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Frequency distribution,
cross-tabulation and hypothesis
testing are the fundamental
building blocks of quantitative data
analysis. They provide insights
into the data, guide subsequent
analyses and aid the
interpretation of results.
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Ovarview

Once the data have been prepared for analysis (Chapter 17), the researcher should con-
duct basic analyses. This chapter describes basic data analyses, including frequency
distribution, cross-tabulation and hypothesis testing. First, we describe the frequency
distribution and explain how il provides both an indication of the number of out-of-
range, missing or extreme values as well as insights into the central tendency, variability
and shape of the underlying distribution. Next, we introduce hypothesis testing by
describing the general procedure, Hypothesis testing procedures are classified as tests of
associations or tests of differences. We consider the use of cross-tabulation for under-
standing the associations between variables taken two or three at a time. Although the
nature of the association can be observed from tables, statistics are available for examin-
ing the significance and strength of the association. Finally, we present tests for
examining hypotheses related to differences based on one or two samples,

Many marketing research projects do not go beyond basic data analysis. These findings
are often displayed using tables and graphs, as discussed further in Chapter 25. Although
the findings of basic analysis are valuable in their own right, they also provide guidance
for conducting multivariate analysis. The insights gained from the basic analysis are also
invaluable in interpreting the results obtained from more sophisticated statistical tech-
niques. The following examples provide a 'flavour’ of basic data analysis techniques. We
illustrate the use of cross-tabulation, chi-square analvsis and hypothesis testing,

@F‘ Sports Marketing Surveys

— S e

Basic data analyses

In the Formula One Racetrack Project, basic data analysis formed the foundation for con-
ducting subsequent multivariate analysis. Data analysis began by obtaining a frequency
distribution and descriptive statistics for each variable or question asked in the survey, In
addition to identifying possible problems with the data, this information provided a good
idea of the data and insights into how specific variables should be treated in subsequent
analyses. For example, should the interval scaled variable 'number of Grand Prix races
watched on television’ be treated as categorical? If so, how many categories should there
be? (See the following example.) Several two- and three-variable crosstabulations were also
conducted to identify associations in the data. The effects of vanables with two categories
on the metric-depandent variables of interast were examined by means of t tests and other
hypothesis testing procedures.

@ " Sports Marketing surveys

e

Formula One viewing habits

Formula One fans watched an average of 6.2 races during the 2003 season, a slight
increase on 2002 (5.8). This was seen as good news after the impact of Michael
Schumachears runaway victary in 2002, The fallowing table focuses upon the viewing habits
of male and female respondants, The first question tackled was "Out of the 16 Formula One
Grands Prix held in the 2003 season, how many have you watched on television?" Sports
Markating Surveys usad the quastion to ereate three different view|ng groups:
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Example

® Occasional = watched 4 or less Grands Prix
® Regular = watched between 5 and 9 Grands Prix
® Avid = watched 10 or more Grand Prixs.

The responses o this question were broken down inte male and female respondents,
Cross-tabulation and chi-square analysis provided the following:

Formula One races watched on TV Respondent gender (%)
Male Femala
Occasional =1 74
Regular B T
Avid 35 19
¥ =651 p=0.05

These results Indicate that there |s little difference in male and female viewers in terms of
regular viewing of Formula One races. However. there is a much higher proportien of men
that are avid viewers.

Catalogues are risky business'

Twalve product categories were examined to compare shopping by catalogue with stone shop-
ping, The hypothesis thal there is no significant difference in the overall amount of risk perceived
‘when buying products by catalogue compared with buying the same products in a retail store was
rejected. The hypothesis was tested by computing 12 paired observation ¢ tests, one for each
product. Mean scores for overall perceived risk for some of the products in both buying situa-
tions are presented in the following table; with higher scores indicating greater risk.

Product Cverall perceived risk
Gatalogue Stora

Shoes 58.60 50.80=
Pocket calculator 49.62 42.00%
Hi-i 48.B9 41 95+
Portable telavision 48,53 40.91*
Digital camera 48.13 3452+
Athlotie socks 3522 30.22+
Perfume 3485 2ETa
Chs 32.65 28,747

= Significant at 0,01, level

As can be seen, a significantly (p = 0.01) higher overall amount of perceived risk was
attached (o products purchased by catalogue as compared with those purchased from a
retail store.



Ovarview

The first Sports Marketing Surveys example illustrates the role of basic data analysis
used in conjunction with multivariate procedures, whereas the other two examples show
how such analysis can be useful in its own right. The cross-tabulation and chi-square
analysis in the Formula One Racetrack example and the paired r tests in the catalogue
shopping example enabled us to draw specific conclusions from the data. These and other
concepls discussed in this chapter are illustrated in the context of explaining Inlernet
usage for personal (non-professional) reasons. Table 18.1 contains data for 30 respondents
giving the gender (1 = male, 2 = female), familiarity with the Internet {1 = very unfamil-
iar, 7 = very familiar), Internet usage in hours per week, attitude towards the Internet and
towards technology, both measured on a seven-point scale (1 = very unfavourahle, 7 =
very favourable), and whether the respondents have done shopping or banking on the
Internet (1 = yes, 2 = no). As a first step in the analysis, it is useful to examine the fre-
quency distributions of the relevant variables.

Table 18.1 Internet usage data

Respandent Gender Familiarity Intermet Altitude Altitude Lsage of Usage of

No. usage towards towands internet Intemet

Internet technofogy shopping banking
i 1 T 14 T G 1 1
2 2 2 2 3 | 2 2
3 2 3 3 4 3 1 2
4 2 3 3 T 5 1 2
5 i 7 13 T T : & 1
B 2 4 (=] 5 4 1 2
7 2 2 2 4 B 2 2
8 2 3 6 5 4 2 2
8 2 3 G L 4 1 2
10 1 G 15 T G 1 2
11 2 4 3 4 3 2 2
12 2 5 4 6 4 2 2
13 1 6 9 & B 2 1
14 1 & 8 3 2 2 2
15 1 & 5 5 4 1 2
16 2 4 3 4 3 2 2
17 i & 9 5 3 : & 1
18 1 4 4 5 4 1 2
19 1 T 14 & G 1 1
20 2 & B it 4 2 2
21 1 € 2 E 2 2 2
22 1 5 5 5 4 2 1
23 2 3 2 4 2 2 2
24 i T 15 B = 1 1
25 2 6 B 5 3 1 2
26 i & 13 i = 1 i
2T 2 5 4 5 =] 1 1
28 2 4 2 3 2 2 2
29 i 4 4 5 3 bk 2
30 1 3 3 T 5 1 2

505



Chapter 18 - Frequency distribution, cross-tabulation and hypothesis Lasting

Frequency distribution

Frequency distribution

A mathematcal distribution
whase objective s to obtain
8 count af the number af
responses associated with
different valuas of one
variable and to express
these counts In percentage
tenms.
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Marketing researchers often need to answer questions about a single variable. For example:

® How many users of the brand may be characterised as brand loyal?

® ‘What percentage of the market consists of heavy users, medivm users, light users and
non-users?

® How many customers are very familiar with a new product offering? How many are
familiar, somewhat familiar, or unfamiliar with the brand? What is the mean familiarity
rating? Is there much variance in the extent to which customers are familiar with the
new product?

& What is the income distribution of brand users? Is this distribution skewed towards
low-income brackets?

The answers to these kinds of questions can be determined by examining frequency
distributions. In a frequency distribution, one varable is considered at a time,

The objective i3 to obtain a count of the number of responses associated with different
values of the variable. The relative occurrence, or frequency, of different values of the vari-
able is expressed in percentages. A frequency distribution for a variable produces a table of
frequency counts, percentages and cumulative percentages for all the values associated
with that variable.

Table 18.2 gives the frequency distribution of familiarity with the Internet. In the table,
the first column contains the labels assigned to the different categories of the variable and
the second column indicates the codes assigned to cach value, Note that a code of 9 has
been assigned to missing values. The third column gives the number of respondents tick-
ing cach value. For example, three respondents ticked value 5, indicating that they were
somewhat familiar with the Internet. The fourth column displays the percentage of
respondents ticking each value,

The fifth column shows percentages calculated by excluding the cases with missing
vilues, II there are no missing values, the fourth and fifth columns are identical. The last
column represents cumulative percentages after adjusting for missing values. As can be
seen, of the 30 respondents who participated in the survey, 10% entered a fgure of 5 [
the one respondent with a missing value is excluded, this changes to 10.3%, The cumula-
tive percentage corresponding to the value of 5 is 58.6. In other words, 38.6% of the
respondents with valid responses indicated a familiarity value of 5 or less,

Table 18.2 Frequency distribution of "Familiarity with the Internet’

Value label Valre Frequency Percentage Valio Cumufative
i) percentage percentags

Wery unfamiliar 1 a 0.0 0.0 0.0

2 2 6.7 6.9 6.9

3 ] 20.0 20.7 278

4 6 200 20.7 483

3] 3 10.0 10.3 58.6

(5] 2 28.7 278 86.2
Vary familiar 7 4 133 138 100.0
Missing 9 1 3.3
Total 30 100.0 100.0
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A frequency distribution helps determine the extent of item non-response (1 respon-
dent out of 30 in Table 18.1). It also indicates the extent of illegitimate responses. Values
ol 0 and 8 would be illegitimate responses, or errors, The cases with these values could be
identified and corrective action could be taken. The presence of outliers or cases with
extreme values can also be detected. For example, in the case of a frequency distribution
of houschold size, a few isolated families with houschold sizes of nine or more might be
considered outliers, A frequency distribution also indicates the shape of the empirical dis-
tribution of the variable. The frequency data may be used to construct a histogram, or a
vertical bar chart in which the values of the variable are portrayed along the x axis and the
absolute or relative frequencies of the values are placed along the y axis.

Figure 18.1 is a histogram of the frequency data in Table 18.1. From the histogram, one
could examine whether the observed distribution is consistent with an expected or
assumed distribution.

Basic analysis yields Olympic results?

For the 1996 Olympic Games in Atlanta, more than 2 million unique visitors came to the
games and mare than 11 million tickets were sold. Researchers at the University of

Mativational factors that influenced the decision to attend the Olympic Games

Mativational factor Frequency Percentage
Onee-im-a-lifetime opportunity a5 29.7
Awaliability of housing as 11.2
Availability of tickels 27 8.4
Distance away from hame 24 7.5
Business/employment 17 53
Availability of money — overall expenses i7 5.3
Availability of time iz 3.8
Personal relationship with participant or official B i
Other motivational factor - 2.5
Visit Atlanta 4 13
Security 3 0.9
[id not respond 69 218
Total 320 100.0
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Colorado decided o discover whal motivated internalional and domestic travellers o come
to the Olympic Games in Atlanta. A survey was developed and administered to visitors via
personal interviews during a nine-day period surrounding the completion of the games.
Three hundred and twenty guestionnaires were complatad correctly and were used in the
data analysis.

The results showed that the top three factors that motivated people to attend the games
were: ‘once-in-a-lifelime opportunity’, ‘availability of housing’ and 'availability of tickets'. The
results of this study helpad planners for the 2000 Olympic Games in Sydney find what spe-
cific charactenstics the city needed to improve. For instance, Sydnay put funds into projocts
hat added hotel rooms 1o the city, Sydney also constructed state-of-the-art transpaortation (&
new elevated rail system) and unique venues (Olympic Park) so that visitors truly felt they
were getting a once-in-alifetime experence. As this survey evolved over the years the find-
ings have a cumulative effect in supporting future host cities,

Note that the numbers and percentages in the preceding example indicate the extent of
the various motivatiaonal Tactors that attract individuals to the Olympic Games. Bacause
numbers are involved, a frequency distriobution can be used to caloulate descriptive or cumu-
lative statistics.

Statistics associated with frequency distribution

Measure of location

A statistic that describes a
location within a datasat
Measures of central
tendency dascribe the
cantre of the distribution,

Meaan

The average; that valus
obtaired by summing all
elements in & sat and
dividing by the numer of
elaments.
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As illustrated in the previous section, a frequency distribution is a convenient way of look-
ing at different values of a variable. A frequency table is easy to read and provides basic
information, but sometimes this information may be too detailed and the researcher must
summarise it by the use of descriptive statistics.” The most commonly used statistics asso-
ciated with frequencies are measures of location (mean, mode and median), measures of
variability (range, interquartile range, variance, standard deviation and coefficient of vari-
ation) and measures of shape (skewness and kurtosis).*

Measures of location

The measures of location that we discuss are measures of central tendency because they
tend to deseribe the centre of the distribution. If the entire sample is changed by adding a
fixed constant to each observation, then the mean, mode and median change by the same
fixed amount.

Mean. The mean, or average value, is the most commaonly used measure of central ten-
dency. The measure is used to estimate the mean when the data have been collected using
an interval or ratio scale. The data should display some central tendency, with most of the
responses distributed around the mean.

The mean, X, is given by

Bl
=

=1
il

where

X, = observed values of the variable X
n = number of observations {sample size).

Generally, the mean is a robust measure and does not change markedly as data values are
added or deleted. For the frequencies given in Table 18.1, the mean value is calculated
as follows:



Mode

A measure of central
tendency given as the value
that ocours with the mast
frequency in a sample
distribution,

Maodian

A measwre of cantral
tendency givan as the value
above which half of the
valuas fall and below which
half of the values fall,

Measure of variability
A statistic that indicatas the
distribution's disparsian,

Range

The diffarance between the
smallest and largest values
of a distmbution.

Interguartile range

The range of a distribution
encompassing the middie
50% of the observations.

Variance
The mean squared deviation
of &l the values of the mean.

Statistics associated with frequency distribution

}_fzu_xzjnﬁle-l (B> 4)+(325)+(8x6)+(4x7)29
=4+ 18+ 24+ 15+48+ 28)/29
= 137/29
=4.724

Mede. The mode is the value that occurs most frequently. It represents the highest peak of
the distribution. The mode is a good measure of location when the variable is inherently
categorical or has otherwise been grouped into categories, The mode in Table 18.2 is 6,

Median. The median of a sample is the middle value when the data are arranged in
ascending or descending order. If the number of data points is even, the median is usually
estimated as the midpoint between the two middle values by adding the two middle values
and dividing their sum by 2. The median is the 50th percentile. The median is an appro-
priate measure of central tendency for ordinal data, In Table 18.2, the middle value 15 5, so
the median is 5.

As can be seen from Table 18.1, the three measures of central tendency for this distri-
bution are different {mean = 4.724, mode = 6, median = 5). This is not surprising, since
each measure defines central tendency in a different way. 50 which measure should be
used? If the variable is measured on a nominal scale, the mode should be used. If the van-
able is measured on an ordinal scale, the median is appropriate, If the variable is measured
on an interval or ratio scale, the mode is a poor measure of central tendency. This can be
seen from Table 18.2. Although the modal value of & has the highest frequency, it repre-
sents only 27.6% of the sample. In general, for interval or ratio data, the median is a better
measure of central tendency, although it too ignores available information about the vari-
able. The actual values of the variable above and below the median are ignored. The mean
is the most appropriate measure of central tendency for interval or ratio data, The mean
makes use of all the information available since all of the values are used in computing it.
However, it is sensitive to extremely small or extremely large values (outliers). When there
are outliers in the data, the mean is not a good measure of central tendency, and it is
useful to consider both the mean and the median.

Measures of variability

The measures of variability, which are calculated on interval or ratio data, include the
range, interquartile range, variance or standard deviation and coefficient of variation,

Range. The range measures the spread of the data. It s simply the difference between the
largest and smallest values in the sample:

X

range = xl amallesy

argust

As such, the range is directly affected by outliers. If all the values in the data are multi-
plied by a constant, the range is multiplied by the same constant. The range in Table 18.2
i87-2=5.

Interquartile range, The interquartile range is the difference between the 75th and 25th
percentiles. For a set of data points arranged in order of magnitude, the pth percentile is
the value that has p% of the data points below it and (100 = p)1% above it, If all the data
points are multiplied by a constant, the interquartile range is multiplied by the same con-
stant. The interquartile range in Table 18.2 is6-3 =3,

Variance. The difference between the mean and an observed value is called the deviation
from the mean. The variance is the mean squared deviation from the mean. The variance
can never be negative. When the data points are clustered around the mean, the variance
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Standard deviation
The square roat of the
vanance.

Coefficient of variation
A uzetul expression in
sampling theory for the
standard deviation as a

percentage of the mean.

is small, When the data points are scattered, the variance is large. If all the data values are
multiplied by a constant, the variance is multiplied by the square of the constant.

Standard deviation. The standard deviation is the square root of the variance. Thus, the
standard deviation is expressed in the same units as the data, rather than in squared units,
The standard deviation of a sample, 5 is caleulated as

s 'IIE (X —X)
=1 n-1

We divide by 11— 1 instead of n because the sample is drawn from a population and we are
trying to determine how much the responses vary from the mean of the entire population.
The population mean is unknown, however; therefore, the sample mean is used instead.
The use of the sample mean makes the sample seem less variable than it really is, By divid-
ing by n— 1 instead of by n, we compensate for the smaller variability observed in the
sample. For the data given in Table 18.1, the variance is calculated as follows:

S22 (24724 6% (34724 + 6 X (4-4724)7 +3 K [5-4.724)°
+B R {A-4.724)2 + 4 X (7-4.724)%)/ 28
= [14.840 + 17.833 + 3,145 + 0.229 + 13.025 + 20.721]/23
= 69.793/28
=2.493

The standard deviation, therefore, is calculated as

S5=% 2493

= 1.57%9

Coefficient of variation. The coefficient of variation is the ratio of the standard devia-
tion to the mean expressed as a percentage, and it is a unitless measure of relative
variability. The coefficient of variation, CV, is expressed as

m”:i

X

The coefficient of variation is meaningful only if the variable is measured on a ratio scale.
It remains unchanged if all the data values are multiplied by a constant. Because familiar-
ity with the Internet is not measured on a ratio scale, it is not meaningful to calculate the
coefficient of variation for the data in Table 18.2,

Measures of shape R

Skewness

A charactoristic of a
distribution that assesses its
symmotry about the mean,
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In addition to measures of variability, measures of shape are also useful in understanding
the nature of the distribution. The shape of a distribution is assessed by examining skew-
ness and kurtosis.

Skewness. Distributions can be either symmetric or skewed. In a symmetric distribution,
the values on either side of the centre of the distribution are the same, and the mean,
maode and median are equal, The positive and corresponding negative deviations from the
mean are also equal. In a skewed distribution, the positive and negative deviations from
the mean are unequal. Skewness is the tendency of the deviations from the mean to be
larger in one direction than in the other, It can be thought of as the tendency for one tail



Kurtosis

A measure of the relative
peaksdness of the ourve
defined by he frequency
distribulion,

A general procedure for hypothesis testing

of the distribution to be heavier than the other {see Figure 18.2). The skewness value for
the data of Table 5.1 is —0.094, indicating a slight negative skew.

Kurtosis. Kurtosis is a measure of the relative peakedness or flatness of the curve defined
by the frequency distribution, The kurtosis of a normal distribution is zero. If the kurtosis is
positive, then the distribution is more peaked than a normal distribution. A negative value
means that the distribution is flatter than a normal distribution. The value of this statistic
for Table 18.2 is =1.261, indicating that the distribution is flatter than a normal distribution.

A general procedure for hypothesis testing

Figure 18.2
Skewness of a
distribution

Basic analysis invariably invoelves some hypothesis testing. Examples of hypotheses gener-
ated in marketing research abound:

® A cinema is being patronised by more than 10% of the households in a city.

® The heavy and light users of a brand differ in terms of psychographic characteristics,

® One hotel has a more ‘Tuxurious’ image than its close competitor.

® Familiarity with a restaurant results in greater preference for that restaurant.

Chapter 15 covered the concepts of the sampling distribution, standard error of the

mean or the proportion, and the confidence interval ® All these concepts are relevant lo

hypothesis testing and should be reviewed. We now describe a general procedure for

hypothesis testing that can be applied to test hypotheses about a wide range of parameters.
The following steps are involved in hypothesis testing (Figure 18.3).

Formulate the null hypothesis H, and the alternative hypothesis H|.

Select an appropriate statistical technique and the corresponding test statistic,

Choose the level of significance, w.

Determine the sample size and collect the data. Calculate the value of the test statistic,
Determine the probability associated with the test statistic under the null hypothesis,
using the sampling distribution of the test statistic. Alternatively, determine the critical
values associated with the test statistic that divide the rejection and non-rejection region.
6 Compare the probability associated with the test statistic with the level of significance
specified. Alternatively, determine whether the test statistic has fallen into the rejection

Lh e B b =

or the non-rejection region.
Make the statistical decision to reject or not reject the null hypothesis,
8 Express the statistical decision in terms of the marketing research problem.

=]

Symmetric distribution Skewed distribution

‘ #

hoan //

hedian Mean Median Mode
hMode
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Figure 18.3
A general procedure
for hypothesis testing

Hull hypothesis

A staterment n which na
difference ar affect (s
expacted, if tha null
ypothesis is not rejected,
no ehanges will be made.

Alternative hypothesis

A statemant that same
differenca ar affect |3
expected, Accapting the
alternatve hypotimegig will
lead to changes in opinens
or Betkons,

One-tailed test

A test of the nubl ypathesis
whara the altematiee
hypothesis |s expressed
directionally.
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Draw marketing research conclusion

Step 1: Formulate the hypothesis

The first step is to formulate the null and alternative hypotheses. A null hypothesis is a
staternent of the status quo, one of no difference or no effect, If the null hypothesis is not
rejected, no changes will be made. An alternative hypothesis is one in which some differ-
ence or effect is expected. Accepting the alternative hypothesis will lead to changes in
opinions or actions, Thus, the alternative hvpothesis is the opposite of the null hypothesis.

The null hypothesis is always the hypothesis that is tested. The null hypothesis refers to
a specified value of the population parameter (e.g. g, o, 1), not a sample statistic (e.g. X).
A null hypothesis may be rejected, but it can never be accepted based on a single test, A
statistical test can have one of two outcomes: that the null hypothesis is rejected and the
alternative hypothesis accepted, or that the null hypothesis is not rejected based on the
evidence. It would be incorrect, however, to conclude that since the null hypothesis is not
rejected, it can be accepted as valid. In classical hypothesis testing, there is no way to deter-
mine whether the null hypothesis is true.

In marketing research, the null hypothesis is formulated in such a way that its rejection
leads to the acceptance of the desired conclusion, The alternative hypothesis represents the
conclusion for which evidence is sought. For example, a Formula One sponsor is consid-
ering introducing an Internet shopping service. Given the investment in svstems and
personnel to make this plan work, it will only be introduced if more than 40% of Internet
users shop via the Internet. The appropriate way to formulate the hypotheses is

Hu'. m= .40
HI: = .40

It the null hypothesis H is rejected, then the alternative hypothesis H| will be accepted
and the new Internet shopping service introduced. On the other hand, if H; is not
rejected, then the new Internet shopping service should not be introduced unless addi-
tional evidence is obtained. The test of the null hypothesis is a one-tailed test because the
alternative hypothesis is expressed directionally: the proportion of customers who express
a preference is greater than (.40,



Two-tailed test

A test of the null hypathasis
where the altarnative
hypothesis is not expressad
directionally.

Test statistic

A measure of how close the
sample has come ta the null
hypothesis. it oftan follows a
wellknown distribution,

sueh as the normal, €, or
che-sguare distributian.

Type | error

An error that ocours when the
sampie resuits lead 1o the
rejection of @ null hypathasis
that is in fact true. Also
called alpha errar [a}

Level of significance
The probability of making a
Type I error.

Type |l arror

An errar that oocours when the
sampde results iead 1o
acceptance of a null
hypothesis that is in fact
false. Also called beta

error [j# .

Power of a statistical test
The probability of rejecting
the mull hypothesis when it s
In tact talse and should be
rejected,

A general procedure for hypothesis testing

On the other hand, suppose that the researcher wanted to determine whether the pro-
portion of Internet users who shop via the Internet is different than 40%. Then a
two-tailed test would be required, and the hypotheses would be expressed as

H”: =040
H:im 2040

In commercial marketing research, the one-tailed test is used more often than a two-
tailed test. Typically, there is some preferred direction for the conclusion for which
evidence is sought. For example, the higher the profits, sales and product guality, the
better. The one-tailed test is more powerful than the two-tailed test. The power of a statis-
tical test is discussed further in step 3,

Step 2: Select an appropriate statistical technigue

To test the null hypothesis, it is necessary to select an appropriate statistical technique. The
researcher should take into consideration how the test statistic is computed and the sam-
pling distribution that the sample statistic {e.g. the mean) follows. The test statistic
measures how close the sample has come to the null hypothesis. The test statistic often fol-
lows a well-known distribution, such as the normal, r, or chi-square distribution.
Guidelines tor selecting an appropriate test or statistical technique are discussed later in
this chapter. In our example, the z statistic, which follows the standard normal distribu-
tion, would be appropriate. This statistic would be computed as follows:

T ml=m
where g_= .|||—
P iy

Step 3: Choose the level of significance

Whenever we draw inferences about a population, there is a risk that an incorrect conclu-
sion will be reached. Two types of error can occur.

Type I error occurs when the sample results lead to the rejection of the null hypothesis
when it is in fact true. In our example, a Type 1 error would occur if we concluded, based
on sample data, that the proportion of customers preferring the new service plan was
greater than 0.40, when in fact it was less than or equal to 0.40, The probability of Type 1
error (a) is also called the level of significance. The Type 1 error is controlled by establish-
ing the tolerable level of risk of rejecting a true null hypothesis. The selection of a
particular risk level should depend on the cost ol making a Type [ error.

Type 11 error occurs when, based on the sample results, the null hypothesis is not
rejected when it is in fact false. In our example, the Type 1 error would oceur if we con-
cluded, based on sample data, that the proportion of customers preferring the new service
plan was less than or equal to 0.40 when in fact it was greater than 0,40, The probability of
Type Il error is denoted by f. Unlike a, which is specified by the researcher, the magnitude
of f depends on the actual value of the population parameter {proportion}). The probabil-
ity of Type [ error (a1} and the probability of Type 11 error () are shown in Figure 18.4.

The complement (1 — §) of the probability of a Type I1 error is called the power of a
statistical test, The power of a test is the probability (1 — §} of rejecting the null hypothe-
sis when it is [alse and should be rejected. Although § is unknown, it is related to a. An
extremely low value of o (e.g. 0,001} will result in intolerably high f§ errors. 5o it is neces-
sary to balance the twao types of errors. As a compromise, a 15 often set at 0L05; sometimes
it is 0.01; other values of @ are rare. The level of along with the sample size will determine
the level of for a particular research design. The risk of both @ and § can be controlled by
increasing the sample size. For a given level of @, increasing the sample size will decrease §,
thereby increasing the power of the test.
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Figure 18.4
Type | error la) and

Type |l error ]

Figure 18.5
Probability of z with a
one-tailed test
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Step 4: Collect the data and calculate the test statistic

Sample size is determined after taking into account the desired « and § errors and other
qualitative considerations, such as budget constraints. Then the required data are collected
and the value of the test statistic is computed. In our example, 30 users were surveyed
and 17 indicated that they used the Internet for shopping. Thus the value of the sample
proportion is p = 17/30 = 0.567. The value of g can be determined as follows:

a, = all—mhin
=Y 0.4 X 0.6/30

= (.089
The test statistic z can be calculated as follows:

Z=p— m’crp
= 0567 — 0440089
= L.48

Step 5: Determine the probability or the critical value

Using standard normal tables {Table 2 of the Appendix of statistical tables), the probabil-
ity of obtaining a z value of 1.88 can be calculated (see Figure 18.5). The shaded area
between == and 1.88 is 0.96. Therefore, the area to the right of z= 1.88 is 1.0000 = 0,9699
=0.03.

Shaded area
= [,95%0
Unshaded
area is 0.0301
i
=188



Figure 18.4

A broad classification of
hypathesis testing
procedures

A general procedure for hypothesis testing

Alternatively, the critical value of z, which will give an area to the right side of the criti-
cal value of 0.05, is between 1.64 and 1.65 and equals 1.645. Note that, in determining the
critical value of the test statistic, the area to the right of the critical value is either o or a/2.
It is o for a one-tailed test and w/2 for a two-tailed test.

Steps & and 7: Compare the probability or critical values and make the decision

The probability associated with the calculated or observed value of the test statistic is
00301, This is the probability of getting a p value of (1,567 when = = 0,40, This is less than
the level of significance of 0.05. Hence, the null hypothesis is rejected. Alternatively, the cal-
culated value of the test statistic z = 188 lies in the rejection region, bevond the value of
1.645, Again, the same conclusion to reject the null hypothesis is reached. Note that the two
ways of testing the null hypothesis are equivalent but mathematically opposite in the direc-
tion of comparison, If the probability associated with the calculated or observed value of
the test statistic (TS, ) is less than the level of significance (u), the null hypothesis is
rejected. If the calculated value of the test statistic is greater than the critical value of the
lest statistic (TS, ), however, the null hypothesis is rejected. The reason for this sign shilt is
that the larger the value of TS, , the smaller the probability of obtaining a more extreme
value of the test statistic under the null hypothesis. This sign shift can be easily seen:

it probability of TS, < significance level (o), then reject H,
but

i TS, = TS, then reject H)

Step 8: Draw the marketing research conclusion

The conclusion reached by hypothesis testing must be expressed in terms of the marketing
research problem. In our example, we conclude that there is evidence that the proportion
of Internet users who shop via the Internet is significantly greater than 0.40. Hence, the
recommendation would be to introduce the new Internet shopping service,

As can be seen from Figure 18.6, hypothesis testing can be related to either an examina-
tion of associations or an examination of differences. In tests of associations the null
hypothesis is that there is no association between the variables (H: .. . is not related to ...).
In tests of differences the null hypothesis is that there is no difference (H; . .. is nof differ-
ent than ... ). Tests of differences could relate to distributions, means, proportions, or
medians or rankings. First, we discuss hypotheses related to associations in the context of
cross-tabulations,

l L

Tests of Tests of
@ss0ciation differences
! | ! !
Distributions Means Proportions Medians/

rankings
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Cross-tabulations
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Although answers to questions related to a single variable are interesting, they often raise
additional questions about how to link that variable to other variables, To introduce the
frequency distribution, we posed several representative marketing research questions. For
each of these, a researcher might pose additional questions to relate these variables to
other variables. For example:

® [How many brand-loval users are males?

® [s product use {measured in terms of heavy users, medium users, light users and non-
users) related to interest in outdoor leisure activities (high, medium and low}?

& s familiarity with a new product related to age and income levels?

® |5 product ownership related to income (high, medium and low)?

The answers to such questions can be determined by examining cross-tabulations. A
frequency distribution describes one variable at a time, but a cross-tabulation describes
two or more variables simultancously, Cross-tabulation results in tables that reflect the
joint distribution of two or more variables with a limited number of categories or distinct
values, The categories of one variable are cross-classified with the categories of one or
more other variables, Thus, the frequency distribution of one variable is subdivided
according to the values or categories of the other variables.

Suppose we are interested in determining whether Internet usage is related to gender.
For the purpose of cross-tabulation, respondents are classified as Tight” or heavy” users,
Those reporting five hours or less usage were classified as ‘light’ users, and the remaining
were heavy” users. The cross-tabulation is shown in Table 18.3. A cross-tabulation
includes a cell for every combination of the categories of the two variables. The number in
each cell shows how many respondents gave that combination of responses. In Table 18.3,
10 respondents were females who reported light Internet usage. The marginal totals in this
table indicate that of the 30 respondents with valid responses on both variables, 13
reported light usage and 15 were heavy users. In terms of gender, 15 respondents were
females and 15 were males. Note that this information could have been obtained from a
separate frequency distribution for each variable, In general, the margins of a cross-tabu-
lation show the same information as the frequency tables for each of the variables.

Cross-tabulation tables are also called contingency tables, The data are considered to
be qualitative or categorical data, because each variable is assumed to have only a nominal
scale” Cross-tabulation is widely used in commercial marketing research because (1}
cross-tabulation analysis and results can be easily interpreted and understood by man-
agers who are not statistically oriented; (2) the clarity of interpretation provides a stronger
link between research results and managerial action; (3) a series of cross-tabulations may
provide greater insights into a complex phenomenon than a single multivariate analysis;
(4) cross-tabulation may alleviate the problem of sparse cells, which could be serious in
discrete multivariate analysis; and (5) cross-tabulation analysis is simple to conduct and
appealing to both qualitative and quantitative researchers.” We will discuss cross-tabula-
ton for two and three variables,

Table 18.3 Gender and Internet usage

Internet usagde Gender Row [ofal
Male Female

Light {1} 5 10 15

Heawvy (2) 10 5 15

Column total 15 15




Crozs-tabulations

Two variables

Cross-tabulation with two variables is also known as bivariate cross-tabulation. Consider
again the cross-classification of Internet usage with gender given in Table 18.3. Is usage
related to gender? It appears to be from Table 18.3. We see that disproportionately more of
the respondents who are male are heavy Internet users as compared with females.
Computation of percentages can provide more insight,

Because two variables have been cross-classified, percentages could be computed either
column-wise, based on column totals {Table 18.4), or row-wise, based on row totals { Table
18.5). Which table is more useful?

Table 18.4 Gender and Internet usage = column totals

Internel ysage Gender

Male Female
Light (1) 33.3% 66.7%
Heawy (2) B6.7T% 33.3%
Column total 100% 100%

Table 18.5 Gender and Internet usage - row totals

Internel usage Gender Row tota)
Male Female

Light (1) 33.3% 66.7% 100%

Heawy (2} 86.7% 33.3% 100%

The answer depends on which variable will be considered as the independent variable
and which as the dependent variable.” The general rule is to compute the percentages in
the direction of the independent variable, across the dependent variable. In our analysis,
gender may be considered as the independent variable and Internet usage as the depend-
ent variable, and the correct way of calculating percentages is shown in Table 184, Note
that whereas 66.7% of the males are heavy users, only 33.3% of fernales fall into this cate-
gory. This seems to indicate that males are more likely to be heavy users of the Internet as
compared with females,

MNote that computing percentages in the direction of the dependent variable across the
independent variable, as shown in Table 18.5, is not meaningful in this case. Table 18.5
implies that heavy Internet usage causes people to be males, This latter fnding is implau-
sible. It is possible, however, that the association between Internet usage and gender is
mediated by a third variable, such as age or income. This kind of possibility points to the
need o examine the effect of a third variable,

Three variables

Often the introduction of a third variable clarifies the initial association {or lack of it}
observed between two variables, As shown in Figure 18,7, the introduction of a third vari-
able can result in four possibilities:

1 Tt can refine the association observed between the two original variables,

2 It can indicate no association between the two original variables, although an associa-
tion was initially observed. In other words, the third variable indicates that the initial
association between the two variables was spurious.
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Figure 18.7
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3 It can reveal some association between the two original variables, although no association
was initially observed. In this case, the third variable reveals a suppressed association
between the first two variables,

4 It can indicate no change in the initial association.

These cases are explained with examples based on a sample of 1,000 respondents.
Although these examples are contrived to illustrate specific cases, such cases are not
uncommon in commercial marketing research,

Refine an initial relationship. An examination of the relationship between the purchase
of ‘designer’ clothing and marital status resulted in the data reported in Table 18.6. The
respondents were classified into either high or low categories based on their purchase of
‘designer’ clothing. Marital status was also measured in terms of two categories: currently
martied or unmarried. As can be seen from Table 18,6, 52% of unmarried respondents fell
in the high-purchase category as opposed to 31% of the married respondents. Before con-
cluding that unmarried respondents purchase more ‘designer’ clothing than those who are
married, a third variable, the buyer's gender, was introduced into the analysis.

Table 18.4 Purchase of 'designer’ clothing by marital status

Purchase of ‘designer’ clothing Marital status

Married Unmarried
High 31% 52%
Low 69% AB%,
Column 100% 100%
Number of respondents 00 300

The buyer's gender was selected as the third variable based on past research. The rela-
tionship between purchase of ‘designer’ clothing and marital status was re-examined in
light of the third variable, as shown in Table 18.7, In the case of females, 60% of the
unmarried respondents fall in the high-purchase category compared with 25% of those
who are married. On the other hand, the percentages are much closer for males, with 40%



Crozs-tabulations

Table 18.7 Purchase of ‘designer” clothing by marital status and gender

Purchase of ‘designer clothing Gender
Male marital status Female marital status
Marred Unmarried Married Unmarried
High 35% 40% 25% GO
Low BE% 80% Th% 40%
Column 100% 10:0% 100% 10005
Number of respondents 400 120 300 180

of the unmarried respondents and 35% of the married respondents falling in the high-
purchase category. Hence, the introduction of gender (third variable) has refined the
relationship between marital status and purchase of “designer’ clothing {original vari-
ables). Unmarried respondents are more likely to fall into the high-purchase category than
married ones, and this effect is much more pronounced for females than for males.

Initial relationship was spurious. A researcher working for an advertising agency pro-
moting a car brand costing more than €70,000 was attempting to explain the ownership of
expensive cars (see Table 18.8), The table shows that 32% of those with university degrees
own an expensive (more than €70,000) car compared with 21% of those without univer-
sity degrees. The researcher was tempted to conclude that education influenced ownership
of expensive cars, Realising that income may also be a factor, the researcher decided to re-
examine the relationship between education and ownership of expensive cars in the light
of income level. This resulted in Table 18.9. Note that the percentages of those with and
without university degrees who own expensive cars are the same for each income group.
When the data for the high-income and low-income groups are examined separately, the
association between education and ownership of expensive cars disappears, indicating
that the initial relationship observed between these two variables was spurious,

Table 18.8 Ownership of expensive cars by education level

Own expensive car Education
Degree Mo degree
Yes 3% 21%
| Wo B8% To%
;:: Column 100% 100%
v | MNumber of respandents 250 780
3
w
Table 18.9 Ownership of expensive cars by education and income levels
Own expensive car lncome
Low-ncome education High4ncome education
Degres Mo degres Degree N degree
Yes 20% 20% A0% A0%
Na 80% BO% &% &%
Column totals 104 100% 100% 100%
Mumber of respondents 100 TOO0 150 50
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Reveal suppressed association. A researcher suspected that desire to travel abroad may
be influenced by age. A cross-tabulation of the two variables produced the results in Table
18.10, indicating no association. When gender was introduced as the third variable, Table
18.11 was obtained. Among men, 60% of those under 45 indicated a desire to travel
abroad compared with 40% of those 45 or older, The pattern was reversed for women,
where 35% of those under 45 indicated a desive to travel abroad as opposed to 65% of
those 45 or older. Since the association between desire to travel abroad and age runs in the
opposite direction for males and females, the relationship between these two variables 1s
masked when the data are aggregated across gender as in Table 18.10. But when the effect
of gender is controlled, as in Table 18.11, the suppressed association between preference
and age is revealed lor the separate categories of males and lemales.

Table 18.10 Desire to travel abroad by age

Desire to travel abroad Age
Under 45 45 or pider
Yes B0 0%
Mo B0% 50%
Column totals 100% 100%
Number of respondents 500 500
Table 18.11 Desire to travel abroad by age and gender
Desire to travel abroad Gender
Maie age Female age
Under 45 45 or older Uinder 45 45 or older
Yes 6 40% 35% B5%
Mo A% B60% 65% 35%
Column totals 100% 100% 100% 100%
MNumber of respondents 300 300 200 200

Mo change in initial relationship. In some cases, the introduction of the third variable
does not change the initial relationship observed, regardless of whether the original vari-
ables were associated, This suggests that the third variable does not influence the
relationship between the first two. Consider the cross-tabulation of family size and the
tendency to eat in fast-food restaurants frequently, as shown in Table 18,12, The respon-
dents’ families were classified into small- and large-sive categories based on a median split
of the distribution, with 500 respondents in each category, No association is observed, The

Table 18.12 Eating frequently in fast-food restaurants by family size

Eat frequently In fast-food restaurants Family size

Srmall Larde
Yes 65% 65%
Mo 35% 35%
Calumn totals A005% 1005%
Mumber of respondents 500 500




Statistics aszociated with cross-tabulation

respondents were further classified into high- or low-income groups based on a median
split. When income was introduced as a third variable in the analysis, Table 18.13 was
obtained, Again, no association was observed.

Table 18.13 Eating frequently in fast-food restaurants by family size and incomea

Eat frequently fn Income

fast-food restaurants
Low-incoma family size High-incame family size
Small Large Small Large
Yes 5% 65% 65% 65%
Ma 35% 5% a5% a5%
Column total 100% 100% 100% 100%
Number of respondents 250 250 250 250

General comments on cross-tabulation

More than three variables can be cross-tabulated; the interpretation is quite complex.
Also, because the number of cells increases multiplicatively, maintaining an adequate
number of respondents or cases in each cell can be problematic. As a general rule, there
should be at least five expected observations in each cell for the computed statistics 1o be
reliable. Thus, cross-tabulation is an inefficient way of examining relationships when there
are more than a few variables. Note that cross-tabulation examines association between
variables, not causation, To examine causation, the causal research design framework
should be adopted (see Chapter 11),

Statistics associated with cross-tabulation

Chi-square statistic

The statistic used to tast tha
statistical significance of the
observed association in 8
crass-tabulation, It assists
us in determining whether a
systematic association axists
between the two variables.

We now discuss the statistics commonly used for assessing the statistical significance and
strength of association of cross-tabulated variables. The statistical significance of the
observed association is commaonly measured by the chi-square statistic. The strength of
association, or degree of association, is important from a practical or substantive perspec-
tive, Generally, the strength of association is of interest only if the association is
statistically significant, The strength of the association can be measured by the phi corre-
lation coefficient, the contingency coefficient, Cramer’s Vand the lambda coefficient.
These statistics are described in detail.

Chi-square

The chi-square statistic [ ') is used to test the statistical significance of the observed asso-
ciation in a cross-tabulation. It assists us in determining whether a systematic association
exists between the two variables. The null hypothesis, H,, is that there is no association
between the variables. The test is conducted by computing the cell frequencies that would
be expected if no association were present between the variables, given the existing row
and column totals. These expected cell frequencies, denoted f, are then compared with the
actual observed frequencies, f, found in the cross-tabulation to calculate the chi-square
statistic. The greater the discrepancies between the expected and observed frequencies, the
larger the value of the statistic. Assume that a cross-tabulation has r rows and ¢ columns
and a random sample of # observations. Then the expected frequency for each cell can be
calculated by using a simple formula:

- HrH(
o H
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where # = total number in the row
n= total number in the column
n = total sample size

For the data in Table 18.3, the expected frequencies for the cells, going from left to right
and from top to bottom, are

15 % 15/30=7.50 15 ¥ 13/30 = 7.50 15 X 15/30 = 7.50 15 X 15/30 = 7.50

Then the value of ¥* is calculated as follows:

2 % G-

all cefls .ﬁ
For the data in Table 18.2, the value of 7 is calculated as

¥r=(5=-7575+ (10-7547.5+ {10 =7.5047.5 + (5= 7.5)47.5
= (L.833 + 0.833 + 0.833 + 0.433
=3.333

To determine whether a systematic association exists, the probability of obtaining a value
of chi-square as large as or larger than the one calculated from the cross-tabulation is esti-
mated. An important characteristic of the chi-square statistic is the number of degrees of
freedom {df ) associated with it In general, the number of degrees of freedom is equal to
the number of ohservations less the number of constraints needed to calculate a statistical
term. In the case of a chi-square statistic associated with a cross-tabulation, the number of
degrees of freedom is equal to the product of number of rows {r) less one and the number
of columns (¢} less one. That is, df = (=11 % {c= 1).!% The null hypothesis (H,} of no
association between the two variables will be rejected only when the calculated value of
the test statistic is greater than the eritical value of the chi-square distribution with the
appropriate degrees of freedom, as shown in Figure 18.8,

The chi-square distribution is a skewed distribution whose shape depends solely on
the number of degrees of freedom.'! As the number of degrees of freedom increases, the
chi-square distribution becomes more symmetrical. Table 3 in the Appendix of statistical
tables contains upper tail areas of the chi-square distribution for different degrees of free-
dom. In this table, the value at the top of each column indicates the area in the upper
portion (the right side, as shown in Figure 18.8) of the chi-square distribution. To illus-
trate, for | degree of freedom, the value for an upper tail area of 0.05 is 3.841. This
indicates that for 1 degree of freedom the probability of exceeding a chi-square value of
3.841 is 0.05. In other words, at the 0,05 level of significance with 1 degree of freedom, the
critical value of the chi-square statistic is 3.841.

For the cross-tabulation given in Table 18.3, there are (2 — 1) % {2 — 1} = | degree of
freedom. The calculated chi-square statistic had a value of 3.333. Because this is less than
the critical value of 3.841, the null hypothesis of no association cannot be rejected, indi-
cating that the association is not statistically significant at the 0,05 level,

Do not
reject Hy

Reject Hy

Critical ~ *
value
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Statistics aszociated with cross-tabulation

The chi-square statistic can also be used in goodness-of-fit tests to determine whether
certain models fit the observed data. These tests are conducted by calculating the signifi-
cance of sample deviations from assumed theoretical {expected) distributions and can be
performed on cross-tabulations as well as on frequencies (one-way tabulations), The cal-
culation of the chi-square statistic and the determination of its significance are the same
as illustrated above,

The chi-square statistic should be estimated only on counts of data. When the data are
in percentage form, they should first be converted to absolute counts or numbers. [n addi-
tion, an underlying assumption of the chi-sguare test is that the observations are drawn
independently. As a general rule, chi-square analysis should not be conducted when the
expected or theoretical frequency in any of the cells is less than five, If the number of
observations in any cell is less than 10, or if the table has two rows and two columns
la 2 % 2 table), a correction factor should be applied.'? With the correction factor, the
value is 2.133, which is not significant at the 0,05 level. In the case of a 2 % 2 table, the chi-
sguare is related to the phi coeflicient.

Phi coefficient

The phi coefficient {$) is used as a measure of the strength of association in the special
case of a table with two rows and two columns {a 2 % 2 table}. The phi coefficient is pro-
portional to the square root of the chi-square statistic, For a sample of size n, this statistic
is calculated as

i
n

It takes the value of 0 when there is no association, which would be indicated by a chi-
square value of 0 as well. When the variables are perfectly associated, phi assumes the
value of 1 and all the observations fall just on the main or minor diagonal. (In some com-
puter programs, phi assumes a value of -1 rather than +1 when there is perfect negative
association.) In our case, because the association was not significant at the 0.05 level, we
would not normally compute the phi value. However, for the purpose of illustration, we
show how the values of phi and other measures of the strength of association would be
computed, The value of ph is

=" 3.333/50 = 0.333

Thus, the association is not very strong. In the more general case involving a table of any
size, the strength of association can be assessed by using the contingency coefficient,

Contingency coefficient

Although the phi coefficient is specific to a 2 % 2 table, the contingency coefficient { )
can be used to assess the strength of association in a table of any size. This index is also
related to chi-square, as follows:

¥

'::' = -I.?..I
y-+n

The contingency coctficient varies between 0 and 1. The value of 0 occurs in the case of no
association (i.e. the variables are statistically independent), but the maximum value of 1 is
never achieved. Rather, the maximum value of the contingency coefficient depends on the
size of the table (number of rows and number of columns), For this reason, it should be
used only to compare tables of the same size. The value of the contingency coefficient for
Table 18.3 is

C=43.333/(3.333 + 30) = 0.316
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This value of C indicates that the association is not very strong. Another statistic that can
be calculated for any table is Cramer's V.

Cramers V

Cramer’s Vis a modified version of the phi correlation coefficient, ¢, and is used in tables
larger than 2 * 2. When phi is calculated for a table larger than 2 % 2, it has no upper
limit. Cramer’s V is obtained by adjusting phi for either the number of rows or the
number of columns in the table based on which of the two is smaller. The adjustment is
such that V will range from 0 to 1. A large value of V merely indicates a high degree of
association. [t does not indicate how the variables are associated. For a table with r rows
and ¢ columns, the relationship between Cramer’s V and the phi correlation coefficient is

expressed as
T
min{r=1),{c=1)
¥iin

Ve J
min{r—1),{c=1)

The value of Cramer's V for Table 18.3 is

V=4{3.333/30)/1 = 0.333

Thus, the association is not very strong. As can be seen, in this case V= ¢ This is always
the case for a 2 * 2 table. Another statistic commonly estimated is the lambda coefficient,

or

Lambda coefficient

The lambda coefficient assumes that the variables are measured on a nominal scale.
Asymmetric lambda measures the percentage improvement in predicting the value of the
dependent variable, given the value of the independent variable. The lambda coefficient
also varies between 0 and 1. A value of 0 means no improvement in prediction. A value of
I indicates that the prediction can be made without error, This happens when each inde-
pendent variable category is associated with a single category of the dependent variable,

Asymmetric lambda is computed for each of the variables (treating it as the dependent
variable), The two asymmetric lambdas are likely to be different, since the marginal distri-
butions are not usually the same. A symmetric lambda, a kind of average of the two
asymmetric values, 1s also computed. The symmetric lambda does not make an assump-
tion about which variable is dependent. It measures the overall improvement when
prediction is done in both directions."? The value of asymmetric lambda in Table 18.3,
with usage as the dependent variable, is 0,333, This indicates that knowledge of gender
increases our predictive ability by the proportion of 0,333, L.e. a 33% improvement, The
symmetric lambda is also 0,333,

Other statistics

Note that in the calculation of the chi-square statistic the variables are treated as being
measured only on a nominal scale. Other statistics such as tau b, tau ¢ and gamma are
available to measure association between two ordinal-level variables. All these statistics
use information about the ordering of categories of variables by considering every possi-
ble pair of cases in the table. Each pair is examined to determine whether its relative
ordering on the first variable is the same as its relative ordering on the second variable
{concardant), the ordering is reversed (discordant), or the pair is tied. The manner in



Hypothesis testing related to differences

which the ties are treated is the basic difference between these statistics. Both tau Iand tau
¢ adjust for ties. Tau b is the most appropriate with square tables in which the number of
rows and the number of columns are equal. Its value varies between +1 and —1. For a rec-
tangular table in which the number of rows is different from the number of columns, tau
¢ should be used. Gamma does not make an adjustment for either ties or table size.
Gamma also varies between +1 and —1 and generally has a higher numerical value than
tau b or tau ¢ For the data in Table 18.3, as gender 15 a nominal variable, it is not appro-
priate to calculate ordinal statistics. All these statistics can be estimated by using the
appropriate computer software that incorporates cross-tabulation. Other statistics for
measuring the strength of association, namely product moment correlation and non-
metric correlation, are discussed in Chapter 20.

Cross-tabulation in practice

While conducting cross-tabulation analysis in practice, it is useful to proceed through the
following steps:

1 Test the null hypothesis that there is no association between the variables using the chi-
square statistic. If you fail to reject the null hypothesis, then there is no relationship.

2 If H, s rejected, then determine the strength of the association using an appropriate
statistic (phi coefficient, contingency coefficient, Cramer’s V, lambda coefficient, or
other statistics).

3 If H, is rejected, interpret the pattern of the relationship by computing the percentages
in the direction of the independent variable, across the dependent variable.

4 1If the variables are treated as ordinal rather than nominal, use tau b, tau c or gamma as
the test statistic. If H, is rejected, then determine the strength of the association using
the magnitude, and the direction of the relationship using the sign of the test statistic.

Hypothesis testing related to differences

Parametric tests
Hypothesis testing
procadures that assume that
the variables of interest are
measured an at least an
interval scala.

Mon-paramatric tests
Hypothesis testing
procedures that assume that
the variables ara measured
on a nominal or ondinal
scala.

The previous section considered hypothesis testing related to associations. We now focus
on hypothesis testing related to differences. A classification of hypothesis testing proce-
dures for examining differences is presented in Figure 18.9. Note that this figure is
consistent with the classification of univariate techniques presented in Figure 17.4, The
major difference is that Figure 17.4 also accommuodates more than two samples and thus
deals with techniques such as one-way ANOVA and K-W ANOVA (Chapter 17), whereas
Figure 18.9 is limited to no more than two samples, Also, one-sample technigues such as
frequencies, which do not involve statistical testing, are not covered in Figure 18.9.

Hypothesis testing procedures can be broadly classified as parametric or non-pararmet-
tic, based on the measurement scale of the variables involved. Parametric tests assume
that the variables of interest are measured on at least an interval scale. Non-parametric
tests assume that the variables are measured on a nominal or ordinal scale. These tests can
be further classified based on whether one or two or more samples are involved, As
explained in Chaptler 17, the number of samples is determined based on how the data are
treated for the purpose of analysis, not based on how the data were collected. The samples
are independent if they are drawn randomly from different populations. For the purpose
of analysis, data pertaining to different groups of respondents, e.g. males and females, are
generally treated as independent samples, On the other hand, the samples are paired when
the data for the two samples relate to the same group of respondents.

The most popular parametric test is the ¢ test conducted for examining hypotheses
about means. The t test could be conducted on the mean of one sample or two samples of
observations. In the case of two samples, the samples could be independent or paired.
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Mon-parametric tests based on observations drawn from one sample include the chi-
square test, the Kolmogorov—Smirnov test, the runs test and the binomial test. In the case
of two independent samples, the chi-square test, the Mann—Whitney U test, the median
test and the Kolmogorov-Smirnov two-sample test are used for examining hypotheses
about location. These tests are non-parametric counterparts of the two-group 1 test. For
paired samples, non-parametric tests include the Wilcoxon matched-pairs signed-ranks
test and the sign test. These tests are the counterparts of the paired r test, Parametric as
well as non-parametric tests are also available for evaluating hypotheses relating to more
than two samples. These tests are considered in later chapters,

Parametric tests -

ttest

A univanate hypothesia @st
using the 1 distribution, which
| used when the standand
deyiatien is unknawn and the
sample size is amall,

t statistic

A statistic that assumes that
the variable has a symmetric
bell-shaped distribution, that
the mean is known (o
assumead 1a be known), and
that the population varnance
I3 estimated tram the
sEMplE.

t distribution

A symmetrical bell-shaped
distribution that 8 usaiul for
sample testing (n = 30) 1T I8
sirilar ta the normal
distrbutisn in &ppearance,

Figure 18.%
Hypothesis testing
procedures
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Parametric tests provide inferences for making statements about the means of parent
populations. A f test is commonly used for this purpose. This test is based on Student’s
fstatistic, The ¢ statistic assumes that the variable is normally distributed and the mean
is known (or assumed to be known ) and the population variance is estimated from the
sample. Assume that the random variable X is normally distributed, with mean u and
unknown population variance o7, which is estimated by the sample variance 5%, Recall
that the standard deviation of the sample mean, X, is estimated as 5. = s/ 1. Then
r= (X - ul/s_ is t distributed with # - 1 degrees of freedom.

The ¢ distribution is similar to the normal distribution in appearance, Both distribu-
tions are bell shaped and symmetric. Compared with the normal distribution, however,
the ¢ distribution has more area in the tails and less in the centre. This is because the pop-
ulation variance a* is unknown and is estimated by the sample variance 5%, Given the
uncertainty in the value of 5%, the observed values of ¢ are more variable than those of 2.
Thus, we must go out a larger number of standard deviations from zero to encompass a
certain percentage of values from the ¢ distribution than is the case with the normal distri-
bution. Yet, as the number of degrees of freedom increases, the ¢ distribution approaches

Indapandant Pairad Independant FPairad
samples samples samples samples
+ Two group + Paired [ test * Chi-square = Sign
ttest = Manr—Whitney + \Wilcowon
+ 7test = Median s MeHemar
* K-S * Chi-square



Parametric tests

the normal distribution. In fact, for large samples of 120 or more, the ¢ distribution and
the normal distribution are virtually indistinguishable. Table 4 in the Appendix of statisti-
cal tables shows selected percentiles of the ¢ distribution. Although normality is assumed,
the 1 test is quite robust to departures from normality,

The procedure for hypothesis testing, for the special case when the r statistic is used, is
as follows:

Formulate the null { H} and the alternative (1) hypotheses,

Select the appropriate formula for the ¢ statistic,

Select a significance level, a, for testing H,. Typically, the 0.05 level is selected.!

Take one or two samples and compute the mean and standard deviation for each sample,
Calculate the 1 statistic assuming that H, is true,

Calculate the degrees of freedom and estimate the probability of getting a more
extreme value of the statistic from Table 4 in the Appendix. (Alternatively, calculate the
critical value of the statistic,)

- R

7 If the probability computed in step 6 is smaller than the significance level selected in
step 3, reject My, If the probability is larger, do not reject Hj,. (Alternatively, if the value
of the calculated ¢ statistic in step 5 is larger than the critical value determined in step &,
reject H. If the calculated value is smaller than the critical value, do not reject H,.)
Failure to reject H does not necessarily imply that H is true. It only means that the
true state is not significantly different from that assumed by I—I;I.Ji

8 FExpress the conclusion reached by the ¢ test in terms of the marketing research problem.

We illustrate the general procedure for conducting t tests in the following sections,
beginning with the one-sample case,

One sample

In marketing research, the researcher is often interested in making statements about a
single variable against a known or given standard. Examples of such statements are that
the market share for a new product will exceed 15%, at least 65% of customers will like a
new package design, and 80% of retailers will prefer a new pricing policy. These state-
ments can be translated to null hypotheses that can be tested using a one-sample test, such
as the ¢ test or the 2 test, In the case of a ¢ test for a single mean, the researcher is interested
in testing whether the population mean conforms to a given hypothesis (H, ). For the data
in Table 18.2, suppose we wanted to test the hypothesis that the mean familiarity rating
exceeds 4.0, the neutral value on a seven-point scale. A significance level of a = D.05 is
selected. The hypothesis may be formulated as

H:pu=40
Hpi: > 4.0
t={X - u)s.
so=sl Vn
s_=1.579/v29 = 1.579/5.385 = 0.293
P= (4,724 = 4.0)/0.293% = 0.724/0.293 = 2471

The degrees of freedom for the t statistic to test the hypothesis about one mean are - 1.
In this case, n— 1 = 29 — 1, or 28. From Table 4 in the Appendix, the probability of get-
ting a more extreme value than 2.471 is less than 0.05. {Alternatively, the critical t value
for 28 degrees of freedom and a significance level of 0,05 is 1.7011, which is less than the
calculated value.) Hence, the null hypothesis is rejected. The familiarity level does not
exceed 4.0,
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I tesl

A univanate hypothesis test
using the standard normal
distribution,

Independent samples
The samples are
Independent if thay are
drawn randomty from
different populations
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Mote that if the population standard deviation was assumed to be known as 1.5, rather
than estimated from the sample, a z test would be appropriate. In this case, the value of
the z statistic would be

62 X”—;,M
where
.= 1.5/29 = 1.5/5.385 = 0.279
and

z= (4724 = 4.0)/0.27% = (.724/0.279 = 2.395

From Table 2 in the Appendix of statistical tables, the probability of getting a maore
extreme value of z than 2.595 is less than 0.05. {Alternatively, the critical z value for a one-
tailed test and a significance level of 0.05 is 1.645, which is less than the caleulated value. )
Therefore, the null hypothesis is rejected, reaching the same conclusion arrived at earlier
by the ttest.

The procedure for testing a null hypothesis with tespect to a proportion was illustrated
earlier in this chapter when we introduced hypothesis testing.

Two independent samples

Several hypotheses in marketing relate to parameters from two different populations:
for example, the users and non-users of a brand differ in terms of their perceptions of
the brand, high-income consumers spend more on leisure activities than low-income
consumers, or the proportion of brand-loyal users in segment I is more than the pro-
portion in segment I1, Samples drawn randomly from different populations are termed
independent samples. As in the case for one sample, the hypotheses could relate to
means or proportions.

Means. In the case of means for two independent samples, the hypotheses take the
following form:

Hy py =,

Hi: g #
The two populations are sampled and the means and variances are computed based on

samples of sizes n and n,. If both populations are found to have the same variance, a
pooled variance estimate is computed from the two sample variances as follows:

: g{xh-x113+§txu-xﬂl (=Dt (P—1) &

2
5t =

5=
wt+H;—2 Ht+m-2

The standard deviation of the lest statistic can be estimated as

o (Y
KXy oy,

The appropriate value of ¢ can be calculated as
. {j{'l =Xy — (= 4i5)
. 7

The degrees of freedom in this case are (1, +n, = 2).



F test

A statistical test of the
equality of the variances of
two populations,

F statistic
The ratio of twa sample
variances,

F distribution

A frequency distribution that
deponds upon two sets of
degrees of freedom: the
degrees of frondom n the
numerator and the degroes
of freadom in the
denominator

Parametric tests

If the two populations have unequal variances, an exact f cannot be computed for the
difference in sample means. Instead, an approximation to t is computed. The number of
degrees of freedom in this case is usually not an integer, but a reasonably accurate proba-
bility can be obtained by rounding to the nearest integer.'®

An Ftest of sample variance may be performed if it is not known whether the two pop-
ulations have equal variance, In this case the hypotheses are

T .
Hy a;=a;3
H: aila;
The Fstatistic is computed from the sample variances as follows:

£

—

F =

[y = 10 [mg = 1]

&

(e

where n = size of sample |
1, = size of sample 2
m, — 1 = degrees of freedom for sample 1
1, — 1 = degrees of freedom for sample 2

]

51 = sample variance for sample |

s§ = sample variance for sample 2.
As can be seen, the critical value of the F distribution depends on two sets of degrees of
[reedom: those in the numerator and those in the denominator. The critical values of F for
various degrees of freedom for the numerator and denominator are given in Table 5 of the
Appendix of statistical tables. If the probability of Fis greater than the significance level g,
H;, is not rejected and # based on the pooled variance estimate can be used. On the other
hand, if the probability of Fis less than or equal to a, H, is rejected and t based on a sepa-
rate variance estimate is used.

Using the data in Table 18,1, suppose we wanted to determine whether Internet usage
was different for males as compared with females, A two-independent-samples £ test can
be conducted. The results of this test are presented in Table 18,14, Note that the Ftest of
sample variances has a probability that is less than 0.05. Accordingly H|, is rejected and
the t test based on the ‘equal variances not assumed’ should be used. The t value is —4.492

Table 18.14 Two independent samples f test

Summary statistics
Mumber of cases Mear Standard error mean
Mala 15 9333 1237
Female 15 3.867 0.435
F test for equality of variances
F value Two-tail probatbility
15.507 0000
t test
Egual variances assumed Egual variances not assumed
t value Degrees of Two-tail ¢ value Degrees of Two-tail
freedonm probability freedanm probability
—i4.482 28 0.000 —4.482 18.014 0.000
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Example

and with 18.014 degrees of freedom, this gives a probability of D.000, which is less than
the significance level of 0.05. Therefore, the null hypothesis of equal means is rejected.
Because the mean usage for males {gender = 1] is 9.333 and that for females (gender = 2}
is 3.867, males use the Internet to a significantly greater extent than females. We also
show the f test assuming equal variances because most software packages automatically
conduct the f test both ways.

For another application of the t test, consider the following example,

Shops seek to suit elderly to a 't'""

A study based on a sample of TE9 respondents who were 65 or older attempted to doter
mine the effact of lack of mobility on shop patronage. A major research quastion related to
the differences in the physical reguirements of dependent and selfreliant elderly persons.
That is, did the two groups require different things to get to the shop or after they arrived at
the shop? A more delailed analysis of the physical requirements conductad by the t tasts of
two independent samples (shown in the table) indicated that dependent elderly persons are
mora likely to look for shops that offer home delivery and phone orders and for shops to
which they have accessible ransportation. They are also more likely to look for a varety of
shops located close together.

Differences in physical requirements between dependent and self-reliant elderly

Privaical requirement ifems Mean=
Selfrellant Dependeant t test probability

Delvery to home 1.787 2.000 0.023
Phone in order 2.030 2.335 0.003
Transportation to store 2488 3.098 0,000
Carvenient parking 4,001 4.085 0.30%
Location close to home 3.477 3.325 {137
Variely of shops closa together 3.456 3.881 0.023

* Measured on a five-point scale from not important {1) to very impartant [5)-

In this example, we tested the difference between means. A similar test is available for
testing the difference between proportions for two independent samples.

Proportions. A case involving proportions for two independent samples is also illustrated
using the data from Table 18,1, which gives the number of males and females who use the
Internet for shopping. Is the proportion of respondents using the Internet for shopping
the same for males and females? The null and alternative hypotheses are

Hy m=m,
HI: m ¥ o,

A =z test is used as in testing the proportion for one sample. In this case, however, the test
statistic is given by

By — P,

In the test statistic, the numerator is the difference between the proportions in the two
samples, P and P,. The denominator is the standard error of the difference in the two
proportions and is given by



Paired samples

The samples are paired when
the data for the twa samples
relate to the same group of
respondents,

Paired samples t test
A test for differances in the
means af palrad samples,

Parametric tests

] I
Sp.—pf,\;‘”"ﬂ;*@]

n']F'II +n, P‘3

where

"I. + TI2

A significance level of a = 0.05 is selected. Given the data in Table 18.1, the test statistic
can be calculated as

P, — B, = (11/15} - (6/15)
= 0.733 — 0.400 = 0.333
P=(15 % 0.733 + 15 X 0.4)/{15 + 15) = 0.567
S, — p, = V0.567 X 0.433 (1/15 + 1/15) = 0.181
z=0.333/0.14]1 = 1.84

Given a two-tail test, the area to the right of the critical value is a/2, or 0.025. Hence, the
critical value of the test statistic is 1.96. Because the calculated value is less than the critical
value, the null hypothesis cannot be rejected. Thus, the proportion of users (0.733) for
males and (0.400) for females is not significantly different for the two samples. Note that
although the difference is substantial, it is not statistically significant due to the small
sample sizes {15 in each group).

Paired samples

In many marketing research applications, the observations for the two groups are not
selected from independent samples. Rather, the observations relate to paired samples in
that the two sets of observations relate to the same respondents. A sample of respondents
may rate competing brands, may indicate the relative importance of two attributes of a
praduct, or may evaluate a brand at two different times, The differences in these cases are
examined by a paired samples i test, To compute ¢ for paired samples, the paired differ-
ence variable, denoted by I, is formed and its mean and variance calculated. Then the ¢
statistic is computed, The degrees of freedom are n — 1, where n is the number of pairs,
The relevant formulae are

Hn: Hp= 0
Hp p 20
=Bl

o

Vi

-1

where

55=5,Mn
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In the Internet usage example {Table 18.1), a paired ¢ test could be used to determine if
the respondents differed in their attitude towards the Internet and attitude towards tech-
nology. The resulting output is shown in Table 18.15. The mean atlitude towards the
Internet is 5.167 and that towards technology is 4.10, The mean difference between the
variables is 1.067, with a standard deviation of 0.828 and a standard error of 0.1511. This
results in a ¢ value of (1.067/0.1511) = 7.06, with 30 — 1 = 29 degrees of freedom and a
probability of less than 0.001. Therefore the respondents have a more favourable attitude
towards the Internet as compared with technology in general. Another application is pro-
vided in the context of determining the relative effectivencss of 13-sccond versus 30-
second TV commercials.

Table 18.15 Paired samples f test

Varfahis Number of cages Mean Standard deviation |  Standard efror
Internat attitude 3D 5.167 1.234 0.2325
Technology attitude 30 4.100 1.3598 0255
Difference | Standard | Stanhdard | Correlation Two-Lail [ value Degrees of | Twotall
mean deviation EFFTr prabability freedom | probability
1.067 0.828 01511 0.803 0.000 7.059 29 0.000

Example Seconds count'®

A survey of B3 media directors of the largest Canadian advertising agencies was conducted to
determine the relative effectiveness of 15-second versus 30-second commarcial advertise-
ments. By use of a five-paint rating scale (1 being excellent and 5 being poar), 15 and
30-=econd commercials were rated by each respondent for brand awareness, main idea recall,
persuasion, and ability to tell an emotional story. The table indicates that 30-second commer-
cials were raled more favourably on all the dimensions. Paired ¢ lests indicated thal these
differences were significant, and the 15-second commercials were evaluated as less effective.

Mean rating 15- and 30-second commercials on four communication variables

Brand awareness Main idea recall Persuasion Ability to tell an
emotional story

15 30 i5 30 i5 30 15 30

25 1.9 2.7 2.0 -2 B 21 4.3 1.8

The difference in proportions for paired samples can be tested by using the McNemar
test or the chi-sguare test, as explained in the following section on non-parametric tests,

Non-parametric tests

Mon-parametric tests are used when the variables are non-metric. Like parametric tests,
non-parametric tests are available for testing variables from one sample two independent
samples or two related samiples.
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Kolmogorov-Smirnov
[K-5] one-sample test

& one-sample non-parametric
poodness-oTit bast that
compares the cumulative
distribution function for a
variable with a specified
distribution,

Runs test

A test of randomness for a
dichotomaus variable,
Bimominal test

A goodness-olAit statistical
test far dichofomous
variables. 1T 1ests the
pocdness of fit of the
observed number of
ohservalions n each
category 1o the number
expected under a specified
binarminal disiristion.

Mon-parametric tests

One sample

Sometimes the researcher wants to test whether the observations for a particular vari-
able could reasonably have come from a particular distribution, such as the normal,
uniform or Poisson distribution. Knowledge of the distribution is necessary for finding
probabilities corresponding to known values of the variable, or variable values corre-
sponding to known probabilities (see the Appendix at the end of Chapter 15). The
Kolmogorov—-Smirnov (K-5) one-sample test is one such goodness-of-fit test. The K-5
test compares the cumulative distribution function for a variable with a specified distri-
bution. A, denotes the cumulative relative frequency for each category of the theoretical
(assumed) distribution, and O, denotes the comparable value of the sample frequency.
The K-5 test is based on the maximum value of the absolute difference between A, and
()., The test statistic is

K=max| A =0O.|

The decision to reject the null hypothesis is based on the value of K. The larger K is, the
more confidence we have that H, is false. Note that this is a one-tailed test, since the value
of K is always positive, and we reject H, for large values of K. For a = 0,05, the critical
value of K for large samples {over 35} is given by 136 .1 Alternatively, K can be trans-
formed into a normally distributed z statistic and its associated probability determined,

Table 18.16 K-5 one-sample test for normality for Internet usage

Test distribution, nofmal
Mean 6.600
Standard deviation 4.298
Casas 30
Most extreme differences
Absolute Poslthve Negative K-5z2 Two-talled p
0,222 0.222 0,142 1247 0.102

In the context of the Internet usage example, suppose we wanted to test whether the
distribution of Internet usage was normal. A K=5 one-sample test is conducted, yielding
the data shown in Table 18.16. The largest absolute difference between the observed and
normal distribution was K = 0,222, Although our sample size is only 30 (less than 35), we
can use the approximate formula and the critical value of K is 1.36/Y30 = 0.248. Because
the calculated value of K is smaller than the critical value, the null hypothesis cannot be
rejected. Alternatively, Table 18,16 indicates that the probability of observing a K value of
0.222, as determined by the normalized z statistics, is 0.103. Because this is more than the
significance level of 0,05, the null hypothesis cannot be rejected, leading to he same con-
clusion. Hence the distribution of Internet usage does not deviate significantly from the
normal distribution.

As mentioned earlier, the chi-square test can also be performed on a single variable
from one sample. In this context, the chi-square serves as a goodness-ol-[t test. It tests
whether a significant difference exists between the observed number of cases in each cate-
gory and the expected number,

Other one-sample non-parametric tests include the runs test and the binomial test,
The runs test is a test of randomness for the dichotomous variables. This test is conducted
by determining whether the order or sequence in which observations are obtained is
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random. The binomial test is also a goodness-of-fit test for dichotomous variables. It tests
the goodness of fit of the observed number of ohservations in each category to the
number expected under a specified binomial distribution. For more information on these
tests, refer to the standard statistical literature.™

Two independent samples

When the difference in the location of two populations is to be compared based on obser-
vations from two independent samples and the variable is measured on an ordinal scale,
the Mann-Whitney U test can be used.” This test corresponds to the two-independent-
samples t test, lor interval scale variables, when the variances of the two populations are
assumed equal,

In the Mann-Whitney LT test, the two samples are combined and the cases are ranked in
order of increasing size. The test statistic, U, is computed as the number of times a score
from sample or group 1 precedes a score from group 2. If the samples are from the same
population, the distribution of scores from the two groups in the rank list should be
random. An extreme value of U would indicate a non-random pattern pointing 1o the
inequality of the two groups. For samples of less than 30, the exact significance level for U
is computed. For larger samples, U7 is transformed into a normally distribuated z statistic.
This z can be corrected for ties within ranks,

We examine again the difference in the Internet usage of males and females. This time,
though, the Mann—-Whitney test is used. The results are given in Table 18.17. Again, a sig-
nificant difference is found between the two groups, corroborating the results of the
two-independent-samples ¢ test reported earlier. Because the ranks are assigned from the
smallest observation to the largest, the higher mean rank of males (20.93) indicates that
they use the Internet to a greater extent than females {mean rank = 10,07}

Table 18.17 Mann-Whitney U-Wilcoxon rank sum Wtest: |nternet usage by gender

Gender Mean rank Cases
Male 20.93 15
Female 10.07 15
Total 30
u W 2 Corrected for Ues,
two-tailed p
31.000 151.000 —3.406 0.001

Mate: U = Mann-Wnitneay test statistics, W = Wilcarzon W statistic, z = U/ transformed into noemally distributed z statistics.

Researchers olten wish to test for a significant difference in proportions obtained from
two independent samples. In this case, as an alternative to the parametric z test considered
earlier, one could also use the cross-tabulation procedure to conduct a chi-square test.* In
this case, we will have a 2 % 2 table. One variable will be used (o denote the sample and
will assume a value of 1 for sample | and a value of 2 for sample 2. The other variable will
be the binary variable of interest,

Twao other independent-samples non-parametric tests are the median test and K-S test.
The two-sample median test determines whether the two groups are drawn from popula-
tions with the same median. It is not as powerful as the Mann—-Whitney L test because it
merely uses the location of each observation relative to the median, and not the rank, of
each observation. The K-5 two-sample test examines whether the two distributions are
the same, It takes into account any differences between the two distributions, including
the median, dispersion and skewness, as illustrated by the following example.



Example

Wilcoxen malched-pairs
signed-ranks test

A nonparametric @St that
analyses the differences
between the paired
ohservations, Laking inle
acuount the magnitude of
the differences

Mon=parametric tests

Directors change direction®®

How do marketing research directors and users in Fortune S00 manufacturing firms per-
ceive the role of marketing research in initiating changes in marketing strategy formulation?
It was found that the marketing research directors were more strongly in favour of initiating
changes in strategy and less in favour of holding back than were users of marketing
research. Using the K-S test, these differences of role definition were statistically signifi-
cant at the 0.05 level, as shown balow

The role of marketing research in strategy formulation

Responses (%)
Sample n Absolutely | Preferably May Preferably | Absolutely
must showld | or may nod | should not | must not
o T 7 26 43 19 i
u 68 2 15 32 35 16

HK-% sgnificance = 0,05,
D = direeters, U = users,

In this example, the marketing research directors and users comprised two independ-
ent samples. The samples, however, are not always independent. In the case of paired
samples, a different set of tests should be used.

Paired samples

An important non-parametric test for examining differences in the location of two popu-
lations based on paired observations is the Wilcoxon matched-pairs signed-ranks test.
This test analyses the differences between the paired observations, taking into account the
magnitude of the differences. It computes the differences between the pairs of variables
and ranks the absolute differences. The next step is to sum the positive and negative ranks,
The test statistic, 2, is computed from the positive and negative rank sums, Under the null
hypothesis of no difference, z is a standard normal variate with mean 0 and variance 1 for
large samples. This test corresponds to the paired ¢ test considered earlier,™

The example considered for the paired ¢ test, whether the respondents differed in terms
of attitude towards the Internet and attitude towards technology, is considered again.
Suppose we assume that both these variables are measured on ordinal rather than interval
scales. Accordingly, we use the Wilcoxon test. The results are shown in Table 18.18. Again,
a significant difference is found in the variables, and the results are in accordance with the
conclusion reached by the paired ¢ test. There are 23 negative differences (attitude towards
technology is less favourable than attitude towards the Internet). The mean rank of these
negative differences is 12.72. On the other hand, there is only one positive difference {atti-
tude towards technology is more favourable than attitude towards the Internet), The
mean rank of the difference is 7.30. The are six ties, or observations with the same value
for both variables. These numbers indicate that the attitude towards the Internet is more
favourable than that towards technology. Furthermaore, the probability associated with the
z statistic is less than 0.05, indicating that the difference is indeed significant.
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Sign test

A non-parametnic est for
exarnining differencas in the
lacation of two pepulations,
hased on paired populations,
that compares anly the signs
of The dilferancis Helween
pairs of variables without
taking nto ascount the
magnitude of the differences,

Table 18.18 Wilcoxon matehed-pairs signed-ranks tast

Internet with technology
{Technology-internet) Cases Mean rank
— Ranks 23 12.72
+ Ranks 1 7.50
Ties i
Total 30
Z=-4.207 Two-tailed p = 0.000

Another paired sample non-parametric test is the sign test.?” This test is not as power-
ful as the Wilcoxon matched-pairs signed-ranks test because it only compares the signs of
the differences between pairs of variables without taking into account the magnitude of
the differences. In the special case of a binary variable where the researcher wishes 1o test
differences in proportions, the McNemar test can be used. Alternatively, the chi-square
test can also be used for binary variables.

The various parametric and non-parametric tests are summarised in Table 18.19. The
tests in Table 18,19 can be easily related to those in Figure 18,9, Table 18.19 classifies the
tests in more detail, as parametric tests (based on metric data) are classified separately for

Tahble 18.19 A summary of hypothesis lesting

samples

Sample Application Level of scaling Test comments

One sample

One sample Distributions Mon-metric -5 and chi-square for goodness of fit
Runs test for randomness
Binomial test for goodness of fit for
dichotomous varables

One sample Means Matric t test, if variance is unknown
2z test, if variance is known

One sample Prapertions Metric Z test

Two independent samples

Two independent Distributions Mon-metrc K-S twa-sarmple test for examining

eguivalence of two distributions

Two indepeandent

Means Metric Two-graup [ lest

samples F test for equality of variances

Twao independant Proportions Matric 7 test

samples Mon-metric Chi-sguare test

Two independent Rankings/medians Mon-metric Mann—-Whitney U test more powsarful than

samples median test

Paired samples

Paired samples Means Matric Paired | tast

Paired samples Proportions Mon-matric McNemar test for binary variablas
Chi-square test

Paired samples Rankings/medians Mon-meatric Wilcoxon matched-pairs ranked-signs last

mre powerful than sign test
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Example

Intarnet and computer applications

means and proportions. Likewise, non-parametric tests (based on non-metric data) are
classified separately for distributions and rankings/medians. The final example illustrates
the use of hypothesis testing in international branding stratesy.

International brand equity - the name of the game?*

In an era of global marketing, how can marketers develop theirs brands overseas in diverse
social, cullural and histarical envimaments? A study showed thal, in genaral, a firm's Intema-
tional brand structure includes firm-based characleristics, product markel characteristics,
and market dynamics. More specifically, according 1o Bob Kroll, the former President of Del
Monte International, uniferm packaging may be an assel o marketing intemationally, but
catering to the culinary taste preferences of individual countries is more important. One
survey an international product marketing makes this clear, Respondents included 100 brand
and product managers and marketing execulives from some of the world's largest food, phar
maceutical and personal product companies. For overseas markets, 39% said |l was not a
good Idea o use uniform packaging and 38% said it was a good idea. Those who said il was
not a good idea mentioned, however, the desirability of maintaining as much brand equity and
package consistency from market to market, But they also believed it was necessary 1o tallor
the package ta fit the linguistic and regulatory needs of differant markats.

Based on this finding, & suitable research gueslion can be: 'Do consumers in different
countries prafer to buy global name brands with differant packaging customised to sull their
local needs? Based on this research question, one can frame a hypothesis that, other things
being constant, standardised branding with customised packaging for a well-established brand
name will resull in 8 greater market share, The hypotheses may be formulated as follows;

H,: Standardised branding with customised packaging for a well-established brand name
will not lead (o greater markel share in an intemational market.

H,: Other factors remaining equal, standardised branding with customised packaging for a
wellastablished brand name will lead to grealer market share in the intermational market,

To test the null hypothesis, a wellestablished brand such as Colgate toothpaste, which has
followed @ mixed strategy, can be selecled. The markel share in countries with standardised
branding and standardised packaging can be compared with markel share in countries with
slandardised branding and customised packaging, afler controlling for the effect of other fac-
lors, A two-independent-samples § lest can be used,

Internet and computer applications

SPSS [www.spss.coml|

The main program in SPS5 is FREQUENCIES. It produces a table of frequency counts,
percentages and cumulative percentages for the values of each variable. It gives all of the
associated statistics except for the coefficient of variation. If the data are interval scaled
and only the summary statistics are desired, the DESCRIPTIVES procedure can be used.
All of the statistics computed by DESCRIPTIVES are available in FREQUENCIES.
However, DESCRIPTIVES is more efficient because it does not sort values into a fre-
quency table. An additional program, MEANS, computes means and standard deviations
for a dependent variable over subgroups of cases defined by independent variables.

CROSSTABS displays cross-classification tables and provides cell counts, row and
column percentages, the chi-square test for significance, and all the measures of the
strength of the association that have been discussed. The major program for conducting
ttests is T-TEST. This program can be used to conduct £ tests on independent as well as
paired samples. All the non-parametric tests that we have discussed can be conducted by
using the NPAR TESTS program.
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SAS lwww.sas.com]

The main program is UNIVARIATE. In addition to providing a frequency table, this
program provides all the associated statistics, Another procedure available is FREQ. For
one-way frequency distribution, FREQ does not provide any associated statistics. If only
summary statistics are desired, procedures such as MEANS, SUMMARY and TABU-
LATE can be used.

FREQ displays cross-classification tables and provides cell counts, row and column per-
centages, the chi-square test for significance, and all the measures of the strength of the
association that have been discussed. TABULATE can be used for obtaining cell counts
and row and column percentages, although it does not provide any of the associated sta-
tstics. The program T-TEST can be used. The non-parametric tests may be conducted by
using NPARIWAY, This program will conduct the two-independent-samples test
[ Mann—Whitney, median and K—5) as well as the Wilcoxon test for paired samples.

Minitab lwww.minitab.com]

The main function is stats>descriptive statistics. The output values include the mean,
tmedian, mode, standard deviation, minimum, maximum and quartiles. A histogram in a
bar chart or graph can be produced from the Graph>Histogram selection. Cross-tabula-
tions (crosstabs) and chi-square are under the Stats>Tables function. Parametric tests
available in Minitab in descriptive stat function are z test for means, { test for mean, and
two-sample ¢ test. The non-parametric tests can be accessed under the Stat=Time series
function, The output includes the one-sample sign, one-sample Wilcoxon, Mann—Whitney,
Kruskal-Wallis, median test, Friedman, runs test and pairwise differences.

Excel [www.microsoft.com]

In Fxcel the output produces the mean, standard error, median, mode, standard devia-
tion, variance, kurtosis, skewness, range, minimum, maximum, sum, count and
confidence level. Frequencies can be selected under the histogram function. A his-
togram can be produced in bar format. The Data>Pivot Table performs crosstabs in
Excel. To do additional analysis or customise data, select a different summary function
such as max, min, average or standard deviation. In addition, a custom calculation can
be selected to calculate based on other cells in the data plane. The chi-square test can be
accessed under the Insert=Function>5tatistical>Chitest function. The available para-
metric tests include the 1 test: paired samples for means; 1 test: two independent samples
assuming equal variances; t test: two independent samples assuming unequal variances;
=z test: two samples for means; and F test for variances of two samples.

SNAP [www.snapsurveys.com)

In SNAP, Descriptive Statistics produces the count, mean, mode, quartiles, median,
sum, minimum, maximum, range, standard error, standard deviation, variance, skew-
ness and kurtosis, In either Tables or Charts, the following can be produced displaying
absolute values, percentages or means;

® Asingle question or several questions together,

® Comparing one question against another, or several questions against one or more
other questions {cross-tabulation).

® Grids of 2 body of scaled items, e.g. a body of Likert scales.

® Holecount tables, i.e. a summary of all or any chosen responses to the questionnaire,

e Summary results in counts or percentages in the format of the original question-
naire, Chi-square and t tests can be calculated using the Charts option.



Questions

Summary

Basic data analysis provides valuable insights and guides the rest of the data analysis as
well as the interpretation of the results. A frequency distribution should be obtained for
cach variable in the data. This analysis produces a table of frequency counts, percentages
and cumulative percentages for all the values associated with that variable. It indicates
the extent of out-of-range, missing or extreme values. The mean, mode and median of a
frequency distribution are measures of central tendency. The variability of the distribu-
tion is described by the range, the variance or standard deviation, coefficient of
variation and interguartile range. Skewness and kurtosis provide an idea of the shape of
the distribution.

Cross-tabulations are tables that reflect the joint distribution of two or more variables. In
cross-tabulation, the percentages can be computed either by column, based on column
totals, or by row, based on row totals. The general rule is to compute the percentages in the
direction of the independent variable, across the dependent variable. Often the introduc-
tion of a third variable can provide additional insights, The chi-square statistic provides a
test of the statistical significance of the observed association in a cross-tabulation. The phi
cocfficient, contingency coefficient, Cramer’s V and lambda cocfficient provide measures
of the strength of association between the variables.

Parametric and non-parametric tests are available for testing hypotheses related to differ-
ences. In the parametric case, the t test is used to examine hypotheses related to the
population mean, Different forms of the f test are suitable for testing hypotheses based
on one sample, two independent samples or paired samples. [n the non-parametric case,
popular one-sample tests include the chi-square, Kolmogorov—Smirnov and binomial
tests. For two independent non-parametric samples, the chi-square, Mann—Whitney U,
median and Kolmogorov=Smirnov tests can be used, For paired samples, the sign.
Wilcoxon matched-pairs signed-ranks, McNemar and chi-square tests are useful for
examining hypotheses related to measures of location,

Questions

1 Describe the procedure for camputing frequencias. 10 Discuss the reasons for the freguent use of cross-
5 Whatmessurseof locatien ars commionly computad? tabulations. What are some of the imitations’?
3 What measures of varabllity are commaonly computed? 11 Present a classification of typothesis testing
procedures.,
4 How s th lative flatn ked f
ettt st 12 Describe the general procedure for conducting a
distributlon measured? FETR
5 at s a distribution at d it mean?
i i ool VAL AONE-IL Ak 13 What is the major difference beatween parametric
6 What is the major difference between cross-tabulation and non-parametric 1ests?
S o
SNQ FRauENCY QistaL O 14 Which non-parametnc tests are the countarparts of
T What |s the general rule for computing percentages In the two-independent-samples ¢ test for parametric
cross-tabulation? data?
8 Define a spuricus correlation, 15 Which non-parametnc tests are the counterparts
of th d test ic data®
9  ‘Whal is meanti by a suppressed association? How is it Ve palvet samplas: inst for aarametniz. daa

revealed?
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Exercises

i
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in each of the following situations, indicate the statistical analysis you would conduct and the appropriate test or

test statistic that should be used.

a Consumer prefarences for Bedy Shop shampoo were obtained on an 11-point Likert scale. The samea
consumers were then shown a commercial about the Body Shop. After the commercial, preferences for the
Body Shop were again measured. Has the commercial been successful in inducing & change in preferences?
Does the preference Tor Body Shop shampoo follow a normal distribution?

¢ Respondents in a survey of 1,000 households were classified as heavy, madium, light and non-users of ice
cream. They were also classified as being in high-, medium- or low-income categones. Is the consumption of ice
cream related to income level?

d In a survey of 2,000 households, respondents were asked to rank 10 supermarkets, Including Lidl, in order of
preference. The sample was divided into small and large households based on a median split of the household
size. Doos praference for shopping in Lidl vary by househald size?

The current advertising campaign for Red Bull would be changed if less than 30% of consumears like it.

a Formulate the null and alternative hypotheses.

b Discuss the Type | and Type Il enrors that could occur in hypothesis testing.

¢ Which statistical test would you use? Why?

d A random sample of 300 consumers was surveyed and 84 respondents indicated that they liked the campaign,
Should the campaign be changed? Why?

An electrical goods chain is having a New Year sale of refrigerators. The number of refrigerators sold during this
sale at a sample of 10 stores was:

80 110 0 40 70 a0 100 50 80 30

a |Isthere evidence that an average of more than 50 refrigerators per storg were sold during this sale? Use a= 0.05.
b What assumption is necessary to perform this test?

In a survey pretest, data were obtained from 45 respondents on Benetton clothes. These data are given in the
tabie opposita, which gives the usage, gender, awareness, attitude, preference, intentlon and loyalty towards
Banetton of 8 sample of Benetton users. Usagse was coded as 1, 2, or 3, representing light, medium or heawy
users. Gender was coded as 1 for females and 2 for males. Awareness, attitude, preference, intention and loyalty
wera measured on a T-paint Likert type scale (1 = very unfavourable, 7 = very favourable), Note that & respondents
have missing values that are denoted by 9.

Analyse the Benellon dala Lo answer the following gquastions. In each case, farmulale the null and altemative
hypotheses and conduct the appropriate statistical test(s).

a Obtain a frequency distribution for each of the following variables and calcuiate the relevant statistics:
awareness, attitude, preference, intention and loyalty towards Benetton.

b Conduct a cross-tabulation of the usage with gender. Interpret the results.

¢ [Dwoes the awareness for Benetton exceed 3.07

d Do males and females differ in their awareness for Benetion? Their attitude towards Benetton? Their loyaity for
Benatton?

e Do the respondents in the pretest have a higher level of awareness than loyaly?

f Does awareness of Benetton follow a nomnal distribution?

g Is the distribution of preference for Benetlon normal?

h Assume that awareness towards Benetton was measured on an ordinal scale rather than an interval scale. Do

males and females differ in their loyalty towards Benetton?
Assume that loyvalty towards Benatton was measured on an ordinal scale rather than an interval scale. Do
males and females differ in their loyalty towards Benetton?

| Assume that attitude and loyalty towards Benetion was measured on an ordinal scale rather than an interval

scale, Do the respondents have a greater awareness of Benetton than loyalty for Benetton?



Exercises

Number Lisage Gender Awareness Altitude Preference Intantion Lavally
1 3 2 T (5] 5 B (it
2 1 1 2 2 4 & 5
3 1 1 3 3 G 7 G
4 3 2 L B 5 3 2
5 3 2 5 4 T 4 3
3 2 2 4 3 5 2 3
ife 2 1 5 d 4 3 .
2 1 1 2 1 3 4 5
9 2 2 4 4 i L B

10 1 1 3 1 2 4 B
11 3 2 ] T 5] 4 5y
1z 3 2 G 5 6 4 4
13 1 1 4 3 F 15 ik
14 3 2 G 4 B 3 2
15 1 2 4 = 4 B &
16 1 2 3 4 2 4 2
17 3 1 07 B 4 5 3
1B 2 1 33 5 4 3 2
19 1 1 1 1 3 4 5
20 3 1 5 ¥ 4 1 2
21 3 2 8 & i 7 5
22 2 2 2 3 i 4 2
23 i 1 1 1 3 2 2
24 3 1 i ¥ G 7 &
25 1 2 a 2 2 1 i
26 2 2 5 3 4 4 5
27 3 2 7. B B B 7
2B 2 1 g8 4 2 5 &
29 1 1 ] 2 3 15 3
30 2 2 5 9 q & 1
31 i 2 1 2 ] 3 2
32 1 2 4 a] 5 | 2
33 2 1 3 + 3 2 9
34 2 1 4 (=] 5] [ &
35 3 1 5 i i 3 3
36 3 1 [ B I 3 4
37 3 2 8 T E 3 4
3E 3 2 5 & 4 3 2
39 3 2 T T & 3 4
40 1 1 4 3 4 & B
41 1 1 2 3 4 g i
42 1 1 1 3 2 o 4
43 1 1 2 4 3 B T
-4 i 1 3 3 4 B B
45 1 1 1 1 4 B 3

& In asmall group discuss the following issues; "Why waste time doing basic forms of data analysis? Why not just go
straight to performing multivariate analyses - whose outputs from most software packages will include basic
analysesT' and "Why do managers lind cross-tabulations so appealing? What would it take 1o make managers mora
appreciative of statistical analyses that go beyond the cross-tabulation?
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