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Factor analysis allows an
examination of the potential
interrelationships among a number

of variables and the evaluation of
the underlying reasons for these
relationships.
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Example

Basic concept

Factor analysis

A class of procodures
primarily used for data
reduction and
summansation,

Factor

An undertying dimension that
explams the correlations
among a set of vanables

b4b

In analysis of variance (Chapter 19), regression [(Chapter 20) and discriminant analysis
(Chapter 21}, one of the variables is clearly identified as the dependent variable, We now
turn to a procedure, factor analysis, in which variables are not classified as independent
ot dependent. Instead, the wheole set of interdependent relationships among variables is
examined, This chapter discusses the basic concept of factor analysis and gives an expo-
sition of the factor model. We describe the steps in factor analysis and illustrate them in
the context of principal components analysis. Next, we present an application of
commaon factor analysis. To begin, we provide an example to illustrate the usefulness of
factor analysis.

Personal alarms'

In & study of personal alarms, women were asked to rate eight personal alarms using the
following 15 statements:

Feels comfortable in the hand.

Could be easlly kept in the pocket.

Woauld fit easily Into a handbag.

Could be easily wom on the person.

Could be carried to be very handy when needed.

Could be set off almost as a reflex action,

Would be difficult for an attacker to take it off me.

Could keep a very firm grip on it if attacked.

An attacker might be frightaned that | might attack him with it
Would be difficult for an attacker to switch off.

Solidly built.

Would be difficult to break.

Looks as if it would give off a very loud noise,

An attacker might have second thoughts about attacking me If he saw me with [t
15 | would be embarrassed to carry |t around with me.

EEF:EWM-JEU‘&NMH
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The question was 'Could these 15 variables be reduced to & smaller number of derived varl-
ables, known &s factors, in such a way that too much Information was not lost?' Factor
analysis enabled these 15 varlables to be reduced to four underlying dimensions or factars
that women used to evaluate the alarms, Factor 1 seemed to measure @ dimension of size,
on a continuum of small to large. Factor 2 tapped into aspects of the appearance of a per
sonal alarm. Factor 3 revealed robustness characteristics, with factor 4 related to hand feel.

X e

.

Factor analysis is a general name denoting a class of procedures primarily used for data
reduction and summarisation, In marketing research, there may be a large number of
variables, most of which are correlated and which must be reduced to a manageable level.

Relationships among sets of many interrelated variables are examined and represented in
terms of a few underlying factors. For example, car manufacturer image may be measured
by asking respondents to evaluate car{s) on a series of items on a semantic differential
scale or a Likert scale. These item evaluations may then be analysed to determine the

factors underlying car manufacturer image.



Interdependence
technique

A maltivariate statistical
technigue in which the whsle
et of interdependent
relationships s axamined.

Factor analysis model

In analysis of variance, multiple regression and discriminant analysis, one variable is
considered the dependent or criterion variable, and the others are considered independ-
ent or predictor variables. But no such distinction is made in factor analysis. Rather,
factor analysis is an interdependence technique in that an entire set of interdependent
relationships is examined.?

Factor analysis is used in the following circumstances:

1 To identify underlying dimensions, or factors, that explain the correlations among a set
of variables. For example, a set of lifestyle statements may be used to measure the psy-
chographic profiles of consumers. These statements may then be factor analysed to
identify the underlying psychographic factors.”

2 To identify a new, smaller, set of uncorrelated variables to replace the original set of
correlated variables in subsequent multivariate analysis {regression or discriminant
analvsis). For example, the psychographic factors identified may be used as independ-
ent variables in explaining the differences between loyal and non-loval consumers.

3 Toidentify a smaller set of salient variables from a larger set for use in subsequent mul-
Livariate analysis, For example, a few of the original lifestyle statements that correlate
highly with the identified factors may be used as independent variables to explain the
differences between the loval and non-loyal users.

Factor analysis has numerous applications in marketing research. For example:

® Factor analysis can be used in market segmentation for identifying the underlying vari-
ables on which to group the customers, New car buyers might be grouped based on the
relative emphasis they place on economy, convenience, performance, comfort and luxury.

® This might resull in fve segments: cconomy seckers, convenience seckers, performance
seekers, comfort seekers and luxury seekers.

# In product research, factor analysis can be employed to determine the brand attributes
that influence consumer choice. Toothpaste brands might be evaluated in terms of pro-
tection against cavities, whiteness of teeth, taste, fresh breath and price.

# In advertising studies, factor analysis can be used to understand the media consump-
tion habits of the target market, The users of frozen foods may be heavy viewers of
satellite TV, see a lot of videos, and listen to country music.

® In pricing studies, factor analysis can be used to identify the characteristics of price-
sensitive consumers, For example, these consumers might be methodical, economy
minded and home centred,

Factor analysis model

Mathematically, factor analysis is somewhat similar to multiple regression analysis in that
cach variable is expressed as a linear combination of underlying factors. The amount of
variance a variable shares with all other variables included in the analysis is referred to as
communality. The covariation among the variables is described in terms of a small
nmumber of common factors plus a unigue factor for each variable. These factors are not
overtly observed. If the variables are standardised, the factor model may be represented as
X=AF+AF+AF+.+AF +VU

4 M

where T = ith standardised variable
. = standardised multiple regression coefficient of variable i on common factor |
Ft commuon factor
V. = standardised regression coefficient of variable 7 on unique factor s
= the unique factor for variable i
m = number of common factors
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The unique factors are correlated with each other and with the common factors.* The
comimoen factors themselves can be expressed as linear combinations of the observed
variables

Fo= WX + WX, + WX, + o+ WX,

where F, = estimate of ith factor
W, = weight or factor score coefficient
k = number of variables

It is possible to select weights or factor score coefficients so that the first factor explains the
largest portion of the total variance. Then a second set of weights can be selected so that the
second factor accounts for most of the residual variance, subject to being uncorrelated with
the first factor. This same principle could be applied to selecting additional weights for the
additional factors. Thus, the factors can be estimated so that their factor scores, unlike the
values of the original variables, are not correlated. Furthermore, the first factor accounts for
the highest variance in the data, the second factor the second highest, and so on. A technical
treatment of the factor analysis model is presented in the appendix to this chapter.

Statistics associated with factor analysis

648

The key statistics associated with factor analysis are as follows:

Bartlett's test of sphericity. Bartlett's test of sphenicity is a test statistic used to examine
the hypothesis that the variables are uncorrelated in the population. In other words, the
population correlation matrix is an identity matrix; each variable correlates perfectly with
itself [r= 1) but has no correlation with the other variables {r= 0},

Communality. Communality is the amount of variance a variable shares with all the other
variables being considered. This is also the proportion of variance explained by the
common factors,

Correlation matrix. A correlation matrix is a lower triangular matrix showing the simple
correlations, r, between all possible pairs of variables included in the analysis. The diago-
nal elements, which are all one, are usually omitted.

Eigenvalue. The eigenvalue represents the total variance explained by each factor.

Factor loadings. Factor loadings are simple correlations between the variables and the factors.

Factor loading plot. A factor loading plot is a plot of the original variables using the factor
loadings as coordinates.

Factor matrix. A factor matrix contains the factor loadings of all the variables on all the
Factors extracted,

Factor scores. Factor scores are composite scores estimated for each respondent on the
derived factors.

Kaiser—Meyver—0lkin {KMO) measure of sampling adequacy. The Kaiser—Meyer—Olkin
[ KMO) measure of sampling adequacy 15 an index used to examine the appropriateness of
factor analysis. High values (between 0.5 and 1.0} indicate that factor analysis is appropri-
ate, Values below 0.5 imply that factor analysis may not be appropriate,

Percentage of variance. The percentage of the total variance attributed to each factor.

Residuals. Residuals are the differences between the observed correlations, as given in
the input correlation matrix, and the reproduced correlations, as estimated from the
factor matrix.
Scree plot. A scree plot is a plot of the eigenvalues against the number of factors in order
of extraction.
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We describe the uses of these statistics in the next section, in the context of the procedure
for conducting factor analysis.

Conducting factor analysis

Figure 22.1
Conducting factor
analysis

The steps involved in conducting factor analysis are illustrated in Figure 22.1, The first
step is to define the factor analysis problem and identify the variables 1o be factor
analysed. Then a correlation matrix of these variables is constructed and a method of
factor analysis is selected. The researcher decides on the number of factors to be extracted
and the method of rotation. Next, the rotated factors should be interpreted. Depending on
the objectives, the [actor scores may be caleulated, or surrogate variables selected, to repre-
sent the factors in subsequent multivariate analysis. Finally, the fit of the factor analysis
model is determined. We discuss these steps in more detail in the following subsections.”

Formulate the problem

Formulating the problem includes several tasks, First, the objectives of factor analysis
should be identified. The variables to be included in the factor analysis should be specified
based on past rescarch (quantitative or gualitative}, theory and judgement of the
researcher. 1t is important that the variables be appropriately measured on an interval or
ratio scale. An appropriate sample size should be used. As a rough guide, there should be
at least four or five times as many observations (sample size) as there are variables.” In
many marketing research situations, the sample size is small, and this ratio is considerably
lower. In these cases, the results should be interpreted cautiously,

To illustrate factor analysis, suppose that the researcher wants to determine the under-
lving benefits consumers seek from the purchase of a toothpaste. A sample of 30
respondents was interviewed using street interviewing. The respondents were asked to
indicate their degree of agreement with the following statements using a seven-point scale
(1= strongly disagree, 7 = strongly agree:

Formutate the problem
'
Canstruct the comelation matrix
'
Determing the methad of factor analysis
'
Determing the number of factors
'
Rotate factors
'
Interpret factors
'
‘ }

Calculate Salect

s0Ores vanables

Determine model fit
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V. Itis important to buy a toothpaste that prevents cavities.

V, 1like a toothpaste that gives shiny teeth.

V, A toothpaste should strengthen your gums,

V, 1 prefer a toothpaste that freshens breath.

V. Prevention of tooth decay should be an important benefit offered by a toothpaste.
V., The most important consideration in buying a toothpaste is attractive teeth.

The data obtained are given in Table 22.1. A correlation matrix was constructed based on
these ratings data.

Table 22.1 Toothpaste attribute ratings

Respondent v, v, v, v, A v,
mber

1 7 3 & 4 2 4
2 1 a 2 4 5 4
3 6 2 7 4 1 3
4 4 5 4 & 2 5
5 1 2 2 3 (5] 2
& 6 3 G 4 z 4
7 5 3 & 3 4 3
8 6 4 7 4 1 4
9 3 4 2 3 6 3
10 2 & 2 & 7 &
11 <] i T 3 2 3
12 2 3 1 4 5 4
13 T 2 B 4 1 |
14 4 & 4 5 3 &
15 1 3 2 2 & 4
16 & A B 3 3 d
17 5 3 G 3 3 4
18 7 3 7 4 1 4
19 2 a 3 3 & a
20 3 5 3 6 4 6
21 1 3 2 3 5 3
22 5 4 5 a 2 4
23 2 2 1 5 4 4
24 4 6 4 & 4 7
25 6 5 4 2 1 4
28 3 5 4 & 4 7
27 4 4 7 2 2 5
28 3 7 2 6 4 3
29 4 & 3 7 2 7
30 2 3 2 il T 2
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Construct the correlation matrix

The analvtical process is based on a matrix of correlations between the variables. Valuable
insights can be gained from an examination of this matrix. For factor analysis to be mean-
ingful, the variables should be correlated. In practice, this is usually the case. If the
correlations between all the variables are small, factor analysis may not be appropriate. We
would also expect that variables that are highly correlated with each other would also
highly correlate with the same factor or factors.

Formal statistics are available for testing the appropriateness of the factor model,
Bartlett’s test of sphericity can be used to test the null hypothesis that the variables are
uncorrelated in the population; in other words, the population correlation matrix is an
identity matrix, In an identity matrix, all the diagonal terms are one, and all off-diagonal
terms are zero, The test statistic for sphericity is based on a chi-square transformation of
the determinant of the correlation matrix. A large value of the test statistic will favour the
rejection of the null hypothesis. If this hypothesis cannot be rejected, then the appropri-
ateness of factor analysis should be questioned. Another useful statistic is the
Kaiser—-Meyer—Olkin (KMO) measure of sampling adequacy. This index compares the
magnitudes of the observed correlation coefficients with the magnitudes of the partial
correlation coefficients. Small values of the KMO statistic indicate that the correlations
between pairs of variables cannot be explained by other variables and that factor analysis
may not be appropriate. Generally, a value greater than 0.5 is desirable,

The correlation matrix, constructed from the data obtained to understand toothpaste
benefits, is shown in Table 22.2. There are relatively high correlations among V, (preven-
tion of cavities), V5, (strong gums) and V, [prevention of tooth decay), We would expect
these variables to correlate with the same set of factors. Likewise, there are relatively high
correlations ameng V, (shiny teeth), V, (fresh breath) and V, (attractive teeth). These
variables may also be expected to correlate with the same factors.”

Table 22.2 Correlation matrix

Rospondent v, v, vy v, Ve vy
v, 1.00

v, -0.053 1.00

v, 0.873 -0.185 1.00

v, —0.086 0.572 -0.248 i.c0

vy ~0.B58 0020 -0.778 =0.007 1.00

Vg 0.004 0.640 —0.018 0.640 —0.136 1.00

The results of factor analysis are given in Table 22.3, The null hypothesis, that the popula-
tion correlation matrix is an identity matrix, is rejected by Bartlett's test of sphericity. The
approximate chi-square statistic is 111.314 with 15 degrees of freedom, which is signifi-
cant at the 0,05 level. The value of the KMO statistic (0.660) is also large (>0.5). Thus
factor analysis may be considered an appropriate technique for analysing the correlation
matrix of Table 22.2.

Determine the method of factor analysis

Omnce it has been determined that factor analysis is an appropriate technigue for analysing
the data, an appropriate method must be selected. The approach used to derive the
weights or factor score coefficients differentiates the various methods of factor analysis.
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Principal components
analysis

An approach to factor
analysis that considers the
total vanance in the data.

Commaon factor analysis
An approach 1o factor
analysia that estimates the
factors based anly on the
common varlance, Alao
called principal axis
facioring,
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The two basic approaches are principal components analysis and common factor analy-
sis. In principal components analysis, the total variance in the data is considered. The
diagonal of the correlation matrix consists of unities, and full variance is brought into
the factor matrix. Principal components analysis is recommended when the primary
concern is to determine the minimum number of factors that will account for maximum
variance in the data for use in subsequent multivariate analysis. The factors are called
principal components,

In common factor analysis, the factors are estimated based only on the common vari-
ance. Communalities are inserted in the diagonal of the correlation matrix. This method
is appropriate when the primary concern is to identify the underlying dimensions and the
common variance is of interest, This method s also known as principal axis factoring,

Other approaches for estimating the common factors are also available. These include
the methods of unweighted least squares, generalised least squares, maximum likelihood,
alpha method and image factoring. These methods are complex and are not recom-
mended tor inexperienced users.”

Table 22.3 shows the application of principal components analysis to the toothpaste
example.

Table 22.3 Results of principal components analysis

Bartiett test of sphencity

Approximate chi-square = 111 314 df = 15_ signifllcance = 000000
Kaiser—Meyer—0lkin measure of sampling adeguacy = 0,660

Communalities
Variakhla [nitial Extraction
L 1.000 0,926
V. 1.000 0.723
Wy 1,000 0.894
L 1.000 0,739
o 1.000 0.878
Ve 1.000 0. 750
Imitial eigervaluas
Factor Eigernalue variance Percentage of Cumulative
percentage
- 2.731 45,520 45,520
2 2.218 36.969 82 483
3 0.442 7.360 89 848
4 0.341 5,685 95,536
B 0.183 3.044 98,580
G 0.085 1.420 100.000
Extraction sums of squared lnadings
Factar Elgenvalue Percentage of Cumtlative
vanance percentage
3 273 45.520 45.520
2 2,218 36,969 B2.488
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Table 22.3 Continued

Factor matrix
Factor 1 Factor 2
¥ 0,928 0.253
L 0301 0785
Wy 0,936 0.131
¥, -0.342 0.789
Ve -{0.865 -(.351
¥ DA77 0.871
Rotatlon sums of squared loadings
Facior Eigomaiue Percentage of Cumulative
varlancs percentage
1 2.688 44802 44802
2 2,261 37.687 82.488
Rotated factor matrix
Factor 1 Factaor 2
A 0.962 -0.027F
¥y —0.057 0.848
vy 0.934 -0.146
W, —0.098 0.854
Vi -0.933 -0.084
Ve 0,083 0.885
Factor score coefficlent matrix
Factar 1 Factar 2
¥, 0,358 0.011
L -0.001 0.375
W, 0,345 ~(.043
v, -0.017 0.377
Ve .350 -059
Wy 0.052 0.395
Reproduced correlathon matrlx
Variables vy v, vy Ve Ve Va
vy 0.8926* 0.024 -0.029 0.031 .038 0,063
'v’? -0.078 0.r24* 0.022 -0.158 OL03s 0,105
vy 0.902 —0.177 0,804+ -0.031 .081 0,033
¥y 0,117 0.730 =0.217 Q.739% =0.027 -0.107
Vi 0,895 —0.018 0.859 0.020 G.a7a* 0,016
Vs 0.057 -0.746 -0.051 0.748 -0.152 0.790

*Thae lower Ieft trianghe contains the reproduced cormelation matrix; the diagonal, the communalities; and the upper
right triangla. tho residizals betweon the observed comalations and the reproduced correlations
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Under "Communalities) “Initial’ column, it can be seen that the communality for each
variable, V| to V¥, is 1.0 as unities were inserted in the diagonal of the correlation matrix.
The table labelled “Initial cigenvalues’ gives the eigenvalues. The eigenvalues for the fac-
tors are, as expected, in decreasing order of magnitude as we go from factor | to factor 6.
The eigenvalue for a factor indicates the total variance attributed to that factor. The total
vartance accounted for by all the six factors is 6,00, which is equal to the number of vari-
ahles. Factor 1 accounts for a variance of 2.731, which 15 (2.731/6) or 45.52% of the total
variance. Likewise, the second factor accounts for (2.218/68) or 36.97% of the total vari-
ance, and the first two factors combined account for 82.49% of the total variance, Several
considerations are involved in determining the number of factors that should be used in
the analysis.

Determine the number of factors

It is possible to compute as many principal components as there are variables, but in
doing so, no parsimony is gained, i.e. we would not have summarised the information nor
revealed any underlying structure, To summarise the information contained in the origi-
nal variables, a smaller number of factors should be extracted. The question is: how many?
Several procedures have been suggested for determining the number of factors. These
included a priori determination and approaches based on eigenvalues, scree plot, percent-
age of variance accounted for, split-half reliability and significance tests:

A priori determination. Sometimes, becausze of prior knowledge, the researcher knows
how many factors to expect and thus can specify the number of factors to be extracted
beforchand. The extraction of factors ceases when the desired number of factors has been
extracted, Most computer programs allow the user to specify the number of factors, allow-
ing for an easy implementation of this approach.

Determination based on eigenvalues, In this approach, only factors with eigenvalues
greater than 1.0 are retained; the other factors are not included in the model, An eigen-
value represents the amount of variance associated with the factor. Hence, only factors
with a variance greater than 1.0 are included. Factors with a variance less than 1.0 are no
better than a single variable because, due to standardisation, each variable has a variance
of L.0. If the number of variables is less than 20, this approach will result in a conservative
number of [actors,

Determination based on scree plot. A scree plot is a plot of the eigenvalues against the
number of tactors in order of extraction. The shape of the plot is used to determine the
number of factors. Typically, the plot has a distinct break between the steep slope of fac-
tors, with large eigenvalues and a gradual trailing off associated with the rest of the
factors. This gradual trailing off is referred to as the scree. Experimental evidence indicates
that the point at which the scree begins denotes the true number of factors. Generally, the
number of factors determined by a scree plot will be one or a few more than that deter-
mined by the eigenvalue criterion,

Determination based on percentage of variance. In this approach, the number of factors
extracted is determined so that the cumulative percentage of variance extracted by the fac-
tors reaches a satisfactory level. What level of variance is satisfactory depends upon the
problem. It 15 recommended that the factors extracted should account for at least 60% of
the variance.

Determination based on split-half reliability. The sample is split in half, and factor analy-
sis is performed on each hall. Only factors with high correspondence of factor loadings
across the two subsamples are retained.

Determination based on significance tests. It is possible to determine the statistical signif-
icance of the separate eigenvalues and retain only those factors that are statistically



Figure 22.2
Scree plot
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significant. A drawback is that with large samples (size greater than 200} many factors are
likely to be statistically significant, although from a practical viewpoint many of these
account for only a small proportion of the total variance,

In Table 22,3, we see that the eigenvalue greater than 1.0 (default option} results in two
factors being extracted, Our a priori knowledge tells us that toothpaste is bought for two
major reasons. The scree plot associated with this analysis is given in Figure 22.2. From
the scree plot, a distinet break occurs at three factors, Finally, from the cumulative per-
centage of variance accounted for, we see that the first bwo factors account for 82.45% of
the variance and that the gain achieved in going to three factors is marginal. Furthermore,
split-hall reliabality also indicates that two factors are appropriate. Thus, two factors
appear to be reasonable in this situation,

The second column under the ‘Communalities’ heading in Table 22.3 gives relevant
information after the desired number of factors has been extracted, The communalities
for the variances under “Extraction’ are different from those under ‘Tnitial’ because all of
the variances associated with the variables are not explained unless all the factors are
retained, The ‘Extraction sums of squared loadings’ table gives the variances associated
with the factors that are retained. Note that these are the same as those under ‘Tnitial
eigenvalues. This is always the case in principal components analysis, The percentage vari-
ance accounted for by a factor is determined by dividing the associated cigenvalue by the
total number of factors {or variables) and multiplying by 100, Thus, the first factor
accounts for (2.731/6) x 100 or 45.52% of the variance of the six variables. Likewise, the
second lactor accounts for (2.218/6) % 100 or 36,967% ol the variance, Interpretation of
the solution is often enhanced by a rotation of the factors.

Rotate factors

An important output from factor analysis is the factor matrix, also called the factor partern
matrix. The factor matrix contains the coefficients used to express the standardised vari-
ables in terms of the factors. These coefficients, the factor loadings, represent the
correlations between the factors and the variables. A coefficient with a large absolute value
indicates that the factor and the variable are closely related. The coefficients of the factor
matrix can be used to interpret the factors.

Although the initial or unrotated [actor matrix indicates the relationship between the
factors and individual variables, it seldom results in factors that can be interpreted,
because the factors are correlated with many variables. For example, in Table 223, factor 1
is at least somewhat correlated with five of the six variables absolute value of factor load-
ing greater than 0.3}, How should this factor be interpreted? In such a complex matrix, it
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Orthogonal rotation
Rotation of factors in which
the axes are maintained at
right angles,

Varimax procedurs

An orthogonal method of
factar rotation that
minimises the nembar of
variables with high loadings
on a factor, theraby
enhancing tha mterpretability
of the factors.

Obligue rotation

Rotation of factors when the
aues are not maintained at
right angies,
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is difficult to interpret the factors, Therefore, through rotation, the factor matrix is trans-
formed into a simpler one that is easier to interpret.

In rotating the factors, we would like each factor to have non-zero, or significant, load-
ings or coefficients for only some of the variables. Likewise, we would like each variable
to have non-zero or significant loadings with only a few factors, and if possible with anly
one. If several factors have high loadings with the same variable, it is difficult to interpret
them. Rotation does not affect the communalities and the percentage of total variance
explained. The percentage of variance accounted for by each factor does change, how-
ever. This is seen in Table 22.3, The variance explained by the individual factors is
redistributed by rotation. Hence, different methods of rotation may result in the identifi-
cation of different factors.

The rotation is called orthogonal retation if the axes are maintained at right angles.
The most commonly used method for rotation is the varimax procedure. This is an
orthogonal method of rotation that minimises the number of variables with high loadings
on a factor, thereby enhancing the interpretability of the factors.” Orthogonal rotation
results in factors that are uncorrelated. The rotation is called obligue rotation when the
axes are not maintained at right angles, and the factors are correlated. Sometimes, allow-
ing for correlations among factors can simplify the factor pattern matrix. Obligue rotation
should be used when factors in the population are likely to be strongly correlated.

In Table 22.3, by comparing the varimax rotated factor matrix with the unrotated
matrix {entitled factor matrix), we can see how rotation achieves simplicity and enhances
interpretability. Whereas five variables correlated with factor 1 in the unrotated matrix,
only variables V|, V, and V, correlate highly with factor 1 after rotation. The remaining
variables, V,, V, and V,, correlate highly with factor 2. Furthermore, no variable correlates
highly with both the factors. The rotated factor matrix forms the basis for interpretation
of the factors.

Interpret factors

Interpretation is facilitated by identifying the variables that have large loadings on the
same factor. That factor can then be interpreted in terms of the variables that load high on
it. Another useful aid in interpretation is to plot the variables, using the factor loadings as
coordinates, Variables at the end of an axis are those that have high loadings on only that
factor and hence describe the factor. Variables near the origin have small loadings on both
the factors. Variables that are not near any of the axes are related to both the factors. If a
factor cannot be dearly defined in terms of the original variables, it should be labelled as
an undefined or a general factor,

In the rotated factor matrix of Table 22.3, factor 1 has high coefficients for variables V,
( prevention of cavities) and V, (strong gums}, and a negative coefficient for V. {preven-
tion of tooth decay is not important). Therefore, this factor may be labelled a health
benefit factor. Note that a negative coefficient for a negative variable (V,] leads 1o a posi-
tive interpretation that prevention of tooth decay is important. Factor 2 is highly related
with variables V, (shiny teeth), V| {fresh breath) and V, {attractive teeth). Thus factor 2
may be labelled a social benefit factor. A plot of the factor loadings, given in Figure 22.3,
confirms this interpretation. Variables ¥, V, and V. (denoted 1, 3 and 5, respectively) are
at the end of the horizontal axis (factor 1), with V; at the end opposite to V| and V,,
whereas variables V,, V, and V, idenoted 2, 4 and 6) are at the end of the vertical axis
i factor 2}, One could summarise the data by stating that consumers appear to seck two
major kinds of benefits from toothpaste: health benefits and social benefits.



Factor scores

Composite scores estimated
for #ach respondent on the
derived factors,

Surrogate variables

A subset of onginal variables
selactad far use in
subsequent analysis.

Figure 22.3
Factor loading plot
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Calculate factor scores

Following interpretation, factor scores can be calculated, if necessarv. Factor analysis has
its own stand-alone value. If the goal of factor analysis is to reduce the original set of vari-
ables to a smaller set of composite variables (factors) for use in subsequent multivariate
analysis, however, it is uselul to compute factor scores for each respondent. A factor is
simply a linear combination of the original variables. The factor scores for the ith factor
may be estimated as follows:

Fi= W, X, + W Xt WX, + .t W, W,

where the symbaols are as defined earlier in the chapter.

The weights or factor score coeflicients used 1o combine the standardised variables are
obtained from the factor score coefficient matrix. Most computer programs allow you to
request factor scores. Only in the case of principal components analysis is it possible to
compute exact factor scores. Moreover, in principal components analysis, these scores are
uncorrelated. In common factor analysis, estimates of these scores are obtained, and there
is no guarantee that the factors will be uncorrelated with each other. Factor scores can be
used instead of the original variables in subsequent multivariate analysis. For example,
using the factor score coefficient matrix in Table 22.3, one could compute two factor
scares for each respondent. The standardised variable values would be multiplied by the
corresponding factor score coeflicients to obtain the factor scores,

Select surrogate variables

Sometimes, instead of computing factor scores, the researcher wishes to select surrogate
variables, Selection of substitute or surrogate variables involves singling out some of
the original variables for use in subsequent analysis. This allows the researcher to con-
duct subsequent analysis and to interpret the results in terms of original variables rather
than factor scores. By examining the factor matrix, one could select for each factor the
variable with the highest loading on that factor. That variable could then be used as a
surrogate variable for the associated factor. This process works well if one factor loading
for a variable is clearly higher than all other factor loadings. The choice is not as easy,
however, if two or more variables have similarly high loadings. In such a case, the choice
between these variables should be based on theoretical and measurement considera-
tions. For example, theory may suggest that a variable with a slightly lower loading 1s
more important than one with a slightly higher loading. Likewise, if a variable has a
slightly lower loading but has been measured more precisely, it should be selected as the
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surrogate variable. In Table 22.3, the variables V|, V, and V. all have high loadings on
factor 1, and all are fairly close in magnitude, although V, has relatively the highest
loading and would therefore be a likely candidate. However, if prior knowledge suggests
that prevention of tooth decay is a very important benefit, V. would be selected as the
surrogate for factor 1. Also, the choice of a surrogate for factor 2 is not straightforward.
Variables V,, V, and V, all have comparable high loadings on this factor. If prior knowl-
edge suggests that attractive teeth are the most important social benefit sought from a
toothpaste, the researcher would select V.

Determine the model fit

The final step in factor analysis involves the determination of model fit, A basic assump-
tion underlying factor analysis is that the observed correlation between variables can be
attributed to common factors. Hence, the correlations between the variables can be
deduced or reproduced from the estimated correlations between the variables and the fac-
tors. The differences between the observed correlations (as given in the input correlation
matrix] and the reproduced correlations {as estimated from the factor matrix) can be
examined to determine model fit. These differences are called residuals. If there are many
large residuals, the factor model does not provide a good fit to the data and the model
should be reconsidered. In Table 22,3, we see that only (ive residuals are larger than 0.05,
indicating an acceptable model fit.

The following example further illustrates principal components factoring in the con-
text of trade promotion,

Manufacturing promotion components'®

The objective of this study was to develop a comprehensive inventory of manufacturar
controlled trade promotlen variables and to demonstrate that an assoclation exists between
these varisbles and the retailer’'s promotion support decision. Retailer or trade support was
defined operationally as the trade buyer's attitude towards the promaotion.

Factor analysis was performed on the explanatory variables with the primary goal of
data reduction. The principal components method, using varimax rotation, reduced the 30
explanatory variables to eight factors having eigenvalues greater than 1.0. For the purpose
of interpretation, each factor was composed of varables that loaded 0.40 or higher on that
factor. In two instances, where variables loaded 0.40 or above on two factors, each variable
was assigned Lo the factor where it had the highest loading. Only one variable, ease of
handling/stocking at retall, did mot load at least 0.40 on any factor. In all, the eight factors
explained 62% of the total variance. Interpretation of the factor loading matrix was straight-
farward. Table 1 lists the factors in the order in which they were extracted.

Stepwise discriminant analysis was conducted to determine which, it any, of the eight
factors predicted trade support to a statistically significant degree. The factor scores for the
elght factors wera the explanatory varlables, The dependent variable consisted of the retall
buyer's overall rating of the deal (rating). which was collapsed into a three-group (low,
miedium and high} measure of trade support. The results of the discriminant analyses are
shown in Table 2. All eight entered the discriminant functions. Goodness-of-t measures
indicated that, as a group, the eight factors discriminated between high, medium and low
levels of trade support, Multivaniate F ratios, indicating the degree of discrimination
between each palr of groups, were significant at p = 0.001. Correct classification Into high,
medium and low categories was achleved for 65% of the cases. The order of entry into dis-
criminant analysis was used to determine the relative importance ef factors as trade
support influencers, as shown in Table 3.
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Table 1 Factors influencing trade promotional support

Factar | Factor interpretation Loading| Varizbles included in the factor
% variance explained)
Fi Item impartance 077 | Hem is significant enough to warrant promotion
it 0.75 | Category responds well to promaotion
0.66 | Closest trade competitor is likely to promota item
0.64 | Importance of promoted product categary
.59 | Hem regular (non-deal) sales volume
0.57 | Deal meshes with trade promotional requirements
Buyer's estimate of sales increase on the basis of:
F2 Promotion elasticity 0.86 | Price reduction and dizplay
PR 0.82 | Display only
0.80 | Price reduction only
0.70 | Price reduction; display and advertising
Manufacturer's brand support in the form of;
F3 Manufacturer brand 0.85 | Coupons
BURPOIT(S 25 0.81 | Radio and television advertising
0.80 | Newspaper advertising
0.75 | Point of purchase promaotion (e.g. display)
F4 Manufacturer Q.72 | Manufacturer's overall reputation
FERUan 1D} .72 | Manufacturers cooperation In meeting trade's
pramotional nesds
0.64 | Manufacturer's cooperation on emergency orders
0.55 | Quality of sales presentation
Q.51 | Manufacturers overall product quality
s Promuation wearout 0.93 | Product category is overpromoted
i 0.893 | Item is overpromoted
FG Sales velocity {5.4%) -0.81 | Brand market share rank*
0.69 | hem regular sales volume*
0.46 | hem regular sales volume
Fr Item profitability 079 | Nem regular gross margin
{4.5%) 0.72 | hem regular gross margin®
.45 | Reasonableness of deal performance reguirements
Fa Incentive amount .83 | Absolute amount of deal allowances
i 0.81 | Deal allowances as per cent of regular trade cost®
0,49 | Absolute amount of deal allowances*

* Denagtes objectives {archival] measure.
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Table 2 Discriminant analysis results: analysis of rating [n = 544]

Factor Slandardised Analysis of
Discrimination Rating
Coefiicients
Funetion 1 Funetion 2
Fl Item impartance 0.861 -0.253
F2 Promoticn elasticity 0.081 0.398
3 Manufacturer brand support 0.127 —0.038
4 Manufacturer reputation 0.354 0.014
5 Promotion wearout -0.207 0.380
F& Sales velocity 0.033 ~0.8665
Fi Itam profitability 0.614 0.357
Fa Incentive amount 0.481 0.254
Wilks' A (for each factor) All slgnificant at p < 0.001
Multivariate F ratios Al significant at p = 0,001
Percentage of casas correctly classified B5% correct [t = 14.4, p = 0.001)

Table 3 Relative importance of trade support influencers
las indicated by order of entry into the discriminant

analysis]
Analysis of raling
Order of entry Factor name
1 [tem importance
2 Item profitabilty
3 Incentive amount
4 Manufacturar reputation
i Pramotion wearout
& Sales velocity
7 Promaotion elasticity
B Manufacturer brand suppart

Applications of common factor analysis L~
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The data of Table 22,1 were analysed using the common factor analysis model, Instead
of using unities in the diagonal, the communalities were inserted. The output, shown in
Table 22.4, is similar to the output from principal components analysis presented in
Table 22.3. Beneath the ‘Communalities’ heading, below the “Initial’ column, the com-
munalities for the variables are no longer 1.0, Based on the eigenvalue criterion, again
two factors are extracted. The variances, after extracting the factors, are different from
the initial eigenvalues. The first factor accounts for 42.84% of the variance, whereas the
second accounts for 31.13%, in each case a little less than what was observed in princi-
pal components analysis.
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Table 22.4 Results of common factor analysis

Bartlett test of sphencity
Approximate chi-square = 111 314, of = 15, signiflicance = 0.00000
Kaiser-Mever-0lkin measure of sampling adeguacy = 0.660
Communalities
Variabie fndtial Extraction
A 0.859 0.928
V. 0,480 0.562
v, 0.814 0.835
vy 0.543 0.600
Ve 0.763 0.783
Ve 0.587 0.723
Initial elgenvalues
Factor Eigenvalue Percentage of Cumulative
variance percentage
1 273 45.520 45.520
2 2,218 36.969 B2.488
8 0.442 7360 B9.B48
L 0,341 5.688 85,536
5 0,183 2.044 98 580
] 0,085 1.420 100,000
Extraction sums of sqguared loadings
Factor Eiganvaile Percantage of Curmiiative
variance percentage
1 2,570 42.837 42 B37
2 1.B68 31.1%6 73.954
Factor matrix
Factor 1 Factor 2
LA 0.949 0.168
¥, -0.208 0.720
Vs 0.914 0.038
v, -0.246 0.734
Ve —0.850 -0.259
vy -0.101 0.844
Rotation sums of squared |loadings
Factor Eigenvalue Percentage of Cumulative
varianos percentage
1 2,541 42,343 42,343
2 1.897 31.621 73.964
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Table 22.4 Continued

Rotated factor matrix
Factor 4 Factor 2
Wy 0953 —0.030
¥, -0.054 0.747
¥y 080z =0.150
¥, =0.080 0.769
¥e —.BB5 —2.079
Ve 0.075 0.847
Factor score coefficient matrix
Factor 1 Factar 2
¥, .628 0.101
¥; —0.024 0.253
vy 0.217 -0.189
¥, -0.023 0.271
¥ -0.166 -0,059
We 0.083 0.500
Reproduced correlation matrix
Variables v v, ¥y v, Ve ¥y
¥y 08928+ 022 =0,000 024 =0, 008 =0.042
v, =-OTS 5e2* 0.006 =008 0031 o1z
vy 0.B73 —0.1681 0.836* 0,051 0,008 0,042
v, —0.110 0.580 -0.197 0.600* -0,025 -0.004
Ve —3.850 -0.012 0.786 0.019 0. 789+ -0.003
11 0.046 0.629 -0.060 0.645 =(,133 0.723%
* The lower left tiangle containa the reproduced correlation matrix; the diagonal, the communalities: and the
wpper nght triangla, the residuals betwesen the obaerved commelations and the reproduced comrelations.

The values in the unrotated factor pattern matrix of Table 22.4 are a little different
from those in Table 22.3, although the pattern of the coefficients is similar. Sometimes,
however, the pattern of loadings for commaon factor analysis is different from that for
principal components analysis, with some variables loading on different factors. The
rotated factor matrix has the same pattern as that in Table 22.3, leading to a similar inter-
pretation of the factors.

We end with another application of common factor analysis, in the context of con-
sumer perception of rebates.

‘Commeon’ rebate perceptions'’

Rebates are effective in obtaining new users, brand switching and repeat purchases among
current users, Microsoft deployed a rebate programme as a means to draw new users to its
MSHN Internet service. Microsoft's intent behind this rebate plan was to acquire new users
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from rivals such as AOL, Under the rebate plan, Microsoft offered a cash-back option for
new users who committed to two years of MSN service. The question faced by marketers at
Microsoft was “What makes rebates effective?’

A study was undertaken to determine the factors underlying consumer perception of rebates,
A sat of 24 items measuring consumer perceptions of rebates was constructed, Respondents
wars asked to express thelr degrea of agreament with these items on five-paint Likert scales.
The data were collected by telephone survey, with a total of 303 usable questionnaires.

The 24 items measuring perceptions of rebates were analysed using commaon factor
analysis. The initial factor solutien did not reveal a simple structure of underlying rebate
perceptions. Therofore, items that had low loadings were deleted from the scale, and the
factor analysis was perfermed on the remaining items. This second selution yielded three
interpretable factors. The factor loadings and the rellabllity coefficients are presented In the
table, The three factors contained four, four and three items, respectively, Factor 1 seemed
to capture the consumers' perceptions of the efforts and difficulties associated with rebate
redemption {Efforts), Factor 2 was defined as a representation of consumers’ faith in the
rebate system (Faith). Factor 3 represented consumers® perceptions of the manufacturers'
motives for offering rebates (Motives). The loadings of items on their respective factors
ranged from 0.527 to 0.744. Significant loadings are in bold.

Therefore, companies such as Microsoft that employ rebates should ensura that the
effort and difficulties of consumers |n taking advantage of the rebates are minimisad. They
should also try to build consumers’ faith in the rebate system and portray honest mothves
for offering rebates.

Factor analysis of perceptions of rebates

Scale items® Factor loading

Factor 1 Factor & Factor 3
Manufacturers make the rebate process too 0.194 0671 ~0.127
complicated
Poatal rebates are not worth the trouble imvolved ~-0.031 0.812 0.352
It takes too long 1o receive the rebate chegue from 0.013 0.718 0.061
the manufacturer
Manufacturers could do more 1o make rebates 0.205 0.616 0.173
easier 1o use
Manufacturers offer rebates because consumers 0.660 0.172 0.101
want them®
Today's manufacturers take real interest n 0.569 0.203 0.334
consumer welfara®
Consumer benefit Is usually the primary 0.660 0.002 0.318
consideration In rebata offars®
In general. manufacturars are sincere in their 0.716 0.047 —0.033
rabate offers 1o consumers”
Manufacturers offer rebates to get consumers 0,093 0.156 0.744
to buy semething they do not really nead
Manufacturers use rebate offers to inducs 0,080 0.027 0.702
consumers to buy slowmoving items
Rabale offers require you to buy mare of a 0.230 0.066 0.527
presduct than you need
Elgervalues 2.030 1.344 1.062

ATne respanse categones for all items were strongly agree (1), agree (2}, nelther agree naor disagres (3],
disagree (4}, strongly disagres (5} and don't knaw (6], 'Don't know" responses were excluded from
data analysls.

" The scores of these [tBms were reversed,
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In this example, when the initial factor solution was not interpretable, items which had
low loadings were deleted and the factor analysis was performed on the remaining items.
If the number of variables is large (greater than 15), principal components analysis and
common factor analysis result in similar solutions, Principal components analysis is less
prone to misinterpretation, however, and is recommended for the non-expert user.

Internet and computer applications

SP55

The program FACTOR may be used for principal components analysis as well as for
common factor analysis. Some other methods of factor analysis are also available and
factor scores are available.

SAS
The program PRINCOMP performs principal components analysis and calculates prin-

cipal components scores, To perform common factor analysis, the program FACTOR
can be used. The FACTOR program also performs principal components analysis.

SNAP

Multiple factor analyses can be run within any survey, and each will be stored separately
and listed within the multivariate statistics window. The factors that are produced are
eftectively DERIVED QUANTITY wvariables and can be used within tables and charts in
the same way as other QUANTITY variables.

Minitab

Factor analysis can be accessed using MULTIVARIATE=FACTOR ANALYSIS. Principal
components of maximuimn likelihood can be used to determine the initial factor extrac-
tion, If maximum likelihood is used, specify the number of factors to extract. If a
number is not specified with a principal component extraction, the program will set it
equal to a number of variables in the dataset.

Summary

Factor analysis is a class of procedures used for reducing and summarising data.
Each wariable is expressed as a linear combination of the underlying factors.
Likewise, the factors themselves can be expressed as linear combinations of the
observed variables. The factors are extracted in such a way that the first factor
accounts for the highest variance in the data, the second the next highest, and so on.
Additionally, it is possible to extract the factors so that the factors are uncorrelated,
as in principal components analysis,

In formulating the factor analysis problem, the variables to be included in the analysis
should be specified based on past research, theory and the judgement of the researcher.
These variables should be measured on an interval or ratio scale. Factor analysis is based
on a matrix of correlation between the variables. The appropriateness of the correlation
matrix for factor analysis can be statistically tested.
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The two basic approaches to factor analysis are
principal components analysis and common
factor analysis. In principal components analysis,
the total variance in the data is considered.
Principal components analysis is recommended
when the researcher’s primary concern is to deter-
mine the minimum number of factors that will
account for maximum variance in the data for use
in subsequent multivariate analysis. In common
factor analysis, the factors are estimated based
only on the commeon variance. This method is
appropriate when the primary concern is to iden-
tify the underlving dimensions and when the
common variance is of interest. This method is
also known as principal axis factoring,

Souce: D Phatalusian Pcere Libranalany

The number of factors that should be extracted can be determined a priori or based on
eigenvalues, scree plots, percentage of variance, split-halfl reliability or significance tests,
Although the initial or unrotated factor matrix indicates the relationships between the
factors and individual variables, it seldom results in factors that can be interpreted,
because the factors are correlated with many variables. Therefore, rotation is used to
transform the factor matrix into a simpler one that is easier to interpret. The most com-
monly used method of rotation is the varimax procedure, which results in orthogonal
factors. If the factors are highly correlated in the population, oblique rotation can be
used. The rotated factor matrix forms the basis for interpreting the factors,

Factor scores can be computed for each respondent. Alternatively, surrogate variables
may be selected by examining the factor matrix and selecting a variable with the highest
or near highest loading for each factor, The differences between the observed correla-
tions and the reproduced correlations, as estimated from the factor matrix, can be
examined to determine model fit.

Questions
1 How is factor analysis different from multiple 9 Explain how eigenvalues are used to determing the
regrassion and discriminant analysis? number of factors.
2 What are the major uses of factor analysis? 10 What is a scree plot? For what purpose is it used?
3 Describe the factor analysis modal, 11 Why is it useful to rotate the factors® Which is tha

o
4 What hypothesis is examined by Bartlett's test of (HBRLCONMOR MEtICY: Of fetice

spharicity? For what purpose |s this tast used? 12 ‘What guidelines are available for interpreting the

5 What is meant by the term ‘communality of a varfabla? TBeR T

i5 i Tul Il
6  Briefly defiie:the Tollowing: elgenalies. Tactor 13 When is it useful to calculate factor scores?

loadings, factor matnx and factor scares. 14 What are surrogate variables? How are thay

i det ned?
¥ For what purpose is the Kaiser—Meyver—Olkin measura i

of sampling adegquacy used? 15 How is the fit of the factor analysis model examined?

8 What is the major difference between principal
components analysis and common factor analysis?
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Exercises

1 Completa the following pertion of an outpul from principal components analysis:

Varlable Communality Factor Elgenvalus % of varlance
A 1.0 X 3.25
¥ 1.0 2 1.78
¥y 1.0 3 1.23
¥y 1.0 4 0.78
e 1.0 5 0.35
Ve 1.0 [+ 0.30
v, 1.0 T 0.19
Y 1.0 B 0.12

a Draw a scree plot based on thaso data.
b How many factors should be extracted? Explain your reasoning.

2 In a study of the relationship between household behaviour and shopping behaviour, data on the following lifestyle
statements were obtained on a seven-point scale (1 = disagree, 7 = agreel:

¥ | would rather spend a quiet avening at home than go out o a party.
¥, | always check pricas, aven on small [tams.
¥, Magazines are more interesting than movies.
¥, | would not buy preducts advertised on billboards,
¥. | am a homebody.
¥, | saveand cash coupons,
¥, Companles waste a lot of moeney advertising,
The data obtained from a pretest sample of 25 respendents are given below:
o ¥: ¥ V5 v, Yy Ve Vr
1 & 2 i 2] B 3 5
2 5 T 5 i) G B8 4
3 7| 3 4 L4 G G T
4 3 2 2 5 1 3 2
5 4 2 2 2 2 1 3
6 2 1 2 4 3 i 5
7 at: 3 3 B 2 -] i
a 3 5 1 4 2 =1 8
9 T 3 G 3 2] 2 el
10 & 3 | 4 4 B 5
11 = 6 2 6 4 B i
12 3 2 2 Ty B nk 6
13 5 i & 2 2 B 1
14 B 3 5 5 T 2 3
15 3 2 4 3 2 B 5
16 2 T 5 1 4 3 2
17 3 2 2 T 2 4 6
18 G 4 5 4 T 3 3
19 T 2 & 2 5 2 1
20 5 6 & 3 ! ] 3
21 2 3 3 2 1 2 B
22 3 4 2 1 49 3 B
23 Z 3 3 2 i & 3
24 & 5 T 4 B 7 2
25 7 g 5 4 B B 3

.11



Appendix: Fundamental equations of factor analysis

Analyse these data using principal componants analysis. using the variman rotation procedure.
Interprat the factors extracted.

Caloulate factor scores for each respondent.

If surrogate variables were to be salected, which ones would you select?

Examine the model fit.

Analyse the data using commaon factor analysis, and answer parts b 1o e,

= m oo oo

Analyse the Benetton data (taken from Exercise 4, Chapter 18). Congider only the following variables: awareness,
attitude, preferance, intention and lovaity towards Benetton.

Analyse these data using principal companents analysis, using the vanmax rotation procedure,
Interpret the factors extracted,

Cafoulate factor scores for each respondent,

If surrogate variables were to be selected, which ones would you select?

Examine the maodel fit.

Analyse the data using comman factor analysis, and answer parts b to e,

== o o6 o omn

You are a marketing research analyst for a manufacturer of fashion clothing targeted at teenage boys. You have been
asked to develop a set of 10 statements for measuring psychographic characteristics and lifestyles that you feel would
relate to their fashion personas. The respondents would be asked to indicate their degree of agreement with the
statements using a seven-point scale (1 = completely disagree, 7 = completely agree). Question 40 students on
campus using these scale items. Factor analyse the data to identify the underlying psychographic factors.

In a small group identify the uses of factor analysis in each of the following major decision areas in marketing:

Market segmentation
Product decisions
Promations decisions
Pricing decisions
Distribution declslons
Service delivery decisions.

-8 0D oo

Appendix: Fundamental equations of factor analysis'?

In the factor analysis model, hypothetical components are derived that account for the
linear relationship between observed variables. The factor analysis model requires
that the relationships between observed variables be linear and that the variables have
non-zero cortelations between them. The derived hypothetical components have the
following properties:

I They form a lincarly independent set of variables. No hypothetical component is deriv-
able from the other hypothetical components as a linear combination of them.

2 The hypothetical components' variables can be divided into two basic kinds of compo-
nents: common factors and unique factors. These two components can be distinguished
in terms of the patterns of weights in the linear equations that derive the observed vari-
ables from the hypothetical components’ variables. A common factor has more than one
variable with a non-zero weight or factor loading associated with the factor, A unique
factor has only one variable with a non-zero weight associated with the factor. Hence,
only one variable depends on a unique factor,

3 Common factors are always assumed to be uncorrelated with the unique lactors.
Unigue factors are also usually assumed to be mutually uncorrelated, but common fac-
tors may ar may not be correlated with each other.

4 Generally, it is assumed that there are fewer common factors than observed variables,
The number of unique factors is usually assumed to be equal to the number of
observed variables, however.
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The following notations are used:

X=an n ¥ 1 random vector of observed random variables Xl, J{E, X_,', 4

"

It is assumed that

E(X) =0
E(XX') = R, a correlation matrix with unities in the main diagonal
F=an m > 1 vector of mcommon factors F, F,. ... F

"

1t 15 also assumed that

E(FI =0
E{FF'}) = Rm a correlation matrix

U=an n % 1 random vector of the n unique factor variables, U, U, ..., U,

and

EU) =0
EUuU =1

The unique factors are normalised to have unit variances and are mutually uncorrelated;

A =an n ¥ wrmatrix of coefficients called the factor pattern mix
V= an n ¥ ndiagonal matrix of coeffieicients for the unique factors

The observed variables, which are the coordinates of X, are weighted combinations of the
common factors and the unique factors. The fundamental equation of factor analysis can
then be written as

X=AF+ VU
The correlations between variables in terms of the factors may be derived as follows:

R, = E(XX')
= E[{AF+ VU){AF+ VU|
= E[(AF+ VU)(F A’ + U'V")]
= BLAFF'A’ + AFU' V'] + VUF'A' + VUU'V')
= AR;A' + AR, V' + VR A"+ V7

Given that the commaon factors are uncorrelated with the unique factors, we have
R_fu =R |.l_|"= 0
Hence,
iz ' 2
R.= ARD,.A + V
Suppose that we subtract the matrix of unique factor variance, V2, from both sides. We
then obtain
- R (]
Ro=¥t= AR#.A

R _ is dependent only on the common factor variables, and the correlations among the
variables are related only to the common factors. Let R = R — V7 be the reduced correla-
tion matrix.

We have already defined the factor pattern matrix A. The coefficients of the factor pat-
tern matrix are weights assigned to the commaon factors when the observed variables are
expressed as linear combinations of the common and unique factors, We now define the
factor structure matrix. The coefficients of the factor structure matrix are the covariances
hetween the observed variables and the factors. The factor structure matrix is helpful in
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the interpretation of factors as it shows which variables are similar to a common factor
variable. The factor structure matrix, ..-!J, is defined as

A, = E[XF')
= E[{AF + VINF'|
=AR;+ VR,
i 12
= AR,

Thus, the factor structure matrix is equivalent to the factor pattern matrix A multiplied by
the matrix of covariances among the factors R, Substituting A_for AR, the reduced cor-
relation matrix becomes the product of the factor structure and the factor pattern matrix:
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