[ANSWERS TO SELECTED PROBLEMS]

CHAPTER 1

1.15 (a) and (d); (b) and (e); and (c) and (f).
1.27 (a), (c), (d), (f), (g), and (h) have tetrahedral geometry; (b) is linear; (e) is trigonal planar.
1.35 (a), (g), (i), (l), represent different compounds that are not isomeric; (b-e), (h), (j), (m), (n), (o) represent the same compound; (f), (k), (p) represent constitutional isomers.
1.42 (a) The structures differ in the positions of the nuclei.
(b) The anions are resonance structures.
1.44 (a) A negative charge; (b) a negative charge; (c) trigonal pyramidal.

CHAPTER 2

2.11 (c) Propyl bromide; (d) isopropyl fluoride; (e) phenyl iodide.
2.14 (a)
(a) \rightarrow
(b)

(e) diisopropyl ether.
2.25 (a)

${ }^{(c)} \mathrm{HO}$
(b)

2.29 (a) ketone; (c) 2° alcohol; (e) 2° alcohol.
2.30 (a) 3 alkene groups, and a 2° alcohol; (c) phenyl and 1° amine; (e) phenyl, ester and 3° amine; (g) alkene and 2 ester groups.
2.35 (f)

2.53 Ester

CHAPTER 3

3.3 (a), (c), (d), and (f) are Lewis bases; (b) and (e) are Lewis acids.
3.5 (a) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{HCO}_{2}^{-}\right]=.0042 \mathrm{M}$; (b) Ionization $=4.2 \%$.
3.6 (a) $\mathrm{p} K_{\mathrm{a}}=7$; (b) $\mathrm{p} K_{\mathrm{a}}=-0.7$; (c) Because the acid with a $\mathrm{p} K_{\mathrm{a}}=5$ has a larger K_{a}, it is the stronger acid.
3.8 The $\mathrm{p} K_{\mathrm{a}}$ of the methylaminium ion is equal to 10.6 (Section 3.6 B). Because the $\mathrm{p} K_{\mathrm{a}}$ of the anilinium ion is equal to 4.6 , the anilinium ion is a stronger acid than the methylaminium ion, and aniline $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}\right)$ is a weaker base than methylamine $\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)$.
3.14 (a) $\mathrm{CHCl}_{2} \mathrm{CO}_{2} \mathrm{H}$ would be the stronger acid because the electron-withdrawing inductive effect of two chlorine atoms would make its hydroxyl proton more positive. (c) $\mathrm{CH}_{2} \mathrm{FCO}_{2} \mathrm{H}$ would be the stronger acid because a fluorine atom is more electronegative than a bromine atom and would be more electron withdrawing.
3.28
(a) $\mathrm{p} K_{\mathrm{a}}=3.752$;
(b) $K_{a}=10^{-13}$.

CHAPTER 4

4.8 (a) (1,1-dimethylethyl)cyclopentane or tert-butyl-cyclopentane; (c) butylcyclohexane; (e) 2-chlorocyclopentanol.
4.9 (a) 2-Chlorobicyclo[1.1.0]butane; (c) bicyclo[2.1.1]hexane; (e) 2-methylbicyclo[2.2.2] octane.
4.10 (a) trans-3-Heptene; (c) 4-ethyl-2-methyl-1-hexene
4.11
(a)

(c)

(e)

(g)

(i)

4.12 1-Hexyne, 2-Hexyne,

3-Hexyne,
4-Methyl-1-pentyne,
4-Methyl-2-pentyne
3,3-Dimethyl-1-butyne

(R)-3-Methyl-1-pentyne

(S)-3-Methyl-1-pentyne
4.24 (a) 5-ethyl-7-isopropyl-2,3-dimethyldecane; (c) 4-bromo-6-chloro-3-methyloctane; (e) 2-Bromobicyclo[3.3.1]nonane; (g) 5,6-dimethyl-2-heptene
4.39 (a) Pentane would boil higher because its chain is unbranched. (c) 2-Chloropropane because it is more polar and has a higher molecular weight. (e) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ because it is more polar.
4.43
(a)

More stable conformation because both alkyl groups are equatorial
(b)

More stable because larger group is equatorial

More stable conformation because both alkyl groups are equatorial

More stable because larger group is equatorial

CHAPTER 5

5.1 (a) achiral; (c) chiral; (e) chiral.
5.2 (a) Yes; (c) no.
5.3 (a) They are the same. (b) They are enantiomers.
5.7 The following possess a plane of symmetry and are, therefore, achiral: screwdriver, baseball bat, hammer.

5.11

(a) $-\mathrm{Cl}>-\mathrm{SH}>-\mathrm{OH}>-\mathrm{H}$
(c) $-\mathrm{OH}>-\mathrm{CHO}>-\mathrm{CH}_{3}>-\mathrm{H}$
(e) $-\mathrm{OCH}_{3}>-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}>-\mathrm{CH}_{3}>-\mathrm{H}$
5.13 (a) enantiomers; (c) enantiomers.
5.19 (a) diastereomers; (c) no; (e) no.
5.21 (a) represents \mathbf{A}; (b) represents \mathbf{C}; (c) represents \mathbf{B}.
5.23 B (2S,3S)-2,3-Dibromobutane; C (2R,3S)-2,3Dibromobutane.
5.40 (a) same; (c) diastereomers; (e) same; (g) diastereomers;
(i) same; (k) diastereomers; (m) diastereomers; (o) diastereomers; (q) same.

CHAPTER 6

6.6 (a) The reaction is $\mathrm{S}_{\mathrm{N}} 2$ and, therefore, occurs with inversion of configuration. Consequently, the configuration of $(+)$-2-chlorobutane is opposite [i.e., (S)] to that of $(-)$-2-butanol [i.e., (R)]. (b) The configuration of (-)-2-iodobutane is (R).
6.14 Protic solvents are formic acid, formamide, ammonia, and ethylene glycol. The others are aprotic.
6.16 (a) $\mathrm{CH}_{3} \mathrm{O}^{-}$; (c) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{P}$.
6.20 (a) 1-Bromopropane would react more rapidly, because, being a primary halide, it is less hindered. (c) 1-Chlorobutane, because the carbon bearing the leaving group is less hindered than in 1-chloro-2-methylpropane. (e) 1-Chlorohexane because it is a primary halide. Phenyl halides are unreactive in $S_{N} 2$ reactions.
6.21 (a) Reaction (1) because ethoxide ion is a stronger nucleophile than ethanol; (c) reaction (2) because triphenylphosphine, $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}$, is a stronger nucleophile than triphenylamine. (Phosphorus atoms are larger than nitrogen atoms.)
6.22 (a) Reaction (2) because bromide ion is a better leaving group than chloride ion; (c) reaction (2) because the concentration of the substrate is twice that of reaction (1).
6.26 The better yield is obtained by using the secondary halide, 1-bromo-1-phenylethane, because the desired reaction is E2. Using the primary halide will result in substantial $\mathrm{S}_{\mathrm{N}} 2$ reaction as well, producing the alcohol instead of the desired alkene.
6.38 (a) You should use a strong base, such as RO^{-}, at a higher temperature to bring about an E2 reaction. (b) Here we want an $\mathrm{S}_{\mathrm{N}} 1$ reaction. We use ethanol as the solvent and as the nucleophile, and we carry out the reaction at a low temperature so that elimination is minimized.

CHAPTER 7

7.4 (a) 2,3-Dimethyl-2-butene would be the more stable because the double bond is tetrasubstituted. (c) cis-3-Hexene would be more stable because its double bond is disubstituted.
7.7 (a)

$\begin{array}{cc}\text { (trisubstituted, } & \text { (monosubstituted, } \\ \text { more stable) } & \text { less stable) } \\ \text { Major product } & \text { Minor product }\end{array}$
7.25 (a) We designate the position of the double bond by using the lower of the two numbers of the doubly bonded carbon atoms, and the chain is numbered from the end nearer the double bond. The correct name is trans-2-pentene. (c) We use the lower number of the two doubly bonded carbon atoms to designate the position of the double bond. The correct name is 1-methylcyclohexene.
7.26
(a)

(c)

(e)

(g)

7.28 (a) (E)-3,5-Dimethyl-2-hexene; (c) 6-methyl-3-heptyne; (e) $(3 Z, 5 R)-5$-chloro-3-hepten-6-yne.
7.43 Only the deuterium atom can assume the anti coplanar orientation necessary for an E2 reaction to occur.

CHAPTER 8

8.1 2-Bromo-1-iodopropane.
8.8 The order reflects the relative ease with which these alkenes accept a proton and form a carbocation. 2-Methylpropene reacts fastest because it leads to a 3° cation; ethene reacts slowest because it leads to a 1° cation.
8.25 By converting the 3-hexyne to cis-3-hexene using $\mathrm{H}_{2} / \mathrm{Ni}_{2} \mathrm{~B}$ (P-2).

Then, addition of bromine to cis-3-hexene will yield ($3 R, 4 R$) , and ($3 S, 4 S$)-3,4-dibromohexane as a racemic form.

8.26 (a)

(b)

(e)

(i)

(j)

8.29 (a)

(c)

(e)

8.33 (a)

(c)

(d)

8.34 (a)

(c)

8.64

CHAPTER 9

9.4 (a) One; (b) two; (c) two; (d) one; (e) two; (f) two.
9.9 A doublet $(3 \mathrm{H})$ at relatively higher frequency; a quartet (1 H) at relatively lower frequency.
9.10 A, $\mathrm{CH}_{3} \mathrm{CHICH}_{3} ; \mathbf{B}, \mathrm{CH}_{3} \mathrm{CHCl}_{2} ; \mathbf{C}, \mathrm{CH}_{2} \mathrm{CICH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$
9.25 G,

H,

9.28 \mathbf{Q} is bicyclo[2.2.1]hepta-2,5-diene.
\mathbf{R} is bicyclo[2.2.1]heptane.
9.39 E is phenylacetylene.

CHAPTER 10

10.1

10.8 (a) Cyclopentane; (b) 2,2,3,3-tetramethylbutane
10.9 (a)

(c) No, $(2 R, 4 S)$-2,4-dichloropentane is achiral because it is a meso compound. (It has a plane of symmetry passing through C3.)
(e) Yes, by fractional distillation or by gas-liquid chromatography. (Diastereomers have different physical properties. Therefore, the two isomers would have different vapor pressures.)
10.10 (a) The only fractions that would contain chiral molecules (as enantiomers) would be those containing 1-chloro-2-methylbutane and the two diastereomers of 2-chloro-3-methylbutane. These fractions would not show optical activity, however, because they would contain racemic forms of the enantiomers.
(b) Yes, the fractions containing 1-chloro-2-methylbutane and the two containing the 2-chloro-3-methylbutane diastereomers.
10.25

(3)
$\left(2^{\circ}\right)$

(1)
(1)

CHAPTER 11

11.3 (a)

(b)

(b)

11.10 Use an alcohol containing labeled oxygen. If all of the labeled oxygen appears in the sulfonate ester, then it can be concluded that the alcohol $\mathrm{C}-\mathrm{O}$ bond does not break during the reaction.
11.25 (a) 3,3-Dimethyl-1-butanol; (c) 2-methyl-1,4-butanediol; (e) 1-methyl-2-cyclopenten-1-ol.
11.26

(c)

(e)

(g)

(i)

11.33 (a) $\mathrm{CH}_{3} \mathrm{Br}+\mathrm{Br}^{\mathrm{Br}}$
(c) B

CHAPTER 12

12.3 (a) LiAlH_{4}; (c) NaBH_{4}
12.4 (a)
(c) $\mathrm{H}_{2} \mathrm{CrO}_{4} /$ acetone
12.10
(a)

$\xrightarrow[\mathrm{H}_{2} \mathrm{O}]{\mathrm{H}_{3} \mathrm{O}^{+}}$

(c)

12.11 (a) $\mathrm{CH}_{3} \mathrm{CH}_{3}$; (b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{D}$;
(c)

(g) $\mathrm{CH}_{3} \mathrm{CH}_{3}+$

12.12 (a)

(b)

(e)

CHAPTER 13

13.2 (a)

(c)

and
 (racemic)
13.6 (b) 1,4-Cyclohexadiene and 1,4-pentadiene are isolated dienes.
13.18 (a) 1,4-Dibromobutane $+t$-BuOK, and heat;
(g) $\mathrm{HC} \equiv \mathrm{CCH}=\mathrm{CH}_{2}+\mathrm{H}_{2}, \mathrm{Ni}_{2} \mathrm{~B}(\mathrm{P}-2)$.
13.22 (a) 1 -Butene +N -bromosuccinimide, then t - BuOK and heat; (e) cyclopentane $+\mathrm{Br}_{2}$, $h v$, then t-BuOK and heat, then N-bromosuccinimide.
13.45 The endo adduct is less stable than the exo, but is produced at a faster rate at $25^{\circ} \mathrm{C}$. At $90^{\circ} \mathrm{C}$ the Diels-Alder reaction becomes reversible; an equilibrium is established, and the more stable exo adduct predominates.

CHAPTER 14

14.1 (a) 4-Bromobenzoic acid (or p-bromobenzoic acid)
(b) 2-Benzyl-1.3-cyclohexadiene
(c) (2-chloro-2-pentyl) benzene
(d) Phenyl propyl ether
14.7 (a)

(b)

These results suggest that the bonding in tropylium bromide is ionic; that is, it consists of a positive tropylium ion and a negative bromide ion.
14.9 The cyclopropenyl cation.
14.15 A, o-bromotoluene; B, p-bromotoluene;

C, m-bromotoluene; \mathbf{D}, benzyl bromide.
14.23 Hückel's rule should apply to both pentalene and heptalene. Pentalene's antiaromaticity can be attributed to its having 8π electrons. Heptalene's lack of aromaticity can be attributed to its having 12π electrons. Neither 8 nor 12 is a Hückel number.
14.25 The bridging $-\mathrm{CH}_{2}$ - group causes the 10π electron ring system to become planar. This allows the ring to become aromatic.
14.28 (a) The cyclononatetraenyl anion, with 10π electrons, obeys Hückel's rule.
14.31 A ,

B,

14.33 F ,

CHAPTER 15

15.6 If the methyl group had no directive effect on the incoming electrophile, we would expect to obtain the products in purely statistical amounts. Since there are two ortho hydrogen atoms, two meta hydrogen atoms, and one para hydrogen, we would expect to get 40% ortho (2/5), 40% meta ($2 / 5$), and 20% para ($1 / 5$). Thus, we would expect that only 60% of the mixture of mononitrotoluenes would have the nitro group in the ortho or para position. And, we would expect to obtain 40% of m-nitrotoluene. In actuality, we get 96% of combined o - and p-nitrotoluene and only 4% m-nitrotoluene. This result shows the ortho-para directive effect of the methyl group.
15.9 (b) Structures such as the following compete with the benzene ring for the oxygen electrons, making them less available to the benzene ring.

(d) Structures such as the following compete with the benzene ring for the nitrogen electrons, making them less available to the benzene ring.

15.32
(a)

(c)

15.33 (a)

(c)

(e)

(g)

CHAPTER 16

16.2 (a) 1-Pentanol; (c) pentanal; (e) benzyl alcohol.
16.6 A hydride ion.
16.17 (b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}+\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}$, then strong base, then $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{3}$; (d) $\mathrm{CH}_{3} \mathrm{I}+\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}$, then strong base, then cyclopentanone; (f) $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}+\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}$, then strong base, then $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$.
16.23 (a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$; (c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
(h) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{3}$; (j) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2}^{-} \mathrm{NH}_{4}^{+}+\mathrm{Ag} \downarrow$
(l) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{NNHCONH}_{2}$; (n) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2}^{-}$

16.49 X is

16.50 Y is 1-phenyl-2-butanone; Z is 4-phenyl-2-butanone.

CHAPTER 17

17.3 (a) $\mathrm{CH}_{2} \mathrm{FCO}_{2} \mathrm{H}$; (c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHFCO}_{2} \mathrm{H}$;
(e)

17.6 (a) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{Mg}$ in diethyl ether, then CO_{2}, then $\mathrm{H}_{3} \mathrm{O}^{+}$; (c) $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}+\mathrm{Mg}$ in diethyl ether, then CO_{2}, then $\mathrm{H}_{3} \mathrm{O}^{+}$.
17.7 (a), (c), and (e).
17.9 In the carboxyl group of benzoic acid.
17.14 (a) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCO}_{2} \mathrm{H}+\mathrm{SOCl}_{2}$, then NH_{3}, then $\mathrm{P}_{4} \mathrm{O}_{10}$, heat; (b)

17.22 (a)

(b)

(c)

(e)

(f)

(h)

(i)

(j)

(k)

(l)

17.46 (a) Diethyl succinate; (c) ethyl phenylacetate; (e) ethyl chloroacetate.
17.47 X is diethyl malonate.

CHAPTER 18

18.1 The enol form is phenol. It is especially stable because it is aromatic.
18.2 No.

does not have a hydrogen
attached to its α-carbon atom (which is a chirality center) and thus enol formation involving the chirality center is not possible.
 and thus enol formation does not affect it.
18.5 Base is consumed as the reaction takes place. A catalyst, by definition, is not consumed.
18.8 (a) Reactivity is the same as with any $\mathrm{S}_{\mathrm{N}} 2$ reaction. With primary halides substitution is highly favored, with secondary halides elimination competes with substitution, and with tertiary halides elimination is the exclusive course of the reaction.
(b) Acetoacetic ester and 2-methylpropene. (c) Bromobenzene is unreactive toward nucleophilic substitution.
18.10 Working backward

18.17 In a polar solvent, such as water, the keto form is stabilized by solvation. When the interaction with the solvent becomes minimal, the enol form achieves stability by internal hydrogen bonding.
18.25 (b) \mathbf{D} is racemic trans-1,2-cyclopentanedicarboxylic acid, \mathbf{E} is cis-1,2-cyclopentanedicarboxylic acid, a meso compound.

CHAPTER 19

19.3 (a)

(b) To undergo a Dieckmann condensation, diethyl 1,5-pentanedioate would have to form a highly strained four-membered ring.
19.5 (a)

(b)

19.11

Lily aldehyde $\left(\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}\right)$
19.17
(a)

(b)

(c)

Notice that starting compounds are drawn so as to indicate which atoms are involved in the cyclization reaction.

19.19

(a)

$\mathrm{HO}^{-} \uparrow \downarrow^{\mathrm{HA}}$

(b)

$\stackrel{H A}{\stackrel{: A^{-}}{\rightleftarrows}}$

19.50 (a) $\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CO}_{2} \mathrm{CH}_{3}$; (b) $\mathrm{KMnO}_{4}, \mathrm{HO}^{-}$; $\mathrm{H}_{3} \mathrm{O}^{+}$;
(c) $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{HA}$; (d) $\mathrm{CH}_{3} \mathrm{ONa}$, then $\mathrm{H}_{3} \mathrm{O}^{+}$
(e) and (f)

(g) $\mathrm{HO}^{-}, \mathrm{H}_{2} \mathrm{O}$, then $\mathrm{H}_{3} \mathrm{O}^{+}$; (h) heat $\left(-\mathrm{CO}_{2}\right)$; (i) $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{HA}$;
(j)

(k) H_{2}, Pt; (m) $\mathrm{CH}_{3} \mathrm{ONa}$, then $\mathrm{H}_{3} \mathrm{O}^{+}$; (n) $2 \mathrm{NaNH}_{2}+2 \mathrm{CH}_{3} \mathrm{I}$

CHAPTER 20
20.5 (a) $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CHO}+\mathrm{NH}_{3} \xrightarrow[\text { LiBH } \mathrm{H}_{3} \mathrm{CN}]{\mathrm{H}_{2}, \mathrm{Ni}} \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$
(c) $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CHO}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ \square
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{2} \mathrm{NHC}_{6} \mathrm{H}_{5}$
20.6 The reaction of a secondary halide with ammonia is almost always accompanied by some elimination.
20.7 (a) Methoxybenzene $+\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4}$, then $\mathrm{Fe}+\mathrm{HCl}$;
(b) Methoxybenzene $+\mathrm{CH}_{3} \mathrm{COCl}+\mathrm{AlCl}_{3}$, then $\mathrm{NH}_{3}+\mathrm{H}_{2}+\mathrm{Ni}$;
(c) toluene $+\mathrm{Cl}_{2}$ and light, then $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$; (d) p-nitrotoluene + $\mathrm{KMnO}_{4}+\mathrm{HO}^{-}$, then $\mathrm{H}_{3} \mathrm{O}^{+}$, then SOCl_{2} followed by NH_{3}, then $\mathrm{NaOBr}\left(\mathrm{Br}_{2}\right.$ in NaOH$)$; (e) toluene $+N$-bromosuccinimide then KCN, then LiAlH_{4}.
$20.12 p$-Nitroaniline $+\mathrm{Br}_{2}+\mathrm{Fe}$, followed by $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{NaNO}_{2}$ followed by CuBr , then $\mathrm{H} 2 / \mathrm{Pt}$, then $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{NaNO}_{2}$ followed by $\mathrm{H}_{3} \mathrm{PO}_{2}$.
20.45 W is N-benzyl- N-ethylaniline.

CHAPTER 21

21.1 The electron-releasing group (i.e., $-\mathrm{CH}_{3}$) changes the charge distribution in the molecule so as to make the hydroxyl oxygen less positive, causing the proton to be held more strongly; it also destabilizes the phenoxide anion by intensifying its negative charge. These effects make the substituted phenol less acidic than phenol itself.

21.4 (a) The para-sulfonated phenol. (b) For ortho sulfonation.
21.9
(a)

(b)

21.10 That o-chlorotoluene leads to the formation of two products (o-cresol and m-cresol), when submitted to the conditions used in the Dow process, suggests that an eliminationaddition mechanism takes place.
21.11 2-Bromo-1,3-dimethylbenzene, because it has no o-hydrogen atom, cannot undergo an elimination. Its lack of reactivity toward sodium amide in liquid ammonia suggests that those compounds (e.g., bromobenzene) that do react, react by a mechanism that begins with an elimination.
21.14 (a) 4-Fluorophenol because a fluorine substituent is more electron withdrawing than a methyl group. (e) 4-Fluorophenol because fluorine is more electronegative than bromine.
21.16 (a) 4-Chlorophenol will dissolve in aqueous NaOH ; 4-chloro-1-methylbenzene will not. (c) Phenyl vinyl ether will react with bromine by addition (thus decolorizing the solution); ethyl phenyl ether will not. (e) 4-Ethylphenol will dissolve in aqueous NaOH ; ethyl phenyl ether will not.

CHAPTER 22

22.1 (a) Two; (b) two; (c) four.
22.5 Acid catalyzes hydrolysis of the glycosidic (acetal) group.
22.9 (a) $2 \mathrm{CH}_{3} \mathrm{CHO}$, one molar equivalent HIO_{4}; (b) $\mathrm{HCHO}+$ $\mathrm{HCO}_{2} \mathrm{H}+\mathrm{CH}_{3} \mathrm{CHO}$, two molar equivalents HIO_{4};
(c) $\mathrm{HCHO}+\mathrm{OHCCH}\left(\mathrm{OCH}_{3}\right)_{2}$, one molar equivalent HIO_{4};
(d) $\mathrm{HCHO}+\mathrm{HCO}_{2} \mathrm{H}+\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$, two molar equivalents HIO_{4};
(e) $2 \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+\mathrm{HCO}_{2} \mathrm{H}$, two molar equivalents HIO_{4}
22.18 D-(+)-Glucose.
22.23 One anomeric form of D -mannose is dextrorotatory $\left([\alpha]_{\mathrm{D}}=+29.3\right)$, the other is levorotatory $\left([\alpha]_{\mathrm{D}}=-17.0\right)$.
22.24 The microorganism selectively oxidizes the -CHOH group of D -glucitol that corresponds to C 5 of D -glucose.
22.27 A is D-altrose; \mathbf{B} is D-talose, \mathbf{C} is \mathbf{D}-galactose

CHAPTER 23

23.5 Br_{2} would react with geraniol (discharging the bromine color) but would not react with menthol.
23.12 (a) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{HA}$, heat; or SOCl_{2}, then $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$;
(d) SOCl_{2}, then $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$; (g) SOCl_{2}, then $\mathrm{LiAIH}\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right]_{3}$
23.15 Elaidic acid is trans-9-octadecenoic acid.
23.19 \mathbf{A} is $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{C} \equiv \mathrm{CNa}$

B is $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{C} \equiv \mathrm{CCH}_{2}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CH}_{2} \mathrm{Cl}$
C is $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{C} \equiv \mathrm{CCH}_{2}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CH}_{2} \mathrm{CN}$
\mathbf{E} is $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{C} \equiv \mathrm{CCH}_{2}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$
Vaccenic acid is

23.20 F is $\mathrm{FCH}_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}$

G is $\mathrm{FCH}_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{Cl}$
\mathbf{H} is $\mathrm{FCH}_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CN}$
I is $\mathrm{FCH}_{2}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{C} \equiv \mathrm{C}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CO}_{2} \mathrm{H}$

CHAPTER 24

24.5 The labeled amino acid no longer has a basic $-\mathrm{NH}_{2}$ group; it is, therefore, insoluble in aqueous acid.
24.8 Glutathione is

24.22 Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg
24.23 Val•Leu-Lys•Phe•Ala•Glu•Ala

CHAPTER 25

25.2 (a) The nucleosides have an N-glycosidic linkage that (like an O-glycosidic linkage) is rapidly hydrolyzed by aqueous acid, but one that is stable in aqueous base.
25.4 (a) The isopropylidene group is part of a cyclic acetal. (b) By treating the nucleoside with acetone and a trace of acid.
25.7 (b) Thymine would pair with adenine, and, therefore, adenine would be introduced into the complementary strand where guanine should occur.
25.9

Uracil
(in mRNA)
Adenine (in DNA)
25.10
(a) ACC CCC
AAA AUG UCC m RNA
(b) $\mathrm{T}: \mathrm{P}: \mathrm{K}: \mathrm{M}: \mathrm{S}$ Amino acids
(c) UGC GGC UUU UAC AGC Anticodons

A

Absolute configuration (Section 5.15A): The actual arrangement of groups in a molecule. The absolute configuration of a molecule can be determined by X-ray analysis or by relating the configuration of a molecule, using reactions of known stereochemistry, to another molecule whose absolute configuration is known.
Absorption spectrum (Section 13.8B): A plot of the wavelength (λ) of a region of the spectrum versus the absorbance (A) at each wavelength. The absorbance at a particular wavelength $\left(A_{\lambda}\right)$ is defined by the equation $A_{\lambda}=\log \left(I_{\mathrm{R}} / I_{\mathrm{S}}\right)$, where I_{R} is the intensity of the reference beam and I_{S} is the intensity of the sample beam.
Acetal (Section 16.7B): A functional group, consisting of a carbon bonded to alkoxy groups [i.e., $\mathrm{RCH}\left(\mathrm{OR}^{\prime}\right)_{2}$ or $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{OR}^{\prime}\right)_{2}$], derived by adding 2 molar equivalents of an alcohol to an aldehyde or ketone. An acetal synthesized from a ketone is sometimes called a ketal.
Acetoacetic ester synthesis (Section 18.6): A sequence of reactions involving removal of the α-hydrogen of ethyl 3 -oxobutanoate (ethyl acetoacetate, also called "acetoacetic ester"), creating a resonance-stabilized anion which then can serve as a nucleophile in an $S_{\mathrm{N}} 2$ reaction. The α-carbon can be substituted twice; the ester functionality can be converted into α carboxylic acid which, after decarboxylation, yields a substituted ketone.
Acetonide (Section 22.5E): A cyclic acetal formed from acetone.
Acetylene (Sections 1.14, 7.1, and 7.11): A common name for ethyne.
Acetylenic hydrogen atom (Sections 4.6, and 7.9): A hydrogen atom attached to a carbon atom that is bonded to another carbon atom by a triple bond.
Achiral molecule (Sections 5.3 and 5.4): A molecule that is superposable on its mirror image. Achiral molecules lack handedness and are incapable of existing as a pair of enantiomers.
Acid strength (Section 3.5): The strength of an acid is related to its acidity constant, K_{a} or to its $\mathrm{p} K_{\mathrm{a}}$. The larger the value of its K_{a} or the smaller the value of its $\mathrm{p} K_{\mathrm{a}}$, the stronger is the acid.
Acidity constant, $\boldsymbol{K}_{\mathrm{a}}$ (Section 3.5A): An equilibrium constant related to the strength of an acid. For the reaction,

$$
\begin{gathered}
\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-} \\
K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
\end{gathered}
$$

Activating group (Sections $15.10,15.10 \mathrm{D}$): A group that when present on a benzene ring causes the ring to be more reactive in electrophilic substitution than benzene itself.
Activation energy, $\boldsymbol{E}_{\text {act }}$ (See Energy of activation and Section 10.5A)

Active hydrogen compounds or active methylene compounds (Section 18.8): Compounds in which two electron-withdrawing
groups are attached to the same carbon atom (a methylene or methane carbon). The electron-withdrawing groups enhance the acidity of the hydrogens on carbon; these hydrogens are easily removed, creating a resonance-stabilized nucleophilic anion.

Active site (Section 24.9): The location in an enzyme where a substrate binds.
Acylation (Section 15.7): The introduction of an acyl group into a molecule.

Acyl compounds (Section 17.1): A compound containing the group ($\mathrm{R}-\mathrm{C}=\mathrm{O}$) - , usually derived from a carboxylic acid, such as an ester, acid halide (acyl halide), amide, or carboxylic acid anhydride.

Acyl group (Section 15.7): The general name for groups with the structure RCO - or ArCO - .
Acyl halide (Section 15.7): Also called an acid halide. A general name for compounds with the structure RCOX or ArCOX.
Acylium ion (Sections 9.16C and 15.7): The resonance-stabilized cation:

Acyl transfer reactions (Section 17.4): A reaction in which a new acyl compound is formed by a nucleophilic addition-elimination reaction at a carbonyl carbon bearing a leaving group.
Addition polymer (Section 10.11 and Special Topic B in WileyPLUS): A polymer that results from a stepwise addition of monomers to a chain (usually through a chain reaction) with no loss of other atoms or molecules in the process. Also called a chaingrowth polymer.
Addition reaction (Sections Chapter 8 intro, 8.1-8.9, 8.11, 8.12, $12.1 \mathrm{~A}, 16.6 \mathrm{~B}$, and 17.4): A reaction that results in an increase in the number of groups attached to a pair of atoms joined by a double or triple bond. An addition reaction is the opposite of an elimination reaction.
Adduct (Section 13.10): The product formed by a Diels-Alder [$4+2$] cycloaddition reaction, so called because two compounds (a diene and a dienophile) are added together to form the product.
Aglycone (Section 22.4): The alcohol obtained by hydrolysis of a glycoside.
Aldaric acid (Section 22.6C): An α, ω-dicarboxylic acid that results from oxidation of the aldehyde group and the terminal 1° alcohol group of an aldose.
Alditol (Section 22.7): The alcohol that results from the reduction of the aldehyde or keto group of an aldose or ketose.

Aldol (Section 19.4): A common name for 3-hydoxybutanal, which contains both aldehyde and an alcohol functional groups. Aldol is formed from the aldol reaction (see below) of ethanal (acetaldehyde) with itself.

Aldol additions (Section 19.4): See Aldol reaction and Aldol condensation.

Aldol condensation (Sections 19.1 and 19.4): An aldol reaction that forms an α, β-unsaturated product by dehydration of the β-hydroxy aldehyde or ketone aldol product.
Aldol reactions (Sections 19.4-19.6): Reactions in which the enol or enolate ion of an aldehyde or ketone reacts with the carbonyl group of the same or a different aldehyde or ketone, creating a β-hydroxy aldehyde or ketone and a new carbon-carbon σ-bond.

Aldonic acid (Section 22.6C): A monocarboxylic acid that results from oxidation of the aldehyde group of an aldose.

Aliphatic compound (Section 14.1): A nonaromatic compound such as an alkane, cycloalkane, alkene, or alkyne.

Alkaloid (Special Topic F in WileyPLUS): A naturally occurring basic compound that contains an amino group. Most alkaloids have profound physiological effects.
Alkanes (Sections 2.1, 2.1A, 4.1-4.3, 4.7, and 4.16): Hydrocarbons having only single (σ) bonds between carbon atoms. Acyclic alkanes have the general formula $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$. Monocyclic alkanes have the general formula of $\mathrm{C}_{n} \mathrm{H}_{2 n}$. Alkanes are said to be "saturated" because $\mathrm{C}-\mathrm{C}$ single bonds cannot react to add hydrogen to the molecule.
Alkanide (Section 7.8A): An alkyl anion, R: ${ }^{-}$, or alkyl species that reacts as though it were an alkyl anion.
Alkenes (Sections 2.1, 2.1B, 4.1, and 4.5): Hydrocarbons having at least one double bond between carbon atoms. Acyclic alkenes have the general formula $\mathrm{C}_{n} \mathrm{H}_{2 n}$. Monocyclic alkenes have the general formula of $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n-2}$. Alkenes are said to be "unsaturated" because their $\mathrm{C}=\mathrm{C}$ double bonds can react to add hydrogen to the molecule, yielding an alkane.
Alkenyl halides (Section 6.1): An organic halide in which the halogen atom is bonded to an alkene carbon.

Alkylation (Sections 7.11A, 15.6, and 18.4C): The introduction of an alkyl group into a molecule.

Alkyl group (See R) (Sections 2.4A and 4.3A): The designation given to a fragment of a molecule hypothetically derived from an alkane by removing a hydrogen atom. Alkyl group names end in "yl." Example: the methyl group, $\mathrm{CH}_{3}-$, is derived from methane, CH_{4}.
Alkyl halide (Section 6.1): An organic halide in which the halogen atom is bonded to an alkyl carbon.
Alkynes (Sections 2.1, 2.1C, 4.1, and 4.6): Hydrocarbons having at least one triple bond between carbon atoms. Acyclic alkynes have the general formula $\mathrm{C}_{n} \mathrm{H}_{2 n-2}$. Monocyclic alkynes have the general formula of $\mathrm{C}_{n} \mathrm{H}_{2 n+4}$. Alkynes are said to be "unsaturated" because $\mathrm{C} \equiv \mathrm{C}$ triple bonds can react to add two molecules of hydrogen to the molecule, yielding an alkane.

Allyl group (Section 4.5): The $\mathrm{CH}_{2}-\mathrm{CHCH}_{2}-$ group.

Allylic carbocation (Sections 13.1, 13.9, and 15.15): A substructure involving a three-carbon delocalized carbocation in which the positively charged carbon is adjacent to a carbon-carbon double bond in each of two contributing resonance structures.

[^0]Allylic substitution (Section 10.8): The replacement of a group at an allylic position.
Allyl (propenyl cation) (Section 13.3): The carbocation formally related to propene by removal of a proton from its methyl group. The two contributing resonance structures of the delocalized carbocation each include a positive charge on a carbon adjacent to the double bond, such that a p orbital on each of the three carbons overlaps to delocalize positive charge to each end of the allyl system.
Allyl radical (Sections 10.8A and 13.3): The radical formally related to propene by removal of a hydrogen atom from its methyl group. The two contributing resonance structures of the delocalized radical each include an unpaired electron on a carbon adjacent to the double bond, such that a p orbital on each of the three carbons overlaps to delocalize the radical to each end of the allyl system, in which the radical carbon is adjacent to a carbon-carbon double bond.
Alpha ($\boldsymbol{\alpha}$) anomer (Section 22.2C): In the standard Haworth formula representation for a D-hexopyranose, the α anomer has the hemiacetal hydroxyl or acetal alkoxyl group trans to C6. Similar usage applies to other carbohydrate forms regarding the stereochemical relationship of the anomeric hydroxyl or alkoxyl group and the configuration at the carbon bearing the ring oxygen that forms the hemiacetal or acetal.

Alpha ($\boldsymbol{\alpha}$) carbon (Section 18.1): A carbon adjacent to a carbonyl $(\mathrm{C}=\mathrm{O})$ group.
Alpha ($\boldsymbol{\alpha}$) helix (Section 24.8A): A secondary structure in proteins where the polypeptide chain is coiled in a right-handed helix.

Alpha ($\boldsymbol{\alpha}$) hydrogens (Sections 18.1 and 18.5D): A hydrogen atom bonded to an α carbon. These hydrogens are significantly more acidic than the typical alkane hydrogen.
Aminium salt (Section 20.3D): The product of the reaction of an amine, acting as a Bronsted-Lowry base, with an acid. The amine can be primary, secondary, or tertiary. The positively charged nitrogen in an aminium salt is attached to at least one hydrogen atom. (An ammonium salt has no hydrogen atoms bonded directly to the nitrogen.)
Amino acid residue (Section 24.4): An amino acid that is part of a peptide.
Angle strain (Section 4.10): The increased potential energy of a molecule (usually a cyclic one) caused by deformation of a bond angle away from its lowest energy value.
Annulene (Section 14.7B): Monocyclic hydrocarbon that can be represented by a structure having alternating single and double bonds. The ring size of an annulene is represented by a number in brackets, e.g., benzene is [6]annulene and cyclooctatetraene is [8]annulene.

Anomeric carbon (Section 22.2C): The hemiacetal or acetal carbon in the cyclic form of a carbohydrate. The anomeric carbon can have either the α or β stereochemical configuration (using carbohydrate nomenclature), resulting in diastereomeric forms of the carbohydrate called anomers (α-anomers and β-anomers). Anomers differ only in the stereochemistry at the anomeric carbon.
Anomers (Section 22.2C): A term used in carbohydrate chemistry. Anomers are diastereomers that differ only in configuration at the acetal or hemiacetal carbon of a sugar in its cyclic form.
Anti 1,2-dihydroxylation (Section 11.15): The installation of hydroxyl groups at adjacent carbons and on opposite faces of an alkene, often accomplished by ring-opening of an epoxide.

Anti addition (Sections 7.13A, 7.14B, and 8.11A): An addition that places the parts of the adding reagent on opposite faces of the reactant.

Antiaromatic compound (Section 14.7E): A cyclic conjugated system whose π electron energy is greater than that of the corresponding open-chain compound.
Antibonding molecular orbital (antibonding MO) (Sections 1.11, 1.13, and 1.15): A molecular orbital whose energy is higher than that of the isolated atomic orbitals from which it is constructed. Electrons in an antibonding molecular orbital destabilize the bond between the atoms that the orbital encompasses.
Anticodon (Section 25.5C): A sequence of three bases on transfer RNA (tRNA) that associates with a codon of messenger RNA (mRNA).
Anti conformation (Section 4.9): An anti conformation of butane, for example, has the methyl groups at an angle of 180° to each other:

Anti coplanar (Section 7.6D): The relative position of two groups that have a 180° dihedral angle between them.
anti-Markovnikov addition (Sections 8.2D, 8.6-8.9, 8.18, and 10.10): An addition reaction where the hydrogen atom of a reagent becomes bonded to an alkene or alkyne at the carbon having the fewer hydrogen atoms initially. This orientation is the opposite of that predicted by Markovnikov's rule.
Arenium ion (Section 15.2): A general name for the cyclohexadienyl carbocations that form as intermediates in electrophilic aromatic substitution reactions.
Aromatic compound (Sections 2.1, 2.1D, 14.1-14.8, and 14.11): A cyclic conjugated unsaturated molecule or ion that is stabilized by π electron delocalization. Aromatic compounds are characterized by having large resonance energies, by reacting by substitution rather than addition, and by deshielding of protons exterior to the ring in their ${ }^{1} \mathrm{H}$ NMR spectra caused by the presence of an induced ring current.
Aromatic ions (Section 14.7D): Cations and anions that fulfill the criteria for aromaticity (planarity, electron delocalization, and a Hückel number of π-electrons) and thus have additional (aromatic) stability.
Arylamines (Section 20.1A): A compound in which the carbon of an aromatic ring bears the amine nitrogen atom. Aryl amines can be primary, secondary, or tertiary.
Aryl halide (Sections 2.5 and 6.1): An organic halide in which the halogen atom is attached to an aromatic ring, such as a benzene ring.
Atactic polymer (Special Topic B. 1 in WileyPLUS): A polymer in which the configuration at the stereogenic centers along the chain is random.

Atomic orbital (AO) (Sections 1.10, 1.11, and 1.15): A volume of space about the nucleus of an atom where there is a high probability of finding an electron. An atomic orbital can be described mathematically by its wave function. Atomic orbitals have characteristic quantum numbers; the principal quantum number, n, is related to the energy of the electron in an atomic orbital and can have the values $1,2,3, \ldots$. The azimuthal quantum number, l, determines the angular momentum of the electron that results from its motion around the nucleus, and can have the values $0,1,2, \ldots,(n-1)$. The magnetic quantum number, m, determines the orientation in space of the angular momentum and can have values from $+l$ to $-l$. The spin quantum number, s, specifies the intrinsic angular momentum of an electron and can have the values of $+1 / 2$ and $-1 / 2$ only.
Atropisomers (Section 5.18): Conformational isomers that are stable, isolable compounds.
Aufbau principle (Section 1.10A): A principle that guides us in assigning electrons to orbitals of an atom or molecule in its lowest energy state or ground state. The aufbau principle states that electrons are added so that orbitals of lowest energy are filled first.

Autoxidation (Section 10.12C): The reaction of an organic compound with oxygen to form a hydroperoxide.
Axial bond (Section 4.12): The six bonds of a cyclohexane ring (below) that are perpendicular to the general plane of the ring, and that alternate up and down around the ring.

B

Base peak (Section 9.13): The most intense peak in a mass spectrum.
Base strength (Sections 3.5C and 20.3): The strength of a base is inversely related to the strength of its conjugate acid; the weaker the conjugate acid, the stronger is the base. In other words, if the conjugate acid has a large $\mathrm{p} K_{\mathrm{a}}$, the base will be strong.
Benzene (Section 2.1D): The prototypical aromatic compound having the formula $\mathrm{C}_{6} \mathrm{H}_{6}$. Aromatic compounds are planar, cyclic, and contain $4 n+2 \pi$ electrons delocalized in contiguous fashion about a ring of electron density in the molecule. Electron delocalization gives aromatic compounds a high degree of stability.
Benzenoid aromatic compound (Section 14.8A): An aromatic compound whose molecules have one or more benzene rings.
Benzyl group (Sections 2.4B and 10.9): The $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$ - group.
Benzylic carbocation (Section 15.15): A carbocation located adjacent to a benzene ring.
Benzylic cation (Section 15.12A): A carbocation where the positive charge is on a carbon bonded to a benzene ring. The positive charge is delocalized into the benzene ring through conjugation, resulting in a relatively stable carbocation.
Benzylic position (Section 10.9): The location of a group that is bonded to an $s p^{3}$-hybridized carbon adjacent to a benzene ring.
Benzylic radical (Section 15.12A): The radical comprised of a methylene $\left(\mathrm{CH}_{2}\right)$ group bonded to a benzene ring, wherein the unpaired electron is delocalized over the methylene group and the ring. As a highly conjugated system, the benzylic radical has greatly enhanced stability.

Benzylic substituent (Sections 15.12A): Refers to a substituent on a carbon atom adjacent to a benzene ring.
Benzyne (Section 21.11B): An unstable, highly reactive intermediate consisting of a benzene ring with an additional bond resulting from sideways overlap of $s p^{2}$ orbitals on adjacent atoms of the ring.
Beta ($\boldsymbol{\beta}$) anomer (Section 22.2C): In the standard Haworth formula representation for a D-hexopyranose, the β anomer has the hemiacetal hydroxyl or acetal alkoxyl group cis to C6. Similar usage applies to other carbohydrate forms regarding the stereochemical relationship of the anomeric hydroxyl or alkoxyl group and the configuration at the carbon bearing the ring oxygen that forms the hemiacetal or acetal.
Beta ($\boldsymbol{\beta}$)-carbonyl compound (Section 18.5C): A compound having two carbonyl groups separated by an intervening carbon atom.
Beta ($\boldsymbol{\beta}$)-pleated sheet (Section 24.8A): A type of protein secondary structure involving alignment of two polypeptide regions alongside each other through hydrogen bonding of their amide groups.

Bicyclic compounds (Section 4.4B): Compounds with two fused or bridged rings.

Bimolecular reaction (Section 6.5B): A reaction whose rate-determining step involves two initially separate species.

Boat conformation (Section 4.11): A conformation of cyclohexane that resembles a boat and that has eclipsed bonds along its two sides:

It is of higher energy than the chair conformation.
Boiling point (Sections 2.13A and 2.13C): The temperature at which the vapor pressure of a liquid is equal to the pressure above the surface of the liquid.
Bond angle (Section 1.7A): The angle between two bonds originating at the same atom.
Bond dissociation energy (See Homolytic bond dissociation energy and Section 10.2)

Bonding molecular orbital (bonding MO) (Sections 1.11, 1 .12, and 1.15): The energy of a bonding molecular orbital is lower than the energy of the isolated atomic orbitals from which it arises. When electrons occupy a bonding molecular orbital they help hold together the atoms that the molecular orbital encompasses.
Bond length (Sections 1.11 and 1.14A): The equilibrium distance between two bonded atoms or groups.

Bond-line formula (Section 1.7C): A formula that shows the carbon skeleton of a molecule with lines. The number of hydrogen atoms necessary to fulfill each carbon's valence is assumed to be present but not written in. Other atoms (e.g., $\mathrm{O}, \mathrm{Cl}, \mathrm{N}$) are written in.

Broadband (BB) proton decoupling (see Proton decoupling) (Section 9.11B): A method of eliminating carbon-proton coupling by irradiating the sample with a wide-frequency ("broadband") energy input in the frequencies in which protons absorb energy. This energy input causes the protons to remain in the high energy state, eliminating coupling with carbon nuclei.

Bromohydrin (Section 8.13): A compound bearing a bromine atom and a hydroxyl group on adjacent (vicinal) carbons.
Bromonium ion (Section 8.11A): An ion containing a positive bromine atom bonded to two carbon atoms.

Brønsted-Lowry theory of acid-base (Section 3.1A): An acid is a substance that can donate (or lose) a proton; a base is a substance that can accept (or remove) a proton. The conjugate acid of a base is the molecule or ion that forms when a base accepts a proton. The conjugate base of an acid is the molecule or ion that forms when an acid loses its proton.

C

Carbanion (Sections 3.4 and 12.1A): A chemical species in which a carbon atom bears a formal negative charge.
Carbene (Section 8.14): An uncharged species in which a carbon atom is divalent. The species : CH_{2}, called methylene, is a carbene.
Carbenoid (Section 8.14C): A carbene-like species. A species such as the reagent formed when diiodomethane reacts with a zinccopper couple. This reagent, called the Simmons-Smith reagent, reacts with alkenes to add methylene to the double bond in a stereospecific way.
Carbocation (Sections 3.4, 6.11, and 6.12): A chemical species in which a trivalent carbon atom bears a formal positive charge.
Carbohydrate (Section 22.1A): A group of naturally occurring compounds that are usually defined as polyhydroxyaldehydes or polyhydroxyketones, or as substances that undergo hydrolysis to yield such compounds. In actuality, the aldehyde and ketone groups of carbohydrates are often present as hemiacetals and acetals. The name comes from the fact that many carbohydrates possess the empirical formula $\mathrm{C}_{\mathrm{x}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{y}$.
Carbon-carbon double bond (Section 1.3B): A bond between two carbon atoms comprised of four electrons; two of the electrons are in a sigma bond and two of the electrons are in a pi bond.
Carbon-carbon single bond (Section 1.3B): A bond between two carbon atoms comprised of two electrons shared in a sigma bond.
Carbon-carbon triple bond (Section 1.3B): A bond between two carbon atoms comprised of six electrons; two of the electrons are in a sigma bond and four of the electrons are as pairs in each of two pi bonds.
Carbon-13 NMR spectroscopy (Section 9.11): NMR spectroscopy applied to carbon. Carbon-13 is NMR active, whereas carbon-12 is not and therefore cannot be studied by NMR. Only 1.1% of all naturally occurring carbon is carbon-13.

Carbonyl group (Section 16.1): A functional group consisting of a carbon atom doubly bonded to an oxygen atom. The carbonyl group is found in aldehydes, ketones, esters, anhydrides, amides, acyl halides, and so on. Collectively these compounds are referred to as carbonyl compounds.
Carboxylic acid derivatives (Section 17.1): Acyl compounds that can be synthesized from a carboxylic acid or another carboxylic acid derivative. Examples include esters, amides, acid halides, anhydrides, etc.
CFC (see Freon): A chlorofluorocarbon.
Chain-growth polymer (See Addition polymer and Special Topic B in WileyPLUS): Polymers (macromolecules with repeating units) formed by adding subunits (called monomers) repeatedly to form a chain.
Chain reaction (Sections 10.4 and 10.10): A reaction that proceeds by a sequential, stepwise mechanism, in which each step generates the reactive intermediate that causes the next step to occur. Chain reactions have chain-initiating steps, chain-propagating steps, and chain-terminating steps.

Chain-terminating (dideoxynucleotide) method (Section 25.6): A method of sequencing DNA that involves replicating DNA in a way that generates a family of partial copies, each differing in length by one base pair and containing a nucleotide-specific fluor escent tag on the terminal base. The partial copies of the parent DNA are separated by length, usually using capillary electrophoresis, and the terminal base on each strand is identified by the covalently attached fluorescent marker.
Chair conformation (Section 4.11): The all-staggered conformation of cyclohexane that has no angle strain or torsional strain and is, therefore, the lowest energy conformation:

Chemical exchange (Section 9.10): In the context of NMR, transfer of protons bonded to heteroatoms from one molecule to another, broadening their signal and eliminating spin-spin coupling.
Chemical shift, $\boldsymbol{\delta}$ (Sections 9.2A, 9.7, and 9.11C): The position in an NMR spectrum, relative to a reference compound, at which a nucleus absorbs. The reference compound most often used is tetramethylsilane (TMS), and its absorption point is arbitrarily designated zero. The chemical shift of a given nucleus is proportional to the strength of the magnetic field of the spectrometer. The chemical shift in delta units, δ, is determined by dividing the observed shift from TMS in hertz multiplied by 10^{6} by the operating frequency of the spectrometer in hertz.
Chirality (Sections 5.1, 5.4, and 5.6): The property of having handedness.
Chirality center (Sections 5.4 and 5.17): An atom bearing groups of such nature that an interchange of any two groups will produce a stereoisomer.
Chiral molecule (Sections 5.3 and 5.12): A molecule that is not superposable on its mirror image. Chiral molecules have handedness and are capable of existing as a pair of enantiomers.
Chlorination (Sections 8.12, 10.3B, 10.4, and 10.5): A reaction in which one or more chlorine atoms are introduced into a molecule.
Chlorohydrin (Section 8.13): A compound bearing a chlorine atom and a hydroxyl group on adjacent (vicinal) carbons.
Cis-trans isomers (Sections 1.13B, 4.13, and 7.2): Diastereomers that differ in their stereochemistry at adjacent atoms of a double bond or on different atoms of a ring. Cis groups are on the same side of a double bond or ring. Trans groups are on opposite sides of a double bond or ring.
Claisen condensation (Section 19.1): A reaction in which an enol ate anion from one ester attacks the carbonyl function of another ester, forming a new carbon-carbon σ-bond. A tetrahedral intermediate is involved that, with expulsion of an alkoxyl group, collapses to a β-ketoester. The two esters are said to "condense" into a larger product with loss of an alcohol molecule.
Claisen rearrangement (Section 21.9): A [3,3] sigmatropic rearrangement reaction involving an allyl vinyl ether, in which the allyl group of migrates to the other end of the vinyl system, with bond reorganization leading to a γ, δ-unsaturated carbonyl compound.
Codon (Section 25.5C): A sequence of three bases on messenger RNA (mRNA) that contains the genetic information for one amino acid. The codon associates, by hydrogen bonding, with an anticodon of a transfer RNA (tRNA) that carries the particular amino acid for protein synthesis on the ribosome.

Coenzyme (Section 24.9): A small organic molecule that participates in the mechanism of an enzyme and which is bound at the active site of the enzyme.
Cofactor (Section 24.9): A metal ion or organic molecule whose presence is required in order for an enzyme to function.
Concerted reaction (Section 6.6): A reaction where bond forming and bond breaking occur simultaneously (in concert) through a single transition state.
Condensation polymer (See Step-growth polymer, Section 17.12, and Special Topic C in WileyPLUS): A polymer produced when bifunctional monomers (or potentially bifunctional monomers) react with each other through the intermolecular elimination of water or an alcohol. Polyesters, polyamides, and polyurethanes are all condensation polymers.
Condensation reaction (Section 19.1): A reaction in which molecules become joined through the intermolecular elimination of water or an alcohol.
Condensed structural formula (Section 1.7B): A chemical formula written using letters of the elemental symbols for the atoms involved, listed in sequence for the connections of the central chain of atoms and without showing the bonds between them. In organic compounds, all of the substituent atoms that are bonded to a given carbon atom are written immediately after the symbol for that carbon atom, then the next carbon atom in the chain is written, and so on.

Configuration (Sections 5.7, 5.15, and 6.8): The particular arrangement of atoms (or groups) in space that is characteristic of a given stereoisomer.

Conformation (Section 4.8): A particular temporary orientation of a molecule that results from rotations about its single bonds.
Conformational analysis (Sections 4.8, 4.9, 4.11, and 4.12): An analysis of the energy changes that a molecule undergoes as its groups undergo rotation (sometimes only partial) about the single bonds that join them.
Conformational stereoisomers (Section 4.9A): Stereoisomers differing in space only due to rotations about single (σ) bonds.
Conformations of cyclohexane (Sections 4.11 and 4.13): Rotations about the carbon-carbon single bonds of cyclohexane can produce different conformations which are interconvertible. The most important are the chair conformation, the boat conformation, and the twist conformation.
Conformer (Section 4.8): A particular staggered conformation of a molecule.
Conjugate acid (Section 3.1A): The molecule or ion that forms when a base accepts a proton.
Conjugate addition (Sections 19.1 and 19.7): A form of nucleophilic addition to an α, β-unsaturated carbonyl compound in which the nucleophile adds to the β carbon. Also called Michael addition.
Conjugate base (Sections 3.1A and 3.5C): The molecule or ion that forms when an acid loses its proton.
Conjugated protein (Section 24.12): A protein that contains a nonprotein group (called a prosthetic group) as part of its structure.
Connectivity (Sections 1.6 and 1.7A): The sequence, or order, in which the atoms of a molecule are attached to each other.
Constitutional isomers (Sections 1.6, 4.2, and 5.2A): Compounds that have the same molecular formula but that differ in their connectivity (i.e., molecules that have the same molecular formula but have their atoms connected in different ways).

Coplanar (Section 7.6D): A conformation in which vicinal groups lie in the same plane.
Copolymer (Special Topic B in WileyPLUS): A polymer synthesized by polymerizing two monomers.
COSY (Correlation Spectroscopy) (Section 9.12): A twodimensional NMR method that displays coupling relationships between protons in a molecule.
Coupling (Section 9.2C): In NMR, the splitting of the energy levels of a nucleus under observation by the energy levels of nearby NMRactive nuclei, causing characteristic splitting patterns for the signal of the nucleus being observed. The signal from an NMR-active nucleus will be split into $(2 \mathrm{nI}+1)$ peaks, where $\mathrm{n}=$ the number of equivalent neighboring magnetic nuclei and $\mathrm{I}=$ the spin quantum number. For hydrogen $(I=1 / 2)$ this rule devolves to $(n+1)$, where $\mathrm{n}=$ the number of equivalent neighboring hydrogen nuclei.
Coupling constant, $J_{\text {ab }}$ (Section 9.9C): The separation in frequency units (hertz) of the peaks of a multiplet caused by spin-spin coupl ing between atoms a and b.
Covalent bond (Section 1.3B): The type of bond that results when atoms share electrons.

Cracking (Section 4.1A): A process used in the petroleum industry for breaking down the molecules of larger alkanes into smaller ones. Cracking may be accomplished with heat (thermal cracking), or with a catalyst (catalytic cracking).
Crossed-aldol reaction (Section 19.5): An aldol reaction involving two different aldehyde or ketone reactants. If both aldol reactants have α hydrogens, four products can result. Crossed aldol reactions are synthetically useful when one reactant has no α hydrogens, such that it can serve only as an electrophile that is subject to attack by the enolate from the other reactant.

Crown ether (Section 11.16): Cyclic polyethers that have the ability to form complexes with metal ions. Crown ethers are named as x-crown- y where x is the total number of atoms in the ring and y is the number of oxygen atoms in the ring.
Curved arrows (Sections 1.8, 3.2, and 10.1): Curved arrows show the direction of electron flow in a reaction mechanism. They point from the source of an electron pair to the atom receiving the pair. Double-barbed curved arrows are used to indicate the movement of a pair of electrons; single-barbed curved arrows are used to indicate the movement of a single electron. Curved arrows are never used to show the movement of atoms.
Cyanohydrin (Sections 16.9 and 17.3): A functional group consisting of a carbon atom bonded to a cyano group and to a hydroxyl group, i.e., $\mathrm{RHC}(\mathrm{OH})(\mathrm{CN})$ or $\mathrm{R}_{2} \mathrm{C}(\mathrm{OH})(\mathrm{CN})$, derived by adding HCN to an aldehyde or ketone.
1,4-Cycloaddition (Section 13.10): A ring-forming reaction where new bonds are formed to the first and fourth atoms of a molecular moiety, as at the ends of a 1,3-diene in a Diels-Alder reaction.
Cycloaddition (Section 13.10): A reaction, like the Diels-Alder reaction, in which two connected groups add to the end of a π system to generate a new ring. Also called 1,4-cycloaddition.
Cycloalkanes (Sections 4.1, 4.4, 4.7, 4.10, and 4.11): Alkanes in which some or all of the carbon atoms are arranged in a ring. Saturated cycloalkanes have the general formula $\mathrm{C}_{n} \mathrm{H}_{2 n}$.

D

1,3-Diaxial interaction (Section 4.12): The interaction between two axial groups that are on adjacent carbon atoms.

1,2-Dihydroxylation (Section 8.15): The installation of hydroxyl groups on adjacent carbons, such as by the reaction of OsO_{4} or KMnO_{4} with an alkene.
D and L nomenclature (Section 22.2B): A method for designating the configuration of monosaccarides and other compounds in which the reference compound is $(+)$ - or $(-)$-glyceraldehyde. According to this system, $(+)$-glyceraldehyde is designated $\mathrm{D}-(+)-$ glyceraldehyde and (-)-glyceraldehyde is designated L-(-)glyceraldehyde. Therefore, a monosaccharide whose highest numbered stereogenic center has the same general configuration as $\mathrm{D}-(+)$-glyceraldehyde is designated a D-sugar; one whose highest numbered stereogenic center has the same general configuration as $\mathrm{L}-(+)$-glyceraldehyde is designated an L-sugar.
Dash structural formulas (Sections 1.3B and 1.7A): Structural formulas in which atom symbols are drawn and a line or "dash" represents each pair of electrons (a covalent bond). These formulas show connectivities between atoms but do not represent the true geometries of the species.
Deactivating group (Sections $15.10,15.10 \mathrm{E}, 15.10 \mathrm{~F}$, and 15.11 A): A group that when present on a benzene ring causes the ring to be less reactive in electrophilic substitution than benzene itself.
Debye (Section 2.2): The unit in which dipole moments are stated. One debye, D, equals 1×10^{-18} esu cm .
Decarboxylation (Section 17.10): A reaction whereby a carboxylic acid loses CO_{2}.
Degenerate orbitals (Section 1.10A): Orbitals of equal energy. For example, the three $2 p$ orbitals are degenerate.
Dehydration (Sections 7.7 and 7.8): An elimination that involves the loss of a molecule of water from the substrate.
Dehydrohalogenation (Sections 6.15A and 7.6): An elimination reaction that results in the loss of HX from adjacent carbons of the substrate and the formation of a π bond.

Delocalization effect (Sections 3.10A and 6.11B): The dispersal of electrons (or of electrical charge). Delocalization of charge always stabilizes a system.
Deoxyribonucleic acid (DNA) (Sections 25.1 and 25.4A): One of the two molecules (the other is RNA) that carry genetic information in cells. Two molecular strands held together by hydrogen bonds give DNA a "twisted ladder"-like structure, with four types of heterocyclic bases (adenine, cytosine, thymine, and guanine) making up the "rungs" of the ladder.
DEPT ${ }^{13} \mathrm{C}$ NMR spectra (Section 9.11D): Distortionless enhanced polarization transfer (DEPT) ${ }^{13} \mathrm{C}$ NMR spectra indicate how many hydrogen atoms are bonded to a given carbon atom.
Deshielded (Section 9.7): See Shielding.
Dextrorotatory (Section 5.8B): A compound that rotates planepolarized light clockwise.
Diastereomers (Section 5.2C): Stereoisomers that are not mirror images of each other.
Diastereoselective reaction (see Stereoselective reaction and Sections 5.10B and 12.3D)

Diastereotopic hydrogens (or ligands) (Section 9.8B): If replacement of each of two hydrogens (or ligands) by the same groups yields compounds that are diastereomers, the two hydrogen atoms (or ligands) are said to be diastereotopic.

Diazonium salts (Sections 20.6A, 20.6B, and 20.7): Salts synthesized from the reaction of primary amines with nitrous acid. Diazonium
salts have the structure $[\mathrm{R}-\mathrm{N} \equiv \mathrm{N}]^{+} \mathrm{X}^{-}$. Diazonium salts of primary aliphatic amines are unstable and decompose rapidly; those from primary aromatic amines decompose slowly when cold, and are useful in the synthesis of substituted aromatics and azo compounds.
Dieckmann condensation (Section 19.2A): An intramolecular Claisen condensation of a diester; the enolate from one ester group attacks the carbonyl of another ester function in the same molecule, leading to a cyclic product.
Dielectric constant (Section 6.13C): A measure of a solvent's ability to insulate opposite charges from each other. The dielectric constant of a solvent roughly measures its polarity. Solvents with high dielectric constants are better solvents for ions than are solvents with low dielectric constants.

Diels-Alder reaction (Section 13.10): In general terms, a reaction between a conjugated diene (a 4 - π-electron system) and a compound containing a double bond (a $2-\pi$-electron system), called a dienophile, to form a cyclohexene ring.
Diene (Section 13.10): A molecule containing two double bonds ($d i=\mathrm{two}$, ene $=$ alkene or double bonds). In a Diels-Alder reaction, a conjugated diene in the s-cis conformation reacts with a dienophile.
Dienophile (Section 13.10): The diene-seeking component of a Diels-Alder reaction.
Dihedral angle (Sections 4.8A and 9.9D): See Fig. 4.4. The angle between two atoms (or groups) bonded to adjacent atoms, when viewed as a projection down the bond between the adjacent atoms.
Dihydroxylation (Section 8.15): A process by which a starting material is converted into a product containing adjacent alcohol functionalities (called a "1,2-diol" or "glycol").
Dipeptide (Section 24.4): A peptide comprised of two amino acids.
Dipolar ion (Section 24.2C): The charge-separated form of an amino acid that results from the transfer of a proton from a carboxyl group to a basic group.
Dipole-dipole force (Section 2.13B): An interaction between molecules having permanent dipole moments.
Dipole moment, $\boldsymbol{\mu}$ (Section 2.2): A physical property associated with a polar molecule that can be measured experimentally. It is defined as the product of the charge in electrostatic units (esu) and the distance that separates them in centimeters: $\mu=e \times d$.
Direct alkylation (Section 18.4C): A synthetic process in which the α-hydrogen of an ester is removed by a strong, bulky base such as LDA, creating a resonance-stabilized anion which will act as a nucleophile in an $\mathrm{S}_{\mathrm{N}} 2$ reaction.

Directed aldol reaction (Section 19.5B): A crossed aldol reaction in which the desired enolate anion is generated first and rapidly using a strong base (e.g., LDA) after which the carbonyl reactant to be attacked by the enolate is added. If both a kinetic enolate anion and a thermodynamic enolate anion are possible, this process favors generation of the kinetic enolate anion.
Disaccharide (Sections 22.1A and 22.12): A carbohydrate that, on a molecular basis, undergoes hydrolytic cleavage to yield two molecules of a monosaccharide.
Dispersion force (or London force) (Sections 2.13B and 4.12B): Weak forces that act between nonpolar molecules or between parts of the same molecule. Bringing two groups (or molecules) together first results in an attractive force between them because a temporary unsymmetrical distribution of electrons in one group induces an opposite polarity in the other. When groups are brought closer than
their van der Waals radii, the force between them becomes repulsive because their electron clouds begin to interpenetrate each other.
Distortionless enhanced polarization transfer (DEPT) spectra (Section 9.11D): A technique in ${ }^{13} \mathrm{C}$ NMR spectroscopy by which the number of hydrogens at each carbon, e.g., $\mathrm{C}, \mathrm{CH}, \mathrm{CH}_{2}$, and CH_{3} can be determined.

Disulfide linkage (Section 24.2A): A sulfur-sulfur single bond in a peptide or protein formed by an oxidative reaction between the thiol groups of two cysteine amino acid residues.
Double bonds (Sections 1.4A and 1.13A): Bonds composed of four electrons: two electrons in a sigma (σ) bond and two electrons in a pi (π) bond.
Doublet (Section 9.2C): An NMR signal comprised of two peaks with equal intensity, caused by signal splitting from one neighboring NMR-active nucleus.
Downfield (Section 9.3): Any area or signal in an NMR spectrum that is to the left relative to another. (See Upfield for comparison.) A signal that is downfield of another occurs at higher frequency (and higher δ and ppm values) than the other signal.

E

E1 reaction (Sections 6.15C, 6.17, and 6.18B): A unimolecular elimination in which, in a slow, rate-determining step, a leaving group departs from the substrate to form a carbocation. The carbocation then in a fast step loses a proton with the resulting formation of a π bond.
E2 reaction (Sections 6.15C, 6.16, and 6.18B): A bimolecular 1,2 elimination in which, in a single step, a base removes a proton and a leaving group departs from the substrate, resulting in the formation of a π bond.

Eclipsed conformation (Section 4.8A): A temporary orientation of groups around two atoms joined by a single bond such that the groups directly oppose each other.

Edman degradation (Section 24.5A): A method for determining the N -terminal amino acid in a peptide. The peptide is treated with phenylisothiocyanate $\left(\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{N}=\mathrm{C}=\mathrm{S}\right)$, which reacts with the N-terminal residue to form a derivative that is then cleaved from the peptide with acid and identified. Automated sequencers use the Edman degradation method.
Electromagnetic spectrum (Section 13.8A): The full range of energies propagated by wave fluctuations in an electromagnetic field.
Electron density surface (Section 1.12B): An electron density surface shows points in space that happen to have the same electron density. An electron density surface can be calculated for any chosen value of electron density. A "high" electron density surface (also called a "bond" electron density surface) shows the core of electron density around each atomic nucleus and regions where neighboring atoms share electrons (bonding regions). A "low" electron density surface roughly shows the outline of a molecule's electron cloud. This surface gives information about molecular shape and volume, and usually looks the same as a van der Waals or space-filling model of the molecule. (Contributed by Alan Shusterman, Reed College, and Warren Hehre, Wavefunction, Inc.)

Electronegativity (Sections 1.3A and 2.2): A measure of the ability of an atom to attract electrons it is sharing with another and thereby polarize the bond.
Electron impact (EI) (Sections 9.14 and 9.16A): A method of ion formation in mass spectrometry whereby the sample to be analyzed (analyte) is placed in a high vacuum and, when in the gas phase, bombarded with a beam of high-energy electrons. A valence electron is displaced by the impact of the electron beam, yielding a species called the molecular ion (if there has been no fragmentation), with a +1 charge and an unshared electron (a radical cation).
Electron probability density (Section 1.10): The likelihood of finding an electron in a given volume of space. If the electron probability density is large, then the probability of finding an electron in a given volume of space is high, and the corresponding volume of space defines an orbital.
Electrophile (Sections 3.4A and 8.1A): A Lewis acid, an electronpair acceptor, an electron-seeking reagent.
Electrophilic aromatic substitutions (Sections 15.1, 15.2, and 21.8): A reaction of aromatic compounds in which an electrophile ("electron-seeker" - a positive ion or other electron-deficient species with a full or large partial positive charge) replaces a hydrogen bonded to the carbon of an aromatic ring.
Electrophoresis (Section 25.6A): A technique for separating charged molecules based on their different mobilities in an electric field.
Electrospray ionization (ESI) (Section 9.19): A method of ion formation in mass spectrometry whereby a solution of the sample to be analyzed (analyte) is sprayed into the vacuum chamber of the mass spectrometer from the tip of a high-voltage needle, imparting charge to the mixture. Evaporation of the solvent in the vacuum chamber yields charged species of the analyte; some of which may have charges greater than +1 . A family of m / z peaks unique to the formula weight of the analyte results, from which the formula weight itself can be calculated by computer.
Elimination-addition (via benzyne) (Section 21.11B): A substitution reaction in which a base, under highly forcing conditions, deprotonates an aromatic carbon that is adjacent to a carbon bearing a leaving group. Loss of the leaving group and overlap of the adjacent p orbitals creates a species, called benzyne, with a π-bond in the plane of the ring (separate from the aromatic π-system). Attack by a nucleophile on this π-bond followed by protonation yields a substituted aromatic compound.
Elimination reaction (Sections 3.1, 6.15-6.17, 7.5, 7.7): A reaction that results in the loss of two groups from the substrate and the formation of a π bond. The most common elimination is a 1,2 elimination or β elimination, in which the two groups are lost from adjacent atoms.
Enamines (Sections 16.8 and 18.9): An enamine group consists of an amine function bonded to the $s p^{2}$ carbon of an alkene.
Enantiomeric excess (or enantiomeric purity) (Section 5.9B): A percentage calculated for a mixture of enantiomers by dividing the moles of one enantiomer minus the moles of the other enantiomer by the moles of both enantiomers and multiplying by 100 . The enantiomeric excess equals the percentage optical purity.
Enantiomers (Sections 5.2C, 5.3, 5.7, 5.8, and 5.16): Stereoisomers that are mirror images of each other.

Enantioselective reaction (see Stereoselective reaction and Sections 5.10B and 12.3D)

Enantiotopic hydrogens (or ligands) (Section 9.8B): If replacement of each of two hydrogens (or ligands) by the same group yields compounds that are enantiomers, the two hydrogen atoms (or ligands) are said to be enantiotopic.
Endergonic reaction (Section 6.7): A reaction that proceeds with a positive free-energy change.
Endo group (Section 13.10B): A group on a bicyclic compound that is on the same side (syn) as the longest bridge in the compound.
Endothermic reaction (Section 3.8A): A reaction that absorbs heat. For an endothermic reaction $\mathrm{D} H^{\circ}$ is positive.
Energy (Section 3.8): Energy is the capacity to do work.
Energy of activation, $\boldsymbol{E}_{\text {act }}$ (Section 10.5A): A measure of the difference in potential energy between the reactants and the transition state of a reaction. It is related to, but not the same as, the free energy of activation, ΔG^{\ddagger}.
Enol (Section 18.1): An alkene alcohol, where the hydroxyl group is bonded to an alkene carbon. A generally minor tautomeric equilibrium contributor to the keto form of a carbonyl group that has at least one alpha hydrogen.
Enolate (Sections 18.1, 18.3, and 18.4): The delocalized anion formed when an enol loses its hydroxylic proton or when the carbonyl tautomer that is in equilibrium with the enol loses an α proton.
Enthalpy change (Sections 3.8A, 3.9, and 3.16): Also called the heat of reaction. The standard enthalpy change, ΔH°, is the change in enthalpy after a system in its standard state has undergone a transformation to another system, also in its standard state. For a reaction, ΔH° is a measure of the difference in the total bond energy of the reactants and products. It is one way of expressing the change in potential energy of molecules as they undergo reaction. The enthalpy change is related to the free-energy change, ΔG°, and to the entropy change, ΔS°, through the expression:

$$
\Delta H^{\circ}=\Delta G^{\circ}+T \Delta S^{\circ}
$$

Entropy change (Section 3.9): The standard entropy change, ΔS°, is the change in entropy between two systems in their standard states. Entropy changes have to do with changes in the relative order of a system. The more random a system is, the greater is its entropy. When a system becomes more disorderly its entropy change is positive.
Enzyme (Section 24.9): A protein or polypeptide that is a catalyst for biochemical reactions.
Enzyme-substrate complex (Section 24.9): The species formed when a substrate (reactant) binds at the active site of an enzyme.
Epimers, epimerization (Sections 18.3A and 22.8): Diastereomers that differ in configuration at only a single tetrahedral chirality center. Epimerization is the interconversion of epimers.
Epoxidation (Section 11.13A): The process of synthesizing an expoxide. Peroxycarboxylic acids $\left(\mathrm{RCO}_{3} \mathrm{H}\right)$ are reagents commonly used for epoxidation.
Epoxide (Sections 11.13 and 11.14): An oxirane. A threemembered ring containing one oxygen and two carbon atoms.
Equatorial bond (Section 4.12): The six bonds of a cyclohexane ring that lie generally around the "equator" of the molecule:

Equilibrium constant, $K_{\text {eq }}$ (Section 3.5A): A constant that expresses the position of an equilibrium. The equilibrium constant is calculated by multiplying the molar concentrations of the products together and then dividing this number by the number obtained by multiplying together the molar concentrations of the reactants.

Equilibrium control (see Thermodynamic control)

Essential amino acid (Section 24.2B) An amino acid that cannot be synthesized by the body and must be ingested as part of the diet. For adult humans there are eight essential amino acids $\left(\mathrm{RCH}\left(\mathrm{NH}_{2}\right)\right.$ $\mathrm{CO}_{2} \mathrm{H}$): valine ($\mathrm{R}=$ isopropyl), Leucine ($\mathrm{R}=$ isobutyl), isoleucine ($R=$ sec-butyl), phenylalanine ($R=$ benzyl), threonine ($R=$ 1-hydroxyethyl), methionine ($\mathrm{R}=2$-(methylthio)ethyl), lysine ($R=4$-aminobutyl), and tryptophen ($R=3$-methyleneindole).
Essential oil (Section 23.3): A volatile odoriferous compound obtained by steam distillation of plant material.
Esterification (Section 17.7A): The synthesis of an ester, usually involving reactions of carboxylic acids, acid chlorides or acid anhydrides with alcohols.

Exchangeable protons (Section 9.10): Protons that can be transferred rapidly from one molecule to another. These protons are often attached to electronegative elements such as oxygen or nitrogen.
Exergonic reaction (Section 6.7): A reaction that proceeds with a negative free-energy change.
Exo group (Section 13.10B): A group on a bicyclic compound that is on the opposite side (anti) to the longest bridge in the compound.
Exon (Section 25.5A): Short for "expressed sequence," an exon is a segment of DNA that is used when a protein is expressed. (See Intron).

Exothermic reaction (Section 3.8A): A reaction that evolves heat. For an exothermic reaction, ΔH° is negative.
(\boldsymbol{E})-(Z) system (Section 7.2): A system for designating the stereochemistry of alkene diastereomers based on the priorities of groups in the Cahn-Ingold-Prelog convention. An E isomer has the highest priority groups on opposites sides of the double bond, a Z isomer has the highest priority groups on the same side of the double bond.

F

Fat (Section 23.2): A triacylglycerol. The triester of glycerol with carboxylic acids.
Fatty acid (Section 23.2): A long-chained carboxylic acid (usually with an even number of carbon atoms) that is isolated by the hydrolysis of a fat.
Fischer projection (Sections 5.13 and 22.2C): A two-dimensional formula for representing the configuration of a chiral molecule. By convention, Fischer projection formulas are written with the main carbon chain extending from top to bottom with all groups eclipsed. Vertical lines represent bonds that project behind the plane of the page (or that lie in it). Horizontal lines represent bonds that project out of the plane of the page.

Formal charge (Section 1.5): The difference between the number of electrons assigned to an atom in a molecule and the number of electrons it has in its outer shell in its elemental state. Formal charge can be calculated using the formula: $F=Z-S / 2-U$, where F is the formal charge, Z is the group number of the atom (i.e., the number of electrons the atom has in its outer shell in its elemental state), S is the number of electrons the atom is sharing with other atoms, and U is the number of unshared electrons the atom possesses.
Fourier transform NMR (Section 9.5): An NMR method in which a pulse of energy in the radiofrequency region of the electromagnetic spectrum is applied to nuclei whose nuclear magnetic moment is precessing about the axis of a magnetic field. This pulse of energy causes the nuclear magnetic moment to "tip" toward the xy plane. The component of the nuclear magnetic moment in the $x-y$ plane generates ("induces") a radiofrequency signal, which is detected by the instrument. As nuclei relax to their ground states this signal decays over time; this time-dependent signal is called a "Free Induction Decay" (FID) curve. A mathematical operation (a Fourier transform) converts time-dependent data into frequencydependent data-the NMR signal.
Fragmentation (Section 9.16): Cleavage of a chemical species by the breaking of covalent bonds, as in the formation of fragments during mass spectrometric analysis.
Free energy of activation, $\Delta \boldsymbol{G}^{\ddagger}$ (Section 6.7): The difference in free energy between the transition state and the reactants.
Free-energy change (Section 3.9): The standard free-energy change, ΔG°, is the change in free energy between two systems in their standard states. At constant temperature, $\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}=$ $-R T \ln K_{\text {eq }}$, where ΔH° is the standard enthalpy change, δS° is the standard entropy change, and K_{eq} is the equilibrium constant. A negative value of ΔG° for a reaction means that the formation of products is favored when the reaction reaches equilibrium.
Free-energy diagram (Section 6.7): A plot of free-energy changes that take place during a reaction versus the reaction coordinate. It displays free-energy changes as a function of changes in bond orders and distances as reactants proceed through the transition state to become products.
Freon (Section 10.12D): A chlorofluorocarbon or CFC.
Frequency, \boldsymbol{v} (Sections 2.15 and 13.8A): The number of full cycles of a wave that pass a given point in each second.
Friedel-Crafts acylation (Sections 15.6 and 15.7): Installation of an acyl group on a benzene ring by electrophilic aromatic substitution using an acylium ion as the electrophile (generated in situ using a Lewis acid).
Friedel-Crafts alkylation (Section 15.6): Installation of an alkyl group on a benzene ring by electrophilic aromatic substitution using an alkyl carbocation as the electrophile (generated in situ using a Lewis acid).
Fullerenes (Section 14.8C): Cagelike aromatic molecules with the geometry of a truncated icosahedron (or geodesic dome). The structures are composed of a network of pentagons and hexagons. Each carbon is $s p^{2}$ hybridized; the remaining electron at each carbon is delocalized into a system of molecular orbitals that gives the whole molecule aromatic character.
Functional class nomenclature (Section 4.3E): A system for naming compounds that uses two or more words to describe the compound. The final word corresponds to the functional group present; the preceding words, usually listed in alphabetical order,
describe the remainder of the molecule. Examples are methyl alcohol, ethyl methyl ether, and ethyl bromide.
Functional group (Sections 2.2 and 2.4): The particular group of atoms in a molecule that primarily determines how the molecule reacts.
Functional group interconversion (Section 6.14): A process that converts one functional group into another.
Furanose (Section 22.2C): A sugar in which the cyclic acetal or hemiacetal ring is five membered.

G

Gauche conformation (Section 4.9): A gauche conformation of butane, for example, has the methyl groups at an angle of 60° to each other:

GC/MS analysis (Section 9.18): An analytical method that couples a gas chromatograph (GC) with a mass spectrometer (MS). The GC separates the components of a mixture to be analyzed by sweeping the compounds, in the gas phase, through a column containing an adsorbant called a stationary phase. The gaseous molecules will cling to the surface of the stationary phase (be adsorbed) with different strengths. Those molecules that cling (adsorb) weakly will pass through the column quickly; those that adsorb more strongly will pass through the column more slowly. The separated components of the mixture are then introduced into the mass spectrometer, where they are analyzed.
gem-Dihalide (Section 7.10A): A general term for a molecule or group containing two halogen atoms bonded to the same carbon.
Geminal (gem-) substituents (Section 7.10A): Substituents that are on the same atom.
Gene (Section 25.1): A section of DNA that codes for a given protein.
Genetic code (Sections 25.5C and 25.5D): The correspondence of specific three-base sequences in mRNA (codons) that each code for a specific amino acid. Each codon pairs with the anticodon of a specific tRNA, which in turn carries the corresponding amino acid.

Genome (Sections 25.1 and 25.9): The set of all genetic information coded by DNA in an organism.
Genomics (Section 24.14): The study of the complete set of genetic instructions in an organism.
Glycan (See Polysaccharide and Section 22.13): An alternate term for a polysaccharide; monosaccharies joined together by glycosidic linkages.
Glycol (Sections 4.3F and 8.15): A diol.
Glycolipids (Section 22.16): Carbohydrates joined through glycosidic linkages to lipids.

Glycoproteins (Section 22.16): Carbohydrates joined through glycosidic linkages to proteins.

Glycoside (Section 22.4): A cyclic mixed acetal of a sugar with an alcohol.
Grignard reagent (Section 12.6B): An organomagnesium halide, usually written RMgX.
Ground state (Section 1.12): The lowest electronic energy state of an atom or molecule.

H

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ correlation spectroscopy (COSY) (Section 9.12): A twodimensional NMR method used to display the coupling between hydrogen atoms.
Haloform reaction (Section 18.3C): A reaction specific to methyl ketones. In the presence of base multiple halogenations occur at the carbon of the methyl group; excess base leads to acyl substitution of the trihalomethyl group, resulting in a carboxylate anion and a haloform $\left(\mathrm{CHX}_{3}\right)$.
Halogenation (Sections 10.3-10.5 and 10.8A): A reaction in which one or more halogen atoms are introduced into a molecule.
Halohydrin (Section 8.13): A compound bearing a halogen atom and a hydroxyl group on adjacent (vicinal) carbons.
Halonium ion (Section 8.11A): An ion containing a positive halogen atom bonded to two carbon atoms.
Hammond-Leffler postulate (Section 6.13A): A postulate stating that the structure and geometry of the transition state of a given step will show a greater resemblance to the reactants or products of that step depending on which is closer to the transition state in energy. This means that the transition state of an endothermic step will resemble the products of that step more than the reactants, whereas the transition state of an exothermic step will resemble the reactants of that step more than the products.
Heat of hydrogenation (Section 7.3A): The standard enthalpy change that accompanies the hydrogenation of 1 mol of a compound to form a particular product.
Heisenberg uncertainty principle (Section 1.11): A fundamental principle that states that both the position and momentum of an electron (or of any object) cannot be exactly measured simultaneously.

Hemiacetal (Sections 16.7A and 22.2C): A functional group, consisting of an $s p^{3}$ carbon atom bearing both an alkoxyl group and a hydroxyl group [i.e., $\mathrm{RCH}(\mathrm{OH})\left(\mathrm{OR}^{\prime}\right)$ or $\mathrm{R}_{2} \mathrm{C}(\mathrm{OH})\left(\mathrm{OR}^{\prime}\right)$].
Hemiketal (See Hemiacetal and Section 16.7A)
Henderson-Hasselbalch equation (Sect. 24.2C): The HendersonHasselbalch equation $\left(\mathrm{p} K_{\mathrm{a}}=\mathrm{pH}+\log [\mathrm{HA}] /[\mathrm{A}-]\right)$ shows that when the concentration of an acid and its conjugate base are equal, the pH of the solution equals the $\mathrm{p} K_{\mathrm{a}}$ of the acid.

Hertz (Hz) (Sections 9.6A, 9.9C, and 13.8A): The frequency of a wave. Now used instead of the equivalent cycles per second (cps).

Heteroatom (Section 2.1): Atoms such as oxygen, nitrogen, sulfur and the halogens that form bonds to carbon and have unshared pairs of electrons.

Heterocyclic amines (Section 20.1B): A secondary or tertiary amine in which the nitrogen group is part of a carbon-based ring.
Heterocyclic compound (Sections 14.9): A compound whose molecules have a ring containing an element other than carbon.
Heterogeneous catalysis (Sections 7.12 and 7.14A): Catalytic reactions in which the catalyst is insoluble in the reaction mixture.

Heterolysis (Section 3.4): The cleavage of a covalent bond so that one fragment departs with both of the electrons of the covalent bond that joined them. Heterolysis of a bond normally produces positive and negative ions.
Heteronuclear correlation spectroscopy (HETCOR or C-H HETCOR) (Section 9.12): A two-dimensional NMR method used to display the coupling between hydrogens and the carbons to which they are attached.
Heterotopic (chemically nonequivalent atoms) (Section 9.8A): Atoms in a molecule where replacement of one or the other leads to a new compound. Heterotopic atoms are not chemical shift equivalent in NMR spectroscopy.

Hofmann rule (Sections 7.6C and 20.12A): When an elimination yields the alkene with the less substituted double bond, it is said to follow the Hofmann rule.

HOMO (Sections 3.3A, 6.6, and 13.8C): The highest occupied molecular orbital.

Homogeneous catalysis (Section 7.12): Catalytic reactions in which the catalyst is soluble in the reaction mixture.
Homologous series (Section 4.7): A series of compounds in which each member differs from the next member by a constant unit.
Homolysis (Section 10.1): The cleavage of a covalent bond so that each fragment departs with one of the electrons of the covalent bond that joined them.
Homolytic bond dissociation energy, $\boldsymbol{D H}^{\circ}$ (Section 10.2): The enthalpy change that accompanies the homolytic cleavage of a covalent bond.

Homotopic (chemically equivalent) atoms (Section 9.8A): Atoms in a molecule where replacement of one or another results in the same compound. Homotopic atoms are chemical shift equivalent in NMR spectroscopy.
Hückel's rule (Section 14.7): A rule stating that planar monocyclic rings with $(4 n+2)$ delocalized π electrons (i.e., with $2,6,10$, $14, \ldots$, delocalized π electrons) will be aromatic.
Hund's rule (Section 1.10A): A rule used in applying the aufbau principle. When orbitals are of equal energy (i.e., when they are degenerate), electrons are added to each orbital with their spins unpaired, until each degenerate orbital contains one electron. Then electrons are added to the orbitals so that the spins are paired.
Hybrid atomic orbitals (Sections 1.12 and 1.15): An orbital that results from the mathematical combination of pure atomic orbitals, such as the combination of pure s and p orbitals in varying proportions to form hybrids such as $s p^{3}, s p^{2}$, and $s p$ orbitals.
Hydration (Sections 8.4-8.9 and 11.4): The addition of water to a molecule, such as the addition of water to an alkene to form an alcohol.
Hydrazone (Section 16.8B): An imine in which an amino group $\left(-\mathrm{NH}_{2},-\mathrm{NHR},-\mathrm{NR}_{2}\right)$ is bonded to the nitrogen atom.
Hydride (Section 7.8A): A hydrogen anion, $\mathrm{H}^{-}{ }^{-}$Hydrogen with a filled $1 s$ shell (containing two electrons) and negative charge.
Hydride ion (Section 12.1A): The anionic form of hydrogen; a proton with two electrons.
Hydroboration (Sections 8.6, 8.7, and 11.4): The addition of a boron hydride (either BH_{3} or an alkylborane) to a multiple bond.
Hydrocarbon (Section 2.2): A molecular containing only carbon and hydrogen atoms.

Hydrogen abstraction (Section 10.1B): The process by which a species with an unshared electron (a radical) removes a hydrogen atom from another species, breaking the bond to the hydrogen homolytically.
Hydrogenation (Sections 4.16, 7.3A, and 7.13-7.15): A reaction in which hydrogen adds to a double or triple bond. Hydrogenation is often accomplished through the use of a metal catalyst such as platinum, palladium, rhodium, or ruthenium.
Hydrogen bond (Sections 2.13B, 2.13E, 2.13F, and 2.14): A strong dipole-dipole interaction ($4-38 \mathrm{~kJ} \mathrm{~mol}^{-1}$) that occurs between hydrogen atoms bonded to small strongly electronegative atoms (O, N, or F) and the nonbonding electron pairs on other such electronegative atoms.

Hydrophilic group (Sections 2.13D and 23.2C): A polar group that seeks an aqueous environment.
Hydrophobic group (See also Lipophilic group) (Sections 2.13D and 23.2C): A nonpolar group that avoids an aqueous surrounding and seeks a nonpolar environment.
Hyperconjugation (Sections 4.8B and 6.11B): Electron delocalization (via orbital overlap) from a filled bonding orbital to an adjacent unfilled orbital. Hyperconjugation generally has a stabilizing effect.

I

Imines (Section 16.8): A structure with a carbon-nitrogen double bond. If the groups bonded to carbon are not the same, (E) and (Z) isomers are possible.
Index of hydrogen deficiency (Section 4.17): The index of hydrogen deficiency (or IHD) equals the number of pairs of hydrogen atoms that must be subtracted from the molecular formula of the corresponding alkane to give the molecular formula of the compound under consideration.
Induced fit hypothesis (Section 24.9): An hypothesis regarding enzyme reactivity whereby formation of the enzyme-substrate complex causes conformational changes in the enzyme that facilitate conversion of the substrate to product.

Inductive effect (Sections 3.7B, 3.10B, and 15.11B): An intrinsic electron-attracting or -releasing effect that results from a nearby dipole in the molecule and that is transmitted through space and through the bonds of a molecule.
Infrared (IR) spectroscopy (Section 2.15): A type of optical spectroscopy that measures the absorption of infrared radiation. Infrared spectroscopy provides structural information about functional groups present in the compound being analyzed.
Inhibitor (Section 24.9): A compound that can negatively alter the activity of an enzyme.
Integration (Section 9.2B): A numerical value representing the relative area under a signal in an NMR spectrum. In ${ }^{1} \mathrm{H}$ NMR, the integration value is proportional to the number of hydrogens producing a given signal.
Intermediate (Sections 3 intro, 6.10, and 6.11): A transient species that exists between reactants and products in a state corresponding to a local energy minimum on a potential energy diagram.

Intermolecular forces (Sections 2.13B and 2.13F): Also known as van der Waals forces. Forces that act between molecules because of permanent (or temporary) electron distributions. Intermolecular forces can be attractive or repulsive. Dipole-dipole forces (including hydrogen bonds) and dispersion forces (also called London forces), are intermolecular forces of the van der Waal type.

Intron (Section 25.5A): Short for "intervening sequence," an intron is a segments of DNA that is not actually used when a protein is expressed, even though it is transcripted into the initial mRNA.
Inversion of configuration (Sections 6.6 and 6.14): At a tetrahedral atom, the process whereby one group is replaced by another bonded 180° opposite to the original group. The other groups at the tetrahedral atom "turn inside out" (shift) in the same way that an umbrella "turns inside out." When a chirality center undergoes configuration inversion, its (R, S) designation may switch, depending on the relative Cahn-Ingold-Prelog priorities of the groups before and after the reaction.
Ion (Sections 1.3A and 3.1A): A chemical species that bears an electrical charge.
Ion-dipole force (Section 2.13D): The interaction of an ion with a permanent dipole. Such interactions (resulting in solvation) occur between ions and the molecules of polar solvents.
Ionic bond (Section 1.3A): A bond formed by the transfer of electrons from one atom to another resulting in the creation of oppositely charged ions.
Ionic reaction (Sections 3.1B and 10.1): A reaction involving ions as reactants, intermediates, or products. Ionic reactions occur through the heterolysis of covalent bonds.
Ion-ion forces (Section 2.13A): Strong electrostatic forces of attraction between ions of opposite charges. These forces hold ions together in a crystal lattice.
Ionization (Section 9.14): Conversion of neutral molecules to ions (charged species).
Isoelectric point ($\mathrm{p} \boldsymbol{I}$) (Section 24.2C): The pH at which the number of positive and negative charges on an amino acid or protein are equal.
Isomers (Sections 1.6 and 5.2A): Different molecules that have the same molecular formula.
Isoprene unit (Section 23.3): A name for the structural unit found in all terpenes:

Isotactic polymer (Special Topic B. 1 in WileyPLUS): A polymer in which the configuration at each stereogenic center along the chain is the same.
Isotopes (Section 1.2A): Atoms that have the same number of protons in their nuclei but have differing atomic masses because their nuclei have different numbers of neutrons.
IUPAC system (Section 4.3): (also called the "systematic nomenclature") A set of nomenclature rules overseen by the International Union of Pure and Applied Chemistry (IUPAC) that allows every compound to be assigned an unambiguous name.

K

Karplus correlation (Section 9.9D): An empirical correlation between the magnitude of an NMR coupling constant and the dihedral angle between two coupled protons. The dihedral angles derived in this manner can provide information about molecular geometries.
Kekulé structure (Sections 2.1D and 14.4): A structure in which lines are used to represent bonds. The Kekulé structure for benzene is a hexagon of carbon atoms with alternating single and double
bonds around the ring, and with one hydrogen atom attached to each carbon.

Ketal (See Acetal and Section 16.7B)

Keto and enol forms (Sections 18.1-18.3): Tautomeric forms of a compound related by a common resonance-stabilized intermediate. An enol structure consists of an alcohol functionality bonded to the $s p^{2}$ carbon of an alkene. Shifting the hydroxyl proton to the alkene and creation of a carbon-oxygen π-bond results in the keto form of the species.
Ketose (Section 22.2A): A monosaccharide containing a ketone group or a hemiacetal or acetal derived from it.
Kinetic control (Sections 7.6B, 13.9A, and 18.4A): A principle stating that when the ratio of products of a reaction is determined by relative rates of reaction, the most abundant product will be the one that is formed fastest. Also called rate control.
Kinetic energy (Section 3.8): Energy that results from the motion of an object. Kinetic energy $(K E)=1 / 2 m v^{2}$, where m is the mass of the object and v is its velocity.
Kinetic enolate (Section 18.4A): In a situation in which more than one enolate anion can be formed, the kinetic enolate anion is that which is formed most rapidly. This is usually the enolate anion with the less substituted double bond; the decrease in steric hindrance permits more rapid deprotonation by the base. A kinetic enolate anion is formed predominantly under conditions that do not permit the establishment of an equilibrium.
Kinetic product (Section 13.9): The product formed fastest when multiple products are possible; the product formed via the lowest energy of activation pathway.
Kinetic resolution (Section 5.10B): A process in which the rate of a reaction with one enantiomer is different than with the other, leading to a preponderance of one product stereoisomer. This process is said to be "stereoselective" in that it leads to the preferential formation of one stereoisomer over other stereoisomers that could possibly be formed.

Kinetics (Section 6.5): A term that refers to rates of reactions.

L

Lactam (Section 17.8I): A cyclic amide.
Lactone (Section 17.7C): A cyclic ester.
LCAO (linear combination of atomic orbitals, Section 1.11): A mathematical method for arriving at wave functions for molecular obitals that involves adding or subtracting wave functions for atomic orbitals.
Leaving group (Sections 6.2, 6.4, and 6.13E): The substituent that departs from the substrate in a nucleophilic substitution reaction.
Leveling effect of a solvent (Section 3.14): An effect that restricts the use of certain solvents with strong acids and bases. In principle, no acid stronger than the conjugate acid of a particular solvent can exist to an appreciable extent in that solvent, and no base stronger than the conjugate base of the solvent can exist to an appreciable extent in that solvent.
Levorotatory (Section 5.8B): A compound that rotates planepolarized light in a counterclockwise direction.
Lewis acid-base theory (Section 3.3): An acid is an electron pair acceptor, and a base is an electron pair donor.
Lewis structure (or electron-dot structure) (Sections 1.3B, 1.4, and 1.5): A representation of a molecule showing electron pairs as a pair of dots or as a dash.

Lipid (Section 23.1): A substance of biological origin that is soluble in nonpolar solvents. Lipids include fatty acids, triacylglycerols (fats and oils), steroids, prostaglandins, terpenes and terpenoids, and waxes.

Lipid bilayers (Section 23.6A): A two-layer noncovalent molecular assembly comprised primarily of phospholipids. The hydrophobic phospholipid "tail" groups of each layer orient toward each other in the center of the two-layered structure due to attractive dispersion forces. The hydrophilic "head" groups of the lipids orient toward the aqueous exterior of the bilayer. Lipid bilayers are important in biological systems such as cell membranes.
Lipophilic group (See also Hydrophobic group) (Sections 2.13D and 23.2 C): A nonpolar group that avoids an aqueous surrounding and seeks a nonpolar environment.
Lithium diisopropylamide (LDA) (Section 18.4): $\left(i-\mathrm{C}_{3} \mathrm{H}_{7}\right)_{2} \mathrm{~N}^{-} \mathrm{Li}^{+}$ The lithium salt of diisopropylamine. A strong base used to form lithium enolates from carbonyl compounds.
Lock-and-key hypothesis (Section 24.9): An hypothesis that explains enzyme specificity on the basis of complementary geometry between the enzyme (the "lock") and the substrate (the "key"), such that their shapes "fit together" correctly for a reaction to occur.
LUMO (Sections 3.3A and 13.8C): The lowest unoccupied molecular orbital.

M

Macromolecule (Section 10.11): A very large molecule.
Magnetic resonance imaging (MRI) (Section 9.12B): A technique based on NMR spectroscopy that is used in medicine.
Malonic ester synthesis (Section 18.7): A reaction in which the α-hydrogen of diethyl propanedioate (diethyl malonate, also called "malonic ester") is removed, creating a resonance-stabilized anion which can serve as a nucleophile in an $\mathrm{S}_{\mathrm{N}} 2$ reaction. The α-carbon can be substituted twice; the ester functionalities can be converted into a carboxylic acid which, after decarboxylation, will yield a substituted ketone.
Mannich reaction (Section 19.8): The reaction of an enol with an iminium cation (formed from the reaction of a primary or secondary amine with formaldehyde) to yield a β-aminoalkyl carbonyl compound.
Markovnikov's rule (Sections 8.2B and 8.18): A rule for predicting the regiochemistry of electrophilic additions to alkenes and alkynes that can be stated in various ways. As originally stated (in 1870) by Vladimir Markovnikov, the rule provides that "if an unsymmetrical alkene combines with a hydrogen halide, the halide ion adds to the carbon with the fewer hydrogen atoms." More commonly the rule has been stated in reverse: that in the addition of HX to an alkene or alkyne the hydrogen atom adds to the carbon atom that already has the greater number of hydrogen atoms. A modern expression of Markovnikov's rule is: In the ionic addition of an unsymmetrical reagent to a multiple bond, the positive portion of the reagent (the electrophile) attaches itself to a carbon atom of the reagent in the way that leads to the formation of the more stable intermediate carbocation.
Mass spectrometry (MS) (Section 9.13): A technique, useful in structure elucidation, that involves the generation of ions from a molecule, the sorting and detecting of the ions, and the display of the result in terms of the mass/charge ratio and relative amount of each ion.

Matrix-assisted laser desorption-ionization (MALDI) (Section 9.19): A method in mass spectrometry for ionizing analytes
that do not ionize well by electrospray ionization. The analyte is mixed with low molecular weight organic molecules that can absorb energy from a laser and then transfer this energy to the analyte, producing +1 ions which are then analyzed by the mass spectrometer.

Mechanism (See Reaction mechanism)

Melting Point (Section 2.13A): The temperature at which an equilibrium exists between a well-ordered crystalline substance and the more random liquid state. It reflects the energy needed to overcome the attractive forces between the units (ions, molecules) that comprise the crystal lattice.
Meso compound (Section 5.12B): An optically inactive compound whose molecules are achiral even though they contain tetrahedral atoms with four different attached groups.
Mesylate (Section 11.10): A methanesulfonate ester. Methanesulfonate esters are compounds that contain the $\mathrm{CH}_{3} \mathrm{SO}_{3}$ - group, i.e., $\mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{R}$.

Meta directors (Section 15.10B): An electron-withdrawing group on an aromatic ring. The major product of electrophilic aromatic substitution on a ring bearing a meta-directing group will have the newly substituted electrophile located meta to the substituent.
Methanide (Section 7.8A): A methyl anion, -: CH 3 , or methyl species that reacts as though it were a methyl anion.
Methylene (Section 8.14A): The carbene with the formula : CH_{2}.
Methylene group (Section 2.4B): The $-\mathrm{CH}_{2}-$ group.
Micelle (Section 23.2C): A spherical cluster of ions in aqueous solution (such as those from a soap) in which the nonpolar groups are in the interior and the ionic (or polar) groups are at the surface.
Michael addition (See Conjugate addition and Sections 18.9 and 19.7): A reaction between an active hydrogen compound and an α, β-unsaturated carbonyl compound. The attack by the anion of the active hydrogen compound takes place at the β-carbon of the α, β-unsaturated carbonyl compound. A Michael addition is a type of conjugate addition.
Molar absorptivity, ε (Section 13.8B): A proportionality constant that relates the observed absorbance (A) at a particular wavelength (λ) to the molar concentration of the sample (C) and the length (l) (in centimeters) of the path of the light beam through the sample cell:

$$
\varepsilon=A / C \times l
$$

Molecular formula (Section 1.6): A formula that gives the total number of each kind of atom in a molecule. The molecular formula is a whole number multiple of the empirical formula. For example the molecular formula for benzene is $\mathrm{C}_{6} \mathrm{H}_{6}$; the empirical formula is CH .
Molecular ion (Sections 9.14, 9.15, and 9.17): The cation produced in a mass spectrometer when one electron is dislodged from the parent molecule, symbolized M^{+}.
Molecularity (Section 6.5B): The number of species involved in a single step of a reaction (usually the rate-determining step).
Molecular orbital (MO) (Sections 1.11 and 1.15): Orbitals that encompass more than one atom of a molecule. When atomic orbitals combine to form molecular orbitals, the number of molecular orbitals that results always equals the number of atomic orbitals that combine.
Molecule (Section 1.3B): An electrically neutral chemical entity that consists of two or more bonded atoms.

Monomer (Section 10.11): The simple starting compound from which a polymer is made. For example, the polymer polyethylene is made from the monomer ethylene.

Monosaccharide (Sections 22.1A and 22.2): The simplest type of carbohydrate, one that does not undergo hydrolytic cleavage to a simpler carbohydrate.

Mutarotation (Section 22.3): The spontaneous change that takes place in the optical rotation of α and β anomers of a sugar when they are dissolved in water. The optical rotations of the sugars change until they reach the same value.

N

Nanotube (Section 14.8C): A tubular structure with walls resembling fused benzene rings, capped by half of a "buckyball" (buckminsterfullerene) at each end. The entire structure exhibits aromatic character.

Newman projection formula (Section 4.8A): A means of representing the spatial relationships of groups attached to two atoms of a molecule. In writing a Newman projection formula we imagine ourselves viewing the molecule from one end directly along the bond axis joining the two atoms. Bonds that are attached to the front atom are shown as radiating from the center of a circle; those attached to the rear atom are shown as radiating from the edge of the circle:

N -nitrosoamines (Section 20.6C): Amines bearing an $\mathrm{N}=\mathrm{O}$ on the nitrogen, such as $\mathrm{R}-\mathrm{NH}-\mathrm{N}=\mathrm{O}$ or $\mathrm{Ar}-\mathrm{NH}-\mathrm{N}=\mathrm{O}$. Often referred to as "nitrosamines" in the popular press. Nnitrosoamines are very powerful carcinogens.
Node (Section 1.15): A place where a wave function (ψ) is equal to zero. The greater the number of nodes in an orbital, the greater is the energy of the orbital.
Nonbenzenoid aromatic compound (Section 14.8B): An aromatic compound, such as azulene, that does not contain benzene rings.
Nuclear magnetic resonance (NMR) spectroscopy (Sections 9.2 and 9.11 A): A spectroscopic method for measuring the absorption of radio frequency radiation by certain nuclei when the nuclei are in a strong magnetic field. The most important NMR spectra for organic chemists are ${ }^{1} \mathrm{H}$ NMR spectra and ${ }^{13} \mathrm{C}$ NMR spectra. These two types of spectra provide structural information about the carbon framework of the molecule, and about the number and environment of hydrogen atoms attached to each carbon atom.
Nucleic acids (Sections 25.1 and 25.4A): Biological polymers of nucleotides. DNA and RNA are, respectively, nucleic acids that preserve and transcribe hereditary information within cells.
Nucleophile (Sections 3.4A, 6.2, 6.3, and 6.13B): A Lewis base, an electron pair donor that seeks a positive center in a molecule.
Nucleophilic addition-elimination (Section 17.4): Addition of a nucleophile to a carbonyl (or other trigonal) carbon, yielding a tetrahedral intermediate, followed by elimination of a leaving group to yield a trigonal planar product.

Nucleophilic addition to the carbonyl carbon (Sections 12.1A and 16.6): A reaction in which a nucleophile (an electron-pair
donor) forms a bond to the carbon of a carbonyl $(\mathrm{C}=\mathrm{O})$ group. To avoid violating the octet rule, the electrons of the carbonoxygen π-bond shift to the oxygen, resulting in a four-coordinate (tetrahedral) carbon.
Nucleophilic aromatic substitution (Section 21.11A): A substitution reaction in which a nucleophile attacks an aromatic ring bearing strongly electron-withdrawing groups in ortho and/or para positions relative to the site of attack and the leaving group. This step is an addition reaction that yields and aryl carbanion (called a Meisenheimer Complex) which is stabilized by the electron-withdrawing groups on the ring. Loss of the leaving group in an elimination step regenerates the aromatic system, yielding a substituted aromatic compound by what was, overall, an addition-elimination process.
Nucleophilicity (Section 6.13B): The relative reactivity of a nucleophile in an $\mathrm{S}_{\mathrm{N}} 2$ reaction as measured by relative rates of reaction.
Nucleophilic substitution reaction (Section 6.2): A reaction initiated by a nucleophile (a neutral or negative species with an unshared electron pair) in which the nucleophile reacts with a substrate to replace a substituent (called the leaving group) that departs with an unshared electron pair.
Nucleoside (Sections 22.15A, 25.2, and 25.3): A five-carbon monosaccharide bonded at the 1^{\prime} position to a purine or pyrimidine.
Nucleotide (Sections 25.2 and 25.3): A five-carbon monosaccharide bonded at the 1^{\prime} position to a purine or pyrimidine and at the 3^{\prime} or 5^{\prime} position to a phosphate group.

0

Octet rule (Sections 1.3 and 1.4A): An empirical rule stating that atoms not having the electronic configuration of a noble gas tend to react by either transferring electrons or sharing electrons so as to achieve the valence electron configuration (i. e., eight electrons) of a noble gas.
Oil (Section 23.2): A triacylglycerol (see below) that is liquid at room temperature.
Olefin (Section 7.1): An old name for an alkene.
Oligonucleotide synthesis (Section 25.7): Synthesis of specific sequence of nucleotides, often by automated solid-phase techniques, in which the nucleotide chain is built up by adding a protected nucleotide in the form of a phosphoramidite to a protected nucleotide linked to a solid phase, (usually a "controlled pore glass") in the presence of a coupling agent. The phosphite triester product is oxidized to a phosphate triester with iodine, producing a chain that has been lengthened by one nucleotide. The protecting group is then removed, and the steps (coupling, oxidation, deprotection) are repeated. After the desired oligonucleotide has been synthesized it is cleaved from the solid support and the remaining protecting groups removed.
Oligopeptide (Section 24.4): A peptide comprised of 3-10 amino acids.
Oligosaccharides (Section 22.1A): A carbohydrate that hydrolyzes to yield 2-10 monosaccharide molecules.

Optically active compound (Sections 5.8 and 5.9): A compound that rotates the plane of polarization of plane-polarized light.
Optical purity (Section 5.9B): A percentage calculated for a mixture of enantiomers by dividing the observed specific rotation for
the mixture by the specific rotation of the pure enantiomer and multiplying by 100 . The optical purity equals the enantiomeric purity or enantiomeric excess.
Orbital (Section 1.10): A volume of space in which there is a high probability of finding an electron. Orbitals are described mathematically by the squaring of wave functions, and each orbital has a characteristic energy. An orbital can hold two electrons when their spins are paired.
Orbital hybridization (Section 1.12): A mathematical (and theoretical) mixing of two or more atomic orbitals to give the same number of new orbitals, called hybrid orbitals, each of which has some of the character of the original atomic orbitals.
Organometallic compound (Section 12.5): A compound that contains a carbon-metal bond.
Orthogonal protecting groups (Section 24.7D): Protecting groups in which one set of protecting groups is stable under conditions for removal of the other, and vice versa.
Ortho-para directors (Section 15.10B): An electron-donating group on an aromatic ring. The major product of electrophilic aromatic substitution on a ring bearing such a group will have the newly substituted electrophile located ortho and/or para to the ortho-para-directing group.
Osazone (Section 22.8): A 1,2-bisarylhydrazone formed by reaction of an aldose or ketose with three molar equivalents of an arylhydrazone. Most common are phenylosazones, formed by reaction with phenylhydrazine, and 2,4-dinitrophenylhydrazones.
Oxidation (Sections 12.2 and 12.4): A reaction that increases the oxidation state of atoms in a molecule or ion. For an organic substrate, oxidation usually involves increasing its oxygen content or decreasing its hydrogen content. Oxidation also accompanies any reaction in which a less electronegative substituent is replaced by a more electronegative one.
Oxidative cleavage (Sections 8.16 and 8.19): A reaction in which the carbon-carbon double bond of an alkene or alkyne is both cleaved and oxidized, yielding compounds with carbon-oxygen double bonds.

Oxidizing agent (Section 12.2): A chemical species that causes another chemical species to become oxidized (lose electrons, or gain bonds to more electronegative elements, often losing bonds to hydrogen in the process). The oxidizing agent is reduced in this process.
Oxime (Section 16.8B): An imine in which a hydroxyl group is bonded to the nitrogen atom.
Oxirane (See Epoxide and Section 11.13)
Oxonium ion (Sections 3.12 and 11.12): A chemical species with an oxygen atom that bears a formal positive charge.
Oxonium salt (Section 11.12): A salt in which the cation is a species containing a positively charged oxygen.
Oxymercuration (Sections 8.5 and 11.4): The addition of -OH and $-\mathrm{HgO}_{2} \mathrm{CR}$ to a multiple bond.
Oxymercuration-demercuration (Sections 8.5 and 11.4): A twostep process for adding the elements of water $(\mathrm{H}$ and OH$)$ to a double bond in a Markovnikov orientation without rearrangements. An alkene reacts with mercuric acetate (or trifluoroacetate), forming a bridged mercurinium ion. Water preferentially attacks the more substituted side of the bridged ion, breaking the bridge and resulting, after loss of a proton, in an alcohol. Reduction with NaBH_{4} replaces the mercury group with a hydrogen atom, yielding the final product.

Ozonolysis (Sections 8.16B and 8.19): The oxidative cleavage of a multiple bond using O_{3} (ozone). The reaction leads to the formation of a cyclic compound called an ozonide, which is then reduced to carbonyl compounds by treatment with dimethyl sulfide $\left(\mathrm{Me}_{2} \mathrm{~S}\right)$ or zinc and acetic acid.

P

\boldsymbol{p} orbitals (Section 1.10): A set of three degenerate (equal energy) atomic orbitals shaped like two tangent spheres with a nodal plane at the nucleus. For p orbitals of second row elements, the principal quantum number, n (see Atomic orbital), is 2 ; the azimuthal quantum number, l, is 1 ; and the magnetic quantum numbers, m, are $+1,0$, or -1 .
Paraffin (Section 4.15): An old name for an alkane.
Partial hydrolysis (Section 24.5D): Random cleavage of a polypeptide with dilute acid, resulting in a family of peptides of varying lengths that can be more easily sequenced than the parent polypeptide. Once each fragment peptide is sequenced, the areas of overlap indicate the sequence of the initial peptide.
Pauli exclusion principle (Section 1.10A): A principle that states that no two electrons of an atom or molecule may have the same set of four quantum numbers. It means that only two electrons can occupy the same orbital, and then only when their spin quantum numbers are opposite. When this is true, we say that the spins of the electrons are paired.
Peptide (Section 24.4): A molecule comprised of amino acids bonded via amide linkages.
Peptide bond, peptide linkage (Section 24.4): The amide linkage between amino acids in a peptide.
Peracid (See Peroxy acid, Section 11.13A)
Periplanar (See Coplanar, Section 7.6D)
Peroxide (Section 10.1A): A compound with an oxygen-oxygen single bond.
Peroxy acid (Section 11.13A): An acid with the general formula $\mathrm{RCO}_{3} \mathrm{H}$, containing an oxygen-oxygen single bond.
Phase sign (Section 1.9): Signs, either + or - , that are characteristic of all equations that describe the amplitudes of waves.

Phase transfer catalysis (Section 11.16): A reaction using a reagent that transports an ion from an aqueous phase into a nonpolar phase where reaction takes place more rapidly. Tetraalkylammonium ions and crown ethers are phase-transfer catalysts.
Phenyl halide (Section 6.1): An organic halide in which the halogen atom is bonded to a benzene ring. A phenyl halide is a specific type of aryl halide (Section 6.1).
Phospholipid (Section 23.6): Compound that is structurally derived from phosphatidic acid. Phosphatidic acids are derivatives of glycerol in which two hydroxyl groups are joined to fatty acids, and one terminal hydroxyl group is joined in an ester linkage to phosphoric acid. In a phospholipid the phosphate group of the phosphatidic acid is joined in ester linkage to a nitrogen-containing compound such as choline, 2-aminoethanol, or L-serine.
Physical property (Section 2.13): Properties of a substance, such as melting point and boiling point, that relate to physical (as opposed to chemical) changes in the substance.
$\operatorname{Pi}(\boldsymbol{\pi})$ bond (Section 1.13): A bond formed when electrons occupy a bonding π molecular orbital (i.e., the lower energy molecular orbital that results from overlap of parallel p orbitals on adjacent atoms).

Pi (π) molecular orbital (Section 1.13): A molecular orbital formed when parallel p orbitals on adjacent atoms overlap. Pi molecular orbitals may be bonding (p lobes of the same phase sign overlap) or antibonding (p orbitals of opposite phase sign overlap).
pKa (Section 3.5B): The $\mathrm{p} K_{\mathrm{a}}$ is the negative logarithm of the acidity constant, $K_{\mathrm{a}} . \mathrm{p} K_{\mathrm{a}}=-\log K_{\mathrm{a}}$.
Plane-polarized light (Section 5.8A): Light in which the oscillations of the electrical field occur only in one plane.

Plane of symmetry (Sections 5.6 and 5.12A): An imaginary plane that bisects a molecule in a way such that the two halves of the molecule are mirror images of each other. Any molecule with a plane of symmetry will be achiral.
Polar aprotic solvent (Section 6.13C): A polar solvent that does not have a hydrogen atom attached to an electronegative element. Polar aprotic solvents do not hydrogen bond with a Lewis base (e.g., a nucleophile).

Polar covalent bond (Section 2.2): A covalent bond in which the electrons are not equally shared because of differing electronegativities of the bonded atoms.

Polarimeter (Section 5.8B): A device used for measuring optical activity.
Polarizability (Section 6.13C): The susceptibility of the electron cloud of an uncharged molecule to distortion by the influence of an electric charge.
Polar molecule (Section 2.3): A molecule with a dipole moment.
Polar protic solvent (Section 6.13D): A polar solvent that has at least one hydrogen atom bonded to an electronegative element. These hydrogen atoms of the solvent can form hydrogen bonds with a Lewis base (e.g., a nucleophile).
Polymer (Section 10.11): A large molecule made up of many repeating subunits. For example, the polymer polyethylene is made up of the repeating subunit $-\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{\mathrm{n}}$-.
Polymerase chain reaction (PCR) (Section 25.8): A method for multiplying (amplifying) the number of copies of a DNA molecule. The reaction uses DNA polymerase enzymes to attach additional nucleotides to a short oligonucleotide "primer" that is bound to a complementary strand of DNA called a "template." The nucleotide that the polymerases attach are those that are complementary to the base in the adjacent position on the template strand. Each cycle doubles the amount of target DNA that existed prior to the reaction step, yielding an exponential increase in the amount of DNA over time.
Polymerizations (Section 10.11): Reactions in which individual subunits (called monomers) are joined together to form long-chain macromolecules.
Polypeptide (Section 24.4): A peptide comprised of many (>10) amino acids.
Polysaccharide (Sections 22.1A and 22.13): A carbohydrate that, on a molecular basis, undergoes hydrolytic cleavage to yield many molecules of a monosaccharide. Also called a glycan.
Polyunsaturated fatty acid/ester (Section 23.2): A fatty acid or ester of a fatty acid whose carbon chain contain two or more double bonds.
Potential energy (Section 3.8): Potential energy is stored energy; it exists when attractive or repulsive forces exist between objects.
Potential energy diagram (Section 4.8B); A graphical plot of the potential energy changes that occurs as molecules (or atoms) react
(or interact). Potential energy is plotted on the vertical axis, and the progress of the reaction on the horizontal axis
Primary carbon atom (Section 2.5): A carbon atom that has only one other carbon atom attached to it.

Primary structure (Sections 24.1, 24.5, and 24.6): The covalent structure of a polypeptide or protein. This structure is determined, in large part, by determining the sequence of amino acids in the protein.
Prochiral center (Section 12.3D): A group is prochiral if replacement of one of two identical groups at a tetrahedral atom, or if addition of a group to a trigonal planar atom, leads to a new chirality center. At a tetrahedral atom where there are two identical groups, the identical groups can be designated pro- R and pro- S depending on what configuration would result when it is imagined that each is replaced by a group of next higher priority (but not higher than another existing group).
Prostaglandins (Section 23.5): Natural C_{20} carboxylic acids that contain a five-membered ring, at least one double bond, and several oxygen-containing functional groups. Prostaglandins mediate a variety of physiological processes.
Prosthetic group (Sections 24.9 and 24.12): An enzyme cofactor that is permanently bound to the enzyme.
Protecting group (Sections 11.11D, 11.11E, 12.9, 15.5, 16.7C, and 24.7 A): A group that is introduced into a molecule to protect a sensitive group from reaction while a reaction is carried out at some other location in the molecule. Later, the protecting group is removed. Also called blocking group. (See also Orthogonal protecting group.)
Protein (Section 24.4): A large biological polymer of α-amino acids joined by amide linkages.
Proteome Proteome (Sections 25.1 and 25.9): The set of all proteins encoded within the genome of an organism and expressed at any given time.
Proteomics (Section 24.14): The study of all proteins that are expressed in a cell at a given time.

Protic solvent (Sections 3.11, 6.13C, and 6.13D): A solvent whose molecules have a hydrogen atom attached to a strongly electronegative element such as oxygen or nitrogen. Molecules of a protic solvent can therefore form hydrogen bonds to unshared electron pairs of oxygen or nitrogen atoms of solute molecules or ions, thereby stabilizing them. Water, methanol, ethanol, formic acid, and acetic acid are typical protic solvents.

Proton decoupling (Section 9.11B): An electronic technique used in ${ }^{13} \mathrm{C}$ NMR spectroscopy that allows decoupling of spin-spin interactions between ${ }^{13} \mathrm{C}$ nuclei and ${ }^{1} \mathrm{H}$ nuclei. In spectra obtained in this mode of operation all carbon resonances appear as singlets.

Psi $(\boldsymbol{\psi})$ function (See Wave function and Section 1.9)

Pyranose (Section 22.2C): A sugar in which the cyclic acetal or hemiacetal ring is six membered.

Q

Quartet (Section 9.2): An NMR signal comprised of four peaks in a 1:3:3:1 area ratio, caused by signal splitting from three neighboring NMR-active spin $1 / 2$ nuclei.

Quaternary ammonium salt (Sections 20.2B and 20.3D): Ionic compounds in which a nitrogen bears four organic groups and a positive charge, paired with a counterion.

Quaternary structure (Sections 24.1 and 24.8C): The overall structure of a protein having multiple subunits (non-covalent aggregates of more than one polypeptide chain). Each subunit has a primary, secondary, and tertiary structure of its own.

R

\mathbf{R} (Section 2.4 A): A symbol used to designate an alkyl group. Oftentimes it is taken to symbolize any organic group.
$\boldsymbol{R}, \boldsymbol{S}$-System (Section 5.7): A method for designating the configuration of tetrahedral chirality centers.

Racemic form (racemate or racemic mixture) (Sections 5.9A, 5.9B, and 5.10A): An equimolar mixture of enantiomers. A racemic form is optically inactive.
Racemization (Section 6.12A): A reaction that transforms an optically active compound into a racemic form is said to proceed with racemization. Racemization takes place whenever a reaction causes chiral molecules to be converted to an achiral intermediate.
Radical addition to alkenes (Section 10.10): A process by which an atom with an unshared electron, such as a bromine atom, adds to an alkene with homolytic cleavage of the π-bond and formation of a σ-bond from the radical to the carbon; the resulting carbon radical then continues the chain reaction to product the final product plus another species with an unshared electron.

Radical cation (Section 9.14): A chemical species containing an unshared electron and a positive charge.
Radical (or free radical) (Sections 10.1, 10.6, and 10.7): An uncharged chemical species that contains an unpaired electron.
Radical halogenation (Section 10.3): Substitution of a hydrogen by a halogen through a radical reaction mechanism.
Radical reaction (Section 10.1B): A reaction involving radicals. Homolysis of covalent bonds occurs in radical reactions.
Random coil arrangement (Section 24.8): A type of protein secondary structure that is flexible, changing, and statistically random in its conformations.

Rate control (See Kinetic control)

Rate-determining step (Section 6.9A): If a reaction takes place in a series of steps, and if the first step is intrinsically slower than all of the others, then the rate of the overall reaction will be the same as (will be determined by) the rate of this slow step.
Reaction coordinate (Section 6.7): The abscissa in a potential energy diagram that represents the progress of the reaction. It represents the changes in bond orders and bond distances that must take place as reactants are converted to products.

Reaction mechanism (Sections 3 intro and 3.13): A step-by-step description of the events that are postulated to take place at the molecular level as reactants are converted to products. A mechanism will include a description of all intermediates and transition states. Any mechanism proposed for a reaction must be consistent with all experimental data obtained for the reaction.
Rearrangement (Sections 3.1, 7.8A, and 7.8B): A reaction that results in a product with the same atoms present but a different carbon skeleton from the reactant. The type of rearrangement called a 1,2 shift involves the migration of an organic group (with its electrons) from one atom to the atom next to it.
Reducing agent (Sections 12.2 and 12.3A): A chemical species that causes another chemical species to become reduced (to gain electrons, or to lose bonds to electronegative elements, often
gaining bonds to hydrogen in the process). The reducing agent is oxidized in this process.
Reducing sugar (Section 22.6A): Sugars that reduce Tollens' or Benedict's reagents. All sugars that contain hemiacetal or hemiketal groups (and therefore are in equilibrium with aldehydes or α-hydroxyketones) are reducing sugars. Sugars in which only acetal or ketal groups are present are nonreducing sugars.

Reduction (Sections 12.2 and 12.3): A reaction that lowers the oxidation state of atoms in a molecule or ion. Reduction of an organic compound usually involves increasing its hydrogen content or decreasing its oxygen content. Reduction also accompanies any reaction that results in replacement of a more electronegative substituent by a less electronegative one.
Reductive amination (Section 20.4C): A method for synthesizing primary, secondary, or tertiary amines in which an aldehyde or ketone is treated with a primary or secondary amine to produce an imine (when primary amines are used) or an iminium ion (when secondary amines are used), followed by reduction to produce an amine product.

Regioselective reaction (Sections 8.2C and 8.18): A reaction that yields only one (or a predominance of one) constitutional isomer as the product when two or more constitutional isomers are possible products.
Relative configuration (Section 5.15A): The relationship between the configurations of two chiral molecules. Molecules are said to have the same relative configuration when similar or identical groups in each occupy the same position in space. The configurations of molecules can be related to each other through reactions of known stereochemistry, for example, through reactions that cause no bonds to a stereogenic center to be broken.
Replication (Section 25.4C): A process in which DNA unwinds, allowing each chain to act as a template for the formation of its complement, producing two identical DNA molecules from one original molecule.
Resolution (Sections 5.16B and 20.3F): The process by which the enantiomers of a racemic form are separated.

Resonance (Sections 3.10A, 13.4, and 15.11B): An effect by which a substituent exerts either an electron-releasing or electronwithdrawing effect through the π system of the molecule.

Resonance energy (Section 14.5): An energy of stabilization that represents the difference in energy between the actual compound and that calculated for a single resonance structure. The resonance energy arises from delocalization of electrons in a conjugated system.
Resonance structures (or resonance contributors) (Sections 1.8, $1.8 \mathrm{~A}, 13.2 \mathrm{~B}$, and 13.4 A): Lewis structures that differ from one another only in the position of their electrons. A single resonance structure will not adequately represent a molecule. The molecule is better represented as a hybrid of all of the resonance structures.
Restriction endonucleases (Section 25.6): Enzymes that cleave double-stranded DNA at specific base sequences.
Retro-aldol reaction (Section 19.4B): Aldol reactions are reversible; under certain conditions an aldol product will revert to its aldol reaction precursors. This process is called a retro-aldol reaction.
Retrosynthetic analysis (Section 7.15B): A method for planning syntheses that involves reasoning backward from the target
molecule through various levels of precursors and thus finally to the starting materials.
Ribonucleic acid (RNA) (Sections 25.1 and 25.5): One of the two classes of molecules (the other is DNA) that carry genetic information in cells. RNA molecules transcribe and translate the information from DNA for the mechanics of protein synthesis.

Ribozyme (Section 25.5B): A ribonucleic acid that acts as a reaction catalyst.

Ring flip (Section 4.12): The change in a cyclohexane ring (resulting from partial bond rotations) that converts one ring conformation to another. A chair-chair ring flip converts any equatorial substitutent to an axial substituent and vice versa.
Ring strain (Section 4.10): The increased potential energy of the cyclic form of a molecule (usually measured by heats of combustion) when compared to its acyclic form.

S

1,2 Shift (Section 7.8A): The migration of a chemical bond with its attached group from one atom to an adjacent atom.
$\mathrm{S}_{\mathrm{N}} 1$ reaction (Sections 6.9, 6.10, 6.12, 6.13, and 6.18B): Literally, substitution nucleophilic unimolecular. A multistep nucleophilic substitution in which the leaving group departs in a unimolecular step before the attack of the nucleophile. The rate equation is first order in substrate but zero order in the attacking nucleophile.
$\mathrm{S}_{\mathrm{N}} 2$ reaction (Sections 6.5B, 6.6-6.8, 6.13, and 6.18A): Literally, substitution nucleophilic bimolecular. A bimolecular nucleophilic substitution reaction that takes place in a single step. A nucleophile attacks a carbon bearing a leaving group from the back side, causing an inversion of configuration at this carbon and displacement of the leaving group.
Salt (Section 1.3A): The product of a reaction between an acid and a base. Salts are ionic compounds composed of oppositely charged ions.

Sanger N-terminal analysis (Section 24.5B): A method for determining the N-terminal amino acid residue of a peptide by its $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ (nucleophilic aromatic substitution) reaction with dinitrofluorobenzene, followed by peptide hydrolysis and comparison of the product with known standards.
Saponification (Sections 17.7B and 23.2C): Base-promoted hydrolysis of an ester.
Saturated compound (Sections 2.1, 7.12, and 23.2): A compound that does not contain any multiple bonds.
Saturated fatty acids (Section 23.2): Fatty acids that contain no carbon-carbon double bonds.

Sawhorse formula (Section 4.8A): A chemical formula that depicts the spatial relationships of groups in a molecule in a way similar to dash-wedge formulas.

Secondary amine (Section 20.1): A derivative of ammonia in which there are two carbons bonded to a nitrogen atom. Secondary amines have a formula $\mathrm{R}_{2} \mathrm{NH}$, where the R groups can be the same or different.
Secondary carbon (Section 2.5): A carbon atom that has two other carbon atoms attached to it.
Secondary structure (Sections 24.1 and 24.8A): The local conformation of a polypeptide backbone. These local conformations are specified in terms of regular folding patterns such as pleated sheets, α helixes, and turns.

Shielding and deshielding (Section 9.7): Effects observed in NMR spectra caused by the circulation of sigma and pi electrons within the molecule. Shielding causes signals to appear at lower frequencies (upfield), deshielding causes signals to appear at higher frequencies (downfield).
Sigma ($\boldsymbol{\sigma}$) bond (Section 1.12A): A single bond. A bond formed when electrons occupy the bonding σ orbital formed by the end-on overlap of atomic orbitals (or hybrid orbitals) on adjacent atoms. In a sigma bond the electron density has circular symmetry when viewed along the bond axis.

Sigma ($\boldsymbol{\sigma}$) orbital (Section 1.13): A molecular orbital formed by endon overlap of orbitals (or lobes of orbitals) on adjacent atoms. Sigma orbitals may be bonding (orbitals or lobes of the same phase sign overlap) or antibonding (orbitals or lobes of opposite phase sign overlap).
Signal splitting (Sections 9.2C and 9.9): Splitting of an NMR signal into multiple peaks, in patterns such as doublets, triplets, quartets, etc., caused by interactions of the energy levels of the magnetic nucleus under observation with the energy levels of nearby magnetic nuclei.

Silyl ether (silylation) (Section 11.11E): Conversion of an alcohol, $\mathrm{R}-\mathrm{OH}$, to a silyl ether (usually of the form $\mathrm{R}-\mathrm{O}-\mathrm{SiR}^{\prime}{ }_{3}$, where the groups on silicon may be the same or different). Silyl ethers are used as protecting groups for the alcohol functionality.
Single bond (Section 1.12A): A bond between two atoms comprised of two electrons shared in a sigma bond.
Singlet (Section 9.2C): An NMR signal with only a single, unsplit peak.
Site-specific cleavage (Section 24.5D): A method of cleaving peptides at specific, known sites using enzymes and specialized reagents. For example, the enzyme trypsin preferentially catalyzes hydrolysis of peptide bonds on the C-terminal side of arginine and lysine. Other bonds in the peptide are not cleaved by this reagent.
Solid-phase peptide synthesis (SPPS) (Section 24.7D): A method of peptide synthesis in which the peptide is synthesized on a solid support, one amino acid residue at a time. The first amino acid of the peptide is bonded as an ester between its carboxylic acid group and a hydroxyl of the solid support (a polymer bead). This is then treated with a solution of the second amino acid and appropriate coupling reagents, creating a dipeptide. Excess reagents, byproducts, etc. are washed away. Further linkages are synthesized in the same manner. The last step of the synthesis is cleavage of the peptide from the solid support and purification.
Solubility (Section 2.13D): The extent to which a given solute dissolves in a given solvent, usually expressed as a weight per unit volume (e.g., grams per 100 mL).
Solvent effect (Sections 6.13C and 6.13D): An effect on relative rates of reaction caused by the solvent. For example, the use of a polar solvent will increase the rate of reaction of an alkyl halide in an $\mathrm{S}_{\mathrm{N}} 1$ reaction.
Solvolysis (Section 6.12B): Literally, cleavage by the solvent. A nucleophilic substitution reaction in which the nucleophile is a molecule of the solvent.
s orbital (Section 1.10): A spherical atomic orbital. For s orbitals the azimuthal quantum number $l=0$ (See Atomic orbital).
Specific rotation (Section 5.8C): A physical constant calculated from the observed rotation of a compound using the following equation:

$$
[\alpha]_{\mathrm{D}}=\frac{\alpha}{c \times l}
$$

where α is the observed rotation using the D line of a sodium lamp, c is the concentration of the solution or the density of a neat liquid in grams per milliliter, and l is the length of the tube in decimeters.
Spectroscopy (Section 9.1): The study of the interaction of energy with matter. Energy can be absorbed, transmitted, emitted or cause a chemical change (break bonds) when applied to matter. Among other uses, spectroscopy can be used to probe molecular structure.
Spin decoupling (Section 9.10): An effect that causes spin-spin splitting not to be observed in NMR spectra.
Spin-spin splitting (Section 9.9): An effect observed in NMR spectra. Spin-spin splittings result in a signal appearing as a multiplet (i.e., doublet, triplet, quartet, etc.) and are caused by magnetic couplings of the nucleus being observed with nuclei of nearby atoms.

Splitting tree diagrams (Section 9.9B): A method of illustrating the NMR signal splittings in a molecule by drawing "branches" from the original signal. The distance between the branches is proportional to the magnitude of the coupling constant. This type of analysis is especially useful when multiple splittings (splitting of already split signals) occur due to coupling with non-equivalent protons.
$s p$ orbital (Section 1.14): A hybrid orbital that is derived by mathematically combining one s atomic orbital and one p atomic orbital. Two $s p$ hybrid orbitals are obtained by this process, and they are oriented in opposite directions with an angle of 180° between them.
$s p^{2}$ orbital (Section 1.13): A hybrid orbital that is derived by mathematically combining one s atomic orbital and two p atomic orbitals. Three $s p^{2}$ hybrid orbitals are obtained by this process, and they are directed toward the corners of an equilateral triangle with angles of 120° between them.
\boldsymbol{p}^{3} orbital (Section 1.12A): A hybrid orbital that is derived by mathematically combining one s atomic orbital and three p atomic orbitals. Four $s p^{3}$ hybrid orbitals are obtained by this process, and they are directed toward the corners of a regular tetrahedron with angles of 109.5° between them.
Staggered conformation (Section 4.8A): A temporary orientation of groups around two atoms joined by a single bond such that the bonds of the back atom exactly bisect the angles formed by the bonds of the front atom when shown in a Newman projection formula:

A staggered
conformation
Step-growth polymer (See also Condendsation polymer, Section 17.12 and Special Topic C in WileyPLUS): A polymer produced when bifunctional monomers (or potentially bifunctional monomers) react with each other through the intermolecular elimination of water or an alcohol. Polyesters, polyamides, and polyurethanes are all step-growth (condensation) polymers
Stereochemistry (Sections 5.2B, 6.8, and 6.14): Chemical studies that take into account the spatial aspects of molecules.

Stereogenic carbon (Section 5.4): A single tetrahedral carbon with four different groups attached to it. Also called an asymmetric carbon, a stereocenter, or a chirality center. The last usage is preferred.
Stereogenic center (Section 5.4): When the exchange of two groups bonded to the same atom produces stereoisomers, the atom is said to be a stereogenic atom, or stereogenic center.
Stereoisomers (Sections 1.13B, 4.9A, 4.13, 5.2B, and 5.14): Compounds with the same molecular formula that differ only in the arrangement of their atoms in space. Stereoisomers have the same connectivity and, therefore, are not constitutional isomers. Stereoisomers are classified further as being either enantiomers or diastereomers.

Stereoselective reaction (Sections 5.10B, 8.21C, and 12.3D): In reactions where chirality centers are altered or created, a stereoselective reaction produces a preponderance of one stereoisomer. Furthermore, a stereoselective reaction can be either enantioselective, in which case the reaction produces a preponderance of one enantiomer, or diastereoselective, in which case the reaction produces a preponderance of one diastereomer.
Stereospecific reaction (Sections 8.12 and 8.20 C): A reaction in which a particular stereoisomeric form of the reactant reacts in such a way that it leads to a specific stereoisomeric form of the product.
Steric effect (Section 6.13A): An effect on relative reaction rates caused by the space-filling properties of those parts of a molecule attached at or near the reacting site.
Steric hindrance (Sections 4.8B and 6.13A): An effect on relative reaction rates caused when the spatial arrangement of atoms or groups at or near the reacting site hinders or retards a reaction.
Steroid (Section 23.4): Steroids are lipids that are derived from the following perhydrocyclopentanophenanthrene ring system:

Structural formula (Section 1.7): A formula that shows how the atoms of a molecule are attached to each other.
Substituent effect (Sections 3.10D and 15.11F): An effect on the rate of reaction (or on the equilibrium constant) caused by the replacement of a hydrogen atom by another atom or group. Substituent effects include those effects caused by the size of the atom or group, called steric effects, and those effects caused by the ability of the group to release or withdraw electrons, called electronic effects. Electronic effects are further classified as being inductive effects or resonance effects.
Substitution reaction (Sections 3.13, 6.2, 10.3, 15.1, and 17.4): A reaction in which one group replaces another in a molecule.
Substitutive nomenclature (Section 4.3F): A system for naming compounds in which each atom or group, called a substituent, is cited as a prefix or suffix to a parent compound. In the IUPAC system only one group may be cited as a suffix. Locants (usually numbers) are used to tell where the group occurs.
Substrate (Sections 6.2 and 24.9): The molecule or ion that undergoes reaction.
Sugar (Section 22.12A): A carbohydrate.

Sulfa drugs (Section 20.10): Sulfonamide antibacterial agents, most of which have the general structure $p-\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{NHR}$. Sulfa drugs act as antimetabolites (they inhibit the growth of microbes) by inhibiting the enzymatic steps that are involved in the synthesis of folic acid; when deprived of folic acid, the microorganism dies.
Sulfonamides (Section 20.9): An amide derivative of a sulfonic acid, usually made by the reaction of ammonia, or a primary or secondary amine, with a sulfonyl chloride, resulting in compounds having the general formulas $\mathrm{R}^{\prime} \mathrm{SO}_{2} \mathrm{NH}_{2}, \mathrm{R}^{\prime} \mathrm{SO}_{2} \mathrm{NHR}$, or $\mathrm{R}^{\prime} \mathrm{SO}_{2} \mathrm{NR}_{2}$, respectively.

Sulfonate ester (Section 11.10): A compound with the formula $\mathrm{ROSO}_{2} \mathrm{R}^{\prime}$ and considered to be derivatives of sulfonic acids, $\mathrm{HOSO}_{2} \mathrm{R}^{\prime}$. Sulfonate esters are used in organic synthesis because of the excellent leaving group ability of the fragment ${ }^{-} \mathrm{OSO}_{2} \mathrm{R}^{\prime}$.
Superposable (Sections 1.13B and 5.1): Two objects are superposable if, when one object is placed on top of the other, all parts of each coincide. To be superposable is different than to be superimposable. Any two objects can be superimposed simply by putting one object on top of the other, whether or not all parts coincide. The condition of superposability must be met for two things to be identical.
Syn addition (Sections 7.13A and 8.15A): An addition that places both parts of the adding reagent on the same face of the reactant.
Syn coplanar (Section 7.6D): The relative position of two groups that have a 0° degree dihedral angle between them.
Syn dihydroxylation (Section 8.16A): An oxidation reaction in which an alkene reacts to become a 1,2-diol (also called a glycol) with the newly bonded hydroxyl groups added to the same face of the alkene.
Syndiotactic polymer (Special Topic B. 1 in WileyPLUS): A polymer in which the configuration at the stereogenic centers along the chain alternate regularly: $(R),(S),(R),(S)$, etc.
Synthetic equivalent (Sections 8.20B, 18.6, and 18.7): A compound that functions as the equivalent of a molecular fragment needed in a synthesis.
Synthon (Section 8.20B): The fragments that result (on paper) from the disconnection of a bond. The actual reagent that will, in a synthetic step, provide the synthon is called the synthetic equivalent.

T

Tautomerization (Section 18.2): An isomerization by which tautomers are rapidly interconverted, as in keto-enol tautomerization.

Tautomers (Section 18.2): Constitutional isomers that are easily interconverted. Keto and enol tautomers, for example, are rapidly interconverted in the presence of acids and bases.

Terminal residue analysis (Section 24.5): Methods used to determine the sequence of amino acids in a peptide by reactions involving the N - and C-terminal residues.
Terpene (Section 23.3): Terpenes are lipids that have a structure that can be derived on paper by linking isoprene units.

Terpenoids (Section 23.3): Oxygen-containing derivatives of terpenes.
Tertiary amine (Section 20.1): A derivative of ammonia in which there are three carbons bonded to a nitrogen atom. Tertiary amines have a formula $\mathrm{R}_{3} \mathrm{~N}$ where the R groups can be the same or different.
Tertiary carbon (Section 2.5): A carbon atom that has three other carbon atoms attached to it.

Tertiary structure (Sections 24.1 and 24.8B): The three dimensional shape of a protein that arises from folding of its polypeptide chains superimposed on its α helixes and pleated sheets.

Tetrahedral intermediate (Section 17.4): A species created by the attack of a nucleophile on a trigonal carbon atom. In the case of a carbonyl group, as the electrons of the nucleophile form a bond to the carbonyl carbon the electrons of the carbon-oxygen π-bond shift to the oxygen. The carbon of the carbonyl group becomes four-coordinate (tetrahedral), while the oxygen gains an electronpair and becomes negatively charged.

Thermodynamic control (Section 18.4A): A principle stating that the ratio of products of a reaction that reaches equilibrium is determined by the relative stabilities of the products (as measured by their standard free energies, ΔG°). The most abundant product will be the one that is the most stable. Also called equilibrium control.

Thermodynamic enolate (Section 18.4A): In a situation in which more than one enolate anion can be formed, the thermodynamic enolate is the more stable of the possible enolate anions-usually the enolate with the more substituted double bond. A thermodynamic enolate is formed predominantly under conditions that permit the establishment of an equilibrium.
Thermodynamic or equilibrium product (Section 13.9A): When multiple products are possible, the product formed that is most stable; sometimes formed via a reversible, equilibrium process.
Torsional barrier (Section 4.8B): The barrier to rotation of groups joined by a single bond caused by repulsions between the aligned electron pairs in the eclipsed form.
Torsional strain (Sections 4.9 and 4.10): The strain associated with an eclipsed conformation of a molecule; it is caused by repulsions between the aligned electron pairs of the eclipsed bonds.
Tosylate (Section 11.10): A p-toluenesulfonate ester, which is a compound that contains the $p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{3}$ - group, i.e., $p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{3} \mathrm{R}$
Transcription (Section 25.5): Synthesis of a messenger RNA (mRNA) molecule that is complimentary to a section of DNA that carries genetic information.
Transesterification (Section 17.7A): A reaction involving the exchange of the alkoxyl portion of an ester for a different alkoxyl group, resulting in a new ester.
Transition state (Sections 6.6, 6.7, and 6.10): A state on a potential energy diagram corresponding to an energy maximum (i.e., characterized by having higher potential energy than immediately adjacent states). The term transition state is also used to refer to the species that occurs at this state of maximum potential energy; another term used for this species is the activated complex.
Translation (Section 25.5E): The ribosomal synthesis of a polypeptide using an mRNA template.
Triacylglycerols (Section 23.2): An ester of glycerol (glycerin) in which all three of the hydroxyl groups are esterified.
Triflate (Section 11.10): A methanesulfonate ester, which is a compound that contains the $\mathrm{CH}_{3} \mathrm{SO}_{3}$ - group, i.e., $p-\mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{R}$
Tripeptide (Section 24.4): A peptide comprised of three amino acids.

Triple bonds (Section 1.3B): Bonds comprised of one sigma (σ) bond and two pi (π) bonds.

Triplet (Section 9.2C): An NMR signal comprised of three peaks in a $1: 2: 1$ area ratio, caused by signal splitting from two neighboring NMR-active spin $1 / 2$ nuclei.

Trisaccharides (Section 22.1A): A carbohydrate that, when hydrolyzed, yields three monosaccharide molecules.
Two-dimensional (2D) NMR (Section 9.12): NMR techniques such as COSY and HETCOR that correlate one property (e.g., coupling), or type of nucleus, with another. (See COSY and HETCOR.)

U

Ultraviolet-visible (UV-Vis) spectroscopy (Section 13.8): A type of optical spectroscopy that measures the absorption of light in the visible and ultraviolet regions of the spectrum. Visible-UV spectra primarily provide structural information about the kind and extent of conjugation of multiple bonds in the compound being analyzed.

Unimolecular reaction (Section 6.9): A reaction whose ratedetermining step involves only one species.
Unsaturated compound (Sections 2.1, 7.13, and 23.2): A compound that contains multiple bonds.
Unsaturated fatty acids (Section 23.2): Fatty acids that contain at least one carbon-carbon double bond.
Upfield (Section 9.3): Any area or signal in an NMR spectrum that is to the right relative to another. (See Downfield for comparison.) A signal that is upfield of another occurs at lower frequency (and lower δ and ppm values) than the other signal.

V

Valence shell (Section 1.3): The outermost shell of electrons in an atom.
$\boldsymbol{v i c}$-Dihalide (Section 7.10): A general term for a molecule having halogen atoms bonded to each of two adjacent carbons.

Vicinal coupling (Sections 9.9 and 9.12A): The splitting of an NMR signal caused by hydrogen atoms on adjacent carbons. (See also Coupling and Signal Splitting.)

Vicinal (vic-) substituents (Section 7.10): Substituents that are on adjacent atoms.
Vinyl group (Sections 4.5 and 6.1): The $\mathrm{CH}_{2}-\mathrm{CH}-$ group.
VSEPR model (valence shell electron pair repulsion) (Section 1.16): A method of predicting the geometry at a covalently bonded atom by considering the optimum geometric separation between groups of bonding and non-bonding electrons around the atom

W

Wave function (or $\boldsymbol{\psi}$ function) (Section 1.9): A mathematical expression derived from quantum mechanics corresponding to an energy state for an electron, i.e., for an orbital. The square of the ψ function, ψ^{2}, gives the probability of finding the electron in a particular place in space.
Wavelength, $\boldsymbol{\lambda}$ (Sections 2.15 and 13.8A): The distance between consecutive crests (or troughs) of a wave.
Wavenumber, $\overline{\mathbf{v}}$ (Section 2.15): A way to express the frequency of a wave. The wavenumber is the number of waves per centimeter, expressed as cm^{-1}.
Waxes (Section 23.7): Esters of long-chain fatty acids and longchain alcohols.
Williamson ether synthesis (Section 11.11B): The synthesis of an ether by the $S_{N} 2$ reaction of an alkoxide ion with a substrate bearing a suitable leaving group (often a halide, sulfonate, or sulfate).

Y

Ylide (Section 16.10): An electrically neutral molecule that has a negative carbon with an unshared electron pair adjacent to a positive heteroatom.

Z

Zaitsev's rule (Sections 7.6B and 7.8A): A rule stating that an elimination will give as the major product the most stable alkene (i.e., the alkene with the most highly substituted double bond).

Zwitterion (See Dipolar ion and Section 24.2C): Another name for a dipolar ion.

This page intentionally left blank

A

Absolute configuration, 228-230
Absorption spectrum, 599
Acetaldehyde, 10, 72, 76, 78, 372, 723
Acetaldehyde enolate, 53
physical properties, 10
Acetals, 738-740
Acetic acid, 73-74, 76, 78, 113, 118-119, $126,128,145,772$
physical properties, 78
and $\mathrm{p} K_{\mathrm{a}}, 114$
Acetoacetic ester synthesis, 835-840
acylation, 839-840
dialkylation, 836
substituted methyl ketones, 836-837
Acetone, 14, 57, 72, 79, 720
Acetonides, 993, 1023
Acetonitrile, 75
Acetyl-coenzyme A, 784
Acetyl group, 722
Acetylcholine, 897-898, 908
Acetylcholinesterase, 908, 1096
Acetylenes, 7, 57, 159, 159fn, 292, 326
structure of, 40-42
Acetylenic hydrogen atom, 159, 313
of terminal alkynes, substitution of, 313-314
Achiral molecules, 192, 195, 198, 212, 471
Acid anhydrides, reactions of, 810-811
Acid-base reactions, 105-109
of amines, 917
curved arrows, 107
mechanism for, 107-108
Acid-catalyzed aldol condensations, 867-868
Acid-catalyzed aldol enolization, 826
Acid-catalyzed dehydration, of alcohols, 303-309
Acid-catalyzed esterification, 790-792
Acid-catalyzed halogenation, of aldehydes and ketones, 828
Acid-catalyzed hemiacetal formation, 736
Acid-catalyzed hydration, of alkenes, 354, 505-506
Acid chlorides, See Acyl chlorides
Acid derivatives, synthesis of, 786
Acid strength, 113
Acid-base reactions, 120-123
acids and bases in water, 106-107

Brønsted-Lowry acids and bases, 105-106
opposite charges attract, 135
predicting the outcome of, 118-120
and the synthesis of deuterium and tritium-labeled compounds, 134-135
water solubility as the result of salt formation, 119-120
Acidic hydrolysis of a nitrile, 801
Acidity:
effect of solvent on, 130
effect of the solvent on, 130
hybridization, 122-123
inductive effects, 123
relationships between structure and, 120-123
Acidity constant (K_{a}), 113-114
Acids:
alcohols as, 509
Brønsted-Lowry, 105-106, 137
Lewis, 102-104
in nonaqueous solutions, 133-134
relative strength of, 115
in water, 106
Acne medications, chemistry of, 459
Acrylonitrile, anionic polymerization of, 486
Actin, 166
Activating groups, 685-686
meta directors, 685-686
ortho-para directors, 685
Activation energies, 471
Active hydrogen compounds, 844
Active methylene compounds, 844
Active site, 1091
of enzyme, 1070
Acyclovir, 1113
Acyl chlorides (acid chlorides), 679, 725-726, 777, 785-786, 786-788
aldehydes by reduction of, 725-727
esters from, 791
reactions of, 787-788, 810
synthesis of, 786-787
using thionyl chloride, 787
Acyl compounds:
relative reactivity of, 785-786
spectroscopic properties of, 779-781
Acyl groups, 678
Acyl halide, 678

Acyl substitution, 771, 784-786, 822
by nucleophilic addition-elimination, 784-786
Acyl transfer reactions, 784
Acylation, 839-840
Acylation reaction, 678
Acylium ions, 437
Adamantane, 180
Addition polymers, 483, 808
Addition reaction, 337-390
of alkenes, 338-340
Adduct, 608
Adenosine diphosphate (ADP), 431
Adenosine triphosphate (ATP), 273, 431, 981-982
Adenylate cyclase, 1110
Adipic acid, 776
Adipocytes, 1032
Adrenaline, 273, 906
Adrenocortical hormones, 1046
Adriamycin, See Doxorubicin
Aggregation compounds, 161
Aglycone, 989-990
Aklavinone, 955
Alanine, 909, 1063, 1066
isolectric point of, 1066
titration curve for, 1067
Albrecht, Walther, 618
Albuterol, 501
Alcohol dehydrogenase, 548
Alcohols, 55, 67-68, 130, See also Primary alcohols; Secondary alcohols; Tertiary alcohols
acid-catalyzed dehydration of, 303-309
as acids, 509
addition of:
acetals, 738-740
hemiacetals, 735-736
thioacetals, 741
alcohol carbon atom, 499
from alkenes through hydroborationoxidation, 349-352
from alkenes through oxymercurationdemercuration, 349-350
boiling points, 501
conversion of, into a mesylate, 516
conversion of, into alkyl halides, 510
dehydration of, 296-297
acid-catalyzed, 303-308

Alcohols (cont.)
carbocation stability and the transition state, 309-312
ethanol, 499, 502, 503-504
as a biofuel, 504
ethylene, 504
polymerization of, 484
hydrogen bonding, 502
infrared (IR) spectra of, 93-94
intermolecular dehydration, ethers by, 517-518
mesylates, 514-516
methanol, 502, 503, 509
nomenclature, 152-153, 499-500
oxidation of, 551-556
physical properties of, 501-503
primary, 67
propylene glycols, 502, 504
reactions of, 507-508
reactions with hydrogen halides, alkyl halides from, 510-513
reactions with PBr_{3} or SOCI_{2}, alkyl halides from, 513-514
by reduction of carbonyl compounds, 546-551
spectroscopic evidence for, 556
structure, 499-500
synthesis/reactions, 498-541
tert-butyl ethers by alkylation of, 520
tosylates, 514-515
triflates, 514-515
Aldaric acids, 995-996
Aldehyde hydrates, 551
Aldehydes, 55, 71-72, 720-770
α, β-unsaturated, additions to, 877-881
acid-catalyzed halogenation of, 828
Baeyer-Villiger oxidation, 751-753
base-promoted halogenation of, 827
carbonyl group, 543, 721
chemical analyses for, 753
from esters and nitriles, 727-729
IR spectra of, 753-754
mass spectra of, 756
NMR spectra of, 754-755
nomenclature of, 721-723
nucleophilic addition to the carbonoxygen double bond, 732-735
oxidation of, 751
by oxidation of 1° alcohols, 724-725
oxidation of primary alcohols to, 551
by ozonolysis of alkenes, 725
in perfumes, 724
physical properties, 723-724
preparation of carboxylic acids by oxidation of, 781-784
reduction by hydride transfer, 548
by reduction of acyl chlorides, esters, and nitriles, 725-727
relative reactivity, 734
spectroscopic properties of, 753-756
summary of addition reactions, 756-757
synthesis of, 724-729
Tollens' test (silver mirror test), 753
UV spectra, 756
Alder, Kurt, 608, 617-618
Alditols, 999
Aldol addition product, dehydration of, 867
Aldol addition reactions, 865-866
Aldol additions, 866-867
Aldol condensation reactions, 859
Aldol condensations, 865, 867
acid-catalyzed, 867-868
crossed, 871-876
cyclizations via, 876-877
Aldol reactions, synthetic applications of, 868-869
Aldonic acids, synthesis of, 995-996
Aldose, 982, 994-995, 999, 1000-1002
Aldose, D-family of, 1002-1003
Aldotetrose, 982-984, 1001
Aliphatic aldehydes, 721
nomenclature of, 721
Aliphatic amines, reactions with nitrous acid, 918
Aliphatic compounds, 627, See also Aromatic
Aliphatic ketones, nomenclature of, 722
Alkadienes, 591
Alkaloids, 849, 894, 907
Alkanedioic acids, 775
Alkanes, 56-57, 143
bicyclic, 179-180
branched-chain, 147
nomenclature of, 145-147
chemical reactions of, 180
chlorination of, 464-465
combustion of, 490
cycloalkanes, 143
defined, 143
halogenation of, 463-464, 475-476
IUPAC nomenclature of, 145-147
multiple halogen substitution, 463-464
no functional group, cause of, 64
nomenclature and conformations of, 146-153
petroleum as source of, 143
physical properties, 159-162
polycyclic, 179-1809
reactions of, with halogens, 463-465
shapes of, 144-146
sources of, 143-144
"straight-chain," 144
synthesis of, 180-182
unbranched, 146-147
Alkanide shift, 310
Alkatrienes, 591

Alkene diastereomers, $(E)-(Z)$ system for designating, 292-293
Alkenes, 56, 57, 143
addition of sulfuric acid to, 338, 346
addition of water to, 346-349 mechanism, 338
addition reaction, 338-340
alcohols from, through oxymercuration-demercuration, 349-350
aldehydes by ozonolysis of, 725
anti 1,2-dihydroxylation of, 528-530
defined, 292
dipole moments in, 63-64
electrophilic addition:
of bromine and chlorine, 359-363
defined, 339
of hydrogen halides, 340-345
functional group, 64
halohydrin formation from, 364-366
heat of reaction, 293-295
how to name, 156-158
hydrogenation of, 181-182, 318-319
ionic addition to, 343
ketones from, 729-730
Markovnikov additions, 341
regioselective reactions, 344
Markovnikov's rule, 340-345
defined, 341
theoretical explanation of, 341-342
mechanism for syn dihydroxylation of, 368-369
in natural chemical syntheses, 381-382
oxidation of, 369,781
environmentally friendly methods, 530
oxidative cleavage of, 371-373
physical properties of, 292
preparation of carboxylic acids by oxidation of, 781
properties/synthesis, 291-336
radical addition to, 481-483
radical polymerization of, 483-487
rearrangements, 348-349
relative stabilities of, 293-295
stereochemistry of the ionic addition to, 327-328
stereospecific reactions, 363-364
synthesis of alcohols from, 505-508
use in synthesis, 533-534
Alkenyl, 241, 274
Alkenylbenzenes, 700, 702-704
additions to the double bond of, 703
conjugated, stability of, 702-704
oxidation of the benzene ring, 704
oxidation of the side chain, 703-704
Alkenyne, 591
Alkoxide ions, 134
Alkoxides, 276, 509
Alkoxyl group, 74

Alkoxyl radicals, 458
Alkoxymercuration-demercuration, synthesis of ethers by, 520
Alkyl alcohols, 500
Alkyl aryl ethers, cleavage of, 952-953
Alkyl chlorides, 272
Alkyl chloroformates, 803-805
Alkyl groups, 256
branched, nomenclature of, 149-150
and the symbol R, 64-65
unbranched, 147 nomenclature of, 147
Alkyl halides, 65-66, 239-244
alcohol reactions with hydrogen halides, 510-513
alcohol reactions with PBr_{3} or SOCI_{2}, 513-514
conversion of alcohols into, 510
dehydrohalogenation of, 275-276, 296-297, 297-303
bases used in, 276
defined, 275-278
favoring an E2 mechanism, 297
less substituted alkene, formation of, using bulky base, 300
mechanisms, 276
orientation of groups in the transition state, 301-302
Zaitsev's rule, 298-300
elimination reactions of, 275-276
nomenclature of, 151
simple, 262-263, 282
tertiary, 271, 288
Alkyl radicals, geometry of, 471
Alkylation, of alkynide anions, 317-318, 323-324, 336
Alkylbenzenes:
additions to the double bond of, 703
conjugated, stability of, 702-703
preparation of carboxylic acids by oxidation of, 782
reactions of the side chain of, 699-702
reactivity of, and ortho-para direction, 698-699
Alkylboranes:
oxidation/hydrolysis of, 353-355
regiochemistry and stereochemistry, 356-357
protonolysis of, 359
Alkyllithium, 134
Alkyloxonium ion, 130, 243
Alkylpotassium compounds, 557
Alkylsodium compounds, 557
Alkynes, 56-57, 143, 292
addition of hydrogen halides to, 374-375
addition reaction, 337-390
functional group, 64
hydrogenation of, 181-182, 321-323
nomenclature of, 158-159
oxidative cleavage of, 375
physical properties of, 292
synthesis of, 291-336
by elimination reactions, 314-316
laboratory application, 314-316
terminal:
acidity of, 313
substitution of the acetylenic
hydrogen atom of, 313-314
Alkynide anions, 316-317
Allenes, 232-233, 592
Allotropes, 185
Allyl cation, 586-587
Allyl group, 157, 582
Allyl radical, 582
molecular orbital description of, 582
resonance description of, 584-585
Allylic bromination, 585
with N-bromosuccinimide, 476-477
Allylic carbocations, 582
Allylic chlorination (high temperature), 475-476
Allylic group, 475
Allylic halides, 263
in nucleophilic substitution reactions, 708-709
Allylic hydrogens, 475
Allylic position, 475
Allylic radicals, 475-478
defined, 476
resonance delocalization of, 478
stabilization of, by electron delocalization, 477-478
Allylic substitution, 475-478
defined, 475
Alpha (α) carbon atom, 275
α-amino acids, 1062, 1066
synthesis of, 1068-1070
from potassium phthalimide, 1068
resolution of DL-amino acids, 1069-1070
Strecker synthesis, 1069
α anomer, 985
α carbon, 822
α helices, 1086, 1089, 1092
α hydrogens, 822, 837
α-keratin, 1061, 1088-1089
α substituents, 1041
Altman, Sidney, 1091
Aluminum chloride, 109
Amides, 75, 777-778, 796-802
from acyl chlorides, 796
amines vs., 903
from carboxylic acids and ammonium carboxylates, 798
from carboxylic anhydrides, 797
DCC-promoted amide synthesis, 798
from esters, 797
hydrolysis of, 798-800
by enzymes, 800
lactams, 802
nitriles:
from the dehydration of, 800
hydrolysis of, 800-801
reactions of, 811-812
reducing to amines, 913-914
synthesis of, 796
Amine salts, 901-908
Amines, 71
acylation, 917
alkylation, 917
amides vs., 903
amine salts, 901-908
aminium salts, 904
analysis of, 929-931
in aqueous acids, solubility of, 904-905
arenediazonium salts:
coupling reactions of, 924-926
replacement reactions of, 920-923
aromatic, 902-903
preparation of, through reduction of nitro compounds, 911
basicity of, 901-908
biologically important, 906-908
antihistamines, 907
neurotransmitters, 908
2-phenylethylamines, 907
tranquilizers, 907
vitamins, 907
chemical analysis, 929
conjugate addition of, 879,896
diazotization, 918
heterocyclic, 899
basicity of, 902-903
infrared (IR) spectra of, 94-95
monoalkylation of, 914
nomenclature, 898-899
oxidation of, 917-918
physical properties of, 899-900
preparation of, 908-916
through Curtius rearrangement, 916
through Hofmann rearrangement, 914-916
through nucleophilic substitution reactions, 908-911
through reduction of nitriles, oximes, and amides, 913-914
through reduction of nitro compounds, 911
through reductive amination, 911-913
primary, 912
oxidation of, 917-918
preparation of, through Curtius rearrangement, 916
preparation of, through Hofmann rearrangement, 914-915
preparation of, through reduction of nitriles, oximes, and amides, 911

Amines (cont.)
preparation of, through reductive amination, 911-913
quaternary ammonium salts, 904
reactions of, 917-920
oxidation, 917-918
primary aliphatic amines with nitrous acid, 918
primary arylamines with nitrous acid, 918-919
secondary amines with nitrous acid, 920
tertiary amines with nitrous acid, 920
reactions with sulfonyl chlorides, 926-929
as resolving agents, 905-906
secondary, 898-900
oxidation of, 918
preparation of, through reduction of nitriles, oximes, and amides, 913-914
preparation of, through reductive amination, 911-913
spectroscopic analysis, 929-931
structure of, 900
summary of preparations and reactions of, 932-935
tertiary, 913-914
oxidation of, 918
preparation of, through reduction of nitriles, oximes, and amides, 913
preparation of, through reductive amination, 911-913
Aminium salts, 904
Amino acid sequencers, 1073
Amino acids, 2-3, 98, 1060
α-amino acids, 1062, 1066
synthesis of, 1068-1070
as dipolar ions, 1065-1068
DL-amino acids, resolution of, 1069-1070
essential, 1065-1068
L-amino acids, 1063-1065
structures and nomenclature, 1062
Amino cyclitol, 1019
Amino sugars, 1015, 1019
Aminobenzene, 628
α-Aminonitrile, formation of, during Strecker synthesis, 1069
Ammonia:
reaction of, with alkyl halide, 243
reactions of aldehydes and ketones with derivatives of, 745-746
shape of a molecule of, 45
and water, 13
Ammonium compounds, eliminations involving:
Cope elimination, 932
Hofmann elimination, 931
Ammonium cyanate, 3

Ammonium ion, 12
Ammonium salts, 709, 901
Ammonolysis, 797
Ampelopsin D, 712
Ampelopsin F, 712
Ampelopsin G, 712
Amphetamine, 70, 99, 906
Amylopectin, 1010-1011
Amylose, 979, 1010
Anderson, C. D., 1112
Androsterone, 162, 1044
Aneshansley, D., 958
Anet, F. A. L., 422
Anethole, 498
Angle strain, 167
Angular methyl groups, 1041
Angular shape, of a molecule of water, 45
Aniline, 136, 628, 687
acetylation of, 929
Anionic polymerization, 528
Annulenes, 638-639
Anomeric carbon atom, 985
Anomeric effect, 988
Anomers, 985
Anthracene, 646
Anti 1,2-dihydroxylation, of alkenes, 528-530
Anti addition:
defined, 321
of hydrogen, 322-323
Anti conformation, 165, 184
Anti coplanar conformation, 301
Anti-Markovnikov addition, 345
of water to an alkene, 346
Anti-Markovnikov addition of hydrogen bromide, 481-483
Anti-Markovnikov hydration of a double bond, 352
Anti-Markovnikov regioselectivity/syn stereoselectivity, 506
Anti-Markovnikov syn hydration, 352
Antiaromatic compounds, 638, 643-644
Antibiotic X-206, 525
Antibodies, 531, 873, 1016-1017, 1060
Antibonding molecular orbital, 31, 43
Anticodon, 1124-1125
Antigens, 531, 1016
Antihistamines, and vitamins, 907
Antimetabolites, 927-928
Antioxidants, 489
Antisense oligonucleotides, 1131
Aprotic solvents, 266-267
Arbutin, 1023
Arbuzov reaction, 751
Arenediazonium salts:
coupling reactions of, 924-926
replacement by -F, 922
replacement by -I, 922
replacement by $-\mathrm{OH}, 922$
replacement by hydrogen, 922-923
replacement reactions of, 920-923
salts, instability of, 919
Arenes, 699
ketones from, 729-730
Arenium ion, 671-677, 690-699
Arginine, 488, 1001, 1065, 1068, 1077-1078, 1084
Aromatic amines, 902-903
preparation of, through reduction of nitro compounds, 911
Aromatic anion, 641
Aromatic compounds, 56, 626-668
${ }^{13}$ C NMR spectra, 653-655
benzene, 58
discovery of, 627-628
halogenation of, 673-674
Kekulé structure for, 58
modern theories of the structure of, 634-636
nitration of, 673-675, 674-675
nomenclature of benzene derivatives, 628-630
reactions of, 630-631
sulfonation of, 675-676
thermodynamic stability of, 632-633
benzenoid, 645-646
in biochemistry, 650-652
Birch reduction, 710-711
defined, 643
electrophilic aromatic substitution reactions, 670
general mechanism for, 671-673
Friedel-Crafts acylation, 678-680
Clemmensen reduction, 683-684
synthetic applications of, 683-684
Wolff-Kishner reduction, 684
Friedel-Crafts alkylation, 676-678, 701
Friedel-Crafts reactions, limitations of, 680-682
fullerenes, 647
${ }^{1}$ H NMR spectra, 652-653
heterocyclic, 648-650
Hückel's rule, 637
infrared spectra of substituted benzenes, 655-656
mass spectra of, 657-658
nonbenzenoid, 647-648
nucleophilic substitution reactions, allylic and benzylic halides in, 708-709
reactions of, 669-719
reduction of, 710-712
spectroscopy of, 652-658
synthetic applications:
orientation in disubstituted benzenes, 707-708
protecting and blocking groups, use of, 706-707
Aromatic cyclodehydration, 711, 713

Aromatic ions, 640-642
Aromaticity, 632
Artificial sweeteners, 236, 1008-1009
Aryl halides, 240, 681, 919, 944-978
C NMR spectra, 967
defined, 240
${ }^{1}$ H NMR spectra, $966-967$
infrared spectra, 966
as insecticides, 967-968
mass spectra, 967
and nucleophilic aromatic substitution, 959-978
by addition-elimination $\left(\mathrm{S}_{\mathrm{N}} \mathrm{Ar}\right.$ mechanism), 960-962
through an elimination-addition mechanism (benzyne), 962-965
physical properties of, 241
properties of, 944
spectroscopic analysis of, 966-967
Arylamines, basicity of, 902
Arylamines, tertiary, 920
Ascorbic acid (vitamin C), 200
Ashworth, Linda, 1106
Asparagine, 1064, 1084, 1089
Aspartame (NutraSweet), 1008
Aspartic acid, 1008, 1064
Asymmetric atoms, See Chirality centers
Atomic force microscopy (AFM), 648
Atomic number (Z), 4, 202
Atomic orbitals (AOs), 28, 30-32, 37 hybrid, 32
Atomic structure, 3-4
and quantum mechanics, 27
Atoms, 3-4
Atropisomers, 227, 232
Attractive electric forces, summary of, 85
Aufbau principle, 29, 47
Aureomycin, 955
Automated peptide synthesis, 1084-1086
Autoxidation, 488-489, 504
Axial bonds, of cyclohexane, 171-172
Azo dyes, 925

B

B chains, 1079
Bacterial dehalogenation of a PCB derivative, 961-962
Baeyer-Villiger oxidation, 751-753
Baker, B. R., 1112
Baker, J. T., 525
Ball-and-stick models, 14-16, 45
Balzani, V., 170
Barger, G., 717
Barton, D.H.R., 171
Base-catalyzed hemiacetal formation, 737
Base peak, 432
Base-promoted halogenation, of aldehydes and ketones, 827
Base strength, 116

Bases:
Brønsted-Lowry, 105-106, 137
Lewis, 102-104
in nonaqueous solutions, 133-134
predicting the strength of, 116
relative strength of, 115
in water, 106
Basic hydrolysis of a nitrile, 801
Basic principles, applications of, 47, 97, 135-136, 184-186
Basicity:
nucleophilicity vs., 265-266
order of, 265
and polarizability, 280, 281
Beer's law, 600
Bends, 18
Benedict's reagents, 994-995, 1019
Bent shape, of a molecule of water, 45
Benzaldehyde, 720, 722
Benzene, 56, 58-59, 241, 274, 626-628, 644
discovery of, 627-628
halogenation of, 673-674
Kekulé structure for, 58, 631-632
meta-disubstituted, 656
modern theories of the structure of, 634-636
molecular orbital explanation of the structure of, 635-636
monosubstituted, 655
nitration of, 674-675
nomenclature of benzene derivatives, 628-630
ortho-disubstituted, 656
para-disubstituted, 656
reactions of, 630-631
resonance explanation of the structure of, 634-635
sulfonation of, 675-676
thermodynamic stability of, 632-633
Benzene ring, 478
oxidation of, 704
preparation of carboxylic acids by oxidation of, 782
Benzene substitution, 631
Benzenoid aromatic compounds, 645-646
Benzenoid polycyclic aromatic hydrocarbons, 645-646
Benzoic acid, 73
Benzoyl peroxide, 459
Benzyl, 630
Benzyl chloroformates, 803
Benzyl groups, 65
Benzylic carbocations, 708
Benzylic cations, 700-702
Benzylic chlorination of methylbenzene, 479
Benzylic groups, 478-479
Benzylic halides, 263
in nucleophilic substitution reactions, 708-709
Benzylic halogenation, 480
of the side chain, 701-702
Benzylic hydrogen atoms, 700
Benzylic hydrogens, 479
Benzylic radicals, 478-479, 700-702
halogenation of the side chain, 701-702
Benzylic substituent, 700
Benzyne, 947, 962-965
elimination-addition mechanism, 962
Berg, Paul, 1129
Bergman cycloaromatization, 491
Bergman, R. G., 491
Bernal, J. D., 1067fn
Bertrand, J. A., 1094
Beryllium hydride, linear geometry of, 46
Beta (β) carbon atom, 275
β eliminations, 275
β hydrogen atom, 275
β-anomer, 985-987
β bends, 1088
β-carotene, 855
β-dicarbonyl compounds:
by acylation of ketone enolates, 864-865
enolates of, 834-835
β-dicarboxylic acids, 806
β-keto acids, 805
β-pleated sheets, 1086, 1088, 1092
β substituents, 1041
Bhopal, India, methyl isocyanate accident, 804
BHT (butylated hydroxytoluene), 489
Bicyclic alkanes, 179-1809
Bicyclic cycloalkanes, naming, 155-156
Bicycloalkanes, 156
Bijvoet, J. M., 230
Bimolecular reaction, 246
BINAP, 217, 232
Biochemistry:
aromatic compounds in, 650-652
intermolecular forces in, 85
Biological methylation, 273
Biologically active natural products, 362
Biologically important amines, 907-908, 938
2-phenylethylamines, 907
antihistamines, 907
functional groups in, 77
neurotransmitters, 908
tranquilizers, 907
vitamins, 907
Biomolecules, mass spectrometry (MS) of, 444
Biphenyl, 716
Birch, A. J., 710
Birch reduction, 710-711
Black biting, 484

Bloch, Felix, 392
Blocking groups, 707
Boat conformation, 168-169
Boduszek, B., 1094
Boiling points, 81-83, 97, 947
alcohols, 501
ethers, 501
intermolecular forces (van der Waals forces), 81-83
ionic compounds, 78
of ionic compounds, 78
neopentane, 81
nonpolar compounds, 82
unbranched alkanes, 160
Bombardier beetle, 958
Bond angles, 16
Bond breaking, as endothermic process, 460
Bond dissociation energies, 460-463
Bond length, 30
Bond-line formulas, 16, 18-19, 501
drawing, 18-19
Bond rotation, 162-164
Bonding molecular orbital, 31, 31-35, 37
Bonding pairs, 44
Bone growth, organic templates engineered to mimic, 86
Born, Max, 28
Borneol, 571
Boron trifluoride, 62
trigonal planar structure of, 45-46
Bovine chymotrypsinogen, 1079
Bovine ribonuclease, 1079
Bovine trypsinogen, 1079
Boyer, Paul D., 532
Bradsher, C. K., 610
Bradsher reaction, 713
Branched alkyl groups, how to name, 149-150
Branched-chain alkanes:
how to name, 147-149
nomenclature of, 145-147
Breathalyzer alcohol test, 555
Breslow, R., 233
Bridge, 155
Bridgeheads, 155
Bromides, 272
Bromination, of phenols, 953
Bromine, 465
addition to cis- and trans-2-butene, 359-360
electrophilic addition of bromine to alkenes, 359-363
reaction with alkanes, 463
selectivity of, 471
Bromine water, 1002, 1007, 1019
2-Bromobutane, 363
Bromoform, 828-829
Bromohydrin, 365
Bromonium ion, 361

Brønsted-Lowry acid-base chemistry, 318
Brønsted-Lowry acids and bases, 105-106, 137
strength of, 120
acidity and $\mathrm{p} K_{\mathrm{a}}, 114-116$
acidity constant $\left(K_{\mathrm{a}}\right), 113-114$
predicting the strength of bases, 116-117
Brønsted-Lowry theory, 109
Brown, Herbert C., 353
Buckminsterfullerene, 142, 186, 647
1,3-Butadiene, 592-594
bond lengths, 592-594
conformations of, 593
molecular orbitals of, 593-594
Butane, 144, 146, 294
conformational analysis of, 166
Butanoic acid, 772
Butanone, synthesis of 2-butanol by the nickel-catalyzed hydrogenation of, 214
Butenandt, Adolf, 1044
Butlerov, Alexander M., 627
Butyl alcohol, 132, 502
Butyric acid, 772

C

${ }^{13} \mathrm{C}$ NMR (carbon-13) NMR Spectroscopy, See Carbon-13 NMR (carbon-13) NMR spectroscopy:
C-terminal residues, 1070, 1075
Cahn, R. S., 202
Cahn-Ingold-Prelog system of naming enantiomers, 202-206, 204, 234, 292
Calicheamicin $\gamma 1^{1}$, 491-492
Camphene, 311
Camphor, 571
Cannizzaro reaction, 854
Cantharidin, 817
Capillary electrophoresis, 1130
Capillin, 57
Capsaicin, 48-49, 969
Carbaldehyde, 721
-carbaldehyde, suffix added to aldehydes, 721
Carbamates (urethanes), 804
Carbanion 3, 964
Carbanions, 121-123, 544
relative acidity of, 123
relative basicity of, 123
Carbenes, 366-368
Carbenoids, 368
Carbocations, 131, 163, 256-258
relative stabilities of, 256-258
structure of, 256
Carbohydrates, 283, 979-1026, See also Disaccharides; Monosaccharides; Polysaccharides
amino sugars, 1015
carbohydrate antibiotics, 1018-1019
classification of, 980-981
defined, 980
disaccharides, 980, 1005-1009
Fischer's proof of the configuration of D-(+)-glucose, 1003-1005
glycolipids and glycoproteins of the cell surface, 1016-1017
glycoside formation, 988-990
glycosylamines, 1014-1015
as a major chemical repository for solar energy, 981
monosaccharides, 980, 1003, 1009, 1016-1017, 1019
mutarotation, 987-988
oligosaccharides, 980
photosynthesis and carbohydrate metabolism, 981-982
polysaccharides, 980, 1009-1013
summary of reactions of, 1019
trisaccharides, 980
Carbolic acids, See Phenols
Carbon, 6, 8
origin of, 2
Carbon-13 NMR (carbon-13) NMR spectroscopy, 396, 422-427
broadband (BB) proton decoupled, 423
C chemical shifts, 423-425
chemical shifts, 408-411
DEPT ${ }^{13} \mathrm{C}$ NMR spectra, 425-427
interpretation of, 422
one peak for each magnetically distinct carbon atom, 422-423
spin decoupling, 420-421
Carbon atom, 242-243, 247-248, 248
Carbon compounds:
alkyl halides (haloalkanes), 65-66
amides, 75
carboxylic acids, 73-74
esters, 74
families of, 55-103
functional groups, 62-64
hydrocarbons, 56-59
nitriles, 75
polar and nonpolar molecules, 61-63
polar covalent bonds, 59-61
Carbon dating, 4
Carbon dioxide, 46-47
Carbon tetrachloride, 241
Carbon-carbon double bond, 7, 56, 64, 92
Carbon-carbon single bond, 7
Carbon-carbon triple bond, 7
Carbonic acid, derivatives of, 802-803
Carbonic anhydrase, 1088-1090, 1094
Carbon-oxygen double bond:
nucleophilic addition of ketones to, 732-735
reversibility of nucleophilic additions to, 734
Carbonyl compounds, 821-857
acetoacetic ester synthesis, 835-840
acidity of the α hydrogens of, 822-823
alcohols by reduction of, 546-551
alcohols from, 542-580
condensation and conjugate addition reactions of, 858-896
defined, 543
enamines, synthesis of, 844-850
haloform reaction, 828-829
halogenation at the α carbon, 827-828
Hell-Volhard-Zelinski (HVZ) reaction, 830-831
lithium enolates, 831
oxidation and reduction of, 544
racemization via enols and enolates, 825-827
reactions at the α carbon of, $821-857$
reactions of Grignard reagents with, 560-561
reactions with nucleophiles, 544
substituted acetic acids, synthesis of, 840-843
Carbonyl dichloride, 802-803
Carbonyl functional groups, 542
infrared (IR) spectra of, 92-93
Carbonyl groups, 71-72, 721
nucleophilic addition to, 544
stereoselective reductions of, 550-551
structure of, 543-544
Carbowaxes, 528
Carboxyl group, 73
activation of, 1082-1083
Carboxyl radicals, decarboxylation of, 806
Carboxylate anion, 753, 773-774, 829, 1034
Carboxylate salts, 773
Carboxylic acid anhydrides, 788-789 reactions of, 789
synthesis of, 788-789
Carboxylic acid derivatives, 772, 786
Carboxylic acids, 73-74, 771-820
α-halo, 830-831
acidity of, 127, 773-775
acyl chlorides, 777
acyl compounds:
chemical tests for, 807
relative reactivity of, 785-786
spectroscopic properties of, 779-781
acyl substitution, 784-786
amides, 777-778
carboxylic anhydrides, 777
decarboxylation of, 805-807
dicarboxylic acids, 775-776
esterification, 789-792
esters, 776-777
infrared (IR) spectra of, 94
lactams, 802
lactones, 794-795
nitriles, 778-779
nomenclature, 772-773
oxidation of primary alcohols to, 551
physical properties, 772-773
polyamides, 808
polyesters, 807-808
preparation of, 781-784
reactions of, 809
Carboxylic anhydrides, 777
Carboxypeptidase A, 1091
Carboxypeptidases, 1075-1076
Carcinogenic compounds, 652
Carcinogens, and epoxides, 534
Carotenes, 1039
Carrier ionophore, 532
Carvone, 72, 199, 211
Catalytic antibodies, 1096-1097
Catalytic asymmetric dihydroxylation, 370-371
Catalytic cracking, 143-144
Catalytic hydrogenation, 318-319
Catalytic triad, 1094-1095
Catenanes, 170, 171
Cation-anion forces, 85
Cation-exchange resins, 1071-1072
Cationic carbon, 255
Cationic oxygen atom, 949
Celera Genomics Company, 1135
Cellobiose, 1008
Cellulose, 1009, 1012-1013
Cellulose derivatives, 1013
Cellulose trinitrate, 1013
Chain branching, 484, 484-485
Chain-growth polymers, 483-485
Chain-initiating step, in fluorination, 466, 490
Chain mechanism, 468
Chain-propagating steps, 466, 476, 490
Chain reaction, 466, 482
Chain-terminating (dideoxynucleotide) method, 1128-1131
Chain-terminating steps, 467,476
Chair conformation, 168-169
Chair conformational structures, drawing, 172
Chaires, J. B., 217
Chargaff, Erwin, 1115
Chemical Abstracts Service (CAS), 179
Chemical bonds, 5
Chemical energy, defined, 124
Chemical exchange, 420-421
Chemical shift, 393-394, 423-425
parts per million (ppm) and the δ scale, 394, 919
Chemotherapy, 934-935
Chiral drugs, 215-217
Chiral molecules, 193
Fischer projections, 223-224
not possessing chirality center, 232-233
racemic forms (racemic mixture), 213-214
stereoselective reactions, 214-215
synthesis of, 213-215
Chiral object, defined, 192
Chiral templates, 206
Chirality:
biological significance of, 193, 199-200
importance of, 193
in molecules, 193, 196
and stereochemistry, 192-193
testing for, 201
Chirality centers, 196-199, 471
compounds other than carbon with, 232
molecules with multiple, 220-223
meso compounds, 220-221
naming compounds with, 222-223
molecules with one, 196-199
proceeding with retention of configuration, 227-228
Chitin, 1015
Chloracne, 968
Chlordiazepoxide, 907
Chloride ion, 105, 246-247, 254-255, 279, 785-787
Chlorination:
of alkanes, 464, 469
of benzene, 674
of chlorobenzene, 688
of isobutane, 464
of methane:
activation energies, 471
mechanism of reaction, 465-468
of pentane, 471
of water, 829
Chlorine, 6, 247, 251, 255, 279, 284, 425
electrophilic addition of bromine to alkenes, 344
reaction with alkanes, 463
Chlorine selectivity, lack of, 464-465
Chlorobenzene, 959, 962, 967-968
electrophilic substitutions of (table), 688
hydrolysis of (Dow Process), 947
Chloroethane, 151, 408-409
physical properties, 78
Chlorofluorocarbons (CFCs), 490-491
Chloroform, 241, 828
dipole moment, 63
in drinking water, 830
Chlorohydrin, 365
Chloromethane, 245-248, 250-251, 261
physical properties, 78
Chloromethane molecule, net dipole moment, 62
Chloromethylation, 819
Chlorophyll, 48-49

Chloroplasts, 981
Chlorpheniramine, 907
Cholesterol, 217, 499, 1042-1044
chemistry of, 505
Cholic acid, 1048
Choline, 273
Cholinergic synapses, 908
Chromate ester, formation of, 554
Chromate oxidations, mechanism of, 554
Chromatography using chiral media, 231
Chromic acid oxidation, 554-555
Chylomicrons, 1043
Chymotrypsin, 800, 1079, 1091, 1094-1096
Chymotrypsinogen, 1094
Cialis, 457, 488
Cinnamaldehyde, 720
Cis, 292
cis-1-chloro-3-methylcyclopentane, 251
Cis-trans isomerisers, of cyclohexane derivatives, 225
Cis-trans isomerism, 175-179
cis 1,2-disubstituted cyclohexanes, 178-179
cis 1,3-disubstituted cyclohexanes, 178
cis 1,4-disubstituted cyclohexanes, 176-177
and conformational structures of cyclohexanes, 176-179
trans 1,2-disubstituted cyclohexanes, 178-179
trans 1,3-disubstituted cyclohexanes, 177-178
trans 1,4-disubstituted cyclohexanes, 176, 292
Cis-trans isomers, 39
physical properties, 62
Citrus-flavored soft drinks, chemistry of, 366
Civetone, 162, 724
Claisen condensation:
crossed, 862-863
defined, 859
examples of, 859
intramolecular, 862
mechanism for, 860-861
synthesis of β-keto esters, 846, 859-864
Claisen rearrangement, 944-945, 956, 957, 978
Claisen-Schmidt condensations, 872
Cleavage:
of ethers, 522-523
with hot basic potassium permanganate, 371-372
with ozone, 372-373
Clemmensen reduction, 683-684, 741
Clostridium botulinum, 919
Codeine, 571
Codon, 1124

Coenzymes, 651, 1091, 1110
Coenzymes Q (CoQ), 957-958
Cofactor, 1091
Collagen, 86
Collision-induced dissociation (CID), 1076
Combination bands, 90
Combustion of alkanes, 490
Common names, for compounds, 145
Competitive inhibitor, 505, 1091
Complete sequence analysis, 1075-1076
Compounds, 3
Concept maps, 49, 54, 103, 190
Concerted reaction, 248
Condensation reactions, 808, 858-859
Condensed formula, 15-17
Condensed structural formulas, 17-18 condensed, 17-18
Configurations:
(R) and (S), 228-230
inversion of, 272
relative and absolute, 228-230
Conformational analysis, 162, 163-164
of butane, 166
of ethane, 163-164
hyperconjugation, 163
of methylcyclohexane, 173-174
performing, 162-163
Conformational isomers, 232
Conformational stereoisomers, 166, 227
Conformations, 162
eclipsed, 163
staggered, 163
Conformer, 162
Conjugate acid, 116-117, 829, 832
of ammonia, 117
of methylamine, 117
Conjugate acid, of water, 105
Conjugate acid-base strengths, summary and comparison of, 129
Conjugate addition, 858
of amines, 879,896
of enolates, 879-881
example of, 859
of HCN, 879
Conjugate addition reactions, 859, 869
Conjugate addition, to activate drugs, 881
Conjugate base, 116
Conjugated dienes:
electrophilic attack on, 604-607
stability of, 595-596
Conjugated double bonds:
alkadienes, 591-592
polyunsaturated hydrocarbons, 591-592
Conjugated proteins, 1096
Conjugated unsaturated systems, 581-625
allyl cation, 586-587
allyl radical, 584-585
allylic substitution, 582
1,3-butadiene/z0, 592-594
conjugated dienes:
electrophilic attack on, 604-607
stability of, 595-596
defined, 582
Diels-Alder reaction, 611-618
electron delocalization, 592-594
resonance theory, 587-591
ultraviolet-visible spectroscopy, 598-600
Connectivity, 14-16
Constitutional isomers, 14-16, 145, 195, 206
Constructive interference, 27
Cope elimination, 932, 934
Cope rearrangement, 957
Corey, E. J., 324, 369, 525, 617, 667, 1057
Corey, Robert B., 1087
Corpus luteum, 1045
COSY spectrum, 428-430
Coulson, C. A., 637
Couper, Archibald Scott, 627
Coupling, 1133
Coupling constants, 413, 416-420
dependence on dihedral angle, 416-417
reciprocity of, 416
Coupling reactions, of arenediazonium salts, 924-926
Coupling (signal splitting), 396-398
Covalent bonds, 5
formation of, 6
homolysis and heterolysis of, 458
and Lewis structures, 6-7
multiple, 7
and potential energy (PE), 124-125
Cracking, 143-144
Crafts, James M., 676
Cram, D., 965
Cram, Donald J., 531
Cresols, 945
Crick, Francis, 1114-1115, 1120
Crixivan, 323
Cross peaks, 428-430
Crossed aldol condensations, 871-876
using strong bases, 874-876
using weak bases, 872-874
Crossed aldol reaction, 872-873
Crossed Claisen condensation, 862-863
Crown ethers, 531-532
defined, 531
as phase transfer catalysts, 531
and transport antibiotics, 532
Crutzen, P. J., 490
Cumene hydroperoxide, 948-949
Cumulated double bonds, 591
qus, 592
Curl, R. F., 647

Curtius rearrangement, preparation of amines through, 916
alkylation of ammonia, 908-909
alkylation of azide ion and reduction, 909
alkylation of tertiary amines, 911
Gabriel synthesis, 909-910
Curved arrows, 22
illustrating reactions with, 107
Cyanohydrins, 746-747
preparation of carboxylic acids by hydrolysis of, 782-783
Cyclamate, 1008-1009
Cycles per second (cps), 597
$3^{\prime}, 5^{\prime}$-Cyclic adenylic acid (cyclic AMP), 1110
Cyclic anhydrides, 788
Cyclic compounds, stereoisomerism of, 225-227
Cyclic guanosine monophosphate (cGMP), 488
Cyclizations, via aldol condensations, 876-877
Cycloalkanes, 143
angle strain, 167
bicyclic, naming, 155-156
defined, 143
disubstituted, 175-179
higher, conformations of, 171
naming, 153-155
nomenclature of, 153-154
physical constants, 161
physical properties, 159-162
ring strain, 167
synthesis of, 180-182
torsional strain, 167
Cycloalkenes, 296
retro-Diels-Alder reaction, 439
Cycloalkyalkanes, 154
Cyclobutadiene, 59, 639, 643-644
Cyclobutane, 167
Cycloheptane, 171
Cycloheptatriene, 642-643
Cyclohexane, 184
conformations of, 168-169
substituted, 171-175
Cyclohexane derivatives, 224-225
1,2-dimethylcyclohexanes, 226-227
1,3-dimethylcyclohexanes, 226
1,4-dimethylcyclohexanes, 225
cis-trans isomerisers of, 225
Cyclohexene, 360, 367, 633
Cyclononane, 171
Cyclooctadecane, 171
Cyclooctane, 171
Cyclooctatetraene, 632, 637-638, 644
Cyclooxygenase, 1050
Cyclopentadiene, 611, 640-641
Cyclopentadienyl anion, 640-642, 644, 647

Cyclopentane, 161, 167, 168
derivatives, 225
Cyclopropane, 57, 167
Cysteine, 1062, 1064
Cytochrome P450, 535
Cytosine methylation, 1139
Cytosine-guanine base pair, 1120

D

D-Fructose, 283
D-Glucaric acid, 996, 1005
D-Glucosamine, 1015
d-Tubocurarine, 897-898, 908
D vitamins, 1046-1047
Dacron, 808
Dactylyne, 57, 337-338, 362
D'Amico, Derin C., 854
Darvon (dextropropoxyphene), 216
Darzens condensation, 892
Dash structural formulas, 6-7, 16-17, 49
Daunomycin, 955
Daunorubicin, 217
De Broglie, Louis, 28
Deactivating groups, 685-686
meta directors, 688
ortho-para directors, 688
Deacylases, 1070
Debye, 60
Debye, P. J. W., 60
Decalin, 179-180
Decane, 146
Decarboxylation, 744
of carboxyl radicals, 806-807
of carboxylic acids, 805-807
Deconvolution, 1109-1100
Decyl alcohol, 84
Degenerate orbitals, 29
Degree of unsaturation, use of term, 182fn
Dehydration, 734
of alcohols, 296-297, 297, 346
carbocation stability and the transition state, 306-308
defined, 297
of primary alcohols, 312
mechanism for, 308
rearrangement after, 312
of secondary alcohols, 304-311
mechanism for, 305-306
rearrangements during, 309-311
of tertiary alcohols, 303-307
mechanism for, 305-306
Dehydrobenzene, See Benzyne
Dehydrohalogenation:
of alkyl halides, 275-276, 297-303
bases used in, 276
defined, 275
favoring an E2 mechanism, 297
less substituted alkene, formation of, using bulky base, 300-301
mechanism for, 302
mechanisms of, 276
orientation of groups in the
transition state, 301-302
Zaitsev's rule, 298-300
bases used in, 276
defined, 275
mechanisms of, 276
of $v i c$-dibromides to form alkynes, 315
Delocalization:
and acidity of carboxylic acids, 127
of a charge, 127
of electrons, 137
Delocalization effect, 128
Deoxy sugars, 1014
Deoxyribonucleic acid (DNA), 1106, See also DNA sequence
defined, 1106
determining the base sequence of, 1128-1131
DNA sequencing, 1106, 1129, 1130
by the chain-terminating method, 1129-1131
heterocyclic bases, 1107-1108, 1110, 1113
microchips, 1135
primary structure of, 1113-1114
replication of, 1118-1120
secondary structure of, 1114-1118
DEPT ${ }^{13} \mathrm{C}$ NMR spectra, 425-427, 717, 755, 765, 819
DEPT spectra, 653
Deshielding, protons, 406-407
Designer catalysts, 1017
Destructive interference, 27
Detritylation, 1133
Deuterium atoms, 4
Dextrorotary, 208, 229
Diacyl peroxide, 483
Dialkyl carbonate, 803-804
Dialkyl ethers, 522
Dialkylation, 836
Dialkylcarbodiimides, 798
Diamond, 142
Diamox, 1094
Dianeackerone, 762
Diastereomeric recrystallization, 231
Diastereomers, 194-195, 219, 225, 472, 473
Diastereoselective, use of term 214
Diastereoselective reactions, 550
Diastereotopic hydrogens, 472
Diatomic molecules, 61
1,3-Diaxial interaction, 174-175
of a tert-butyl group, 173
Diazo coupling reaction, 924
Diazonium salts, 918, 920
syntheses using, 921
Diazotization, 918-919
deamination by, 922-923

Diborane, 353
Dibromobenzenes, 628
2,3Dibromopentane, 217-218
Dicarboxylic acids, 776-777
Dichlorocarbene, sysnthesis of, 367
Dicyclohexano-18-crown-6, 531
Dicyclohexylcarbodiimide, 798, 1110
Dieckmann condensation, 862
Dielectric constants, 267
Diels, Otto, 608, 617-618
Diels-Alder reaction, 439, 581, 593, 611-618, 1060, 1097
factors favoring, 609-610
molecular orbital considerations favoring an endo transition state, 621-622
predicting the products of, 614-615
retrosynthetic analysis, using in, 615-616
Diels-Alder reaction, stereochemistry of, 610-614
Diene, 608
Dienophile, 608
Diethyl ether, 499-505, 517, 522
physical properties, 82
Difference bands, 90
Digitoxigenin, 1048
1,2 dihalides, 314
Dihalocarbenes, 367
Dihedral angle, 163, 190, 416-417
1,2-Dihydroxylation, 368
Diisobutylaluminum hydride
(DIBAL-H), 726
Diisopropyl ester, 524
Diisopropylcarbodiimide, 798, 10831084
Diisopropylphosphofluoridate (DIPF), 1096
1,2-Dimethoxyethane (DME), 502
Dimethoxytrityl (DMTr) group, 1133
Dimethyl ether, 69, 502-503
intermolecular forces, 80
Dimethylbenzenes, 629
1,2-Dimethylcyclohexane, 226-227
2,4-Dinitrofluorobenzene, 1074
2,4-Dinitrophenylhydrazones, 743, 753
Diols, 153
Diosgenin, 1048
1,4-Dioxane, 500-501, 502
Dipeptides, 1070, 1075-1077, 1080
Dipolar ions:
amino acids as, 1065-1068
defined, 1065
Dipole, 60
Dipole moments, 60
in alkenes, 63
permanent, 79
and physical properties of molecules, 97
simple molecules, 61
Dipole-dipole forces, 85

Diprotic acid, 106
Dirac, Paul, 27
Direct alkylation:
of esters, 833, 848
of ketones, via lithium enolates, 833
Directed aldol reactions, 871 and lithium enolates, 874-876
Directive effect, 694
Disaccharides, 980, 980-1009
artificial sweeteners, 1008-1009
cellobiose, 1008-1009
defined, 980
lactose, 1002, 1009
maltose, 980-981, 1006-1008
sucrose, 283, 980-981, 1005-1006, 1008
Dispersion forces, 80-81, 85, 88-89, 166
Dispersive IR spectrometers, 87
Dissolving metal reduction, 322
Disubstituted benzenes, orientation in, 707-708
Disubstituted cycloalkanes, 175-179
Divalent carbon compounds, 366-367
DL-amino acids, resolution of, 1069-1070
DNA, See Deoxyribonucleic acid (DNA)
DNA polymerase, 1133
DNA sequence, 1076-1077, 1077, 1106, 1131, 1135-1136
DNA sequencing, by chain-terminating (dideoxynucleotide) method, 1129-1131
Dodecane, 146
Doisy, Edward, 1044
Domagk, Gerhard, 935
Dopamine, 70, 744
Double-bond character, 959
Double bonds, 21, 274, 277, 279
Double-headed arrows (\leftrightarrow), 23-24
Doublets, 397, 412
Dow process, 947
Downfield, use of term, 399
Doxorubicin, 954-955, 1052
Dyes, 925

E

E1 reactions, 276, 278-280
mechanism for, 279
$S_{\mathrm{N}} 1$ reactions vs., 282
E2 elimination, 302, 317
E2 reactions, 275-278
mechanism for, 276-277
$S_{\mathrm{N}} 2$ reactions vs., 280-282
stereochemistry of, 301-303
Eclipsed conformation, 163
Edman degradation, 1073-1074
Edman, Pehr, 1073
Ehrlich, Paul, 935
Eicosane, 146
Eisner, T., 958

Electromagnetic spectrum, 597-598
Electron deficient, 462
Electron-deficient atoms, as Lewis acids, 110
Electron delocalization, 592-594
Electron density surfaces, 36, 257, 263, 268, 277
Electron-donating resonance effect, 692, 696
Electron impact (EI) ionization, 432, 434-435
Electron probability density, 28
Electron-withdrawing effect of a phenyl group, 902
Electron-withdrawing substituents, 690-691
Electronegative groups, deshielding, 423
Electronegativity, 5, 49, 60
Electronegativity differences polarize bonds (principle), 135
Electronic factors, in aldehydes and ketones, 734
Electronic spectra, 600
Electrons, 3-4
configurations, 29-30
delocalization of, 137
donating, as inductive effect, 123
energy of, 43
sharing, 6
withdrawing, as inductive effect, 123
Electrophiles, 112-113, 318, 339, 339-340
as Lewis acids, 340
Electrophilic addition:
of bromine and chlorine to alkenes, 359-363
defined, 339
of hydrogen halides to alkenes, 340-345
Electrophilic aromatic substitutions (EAS), 718, 917, 920, 924, 929
effect of substituents on, 690-699
electron-releasing and electronwithdrawing groups, 690-691
inductive and resonance effects, 691-692
meta-directing groups, 693-694
ortho-para-directing groups, 694-698
ortho-para direction and reactivity of alkylbenzenes, 698-699
table, 689
and thyroxine biosynthesis, 670, 674
Electrospray ionization (ESI), 444-445, 1099
mass spectrometry (MS) with (ESI-MS), 1100
Electrostatic potential, 110
maps, 23, 60-61, 121-128, 318
Elements, 3-4
defined, 3-4
electronegativities of, 5
periodic table of, 2, 4, inside front cover
Eleutherobin, 362
Elimination reactions, 276, 281, 734
of alkyl halides, 275-276
defined, 296
synthesis of alkenes via, 296-297
synthesis of alkynes by, 314-316
Eliminations:
β eliminations, 275
1,2 eliminations, 275
Elion, Gertrude, 1113
Enal, 867
Enamines, 741, 744-745, 746, 757, 844
synthesis of, 844-847
Enantiomeric excess, 212-213, 217, 524
Enantiomerically pure, use of term, 253
Enantiomerism, 231
Enantiomers, 194-196, 202, 206
and chiral molecules, 195
naming, 202-206
optical activity, 206-211
origin of, 211-213
plane-polarized light, 207-208
polarimeter, 208-209
specific rotation, 209-211
Pasteur's method for separating, 231
properties of, 206-207
resolution, methods for, 231
selective binding of drug enantiomers to left- and right-handed coiled DNA, 217
separation of, 231
Enantioselective, 214
Enantioselective reactions, 214, 550
Enantiotopic hydrogen atoms, 472
Endergonic reactions, 248-249
Endo, 611
Endothermic reactions, 125, 460
Energies of activation, 471
Energy, 27
defined, 123
Energy changes, 123-125
Energy state, 27
Enol form, 823
Enol tautomers, 861
Enolate anions, 822-823
Enolate chemistry, summary of, 847-848
Enolates:
of β-dicarbonyl compounds, 834-835
defined, 822
racemization via, 825-827
reactions via, 825-834
regioselective formation of, 832-833
Enols (alkene alcohols), 821-822
racemization via, 834-836
reactions via, 825-834
Enone, 867
Enthalpies, 125

Enthalpy change, 125, 135
Entropy change ($\Delta \mathrm{S}$), 125
Environmentally friendly alkene oxidation methods, 530
Enzyme-substrate complex, 1090
Enzymes, 193, 214-215
defined, 1090
resolution by, 221
Epichlorohydrin (1-(chloromethyl) oxirane), 527, 538
Epimerization, 826-827, 857, 1019
Epimers, 826, 1000
Epoxidation:
alkene epoxidation, 524
Sharpless asymmetric epoxidation, 524-525
stereochemistry of, 525
Epoxides, 523-530
acid-catalyzed ring opening of, 525-526
anti 1,2-dihydroxylation of alkenes via, 528-530
base-catalyzed ring opening of, 526
carcinogens and biological oxidation, 534
defined, 523
epoxidation, 523-525
hidden, 534-535
polyethers from, 528
reactions of, 525-528
synthesis of, 523-525
Equatorial bonds, of cyclohexane, 171-172
Equilibrium, 23
Equilibrium constant ($K_{\text {eq }}$), 113
Erythromycin, 795, 955
Eschenmoser, A., 323, 617
Essential amino acids, 650, 1065
Essential nutrients, 927-928
Essential oils, 1037
Esterifications, 789-792
Fischer, 790
transesterification, 792
Esters, 74, 726, 771-820
from acyl chlorides, 791
aldehydes by reduction of, 727-729
amides from, 797
from carboxylic acid anhydrides, 791-792
direct alkylation of esters, 833, 848
esterification, 789
acid-catalyzed, 790-792
reactions of, 811
saponification, 792-794
synthesis of, 789-792
Estradiol, 200, 946, 1044-1046
Estrogens, 1044
synthetic, 1045
Ethanal, 721
Ethane, 7, 115, 146
bond length, 36
carbon-carbon bond of, 57
conformational analysis of, 163-164
physical properties, 78
radical halogenation of, 468
$s p^{2}$ hybridization, 30
Ethane, structure of, 35-36
Ethanoic acid, 145, 772
Ethanol, 499, 502, 503-504
as a biofuel, 504
as an hypnotic, 504
miscibility of, 84,503
Ethanoyl group, 722
Ethene (ethylene), 7, 57
anionic polymerization of, 483
bond length, 36
physical properties, 36-40, 78
radical polymerization of, 483-485
Ethers, 69, See also Epoxides
boiling points, 501
cleavage of, 522-523
crown, 531-532
cyclic, naming, 500
dialkyl, 522
diethyl ether, 82, 502, 504-505, 522
as general anesthetics, 69
hydrogen bonding, 502
by intermolecular dehydration of alcohols, 518
nomenclature, 500-501
oxygen atom, 499
physical properties of, 501-503
protecting groups, 520-521 silyl, 521
reactions of, 522-523
synthesis of, 517-521
by alkoxymercurationdemercuration, 520
synthesis/reactions, 498-541
trimethylsilyl, 521
Williamson synthesis of, 518-519
Ethinyl estradiol, 57
Ethyl acetate, 74
physical properties, 78
Ethyl alcohol, 67, 153
physical properties, 78
Ethyl bromide, 378
Ethyl group, 65
Ethyl methyl ether, 502
Ethylamine, 70
Ethylbenzene, 699, 701
Ethylene, 504
polymerization of, 483-484
Ethylene oxide, 501
Ethyllithium, 134
Ethyne (acetylene), 7, 57
bond length, 30
physical properties, 78
$s p^{2}$ hybridization, 40-42
structure of, 40-42

Ethynyl group, 159
Ethynylestradiol, 1045
Eucalyptol, 381-382
Eugenol, 70, 627, 946
Exchangeable protons, 421
Excited states, 32
Exergonic reactions, 248
Exhaustive methylation, 992
Exo, 611
Exons, 1121
Exothermic reactions, 125, 460
Extremozymes, 550
$(E)-(Z)$ system for designating, 292-293

F

Faraday, Michael, 627
Farnesene, 385
Fat substitutes, 1032-1033
Fats, 1028-1029
trans, 1032
Fatty acids, 75, 319, 1028-1037
composition, 1029, 1031
omega-3, 1029-1030
reactions of the carboxyl group of, 1035-1036
saturated, 1029
unsaturated, 1029
reactions of the alkenyl chain of, 1036
Fehling's solution, 994
Fibrous tertiary structures, 1089
First-order spectra, 420
Fischer, Emil, 984, 984fn, 1090
Fischer esterifications, 790
Fischer projections, 984-985
defined, 223-224
drawing/using, 223-224
Fleet, G.W. J., 1025
Fleming, Alexander, 444
Floss, H., 1025
Fluoride anion, 268
Fluorination, chain-initiating step in, 466
Fluorine, 674
electronegativity of, 5
reaction with alkanes, 463
Fluorobenzene, 681-682
Fluorocarbons, chemistry of, 82
Fokt, I., 217
Folic acid, 927-928, 1091
Formal charges, 49
calculating, 12-13
summary of, 13
Formaldehyde, 25, 720, 723
bond angles, 72
Formic acid, 73, 145, 772
Formyl group, 722
Fourier transform, 87, 404, 431
Fourier transform infrared (FTIR) spectrometer, 87

Fourier transform NMR spectrometers, 403-404
Fourneau, Ernest, 935
[4+2] cycloaddition, 609
Franklin, Rosalind, 1114
Free energy of activation, 248
Free energy change:
for the reaction, 248
relationship between the equilibrium constant and, 125-126
Free-energy diagrams, 248-249
Free induction decay (FID), 404
Free radicals, See Radicals
Freons, 490
Frequency (ν), 88-89, 597
Frequency of radiation, 88
Friedel, Charles, 676
Friedel-Crafts acylation, 678-680
Clemmensen reduction, 683-684
synthetic applications of, 683-684
Wolff-Kishner reduction, 684
Friedel-Crafts alkylation, 676-678, 701
Friedel-Crafts reactions, limitations of, 680-682
Fructose, 980
Fructosides, 988
Fullerenes, 647-648
Fumaric acid, 386, 789
Functional class nomenclature, 151
Functional groups, 60, 62-64
defined, 62
interconversion (functional group transformation), 271-272
Furan, 649-650
Furanose, 986, 1006, 1019
Furchgott, R. F., 487

G

Gabriel synthesis of amines, 910, 932, 1068
Galactan, 1009
Gamma globulin, 1079
Garfield, S., 137
Gas chromatography (GC), 350, 443, 521
Gates, M., 617
Gauche-butane, 174
Gauche conformations, 165
Gauche interaction, 174
GC/MS (gas chromatography with mass spectrometry), 392
analysis, 443
Gel electrophoresis, 1098-1099, 1105, 1130-1131
Gelb, M. H., 1080fn
gem-diols, 737
Geminal dihalide (gem-dihalide), 316
General statement of Markovnikov's rule, 343-344
Genes:
defined, 1106
location of, for diseases on chromosome 19 (schematic map), 1107
Genetic code, 1077, 1102, 1121, 1123, 1124-1126
Genetics, basics of, 1106
Genomics, 1100
Gentamicins, 1019
Geometric specificity, 1091
Geranial, 385
Gibbs free-energy change, 125 fn
Gibbs, J. W., 125fn
Globular tertiary structures, 1089
Glucan, 1009
Glucoside, 988
Glutamic acid, 977, 1064, 1068, 1072
Glutamine, 1064, 1089, 1102
Glutathione, 1077
Glycans, See Polysaccharides
Glyceraldehyde entantiomer, 229-230
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 651
Glycerol, 502
Glycidic ester, 892
Glycine, 139, 1062
Glycogen, 1009, 1011-1012
Glycolipids, 1016-1017
lipids, 1054
Glycols, 153, 368
Glycolysis, 821, 870
Glycoproteins, 1017-1018
Glycosides:
defined, 988
formation, 988-990
hydrolysis of, 989
Glycosylamines, 1014-1015
Glycylvalylphenylalanine, 1071
Goodman, L., 1112
Gramicidin, 532
Graphene, 185
Graphite, 185
Grignard reaction, mechanism for, 561
Grignard reagents, 558
alcohols from, 561-569
Grignard synthesis, planning, 564-565
preparation of carboxylic acids by carbonation of, 783-784
reactions with carbonyl compounds, 560-561
reactions with epoxides (oxiranes), 560
restrictions on the use of, 567-568
Grignard, Victor, 558
Ground state, 32
Group numbers, atoms, 4

H

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ correlation spectroscopy, 428
Half-chair conformations, 169
Halo alcohol, 364
α-Haloalcohols, 539
Haloalkanes, 65, 76

Haloform reaction, 785, 828-829
Halogen addition, mechanism of, 360-363
Halogen atoms, 240, 243, 274-275, 458
Halogen molecules, 458
Halogen substituents, 688
Halogenation at the α carbon, 831-834
Halogens:
compounds containing, 183
reactions of alkanes with, 463-465
Halohydrin:
defined, 365
formation, 364-366
mechanism for, 365-366
Halomon, 362
Halonium ions, 363
Haloperoxidases, 362
Halothane, 505
Hammond-Leffler postulate, 263-264, 299
Haptens, 1097
Harington, C., 717
Hassel, O., 171
Haworth formulas, 984-985
Haworth, W. N., 765fn
HCN, conjugate addition of, 896
Heat contents, 125
Heat of hydrogenation, 294-295
Heat of reaction, 294-295
Heisenberg uncertainty principle, 30
Heisenberg, Werner, 27
Hell-Volhard-Zelinski (HVZ) reaction, 830-831
Heme, 657, 1096
Hemiacetals, 735-736, 985-988
acid-catalyzed formation, 736
base-catalyzed formation, 737
essential structural features of, 735
formation of, 735
Hemicarcerand, 965
Hemoglobin, 85, 1061, 1079, 1090, 1096, 1098, 1128
Henderson-Hasselbalch equation, 1066
Heparin, 1015
Heptadecane, 146
Heptane, 146
Hertz, H. R., 597fn
Hertz (Hz), 405, 416, 597
Heteroatoms, 60
Heterocyclic amines, 899
basicity of, 902-903
Heterocyclic aromatic compounds, 648-650
Heterogeneous catalysis, 318
Heterogeneous catalyst, 321
Heterolysis, 111, 135
Heterolytically, use of term, 132, 133, 305, 458

Heteronuclear correlation spectroscopy (HETCOR, or C-H HETCOR), 428-430
Heteropolysaccharides, 1009
Heterotopic atoms, 408-409
Hexadecane, 146
Hexane isomers, physical constants of, 146
Hexanoic acid, 772
Hexose, 982, 1006
High-density lipoproteins (HDLs), 1043
High-performance liquid chromatography (HPLC), 231, 603, 1072-1073
High-resolution mass spectrometry, 442-443
Highest occupied molecular orbital (HOMO), 247, 471, 594, 601, 625
Hinsberg test, 926-927, 929
Hirst, E. L., 985fn
Histamine, 744, 907
Histidine, 1065, 1075
Histrionicotoxin, 897, 908
Hitchings, George, 1113
Hodgkin, Dorothy Crowfoot, 444
Hofmann elimination, 904, 931, 934
Hofmann product, 302
Hofmann rearrangement, preparation of amines through, 914-916
Hofmann rule, 300, 931
Homogeneous catalysis, 318
Homologous series, 159
Homologues, 159
Homolysis, 458
Homolytic bond dissociation energies (DH°), 460-463
calculating, 460
defined, 460
using to determine the relative stabilities of radicals, 460-461
Homopolysaccharides, 1009
Homotopic hydrogen atoms, 464
Hooke's law, 88
Horner-Wadsworth-Emmons reaction, 750-751, 763
Host-guest relationship, 531
Hot basic potassium permanganate, cleavage with, 371-372
HSQC, 428
Hückel's rule, 640, 643-645, 646, 660 annulenes, 638-639
aromatic ions, 640-642
diagramming the relative energies of orbitals in monocyclic conjugated systems based on, 637
NMR spectroscopy, 639-640
Huffman, D., 647
Hughes, Edward D., 246
Human Genome Project, 1106, 1130
Human genome, sequencing of, 1100

Human hemoglobin, 1079
Hund's rule, 29, 47, 637
Hybrid atomic orbitals, 32, 43
Hybrid of resonance structures, 22
Hybridization, and acidity, 122-123
Hydrate formation, 737
Hydrating ions, 83
Hydration, of alkenes, 346, 505
Hydrazones, 743
Hydride ions, 119, 544
Hydride shift, 310
Hydroboration:
defined, 352
mechanism of, 353-354
stereochemistry of, 355
synthesis of alkylboranes, 353-355
Hydroboration-oxidation, 505-506, 506
alcohols from alkenes through, 352
as regioselective reactions, 356-357
Hydrocarbons, 56-59, 92, 143, 292
IR spectra of, 91-92
relative acidity of, 123
Hydrogen, 6
anti addition of, 322-323
atomic number, 202
syn addition of, 321-322
Hydrogen abstraction, 458-459
Hydrogen atoms, 256, 262, 266-267, 275-276
classification of, 150
Hydrogen bonds, 79-84, 97, 502-503, 723
formation of, 85
Hydrogen bromide, 106, 275, 374-375, 703
anti-Markovnikov addition of, 481-483
Hydrogen chloride, 106
Hydrogen halides, 510
addition to alkynes, 340
electrophilic addition to alkenes, 339-340
Hydrogen peroxide, 485, 487
Hydrogenases, 215
Hydrogenation, 294-295
of alkenes, 181-182, 318-319, 338
of alkynes, 181-182, 321-323
in the food industry, 319
function of the catalyst, 320-321
Hydrogenolysis, 765
Hydrolysis, 215
acetals, 738
acid-catalyzed, 525, 529-530, 533
of alkylboranes, 355-358, 506
regiochemistry and stereochemistry, 356-358
of amides, 798-800 by enzymes, 800
Hydronium ion, 106
Hydrophilic, use of term, 84, 1034
Hydrophobic effect, 84

Hydrophobic group, 84
Hydrophobic, use of term, 84, 1034
Hydroquinone, oxidation of, 957
Hydroxide ion, 106
Hydroxybenzene, 628, 945
3-Hydroxybutanal, 865, 867, 869, 871
Hydroxyl group, alcohols, 67
Hydroxyproline, 1062, 1072, 1089
4-Hydroxyproline, 1064
Hyperconjugation, 163, 256-257, 263

I

Ibuprofen, 215
Ignarro, L. J., 487
Imines, 741-742, 742
Index of hydrogen deficiency (IHD):
calculating for compounds, 183-184
defined, 182
gaining structural information from, 182-184
Indole system, 650
Induced field, 406-407, 640, 652-653
Induced fit, 1090
Inductive effects, 123, 135, 609-610, 695
and acidity of carboxylic acids, 127-128
of other groups, 129
Inductive electron-withdrawing effects, 128
Industrial styrene synthesis, 701
Infrared (IR) spectroscopy, 54, 86-90
alcohols, 93-94
amines, 94-95
carbonyl functional groups, 92-93
carboxylic acids, 94
defined, 86
dispersive IR spectrometers, 87
Fourier transform infrared (FTIR) spectrometer, 87
functional groups containing heteroatoms, 92-93
hydrocarbons, 91-92
interpreting IR spectra, 90-95
phenols, 93-94
wavenumbers, 87
Infrared spectra, of substituted benzenes, 655-656
Ingold, Christopher K., 202, 246
Inhibitors, aromatase, 1046
Initial ozonides, 373
Initial rates, 246
Insulin, 1078-1079
Integration of signal areas, 396
Interferogram, 87
Intermediates, 104, 254
Intermolecular dehydration:
of alcohols, ethers by, 517-518
complications of, 517-518
Intermolecular forces (van der Waals forces), 79-80, 85
in biochemistry, 85
boiling points, 81-83
dipole-dipole forces, 79
dispersion forces, 80-81
hydrogen bonding, 79-80
organic templates engineered to mimic bone growth, 86
solubilities, 83-84
International Union of Pure and Applied Chemistry (IUPAC), 15fn, 145-146
system for naming alkanes, 146-147
Intramolecular Claisen condensation, 862
Introns, 1121
Inversion, 247, 744
Inversion of configuration, 272
Iodide, 265-266
Iodination, 674, 828
Iodine, reaction with alkanes, 475
Iodomethane, 240, 265, 939
Ion sorting, 443
Ion trapping, 532
Ion-dipole forces, 83, 85
Ionic bonds, 5
Ionic compounds, 6
boiling points, 78
ion-ion forces, 78-79
Ionic reactions, 106, 230-284, 458
carbocations, 131, 163, 256-258
relative stabilities of, 256-258
structure of, 256
E1 reaction, 276, 278-280
E2 reaction, 275-278
free-energy diagrams, 248-249
leaving groups, 245
nucleophiles, 242-245
organic halides, 263, 557, 567, 708, 751
$S_{\mathrm{N}} 1$ reaction, 246-248
mechanism for, 247-248
rate-determining step, 246-247
$S_{\mathrm{N}} 2$ reaction, 245-248
measuring, 245-246
mechanism for, 246-248
stereochemistry of, 272
transition state, 247-251
temperature and reaction rate, 249-250
Ionization, 432
Ionophore antibiotics, 532
Ionophores, 532
Ions, 5
Ipatiew, W., 855
Ipecacuanha, 934
Iron(III) halides (ferric halides), 110
Isoborneol, 311, 571
Isobutane, 145
Isobutyl, 150
Isobutyl alcohol, 502
Isobutyl bromide, 287

Isobutylene, polymerization of, 485
Isoelectric focusing, 1100
Isoelectric point, 1065-1066, 1098, 1100
Isolable stereoisomers, 227
Isolated double bonds, 591-592
Isoleucine, 1088, 1102
Isomaltose, 1022
Isomers, 14
subdivision of, 195
Isooctane, 144
Isopentane, 145
Isoprene units, 1037
Isopropyl, 150
Isopropyl alcohol, 499, 502
condensed structural formula for, 17
equivalent dash formulas for, 16
Isopropyl group, 149
Isopropylamine, 71
Isopropylbenzene, 699
Isotope-coded affinity tags (ICAT), 1102
Isotopes, 4
IUPAC system, for naming alkanes, 145-147

J

Jones reagent, 554-555
Joule (J), 125fn
Jung, Michael E., 854fn

K

Kam, C. M., 1094
Kanamycins, 1019
Karplus correlation, 416
Karplus, Martin, 416
Katz, T., 660
Kekulé, August, 58, 631-632
Kekulé structures, 58 for benzene, 632
Kekulé-Couper-Butlerov theory of valence, 627-628
Ketene, 819
Keto form, 823-824
Keto tautomers, 861
Ketone enolates, b-dicarbonyl compounds by acylation of, 864-865
Ketones, 55-56, 71-72, 720-770
α, β-unsaturated, additions to, 865 , 877-878
acid-catalyzed halogenation of, 827-828
from alkenes, arenes, and 2° alcohols, 729-730
Baeyer-Villiger oxidation, 751-753
base-promoted halogenation of, 827-828
carbonyl group, 543, 721
chemical analyses for, 753
direct alkylation of, via lithium enolates, 833

IR spectra of, 753-754
mass spectra of, 756
from nitriles, 730-731
NMR spectra of, 754-755
nomenclature of, 721-723
nucleophilic addition to the carbonoxygen double bond, 732-735
oxidation of, 761
oxidation of secondary alcohols to, 551
in perfumes, 724
physical properties, 723-724
relative reactivity, 734
spectroscopic properties of, 753-756
summary of addition reactions, 756757
synthesis of, 729-731
Tollens' test (silver mirror test), 753
UV spectra, 756
Ketopentose, 982, 984
Ketose, 982, 994
Kharasch, M. S., 481
Kiliani-Fischer synthesis, 747, 1000-1004
Kilocalorie of energy, 125
Kinetic control, 299
defined, 605
thermodynamic control of a chemical reaction vs., 605-607
Kinetic energy (KE), 123
Kinetic enolate, 832-833
formation of, 832, 864
Kinetic products, 605
Kinetic resolution, 215
Kinetics, defined, 245
Knowles, William S., 216, 370, 524
Kolbe reaction, 956
Kössel, W., 5
Krätschmer, W., 647
Kroto, H. W., 647
Kumepaloxane, 362

L

L-amino acids, 233, 1063-1065, 1069
Lactams, 802
Lactones, 102, 794-795
Lactose, 1002, 1009
Ladder sequencing, 1076
Langmuir-Blodgett (LB) films, 1036-1037
Laqueur, Ernest, 1044
(3E)-Laureatin, 337-338, 362
LCAO (linear combination of atomic orbitals) method, 31
Le Bel, J. A., 20, 231, 1003
Leaving groups, 241-242
defined, 241-242, 245
ionization of, 263-264
nature of, 269-271
Lecithins, 1051

Left-handed coiled DNA, selective binding of drug enantiomers to, 217
Lehn, Jean-Marie, 531
Less substituted alkene:
defined, 300
formation of, using bulky base, 300301
Leucine, 1088, 1102
Leveling effect, 115fn
of a solvent, 313
Levitra, 457, 488
Levorotary, 208
Lewis acid-base reactions, 135, 137
Lewis acid-base theory, 109
Lewis acids, 102-104
as electrophiles, 110,340
Lewis acids and bases, 109-111
Lewis bases, 102-104 as nucleophiles, 112
Lewis, G. N., 5, 109-111
Lewis structures, 22, 49 and covalent bonds, 6-7
defined, 7
rules for writing/drawing, 7-8
Ligands, BINAP, 217, 232
Light, as electromagnetic phenomenon, 207
Like charges repel (principle), 47, 184
Limonene, 199, 385
Linalool, 853
Lindlar's catalyst, 322
Linear polymers, 1070
Linoleic acid, 489
Lipase, 215
Lipid bilayers, 1051
Lipids, 532, 820, 1027-1059
defined, 1028
fatty acids, 75, 319, 1035-1036
glycolipids, 1054
in materials science and bioengineering, 1036-1037
phosphatides, 1051-1053
phospholipids, 1050-1055
prostaglandins, 1049-1050
sphingosine, derivatives of, 1053-1054
steroids, 1040-1049
terpenes, 1037
terpenoids, 1037
triacylglycerols, 1028-1035
waxes, 1054
Lithium aluminum hydride, 547
overall summary of, 548-549
Lithium diisopropylamide (LDA), 831, 864, 875
Lithium, electronegativity of, 5
Lithium enolates, 831-834
direct alkylation of ketones via, 832833
and directed aldol reactions, 874-876
regioselective formation of enolates, 832
Lithium reagents, use of, 568
Lithium tri-tert-butoxyaluminum hydride, 726
Lobry de Bruyn-Alberda van Ekenstein transformation, 990
Lock-and-key hypothesis, 1090
London forces, See Dispersion forces
Lone pairs, 38
Loop conformations, 1086, 1088
Loschmidt, Johann Josef, 631fn
Lovastatin, 48-49, 505
Low-density lipoproteins (LDLs), 1043
"Low-resolution" mass spectrometers, 442
Lowest occupied molecular orbital (LOMO), 601
Lowest unoccupied molecular orbital (LUMO), 247
Lucas, H. J., 539
Lucite, 426, 485
Lycopene, 601
Lycopodine, 894
Lysine, 870, 1067-1068, 1072
isolectric point of, 1068
Lysozyme, 1061, 1076
mode of action, 1092-1094

M

Macrocyclic lactones, 795
Macromolecules, 483
Magnetic resonance, 392
Magnetic resonance imaging (MRI), 391, 431
MALDI mass spectrometry, 444
MALDI (matrix-assisted laser desorption ionization, 1100
Maleic acid, 386
Malonic acids, 806
Malonic ester synthesis, 955
of substituted acetic acids, 840-843
Maltose, 980-981, 1006-1008
Mannich bases, 882
Mannich reaction, 882
Mannosides, 988
Map of electrostatic potential (MEP), 53, 60-61
Markovnikov additions, 341
anti-, 345
exception to, 345
regioselective reactions, 344
Markovnikov regioselectivity, 505-506
Markovnikov, V., 341
Markovnikov’s rule, 340-345, 481
defined, 341
general statement of, 343-344
theoretical explanation of, 341-342
Masamune, S., 1009

Mass spectrometry (MS), 426-443, 1127
base peak, 432
of biomolecules, 444
determining molecular formulas and molecular weights using, 442-443
electron impact (EI) ionization, 432, 434-435
electrospray ionization (ESI), 444-445, 1099
electrospray ionization with mass spectrometry (ESI-MS), 1100
fragmentation by cleavage of two bonds, 439-440
fragmentation to form resonancestabilized cations, 437-439
GC/MS (gas chromatography with mass spectrometry), 443
high-resolution, 442-443
ion sorting and detection, 443
ion trap mass analyzers, 532
matrix-assisted laser desorptionionization (MALDI), 444
molecular formula, determining, 442-443
molecular ion, 432-433
and isotopic peaks, 440
peptide sequencing using, 1076-1077
polypetides/proteins, 1076-1077
quadrupole mass analyzer, 444
time-of-flight (TOF) mass analyzer, 444
Matrix-assisted laser desorptionionization (MALDI), 444, 1100
Mauveine, 136-137
Maxam, A., 1129
Mayo, F. R., 481
McLafferty rearrangement, 440
Meisenheimer intermediate, 960
Melting point, 63, 77
Menthol, 498
Mercapto group, 650
6-Mercaptopurine, 650, 1113
Merrifield, R. B., 820, 1084
Mescaline, 906-907
Meso compounds, 213-214
Messenger RNA (mRNA) synthesis, 1121, 1124-1125
synthesis-transcription, 1121
Mesylates, 514-516
meta-Chloroperoxybenzoic acid (MCPBA), 523
Meta directors, 688
activating groups, 685-686
deactivating groups, 688
Meta-disubstituted benzenes, 656
Metarhodopsin, 328
Meth-Cohn, O., 137
Methane, 6, 143, 146
chlorination of: activation energies, 471
mechanism of reaction, 465-468
orbital hybridization, 32
physical properties, 78
structure of, 32-34
tetrahedral structure of, 20
valance shell of, 44-45
Methanide ion, 121
Methanide shift, 310
Methanogens, 56
Methanoic acid, 772
Methanol, 242, 246, 260, 265, 267, 276, 503, 509
miscibility of, 84, 503
physical properties, 502
Methanolysis, 260-261
Methanoyl group, 722
Methionine, 273, 1054, 1088
synthesis of, 1068
Methoxide anion, 265
Methyl alcohol (methanol), 67, 153
Methyl carbocation, 257, 263
Methyl cyanoacrylate, 487
Methyl group, 65
Methyl halides, 261-262, 836
Methyl ketones, 755
converting to carboxylic acids, 829
synthesis of, 836-837
Methyl salicylate, 627, 946
Methylaminium ion, 117
Methylbenzene, 479, 628
Methylcyclohexane, 184
conformational analysis of, 173-174
Methyldopa, 215
Methylene chloride, 241
Methylene group, 65
Methylene, structure and reactions of, 367
1-methylethyl, 149
Methylheptadecane, 161
2-methylhexane, retrosynthetic analysis for, 326
Methyloxirane, 526
2-methylpropene, addition of HBr to, 343
Mevalonate ion, 505
Micelles, 1033-1034
Michael additions, 845, 879-881
Michael, Arthur, 879
Michelson interferometer, 87
Micrometers, 87
Micron, 597
Miller, S., 233
Millimicron, 597
Mirror planes of symmetry, 201, 234
Mitomycin, 881, 1127
Mitscherlich, Eilhardt, 627
Mixed triacylglycerold triacylglycerol, 1029
Molar absorptivity, 600
Molecular formulas, 14
determining, 442-443
gaining structural information from, 182-184
Molecular handedness, 199
Molecular ion:
depicting, 432-433
and isotopic peaks, 440
Molecular orbitals (MOs), 30-32, 43, 47, 49
antibonding, 43
bonding, 31
explanation of the structure of benzene, 635-636
theory, 47
Molecular oxygen, 487
Molecular recognition, 531
Molecular structure determines properties (principle), 97
Molecularity, 246
Molecules:
composition of, 6
with Nobel Prize in synthetic lineage, 617
Molina, M. J., 490
Molozonides, 373
Monensin, 532
Monoalkylation, of an amines, 914
Monomers, 483
Mononitrotoluenes, 686
Monosaccharides, 283, 1009, 1016-1017, 1019
aldaric acids, 995-996
alditols, 999
aldonic acids, synthesis of, 995-996
bromine water, 995-996, 1002, 1007
carbohydrate synthesis, use of protecting groups in, 991
classification of, 980-981
conversion to cyclic acetals, 993
conversion to esters, 993
D and L designations of, 983-984
deoxy sugars, 1014
enolization, 990-991
ethers, formation of, 991-993
isomerization, 990
Kiliani-Fischer synthesis, 747, 1000-1004
nitric acid oxidation, 995-996
oxidation reactions of, 994-998
Benedict's reagents, 994-995
Tollens' reagents, 994-995
oxidative cleavage of polyhydroxy compounds, 997-998
periodate oxidations, 997-998
reducing sugars, 994-995
Ruff degradation, 1002
structural formulas for, 984-987
tautomerization, 990-991
uronic acids, 1013
Monosaccharides derivatives, 1009-1110
Monosubstituted benzenes, 655

Montagnon, T., 137
Montreal Protocol, 491
Moore, S., 1072
Morphine, 617, 906-907
MRI (magnetic resonance imaging) scan, 391, 431
MOs, See Molecular orbitals (MOs)
MudPIT (multidimensional protein identification technology), 1100
Mullis, Kary B., 1133
Multidimensional FTNMR spectroscopy, 428
Multiple covalent bonds, 7
Multiple halogen substitution, 463-464
Murad, F., 487
Murchison meteorite, 233
Muscalure, 161, 326
Muscle action, chemistry of, 166
Muscone, 724
Mutagens, 1120
Mutarotation, 987-988
Mycomycin, 387
Myelin, 1054
Myelin sheath, 1027
Mylar, 808
Myoglobin, 1089-1090
Myosin, 166, 1088
Myrcene, 385

N

N -acetyl-d-glucosamine, 1015
N-acetylglucosamine, 1015, 1017, 1092
N -acetylmuramic acid, 1015, 1092
N-acylamino acids, 1070
N-bromosuccinimide (NBS), 479, 712
N -methylmorpholine N -oxide (NMO), 369
N -nitrosoamines, 919
N-terminal, 1070, 1073-1074
$\mathrm{NAD}^{+}, 651-652$
NADH, 651-652
Naming enantiomers, 202-206
Nanoscale motors and molecular switches, 170
Nanotubes, 185, 648
Naphthalene, 646
Naphthols, 945
Naproxen, 216
Natta, Guilio, 484
Natural products, and treatment of disease, 48-49
Natural products chemistry, 3
Natural rubber, 1040
Naturally occurring phenols, 946
Nature prefers disorder to order (principle), 136
Nature prefers states of lower potential energy (principle), 135-136, 184
Nature tends toward states of lower potential energy (principle), 47

Neighboring-group effects, 539
Neighboring-group participation, 289
Neomycins, 1019
Neopentane, 145-146, 151, 465
boiling point, 81
Neopentyl group, 150
Neopentyl halides, 262, 265
Neurotransmitters, 908
Neutrons, 3-4
Newman projection formula, 162
Newman projections, 162-163
Niacin (nicotinic acid), 101, 907, 1091
Nicolaou, K. C., 491, 525, 609, 617, 623, 759, 813, 970
Nicotinamide adenine dinucleotide, 651-652
Nicotine, 70, 907
Ninhydrin, 1072
Nitrate ion, 12
Nitrates, 919
Nitric acid, 10, 674-675
oxidation, 995-996
Nitric oxide, 457, 488
Nitriles, 75, 726
acidic hydrolysis of, 801
aldehydes by reduction of, 728
basic hydrolysis of, 801
ketones from, 729-730
preparation of carboxylic acids by hydrolysis of, 782-783
reactions of, 812
Nitrites, 919
Nitrogen, compounds containing, 184
Nitrogen inversion, 901
Nitrous acid, reactions of amines with, 918-920
primary aliphatic amines, 918
primary arylamines, 918-919
secondary amines, 920
tertiary amines, 920
Nitrous oxide (laughing gas), 69
Noble gas structure, 25
Nodes, 27, 43
Nonactin, 532
Nonadecane, 146
Nonane, 146
Nonaqueous solutions, acids and bases in, 133-134
Nonaromatic compounds, 643-644
Nonaromatic cyclohexadienyl carbocation, 678
Nonbenzenoid aromatic compounds, 647-648
Nonbonding pairs, 44
Nonivamide, 969
Nonpolar compounds, boiling point, 82
Nonpolar molecules, 61-63
Nonreducing sugars, 994
Noradrenaline, 906-907
Norethindrone, 68, 1045

Novestrol, 1045
Noyori, R., 216, 370, 524
Nuclear magnetic resonance (NMR) spectrometry, 385-426, 1127
${ }^{13}$ C NMR (carbon-13) NMR Spectroscopy, 422-427
broadband (BB) proton decoupled, 423
chemical shifts, 423-425
DEPT ${ }^{13}$ C NMR spectra, 425-427
interpretation of, 422
one peak for each magnetically distinct carbon atom, 422-423
chemical shift, 393-394, 423-425
parts per million (ppm) and the δ scale, 394, 405
chemical shift equivalent, 408-411
heterotopic atoms, 408-409
homotopic hydrogens, 408-409
complex interactions, analysis of, 418-420
conformational changes, 421-422
coupling (signal splitting), 396-398
defined, 391
diastereotopic hydrogen atoms, 410-411
enantiotopic hydrogen atoms, 410-411, 472
first-order spectra, 420
Fourier transform NMR spectrometers, 403-404
${ }^{1} \mathrm{H}$ NMR spectra, 412, 416, 417-420, 422
magnetic resonance imaging (MRI), 391, 431
multidimensional FTNMR spectroscopy, 428
nuclear spin, 401-403
proton NMR spectra:
complicating features, 417-418
interpreting, 398-401
and rate processes, 420-422
protons, shielding/deshielding, 406-407
second-order spectra, 420
signal areas, integration of, 396
signal splitting, 396-398
spin decoupling, chemical exchange as cause of, 420-421
spin-spin coupling, 411-420
coupling constants, 416-420
origin of, 411
splitting tree diagrams, 412-416
vicinal coupling, 411-412
splitting patterns, recognizing, 415
two-dimensional NMR (2D NMR) techniques, 428-431
${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum, 428-430
heteronuclear correlation cross-peak correlations, 430-431

Nuclear magnetic resonance (NMR) spectrometry (cont.)
heteronuclear correlation spectroscopy (HETCOR, or C-H HETCOR), 428-430
Nuclear magnetic resonance (NMR) spectrum, 392-398
Nuclear spin, 401-403
Nucleic acids, 1105-1139
water solubility, 85
Nucleophiles, 241, 242-245, 318, 508, 511-512, 522, 799, 831
in acylation reactions, 917
defined, 242
reactions of carbonyl compounds with, 544
Nucleophilic addition, 544
Nucleophilic substitution, 239
reaction, 273-274
substrates for, 515
Nucleophilic substitution reactions, 273-274
allylic and benzylic halides in, 708-709
Nucleophilicity, 265-266
basicity vs., 265-266
Nucleosides, 1014-1015
Nucleotides/nucleosides, 1106
laboratory synthesis, 1110-1113
medical applications, 1113
silyl-Hilbert-Johnson nucleosidation, 1110, 1137
Number of double-bond equivalencies, use of term, 182fn
Nylon, 808

Octadecane, 146
Octadecanoic acid, 772
Octane, 146
Octet rule, 5
exceptions to, 11-12
Oils, 1029, 1031
Olah, George A., 256
Olefiant gas, 292
Olefins, 292
Oleksyszyn, J., 1094
Olestra, 1032-1033
Oligonucleotides, laboratory synthesis of, 1131-1133
Oligopeptides, 443, 1070
Oligosaccharides, 980
Olympiadane, 171
Omega-3 fatty acids, 1029-1030
Opposite charges attract (principle), 47, 97, 135
and acid-base reactions, 110
Optical activity:
origin of, 211-213
plane-polarized light, 207, 212, 231, 234, 238
polarimeter, 207, 208-209, 219, 231
racemic forms (racemic mixture),

$$
212-214
$$

and enantiomeric excess, 212-213
specific rotation, 209-211
Optical purity, 213
Optical rotatory dispersion, 210
Optically active compounds, 207
Orange II, 925
Orbital hybridization, 32
Orbital overlap stabilized molecules (principle), 47
Orbitals, 28
Organic chemistry:
defined, 2
development of the science of, 3
oxidation-reduction reactions in, 545-546
structural formulas, writing/ interpreting, $15-18$
Organic compounds:
as bases, 130-131
families of, 76-77
ion-ion forces, 78-79
molecular structure, 77-85
physical properties, 77-85
Organic halides, 263, 557, 708, 751
analogous, 567
as herbicides, 968
Organic molecules, 4
Organic reactions, 104-141
acid-base reactions, 120-123
predicting the outcome of, 118-120
and the synthesis of deuterium and tritium-labeled compounds, 134-135
acidity, effect of the solvent on, 130
acids and bases in nonaqueous solutions, 133-134
Brønsted-Lowry acids and bases, 105-106
carbanions, 111-113
carbocations, 111-113
carboxylic acids, acidity of, 127-128
covalent bonds:
homolysis and heterolysis of, 453
and potential energy, 124-125
electrophiles, 112-113
eliminations, 275
energy changes, 123-125
illustrating using curved arrows, 107
intermediates, 104
Lewis acids and bases, 109-111
mechanisms, 104-141
nucleophiles, 112-113
reaction mechanism, 104
rearrangements, 104
relationship between the equilibrium constant and the standard freeenergy change, 125-126

Organic synthesis, 323-329
defined, 323
planning, 324
retrosynthetic analysis, 324-325
Organic templates, engineered to mimic bone growth, 86
Organic vitamin, 3
Organolithium compounds, 557-561 reactions of, 557
Organomagnesium compounds, 558-561 reactions of, 558-561
Organometallic compounds, 556-557
Orientation, 611-613, 685, 696
Orlon, 485
Ortho-disubstituted benzenes, 656
Orthogonal protecting groups, 1084
Ortho-para direction, and reactivity of alkylbenzenes, 698-699
Ortho-para directors, 685, 688, 694-698, 917
Osazones, 999-1000
Osmium tetroxide, 368, 368-369, 371
Oxetane, 500
Oxidation, 1133
of alcohols, 551-556
of alkenes, 369, 781
environmentally friendly methods, 530
of alkylboranes, 355-358
regiochemistry and stereochemistry, 356-358
defined, 551
oxidation states in organic chemistry, 545-546
Swern, 552-553, 724-725
Oxidation-reduction reaction, 276
Oxidative cleavage, 371-372, 376
of alkenes, 371-373
of alkynes, 375
Oxidizing agents, 545, 703, 706, 715
Oximes, 743, 913-914
reducing to amines, 933
Oxirane, 500, 502
Oxonium cation, 733
Oxonium ion, 130
Oxonium salts, 522
Oxygen:
atomic number, 202
compounds containing, 184
as a radical, 487
Oxymercuration-demercuration, 506
alcohols from alkenes from, 349-352
defined, 349, 353, 505
mechanism of oxymercuration, 350-352
rearrangements, 350
regioselectivity of, 349-350
Oxytocin, 1077-1078
Ozone, cleavage with, 372-373

Ozone depletion and chlorofluorocarbons (CFCs), 490-491
Ozonides, 373
Ozonolysis, 372 of an alkene, 373

P

P-2 catalyst, 321
p-Aminobenzoic acid, 928
p-Nitrophenol, 953-954
p orbitals, 29
p53 (anticancer protein), 1079-1080
Paclitaxel (Taxol), 370
Palindromes, 1129
Pallidol, 711
Pantothenic acid, 938, 1091
Para-disubstituted benzenes, 656
Paraffins, 180
Parent compound, 152
Partial hydrolysis, 1075 and sequence comparison, 1076-1077
Pasteur, Louis, 231
method for separating enantiomers, 231
Pauli exclusion principle, 29, 31, 47
Pauling, I., 1117
Pauling, Linus, 1087
Pedersen, Charles J., 531
Penicillamine, 215
Penicillinase, 802
Penicillins, 802, 812-813
Pentadecane, 146
Pentalide, 162
Pentane, 144, 146
insolubility in water, 503
radical chlorination of, 471
stereochemistry of chlorination at C2 of, 472
Pentanoic acid, 371, 772, 781, 783
Pentose, 982, 1114
Pentyl alcohol, 140
Peptide bonds, 1070
Peptide linkages, 1061, 1070
Peptide synthesizers, 820, 1085
Peptides, 98, 191, 443, 778, 798, 908, 1070
chemical synthesis of, 820
defined, 820
synthesis of, 798, 803, 813, 820
Perfumes:
aldehydes in, 724
ketones in, 724
Pericyclic reactions, 608-609, 957
Periodic table of the elements, 2,4
Perkin, Jr., W., 852
Perkin, William Henry, 136-137
Permanent dipole moment, 79
Peroxides, 458
Peroxy acid (peracid), 523
Perspex, 485

Petroleum:
refining, 143-144
as source of alkanes, 143
typical fractions obtained by distillation of, 144
Pettit, R., 639
Pfizer, 48-49
Phase sign, 27
Phase transfer catalysts, 531
Phenacetin, 818
Phenanthrene, 645-647
Phenanthrols, 945
Phenols, 68, 499, 628, 687, 740, 773, 807, 944-978
as acids, reactions of, 949-952
boiling point, 947
bromination of, 953
defined, 945
distinguishing/separating from alcohols and carboxylic acids, 951-952
${ }^{1}$ H NMR spectra, 966-967
industrial synthesis, 947-949
infrared (IR) spectra of, 93-94
Kolbe reaction, 956
laboratory synthesis, 947
mass spectra, 967
monobromination of, 953
naturally occurring, 946
nitration of, 953-954
nomenclature of, 945-946
physical properties of, 946
properties of, 947
reactions of the benzene ring of, 953-954
reactions with carboxylic acid anhydrides and acid chlorides, 952
spectroscopic analysis of, 966-970
strength of, as acids, 969-971
structure of, 945-946
sulfonation of, 954
synthesis of, 947-949
in the Williamson synthesis, 952
Phenyl groups, 65, 629
Phenyl halides, 241
unreactivity of, 274-275
Phenylalanine, 650, 1008, 1063
Phenylalanine hydroxylase, 650
Phenylation, 965-966
Phenylethanal, infrared spectrum of, 754
Phenylethene, 485, 700
2-Phenylethylamines, 907
Phenylhydrazones, 743
Phenylosazones, 999, 1021
Pheromones, 161-162
Phillips, S. E., 1090
Phosgene, 803
Phosphatides, 1051-1053
Phosphatidic acid, 1050
Phosphatidylserines, 1051
Phosphodiesterase V (PDE5), 488

Phospholipids, 1050-1055
Phosphoramidite, 1132
Phosphoranes, 748
Phosphoric acid, 1050
Phosphorus pentoxide, 800
Phosphorus tribromide, 510
Phosphorus ylides, 748
Photons, 597
Photosynthesis and carbohydrate metabolism, 981-982
Phthalic acid, 776
Phthalimide, 797, 909-910
Phytostanols, 1044
Phytosterols, 1044
$\operatorname{Pi}(\pi)$ bonds (π bonds), 37, 44
Picric acid, 951
Pitsch, S., 1111
Plane of symmetry (mirror plane), 201
Plane-polarized light, 207-208, 210-212, 231, 234, 238
Plaskon, R. R., 1094
Plasmalogens, 1051
Plexiglas, 426, 485
Polar aprotic solvents, 266-267
Polar bonds, electronegativity differences as causes of, 97
Polar covalent bonds, 59-61
maps of electrostatic potential (MEP), 60-61
as part of functional groups, 60
Polar molecules, 61-63
Polar protic solvents, 266, 267
Polarimeter, 207, 208-209, 219, 231
Polarizability, 268, 280
and basicity, 281
Polarized bonds underlie inductive effects (principle), 135
Polyacrylonitrile, 485
Polyamides, 808, 1061
Polybrominated biphenyls and biphenyl ethers (PBBs and PBDEs), 968969
Polybromodiphenyl ethers (PBDEs), 969
Polychlorinated biphenyls (PCBs), 961, 968
Polycyclic alkanes, 179-1809
Polycyclic aromatic hydrocarbons (PAH), 645-646
Polyesters, 807-808
Polyethers, from epoxides, 528
Polyethylene, 457, 483-485
Polyethylene glycol (PEG), 501
Polyethylene oxide (PEO), 501
Polyhydroxy compounds, oxidative cleavage of polyhydroxy compounds, 997-998
Polyketide anticancer antibiotic biosynthesis, 954-955
Polymer polypropylene, 57

Polymerase chain reaction (PCR), 1133-1135
Polymerizations, 483-485
Polymers, defined, 483
Polymethyl methacrylate, 485
Polypeptides, 1070-1086, 1098-1100
analysis of, 1098-1100
hydrolysis, 1071-10734
as linear polymers, 1070
primary structure of, 1073-1077
C-terminal residues, 1075
complete sequence analysis, 1075-1076
Edman degradation, 1073-1074
examples of, 1077-1080
peptide sequencing using mass spectrometry and sequence databases, 1076-1077
Sanger N-terminal analysis, 1074-1076
purification of, 1098
synthesis of, 1080-1086
activation of the carboxyl group, 1082-1083
automated peptide synthesis, 1084-1086
peptide synthesis, 1083-1084
protecting groups, 1081-1082
Polypropylene, 485
Polysaccharides, 1009-1013
cellulose, 1009, 1012-1013
cellulose derivatives, 1013
defined, 1009
glycogen, 1009, 1011-1012
heteropolysaccharides, 1009
homopolysaccharides, 1009
starch, 1009-1011
water solubility, 85
Polystyrene, 485, 701
Polytetrafluoroethene, 485
Polyunsaturated fats/oils, 488, 1029
Polyunsaturated hydrocarbons, 591-592
Polyvinyl chloride (PVC), 485
Positive entropy change, 136
Potassium dichromate, 136
Potassium permanganate, 368, 371, 555
Potential energy diagram, 164
Potential energy (PE):
and covalent bonds, 124-125
defined, 123-124
Powers, J. C., 1094
Precursors, identifying, 325
Pregnenolone, 571
Prelog, V., 202
Prenylated proteins, 1080
Presnell, S., 1094
Priebe, W., 217
Primary alcohols, 67
chemical test for, 555
dehydration of, 303-304
mechanism for, 308
rearrangement after, 312
preparation of carboxylic acids by oxidation of, 781-782
Primary alkyl halide, 65
Primary amines:
addition of, 741-746
preparation of: through Curtius rearrangement, 932-933
through Hofmann rearrangement, 914-915
through reduction of nitriles, oximes, and amides, 916
through reductive amination, 911-913
Primary carbocations, 257, 263
Primary carbon, 67, 151
Primary carbon atom, 65
Primary halide, 287
Primary structure:
of polypeptides and proteins, 1073-1077
of a protein, 1061, 1077-1080, 1086
Primer, 1129-1130
Prochirality, 550-551
Progesterone, 571, 1045
Progestins, 1044-1045
Proline, 1062, 1064, 1072, 1089, 1091
Propane, 146
Propene (propylene), 36, 56-57, 156, 340
Propyl alcohol, 502
structural formulas for, 15
Propyl group, 149
Propylene glycols, 502, 504
Propylene oxide alginates, 14
Prostaglandins, 1049-1050
Prosthetic group, 1091, 1096
Protecting groups, 570, 706-707
acetals, 739-740
amino acids, 1081-1082
ethers, 520-521
orthogonal, 1084
tert-butyl ethers, 520
Proteins, 1060, 1094-1102
analysis of, 1098-1100
conjugated, 1096-1098
defined, 1070
prenylated, 1080
primary structure of, 1061, 1077-1080, 1086
C-terminal residues, 1070
complete sequence analysis, 1075-1076
Edman degradation, 1097-1098
examples of, 1077-1080
peptide sequencing using mass spectrometry and sequence databases, 1076-1077

Sanger N-terminal analysis, 1075-1076
proteomics, 1076, 1100-1102
purification of, 1098-1100
quaternary structure, 1090
secondary structure, 1086-1089
synthesis of, 1080-1086
activation of the carboxyl group, 1082-1083
protecting groups, 1081-1082
tertiary structure, 1089-1090
water solubility, 85
Proteome, 1100-1102, 1107
Proteomics, 443, 1076, 1100-1102, 1136
Protic solvent, 130, 267-268
Proton NMR spectra:
complicating features, 417-418
interpreting, 398-401
and rate processes, 420-422
Protonated alcohol, 130, 132-133, 259, $305,307,508,511,512,736$
Protonolysis, of alkylboranes, 359
Protons, 3-4
shielding/deshielding, 406-407
Pseudoephedrine, 120
Purcell, Edward M., 392
Purine-purine base pairs, 1115
Pyramidal inversion, 901
Pyranose, 986, 988
Pyrene, 646
Pyridine, 648-649
Pyridinium chlorochromate (PCC), 555
Pyridoxal phosphate (PLP), 744
Pyridoxine (vitamin B_{6}), 744
Pyrimidine, 650, 899, 903, 927, 1108
Pyrimidine-pyrimidine base pairs, 1115
Pyrolysis, 1040
Pyrrole, 648-649

Qu, X., 217
Quadrangularin A, 711
Quadrupole mass analyzer, 444
Quanta, 597
Quantum mechanics, and atomic structure, 27
Quaternary ammonium hydroxides, 931
Quaternary ammonium salts, 901, 904
Quaternary structure, of a protein, 1086-1090
Quinine, 136-137, 444, 906, 934
Quinones, 957-958

R

Racemic forms (racemic mixture), 212-214, 471
and enantiomeric excess, 212-213
and synthesis of chiral molecules, 213-214

Racemization, 258-260
partial, 258
via enols and enolates, 825-831
Radical addition to a π bond, 459
Radical addition, to alkenes, 481-483
Radical anion, 322
Radical cation, 432-434
Radical chain reaction, 481, 948
Radical halogenation, 463-465
Radical polymerization, of alkenes, 484-485
Radical reactions, homolytic bond dissociation energies $\left(\mathrm{DH}^{\circ}\right)$, 460-463
Radicals, 457-497
alkanes:
chlorination of, 464-465
combustion of, 490
alkyl radicals, geometry of, 471
antioxidants, 489
autoxidation, 488-489
bromine, selectivity of, 471
chain reaction, 466-467
chlorination:
of alkanes, 464
of methane, 465-468
chlorine selectivity, lack of, 464-465
formation/production of, 458
homolytic bond association energies, calculating, 460
methane chlorination, 465-468
activation energies, 471
molecular oxygen and superoxide, 487
multiple halogen substitution, 463-464
nitric oxide, 457, 488
radical halogenation, 463-465
radical polymerization of alkenes, 484-485, 496
reactions of, 459
tetrahedral chirality centers, 614, 1043
using homolytic bond dissociation energies to determine the relative stabilities of, 460-461
Random coil arrangement, 1089
Raney nickel, defined, 741
Ras proteins, 1080
Rate constant, 246
Rate-determining step, 254, 341
Rate-limiting step, 269
(R)-carvone, 720

Reaction coordinate, 248
Reaction mechanism, defined, 104
Rearrangements, 104
alkenes, 348-349
during dehydration of primary alcohols, 312
during dehydration of secondary alcohols, 309-311
McLafferty rearrangement, 440
organic reactions, 104, 107, 109-111
oxymercuration-demercuration, 350
Receiver coil, 403
Reducing agent, 545
Reducing sugars, 994-995
Reduction, 319
defined, 544
dissolving metal reduction, 322
Reductive amination:
mechanism for, 912
preparation of primary, secondary, and tertiary amines through, 911-913
Regioselectivity, of oxymercurationdemercuration, 349-350
Reinforcing effect, 28
Relative configuration, 228-230
Relative potential energy, 124
Relative probability, 27
Relative reactivity, aldehydes vs. ketones, 734
Relative stability, 123
Relaxation process, 431
Relaxation times, 431
Replacement nomenclature, defined, 500
Replacement reactions, of arenediazonium salts, 920-923
Resolution, 901, 905-906
by enzymes, 221, 231
kinetic, 215
Resonance, 23
Resonance contributors, 634
Resonance effects, 136, 692, 694
Resonance energy, 633, 635
Resonance stabilization, 24-25, 588-590
Resonance structures (resonance contributors), 22
estimating the relative stability of, 597-598
rules for writing, 24-25, 595-597
Resonance theory, 22, 58, 587-591
Restricted rotation, and the double bond, 39
Restriction endonucleases, 1129
Resveratrol, 711
Retention times, 443
Retinal, 72, 328
Retro-aldol reaction, 866-867
in glycolysis, 870
Retrosynthetic analysis, 324-325, 377-378
disconnections/synthons/synthetic equivalents, 378-379
key to, 377
stereochemical considerations, 378-382
Retrosynthetic arrow, 324
Reverse turns, 1088
Rhodium, 232, 318, 320
Ribonucleic acid (RNA):
defined, 1106
genetic code, 1077, 1102, 1121, 1123, 1124-1126
messenger RNA (mRNA) synthesis, 1121
and protein synthesis, 1080-1086
ribosomes, 1122-1123
RNA polymerase, 1121
transcription, 1121
transfer RNAs (tRNAs), 1121-1125, 1127-1128
translation, 1126-1128
Ribosomal RNA (rRNA), 1121-1123
Ribosomes, 1122-1123
Ribozymes, 1091, 1122
Right-handed coiled DNA, selective binding of drug enantiomers to, 217
Ring current, 639
Ring flip, 172
Ring fusion, 645
Ring strain, 167
(R)-lactic acid, 289

RNA, 3, See Ribonucleic acid (RNA)
RNA polymerase, 1121
Roberts, J. D., 420, 963
Robertson, A., 666
Robinson annulation, 881, 890
Robinson, Robert, 444, 666
Rotaxanes, 170
Rowland, F. S., 490
R, S-system of naming enantiomers, 202-206
assigning (R) and (S) configurations, 202-203
Ruff degradation, 1002
Ruff, Otto, 1002fn
Ruh-Pohlenz, C., 1111
Ruthenium, 217, 232, 318

S

S-adenosylmethionine, 273-274
(S)-BINAP, 217, 232
σ-bond framework, 37
s orbitals, 28
S prefix, 273fn
Saccharin, 1008-1009
Salicylic acid, 48-49
Salt formation, water solubility as a result of, 119-120
Salts, 6
Sandmeyer reaction, 921-922
Sanger, Frederick, 1074, 1079, 1129
Sanger N-terminal analysis, 1074, 1115
Saponification, 792-794
of triacylglycerols, 1033-1035
Saturated compounds, 56, 319
Saturated fatty acids, 1029
Sawhorse formula, 162
Schardinger dextrins, 1022
Schoenberg, B. P., 1090
Schrödinger, Erwin, 27
Schultz, Peter G., 1097

SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis), 1099
sec-butyl, 150
sec-butyl alcohol, 502
Second chirality center, in a radical halogenation, generation of, 472-473
Second-order spectra, 420
Secondary alcohols, 67
chemical test for, 555
dehydration of, 304-311
mechanism for, 305-306
rearrangements during, 309-311
Secondary alkyl halide, 65-66, 271-272
Secondary amines:
addition of, 741-746
preparation of:
through reduction of nitriles, oximes, and amides, 913-914
through reductive amination, 911-913
Secondary carbocations, 257, 263
Secondary carbon, 65, 67, 151
Secondary halides, 264, 280
Secondary structure:
of DNA, 1114-1118
of a protein, 1087
Self-assembled monolayers (SAMs), 1036-1037
Semicarbazone, 763
Sequence databases, peptide sequencing using, 1076-1077
Serine, 1063, 1089
Serine proteases, 1094-1096
Serotonin, 744, 906-907
Sevin, 804
Sex hormones, 1044-1046
Sharing electrons, 6
Sharpless asymmetric epoxidation, 524-525
Sharpless, Barry, 216
Sharpless, K. B., 370, 524, 1009
Sheehan, John C., 812
Shells, 4
Shielding, protons, 406-407
1,2 shift, 310
Shikimic acid, 1025
Sialyl Lewis ${ }^{\mathrm{x}}$ acids, 979, 1016, 1018
Sickle-cell anemia, 1079
Side chain:
defined, 700
halogenation of, 701-702
Sigma bonds (σ bonds), 34-35, 44
and bond rotation, 162-164
Signal splitting, 396-398
Silyl ether protecting groups, 521
silyl-Hilbert-Johnson nucleosidation, 1110, 1137
Simmons, H. E., 368

Simmons-Smith cyclopropane synthesis, 368
Simple addition, 878
Simple triacylglycerols, 1029
Single-barbed curved arrows, 458
Single bonds, 34
Singlets, 397
Site-specific cleavage, of peptide bonds, 1076
Skeletal formulas, 18
Skou, Jens, 532
Smalley, R. E., 647
Smith, D.C.C., 1024
Smith, M., 137
Smith, R. D., 368
$S_{\mathrm{N}} 1$ reactions, 254
E1 reactions vs., 282
effect of the concentration and strength of the nucleophile, 265-266
effect of the structure of the substrate, 261-262
mechanism for, 254-256
rate-determining step, 254
reactions involving racemization, 258-260
$S_{\mathrm{N}}{ }^{2}$ reactions vs., factors favoring, 271
solvent effects on, 266
solvolysis, 243, 245, 260-261
stereochemistry of, 272
$S_{\mathrm{N}} 2$ reactions, 245-248
E2 reactions vs., 280-282
effect of the structure of the substrate, 261-262
functional group interconversion using, 271-272
measuring, 245-246
mechanism for, 246-248
reactions involving racemization, 258-260
solvent effects on, 266
stereochemistry of, 272
$\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ mechanism, 960-961
Sodioacetoacetic ester, 835, 860
Sodium acetate, physical properties, 78
Sodium alkynides, 568-569
Sodium amide, 314
Sodium borohydride, 547
overall summary of, 548-549
Sodium ethynide, 378
Sodium hydride, 134, 242, 276, 839840, 952
Sodium nitrite, 918
Solid-phase peptide synthesis (SPPS), 1084
Solubilities:
of substances, 83-85
in water, 502, 528, 723
water solubility guidelines, 85-86
Solvating ions, 83
Solvent effects, 266

Solvolysis, 243, 245, 260-261
Solvomercuration-demercuration, 352, 520
$s p$ orbitals, 41, 44
$s p^{2}$ hybridization:
alkanes/cycloalkanes, 144
ethane, 36-37
ethyne, 40-42
$s p^{2}$ orbitals, 36-38, 43
$s p^{3}$ orbitals, 35, 43, 122, 167
Spackman, D. H., 1072
Specific rotation, 209-211
Spectator ions, 106, 244
Spectroscopic evidence, for alcohols, 556
Spectroscopy, See Carbon-13 NMR (carbon-13) NMR spectroscopy; Infrared (IR) spectroscopy;
Multidimensional FTNMR spectroscopy; NMR spectroscopy; Nuclear magnetic resonance (NMR) spectrometry
defined, 392
Sphingolipids, defined, 1053
Sphingosine, derivatives of, 1053-1054
Spin decoupling, chemical exchange as cause, 420-421
Spin-lattice relaxation, 431
Spin-spin coupling, 411-420
coupling constants, 416-420
dependence on dihedral angle, 416-417
reciprocity of, 416
origin of, 411
splitting tree diagrams, 412-416
vicinal coupling, 411-412
Spin-spin relaxation, 431
Spiranes, 187
Splenda, 284
Splitting patterns, recognizing, 415
Splitting tree diagrams, 412-416
splitting analysis for a doublet, 413
splitting analysis for a quartet, 413-414
splitting analysis for a triplet, 413
Squalestatin S1, 525
Square planar configuration, 44
Stability, 123
Stachyose, 1023
Staggered conformations, 163
Starch, 1009-1011
Staudinger, Hermann, 618
STEALTH ${ }^{\circledR}$ liposomes, 1052
Stein, W. H., 1072
Step-growth polymers, 808
Stereocenters, See Chirality centers
Stereochemistry, 166, 191-238, 272
and chirality, 192-193
constitutional isomers, 206
defined, 194
diastereomers, 194-195
enantiomers, 194-195
of epoxidation, 525
of hydroboration, 355
of the ionic addition, to alkenes, 343
of $S_{\mathrm{N}} 1$ reaction, 258-261
of $S_{\mathrm{N}} 2$ reaction, 251, 253, 272
stereoisomers, defined, 194, 195
Stereogenic atoms, See Chirality centers
Stereogenic carbon, 197
Stereogenic centers, 197, 225
Stereoisomerism, of cyclic compounds, 225-227
Stereoisomers, 39, 166, 175, 194
defined, 195
Stereoselective reactions, 214-215, 380
Stereoselective reductions, of carbonyl groups, 550-551
Stereospecific reactions, 380, 525
alkenes, 363-364
Stereospecific, use of term, 525
Steric effect, 262, 482, 707
Steric factors, 184
in aldehydes and ketones, 734
Steric hindrance, 164-165, 184, 262263, 280, 297
Steroids, 895, 1027, 1040, 1040-1049
adrenocortical hormones, 1046
cholesterol, 1042-1044
cholic acid, 1048
D vitamins, 1046-1047
defined, 1040
digitoxigenin, 1047
diosgenin, 1048
reactions of, 1048-1049
sex hormones, 1044-1046
stigmasterol, 1048
structure and systematic nomenclature of, 1041-1042
Stigmasterol, 1048
Stoddart, J. F., 170, 171
Stork enamine reactions, 844-847, 849
Stork, Gilbert, 817, 845, 856, 894
"Straight-chain" alkanes, 144
Strecker synthesis, 1069
Streptomycin, 237, 1018
Strong acids, 733
Structural formulas, 14
condensed, 17-18
dash, 16-17
writing/interpreting, 16-18
Structural formulas, bond-line formula, 18
Structural isomers, 15 fn
Stupp, S. I., 86
Styrene, 485, 700
Substituent effect, 129
Substituents:
classification of, 689
effect on electrophilic aromatic substitution, 689

Substituted acetic acids, synthesis of, 840-843
Substituted benzenes, infrared spectra of, 655-656
Substituted cyclohexanes, 167-168
Substituted methyl ketones, 836-837
Substitution reactions, 132, 508, 515, 632
electrophilic aromatic, 670-673
Substrate, 241, 243
Subtractive effect, 27
Sucralose, 284, 1008
Sucronic acid, 1009
Sucrose, 283, 980-981, 1005-1006, 1008
Suddath, F. L., 1094
Suicide enzyme substrate, 859, 879, 883
Sulfa drugs:
origin of, 934-935
synthesis of, 928-929
Sulfacetamide, 935, 936
Sulfadiazene, 936
Sulfanilamides, synthesis of, 928-929
Sulfapyradine, 936, 946
Sulfonamides, 926-927
Sulfonyl chlorides, 514, 926-927
Sulfur dioxide, dipole moment, 61
Sulfuric acid, 106, 131
addition to alkenes, 338
Sunscreens, 656-657
Superacids, 115
Superglue, 487
Supernovae, 2
Superoxide, 487
Superposable, use of term, 39, 192
Swern oxidation, 552-553, 724-725
Syn 1,2-dihydroxylation, 368-370
Syn addition, 368-369
defined, 320-321
of hydrogen, 321-322
Syn coplanar transition state, 300
Syn dihydroxylation, 370
Synapses, 908
Synthesis, planning, 324-328
Synthetic detergents, 1034-1035
Synthetic equivalent, 378, 837
Synthetic estrogens, 1045
Synthons, 378

T

Table sugar, substituting the calories of, 283-284
Tandem mass spectrometry (MS/MS), 1076
Taq polymerase, 1135
Tartaric acid, 231
Tautomerization, 990-991
Tautomers, 861
Taxol, 609
Teflon, 485
chemistry of, 82
Temperature and reaction rate, 249-250

Template, 1133
Terelene, 808
Terminal alkynes, 133
acidity of, 313-314, 509
conversion to nucleophiles for carboncarbon bond formation, 316-318
substitution of the acetylenic hydrogen atom of, 313-314
Terminal hydrogen atom, 147
Terminal residue analysis, 1073
Terminus, 18
Terpenes, 1037
Terpenoids, 1037
Terramycin, 955
tert-butyl, 150
tert-butyl alcohol, 132, 253, 499, 502
tert-butyl chloride, 253
tert-butyl ethers
by alkylation of alcohols, 520
protecting groups, 520
Tertiary alcohols:
dehydration of, 303-307
mechanism for, 305-306
Tertiary amine oxides, 918, 932
Tertiary amines, 70, 94, 744
alkylation of, 911
nomenclature, 898
oxidation of, 918
preparation of:
through reduction of nitriles, oximes, and amides, 913-914
through reductive amination, 911-913
reactions of, with nitrous acid, 920
Tertiary carbocations, 256-257, 263
Tertiary carbon, 65-66, 68, 151
Tertiary halides, 253, 262, 263
Tertiary structure, of a protein, 1088, 1089
Tertiary substrates, 262
Testosterone, 1044-1046
Tetrachloroethene, dipole moment, 62
Tetrachloromertensene, 362
Tetracyclines, 946
Tetradecane, 146
Tetraethyllead, 557
Tetrahedral carbon atoms, 144
Tetrahedral chirality centers, 614, 1043
Tetrahedral geometry, 21, 34
Tetrahedral intermediate, 733, 742, 744, 752, 768, 784-785, 790, 1095, 1122
Tetrahedral vs. trigonal stereogenic centers, 199
Tetrahydrofuran (THF), 500-501, 502, 519
Tetramethylsilane, 405
Tetrose, 982
Thalidomide, 200
Thermal cracking, 143-144

Thermodynamic enolate, 875
formation of, 832
Thermodynamic (equilibrium) control, 607
Thermodynamic (equilibrium) products, 605, 607
Thermophilic bacteria, 550
Thiele, Johannes, 618
Thioacetals, 741
Thiols, 268, 741, 1062
Thionyl chloride, 510
Thiophene, 649-650
Three-dimensional formulas, 20-21
Threonine, 1063, 1079
Thymol, 68, 946
Thyroxine, 669
Thyroxine biosynthesis, 674
iodine incorporation in, 670
Tifluoromethanesulfonate ion, 270
Time-of-flight (TOF) mass analyzer, 444
Toliprolol, 971
Tollens' reagent, 753, 854, 994-995, 1019
Tollens' test (silver mirror test), 753, 764, 854
Toluene, 90, 628, 686, 699
Tomasz, Maria, 1137
Tool Kit for Organic Synthesis, 377
Torsional barrier, 164
Torsional strain, 164-165, 167
Tranquilizers, 907
Trans, 292
trans-Cycloheptene, 296
trans-Cyclohexene, 296
trans-Cyclooctene, 296
Transaminations, 744
Transannular strain, 171
Transcription, 1121 gene, 534
Transesterification, 792
Transfer RNAs (tRNAs), 1121-1125, 1127-1128
Transition state, 247-251
orientation of groups in, 301-303
Translation, 1126-1128
Transport antibiotics, and crown ethers, 532
Trent, J. O., 217
Triacylglycerols, 1028-1035
biological functions of, 1032-1033
hydrogenation of, 1032
mixed, 1029
saponification of, 1033-1035
simple, 1029
Trialkylboranes, oxidation of, 356
Trichloromethane, dipole moment, 63
Tridecane, 146
Triflate ion, 270
Trigonal pyramid, 45

Trigonal stereogenic centers, tetrahedral stereogenic centers vs., 199
Trimethylene glycol, 502
Trimethylsilyl ethers, 521
2,4,6-Trinitrophenol, 949, 951
Trinitrotoluene (TNT), 669
Triose, 824, 982
Tripeptides, 1070
Triple bonds, 7, 21, 88
Triplets, 414
of nucleotides, 1124
Trisaccharides, 980
Tritium, 4
Trivial names, for compounds, 145
Tropylium bromide, 643
Tryptophan, 650, 1063, 1089
Tscherning, Kurt, 1044
d-Tubocurarine chloride, 897, 908
Tumor suppressor, 1080
Two-dimensional NMR (2D NMR) techniques, 428-431
${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum, 428-430
heteronuclear correlation cross-peak correlations, 430-431
heteronuclear correlation spectroscopy (HETCOR, or C-H HETCOR), 428-430
Two-dimensional polyacrylamide gel electrophoresis (2D PAGE), 1100
[2+2] cycloaddition, 609
Tyrosine, 650, 670, 870, 977, 1063, 1089 defined, 946, 976

U

Ubiquinones, 957
Ultraviolet-visible (UV-Vis) spectroscopy, 598-600
absorption maxima for nonconjugated and conjugated dienes, 600-602
analytical uses of, 602-604
electromagnetic spectrum, 597-598
UV-Vis spectrophotometer, 598-600
Unbranched alkanes, 146-147
boiling points, 160
density, 161
melting points, 160
solubilities, 161
Unbranched alkyl groups, how to name, 147
Undecane, 146, 161
Under equilibrium control, use of term, 118
Unfavorable entropy change, 84
Unimolecular reactions, 254
Unsaturated compounds, 56, 319
Unsaturated fatty acids, 1029
reactions of the alkenyl chain of, 1036
Unshared pairs, 44
Upfield, use of term, 399
Urea, 3, 803

Urethanes, 803
Urey, H., 233
Uronic acids, 1013
Urushiols, 945
UV-A, UV-B, and UV-C regions, 656

V

Valence electrons, 4, 7, 12
Valence shell, 4-5
Valence shell electron pair repulsion (VSEPR) model, 44, 47
Valeric acid, 772
Valine, 1063, 1075, 1079, 1102, 1113, 1126
Valinomycin, 532
Valium, 907
van der Waals forces, 79-81
van der Waals radii, 166
van der Waals surface, 36, 61
Vanillin, 498, 501, 720
Vanomycin, and antibiotic resistance, 97-98
van't Hoff, J. H., 20, 231, 164, 230, 231, 1003
Vasopressin, 1077-1078
Vedejs, E., 748
Viagra, 457, 488
Vibrational absorption, 87
Vicinal coupling, 411, 430
Vicinal dihalide (vic-dihalide), 314, 359
Vinyl chloride, 360, 485-486, 590, 622, 959
Vinyl group, 157, 204-205
Vinylic anion, 322
Vinylic halides, 681, 240
unreactivity of, 274-275
Vitalism, 3
Vitamin A, 1040
Vitamin $B_{12}, 323$
Vitamin C, 48-49, 200, 795
Vitamin D, 1046-1047
Vitamin E, 489
Vitamin K1, 958
Vitamins, 907, 927, 1032
organic, 3
water-soluble, 1091-1092
Voet, D., 532, 981, 1016, 1043, 1086, 1092, 1131
Voet, J. G., 532, 981, 1016, 1043, 1086, 1092, 1131
Volatize, defined, 81
Volume, atoms, 4
von Hofmann, August W., 136, 931
Vorbrüggen, H., 1111
Vulcanization, natural rubber, 1040

W

Walden inversions, 247fn
Walden, Paul, 247fn, 289

Walker, John E., 532
Warmuth, R., 965
Water:
acid-catalyzed addition of, to alkenes, 346
and ammonia, 13
bromine, 1002, 1007
miscibility of, 84
tetrahedral structure for the electron pairs of a molecule of, 45
Water solubility:
guidelines for, 84-85
as the result of salt formation, 119-120
Watson, James, 1114-1116, 1130, 1135
Wave function $(v), 27$

- and + signs of, 29

Wave mechanics, 27
Wavelength (λ), 87, 597
Wavenumbers, 87, 597fn
Waxes, 1054
Weak bases, 71, 117, 269-270, 282-283, 510, 515, 785
crossed aldol condensations using, 871-876

Weak nucleophiles, 733
Whitmore, F., 305
Wieland, Heinrich, 1042
Wilkins, Maurice, 1114
Wilkinson's catalyst, 318
Wilkinson's catalyst
tris(triphenylphosphine)rhodium chloride), 318
Williams, L. D., 1094
Williamson ether synthesis, 518-519, 956, 978
Williamson synthesis, phenols in, 952
Willstätter, Richard, 632
Windaus, Adolf, 1042
Winstein, S., 539
Withers, Stephen, 1093
Wittig reaction, 747-749
Horner-Wadsworth-Emmons reaction, 750-751
Wittig synthesis, how to plan, 749-750
Wöhler, Friedrich, 3, 325
Wolff-Kishner reduction, 684, 741, 743
Wood alcohol, See Methanol
Woodward, R. B., 323, 444, 616

X

X-ray crystallography, 1086, 1102
X-rays, 597
Xylenes, 629

Y

Yates, John, 1100, 1102
Ylides:
addition of, 747-751
phosphorus, 748

Z

Z-Ala, 820
Zaitsev, A. N., 298
Zaitsev's rule, 298-300, 302, 310, 931
Zaragozic acid A (squalestatin S1), 525
Ziegler, Karl, 484
Ziegler-Natta catalysts, 484-485
Zinc, 110

This page intentionally left blank

SEE TABLE 2.7 FOR A TABLE OF IR FREQUENCIES

Typical IR absorption frequencies for common functional groups.
Absorptions are as follows: $v=$ stretching; $\delta=$ bending; $\mathrm{w}=$ weak; $\mathrm{m}=$ medium; $\mathrm{s}=$ strong; sk = skeletal
From Multiscale Organic Chemistry: A Problem-Solving Approach by John W. Lehman © 2002.
Reprinted by permission of Pearson Education, Inc., Upper Saddle River, NJ.

TABLE 9.2 APPROXIMATE CARBON-13 CHEMICAL SHIFTS

Type of Carbon Atom
1° Alkyl, RCH_{3}
2° Alkyl, $\mathrm{RCH}_{2} \mathrm{R}$
3° Alkyl, RCHR_{2}
Alkyl halide or amine, $-\underset{\mid}{\mid}-\mathrm{X}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, or $\mathrm{N}-)$

Alkyne, $-\mathrm{C} \equiv$
Alkene, ${ }^{\mathrm{C}}=$

Nitrile, - $\mathrm{C} \equiv \mathrm{N}$

Chemical Shift (δ, ppm)
0-40
10-50
15-50

10-65

50-90

60-90

100-170

100-170

120-130

150-180

160-185

182-215

Type of Proton	Chemical Shift (δ, ppm)	Type of Proton	Chemical Shift (δ, ppm)
1° Alkyl, RCH_{3}	0.8-1.2	Alkyl bromide, $\mathrm{RCH}_{2} \mathrm{Br}$	3.4-3.6
$2{ }^{\circ}$ Alkyl, $\mathrm{RCH}_{2} \mathrm{R}$	1.2-1.5	Alkyl chloride, $\mathrm{RCH}_{2} \mathrm{Cl}$	3.6-3.8
3° Alkyl, $\mathrm{R}_{3} \mathrm{CH}$	1.4-1.8	Vinylic, $\mathrm{R}_{2} \mathrm{C}=\mathrm{CH}_{2}$	4.6-5.0
Allylic,	1.6-1.9	Vinylic,	5.2-5.7
	2.1-2.6	Aromatic, ArH	$6.0-8.5$
Benzylic, ArCH_{3}	2.2-2.5		9.5-10.5
Acetylenic, $\mathrm{RC} \equiv \mathrm{CH}$	2.5-3.1	Alcohol hydroxyl, ROH	0.5-6.0 ${ }^{\text {a }}$
Alkyl iodide, $\mathrm{RCH}_{2} \mathrm{I}$	3.1-3.3	Amino, $\mathrm{R}-\mathrm{NH}_{2}$	$1.0-5.0^{\text {a }}$
Ether, $\mathrm{ROCH}_{2} \mathrm{R}$	3.3-3.9	Phenolic, ArOH	$4.5-7.7^{\text {a }}$
Alcohol, $\mathrm{HOCH}_{2} \mathrm{R}$	3.3-4.0		$10-13^{a}$

[^1]
[^0]: Allylic group (Section 10.8): An atom or group that is bonded to an $s p^{3}$-hybridized carbon adjacent to an alkene double bond.
 Allylic position (Section 10.8): The location of a group that is bonded to an $s p^{3}$-hybridized carbon adjacent to an alkene double bond.

[^1]: ${ }^{a}$ The chemical shifts of these protons vary in different solvents and with temperature and concentration.

