 1950s, consists of only pounds
and pence, with 100 pence to a pound (like U.S. dollars and cents). We’ll call this new
system decimal pounds. Thus £5.2.8 in the old notation is £5.13 in decimal pounds (actu-
ally £5.1333333). Write a program to convert the old pounds-shillings-pence format to
decimal pounds. An example of the user’s interaction with the program would be

Enter pounds: 7

Enter shillings: 17

Enter pence: 9

Decimal pounds = £7.89
In most compilers you can use the decimal number 156 (hex character constant ' \x9c"')
to represent the pound sign (£). In some compilers, you can put the pound sign into your
program directly by pasting it from the Windows Character Map accessory.

By default, output is right-justified in its field. You can left-justify text output using the
manipulator setiosflags(ios::left). (For now, don’t worry about what this new notation
means.) Use this manipulator, along with setw(), to help generate the following output:

Last name First name Street address Town State
Jones Bernard 109 Pine Lane Littletown MI
0'Brian Coleen 42 E. 99th Ave. Bigcity NY
Wong Harry 121-A Alabama St. Lakeville IL

Write the inverse of Exercise 10, so that the user enters an amount in Great Britain’s new
decimal-pounds notation (pounds and pence), and the program converts it to the old
pounds-shillings-pence notation. An example of interaction with the program might be
Enter decimal pounds: 3.51
Equivalent in old notation = £3.10.2.
Make use of the fact that if you assign a floating-point value (say 12.34) to an integer
variable, the decimal fraction (0.34) is lost; the integer value is simply 12. Use a cast to
avoid a compiler warning. You can use statements like

float decpounds; // input from user (new-style pounds)
int pounds; // old-style (integer) pounds
float decfrac; // decimal fraction (smaller than 1.0)

pounds = static_cast<int>(decpounds); // remove decimal fraction
decfrac = decpounds - pounds; // regain decimal fraction

You can then multiply decfrac by 20 to find shillings. A similar operation obtains pence.

73

N

sJlIsvg
DNINWVYYD0Yd

+4+)

Loops and Decisions CHAPTER

IN THIS CHAPTER

¢ Relational Operators 76
e Loops 78

e Decisions 93

¢ Logical Operators 114

e Precedence Summary 118

e Other Control Statements 118

76

Chapter 3

Not many programs execute all their statements in strict order from beginning to end. Most
programs (like many humans) decide what to do in response to changing circumstances. The
flow of control jumps from one part of the program to another, depending on calculations per-
formed in the program. Program statements that cause such jumps are called control
statements. There are two major categories: loops and decisions.

How many times a loop is executed, or whether a decision results in the execution of a section
of code, depends on whether certain expressions are true or false. These expressions typically
involve a kind of operator called a relational operator, which compares two values. Since the
operation of loops and decisions is so closely involved with these operators, we’ll examine
them first.

Relational Operators

A relational operator compares two values. The values can be any built-in C++ data type, such
as char, int, and float, or—as we’ll see later—they can be user-defined classes. The compar-
ison involves such relationships as equal to, less than, and greater than. The result of the com-

parison is true or false; for example, either two values are equal (true), or they’re not (false).

Our first program, RELAT, demonstrates relational operators in a comparison of integer vari-
ables and constants.

/] relat.cpp

// demonstrates relational operators
#include <iostream>

using namespace std;

int main()

{

int numb;

cout << "Enter a number: ";

cin >> numb;

cout << "numb<1@ is " << (numb < 10) << endl;
cout << "numb>1Q@ is " << (numb > 10) << endl;
cout << "numb==10 is " << (numb == 10) << endl;
return 0;

}

This program performs three kinds of comparisons between 10 and a number entered by the
user. Here’s the output when the user enters 20:

Enter a number: 20
numb<1@ is 0@
numb>10 is 1
numb==10 is 0@

Loops and Decisions 77

The first expression is true if numb is less than 10. The second expression is true if numb is
greater than 10, and the third is true if numb is equal to 10. As you can see from the output, the
C++ compiler considers that a true expression has the value 1, while a false expression has the
value 0.

As we mentioned in the last chapter, Standard C++ includes a type bool, which can hold one
of two constant values, true or false. You might think that results of relational expressions
like numb<10 would be of type bool, and that the program would print false instead of @ and
true instead of 1. In fact, C++ is rather schizophrenic on this point. Displaying the results of
relational operations, or even the values of type bool variables, with cout<< yields @ or 1, not
false or true. Historically this is because C++ started out with no bool type. Before the
advent of Standard C++, the only way to express false and true was with @ and 1. Now false
can be represented by either a bool value of false, or by an integer value of 0; and true can
be represented by either a bool value of true or an integer value of 1.

In most simple situations the difference isn’t apparent because we don’t need to display
true/false values; we just use them in loops and decisions to influence what the program will
do next.

Here’s the complete list of C++ relational operators:

Operator Meaning

> Greater than (greater than)
< Less than

== Equal to

= Not equal to

>= Greater than or equal to
<= Less than or equal to

Now let’s look at some expressions that use relational operators, and also look at the value of
each expression. The first two lines are assignment statements that set the values of the variables
harry and jane. You might want to hide the comments with your old Jose Canseco baseball
card and see whether you can predict which expressions evaluate to true and which to false.

jane = 44; //assignment statement
harry = 12; //assignment statement
(jane == harry) //false

(harry <= 12) //true

(jane > harry) //true

(jane >= 44) //true

(harry 1= 12) /| false

(7 < harry) //true

(0) //false (by definition)

(44) //true (since it's not 0)

w

SNoISDAQ
dNV Sd007

78

Chapter 3

Note that the equal operator, ==, uses two equal signs. A common mistake is to use a single
equal sign—the assignment operator—as a relational operator. This is a nasty bug, since the
compiler may not notice anything wrong. However, your program won’t do what you want

(unless you’re very lucky).

Although C++ generates a 1 to indicate true, it assumes that any value other than O (such as —7
or 44) is true; only 0 is false. Thus, the last expression in the list is true.

Now let’s see how these operators are used in typical situations. We’ll examine loops first, then
decisions.

Loops

Loops cause a section of your program to be repeated a certain number of times. The repetition
continues while a condition is true. When the condition becomes false, the loop ends and con-
trol passes to the statements following the loop.

There are three kinds of loops in C++: the for loop, the while loop, and the do loop.

The for Loop

The for loop is (for many people, anyway) the easiest C++ loop to understand. All its loop-
control elements are gathered in one place, while in the other loop constructions they are scat-
tered about the program, which can make it harder to unravel how these loops work.

The for loop executes a section of code a fixed number of times. It’s usually (although not
always) used when you know, before entering the loop, how many times you want to execute
the code.

Here’s an example, FORDEMO, that displays the squares of the numbers from O to 14:

// fordemo.cpp

// demonstrates simple FOR loop
#include <iostream>

using namespace std;

int main()
{
int j; //define a loop variable
for(j=0; j<15; j++) //loop from @ to 14,
cout << j * j << " "; [/displaying the square of j
cout << endl;
return 0;

}

Loops and Decisions

Here’s the output:
0 1 4 9 16 25 36 49 64 81 100 121 144 169 196

How does this work? The for statement controls the loop. It consists of the keyword for, fol-
lowed by parentheses that contain three expressions separated by semicolons:

for(j=0; j<15; j++)

These three expressions are the initialization expression, the test expression, and the increment
expression, as shown in Figure 3.1.

Initialization expression
Test expression
’7 [~ Increment expression
A A ——, =
8 for (j=0; j<15; j++)1 :— Note:nosemicolon here

statement; """ gjngle-statement loop body

b for (j=0; j<15; j++) ;— Note:nosemicolon here
{
statement;
statement; Muttiple-statement loop body—

statement; AR E

3}
L

Note: no semicolon here

FiGURE 3.1
Syntax of the for loop.

These three expressions usually (but not always) involve the same variable, which we call the
loop variable. In the FORDEMO example the loop variable is j. It’s defined before the statements
within the loop body start to execute.

The body of the loop is the code to be executed each time through the loop. Repeating this
code is the raison d’étre for the loop. In this example the loop body consists of a single state-
ment:

cout << j * j << " "y

79

w

sNoIsPIQg
ANV Sd0oOT

80

Chapter 3

This statement prints out the square of j, followed by two spaces. The square is found by mul-
tiplying j by itself. As the loop executes, j goes through the sequence 0, 1, 2, 3, and so on up
to 14; so the squares of these numbers are displayed—O0, 1, 4, 9, up to 196.

Note that the for statement is not followed by a semicolon. That’s because the for statement
and the loop body are together considered to be a program statement. This is an important
detail. If you put a semicolon after the for statement, the compiler will think there is no loop
body, and the program will do things you probably don’t expect.

Let’s see how the three expressions in the for statement control the loop.

The Initialization Expression
The initialization expression is executed only once, when the loop first starts. It gives the loop
variable an initial value. In the FORDEMO example it sets j to 0.

The Test Expression

The test expression usually involves a relational operator. It is evaluated each time through the
loop, just before the body of the loop is executed. It determines whether the loop will be exe-
cuted again. If the test expression is true, the loop is executed one more time. If it’s false, the
loop ends, and control passes to the statements following the loop. In the FORDEMO example the
statement

cout << endl;

is executed following the completion of the loop.

The Increment Expression

The increment expression changes the value of the loop variable, often by incrementing it. It is
always executed at the end of the loop, after the loop body has been executed. Here the incre-
ment operator ++ adds 1 to j each time through the loop. Figure 3.2 shows a flowchart of a for
loop’s operation.

How Many Times?

The loop in the FORDEMO example executes exactly 15 times. The first time, j is 0. This is
ensured in the initialization expression. The last time through the loop, j is 14. This is deter-
mined by the test expression j<15. When j becomes 15, the loop terminates; the loop body is
not executed when j has this value. The arrangement shown is commonly used to do some-
thing a fixed number of times: start at 0, use a test expression with the less-than operator and a
value equal to the desired number of iterations, and increment the loop variable after each iter-
ation.

Loops and Decisions

FIGURE 3.2

Operation of the for loop.

Here’s another for loop example:

for(count=0; count<100@; count++)
// loop body

How many times will the loop body be repeated here? Exactly 100 times, with count going
from 0 to 99.

Multiple Statements in the Loop Body

Of course you may want to execute more than one statement in the loop body. Multiple state-
ments are delimited by braces, just as functions are. Note that there is no semicolon following
the final brace of the loop body, although there are semicolons following the individual state-
ments in the loop body.

The next example, CUBELIST, uses three statements in the loop body. It prints out the cubes of
the numbers from 1 to 10, using a two-column format.
// cubelist.cpp

// lists cubes from 1 to 10
#include <iostream>

81

w

SNoISDAQ
dNV Sd007

Chapter 3

#include <iomanip> //for setw
using namespace std;

int main()

{

int numb; //define loop variable

for(numb=1; numb<=10; numb++) //loop from 1 to 10
{

cout << setw(4) << numb; //display 1st column
int cube = numb*numb*numb; //calculate cube
cout << setw(6) << cube << endl; //display 2nd column

}

return 0;

}
Here’s the output from the program:

1 1
2 8
3 27
4 64
5 125
6 216
7 343
8 512
9 729
10 1000

We’ve made another change in the program to show there’s nothing immutable about the for-
mat used in the last example. The loop variable is initialized to 1, not to 0, and it ends at 10,
not at 9, by virtue of <=, the less-than-or-equal-to operator. The effect is that the loop body is
executed 10 times, with the loop variable running from 1 to 10 (not from 0 to 9).

We should note that you can also put braces around the single statement loop body shown pre-
viously. They’re not necessary, but many programmers feel it improves clarity to use them
whether the loop body consists of a single statement or not.

Blocks and Variable Visibility

The loop body, which consists of braces delimiting several statements, is called a block of
code. One important aspect of a block is that a variable defined inside the block is not visible
outside it. Visible means that program statements can access or “see” the variable. (We’ll dis-
cuss visibility further in Chapter 5, “Functions.”) In CUBELIST we define the variable cube
inside the block, in the statement

int cube = numb*numb*numb;

Loops and Decisions

You can’t access this variable outside the block; it’s only visible within the braces. Thus if you
placed the statement

cube = 10;

after the loop body, the compiler would signal an error because the variable cube would be
undefined outside the loop.

One advantage of restricting the visibility of variables is that the same variable name can be
used within different blocks in the same program. (Defining variables inside a block, as we did
in CUBELIST, is common in C++ but is not popular in C.)

Indentation and Loop Style

Good programming style dictates that the loop body be indented—that is, shifted right, relative
to the loop statement (and to the rest of the program). In the FORDEMO example one line is
indented, and in CUBELIST the entire block, including the braces, is indented. This indentation is
an important visual aid to the programmer: It makes it easy to see where the loop body begins
and ends. The compiler doesn’t care whether you indent or not (at least there’s no way to tell if
it cares).

There is a common variation on the style we use for loops in this book. We show the braces
aligned vertically, but some programmers prefer to place the opening brace just after the loop
statement, like this:
for(numb=1; numb<=10; numb++) {

cout << setw(4) << numb;

int cube = numb*numb*numb;

cout << setw(6) << cube << endl;

}

This saves a line in the listing but makes it more difficult to read, since the opening brace is
harder to see and harder to match with the corresponding closing brace. Another style is to
indent the body but not the braces:

for(numb=1; numb<=10; numb++)

{

cout << setw(4) << numb;

int cube = numb*numb*numb;

cout << setw(6) << cube << endl;
}

This is a common approach, but at least for some people it makes it harder for the eye to con-
nect the braces to the loop body. However, you can get used to almost anything. Whatever style
you choose, use it consistently.

83

w

SNoISDAQ
dNV Sd007

84

Chapter 3

Debugging Animation

You can use the debugging features built into your compiler to create a dramatic animated dis-
play of loop operation. The key feature is single-stepping. Your compiler makes this easy. Start
by opening a project for the program to be debugged, and a window containing the source file.
The exact instructions necessary to launch the debugger vary with different compilers, so con-
sult Appendix C, “Microsoft Visual C++,” or Appendix D, “Borland C++Builder,” as appropri-
ate. By pressing a certain function key you can cause one line of your program to be executed
at a time. This will show you the sequence of statements executed as the program proceeds. In
a loop you’ll see the statements within the loop executed; then control will jump back to the
start of the loop and the cycle will be repeated.

You can also use the debugger to watch what happens to the values of different variables as
you single-step through the program. This is a powerful tool when you’re debugging your pro-
gram. You can experiment with this technique with the CUBELIST program by putting the numb
and cube variables in a Wartch window in your debugger and seeing how they change as the
program proceeds. Again, consult the appropriate appendix for instructions on how to use
Watch windows.

Single-stepping and the Watch window are powerful debugging tools. If your program doesn’t
behave as you think it should, you can use these features to monitor the values of key variables
as you step through the program. Usually the source of the problem will become clear.

for Loop Variations

The increment expression doesn’t need to increment the loop variable; it can perform any oper-
ation it likes. In the next example it decrements the loop variable. This program, FACTOR, asks
the user to type in a number, and then calculates the factorial of this number. (The factorial is
calculated by multiplying the original number by all the positive integers smaller than itself.
Thus the factorial of 5 is 5*%4*3*2%*1, or 120.)

// factor.cpp

// calculates factorials, demonstrates FOR loop
#include <iostream>

using namespace std;

int main()
{
unsigned int numb;
unsigned long fact=1; //long for larger numbers

cout << "Enter a number: ";
cin >> numb; //get number

Loops and Decisions

for(int j=numb; j>0; j--) //multiply 1 by
fact *= j; //numb, numb-1, ..., 2, 1
cout << "Factorial is " << fact << endl;
return 0;
}

In this example the initialization expression sets j to the value entered by the user. The test
expression causes the loop to execute as long as j is greater than 0. The increment expression
decrements j after each iteration.

We’ve used type unsigned long for the factorial, since the factorials of even small numbers
are very large. On 32-bit systems such as Windows int is the same as long, but long gives
added capacity on 16-bit systems. The following output shows how large factorials can be,
even for small input numbers:

Enter a number: 10
Factorial is 3628800

The largest number you can use for input is 12. You won’t get an error message for larger
inputs, but the results will be wrong, as the capacity of type long will be exceeded.

Variables Defined in for Statements
There’s another wrinkle in this program: The loop variable j is defined inside the for state-
ment:

for(int j=numb; j>0; j--)

This is a common construction in C++, and in most cases it’s the best approach to loop vari-
ables. It defines the variable as closely as possible to its point of use in the listing. Variables
defined in the loop statement this way are visible in the loop body only. (The Microsoft com-
piler makes them visible from the point of definition onward to the end of the file, but this is
not Standard C++.)

Multiple Initialization and Test Expressions

You can put more than one expression in the initialization part of the for statement, separating
the different expressions by commas. You can also have more than one increment expression.
You can have only one test expression. Here’s an example:

for(j=0, alpha=100; j<50; j++, beta--)
{
/] body of loop

}

This example has a normal loop variable j, but it also initializes another variable, alpha, and
decrements a third, beta. The variables alpha and beta don’t need to have anything to do with
each other, or with j. Multiple initialization expressions and multiple increment expressions
are separated by commas.

85

w

SNoISDAQ
dNV Sd007

86

Chapter 3

Actually, you can leave out some or all of the expressions if you want to. The expression
for(;;)
is the same as a while loop with a test expression of true. We’ll look at while loops next.

We’ll avoid using such multiple or missing expressions. While these approaches can make the
listing more concise, they also tend to decrease its readability. It’s always possible to use stand-
alone statements or a different form of loop to achieve the same effect.

The while Loop

The for loop does something a fixed number of times. What happens if you don’t know how
many times you want to do something before you start the loop? In this case a different kind of
loop may be used: the while loop.

The next example, ENDONO, asks the user to enter a series of numbers. When the number
entered is 0, the loop terminates. Notice that there’s no way for the program to know in
advance how many numbers will be typed before the O appears; that’s up to the user.

// endon@.cpp

// demonstrates WHILE loop
#include <iostream>

using namespace std;

int main()

{

int n = 99; // make sure n isn't initialized to 0

while(n != 0) // loop until n is @
cin >> n; // read a number into n

cout << endl;

return 0;

}

Here’s some sample output. The user enters numbers, and the loop continues until O is entered,
at which point the loop and the program terminate.

]
27
33
144
9

0

The while loop looks like a simplified version of the for loop. It contains a test expression but
no initialization or increment expressions. Figure 3.3 shows the syntax of the while loop.

Loops and Decisions

|-lslexpression
~A—
while (n!=0){ :— Note:nosemiolon here

statement; —__—"""" gingle-statement loop body

|'I'estexpre$ion
while (wv2<45)! ;—— Note: nosemicolon here
{
statement;
statement; Multiple-statement loop body
statement;
1

L

Note: no semicolon here

FIGURE 3.3
Syntax of the while loop.

As long as the test expression is true, the loop continues to be executed. In ENDONO, the text
expression

nl=0
(n not equal to 0) is true until the user enters 0.

Figure 3.4 shows the operation of a while loop. The simplicity of the while loop is a bit illu-
sory. Although there is no initialization expression, the loop variable (n in ENDONO) must be
initialized before the loop begins. The loop body must also contain some statement that
changes the value of the loop variable; otherwise the loop would never end. In ENDONO it’s
cin>>nj.

Multiple Statements in a while Loop

The next example, WHILE4, uses multiple statements in a while loop. It’s a variation of the
CUBELIST program shown earlier with a for loop, but it calculates the fourth power, instead of
the cube, of a series of integers. Let’s assume that in this program it’s important to put the
results in a column four digits wide. To ensure that the results fit this column width, we must
stop the loop before the results become larger than 9999. Without prior calculation we don’t
know what number will generate a result of this size, so we let the program figure it out. The

87

w

SNoISDAQ
dNV Sd007

88 Chapter 3

test expression in the while statement terminates the program before the powers become too

large.
Test expression —— Exit
\‘\\\\ False ~—
.ﬁue
Body of loop
FIGURE 3.4

Operation of the while loop.

// while4.cpp

// prints numbers raised to fourth power
#include <iostream>

#include <iomanip> //for setw
using namespace std;

int main()

{

int pow=1; //power initially 1

int numb=1; //numb goes from 1 to ??7?

while(pow<10000) //loop while power <= 4 digits
{
cout << setw(2) << numb; //display number
cout << setw(5) << pow << endl; //display fourth power
++numb; //get ready for next power
pow = numb*numb*numb*numb; //calculate fourth power
}

cout << endl;

return 0;

}

Loops and Decisions

To find the fourth power of numb, we simply multiply it by itself four times. Each time through
the loop we increment numb. But we don’t use numb in the test expression in while; instead, the
resulting value of pow determines when to terminate the loop. Here’s the output:

1
16
81

256
625

1296

2401

4096

6561

© 0O ~NO U~ WND =

The next number would be 10,000—too wide for our four-digit column; but by this time the
loop has terminated.

Precedence: Arithmetic and Relational Operators

The next program touches on the question of operator precedence. It generates the famous
sequence of numbers called the Fibonacci series. Here are the first few terms of the series:

11 2 3 5 8 13 21 34 55

Each term is found by adding the two previous ones: 1+1 is 2, 1+2 is 3, 2+3 is 5, 345 is 8, and
so on. The Fibonacci series has applications in amazingly diverse fields, from sorting methods
in computer science to the number of spirals in sunflowers.

One of the most interesting aspects of the Fibonacci series is its relation to the golden ratio.
The golden ratio is supposed to be the ideal proportion in architecture and art, and was used in
the design of ancient Greek temples. As the Fibonacci series is carried out further and further,
the ratio of the last two terms approaches closer and closer to the golden ratio. Here’s the list-
ing for FIBO.CPP:

// fibo.cpp

// demonstrates WHILE loops using fibonacci series
#include <iostream>

using namespace std;

int main()
{ //largest unsigned long
const unsigned long limit = 4294967295;
unsigned long next=0; //next-to-last term

unsigned long last=1; //last term

89

w

SNoISDAQ
dNV Sd007

90 Chapter 3

while(next < limit / 2) //don't let results get too big

{
cout << last << " "; //display last term
long sum = next + last; //add last two terms
next = last; //variables move forward
last = sum; // in the series
}

cout << endl;

return 0;

}
Here’s the output:

11 2 3 5 8 13 21 34 55 89 144 233 377 610 987
1597 2584 4181 6765 10946 17711 28657 46368 75025 121393
196418 317811 514229 832040 1346269 2178309 3524578

5702887 9227465 14930352 24157817 39088169 63245986
102334155 165580141 267914296 433494437 701408733 1134903170
1836311903 2971215073

For you temple builders, the ratio of the last two terms gives an approximation of the golden
ratio as 0.618033988—close enough for government work.

The FIBO program uses type unsigned long, the type that holds the largest positive integers.

The test expression in the while statement terminates the loop before the numbers exceed the
limit of this type. We define this limit as a const type, since it doesn’t change. We must stop
when next becomes larger than half the limit; otherwise, sum would exceed the limit.

The test expression uses two operators:
(next < limit / 2)

Our intention is to compare next with the result of 1imit/2. That is, we want the division to
be performed before the comparison. We could put parentheses around the division, to ensure
that it’s performed first.

(next < (limit/2))

But we don’t need the parentheses. Why not? Because arithmetic operators have a higher
precedence than relational operators. This guarantees that 1imit/2 will be evaluated before the
comparison is made, even without the parentheses. We’ll summarize the precedence situation
later in this chapter, when we look at logical operators.

Loops and Decisions 91

The do Loop

In a while loop, the test expression is evaluated at the beginning of the loop. If the test expres-
sion is false when the loop is entered, the loop body won’t be executed at all. In some situa-
tions this is what you want. But sometimes you want to guarantee that the loop body is
executed at least once, no matter what the initial state of the test expression. When this is the
case you should use the do loop, which places the test expression at the end of the loop.

Our example, DIVDO, invites the user to enter two numbers: a dividend (the top number in a
division) and a divisor (the bottom number). It then calculates the quotient (the answer) and
the remainder, using the / and % operators, and prints out the result.

// divdo.cpp

// demonstrates DO loop

#include <iostream>
using namespace std;

int main()

{
long dividend, divisor;
char ch;
do //start of do loop
{ //do some processing
cout << "Enter dividend: "; cin >> dividend;
cout << "Enter divisor: "; cin >> divisor;
cout << "Quotient is " << dividend / divisor;
cout << ", remainder is " << dividend % divisor;
cout << "\nDo another? (y/n): "; //do it again?
cin >> ch;
}
while(ch != 'n'); //loop condition
return 0;
}

Most of this program resides within the do loop. First, the keyword do marks the beginning of
the loop. Then, as with the other loops, braces delimit the body of the loop. Finally, a while
statement provides the test expression and terminates the loop. This while statement looks
much like the one in a while loop, except for its position at the end of the loop and the fact
that it ends with a semicolon (which is easy to forget!). The syntax of the do loop is shown in
Figure 3.5.

w

SNoISDAQ
dNV Sd007

92

Chapter 3

do . —— Note: no semicolon here
statement; """ gjngle.statement loop body

while (ch!="'n"');

———
Test expression —— Note: semicolon
do_i— Note: no semicolon fere
{

statement;
statement; Multiple-statement loop body

statement;

}
while (numb<96);
———
Test expression —— Note: semicolon

FIGURE 3.5
Syntax of the do loop.

Following each computation, DIVDO asks if the user wants to do another. If so, the user enters a
‘y’ character, and the test expression

ch I= 'n'

remains true. If the user enters ‘n’, the test expression becomes false and the loop terminates.
Figure 3.6 charts the operation of the do loop. Here’s an example of DIVDO’s output:

Enter dividend: 11

Enter divisor: 3

Quotient is 3, remainder is 2
Do another? (y/n): vy

Enter dividend: 222

Enter divisor: 17

Quotient is 13, remainder is 1
Do another? (y/n): n

Loops and Decisions

:
|
Body of loop ‘
Test expression ?‘ a)
True

When to Use Which Loop

We’ve made some general statements about how loops are used. The for loop is appropriate
when you know in advance how many times the loop will be executed. The while and do loops
are used when you don’t know in advance when the loop will terminate (the while loop when
you may not want to execute the loop body even once, and the do loop when you’re sure you
want to execute the loop body at least once).

FIGURE 3.6
Operation of the do loop.

These criteria are somewhat arbitrary. Which loop type to use is more a matter of style than of
hard-and-fast rules. You can actually make any of the loop types work in almost any situation.
You should choose the type that makes your program the clearest and easiest to follow.

Decisions

The decisions in a loop always relate to the same question: Should we do this (the loop body)
again? As humans we would find it boring to be so limited in our decision-making processes.
We need to decide not only whether to go to work again today (continuing the loop), but also
whether to buy a red shirt or a green one (or no shirt at all), whether to take a vacation, and if
S0, in the mountains or by the sea.

Programs also need to make these one-time decisions. In a program a decision causes a one-
time jump to a different part of the program, depending on the value of an expression.

93

w

SNoISDAQ
dNV Sd007

94

Chapter 3

Decisions can be made in C++ in several ways. The most important is with the if...else
statement, which chooses between two alternatives. This statement can be used without the
else, as a simple if statement. Another decision statement, switch, creates branches for multi-
ple alternative sections of code, depending on the value of a single variable. Finally, the condi-
tional operator is used in specialized situations. We’ll examine each of these constructions.

The if Statement

The if statement is the simplest of the decision statements. Our next program, IFDEMO, pro-
vides an example.

// ifdemo.cpp

// demonstrates IF statement
#include <iostream>

using namespace std;

int main()
{

int x;

cout << "Enter a number: ";
cin >> x;
if(x > 100)
cout << "That number is greater than 100\n";
return 0;

}

The if keyword is followed by a test expression in parentheses. The syntax of the if statement
is shown in Figure 3.7. As you can see, the syntax of if is very much like that of while. The
difference is that the statements following the if are executed only once if the test expression
is true; the statements following while are executed repeatedly until the test expression
becomes false. Figure 3.8 shows the operation of the if statement.

Here’s an example of the IFDEMO program’s output when the number entered by the user is
greater than 100:

Enter a number: 2000
That number is greater than 100

If the number entered is not greater than 100, the program will terminate without printing the
second line.

Loops and Decisions

FIGURE 3.7
Syntax of the if statement.

FIGURE 3.8

Operation of the if statement.

95

96

Chapter 3

Multiple Statements in the if Body
As in loops, the code in an if body can consist of a single statement—as shown in the IFDEMO
example—or a block of statements delimited by braces. This variation on IFDEMO, called IF2,
shows how that looks.

/1 if2.cpp

// demonstrates IF with multiline body
#include <iostream>

using namespace std;

int main()

{

int x;

cout << "Enter a number: ";
cin >> x;
if(x > 100)

{

cout << "The number " << X;

cout << " is greater than 100\n";

}

return 0;

}
Here’s some output from IF2:

Enter a number: 12345
The number 12345 is greater than 100

Nesting ifs Inside Loops

The loop and decision structures we’ve seen so far can be nested inside one another. You can
nest ifs inside loops, loops inside ifs, ifs inside ifs, and so on. Here’s an example, PRIME,
that nests an if within a for loop. This example tells you whether a number you enter is a
prime number. (Prime numbers are integers divisible only by themselves and 1. The first few
primes are 2, 3, 5,7, 11, 13, 17.)

// prime.cpp

// demonstrates IF statement with prime numbers
#include <iostream>

using namespace std;

#include <process.h> //for exit()

int main()

{

unsigned long n, j;

Loops and Decisions

cout << "Enter a number: ";

cin >> n; //get number to test
for(j=2; j <= n/2; j++) //divide by every integer from
if(n%j == 0) //2 on up; if remainder is 0,

{ //it's divisible by j
cout << "It's not prime; divisible by " << j << endl;
exit(0); //exit from the program
}

cout << "It's prime\n";

return 0;

}

In this example the user enters a number that is assigned to n. The program then uses a for
loop to divide n by all the numbers from 2 up to n/2. The divisor is j, the loop variable. If any
value of j divides evenly into n, then n is not prime. When a number divides evenly into
another, the remainder is 0; we use the remainder operator % in the if statement to test for this
condition with each value of j. If the number is not prime, we tell the user and we exit from
the program.

Here’s output from three separate invocations of the program:

Enter a number: 13

It's prime

Enter a number: 22229

It's prime

Enter a number: 22231

It's not prime; divisible by 11

Notice that there are no braces around the loop body. This is because the if statement, and the
statements in its body, are considered to be a single statement. If you like you can insert braces
for readability, even though the compiler doesn’t need them.

Library Function exit()

When PRIME discovers that a number is not prime, it exits immediately, since there’s no use
proving more than once that a number isn’t prime. This is accomplished with the library func-
tion exit (). This function causes the program to terminate, no matter where it is in the listing.
It has no return value. Its single argument, O in our example, is returned to the operating sys-
tem when the program exits. (This value is useful in batch files, where you can use the
ERRORLEVEL value to query the return value provided by exit (). The value 0 is normally used
for a successful termination; other numbers indicate errors.)

97

w

SNoISDAQ
dNV Sd007

Chapter 3

The if...else Statement

The if statement lets you do something if a condition is true. If it isn’t true, nothing happens.
But suppose we want to do one thing if a condition is true, and do something else if it’s false.
That’s where the if...else statement comes in. It consists of an if statement, followed by a
statement or block of statements, followed by the keyword else, followed by another state-
ment or block of statements. The syntax is shown in Figure 3.9.

rkﬁuﬂaﬂm
—~—A—
if (x>100)

statement; """ ggle-statement if body

else

statement; """ single-statement else body

|' Test expression
et
if (zebra!=0)
{
statement;
Multiple-statement if body
statement;
}
else
{
statement;)
Multiple-statement else body
statement;

}

FIGURE 3.9
Syntax of the if...else statement.

Here’s a variation of our IF example, with an else added to the if:

// ifelse.cpp

// demonstrates IF...ELSE statememt
#include <iostream>

using namespace std;

Loops and Decisions

int main()

{

int x;

cout << "\nEnter a number: ";

cin >> x;
if(x > 100)

cout << "That number is greater than 100\n";

else

cout << "That number is not greater than 100\n";

return 0;

}

If the test expression in the if statement is true, the program prints one message; if it isn’t, it

prints the other.

Here’s output from two different invocations of the program:

Enter a number: 300

That number is greater than 100

Enter a number: 3

That number is not greater than 100

The operation of the if...else statement is shown in Figure 3.10.

Test expression
False
True i
Ilodg;ofif I Body of else
|

FIGURE 3.10

Operation of the if...else statement.

99

w

SNoISDAQ
dNV Sd007

100 Chapter 3

The getche() Library Function

Our next example shows an if...else statement embedded in a while loop. It also introduces
a new library function: getche (). This program, CHCOUNT, counts the number of words and the
number of characters in a phrase typed in by the user.

// chcount.cpp

// counts characters and words typed in
#include <iostream>

using namespace std;

#include <conio.h> //for getche()

int main()
{
int chcount=0; //counts non-space characters
int wdcount=1; //counts spaces between words
char ch = 'a'; //ensure it isn't '\r'

cout << "Enter a phrase: ";

while(ch != "\r') //loop until Enter typed
{
ch = getche(); //read one character
if(ch==' ") //if it's a space
wdcount++; //count a word
else //otherwise,
chcount++; //count a character
} //display results

cout << "\nWords=" << wdcount << endl
<< "Letters=" << (chcount-1) << endl;
return 0;

}

So far we’ve used only cin and >> for input. That approach requires that the user always press
the Enter key to inform the program that the input is complete. This is true even for single
characters: The user must type the character, then press Enter. However, as in the present
example, a program often needs to process each character typed by the user without waiting for
an Enter. The getche () library function performs this service. It returns each character as soon
as it’s typed. It takes no arguments, and requires the CONIO.H header file. In CHCOUNT the value
of the character returned from getche() is assigned to ch. (The getche () function echoes the
character to the screen. That’s why there’s an e at the end of getche. Another function,
getch(), is similar to getche () but doesn’t echo the character to the screen.)

The if...else statement causes the word count wdcount to be incremented if the character is
a space, and the character count chcount to be incremented if the character is anything but a
space. Thus anything that isn’t a space is assumed to count as a character. (Note that this pro-
gram is fairly naive; it will be fooled by multiple spaces between words.)

Loops and Decisions

Here’s some sample interaction with CHCOUNT:

For while and do
Words=4
Letters=13

The test expression in the while statement checks to see if ch is the '\r' character, which is
the character received from the keyboard when the Enter key is pressed. If so, the loop and the
program terminate.

Assignment Expressions

The CHCOUNT program can be rewritten to save a line of code and demonstrate some important
points about assignment expressions and precedence. The result is a construction that looks
rather peculiar but is commonly used in C++ (and in C).

Here’s the rewritten version, called CHCNT2:

// chcnt2.cpp
// counts characters and words typed in
#include <iostream>
using namespace std;
#include <conio.h> /] for getche()
int main()

{

int chcount=0;

int wdcount=1; /| space between two words

101

char ch;
while((ch=getche()) != "\r') // loop until Enter typed
{
if(ch=="' ") // if it's a space
wdcount++; // count a word
else // otherwise,
chcount++; // count a character
} // display results
cout << "\nWords=" << wdcount << endl
<< "Letters=" << chcount << endl;
return 0;
}

The value returned by getche () is assigned to ch as before, but this entire assignment expres-
sion has been moved inside the test expression for while. The assignment expression is com-
pared with '\r' to see whether the loop should terminate. This works because the entire
assignment expression takes on the value used in the assignment. That is, if getche () returns
‘a', then not only does ch take on the value 'a', but the expression

w

SNoISDAQ
dNV Sd007

102 Chapter 3

(ch=getche())

also takes on the value 'a'. This is then compared with '\r'.

The fact that assignment expressions have a value is also used in statements such as
X=y=12z=0;

This is perfectly legal in C++. First, z takes on the value 0, then z = @ takes on the value O,
which is assigned to y. Then the expression y = z = 0 likewise takes on the value 0, which is
assigned to x.

The parentheses around the assignment expression in
(ch=getche())

are necessary because the assignment operator = has a lower precedence than the relational
operator !=. Without the parentheses the expression would be evaluated as

while(ch = (getche() != '"\r')) // not what we want
which would assign a true or false value to ch (not what we want).

The while statement in CHCNT2 provides a lot of power in a small space. It is not only a test
expression (checking ch to see whether it’s '\r'); it also gets a character from the keyboard
and assigns it to ch. It’s also not easy to unravel the first time you see it.

Nested if...else Statements

You’re probably too young to remember adventure games on early character-mode MS-DOS
systems, but let’s resurrect the concept here. You moved your “character” around an imaginary
landscape and discovered castles, sorcerers, treasure, and so on, using text—not pictures—for
input and output. The next program, ADIFELSE, models a small part of such an adventure game.

// adifelse.cpp

// demonstrates IF...ELSE with adventure program
#include <iostream>

using namespace std;

#include <conio.h> //for getche()

int main()

{
char dir='a';
int x=10, y=10;

cout << "Type Enter to quit\n";

while(dir != "\r') //until Enter is typed
{
cout << "\nYour location is " << x << ", " << yj

cout << "\nPress direction key (n, s, e, w): ";

Loops and Decisions

dir = getche(); //get character
if(dir=='n") //go north
y--;
else
if(dir=='s') / /90 south
y++;
else
if(dir=='e') //go east
X++;
else
if(dir=='w') //go west
X--35
} //end while
return 0;

} //end main

When the game starts, you find yourself on a barren moor. You can go one “unit” north,

south, east, or west, while the program keeps track of where you are and reports your position,
which starts at coordinates 10,10. Unfortunately, nothing exciting happens to your character,
no matter where you go; the moor stretches almost limitlessly in all directions, as shown in
Figure 3.11. We’ll try to provide a little more excitement to this game later on.

Here’s some sample interaction with ADIFELSE:

Your location is 10, 10

Press direction key (n, s, e, w): n
Your location is 10, 9

Press direction key (n, s, e, w): e
Your location is 11, 9

Press direction key (n, s, e, w):

You can press the Enter key to exit the program.

This program may not cause a sensation in the video arcades, but it does demonstrate one way
to handle multiple branches. It uses an if statement nested inside an if...else statement,
which is nested inside another if...else statement, which is nested inside yet another
if...else statement. If the first test condition is false, the second one is examined, and so on
until all four have been checked. If any one proves true, the appropriate action is taken—
changing the x or y coordinate—and the program exits from all the nested decisions. Such a
nested group of if...else statements is called a decision tree.

103

w

SNoISDAQ
dNV Sd007

104 Chapter 3

N
A\ Y \|
If + \I/
AT S N
AT F -+
A\
i MY
If ——[MY A\
If Ty
\| (10,10)) I/
0‘ \{
i P O
W ——t—t—t—t—t——t— =ttt [
el ‘ X =
\if {ia“
L /
2 |
6 1y AT
\
\(/ I/
A/ T
I/ 4L
\f
T A
\/ A/ T
\ [/ T \l/ v \l
k| \Ijr I
§

FIGURE 3.11

The barren moor.

Matching the else
There’s a potential problem in nested if...else statements: You can inadvertently match an
else with the wrong if. BADELSE provides an example:

// badelse.cpp

// demonstrates ELSE matched with wrong IF
#include <iostream>

using namespace std;

int main()
{
int a, b, c;
cout << "Enter three numbers, a, b, and c:\n";
cin >> a >> b >> c;

Loops and Decisions 105

if(a==b)
if(b==c)
cout << "a, b, and c are the same\n";
else
cout << "a and b are different\n";
return 0;
}

We’ve used multiple values with a single cin. Press Enter following each value you type in;
the three values will be assigned to a, b, and c.

What happens if you enter 2, then 3, and then 3? Variable a is 2, and b is 3. They’re different,
so the first test expression is false, and you would expect the else to be invoked, printing a
and b are different. But in fact nothing is printed. Why not? Because the else is matched with
the wrong if. The indentation would lead you to believe that the else is matched with the first
if, but in fact it goes with the second if. Here’s the rule: An else is matched with the last if
that doesn’t have its own else.

Here’s a corrected version:

if (a==b)
if (b==c)
cout << "a, b, and c are the same\n";
else
cout << "b and c¢ are different\n";

We changed the indentation and also the phrase printed by the else body. Now if you enter 2,
3, 3, nothing will be printed. But entering 2, 2, 3 will cause the output

b and ¢ are different

If you really want to pair an else with an earlier if, you can use braces around the inner if:

if (a==b)
{
if (b==c)
cout << "a, b, and c are the same";
}
else

cout << "a and b are different";

Here the else is paired with the first if, as the indentation indicates. The braces make the if
within them invisible to the following else.

w

SNoISDAQ
dNV Sd007

106

Chapter 3

The else...if Construction

The nested if...else statements in the ADIFELSE program look clumsy and can be hard—for
humans—to interpret, especially if they are nested more deeply than shown. However, there’s
another approach to writing the same statements. We need only reformat the program, obtain-
ing the next example, ADELSEIF.

/| adelseif.cpp

// demonstrates ELSE...IF with adventure program
#include <iostream>

using namespace std;

#include <conio.h> //for getche()

int main()

{
char dir='a';
int x=10, y=10;

cout << "Type Enter to quit\n";

while(dir != "\r') //until Enter is typed
{
cout << "\nYour location is " << x << ", " << y;
cout << "\nPress direction key (n, s, e, w): ";
dir = getche(); //get character
if(dir=='n") / /90 north
y--3
else if(dir=='s') //go south
y++;
else if(dir=='e') //go east
X++;
else if(dir=='w') / /90 west
X--3
} //end while
return 0;

} //end main

The compiler sees this as identical to ADIFELSE, but we’ve rearranged the ifs so they directly
follow the elses. The result looks almost like a new keyword: else if. The program goes
down the ladder of else ifs until one of the test expressions is true. It then executes the fol-
lowing statement and exits from the ladder. This format is clearer and easier to follow than the
if...else approach.

Loops and Decisions

The switch Statement

If you have a large decision tree, and all the decisions depend on the value of the same vari-
able, you will probably want to consider a switch statement instead of a ladder of if...else
or else if constructions. Here’s a simple example called PLATTERS that will appeal to nostal-
gia buffs:

/] platters.cpp

// demonstrates SWITCH statement
#include <iostream>

using namespace std;

int main()
{
int speed; //turntable speed

cout << "\nEnter 33, 45, or 78: ";

cin >> speed; //user enters speed
switch(speed) //selection based on speed
{
case 33: //user entered 33
cout << "LP album\n";
break;
case 45: //user entered 45
cout << "Single selection\n";
break;
case 78: //user entered 78
cout << "Obsolete format\n";
break;
}
return 0;
}

This program prints one of three possible messages, depending on whether the user inputs the
number 33, 45, or 78. As old-timers may recall, long-playing records (LPs) contained many
songs and turned at 33 rpm, the smaller 45’s held only a single song, and 78s were the format
that preceded LPs and 45s.

The keyword switch is followed by a switch variable in parentheses.
switch(speed)

Braces then delimit a number of case statements. Each case keyword is followed by a
constant, which is not in parentheses but is followed by a colon.

case 33:

The data type of the case constants should match that of the switch variable. Figure 3.12 shows
the syntax of the switch statement.

107

w

SNoISDAQ
dNV Sd007

108 Chapter 3

| or character variable
rmm«

switch (n)':::I—NlJlE: no semicolon here
{ FMQawmnmummmm
case 1:

statement;
statement; 2 Firstcasebody
break;_[—:ausesexitfmnwim
case 2:
statement;
statement; » Second case body
break;
case 3:
statement;
statement; » Third case body
break;
default:
statement;
statement; }mﬁmmw

33— Note: no semicolon here

FIGURE 3.12

Syntax of the switch statement.

Before entering the switch, the program should assign a value to the switch variable. This
value will usually match a constant in one of the case statements. When this is the case (pun
intended!), the statements immediately following the keyword case will be executed, until a
break is reached.

Here’s an example of PLATTER’s output:

Enter 33, 45, or 78: 45
Single selection

Loops and Decisions 109

The break Statement

PLATTERS has a break statement at the end of each case section. The break keyword causes the
entire switch statement to exit. Control goes to the first statement following the end of the
switch construction, which in PLATTERS is the end of the program. Don’t forget the break;
without it, control passes down (or “falls through”) to the statements for the next case, which
is usually not what you want (although sometimes it’s useful).

If the value of the switch variable doesn’t match any of the case constants, control passes to
the end of the switch without doing anything. The operation of the switch statement is shown
in Figure 3.13. The break keyword is also used to escape from loops; we’ll discuss this soon.

R

w

False

switch variable Tree .
equals second case Second case body

switch variable T rue . '
equals third case Third case body
constant

FIGURE 3.13

Operation of the switch statement.

SNoISDAQ
dNV Sd007

Chapter 3

switch Statement with Character Variables
The PLATTERS example shows a switch statement based on a variable of type int. You can also
use type char. Here’s our ADELSEIF program rewritten as ADSWITCH:

// adswitch.cpp

// demonstrates SWITCH with adventure program

#include <iostream>

using namespace std;

#include <conio.h> //for getche()

int main()
{
char dir='a';
int x=10, y=10;

while(dir != '\r')

{

cout << "\nYour location is " << x << ", " << y;

cout << "\nEnter direction (n, s, e, w): ";

dir = getche(); //get character

switch(dir) //switch on it
{
case 'n': vy--; break; //go north
case 's': y++; break; //go south
case 'e': x++; break; //go east
case 'w': x--; break; //go west
case '\r': cout << "Exiting\n"; break; //Enter key
default: cout << "Try again\n"; / /unknown char

} //end switch
} //end while
return 0;
} //end main

A character variable dir is used as the switch variable, and character constants 'n', 's', and
so on are used as the case constants. (Note that you can use integers and characters as switch
variables, as shown in the last two examples, but you can’t use floating-point numbers.)

Since they are so short, the statements following each case keyword have been written on one
line, which makes for a more compact listing. We’ve also added a case to print an exit mes-
sage when Enter is pressed.

The default Keyword

In the ADSWITCH program, where you expect to see the last case at the bottom of the switch
construction, you instead see the keyword default. This keyword gives the switch construc-
tion a way to take an action if the value of the loop variable doesn’t match any of the case
constants. Here we use it to print Try again if the user types an unknown character. No break
is necessary after default, since we’re at the end of the switch anyway.

Loops and Decisions

A switch statement is a common approach to analyzing input entered by the user. Each of the
possible characters is represented by a case.

It’s a good idea to use a default statement in all switch statements, even if you don’t think
you need it. A construction such as

default:
cout << "Error: incorrect input to switch"; break;

alerts the programmer (or the user) that something has gone wrong in the operation of the pro-
gram. In the interest of brevity we don’t always include such a default statement, but you
should, especially in serious programs.

switch Versus if...else

When do you use a series of if...else (or else if) statements, and when do you use a
switch statement? In an else if construction you can use a series of expressions that involve
unrelated variables and are as complex as you like. For example:

if(SteamPressure*Factor > 56)
/] statements
else if(VoltageIn + VoltageOut < 23000)
// statements
else if(day==Thursday)
// statements
else
/] statements

In a switch statement, however, all the branches are selected by the same variable; the only
thing distinguishing one branch from another is the value of this variable. You can’t say

case a<3:
// do something
break;

The case constant must be an integer or character constant, like 3 or 'a', or an expression that
evaluates to a constant, like 'a'+32.

When these conditions are met, the switch statement is very clean—easy to write and to
understand. It should be used whenever possible, especially when the decision tree has more
than a few possibilities.

The Conditional Operator

Here’s a strange sort of decision operator. It exists because of a common programming situa-
tion: A variable is given one value if something is true and another value if it’s false. For
example, here’s an if...else statement that gives the variable min the value of alpha or the
value of beta, depending on which is smaller:

111

w

SNoISDAQ
dNV Sd007

112

Chapter 3

if(alpha < beta)
min = alpha;
else
min = beta;

This sort of construction is so common that the designers of C++ (actually the designers of C,
long ago) invented a compressed way to express it: the conditional operator. This operator
consists of two symbols, which operate on three operands. It’s the only such operator in C++;
other operators operate on one or two operands. Here’s the equivalent of the same program
fragment, using a conditional operator:

min = (alpha<beta) ? alpha : beta;
The part of this statement to the right of the equal sign is called the conditional expression:
(alpha<beta) ? alpha : beta // conditional expression

The question mark and the colon make up the conditional operator. The expression before the
question mark

(alpha<beta)
is the test expression. It and alpha and beta are the three operands.

If the test expression is true, the entire conditional expression takes on the value of the operand
following the question mark: alpha in this example. If the test expression is false, the condi-
tional expression takes on the value of the operand following the colon: beta. The parentheses
around the test expression aren’t needed for the compiler, but they’re customary; they make the
statement easier to read (and it needs all the help it can get). Figure 3.14 shows the syntax of
the conditional statement, and Figure 3.15 shows its operation.

I— Conditional expression

— N

result = (alpha<77) ? beta : gamma;
M

T memmmnj Expression 1| Expression 2

Conditional operator

FIGURE 3.14

Syntax of the conditional operator.

Loops and Decisions

X False
Test expression

_ 4
Conditional expression takes Conditional expression takes
on value of Expression 1. on value of Expression 2.

FIGURE 3.15

Operation of the conditional operator.

The conditional expression can be assigned to another variable or used anywhere a value can
be used. In this example it’s assigned to the variable min.

Here’s another example: a statement that uses a conditional operator to find the absolute value
of a variable n. (The absolute value of a number is the number with any negative sign removed,
so it’s always positive.)

absvalue = n<@ ? -n : n;

If n is less than 0, the expression becomes -n, a positive number. If n is not less than 0, the
expression remains n. The result is the absolute value of n, which is assigned to absvalue.

Here’s a program, CONDI.CPP, that uses the conditional operator to print an x every eight spaces
in a line of text. You might use this to see where the tab stops are on your screen.

// condi.cpp

// prints 'x' every 8 columns

// demonstrates conditional operator
#include <iostream>

using namespace std;

int main()

{

113

w

SNoISDAQ
dNV Sd007

114

Chapter 3

for(int j=0; j<80; j++) //for every column,
{ //ch is 'x' if column is
char ch = (j%8) ? ' ' : 'x'; /[/multiple of 8, and
cout << ch; //' ' (space) otherwise
}

return 0;

}

Some of the right side of the output is lost because of the page width, but you can probably
imagine it:
X X X X X X X X X

As j cycles through the numbers from 0 to 79, the remainder operator causes the expression (j
% 8) to become false—that is, 0—only when j is a multiple of 8. So the conditional expression

(j%8) 2 ' ' : 'x'
has the value ' ' (the space character) when j is not a multiple of 8, and the value 'x' when
it is.

You may think this is terse, but we could have combined the two statements in the loop body
into one, eliminating the ch variable:

cout << ((j%8) ? ' ' : 'x');

Hotshot C++ (and C) programmers love this sort of thing—getting a lot of bang from very lit-
tle code. But you don’t need to strive for concise code if you don’t want to. Sometimes it
becomes so obscure it’s not worth the effort. Even using the conditional operator is optional:
An if...else statement and a few extra program lines will accomplish the same thing.

Logical Operators

So far we’ve seen two families of operators (besides the oddball conditional operator). First are
the arithmetic operators +, -, *, /, and %. Second are the relational operators <, >, <=, >=, ==,
and !=.

Let’s examine a third family of operators, called logical operators. These operators allow you
to logically combine Boolean variables (that is, variables of type bool, with true or false val-
ues). For example, today is a weekday has a Boolean value, since it’s either true or false.
Another Boolean expression is Maria took the car. We can connect these expressions logically:
If today is a weekday, and Maria took the car, then I'll have to take the bus. The logical con-
nection here is the word and, which provides a true or false value to the combination of the
two phrases. Only if they are both true will I have to take the bus.

Loops and Decisions

Logical AND Operator

Let’s see how logical operators combine Boolean expressions in C++. Here’s an example,
ADVENAND, that uses a logical operator to spruce up the adventure game from the ADSWITCH
example. We’ll bury some treasure at coordinates (7,11) and see whether the player can find it.

// advenand.cpp

// demonstrates AND logical operator

#include <iostream>

using namespace std;

#include <process.h> //for exit()
#include <conio.h> //for getche()

int main()
{
char dir='a';
int x=10, y=10;

while(dir != "\r')
{
cout << "\nYour location is " << x << ", " << yj
cout << "\nEnter direction (n, s, e, w): ";
dir = getche(); //get direction
switch(dir)
{
case 'n': y--; break; //update coordinates
case 's': y++; break;
case 'e': x++; break;
case 'w': x--; break;
}
if(x==7 && y==11) //if x is 7 and y is 11
{
cout << "\nYou found the treasure!\n";
exit(0); //exit from program
}
} //end switch
return 0;

} //end main
The key to this program is the if statement
if(x==7 && y==11)

The test expression will be true only if x is 7 and y is 11. The logical AND operator && joins the
two relational expressions to achieve this result. (A relational expression is one that uses a
relational operator.)

115

w

SNoISDAQ
dNV Sd007

116

Chapter 3

Notice that parentheses are not necessary around the relational expressions.
((x==7) & (y==11)) // inner parentheses not necessary
This is because the relational operators have higher precedence than the logical operators.

Here’s some interaction as the user arrives at these coordinates:

Your location is 7, 10
Enter direction (n, s, e, w): s
You found the treasure!

There are three logical operators in C++:

Operator Effect
&& Logical AND
[Logical OR

! Logical NOT
There is no logical XOR (exclusive OR) operator in C++.

Let’s look at examples of the | | and ! operators.

Logical OR Operator

Suppose in the adventure game you decide there will be dragons if the user goes too far east or
too far west. Here’s an example, ADVENOR, that uses the logical OR operator to implement this
frightening impediment to free adventuring. It’s a variation on the ADVENAND program.

// advenor.cpp

// demonstrates OR logical operator
#include <iostream>

using namespace std;

#include <process.h> //for exit()
#include <conio.h> //for getche()
int main()

{

char dir='a';
int x=10, y=10;

while(dir != "\r') //quit on Enter key
{
cout << "\n\nYour location is " << x << ", " << y;
if(x<6 || x>15) //if x west of 5 OR east of 15

cout << "\nBeware: dragons lurk here";

Loops and Decisions

cout << "\nEnter direction (n, s, e, w): ";

dir = getche(); //get direction
switch(dir)

{

case 'n': y--; break; / /update coordinates

n
case 's': y++; break;
case 'e': x++; break;
case 'w': x--; break;
} //end switch
} //end while
return 0;
} //end main()

The expression
x<5 || x>15

is true whenever either x is less than 5 (the player is too far west), or x is greater than 15 (the
player is too far east). Again, the | | operator has lower precedence than the relational opera-
tors < and >, so no parentheses are needed in this expression.

Logical NOT Operator

The logical NOT operator ! is a unary operator—that is, it takes only one operand. (Almost all
the operators we’ve seen thus far are binary operators; they take two operands. The conditional
operator is the only ternary operator in C++.) The effect of the ! is that the logical value of its
operand is reversed: If something is true, ! makes it false; if it is false, ! makes it true. (It
would be nice if life were so easily manipulated.)

For example, (x==7) is true if x is equal to 7, but ! (x==7) is true if x is not equal to 7. (In this
situation you could use the relational not equals operator, x != 7, to achieve the same effect.)

A True/False Value for Every Integer Variable

We may have given you the impression that for an expression to have a true/false value, it must
involve a relational operator. But in fact, every integer expression has a true/false value, even if
it is only a single variable. The expression x is true whenever x is not 0, and false when x is 0.
Applying the ! operator to this situation, we can see that the !x is true whenever x is 0, since it
reverses the truth value of x.

Let’s put these ideas to work. Imagine in your adventure game that you want to place a mush-
room on all the locations where both x and y are a multiple of 7. (As you probably know,
mushrooms, when consumed by the player, confer magical powers.) The remainder when x is
divided by 7, which can be calculated by x%7, is 0 only when x is a multiple of 7. So to specify
the mushroom locations, we can write

if(x%7==0 && y%7==0)
cout << "There's a mushroom here.\n";

117

w

SNoISDAQ
dNV Sd007

118

Chapter 3

However, remembering that expressions are true or false even if they don’t involve relational
operators, you can use the ! operator to provide a more concise format.

if(1(x%7) && ! (y%7)) // if not x%7 and not y%7
This has exactly the same effect.

We’ve said that the logical operators && and | | have lower precedence than the relational oper-
ators. Why then do we need parentheses around x%7 and y%7? Because, even though it is a log-
ical operator, ! is a unary operator, which has higher precedence than relational operators.

Precedence Summary

Let’s summarize the precedence situation for the operators we’ve seen so far. The operators
higher on the list have higher precedence than those lower down. Operators with higher prece-
dence are evaluated before those with lower precedence. Operators on the same row have equal
precedence. You can force an expression to be evaluated first by placing parentheses around it.

You can find a more complete precedence table in Appendix B, “C++ Precedence Table and
Keywords.”

Operator type Operators Precedence
Unary Lo+4, ——, 4, - Highest
Arithmetic Multiplicative *, /, %
Additive +, -
Relational Inequality <, >, <=, >=
Equality ==, I=
Logical And &&
Or ||
Conditional ?:
Assignment =, 4=, -5, %= /=, %= Lowest

We should note that if there is any possibility of confusion in a relational expression that
involves multiple operators, you should use parentheses whether they are needed or not. They
don’t do any harm, and they guarantee the expression does what you want, even if you’ve
made a mistake with precedence. Also, they make it clear to anyone reading the listing what
you intended.

Other Control Statements

There are several other control statements in C++. We’ve already seen one, break, used in
switch statements, but it can be used other places as well. Another statement, continue, is
used only in loops, and a third, goto, should be avoided. Let’s look at these statements in turn.

Loops and Decisions

The break Statement

The break statement causes an exit from a loop, just as it does from a switch statement. The
next statement after the break is executed is the statement following the loop. Figure 3.16
shows the operation of the break statement.

|

|

Normal g
loop
return

End of loop

FIGURE 3.16

Operation of the break statement.

To demonstrate break, here’s a program, SHOWPRIM, that displays the distribution of prime
numbers in graphical form:

// showprim.cpp

// displays prime number distribution

#include <iostream>

using namespace std;

#include <conio.h> //for getche()

int main()
{
const unsigned char WHITE = 219; //solid color (primes)
const unsigned char GRAY 176; //gray (non primes)
unsigned char ch;

//for each screen position
for(int count=0; count<80*25-1; count++)
{

ch = WHITE; //assume it's prime

119

w

sNoIsPIQg
ANV Sd0oOT

120 Chapter 3

for(int j=2; j<count; j++) //divide by every integer from

if(count%j == 0) //2 on up; if remainder is 0,
{
ch = GRAY; //it's not prime
break; //break out of inner loop
}
cout << ch; //display the character
}
getch(); //freeze screen until keypress
return 0;

}

In effect every position on an 80-column by 25-line console screen is numbered, from O to
1999 (which is 80*25-1). If the number at a particular position is prime, the position is colored
white; if it’s not prime, it’s colored gray.

Figure 3.17 shows the display. Strictly speaking, 0 and 1 are not considered prime, but they are
shown as white to avoid complicating the program. Think of the columns across the top as
being numbered from 0 to 79. Notice that no primes (except 2) appear in even-numbered
columns, since they’re all divisible by 2. Is there a pattern to the other numbers? The world of
mathematics will be very excited if you find a pattern that allows you to predict whether any
given number is prime.

FIGURE 3.17

Output of SHOWPRIM program.

Loops and Decisions

When the inner for loop determines that a number is not prime, it sets the character ch to
GRAY, and then executes break to escape from the inner loop. (We don’t want to exit from the
entire program, as in the PRIME example, since we have a whole series of numbers to work on.)

Notice that break only takes you out of the innermost loop. This is true no matter what con-
structions are nested inside each other: break only takes you out of the construction in which
it’s embedded. If there were a switch within a loop, a break in the switch would only take
you out of the switch, not out of the loop.

The last cout statement prints the graphics character, and then the loop continues, testing the
next number for primeness.

ASCIl Extended Character Set

This program uses two characters from the extended ASCII character set, the characters repre-
sented by the numbers from 128 to 255, as shown in Appendix A, “ASCII Table.” The value
219 represents a solid-colored block (white on a black-and-white monitor), while 176 repre-
sents a gray block.

The sHOWPRIM example uses getch() in the last line to keep the DOS prompt from scrolling
the screen up when the program terminates. It freezes the screen until you press a key.

We use type unsigned char for the character variables in SHOWPRIM, since it goes up to 255.
Type char only goes up to 127.

The continue Statement

The break statement takes you out of the bottom of a loop. Sometimes, however, you want to
go back to the top of the loop when something unexpected happens. Executing continue has
this effect. (Strictly speaking, the continue takes you to the closing brace of the loop body,
from which you may jump back to the top.) Figure 3.18 shows the operation of continue.

Here’s a variation on the DIVDO example. This program, which we saw earlier in this chapter,
does division, but it has a fatal flaw: If the user inputs 0 as the divisor, the program undergoes
catastrophic failure and terminates with the runtime error message Divide Error. The revised
version of the program, DIVDO2, deals with this situation more gracefully.

// divdo2.cpp

// demonstrates CONTINUE statement
#include <iostream>

using namespace std;

int main()
{
long dividend, divisor;
char ch;

121

w

SNoISDAQ
dNV Sd007

122 Chapter 3

do {

cout << "Enter dividend: "; cin >> dividend;

cout << "Enter divisor: "; c¢in >> divisor;

if(divisor == 0) //if attempt to
{ //divide by 0,
cout << "Illegal divisor\n"; //display message
continue; //go to top of loop
}

cout << "Quotient is " << dividend / divisor;

cout << ", remainder is " << dividend % divisor;

cout << "\nDo another? (y/n): ";

cin >> ch;
} while(ch != 'n');
return 0;
}
L Start of loop
'm B continue;z
Normal
loop
return
FIGURE 3.18

Operation of the continue statement.

If the user inputs 0 for the divisor, the program prints an error message and, using continue,
returns to the top of the loop to issue the prompts again. Here’s some sample output:

Enter dividend: 10

Enter divisor: 0

Illegal divisor
Enter dividend:

A break statement in this situation would cause an exit from the do loop and the program, an
unnecessarily harsh response.

Loops and Decisions

Notice that we’ve made the format of the do loop a little more compact. The do is on the same
line as the opening brace, and the while is on the same line as the closing brace.

The goto Statement

We’ll mention the goto statement here for the sake of completeness—not because it’s a good
idea to use it. If you’ve had any exposure to structured programming principles, you know that
gotos can quickly lead to “spaghetti” code that is difficult to understand and debug. There is
almost never any need to use goto, as is demonstrated by its absence from the program exam-
ples in this book.

With that lecture out of the way, here’s the syntax. You insert a label in your code at the
desired destination for the goto. The label is always terminated by a colon. The keyword goto,
followed by this label name, then takes you to the label. The following code fragment demon-
strates this approach.

goto SystemCrash;

// other statements

SystemCrash:

// control will begin here following goto

Summary

Relational operators compare two values to see whether they’re equal, whether one is larger
than the other, and so on. The result is a logical or Boolean (type bool) value, which is true or
false. False is indicated by 0, and true by 1 or any other non-zero number.

There are three kinds of loops in C++. The for loop is most often used when you know in
advance how many times you want to execute the loop. The while loop and do loops are used
when the condition causing the loop to terminate arises within the loop, with the while loop
not necessarily executing at all, and the do loop always executing at least once.

A loop body can be a single statement or a block of multiple statements delimited by braces. A
variable defined within a block is visible only within that block.

There are four kinds of decision-making statements. The if statement does something if a test
expression is true. The if...else statement does one thing if the test expression is true, and
another thing if it isn’t. The else if construction is a way of rewriting a ladder of nested
if...else statements to make it more readable. The switch statement branches to multiple
sections of code, depending on the value of a single variable. The conditional operator simpli-
fies returning one value if a test expression is true, and another if it’s false.

The logical AND and OR operators combine two Boolean expressions to yield another one, and
the logical NOT operator changes a Boolean value from true to false, or from false to true.

123

w

SNoISDAQ
dNV Sd007

124 Chapter 3

The break statement sends control to the end of the innermost loop or switch in which it
occurs. The continue statement sends control to the top of the loop in which it occurs. The
goto statement sends control to a label.

Precedence specifies which kinds of operations will be carried out first. The order is unary,
arithmetic, relational, logical, conditional, assignment.

Questions
Answers to these questions can be found in Appendix G.

1. A relational operator
a. assigns one operand to another.
b. yields a Boolean result.
c. compares two operands.
d. logically combines two operands.

2. Write an expression that uses a relational operator to return true if the variable george is
not equal to sally.

3. Is -1 true or false?
4. Name and describe the usual purpose of three expressions in a for statement.

5. In a for loop with a multistatement loop body, semicolons should appear following

a. the for statement itself.

b. the closing brace in a multistatement loop body.

c. each statement within the loop body.

d. the test expression.

True or false: The increment expression in a for loop can decrement the loop variable.
Write a for loop that displays the numbers from 100 to 110.

A block of code is delimited by

A variable defined within a block is visible

0 © =R

a. from the point of definition onward in the program.
b. from the point of definition onward in the function.
c. from the point of definition onward in the block.
d. throughout the function.
10. Write a while loop that displays the numbers from 100 to 110.

11. True or false: Relational operators have a higher precedence than arithmetic operators.

Loops and Decisions

12.
13.
14.
15.

16.

17.

18.
19.
20.

21.

22.

23.

24.

25.

How many times is the loop body executed in a do loop?

Write a do loop that displays the numbers from 100 to 110.

Write an if statement that prints Yes if a variable age is greater than 21.
The library function exit () causes an exit from

a. the loop in which it occurs.

b. the block in which it occurs.

c. the function in which it occurs.

d. the program in which it occurs.

Write an if...else statement that displays Yes if a variable age is greater than 21, and
displays No otherwise.

The getche () library function

a. returns a character when any key is pressed.

b. returns a character when Enter is pressed.

c. displays a character on the screen when any key is pressed.

d. does not display a character on the screen.

What is the character obtained from cin when the user presses the Enter key?
An else always matches the if, unless the if is

The else...if construction is obtained from a nested if...else by

Write a switch statement that prints Yes if a variable ch is 'y ', prints No if ch is 'n',
and prints Unknown response otherwise.

Write a statement that uses a conditional operator to set ticket to | if speed is greater
than 55, and to O otherwise.

The && and | | operators

a. compare two numeric values.
b. combine two numeric values.
c. compare two Boolean values.
d. combine two Boolean values.

Write an expression involving a logical operator that is true if 1imit is 55 and speed is
greater than 55.

Arrange in order of precedence (highest first) the following kinds of operators: logical,
unary, arithmetic, assignment, relational, conditional.

125

w

SNoISDAQ
dNV Sd007

126

Chapter 3

26.

27.
28.

The break statement causes an exit

a. only from the innermost loop.

b. only from the innermost switch.

c. from all loops and switches.

d. from the innermost loop or switch.

Executing the continue operator from within a loop causes control to go to
The goto statement causes control to go to

a. an operator.

b. a label.

c. a variable.

d. a function.

Exercises

Answers to the starred exercises can be found in Appendix G.

*1.

*2.

*3.

Assume that you want to generate a table of multiples of any given number. Write a pro-
gram that allows the user to enter the number and then generates the table, formatting it
into 10 columns and 20 lines. Interaction with the program should look like this (only the
first three lines are shown):
Enter a number: 7
7 14 21 28 35 42 49 56 63 70
77 84 91 98 105 112 119 126 133 140
147 154 161 168 175 182 189 196 203 210
Write a temperature-conversion program that gives the user the option of converting
Fahrenheit to Celsius or Celsius to Fahrenheit. Then carry out the conversion. Use
floating-point numbers. Interaction with the program might look like this:
Type 1 to convert Fahrenheit to Celsius,
2 to convert Celsius to Fahrenheit: 1
Enter temperature in Fahrenheit: 70
In Celsius that's 21.111111
Operators such as >>, which read input from the keyboard, must be able to convert a
series of digits into a number. Write a program that does the same thing. It should allow
the user to type up to six digits, and then display the resulting number as a type long
integer. The digits should be read individually, as characters, using getche().
Constructing the number involves multiplying the existing value by 10 and then adding
the new digit. (Hint: Subtract 48 or ‘0’ to go from ASCII to a numerical digit.)

Loops and Decisions

%4,

Here’s some sample interaction:

Enter a number: 123456

Number is: 123456

Create the equivalent of a four-function calculator. The program should ask the user to
enter a number, an operator, and another number. (Use floating point.) It should then
carry out the specified arithmetical operation: adding, subtracting, multiplying, or divid-
ing the two numbers. Use a switch statement to select the operation. Finally, display the
result.

When it finishes the calculation, the program should ask whether the user wants to do
another calculation. The response can be 'y' or 'n'. Some sample interaction with the
program might look like this:

Enter first number, operator, second number: 10 / 3

Answer = 3.333333

Do another (y/n)? vy

Enter first number, operator, second number: 12 + 100

Answer = 112

Do another (y/n)? n

. Use for loops to construct a program that displays a pyramid of Xs on the screen. The

pyramid should look like this

X
XXX
XXXXX
XXXXXXX
XXXXXXXXX
except that it should be 20 lines high, instead of the 5 lines shown here. One way to do
this is to nest two inner loops, one to print spaces and one to print Xs, inside an outer
loop that steps down the screen from line to line.

Modify the FACTOR program in this chapter so that it repeatedly asks for a number and
calculates its factorial, until the user enters 0, at which point it terminates. You can
enclose the relevant statements in FACTOR in a while loop or a do loop to achieve this
effect.

. Write a program that calculates how much money you’ll end up with if you invest an

amount of money at a fixed interest rate, compounded yearly. Have the user furnish the
initial amount, the number of years, and the yearly interest rate in percent. Some interac-
tion with the program might look like this:

Enter initial amount: 3000

Enter number of years: 10

Enter interest rate (percent per year): 5.5
At the end of 10 years, you will have 5124.483 dollars.

127

w

SNoISDAQ
dNV Sd007

128

Chapter 3

10.

11.

At the end of the first year you have 3000 + (3000 * 0.055), which is 3165. At the end of
the second year you have 3165 + (3165 * 0.055), which is 3339.08. Do this as many
times as there are years. A for loop makes the calculation easy.

. Write a program that repeatedly asks the user to enter two money amounts expressed in

old-style British currency: pounds, shillings, and pence. (See Exercises 10 and 12 in
Chapter 2, “C++ Programming Basics.”) The program should then add the two amounts
and display the answer, again in pounds, shillings, and pence. Use a do loop that asks the
user whether the program should be terminated. Typical interaction might be

Enter first amount: £5.10.6

Enter second amount: £3.2.6

Total is £8.13.0

Do you wish to continue (y/n)?

To add the two amounts, you’ll need to carry 1 shilling when the pence value is greater
than 11, and carry 1 pound when there are more than 19 shillings.

Suppose you give a dinner party for six guests, but your table seats only four. In how
many ways can four of the six guests arrange themselves at the table? Any of the six
guests can sit in the first chair. Any of the remaining five can sit in the second chair. Any
of the remaining four can sit in the third chair, and any of the remaining three can sit in
the fourth chair. (The last two will have to stand.) So the number of possible arrange-
ments of six guests in four chairs is 6%5%4*3, which is 360. Write a program that calcu-
lates the number of possible arrangements for any number of guests and any number of
chairs. (Assume there will never be fewer guests than chairs.) Don’t let this get too com-
plicated. A simple for loop should do it.

Write another version of the program from Exercise 7 so that, instead of finding the final
amount of your investment, you tell the program the final amount and it figures out how
many years it will take, at a fixed rate of interest compounded yearly, to reach this
amount. What sort of loop is appropriate for this problem? (Don’t worry about fractional
years; use an integer value for the year.)

Create a three-function calculator for old-style English currency, where money amounts
are specified in pounds, shillings, and pence. (See Exercises 10 and 12 in Chapter 2.)
The calculator should allow the user to add or subtract two money amounts, or to multi-
ply a money amount by a floating-point number. (It doesn’t make sense to multiply two
money amounts; there is no such thing as square money. We’ll ignore division. Use the
general style of the ordinary four-function calculator in Exercise 4 in this chapter.)

Loops and Decisions

12. Create a four-function calculator for fractions. (See Exercise 9 in Chapter 2, and
Exercise 4 in this chapter.) Here are the formulas for the four arithmetic operations

applied to fractions:
Addition:
Subtraction:
Multiplication:

Division:

a/b + c/d = (a*d + b*c) / (b*d)
a/b - c¢c/d = (a*d - b*c) / (b*d)
a/b * c/d = (a*c) / (b*d)
a/b / c/d = (a*d) / (b*c)

The user should type the first fraction, an operator, and a second fraction. The program
should then display the result and ask whether the user wants to continue.

129

w

SNoISDAQ
dNV Sd007

Structures CHAPTER

A4

IN THIS CHAPTER

e Structures 132

e Enumerations 148

132

Chapter 4

We’ve seen variables of simple data types, such as float, char, and int. Variables of such
types represent one item of information: a height, an amount, a count, and so on. But just as
groceries are organized into bags, employees into departments, and words into sentences, it’s
often convenient to organize simple variables into more complex entities. The C++ construc-
tion called the structure is one way to do this.

The first part of this chapter is devoted to structures. In the second part we’ll look at a related
topic: enumerations.

Structures

A structure is a collection of simple variables. The variables in a structure can be of different
types: Some can be int, some can be float, and so on. (This is unlike the array, which we’ll
meet later, in which all the variables must be the same type.) The data items in a structure are
called the members of the structure.

In books on C programming, structures are often considered an advanced feature and are intro-
duced toward the end of the book. However, for C++ programmers, structures are one of the
two important building blocks in the understanding of objects and classes. In fact, the syntax of
a structure is almost identical to that of a class. A structure (as typically used) is a collection of
data, while a class is a collection of both data and functions. So by learning about structures
we’ll be paving the way for an understanding of classes and objects. Structures in C++ (and C)
serve a similar purpose to records in some other languages such as Pascal.

A Simple Structure

Let’s start off with a structure that contains three variables: two integers and a floating-point
number. This structure represents an item in a widget company’s parts inventory. The structure
is a kind of blueprint specifying what information is necessary for a single part. The company
makes several kinds of widgets, so the widget model number is the first member of the struc-
ture. The number of the part itself is the next member, and the final member is the part’s cost.
(Those of you who consider part numbers unexciting need to open your eyes to the romance of
commerce.)

The program PARTS defines the structure part, defines a structure variable of that type called
part1, assigns values to its members, and then displays these values.

/| parts.cpp

// uses parts inventory to demonstrate structures
#include <iostream>

using namespace std;

Structures

LHECTEPTEET i r i r i b r i b r i r i r i ri gy

struct part //declare a structure

{

int modelnumber; //ID number of widget

int partnumber; //ID number of widget part

float cost; //cost of part

b
[EEETTETEEELE I rr i i i i rr i i rr i i r
int main()

{

part partt; //define a structure variable

parti.modelnumber = 6244; //give values to structure members
parti.partnumber = 373;
partl.cost = 217.55F;

//display structure members

cout << "Model " << parti.modelnumber;
cout << ", part " << parti.partnumber;
cout << ", costs $" << parti.cost << endl;
return 0;

by

The program’s output looks like this:
Model 6244, part 373, costs $217.55

The PARTS program has three main aspects: defining the structure, defining a structure variable,
and accessing the members of the structure. Let’s look at each of these.

Defining the Structure

The structure definition tells how the structure is organized: It specifies what members the
structure will have. Here it is:

struct part

{

int modelnumber;
int partnumber;
float cost;

b

Syntax of the Structure Definition

The keyword struct introduces the structure definition. Next comes the structure name or tag,
which is part. The declarations of the structure members—modelnumber, partnumber, and
cost—are enclosed in braces. A semicolon follows the closing brace, terminating the entire

133

SIUNIONYULS

134

Chapter 4

structure. Note that this use of the semicolon for structures is unlike the usage for a block of
code. As we’ve seen, blocks of code, which are used in loops, decisions, and functions, are also
delimited by braces. However, they don’t use a semicolon following the final brace. Figure 4.1
shows the syntax of the structure declaration.

Keyword “struct”

Structure name or “tag”

struct part

{
int modelnumber;
Braces delimit int ~tnumber: Struct)
structure members int partnumoer; ructure members
float cost;
}s

|—Semicolon terminates definition

FIGURE 4.1
Syntax of the structure definition.

Use of the Structure Definition

The structure definitiondefinition serves only as a blueprint for the creation of variables of type
part. It does not itself create any structure variables; that is, it does not set aside any space in
memory or even name any variables. This is unlike the definition of a simple variable, which
does set aside memory. A structure definition is merely a specification for how structure vari-
ables will look when they are defined. This is shown in Figure 4.2.

It’s not accidental that this description sounds like the distinction we noted between classes
and objects in Chapter 1, “The Big Picture.” As we’ll see, an object has the same relationship
to its class that a variable of a structure type has to the structure definition.

Defining a Structure Variable

The first statement in main ()
part parti;

defines a variable, called part1, of type structure part. This definition reserves space in
memory for part1. How much space? Enough to hold all the members of parti—namely
modelnumber, partnumber, and cost. In this case there will be 4 bytes for each of the two ints
(assuming a 32-bit system), and 4 bytes for the float. Figure 4.3 shows how part1 looks in
memory. (The figure shows 2-byte integers.)

Structures

Structure definition for Foo

Variables of type Foo

FIGURE 4.2

Structures and structure variables.

In some ways we can think of the part structure as the specification for a new data type. This
will become more clear as we go along, but notice that the format for defining a structure vari-
able is the same as that for defining a basic built-in data type such as int:

part parti;
int vari;

This similarity is not accidental. One of the aims of C++ is to make the syntax and the opera-
tion of user-defined data types as similar as possible to that of built-in data types. (In C you

need to include the keyword struct in structure definitions, as in struct part parti;.In
C++ the keyword is not necessary.)

135

SIUNIONYULS

136

Chapter 4

struct part
{

int modelnumber;

partl

int partnumber;
float cost;,——
};

part parti;

FIGURE 4.3

Structure members in memory.

Accessing Structure Members

Once a structure variable has been defined, its members can be accessed using something
called the dot operator. Here’s how the first member is given a value:

parti.modelnumber = 6244;

The structure member is written in three parts: the name of the structure variable (part1); the
dot operator, which consists of a period (.); and the member name (modelnumber). This means
“the modelnumber member of parti1.” The real name of the dot operator is member access
operator, but of course no one wants to use such a lengthy term.

Remember that the first component of an expression involving the dot operator is the name of
the specific structure variable (part1 in this case), not the name of the structure definition
(part). The variable name must be used to distinguish one variable from another, such as
parti, part2, and so on, as shown in Figure 4.4.

Structures

part3

;J.fi

part2.modelnumber

FiIGURe 4.4
The dot operator.

Structure members are treated just like other variables. In the statement part1.modelnumber
6244;, the member is given the value 6244 using a normal assignment operator. The program
also shows members used in cout statements such as

cout << "\nModel " << parti.modelnumber;

These statements output the values of the structure members.

Other Structure Features

Structures are surprisingly versatile. Let’s look at some additional features of structure syntax
and usage.

137

SIUNIONYULS

138

Chapter 4

Initializing Structure Members

The next example shows how structure members can be initialized when the structure variable
is defined. It also demonstrates that you can have more than one variable of a given structure
type (we hope you suspected this all along).

Here’s the listing for PARTINIT:

// partinit.cpp

// shows initialization of structure variables

#include <iostream>

using namespace std;

[ICTETEIEEEEE i b i irirriig

struct part //specify a structure
{
int modelnumber; //ID number of widget
int partnumber; //ID number of widget part
float cost; //cost of part
b
[EELEEEEEEEE i i i i i irr
int main()
{ //initialize variable
part partl = { 6244, 373, 217.55F };
part part2; //define variable
//display first variable
cout << "Model " << parti.modelnumber;
cout << ", part " << parti.partnumber;
cout << ", costs $" << parti.cost << endl;
part2 = parti; //assign first variable to second
//display second variable
cout << "Model " << part2.modelnumber;
cout << ", part " << part2.partnumber;
cout << ", costs $" << part2.cost << endl;
return 0;
}

This program defines two variables of type part: part1 and part2. It initializes part1, prints
out the values of its members, assigns part1 to part2, and prints out its members.

Here’s the output:

Model 6244, part 373, costs $217.55
Model 6244, part 373, costs $217.55

Not surprisingly, the same output is repeated since one variable is made equal to the other.
The part1 structure variable’s members are initialized when the variable is defined:

part partl = { 6244, 373, 217.55 };

Structures

The values to be assigned to the structure members are surrounded by braces and separated by
commas. The first value in the list is assigned to the first member, the second to the second
member, and so on.

Structure Variables in Assignment Statements
As can be seen in PARTINIT, one structure variable can be assigned to another:

part2 = parti;

The value of each member of part1 is assigned to the corresponding member of part2. Since
a large structure can have dozens of members, such an assignment statement can require the
computer to do a considerable amount of work.

Note that one structure variable can be assigned to another only when they are of the same
structure type. If you try to assign a variable of one structure type to a variable of another type,
the compiler will complain.

A Measurement Example

Let’s see how a structure can be used to group a different kind of information. If you’ve ever
looked at an architectural drawing, you know that (at least in the United States) distances are
measured in feet and inches. (As you probably know, there are 12 inches in a foot.) The length
of a living room, for example, might be given as 15'-8", meaning 15 feet plus 8 inches. The
hyphen isn’t a negative sign; it merely separates the feet from the inches. This is part of the
English system of measurement. (We’ll make no judgment here on the merits of English versus
metric.) Figure 4.5 shows typical length measurements in the English system.

Suppose you want to create a drawing or architectural program that uses the English system. It
will be convenient to store distances as two numbers, representing feet and inches. The next
example, ENGLSTRC, gives an idea of how this could be done using a structure. This program
will show how two measurements of type Distance can be added together.

// englstrc.cpp
// demonstrates structures using English measurements
#include <iostream>
using namespace std;
[EEEEETTEEEE L r i e r i il
struct Distance //English distance
{
int feet;
float inches;
};
[EEEEETTEEET i i i il ry

139

SIUNIONYULS

140 Chapter 4

int main()
{
Distance d1, d3; //define two lengths
Distance d2 = { 11, 6.25 }; //define & initialize one length

//get length di from user
cout << "\nEnter feet: "; cin >> di.feet;
cout << "Enter inches: "; cin >> d1.inches;

//add lengths d1 and d2 to get d3
d3.inches = di.inches + d2.inches; //add the inches

d3.feet = 0; // (for possible carry)
if(d3.inches >= 12.0) //if total exceeds 12.0,
{ //then decrease inches by 12.0
d3.inches -= 12.0; //and
d3.feet++; //increase feet by 1
}

d3.feet += di1.feet + d2.feet; //add the feet

//display all lengths

cout << di.feet << "\'-" << di.inches << "\" + ";
cout << d2.feet << "\'-" << d2.inches << "\" = ";
cout << d3.feet << "\'-" << d3.inches << "\"\n";
return 0;

}

10'- 6.75" 11'-6.25"

Dining room

FIGURE 4.5

Measurements in the English system.

Structures

Here the structure Distance has two members: feet and inches. The inches variable may
have a fractional part, so we’ll use type float for it. Feet are always integers, so we’ll use type
int for them.

We define two such distances, d1 and d3, without initializing them, while we initialize another,
d2, to 11'-6.25". The program asks the user to enter a distance in feet and inches, and assigns
this distance to d1. (The inches value should be smaller than 12.0.) It then adds the distance d1
to d2, obtaining the total distance d3. Finally the program displays the two initial distances and
the newly calculated total distance. Here’s some output:

Enter feet: 10
Enter inches: 6.75
10'-6.75" + 11'-6.25" = 22'-1"

Notice that we can’t add the two distances with a program statement like
d3 = di + d2; // can't do this in ENGLSTRC

Why not? Because there is no routine built into C++ that knows how to add variables of type
Distance. The + operator works with built-in types like float, but not with types we define
ourselves, like Distance. (However, one of the benefits of using classes, as we’ll see in
Chapter 8, “Operator Overloading,” is the ability to add and perform other operations on user-
defined data types.)

Structures Within Structures

You can nest structures within other structures. Here’s a variation on the ENGLSTRC program
that shows how this looks. In this program we want to create a data structure that stores the
dimensions of a typical room: its length and width. Since we’re working with English dis-
tances, we’ll use two variables of type Distance as the length and width variables.

struct Room
{
Distance length;
Distance width;

}

Here’s a program, ENGLAREA, that uses the Room structure to represent a room.

// englarea.cpp

// demonstrates nested structures

#include <iostream>

using namespace std;

[IELETEIEEEEE i r i rirriigr
struct Distance //English distance

{

int feet;

141

SIUNIONYULS

142 Chapter 4

float inches;

b
LIEETEETEEEIT LI e i r i ri i i rirrrri
struct Room //rectangular area

{

Distance length; //1length of rectangle

Distance width; //width of rectangle

b
[IEETEETEEETT LN rr i i i rr i i rr i rirrrri
int main()

{

Room dining; //define a room

dining.length.feet = 13; //assign values to room

dining.length.inches = 6.5;
dining.width.feet = 10;
dining.width.inches = 0.0;

//convert length & width
float 1 = dining.length.feet + dining.length.inches/12;
float w = dining.width.feet + dining.width.inches/12;

//find area and display it
cout << "Dining room area is " << 1 * w

<< " square feet\n" ;
return 0;

}

This program defines a single variable—dining—of type Room, in the line

Room dining; // variable dining of type Room

It then assigns values to the various members of this structure.

Accessing Nested Structure Members
Because one structure is nested inside another, we must apply the dot operator twice to access
the structure members.

dining.length.feet = 13;

In this statement, dining is the name of the structure variable, as before; length is the name of
a member in the outer structure (Room); and feet is the name of a member of the inner struc-
ture (Distance). The statement means “take the feet member of the 1ength member of the
variable dining and assign it the value 13.” Figure 4.6 shows how this works.

Structures

dining
N

dining.length.feet = 13;

FIGURE 4.6

Dot operator and nested structures.

Once values have been assigned to members of dining, the program calculates the floor area
of the room, as shown in Figure 4.7.

To find the area, the program converts the length and width from variables of type Distance to
variables of type float, 1, and w, representing distances in feet. The values of 1 and w are
found by adding the feet member of Distance to the inches member divided by 12. The feet
member is converted to type float automatically before the addition is performed, and the
result is type float. The 1 and w variables are then multiplied together to obtain the area.

143

SIUNIONYULS

144 Chapter 4

F

length *‘i

feet =

feet
width

FIGURE 4.7

Area in feet and inches.

User-Defined Type Conversions

Note that the program converts two distances of type Distance to two distances of type float:
the variables 1 and w. In effect it also converts the room’s area, which is stored as a structure of
type Room (which is defined as two structures of type Distance), to a single floating-point
number representing the area in square feet. Here’s the output:

Dining room area is 135.416672 square feet
Converting a value of one type to a value of another is an important aspect of programs that

employ user-defined data types.

Initializing Nested Structures
How do you initialize a structure variable that itself contains structures? The following state-
ment initializes the variable dining to the same values it is given in the ENGLAREA program:

Room dining = { {13, 6.5}, {10, 0.0} };

Each structure of type Distance, which is embedded in Roonm, is initialized separately.
Remember that this involves surrounding the values with braces and separating them with
commas. The first Distance is initialized to

{13, 6.5}

Structures

and the second to
{10, 0.0}

These two Distance values are then used to initialize the Room variable; again, they are
surrounded with braces and separated by commas.

Depth of Nesting
In theory, structures can be nested to any depth. In a program that designs apartment buildings,
you might find yourself with statements like this one:

apartmenti.laundry_room.washing_machine.width.feet

A Card Game Example

Let’s examine a different kind of example. This one uses a structure to model a playing card.
The program imitates a game played by cardsharps (professional gamblers) at carnivals. The
cardsharp shows you three cards, then places them face down on the table and interchanges
their positions several times. If you can guess correctly where a particular card is, you win.
Everything is in plain sight, yet the cardsharp switches the cards so rapidly and confusingly
that the player (the mark) almost always loses track of the card and loses the game, which is,
of course, played for money.

Here’s the structure the program uses to represent a playing card:

struct card

{
int number;
int suit;

b

This structure uses separate members to hold the number of the card and the suit. The number
runs from 2 to 14, where 11, 12, 13, and 14 represent the jack, queen, king, and ace, respec-
tively (this is the order used in poker). The suit runs from O to 3, where these four numbers
represent clubs, diamonds, hearts, and spades.

Here’s the listing for CARDS:

// cards.cpp

// demonstrates structures using playing cards
#include <iostream>

using namespace std;

const int clubs = 0;
const int diamonds
const int hearts =
const int spades =

//suits

W N -

145

SIUNIONYULS

146

Chapter 4

const int jack = 11; //face cards

const int queen = 12;

const int king = 13;

const int ace = 14;

[EELEETTEEEE i r bbbl r
struct card

{
int number; //2 to 10, jack, queen, king, ace
int suit; //clubs, diamonds, hearts, spades
s

[EELEETTEEEE i r bbbl r
int main()

{

card temp, chosen, prize; //define cards

int position;

card cardl = { 7, clubs }; //initialize cardi
cout << "Card 1 is the 7 of clubs\n";

card card2 = { jack, hearts }; //initialize card2
cout << "Card 2 is the jack of hearts\n";

card card3 = { ace, spades }; //initialize card3
cout << "Card 3 is the ace of spades\n";

prize = card3; //copy this card, to remember it

cout << "I'm swapping card 1 and card 3\n";
temp = card3; card3 = card1; cardl = temp;

cout << "I'm swapping card 2 and card 3\n";
temp = card3; card3 = card2; card2 = temp;

cout << "I'm swapping card 1 and card 2\n";
temp = card2; card2 = card1; cardl = temp;

cout << "Now, where (1, 2, or 3) is the ace of spades? ";
cin >> position;

switch (position)
{
case 1: chosen
case 2: chosen
case 3: chosen

}

cardl; break;
card2; break;
card3; break;

Structures

if (chosen.number == prize.number && // compare cards
chosen.suit == prize.suit)
cout << "That's right! You win!\n";

else
cout << "Sorry. You lose.\n";

return 0;

}

Here’s some sample interaction with the program:

Card 1 is the 7 of clubs

Card 2 is the jack of hearts

Card 3 is the ace of spades

I'm swapping card 1 and card 3

I'm swapping card 2 and card 3

I'm swapping card 1 and card 2

Now, where (1, 2, or 3) is the ace of spades? 3
Sorry. You lose.

In this case the hapless mark chose the wrong card (the right answer is 2).

The program begins by defining a number of variables of type const int for the face card and
suit values. (Not all these variables are used in the program; they’re included for complete-
ness.) Next the card structure is specified. The program then defines three uninitialized vari-
ables of type card: temp, chosen, and prize. It also defines three cards—card1, card2, and
card3—which it initializes to three arbitrary card values. It prints out the values of these cards
for the user’s information. It then sets a card variable, prize, to one of these card values as a
way of remembering it. This card is the one whose location the player will be asked to guess at
the end of the game.

Next the program rearranges the cards. It swaps the first and third cards, the second and third
cards, and the first and second cards. Each time it tells the user what it’s doing. (If you find the
program too easy, you can add more such statements to further shuffle the cards. Flashing the
statements on the screen for a limited time would also increase the challenge.)

Finally the program asks the player what position a particular card is in. It sets a card variable,
chosen, to the card in this position, and then compares chosen with the prize card. If they
match, it’s a win for the player; if not, it’s a loss.

Notice how easy swapping cards is.
temp = card3; card3 = cardl; cardl = temp;

Although the cards represent structures, they can be moved around very naturally, thanks to the
ability of the assignment operator (=) to work with structures.

147

SIUNIONYULS

148

Chapter 4

Unfortunately, just as structures can’t be added, they also can’t be compared. You can’t say
if(chosen == prize) //not legal yet

because there’s no routine built into the == operator that knows about the card structure. But,
as with addition, this problem can be solved with operator overloading, as we’ll see later.

Structures and Classes

‘We must confess to having misled you slightly on the capabilities of structures. It’s true that
structures are usually used to hold data only, and classes are used to hold both data and func-
tions. However, in C++, structures can in fact hold both data and functions. (In C they can hold
only data.) The syntactical distinction between structures and classes in C++ is minimal, so
they can in theory be used almost interchangeably. But most C++ programmers use structures
as we have in this chapter, exclusively for data. Classes are usually used to hold both data and
functions, as we’ll see in Chapter 6, “Objects and Classes.”

Enumerations

As we’ve seen, structures can be looked at as a way to provide user-defined data types. A dif-
ferent approach to defining your own data type is the enumeration. This feature of C++ is less
crucial than structures. You can write perfectly good object-oriented programs in C++ without
knowing anything about enumerations. However, they are very much in the spirit of C++, in
that, by allowing you to define your own data types, they can simplify and clarify your pro-
gramming.

Days of the Week

Enumerated types work when you know in advance a finite (usually short) list of values that a
data type can take on. Here’s an example program, DAYENUM, that uses an enumeration for the
days of the week:

// dayenum.cpp
// demonstrates enum types
#include <iostream>
using namespace std;
//specify enum type
enum days_of_week { Sun, Mon, Tue, Wed, Thu, Fri, Sat };

int main()
{
days_of_week day1, day2; //define variables
//of type days_of_week

Structures

day1l = Mon; //give values to
day2 = Thu; //variables
int diff = day2 - dayil; //can do integer arithmetic
cout << "Days between = " << diff << endl;
if(dayl < day2) //can do comparisons
cout << "dayl comes before day2\n";
return 0;
}

An enum declaration defines the set of all names that will be permissible values of the type.
These permissible values are called enumerators. The enum type days_of_week has seven
enumerators: Sun, Mon, Tue, and so on, up to Sat. Figure 4.8 shows the syntax of an enum
declaration.

Keyword e num
Semicolon terminates
[Variable name SBeent W

enum days_of_week{Sun,Mon,Tues, Wed,Thu,Fri,Sat};

-
List of constants,
separated by commas

List delimited by braces

FIGURE 4.8

Syntax of enum specifier.

An enumeration is a list of all possible values. This is unlike the specification of an int, for
example, which is given in terms of a range of values. In an enum you must give a specific
name to every possible value. Figure 4.9 shows the difference between an int and an enum.

Once you’ve declared the enum type days_of_week as shown, you can define variables of this
type. DAYENUM has two such variables, day1 and day2, defined in the statement

days_of_week day1, day2;
(In C you must use the keyword enum before the type name, as in
enum days_of_week day1, day2;

In C++ this isn’t necessary.)

149

SIUNIONYULS

150

Chapter 4

A large number of values
are not named and are
refemred to by value.

FIGURE 4.9

Usage of ints and enuns.

Variables of an enumerated type, like day1 and day2, can be given any of the values listed in
the enum declaration. In the example we give them the values Mon and Thu. You can’t use values
that weren’t listed in the declaration. Such statements as

day1l = halloween;
are illegal.

You can use the standard arithmetic operators on enum types. In the program we subtract two
values. You can also use the comparison operators, as we show. Here’s the program’s output:

Days between = 3
day1l comes before day2

Structures 151

The use of arithmetic and relational operators doesn’t make much sense with some enum types.
For example, if you have the declaration

enum pets { cat, dog, hamster, canary, ocelot };
then it may not be clear what expressions like dog + canary or (cat < hamster) mean.

Enumerations are treated internally as integers. This explains why you can perform arithmetic
and relational operations on them. Ordinarily the first name in the list is given the value 0, the
next name is given the value 1, and so on. In the DAYENUM example, the values Sun through
Sat are stored as the integer values 0-6.

Arithmetic operations on enum types take place on the integer values. However, although the
compiler knows that your enum variables are really integers, you must be careful of trying to
take advantage of this fact. If you say

dayl = 5;

the compiler will issue a warning (although it will compile). It’s better to forget—whenever
possible—that enums are really integers.

One Thing or Another

Our next example counts the words in a phrase typed in by the user. Unlike the earlier
CHCOUNT example, however, it doesn’t simply count spaces to determine the number of words.
Instead it counts the places where a string of nonspace characters changes to a space, as shown
in Figure 4.10.

we fake tue fae e fake te fake
[]
[

a{ml | 1 |41
| |

[1efslalu T
count 1 count 2 count 3 wuL

|
£

e anlk Sle

FIGURE 4.10

Operation of the WDCOUNT program.

This way you don’t get a false count if you type multiple spaces between words. (It still
doesn’t handle tabs and other whitespace characters.) Here’s the listing for WbCOUNT: This
example shows an enumeration with only two enumerators.

isWord flag 4

SIUNIONYULS

152

Chapter 4

// wdcount.cpp

// demonstrates enums, counts words in phrase
#include <iostream>

using namespace std;

#include <conio.h> //for getche()
enum itsaWord { NO, YES }; //NO=0, YES=1
int main()
{
itsaWord isWord = NO; //YES when in a word,
//NO when in whitespace
char ch = 'a'; //character read from keyboard
int wordcount = 0; //number of words read

cout << "Enter a phrase:\n";

do {
ch = getche(); //get character
if(ch=="' "' || ch=="\r') [//if white space,
{
if(isWord == YES) //and doing a word,
{ //then it's end of word
wordcount++; //count the word
isWord = NO; //reset flag
}
} //otherwise, it's
else //normal character
if(isWord == NO) //if start of word,
isWord = YES; //then set flag
} while(ch != "\r'); //quit on Enter key
cout << "\n---Word count is " << wordcount << "---\n";
return 0;
}

The program cycles in a do loop, reading characters from the keyboard. It passes over (non-
space) characters until it finds a space. At this point it counts a word. Then it passes over
spaces until it finds a character, and again counts characters until it finds a space. Doing this
requires the program to remember whether it’s in the middle of a word, or in the middle of a
string of spaces. It remembers this with the enum variable isWord. This variable is defined to be
of type itsaWord. This type is specified in the statement

enum itsaWord { NO, YES };

Variables of type itsaWord have only two possible values: NO and YES. Notice that the list
starts with NO, so this value will be given the value O—the value that indicates false. (We could
also use a variable of type bool for this purpose.)

Structures

The isWord variable is set to NO when the program starts. When the program encounters the
first nonspace character, it sets isWord to YES to indicate that it’s in the middle of a word. It
keeps this value until the next space is found, at which point it’s set back to NO. Behind the
scenes, NO has the value 0 and YES has the value 1, but we avoid making use of this fact. We
could have used if (isWord) instead of if (isWord == YES), and if(!isWord) instead of
if (isWord == NO), but this is not good style.

Note also that we need an extra set of braces around the second if statement in the program,
so that the else will match the first if.

Another approach to a yes/no situation such as that in WDCOUNT is to use a variable of type
bool. This may be a little more straightforward, depending on the situation.

Organizing the Cards

Here’s our final example of enum types. Remember that in the CARDS program earlier in this
chapter we defined a group of constants of type const int to represent a card’s suits.

const int clubs = 0;
const int diamonds =
const int hearts = 2;
const int spades 3;

E

This sort of list is somewhat clumsy. Let’s revise the CARDS program to use enumerations
instead. Here’s the listing for CARDENUM:

// cardenum.cpp

// demonstrates enumerations
#include <iostream>

using namespace std;

const int jack = 11; //2 through 10 are unnamed integers
const int queen = 12;

const int king = 13;

const int ace = 14;

enum Suit { clubs, diamonds, hearts, spades };

[IEEETETEEEEE i rr i rrrrrrrr
struct card

{
int number; //2 to 10, jack, queen, king, ace
Suit suit; //clubs, diamonds, hearts, spades
};

[IEETEETEEELE i r i i r i i r i i rrrrrr
int main()

{

153

SIUNIONYULS

154 Chapter 4

card temp, chosen, prize; //define cards
int position;

card cardl = { 7, clubs }; //initialize cardi
cout << "Card 1 is the seven of clubs\n";

card card2 = { jack, hearts }; //initialize card2
cout << "Card 2 is the jack of hearts\n";

card card3 = { ace, spades }; //initialize card3
cout << "Card 3 is the ace of spades\n";

prize = card3; //copy this card, to remember it

cout << "I'm swapping card 1 and card 3\n";
temp = card3; card3 = card1; cardl = temp;

cout << "I'm swapping card 2 and card 3\n";
temp = card3; card3 = card2; card2 = temp;

cout << "I'm swapping card 1 and card 2\n";
temp = card2; card2 = cardi1; cardl = temp;

cout << "Now, where (1, 2, or 3) is the ace of spades? ";
cin >> position;

switch (position)
{
case 1: chosen = cardil; break;
case 2: chosen = card2; break;
case 3: chosen = card3; break;

I
if(chosen.number == prize.number && //compare cards
chosen.suit == prize.suit)
cout << "That's right! You win!\n";
else
cout << "Sorry. You lose.\n";
return 0;

}

Here the set of definitions for suits used in the CARDS program has been replaced by an enum
declaration:

enum Suit { clubs, diamonds, hearts, spades };

Structures

This is a cleaner approach than using const variables. We know exactly what the possible val-
ues of the suit are; attempts to use other values, as in

cardl.suit = 5;

result in warnings from the compiler.

Specifying Integer Values

We said that in an enum declaration the first enumerator was given the integer value 0, the sec-
ond the value 1, and so on. This ordering can be altered by using an equal sign to specify a
starting point other than 0. For example, if you want the suits to start with 1 instead of 0, you
can say

enum Suit { clubs=1, diamonds, hearts, spades };

Subsequent names are given values starting at this point, so diamonds is 2, hearts is 3, and
spades is 4. Actually you can use an equal sign to give a specified value to any enumerator.

Not Perfect

One annoying aspect of enum types is that they are not recognized by C++ input/output (I/O)
statements. As an example, what do you think the following code fragment will cause to be
displayed?

enum direction { north, south, east, west };
direction dir1 = south;
cout << dirft;

Did you guess the output would be south? That would be nice, but C++ I/O treats variables of
enum types as integers, so the output would be 1.

Other Examples

Here are some other examples of enumerated data declarations, to give you a feeling for possi-
ble uses of this feature:

enum months { Jan, Feb, Mar, Apr, May, Jun,
Jul, Aug, Sep, Oct, Nov, Dec };

enum switch { off, on };
enum meridian { am, pm };
enum chess { pawn, knight, bishop, rook, queen, king };

enum coins { penny, nickel, dime, quarter, half-dollar, dollar };

We’ll see other examples in future programs.

155

SIUNIONYULS

156 Chapter 4

Summary

We’ve covered two topics in this chapter: structures and enumerations. Structures are an impor-
tant component of C++, since their syntax is the same as that of classes. In fact, classes are
(syntactically, at least) nothing more than structures that include functions. Structures are typi-
cally used to group several data items together to form a single entity. A structure definition
lists the variables that make up the structure. Other definitions then set aside memory for struc-
ture variables. Structure variables are treated as indivisible units in some situations (such as
setting one structure variable equal to another), but in other situations their members are
accessed individually (often using the dot operator).

An enumeration is a programmer-defined type that is limited to a fixed list of values. A decla-
ration gives the type a name and specifies the permissible values, which are called
enumerators. Definitions can then create variables of this type. Internally the compiler treats
enumeration variables as integers.

Structures should not be confused with enumerations. Structures are a powerful and flexible
way of grouping a diverse collection of data into a single entity. An enumeration allows the
definition of variables that can take on a fixed set of values that are listed (enumerated) in the
type’s declaration.

Questions

Answers to these questions can be found in Appendix G.

1. A structure brings together a group of

a. items of the same data type.

b. related data items.

c. integers with user-defined names.

d. variables.
2. True or false: A structure and a class use similar syntax.
3. The closing brace of a structure is followed by a

4. Write a structure specification that includes three variables—all of type int—called hrs,
mins, and secs. Call this structure time.

5. True or false: A structure definition creates space in memory for a variable.

Structures 157
6. When accessing a structure member, the identifier to the left of the dot operator is the
name of
a. a structure member.
b. a structure tag.
c. a structure variable.
d. the keyword struct.
7. Write a statement that sets the hrs member of the time2 structure variable equal to 11.
8. If you have three variables defined to be of type struct time, and this structure contains
three int members, how many bytes of memory do the variables use together?
9. Write a definition that initializes the members of time1—which is a variable of type
struct time, as defined in Question 4—to hrs = 11, mins = 10, secs = 59.
10. True or false: You can assign one structure variable to another, provided they are of the
same type.
11. Write a statement that sets the variable temp equal to the paw member of the dogs mem-
ber of the fido variable.
12. An enumeration brings together a group of
a. items of different data types.
b. related data variables.
c. integers with user-defined names.
d. constant values.
13. Write a statement that declares an enumeration called players with the values B1, B2,
SS, B3, RF, CF, LF, P, and C.
14. Assuming the enum type players as declared in Question 13, define two variables joe 4
and tom, and assign them the values LF and P, respectively.
15. Assuming the statements of Questions 13 and 14, state whether each of the following
statements is legal.
a. joe = QB;
b. tom = SS;
Cc. LF = tom;
d. difference = joe - tom;
16. The first three enumerators of an enum type are normally represented by the values
s , and
17. Write a statement that declares an enumeration called speeds with the enumerators

obsolete, single, and album. Give these three names the integer values 78, 45, and 33.

SIUNIONYULS

158

Chapter 4

18.

State the reason that
enum isWord{ NO, YES };

is better than

enum isWord{ YES, NO };

Exercises

Answers to the starred exercises can be found in Appendix G.

*1.

*2.

*3.

A phone number, such as (212) 767-8900, can be thought of as having three parts: the
area code (212), the exchange (767), and the number (8900). Write a program that uses a
structure to store these three parts of a phone number separately. Call the structure
phone. Create two structure variables of type phone. Initialize one, and have the user
input a number for the other one. Then display both numbers. The interchange might
look like this:

Enter your area code, exchange, and number: 415 555 1212

My number is (212) 767-8900

Your number is (415) 555-1212

A point on the two-dimensional plane can be represented by two numbers: an x coordi-
nate and a y coordinate. For example, (4,5) represents a point 4 units to the right of the
vertical axis, and 5 units up from the horizontal axis. The sum of two points can be
defined as a new point whose x coordinate is the sum of the x coordinates of the two
points, and whose y coordinate is the sum of the y coordinates.

Write a program that uses a structure called point to model a point. Define three points,
and have the user input values to two of them. Then set the third point equal to the sum
of the other two, and display the value of the new point. Interaction with the program
might look like this:

Enter coordinates for pi1: 3 4

Enter coordinates for p2: 5 7

Coordinates of pi1+p2 are: 8, 11

Create a structure called Volume that uses three variables of type Distance (from the
ENGLSTRC example) to model the volume of a room. Initialize a variable of type Volume
to specific dimensions, then calculate the volume it represents, and print out the result.
To calculate the volume, convert each dimension from a Distance variable to a variable
of type float representing feet and fractions of a foot, and then multiply the resulting
three numbers.

Create a structure called employee that contains two members: an employee number
(type int) and the employee’s compensation (in dollars; type float). Ask the user to fill
in this data for three employees, store it in three variables of type struct employee, and
then display the information for each employee.

Structures

5. Create a structure of type date that contains three members: the month, the day of the

month, and the year, all of type int. (Or use day-month-year order if you prefer.) Have
the user enter a date in the format 12/31/2001, store it in a variable of type struct date,
then retrieve the values from the variable and print them out in the same format.

. We said earlier that C++ I/O statements don’t automatically understand the data types of
enumerations. Instead, the (>>) and (<<) operators think of such variables simply as inte-
gers. You can overcome this limitation by using switch statements to translate between
the user’s way of expressing an enumerated variable and the actual values of the enumer-
ated variable. For example, imagine an enumerated type with values that indicate an
employee type within an organization:

enum etype { laborer, secretary, manager, accountant, executive,
researcher };

Write a program that first allows the user to specify a type by entering its first letter
("1', 's', 'm', and so on), then stores the type chosen as a value of a variable of type
enum etype, and finally displays the complete word for this type.
Enter employee type (first letter only)

laborer, secretary, manager,

accountant, executive, researcher): a
Employee type is accountant.

You’ll probably need two switch statements: one for input and one for output.

. Add a variable of type enum etype (see Exercise 6), and another variable of type struct
date (see Exercise 5) to the employee class of Exercise 4. Organize the resulting pro-
gram so that the user enters four items of information for each of three employees: an
employee number, the employee’s compensation, the employee type, and the date of first
employment. The program should store this information in three variables of type
employee, and then display their contents.

. Start with the fraction-adding program of Exercise 9 in Chapter 2, “C++ Programming
Basics.” This program stores the numerator and denominator of two fractions before
adding them, and may also store the answer, which is also a fraction. Modify the pro-
gram so that all fractions are stored in variables of type struct fraction, whose two
members are the fraction’s numerator and denominator (both type int). All fraction-
related data should be stored in structures of this type.

. Create a structure called time. Its three members, all type int, should be called hours,
minutes, and seconds. Write a program that prompts the user to enter a time value in
hours, minutes, and seconds. This can be in 12:59:59 format, or each number can be
entered at a separate prompt (“Enter hours:”, and so forth). The program should then
store the time in a variable of type struct time, and finally print out the total number of
seconds represented by this time value:

long totalsecs = t1.hours*3600 + t1.minutes*60 + t1.seconds

159

SIUNIONYULS

160

Chapter 4

10.

12.

Create a structure called sterling that stores money amounts in the old-style British
system discussed in Exercises 8 and 11 in Chapter 3, “Loops and Decisions.” The mem-
bers could be called pounds, shillings, and pence, all of type int. The program should
ask the user to enter a money amount in new-style decimal pounds (type double), con-
vert it to the old-style system, store it in a variable of type struct sterling, and then
display this amount in pounds-shillings-pence format.

. Use the time structure from Exercise 9, and write a program that obtains two time val-

ues from the user in 12:59:59 format, stores them in struct time variables, converts
each one to seconds (type int), adds these quantities, converts the result back to hours-
minutes-seconds, stores the result in a time structure, and finally displays the result in
12:59:59 format.

Revise the four-function fraction calculator program of Exercise 12 in Chapter 3 so that
each fraction is stored internally as a variable of type struct fraction, as discussed in
Exercise 8 in this chapter.

Functions CHAPTER

IN THIS CHAPTER

e Simple Functions 162

e Passing Arguments to Functions 167
e Returning Values from Functions 176
¢ Reference Arguments 182

e Overloaded Functions 188

e Recursion 193

¢ Inline Functions 195

e Default Arguments 197

* Scope and Storage Class 199

¢ Returning by Reference 206

e const Function Arguments 208

162

Chapter 5

A function groups a number of program statements into a unit and gives it a name. This unit
can then be invoked from other parts of the program.

The most important reason to use functions is to aid in the conceptual organization of a pro-
gram. Dividing a program into functions is, as we discussed in Chapter 1, “The Big Picture,”
one of the major principles of structured programming. (However, object-oriented program-

ming provides additional, more powerful ways to organize programs.)

Another reason to use functions (and the reason they were invented, long ago) is to reduce pro-
gram size. Any sequence of instructions that appears in a program more than once is a candi-
date for being made into a function. The function’s code is stored in only one place in memory,
even though the function is executed many times in the course of the program. Figure 5.1
shows how a function is invoked from different sections of a program.

Calling program

func1()

Callsto —_
function

Same code is used
for all calls to function.

FIGURE 5.1
Flow of control to a function.

Functions in C++ (and C) are similar to subroutines and procedures in various other languages.

Simple Functions

Our first example demonstrates a simple function whose purpose is to print a line of 45 aster-
isks. The example program generates a table, and lines of asterisks are used to make the table
more readable. Here’s the listing for TABLE:

Functions

/] table.cpp

// demonstrates simple function
#include <iostream>

using namespace std;

void starline(); //function declaration
// (prototype)
int main()
{
starline(); //call to function
cout << "Data type Range" << endl;
starline(); //call to function
cout << "char -128 to 127" << endl
<< "short -32,768 to 32,767" << endl
<< "int System dependent" << endl
<< "long -2,147,483,648 to 2,147,483,647" << endl;
starline(); //call to function
return 0;
}
[= m e e o

/1 starline()
// function definition

void starline() //function declarator
{
for(int j=0; j<45; j++) //function body
cout << '*';
cout << endl;
}

The output from the program looks like this:
EE R R R R R R R R R R R R R

Data type Range

LR R R R R R R R EEEREEEEEEEEEEEEEEEEEEEEEEEEEEEES

char -128 to 127

short -32,768 to 32,767

int System dependent

long -2,147,483,648 to 2,147,483,647

hkhkkkhkhhkhkhkhhkhkhhhkhhhhhhhhhhhkhhhhhkhhhhhhhkhhhhkhhx*x

The program consists of two functions: main() and starline(). You've already seen many
programs that use main() alone. What other components are necessary to add a function to the
program? There are three: the function declaration, the calls to the function, and the function
definition.

163

SNOILONNS

164

Chapter 5

The Function Declaration

Just as you can’t use a variable without first telling the compiler what it is, you also can’t use a
function without telling the compiler about it. There are two ways to do this. The approach we
show here is to declare the function before it is called. (The other approach is to define it
before it’s called; we’ll examine that next.) In the TABLE program, the function starline() is
declared in the line

void starline();

The declaration tells the compiler that at some later point we plan to present a function called
starline. The keyword void specifies that the function has no return value, and the empty
parentheses indicate that it takes no arguments. (You can also use the keyword void in paren-
theses to indicate that the function takes no arguments, as is often done in C, but leaving them
empty is the more common practice in C++.) We’ll have more to say about arguments and
return values soon.

Notice that the function declaration is terminated with a semicolon. It is a complete statement
in itself.

Function declarations are also called prototypes, since they provide a model or blueprint for the
function. They tell the compiler, “a function that looks like this is coming up later in the pro-
gram, so it’s all right if you see references to it before you see the function itself.” The infor-
mation in the declaration (the return type and the number and types of any arguments) is also
sometimes referred to as the function signature.

Calling the Function

The function is called (or invoked, or executed) three times from main (). Each of the three
calls looks like this:

starline();

This is all we need to call the function: the function name, followed by parentheses. The syn-
tax of the call is very similar to that of the declaration, except that the return type is not used.
The call is terminated by a semicolon. Executing the call statement causes the function to exe-
cute; that is, control is transferred to the function, the statements in the function definition
(which we’ll examine in a moment) are executed, and then control returns to the statement fol-
lowing the function call.

The Function Definition

Finally we come to the function itself, which is referred to as the function definition. The defi-
nition contains the actual code for the function. Here’s the definition for starline():

Functions

void starline() / /declarator
{
for(int j=0; j<45; j++) //function body

cout << '*';
cout << endl;

}

The definition consists of a line called the declarator, followed by the function body. The
function body is composed of the statements that make up the function, delimited by braces.

The declarator must agree with the declaration: It must use the same function name, have the
same argument types in the same order (if there are arguments), and have the same return type.

Notice that the declarator is not terminated by a semicolon. Figure 5.2 shows the syntax of the
function declaration, function call, and function definition.

Semicolon
void func1(); —__~ Function declaration
Return type —
void main()
{
AN
/\""""—"'N—f
N
No return
wj — Semicolon
i func1(O); __/-‘ Function call
O =
/\-—\.——-.___’
N m—"
gy S
{
Rewmtype—| ‘rﬂumm
void func1()(_,‘\./‘ Declarator
{
P i]
30
(. No semicolon

FIGURE 5.2

Function syntax.

165

SNOILONNS

166

Chapter 5

When the function is called, control is transferred to the first statement in the function body.
The other statements in the function body are then executed, and when the closing brace is
encountered, control returns to the calling program.

Table 5.1 summarizes the different function components.

TABLE 5.1 Function Components

Component Purpose Example
Declaration Specifies function name, argument void func();
(prototype) types, and return value. Alerts

compiler (and programmer) that a
function is coming up later.

Call Causes the function to be executed. func();
Definition The function itself. Contains the void func()
lines of code that constitute {
the function. // lines of code
}
Declarator First line of definition. void func()

Comparison with Library Functions

We’ve already seen some library functions in use. We have embedded calls to library functions,
such as

ch = getche();

in our program code. Where are the declaration and definition for this library function? The
declaration is in the header file specified at the beginning of the program (CONIO.H, for
getche()). The definition (compiled into executable code) is in a library file that’s linked auto-
matically to your program when you build it.

When we use a library function we don’t need to write the declaration or definition. But when
we write our own functions, the declaration and definition are part of our source file, as we’ve
shown in the TABLE example. (Things get more complicated in multifile programs, as we’ll dis-
cuss in Chapter 13, “Multifile Programs.”)

Eliminating the Declaration

The second approach to inserting a function into a program is to eliminate the function declara-
tion and place the function definition (the function itself) in the listing before the first call to
the function. For example, we could rewrite TABLE to produce TABLE2, in which the definition
for starline () appears first.

Functions

/| table2.cpp
// demonstrates function definition preceding function calls
#include <iostream>

using namespace std; //no function declaration
R
/] starline() //function definition
void starline()

{

for(int j=0; j<45; j++)
cout << '*';
cout << endl;

}
e
int main() //main() follows function

{

starline(); //call to function

cout << "Data type Range" << endl;

starline(); //call to function

cout << "char -128 to 127" << endl

<< "short -32,768 to 32,767" << endl

<< "int System dependent" << endl

<< "long -2,147,483,648 to 2,147,483,647" << endl;
starline(); //call to function

return 0;

}

This approach is simpler for short programs, in that it removes the declaration, but it is less
flexible. To use this technique when there are more than a few functions, the programmer must
give considerable thought to arranging the functions so that each one appears before it is called
by any other. Sometimes this is impossible. Also, many programmers prefer to place main()
first in the listing, since it is where execution begins. In general we’ll stick with the first
approach, using declarations and starting the listing with main().

Passing Arguments to Functions

An argument is a piece of data (an int value, for example) passed from a program to the func-
tion. Arguments allow a function to operate with different values, or even to do different
things, depending on the requirements of the program calling it.

Passing Constants

As an example, let’s suppose we decide that the starline() function in the last example is too
rigid. Instead of a function that always prints 45 asterisks, we want a function that will print
any character any number of times.

167

SNOILONNS

168 Chapter 5

Here’s a program, TABLEARG, that incorporates just such a function. We use arguments to pass
the character to be printed and the number of times to print it.

// tablearg.cpp

// demonstrates function arguments
#include <iostream>

using namespace std;

void repchar(char, int); //function declaration
int main()
{
repchar('-', 43); //call to function
cout << "Data type Range" << endl;
repchar('="', 23); //call to function
cout << "char -128 to 127" << endl
<< "short -32,768 to 32,767" << endl
<< "int System dependent" << endl
<< "double -2,147,483,648 to 2,147,483,647" << endl;
repchar('-', 43); //call to function
return 0;
}
f] = m e e e

/] repchar()
// function definition

void repchar(char ch, int n) //function declarator
{
for(int j=0; j<n; j++) //function body
cout << ch;
cout << endl;
}

The new function is called repchar (). Its declaration looks like this:
void repchar(char, int); // declaration specifies data types

The items in the parentheses are the data types of the arguments that will be sent to repchar():
char and int.

In a function call, specific values—constants in this case—are inserted in the appropriate place
in the parentheses:

repchar('-', 43); // function call specifies actual values

This statement instructs repchar () to print a line of 43 dashes. The values supplied in the call

must be of the types specified in the declaration: the first argument, the - character, must be of
type char; and the second argument, the number 43, must be of type int. The types in the dec-
laration and the definition must also agree.

Functions

The next call to repchar()
repchar('="', 23);

tells it to print a line of 23 equal signs. The third call again prints 43 dashes. Here’s the output
from TABLEARG:

char -128 to 127

short -32,768 to 32,767

int System dependent

long -2,147,483,648 to 2,147,483,647

The calling program supplies arguments, such as '-' and 43, to the function. The variables

used within the function to hold the argument values are called parameters; in repchar () they
are ch and n. (We should note that many programmers use the terms argument and parameter
somewhat interchangeably.) The declarator in the function definition specifies both the data
types and the names of the parameters:

void repchar(char ch, int n) //declarator specifies parameter
//names and data types

These parameter names, ch and n, are used in the function as if they were normal variables.
Placing them in the declarator is equivalent to defining them with statements like

char ch;

int n;

When the function is called, its parameters are automatically initialized to the values passed by
the calling program.

Passing Variables

In the TABLEARG example the arguments were constants: '-', 43, and so on. Let’s look at an
example where variables, instead of constants, are passed as arguments. This program, VARARG,
incorporates the same repchar () function as did TABLEARG, but lets the user specify the char-
acter and the number of times it should be repeated.

// vararg.cpp

// demonstrates variable arguments

#include <iostream>

using namespace std;

void repchar(char, int); //function declaration

169

SNOILONNS

170

Chapter 5

int main()

{
char chin;
int nin;

cout << "Enter a character: ";

cin >> chin;

cout << "Enter number of times to repeat it: ";
cin >> nin;

repchar(chin, nin);

return 0;

/1 repchar()
// function definition

void repchar(char ch, int n) //function declarator
{
for(int j=0; j<n; j++) //function body
cout << ch;
cout << endl;
}

Here’s some sample interaction with VARARG:

Enter a character: +
Enter number of times to repeat it: 20
++++++++H

Here chin and nin in main() are used as arguments to repchar():
repchar(chin, nin); // function call

The data types of variables used as arguments must match those specified in the function dec-
laration and definition, just as they must for constants. That is, chin must be a char, and nin
must be an int.

Passing by Value

In VARARG the particular values possessed by chin and nin when the function call is executed
will be passed to the function. As it did when constants were passed to it, the function creates
new variables to hold the values of these variable arguments. The function gives these new
variables the names and data types of the parameters specified in the declarator: ch of type
char and n of type int. It initializes these parameters to the values passed. They are then
accessed like other variables by statements in the function body.

Functions

Passing arguments in this way, where the function creates copies of the arguments passed to it,
is called passing by value. We’ll explore another approach, passing by reference, later in this
chapter. Figure 5.3 shows how new variables are created in the function when arguments are
passed by value.

repchar(chin,nin);

This statement in main()
causes the values in

these variables to be copied
into these parameters
in repchar().

repchar()

nin 7 n /
30
__30__ — ——
Arguments Parameters

FIGURE 5.3
Passing by value.

Structures as Arguments

Entire structures can be passed as arguments to functions. We’ll show two examples, one with
the Distance structure, and one with a structure representing a graphics shape.

Passing a Distance Structure
This example features a function that uses an argument of type Distance, the same structure
type we saw in several programs in Chapter 4, “Structures.” Here’s the listing for ENGLDISP:

171

SNOILONNS

172

Chapter 5

// engldisp.cpp
// demonstrates passing structure as argument
#include <iostream>
using namespace std;
LHEETEETEEETEEErrrrrrr i r i i i r
struct Distance //English distance

{

int feet;

float inches;

};
[HEETEETEEEET L r e b i i ri i r
void engldisp(Distance); //declaration

int main()

{
Distance d1, d2; //define two lengths

//get length di from user
cout << "Enter feet: "; cin >> di.feet;
cout << "Enter inches: "; cin >> d1.inches;

//get length d2 from user
cout << "\nEnter feet: "; cin >> d2.feet;

cout << "Enter inches: "; cin >> d2.inches;

cout << "\nd1 = ";

engldisp(di); //display length 1
cout << "\nd2 "3

engldisp(d2); //display length 2
cout << endl;

return 0;

// engldisp()

// display structure of type Distance in feet and inches

void engldisp(Distance dd) //parameter dd of type Distance
{

cout << dd.feet << "\'-" << dd.inches << "\"";
}

The main() part of this program accepts two distances in feet-and-inches format from the user,
and places these values in two structures, d1 and d2. It then calls a function, engldisp(), that
takes a Distance structure variable as an argument. The purpose of the function is to display
the distance passed to it in the standard format, such as 10'-2.25". Here’s some sample interac-
tion with the program:

Enter feet: 6
Enter inches: 4

Functions 173

Enter feet: 5
Enter inches: 4.25

di = 6'-4"
d2 = 5'-4.25"

The function declaration and the function calls in main (), and the declarator in the function
body, treat the structure variables just as they would any other variable used as an argument;
this one just happens to be type Distance, rather than a basic type like char or int.

In main() there are two calls to the function engldisp (). The first passes the structure d1; the
second passes d2. The function engldisp() uses a parameter that is a structure of type
Distance, which it names dd. As with simple variables, this structure variable is automatically
initialized to the value of the structure passed from main (). Statements in engldisp() can then
access the members of dd in the usual way, with the expressions dd.feet and dd.inches.
Figure 5.4 shows a structure being passed as an argument to a function.

engldisp(di1);

This statement in main()
causes the values in
these structure members
10 be copied into

these structure members
in engldisp().

main() engldisp()

feet

— — 6 — —

'inches/ inches /

FIGURE 5.4

Structure passed as an argument.

SNOILONNS

174

Chapter 5

As with simple variables, the structure parameter dd in engldisp() is not the same as the argu-
ments passed to it (d1 and d2). Thus, engldisp() could (although it doesn’t do so here) modify
dd without affecting d1 and d2. That is, if engldisp() contained statements like

dd.feet = 2;
dd.inches = 3.25;

this would have no effect on d1 or d2 in main().

Passing a circle Structure

The next example of passing a structure to a function makes use of the Console Graphics Lite
functions. The source and header files for these functions are shown in Appendix E, “Console
Graphics Lite,” and can be downloaded from the publisher’s Web site as described in the
Introduction. You’ll need to include the appropriate header file (MSOFTCON.H or BORLACON.H,
depending on your compiler), and add the source file (MSOFTCON.CPP or BORLACON.CPP) to your
project. The Console Graphics Lite functions are described in Appendix E, and the procedure
for adding files to projects is described in Appendix C, “Microsoft Visual C++,” and Appendix
D, “Borland C++Builder.”

In this example a structure called circle represents a circular shape. Circles are positioned at a
certain place on the console screen, and have a certain radius. They also have a color and a fill
pattern. Possible values for the colors and fill patterns can be found in Appendix E. Here’s the
listing for CIRCSTRC:

// circstrc.cpp
// circles as graphics objects

#include "msoftcon.h" // for graphics functions
[EETEEELEEEE i i il
struct circle //graphics circle

{

int xCo, yCo; //coordinates of center

int radius;

color fillcolor; //color

fstyle fillstyle; //fill pattern

s

[EETEEETEEEE i i il irrr
void circ_draw(circle c)

{

set_color(c.fillcolor); //set color

set_fill style(c.fillstyle); //set fill pattern

draw_circle(c.xCo, c.yCo, c.radius); //draw solid circle

Iy
R
int main()

{

init_graphics(); //initialize graphics system

//create circles

Functions

circle ¢1 = { 15, 7, 5, cBLUE, X _FILL };

circle c2 = { 41, 12, 7, cRED, O_FILL };
circle ¢3 = { 65, 18, 4, cGREEN, MEDIUM_FILL };
circ_draw(cl); //draw circles

circ_draw(c2);

circ_draw(c3);

set_cursor_pos(1, 25); //cursor to lower left corner
return 0;

}

The variables of type circle, which are c1, c2, and c3, are initialized to different sets of val-
ues. Here’s how that looks for c1:

circle ¢t = { 15, 7, 5, cBLUE, X_FILL };

We assume that your console screen has 80 columns and 25 rows. The first value in this defini-
tion, 15, is the column number (the x coordinate) and the 7 is the row number (the y coordi-
nate, starting at the top of the screen) where the center of the circle will be located. The 5 is
the radius of the circle, the cBLUE is its color, and the X_FILL constant means it will be filled
with the letter X. The two other circles are initialized similarly.

Once all the circles are created and initialized, we draw them by calling the circ_draw() func-
tion three times, once for each circle. Figure 5.5 shows the output of the CIRCSTRC program.
Admittedly the circles are a bit ragged; a result of the limited number of pixels in console-
mode graphics.

000000000
00000000000000000
0000000000000000000
00000000000000000000000
0000000000000000000000000
000000000000000000000000000
000000000000000000000000000
00000000000000000000000000000
000000000000000000000000000
000000000000000000000000000
0000000000000000000000000
00000000000000000000000
0000000000000000000
00000000000000000
000000000

FIGURE 5.5
Output of the CIRCSTRC program.

175

SNOILONNS

176

Chapter 5

Notice how the structure holds the characteristics of the circles, while the circ_draw() func-
tion causes them to actually do something (draw themselves). As we’ll see in Chapter 6,
“Objects and Classes,” objects are formed by combining structures and functions to create enti-
ties that both possess characteristics and perform actions.

Names in the Declaration

Here’s a way to increase the clarity of your function declarations. The idea is to insert mean-
ingful names in the declaration, along with the data types. For example, suppose you were
using a function that displayed a point on the screen. You could use a declaration with only
data types

void display_point(int, int); //declaration
but a better approach is
void display_point(int horiz, int vert); //declaration

These two declarations mean exactly the same thing to the compiler. However, the first
approach, with (int, int), doesn’t contain any hint about which argument is for the vertical
coordinate and which is for the horizontal coordinate. The advantage of the second approach is
clarity for the programmer: Anyone seeing this declaration is more likely to use the correct
arguments when calling the function.

Note that the names in the declaration have no effect on the names you use when calling the
function. You are perfectly free to use any argument names you want:

display_point(x, y); // function call

We’ll use this name-plus-datatype approach when it seems to make the listing clearer.

Returning Values from Functions

When a function completes its execution, it can return a single value to the calling program.
Usually this return value consists of an answer to the problem the function has solved. The
next example demonstrates a function that returns a weight in kilograms after being given a
weight in pounds. Here’s the listing for CONVERT:

// convert.cpp

// demonstrates return values, converts pounds to kg
#include <iostream>

using namespace std;

float lbstokg(float); //declaration

int main()

{
float 1lbs, kgs;

Functions

cout << "\nEnter your weight in pounds: ";
cin >> 1bs;

kgs = lbstokg(lbs);

cout << "Your weight in kilograms is " << kgs << endl;
return 0;

/1 lbstokg()
// converts pounds to kilograms
float lbstokg(float pounds)

{
float kilograms = 0.453592 * pounds;
return kilograms;

}

Here’s some sample interaction with this program:

Enter your weight in pounds: 182
Your weight in kilograms is 82.553741

When a function returns a value, the data type of this value must be specified. The function
declaration does this by placing the data type, float in this case, before the function name in
the declaration and the definition. Functions in earlier program examples returned no value, so
the return type was void. In the CONVERT program, the function lbstokg() (pounds to kilo-
grams, where 1bs means pounds) returns type float, so the declaration is

float lbstokg(float);

The first float specifies the return type. The float in parentheses specifies that an argument
to be passed to lbstokg() is also of type float.

When a function returns a value, the call to the function
1bstokg(1lbs)

is considered to be an expression that takes on the value returned by the function. We can treat
this expression like any other variable; in this case we use it in an assignment statement:

kgs = 1lbstokg(lbs);

This causes the variable kgs to be assigned the value returned by 1bstokg().

The return Statement

The function 1bstokg() is passed an argument representing a weight in pounds, which it
stores in the parameter pounds. It calculates the corresponding weight in kilograms by multi-
plying this pounds value by a constant; the result is stored in the variable kilograms. The
value of this variable is then returned to the calling program using a return statement:

return kilograms;

177

SNOILONNS

178

Chapter 5

Notice that both main() and lbstokg() have a place to store the kilogram variable: kgs in
main(), and kilograms in 1bstokg(). When the function returns, the value in kilograms is
copied into kgs. The calling program does not access the kilograms variable in the function;
only the value is returned. This process is shown in Figure 5.6.

kgs = Lbstokg(lbs); return kilograms;
-~ 1 Thisstatement
2 This statement in lbstokg() causes the
in main() causes value in this variable

tisretun vae to be retumed
to be assigned to to main().
this variable.

Lbstokg()

74.84

FIGURE 5.6
Returning a value.

While many arguments may be sent to a function, only one argument may be returned from it.
This is a limitation when you need to return more information. However, there are other
approaches to returning multiple variables from functions. One is to pass arguments by refer-
ence, which we’ll look at later in this chapter. Another is to return a structure with the multiple
values as members, as we’ll see soon.

You should always include a function’s return type in the function declaration. If the function
doesn’t return anything, use the keyword void to indicate this fact. If you don’t use a return
type in the declaration, the compiler will assume that the function returns an int value. For
example, the declaration

somefunc(); // declaration -- assumes return type is int

tells the compiler that somefunc () has a return type of int.

Functions

The reason for this is historical, based on usage in early versions of C. In practice, you
shouldn’t take advantage of this default type. Always specify the return type explicitly, even if
it actually is int. This keeps the listing consistent and readable.

Eliminating Unnecessary Variables

The CONVERT program contains several variables that are used in the interest of clarity but are
not really necessary. A variation of this program, CONVERT2, shows how expressions containing
functions can often be used in place of variables.

/] convert2.cpp

// eliminates unnecessary variables
#include <iostream>

using namespace std;

float lbstokg(float); //declaration

int main()

{
float 1lbs;

cout << "\nEnter your weight in pounds: ";

cin >> 1bs;

cout << "Your weight in kilograms is " << lbstokg(lbs)
<< endl;

return 0;

/] lbstokg()
// converts pounds to kilograms
float lbstokg(float pounds)

{
return 0.453592 * pounds;

}

In main() the variable kgs from the CONVERT program has been eliminated. Instead the func-
tion lbstokg(1lbs) is inserted directly into the cout statement:

cout << "Your weight in kilograms is " << lbstokg(lbs) << endl;

Also in the 1bstokg() function, the variable kilograms is no longer used. The expression
0.453592*pounds is inserted directly into the return statement:

return 0.453592 * pounds;

The calculation is carried out and the resulting value is returned to the calling program, just as
the value of a variable would be.

179

SNOILONNS

180

Chapter 5

For clarity, programmers often put parentheses around the expression used in a return state-
ment:

return (0.453592 * pounds);

Even when not required by the compiler, extra parentheses in an expression don’t do any harm,
and they may help make the listing easier for us poor humans to read.

Experienced C++ (and C) programmers will probably prefer the concise form of CONVERT2 to

the more verbose CONVERT. However, CONVERT?2 is not so easy to understand, especially for the
non-expert. The brevity-versus-clarity issue is a question of style, depending on your personal

preference and on the expectations of those who will be reading your code.

Returning Structure Variables

We’ve seen that structures can be used as arguments to functions. You can also use them as
return values. Here’s a program, RETSTRC, that incorporates a function that adds variables of
type Distance and returns a value of this same type:

/] retstrc.cpp
// demonstrates returning a structure
#include <iostream>
using namespace std;
[EETEEEEEEEE i i il irr
struct Distance //English distance
{
int feet;
float inches;
b
[EETEEEEEEEE i i bbb rrriirr
Distance addengl(Distance, Distance); //declarations
void engldisp(Distance);

int main()

{
Distance di1, d2, d3; //define three lengths
//get length d1 from user
cout << "\nEnter feet: "; cin >> di.feet;
cout << "Enter inches: "; cin >> di.inches;
//get length d2 from user
cout << "\nEnter feet: "; cin >> d2.feet;
cout << "Enter inches: "; cin >> d2.inches;
d3 = addengl(di, d2); //d3 is sum of d1 and d2

cout << endl;
engldisp(d1); cout << " + "; //display all lengths

Functions

engldisp(d2); cout << " = ";
engldisp(d3); cout << endl;
return 0;

}

// addengl()
// adds two structures of type Distance, returns sum
Distance addengl(Distance ddi, Distance dd2)

{

Distance dd3; //define a new structure for sum

dd3.inches = dd1.inches + dd2.inches; //add the inches

dd3.feet = 0; //(for possible carry)
if(dd3.inches >= 12.0) //if inches >= 12.0,
{ //then decrease inches
dd3.inches -= 12.0; //by 12.0 and
dd3.feet++; //increase feet
} //by 1
dd3.feet += dd1.feet + dd2.feet; //add the feet
return dd3; //return structure
}

// engldisp()
// display structure of type Distance in feet and inches
void engldisp(Distance dd)

{

cout << dd.feet << "\'-" << dd.inches << "\"";
}

The program asks the user for two lengths, in feet-and-inches format, adds them together by
calling the function addengl (), and displays the results using the engldisp() function intro-
duced in the ENGLDISP program. Here’s some output from the program:

Enter feet: 4
Enter inches: 5.5

Enter feet: 5
Enter inches: 6.5

4'-5.5" + 5'-6.5" = 10'-0"

The main() part of the program adds the two lengths, each represented by a structure of type
Distance, by calling the function addengl():

d3 = addengl(d1, d2);

This function returns the sum of d1 and d2, in the form of a structure of type Distance. In
main () the result is assigned to the structure d3.

181

SNOILONNS

182

Chapter 5

Besides showing how structures are used as return values, this program also shows two func-
tions (three if you count main()) used in the same program. You can arrange the functions in
any order. The only rule is that the function declarations must appear in the listing before any
calls are made to the functions.

Reference Arguments

A reference provides an alias—a different name—for a variable. One of the most important
uses for references is in passing arguments to functions.

We’ve seen examples of function arguments passed by value. When arguments are passed by
value, the called function creates a new variable of the same type as the argument and copies
the argument’s value into it. As we noted, the function cannot access the original variable in
the calling program, only the copy it created. Passing arguments by value is useful when the
function does not need to modify the original variable in the calling program. In fact, it offers
insurance that the function cannot harm the original variable.

Passing arguments by reference uses a different mechanism. Instead of a value being passed to
the function, a reference to the original variable, in the calling program, is passed. (It’s actually
the memory address of the variable that is passed, although you don’t need to know this.)

An important advantage of passing by reference is that the function can access the actual vari-
ables in the calling program. Among other benefits, this provides a mechanism for passing
more than one value from the function back to the calling program.

Passing Simple Data Types by Reference

The next example, REF, shows a simple variable passed by reference.

/] ref.cpp

// demonstrates passing by reference
#include <iostream>

using namespace std;

int main()

{

void intfrac(float, float&, float&); //declaration

float number, intpart, fracpart; //float variables

do {
cout << "\nEnter a real number: "; //number from user
cin >> number;
intfrac(number, intpart, fracpart); //find int and frac

cout << "Integer part is " << intpart //print them
<< ", fraction part is " << fracpart << endl;

Functions

} while(number != 0.0); //exit loop on 0.0
return 0;

// intfrac()
// finds integer and fractional parts of real number
void intfrac(float n, float& intp, float& fracp)

{

long temp = static_cast<long>(n); //convert to long,

intp = static_cast<float>(temp); //back to float

fracp = n - intp; //subtract integer part

}

The main() part of this program asks the user to enter a number of type float. The program
will separate this number into an integer and a fractional part. That is, if the user’s number is
12.456, the program should report that the integer part is 12.0 and the fractional part is 0.456.
To find these two values, main () calls the function intfrac(). Here’s some sample interac-
tion:

Enter a real number: 99.44

Integer part is 99, fractional part is 0.44

Some compilers may generate spurious digits in the fractional part, such as 0.440002. This is
an error in the compiler’s conversion routine and can be ignored. Refer to Figure 5.7 in the fol-
lowing discussion.

The intfrac() function finds the integer part by converting the number (which was passed to
the parameter n) into a variable of type long with a cast, using the expression

long temp = static_cast<long>(n);

This effectively chops off the fractional part of the number, since integer types (of course)
store only the integer part. The result is then converted back to type float with another cast:

intp = static_cast<float>(temp);

The fractional part is simply the original number less the integer part. (We should note that a
library function, fmod (), performs a similar task for type double.)

The intfrac() function can find the integer and fractional parts, but how does it pass them
back to main()? It could use a return statement to return one value, but not both. The problem
is solved using reference arguments. Here’s the declarator for the function:

void intfrac(float n, float& intp, float& fracp)

183

SNOILONNS

184 Chapter 5

intfrac(number,intpart,fracpart);

This statement in main() causes
this variable to be copied into

this parameter.
It also sets up aliases for
these variables with these names.

main() intfrac()

number n

intpart

fracpart

n-intp;

These statements
in intfrac() operate on
these variables

as if they were in intfracy().

long temp = static_cast<long>(n);

FIGURE 5.7

Passing by reference in the REF program.

Reference arguments are indicated by the ampersand (&) following the data type:

float& intp

The & indicates that intp is an alias—another name—for whatever variable is passed as an
argument. In other words, when you use the name intp in the intfrac() function, you are
really referring to intpart in main(). The & can be taken to mean reference to, so

float& intp

means intp is a reference to the float variable passed to it. Similarly, fracp is an alias for—
or a reference to—fracpart.

The function declaration echoes the usage of the ampersand in the definition:
void intfrac(float, float&, float&); // ampersands

As in the definition, the ampersand follows those arguments that are passed by reference.

Functions

The ampersand is not used in the function call:
intfrac(number, intpart, fracpart); // no ampersands

From the function call alone, there’s no way to tell whether an argument will be passed by ref-
erence or by value.

While intpart and fracpart are passed by reference, the variable number is passed by value.
intp and intpart are different names for the same place in memory, as are fracp and
fracpart. On the other hand, since it is passed by value, the parameter n in intfrac() is a
separate variable into which the value of number is copied. It can be passed by value because
the intfrac() function doesn’t need to modify number.

(C programmers should not confuse the ampersand that is used to mean reference to with
the same symbol used to mean address of. These are different usages. We’ll discuss the
address of meaning of & in Chapter 10, “Pointers.”)

A More Complex Pass by Reference

Here’s a somewhat more complex example of passing simple arguments by reference. Suppose
you have pairs of numbers in your program and you want to be sure that the smaller one
always precedes the larger one. To do this you call a function, order (), which checks two
numbers passed to it by reference and swaps the originals if the first is larger than the second.
Here’s the listing for REFORDER:

/] reforder.cpp

// orders two arguments passed by reference
#include <iostream>

using namespace std;

int main()
{
void order(int&, int&); //prototype
int n1=99, n2=11; //this pair not ordered
int n3=22, n4=88; //this pair ordered
order(ni, n2); //order each pair of numbers

order(n3, n4);

cout << "n1=" << n1 << endl; //print out all numbers
cout << "n2=" << n2 << endl;

cout << "n38=" << n3 << endl;

cout << "n4=" << n4 << endl;

return 0;

}

185

SNOILONNS

186 Chapter 5

R
void order(int& numb1, int& numb2) //orders two numbers
{
if (numb1 > numb2) //if 1st larger than 2nd,
{
int temp = numbi; //swap them
numb1 = numb2;
numb2 = temp;
}
}

In main() there are two pairs of numbers—the first pair is not ordered and the second pair is
ordered. The order () function is called once for each pair, and then all the numbers are
printed out. The output reveals that the first pair has been swapped while the second pair
hasn’t. Here it is:

n1=11

n2=99

n3=22

n4=88

In the order () function the first variable is called numb1 and the second is numb2. If numb1 is
greater than numb2 the function stores numb1 in temp, puts numb2 in numb1, and finally puts
temp back in numb2. Remember that numb1 and numb2 are simply different names for whatever
arguments were passed; in this case, n1 and n2 on the first call to the function, and n2 and n3
on the second call. The effect is to check the ordering of the original arguments in the calling
program and swap them if necessary.

Using reference arguments in this way is a sort of remote-control operation. The calling pro-
gram tells the function what variables in the calling program to operate on, and the function
modifies these variables without ever knowing their real names. It’s as if you called the house
painters and, although they never left their office, you sat back and watched as your dining
room walls mysteriously changed color.

Passing Structures by Reference

You can pass structures by reference just as you can simple data types. Here’s a program,
REFERST, that performs scale conversions on values of type Distance. A scale conversion
involves multiplying a group of distances by a factor. If a distance is 6'-8", and a scale factor is
0.5, the new distance is 3'4". Such a conversion might be applied to all the dimensions of a
building to make the building shrink but remain in proportion.

/| referst.cpp

// demonstrates passing structure by reference
#include <iostream>

Functions

using namespace std;
PILTEELTET LTI i i i iriririrniringi

struct Distance //English distance
{
int feet;
float inches;
b
[EELEEETEEEE i i i i rriirrrl
void scale(Distance&, float); //function
void engldisp(Distance); //declarations

int main()

{

Distance d1 = { 12, 6.5 }; //initialize d1 and d2
Distance d2 = { 10, 5.5 };

cout << "d1 = "; engldisp(d1); //display old d1 and d2
cout << "\nd2 = "; engldisp(d2);

scale(d1, 0.5); //scale d1 and d2

scale(d2, 0.25)

cout << "\nd1 = "; engldisp(dil); //display new d1 and d2
cout << "\nd2 = "; engldisp(d2);

cout << endl;

return 0;

/] scale()

/] scales value of type Distance by factor

void scale(Distance& dd, float factor)
{
float inches = (dd.feet*12 + dd.inches) * factor;
dd.feet = static_cast<int>(inches / 12);
dd.inches = inches - dd.feet * 12;

// engldisp()

// display structure of type Distance in feet and inches

void engldisp(Distance dd) / /parameter dd of type Distance
{

cout << dd.feet << "\'-" << dd.inches << "\"";

}

187

SNOILONNS

188

Chapter 5

REFERST initializes two Distance variables—d1 and d2—to specific values, and displays them.
Then it calls the scale() function to multiply d1 by 0.5 and d2 by 0.25. Finally, it displays the
resulting values of the distances. Here’s the program’s output:

di = 12'-6.5"
d2 = 10'-5.5"
di = 6'-3.25"
d2 = 2'-7.375"

Here are the two calls to the function scale():

scale(d1l, 0.5);
scale(d2, 0.25);

The first call causes d1 to be multiplied by 0.5 and the second causes d2 to be multiplied by
0.25. Notice that these changes take place directly to d1 and d2. The function doesn’t return
anything; the operation is performed directly on the Distance argument, which is passed by
reference to scale(). (Since only one value is changed in the calling program, you could
rewrite the function to pass the argument by value and return the scaled value. Calling such a
function would look like this:

d1 = scale(d1, 0.5);

However, this is unnecessarily verbose.)

Notes on Passing by Reference

References don’t exist in C, where pointers serve a somewhat similar purpose, although often
less conveniently. Reference arguments were introduced into C++ to provide flexibility in a
variety of situations involving objects as well as simple variables.

The third way to pass arguments to functions, besides by value and by reference, is to use
pointers. We’ll explore this in Chapter 10.

Overloaded Functions

An overloaded function appears to perform different activities depending on the kind of data
sent to it. Overloading is like the joke about the famous scientist who insisted that the thermos
bottle was the greatest invention of all time. Why? “It’s a miracle device,” he said. “It keeps
hot things hot, but cold things it keeps cold. How does it know?”

It may seem equally mysterious how an overloaded function knows what to do. It performs one
operation on one kind of data but another operation on a different kind. Let’s clarify matters
with some examples.

Functions

Different Numbers of Arguments

Recall the starline() function in the TABLE example and the repchar() function from the
TABLEARG example, both shown earlier in this chapter. The starline() function printed a line
using 45 asterisks, while repchar () used a character and a line length that were both specified
when the function was called. We might imagine a third function, charline(), that always
prints 45 characters but that allows the calling program to specify the character to be printed.
These three functions—starline(), repchar(), and charline ()—perform similar activities
but have different names. For programmers using these functions, that means three names to
remember and three places to look them up if they are listed alphabetically in an application’s
Function Reference documentation.

It would be far more convenient to use the same name for all three functions, even though they
each have different arguments. Here’s a program, OVERLOAD, that makes this possible:

// overload.cpp

// demonstrates function overloading
#include <iostream>

using namespace std;

void repchar(); //declarations
void repchar(char);
void repchar(char, int);

int main()
{
repchar();
repchar('=");
repchar('+', 30);
return 0

)

/] repchar()
// displays 45 asterisks
void repchar()

{

for(int j=0; j<45; j++) // always loops 45 times
cout << '*'; // always prints asterisk

cout << endl;

}

// repchar()
// displays 45 copies of specified character
void repchar(char ch)
{
for(int j=0; j<45; j++) // always loops 45 times
cout << ch; // prints specified character

189

SNOILONNS

190

Chapter 5

cout << endl;

// repchar()
// displays specified number of copies of specified character
void repchar(char ch, int n)

{
for(int j=0; j<n; j++) // loops n times
cout << chy; // prints specified character
cout << endl;
}

This program prints out three lines of characters. Here’s the output:

hhkkhkkhhkhkkhkhhkhkhhhkhkhhkhkhkhhhkhkhhkhkhhhkhhhhhkhhhkhhhhhkx*x

B o S
The first two lines are 45 characters long, and the third is 30.

The program contains three functions with the same name. There are three declarations, three
function calls, and three function definitions. What keeps the compiler from becoming hope-
lessly confused? It uses the function signature—the number of arguments, and their data
types—to distinguish one function from another. In other words, the declaration

void repchar();

which takes no arguments, describes an entirely different function than the declaration
void repchar(char);

which takes one argument of type char, or the declaration

void repchar(char, int);

which takes one argument of type char and another of type int.

The compiler, seeing several functions with the same name but different numbers of argu-
ments, could decide the programmer had made a mistake (which is what it would do in C).
Instead, it very tolerantly sets up a separate function for every such definition. Which one of
these functions will be called depends on the number of arguments supplied in the call. Figure
5.8 shows this process.

Functions

e repchar()

repchar(char)

repchar('="),;,—
e
Sg—
T N

repchar('="', 30);—+——repchar(char, int)

FIGURE 5.8

Overloaded functions.

Different Kinds of Arguments

In the OVERLOAD example we created several functions with the same name but different num-
bers of arguments. The compiler can also distinguish between overloaded functions with the
same number of arguments, provided their type is different. Here’s a program, OVERENGL, that
uses an overloaded function to display a quantity in feet-and-inches format. The single argu-
ment to the function can be either a structure of type Distance (as used in the ENGLDISP exam-
ple) or a simple variable of type float. Different functions are used depending on the type of
argument.

// overengl.cpp
// demonstrates overloaded functions
#include <iostream>
using namespace std;
[EETEEETEEE i i i il irrrl
struct Distance //English distance
{
int feet;
float inches;
s
[EETEEETETE i i il gl

191

SNOILONNS

192

Chapter 5

void engldisp(Distance); //declarations
void engldisp(float);

int main()
{
Distance di; //distance of type Distance
float d2; //distance of type float

//get length d1 from user
cout << "\nEnter feet: "; cin >> di1.feet;
cout << "Enter inches: "; cin >> di.inches;

//get length d2 from user
cout << "Enter entire distance in inches: "; cin >> d2;
cout << "\nd1 = ";
engldisp(di); //display length 1
cout << "\nd2 = ";
engldisp(d2); //display length 2
cout << endl;
return 0;

}

// engldisp()

// display structure of type Distance in feet and inches

void engldisp(Distance dd) //parameter dd of type Distance
{

cout << dd.feet << "\'-" << dd.inches << "\"";

// engldisp()
// display variable of type float in feet and inches
void engldisp(float dd) //parameter dd of type float

{

int feet = static_cast<int>(dd / 12);
float inches = dd - feet*12;

cout << feet << "\'-" << inches << "\"";

}

The user is invited to enter two distances, the first with separate feet and inches inputs, the sec-
ond with a single large number for inches (109.5 inches, for example, instead of 9'-1.5"). The
program calls the overloaded function engldisp() to display a value of type Distance for the
first distance and of type float for the second. Here’s some sample interaction with the pro-
gram:

Enter feet: 5

Enter inches: 10.5

Enter entire distance in inches: 76.5
dli = 5'-10.5"

d2 = 6'-4.5"

Functions 193

Notice that, while the different versions of engldisp() do similar things, the code is quite dif-
ferent. The version that accepts the all-inches input has to convert to feet and inches before dis-
playing the result.

Overloaded functions can simplify the programmer’s life by reducing the number of function
names to be remembered. As an example of the complexity that arises when overloading is not
used, consider the C++ library routines for finding the absolute value of a number. Because
these routines must work with C (which does not allow overloading) as well as with C++,
there must be separate versions of the absolute value routine for each data type. There are four
of them: abs () for type int, cabs() for complex numbers, fabs () for type double, and
labs() for type long. In C++, a single name, abs (), would suffice for all these data types.

As we’ll see later, overloaded functions are also useful for handling different types of objects.

Recursion

The existence of functions makes possible a programming technique called recursion.
Recursion involves a function calling itself. This sounds rather improbable, and indeed a func-
tion calling itself is often a bug. However, when used correctly this technique can be surpris-
ingly powerful.

Recursion is much easier to understand with an example than with lengthy explanations, so
let’s apply it to a program we’ve seen before: the FACTOR program of Chapter 3, “Loops and
Decisions.” That program used a for loop to calculate the factorial of a number. (See that
example for an explanation of factorials.) Our new program, FACTOR2, uses recursion instead of
a loop.

//factor2.cpp

//calculates factorials using recursion

#include <iostream>
using namespace std;

unsigned long factfunc(unsigned long); //declaration

int main()
{
int n; //number entered by user
unsigned long fact; //factorial

cout << "Enter an integer: ";

cin >> n;

fact = factfunc(n);

cout << "Factorial of " << n << " is " << fact << endl;
return 0;

}

SNOILONNS

194

Chapter 5

/] factfunc()
// calls itself to calculate factorials
unsigned long factfunc(unsigned long n)

{
if(n > 1)

return n * factfunc(n-1); //self call
else

return 1;

}
The output of this program is the same as the FACTOR program in Chapter 3.

The main() part of FACTOR2 looks reasonable: it calls a function, factfunc (), with an argu-
ment that is a number entered by the user. This function then returns the factorial of that num-
ber to main().

The function factfunc() is another story. What’s it doing? If n is greater than 1, the function
calls itself. Notice that when it does this it uses an argument one less than the argument it was
called with. Suppose it was called from main () with an argument of 5. It will call a second
version of itself with an argument of 4. Then this function will call a third version with an
argument of 3, and so on.

Notice that each version of the function stores its own value of n while it’s busy calling another
version of itself.

After factfunc() calls itself four times, the fifth version of the function is called with an argu-
ment of 1. It discovers this with the if statement, and instead of calling itself, as previous ver-
sions have, it returns 1 to the fourth version. The fourth version has stored a value of 2, so it
multiplies the stored 2 by the returned 1, and returns 2 to the third version. The third version
has stored 3, so it multiplies 3 by the returned 2, and returns 6 to the second version. The
second version has stored 4, so it multiplies this by the returned 6 and returns 24 to the first
version. The first version has stored 5, so it multiplies this by the returned 24 and returns 120
to main().

Thus in this example we have five function calls followed by five function returns. Here’s a
summary of this process:

Argument or
Version Action Return Value

1 Call 5
2 Call 4
3 Call 3
4 Call 2

Functions

Argument or

Version Action Return Value
5 Call 1

5 Return 1

4 Return 2

3 Return 6

2 Return 24

1 Return 120

Every recursive function must be provided with a way to end the recursion. Otherwise it will
call itself forever and crash the program. The if statement in factfunc() plays this role, ter-
minating the recursion when n is 1.

Is it true that many versions of a recursive function are stored in memory while it’s calling
itself? Not really. Each version’s variables are stored, but there’s only one copy of the func-
tion’s code. Even so, a deeply-nested recursion can create a great many stored variables, which
can pose a problem to the system if it doesn’t have enough space for them.

Inline Functions

‘We mentioned that functions save memory space because all the calls to the function cause the
same code to be executed; the function body need not be duplicated in memory. When the
compiler sees a function call, it normally generates a jump to the function. At the end of the
function it jumps back to the instruction following the call, as shown in Figure 5.1 earlier in
this chapter.

While this sequence of events may save memory space, it takes some extra time. There must
be an instruction for the jump to the function (actually the assembly-language instruction
CALL or something similar), instructions for saving registers, instructions for pushing argu-
ments onto the stack in the calling program and removing them from the stack in the function
(if there are arguments), instructions for restoring registers, and an instruction to return to the
calling program. The return value (if any) must also be dealt with. All these instructions slow
down the program.

To save execution time in short functions, you may elect to put the code in the function body
directly inline with the code in the calling program. That is, each time there’s a function call in
the source file, the actual code from the function is inserted, instead of a jump to the function.
The difference between a function and inline code is shown in Figure 5.9.

195

SNOILONNS

196 Chapter 5

main()

func1()

func1();

e R
e

func1(); q

e e e ®

ted code b) Repeated code
a}mmm }M&n

FIGURE 5.9
Functions versus inline code.

Long sections of repeated code are generally better off as normal functions: The savings in
memory space is worth the comparatively small sacrifice in execution speed. But making a
short section of code into an ordinary function may result in little savings in memory space,
while imposing just as much time penalty as a larger function. In fact, if a function is very
short, the instructions necessary to call it may take up as much space as the instructions within
the function body, so that there is not only a time penalty but a space penalty as well.

In such cases you could simply repeat the necessary code in your program, inserting the same
group of statements wherever it was needed. The trouble with repeatedly inserting the same
code is that you lose the benefits of program organization and clarity that come with using
functions. The program may run faster and take less space, but the listing is longer and more
complex.

The solution to this quandary is the inline function. This kind of function is written like a nor-
mal function in the source file but compiles into inline code instead of into a function. The
source file remains well organized and easy to read, since the function is shown as a separate
entity. However, when the program is compiled, the function body is actually inserted into the
program wherever a function call occurs.

Functions

Functions that are very short, say one or two statements, are candidates to be inlined. Here’s

INLINE, a variation on the CONVERT2 program. It inlines the 1bstokg() function.

// inliner.cpp

// demonstrates inline functions
#include <iostream>

using namespace std;

/1 lbstokg()
// converts pounds to kilograms
inline float lbstokg(float pounds)

{
return 0.453592 * pounds;

int main()

{
float 1bs;

cout << "\nEnter your weight in pounds:

cin >> 1bs;

cout << "Your weight in kilograms is " << lbstokg(lbs)

<< endl;
return 0;

}

It’s easy to make a function inline: All you need is the keyword inline in the function defini-

tion:

inline float lbstokg(float pounds)

You should be aware that the inline keyword is actually just a request to the compiler.

Sometimes the compiler will ignore the request and compile the function as a normal function.
It might decide the function is too long to be inline, for instance.

(C programmers should note that inline functions largely take the place of #define macros in
C. They serve the same purpose but provide better type checking and do not need special care

with parentheses, as macros do.)

Default Arguments

Surprisingly, a function can be called without specifying all its arguments. This won’t work on
just any function: The function declaration must provide default values for those arguments

that are not specified.

197

SNOILONNS

198 Chapter 5

Here’s an example, a variation on the OVERLOAD program that demonstrates this effect. In
OVERLOAD we used three different functions with the same name to handle different numbers of
arguments. The present example, MISSARG, achieves the same effect in a different way.

// missarg.cpp

// demonstrates missing and default arguments
#include <iostream>

using namespace std;

void repchar(char='*', int=45); //declaration with
//default arguments

int main()
{
repchar(); //prints 45 asterisks
repchar('="); //prints 45 equal signs
repchar('+', 30); //prints 30 plus signs
return 0;
}

[m e e e e

/] repchar()
// displays line of characters

void repchar(char ch, int n) //defaults supplied
{ /] if necessary
for(int j=0; j<n; j++) //loops n times
cout << chy; //prints ch
cout << endl;
}

In this program the function repchar () takes two arguments. It’s called three times from
main (). The first time it’s called with no arguments, the second time with one, and the third
time with two. Why do the first two calls work? Because the called function provides default
arguments, which will be used if the calling program doesn’t supply them. The default argu-
ments are specified in the declaration for repchar():

void repchar(char='*', int=45); //declaration

The default argument follows an equal sign, which is placed directly after the type name. You
can also use variable names, as in

void repchar(char reptChar='*', int numberReps=45);

If one argument is missing when the function is called, it is assumed to be the last argument.
The repchar () function assigns the value of the single argument to the ch parameter and uses
the default value 45 for the n parameter.

If both arguments are missing, the function assigns the default value '*' to ch and the default
value 45 to n. Thus the three calls to the function all work, even though each has a different
number of arguments.

Functions

Remember that missing arguments must be the trailing arguments—those at the end of the
argument list. You can leave out the last three arguments, but you can’t leave out the next-to-
last and then put in the last. This is reasonable; how would the compiler know which argu-
ments you meant if you left out some in the middle? (Missing arguments could have been
indicated with commas, but commas are notoriously subject to misprints, so the designers of
C++ ignored this possibility.) Not surprisingly, the compiler will flag an error if you leave out
arguments for which the function does not provide default values.

Default arguments are useful if you don’t want to go to the trouble of writing arguments that,
for example, almost always have the same value. They are also useful in cases where, after a
program is written, the programmer decides to increase the capability of a function by adding
another argument. Using default arguments means that the existing function calls can continue
to use the old number of arguments, while new function calls can use more.

Scope and Storage Class

Now that we know about functions, we can explore two features of C++ that are related to the
interaction of variables and functions: scope and storage class. The scope of a variable deter-
mines which parts of the program can access it, and its storage class determines how long it
stays in existence. We’ll summarize this briefly and then look at the situation in more detail.

Two different kinds of scope are important here: local and file. (We’ll see another one, class
scope, later.)

e Variables with local scope are visible only within a block.

e Variables with file scope are visible throughout a file.

A block is basically the code between an opening brace and a closing brace. Thus a function
body is a block.

There are two storage classes: automatic and static.

e Variables with storage class automatic exist during the lifetime of the function in which
they’re defined.

e Variables with storage class static exist for the lifetime of the program.

Now let’s see what all this means.

Local Variables

So far almost all the variables we’ve used in example programs have been defined inside the
function in which they are used. That is, the definition occurs inside the braces that delimit the
function body:

199

SNOILONNS

200

Chapter 5

void somefunc()

{

int somevar; //variables defined within
float othervar; //the function body

// other statements

}

Variables may be defined inside main () or inside other functions; the effect is the same, since
main () is a function. Variables defined within a function body are called local variables
because they have local scope. However, they are also sometimes called automatic variables,
because they have the automatic storage class.

Let’s look at these two important characteristics of variables that are defined within functions.

Storage Class

A local variable is not created until the function in which it is defined is called. (More accu-
rately, we can say that variables defined within any block of code are not created until the
block is executed. Thus variables defined within a loop body only exist while the loop is exe-
cuting.) In the program fragment just given, the variables somevar and othervar don’t exist
until the somefunc () function is called. That is, there is no place in memory where their values
can be stored; they are undefined. When control is transferred to somefunc (), the variables are
created and memory space is set aside for them. Later, when somefunc () returns and control is
passed back to the calling program, the variables are destroyed and their values are lost. The
name automatic is used because the variables are automatically created when a function is
called and automatically destroyed when it returns.

The time period between the creation and destruction of a variable is called its lifetime (or
sometimes its duration). The lifetime of a local variable coincides with the time when the func-
tion in which it is defined is executing.

The idea behind limiting the lifetime of variables is to save memory space. If a function is not
executing, the variables it uses during execution are presumably not needed. Removing them
frees up memory that can then be used by other functions.

Scope

A variable’s scope, also called visibility, describes the locations within a program from which it
can be accessed. It can be referred to in statements in some parts of the program; but in others,
attempts to access it lead to an unknown variable error message. The scope of a variable is that
part of the program where the variable is visible.

Variables defined within a function are only visible, meaning they can only be accessed, from
within the function in which they are defined. Suppose you have two functions in a program:

Functions

void somefunc()
{
int somevar; //local variables
float othervar;

somevar = 10; / /0K
othervar = 11; //0K
nextvar = 12; //illegal: not visible in somefunc()
}
void otherfunc()
{
int nextvar; //local variable
somevar = 20; //illegal: not visible in otherfunc()

othervar = 21; //illegal: not visible in otherfunc()
nextvar = 22; / /0K

}

The variable nextvar is invisible in function somefunc (), and the variables somevar and
othervar are invisible in otherfunc().

Limiting the visibility of variables helps organize and modularize the program. You can be
confident that the variables in one function are safe from accidental alteration by other func-
tions because the other functions can’t see them. This is an important part of structured pro-
gramming, the methodology for organizing old-fashioned procedural programs. Limiting
visibility is also an important part of object-oriented programming.

In the case of variables declared within a function, storage class and scope coincide: These
variables exist only while the function in which they are defined is executing, and are only vis-
ible within that function. For some kinds of variables, however, lifetime and visibility are not
the same.

Initialization

When a local variable is created, the compiler does not try to initialize it. Thus it will start off
with an arbitrary value, which may be 0 but probably will be something else. If you want it ini-
tialized, you must initialize it explicitly, as in

int n = 33;

Then it will start off with this value.

201

SNOILONNS

202

Chapter 5

Global Variables

The next kind of variable is global. While local variables are defined within functions, global
variables are defined outside of any function. (They’re also defined outside of any class, as
we’ll see later.) A global variable is visible to all the functions in a file (and potentially in other
files). More precisely, it is visible to all those functions that follow the variable’s definition in
the listing. Usually you want global variables to be visible to all functions, so you put their
declarations at the beginning of the listing. Global variables are also sometimes called external
variables, since they are defined external to any function.

Here’s a program, EXTERN, in which three functions all access a global variable.

/] extern.cpp

// demonstrates global variables
#include <iostream>

using namespace std;

#include <conio.h> //for getch()
char ch = 'a'; //global variable ch
void getachar(); //function declarations

void putachar();

int main()
{
while(ch != '"\r') //main() accesses ch
{
getachar();
putachar();

}
cout << endl;
return 0;

void getachar() //getachar() accesses ch

{
ch = getch();

void putachar() //putachar() accesses ch

{

cout << ch;

}

Functions

One function in EXTERN, getachar (), reads characters from the keyboard. It uses the library
function getch (), which is like getche () except that it doesn’t echo the character typed to the
screen (hence the absence of the final e in the name). A second EXTERN function, putachar(),
displays each character on the screen. The effect is that what you type is displayed in the nor-
mal way:

I'm typing in this line of text

The significant thing about this program is that the variable ch is not defined in any of the
functions. Instead it is defined at the beginning of the file, before the first function. It is a
global (external) variable. Any function that follows the definition of ch in the listing can
access it—in this case all the functions in EXTERN: main (), getachar(), and putachar (). Thus
the visibility of ch is the entire source file.

Role of Global Variables

A global variable is used when it must be accessible to more than one function in a program.
Global variables are often the most important variables in procedural programs. However, as
we noted in Chapter 1, global variables create organizational problems because they can be
accessed by any function. The wrong functions may access them, or functions may access
them incorrectly. In an object-oriented program, there is much less necessity for global
variables.

Initialization
If a global variable is initialized, as in

int exvar = 199;

this initialization takes place when the program is first loaded. If a global variable is not initial-
ized explicitly by the program—for example, if it is defined as

int exvar;

then it is initialized automatically to O when it is created. (This is unlike local variables, which
are not initialized and probably contain random or garbage values when they are created.)

Lifetime and Visibility

Global variables have storage class static, which means they exist for the life of the program.
Memory space is set aside for them when the program begins, and continues to exist until the
program ends. You don’t need to use the keyword static when declaring global variables;
they are given this storage class automatically.

As we noted, global variables are visible in the file in which they are defined, starting at the
point where they are defined. If ch were defined following main () but before getachar(), it
would be visible in getachar () and putachar(), but not in main().

203

SNOILONNS

204

Chapter 5

Static Local Variables

Let’s look at another kind of variable: the static local variable. There are static global vari-
ables, but they are meaningful only in multifile programs, which we don’t examine until
Chapter 13.

A static local variable has the visibility of an automatic local variable (that is, inside the func-
tion containing it). However, its lifetime is the same as that of a global variable, except that it
doesn’t come into existence until the first call to the function containing it. Thereafter it
remains in existence for the life of the program.

Static local variables are used when it’s necessary for a function to remember a value when it
is not being executed; that is, between calls to the function. In the next example, a function,
getavg(), calculates a running average. It remembers the total of the numbers it has averaged
before, and how many there were. Each time it receives a new number, sent as an argument
from the calling program, it adds this number to the total, adds 1 to a count, and returns the
new average by dividing the total by the count. Here’s the listing for STATIC:

// static.cpp

// demonstrates static variables

#include <iostream>

using namespace std;

float getavg(float); //declaration

int main()

{
float data=1, avg;

while(data != 0)
{
cout << "Enter a number: ";
cin >> data;
avg = getavg(data);
cout << "New average is " << avg << endl;

/] getavg()
// finds average of old plus new data
float getavg(float newdata)
{
static float total = @; //static variables are initialized
static int count = 0; // only once per program

Functions

count++; //increment count

total += newdata; //add new data to total
return total / count; //return the new average
}

Here’s some sample interaction:

Enter a number: 10

New average is 10 «—total is 10, count is 1
Enter a number: 20
New average is 15 «—total is 30, count is 2
Enter a number: 30
New average is 20 «——total is 60, count is 3

The static variables total and count in getavg() retain their values after getavg() returns, so
they’re available the next time it’s called.

Initialization

When static variables are initialized, as total and count are in getavg(), the initialization
takes place only once—the first time their function is called. They are not reinitialized on sub-
sequent calls to the function, as ordinary local variables are.

Storage

If you’re familiar with operating system architecture, you might be interested to know that
local variables and function arguments are stored on the stack, while global and static variables
are stored on the heap.

Table 5.2 summarizes the lifetime, visibility, and some other aspects of local, static local, and
global variables.

TAaBLE 5.2 Storage Types

Local Static Local Global
Visibility function function file
Lifetime function program program
Initialized value not initialized 0 0
Storage stack heap heap
Purpose Variables used by Same as local, but Variables
a single function retains value used by
when function several
terminates functions

205

SNOILONNS

206

Chapter 5

Returning by Reference

Now that we know about global variables, we can examine a rather odd-looking C++ feature.
Besides passing values by reference, you can also return a value by reference. Why you would
want to do this may seem obscure. One reason is to avoid copying a large object, as we’ll see
in Chapter 11, “Virtual Functions.” Another reason is to allow you to use a function call on the
left side of the equal sign. This is a somewhat bizarre concept, so let’s look at an example. The
RETREF program shows the mechanism.

/] retref.cpp

// returning reference values

#include <iostream>

using namespace std;

int x; // global variable

int& setx(); // function declaration

int main()
{ // set x to a value, using
setx() = 92; // function call on left side
cout << "x=" << x << endl; // display new value in x
return 0;

int& setx()
{

return x; // returns the value to be modified

}
In this program the function setx() is declared with a reference type, int&, as the return type:
int& setx();
This function contains the statement
return x;

where x has been defined as a global variable. Now—and this is what looks so strange—you
can put a call to this function on the left side of the equal sign:

setx() = 92;

The result is that the variable returned by the function is assigned the value on the right side of
the equal sign. That is, x is given the value 92. The output from the program

x=92

verifies that this assignment has taken place.

Functions

Function Calls on the Left of the Equal Sign

Does this still sound obscure? Remember that an ordinary function—one that returns a value—
can be used as if it were a value:

y=squareroot (x);

Here, whatever value squareroot(x) has (for instance, 27.2) is assigned to y. The function is
treated as if it were a value. A function that returns a reference, on the other hand, is treated as
if it were a variable. It returns an alias to a variable, namely the variable in the function’s
return statement. In RETREF.C the function setx () returns a reference to the variable x. When
this function is called, it’s treated as if it were the variable x. Thus it can be used on the left
side of an equal sign.

There are two corollaries to this. One is that you can’t return a constant from a function that
returns by reference. In setx (), you can’t say

int& setx()
{

return 3;

}

If you try this the compiler will complain that you need an /value, that is, something that can
go on the left side of the equal sign: a variable and not a constant.

More subtly, you can’t return a reference to a local variable:

int& setx()
{

int x = 3;
return x; /] error

}

What’s wrong with this? The problem is that a function’s local variables are probably
destroyed when the function returns, and it doesn’t make sense to return a reference to some-
thing that no longer exists.

Don’t Worry Yet

Of course, the question remains why one would ever want to use a function call on the left of
an equal sign. In procedural programming there probably isn’t too much use for this technique.
As in the above example, there are easier ways to achieve the same result. However, in Chapter
8, “Operator Overloading,” we’ll find that returning by reference is an indispensable technique.
Until then, keep it in the back of your mind.

207

SNOILONNS

208

Chapter 5

const Function Arguments

We’ve seen that passing an argument by reference can be used to allow a function to modify a
variable in the calling program. However, there are other reasons to pass by reference. One is
efficiency. Some variables used for function arguments can be very large; a large structure
would be an example. If an argument is large, passing by reference is more efficient because,
behind the scenes, only an address is really passed, not the entire variable.

Suppose you want to pass an argument by reference for efficiency, but not only do you want
the function not to modify it, you want a guarantee that the function cannot modify it.

To obtain such a guarantee, you can apply the const modifier to the variable in the function
declaration. The CONSTARG program shows how this looks.

//constarg.cpp
//demonstrates constant function arguments

void aFunc(int& a, const int& b); //declaration

int main()
{
int alpha = 7;
int beta = 11;
aFunc(alpha, beta);

return 0;

}
f] m e e e e
void aFunc(int& a, const int& b) //definition

{

a=107; /10K

b = 111; //error: can't modify constant argument

}

Here we want to be sure that aFunc () can’t modify the variable beta. (We don’t care if it mod-
ifies alpha.) So we use the const modifier with beta in the function declaration (and defini-
tion):

void aFunc(int& alpha, const int& beta);

Now the attempt to modify the beta in aFunc() is flagged as an error by the compiler. One of
the design philosophies in C++ is that it’s better for the compiler to find errors than to wait for
them to surface at runtime. The use of const function arguments is an example of this
approach in action.

If you want to pass a const variable to a function as a reference argument, you don’t have a
choice: It must be declared const in the function declaration. (There’s no problem passing a
const argument by value, because the function can’t modify the original variable anyway.)

Functions

Many library functions use constant arguments in a similar way. We’ll see examples as we go
along.

Summary

Functions provide a way to help organize programs, and to reduce program size, by giving a
block of code a name and allowing it to be executed from other parts of the program. Function
declarations (prototypes) specify what the function looks like, function calls transfer control to
the function, and function definitions contain the statements that make up the function. The
function declarator is the first line of the definition.

Arguments can be sent to functions either by value, where the function works with a copy of
the argument, or by reference, where the function works with the original argument in the call-
ing program.

Functions can return only one value. Functions ordinarily return by value, but they can also
return by reference, which allows the function call to be used on the left side of an assignment
statement. Arguments and return values can be either simple data types or structures.

An overloaded function is actually a group of functions with the same name. Which of them is
executed when the function is called depends on the type and number of arguments supplied in
the call.

An inline function looks like a normal function in the source file but inserts the function’s code
directly into the calling program. Inline functions execute faster but may require more memory
than normal functions unless they are very small.

If a function uses default arguments, calls to it need not include all the arguments shown in the
declaration. Default values supplied by the function are used for the missing arguments.

Variables possess a characteristic called the storage class. The most common storage class is
automatic. Local variables have the automatic storage class: they exist only while the function
in which they are defined is executing. They are also visible only within that function. Global
variables have static storage class: they exist for the life of a program. They are also visible
throughout an entire file. Static local variables exist for the life of a program but are visible
only in their own function.

A function cannot modify any of its arguments that are given the const modifier. A variable
already defined as const in the calling program must be passed as a const argument.

In Chapter 4 we examined one of the two major parts of objects: structures, which are collec-
tions of data. In this chapter we explored the second part: functions. Now we’re ready to put
these two components together to create objects, the subject of Chapter 6.

209

SNOILONNS

210 Chapter 5

Questions

Answers to these questions can be found in Appendix G.

1. A function’s single most important role is to
a. give a name to a block of code.
b. reduce program size.
c. accept arguments and provide a return value.
d. help organize a program into conceptual units.
2. A function itself is called the function d

3. Write a function called foo() that displays the word foo.

&

A one-statement description of a function is referred to as a function d ora
P
The statements that carry out the work of the function constitute the function

A program statement that invokes a function is a function

The first line of a function definition is referred to as the

® =N W

A function argument is

a. a variable in the function that receives a value from the calling program.
b. a way that functions resist accepting the calling program’s values.

c. a value sent to the function by the calling program.

d. a value returned by the function to the calling program.

9. True or false: When arguments are passed by value, the function works with the original
arguments in the calling program.

10. What is the purpose of using argument names in a function declaration?
11. Which of the following can legitimately be passed to a function?

a. A constant

b. A variable

c. A structure

d. A header file
12. What is the significance of empty parentheses in a function declaration?
13. How many values can be returned from a function?

14. True or false: When a function returns a value, the entire function call can appear on the
right side of the equal sign and be assigned to another variable.

15. Where is a function’s return type specified?

Functions

16.
17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

A function that doesn’t return anything has return type

Here’s a function:
int times2(int a)

{

return (a*2);

}

Write a main() program that includes everything necessary to call this function.
When an argument is passed by reference

a. a variable is created in the function to hold the argument’s value.

b. the function cannot access the argument’s value.

c. a temporary variable is created in the calling program to hold the argument’s value.
d. the function accesses the argument’s original value in the calling program.
What is a principal reason for passing arguments by reference?

Overloaded functions

a. are a group of functions with the same name.

b. all have the same number and types of arguments.

c. make life simpler for programmers.

d. may fail unexpectedly due to stress.

Write declarations for two overloaded functions named bar (). They both return type
int. The first takes one argument of type char, and the second takes two arguments of
type char. If this is impossible, say why.

In general, an inline function executes
memory.

than a normal function, but requires

Write the declarator for an inline function named foobar () that takes one argument of
type float and returns type float.

A default argument has a value that

a. may be supplied by the calling program.
b. may be supplied by the function.

c. must have a constant value.

d. must have a variable value.

Write a declaration for a function called blyth() that takes two arguments and returns
type char. The first argument is type int, and the second is type float with a default
value of 3.14159.

Scope and storage class are concerned with the and of a variable.

211

SNOILONNS

212

Chapter 5

27.
28.
29.

30.

What functions can access a global variable that appears in the same file with them?
What functions can access a local variable?

A static local variable is used to

a. make a variable visible to several functions.

b. make a variable visible to only one function.

c. conserve memory when a function is not executing.

d. retain a value when a function is not executing.

In what unusual place can you use a function call when a function returns a value by ref-
erence?

Exercises

Answers to the starred exercises can be found in Appendix G.

*1.

*2.

*3.

*4.,

Refer to the CIRCAREA program in Chapter 2, “C++ Programming Basics.” Write a func-
tion called circarea() that finds the area of a circle in a similar way. It should take an

argument of type float and return an argument of the same type. Write a main() func-

tion that gets a radius value from the user, calls circarea(), and displays the result.

Raising a number n to a power p is the same as multiplying n by itself p times. Write a
function called power () that takes a double value for n and an int value for p, and
returns the result as a double value. Use a default argument of 2 for p, so that if this
argument is omitted, the number n will be squared. Write a main () function that gets val-
ues from the user to test this function.

Write a function called zeroSmaller() that is passed two int arguments by reference
and then sets the smaller of the two numbers to 0. Write a main () program to exercise
this function.

Write a function that takes two Distance values as arguments and returns the larger one.
Include a main() program that accepts two Distance values from the user, compares
them, and displays the larger. (See the RETSTRC program for hints.)

. Write a function called hms_to_secs() that takes three int values—for hours, minutes,

and seconds—as arguments, and returns the equivalent time in seconds (type long).
Create a program that exercises this function by repeatedly obtaining a time value in
hours, minutes, and seconds from the user (format 12:59:59), calling the function, and
displaying the value of seconds it returns.

Start with the program from Exercise 11 in Chapter 4, “Structures,” which adds two
struct time values. Keep the same functionality, but modify the program so that it uses
two functions. The first, time_to_secs(), takes as its only argument a structure of type

Functions

10.

1.

12.

time, and returns the equivalent in seconds (type long). The second function,
secs_to_time(), takes as its only argument a time in seconds (type long), and returns a
structure of type time.

. Start with the power () function of Exercise 2, which works only with type double.

Create a series of overloaded functions with the same name that, in addition to double,
also work with types char, int, long, and float. Write a main () program that exercises
these overloaded functions with all argument types.

Write a function called swap () that interchanges two int values passed to it by the call-
ing program. (Note that this function swaps the values of the variables in the calling pro-
gram, not those in the function.) You’ll need to decide how to pass the arguments. Create
amain() program to exercise the function.

. Repeat Exercise 8, but instead of two int variables, have the swap () function inter-

change two struct time values (see Exercise 6).

Write a function that, when you call it, displays a message telling how many times it has
been called: “I have been called 3 times”, for instance. Write a main () program that calls
this function at least 10 times. Try implementing this function in two different ways.
First, use a global variable to store the count. Second, use a local static variable. Which
is more appropriate? Why can’t you use a local variable?

Write a program, based on the sterling structure of Exercise 10 in Chapter 4, that
obtains from the user two money amounts in old-style British format (£9:19:11), adds
them, and displays the result, again in old-style format. Use three functions. The first
should obtain a pounds-shillings-pence value from the user and return the value as a
structure of type sterling. The second should take two arguments of type sterling and
return a value of the same type, which is the sum of the arguments. The third should take
a sterling structure as its argument and display its value.

Revise the four-function fraction calculator from Exercise 12, Chapter 4, so that it uses

functions for each of the four arithmetic operations. They can be called fadd (), fsub(),
fmul(), and fdiv (). Each of these functions should take two arguments of type struct
fraction, and return an argument of the same type.

213

SNOILONNS

Objects

IN

and Classes CHAPTER

THIS CHAPTER

A Simple Class 216

C++ Objects as Physical Objects 223
C++ Objects as Data Types 226
Constructors 227

Objects as Function Arguments 233
The Default Copy Constructor 238
Returning Objects from Functions 240
A Card-Game Example 243
Structures and Classes 247

Classes, Objects, and Memory 247
Static Class Data 249

const and Classes 252

What Does It All Mean? 256

216

Chapter 6

And now, the topics you’ve all been waiting for: objects and classes. The preliminaries are out
of the way. We’ve learned about structures, which provide a way to group data elements. We’ve
examined functions, which organize program actions into named entities. In this chapter we’ll
put these ideas together to create classes. We’ll introduce several classes, starting with simple
ones and working toward more complicated examples. We’ll focus first on the details of classes
and objects. At the end of the chapter we’ll take a wider view, discussing what is to be gained
by using the OOP approach.

As you read this chapter you may want to refer back to the concepts introduced in Chapter 1,
“The Big Picture.”

A Simple Class

Our first program contains a class and two objects of that class. Although it’s simple, the program
demonstrates the syntax and general features of classes in C++. Here’s the listing for the
SMALLOBJ program:

// smallobj.cpp

// demonstrates a small, simple object

#include <iostream>

using namespace std;

[EETEEETEEE i r i il rr

class smallobj //define a class
{
private:
int somedata; //class data
public:
void setdata(int d) //member function to set data
{ somedata = d; }
void showdata() //member function to display data
{ cout << "Data is " << somedata << endl; }
s
[EELEEEEEE i i i i i r i irr
int main()
{
smallobj s1, s2; //define two objects of class smallobj

si1.setdata(1066); //call member function to set data
s2.setdata(1776);

s1.showdata(); //call member function to display data
s2.showdata();
return 0;

}

Objects and Classes

The class smallobj defined in this program contains one data item and two member functions.
The two member functions provide the only access to the data item from outside the class. The
first member function sets the data item to a value, and the second displays the value. (This may
sound like Greek, but we’ll see what these terms mean as we go along.)

Placing data and functions together into a single entity is a central idea in object-oriented
programming. This is shown in Figure 6.1.

Class

datal
data?2
data3

Functions

func1()
func2 ()
func3()

FIGURE 6.1
Classes contain data and functions.

Classes and Objects

Recall from Chapter 1 that an object has the same relationship to a class that a variable has to
a data type. An object is said to be an instance of a class, in the same way my 1954 Chevrolet
is an instance of a vehicle. In SMALLOBJ, the class—whose name is smallobj—is defined in
the first part of the program. Later, in main (), we define two objects—s1 and s2—that are
instances of that class.

Each of the two objects is given a value, and each displays its value. Here’s the output of the
program:

Data is 1066 «———— object sl displayed this
Data is 1776 «———— object s2 displayed this

217

SISSVTD)
anv s131raQ

218

Chapter 6

We’ll begin by looking in detail at the first part of the program—the definition of the class
smallobj. Later we’ll focus on what main() does with objects of this class.

Defining the Class

Here’s the definition (sometimes called a specifier) for the class smallobj, copied from the
SMALLOBYJ listing:

class smallobj //define a class
{
private:
int somedata; //class data
public:
void setdata(int d) //member function to set data
{ somedata = d; }
void showdata() //member function to display data

{ cout << "\nData is " << somedata; }
b
The definition starts with the keyword class, followed by the class name—smallobj in this
example. Like a structure, the body of the class is delimited by braces and terminated by a
semicolon. (Don’t forget the semicolon. Remember, data constructs such as structures and
classes end with a semicolon, while control constructs such as functions and loops do not.)

private and public
The body of the class contains two unfamiliar keywords: private and public. What is their
purpose?

A key feature of object-oriented programming is data hiding. This term does not refer to the
activities of particularly paranoid programmers; rather it means that data is concealed within a
class so that it cannot be accessed mistakenly by functions outside the class. The primary
mechanism for hiding data is to put it in a class and make it private. Private data or functions
can only be accessed from within the class. Public data or functions, on the other hand, are
accessible from outside the class. This is shown in Figure 6.2.

Hidden from Whom?

Don’t confuse data hiding with the security techniques used to protect computer databases. To
provide a security measure you might, for example, require a user to supply a password before
granting access to a database. The password is meant to keep unauthorized or malevolent users
from altering (or often even reading) the data.

Data hiding, on the other hand, means hiding data from parts of the program that don’t need to
access it. More specifically, one class’s data is hidden from other classes. Data hiding is designed
to protect well-intentioned programmers from honest mistakes. Programmers who really want to
can figure out a way to access private data, but they will find it hard to do so by accident.

Objects and Classes

Accessible from
outside class

FIGURE 6.2

Private and public.

Class Data

The smallobj class contains one data item: somedata, which is of type int. The data items
within a class are called data members (or sometimes member data). There can be any number
of data members in a class, just as there can be any number of data items in a structure. The
data member somedata follows the keyword private, so it can be accessed from within the
class, but not from outside.

Member Functions

Member functions are functions that are included within a class. (In some object-oriented
languages, such as Smalltalk, member functions are called methods; some writers use this term
in C++ as well.) There are two member functions in smallobj: setdata() and showdata().
The function bodies of these functions have been written on the same line as the braces that
delimit them. You could also use the more traditional format for these function definitions:

void setdata(int d)
{

somedata = d;
}

and

219

()]

SISSVTD)
anv s1ardQ

220

Chapter 6

void showdata()

{

cout << "\nData is " << somedata;

}

However, when member functions are small, it is common to compress their definitions this
way to save space.

Because setdata() and showdata() follow the keyword public, they can be accessed from
outside the class. We’ll see how this is done in a moment. Figure 6.3 shows the syntax of a
class definition.

Functions Are Public, Data Is Private

Usually the data within a class is private and the functions are public. This is a result of the
way classes are used. The data is hidden so it will be safe from accidental manipulation, while
the functions that operate on the data are public so they can be accessed from outside the class.
However, there is no rule that says data must be private and functions public; in some circum-
stances you may find you’ll need to use private functions and public data.

Keyword
|— Name of class

class foo
— {
private: ——————— Keyword private and colon
int data; = ————— Private functions and data
Braces — public: =—————————————Keyword public and colon

void memfunc (int d)

}Public functions and data
{ data = d; }

— };

I— Semicolon

FIGURE 6.3

Syntax of a class definition.

Member Functions Within Class Definition

The member functions in the smallobj class perform operations that are quite common in
classes: setting and retrieving the data stored in the class. The setdata() function accepts a
value as a parameter and sets the somedata variable to this value. The showdata() function
displays the value stored in somedata.

Objects and Classes

Note that the member functions setdata() and showdata() are definitions in that the actual
code for the function is contained within the class definition. (The functions are not definitions
in the sense that memory is set aside for the function code; this doesn’t happen until an object
of the class is created.) Member functions defined inside a class this way are created as inline
functions by default. (Inline functions were discussed in Chapter 5, “Functions.”) We’ll see
later that it is also possible to declare a function within a class but to define it elsewhere.
Functions defined outside the class are not normally inline.

Using the Class

Now that the class is defined, let’s see how main() makes use of it. We’ll see how objects are
defined, and, once defined, how their member functions are accessed.

Defining Objects

The first statement in main ()
smallobj si1, s2;

defines two objects, s1 and s2, of class smallobj. Remember that the definition of the class
smallobj does not create any objects. It only describes how they will look when they are created,
just as a structure definition describes how a structure will look but doesn’t create any structure
variables. It is objects that participate in program operations. Defining an object is similar to
defining a variable of any data type: Space is set aside for it in memory.

Defining objects in this way means creating them. This is also called instantiating them. The
term instantiating arises because an instance of the class is created. An object is an instance
(that is, a specific example) of a class. Objects are sometimes called instance variables.

Calling Member Functions
The next two statements in main () call the member function setdata():

s1.setdata(1066);
s2.setdata(1776);

These statements don’t look like normal function calls. Why are the object names s1 and s2
connected to the function names with a period? This strange syntax is used to call a member
function that is associated with a specific object. Because setdata() is a member function of
the smallobj class, it must always be called in connection with an object of this class. It doesn’t
make sense to say

setdata(1066);

221

SISSVTD)
anv s131raQ

222

Chapter 6

by itself, because a member function is always called to act o