
WAVE MECHANICAL CONCEPT OF ATOM
Bohr, undoubtedly, gave the first quantitative successful

model of the atom. But now it has been superseded completely
by the modern Wave Mechanical Theory. The new theory rejects
the view that electrons move in closed orbits, as was visualised
by Bohr. The Wave mechanical theory gave a major breakthrough
by suggesting that the electron motion is of a complex nature
best described by its wave properties and probabilities.

While the classical ‘mechanical theory’ of matter considered
matter to be made of discrete particles (atoms, electrons, protons
etc.), another theory called the ‘Wave theory’ was necessary to
interpret the nature of radiations like X-rays and light. According
to the wave theory, radiations as X-rays and light, consisted of
continuous collection of waves travelling in space.

The wave nature of light, however, failed completely to
explain the photoelectric effect i.e. the emission of electron from
metal surfaces by the action of light. In their attempt to find a
plausible explanation of radiations from heated bodies as also
the photoelectric effect, Planck and Einstein (1905) proposed that
energy radiations, including those of heat and light, are emitted
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discontinuously as little ‘bursts’, quanta, or photons. This view is directly opposed to the wave
theory of light and it gives particle-like properties to waves. According to it, light exhibits both a
wave and a particle nature, under suitable conditions. This theory which applies to all radiations, is
often referred to as the ‘Wave Mechanical Theory’.

With Planck’s contention of light having wave and particle nature, the distinction between
particles and waves became very hazy. In 1924 Louis de Broglie advanced a complimentary hypothesis
for material particles. According to it, the dual character–the wave and particle–may not be confined
to radiations alone but should be extended to matter as well. In other words, matter also possessed
particle as well as wave character. This gave birth to the ‘Wave mechanical theory of matter’. This
theory postulates that electrons, protons and even atoms, when in motion, possessed wave properties
and could also be associated with other characteristics of waves such as wavelength, wave-amplitude
and frequency. The new quantum mechanics, which takes into account the particulate and wave
nature of matter, is termed the Wave mechanics.

de BROGLIE’S EQUATION
de Broglie had arrived at his hypothesis with the help of Planck’s Quantum Theory and Einstein’s

Theory of Relativity. He derived a relationship between the magnitude of the wavelength associated
with the mass ‘m’ of a moving body and its velocity. According to Planck, the photon energy ‘E’ is
given by the equation

E = hν ...(i)
where h is Planck’s constant and v the frequency of radiation. By applying Einstein’s mass-energy
relationship, the energy associated with photon of mass ‘m’ is given as

E = mc2 ...(ii)
where c is the velocity of radiation

Comparing equations (i) and (ii)

mc2 = hν = 
ch
λ

c⎛ ⎞ν =⎜ ⎟λ⎝ ⎠
∵

or mc =
h
λ

...(iii)

or mass × velocity =
wavelength

h

or momentum (p) =
wavelength

h

or momentum ∝
1

wavelength
The equation (iii) is called de Broglie’s equation and may be put in words as : The momentum

of a particle in motion is inversely proportional to wavelength, Planck’s constant ‘h’ being the
constant of proportionality.

The wavelength of waves associated with a moving material particle (matter waves) is called de
Broglie’s wavelength. The de Broglie’s equation is true for all particles, but it is only with very small
particles, such as electrons, that the wave-like aspect is of any significance. Large particles in motion
though possess wavelength, but it is not measurable or observable. Let us, for instance consider de
Broglie’s wavelengths associated with two bodies and compare their values.

(a) For a large mass
Let us consider a stone of mass 100 g moving with a velocity of 1000 cm/sec. The de Broglie’s

wavelength λ will be given as follows :
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λ =
276.6256 10

100 1000

−×
× momentum

h⎛ ⎞λ =⎜ ⎟
⎝ ⎠

= 6.6256 × 10– 32 cm
This is too small to be measurable by any instrument and hence no significance.

(b)  For a small mass
Let us now consider an electron in a hydrogen atom. It has a mass = 9.1091 × 10– 28 g and moves

with a velocity 2.188 × 10– 8 cm/sec. The de Broglie’s wavelength λ is given as

λ =
27

28 8
6.6256 10

9.1091 10 2.188 10

−

− −

×
× × ×

= 3.32 × 10– 8 cm
This value is quite comparable to the wavelength of X-rays and hence detectable.
It is, therefore, reasonable to expect from the above discussion that everything in nature possesses

both the properties of particles (or discrete units) and also the properties of waves (or continuity).
The properties of large objects are best described by considering the particulate aspect while
properties of waves are utilized in describing the essential characteristics of extremely small objects
beyond the realm of our perception, such as electrons.

THE WAVE NATURE OF ELECTRON
de Broglie’s revolutionary suggestion that moving electrons had waves of definite wavelength

associated with them, was put to the acid test by Davison and Germer (1927). They demonstrated the
physical reality of the wave nature of electrons by showing that a beam of electrons could also be
diffracted by crystals just like light or X-rays. They observed that the diffraction patterns thus
obtained were just similar to those in case of X-rays. It was possible that electrons by their passage
through crystals may produce secondary X-rays, which would show diffraction effects on the
screen. Thomson ruled out this possibility, showing that the electron beam as it emerged from the
crystals, underwent deflection in the electric field towards the positively charged plate.
Davison and Germers Experiment

In their actual experiment, Davison and Germer studied the scattering of slow moving electrons
by reflection from the surface of nickel crystal. They obtained electrons from a heated filament and
passed the stream of electrons through charged plates kept at a potential difference of V esu. Due to
the electric field of strength V × e acting on the electron of charge e, the electrons emerge out with a
uniform velocity v units. The kinetic energy 21

2 mv  acquired by an electron due to the electric field
shall be equal to the electrical force. Thus,

21
2 mv = Ve

or v =
2Ve
m

Multiplying by m on both sides,

mv =
2 2Vem mVe
m

= ...(i)

But according to de Broglie’s relationship

mv =
h
λ

...(ii)
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Comparing (i) and (ii)
h
λ

= 2mVe

∴ λ =
2

22
h h

mVemVe
=

Substituting for h = 6.6256 × 10– 27 erg-sec,  m = 9.1091 × 10– 28 g,  e = 4.803 × 10– 10 esu, and

changing V esu to V volts by using the conversion factor 21
3 10 ,−×  we have

λ =
( )227 2

28 10

6.6256 10 0.33 10

2 9.1091 10 4.803 10 voltsV

− −

− −

× × ×

× × × ×

=
8150 15010 cm Å

volts voltsV V
−× = ...(iii)

If a potential difference of 150 volts be applied, the wavelength of electrons emerging out is
λ = 1 Å. Similarly if a potential difference of 1500 volts be created, the electrons coming out shall have
a wavelength 0.1 Å. It is clear, therefore, that electrons of different wavelengths can be obtained by
changing the potential drop. These wavelengths are comparable with those of X-rays and can
undergo diffraction.

Schematic representation of the apparatus 
used by Davison and Germer.

Figure 2.1 

The electrons when they fall upon the nickel crystal, get diffracted. Electrons of a definite
wavelength get diffracted along definite directions. The electron detector measures the angle of
diffraction (say θ) on the graduated circular scale. According to Bragg’s diffraction equation, the
wavelength λ of the diffracted radiation is given by λ = d sin θ, where d is a constant (= 2.15 for Ni
crystal) and θ the angle of diffraction. By substituting the experimental value of θ in Bragg’s
equation (λ = d sin θ), the wavelength of electrons may be determined. This wavelength would be
found to agree with the value of λ, as obtained from equation (iii).

Since diffraction is a property exclusively of wave motion, Davison and Germer’s ‘electron
diffraction’ experiment established beyond doubt the wave nature of electrons. We have described
earlier in this chapter that electrons behave like particles and cause mechanical motion in a paddle
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wheel placed in their path in the discharge tube. This proves, therefore, that electrons not only
behave like ‘particles’ in motion but also have ‘wave properties’ associated with them. It is not easy
at this stage to obtain a pictorial idea of this new conception of the motion of an electron. But the
application of de Broglie’s equation to Bohr’s theory produces an important result. The quantum
restriction of Bohr’s theory for an electron in motion in the circular orbit is that the angular momentum
(mvr) is an integral multiple (n) of h/2π. That is,

mvr = 2
hn
π

...Bohr Theory

On rearranging, we get

2π r =
hn

mv

Putting the value of 
h

mv  from equation (i), we have

2π r = nλ
h

mv
⎛ ⎞λ =⎜ ⎟
⎝ ⎠
∵

de Broglie's wave accommodated in Bohr's orbits.
For these two wave trains the value of  is different.n

Figure 2.2

Now the electron wave of wavelength λ can be accommodated in Bohr’s orbit only if the
circumference of the orbit, 2πr, is an integral multiple of its wavelength. Thus de Broglie’s idea of
standing electron waves stands vindicated. However, if the circumference is bigger, or smaller than
nλ, the wave train will go out of phase and the destructive interference of waves causes radiation of
energy.

SOLVED PROBLEM.  Calculate the wavelength of an electron having kinetic energy equal to
4.55 × 10– 25 J. (h = 6.6 × 10– 34 kg m2 sec– 1 and mass of electron = 9.1 × 10– 31 kg).

SOLUTION

Kinetic energy of an electron = 21
2

mv
= 4.55 × 10– 25 J (given)
= 4.55 × 10– 25 kg m2 sec– 2

or ν2 =
252 4.55 10

m

−× ×

=
25 2 2

31
2 4.55 10 kg m sec

9.1 10 kg

− −

−

× ×
×

or ν2 = 1 × 106 m2 sec– 2
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or ν = 1 × 103 m sec– 1

We know λ = (de Broglie equation)h
m × ν

= ( ) ( )
34 2 1

31 3 1

6.6 10 kg m sec
9.1 10 kg 1 10 m sec

− −

− −

×

× × ×

= 7.25 × 10– 7 m
= 7.25 × 10– 7 × 109 nm
= 725 nm

SOLVED PROBLEM. Calculate the wavelength of an α particle having mass 6.6 × 10– 27 kg
moving with a speed of 105 cm sec– 1 (h = 6.6 × 10– 34 kg m2 sec– 1)

SOLUTION. We know       (de Broglie equation)h
mv

λ =

Given h = 6.6 × 10– 34 kg m2 sec– 1

m = 6.6 × 10– 27 kg
ν = 1 × 105 cm sec– 1

= 1 × 103 m sec– 1

On substitution, we get

λ =
34 2 1

27 3 1
6.6 10 kg m sec

6.6 10 kg 10 m sec

− −

− −

×
× ×

= 1 × 10– 10 m

HEISENBERG’S UNCERTAINTY PRINCIPLE
One of the most important consequences of the dual nature of matter is the uncertainty principle

developed by Werner Heisenberg in 1927. This principle is an important feature of wave mechanics
and discusses the relationship between a pair of conjugate properties (those properties that are
independent) of a substance. According to the uncertainty principle, it is impossible to know
simultaneously both the conjugate properties accurately. For example, the position and momentum
of a moving particle are interdependent and thus conjugate properties also. Both the position and
the momentum of the particle at any instant cannot be determined with absolute exactness or certainty.
If the momentum (or velocity) be measured very accurately, a measurement of the position of the
particle correspondingly becomes less precise. On the other hand if position is determined with
accuracy or precision, the momentum becomes less accurately known or uncertain. Thus certainty of
determination of one property introduces uncertainty of determination of the other. The uncertainty
in measurement of position, Δx, and the uncertainty of determination of momentum, Δp (or Δmv), are
related by Heisenberg’s relationship as

Δ x × Δ p ≥ 2
h
π

or Δ x × m Δν ≥ 2
h
π

where h is Planck’s constant.
It may be pointed out here that there exists a clear difference between the behaviour of large

objects like a stone and small particles such as electrons. The uncertainty product is negligible in
case of large objects.
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For a moving ball of iron weighing 500 g, the uncertainty expression assumes the form

2
hx mΔ × Δν ≥
π

or 2
hx
m

Δ × Δν ≥
π

27
31 –16.625 10 5 10 erg sec g

2 3.14 500

−
−×

≥ ≈ ×
× ×

which is very small and thus negligible. Therefore for large objects, the uncertainty of measurements is
practically nil.

But for an electron of mass m = 9.109 × 10– 28 g, the product of the uncertainty of measurements
is quite large as

2
hx v
m

Δ × Δ ≥
π

27
–1

28
6.625 10 0.3 erg sec g  

2 3.14 9.109 10

−

−

×
≥ ≈

× × ×

This value is large enough in comparison with the size of the electron and is thus in no way
negligible. If position is known quite accurately i.e., Δx is very small, the uncertainty regarding
velocity Δv becomes immensely large and vice versa. It is therefore very clear that the uncertainty
principle is only important in considering measurements of small particles comprising an atomic
system.
Physical Concept of Uncertainty Principle

The physical concept of uncertainty
principle becomes illustrated by considering
an attempt to measure the position and
momentum of an electron moving in Bohr’s
orbit. To locate the position of the electron,
we should devise an instrument
‘supermicroscope’ to see the electron. A
substance is said to be seen only if it could
reflect light or any other radiation from its
surface. Because the size of the electron is
too small, its position at any instant may be
determined by a supermicroscope
employing light of very small wavelength
(such as X-rays or γ-rays). A photon of such
a radiation of small λ, has a great energy
and therefore has quite large momentum. As one such photon strikes the electron and is reflected, it
instantly changes the momentum of electron. Now the momentum gets changed and becomes more
uncertain as the position of the electron is being determined (Fig. 2.3). Thus it is impossible to
determine the exact position of an electron moving with a definite velocity (or possessing definite
energy). It appears clear that the Bohr’s picture of an electron as moving in an orbit with fixed
velocity (or energy) is completely untenable.

As it is impossible to know the position and the velocity of any one electron on account of its
small size, the best we can do is to speak of the probability or relative chance of finding an electron
with a probable velocity. The old classical concept of Bohr has now been discarded in favour of the
probability approach.

The momentum of the electron changes when 
a photon of light strikes it, so does its position.

Figure 2.3
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SOLVED PROBLEM. Calculate the uncertainty in position of an electron if the uncertainty in
velocity is 5.7 × 105 m sec– 1.

SOLUTION. According to Heisenberg’s uncertainty principle

Δx × Δp = 4
h
π

or Δx × m Δν = 4
h
π

or Δx = 4 m
h

π × Δν
Here Δν = 5.7 × 105 m sec– 1

h = 6.6 × 10– 34 kg m2 sec– 1

m = 9.1 × 10– 31 kg
On substitution we get

Δx = ( ) ( )
34 2 1

31 5 1

6.6 10 kg m sec
4 3.14 9.1 10 kg 5.7 10 m sec

− −

− −

×

× × × ×

=
86.6 10

4 3.14 9.1 5.7
m

−×
× × ×

= 1 × 10– 10 m

SOLVED PROBLEM. The uncertainty in the position and velocity of a particle are 10– 10 m and
5.27 × 10– 24 m sec– 1 respectively. Calculate the mass of the particle.

SOLUTION. We know Δx × Δp = 4
h
π

or Δx × m Δν = 4
h
π

or m = 4
h
xπ × Δ × Δν

Here h = 6.6 × 10– 34 kg m2 sec– 1

Δx = 1 × 10– 10 m
Δν = 5.27 × 10– 24 m sec– 1

Substituting the values, we get

m = ( ) ( )
34 2 1

10 24 1

6.6 10 kg m sec
4 3.14 1 10 m 5.27 10 m sec

− −

− − −

×

× × × ×

= 0.10 kg
= 100 g

SCHRÖDINGER’S WAVE EQUATION
In order to provide sense and meaning to the probability approach, Schrödinger derived an

equation known after his name as Schrödinger’s Wave Equation. Calculation of the probability of
finding the electron at various points in an atom was the main problem before Schrödinger. His
equation is the keynote of wave mechanics and is based upon the idea of the electron as ‘standing
wave’ around the nucleus. The equation for the standing wave*, comparable with that of a stretched
string is

*  For the derivation of equation for a ‘standing wave’ in a stretched string, the reader may refer to a
book on Physics (Sound).
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ψ = A sin 2 x
π
λ

...(a)
where ψ (pronounced as sigh) is a mathematical function representing the amplitude of wave (called
wave function) x, the displacement in a given direction, and λ, the wavelength and A is a constant.

By differentiating equation (a) twice with respect to x, we get
d
dx
ψ

=
2 cos 2 xA π

π
λ λ

...(1)

and
2

2
d
dx
ψ

=
2

2
4 sin 2 xA π

− π
λλ

...(2)

But sin 2 xA π
λ

= ψ

∴
2

2
d
dx
ψ

=
2

2
4π

− ψ
λ

...(3)

The K.E. of the particle of mass m and velocity ν is given by the relation

K.E. =
2 2

21 1
2 2

m vmv
m

= ...(4)

According to Broglie’s equation

λ =
h

mv

or λ2 =
2

2 2
h

m v

or m2 v2 =
2

2
h
λ

Substituting the value of m2 v2, we have

K.E. =
2

2
1
2

h
m

×
λ

...(5)

From equation (3), we have

λ2 =

2

2

2

4
d
dx

π ψ
−

ψ ...(6)

Substituting the value of λ2 in equation (5)

K.E. =
2 2

2 2
1 . .

2 4
h d

m dx
ψ

−
π ψ

=
2 2

2 2.
8

h d
m dx

ψ
−

π ψ
The total energy E of a particle is the sum of kinetic energy and the potential energy
i.e., E = K.E. + P.E.
or K.E. = E – P.E.

=
2 2

2 2.
8

h d
m dx

ψ
−

π ψ

or
2

2
d
dx
ψ

= ( )
2

2
8 P.E.m E

h
π

− − ψ
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( )
2 2

2 2
8 P.E.d m E

dx h
ψ π

+ − ψ  = 0

This is Schrödinger’s equation in one dimension. It need be generalised for a particle whose
motion is described by three space coordinates x, y and z. Thus,

( )
2 2 2 2

2 2 2 2
8 P.E. 0d d d m E

dx dy dz h
ψ ψ ψ π

+ + + − ψ =

This equation is called the Schrödinger’s Wave Equation. The first three terms on the left-hand
side are represented by Δ2ψ (pronounced as del-square sigh).

( )
2

2
2

8 P.E.m E
h
π

Δ ψ + − ψ  = 0

Δ2 is known as Laplacian Operator.
The Schrödinger’s wave equation is a second degree differential equation. It has several

solutions. Some of these are imaginary and are not valid. If the potential energy term is known, the
total energy E and the corresponding wave function ψ can be evaluated.

The wave function is always finite, single valued and continuous. It is zero at infinite distance.
Solutions that meet these requirements are only possible if E is given certain characteristic values
called Eigen-values. Corresponding to these values of E, we have several characteristic values of
wavefunction ψ and are called Eigen-functions. As the eigen-values correspond very nearly to the
energy values associated with different Bohr-orbits, the Bohr’s model may be considered as a direct
consequence of wave mechanical approach.
Significance of ψψψψψ and ψψψψψ2

In Schrödinger’s wave equation ψ represents the amplitude of the spherical wave. According to
the theory of propagation of light and sound waves, the square of the amplitude of the wave is
proportional to the intensity of the sound or light. A similar concept, modified to meet the requirement
of uncertainty principle, has been developed for the physical interpretation of wave function ψ. This
may be stated as the probability of finding an electron in an extremely small volume around a point.
It is proportional to the square of the function ψ2 at that point. If wave function ψ is imaginary, ψψ*
becomes a real quantity where ψ* is a complex conjugate of ψ. This quantity represents the probability
ψ2 as a function of x, y and z coordinates of the system, and it varies from one space region to
another. Thus the probability of finding the electron in different regions is different. This is in
agreement with the uncertainty principle and gave a death blow to Bohr’s concept.

In Schrödinger’s Wave Equation, the symbol ψψψψψ represents the amplitude of the spherical wave.
For hydrogen atom, Schrödinger’s Wave Equation gives the wave function of the electron (with
energy = – 2.18 × 10–11 ergs) situated at a distance ‘r’,

ψ = C1e – C2r
where C1 and C2 are constants. The square of the amplitude ψ2 is proportional to the density of the
wave. The wave of energy or the cloud of negative charge is denser in some parts than in others.
Max Born interpreted the wave equations on the basis of probabilities. Even if an electron be
considered as a particle in motion around the nucleus, the wave equation may be interpreted in terms
of probability or relative chance of finding the electron at any given distance from the nucleus. The
space characteristic of an electron is best described in terms of distribution function given by

D = 4πr2 ψ2

The numerical value of ‘D’  denotes the probability or chance of finding the electron in a shell of
radius r and thickness dr, or of volume 4πr2 dr. Substituting for ψ we have,

D = 2 2
1 24 ( )r C e C rπ −
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The probability of finding the electron is clearly a function of ‘r’. When r = 0 or ∝ , the probability
function D becomes equal to zero. In other words, there is no probability of finding the electron at the
nucleus or at infinity. However, it is possible to choose a value of r such that there is 90-95 percent
chance of finding the electron at this distance. For the hydrogen atom, this distance is equal to
0.53 × 10– 8 cm or 0.53 Å. If the probability distribution be plotted against the distance r from the
nucleus, the curve obtained is shown in Fig. 2.4. The probability distribution is maximum at the
distance 0.53 Å and spherically symmetrical. This distance corresponds to Bohr’s first radius a0. The
graph can be interpreted as representing a contour that encloses a high-percentage of charge.

When the electron gets excited and it is raised from n to higher energy levels (say n = 2 or n = 3),
the solution of wave equation gives sets of value of ψ2 which give different shapes to the space
distribution of the electron.

CHARGE CLOUD CONCEPT AND ORBITALS
The Charge Cloud Concept finds its birth from wave mechanical theory of the atom. The wave

equation for a given electron, on solving gives a three-dimensional arrangement of points where it
can possibly lie. There are regions where the chances of finding the electron are relatively greater.
Such regions are expressed in terms of ‘cloud of negative charge’. We need not know the specific
location of the electrons in space but are concerned with the negative charge density regions.
Electrons in atoms are assumed to be vibrating in space, moving haphazardly but at the same time are
constrained to lie in regions of highest probability for most of the time. The charge cloud concept
simply describes the high probability region.

The three-dimensional region within which there is higher probability that an electron having
a certain energy will be found, is called an orbital.

An orbital is the most probable space in which the electron spends most of its time while in
constant motion. In other words, it is the spatial description of the motion of an electron corresponding
to a particular energy level. The energy of electron in an atomic orbital is always the same.

0 0.5 1.0 1.5 2.0

Distance from nucleus (A)
o

(a)
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n 
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0.53 A
o

(b)

Shows the probability distribution of electron cloud :
(a) gives the graphical representation while
(b) depicts cross-section of the cloud.

Figure 2.4

Each energy level corresponds to a three-dimensional electron wave which envelopes the nucleus.
This wave possesses a definite ‘size’, ‘shape’ and ‘orientation’ and thus can be represented
pictorially.

QUANTUM NUMBERS
Bohr’s electronic energy shells or levels, designated as Principal Quantum Numbers ‘n’, could
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hardly explain the hydrogen spectrum adequately. Spectra of other elements that are quite complex,
also remained unexplained by this concept. Many single lines of the spectra are found to consist of
a number of closely related lines when studied with the help of sophisticated instruments of high
resolving power. Also the spectral lines split up when the source of radiation is placed in a magnetic
field (Zeeman Effect) or in an electrical field (Stark Effect).

To explain these facts, it is necessary to increase the number of ‘possible orbits’ where an
electron can be said to exist within an atom. In other words, it is necessary to allow more possible
energy changes within an atom (or a larger number of energy states) to account for the existence of
a larger number of such observed spectral lines. Wave mechanics makes a provision for three more
states of an electron in addition to the one proposed by Bohr. Like the energy states of Bohr,
designated by n = 1, 2, 3..., these states are also identified by numbers and specify the position and
energy of the electron. Thus there are in all four such identification numbers called quantum numbers
which fully describe an electron in an atom. Each one of these refers to a particular character.

Principal Quantum Number ‘n’
This quantum number denotes the principal shell to which the electron belongs. This is also

referred to as major energy level. It represents the average size of the electron cloud i.e., the average
distance of the electron from the nucleus. This is, therefore, the main factor that determines the
values of nucleus-electron attraction, or the energy of the electron. In our earlier discussion, we have
found that the energy of the electron and its distance from the nucleus for hydrogen atom are given
by

En = 2
313.3 kcals

n
−

and rn = 0.529 n2 Å
where n is the principal quantum number of the shell.

The principal quantum number ‘n’ can have non-zero, positive, integral values n = 1, 2, 3...
increasing by integral numbers to infinity. Although the quantum number ‘n’ may theoretically
assume any integral value from 1 to ∝ , only values from 1 to 7 have so far been established for the
atoms of the known elements in their ground states. In a polyelectron atom or ion, the electron that
has a higher principal quantum number is at a higher energy level. An electron with n = 1 has the
lowest energy and is bound most firmly to the nucleus.

The letters K, L, M, N, O, P and Q are also used to designate the energy levels or shells of
electrons with a n value of 1, 2, 3, 4, 5, 6, 7 respectively. There is a limited number of electrons in  an
atom which can have the same principal quantum number and is given by 2n2, where n is the principal
quantum number concerned. Thus,

Principal quantum number (n =) 1 2 3 4
Letter designation K L M N
Maximum number of electrons (2n2 = ) 2 8 18 32

Azimuthal Quantum number ‘l ’
This is also called secondary or subsidiary quantum number. It defines the spatial distribution of

the electron cloud about the nucleus and describes the angular momentum of the electron. In other
words, the quantum number l defines the shape of the orbital occupied by the electron and the
angular momentum of the electron. It is for this reason that ‘l’ is sometimes referred to as orbital or
angular quantum number. For any given value of the principal quantum number n, the azimuthal
quantum number l may have all integral values from 0 to n – 1, each of which refers to an Energy
sublevel or Sub-shell. The total number of such possible sublevels in each principal level is
numerically equal to the principal quantum number of the level under consideration. These sublevels
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are also symbolised by letters s, p, d, f etc. For example, for principal quantum number n = 1, the only
possible value for l is 0 i.e., there is only one possible subshell i.e. s-subshell (n = 1, l = 0). For n = 2,
there are two possible values of l, l = 0 and l = 2 – 1 = 1.

This means that there are two subshells in the second energy shell with n = 2. These subshells
are designated as 2s and 2p. Similarly, when n = 3, l can have three values i.e. 0, 1 and 2. Thus there
are three subshells in third energy shell with designations 3s, 3p and 3d respectively. For n  = 4, there
are four possible values of azimuthal quantum number l (= 0, 1, 2, and 3) each representing a different
sublevel. In other words, the fourth energy level consists of four subshells which are designated as
4s, 4p, 4d and 4f. Thus for different values of principal quantum numbers we have

n = 1 n = 2 n = 3 n = 4 n = 5
l = 0 (1s) l = 0 (2s) l = 0 (3s) l = 0 (4s) l = 0 (5s)

l = 1 (2p) l = 1 (3p) 1 = 1(4p) l =1 (5p)
l = 1 (3d) l = 2 (4d) l = 2 (5d)

l = 3 (4f) l = 3 (5f)
l = 5 (5g)

For a given value of principal quantum number the order of increasing energy for different
subshells is

s < p < d < f        (except for H atom)
Magnetic Quantum Number ‘m’

This quantum number has been proposed to account for the splitting up of spectral lines
(Zeeman Effect). An application of a strong magnetic field to an atom reveals that electrons with the
same values of principal quantum number ‘n’ and of azimuthal quantum number ‘l’, may still differ in
their behaviour. They must, therefore, be differentiated by introducing a new quantum number, the
magnetic quantum number m. This is also called Orientation Quantum Number because it gives the
orientation or distribution of the electron cloud. For each value of the azimuthal quantum number ‘l’,
the magnetic quantum number m, may assume all the integral values between + l to – l through zero
i.e., + l, (+ l – l),... 0..., (– l + 1), – l. Therefore for each value of l there will be (2l + 1) values of ml. Thus
when l = 0, m = 0 and no other value. This means that for each value of principal quantum number ‘n’,
there is only one orientation for l = 0 (s orbital) or there is only one s orbital. For s orbital, there being
only one orientation, it must be spherically symmetrical about the nucleus. There is only one spherically
symmetrical orbital for each value of n whose radius depends upon the value of n.

Node

2s Orbital1s Orbital

Spherical  orbitals, symmetrically 
disposed about the nucleus.

s
Figure 2.5

For l = 1 (p orbital), the magnetic quantum number m will have three values : + 1, 0 and – 1; so
there are three orientations for p orbitals. These three types of p orbitals differ only in the value of
magnetic quantum number and are designated as px, py, pz depending upon the axis of orientation.
The subscripts x, y and z refer to the coordinate axes. In the absence of a magnetic field, these three
p orbitals are equivalent in energy and are said to be three-fold degenerate or triply degenerate*.  In

*Different orbitals of equivalent energy are called degenerate orbitals and are grouped together.
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presence of an external magnetic field the relative energies of the three p orbitals vary depending
upon their orientation or magnetic quantum number. This probably accounts for the existence of
more spectral lines under the influence of an external magnetic field. The p orbital are of dumb-bell
shape consisting of two lobes. The two lobes of a p orbital extend outwards and away from the
nucleus along the axial line. Thus the two lobes of a p orbital may be separated by a plane that
contains the nucleus and is perpendicular to the corresponding axis. Such plane is called a nodal
plane. There is no likelihood of finding the electron on this plane. For a px orbital, the yz plane is the
nodal plane. The shapes and orientations of the p orbitals are given in Fig. 2.6.

For l = 2 (d orbital), the magnetic quantum number are five (2 × 2 + 1); + 2, + 1, 0, – 1, – 2. Thus
there are five possible orientations for d orbitals which are equivalent in energy so long as the atom
is not under the influence of a magnetic field and are said to be five-fold degenerate (Different orbitals
of equivalent energy are called degenerate orbitals and are grouped together). The five d orbitals are

Shapes and orientation of  and  orbitals.s, p d
Figure 2.6
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designated as dxy, dyz, dzx, 2 2 2,x y z
d d

− . These orbitals have complex geometrical shapes as compared to
p orbitals. The conventional boundary surfaces or shapes of five dz2 orbitals are shown in Fig. 2.6.
The shape of the dz orbitals is different from others.

When l = 3 (f orbital) the magnetic quantum number m can have seven (2 × 3 + 1) values as + 3,
+ 2, + 1, 0, – 1, – 2 and – 3. These seven orientations give rise to a set of seven-fold degenerate
orbitals. These seven orbitals possess very complicated shapes and orientation in space. The
shapes of s, p and d orbitals only are of interest to chemists.
Spin Quantum Number ‘s’

This quantum number has been introduced to account for the spin of electrons about their own
axis. Since an electron can spin clockwise or anticlockwise (in two opposite directions), there are two
possible values of s that are equal and opposite. As quantum numbers can differ only by unity from
each other, there are two values given to s ; 1

2+  and 1
2–  depending upon whether the electron

spins in one direction or the other. These spins are also designated by arrows pointing upwards and
downward as ↓↑. Two electrons with the same sign of the spin quantum numbers are said to have
parallel spins while those having opposite signs of the spin quantum numbers are said to have
opposite spin or antiparallel spin or paired-up spin.

S

1
2

N

N

S

1
2

Magnetic
field

Clockwise and anticlockwise spins  of electrons about their
own axis produce opposite magnetic fields.

Figure 2.7

Since a spinning charge is associated with a magnetic field, an electron must have a magnetic
moment associated with it.

The permitted values for each of these quantum numbers are given in the Table 2.1.

SOLVED PROBLEM.  List all possible values of l and m for n = 2.

SOLUTION.  Here, the principal quantum number n = 2. The azimuthal quantum number can
have only two values. These are 0 and 1

When l = 0 m = 0
and l = 1 m = + 1, 0, – 1

SOLVED PROBLEM. Which of the following sets of quantum numbers are not allowable and
why?

(a) n = 2 l = 2 m = 0 1
2s = +

(b) n = 3 l = 1 m = 0 1
2s = −
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(c) n = 1 l = 1 m = + 1 1
2s = +

(d) n = 2 l = 0 m = – 1  s = 0

(e) n = 3 l = 2 m + 2 1
2s = −

SOLUTION
(a) Not allowable as l cannot have value equal to 2 when n = 2.
(b) Allowable
(c) Not allowable as l cannot have value equal to 1 when n = 1
(d) Not allowable as s cannot have value equal to 0.
(e) Allowable

SOLVED PROBLEM. What designation are given to the orbitals having
(a) n = 2 l = 1
(b) n = 1 l = 0
(c) n = 3 l = 2
(d) n = 4 l = 3

SOLUTION
(a) when n = 2 and  l = 1 the orbital is 2p
(b) when n = 1 and  p = 0 the orbital is 1s
(c) when n = 3 and  l = 2 the orbital is 3d
(d) when n = 4 and  l = 3 the orbital is 4f

PAULI’S EXCLUSION PRINCIPLE
The nature of an electron, its position and energy, is fully implied only by mentioning the values

of four quantum numbers ascribed to it. Each electron is, therefore, fully characterised by a set of
four quantum numbers ‘n’ – giving the size of electron orbital, l – its shape, and m – the orientation
or disposition of the orbital and s the spin of the electron. Electrons having the same value of n, the
principal quantum number, are said to belong to the same major energy level. However, the energies
possessed by these electrons may yet be different owing to the different values of other  quantum
numbers assigned to them. In fact, the major energy levels are made of sublevels, given by the value
of azimuthal quantum number ‘l’. A particular energy sublevel may be designated by s, p, d and f.
Within each energy level, the various sublevels have slightly different energies which increase in the
same order as the value of the azimuthal quantum number l. Therefore, for the major energy level
n = 4, which has an s orbital (l = 0), p orbitals (l = l), d orbitals (l = 2) and f orbitals (l = 3), the energy
increases in the order s < p < d < f. An electron with the principal quantum number n and azimuthal
quantum number l has always lesser energy than that of an electron with principal quantum number
(n + 1) and the same azimuthal quantum number l i.e., the energy of a 3s orbital is less than that of 4s
orbital and energy of 4p orbitals is always more than the energy of 3p orbitals, and so on. The other
two quantum numbers namely magnetic and spin quantum numbers determine the maximum
number of electrons that can be accommodated in orbitals of a sublevel. It is, therefore, the assignment
of the four quantum numbers to the electrons which ultimately count to determine its energy and
location in space within an atom.
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TABLE 2.1.  QUANTUM NUMBERS AND ELECTRON ACCOMMODATION
Principal Azimuthal Magnetic Quantum Spin Quantum Number of

Q-number n Q-number l Number m Number s Electrons
accommodated

1 K 0 s 0 1 1
2 2,+ − 2

2 L 0 s 0 1 1
2 2,+ − 2

8
1 p + 1, 0, – 1 1 1

2 2,+ − 6

3 M 0 s 0 1 1
2 2,+ − 2

1 p + 1, 0, – 1 1 1
2 2,+ − 6 18

2 d + 2, + 1, 0, – 1, – 2, 1 1
2 2,+ − 10

4 N 0 s 0 1 1
2 2,+ − 2

1 p + 1, 0, – 1 1 1
2 2,+ − 6

32
2 d + 2, + 1, 0, – 1   – 2 1 1

2 2,+ − 10

3 f + 3, + 2, + 1, 0, – 1, – 2, – 3 1 1
2 2,+ − 14

Wolfgang Pauli put forward an ingenious principle which controls the assignment of values of
four quantum numbers of an electron. It applies certain restrictions on the values of electrons in an
atom and hence the name ‘exclusion principle’. It is stated as : No two electrons in an atom can have
the same set of four identical quantum numbers.

Even if two electrons have the same values for n, l and m, they must have different values of s.
Thus every electron in an atom differs from every other electron in total energy and, therefore, there
can be as many electrons in a shell as there are possible arrangements of different quantum numbers.
The arrangements of electrons using permitted quantum numbers n, l, m and s are given in the Table
2.1. Let us find out the maximum number of electrons that can be accommodated in an orbital. We
have seen that the first shell (n = 1) has only one orbital i.e., 1s. The possible arrangements for the
quantum numbers are only two in accordance with Pauli’s exclusion principle.

n l m s

1 0 0 1
2+   (1st electron)

1 0 0 1
2−   (2nd electron)

It follows, therefore, that a maximum of two electrons can be accommodated in an orbital and
they must possess opposite spins.

Consider the second shell (n = 2), there being four orbitals, one s orbital (l = 0) and three p
orbitals (l = 1), the possible number of electrons having different set of quantum numbers can be as
follows :

n l m s

2 0 0 1
2+ Two electrons accommodated in 2s

2 0 0 1
2−

orbital (l = 0)
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2 1 + 1 1
2+ Six electrons in all the three 2p orbitals (l = 1), two

2 1 + 1 1
2−

electrons each in 2px (m = + 1), 2py (m = – 1) and
2pz (m = 0) orbitals.

2 1 – 1 1
2+

2 1 – 1 1
2−

2 1 0 1
2+

2 1 0 1
2−

The total number of electrons that can be accommodated in second shell is equal to 2 + 6 = 8.
Similarly it can be shown that the maximum number of electrons in the third and fourth shells is equal
to 18 and 32 respectively. On the basis of the above direction and the Table 2.1 it follows that s
sublevel may contain upto two electrons, p sublevel upto six, d sublevel upto ten and f sublevel may
have upto fourteen electrons. Each sublevel can accommodate at the most twice the number of
available orbitals at that sublevel.

Pauli’s exclusion principle is of immense value in telling the maximum number of electrons
accommodated in any shell.

ENERGY DISTRIBUTION AND ORBITALS
In our earlier discussion we have seen that the energy of an electron is determined by the first

two quantum numbers n and l, while the other two specify the orientation of the electron orbital in
space and the spin. As we discuss the distribution of energy of the orbitals, the following two cases
may arise :
(a) Hydrogen and Hydrogen-like atoms

Hydrogen is the simplest of all atoms since there is only one electron in it. This single electron
is expected normally to be present in the lowest energy state n = 1. The values of l and m are both zero
and spin quantum numbers can be either 1

2+  or 1
2– .  When it absorbs energy, it may jump to higher

energy levels given by n or a subshell thereon (represented by l values). The spectral study of
hydrogen has revealed that its spectral lines correspond to the major energy levels only. Thus the
energy value of an electron having a particular quantum is fixed, irrespective of the orbital to which
it may belong. In other words, the energy associated with electrons in s,  p, d and f orbitals of a
particular principal quantum number is the same. For example, the energy level of 3s, 3p and 3d
orbitals is equal (Fig. 2.8).
(b)  Polyelectron atoms

Let us first consider a two electron atom. The second electron which may differ from the first
electron in spin only, is also accommodated in the 1s orbital, thereby completing the K shell. Unlike
hydrogen, where there is no such completed shell, the energies of the subsequent electrons coming
in various levels and sublevels will be affected. Thus it is this completed K shell that affects the
energy of the electrons occupying subsequent energy levels. For atoms having more than two
electrons, the nuclear charge is shielded from the outer electrons by the two K shell electrons. The
effect of the completed K shell of electrons is to make the energy level of any orbital in a principal
level n dependent upon the value of orbital quantum number l. The dependence of energy of orbitals
of a shell on l (l = 0 or s, l = 1 or p etc.) is because of the fact that s orbital electrons (l = 0), for example,
penetrate near the nucleus and are, therefore, less effectively shielded from the nuclear charge. The
s electrons (l = 0) being less shielded are drawn inwards and possess lesser energy than p orbital
(l = 1) electrons. The same argument can be extended for other values of l. Thus within each energy
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level ‘n’, the various sublevels (different l values orbitals) exhibit slightly different energies. The
orbitals at a principal level n  get split up and come to possess different energies, which increase in
the same order as the various values of l. Thus for a particular principal level, the energy of the
sublevels is in the order s < p < d < f.

n = 4

n = 3

n = 2

4f

4d

4p
3d
4s

3p

3s

2p

2s

In
cr

ea
si

ng
 e

ne
rg

y

n = 1 1s

Sub shellMain shell

Energy level schemes of Hydrogen atom.
Figure 2.8

The energy levels of 3s, 3p and 3d orbitals are different even though they belong to the same
shell n = 3. However, it may be noted that the energy of electrons in the same orbital is the same.
Thus all 3d orbitals (3dxy, 3dyz, 3dzx, 2 2 23 ,3 )

z x y
d d

−  or 4p orbitals (4px, 4py, 4pz) are at the same level of
energy, irrespective of their orientation. It is also noteworthy from the above diagram that the order
of increase of energy values of various orbitals approximately follows the sequence given below :

1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 4f < 5d
It is, therefore, clear that the 3d orbital electrons belonging to a lower shell (n = 3) possess more

energy than 4s orbital electrons which belong to higher shell (n = 4). The 3d orbitals lie at a higher
energy level than 4s orbital.

DISTRIBUTION OF ELECTRONS IN ORBITALS
In passing along the periodic table of the elements from one element to the other, we find that

one electron is added every time to the next atom. Where should the incoming electron go? The
answer is provided by the possible values of the quantum numbers that can be assigned to the
electron in accordance with Pauli’s exclusion principle–prohibiting an orbital to accommodate two
electrons with the same set of quantum numbers.

On the basis of magnetic measurements, which also help to determine the electronic configuration
of elements, Hund put forward another empirical rule, popularly known after his name as Hund’s
Rule of Maximum Multiplicity. It states that : Electrons are distributed among the orbitals of a
subshell in such a way as to give the maximum number of unpaired electrons and have the same
direction of spin.
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Energy level scheme of polyelectron atoms.
Figure 2.9

Thus the orbitals available at a subshell are first filled singly before they begin to pair. The
following illustration shows the order of filling of electrons in the orbitals of n = 1 and n = 2 shells.
The orbitals are shown by circles and the order of filling for the first ten electrons is indicated by the
numbers entered in them.

1

2
1s

n = 1
n = 2

3

4
2s

m = 0
l = 0

m = 0
l = 0

m = 1m = 0m = +1
5

8

6

9

7

10
2px 2py 2pz

Order of filling of electrons in orbitals of 
 = 1 and  = 2 shells.n n

Figure 2.10

It is also clear from the illustration that no two electrons in an orbital have the same values of all
four quantum numbers. In fact, three are identical while the fourth quantum number i.e., the spin
quantum number is invariably different. The electrons in the p orbitals are arranged and accommodated
such that they have all obtained one electron first (5th in 2px, 6th in 2py, 7th in 2pz) and now they
begin to pair up getting the 8th, 9th and 10th electrons respectively.
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SCHEMATIC REPRESENTATION OF ELECTRON CONFIGURATION
We have seen above that to define completely the state of an atom it is obligatory to refer to all

the four quantum numbers (n, l, m and s) of every electron in it. Since a simultaneous representation
of all quantum numbers of each electron in a single symbolic notation seems quite difficult, it is
customary to take into account the first two quantum numbers only while the other two can be
inferred indirectly. The general symbolic notation employed for the purpose is nla where the numerical
value of n = 1, 2, 3 etc., represents the principal quantum number, the letter designate of l (s for l = 0,
p for l = 1 and so on) stands for the orbital and the superscript a gives the number of electrons in the
orbital. Thus 3s2 indicates that two electrons are present in the first subshell s (l = 0) of the third shell
(n = 3). For instance, the distribution of seven electrons (of N atom) may be schematically represented
as 1s2; 2s2, 2p3 or more elaborately as 2 2 1 1 11 ; 2 , 2 , 2 , 2 .x y zs s p p p  By using the various designates of
orbitals at a sublevel such as 2px, 2py etc., the third quantum number m is also indicated (e.g., 2px , for
m = + 1, 2py for m = 0 and 2pz for m = – 1). Spin quantum numbers are indirectly inferred. Whenever
there are two electrons in an orbital, one of these has 1

2+  and the other 1
2−  as their spin quantum

number.
It is a common practice to denote an orbital by a horizontal line or a circle or square and an

electron by an arrow over it. The direction of the arrow indicates the spin, an upward arrow representing
a clockwise spin while the downward arrow stands for the anticlockwise direction of spin. When
there are more than one orbitals in a subshell (degenerate orbitals), they are shown by an equivalent
number of horizontal lines at the same energy level. Let us now describe the electron configuration
of first ten elements.
(a)   Hydrogen and Helium

These have one and two electrons respectively which are accommodated in 1s orbital while
others remain vacant. The lone electron of hydrogen is filled in 1s orbital and for helium the second
electron would also go in 1s orbital, since it could accommodate another electron with opposite spin.
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Electron configuration of Hydrogen and Helium.
Figure 2.11

(b)   Lithium and Beryllium
These have three and four electrons respectively. The third electron of Li enters in the 2s orbital

and the fourth electron of Be also enters in the same orbital, but has an opposite direction of spin.
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 Electron configuration of Lithium and Beryllium.
Figure 2.12
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(c)   Boron and Carbon
These atoms have five and six electrons respectively. 1s and 2s orbitals being completely filled

with four electrons, the fifth electron of boron would go in one of the 2p orbitals say 2px. The sixth
electron in carbon would prefer to be accommodated in another vacant 2p orbital say (2py) rather
than going to 2pz orbital (Hund’s rule). The two unpaired electrons shall have similar spins as
indicated.
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 Electron configuration of Boron and Carbon.
Figure 2.13

(d)   Nitrogen and Oxygen
These atoms have seven and eight electrons respectively. After six electrons have been

accommodated as above, there is a vacant 2pz orbital which will be the seat of the seventh electron
possessing the same direction of spin. The eighth electron of the next element oxygen will go to pair
up with the 2px electron and has an antiparallel spin as shown below.
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Electron configuration of Nitrogen and Oxygen.
Figure 2.14

(e)   Fluorine and Neon
These atoms possess nine and ten electrons respectively which go to complete the other 2p

orbitals as shown in Fig. 2.15.
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Electron configuration of Fluorine and Neon.
Figure 2.15
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GROUND-STATE ELECTRON CONFIGURATION OF ELEMENTS
So far we have considered the electron configuration of simple atoms. For complicated atoms

which may contain many electrons and have many energy levels or orbitals, the ‘building up’ process
for the electrons is governed by the following rules :

Rule 1. Each electron shell can hold a maximum of 2n2 electrons where n is the shell number.
Rule 2. These electrons are accommodated in s, p, d and f orbitals, the maximum number of

electrons in each type of orbitals being determined by its electron-holding capacity (for
s = 2, p = 6, d = 10 and f = 14).

Rule 3. In the ground state of an atom, the electrons tend to occupy the available orbitals in the
increasing order of energies, the orbitals of lower energy being filled first. This is called
‘building up principle’ or Aufbau Principle (Aufbau is a German expression meaning
building up or construction). Lower energy orbitals are, therefore, better seats for electrons
and better seats are occupied first. Fig 2.9 shows the energy level scheme of orbitals and
this order can conveniently be remembered by the simple device given below.
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Aufbau order of orbitals for feeding in electrons.
Figure 2.16

The increasing order of energy of various orbitals is as follows :
1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s ......

The energy of an orbital is determined by the sum of principal quantum number (n) and the
azimuthal quantum number (l). This rule is called (n + l) rule. There are two parts of this rule :

(a) The orbitals with the lower value of (n + l) has lower energy than the orbitals of higher
(n + l) value.

(b) When two orbitals have same (n + l) value, the orbital with lower value of n has lower
energy. For example, let us compare the (n + l) value for 3d and 4s orbitals.

For 3d orbital n = 3, l = 2 and n + l = 5 and for 4s orbital n = 4, l = 0 and n + l = 4.
Therefore, 4s orbital is filled before 3d orbital. Similarly, for 4p and 5s orbitals, the (n + l) values

are (4 + 1) and (5 + 0) respectively. In this case 4p orbital has lesser value of n and hence it has lower
energy than 5d orbital and is filled first.

It is, therefore, clear from above that 4s orbital would be filled before 3d orbitals (belonging to a
lower shell i.e., third) are filled because the latter have higher energy than the former.
Rule 4. Any orbital may have one or two electrons at the most. Two electrons can occupy the same

orbital only if they have opposite spins (Pauli’s exclusion principle).
Rule 5. When several orbitals of equal energy (degenerate orbitals) are available, electrons

prefer to occupy separate orbitals rather than getting paired in the same orbital. Such
electrons tend to have same spins (Hund’s rule).
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Actual electron configuration of atoms of all elements of the periodic table is given in Table 2.3.
We find that these configurations are by and large the same as predicted by the Aufbau procedure.
However, there are quite a few elements which exhibit slight variations from the standard pattern.
Some anomalies are tabled below showing only the concerned orbitals.

TABLE 2.2.  ANOMALOUS ELECTRON CONFIGURATION OF SOME ELEMENTS

Expected Actual
Element At. No. Configuration Configuration

Cr 24 4d4 4s2 3d5 4s1

Cu 29 3d9 4s2 3d10 4s1

Mo 42 4d4 5s2 4d5 5s1

Pd 46 4d8 5s2 4d10 5s0

Ag 47 4d9 5s2 4d10 5s1

Pt 78 5d8 6s2 5d9 6s1

Au 79 5d9 6s2 5d10 6s1

TABLE 2.3.  GROUND STATE ELECTRON CONFIGURATION OF ELEMENTS

Z Element Electron configuration Z Element Electron configuration

1 H 1s1 21 Sc [Ar]3d14s2

2 He 1s2 22 Ti [Ar]3d24s2

3 Li [He]2s1 23 V [Ar]3d34s2

4 Be [He]2s2 24 Cr [Ar]3d54s1

5 B [He]2s22p1 25 Mn [Ar]3d54s2

6 C [He]2s22p2 26 Fe [Ar]3d64s2

7 N [He]2s22p3 27 Co [Ar]3d74s2

8 O [He]2s22p4 28 Ni [Ar]3d84s2

9 F [He]2s22p5 29 Cu [Ar]3d104s1

10 Ne [He]2s22p6 30 Zn [Ar]3d104s2

11 Na [Ne]3s1 31 Ga [Ar]3d104s24p1

12 Mg [Ne]3s2 32 Ge [Ar]3d104s24p2

13 Al [Ne]3s23p1 33 A s [Ar]3d104s24p3

14 Si [Ne]3s23p2 34 Se [Ar]3d104s24p4

15 P [Ne]3s23p3 35 Br [Ar]3d104s24p5

16 S [Ne]3s23p4 36 Kr [Ar]3d104s24p6

17 Cl [Ne]3s23p5 37 Rb [Kr]5s1

18 Ar [Ne]3s23p6 38 Sr [Kr]5s2

19 K [Ar]4s1 39 Y [Kr]4d15s2

20 Ca [Ar]4s2 40 Zr [Kr]4d25s2



67STRUCTURE OF  ATOM—WAVE MECHANICAL APPROACH

Z Element Electron configuration Z Element Electron configuration

41 Nb [Kr]4d45s1 73 Ta [Xe]4f 145d36s2

42 Mo [Kr]4d55s1 74 W [Xe]4f 145d46s2

43 Tc [Kr]4d55s2 75 Re [Xe]4f 145d56s2

44 Ru [Kr]4d75s1  76 Os [Xe]4f 145d66s2

45 Rh [Kr]4d85s1 77 Ir [Xe]4f 145d76s2

46 Pd [Kr]4d10 78 Pt [Xe]4f 145d96s1

47 Ag [Kr]4d105s1 79 Au [Xe]4f 145d106s1

48 Cd [Kr]4d105s2 80 Hg [Xe]4f 145d106s2

49 In [Kr]4d105s25p1 81 T1 [Xe]4f 145d106s26p1

50 Sn [Kr]4d105s25p2 82 Pb [Xe]4f 145d106s26p2

51 Sb [Kr]4d105s25p3 83 Bi [Xe]4f 145d106s26p3

52 Te [Kr]4d105s25p4 84 Po [Xe]4f 145d106s26p4

53 I [Kr] 4d105s25p5 85 A t [Xe]4f 145d106s26p5

54 Xe [Kr] 4d105s25p6 86 Rn [Xe]4f 145d106s26p6

55 Cs [Xe]6s1 87 Fr [Rn]7s1

56 Ba [Xe]6s2 88 Ra [Rn]7s2

57 La [Xe]5d16s2 89 Ac [Rn]6d17s2

58 Ce [Xe]4f 15d16s2 90 Th [Rn]6d27s2

59 Pr [Xe]4f 36s2 91 Pa [Rn]5f 26d17s2

60 Nd [Xe]4f 46s2 92 U [Rn]5f 36d17s2

61 Pm [Xe]4f 56s2 93 Np [Rn]5f 46d17s2

62 Sm [Xe]4f 66s2 94 Pu [Rn]5f 67s2

63 Eu [Xe]4f 76s2 95 Am [Rn]5f 77s2

64 Gd [Xe]4f 75d16s2 96 Cm [Rn]5f 76d17s2

65 Tb [Xe]4f 96s2 97 Bk [Rn]5f 97s2

66 Dy [Xe]4f 106s2 98 Cf [Rn]5f 107s2

67 Ho [Xe]4f 116s2 99 Es [Rn]5f 117s2

68 Er [Xe]4f 126s2 100 Fm [Rn]5f 127s2

69 Tm [Xe]4f 136s2 101 Md [Rn]5f 137s2

70 Yb [Xe]4f 146s2 102 No [Rn]5f 147s2

71 Lu [Xe]4f 145d16s2 103 Lr [Rn]5f 146d17s2

72 Hf [Xe]4f 145d26s2 104 Rf [Rn]5f 146d27s2

Note : The symbol in brackets indicates the electron core of the Noble gas.



68 22222      PHYSICAL CHEMISTRY

PE
RI

OD
IC

 T
AB

LE
 O

F 
EL

EM
EN

TS
(E

LE
CT

RO
N 

CO
NF

IG
UR

AT
IO

NS
)



69STRUCTURE OF  ATOM—WAVE MECHANICAL APPROACH

We find from the table that irregularities involve the placing of one or two electrons from ns
orbital in (n – 1) d orbitals. There is very little energy difference between such s and d orbitals so that
there is very little to choose from energy point of view. The deviations occur when d level orbitals are
either almost full (e.g., Cu, Pd, Ag, Pt and Au) or half-full (Cr and Mo). The explanation for this
deviation lies in the superior stability of completely filled or all half-filled orbitals than nearly filled or
nearly half-filled orbitals. Thus d5 and d10 configurations are much more stable than d4 or d8 or d9.
Spectroscopic data and magnetic properties of elements justify the statement that half-filled and
completely filled subshells contribute to the stability.

IONISATION ENERGY
The process of removing an electron from an isolated atom to form a positive ion is called

ionisation. Energy will be required to remove an electron from the atom against the force of attraction
of the nucleus.

The ionisation energy (IE) of an element is defined as the energy needed to remove a single
electron from an atom of the element in the gaseous state. That is,

( ) ( )M I E Mg g e+ −+ ⎯⎯→ +

Since one, two or more electrons may be removed from the same atom, one after the other, we
have as many ionisation energies of the element.

The First ionisation energy (IE1), is the energy needed to remove the first electron from the
gaseous atom M to form M+ ion.

The Second ionisation energy (IE2), is the energy needed to remove a second electron, from the
gaseous M+ ion to form M2+ ion.

Higher ionisation energies can be defined in the same way. We can depict the first, second and
third ionisation energies in the form of equations as :

( ) ( )1M I E Mg g e+ −+ ⎯⎯→ +

( ) ( )+ 2
2M I E Mg g e+ −+ ⎯⎯→ +

( ) ( )2+ 3
3M I E Mg g e+ −+ ⎯⎯→ +

Ionisation energies are sometimes called Ionisation potentials. Ionisation energies are usually
expressed in electron volts (eV) per atom, or in kilojoules per mole of atoms (kJ mol– 1). For
conversion, 1eV atom– 1 = 96.48 kJ mol– 1.

MEASUREMENT OF IONISATION ENERGIES
The amount of energy required to detach an electron from an atom can be measured by supplying

the required energy as thermal energy, electrical energy, or radiant energy. Thus ionisation energies
can be determined from the spectrum of the element or by any of the two methods detailed below.
(1) The Electrical method

The apparatus used is shown in Fig. 2.17. The electrically heated tungsten wire emits electrons.
The grid can be charged positively to different voltages which we read with a voltmeter. The plate
opposite the grid has a small negative charge. When the potential to the grid is zero, no current flows
between the grid and the plate. However if we give sufficient potential to the grid, the electrons
emitted by the tungsten wire are accelerated towards the grid, pass through it and ionise the atoms
between grid and plate. The electron ejected by each atom is attracted to grid and positive ion is
attracted to plate. A current thus passes between grid and plate which is shown up by an ammeter.
The minimum grid voltage that just produces a current is called ionization potential.
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Figure 2.17

If V be the ionization potential, the ionization energy (IE) is calculated as :
IE = V × charge of electron × Avogadro No

= V × 1.60 × 10– 19 × 6.02 × 1023

= V × 96.3 kJ mol– 1

(2) Photo-ionisation Method
The gaseous atoms are introduced into a chamber containing two electrically charged plates

(Fig. 2.18). As neutral atoms, they do not conduct electricity and no current flows between the plates.
When radiant energy (hν) is supplied to the gaseous atoms, ionisation will occur and electric current
will flow. The frequency of the radiation used is gradually increased. The minimum frequency
necessary to cause ionisation of the gaseous atoms, as shown by the flow of an electric current is
noted. From this frequency the ionisation energy is calculated.

Gas

Voltage source

Measurement of ionisation energy 
by photo-ionisation method.

Figure 2.18

Order of Successive Ionisation Energies
The second ionisation energy (I E2) is larger than the first ionisation energy (I E1) because it is

more difficult to detach an electron from a + ve ion than a neutral atom. The third ionisation energy
(I E3) is still larger as the third electron has to be detached from a 2 + ion. Thus in general successive
ionisation energies increase in magnitude. That is,

I E1 < I E2 < I E3 < I E4, and so on.
For illustration, the first four ionisation energies for sodium and magnesium are listed below:
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TABLE 2.4.  IONISATION ENERGIES IN KILO JOULE PER MOLE (KJ mol–1)

I E1 I E2 I E3 I E4

Sodium 500 4600 6900 9500
Magnesium 740 1500 7700 10500

Principal Trends in Ionisation Energies
A graph of the first ionisation energies against atomic number (Z) for the first 18 elements of the

Periodic Table is shown in Fig. 2.19.
The important trends as illustrated by the graph are:

(1) Ionisation energies increase across a period. e.g., Li to Ne.
(2) Ionisation energies decrease down a group e.g., Li, Na, K.
(3) There are regular discontinuities in the increase trend across a period e.g., Be to B, and

N to O.
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Increase across a Period
As we pass from left to right in a period, the first ionisation energy shows a steady increase.

Thus in Period 2 from Li to N, we have
Li Be B C N

I E1 (k J mol– 1) 525 906 805 1090 1400
Explanation
The outer-shell electrons in the elements of the same period are arranged in the same shell. For

example, the build up of electrons in Period 2 from Li to B is shown in Fig. 2.20.

4 5

n = 1 n = 1n = 2 n = 2

2 e 2 e3

n = 1 n = 2

2 e 1 e

BBeLi

Shielding electrons

Build up of atoms of elements for Li, Be, B.
Figure 2.20

2 e 3 e

Moving from Li to B, the positive charge on the nucleus increases whereas the distance between
the nucleus and valence electrons decreases. Therefore more energy is required to remove an electron
as we go from left to right in the Period. Since the number of screening electrons remains the same,
they do not upset the increase trend.
Decrease down a Group

In the elements of a vertical Group of the Periodic table, the number of outer shell electrons is the
same. But the following changes are noted from top to bottom.

(1) The principal quantum number n containing the valence electrons increases.
(2) The nuclear charge (At. No.) increases.
(3) The number of electrons in the inner shells (shielding electrons) increases.

The net result of these changes is that the first ionisation energies down a group record a
progressive decrease. Thus for Group IA we have

Li Na K Rb Cs
I E1 (k J mol– 1) 525 500 424 408 382

Let us explain the above decrease trend by taking example of lithium and sodium. They have the
atomic structures.

3

n = 1 n = 2

2 e 1 e 11

n = 1 n = 2

2 e 8 e

n = 3

1 e

Shielding
electrons

Shielding
electrons

CoreCore
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Lithium and sodium both have one outer-shell electron. The number of shielding electrons in
sodium is 10 while in lithium it is 2. If we assume that the inner shell electrons provide hundred
percent screening, the core charge attracting the outer-shell electron would be :

Nuclear Shielding Core charge attracting
charge electrons outer-shell electron

Li 3 2 3 – 2 = +1
Na 11 2, 8 11–10 = +1

Thus the same net charge (+ 1) attracts the outer-shell electrons to the core. But the distance of
the outer electron from the nucleus is greater in Na (n = 3) than in Li (n = 1). Therefore the force of
attraction between the outer electron and the core will be less in Na than in Li. That explains the lower
I E of Na compared to Li. By the same line of argument, the decrease trend in I E from element to
element while going down a Group can be justified.
Regular Discontinuities

As already discussed, the first ionisation energies increase across a period. But this increase
trend is upset at the third and sixth element in a period. As clear from graph in Fig. 2.19, there are
breaks at B and O which occupy the third and fifth positions respectively in the 2nd period. The I E1
of B is less than that of Be and the I E1 of O is less than that of N.

Explanation
(a)  The electronic configuration of Be and B are :

Be 1s2 2s2 B 1s2 2s2 2p1

The 2p orbital electron of B is already higher in energy than the 2s orbital electron. Therefore the
removal of electron from B requires less energy and its I E1 is lower.

(b)  The electronic configuration of N and O is :
N 1s2 2s2 2p3 O 1s2 2s2 2p4

The 2p orbitals may be represented as

N O

Whenever two electrons occupy a particular orbital, they repel each other. As a result it is easier
to remove one of the paired 2p electrons from O than it is to remove an unpaired electron from N atom.
Thus I E1 of O is lower than that of N.

ELECTRON AFFINITY
A neutral atom can accept an electron to form negative ion. In this process, in general, energy is

released.
Electron affinity (EA) of an element is the amount of energy released when an electron is added

to a gaseous atom to form an anion.

( ) ( )X X EAg ge− −+ ⎯⎯→ +

The energy involved in the addition of the first electron is called first-electron affinity; the
energy involved in the addition of a second electron is called second-electron affinity; and so on.
Thus,

–
1X X EAe−+ ⎯⎯→ +

– 2–
2X X EAe−+ ⎯⎯→ +

The electron affinity of an element measures the ease with which it forms an anion in the gas
phase.
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Electron affinities are difficult to measure and accurate values are not known for all elements.
They are expressed in kJ mol– 1.
Trends in Electron Affinities

The factors that determine the magnitude and sign of electron affinities are similar to those used
to explain ionisation energies of elements. In fact, the electron affinity of a neutral atom may be
thought of simply as equivalent to the ionisation energy of the singly charged negative ion of the
atom.

–A IE A e−+ ⎯⎯→ +
–A A EAe−+ ⎯⎯→ +

The first-electron affinities of elements in the Periodic table are expected to show trends analogous
to those of ionisation energies.
(a)  Increase across a Period

The values of electron affinities for Period 2 are listed below.
Be B C N O F Ne

– 240 23 123 0.00 142 323 – 29 k J mol–1

As we proceed from left to right, the general trend is the increase of electron affinities. Be, N and
Ne are exceptions.

Explanation
Elements having relatively stable electronic configurations find it difficult to accept an electron

readily. The atom of Be has the configuration 1s2 2s2. The 1s subshell is completely filled and,
therefore, the electron being added must go to a subshell of considerably higher energy. This gives
rise to negative electron affinity for Be.

The atom of N ( )2 2 1 1 11 2 ,2 ,2 , 2x y zs s p p p  has half-filled 2p subshells, a condition of extra stability.
Therefore the electron affinity of N would be less than expected.

The electron affinity of Neon is low because it has a stable outer-shell octet. Its atom shows little
tendency to start a new shell.
(b)   Decrease down a Group

The values of electron affinities for halogens (Group VII) are given below.
F Cl Br I

332.6 349 324.7 296 k J mol– 1

The electron affinities show a general decrease from top to bottom. This is so because the
valence shell is progressively farther from the nucleus. The value for fluorine, however, is out of line
as it has a smaller atomic size than that of chlorine.
(c)  Second electron affinity negative

The second electron affinity of an element is always negative. This is on account of repulsion
between the electron being added and the already negatively charged atom. For example,

2S Se− − −+ ⎯⎯→ EA = – 194 k J mol– 1

ELECTRONEGATIVITY
In a molecule A – B the electrons forming the covalent bond are attracted by atom A as well as by

B. This attraction is measured in terms of what we call electronegativity, EN. It may be defined as :
The attraction exerted by an atom on the electron pair bonding it to another atom

by a covalent bond.
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EN of B

EN of A Shared electrons

A B

It is evident that an atom of high electronegativity will attract the shared electron pair away from
one of lower electronegativity. Thus the former atom will acquire a partial negative charge while the
other atom will get a partial positive charge.
Electronegativity Values

Using measured values of bond energies, Pauling devised a set of electronegativity values. He
allotted a value of 4 to the most electronegative atom, namely fluorine, and assigned values to the
atoms of other elements.

Trend in Electronegativities
The variations in electronegativities of elements in the Periodic table are similar to those of

ionisation energies and electron affinities.

(1)  Increase across a Period
The values of electronegativities increase as we pass from left to right in a Period. Thus for

Period 2 we have
Li Be B C N O  F
1.0 1.5 2.0 2.5 3.0 3.5 4.0

This is so because the attraction of bonding electrons by an atom increases with increase of
nuclear charge (At. No.) and decrease of atomic radius. Both these factors operate as we move to
the right in a Period.
(2)   Decrease down a Group

The electronegativities of elements decrease from top to bottom in a Group. Thus for Group VII
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we have
F Cl Br I

4.0 3.0 2.8 2.5
The decrease trend is explained by more shielding electrons and larger atomic radius as we travel

down a Group.
Importance of Electronegativity

The electronegativities of elements are widely used throughout the study of Chemistry. Their
usefulness will be discussed at appropriate places. The important applications of electronegativities
are listed below.

(1) In predicting the polarity of a particular bond. The polarity of a bond, in turn, shows the
way how the bond would break when attacked by an organic reagent.

(2) In predicting the degree of ionic character of a covalent bond.
(3) In predicting of inductive effects in organic chemistry.
(4) In understanding the shapes of molecules.

    EXAMINATION QUESTIONS

1. Define or explain the following terms :
(a) Planck’s constant (b) de Broglie equation
(c) Heisenberg’s uncertainty principle (d) Schrödinger’s wave equation
(e) Principal quantum number (f) Azimuthal quantum number
(g) Magnetic quantum number (h) Zeeman effect
(i) Spin quantum number (j) Pauli’s exclusion principle
(k) Aufbau principle (l) Hund’s rule

2. What do you mean by the ‘ionization potential’ of an element? Why the first ionization potential of an
element is less than the second ionization potential? How does the ionization potential of an element vary
with atomic volume?

3. (a) What do you understand by the dual character of matter? Derive de Broglie’s equation. How was it
verified?

(b) A particle having a wavelength 6.6 × 10–4 cm is moving with a velocity of 106 cm sec–1. Find the mass
of the particle. Planck’s constant = 6.62 × 10–27 erg sec.

Answer. (b)   1.003 × 10–29 g
4. (a) State and discuss Heisenberg’s uncertainty principle.

(b) Draw energy level diagram valid for hydrogen and multi-electron atoms.
(c) Write Schrödinger wave equation.

5. Discuss the following :
(a) Hund’s Rule of Maximum multiplicity.
(b) Pauli’s Exclusion Principle.

6. What is the wavelength associated with a particle of mass 0.1 g moving with a speed of 1 × 105 cm sec–1

(h = 6.6 × 10–27 erg sec)
Answer. 6.6 × 10–31 cm

7. State Pauli’s exclusion principle. Based on this principle show that the maximum number of electrons that
can be accommodated in an orbit is 8 when n = 20.

8. The velocity of a ball being bowled by Kapil Dev is 25 m sec–1. Calculate the wavelength of the matter-
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wave associated with the ball. Derive the equation you used. Weight of cricket ball = 158.5 g and
h = 6.625 × 10–27 erg sec.
Answer. 1.67 × 10–32 cm

9. Calculate the de Broglie wavelength for a ball of 200 g mass moving with a velocity
3 × 1010 cm sec–1 and an electron moving with the same velocity. What do these values indicate?
Answer. 1.04 × 10–39 cm; 2.4239 × 10–10 cm

10. (a) Describe the Davison and Germer experiment for the verification of wave nature of electrons.
(b) If an electron is accelerated by 100 volts, calculate the de Broglie wavelength associated with it. Also

calculate the velocity acquired by the electron (Mass of electron = 9.1 × 10–28 g; h = 6.62 × 10–27 erg sec).
Answer. (b) 1.2247 Å; 5.940 × 108 cm sec–1

11. State Pauli’s exclusion principle and show that the maximum number of electrons in a given shell is 2n2

where n is the principal quantum number of the shell.
12. Derive Schrödinger wave equation for the wave mechanical model of an atom and discuss its application

to hydrogen atom. What is the significance of ψ and ψ2 in it?
13. What are three quantum numbers used to describe an orbital? What property of an orbital is described by

each quantum number? Specify the rule that governs the values of each quantum number.
14. What are quantum numbers? Mention all values of different quantum numbers when n = 2.
15. (a) Which other particles besides electron show particle-wave duality? Give two examples.

(b) Calculate the wavelength of a particle of mass 1.5 g moving with a velocity of 250 m sec–1.
Answer.  (b) 1.766 × 10–31 cm

16. (a) Write a note on Heisenberg’s uncertainty principle. How this principle goes against Bohr’s theory?
(b) What is ionisation energy? What are the factors which affect the ionisation energy of an element?

How ionisation energy changes among the elements in a group and in a period?
17. Write short notes on :

(a) Pauli’s exclusion principle (b) Uncertainty principle
(c) Photoelectric effect (d) Aufbau principle

18. Calculate the momentum of a particle which has a de Broglie’s wavelength of 0.1 nm.
Answer. 6.6 × 10–24 kg m2 sec–1

19. The kinetic energy of an electron is 4.55 × 10–25 J. Calculate its wavelength (h = 6.6 × 10–34 kg m2

sec–1; mass of electron = 9.1 × 10–31 kg).
Answer. 7.25 × 10–1 m

20. The kinetic energy of a subatomic particle is 5.60 × 10–25 J. Calculate the frequency of the particle wave
(Planck’s Constant h = 6.6 × 10–34 kg m2 sec–1)
Answer. 1.696 × 109 sec–1

21. Calculate the wavelength associated with an electron moving with a velocity of 1 × 108 cm sec–1.
(mass of the electron = 9.1 × 10–28 g).
Answer. 7.28 × 10–8 cm

22. Calculate the uncertainty in the velocity of a bullet of mass 10 g whose position at time t is known with
uncertainty equal to 1.0 × 10–5 m.
Answer. 5.628 × 10–28 m sec–1 (Panjab BSc, 2000)

23. Calculate the uncertainty in the velocity of an electron if the uncertainty in position is 1 × 10–10 m.
Answer. 5.76 × 105 m sec–1 (Madras BSc, 2000)

24. Calculate the uncertainty in the position of a particle when the uncertainty in the momentum is
(a) 1 × 10–7 kg m sec–1 and (b) zero
Answer. (a) 5.72 × 10–28 m; (b) ∞ (Delhi BSc, 2001)

25. Explain Heisenberg’s uncertainty principle. How does it influence the concept of the electron ?
(Lucknow BSc, 2001)
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26. What are postulates of Quantum Mechanics? (MD Rohtak BSc, 2002)
27. Write Schrödinger’s wave equation for a single electron atom. (Nagpur BSc, 2002)
28. (a) Deduce de Broglie’s relation for a matter wave and explain the terms involved in it.

(b) Draw and explain the angular probability distribution curve for 1s electron.  (Mizoram BSc, 2002)
29. (a) What is the significance of the wave function, ‘ψ’?

(b) State and explain Heisenberg’s uncertainty principle. (Mizoram BSc, 2002)
30. Give wave mechanical interpretation of an atomic orbital. Discuss qualitatively the probability distribution

curves of s, p and d orbitals and hence draw the contour diagrams of all the 2p, 3p and 3d orbitals on x, y
and z axis, showing the sign of wave functions. (Guru Nanak Dev BSc, 2002)

31. Describe the shapes of s and p orbitals on the basis of quantum mechanical concept.
(Mizoram BSc, 2002)

32. A moving ball weighing 200 g is to be located within 0.2 Å. What is the uncertainty in the velocity?
Comment on your result. (Given h = 6.626 × 10–34 Joule sec)
Answer. 165.5 × 10–24 m sec–1 (Lucknow BSc, 2002)

33. Calculate de Broglie’s wavelength of a xenon atom moving with a velocity of 2.4 × 102 m sec–1. (Atomic
weight of xenon is 2.2 × 10–25 kg)
Answer. 30 Å (Arunachal BSc, 2002)

34. (a) Give de Broglie’s relation for a particle of mass, m, moving with a velocity, v.
(b) Calculate the uncertainty in velocity of a cricket ball of mass 150 g if the uncertainty in position is

1 Å. (h = 6.63 × 10–34 J sec)
Answer. (b) 3.516 × 10–24 m sec–1 (Arunachal BSc, 2002)

35. An electron has a speed of 3.0 × 104 cm sec–1 accurate to 0.01%. Find out the uncertainty in the position
of the electron. (h = 6.625 × 10–27 erg sec, m = 9.11 × 10–28 g)
Answer. 17.582 × 10–22 Å (Vidyasagar BSc, 2002)

36. (a) Discuss probability distribution curves for s and p orbitals.
(b) Discuss the following :

(i) Wave nature of an electron
(ii) Significance of wave function (Jammu BSc, 2002)

37. (a) Write the electronic configuration of the elements with atomic numbers : 10, 20, 29, 49 and 63
(b) Write Hund’s rule of maximum multiplicity.
(c) What do you understand by wave function? (Jammu BSc, 2002)

38. (a) Give radial probability distribution curves for 2p and 3p orbitals and give their characteristics.
(b) Draw energy level diagram for a multi-electron atom.
(c) Write the ground state electronic configuration for Ce (Z = 58) and Sn (Z = 50).

(Punjabi BSc, 2002)
39. State Schrödinger’s wave equation. How this equation led to quantisation of energy?

(Nagpur BSc, 2003)
40. Calculate uncertainty in momentum of electron, if uncertainty in position is 10–8 m

(h = 6.624×10–34 J sec) (Nagpur BSc, 2003)
Answer. 5.27 × 10–27

41. (a) What is ‘Effective Nuclear Charge’? What relation does it have with ‘shielding’ phenomenon?
(b) Given that the first I.E. of Al is less than that of Mg. What about the second I.E. of Al compared to

that of Mg? Why?     (Delhi BSc, 2003)
42. Calculate the energy of a photon of wavelength 400 nm. (h = 6.62 × 10–34 J sec.)

Answer. 0.04967 × 10–17 Joule (Sambalpur BSc, 2003)
43. The wavelength of blue light is 480 nm. Calculate the frequency and wavelength of the light.

(c = 3 × 108 m sec–1)
Answer.  6.25 × 1014 sec–1 and 1.6 × 10–15 m–1 (Sambalpur BSc, 2003)

44. The uncertainty in the momentum of a particle is found to be 2.5 × 10–16 g cm–1. What is the uncertainty
in its position? (h = 6.626 × 10–27 erg sec)
Answer.  2110 × 10–7 Å (Sambalpur BSc, 2003)
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45. Determine the wavelength of a cricket ball having a mass 4.0 × 10–2 kg and velocity 30 m sec–1.
(h = 6.624 × 10–34 J sec)
Answer.  5.52 × 10–24 Å (Nagpur BSc, 2003)

46. Calculate uncertainty in momentum of electron, if uncertainty in position is 10–6 m.
(h = 6.624 × 10–34 J sec)
Answer.  0.527 × 10–28 Ns (Nagpur BSc, 2003)

47. Calculate de Broglie wavelength associated with a ball weighing 150 g thrown with a velocity of
3 × 103 cm sec–1. (h = 6.625 × 10–27 erg sec)
Answer. 0.0147 × 10–30 cm (Sambalpur BSc, 2004)

48. Calculate the de Broglie wavelength of an electron moving with a velocity of 6 × 105 m sec–1.
Answer.  1.456 × 10–8 m (Punjabi BSc, 2004)

49. Calculate the uncertainty in position of an electron if uncertainty in velocity is 5.7 × 105 m sec–1.
(h = 6.6 × 10–34 kg m2 sec–1; mass of electron = 9 × 10–31 kg)
Answer. 10–10 m (Agra BSc, 2004)

50. A body moving with a speed of 100 m sec–1 has a wavelength of 5 × 10–36 m. Calculate the mass of the
body. (h = 6.6 × 10–34 kg m2 sec–1)
Answer. 1.32 kg (Panjab BSc, 2004)

51. Calculate the uncertainty in momentum of an electron if uncertainty in its position is approximately
100 pm. (5.0 × 10–12 m).
Answer.  5.27 × 10–25 kg m sec–1 (Delhi BSc, 2004)

52. Calculate the wavelength associated with an  electron moving  with a velocity of 1 × 108 cm sec–1. (mass of
the electron = 9.1 × 10–28g).      (Delhi BSc, 2005)
Answer. 7.28 × 10–8 cm

53. Calculate the de Broglie wavelength of an electron moving with a velocity of 6 × 105 m sec–1.
Answer. 1.456 × 10–8 m (Tripura BSc, 2005)

54. A body moving with a speed of 100 m sec–1 has a wavelength of 5 × 10–36 m. Calculate the mass of the
body. (h = 6.6 × 10–34 kg m2 sec–1).                 (Banaras BSc, 2006)
Answer. 1.32 kg

55. Calculate the uncertainty in momentum of an electron if uncertainty in its position is approximately  100
pm. (5.0  × 10–12 m).             (Sambalpur BSc, 2006)
Answer. 5.27 × 10–25 kg m sec–1

56. Calculate the uncertainty in the velocity of a bullet weighing 10 g whose position is known with an
accuracy of ± 0.1 nm.                  (Panjab BSc, 2006)

Answer. 0.527 × 10–27 m sec–1

    MULTIPLE CHOICE QUESTIONS

1. According to de Broglie’s equation, the momentum of a particle in motion is _______ proportional to
wavelength.
(a) inversely (b) directly
(c) is not (d) none of these
Answer.  (a)

2. The wavelength of large objects is of no significance as it is too _______ to be measurable.
(a) small (b) large
(c) heavy (d) none of these
Answer. (a)
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3. de Broglie equation is
(a) λ = h/m v (b) λ = m v/h

(c) λ = h m v (d)
h
m
ν

λ =

Answer. (a)
4. “It is impossible to determine simultaneously the position and velocity with accuracy of a small particle

like electron”. This statement is
(a) Heisenberg’s uncertainty principle (b) de Broglie principle
(c) Planck’s law (d) Aufbau’s principle
Answer. (a)

5. The relation 
4
hx pΔ × Δ =
π

 represents

(a) de Broglie equation (b) Heisenberg’s uncertainty principle
(c) Schrödinger’s wave equation (d) Pauli’s exclusion principle
Answer. (b)

6. In Schrödinger’s wave equation, the symbol ψ represents the
(a) wavelength of the spherical wave (b) amplitude of the spherical wave
(c) frequency of the spherical wave (d) none of these
Answer. (b)

7. The energy of electron in an atomic orbital is always _______.
(a) different (b) zero
(c) infinite (d) same
Answer. (d)

8. An orbital is the space around the nucleus where the probability of finding electron is
(a) always zero (b) maximum
(c) minimum (d) always infinite
Answer. (b)

9. The Principal quantum number ‘n’ represents
(a) average size of the electron cloud
(b) average energy of the electron
(c) average distance of the electron from the nucleus
(d) all of the above
Answer. (d)

10. The Principal quantum number is related to the
(a) orbital angular momentum (b) size and shape of the orbital
(c) orientation of the orbital (d) average size of the orbital
Answer. (d)

11. The quantum number that defines the shape of the orbital occupied by the electron is
(a) principal quantum number (b) azimuthal quantum number
(c) magnetic quantum number (d) spin quantum number
Answer. (b)

12. The angular momentum of the electron is defined by the quantum number that is denoted as
(a) n (b)
(c) m (d) s
Answer. (b)

13. The total number of sublevels in each principal level is equal to
(a) spin quantum number (b) magnetic quantum number
(c) azimuthal quantum number (d) principal quantum number
Answer. (d)

14. The quantum number which accounts for the splitting up of spectral lines (Zeeman effect) is
(a) principal quantum number (b) azimuthal quantum number
(c) magnetic quantum number (d) spin quantum number
Answer. (c)
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15. For a given value of principal quantum number the order of increasing energy for different subshells is
(a) s < p < d < f (b) p < d < f < s
(c) d < f < p < s (d) f < d < p < s
Answer. (a)

16. The px, py and pz orbitals are called degenerate orbitals as they have
(a) equal energy (b) same orientation in space
(c) same size (d) none of these
Answer. (a)

17. A nodal plane separates the two lobes of a p-orbital. There is _______ likelihood of finding the electron
on this plane.
(a) no (b) every
(c) either of these (d) none of these
Answer. (a)

18. The total values of magnetic quantum number for a given value of azimuthal quantum number is
(a) 2 (b) 2  + 1
(c) 2 –1 (d) 2  – 2
Answer. (b)

19. “No two electrons in an atom can have same set of four identical quantum numbers”. It is the statement
of
(a) Aufbau principle (b) Hund’s rule
(c) Pauli’s exclusion principle (d) none of these
Answer. (c)

20. The orbital with n = 3 and  = 2 is
(a) 3s (b) 3p
(c) 3d (d) 3f
Answer. (c)

21. 4s orbital has lesser energy than 3d orbital because it has
(a) greater value of n (b) lesser value of 
(c) lesser value of n + (d)  = 0
Answer. (c)

22. The maximum number of electrons that can be accommodated in f-subshell is
(a) 5 (b) 7
(c) 10 (d) 14
Answer. (d)

23. The energy associated with electrons in s, p, d and f orbitals of a particular principal quantum number in
hydrogen atom is in the order
(a) s = p = d = f (b) s < p < d < f
(c) p < d < f < s (d) f < d < p < s
Answer. (a)

24. For a multi-electron atom, the energy associated with electrons is s, p, d and f orbitals of a particular
quantum number is in the order
(a) s = p = d = f (b) s < p < d < f
(c) p < d < f < s (d) d < f < s < p
Answer. (b)

25. The two electrons in the first shell will differ in the values for
(a) n (b)
(c) m (d) s
Answer. (d)

26. Which one of the following sets of quantum numbers is not allowed?
n m s

(a) 1 0 1 –½
(b) 2 1 0 +½
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(c) 2 1 –2 +½
(d) 2 1 +2 0
Answer. (d)

27. Which of the following is incorrect for 3d orbital?
n m s

(a) 3 0 0 +½
(b) 3 1 0 +½
(c) 3 2 0 +½
(d) 3 1 2 +½
Answer. (d)

28. The value of azimuthal quantum number for last electron of N-atom is
(a) 0 (b) 1
(c) 2 (d) 3
Answer. (b)

29. The maximum number of electrons in a subshell is given by the equation
(a) n2 (b) 2n2

(c) 2 –1 (d) 2 +1
Answer. (d)

30. Out of the following, which is the correct set of quantum numbers for the outermost electron of potassium
atom (Z = 19)?

n m s
(a) 4 3 2 –½
(b) 4 2 0 –½
(c) 4 1 0 +½
(d) 4 0 0 –½
Answer. (d)

31. The number of unpaired electrons in oxygen atom is
(a) 1 (b) 2
(c) 3 (d) 4
Answer. (b)

32. The number of unpaired electrons in chromium atom (Z = 24) is
(a) 1 (b) 2
(c) 3 (d) 6
Answer. (d)

33. In nitrogen atom there are three unpaired electrons. These are having _______ direction of spin.
(a) same (b) different
(c) similar (d) none of these
Answer. (a)

34. The maximum number of electrons that can be accommodated in s, p, d and f orbitals is
(a) 1, 2, 3 and 4 respectively (b) 1, 2, 4 and 8 respectively
(c) 2, 4, 6 and 8 respectively (d) 2, 6, 10 and 14 respectively
Answer. (d)

35. The sum of all quantum numbers of the electron of hydrogen atom is
(a) –1/2 (b) 1
(c) 3/2 (d) +1/2
Answer. (c)

36. The sum of all quantum numbers of the last electron in lithium atom is
(a) 3/2 (b) 2
(c) 5/2 (d) 3
Answer. (c)

37. The value of azimuthal quantum number for the electrons present in 5s-orbital is
(a) 0 (b) 1
(c) 2 (d) 5
Answer. (a)
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38. According to Pauli’s exclusion principle two electrons can occupy the same orbital only if they have
_______ direction of spin.
(a) different (b) same
(c) similar (d) none of these
Answer.  (a)

39. In the ground state of an atom, the electrons tend to occupy the available orbitals in the _______ order of
energies.
(a) increasing (b) decreasing
(c) any (d) none of these
Answer. (a)

40. Amongst 3d, 4s and 4p orbitals, the order of increasing energies is
(a) 3d < 4p < 4s (b) 4s < 4p < 3d
(c) 4p < 4s < 3d (d) 3d < 4s < 4p
Answer.. (d)

41. While comparing the energies of two orbitals we compare their (n + ) values the orbital with
_______ (n + ) value will have _______ energy.
(a) lower, lower (b) higher, lower
(c) lower, higher (d) none of these
Answer. (a)

42. When two orbitals have the same (n + ) value, the orbital with lower value of _______ has lower energy.
(a) principal quantum number (b) azimuthal quantum number
(c) magnetic quantum number (d) spin quantum number
Answer. (a)

43. After filling the 4p-orbitals, an electron will enter in
(a) 4d (b) 4f
(c) 5s (d) 3d
Answer. (c)

44. If the electronic configuration of nitrogen (at no = 7) is written as 1s2 2s2 2px
2 2py

1, it would violate
(a) Aufbau principle (b) Pauli’s exclusion principle
(c) Hund’s rule of maximum multiplicity (d) none of these
Answer. (c)

45. The outermost electronic configuration of manganese (at. no. = 25) is
(a) 3d5 4s2 (b) 3d6 4s1

(c) 3d7 4s0 (d) 3d6 4s2

Answer. (a)
46. The subshell, which does not exist, has the quantum numbers

(a) n = 2     = 0 (b) n = 2     = 1
(c) n = 2     = 2 (d) n = 3     = 0
Answer. (c)

47. The ground state electronic configuration of carbon atom has _______ pairs and _______ unpaired
electrons
(a) 2, 2 (b) 1, 2
(c) 2, 1 (d) 2, 3
Answer. (a)

48. Two electrons occupying the same orbital have different _______.
(a) principal quantum number (b) azimuthal quantum number
(c) magnetic quantum number (d) spin quantum number
Answer. (d)

49. If the value of azimuthal quantum number is 2, there will be _______ values for magnetic quantum number.
(a) 2 (b) 3
(c) 4 (d) 5
Answer. (d)
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50. The energy needed to remove a single electron (most loosely bound) from an isolated gaseous atom is
called
(a) ionisation energy (b) electron affinity
(c) kinetic energy (d) electronegativity
Answer. (a)

51. Generally speaking, the ionisation energies increase when we move
(a) from left to right in the periodic table (b) from top to bottom in a group
(c) from right to left in the periodic table (d) none of these
Answer. (a)

52. The ionisation energy of Boron (Z = 5) is lesser than that of Beryllium (Z = 4). It is because
(a) Be has an incomplete 2s orbital
(b) Be has two pairs of electrons
(c) 2p orbital is already higher in energy than 2s orbital
(d) none of the above
Answer. (c)

53. A neutral atom can accept an electron to form an anion. This process involves
(a) loss of energy (b) gain of energy
(c) no change in energy (d) none of these
Answer. (a)

54. Electron affinity is expressed in
(a) g mol–1 (b) kJ mol–1

(c) cal g–1 (d) kJ g–1

Answer. (b)
55. When we move from left to right across a period, the electron affinity in general

(a) remains the same (b) decreases
(c) increases (d) becomes zero
Answer. (c)

56. The attraction exerted by an atom on the electron pair bonding it to another atom by covalent bond is
called
(a) ionisation energy (b) electron affinity
(c) electronegativity (d) none of these
Answer. (c)

57. The most electronegative element in the periodic table is
(a) ceasium (b) chlorine
(c) fluorine (d) barium
Answer. (c)

58. The values of electronegativities _______ as we move from left to right in a period.
(a) increase (b) decrease
(c) remain the same (d) none of these
Answer. (a)

59. The electron affinities _______ from top to bottom in a group
(a) increase (b) decrease
(c) remain the same (d) none of these
Answer. (b)

60. The second electron affinity of an element is always
(a) zero (b) positive
(c) negative (d) infinity
Answer. (c)


