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Correlation is the simplest way to
understand the association
between two metric variables.
When extended to multiple

regression, the relationship
between one variable and several
others becomes more clear.

Identifying
relationships

Objectives

After reading this chapter, you should be able to:

1

discuss the concepts of product moment
correlation, partial correlation and part
correlation, and show how they provide a
foundation for regression analysis;

explain the nature and methads of bivariate
regression analysis and describe the general
model, estimation of parameters, standardised
regression coefficient, significance testing,
prediction accuracy, residual analysis and model
cross-validation;

axplain the nature and methods of multiple
regression analysis and the meaning of partial
regression coefficients;

describe specialised techniques used in multiple
regressjon analysis, parficularly stepwise
regressjon, regression with dummy variables,
and analysis of variance and covariance with
regression;

discuss non-metric correlation and measures such
as Spearman’s rho and Kendall's tau;

6 discuss the nature of structural equation modelling

and its applications in marketing research,

STAGE b
Data preparation
and analysis
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Overview
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Example

»

Chapter 19 examined the relationship among the f test, analysis of variance and covari-
ance, and regression. This chapter describes regression analysis, which is widely used for
explaining variation in market share, sales, brand preference and other marketing
results. This is done in terms of marketing management variables such as advertising,
price, distribution and product quality. Before discussing regression, however, we
describe the concepts of product moment correlation and partial correlation coefficient,
which lay the conceptual foundation for regression analysis.

In introducing regression analysis, we discuss the simple bivariate case first. We describe
estimation, standardisation of the regression coefficients, and testing and examination
of the strength and significance of association between variables, prediction accuracy,
and the assumptions underlying the regression model. Next, we discuss the multiple
regression model, emphasising the interpretation of parameters, strength of association,
significance tests and examination of residuals,

We then cover topics of special interest in regression analysis, such as stepwise regres-
sion, multicollinearity, relative importance of predictor variables, and cross-validation.
We describe regression with dummy variables and the use of this procedure to conduct
analysis of variance and covariance. Finally, we describe and present an application of
structural equation modelling in marketing. We begin with an example that illustrates
an application of regression analysis,

Retailing revolution’

Many relailing experts suggest that electronic shopping will be the next revolution in shop-
ping. Although e-tailing continues to make up a very small portion of the overall retail sales,
the prospects look very promising for the future. A research project investigating this trend
looked for corelates of consumers’ preferences for electronic shopping services via home
videatex {computerised inchome shopping services), The sample was made up of respon-
dents who were familiar with the concept of computerised shopping from home. The
explanation of consumers’ preferences was sought in psychographic, demographic and com-
munications varables suggested in the literature.

Multiple regression was used to analyse the data, The overall multiple regression model
was significant at a 0.05 level. Univariate t 1ests indicalad that the following variables in the
miodel were significant at a 0.05 |level or better: price orientation, gender, age, cccupation,
ethnicity and education. None of the three communication variablos (mass media word of
miouth and publicity) was significantly related Lo consumer preference, the dependent varl-
able. The results suggested that electronic shopping was preferred by white females who
were older, better educated, working in supervisory or higher level occupations, and price
orientated,

This example illustrates the use of regression analysis in determining which independ-
ent variables explain a significant variation in the dependent variable of interest, the
structure and form of the relationship, the strength of the relationship, and predicted
values of the dependent variable. Fundamental to regression analysis is an understanding
of the product moment correlation.



Product moment correlation

Product moment correlation

Product moment
correlation [r]

A statistlc summarising the
strength of association
between two metric
variables.

Covariance

A systematic relationahip
between two varables In
which a change in one
Implies & commespanding

change in the other [cav, ).

In marketing research, we are often interested in summarising the strength of association
between two metric variables, as in the following situations:

® How strongly are sales related to advertising expenditures?
® s there an association between market share and size of the sales force?
® Are consumers’ perceptions of quality related to their perceptions of prices?

[n situations like these, the product moment correlation {r} is the most widely used sta-
tistic, summarising the strength of association between two metric |interval or ratio
scaled ) variables, say X and Y. It is an index used to determine whether a linear or straight
line relationship exists between X and Y. It indicates the degree to which the variation in
one variable, X, is related to the variation in another variable, Y. Because it was originally
proposed by Karl Pearson, it is also known as the Pearson correlation coefficient and also
referred to as simple correlation, bivariate correlation or merely the correlation coefficient.
From a sample of n observations, X and Y, the product moment correlation, r, can be
calculated as

22X - X)(Y,- V)
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Division of the numerator and denominator by n— 1 gives
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In these equations, X and Y denote the sample means, and S_T and SP the standard devia-
Thons, {'.'DL-’A},. the covariance between X and Y, measures the extent to which X and Yare
related. The covariance may be either positive or negative. Division by 5-151* achieves
standardisation so that r varies between —=1.0 and +1.0. Note that the correlation coeffi-
cient is an absolute number and is not expressed in any unit of measurement. The

COov

correlation coefficient between two variables will be the same regardless of their under-
lying units of measurement,

As an example, suppose that a researcher wants to explain attitudes towards a respon-
dent's city of residence in terms of duration of residence in the city, The attitude is
measured on an 11-point scale (1 = do not like the city, 11 = very much like the city), and
the duration of residence is measured in terms of the number of years the respondent has
lived in the city. In a pretest of 12 respondents, the data shown in Table 20.1 are obtained.
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Table 20.1 Explaining attitude towards the city of residence

Respondent number Allifude [owarnds Duration of Importance attached
the city residence o weather
1 6 10 3
2 9 12 11
3 8 12 4
4 3 4 i
5 10 12 11
6 4 8 1
7 LS . T
B 2 2 4
9 11 18 8
10 a9 9 10
11 10 T 8
12 2 2 b

The correlation coefficient may be calculated as follows:

X=(104+12+12+4+12+6+B8+2+185+9+ 17+ 2112

=9.333

Y=6+9+8+3+10+4+5+2+114+9+ 10+ 212

= 6.583

(X~ X) (Y,— ¥) = (10—9.33){6 - 6.58)

+(12-9.33)(9 — 6.58)
+(12 - 9.33)(8 - 6.58) + (4 -9.33)(3 - 6.58)
+{12-9.33)(10 - 6.58) + (6 —9.33)(4— 6.58)
+(8—-9.33}5-658) +(2-9.33)({2 -6.58)
+{18-9.33)(11 - 6.58) + (9 - 9.33)(9 - 6.58)
+{17 - 9.33)(10 — 6.58) + {2 —9.33)(2 — 6.58)
= 0.3886 + 6.4614 + 3.7914 + 19.0814 + 9,1314 + 8.5914
+2.1014 + 33,5714 + 38.3214 - 0.7986 + 26.2314 + 33.5714
= 179.6668

(X~ X) = (10-9.33)7 + (12-9.33)2 + (12-9.33) + (4 -9.33)?

i=1

F(12-9.330° (6-9.33) +(8-9.33)" + (2-9.33)* + (18- 9.33)*
HY =935 + (17 =933} + (2 - 9.33)?

= (4489 + 7.1289 + 7.1289 + 28,4089 + 7.1289 + 11.0889 + 1.7689
+53.7289 + 75.1689 + 0,1089 + 58.8289 + 53.7289

= 304.6668

(Y= VP =(6— 6581 +(9 — 6587+ (8— 6,587 +(3 — 6,587+ (3— 6.58)

+[10= 6.58F + (4= 6582+ (5= 658 + (2= 6582+ (11 = 6.58)2
b (99— 6.58) 4 (10— 6.58) 4 (2— 658)°

= (.3364 + 5.8364 + 20164 + 128164 + 11.6964 + 6,6564 + 24964
+ 20,9764 + 195364 + 58564 + 11,6964 + 20,9764

= 1209168




Figure 20.1

A non-linear
relationship for
which r=0

Product moment correlation

Thus,
179.6668
r:
A (304.6668)(120.9168)
- 0.9361

In this example, r = 0.9361, a value close to 1.0, This means that respondents’ duration of
residence in the city 15 strongly associated with their attitude towards the city.
Furthermore, the positive sign of r implies a positive relalionship; the longer the duration
of residence, the more favourable the attitude and vice versa,

Since rindicates the degree Lo which variation in one variable is related to variation in
another, it can also be expressed in terms of the decomposition of the total variation (see
Chapter 19}. In other words,

explained variation
total variation

55,

SS:-

i

T —

total variation - error variation

total variation
SS-E' Tt Ssrrnlr
55

Hence, r* measures the proportion of variation in one variable that is explained by the
other, Both v and ¢ are symmetric measures of association. In other words, the correla-
tion of X with ¥ is the same as the correlation of ¥ with X It does not matter which
variable is considered to be the dependent variable and which the independent. The prod-
uct moment coefficient measures the strength of the linear relationship and is not
designed to measure non-linear relationships. Thus r= 0 merely indicates that there is no
linear relationship between X and Y. It does not mean that X and Y are unrelated. There
could well be a non-linear relationship between them, which would not be captured by r
(see Figure 20.1),

When computed for a population rather than a sample, the product moment correla-
tion is denoted by the Greek letter rho, p. The coefficient r is an estimator of p. Note that
the calculation of rassumes that X and Y are metric variables whose distributions have the
same shape, If these assumptions are not met, r is deflated and underestimates p. In mar-
keting research, data obtained by using rating scales with a small number of categories
may not be strictly interval. This tends to deflate r, resulting in an underestimation of p.2
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The statistical significance of the relationship between two variables measured by using
rcan be conveniently tested. The hypotheses are

Hyp=0
Hip+0
The test statistic 15
n—EI%
t=r =2
l=r"

which has a t distribution with n — 2 degrees of freedom.” For the correlation coefficient
calculated based on the data given in Table 20.1,

12-2
1-(0.36)

|
=5

t=0.9361

= 8414

and df = 12— 2 = 10. From the ¢ distribution table {Table 4 in the Appendix of statistical
tables), the critical value of ¢ for a two-tailed test and o= 0.05 1s 2.228. Hence, the null
hypothesis of no relationship between X and Y is rejected. This, along with the positive
sign of r, indicates that attitude towards the city is positively related to the duration of res-
idence in the city. Moreover, the high value of rindicates that this relationship is strong,

In conducting multivariate data analysis, it is often useful to examine the simple corre-
lation between each pair of variables. These results are presented in the form of a
correlation matrix, which indicates the coeflicient ol correlation between cach pair of
variables. Usually, only the lower triangular portion of the matrix is considered. The diag-
onal elements all equal 1.04, since a variable correlates perfectly with itself. The upper
triangular portion of the matrix is a mirror image of the lower triangular portion, since r
is a symmetric measure of association. The form of a correlation matrix for five variables,
V, to V; is as follows:

v Vv, v, v, Vs
V. i
V, 0.5
v, 0.3 0.4
v, 0.1 0.3 0.6
i-"; 0.2 0.5 .3 0.7

Although a matrix of simple correlations provides insights into pairwise associations,
sometimes researchers want to examine the association between two variables after con-
trolling for one or more other variables. [n the latter case, partial correlation should
be estimated.

Partial correlation

Partial correlatien
conflicient

A measure of the association
between two variables after
contradling or adjusting for
the effects of one or more
additicnal variables.
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Whereas the product moment or simple correlation is a measure of association describing
the linear association between two variables, a partial correlation coefficient measures
the association between two variables after controlling for or adjusting for the effects of
one or more additional variables. This statistic is used to answer the following questions:

® How strongly are sales related to advertising expenditures when the effect of price is
controlled?



Partial correlation

® [s there an association between market share and size of the sales force after adjusting
for the effect of sales promotion?

® Are consumers’ perceptions of quality related to their perceptions of prices when the
effect of brand image is controlled?

As in these situations, suppose that a researcher wanted to calculate the association
between X and ¥ after controlling for a third variable, Z. Conceptually, one would first
remove the effect of Z from X, To do this, one would predict the values of X based on
knowledge of Z by using the product moment correlation between X and Z, ¢ . The pre-
dicted value of X is then subtracted from the actual value of X to construct an adjusted
value of X, In a similar manner, the values of Y are adjusted to remove the effects of 2, The
product moment correlation between the adjusted values of X and the adjusted values of
Y is the partial correlation coefficient between X and Y, after controlling for the effect of
Z, and is denoted by r_ . Statistically, since the simple correlation between two variables
completely describes the linear relationship between them, the partial correlation coeffi-
cient can be calculated by knowledge of the simple correlations alone, without using
individual observations:

e 55 14 A

FLT_:_?_2?_1
l=r_ Tl= r}-_a

To continue our example, suppose that the researcher wanted to calculate the association

between attitude towards the city, ¥, and duration of residence, X, after controlling for a

third variable, importance attached to weather, X,. These data are presented in Table 20.1,
The simple correlations between the variables are

W 0.9361 P ™ 0.7334 Mok = 0.5495
The required partial correlation may be calculated as follows:
09361 — ((.5495)(0.7334)

A1 (052957 V1 - (0.7334)°
= 0.9386

‘rxyl X

As can be seen, controlling for the effect of importance attached to weather has little effect
on the association between attitude towards the city and duration of residence.

Partial correlations have an order associated with them that indicates how many vari-
ables are being adjusted or controlled for. The simple correlation coefficient, r, has a zero
order, because it does not control for any additional variables while measuring the associ-
ation between two variables. The coefficient r... 15 2 first-order partial correlation
coefficient, because it controls for the effect of one additional variable, Z. A second-order
partial correlation coefficient controls for the effects of two variables, a third-order for the
effects of three variables, and so on. The higher order partial correlations are calculated
similarly. The (n + 1)th-order partial coefficient may be calculated by replacing the simple
correlation coefficients on the right side of the preceding equation with the nth order par-
tial coefficients.

Partial correlations can be helpful for detecting spurious relationships (see Chapter
1&). The relationship between X and Vis spurious if it is solely because X is associated
with Z which is indeed the true predictor of ¥. In this case, the correlation between X and
Y disappears when the effect of 2 is controlled. Consider a case in which consumption of a
breakfast cereal brand (C) is positively associated with income (1), with r, = 0.28. Because
this brand was popularly priced, income was not expected to be a significant factor.
Therefore, the researcher suspected that this relationship was spurious. The sample results
also indicated that income is positively associated with household size (H), r,, = 0.48, and
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Part correlation
coefficient

A measure of the cosrelation
between ¥ and X when the
lingar effects of the other
indapendent vanables have
been removed from X {but
nat from ¥.

Example

580

that household size is associated with breakfast cereal consumption, r, = 0.56. These fig-
ures seem to indicate that the real predictor of breakfast cereal consumption is not income
but household size. To test this assertion, the first-order partial correlation between cereal
consumption and income is calculated, controlling for the effect of household size, The
reader can verify that this partial correlation, r_, is 0.02, and the initial correlation
between cereal consumption and income vanishes when the houschold size is controlled.
Therefore, the correlation between income and cereal consumption is spurious, The spe-
cial case when a partial correlation is larger than its respective zero-order correlation
involves a suppressor cffect (sec Chapier 15).%

Another carrelation coefficient of interest is the part correlation coefficient. This coef-
ficient represents the correlation between ¥ and X when the linear effects of the other
independent variables have been removed from X but not from ¥, The part correlation
coefficient, Toal? is calculated as follows:

r-q- = i.}-zr't::

Tixe = —= Ao
ha I = r;-‘-
The part correlation hetween attitude towards the city and the duration of residence,
when the linear effects of the importance attached to weather have been removed from
the duration of residence, can be calculated as
. _ 09361 —(0.5495)(0.7334)
e VT-{05495)

= (L63806

The partial correlation coefficient is generally viewed as more important than the part
correlation coefficient. The product moment correlation, partial correlation and part
correlation coefficient all assume that the data are interval or ratio scaled. If the data
do not meet these requirements, the researcher should consider the use of non-metric
correlation.

Selling ads to home shoppers®

Advertisements play a very important role in forming attitudes and preferences for brands.,
Source credibility in advertisements may emerga from ‘celebrity endorsement” or ‘corporate
credibility', either or both of which can influsnce consumer feactions to advertisements and
shape brand attitudes. In genaral, it has been found that for low-involvement products, atti-
tude towards the advertisement mediates brand cognition (beliefs about the brand) and
attitude towards the brand.

What would happen to the effect of this mediating varable when products are purchased
through a heme shopping network? Home Shopping Budapest in Hungary conducted
research to assess the impact of advertisaments towards purchase. A survey was con-
ducted fn which sevaral measures were taken, such as attitude towards the product,
attitude towards the brand, attitude towards the ad characteristics and brand cognitions. It
was lypothesised that in a home shopping network, advertisaments fargely determined atti-
tude towards the brand. To find the degree of association of attitude towards the ad with
both attitude towards the brand and brand cognition. a partial correlation coefficient could
be computed. The partial correlation would be calculated between attitude towards the
brand and brand cognitions after controlling for the effects of attitude towards the ad on the
two varlables. If attitude towards the ad [s significantly high, then the partial correlation
coafficiont should be significantly lass than the product moment corralation batwaen brand
cognition and attitude towards the brand. Research was conducted which supported this



Regression analysis

hypothesis. Then Saalchi & Saalchi (www.saatchi.com) designed the ads aired on Home
Shopping Budapest o generale positive attitude towards the advertising, This turned oul to
be a major competitive weapon for the network.

Non-metric correlation

Mon-metric correlation

A correlation measwre for twa
non-metric varables that
relies on rankings to
compute the correlation.

Al times the researcher may have to compute the correlation coefficient between two vari-

ables that are non-metric. It may be recalled that non-metric variables do not have
interval or ratio scale properties and do not assume a normal distribution, If the non-
metric variables are ordinal and numeric, Spearman’s tho, p, and Kendall's tay, 7, are two
measures of non-metric correlation which can be used to examine the correlation
between them. Both these measures use rankings rather than the absolute values of the
variables, and the basic concepts undetlying them are quite similar. Both vary from -1.0 1o
+1.0. (See Chapter 18.}

In the absence of ties, Spearman’s p_ yields a closer approximation to the Pearson prod-
uet moment correlation coellicient, p, than does Kendall's . In these cases, the absolute
magnitude of 7 tends to be smaller than Pearson's p. On the other hand, when the data
contain a large number of tied ranks, Kendall's 1 seems more appropriate. As a rule of
thumb, Kendall’s tis to be preferred when a large number of cases fall into a relatively
small number of categories {thereby leading to a large number of ties). Conversely, the use
of Spearman’s p_ is preferable when we have a relatively larger number of categories
(thereby having fewer ties)."

The product moment as well as the partial and part correlation coefficients provide a
conceptual foundation for bivariate as well as multiple regression analysis,

Regression analysis

Regression analysis

A stalistical procedure for
analysing associative
relationships batwoen a
marlric-dependenl variable
and one of marg indepensent
variables,

Regression analysis is a powerful and flexible procedure for analysing associative relation-
ships between a metric-dependent variable and one or more independent variables, It can
be used in the following ways:

1 To determine whether the independent variables explain a significant variation in the
dependent variable: whether a relationship exists.

2 To determine how much of the variation in the dependent variable can be explained by
the independent variables: strength of the relationship.

3 To determine the structure or form of the relationship: the mathematical equation
relating the independent and dependent variables.,

4 To predict the values of the dependent variable.

5 To control for other independent variables when evaluating the contributions of a spe-
cific variable or set of variables,

Although the independent variables may explain the variation in the dependent variable, this
does not necessarily imply causation, The use of the terms ‘dependent or criterion variables’
and 'independent or predictor variables' in regression analysis arises from the mathematical
relationship between the variables. These terms do not imply that the criterion variable is
dependent on the independent variables in a causal sense. Regression analysis is concerned
with the nature and degree of association between variables and does not imply or assume
any causality, Bivariate regression is discussed first, followed by multiple regression,
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Bivariate regression

Bivariate regression

A procedure far dariving a
mathematcal relationship, in
the form at an equatian,
between & single matnae
dependent varable and &
single metnic-mdependent
variabde,

Bivariate regression is a procedure for deriving a mathematical relationship, in the
form of an equation, between a single metric-dependent or criterion variable and a
single metric-independent or predictor variable. The analysis is similar in many ways to
determining the simple correlation between two variables. Since an equation has to be
derived, however, one variable must be identified as the dependent variable and the
other as the independent variable. The examples given earlier in the context of simple
correlation can be translated into the regression context:

® (an variation in sales be explained in terms of variation in advertising expenditures?
What is the structure and form of this relationship, and can it be modelled mathemati-
cally by an equation describing a straight line?

® (Can the variation in market share be accounted for by the size of the sales force?

® Arc consumers perceptions of quality determined by their perceptions of price?

Before discussing the procedure for conducting bivariate regression, we define some
important statistics associated with bivariate regression analysis.

Statistics associated with bivariate regression analysis

582

The following statistics and statistical terms are associated with bivariale regression
analysis,

Bivariate regression model. The basic regression equation is Y, = fi + f X, + ¢, where V=
dependent or criterion variable, X = independent or predictor variable, i, = intercept of
the line, f, = slope of the line, and ¢, is the error term associated with the ith observation.
Coefficient of determination. The strength of association is measured by the coefficient of
determination, r?, It varies between 0 and 1 and signifies the proportion of the total varia-
tion in ¥ that is accounted for by the variation in X.

Estimated or predicted value. The estimated or predicted value of Y, is ¥i = a + bx, where
Y. is the predicted value of ¥, and a and b are estimators of fj, and fi , respectively.
Regression coefficient. The estimated parameter b is usually referred to as the non-stan-
dardised regression coefficient.

Scattergram. A scatter diagram, or scattergram, is a plot of the values of two variables for
all the cases or observations.

Standard error of estimate, This statistic, the SEF, is the standard deviation of the actual ¥
values from the predicted ¥ values.

Standard error, The standard deviation of b, 5E,, is called the standard error.,
Standardised regression coefficient. Also termed the beta coefficient or beta weight, this is
the slope obtained by the regression of ¥ on X when the data are standardised.

Sum of squared errors. The distances of all the points from the regression line are squared
and added together to arrive at the sum of squared errors, which is a measure of total

erTor, E 13

rstatistic. A 1 statistic with n— 2 degrees of freedom can be used to test the null hypothesis
that no linear relationship exists between X and ¥, or H,: §i, = 0, where



Conducting bivariate regression analysis

Conducting bivariate regression analysis

The steps involved in conducting bivariate regression analysis are described in Figure 20.2.

Plot the scatter diagram

Suppose that the researcher wants to explain attitudes towards the city of residence in
terms of the duration of residence (see Table 20.2). In deriving such relationships, it is
often useful first to examine a scatter diagram. A scatter diagram, or scattergram, is a plot

Pilot the scatter diagram

'

Formulate the general modal

'

Estimate the parameters

}

Estimale slandardised regression coglficient

}

Test for significance

'

Detemmine strength and significance of association

+
Check prediction accuracy
'
Examine the residuals
Figure 20,2 '

l:nndu:png bwangte PR e
ri.lgressmn an.al!_fsls

Table 20.2 Bivariate regression

Multiple & 0.93608
R 087624
Adjusted R2 0.86387
Standard error 122379
Analysis of varfance

df Sum of squares Mean square
Regrassion 1 10595232 105.85323
Residual 10 14.96444 149644
F= T0.B0266G Significance of F = 0.0000
Varlables in the eguation
Variable b SE, Beta (f) T Sig. of T
Druration 0.58872 G.O07008 0.93608 8414 0.0000
|Canstant) 1.07a32 0.74235 1.452 072
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Figure 20.3
Plot of attitude with
duration

Least squaras procedure
A technigue for fitting a
stralght line to 8 scattergram
by minimising the vertical
distances of all the paints
from the [ine.

Figure 20.4
Bivariate regression
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of the values of two variables for all the cases or ohservations. It is customary to plot the
dependent variable on the vertical axis and the independent variable on the horizontal
axis. A scatter diagram is useful for determining the form of the relationship between the
variables. A plot can alert the researcher to patterns in the data or to possible problems.
Any unusual combinations of the two variables can be casily identified. A plot of ¥ {atu-
tude towards the city} against X (duration of residence) is given in Figure 20.3. The points
seem to be arranged in a band running from the bottom lefi to the top right. One can see
the pattern: as one variable increases, so does the other. It appears [rom this scattergram
that the relationship between X and ¥ is linear and could be well described by a straight
line. How should the straight line be fitted to best describe the data?

The most commonly used technigque for fitting a straight line to a scattergram is the
least squares procedure. This technique determines the best-fitting line by minimising
the vertical distances of all the points from the line. The best-fitting line is called the
regression line, Any point that does not fall on the regression line is not fully accounted
for. The vertical distance from the point to the line is the error, ¢, (see Figure 20.4). The
distances of all the points from the line are squared and added together to arrive at the
sum of squared errors, which is a measure of total error, »’ e, In fitting the line, the least
squares procedure minimises the sum of squared crrors. If Vis plotted on the vertical axis

i + figx

Ay Ha Xy Xa X X



Estimated or predicted
value

The value ¥, = 8 + b,. where a
and b are, respectively.
estimators of §, and j, the
ramesponding population
pErEMEETE.

Conducting bivariate regression analysis

and X on the horizontal axis, as in Figure 20.4, the best-fitting line is called the regression
of Y on X, since the vertical distances are minimised. The scatter diagram indicales
whether the relationship between ¥ and X can be modelled as a straight line and, conse-
quently, whether the bivariate regression model is appropriate.

Formulate the general model

In the bivariale regression model, the general form of a straight line is

Y=f+ B X
where ¥ = dependent or criterion variable
X = independent or predictor variahle

f, = intercept of the line
fi, = slope of the line

This model implies a deterministic relationship in that ¥ is completely determined by X,
The value of ¥ can be perfectly predicted if j§ and f§, are known. In marketing research,
however, very few relationships are deterministic, Thus, the regression procedure adds an
error term to account for the probabilistic or stochastic nature of the relationship, The
basic regression equation becomes

Y.*ﬂ."‘ﬂ]x."' £,

where ¢, is the error term associated with the ith observation.” Estimation of the regres-
sion parameters, # and §, is relatively simple.

Estimate the parameters

In most cases, i, and f, are unknown and are estimated from the sample observations
using the equation

'}-’|=n+bx|

where }}. is the estimated or predicted value of ¥, and a and b are estimators of f and f,
respectively. The constant b is usually referred to as the non-standardised regression coef-
ficient. It is the slope of the regression line, and it indicates the expected change in ¥ when
X is changed by one unit, The formulae for calculating a and b are simple.® The slope, b,
may be computed in terms of the covariance between X and Y (COV ) and the variance
of Xas

cov

Xy

I =

83
XX -F)(¥~T)
i=1

2 (X~ Xy
o]

ZJ{IYI— nXY

E}:fh nX?

The intercept, a, may then be calculated using

a=Y -bx
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5Bé

For the data in Table 20.2, the estimation of parameters may be illustrated as follows:
12
E XY= (10){6} + (129 + (12)08) + (403) + (123010} + (6){4) + (8){5) + (2)2)
- + UML) + (9009 + (17)10) + {2){2)
=917

i
Z',xf:ml 1224122+ 2122+ 6+ B+ 22+ 1B+ 9 41704+ 2
=t =1350

It may be recalled from earlier calculations of the simple correlation that

X=9333
Y = 6.583

Given 1= 12, b can be caleulated as

= 917 —(12}i9.333)(6.583)
1350 —(12){9.333)*
= 1.5897
a=Y-—bX
= 6,583 ~ (0.5897)(9,333)
= 1.0793

Mote that these coefficients have been estimated on the raw (untransformed) data. Should
standardisation of the data be considered desirable, the calculation of the standardised
coefficients is also straightforward.

Estimate the standardised regression coefficient
Standardisation is the process by which the raw data are transformed into new variables
that have a mean of 00 and a variance of 1 {Chapter 17). When the data are standardised,
the intercept assumes a value of 0. The term beta coefficient or beta weight is used to
denote the standardised regression coefficient, In this case, the slope obtained by the
regression of Yon X, B, is the same as the slope obtained by the regression of Xon Y, Bg_.
Morcover, each of these regression coefficients is equal to the simple correlation between
Nand Vi

B =B =r

¥ 3 xy

There is a simple relationship between the standardised and non-standardised regression
coefficients:

A S'r
-

MNote that this is also the value of r calculated earlier in this chapter.
Onee the parameters have been estimated, they can be tested for significance.

Test for significance
The statistical significance of the linear relationship between X and ¥ may be tested by
examining the hypotheses

By fy =0

Hi:fi 20



Conducting bivariate regression analysis

The null hypothesis implies that there is no linear relationship between X and V. The
alternative hypothesis is that there is a relationship, pasitive or negative, between X and
Y. Typically, a two-tailed test is done. A f statlistic with » — 2 degrees of freedom can be
used, where

br

=
SE,

and SE, denotes the standard deviation of b, called the standard error.® The t distribution
was discussed in Chapter 18,

Using a software package, the regression of attitude on duration of residence, using the
data shown in Table 20.1, vielded the results shown in Table 20.2. The intercept, o, equals
1.0793, and the slope, b, equals 0.5897. Therefore, the estimated equation is

attitude (Y} = 1.0793 + (.5897 (duration of residence)

The standard error or standard deviation of b is estimated as D.07008, and the value of the
f statistic, ¢ = (0,5897/0.0701 = 8.414, with n = 2 = 10 df. From Table 4 in the Appendix of
statistical tables, we see that the critical value of twith 10 df and a = 0.05 is 2.228 for a
two-tailed test, Since the calculated value of s larger than the critical value, the null
hypothesis is rejected. Hence, there is a significant linear relationship between attitude
towards the city and duration of residence in the city. The positive sign of the slope coeffi-
cient indicates that this relationship is positive. In other words, those who have lived in the
city for a longer time have more positive attitudes towards it,

For the regression results given in Table 20,2, the value of the beta coefficient is esti-
mated as 0.9361.

Determine strength and significance of association

A related inference involves determining the strength and significance of the association
between Yand X The strength of association is measured by the coefficient of determina-
tion, i, In bivariate regression, r* is the square of the simple correlation coefficient
obtained by correlating the two variables. The coefficient +* varies between 0 and 1. It sig-
nifies the proportion of the total variation in ¥ that is accounted for by the variation in X,
The decomposition of the total variation in ¥ is similar to that for analysis of variance
(Chapter 19). As shown in Figure 20.5, the total variation 55 may be decomposed into the
variation accounted for by the regression line, SSWS, and the error or residual variation,

85,001 85, as follows:

S5, = S5, +55,,

L
S5, = L (Y,- Yy

SSrPs B E [Y.i 11;ru':lz

The strength of the association may then be calculated as follows:
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To illustrate the calculations of r, let us consider again the effect of attitude towards the
city on the duration of residence, It may be recalled from earlier calculations of the simple
correlation coefficient that

55.= 2 (¥~ ¥)

=1

= 1209168
The predicted values (V) can be calculated using the regression equation
attitude {E-’} = 1.0793 + (.5897( duration of residence)
For the first observation in Table 20.1, this value is
(V) = 1.0793 + (0.5897 ¥ 10) = 6.9763

For each successive observation, the predicted values are, in order, 8.1557, 8.1557, 3.4381,
8.1557,4.6175, 5.7969, 2.2587, 11.6939, 6.3866, 11.1042, 2.2587. Therefore,

85.,= 2V~ ¥}
1=
= (6.9763 — 6.5833)7+(8.1557 — 6.5833)°+(8.1557 — 6.5833)*
+{3.438] = 6.5833)24(8.1557 = 6.5833)2+(4.6175 = 6.5833)2
+(5.7969 — 6.5833 )4 4(2.2587 — 6.5833)%+(11.6939 — 6.5833)*
+(6.3866 — 6.5833)1+(11.1042 — 6.5833 )2 +{2.2587 — 6.5833)*
= L 1544+2 4272442 472449 892242 4772443 8643 +0.6184

+ 1870214261 1824-0.03874 20,4385+ 18.7021
= 105.9466

i
S.?m = E:;{Y: Yl:lz

= {6~ A.69763)°+(9 — B.1557 ) +(8 - B.1557)7+(3 - 3.4381)°
F(10— 8.1557)%+(4 — 4.6175)4(5 — 5.7969) "+ (2 — 2.2587)¢
+H(11—11.6939)2+(9 — 638662 +{10— 11.1042)7+(2 — 2,2587)°
= 14.9644

It can be seen that 55 = S.Sﬂ,g + 5§, Furthermore,

= SS“'R
SSI_
_ 105.9466
120.9168
= 0.8762
¥
Residual vanation
Tatal 55
variation e
35, Explained variation
55 _
= ¥
Figure 20.5
Decomposition of the
total variation in
bivariate regression X
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Conducting bivariate regression analysis

Another equivalent test for examining the significance of the linear relationship between
X and ¥ {significance of b} is the test for the significance of the coefficient of determina-
tion. The hypotheses in this case are

The appropriate test statistic is the F statistic
S5,,,

f=—+—
58 fin=2)

which has an F distribution with 1 and {n - 2) df. The Ftest is a generalised form of the ¢
test (see Chapter 18). If a random variable is t distributed with n degrees of freedom, then
15 F distributed with 1 and n df Hence, the Ftest for testing the significance of the coef-
ficient of determination is equivalent to testing the following hypotheses:

H.: -ﬁl =1

H: §+#0
or

H:p=10

H:p#0
From Table 20.2, it can be seen that

105.9522

= 1059522 + 14.9644
=0.8762

which is the same as the value calculated earlier. The value of the F statistic is

. 1059522
14.9644/10
= 708028

with 1 and 10 df. The calculated F statistic exceeds the critical value of 4.96 determined
[rom Table 5 in the Appendix, Therefore, the relationship is significant at a = 0,05, corrab-
orating the results of the 1 test. If the relationship between X and Y is significant, it is
meaningful to predict the values of ¥ based on the values of X and to estimate prediction
ACCUTACY.

Check prediction accuracy

To estimate the accuracy of predicred values, Y, it is useful to calculate the standard error
ufcsli.matg, SEE. Thas statistic is the standard deviation of the actual Y values from the
predicted ¥ values:

or SEE=% —=
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ot, more generally, if there are kindependent variables

ﬁrl‘}
SEE="Y ———
n=k-1
SEE may be interpreted as a kind of average residual or average error in predicting Y from
the regression equation.'”
Two cases of prediction may arise. The researcher may want to predict the mean value
of ¥ for all the cases with a given value of X, say X, or predict the value of ¥ for a single
case. [n both situations, the predicted value is the same and is given by ¥, where

Y=a+bX,
But the standard error is different in the two situations, although in both situations it is a
function of SEE. For large samples, the standard error for predicting the mean value of Y
is SEE'Y nand for predicting individual ¥ values it is SEE. Hence, the construction of
confidence intervals (see Chapter 15} for the predicted value varies, depending upon
whether the mean value or the value for a single observation is being predicted. For the
data given in Table 20.2, SEE is estimated as follows:

Gpp - 4 149644

12=-2
=1.22329

The final two steps in conducting bivariate regression, namely examination of residuals
and model cross-validation, are considered later, and we now turn to the assumptions
underlying the regression model.

Assumptions

The regression model makes a number of assumptions in estimating the parameters and
in significance testing, as shown in Figure 20.4:

1 The error term is normally distributed. For each fixed value of X, the distribution of Y
is normal !

2 The means of all these normal distributions of Y, given X, lie on a straight line with

slope b,

The mean of the error term is 0.

4 The variance of the error term is constant. This variance does not depend on the values
assumed by X.

5 The error terms are uncorrelated. In other words, the ohservations have been drawn
independently.

A

Insights into the extent to which these assumptions have been met can be gained by an
examination of residuals, which is covered in the next section on multiple regression, !

Multiple regression

Multiple regression

A statistical technigue that
slmultaneously develops a
mathematical relationship
between twao or mare
Indapandent wariables and
an Intervalscaled dependent
variabie.
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Multiple regression involves a single dependent variable and two or more independent
variables. The questions raised in the context of bivariate regression can also be answered
via multiple regression by considering additional independent variables:

® Can variation in sales be explained in terms of variation in advertising expenditures,
prices and level of distribution?

® Can variation in market shares be accounted for by the size of the sales force, advertis-
ing expenditures and sales promotion budgers?



Example

Multiple regression model
An equation used to explam
the results of multiple
regression analysis,

Statistics associated with multiple regression

® Are consumers perceptions of quality determined by their perceptions of prices, brand
image and brand attributes?

Additional questions can also be answered by multiple regression:

® How much of the variation in sales can be explained by advertising expenditures, prices
and level of distribution?

® What is the contribution of advertising expenditures in explaining the variation in sales
when the levels of prices and distribution are controlled?

® What levels of sales may be expected given the levels of advertising expenditures, prices
and level of distribution?

Global brands, local ads'?

Europeans welcome brands from other countries, but when it comes to advertising, they seem
lo prefer brands from their own country, A survey conducted by Yankelovich and Partners
{www.yankelovich.com) and its affiliates found that most European consumers’ favourite com-
maercials were for local brands even though they were more than likely to buy foreign brands.
Respondents in the UK, France and Germany named Coca-Cola as the mast often purchased
soft drink, The French, however, selected the farmous award-winning spot for France's Perrier
bottled water as thelr favourite commerclal. Similarly, in Germany, the favourite advertising
was for a German brand of non-alcoholic beer, Clausthaler. In the UK, though, Coca-Cola was
the favourite soft drink and also the favourite advertising. In the light of such findings, the
impartant guestion was: does advertising help? Does it help increase the purchase probability
of the brand or does it merely maintain the brand recognition rate high? One way of finding out
was by running a regression where the dependent variable was the likelihood of brand pur-
chase and the independent variables ware brand attrlbute evaluations and advertising
evaluations. Separate models with and withoul advertising could be run Lo assess any signifi-
cant difference in the contribution. Individual t tests could also be examined to find out the
significant contripution of both the brand attributes and advertising. The results could indicate
the degree Lo which advertising plays an imporiant part in brand purchase decisions,

The general form of the multiple regression model is as follows:
Y=f+5X+ L +8X+. .+ BX +e

which is estimated by the following equation:
Y=a+bX + b5 + 0LX + ..+ 0X

As before, the coefficient @ represents the intercept, but the Is are now the partial regres-
sion coefficients. The least squares criterion estimates the parameters in such a way as to
minimise the total error, §5_. This process also maximises the correlation between the
actual values of Yand the predicted values of Y. All the assumptions made in bivariate
regression also apply in multiple regression. We define some associated statistics and then
describe the procedure for multiple regression analysis.'

Statistics associated with multiple regression

Mast of the statistics and statistical terms described under bivariate regression also apply
to multiple regression. In addition, the following statistics are used:

Adjusted R*. R, the coefficient of multiple determination, is adjusted for the number of
independent variables and the sample size (o account for the diminishing returns. Afier the
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first few variables, the additional independent variables do not make much contribution.
Coefficient of multiple determination. The strength of association in multiple regression
is measured by the square of the multiple correlation coefficient, B, which is also called
the coefficient of multiple determination,

F test. The F test is used to test the null hypothesis that the coefficient of multiple deter-
mination in the population, wa. is zero, This is equivalent to testing the null hypothesis
Hy: B, = B, = f, = ... f, = 0. The test statistic has an Fdistribution with kand (n—k-1) df.
Partial F test, The significance of a partial regression coefficient, f, of X, may be tested
using an incremental F statistic. The incremental F statistic is based on the increment in
the explained sum of squares resulting from the addition of the independent variable X to
the regression equation after all the other independent variables have been included.
Partial regression coefficient. The partial regression coefficient, b, denotes the change in
the predicted value, ¥, per unit change in X, when the other independent variables, X, to
X, are held constant,

Conducting multiple regression analysis

592

The steps involved in conducting multiple regression analysis are similar to those for
bivariate regression analysis. The discussion focuses on partial regression coefficients,
strength of association, significance testing and examination of residuals,

Estimating the partial regression coefficients

To understand the meaning of a partial regression coefficient, let us consider a case in
which there are two independent variables, so that

Y=a+bX, +bX,

First, note that the relative magnitude of the partial regression coefficient of an independ-
ent variable is, in general, different from that of its bivariate regression coefficient. In
other words, the partial regression coefficient, b, will be different from the regression
coetficient, b, obtained by regressing ¥ on only X|. This happens because X, and X, are
usually correlated. In bivariate regression, X, was not considered, and any variation in ¥
that was shared by X, and X, was attributed to X,. In the case of multiple independent
variables, however, this is no longer true.

The interpretation of the partial regression coefficient, b, is that it represents the
expected change in ¥ when X is changed by one unit but X, is held constant or otherwise
controlled. Likewise, b, represents the expected change in ¥ for a unit change in X, when
X, is held constant. Thus, calling &, and b, partial regression coefficients is appropriate. It
can also be seen that the cnmbmcd effects of X, and X, on Y are additive. In other words,
it X, and X, are cach changed by one unit, the cxpcn:d change in Ywould be (b, + b,).

Ccnccptuall}n the relationship between the bivariate regression cuctﬁclr:nt and the
partial regression coefficient can be illustrated as follows, Suppose that one were to
remaove the effect of X, from X,. This could be done by running a regression of X, on X,
Tn other words, one would estimate the equation X, = a + bX, and calculate the n:.sniual

= (X, — X, ). The partial regression coefficient, b], is then cqual to the bivariate regres-
siun cucfﬁcicnt, b, obtained from the equation ¥ = a + bX . In other words, the partial
regression coefficient, by, is equal to the regression coefficient, b, between Y and the
residuals of X from which the cffect of X, has been removed. The partial coefficient, b,,
can also be interpreted along similar lines,
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Extension to the case of k variables is straightforward. The partial regression coeffi-
cient, b, represents the expected change in ¥ when X, is changed by one unit and X, to X,
are held constant. It can also be interpreted as the bivariate regression coeflicient, b, for
the regression of ¥ on the residuals of X, when the effect of X_, o X,' has been removed
from X|.

The beta coefficients are the partial regression coefficients obtained when all the vari-
ables (Y, X, K:, i ,‘{*] have been standardised to a mean of 0 and a variance of 1 hefore
estimating the regression equation. The relationship of the standardised to the non-stan-
dardised coefficients remains the same as before:

The intercept and the partial regression coefficients are estimated by solving a system of
simultancous equations derived by differentiating and equating the partial derivatives lo
zero. Since these coefficients are automatically estimated by various computer programs,
we will not present the details. Yet it is worth noting that the equations cannot be solved if
(1) the sample size, m 15 smaller than or equal to the number of independent variables, K,
or {2} ane independent variable is perfectly correlated with another.

Suppose that in explaining the attitude towards the city we now introduce a second
variable, importance attached to the weather, The data for the 12 pretest respondents on
attitude towards the city, duration of residence and importance attached to the weather
are given in Table 20.1. The results of multiple regression analysis are depicted in Table
20.3. The partial regression coefficient for duration (X, ] is now 0.4811, different from
what it was in the bivariate case, The corresponding beta coefficient is 0.7636,

Table 20.3 Multiple regression

Multiple R 097210
R* 0.94458
Adjusted B* 0.93276
Standard error 0.85974
Analysis of variance

of Sum of squares Mean sguare
Regrassion L 11426425 Bra3213
Residual 9 6.65241 0.73916
F=77,29364 Significance of F = 0.0000
Variables in the equation
Variabie b SE, Beta (fi T Sig. of T
Importance 0. 28865 0.08G608 0.31382 3.353 0.0085
Duration 0.48108 0.05895 LTEIGS B.160 0.0000
{Constant) 0.33732 0.56736 0.595 0.5668
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The partial regression coefficient for importance attached to weather (X)) is (L2887, with a
beta coefficient of 1.3138. The estimated regression equation is

{ﬁ' =0.33732 + 0.48108X, + 0.28865X,
or
attitude = 0.33732+ 0.48108(duration }+0.28865(importance)

This equation can be used for a variety of purposes, including predicting attitudes
towards the city, given a knowledge of the respondents’ duration of residence in the city
and the importance they attach to weather. Note that Duration and Importance are signif-
icant and useful in the prediciton.

Strength of association

The strength of the relationship stipulated by the regression equation can be determined
by using appropriate measures of association. The total variation is decomposed as in the
bivariate case:

. . 55,=85,,+ 55,
where 35 = E[YI— ¥

=1

$5,= Ll¥-¥P
=1

55, = (Y- ¥
=1

The strength of association is measured by the square of the multiple correlation coeffi-
cient, %, which is also called the coefficient of multiple determination:

55

=
55,
The multiple correlation coefficient, R, can also be viewed as the simple correlation coefMi-
cient, r, between Yand Y. Several points about the characteristics of B? are worth noting.
The coefficient of multiple determination, R?, cannot be less than the highest bivariate, ré,
of any individual independent variable with the dependent variable, B* will be larger
when the correlations between the independent variables are low. If the independent vari-
ables are statistically independent {uncorrelated), then R will be the sum of bivariate r¥ of
each independent variable with the dependent variable. B? cannot decrease as more inde-
pendent variables are added to the regression equation. Yet diminishing returns set in, so
that after the first few variables, the additional independent variables do not make much
of a contribution."® For this reason, R* is adjusted for the number of independent vari-
ables and the sample size by using the following formula:

1= Ry

adjusted R? = R -
n=k-1

For the regression results given in Table 20.3, the value of R? is

114.2643
114.2643 + 6.6524
= 0.9450

R!=

This is higher than the +* value of 0.8762 obtained in the bivariate case. The +* in the
bivariate case is the square of the simple (product moment) correlation between attitude
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towards the city and duration of residence. The R’ obtained in multiple regression is also
higher than the square of the simple correlation between attitude and importance
attached to weather (which can be estimated as (,5379). The adjusted R is estimated as

2(1.0 - 0.9450)

adjusted R* = 0.9450 -
12=2=1

=0,9328

Note that the value of adjusted R? is close to R? and both are higher than * for the bivari-
ate case. This suggests that the addition of the second independent variable, importance
attached to weather, makes a contribution in explaining the variation in attitude towards
the city.

Test for significance

Significance testing involves testing the significance of the overall regression equation as
well as specilic partial regression coefficients. The null hypothesis for the overall test is
that the coefficient of multiple determination in the population, wa,, is 7ero;

Hg: Rim,, =0
This is equivalent to the following null hypothesis:
He by =f=p==f=0
The overall test can be conducted by using an F statistic
e 55”_}:1" k
55,/ (n=k=1)
= Rk
(1-RY{n—k-1)

which has an F distribution with k and {n—k— 1} d£' For the multiple regression resulls
given in Table 20.3,

X 14.2642/2

=77.2937
6.6524/9

which is significant at a = 0.05,

If the overall null hyvpothesis is rejected, one or more population partial regression coef-
ficients have a value different from 0. To determine which specific coefficients {the fs)
are non-zero, additional tests are necessary, Testing for the significance of the §s can
be done in @ manner similar to that in the bivariate case by using # tests, The signifi-
cance of the partial coefficient lor importance attached to weather may be tested by the
following equation:

b
SE,

= Jatberd =3.354
008608

.

which has a rdistribution with (= k= 1} df This coefficient is significant at w = (.05, The
significance of the coefficient for duration of residence is tested in a similar way and
found to be significant. Therefore, both the duration of residence and importance
attached to weather are important in explaining attitude towards the city.
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Residual

The diffesence between the
observed value of ¥ and the
value predicted by me
regression equation ¥,

Figure 20.6

Residual plot indicating
that variance is not
constant
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Some computer programs provide an equivalent F test, often called the partial F test,
which involves a decomposition of the total regression sum of squares, 85_, into com-
ponents related to each independent variable. In the standard approach, this is done by
assuming that each independent variable has been added to the regression equation
after all the other independent variables have been included. The increment in the
explained sum of squares, resulting from the addition of an independent variable, X, is
the compoenent of the variation attributed to that variable and is denoted by 55, I._” The
significance of the partial regression coefficient for this variable, b, is tested using an
incremental Fstatistic

o ssn
T SS_f{in-k-1)
which has an Fdistribution with | and (n— k- 1) df.

Although high B and significant partial regression coefficients are comforting, the effi-
cacy of the regression model should be evaluated further by an examination of the residuals.

Examine the residuals

A residual is the difference between the observed value of ¥, and the value predicted by
the regression equation Y, Residuals are used in the calculation of several statistics associ-
aled with regression, In addition, scattergrams ol the residuals — in which the residuals are
plotted against the predicted values, '}’I time, or predictor variables — provide useful
insights in examining the appropriateness of the underlying assumptions and regression
maodel fitted,'®

The assumption of a normally distributed error term can be examined by constructing
a histogram of the residuals. A visual check reveals whether the distribution is normal.
Additional evidence can be oblained by determining the percentages of residuals falling
within +1 SE or 2 SE These percentages can be compared with what would be expected
under the normal distribution (68% and 95%, respectively). More formal assessment can
be made by running the K=5 one-sample test.

The assumption of constant variance of the error term can be examined by plotting the
residuals against the predicted values of the dependent variable, Y If the pattern is not
random, the variance of the error term 1s not constant. Figure 20.6 shows a pattern whose
variance is dependent on the f’l values.

Residuals

Predicted ¥ values



Figure 20.7

Plot indicating a linear
relationship between
residuals and time

Figure 20.8

Plot of residuals
indicating that a fitted
model is appropriate

Conducting multiple regrassion analysis

A plot of residuals against time, or the sequence of observations, will throw some light
on the assumption that the error terms are uncorrelated. A random pattern should be
seen if this assumption is true. A plot like the one in Figure 20.7 indicates a linear rela-
tionship between residuals and time. A more formal procedure for examining the
correlations between the error terms is the Durbin-Watson test.

Plotting the residuals against the independent variables provides evidence of the appro-
priateness or inappropriateness of using a linear model. Again, the plot should result in a
random pattern, The residuals should fall randomly, with relatively equal distribution dis-
persion about zero. They should not display any tendency to be either positive or negative,

To examine whether any additional variables should be included in the regression
equation, one could run a regression of the residuals on the proposed variables. If any
variable explains a significant proportion of the residual variation, it should be considered
for inclusion. Inclusion of variables in the regression equation should be strongly guided
by the researcher’s theory. Thus, an examination of the residuals provides valuable
insights into the appropriateness of the underlying assumptions and the model that is
fitted, Figure 20.8 shows a plot that indicates that the underlying assumptions are met and
that the linear model is appropriate. If an examination of the residuals indicates that the
assumptions underlying lincar regression are not met, the researcher can transform the
variables in an attempt to satisfy the assumptions. Transformations, such as taking logs,
square roots or reciprocals, can stabilise the variance, make the distribution normal or
make the relationship linear. We further illustrate the application of multiple regression
with an example.

4
n
o
=
k=
ut
€T
=

Time

[
E- ¥ @ ag &8 ' g
m - - t -l-
= L] L ] N PR ]
& - 'l:f' *s -r,‘.-;.' -‘.:: -
E » ‘. -'l . *s

L ™ --- ] .’ a® -

Predicted Y values

597



Chapter 20 - ldentifying relationships

598

Example

At no ‘Ad'ditional cost®”

It is widely believed that consumer magazines’
prices arg subsidised by the advertising carried
within the magazines. A study examined the con-
tribution of advertising to the price per copy of
Magazines.

Multiple regression analysis was used to
examina the relationships among price per copy
and editorial pages, circulation, percentage of
news-stand circulation, promotional expendi-
tures, percentage of colour pages, and per copy
advertising revenues. The form of the analysis
Was

PPC = by, + byled, pages) + bylcirc.) + bo(% news circ.} + b, (PE} + bo(% colour) + by (ad revs,)

where
FPC = price per copy {in €)
ed. pages = editorial pages per average |ssue
cire. = the log of average paid circulation (in thousands)
% news circ, = percentage news-stand circulation
PE = promotional expenditures {in €)
% colour = parcentage of pages printed n calour
ad revs. = per copy advertising revenues (in €)

Table 1 shows the zerc-order Pearson product moment correfations among the vanables,
The correlations provide directional support for the predicted relationships and show that
calllinearity among the Independent varlables |s sufficlently low so as not to affect the stabil-
ity of the regression analysis. The highest correlation among the independent vanables was
between promotional expenditures and circulation (r= 0.42).

Table 1 Zero-order correlation matrix of variables in analysas

Price par | Price per | Circulation| Editorial Pro- % %
CODY edilaral ages matkanal COar MEWE-
[ axpeml pages | stand i,
tiwras
Price per editorial page 0.60=
Circulation —,21* | 042>
Editorial pages .52= | D30+ | D.29=

Promotlonal expenditures | -0.22% | -0.06 0.42% | <019

% colour pages 001 | ~0.15 0.33=| 019 | -0.15

% news-stand circ. g48*| 0.17 0.09 0.21%| C26*( D.02

Ad revenies per copy G.29* | 004 |-0.25%| 0.30* | -0.14 0.15 008
*n < 0,05,

The results of the regression analysis using price per copy as the dependent variable are
given in Table 2. Of the six Independent variables, three were significant (p = 0.05): the
number of editorlal pages, average ciroulation and percentage news-stand circulation. The
three varables accounted for virtually all of the explained varance (R? = 0.51; adjusted
R = 0.48). The direction of the coefficients was consistent with prior expectations: the
number of editorlal pages was positive, circulation was negative, and parcentage news-

Spurce: © Getty Images



Stepwise regression

A regreagion procedure in
which the predictor variables
enter or leave the regressian
enuation ane at a time.

Conducting multiple regrassion analysis

stand circulation was positive. This was expecled, given the structure of the magazine pub-
lishing industry, and it confirmed the hypothesised relationship.

Table 2 Regression analysis using price per copy as dependent variable

b SE F

Dependent varlable: price per copy

Independent variables:
Editerial pages 0.0084 0.0017 23.04°
Circulation —0.4180 0.1372 o208
Percantage news-stand circufation D.0087 00016 18.452
Promotional expenditures 0.13 - 0.04" 0.0000 .59
Percentage colour pages 0.0227 0.0092 001
Per copy ad revenues 0.1070 0.0412 0.07

Owerall B2 = 051 df =8, 03 Overall F= 16.19*

4 p e 005,

b Pacimal moved by four 2eras.

Promotional expenditures, use of colour and per copy advertising revenues were found to
have no relationship with price per copy, after the effects of circulation, percentage nows-
stand circulation and editorial pages were controlled in the regression analysis,

Because the effect of per copy advertising revenue was not significant, no support was
found for the contention that advertising decreases the price per copy of consumer maga-
tines. It was concluded that adverlising in magazines is provided free to consumers, but
does not subsidise prices.

In this example, promotional expenditures, percentage of colour pages and per copy
advertising revenues were not found to be significantly related to the price per copy of
magazines. Some of the independent variables considered in a study often turn out to he
non-significant. When there are a large number of independent variables and the
tesearcher suspects that not all of them are significant, stepwise regression should be used,

Stepwise regression

The purpose of stepwise regression is to select, from a large number of predictor variables,
a small subset of variables that account for most of the variation in the dependent or crite-
rion variable, In this procedure, the predictor variables enter or are removed from the
regression equation one at a time.*! There are several approaches to stepwise regression:

1 Forward inclusion. Initially, there are no predictor variables in the regression equation.
Predictor variables are entered one at a time, only if they meet certain criteria specified
in terms of Fratio. The order in which the variables are included is based on the con-
tribution to the explained variance.

2 Backward elinnnation. Initially, all the predictor varables are included in the regression
equation, Predictors are then removed one at a time based on the Fratio.

3 Stepwise solution. Forward inclusion is combined with the removal of predictors that
no longer meet the specified criterion at each step.

Stepwise procedures do not result in regression equations which are optimal, in the sense
of producing the largest B, for a given number of predictors. Because of the correlations

599



Chapter 20 - ldentifying relationships

between predictors, an important variable may never be included or less important vari-
ables may enter the equation. To identify an optimal regression equation, one would have
to compute combinalorial selutions in which all possible combinations are examined.
Nevertheless, stepwise regression can be useful when the sample size is large in relation to
the number of predictors, as shown in the following example.

Example Browsers step out?

Many commentators consider store-based retailers to have an advantage over web-based
retailers when it comes to browsing, bacause store-based retailers are larger in size and
product offerings. Although the Web can appeal lo younger shoppers, the shopping mall can
remain a dominant force with so0 many entertainment factors being built into shopping
malls. A profile of browsers in regional shopping centres was constructed using three sets
of Independent variables; demographics, shopping behaviour, and psychoelogical and atiitudi-
nal variables. The dependent variable consisted of a browsing index. In a stepwise
regression including all three sets of variables, demographics were found to be the most
powerful predictors of browsing behaviour, The final regression equation, which contained

Regression of browsing index on descriptive and attitudinal variables by order of entry into

stepwise regression
Variabie description Coeiffichent SE Significance
Gender (0 = male, 1 = female) -1.485 164 0,001
Employment status {0 = employed} 0.391 0.182 0.003
Salf-confidence -0.152 0.128 0.234
Education 0.079 3.072 0.271
Brand intention -0.063 028 0.024
Watch daytime TW? (0 = yes) 0,232 144 0.107
Tension -0.182 0,069 0.o02
Income 0.089 0061 0.144
Freguency of shopping centre visits -0.138 0.059 0.028
Fewer friends than most 0,162 084 0.054
Good shopper L .090 0174
Others” opinions important -0.147 0.085 0.024
Control over [ife =0.069 069 0317
Family size -0.086 0.062 0.165
Enthisiastic persen -.143 3.099 0,150
Age 0.038 0,089 0.603
MNumbear of purchases mada -0.068 0.043 0150
Purchases per store 0,209 0.152 0167
Shop on tight budget ~0.0565 067 0412
Excellent judge of quality —0.070 G089 0,435
Constant 3.250
Overall R¥ = 0.477

&00



Relative importance of predictors

20 of the possible 36 variabies, included all the demographics. The lable presents the
regression coefficients, standard emors of the coefficients, and their significance levels.

In Interpreting the coefficients, it should be recalled that the smaller the browsing index
{the dependent varable), the greater the tendency to exhibit behaviours assoclated with
browsinmg. The two predictors with the largest coefficients were gender and employment
status. Browsers were more |ikely to be employed females. They also tend to be somewhat
‘downscale’, compared with other shopping centre palrons, exhibiling lower levels of educa-
tion and income, after accounting for the effects of gender and employment status.
Although browsers tend to be somoewhat younger than non-browsers, they are not necessar-
ily single; lhose whao reported larger family sizes lended o be associatad with smaller
values of the browsing index.

The 'downscale’ profile of browsers relative to other patrons indicates that speciality
stores in shopping centres should emphasise moderately priced products. This may explain
the historically low rate of failure in shopping centres among such stores and the tendency
of high-priced speciality shops to be located in only the prestigious shopping centreés of
‘upscale’ non-enclosed shopping centres,

Multicollinearity

Multicollinearity

A state of high
intercorrelations among
indepandent variables

Stepwise regression and multiple regression are complicated by the presence of multi-
collinearity. Virtually all multiple regression analyses done in marketing research involve
predictors or independent variables that are related. Multicollinearity, however, arises
when intercorrelations amongst the predictors are very high.** Multicollinearity can result
in several problems, including the following:

1 The partial regression coefficients may not be estimated precisely. The standard errors
are likely to be high.

2 The magnitudes as well as the signs of the partial regression coefficients may change
from sample to sample.

3 It becomes difficult to assess the relative importance of the independent variables in
explaining the variation in the dependent variable.

4 Predictor variables may be incorrectly included or removed in stepwise regression.,

What constitutes serious multicollinearity is not always clear, although several rules of
thumb and procedures have been suggested in the literature, Procedures ol varying com-
plexity have also been suggested to cope with multicollinearity.*” A simple procedure
consists of using only one of the variables in a highly correlated set of variables,

Alternatively, the set of independent variables can be transformed into a new set of pre-
dictors that are mutually independent by using techniques such as principal components
analysis {see Chapter 22). More specialised techniques, such as ridge regression and latent
rool regression, can also be used.*®

Relative importance of predictors

When multicollinearity is present, special care 1s required in assessing the relative impor-
tance of independent variables, In marketing research, it is valuable to determine the
relative importance of the predictors, In other words, how important are the independent
variables in accounting for the variation in the criterion or dependent variable?®’
Unfortunately, because the predictors are correlated, there is no unambiguous measure of
relative importance of the predictors in regression ana]}r_sis..z" Several approaches, however,
are commonly used to assess the relative importance of predictor variables:
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1 Statistical significance, If the partial regression coefficient of a variable is not significant,
as determined by an incremental Ftest, that variable is judged to be unimportant. An
exception to this rule is made if there are strong theoretical reasons for believing that
the variable is important.

2 Square of the simple correlation coefficient, This measure, %, represents the proportion
of the variation in the dependent variable explained by the independent variable in a
bivariate relationship.

3 Square of the partial correlation coefficient. This measure, R v e 18 the coefficient of
determination between the dependent variable and the independent variable, control-
ling for the effects of the other independent variables,

4 Square of the part correlation coefficient. This cocfficient represents an increase in #?
when a variable is entered into a regression equation that already contains the other
independent variables.

5 Measures based on standardised coefficients or beta weights, The most commonly used
measures are the absolute values of the beta weights,|fi], or the squared values, fi’.
Because they are partial coefficients, beta weights take into account the effect of the
other independent variables, These measures become increasingly unreliable as the cor-
relations among the predictor variables increase | multicollinearity increases).

6 Stepwise regression. The order in which the predictors enter or are removed from the
regression equation is used to infer their relative importance,

Given that the predictors are correlated, at least to some extent, in virtually all regression
situations, none of these measures is satistactory, It is also possible that the different meas-
ures may indicate a different order of importance of the predictors.® Yet if all the
measures are examined collectively, useful insights may be obtained into the relative
importance of the predictors,

Cross-validation

Cross-validation

A test of validity that
miamings whether a madel
holds on comparable data
not used in the riginal
pstimation

Double cross-validation

A special form of validation in
which the samplé is split nlo
halves, Dne hall serves as
the estimation semple and
the other as a validation
sample, The rolés of the
estimation and validation
halves are then reversed and
the crossalidation process
is repeated

&02

Before assessing the relative importance of the predictors or drawing any other inferences,
it is necessary to cross-validate the regression model. Regression and other multivariate
procedures tend to capitalise on chance variations in the data, This could result in a
regression model or equation that is unduly sensitive to the specific data used to estimate
the model, One approach for evaluating the model for this and other problems associated
with regression is cross-validation, Cross-validation examines whether the regression
madel continues to hold on comparable data not used in the estimation. The typical
cross-validation procedure used in marketing research is as follows.

1 The regression model is estimated using the entire dataset,

2 The available data are split inte two parts, the estimation sample and the validanion
sample, The estimation sample generally contains 50-90% of the total sample.

3 The regression model is estimated using the data from the estimation sample only. This

model is compared with the model estimated on the entire sample to determine the agree-

ment in terms of the signs and magnitudes of the partial regression coefficients,

4 The estimated model is applied to the data in the validation sample to predict the
values of the dependent variable, Y, , for the observations in the validation sample.

5 The observed values, Y, and the predicted values, , in the validation sample are corre-
lated to determine the simple r*. This measure, r*, is compared with R* for the total
sample and with R for the estimation sample to assess the degree of shrinkage.

A special form of validation is called double cross-validation. In double cross-validation
the sample is split into halves. One half serves as the estimation sample, and the other is
used as a validation sample in conducting cross-validation. The roles of the estimation
and validation halves are then reversed, and the cross-validation is repeated.®



Analysiz of variance and convariance with regression

Regression with dummy variables

Cross-validation is a general procedure that can be applied even in some special applica-
tions of regression, such as regression with dummy variables, Nominal or categorical
variables may be used as predictors or independent variables by coding them as dummy
variables. The concept of dummy variables was introduced in Chapter 17. In that chapter,
we cxplained how a categorical variable with four categories (heavy users, medium users,
light users and non-users) can be coded in terms of three dummy variables, I'_JI. J'B'3 and
[r, as shown,

Suppose that the researcher was interested in running a regression analysis of the effect
of attitude towards the brand on product use. The dummy variables D), 1), and D, would
be used as predictors. Regression with dummy variables would be modelled as

Y = atb D +b,D+bD,

Proguct usage Original varlable Dummy varlaible code
categary code

o, D, D,
MNor-users i I 4] 0
Light users 2 0 1 0
Medium users 3 o a i
Heavy users 4 8] 0 o

[n this case, "heavy users’ have been selected as a reference category and have not been
directly included in the regression equation. Note that for heavy users, D), D, and [,
assume a value of 0, and the regression equation becomes

-

For non-users, D, = 1 and [, = [, = 0}, and the regression equation becomes

Yi=a+bh
Thus, the coefficient b, is the difference in predicted ¥, for non-users, as compared with
heavy users. The coefficients b, and b, have similar interpretations. Although heavy users
was selected as a reference category, any of the other three categories could have been
selected for this purpose.”!

Analysis of variance and covariance with regression

Regression with dummy variables provides a framework for understanding the analysis of
variance and covariance. Although multiple regression with dummy variables provides a
general procedure for the analysis of variance and covariance, we show only the equiva-
lence of regression with dummy variables to one-way analysis of variance. In regression
with dummy variables, the predicted ¥ for each category is the mean of Y for each cate-
gory. To illustrate using the dummy variable coding of praduct use we just considered, the
predicted ¥ and mean values for each category are as follows:
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Product usage category Predicted value iean vaiue
¥ ¥
Mon-users a+h, a+b,
Light usars a+b, ath,
Medium users a+by a+ by
Heawy users a a

Given this equivalence, it is easy to see further relationships between dummy variable
regression and one-way ANOVA 32

Thus, we see that regression in which the single independent variable with ¢ categories
has been recoded into ¢ — 1 dummy variables 15 equivalent to one-way ANOVA, Using
similar correspondences, one can also illustrate how n-way ANOVA and analysis of
covariance can be performed using regression with dummy variables:

Dummy variable regression Omne-way ANOVA
il
S‘Sms = E :-Fs = Yt}l = stfl?n'u = Ssﬂmr
=1
- T o
ssw—gtr,. Y) = 55,1 5,
. ="
Cwerall F test = Fitest

Structural equation modelling

Structural egualion
miadelling (SEM|
Collection of stalistical
lechnigues including factor
analysis and multipls
regression, I allows the
researcher o sxaming
ralatignships balwean
several continuous or
diserele independent
variables and several
continuous or discrate
dependent variables, The
Independent and dependen
variables can be lalent or
miasyred variablos
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Structural equation modelling (SEM) estimates the unknown coefficients in a set of
linear structural equations. Variables in the equation system are usually directly observed
variables plus unmeasured latent variables that are not observed but relate to the observed
variables. SEM assumes there is a causal structure among a set of latent variables, and that
the observed variables are indicators of the latent variables. The latent variables may
appear as lincar combinations ol observed variables, or they may be intervening variables
in a causal chain.

The following example,” will help to illustrate the application of this technique.
Consider Omote-sando, one of Tokyo's chic fashion districts. Here in Omote-sando we
observe a young woman - let us call her Yumi — emerging from one of the trendy and very
expensive boutiques which abound in this area. Elegantly and expensively dressed and
coitfured, it is apparent to us that Yumi pays a great deal of attention to her appearance. In
marketing jargon, we might say she appears to be ‘fashion conscious’

Though we often use terms like “fashion conscious’ casually, it is important (o recognise
that fashion consciousness is in reality a theoretical construct; we cannot actually see it
but can only infer its presence from what we can observe, In other words, it is a latent or
unobserved variable. We can observe Yumi's dress and manner and the Omote-sando
boutique at which she's been shopping and make the inference that she is fashion-con-
scious. However, other people may think differently and conclude instead that Yumi is



Figure 20.9
Latent variables
represented as ellipses

Figure 20.10
Latent variables
correlated

Figure 20.11
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regression-type
relationship

Structural equation modelling

simply materialistic. Materialism is another example of a latent or unobserved variable,
S5till others may think she is both fashion conscious and materialistic. In this case we
would, in effect, be saying that these two latent variables are correlated.

Measurable and unmeasurable variables

In marketing research we would not normally venture into Omaote-sando, observe voung
women like Yumi and speculate abour latent variables. We often do, however, administer
questionnaires to consumers which probe for concepts such as ‘fashion consciousness’ or
‘materialism’, By asking them to make self-assessments on items such as 'l usually have
one or more outfits that are of the very latest style), we are attempting to measure the
extent of their fashion consciousness, though we recognise that we cannot do so per-
fectly, ("That is, we can measure but only with error.} The staternent ‘I usually have one or
more outfits that are of the very latest style’ is an example of a measurable variable and,
similarly, ‘fashion-consciousness’ is an example of an unmeasurable, latent variable, To
relate this to our earlier discussion, by asking Yumi to make self-assessments such as this,
we are attempting to measure indirectly a latent variable that is, in fact, a theoretical con-
struct that cannot be measured directly.

Latent variables

Thus, unobserved or unmeasured, latent variables are those that represent abstract con-
cepts or theoretical constructs that cannot be measured directly. Such variables are often
referred to as factors’ or ‘common factors. That is, they are presumed to underlie what
can be observed, in the sense that the latent variables directly influence the outcome or
values taken by the observed variables. In pictorial form, latent variables can be repre-
sented as ellipses (Figure 20,9}, Latent variables can be correlated with each other, as
represented by the double-headed arrow in Figure 20.10. Latent variables can also influ-
ence other latent variables directly, via a regression-tvpe relationship, as represented by the
single-headed arrows in Figure 20,11,

=
=
=
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Figure 20.12
Linking observed lor
indicator] variables
with latent [or
unobserved] variables

Figure 20.12

Identifying observed
variables for the
completely endogenous
latent variable, labelled
as ‘inclination to
purchase’
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Observed variables

Because latent variables are, by definition, unobservable, their measurement must be
obtained indirectly. This is done by linking one or more observed variables to each unob-
served variable. With SEM, the linking of observed (or indicator) variables with latent {or
unobserved) variables is the first step in a formal statistically valid procedure. In pictorial
form, observed or indicator variables can be represented as rectangles (Figure 20.12). In
this diagram, the single-headed arrows connecting the latent and observed variables indi-
cate that the latent variables directly influence the outcome or values taken by the
observed variables, again through a regression-type relationship. We can go still further, in
terms of identifying observed variables, for the completely endogenous latent variable
labelled as ‘inclination to purchase) as illustrated in Figure 20.13,

Still more variables

Apart from latent and observed variables, there are residual and error terms associated
with cach of these which also form a key part of the overall model. For simplicity, how-
ever, we omit these from the discussion and refer the interested reader to more specialised




Structural equation modelling

texts on this topic.** Suffice it to say that a fully specified structural equation model is
potentially a complex interplay between a large number of observed and unobserved vari-
ables, and residual and error terms.

Example Japanese single women

To illustrate the concepts of observed/measured and unmeasured/latent variables we intro-
duced a fictitious young woman called Yumi. Fashion-consciousness and materialism werg
used as examples of unmeasured/ latent variables, and we hypathesised that these two
latent variables might be intercorrelated. We now proceed beyond allegory and discuss the
results of an actual study conducted among consumers whao, In many aspects, are very
much like Yumi. Recently, SRG Japan conducted a study on overssas travel among young
Japanese single women - OLs in the local vermacular. The term OL is an abbreviation of ‘Office
Lady’ and is widely used in Japan to refer to single women working in non-management and
nomlechnical occupations, mosl often clerical work, Although their earmed incomes are typi-
calfly not high, OLs are one of the most important consumer groups in Japan because they
often |ive with their parents, rent-free, and tend to have significant disposable incomes -
incomes which they frequently spend quite fraaly, Anolther distinction of OLs that is impor-
tant to the travel industry is that they often have more freedom to travel during any time of
the year than other consumer groups. A key objective of this research was to oxplore per-
sonalily faclors underlying OLs' preferences for overseas destinations and Uravel
armangements. Consequently, during the interviews, respondents rated themseives on a bat-
tery of psychographic items which had bean developed through preliminary qualitative
research, The qualitative phase of the research had suggested five principal psychographic
factors of relevance to overseas travel experience and tastes:

# Fashion-consciounass
® Materialism

& Aczgertivensss

& Conservatism

@ Hedonism.

Each of these latent constructs was measured by three or four measured variablas (items).
These are shawn in Table 1 overleaf.

Baseod on the qualitative research and exploratory factor analysis (EFA) of the quantitative
resuits, a8 number of structural eguation models were developed and tested, each of which
hypathesised different interrelationships ameng the five latent constructs listed in the table,
The path diagram, representing the model that was considered most meaningful in light of
the overall findings of the research, is shown in Figure 20.14, In this path diagram, latent
constructs {unmeasured vanables) are shown in ellipses and the questionnaire items used
to measure these latent constructs (i.e. measured variables) are shown in rectangles.
Arrows pointing from the circles to the rectangles are equivalent to factor loadings in factor
analysis. With two exceptions, all loadings were above 0.50. Arrows between the unob-
sarved vanables reprasent correlations among these factors (since comrelations are two-way
associations, all arrows between the unobserved variables are two-headed). The overall
rasulis may seem surprisingly intuitive; fashionconsciousness and materalism were found
to be highly associated and In a positive direction. In fact, this comelation (0.84) was strong
encugh to suggest that these two factors may actually be functions of a second-order factor,
although confirmation af this would need further rasearch. Materialism and assertiveness
were alzo found to be positively related, but more weakly. The correlation between azssertive-
ness end fashion-consciousness was weakly positive (0.26) but, nonetheless, statistically
significant, Looking to the right side of the diagram In Figure 2014, we see that conser-
vatism and hedonism are negatively associated. This relationship is also weak but
significant. Note also that fashion-consciousness, materialism and assertiveness are all
moderately positively associated with hedonism. And, as had been anticipated, materialism
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Table 1 Measured variables
Fashion-consciousness
¥i3 Fashion is an impartant means of sell-expression
Y20 | ke highclass items
V21 I'm usually the first among my friends to leamn about a new brand or product
Materialism
V31 | I'm exstravagant about my clothes and food
V34 | I'm the type to buy something | want immediately even if | have to bormow money
V3T | I'm the type that doesn’'t hesitate to buy necessary things even If they are somewhat expensive
Assertiveness
¥14 | make friends guickly even with peaple I've just met
ViT | challenge anything without fear of fallure
w33 | secialise with many different types of people
V3ia I'm the type to clearly state my opinions to others

Conservatism (or ‘Deliberateness’)

V3 I tend o achieve my goals one slep al a ima
Ll I'm the type to deliberate things
V7 | gather various information and study well when deciding to buy a specific item
Hedonksm
¥l | want to enjoy the present rather than think about the future
V9 I like to go out to nighttime entartainment spots
V12 | want to lead a life with lots of ups and downs
Vi3 0.69
0.28 m—
V2l - —
0.64 0.52 V3
Va1 0.75
o 25 U B4 0.5 Conservatlsm @ ————® VB
W31 1&%\ 0.56
¥7
0.56
V34 - I 0:29
‘:‘j“,—" "\_\\ 0.44 vi
_ 0.54
III 41 Hedonism —= VB
o ‘E?\ . / \QA
w12
0,62 _ _
Y17 -=—————  Assertivensss
‘,E.'E/G/l
¥33 0.60
V39

Figure 20.14 Structural equation modelling ‘path diagram’




Internet and computer applications

and conservatism were negatively related in this research, although this relationship is not
strong. In an carlier preliminary model, fashion-consciousness and assertiveness were not
found to be associated with conservatism, and these paths were deleted before testing the
present model, To recapitulate, fashion-consclous OLs are inclined to be on the spendthrift
slde and to have a hedonistic streak, although they are not necessarily exceptionally
assertive or extroverted. Given these patterns, we might expect that, when vacationing
abroad, they would tend to look for an abundance of places 1o shop, especially for high-
priced/fashion goods. Choice restaurants and perhaps nightspots would probably also be
considerations for many of them when choosing a travel destination and/or travel package.
More conservative or methodical types, on the other hand, would be expected to be less
extravagant, fashion conscious and assertive and also loss hedonistic. Other results for this
survey suggested that these young women might, instead, be more inclined to enjoy the
lacal Mavour of their destination, or simply relax,

Calibration and hypothesis testing

So far, we have a model that makes a certain amount of sense in terms of describing the
key relationships in a model of market behaviour. In fact, what we have is more than that.
First, the diagram in Figure 20.14 indicates that there is a hypothesised relationship
between a number of latent variables which forms the underpinning causal structure of
behaviour in this market. This is the so-called structural model. Second, the diagram indi-
cates that there are several variables that we can observe directly, with statistical
relationships between them that we may be able to use to calibrate the underlying struc-
tural model. This set of statistical relationships is the so-called smeasuresnent model. (Recall
that the latent variables are linked to cach other via regression-type relationships, so that
calibration in this context simply means estimating values for the relevant regression coef-
ficients.) The central ideas behind SEM are then:

® To determine the statistical relationship between the observed variables and estimates
of the regression coefficients that link the unobserved, latent variables,
® ‘lo determine the adequacy, or goodness of fit, of the hypothesised structural model,

Internet and computer applications

The computer packages contain several programs to perform correlation analysis and
regression analysis, calculating the associated statistics, performing tests for significance
and plotting the residuals,

5F55

The CORRELATIONS can be used for computing Pearson product moment correla-
tions with significance levels. Univariate statistics, covariance and cross-product
deviations may also be requested. PARTIAL CORR computes partial correlations. The
effects of one or more confounding variables can be controlled when describing
the relationship between two variables. Significance levels are included in this output.

REGRESSION calculates bivariate and multiple regression equations, associated sta-
tistics and plots. 1t allows for easy examination of residuals. Stepwise regression can also
be conducted, Regression statistics can be requested with PLOT, which produces simple
scattergrams and some ather types of plots,
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Within the 5PSS suite of products, Amos provides powerful and easy-to-use struc-
tural equation modelling (SEM) software. This allows the creation of more realistic
models than standard multivariate statistics or multiple regression models alone. With
Amos, a model is specified, estimated, assessed and presented in an intuilive path dia-
gram to show hypothesised relationships amongst variables, This enables the rapid
testing and confirmation of claims such as “value drives loyalty!

SAS

CORR produces metric and non-metric correlations between variables, including
Pearson’s product moment correlation. It also computes partial correlations.

REG is a general-purpose regression procedure that fits bivariate and multiple
regression models using the least squares procedure. All the associated statistics are
computed, and residuals can be plotted. Stepwise methods can be implemented. RSREG
is-a more specialised procedure that fits a quadratic response surface model using least
squares regression. It is useful for determining factor levels that optimise a response.
The ORTHOREG procedure is recommended for regression when the data are ill-con-
ditioned, GLM uses the method of least squares to fit general linear models and can also
be used for regression analysis. NLIN computes the parameters of a non-linear model
using least squares or weighted least squares procedures.

Minitab

Correlation can be computed using the STAT=BASIC STATISTICS=CORRELATION
function. It calculates Pearson’s product moment. Spearman’s procedure ranks the
columns first and then performs the correlation on the ranked columns. To compute
partial correlation, use the menu commands STAT=BASIC STATISTICS>CORRELA-
TION and STAT>REGRESSIONZREGRESSION. Partial correlations can also be
calculated using session commands.

Regression analysis, under the STATS>REGRESSION function, can perform simple,
polynomial and multiple analysis. The output includes a linear regression equation,
table of coefficients, R*, B* adjusted, analysis of variance table, and a table of fits and
residuals that provide unusual observations. Other available features include stepwise,
best subsets, fitted line plot and residual plots.

Excel

Correlations can be determined in Excel by using the TOOLS=DATA ANALYSIS>
CORRELATION function. Utilise the Correlation Worksheet function when a correla-
tion coefficient for two cell ranges is needed. There is no separate function for partial
correlations,

Regression can be accessed from the TOOLS>DATA ANALYSIS menu. Depending on
the features selected, the output can consist of a summary output table, including an
ANOVA table, a standard error of ¥ estimate, coefficients, standard error of coefficients,
R values and the number of observations. In addition, the function computes a residual
output table, a residual plot, a line fit plot, a normal probability plot and a two-column
probability data output table,



Summary

Summary

The product moment correlation coefficient, r. measures the linear association between
two metric {interval or ratio scaled) variables, [ts square, r*, measures the proportion of
variation in one variable explained by the other. The partial correlation coefficient
measures the association between two variables after controlling, or adjusting for, the
effects of one or more additional variables. The order of a partial correlation indicates
hew many variables are being adjusted or controlled. Partial correlations can be very
helpful for detecting spurious relationships,

Bivariate regression derives a mathematical equation between a single metric criterion
variable and a single metric predictor variable. The equation is derived in the form of a
straizht line by using the least squares procedure. When the regression is run on stan-
dardised data, the intercept assumes a value of zero, and the regression coefficients are
called beta weights. The strength of association is measured by the coefficient of deter-
mination, r, which is obtained by computing a ratio of 55 _to 55, The standard error
of estimate is used to assess the accuracy of prediction and may be interpreted as a kind
of average error made in predicting ¥ from the regression equation.

Multiple regression involves a single dependent variable and two or more independent
variables, The partial regression coefficient, b, represents the expected change in ¥
when X, is changed by one unit and X, to X, are held constant. The strength of associa-
tion is measured by the coefficient of multiple determination, B, The significance of
the overall regression equation may be tested by the overall F test, Individual partial
regression coefficients may be tested for significance using the incremental F test,
Scattergrams of the residuals, in which the residuals are plotted against the predicted
values, 't-", time, or predictor variables, are useful for examining the appropriateness of
the underlying assumptions and the regression model fitted.

I stepwise regression, the predictor variables are entered or removed from the regres-
sion equation one at a time for the purpose of selecting a smaller subset of predictors
that account for most of the variation in the criterion variable. Multicollinearity, or very
high intercortelations among the predictor variables, can result in several problems.
Because the predictors are correlated, regression analysis provides no unambiguous
measure of relative importance of the predictors. Cross-validation examines whether
the regression model continues 1o hold true for comparable data not used in estimation.
It is a useful procedure for evaluating the regression model.

Nominal or categorical variables may be used as predictors by coding them as dummy
variables. Multiple regression with dummy variables provides a general procedure for
the analysis of variance and covariance, Structural equation modelling (SEM ) estimates
the unknown coefficients in a set of linear structural equations. Variables in such an
equation system are usually directly observed variables plus unmeasured latent variables
that are not observed but relate to the observed variables,
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Chapter 20 - Identifying relationships

Questions

1 What is the product moment correlation coafficient?
Does a product moment correlation of zero between
two variables Imply that the variables are not related
1o each other?

2 What are the maln uses of regression analysis?
3  ‘What |s the least squares procedura?

4 Explain the meaning of standardised regression
coefflclents,

5 How |s the strength of association measured in
bivariate regression? In multiple regression?

6 What is meant by prediction accuracy? What is the
standard error of the estimate?

T What is multiple regression? How is it different from
bivariate regression?

8 Explain the meaning of a partial regression
coefficlent, Why Is it called that?

Exercises

10
11

13

14

15

State the null hypothesis in testing the significance
of the overall multiple regression equation. How is
this null ypothesis tested?

What is gained by an examination of residuals?

Explain the stepwise regression approach. What is
its purpose?
What s multicallinearity? What problems can arise

because of mullicollineanty?

Describe the crossvalidation procedure. Describe
double cross-validation,

Demonstrate the eguivalence of regression with
dummy variables to one-way ANOWVA.

Explain what structural equation modelling attempts
to achieve, How can SEM be applied in marketing
research?

1 A supermarket chain wants to determine the effect of promotion on relative competitiveness. Data were obtained
from 15 cities on the promoticnal expenses relative to a major competitor (competitor expenses = 100) and on
sales relative to this competitor (competitar sales = 100).

City rumnbar Relative promotiohal expense Refative sales
1 85 98
2 a2 94
3 103 110
4 115 125
B ir B2
& 79 84
7 ibs 113>
B o4 89
8 85 93

10 101 107
11 106 114
i2 120 132
13 118 129
14 75 9
15 59 105
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Exercises

You are assigned tha task of telling the manager whether thera is any relationship between relative promotional
expense and relative sales.

Plat the refative sales (Y axis) against the relative promotional expense (X axis), and interpret the diagram.
Which measura would you use to determing whether there is a relationship between the two variables? Why?
Rur a bivarlate regression analysis of refative sales on relative promotional expense.

Interpret the regression coefficients,

Is the regrassion relationship significant?

If the company matched the competitor in terms of promational expense (If the relative expense was 100), what
would the company’s relative sales be?

g Interpret the resulting rd.

- o0 P

To understand the role of quality and price in influencing the patronage of shoe shops, 14 major shoe shops ina
farge city were rated in terms of preference to shop, guality of shoes sold and price fairmess. All the ratings were
obtained on an 11-point scale, with higher numbers indicating more positive ratings,

Shoe shop number Preference Quality Price
a B 5 3
2 ] & 11
3 B (5] 4
4 2 2 1
5 10 & 11
G 4 3 1
T 5 4 i
& 1 i
9 33 a3 8

in 9 5 10
11 10 8 8
12 2 1 5
13 g 5
14 B 3 2

Run a multiple regression analysis explaining shoe shop preference in terms of shoe quality and price faimess.
Imerprel the partial regression coefficients,

Determine the significance of the overall regression.

Detarming the significance of the partial regression coefficients.

Do you think that multicollinearity is a problem in this case? Why or why not?

LI - S - R - -

You come across a magadine arficle reporting the following relationship between annual expenditure on preparetd
dinners (P and annual income (INC}:

PD = 23.4 + 0.003INC
The coefficient of the INC vanable is reported as significant.

a Does this relationship seem plausible? Is it possible 1o have a cosfficient that s small in magnitude and yet
significant?

From the infarmation given, can you tall how good the estimated model is?

What are the expected expenditures on prepared dinners of a family eaming €30.0007

If & Tamily earning €40,000 spent €130 annually on prepared dinners, what is the residual?

What is the meaning of the negative residual?

- I - N -
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Chapter 20 - ldentifying relationships

4

&14

In & survey pratest, data were obtained from 20 respondents on preference for bootfs on & seven-point scale

(1 = not preferred, 7= greatly preferred) {Vy). The respondents also provided their evaluations of the boots on
comifort (V) style (V) and durability (V,), alsc on seven-point scales (1 = poor, T = excellent). The resulting data
are given in the following table;

Mumbrer vy ¥yl L) vyl
A =} & E] 5
2 s 3 2 4
3 s i) & T
4 a4 5] i 5
5 1 3 2 2
i & I & T
i 5 & T 5
8 ¥ 3 -] 4
9 2 a & 3

10 3 B 3 5]
11 1 3 2 3
12 5 4 o] 4
13 2 2 L i
14 4 5 4 L
15 G i) 4 T
186 3 3 i 2
17 4 4 3 2
18 3 4 3 2
19 4 4 3 2
20 2 " 2 4

a Calculate the simple comalations between V, and V, and nterpret the results.

b Run a bivariate regression with preference for boots (V,) as the dependent variable and evaluation on comfort
(V.) as the Independent variable, Interpret the results.

¢ Run a bivariate regression with preference for boots (V) as the dependert variable and evaluation on style (V.
as the independent vanable. Interpret the results.

d Run a bivariate regression with preference for boots (V) as the dependent varigble and evaluation on durability
(V) as the independent variable, Interpret the results.

e Runa multiple regression with preference for boots (V) as the dependent vanable and V, to V, as the
independent varlables. Interpret the results. Compare the coefficients for V,, V, and V, obtained in the bivariate
and the multiple regressions,

In a small group discuss the following issues! "Regrassien is such a basic technigue that it should always be used
in analysing data’ and "What is the relationship between bivariate correlation, bivariate regression, multiple
regression and analvsis of variance?’
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