Skewness, Moments and Kurtosis #### INTRODUCTION The measures of central tendency and variation discussed in previous chapters do not reveal the entire story about a frequency distribution. Two distributions may have the same mean and standard deviation but may differ in their shape of the distribution. Further description of their characteristics is necessary that is provided by measures of skewness and kurtosis. The term 'skewness' refers to lack of symmetry or departure from symmetry, e.g., when a distribution is not symmetrical (or is asymmetrical) it is called a skewed distribution. The measures of skewness indicate the difference between the manner in which the observations are distributed in a particular distribution compared with a symmetrical (or normal) distribution. The concept of skewness gains importance from the fact that statistical theory is often based upon the assumption of the normal distribution. A measure of skewness is, therefore, necessary in order to guard against the consequence of this assumption. In a symmetrical distribution the values of mean, median and mode are alike. In a skewed distribution these values differ. If the value of mean is greater than the mode, skewness is said to be positive. On the other hand, if the value of mode is greater than mean, skewness is said to be negative. The following diagrams would clarify the meaning of skewness. (a) Symmetrical Distribution · (b) Positively Skewed Distribution (c) Negatively Skewed Distribution It is clear from the (a), (b) and (c) diagrams that - 1. In a symmetrical distribution, the values of mean, median and mode are alike. - 2. In a positively skewed distribution, mean is greater than the mode and the median lies* somewhere in between mean and mode. A positively skewed distribution contains some values that are much larger than the majority of other observations. - 3. In a negatively skewed distribution, mode is greater than the mean and the median lies in between mean and mode. The mean is pulled towards the low-valued item (that is, to the left). A negatively skewed distribution contains some values that are much smaller than the majority of observations. In moderately asymmetrical distributions, the interval between the mean and the median is approximately one-third of the interval between the mean and the mode. It is this relationship that provides a means of measuring the degree of skewness. #### Difference between Variation and Skewness The following two points of difference between variation and skewness should be carefully noted: - 1. Variation tells us about the amount of the variation. Skewness tells us about the direction of wariation. - 2. In business and economic series, measures of variation have greater practical applications than measures of skewness. #### Measures of Skewness Measures of skewness can be both absolute as well as relative. Since in a symmetrical distribution mean, median and mode are identical, the more the mean moves away from the mode, the larger the symmetry or skewness. The distance between the mean and the mode is Karl Pearson's basis for measuring skewness. However, a measure of absolute skewness cannot be used for purposes of comparison because the same amount of skewness has different meanings in distribution with small variation and in distributions with large variation. In order to make valid comparison between the skewness in two or more distributions, we have to eliminate the distributing influence of variation. Such elimination is accomplished by dividing the absolute skewness by standard deviation. The following are two important methods of measuring relative skewness: 1. Karl Pearson's Coefficient of Skewness. The method is most frequently used for measuring **ewness. The formula for measuring coefficient of skewness is as follows: $$Sk_p = \frac{\text{Mean} - \text{Mode}}{\sigma}$$ Sk_p = Pearsonian (or Karl Pearson's) coefficient of skewness. The Pearsonian coefficient of skewness is based on the same relationship as the formula for the empirical mode. The direction of skewness is determined by observing whether the mean is greater than mode (positive skewness) or less than the mode (negative skewness). The extent of departure from metry is ascertained by observing the extent to which the mean is pulled away from the mode. The of departure is expressed in standard units in order to obtain a measure that is independent of the of measurement. ^{*}The distance between the mode and the median is twice the distance between the median and the mean As the departure from symmetry becomes substantial, the relationship on which the Pearsonian coefficient formula is based breaks down and the Pearsonian coefficient no longer provides reliable results. The value of this coefficient would be zero in a symmetrical distribution. If mean is greater than mode, coefficient of skewness would be positive, otherwise negative. In practice, the value of this coefficient usually lies between ± 1 for moderately skewed distribution. If the mode is ill-defined, the above formula has to be modified. In such a case the following approximate formula is used: $$Sk_p = \frac{3(\text{Mean} - \text{Median})}{\sigma}$$ 2. Bowley's Coefficient of Skewness. This method is based on quartiles. The formula for calculating coefficient of skewness is: $$Sk_B = \frac{(Q_3 - Q_2) - (Q_2 - Q_1)}{Q_3 - Q_1} = \frac{Q_3 + Q_1 - 2M ed.}{Q_3 - Q_1}$$ The value of this coefficient will be zero if it is a symmetrical distribution. If the value is greater than zero, it is positively skewed and if the value is less than zero, it is negatively skewed distribution. Sk_B = Bowley's coefficient varies between ± 1 for moderately skewed distribution. This method is particularly useful in case of open-end distributions and where extreme values are present. Also when positional measures are called for, skewness should be measured by the Bowley's method. 3. Kelly's Coefficient of Skewness. Another measure of skewness devised by Kelly is based on percentiles and deciles. The formula for calculating coefficient of skewness is given below: $$Sk_{K} = \frac{P_{90} - 2P_{50} + P_{10}}{P_{90} - P_{10}}$$ (based on percentiles) $Sk_{K} = \frac{D_{9} - 2D_{5} + D_{1}}{D_{9} - D_{1}}$ (based on deciles) Sk_K = Kelly's coefficient of skewness. It is clear from this formula that to calculate coefficient of skewness we have to determine the value of 10th, 50th and 90th percentiles. However, this method is not very popular in practice. It should be noted that three different formulae of calculating skewness are based on different assumptions and hence the answer obtained from the same question by different method may differ. It may be pointed out that measures of coefficient of skewness are used mainly for making comparison between two or more distributions. As a description of one distribution alone, the interpretation of a measure of skewness is vague as 'slight skewness', 'marked skewness', or 'moderate skewness'. Illustration 1. The following data relate to the profits of 1,000 companies: | Istration 1. The following Profits | No. of companies | Profits
(Rs. lakhs) | No. of companies | |-------------------------------------|--|-------------------------------|-------------------------| | (Rs. lakhs)
100–120
120–140 | 17
53 | 180–200
200–220
220–240 | 327
208
2 | | 140–160
160–180 | 199
194
kewness and comment on its | | (MBA, M.D. Univ., 2001) | | 0 0 | | |-----|---------| | SOI | ution. | | | utivii. | ## CALCULATION OF COEFFICIENT OF SKEWNESS | Profits
(Rs. lakhs) | m.p.
X | f | (X-170)/20
d | fd a said | fd^2 | |---|---|---|---------------------------------------|--|--| | 100–120
120–140
140–160
160–180
180–200
200–220
220–240 | 110
130
150
170
190
210
230 | 17
53
199
194
327
208
2 | -3
-2
-1
0
+1
+2
+3 | -51
-106
-199
0
+327
+416
+6 | 153
212
199
0
327
832
18 | | | | N = 1,000 | | $\Sigma fd = 393$ | $\sum fd^2 = 1,741$ | $$Sk_P = \frac{\text{Mean} - \text{Mode}}{\sigma}$$ Calculation of Mean: $$\overline{X} = A + \frac{\Sigma fd}{N} \times i = 170 + \frac{393}{1000} \times 20 = 170 + 7.86 = 177.86$$ Calculation of Mode: By inspection mode lies in the class 180–200. Mode = $$L + \frac{\Delta_1}{\Delta_1 + \Delta_2} \times i = 180 + \frac{133}{133 + 119} \times 20 = 180 + 10.56 = 190.56$$ Calculation of Standard Deviation: $$\sigma = \sqrt{\frac{\Sigma f d^2}{N} - \left(\frac{\Sigma f d}{N}\right)^2} \times i = \sqrt{\frac{1741}{1000} - \left(\frac{393}{1000}\right)^2} \times 20$$ $$= \sqrt{1.74 - 0.15} \times 20 = 1.26 \times 20 = 25.2$$ $$Sk_P = \frac{177.86 - 190.56}{25.2} = -0.504$$ The mode is greater than the mean by an amount equal to about 50.4 per cent of the value of standard deviation. It is a case moderate negatively skewed distribution. Illustration 2. The following table gives the distribution of daily wages of 500 skilled workers in a factory: | Daily wages
(Rs.) | 020,0 | 13(31), 2 | No. of wo | rkers | |----------------------|--------------------|-----------------|-----------|---------------------| | (16.) | 11872 (2) | | | | | Below 200 | · | William . | 10 | Median kaga (Rs.) : | | 200–250 | TAN. | | 25 | | | 250–300 | encarate to design | | | | | 300–350 | នៅ ហែកសារបស់ ១៧ ស | | | | | 350 400 | | Selver | 70 | | | 400 and above | -0477 - 0507 - 1 | 100.0a.aa xa 01 | | | (i) Obtain the limits of daily wages of central 50 per cent of the observed workers. (ii) Calculate Bowley's Coefficient of Skewness. (MBA, Delhi Univ., 2002) | Solution. | CALCULATION | JE LIMITS OF | F CENTRAL 50%
OF | WORKERS AND BOWLEY | 'S COFFFICIENT | |-----------|-------------|--------------|------------------|--|----------------| | | | | | The same of sa | O COLITICILITY | | Daily wages
(Rs.) | | by the second cases to so boar and too to a line | |--|------------------------|--| | Below 200
200–250
250–300
300–350
350–400
400 and above | 10
25
145
220 | 10
35
180
400
470
500 | For obtaining the limits of central 50% of the workers, calculate Q_1 and Q_3 $$Q_1$$ = Size of $\frac{N}{4}$ th observation = $\frac{500}{4}$ =125th observation Q_1 lies in the class 250–300. $$Q_1 = L + \frac{N/4 - p.c.f.}{f} \times i = 250 + \frac{125 - 35}{145} \times 50 = 250 + 31.03 = 281.03$$ $$Q_3$$ = Size of $\frac{3N}{4}$ th observation = $\frac{3 \times 500}{4}$ = 375th observation Q_3 lies in the class 300–350. $$Q_3 = L + \frac{3N/4 - p.c.f.}{f} \times i = 300 + \frac{375 - 180}{220} \times 50 = 300 + 44.32 = 344.32$$ Hence the daily wages of central 50% of workers lies between Rs. 281.03 and Rs. 344.32. (ii) Bowley's Coefficient of Skewness $$Sk_B = \frac{Q_3 + Q_1 - 2 \text{ Med.}}{Q_3 - Q_1}$$ Med. = Size of $$\frac{N}{2}$$ th observation = $\frac{500}{2}$ = 250th observation Median lies in the class 300-350. Med. = $$L + \frac{N/2 - p.c.f.}{f} \times i = 300 + \frac{250 - 180}{220} \times 50 = 300 + 15.9 = 315.9$$ $$Sk_B = \frac{344.32 + 281.03 - 2(315.9)}{344.32 - 281.03} = \frac{-6.45}{63.29} = -0.102$$ The negative coefficient -0.102 indicates that the distance between Q_3 and Q_1 is smaller than that between Q_2 and Q_1 . Thus the distribution is skewed to the left or at smaller values on the X-scale. **Illustration 3.** You are given the position in a factory before and after the settlement of an industrial dispute. Comment on the gains or losses from the point of view of workers and that of management: | | Before* | After | |--------------------------|---------|-------| | No. of workers | 3,000 | 2,950 | | Mean wage (Rs.) | 2,220 | 2,280 | | Median wage (Rs.) | 2,250 | 2,225 | | Standard deviation (Rs.) | 300 | 260 | **Solution.** The following comments can be made on the basis of information given: (i) By comparing the total wage bill, we can comment on the increase or decrease in the level of wages. Before After Total wage bill: $$3,000 \times 2220 = \text{Rs.} 66,60,000$$ $2950 \times 2280 = \text{Rs.} 67,26,000$ Hence the total wage bill has gone up after the settlement of dispute even though the number of workers has decreased from 3,000 to 2,950. This means that average wage is now better. This is definitely a gain to the workers. Conversely, we cannot say that increased wage bill is a loss to management because if it results in greater efficiency of workers and, therefore, higher productivity, it would be a gain to management also. - (ii) Median wage before settlement of the dispute was Rs. 2,250 and after settlement is Rs. 2,225. This means that formers 50% of workers used to get wages above Rs. 2,250 and now after the settlement of dispute they get only Rs. 2,225. - (iii) By comparing the coefficient of variation, we can comment on the distribution pattern of wages. Coefficient of variation: $$\frac{300}{2220} \times 100 = 13.51$$ $$\frac{260}{2280} \times 100 = 11.40$$ Since the coefficient of variation has decreased from 13.51 to 11.40, there is sufficient evidence to conclude that wages are more uniformly distributed after the settlement of dispute, or, in other words, there is lesser inequality in the distribution of wages after the dispute is settled. (iv) By comparing skewness we can comment on the nature of the distribution. Coefficient of skewness: $$\frac{3(2220-2250)}{300} = -0.3$$ The distribution was negatively skewed before the mature of the distribution. $$\frac{After}{260} = +0.635$$ The distribution was negatively skewed before the settlement and is positively skewed after the settlement. ### **MOMENTS** Moments are popularly used to describe the characteristic of a distribution. They represent a convenient and unifying method for summarizing many of the most commonly used descriptive statistical measures such as central tendency, variation, skewness and kurtosis. The Greek letter μ (read as mu) is ## For Ungrouped Data The rth moment of a variable X about the arithmetic mean \overline{X} is given by : $$\mu_r = \frac{1}{N} \sum (X - \overline{X})^r$$ le X about any arbitrary point A: ...(i) The rth moment of a variable X about any arbitrary point A is given by : $$\mu'_{r} = \frac{1}{N} \Sigma (X - A)^{r} \qquad ...(ii)$$ ## For Grouped Data $$\mu_r = \frac{1}{N} \sum f (X - \bar{X})^r \qquad \dots (iii)$$ and $$\mu'_{r} = \frac{1}{N} \sum f(X - A)^{r}$$ shall get different was a simple for the continuous state. For different values of r, we shall get different moments. Thus if we put r = 1, we will get first moment, if we put r = 2, we will get second moment, and so on. Moments about Mean* For ungrouped data: $$\mu_{1} = \frac{\Sigma (X - \overline{X})}{N}; \qquad \qquad \mu_{2} = \frac{\Sigma (X - \overline{X})^{2}}{N}; \qquad \qquad \mu_{3} = \frac{\Sigma (X - \overline{X})^{3}}{N}; \qquad \qquad \mu_{4} = \frac{\Sigma (X - \overline{X})^{4}}{N}$$ For grouped data: $$\mu_{1} = \frac{\sum f(X - \overline{X})}{N}; \qquad \qquad \mu_{2} = \frac{\sum f(X - \overline{X})^{2}}{N};$$ $$\mu_{3} = \frac{\sum f(X - \overline{X})^{3}}{N}; \qquad \qquad \mu_{4} = \frac{\sum f(X - \overline{X})^{4}}{N}$$ moments to higher power in the state of μ_{4} We can extend the moments to higher power in the similar way. But in practice the first four moments suffice. The first moment about the origin tells us about the mean, the second moment about variance, the third moment about skewness and the fourth moment about the kurtosis. ^{*}Moments about mean are also called central moments. ### 178 Business Statistics ## **Moments about Arbitrary Point** When actual mean is in fraction, moments are first calculated about an arbitrary origin and then converted to moments about the actual mean. When deviations are taken from arbitrary point, the formulae are: $$\mu'_{1} = \frac{\sum (X - A)}{N} \qquad \qquad \mu'_{2} = \frac{\sum (X - A)^{2}}{N}$$ $$\mu'_{3} = \frac{\sum (X - A)^{3}}{N} \qquad \qquad \mu'_{4} = \frac{\sum (X - A)^{4}}{N}$$ μ'_1 , μ'_2 , etc., denote first, second moment, etc., about an arbitrary point 'A'. In a frequency distribution, to simplify calculations we can take a common factor but in that case the various moments have to be multiplied by i, i^2 , i^3 and i^4 respectively. Thus, taking $d = \frac{X - A}{i}$ or (X - A) = id, we get $$\mu'_{1} = \frac{\sum f(X - A)}{N} \qquad \text{or} \qquad \frac{\sum fd}{N} \times i$$ $$\mu'_{2} = \frac{\sum f(X - A)^{2}}{N} \qquad \text{or} \qquad \frac{\sum fd^{2}}{N} \times i^{2}$$ $$\mu'_{3} = \frac{\sum f(X - A)^{3}}{N} \qquad \text{or} \qquad \frac{\sum fd^{3}}{N} \times i^{3}$$ $$\mu'_{4} = \frac{\sum f(X - A)^{4}}{N} \qquad \text{or} \qquad \frac{\sum fd^{4}}{N} \times i^{4}$$ However, when we calculate the values of β_1 and β_2 , the answer will remain the same whether we have multiplied the moments by common factor or not. ## Finding Central Moments from Moments about Arbitrary Point With the help of following relationships, moments about an arbitrary point can be converted to moments about mean: $$\begin{split} &\mu_1 = 0 \\ &\mu_2 = \mu'_2 - (\mu'_1)^2 \\ &\mu_3 = \mu'_3 - 3\mu'_1\mu'_2 + 2(\mu'_1)^3 \\ &\mu_4 = \mu'_4 - 4\mu'_1\mu'_3 + 6\mu'_2{\mu'_1}^2 - 3{\mu'_1}^4 \end{split}$$ Two important constants calculated from μ_2 , μ_3 and μ_4 are : (i) β_1 (read as beta one) and (ii) β_2 (read as beta two) (i) $$\beta_1$$ is defined as: $\beta_1 = \frac{\mu_3^2}{\mu_2^3}$ β_1 is used as a measure of
skewness. In a symmetrical distribution β_1 shall be zero. However, the coefficient β_1 as a measure of skewness has a serious limitation. β_1 as a measure of skewness cannot tell us about the direction of skewness, *i.e.*, whether it is positive or negative. This is for the simple reason that μ_3 being the sum of the cubes of the deviation from the mean may be positive or negative but μ_3^2 is always positive. Also μ_2 being the variance is always positive. Hence $\beta_1 = \mu_3^2/\mu_2^3$ is always positive. This drawback is removed if we calculate Karl Pearson's γ_1 (pronounced as Gamma one). γ_1 is defined as the square root of β_1 , *i.e.*, $$\gamma_1 = \sqrt{\beta_1} = \frac{\mu_3}{\mu_2^{3/2}} = \frac{\mu_3}{\sigma^3}$$ The sign of skewness would depend upon the value of μ_3 . If μ_3 is positive we will have positive skewness and if μ_3 is negative, we will have negative skewness. It is advisable to use γ_1 as a measure of skewness. (ii) β_2 measures kurtosis and is defined as: $\beta_2 = \frac{\mu_4}{\mu_2^2}$. **Illustration 4.** From the following data calculate first four moments and also find the value of γ_1 : | Monthly Profits (in lakh Rs.) | No. of Companies | Monthly Profits (in lakh Rs.) | No. of Companies | |-------------------------------|------------------|---|------------------| | Less than 7.5 | 4 | 22.5–27.5 | 16 | | 7.5–12.5 | 10 | 27.5–32.5 | 10 | | 12.5–17.5 | 20 | 32.5–37.5 | 2 | | 17.5–22.5 | 36 | er en | | Solution. CALCULATION OF MOMENTS | Monthly Profits (in lakh Rs.) | т.р.
Х | f_{i} | (X-20)/5 | fd | fd ² | fd ³ | fd ^A | |--|---------------------------------------|--------------------------------------|---------------------------------------|--|---------------------------------------|--|---| | Less than 7.5 7.5–12.5 12.5–17.5 17.5–22.5 22.5–27.5 27.5–32.5 32.5–37.5 | 5
10
15
20
25
30
35 | 4
10
20
36
16
12
2 | -3
-2
-1
0
+1
+2
+3 | -12
-20
-20
0
+16
+24
+6 | 36
40
20
0
16
48
18 | -108
-80
-20
0
+16
+96
+54 | 324
160
20
0
16
192
162 | | | | N = 100* | | $\Sigma fd = -6$ | $\sum fd^2$ = 178 | $\sum fd^3$ = -42 | $\Sigma fd^{A} = 874$ | Moments about arbitrary origin (20) in class-interval units: $$\mu'_{1} = \frac{\Sigma f d}{N} \times i = \frac{-6}{100} \times 5 = -0.3; \quad \mu'_{2} = \frac{\Sigma f d^{2}}{N} \times i^{2} = \frac{178}{100} \times 25 = 44.5;$$ $$\mu'_{3} = \frac{\Sigma f d^{3}}{N} \times i^{3} = \frac{-42}{100} \times 125 = -52.5; \quad \mu'_{4} = \frac{\Sigma f d^{4}}{N} \times i^{4} = \frac{874}{100} \times 625 = 5462.5$$ Moments about mean $$\mu_{2} = \mu'_{2} - (\mu'_{1})^{2}$$ $$= 44.5 - (-0.3)^{2} = 44.5 - 0.09 = 44.41$$ $$\mu_{3} = \mu'_{3} - 3\mu'_{1}\mu'_{2} + 2(\mu'_{1})^{3}$$ $$= -52.5 - 3(-0.3 \times 44.5) + 2(-0.3)^{3}$$ $$= -52.5 + 40.05 - .054 = -12.504$$ $$\mu_{4} = \mu'_{4} - 4\mu'_{1}\mu'_{3} + 6\mu'_{2}\mu'_{1}^{2} - 3\mu'_{1}^{4}$$ $$= 5462.5 - 4(-0.3 \times -52.5) + 6(44.5)(-0.3)^{2} - 3(-0.3)^{4}$$ $$= 5462.5 - 63 + 24.03 - .0243 = 5423.5057$$ $$\gamma_{1} = \frac{\mu_{3}}{\sigma^{3}} = \frac{-12.504}{(6.6641)^{3}} = -\frac{12.504}{295.954} = -0.0422.$$ **Illustration 5.** The first four moments of a distribution about the value 5 of the variable are 2, 20, 40 and 50. Show that the mean is 7. Also find the other moments and β_1 and β_2 . Solution. We are given $$\mu'_{1} = 2$$, $\mu'_{2} = 20$, $\mu'_{3} = 40$ and $\mu'_{4} = 50$ and $A = 5$. We have to find the moments about mean. $$\overline{X} = \mu'_{1} + A = 2 + 5 = 7$$ $$\mu_{2} = \mu'_{2} - (\mu'_{1})^{2} = 20 - (2)^{2} = 16$$ $$\mu_{3} = \mu'_{3} - 3\mu'_{1}\mu'_{2} + 2\mu'_{1}^{3} = 40 - 3 (2) (20) + 2 (2)^{3} = -64$$ $$\mu_{4} = \mu'_{4} - 4\mu'_{1}\mu'_{3} + 6\mu'_{2}\mu'_{1}^{2} - 3\mu'_{1}^{4} = 50 - 4 (40) (2) + 6 (20) (2)^{2} - 3 (2)^{4} = 162$$ $$\beta_{1} = \frac{\mu_{3}^{2}}{\mu_{2}^{3}} = \frac{(-64)^{2}}{(16)^{3}} = \frac{4096}{4096} = +1.00$$ $$\beta_{2} = \frac{\mu_{4}}{\mu_{2}^{2}} = \frac{162}{(16)^{2}} = \frac{162}{256} = +0.63$$ #### **KURTOSIS** In describing a frequency distribution, a person can use an average to show the typical value or central tendency in the distribution, a measure of variation to show the variation of values either with certain values (such as the range and quartile deviation) or around the average of the distribution (such as the average deviation and the standard distribution) either skewed to the higher values (the right side on the X-scale) or to the lower values (the left side on the X-scale). Further, the measure of kurtosis, the fourth device in describing a frequency distribution, can be used to show the degree of concentration, either the values concentrated in the area around the mode (a peaked curve) or decentralised from the mode of both tails of the frequency curve (a flat topped curve). Kurtosis in Greek means "bulginess". In statistics, kurtosis refers to the degree of flatness or peakedness in the region about the mode of a frequency curve. The degree of kurtosis of a distribution is measured relative to the peakedness of a normal curve. If a curve is more peaked than the normal curve, it is called 'leptokurtic'; if it is more or flat-topped than the normal curve, it is called 'platykurtic' or flat-topped. The normal curve itself is known as 'mesokurtic'. The concept of kurtosis is rarely used in analysing business data: The diagram below illustrates the scope of three different curves mentioned above : (A) Mesokurtic. (B) Leptokurtic. (C) Platykurtic. #### Measures of Kurtosis Kurtosis is measured by β , or its derivative γ , $$\beta_2 = \frac{\mu_4}{{\mu_2}^2}$$ and $\gamma_2 = \beta_2 - 3$. For a symmetrical (normal) distribution the value of β_2 =3 [or γ_2 =0]. If the value of β_2 is greater than 3, the curve is more peaked than the normal curve; *i.e.*, leptokurtic; when the value of β_2 is less than 3, the curve is less peaked than normal curve *i.e.*, platykurtic. It may be noted that it is easier to interpret kurtosis by calculating β_2 instead of γ_2 . Illustration 6. The first central moments of a distribution are 0, 16, -36 and 120. Comment on the skewness and kurtosis of the distribution. **Solution.** We are given $\mu_1 = 0$, $\mu_2 = 16$, $\mu_3 = -36$ and $\mu_4 = 120$. For commenting on the skewness we calculate γ_1 . $$\gamma_1 = \frac{\mu_3}{\sigma^3} = \frac{-36}{(4)^3} = \frac{-36}{64} = -0.5625$$ $\sigma = \sqrt{\mu_2} = \sqrt{16} = 4$ The distribution is negatively skewed (It may be noted that if we calculate β_1 its value will be $\beta_1 = \frac{\mu_3^2}{\mu_2^3} = \frac{(-36)^2}{(16)^3} = +0.3164$. But this would be wrong as μ_2 is negative). For commenting on the kurtosis we calculate β_2 . $$\beta_2 = \frac{\mu_4}{\mu_2^2} = \frac{120}{(16)^2} = +0.469$$ Since the value of β_2 is less than 3, the distribution is platykurtic. #### MISCELLANEOUS ILLUSTRATIONS Illustration 7. An analysis of production rejects resulted in the following figures: | , | | and tomo Inguitos . | | | |----------------|------------------|---------------------|------------|--------| | No. of rejects | No. of operators | No. of rejects | No. of ope | rators | | per operator | | per operator | (301-02) | | | 21–25 | 5 | 41–45 | 15 | | | 26–30 | 15 | 46-50 | 12 | , | | 31–35 | 28 | 51–55 | 3 | | | 36–40 | 42 | | | | Calculate mean, standard deviation and coefficient of skewness and comment on the results. Solution. #### COMPUTATION OF COEFFICIENT OF SKEWNESS | No. of rejects
per operator | m.p.
X | No. of operators | (X-38)/5 | * or investigate | 10 - 10 - 112 - 17 | |--------------------------------|-----------|------------------|-----------------|-------------------|--------------------| | - | | f | d | fd | fd^2 | | 20.5–25.5 | 23 | 5 . 84 = 1 | -3 | -15 | 45 | | 25.5-30.5 | 28 | 15 | -2 | -30 | 60 | | 30.5-35.5 | 33 | 28 | -1 0at 1 | -28 | 28 | | 35.5-40.5 | 38 | 42 | no reads the o | DOUGH O YEEKS | 0 | | 40.5-45.5 | 43 | 15 | +1 | +15 | 15 | | 45.5-50.5 | 48 | 12 | +2 | +24 | 48 | | 50.5–55.5 | 53 | 3 | +3 | +9 | 27 | | | | N = 120 | | $\Sigma fd = -25$ | $\Sigma fd^2=223$ | Mean: $$\overline{X} = A + \frac{\Sigma fd}{N} \times i = 38 - \frac{25}{120} \times 5 = 38 - 1.04 = 36.96$$ Standard deviation: $$\sigma = \sqrt{\frac{\Sigma f d^2}{N} - \left(\frac{\Sigma f d}{N}\right)^2} \times i = \sqrt{\frac{223}{120} - \left(\frac{-25}{120}\right)^2} \times 5$$ $$= \sqrt{1.8583 - .0434} \times 5 = \sqrt{1.8149} \times 5 = 1.3472 \times 5 = 6.736$$ Mode = $$L + \frac{\Delta_1}{\Delta_1 + \Delta_2} \times i = 35.5 + \frac{14}{14 + 27} \times 5 = 35.5 + 1.71 = 37.21$$ Hence Coeff. of $Sk = \frac{36.96 - 37.21}{6.736} = \frac{-.25}{6.736} = -0.037$ The value of mean = 36.96 indicates that on the average, rejects per operator were 37 in number. The value of standard deviation = 6.736 suggests that the variation in the data from the central value is approximately 7. Coefficient of skewness = -0.037 indicates that the distribution is slightly skewed to the left and therefore, there is greater concentration of the rejects per operator at the upper values than the lower values of the distribution. **Illustration 8.** Distinguish between Karl Pearson's and Bowley's coefficient of skewness. Compute an appropriate measure of skewness for the following data: | Sales | No. of | Sales | No. of | |-------------|-----------|-------------|-----------| | (Rs. Lakhs) | Companies | (Rs. Lakhs) | Companies | | Below 50 | 12 | 90–100 | 55 | | 5060 | 30 | 100-110 | 45 | | 60–70 | 65 | 110–120
| 25 | | 70–80 | 78 | Above 120 | 10 | | 80–90 | 80 | | | Solution. Since it is an open-end distribution, therefore Bowley's method of calculating skewness should be more appropriate. #### CALCULATION OF COEFFICIENT OF SKEWNESS | Sales | $\forall s \in \mathcal{G} + f = \frac{obs}{obs} = \frac{obs}{obs}$ | c.f. | |-----------|---|------| | Belew 50 | sense da en 12 diseis ab e ses | 12 | | 50-60 | 30 | 42 | | 60–70 | 30 65 | 107 | | | 78 | 185 | | 80–90 | 80 | 265 | | 90–100 | 55 | 320 | | 100-110 | 45 | 365 | | 110–120 | 25 | 390 | | Above 120 | 10 | 400 | Coeff. of $$Sk = \frac{Q_3 + Q_1 - 2 \text{ Med.}}{Q_2 - Q_1}$$ $$Q = \text{Size of } \frac{N}{4} \text{th observation} = \frac{400}{4} = 100 \text{th observation}.$$ Q lies in the class 60-70. $$Q = L + \frac{N/4 - p.c.f.}{f} \times i = 60 + \frac{100 - 42}{65} \times 10 = 60 + 8.92 = 68.92$$ $$Q_3$$ = Size of $\frac{3N}{4}$ th observation = $\frac{3 \times 400}{4}$ = 300th observation. O, lies in the class 90-100. $$Q_3 = L + \frac{3N/4 - p.c.f.}{f} \times i = 90 + \frac{300 - 265}{55} \times 10 = 90 + 6.36 = 96.36$$ Med. = Size of $$\frac{N}{2}$$ th observation = $\frac{400}{2}$ = 200th observation Median lies in the class 80-90. Med. = $$L + \frac{N/2 - p.c.f.}{f} \times i = 80 + \frac{200 - 185}{80} \times 10 = 80 + 1.875 = 81.875$$ Coeff. of $$Sk = \frac{96.36 + 68.92 - 2(81.875)}{96.36 - 68.92} = \frac{165.28 - 163.75}{27.44} = 0.056.$$ Illustration 9. Find an appropriate measure of skewness from the following distribution: | Age (yrs.)
Below 20
20–25
25–30
30–35 | No. of employees 13 29 46 | Age (yrs.)
35–40
40–45
45–50 | No. of employees 112 94 45 | |---|----------------------------|---------------------------------------|----------------------------| | 3033 | 60 | 50 and above | 21 | Solution. Since it is an open-end distribution, therefore appropriate measure of skewness would be Bowley's coefficient of skewness. ## CALCULATION OF BOWLEY'S COEFFICIENT | Age (Yrs.) | No. of employees (f) | | |--------------|---|------| | Below 20 | | c.f. | | 20–25 | 13 | 13 | | 25–30 | 29 | 42 | | 30–35 | 46 | 88 | | 35–40 | 60
112 | 148 | | 40–45 | | 260 | | 45–50 | 94
2 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 354 | | 50 and above | 21 | 399 | | 100 | 21 | 420 | | | N = 420 | | N = 420 $$Sk_B = \frac{Q_3 + Q_1 - 2 \text{ Med.}}{Q_3 - Q_1}$$ $$Q_1$$ = Size of $\frac{N}{4}$ th observation = $\frac{420}{4}$ = 105th observation Q_1 lies in the class 30-35. $$Q_1 = L + \frac{N/4 - p.c.f.}{f} \times i = 30 + \frac{105 - 88}{60} \times 5 = 30 + 1.42 = 31.42$$ $$Q_3$$ = Size of $\frac{3N}{4}$ th observation = $\frac{3 \times 420}{4}$ = 315th observation Q_3 lies in the class 40-45. $$Q_3 = L + \frac{3N/4 - p.c.f.}{f} \times i = 40 + \frac{315 - 260}{94} \times 5 = 40 + 2.93 = 42.93$$ Med. = Size of $$\frac{N}{2}$$ th observation = $\frac{420}{2}$ = 210th observation Median lies in the class 35-40. Med. = $$L + \frac{N/2 - p.c.f.}{f} \times i = 35 + \frac{210 - 148}{112} \times 5 = 35 + 2.77 = 37.77$$ $$Sk_B = \frac{42.93 + 31.42 - (2 \times 37.77)}{42.93 - 31.42} = \frac{-1.19}{11.51} = -0.103$$ Hustration 10 (c) The results 550 Illustration 10. (a) The sum of 50 observations is 500, its sum of squares is 6,000 and median 12. Find the coefficient of variation and coefficient of skewness. **Solution.** N = 50, $\Sigma X = 500$, $\Sigma X^2 = 6{,}000$, Med. = 12 $$\overline{X} = \frac{\Sigma X}{N} = \frac{500}{50} = 10$$; and $\sigma = \sqrt{\frac{\Sigma X^2}{N} - (\overline{X})^2} = \sqrt{\frac{6,000}{50} - (10)^2} = 4.47$ C.V. = $$\frac{\sigma}{\overline{X}} \times 100 = \frac{4.47}{10} \times 100 = 44.7 \text{ per cent}$$ Mode = 3 Median - 2 Mean = $$3 \times 12 - 2 \times 10 = 16$$ $$Sk_p = \frac{\text{Mean} - \text{Mode}}{\sigma} = \frac{10 - 16}{4.47} = -1.34.$$ (b) For a moderately skewed distribution, the arithmetic mean is 100 and coefficient of variation is 35, and Pearson's coefficient of skewness is 0.2. Find the mode and the median. **Solution.** $$\bar{X} = 100$$, C.V. = 35 $Sk_p = 0.2$. C.V. = $$\frac{\sigma}{\overline{X}} \times 100$$ 35 = $\frac{\sigma}{100} \times 100$ or $\sigma = 35$ $$Sk_P = \frac{\overline{X} - \text{Mode}}{\sigma}$$ or $0.2 = \frac{100 - \text{Mode}}{35}$ $$7 = 100 - Mode \text{ or } Mode = 93$$ Mode = 3 Med. - 2 Mean $93 = 3 \text{ Med.} - 2 \times 100 \text{ or } 3 \text{ Med.} - 200 = 93$ 3 Med. = 293 :: Med. = 97.7 Hence Mode = 93 and Median = 97.7 Illustration 11. From the following data of age of employees, calculate coefficient of skewness and comment on the result: Age below (yrs.) : 25 30 35 40 45 50 55 No. of employees : 8 20 40 65 80 92 100 Solution. This is a cumulative frequency distribution. First we will convert it to a simple frequency distribution and then calculate coefficient of skewness. #### CALCULATION OF COEFFICIENT OF SKEWNESS | Age | m.p. | f | (X-37.5)/5 | 1 - 1 - 1 - 1 - 1 | | |--------|------|----|------------|-------------------|-----------------| | (Yrs.) | X | | d | fd | fd ² | | 20–25 | 22.5 | 8 | -3 | -24 | 72 | | 25-30 | 27.5 | 12 | -2 | -24 | 48 | | 30-35 | 32.5 | 20 | -1 | -20 | 20 | | 35-40 | 37.5 | 25 | 0 | 0 | 0 | | 40-45 | 42.5 | 15 | +1 | +15 | 15 | | 45-50 | 47.5 | 12 | +2 | +24 | 48 | | 50-55 | 52.5 | 8 | +3 | +24 | 72 | | | | - | | | | $$Sk_p = \frac{\text{Mean} - \text{Mode}}{\sigma}$$ Mean: $$\overline{X} = A + \frac{\Sigma fd}{N} \times i = 37.5 - \frac{5}{100} \times 5 = 37.25$$ Mode: Mode lies in the class 35 - 40. Mode = $$L + \frac{\Delta_1}{\Delta_1 + \Delta_2} \times i = 35 + \frac{5}{5+10} \times 5 = 36.67$$ S.D.: $\sigma = \sqrt{\frac{\Sigma f d^2}{N} - \left(\frac{\Sigma f d}{N}\right)^2} \times i = \sqrt{\frac{275}{100} - \left(\frac{-5}{100}\right)^2} \times 5$ = $\sqrt{2.75 - .0025} \times 5 = 1.658 \times 5 = 8.29$ $Sk_p = \frac{37.25 - 36.67}{8.29} = \frac{0.58}{8.29} = 0.07.$ This value of skewness indicates that the distribution has hardly any skewness. Illustration 12. You are given the following frequency distribution of the daily earnings of employees in a company: | Inustration 12. Tou are | Biven the following medacine, and | or reality continues | or omprojects in a company | |-------------------------|-----------------------------------|----------------------|----------------------------| | Earnings (in Rs.) | Number of workers | Earnings (in Rs.) | Number of workers | | 50-70 | 4 | 130–150 | 6 | | 70–90 | 8 | 150–170 | 7 | | 90-110 | 12 | 170–190 | 3 | | 110-130 | 20 | | | Calculate the first four moments about the point 120. Convert the result into moments about the mean. Compute the value of γ_1 and γ_2 and comment on the result. (MBA, Delhi Univ., 2002) Solution. Moment about some arbitrary point is given by $$\mu_{r}' = \frac{1}{N} \sum f(X - A)^{r}$$ Here A = 120 and X are the mid-points. To get the first four moments, put r = 1, 2, 3 and 4 in the above formula. COMPUTATION OF FIRST FOUR MOMENTS | Earnings
(Rs.) | m.p.
X | f | (X-120)/20 | | 3 VA | | Total (N | |--|--|-----------------------------------|---------------------------------------|-----------------------------|------------------------------------|---|------------------------------------| | 50–70
70–90
90–110
110–130
130–150
150–170
170–190 | 60
80
100
120
140
160
180 | 4
8
12
20
6
7
3 | -3
-2
-1
0
+1
+2
+3 | fd -12 -16 -12 0 +6 +14 +9 | fd ² 36 32 12 0 6 28 27 | fd ³ -108 -64 -12 0 +6 +56 +81 | fd ⁴ 324 128 12 0 6 112 | | | | N = 60 | 04.1 | $\sum fd = -11$ | $\sum fd^2=141$ | £ 0.11 | 243 | | Moments abou | it the arbitrar | y point $= 120$ | | 2 | 2 ju -141 | $\sum f d^3 = -41$ | $\sum f d^4 = 825$ | $$\mu'_{1} = \frac{\sum fd}{N} \times i = \frac{-11}{60} \times 20 = -3.6667$$ $$\mu'_{2} = \frac{\sum fd^{2}}{N} \times i^{2} = \frac{141}{60} \times (20)^{2} = 940$$ $$\mu'_{3} = \frac{\sum fd^{3}}{N} \times i^{3} = \frac{-41}{60} \times (20)^{3} = -5466.6667$$ $$\mu'_{4} = \frac{\sum fd^{4}}{N} \times i^{4} = \frac{825}{60} \times (20)^{4} = 22,00,000$$ Moments about mean: $\mu_1 = 0$ (since the sum of the deviations from the means is zero.) $$\mu_2 = \mu'_2 - {\mu'_1}^2 = 940 - (-3.6667)^2 = 926.5553 \text{ or } \sigma = \sqrt{\mu_2} = 30.4394$$ $$\mu_3 = \mu'_3 - 3\mu'_1 {\mu'_2} + 2{\mu'_1}^3$$ $$= -5466.6667 - 3(940) (-3.6667) + 2 \cdot (-3.6667)^3$$ $$= -5466.6667 + 10340.094 - 98.5953 = 4774.832$$ $$\mu_4 = {\mu'_4} - 4{\mu'_1}{\mu'_3} + 6{\mu'_2} {\mu'_1}^2 - 2{\mu'_1}^4$$ $$= 2200000 - 4(-3.6667) (-5466.6667) + 6 (940) (-3.6667)^2 - 3 (-3.6667)^4$$ $$= 2200000 - 80178.507 + 75828.045 - 542.2789 = 2195107.3$$ $$Y_1 = \sqrt{\beta_1} = \frac{\mu_3}{\sigma^3} = \frac{4774.83}{(30.4394)^3} = 0.1693;$$ $$\beta_2 = \frac{\mu_4}{\mu_2^2} = \frac{2195107.3}{(926.56)^2} = 2.56, \ Y_2 = \beta_2 - 3 = -0.44$$ of Y_1 indicates that the distribution The value of Y_1 indicates that the distribution is slightly skewed to the right, *i.e.*, it is not perfectly symmetrical. Since the value of Y_2 is less than zero, therefore, the distribution is platykurtic. **Illustration 13.** (a) The first three moments of a distribution about the value 1 are 2, 25 and 80. Find its mean, standard deviation and the moment-measure of skewness. **Solution.** $$\mu'_1 = 2$$, $\mu'_2 = 25$, $\mu'_3 = 80$, $A = 1$ Mean: $\overline{X} = \mu'_1 + A = 2 + 1 = 3$ Standard deviation: $\mu_2 = \mu'_2 - {\mu'}_1^2 = 25 - (2)^2 = 21$ $$\sigma = \sqrt{\mu_2} = {\mu'_2} - {\mu'_1}^2 = 25 - (2)^2 = 21$$ $$\sigma = \sqrt{\mu_2} = \sqrt{21} = 4.583$$ $$\mu_3 = \mu'_3 - 3\mu'_1\mu'_2 + 2(\mu'_1)^3 = 80 - 3 \times 2 \times 25 + 2(2)^3$$ or $\mu_3 = 80 - 150 + 16 = -54$
Moment-measure of skewness: $$\gamma_1 = \sqrt{\beta_1} = \frac{\mu_3}{\sigma^3} = \frac{(-54)}{(4.583)^3} = \frac{-54}{96.26} = -0.561$$ (b) The first and second moment of a distribution about the value 5 of the variable are 2 and 20. Find the mean and standard deviation. Solution. $$\mu'_{1} = 2, \mu'_{2} = 20, A = 5$$ $$\overline{X} = \mu'_{1} + A = 2 + 5 = 7$$ $$\mu_{2} = \mu'_{2} - (\mu'_{1})^{2} = 20 - (2)^{2} = 16$$ $$\sigma = \sqrt{\mu_{2}} = \sqrt{16} = 4.$$ Illustration 14. Find the second, third and the fourth central moments of the frequency distribution given below. Hence find (i) a measure of skewness, and (ii) a measure of kurtosis. | | Frequency | Class Limits | Frequency | |--------------|------------|--|-----------| | Class Limits | 1 requests | 130.0–134.9 | 10 | | 110.0–114.9 | 3 | 135.0-139.9 | 10 | | 115.0-119.9 | 15 | and the state of t | 5 | | 120.0-124.9 | 20 | 140.0–144.9 | | | 125.0-129.9 | 35 | | | Solution. ## CALCULATION OF MOMENTS | Class Limits | m.p.
X | f | (X-127.45)/5
d | fd | fd^2 | fd³ | fd^4 | |--|--|---------------------------------|---------------------------------------|---|---------------------------------------|--|---| | 110.0–114.9
115.0–119.9
120.0–124.9
125.0–129.9
130.0–134.9
135.0–139.9 | 112.45
117.45
122.45
127.45
132.45
137.45
142.45 | 5
15
20
35
10
10 | -3
-2
-1
0
+1
+2
+3 | -15
-30
-20
0
+10
+20
+15 | 45
60
20
0
10
40
45 | -135
-120
-20
0
+10
+80
+135 | 405
240
20
0
10
160
405 | | 140.0–144.9 | 112.13 | N = 100 | 03350 (303)2 50 | $\sum fd = -20$ | $\sum fd^2 = 220$ | $\sum fd^3 = -50$ | $\sum f d^4 = 1,240$ | $$\mu'_{1} = \frac{\Sigma f d}{N} \times i = \frac{-20}{100} \times 5 = -1; \qquad \mu'_{2} = \frac{\Sigma f d^{2}}{N} \times i^{2} = \frac{220}{100} \times 25 = 55$$ $$\mu'_{3} = \frac{\Sigma f d^{3}}{N} \times i^{3} = \frac{-50}{100} \times 125 = -62.5; \qquad \mu'_{4} = \frac{\Sigma f d^{4}}{N} \times i^{4} = \frac{1240}{100} \times 625 = 7750$$ $$\mu_{2} = \mu'_{2} - (\mu'_{1})^{2} = 55 - (-1)^{2} = 55 - 1 = 54 \text{ or } \sigma = \sqrt{\mu_{2}} = 7.348$$ $$\mu_{3} = \mu'_{3} - 3\mu'_{1}\mu'_{2} + 2\mu'_{1}^{3} = -62.5 - 3 (-1) (55) + 2 (-1)^{3}$$ $$= -62.5 + 165 - 2 = 100.5$$ $$\mu_{4} = \mu'_{4} - 4\mu'_{1}\mu'_{3} + 6\mu'_{2}\mu'_{1}^{2} - 3\mu'_{1}^{4}$$ $$= 7750 - 4(-1) (-62.5) + 6(55) (-1)^{2} - 3(-1)^{4}$$ $$= 7750 - 250 + 330 - 3 = 7827$$ $$\mu_{3} = 100.5 = 10.253$$ Measure of skewness: $$\gamma_1 = \frac{\mu_3}{\sigma^3} = \frac{100.5}{(7.348)^3} = \frac{100.5}{396.74} = +0.253$$ Measure of kurtosis: $$\beta_2 = \frac{\mu_4}{{\mu_2}^2} = \frac{7827}{(54)^2} = 2.684$$ Since the value of β_2 is less than 3, the curve is platykurtic. Illustration 15. Calculate coefficient of variation and Karl Pearson's coefficient of skewness from the data given below: No. of students | Marks | | | No. of students | | |-----------|-----|-----------------------|-----------------|---------------------------| | | 20 | | 18 | | | Less than | 30 | | 40 | | | ,, ,, | 40 | | 70 | | | " " | 60 | Wet as a support by m | | | | ,, ,, | 80 | | 90
100 | (MBA, Kumaun Univ., 2002) | | " " | 100 | | 100 | (11111), 12011111 | ## CALCULATION OF COEFFICIENT OF VARIATION AND COEFFICIENT OF SKEWNESS | Marks | m.p.
X | f | (X-50)/20
d | fd | fd ² | |--|-----------------------------------|----------------------------|---------------------------|-------------------------------|---------------------------| | 0-20 $20-40$ $40-60$ $60-80$ $80-100$ | 10
30
50
70
90 | 18
22
30
20
10 | -2
-1
0
+1
+2 | -36
-22
0
+20
+20 | 72
22
0
20
40 | | The second secon | | N=100 | | $\Sigma fd = -18$ | $\sum fd^2 = 154$ | $$\overline{X} = A + \frac{\Sigma fd}{N} \times i = 50 - \frac{18}{100} \times 20 = 50 - 3.6 = 46.4$$ $$\sigma = \sqrt{\frac{\Sigma f d^2}{N} - \left(\frac{\Sigma f d}{N}\right)^2} \times i = \sqrt{\frac{154}{100} - \left(\frac{-18}{100}\right)^2} \times 20$$ $$= \sqrt{1.54 - 0.0324} \times 20 = 1.228 \times 20 = 24.56$$ $$C.V. = \frac{\sigma}{\overline{X}} \times 100 = \frac{24.56}{46.4} \times 100 = 52.93$$ By inspection mode lies in the class 40-60. Mode = $$L + \frac{\Delta_1}{\Delta_1 + \Delta_2} \times i = 40 + \frac{8}{8 + 10} \times 20 = 40 + 8.89 = 48.89$$ Coeff. of $$Sk = \frac{Mean - Mode}{\sigma} = \frac{46.4 - 48.89}{24.56} = \frac{-2.49}{24.56} = -0.101.$$ Therefore, it is a case of low degree of negatively skewed distribution. Illustration 16. Calculate Bowley's coefficient of skewness from the following data: | | | iles | | | A. | | |---|-------|--------|--|--|-------|--------| | (| Rs. I | Lakhs) | | | No. C | of Com | | 1 | Belo | w 50 | | | | | | | >> | 60 | | | 1996 | 8 | | | " | 70 | | | | 20 | | | " | 80 | | | | 40 | | | ,, | 90 | | | | 65 | | | | 70 | | | | 80 | | - | | | | | | | Solution. (MBA, Osmania Univ.; MBA, Delhi Univ., 2006) CALCULATION OF BOWLEY'S COEFFICIENT OF SKEWNESS | Sales
(Rs.Lakhs) | No. of Companies | c.f. | |---|---------------------------|---------------------| | 40 - 50
50 - 60
60 - 70
70 - 80
80 - 90 | 8
12
20
25
15 | 8
20
40
65 | Bowley's Coeff. of Sk = $$\frac{Q_3 + Q_1 - 2 \text{ Med.}}{Q_3 - Q_1}$$ $$Q_1$$ = Size of $\frac{N}{4}$ th observation = $\frac{80}{4}$ = 20th observation Q_1 lies in the class 50–60. $$Q_1 = L + \frac{N/4 - p.c.f.}{f} \times i = 50 + \frac{20 - 8}{12} \times 10 = 50 + 10 = 60.$$ $Q_3 = \text{Size of }
\frac{3N}{4} \text{th observation} = \frac{3 \times 80}{4} = 60 \text{th observation}.$ Q_3 lies in the class 70–80. $$Q_3 = L + \frac{3N/4 - p.c.f.}{f} \times i$$ $$= 70 + \frac{60 - 40}{25} \times 10 = 70 + 8 = 78$$ Med. = Size of $\frac{N}{2}$ th observation = $\frac{80}{2}$ = 40th observation Median lies in the class 60-70. Med. = $$L + \frac{N/2 - p.c.f.}{f} \times i$$ = $60 + \frac{40 - 20}{20} \times 10 = 60 + 10 = 70$ Coeff. of Sk = $\frac{78 + 60 - 2(70)}{78 - 60} = \frac{78 + 60 - 140}{18} = -0.111$. Therefore, it is a case of less negatively skewed distribution. Illustration 17. The following table gives the length of life (in hours) of 400 T.V. picture tubes: | Length of life
(in hours) | No. of picture tubes | Length of life
(in hours) | No. of picture tubes | |------------------------------|----------------------|------------------------------|----------------------| | 4000-4199 | 12 | 5000-5199 | 55 | | 4200–4399 | 30 | 5200-5399 | 36 | | 4400–4599 | 65 | 5400-5599 | 25 | | 4600-4799 | 78 | 5600-5799 | 9 | | 1800 1000 | 90 | | | Compute mean, standard deviation and coefficient of skewness. Comment on the values obtained. CALCULATION OF MEAN, STANDARD DEVIATION AND COEFFICIENT OF SKEWNESS Solution. (MBA, Delhi Univ.) | Length of life
(in hours) | f | m.p.
X | (x - 4899.5)/200
d | fd | fd² | |--|--|---|---|---|--| | 4000–4199
4200–4399
4400–4599
4600–4799
4800–4999
5000–5199
5200–5399
5400–5599 | 12
30
65
78
90
55
36
25 | 4099.5
4299.5
4499.5
4699.5
4899.5
5099.5
5299.5
5499.5 | -4
-3
-2
-1
0
+1
+2
+3 | -48
-90
-130
-78
0
+55
+72
+75 | 192
270
260
78
0
55
144
225 | | 5600-5799 | 9 | 5699.5 | +4 | +36 | 144 | | | N = 400 | en an a site of the | | $\Sigma fd = -108$ | $\Sigma f d^2 = 1368$ | $$\bar{X} = A + \frac{\Sigma f d}{N} \times i = 4899.5 - \frac{108}{400} \times 200 = 4899.5 - 54 = 4845.5$$ $$\sigma = \sqrt{\frac{\Sigma f d^2}{N} - \left(\frac{\Sigma f d}{N}\right)^2} \times i = \sqrt{\frac{1368}{400} - \left(\frac{-108}{400}\right)^2} \times 200$$ $$= \sqrt{3.42 - .0729} \times 200 = 1.8295 \times 200 = 365.9$$ Coeff. of Sk = $\frac{\bar{X} - \text{Mode}}{\sigma}$ Mode lies in the class 4800–4999. But the real limit of this class is 4799.5 – 4999.5. $$Mode = L + \frac{\Delta_1}{\Delta_1 + \Delta_2} \times i = 4799.5 + \frac{12}{12 + 35} \times 200 = 4799.5 + 51.06 = 4850.56$$ Coeff. of Sk = $\frac{4845.5 - 4850.56}{365.9} = \frac{-5.06}{365.9} = -0.014$. It is a case of very very low degree of negative skewness. Illustration 18. You are given the following data pertaining to kilowatt hours of electricity consumed by 100 persons in Delhi: Consumption (in K-Watt hours): 0 - 1010-20 20 - 30No. of users 25 36 30-40 40-50 20 13 Calculate (i) arithmetic mean, (ii) standard deviation and (iii) coefficient of skewness. Solution. CALCULATION OF COEFFICIENT OF SKEWNESS | Consumption | Mid-point | | (X-25) | 10 | | | |-------------|-------------------|-----------------------|----------------|-------|---------------|-------------------| | (kw. hours) | X | where $= 0.16 f$ | d | | fd | fd^2 | | 0–10 | 5 | 6 | -2 | 8£ | -12 | 24 | | 10-20 | 15 | 25 | -1 | | -25 | 25 | | 20-30 | 25 | 36 | 0 | | 0 | 0 | | 30-40 | 35 | Passe Maxis 20 Morall | sos bas action | | +20 | 20 | | 40–50 | 22 1/1/2 45 0 1/2 | TOWNER OFFICE | ((())/ +2/ | | +26 | * 52 | | | | N = 100 | | Total | $\sum fd = 9$ | $\sum fd^2 = 121$ | Calculation of Mean: Calculation of S.D.: $$\overline{X} = A + \frac{\Sigma fd}{N} \times i = 25 + \frac{9}{100} \times 10 = 25.9$$ Calculation of Mode. Since the highest frequency is 36, mode lies in the class 20-30. $Mode = L + \frac{\Delta_1}{\Delta_1 + \Delta_2} \times i = 20 + \frac{11}{11 + 16} \times 10 = 20 + 4.07 = 24.07$ $\sigma = \sqrt{\frac{\Sigma f d^2}{N} - \left(\frac{\Sigma f d}{N}\right)^2} \times i = \sqrt{\frac{121}{100} - \left(\frac{9}{100}\right)^2} \times 10$ $=\sqrt{1.21-.0081}\times 10=10.963$ $Sk_p = \frac{\text{Mean} - \text{Mode}}{\sigma} = \frac{25.9 - 24.07}{10.963} = 0.167.$ Illustration 19. Calculate Karl Pearson's coefficient of skewness from the following data: | Class | Frequency | Class | Free | quency | |-------|-----------|-------|------|--------| | 70-80 | 5 | 30-40 | | 35 | | 60-70 | 6 | 20–30 | | 30 | | 50-60 | OCER OF H | 10–20 | | 22 | | 40-50 | 21 | 0–10 | | 11 | **Solution.** Arrange the class/groups and the corresponding frequencies in the ascending order. #### CALCULATION OF KARL PEARSON'S COEFFICIENT OF SKEWNESS | Class | Mid-point
X | t mount | 002 × 51 | | (X-35)/10 | fd | fd^2 | |-------|----------------|---------|----------|-------------|-----------|-------------------|------------------| | 0.10 | | | | 22 - 2 1952 | naval. | | | | 0–10 | 5 | | 11 | | -3 | -33 | 99 | | 10-20 | 15 | | 22 | A Comment | -2 | -44 | 88 | | 20–30 | 25 | | 30 | | -1 | -30 | 30 | | 30-40 | 35 | | 35 | | 0 | 0 | 0 | | 40-50 | 45 | | 21 | | +1 | +21 | 21 | | 50-60 | 55 | | 11 | | +2 | +22 | 44 | | 60-70 | 65 | | 6 | | +3 | +18 | 54 | | 70–80 | 75 | | 5 | | +4 | +20 | 80 | | | | 11 - | N=1 | 41 | | $\Sigma fd = -26$ | $\sum fd^2 = 41$ | $$\overline{X} = A + \frac{\Sigma fd}{N} \times i = 35 - \frac{26}{141} \times 10 = 35 - 1.844 = 33.156$$ Mode lies in the class 30-40. Mode = $$L + \frac{\Delta_1}{\Delta_1 + \Delta_2} \times i = 30 + \frac{5}{5+14} \times 10 = 30 + 2.63 = 32.63$$ $$\sigma = \sqrt{\frac{\Sigma f d^2}{N} - \left(\frac{\Sigma f d}{N}\right)^2} \times i = \sqrt{\frac{416}{141} - \left(\frac{-26}{141}\right)^2} \times 10$$ $$= \sqrt{2.95 - .034} \times 10 = 1.708 \times 10 = 17.08$$ $$Sk_P = \frac{\text{Mean} - \text{Mode}}{\sigma} = \frac{33.156 - 32.63}{17.08} = \frac{0.526}{17.08} = 0.031$$ It is a very very low degree of positive skewness. Illustration 20. The following table gives the length of life (in hours) of 400 T.V. picture tubes: | Length of life | No. of | Length of life | No. of | |----------------|---------------|----------------|---------------| | (in hours) | picture tubes | (in hours) | picture tubes | | 4000-4200 | 22 | 4800-5000 | 80 | | 4200-4400 | 38 | 5000-5200 | 70 | | 4400-4600 | 65 | 5200-5400 | 50 | | 4600-4800 | 75 | | | Compute arithmetic mean, mode, standard deviation and coefficient of skewness. Solution. #### CALCULATION OF \overline{X} , MODE, σ AND COEFFICIENT OF SKEWNESS | Length of life
(in hours) | X | f | (X-4700)/200
d | fd | fd ² | |------------------------------|------|----------------|-------------------|-------------------|--------------------| | 4000-4200 | 4100 | 22 | -3 | - 66 | 198 | | 4200–4400 | 4300 | 38 | -2 | - 76 | 152 | | 4400–4600 | 4500 | 65 | -1 | -65 | 65 | | 4600–4800 | 4700 | 75 | 0 | 0 | 0 | | 4800–5000 | 4900 | 80 | +1 | +80 | 80 | | 5000-5200 | 5100 | 70 | +2 | +140 | 2s80 | | 5200–5400 | 5300 | 50 | +3 | +150 | 450 | | | | N = 400 | | $\Sigma fd = 163$ | $\sum fd^2 = 1225$ | Mean: $$\overline{X} = A + \frac{\Sigma fd}{N} \times i = 4700 + \frac{163}{400} \times 200 = 4700 + 81.5 = 4781.5$$ Mode: Mode lies in the class 4800-5000. Mode = $$L + \frac{\Delta_1}{\Delta_1 + \Delta_2} \times i = 4800 + \frac{5}{5+10} \times 200 = 4800 + 66.67 = 4866.67$$ S.D.: $\sigma = \sqrt{\frac{\Sigma f d^2}{N} - \left(\frac{\Sigma f d}{N}\right)^2} \times i = \sqrt{\frac{1225}{400} - \left(\frac{163}{400}\right)^2} \times 200$ = $\sqrt{3.0625 - 166} \times 200 = 1.702 \times 200 = 340.4$ Coeff. of Sk = $\frac{\text{Mean - Mode}}{\sigma} = \frac{4781.5 - 4866.67}{340.4} = \frac{-85.17}{340.4} = -0.25$. ### Illustration 21. Calculate Karl Pearson's coefficient of skewness from the following data: | Ma | irks | Λ | o. of students | Ma | irks | No. of student | S | |----|------|---|----------------|------|------|-------------------|---| | | ve 0 | | 150 | abov | e 50 | 70 | | | " | 10 | | 140 | " | 60 | 30 | | | " | 20 | | 100 | ** | 70 | 14 | | | " | 30 | | 10 | ••• | 80 | 0 | | | >> | 40 | | 75 | | 1.0 | angaya yi si ya a | | (MBA, M.D. Univ., 1998) Solution. This is a cumulative frequency distribution. First convert it to a simple frequency distribution and then calculate coefficient of skewness. | CALCIU ATTACA | | |---------------------|-----------------------------------| | CALCULATION OF KARI | DEADCONIC COPERT | | or Idike | PEARSON'S COEFFICIENT OF SKEWNESS | | | - OI DILL WIND | | Marks | m.p.
X | f | (X-35)/10
d | fd | fd ² | | |---|---|--|---|---|--|------------------------| | 0-10
10-20
20-30
30-40
40-50
50-60
60-70
70-80 | 5
15
25
35
45
55
65
75 | 10
40
20
5
5
40
16
14 | -3
-2
-1
0
+1
+2
+3
+4 | -30
-80
-20
0
+5
+80
+48
+56 | 90
160
20
0
5
160
144
224 | 75
80
120
136 | | Since the mani- | | 10-00 00 | N=150 | $\Sigma fd = 59$ | $\sum fd^2 = 803$ | <u> </u> | Since the maximum frequency 40 has been repeated twice, it is a bimodal distribution and hence we will use the formula. Coeff. of Sk = $$\frac{3(\overline{X} - \text{Med.})}{\sigma}$$ Mean: $\overline{X} = A + \frac{\Sigma fd}{N} \times i = 35 + \frac{59}{150} \times 10 = 35 + 3.93 = 38.93$ Median: Med. = Size of $\frac{N}{2}$ th observation = $\frac{150}{2}$ = 75th observation Median lies in the class
30-40 Med. = $$L + \frac{N/2 - p.c.f.}{f} \times i = 30 + \frac{75 - 70}{5} \times 10 = 40$$ S.D. : $\sigma = \sqrt{\frac{\Sigma f d^2}{N} - \left(\frac{\Sigma f d}{N}\right)^2} \times i = \sqrt{\frac{803}{150} - \left(\frac{59}{150}\right)^2} \times 10$ = $\sqrt{5.353 - 155} \times 10 = 2.28 \times 10 = 22.8$ Coeff. of Sk = $\frac{3(38.93 - 40)}{22.8} = \frac{3(-1.07)}{22.8} = \frac{-3.21}{22.8} = -0.141$ Illustration 22. Calculate the value of γ_1 and γ_2 from the following data and interpret them: | Profits (Rs. lakhs):
No. of Cos. | | r_1 and r_2 no | in the followi | ng data and i | nterpret then | |-------------------------------------|-------------|--------------------|-------------------------|---------------|---------------| | , | 10–20
18 | 20–30
20 | 30–40
30 | 40–50 | 50-60 | | Solution. | | CALCUL | ATION OF β _ι | AND β_2 | 10 | **Profits** m.p.f (X-35)/10(Rs. lakhs) X d fd fd^2 fd^3 fd^4 10-20 15 18 -3620-30 25 -14420 288 -1 -2030-40 20 -2035 30 20 40-50 45 22 0 +1 +22 50-60 +22 55 +2210 22 +2 +20+40 160 $\Sigma fd = -14$ $\Sigma fd^2 = 154$ $\Sigma fd^3 = -62$ $\Sigma fd^4 = 490$ $$\mu'_{1} = \frac{\sum fd}{N} \times i = \frac{-14}{100} \times 10 = -1.4 \; ; \\ \mu'_{2} = \frac{\sum fd^{2}}{N} \times i^{2} = \frac{154}{100} \times 100 = 154 \; ; \\ \mu'_{3} = \frac{\sum fd^{2}}{N} \times i^{3} = \frac{-62}{100} \times 1000 = -620 \; ; \\ \mu'_{4} = \frac{\sum fd^{4}}{N} \times i^{4} = \frac{490}{100} \times 10000 = 49000 \; ;$$ $$\mu_{2} = \mu'_{2} - (\mu'_{1})^{2} = 152.04 \text{ or } \sigma = \sqrt{\mu_{2}} = 12.33$$ $$\mu_{3} = \mu'_{3} - 3\mu'_{1} \mu'_{2} + 2\mu'_{1}^{3} = 21.312$$ $$\mu_{4} = \mu'_{4} - 4\mu'_{1} \mu'_{3} + 6\mu'_{2} (\mu'_{1})^{2} - (3\mu'_{1})^{4} = 47327.51$$ $$\gamma_{1} = \frac{\mu_{3}}{\sigma_{3}} = \frac{21.312}{1874.7140} = 0.0114.$$ $$\gamma_{2} = \beta_{2} - 3 = \frac{\mu_{4}}{\mu_{2}^{2}} - 3 = \frac{47327.51}{(152.04)^{2}} - 3 = 2.047 - 3 = -0.953.$$ Therefore, $\gamma_1 = 0.0014$ suggests that it is almost near to a symmetrical distribution and γ_2 is less than zero, hence it is a platykurtic curve. Illustration 23. Calculate Pearson's measure of skewness on the basis of mean, mode and standard deviation, from the following data: Class-Interval: 14–15 15–16 16–17 17–18 18–19 19–20 20–21 21–22 Frequency: 35 40 48 100 125 87 43 22 (MBA, IGNOU, June 2001) Solution: CALCULATION OF KARL PEARSON'S COEFFICIENT OF SKEWNESS | m.p. | f | (X-17.5)/1 | fd | fd^2 | |------|--------------------|---|--|---| | X | MP | d | | | | 14.5 | 35 | -3 | - 105 | 315 | | | | -2 | - 80 | 160 | | | | -1 | - 48 | 48 | | | | 0 | 0 | 0 | | | | +1 | + 125 | 125 | | | | +2 | + 174 | 348 | | | | +3 | + 129 | 387 | | | | | + 88 | 352 | | 21.3 | 1 San Tay (VO 2011 | (Mark 6 10 11) | | $\Sigma f d^2 = 1735$ | | | T | X 14.5 35 15.5 40 16.5 48 17.5 100 18.5 125 19.5 87 20.5 43 21.5 22 | X d 14.5 35 -3 15.5 40 -2 16.5 48 -1 17.5 100 0 18.5 125 +1 19.5 87 +2 20.5 43 +3 21.5 22 +4 | X d 14.5 35 -3 -105 15.5 40 -2 -80 16.5 48 -1 -48 17.5 100 0 0 18.5 125 +1 +125 19.5 87 +2 +174 20.5 43 +3 +129 | Coeff. of Sk = $$\frac{\overline{X} - \text{Mode}}{\sigma}$$ Calculation of Mean: $$\overline{X} = A + \frac{\sum fd}{N} \times i = 17.5 + \frac{283}{500} \times 1 = 17.5 + 0.57 = 18.07$$ Calculation of Standard Deviation: $$\sigma = \sqrt{\frac{\sum fd^2}{N} \cdot \left(\frac{\sum fd}{N}\right)^2} \times i = \sqrt{\frac{1735}{500} - \left(\frac{283}{500}\right)^2} \times i = \sqrt{3.47 - 0.32} = 1.775$$ Calculation of Mode: By inspection mode lies in the class 18-19. Mode = $$L + \frac{\Delta_1}{\Delta_1 + \Delta_2} \times i$$ $L = 18, \Delta_1 = f_1 - f_0 = 125 - 100 = 25$ $\Delta_2 = f_1 - f_2 = 125 - 87 = 38, i = 1$ Mode = $18 + \frac{25}{25 + 38} = 18 + .397 = 18.397$ Substituting the values: Coeff. of Sk = $$\frac{18.07 - 18.397}{1.775} = \frac{0.327}{1.775} = 0.184$$. Illustration 24. The row data displayed below are the observations on the number of passengers who have chosen to fly on Air India in 32 cities, in a particular month. | 25 | 37 | | | 30 | | | 26 | |----|----|----|------|----|----|----|----| | 39 | 32 | 21 | 26 . | 19 | 27 | 32 | 23 | | | | 34 | | | | | 33 | | 33 | 9 | 16 | 32 | 35 | 42 | 15 | 24 | - Construct a frequency distribution using the above data. - Develop and interpret from the above data. - Calculate and interpret mean, median, variance and coefficient of variation for the above data. - Are the data skewed? Give the coefficient of skewness. (MBA, Delhi Univ., 2009) #### Solution: #### PREPARATION OF FREQUENCY DISTRIBUTION | Passengers | Tally Bars | m.p. | Cities | (m-25)/10 | 2.5 | | | | |------------|------------|------|--------------|-----------|-----------------|--------------------|---|----| | | | m | f | d | fd | fd^2 | | cf | | 0-10 | 1 | 5 | 1 | -2 | -2 | 4 | | 1 | | 10-20 | THI | 15 | 5 | -1 | -5 | 5 | | 6 | | 20-30 | HI HI II | 25 | imma 12 cons | 0 | 0 | 0 | | 18 | | 30-40 | M M II | 35 | 12 | +1 | +12 | 12 | | 30 | | 40–50 | 1 | 45 | 2 | +2 | +4 | 8 | | 32 | | | 11 | | N = 32 | | $\Sigma fd = 9$ | $\Sigma f d^2 = 2$ | 9 | | Mean: $$\overline{X} = A + \frac{\Sigma fd}{N} \times i = 25 + \frac{9}{32} \times 10 = 25 + 2.813 = 27.813$$ *Median*: Med. = Size of $$\frac{N}{2}$$ th item = $\frac{32}{2}$ = 16th item Median lies in the class 20-30 Med. = $$L + \frac{N/2 - p.c.f.}{f} \times i$$ = $20 + \frac{16 - 6}{12} \times 10 = 20 + 8.33 = 28.33$ Standard Deviation : $$\sigma = \sqrt{\frac{\sum fd^2}{N} - \left(\frac{\sum fd}{N}\right)^2} \times i$$ $$= \sqrt{\frac{29}{32} - \left(\frac{9}{32}\right)^2} \times 10 = \sqrt{0.906 - 0.079} \times 10$$ $$= 0.909 \times 10 = 0.09$$ Variance: $\sigma^2 = (9.09)^2 = 82.623$ Coeff. of Variation $= \frac{\sigma}{\overline{X}} \times 100 = \frac{9.09}{27.813} \times 100 = 32.68$ Since it is a bi modal series, skewness will be calculated by formula: Coeff. of Sk = $$\frac{3(\overline{X} - \text{Med.})}{\sigma}$$ $\overline{X} = 27.813$, Median = 28.33, $\sigma = 9.09$ Coeff. of Sk = $\frac{3(27.813 - 28.33)}{9.09} = \frac{-1.551}{9.09} = -0.171$ The distribution is skewed to the left. However, there is very low degree of skewness. #### **PROBLEMS** - 1-A: Answer the following questions, each question carries one mark: - (i) What is skewness? - (ii) Point out the role of studying skewness. - (iii) Name the various methods of finding skewness. - (iv) What are kurtosis? - (v) What are moments? - (vi) How are the values of β_1 and β_2 calculated? - (vii) Give the formula for finding Karl Pearson's coefficient of skewness. - (viii) What is Bowley's method of finding skewness? - (ix) What is symmetrical distribution? - (x) Distinguish between positive and negative skewness. - 1-B: Answer the following questions, each question carries four marks: - (i) Distinguish between positively and negatively skewed distribution. - (ii) In what type of situations Karl Pearson's or Bowley's method should be preferred? - (iii) Would the various methods of studying skewness lead to same answer? If not, give reasons. - (iv) What are the various methods of studying kurtosis? - (v) Explain the terms leptokurtic, platykurtic and mesokurtic with a suitable diagram. - 2. (a) Explain briefly the different methods of measuring skewness. - (b) What do you understand by the terms skewness and kurtosis? Point out their role in analysing a frequency distributi (MBA, Delhi Univ., 20 - 3. Take any suitable imaginary data and explain how would you measure skewness and kurtosis. - 4. Distinguish between Karl Pearson's and Bowley's measure of skewness. Which one of these would you prefer and when (MBA, Delhi Univ., 2) - 5. Measures of central, tendency, variation, skewness, and kurtosis are complementary to one another in understandi frequency distribution? Elucidate. (MBA, Sukhadia Univ.; Delhi Univ., 2 - 6. Define 'Moments'. How can you find out skewness and kurtosis of a distribution from moments about the mean? - 7. Explain clearly how the moments help in describing the characteristics of a frequency distribution. - 8. Explain clearly how the measures of skewness and kurtosis can be used in describing a frequency distribution. - 9. What is meant by 'moments' of a distribution? Show how moments are used to describe the characteristics of a distrib *i.e.*, central tendency, dispersion, skewness and kurtosis. - 10. What are the raw and the central moments of a distribution? Show that the central moments are invariant under charge origin but not under change of scale. - 11. Define raw and central moments of a frequency distribution. Express the second, third and fourth central moments is of raw moments. - 12. (a) Explain the terms 'Skewness' and 'Kurtosis' used in connection with the frequency distribution of a continuous v Give the different measures of skewness (any two of the measures to be given) and kurtosis. - (b) Define and discuss the 'quartiles' of a distribution. How are they used for measuring variation and skewness' - 13. Define moments. Establish the relationship between the moments about mean in terms of moments about any arbitrary point and *vice-versa*. - 14. (a) Define moments. How are they helpful in study of the different aspects of the formation of a frequency distribution? - (b) "A frequency distribution can be described almost completely by the first four moments and the two measures
based on the moments." Examine. - 15. (a) Explain the third and fourth central moment in terms of the first four moments about the origin. - (b) Distinguish between variation and skewness and point out the various methods of measuring skewness. - (c) Explain the term 'skewness'. What purpose does a measure of skewness serve? Comment on some of the well-known measures of skewness. - 16. (a) Distinguish between skewness and kurtosis. - (b) Briefly mention the tests which can be applied to determine the presence of skewness. - 17. (a) How do measures of central tendency, dispersion, skewness and kurtosis help in analysing a frequency distribution? Explain with the help of an example. (MBA, Sukhadia Univ., 2008) - (b) Find out coefficient of skewness from the following table giving wages of 240 persons: | Wo | iges (Rs.) | No. of | persons | Wages (Rs.) | No. | of persons | |-----------|------------|--------|---------|-------------------------|-----|--------------| | 20 | 00-2200 | 1 | 2 | 2800-3000 | | 50 | | 22 | 00-2400 | 1 | 8 | 3000-3200 | | 45 | | 24 | 00-2600 | 3 | 35 | 3200-3400 | | 30 | | 26 | 00-2800 | 4 | 12 | 3400-3600 | | 8 | | [Sk = -0] | .267] | | | giçn belone and after t | | solici est m | 18. Calculate Karl Pearson's coefficient of skewness from the following data: | Profits | No. of Cos. | Profits | No. of Cos. | |-------------|-------------|-------------|--------------------------------| | (Rs. Lakhs) | 0.36 | (Rs. Lakhs) | | | 400-450 | 8 | 600-650 | 62 | | 450-500 | 10 | 650-700 | 32 | | 500-550 | 30 | 700-750 | 15 | | 550-600 | 45 | 750-800 | Office Local Piece & Rev. 1 of | 19. The following data represent the percentage of ash content in a particular variety of coal as determined by test on 280 wagon loads: | Percentage of ash content | Frequency | Percentage of ash content | Frequency | |---------------------------|-----------|---------------------------|-----------| | Less than 6.0 | 0 | 10.0 –10.9 | 84 | | 6.0 - 6.9 | 1 | 11.0 –11.9 | 45 | | 7.0-7.9 | 7 * | 12.0–12.9 | 28 | | 8.0 - 8.9 | 28 | 13.0–13.9 | 7 | | 9.0 - 9.9 | 78 | 14.0–14.9 | 2 | Calculate the quartile coefficient of skewness. Also compare the proportion of the total frequency outside the limits $\overline{X} \pm 2\sigma$ for the distribution. [Sk=0.05; 2.3] 20. From the following data of daily travelling allowance (in Rs.) of salesmen, calculate coefficient of skewness and comment on its value: | Travelling allowance
(per day) | No. of salesmen | Travelling allowance
(per day) | No. of salesmen | |-----------------------------------|-----------------|-----------------------------------|----------------------| | 110–115 | 4 | 135–140 | 90 | | 115–120 | 10 | 140–145 | 52 | | 120-125 | 26 | 145–150 | 33 | | 125–130 | 49 | 150–155 | 17 | | 130–135 | 72 | 155–160 | mod letinos 7 estuas | 21. From the following data pertaining to profits (Rs. lakhs) for 50 companies, calculate moments β_1 and β_2 : | Profits (Rs. Lakhs) | | No. of Compaines | |---|--------------------------------------|----------------------------------| | 70–90 | Comment upon the raduce of the unar- | na interior 8 train at an | | 90–110 | | 11 | | 110–130 | sauring dispersion and skeyvies | 18 | | 130–150 | | 9 | | 150-170 | | 4 | | $[\mu_2 = 528, \mu_3 = 960, \mu_4 = 642816, \beta_1 = 0$ | $.006, \beta_2 = 2.31$ | | ### 196 Business Statistics | 22. | A record was kept over a period of 6 months by a sales manager to determine the average number of calls made per day by | |-----|---| | | his six salesmen. The results are shown below: | | Salesmen A MIT BALL ZINDERWARD THE | | A A HAGE | Billia | C | D | E | F | |------------------------------------|---|----------|--------|----|----|---|---| | Average number of calls per day | : | 8 | 10 | 12 | 15 | 7 | 5 | - Compute a measure of skewness. Is the distribution symmetrical? - Compute a measure of kurtosis. What does this measure mean? $$[\beta_1=0.11; \beta_2=1.97]$$ #### 23. Locate the mode and calculate mean and standard deviation of the following distribution and using your results comment on the skewness of the distribution: | Scores | Frequency | Scores | Frequency | |--------|-----------|--------|-----------| | 10–15 | 2 | 35–40 | 6 | | 15–20 | 8 | 40–45 | 4 | | 20–25 | 6 | 45–50 | 3 | | 25–30 | 12 | 50–55 | 1 | | 30–35 | 7 (1)(-() | 55–60 | 1 (| | | | | | $[\overline{X} = 30.1; \text{Mo.} = 27.73, \sigma = 10.45, \text{Sk} = 0.227].$ (MBA, Delhi Univ., 2002, 2005) 24. You are given the following information before and after the settlement of an industrial dispute: | | Before settlement | After settlement | |--------------------------|-------------------|------------------| | | of dispute | of dispute | | No. of workers | 1100 | 950 | | Average wage (Rs.) | 2350 | 2400 | | Standard deviation (Rs.) | 425000 | 400 | | Median wage (Rs.) | 2375 | 2325 | | | | | Comment on the gains and losses from the point of view of workers and that of management. 25. The arithmetic mean of a distribution is 5. The second and the third moments about the mean are 20 and 140 respectively Find the third moment of the distribution about 10. [-285] 26. For the frequency distribution given below, calculate the coefficient of skewness based on the quartiles: | Class limits | Frequency | Class limits | Frequency | |--------------|-----------|--------------|-----------| | 10–19 | 5 | 50–59 | 25 | | 20–29 | 9 🗻 | 60–69 | 5 | | 30–39 | 14 | 70–79 | 8 | | 40-49 | 20 | 80–89 | 4 | - (a) For a distribution, Bowley's coefficient of skewness is -0.48, $Q_3 = 10.2$ and Median = 14.4. What is the quarti coefficient of distribution? - (b) Karl Pearson's coefficient of skewness of a distribution is +0.4. Its standard deviation is 10 and mean 40.5. Find the mode and median of the distribution. - (c) Find coefficient of skewness from the information given below: $$Q_1 = 60$$, $Q_3 = 75$, Med. = 68. (d) The following information was obtained from the records of a factory relating to wages; $\bar{\chi} = 275$, Med. = 260, σ 45.8 Give as much information as you can about the distribution of wages. $[(a) \ 0.22 \ (b) \ 39.17 \ (c) \ -0.07 \ (d) \ Sk = 0.98]$ - 28. The first three moments of a distribution about the value 7 calculated from a set of 9 observations are 0.2, 19.4 and -41 Find the measures of central tendency and dispersion and also the third moment about origin. [7.2, 4.4, -52.624] - 29. The first four moments of a distribution about A = 4 are 1, 4, 10 and 45. Obtain the various characteristics of the distribution on the basis of the information given. Comment upon the nature of the distribution. $[\beta_1 = 0, \beta_2 = 2.897]$ - **30.** (a) State the use of quartiles for measuring dispersion and skewness. - (b) Calculate Bowley's coefficient of skewness from the following data: | Mid-value: | 75 | 100 | 125 | 150 | 175 | 200 | 225 | 250 | |------------|----|-----|-----|-----|-----|-----|-----|-----| | Frequency: | 35 | 40 | 48 | 100 | 125 | 80 | 50 | 22 | | [-0.032] | | | | 9 | | | | | 31. A prospective buyer tested the bursting pressure of the sample of polythene bags received from a manufacturer. The test Bursting pressure 5-10 10 - 1515 - 20 25 - 30 30-35 (in lbs.) No. of bags 20 30 50 6 The buyer calculated the mean and mode of the sample as 20.2 lbs. and 21.5 lbs. respectively. Calculate (i) coefficient of variation, (ii) Karl Pearson's coefficient of skewness for bursting pressure. 32. From the following data, calculate coefficient of variation and coefficient of skewness: Age (in years) 25-30 35 - 4040-45 No. of employees: 30-35 45-50 50-55 10 55-60 18 30 33. The frequency distribution of weekly wages (in Rs.) in a certain factory is as follows: | Weekly wages
423-427 | No. of workers | Weekly wages | tactory is as follow
No. of workers | |-------------------------|----------------|--------------|--| | 428-432 | 2 1 10 | 448–452 | 16 | | | 6 | 453-457 | 12 | | 433–437 | 9 | 458-462 | 6 | | 438–442 | 14 | 463-467 | Bowley's cuefficia | | 443-447 | 32 | 468–472 | 2 | | ind Karl Pearson's | oneff | 400-4/2 | | Find Karl Pearson's coefficient of skewness and interpret its value. $[Sk_P = 0.0572]$ 34. A survey was conducted by a manufacturing company to enquire the maximum price at which persons would be willing to buy their product. The following table gives the stated prices (in rupees) by persons: Price (in Rs.): 80-90 No. of persons: 90-100 29 100-110 110-120 120 - 130 27 15 Calculate Bowley's coefficient of skewness and interpret its value. 35. The standard deviation of a symmetrical distribution is 3. What must be the value of fourth moment about the mean in order (MBA, Delhi Univ., 2002) that the distribution be mesokurtic? 36. Calculate coefficient of variation and Karl Pearson's coefficient of skewness from the data given below: 40 Sales (Rs. crores) Less than No. of Companies 50 60 70 80 72 8 [Coeff. of Variation = 19.55, Coeff. of Sk = -0.06] Assume that a firm has selected a random sample of 100 from its production line and has obtained the data shown | Class-interval | Frequency | Class-interval | C | |-------------------|-------------|-----------------|--------------| | 130–134 | 3 | 1 50–154 | Frequency 19 | | 135–139 | 12 | 155–159 | 19 | | 140–144 | 21 | 160–164 | 12 | | 145–149 | 28 | Total | 100 | | Omnute Korl Doors | - 2 0 00: 1 | | 100 | Compute Karl Pearson's Coefficient of Skewness. [Coeff. of Sk = -0.572] (MBA, Mangalore Univ., 2005) (a) A moderately skewed distribution has mean and median as 25 and 26 respectively. Then its mode approximately equals (b) Whether the following statement is true or false: If a distribution has negative skewness then its mean is greater than mode. 9. Calculate the first four moments about mean and find the
values of β_1 and β_2 and comment on the result: Profits (Rs. lakhs): 0-10 No. of Companies: 10-20 12 20-30 20 30-40 30 40-50 15 50-60 60 - 70 5 10 (MBA, Kumaun Univ., 2004) From the following data pertaining to the income of 5,800 persons, find Bowley's coefficient of skewness and interpret its | Below 10,000
10,000–20,000
20,000–30,000 | No. of persons
170
630
1,000 | Income (Rs.) 40,000–50,000 50,000–60,000 60,000 and above | No. of persons
1,350
1,000
400 | | | |--|---------------------------------------|---|---|--|--| | 30,000-40,000 [Coeff. of Sk = -0.067] | 1,250 | oo,ooo and above | 400 | | | | | | | | | | (MBA, Kurukshetra Univ., 2001) ## 198 Business Statistics | 41. | Compute the first 3 | moments al | out the ari | ithmetic mea | n from | the follo | wing data | oitemed of | | |-----|--|--|--|----------------|--|-----------|-------------------|------------|---| | | Variable value: | 5 | 0 15 | 20 | 25 | 30 | 35 | he overes | gives the following results as | | | Frequency: | 8 1 | 5 20 | 32 | 23 | 17 | 5 | 1:-01 | Bursting pressure 5-10 | | 42. | The following distr | ibution give | the patter | n of overtime | e work | done in | month h | . 100 | (MBA, Lucknow Univ., 2001 ployees of a company: | | | Overtime hours | : 10-15 | 15-20 | 20–25 | 25- | 30 | 30–35 | y 100 em | ployees of a company: | | | No. of employees | | 20 | 35 | 20 | | 8 | 35-40 | The buyer calculated the mer | | | Compute mean, mo | ode, standard | deviation | and coefficie | ent of ch | rewness | 4 Pasa (ii) | a noinn | Calculate (1) coefficient of v | | | [23.1, 22.5, 6.4915 | , 0.09241 | 1028 IO III | | ont of Sk | cwiicss. | | | From the following data, ca | | 43. | The following table | gives the di | stribution o | of monthly w | ages of | 500 wo | rkers in a | f-08 | | | | Monthly wages | No. | of | Monthly | wages | 300 WO | No. o | | No. of employees : 9 | | | (Rs. hundred) | work | A STATE OF THE PARTY PAR | (Rs. hur | | | worker | | The frequency distribution | | | 15–20 | 10 | The second second second | 30- | | Wee | 220 | of work | Heekly wages No. | | | 20–25 | 2: | 5 | 35- | | 1 | 70 | | 423-427 | | 1 1 | 25–30 | 14 | 5 | 40-4 | | | 30 | | 428-432 | | | Compute Karl Pear | son's and Bo | wlev's coe | | | Internr | et the valu | 100 | 433-437 | | | $[SK_p = -0.022, SK_p]$ | =-0.1021 | | ALLOIGHT OF SP | cowness. | . meerpi | ct the valu | 163. | (1/D4 D #: 11 : 2000 | | 44 | | A CONTRACTOR OF THE PARTY TH | : C 1 | | 274-90 | | | | (MBA, Delhi Univ., 2006) | | | Calculate Karl Pears Marks | No. of car | ient of ske | wness from t | he data | | | | Find Karl Pearson's coeffi | | | 70–80 | | | Mar | | No | o. of cand | idates | 12Kg = 0.0572] CO ESSEN | | | 60–70 | dw is said | | 30-4 | | eqmoo : | 21 | | A survey was conducted b | | | 50-60 | 30 | ELECTION OF STREET | 20–3 | | | rgal H bli | | willing to buy their produc | | | 40–50 | 35 | | 10-2 | | | 6 | [-00: | Price (in Rs.) : 80-90 | | | [-0.026] | 33 | C1 | 0-1 | 0 | | 5 | | No. of persons: 11. | | 45 | | from the fall | | 1162 | | | 220 | | (MBA, Kumaun Univ., 2001) | | | Calculate β_1 and β_2 in Age | Francis | owing disti | | | t the res | | | Calculate Bowley's coeffici | | | 25–30 | Freque | ency | Age | | | Frequenc | cy | The standard deviation of a.s. | | | 30–35 | 2 | | 45-5 | and the same of th | | 25 | | that the distribution be meso | | | 35–40 | The second secon | Ber Josephia | 50-5 | | | 16 | | A Caloniaic coefficient 94-ya | | | 40–45 | 18 | Mary Mary Control of the Control | 55-6 | | | 7 | | | | | $[\beta_1 = 0.034, \beta_2 = 2.59]$ | 27 | | 60–6
 5 | TAND | 2 | | No. of Companies | | | p_1 0.034, $p_2 - 2.3$ | 7] | | | | | | | Coeff. of Variation = 19.1 | Compute Karl Pearson's Coefficient of Skowness