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PREFACE

The third edition of this book differs from the second edition in numerous
ways. To start with, the chapters have been reordered to place the central materia
at the beginning. There is also now more of a focus on the operating system as the
creator of abstractions. Chapter 1, which has been heavily updated, introduces al
the concepts. Chapter 2 is about the abstraction of the CPU into multiple
processes. Chapter 3 is about the abstraction of physica memory into address
spaces (virtual memory). Chapter 4 is about the abstraction of the disk into files.
Together, processes, virtual address spaces, and files are the key concepts that op-
erating systems provide, so these chapters are now placed earlier than they pre-
viously had been.

Chapter 1 has been heavily modified and updated in many places. For exam-
ple, an introduction to the C programming language and the C run-time model is
given for readers familiar only with Java.

In Chapter 2, the discussion of threads has been revised and expanded reflect-
ing their new importance. Among other things, there is now a section on |EEE
standard Pthreads.

Chapter 3, on memory management, has been reorganized to emphasize the
idea that one of the key functions of an operating system is to provide the abstrac-
tion of a virtua address space for each process. Older materid on memory
management in batch systems has been removed, and the material on the imple-
mentation of paging has been updated to focus on the need to make it handle the
larger address spaces now common and also the need for speed.
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Chapters 4-7 have been updated, with older material removed and some new
material added. The sections on current research in these chapters have been
rewritten from scratch. Many new problems and programming exercises have
been added.

Chapter 8 has been updated, including some material on multicore systems.
A whole new section on virtuaization technology, hypervisors, and virtua
machines, has been added with VMware used as an example.

Chapter 9 has been heavily revised and reorganized, with considerable new
material on exploiting code bugs, malware, and defenses against them.

Chapter 10, on Linux, is a revision of the old Chapter 10 (on UNIX and
Linux). Thefocusis clearly on Linux now, with a great dea of new material.

Chapter 11, on Windows Vista, is a mgor revision of the old Chap. 11 (on
Windows 2000). It brings the treatment of Windows completely up to date.

Chapter 12 is new. | felt that embedded operating systems, such as those
found on cell phones and PDAS, are neglected in most textbooks, despite the fact
that there are more of them out there than there are PCs and notebooks. This edi-
tion remedies this problem, with an extended discussion of Symbian OS, which is
widely used on Smart Phones.

Chapter 13, on operating system design, is largely unchanged from the second
edition.

Numerous teaching aids for this book are available. Instructor supplements
can be found at www.prenhall.com/tanenbaum. They include PowerPoint sheets,
software tools for studying operating systems, lab experiments for students, simu-
lators, and more material for use in operating systems courses. Instructors using
this book in a course should definitely take a look.

In addition, instructors should examine GOAL (Gradiance Online Accelerated
Learning), Pearson's premier online homework and assessment system. GOAL is
designed to minimize student frustration while providing an interactive teaching
experience outside the classroom. With GOAL'S immediate feedback, hints, and
pointers that map back to the textbook, students will have a more efficient and
effective learning experience. GOAL delivers immediate assessment and feed-
back via two kinds of assignments: multiple choice Homework exercises and
interactive Lab work.

The multiple-choice homework consists of a set of multiple choice questions
designed to test student knowledge of a solved problem. When answers are graded
as incorrect, students are given a hint and directed back to a specific section in the
course textbook for helpful information.

The interactive Lab Projects in GOAL, unlike syntax checkers and compilers,
check for both syntactic and semantic errors. GOAL determines if the student's
program runs but more importantly, when checked against a hidden data set, veri-
fies that it returns the correct result. By testing the code and providing immediate
feedback, GOAL lets you know exactly which concepts the students have grasped
and which ones need to be revisited.
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Instructors should contact their local Pearson Sales Representative for sales
and ordering information for the GOAL Student Access Code and Modern
Operating Systems, 3e Value Pack (ISBN: 0135013011).

A number of people helped me with this revision. First and foremost | want
to thank my editor, Tracy Dunkelberger. This is my 18th book and | have worn
out alot of editors in the process. Tracy went above and beyond the call of duty
on this one, doing things like finding contributors, arranging numerous reviews,
helping with al the supplements, dealing with contracts, interfacing to PH, coor-
dinating a great deal of paralel processing, generaly making sure things happen-
ed on time, and more. She aso was able to get me to make and keep to a very
tight schedule in order to get this book out in time. And all this while she remain-
ed chipper and cheerful, despite many other demands on her time. Thank you,
Tracy. | appreciate it alot. .

Ada Gavrilovska of Georgia Tech, who is an expert on Linux internals,
updated Chap. 10 from one on UNIX (with a focus on FreeBSD) to one more
about Linux, although much of the chapter is still generic to all UNIX systems.
Linux is more popular among students than FreeBSD, so this is a valuable change.

Dave Probert of Microsoft updated Chap. 11 from one on Windows 2000 to
one on Windows Vista. While they have some similarities, they also have signifi-
cant differences. Dave has a great deal of knowledge of Windows and enough
vision to tell the difference between places where Microsoft got it right and where
it got it wrong. The book is much better as a result of his work.

Mike Jipping of Hope College wrote the chapter on Symbian OS. Not having
anything on embedded real-time systems was a serious omission in the book, and
thanks to Mike that problem has been solved. Embedded real-time systems are
becoming increasingly important in the world and this chapter provides an excel-
lent introduction to the subject.

Unlike ~cla, Dave, and Mike, who each focused on one chapter, Shivakant
Mishra of the University of Colorado at Boulder was more like a distributed sys-
tem, reading and commenting on many chapters and also supplying a substantial
number of new exercises and programming problems throughout the book.

Hugh Lauer also gets a special mention. When we asked him for ideas about
how to revise the second edition, we weren't expecting a report of 23 single-
spaced pages, but that is what we got. Many of the changes, such as the new em-
phasis on the abstractions of processes, address spaces, and files are due to his in-
put.

| would also like to thank other people who helped me in many ways, includ-
ing suggesting new topics to cover, reading the manuscript carefully, making sup-
plements, and contributing new exercises. Among them are Steve Armstrong, J&f-
frey Chastine, John Connelly, Mischa Geldermans, Paul Gray, James Griffioen,
Jorrit Herder, Michael Howard, Surgj Kothari, Roger Kraft, Trudy Levine, John
Masiyowski, Shivakant Mishra, Rudy Pait, Xiao Qin, Mark Russinovich, Krishna
Sivalingam, Leendert van Doom, and Ken Wong.
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The people a Prentice Hall have been friendly and helpful as always, espe-
cidly including Irwin Zucker and Scott Disanno in production and David Alick
ReeAnne Davies, and Melinda Haggerty in editorial.

Finally, last but not least, Barbara and Marvin are still wonderful, as usua
each ma unique and specia way. And of course, | would like to thank Suzanne
for her love and patience, not to mention al the druiven and kersen, which have
replaced the sinaasappelsap in recent times.

Andrew S. Tanenbaum
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INTRODUCTION

A modern computer consists of one or more processors, some main memory,
disks, printers, a keyboard, a mouse, a display, network interfaces, and various
other input/output devices. All in al, acomplex system. If every application pro-
grammer had to understand how al these things work in detail, no code would
ever get written. Furthermore, managing all these components and using them
optimally is an exceedingly challenging job. For this reason, computers are
equipped with a layer of software caled the operating system, whose job is to
provide user programs with a better, simpler, cleaner, model of the computer and
to handle managing all the resources just mentioned. These systems are the sub-
ject of this book.

Most readers will have had some experience with an operating system such as
Windows, Linux, FreeBSD, or Max OS X, but appearances can be deceiving. The
program that users interact with, usually called the shell when it is text based and
the GUI (Graphical User Interface)—which is pronounced "gooey"— when it
uses icons, is actualy not part of the operating system athough it uses the operat-
ing system to get its work done.

A simple overview of the main components under discussion here is given in
Fig. 1-1. Here we see the hardware at the bottom. The hardware consists of chips,
boards, disks, a keyboard, a monitor, and similar physical objects. On top of the
hardware is the software. Most computers have two modes of operation: kernel
mode and user mode. The operating system is the most fundamental piece of soft-
ware and runs in kernel mode (also called supervisor mode). Inthismodeit has
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complete access to al the hardware and can execute any instruction the machine
is capable of executing. The rest of the software runs in user mode, in which only
a subset of the machine instructions is available. In particular, those instructions
that affect control of the machine or do I/O (Input/Output) are forbidden to user-
mode programs. We will come back to the difference between kernel mode and
user mode repeatedly throughout this book.

E-rmail fdusic
Web reader  player

browser
\ .

User mode
User interface program V Software

Kernel mode{ Operating system

Hardware

Figure 1-1- Where the operating system fits in.

The user interface program, shell or GUI, is the lowest level of user-mode
software, and allows the user to start other programs, such as a Web browser, e-
mail reader, or music player. These programs, too, make heavy use of the operat-
ing system.

The placement of the operating system is shown in Fig. 1-1. It runs on the
bare hardware and provides the base for al the other software.

An important distinction between the operating system and normal (user-
mode) software is that if a user does not like a particular e-mail reader, hef is free
to get a different one or write his own if he so chooses; he is not free to write his
own clock interrupt handler, which is part of the operating system and is protected
by hardware against attempts by users to modify it.

This distinction, however, is sometimes blurred in embedded systems (which
may not have kernel mode) or interpreted systems (such as Java-based operating
systems that use interpretation, not hardware, to separate the components).

Also, in many systems there are programs that run in user mode but which
help the operating system or perform privileged functions. For example, there is
often a program that allows users to change their passwords. This program is not
part of the operating system and does not run in kernel mode, but it clearly carries
out a sensitive function and has to be protected in a special way. In some sys-
tems, this ideais carried to an extreme form, and pieces of what is traditionally

t "He" should be read as "he or she" throughout the book.
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considered to be the operating system (such as the file system) run in user space.
In such systems, it is difficult to draw a clear boundary. Everything running in
kernel mode is clearly part of the operating system, but some programs running
outside it are arguably also part of it, or at least closely associated with it.
Operating systems differ from user (i.e., application) programs in ways other
than where they reside. In particular, they are huge, complex, and long-lived.
The source code of an operating system like Linux or Windows is on the order of
five million lines of code. To conceive of what this means, think of printing out
five million lines in book form, with 50 lines per page and 1000 pages per volume
(larger than this book). It would take 100 volumes to list an operating system of
this size—essentially an entire bookcase. Can you imagine getting ajob maintain-
ing an operating system and on the first day having your boss bring you to a book
case with the code and say: "Go learn that." And this is only for the part that runs
in the kernel. User programs like the GUI, libraries, and basic application soft-
ware (things like Windows Explorer) can easily run to 10 or 20 times that amount.

It should be clear now why operating systems live a long time—they are very
hard to write, and having written one, the owner is loath to throw it out and start
again. Instead, they evolve over long periods of time. Windows 95/98/Me was
basically one operating system and Windows NT/2000/XP/Vista is a different
one. They look similar to the users because Microsoft made very sure that the user
interface of Windows 2000/XP was quite similar to the system it was replacing,
mostly Windows 98. Nevertheless, there were very good reasons why Microsoft
got rid of Windows 98 and we will come to these when we study Windows in de-
tail in Chap. 11.

The other main example we will use throughout this book (besides Windows)
is UNIX and its variants and clones. It, too, has evolved over the years, with ver-
sions like System V, Solaris, and FreeBSD being derived from the origina sys-
tem, whereas Linux is afresh code base, although very closely modeled on UNIX
and highly compatible with it. We will use examples from UNIX throughout this
book and look at Linux in detail in Chap. 10.

In this chapter we will touch on a number of key aspects of operating systems,
briefly, including what they are, their history, what kinds are around, some of the
basic concepts, and their structure. We will come back to many of these impor-
tant topicsin later chapters in more detail.

11 WHAT IS AN OPERATING SYSTEM?

It is hard to pin down what an operating system is other than saying it is the
software that runs in kernel mode—and even that is not aways true. Part of the
problem is that operating systems perform two basically unrelated functions: pro-
viding application programmers (and application programs, naturally) a clean
abstract set of resources instead of the messy hardware ones and managing these
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hardware resources. Depending on who is doing the talking, you might hear
mostly about one function or the other. Let us now look at both.

1.1.1 The Operating System as an Extended Machine

The architecture (instruction set, memory organization, /O, and bus struc-
ture) of most computers at the machine language level is primitive and awkward
to program, especialy for input/output. To make this point more concrete, con-
sider how floppy disk 1/0 is done using the NEC PD765 compatible controller
chips used on most Intel-based personal computers. (Throughout this book we
will use the terms "floppy disk" and "diskette" interchangesbly.) We use the
floppy disk as an example, because, athough it is obsolete, it is much simpler
than a modern hard disk. The PD765 has 16 commands, each specified by loading
between | and 9 bytes into a device register. These commands are for reading and
writing data, moving the disk arm, and formatting tracks, as well as initializing,
sensing, resetting, and recalibrating the controller and the drives.

The most basic commands are read and write, each of which requires 13 pa-
rameters, packed into 9 bytes. These parameters specify such items as the address
of the disk block to be read, the number of sectors per track, the recording mode
used on the physical medium, the intersector gap spacing, and what to do with a
deleted-data-address-mark. If you do not understand this mumbo jumbo, do not
worry; that is precisely the point—it is rather esoteric. When the operation is com-
pleted, the controller chip returns 23 status and error fields packed into 7 bytes.
As if this were not enough, the floppy disk programmer must also be constantly
aware of whether the motor is on or off. If the motor is off, it must be turned on
(with a long startup delay) before data can be read or written. The motor cannot
be I&ft on too long, however, or the floppy disk will wear out. The programmer is
thus forced to deal with the trade-off between long startup delays versus wearing
out floppy disks (and losing the data on them).

Without going into the real details, it should be clear that the average pro-
grammer probably does not want to get too intimately involved with the pro-
gramming of floppy disks (or hard disks, which are worse). Instead, what the pro-
grammer wants is a simple, high-level abstraction to dea with. In the case of
disks, atypica abstraction would be that the disk contains a collection of named
files. Each file can be opened for reading or writing, then read or written, and fi-
nally closed. Details such as whether or not recording should use modified fre-
quency modulation and what the current state of the motor is should not appear in
the abstraction presented to the application programmer.

Abstraction is the key to managing complexity. Good abstractions turn a
nearly impossible task into two manageable ones. The first one of these is defin-
ing and*aglementing the abstractions. The second one is using these abstractions
to SOl"He problem a hand. One abstraction that almost every computer user
understands is the file. It is a useful piece of information, such as a digital photo,
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saved e-mail message, or Web page. Dealing with photos, e-mails, and Web pages
is easier than the details of disks, such as the floppy disk described above. The job
of the operating system is to create good abstractions and then implement and
manage the abstract objects thus created. In this book, we will talk a lot about ab-
stractions. They are one of the keys to understanding operating systems.

This point is so important that it is worth repeating in different words. With
all due respect to the industrial engineers who designed the Macintosh, hardware
isugly. Real processors, memories, disks, and other devices are very complicated
and present difficult, awkward, idiosyncratic, and inconsistent interfaces to the
people who have to write software to use them. Sometimes this is due to the need
for backward compatibility with older hardware, sometimes due to a desire to
save money, but sometimes the hardware designers do not realize (or care) how
much trouble they are causing for the software. One of the major tasks of the op-
erating system is to hide the hardware and present programs (and their pro-
grammers) with nice, clean, elegant, consistent, abstractions to work with instead.
Operating systems turn the ugly into the beautiful, as shownin Fig. 1-2.

Application programs

IS

Operating system

& "W A is*

Beautiful interface

= Udly interface

Figure 1-2. Oparding sysems tum ugly hardwere into beeutiful abgtractions.

It should be noted that the operating system's real customers are the applica
tion programs (via the application programmers, of course). They are the ones
who deal directly with the operating system and its abstractions. In contrast, end
users deal with the abstractions provided by the user interface, either a command-
line shell or a graphical interface. While the abstractions at the user interface may
be similar to the ones provided by the operating system, this is not aways the
case. To make this point clearer, consider the normal Windows desktop and the
iine-oriented command prompt. Both are programs running on the Windows oper-
ating system and use the abstractions Windows provides, but they offer very dif-
ferent user interfaces. Similarly, aLinux user running Gnome or KDE sees a very
different interface than a Linux user working directly on top of the underlying
(text-oriented) X Window System, but the underlying operating system abstrac-
tions are the same in both cases.
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In this book, we will study the abstractions provided to application programs
in great detail, but say rather little about user interfaces. That is a large and impor-
tant subject, but one only peripherally related to operating systems.

1.1.2 The Operating System as a Resour ce Manager

The concept of an operating system as primarily providing abstractions to ap-
plication programs is a top-down view. An alternative, bottom-up, view holds
that the operating system is there to manage all the pieces of a complex system.
Modern computers consist of processors, memories, timers, disks, mice, network
interfaces, printers, and a wide variety of other devices. In the aternative view,
the job of the operating system is to provide for an orderly and controlled alloca
tion of the processors, memories, and 1/0O devices among the various programs
competing for them.

Modern operating systems allow multiple programs to run at the same time.
Imagine what would happen if three programs running on some computer al tried
to print their output simultaneously on the same printer. The first few lines of
printout might be from program |, the next few from program 2, then some from
program 3, and so forth. The result would be chaos. The operating system can
bring order to the potentia chaos by buffering al the output destined for the print-
er on the disk. When one program is finished, the operating system can then ocopy-
its output from the disk file where it has been stored for the printer, while at the
same time the other program can continue generating more output, oblivious to
the fact that the output is not really going to the printer (yet).

When a computer (or network) has multiple users, the need for managing and
protecting the memory, 1/O devices, and other resources is even greater, since the
users might otherwise interfere with one ancther. In addition, users often need to
share not only hardware, but information (files, databases, etc.) as well. In short,
this view of the operating system holds that its primary task is to keep track of
which programs are using which resource, to grant resource requests, to account
for usage, and to mediate conflicting requests from different programs and users.

Resource management includes multiplexing (sharing) resources in two dif-
ferent ways: in time and in space. When a resource is time multiplexed, different
programs or users take turns using it. First one of them gets to use the resource,
then another, and so on. For example, with only one CPU and multiple programs
that want to run on it, the operating system first allocates the CPU to one program,
then, after it has run long enough, another one gets to use the CPU, then another,
and then eventually the first one again. Determining how the resource is time mul-
tiplexed—who goes next and for how long—is the task of the operating system.
Another example of time multiplexing is sharing the printer. When multiple print
jobs are queued up for printing on a single printer, a decision has to be made
about which one is to be printed next.
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The other kind of multiplexing is space multiplexing. Instead of the customers
taking turns, each one gets part of the resource. For example, main memory is
normally divided up among several running programs, so each one can be resident
at the same time (for example, in order to take turns using the CPU). Assuming
there is enough memory to hold multiple programs, it is more efficient to hold
several programs in.memory at once rather than give one of them all of it, espe-
cialy if it only needs a small fraction of the total. Of course, this raises issues of
fairness, protection, and so on, and it is up to the operating system to solve them.
Another resource that is space multiplexed is the (hard) disk. In many systems a
single disk can hold files from many users at the same time. Allocating disk space
and keeping track of who is using which disk blocks is a typical operating system
resource management task.

1.2 HISTORY OF OPERATING SYSTEMS

Operating systems have been evolving through the years. In the following
sections we will briefly look at a few of the highlights. Since operating systems
have historically been closely tied to the architecture of the computers on which
they run, we will look at successive generations of computers to see what their op-
erating systems were like. This mapping of operating system generations to com-
puter generations is crude, but it does provide some structure where there would
otherwise be none.

The progression given below is largely chronological, but it has been a bumpy
ride. Each development did not wait until the previous one nicely finished before
getting started. There was a lot of overlap, not to mention many false starts and
dead ends. Take thisas aguide, not as the last word.

The first true digital computer was designed by the English mathematician
Charles Babbage (1792-1871). Although Babbage spent most of his life and for-
tune trying to build his "analytical engine," he never got it working properly be-
cause it was purely mechanical, and the technology of his day could not produce
the required wheels, gears, and cogs to the high precision that he needed. Need-
less to say, the andytical engine did not have an operating system.

As an interesting historical aside, Babbage realized that he would need soft-
ware for his analytical engine, so he hired a young woman named Ada Lovelace,
who was the daughter of the famed British poet Lord Byron, as the world's first
programmer. The programming language Ada® is named &fter her.

1.2.1 TheFirst Generation (1945-55) Vacuum Tubes

After Babbage's unsuccessul efforts, little progress was made in congtructing
digital computers until World War 11, which stimulated an explosion of activity.
Prof. John Atanasoff and his graduate student Clifford Berry built what is now
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regarded as the first functioning digital computer at lowa State University. It used
300 vacuum tubes. At about the same time, Konrad Zuse in Berlin built the Z3
computer out of relays. In 1944, the Colossus was built by a group at Bletchley
Park, England, the Mark | was built by Howard Aiken at Harvard, and the ENIAC
was built by William Mauchley and his graduate student J. Presper Eckert at the
University of Pennsylvania. Some were binary, some used vacuum tubes, some
were programmable, but al were very primitive and took seconds to perform even
the ssimplest calculation.

In these early days, a single group of people (usualy engineers) designed,
built, programmed, operated, and maintained each machine. All programming was
donein absolute machine language, or even worse yet, by wiring up electrical cir-
cuits by connecting thousands of cables to plugboards to control the machine's
basic functions. Programming languages were unknown (even assembly language
was unknown). Operating systems were unheard of. The usual mode of operation
was for the programmer to sign up for a block of time using the signup sheet on
the wall, then come down to the machine room, insert his or her plugboard into
the computer, and spend the next few hours hoping that none of the 20,000 or so
vacuum tubes would burn out during the run. Virtualy al the problems were sim-
ple straightforward numerical calculations, such as grinding out tables of sines,
cosines, and logarithms.

By the early 1950s, the routine had improved somewhat with the introduction
of punched cards. It was now possible to write programs on cards and read them
ininstead of using plugboards; otherwise, the procedure was thesame. .

1.2.2 The Second Generation (1955-65) Transistors and Batch Systems

The introduction of the transistor in the mid-1950s changed the picture radi-
cally. Computers became reliable enough that they could be manufactured and
sold to paying customers with the expectation that they would continue to func-
tion long enough to get some useful work done. For the first time, there was a
clear separation between designers, builders, operators, programmers, and mainte-
nance personnel.

These machines, now called mainframes, were locked away in specialy air-
conditioned computer rooms, with staffs of professional operators to run them.
Only large corporations or major government agencies or universities could afford
the multimillion-dollar price tag. To run ajob (i.e., a program or set of pro-
grams), a programmer would first write the program on paper (in FORTRAN or
assembler), then punch it on cards. He would then bring the card deck down to
the input room and hand it to one of the operators and go drink coffee until the
output was ready.

When the computer finished whatever job it was currently running, an opera-
tor would go over to the printer and tear off the output and carry it over to the out-
put room, so that the programmer could collect it later. Then he would take one of
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the card decks that had been brought from the input room and read it in. If the
FORTRAN compiler was needed, the operator would have to get it from afile
cabinet and read it in. Much computer time was wasted while operators were
walking around the machine room.

Given the high cost of the equipment, it is not surprising that people quickly
looked for ways to reduce the wasted time. The solution generally adopted was
the batch system. The idea behind it was to collect a tray full of jobs in the input
room and then read them onto a magnetic tape using a small (relatively) inexpen-
sive computer, such as the IBM 1401, which was quite good at reading cards,
copying tapes, and printing output, but not at al good at numerical calculations.'
Other, much more expensive machines, such as the IBM 7094, were used for the
real computing. This situation is shown in Fig. 1-3.

Tape System
drive Input tape Qugput

Card

reader [21F 3

= o

Bl e (R
1401

w Q» © (d) C} 9

Figure 1-3. An early batch system, (a) Programmers bring cards to 1401. (b)
1401 reads batch of jobs onto tape, (c) Operator carries input tape to 7094. (d)
7094 does computing, (€) Operator carries output tape to 1401. (f) 1401 prints
output.

After about an hour of collecting a batch of jobs, the cards were read onto a
magnetic tape, which was carried into the machine room, where it was mounted
on a tape drive. The operator then loaded a specia program (the ancestor of
today's operating system), which read the first job from tape and ran it. The out-
put was written onto a second tape, instead of being printed. After eachjob fin-
ished, the operating system automatically read the next job from the tape and
began running it. When the whole batch was done, the operator removed the input
and output tapes, replaced the input tape with the next batch, and brought the out-
put tape to a 1401 for printing offline (i.e., not connected to the main computer).

The structure of a typical inputjob is shown in Fig. 1-4. It started out with a
SIOB card, specifying the maximum run time in minutes, the account number to
be charged, and the programmer's name. Then came a SFORTRAN card, telling
the operating system to load the FORTRAN compiler from the system tape. It
was directly followed by the program to be compiled, and then a $LOAD card, di-
recting the operating system to load the object programjust compiled. (Compiled
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programs were often written on scratch tapes and had to be loaded explicitly.)
Next came the $RUN card, telling the operating system to run the program with
the data following it. Finally, the SEND card marked the end of the job. These
primitive control cards were the forerunners of modern shells and command-line
interpreters.

$END

-Date for program

$RUN
$LOAD

$FORTRAN
4JOB, 10,6610802, MARVIN TANENBAUM

Figure 1-4. Srudure of atypicd AMSjob.

Large second-generation computers were used mostly for scientific and en-
gineering calculations, such as solving the partial differential equations that often
occur in physics and engineering. They were largely programmed in FORTRAN
and assembly language. Typical operating systems were FM'S (the Fortran Moni-
tor System) and IBSY'S, IBM's operating system for the 7094.

1.2.3 The Third Generation (1965-1980) ICs and Multiprogramming

By the early 1960s, most computer manufacturers had two distinct, incompati-
ble, product lines. On the one hand there were the word-oriented, large-scale
scientific computers, such as the 7094, which were used for numerical calcula-
tions in science and engineering. On the other hand, there were the character-
oriented, commercial computers, such as the 1401, which were widely used for
tape sorting and printing by banks and insurance companies.

With the introduction of the IBM System/360, whjtased ICs (Integrated Cir-
cuits), IBM combined these two machine types in fI1—Ipe series of compatible
machines. The lineal descendant of the 360, the zSeif” is still widely used for
high-end server applications with massive data bases. One Of the many
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innovations on the 360 was multiprogramming, the ability to have severa pro-
grams in memory at once, each inits own memory partition, as shown in Fig. 1-5.
While one job was waiting for 1/0 to complete, another job could be using the
CPU. Specia hardware kept one program from interfering with another.

Job 3
Job 2
Memory
Job 1 partitions
Operating
system

Figure 1-5. A multiprogramming system with three jobs in memary.

Another mgjor feature present in third-generation operating systems was the
ability to read jobs from cards onto the disk as soon as they were brought to the
computer room. Then, whenever a running job finished, the operating system
could load a new job from the disk into the now-empty partition and run it. This
technique is called spooling (from Simultaneous Peripheral Operation On Line)
and was also used for output. With spooling, the 1401s were no longer needed,
and much carrying of tapes disappeared.

Although third-generation operating systems were well suited for big scien-
tific calculations and massive commercial data processing runs, they were still
basically batch systems with turnaround times of an hour. Programming is diffi-
cult if amisplaced comma wastes an hour. This desire of many programmers for
quick response time paved the way for timesharing, a variant of multiprogram-
ming, in which each user has an online terminal. In atimesharing system, if 20
users are logged in and 17 of them are thinking or talking or drinking coffee, the
CPU can be dlocated in turn to the three jobs that want service. Since people
debugging programs usualy issue short commands (e.g., compile a five-page pro-
ceduref) rather than long ones (e.g., sort a million-record file), the computer can
provide fast, interactive service to a number of users and perhaps also work on big
batch jobs in the background when the CPU is otherwise idle. The first serious
timesharing system, CTSS (Compatible Time Sharing System), was developed
at M.I.T. on aspecially modified 7094 (Corbatd et al., 1962). However, timeshar-
ing did not really become popular until the necessary protection hardware became
widespread during the third generation.

After the success of the CTSS system, M.I.T., Bell Labs, and General Electric
(then a major computer manufacturer) decided to embark on the development of a
"computer utility," a machine that would support some hundreds of simultaneous

tWewill usethe tams"procedure” "subroutine," and "function” interchangegbly in thisbook.
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timesharing users. It was caled MULTICS (MULTiplexed Information and
Computing Service), and was a mixed success.

To make a long story short, MULTICS introduced many semina idess into
the computer literature, but only about 80 customers. However, MULTICS users,
including General Motors, Ford, and the U.S. National Security Agency, were
fiercely loyd, shutting down their MULTICS systems in the late 1990s, a 30-year
run.

For the moment, the concept of a computer utility has fizzled out, but it may
well come back in the form of massive centralized Internet servers to which rela-
tively dumb user machines are attached, with most of the work happening on the
big servers. Web services isastep in this direction.

Despite its lack of commercia success, MULTICS had a huge influence on
subsequent operating systems.lt is described in several papers and a book (Cor-
bato et at, 1972; Corbao" and Vyssotsky, 1965; Daley and Dennis, 1968; Organ-
ick, 1972; and Saltzer, 1974). It also has a dtill-active Website, located at
www.multicians.org, with a great deal of information about the system, its de-
signers, and its users.

Another mgjor development during the third generation was the phenomenal
growth of minicomputers, starting with the DEC PDP-1 in 1961. The PDP-1 had
only 4K of 18-bit words, but at $120,000 per machine (less than 5 percent of the
price of a 7094), it sold like hotcakes. It was quickly followed by a series of other
PDPs culminating in the PDP-11.

One of the computer scientists at Bell Labs who had worked on the MUL-
TICS project, Ken Thompson, subsequently found a small PDP-7 minicomputer
that no one was using and set out to write a stripped-down, one-user version of
MULTICS. This work later developed into the UNIX® operating system, which
became popular in the academic world, with government agencies, and with many
companies.

The history of UNIX has been told elsewhere (e.g., Salus, 1994). Part of that
story will begivenin Chap. 10. For now, suffice it to say, that because the source
code was widely available, various organizations developed their own (incompati-
ble) versions, which led to chaos. Two mgjor versions developed, System V, from
AT&T, and BSD (Berkeley Software Distribution) from the University of Califor-
nia at Berkeley. These had minor variants as well. To make it possible to write
programs that could run on any UNIX system, |IEEE developed a standard for
UNIX, cdled POSIX, that most versions of UNIX now support. POSIX defines a
minimal system call interface that conformant UNIX systems must support. In
fact, some other operating systems now aso support the POSIX interface.

As an aside, it is worth mentioning that in 1987, the author released a small
clone of UNIX, called MINIX, for educational purposes. Functionally, MINIX is
very similar to UNIX, including POSIX support. Since that time, the original ver-
sion has evolved into MINIX 3, which is highly modular and focused on very high
reliability. It has the ability to detect and replace faulty or even crashed modules
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(such as /O device drivers) on the fly without a reboot and without disturbing
running programs. A book describing its internal operation and listing the source
code in an appendix is also available (Tanenbaum and Woodhull, 2006). The
MINIX 3 system is available for free (including al the source code) over the Inter-
net at www.minix3.org.

The desire for afree production (as opposed to educational) version of MINIX
led a Finnish student, Linus Torvalds, to write Linux. This system was directly
inspired by and developed on MINIX and originally supported various MINIX fea
tures (e.g., the MINIX file system). It has since been extended in many ways but
still retains some of underlying structure common to MINIX and to UNIX.
Readers interested in a detailed history of Linux and the open source movement
might want to read Glyn Moody's (2001) book. Most of what will be said about
UNIX in this book thus applies .to System V, MINIX, Linux, and other versions and
clones of UNIX aswell.

1.2.4 The Fourth Generation (1980-Present) Personal Computers

With the development of LS| (Large Scale Integration) circuits, chips con-
taining thousands of transistors on a sguare centimeter of silicon, the age of the
personal computer dawned. In terms of architecture, personal computers (initially
caled microcomputers) were not al that different from minicomputers of the
PDP-11 class, but in terms of price they certainly were different. Where the
minicomputer made it possible for a department in a company or university to
have its own computer, the microprocessor chip made it possible for a single indi-
vidua to have his or her own personal computer.

In 1974, when Intel came out with the 8080, the first general-purpose 8-bit
CPU, it wanted an operating system for the 8080, in part to be able to test it. Intel
asked one of its consultants, Gary Kildal, to write one. Kildall and afriend first
built a controller for the newly released Shugart Associates 8-inch floppy disk and
hooked the floppy disk up to the 8080, thus producing the first microcomputer
with a disk. Kildall then wrote a disk-based operating system called CP/M (Con-
trol Program for Microcomputers) for it. Since Intel did not think that disk-
based microcomputers had much of a future, when Kildall asked for the rights to
CP/M, Intel granted his request. Kildall then formed a company, Digita Research,
to further develop and sell CP/M.

In 1977, Digital Research rewrote CP/M to make it suitable for running on the
many microcomputers using the 8080, Zilog Z80, and other CPU chips. Many ap-
plication programs were written to run on CP/M, allowing it to completely dom-
inate the world of microcomputing for about 5 years.

In the early 1980s, IBM designed the IBM PC and looked around for software
to run on it. People from IBM contacted Bill Gates to license his BASIC inter-
preter. They also asked him if he knew of an operating system to run on the PC.
Gates suggested that IBM contact Digita Research, then the world's dominant
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operating systems company. Making what was surely the worst business decision
in recorded history, Kildall refused to meet with IBM, sending a subordinate in-
stead. To make matters worse, his lawyer even refused to sign IBM's nondisclo-
sure agreement covering the not-yet-announced PC. Consequently, IBM went
back to Gates asking if he could provide them with an operating system.

When IBM came back, Gates redlized that a local computer manufacturer,
Seattle Computer Products, had a suitable operating system, DOS (Disk Oper at-
ing System). He approached them and asked to buy it (alegedly for $75,000),
which they readily accepted. Gates then offered IBM a DOS/BASIC package,
which IBM accepted. I1BM wanted certain modifications, so Gates hired the per-
son who wrote DOS, Tim Paterson, as an employee of Gates' fledgling company,
Microsoft, to make them. The revised system was renamed MSDOS (Micr oSoft
Disk Operating System) and quickly came to dominate the IBM PC market. A
key factor here was Gates' (in retrospect, extremely wise) decision to sell MS
DOS to computer companies for bundling with their hardware, compared to
KildalPs attempt to sell CP/M to end users one at atime (at least initially). After
al this transpired, Kildall died suddenly and unexpectedly from causes that have
not been fully disclosed.

By the time the successor to the IBM PC, the IBM PC/AT, came out in 1983
with the Intel 80286 CPU, MS-DOS was firmly entrenched and CP/M was on its
last legs. MS-DOS was later widely used on the 80386 and 80486. Although the
initial version of MSDOS was fairly primitive, subsequent versions included more
advanced features, including many taken from UNIX. (Microsoft was well aware
of UNIX, even selling a microcomputer version of it called XENIX during the
company's early years.)

CP/M, MS-DOS, and other operating systems for early microcomputers were
all based on users typing in commands from the keyboard. That eventually chang-
ed due to research done by Doug Engelbart at Stanford Research Institute in the
1960s. Engelbart invented the GUI Graphical User Interface, complete with
windows, icons, menus, and mouse. These ideas were adopted by researchers at
Xerox PARC and incorporated into machines they built.

One day, Steve Jobs, who co-invented the Apple computer in his garage,
visited PARC, saw a GUI, and instantly realized its potential value, something
Xerox management famoudy did not. This strategic blunder o|g™rgantuan pro-
portions led to a book entitled Fumbling the Future (Smith and Alexander, 1988).
Jobs then embarked on building an Apple with a GUI. This project led to the
Lisa, which was too expensive and failed commercially. Jobs' second attempt, the
Apple Macintosh, was a huge success, not only because it was much cheaper than
the Lisa, but also because it was user friendly, meaning that it was intended for
users who not only knew nothing about computers but furthermore had absolutely
no intention whatsoever of learning. In the creative world of graphic design, pro-
fessional digital photography, and professional digital video production, Macin-
toshes are very widely used and their users are very enthusiastic about them.
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When Microsoft decided to build a successor to MS-DOS, it was strongly
influenced by the success of the Macintosh. It produced a GUI-based system call-
ed Windows, which originaly ran on top of MS-DOS (i.e., it was more like a shell
than a true operating system). For about 10 years, from 1985 to 1995, Windows
wasjust agraphical environment on top of MS-DOS. However, starting in 1995 a
freestanding version of Windows, Windows 95, was released that incorporated
many operating system features into it, using the underlying MSDOS system only
for booting and running old MSDOS programs. In 1998, a dightly modified ver-
sion of this system, called Windows 98 was released. Nevertheless, both Windows
95 and Windows 98 still contained a large amount of 16-bit Intel assembly lan-
guage.

Another Microsoft operating system is Windows NT (NT stands for New
Technology), which is compatible with Windows 95 at a certain level, but a com-
plete rewrite from scratch internally. It is afull 32-bit system. The lead designer
for Windows NT was David Cutler, who was also one of the designers of the
VAX VMS operating system, so some ideas from VMS are present in NT. In
fact, so many ideas from VMS were present in it that the owner of VMS, DEC,
sued Microsoft. The case was settled out of court for an amount of money requir-
ing many digits to express. Microsoft expected that the first version of NT would
kill off MSDOS and dl other versions of Windows since it was a vastly superior
system, but it fizzled. Only with Windows NT 4.0 did it finally catch on in a big
way, especially on corporate networks. Version 5 of Windows NT was renamed
Windows 2000 in early 1999. It was intended to be the successor to both Win-
dows 98 and Windows NT 4.0.

That did not quite work out either, so Microsoft came out with yet another
version of Windows 98 called Windows Me (Millennium edition). In 2001, a
sightly upgraded version of Windows 2000, called Windows XP was released.
That version had a much longer run (6 years), basically replacing all previous ver-
sions of Windows. Then in January 2007, Microsoft finally released the successor
to Windows XP, caled Vista. It came with a new graphical interface, Aero, and
many new or upgraded user programs. Microsoft hopes it will replace Windows
XP completely, but this process could take the better part of a decade.

The other major contender in the persona computer world is UNIX (and its
various derivatives). UNIX is strongest on network and enterprise servers, but is
aso increasingly present on desktop computers, especially in rapidly developing
countries such as India and China. On Pentium-based computers, Linux is
becoming a popular aternative to Windows for students and increasingly many
corporate users. As an aside, throughout this book we will use the term "Pen-
tium" to mean the Pentium I, II, 111, and 4 as well as its successors such as Core 2
Duo. The term x86 is also sometimes used to indicate the entire range of Intel
CPUs going back to the 8086, whereas "Pentium" will be used to mean all CPUs
from the Pentium | onwards. Admittedly, this term is not perfect, but no better one
isavailable. One has to wonder which marketing genius at Intel threw out a brand
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name (Pentium) that half the world knew well and respected and replaced it with
terms like "Core 2 duo” which very few people understand—quick, what does the
"2" mean and what does the "duo” mean? Maybe "Pentium 5" (or "Pentium 5
dual core," etc.) was just too hard to remember. FreeBSD is also a popular UNIX
derivative, originating from the BSD project a Berkeley. AH modern Macintosh
computers run amodified version of FreeBSD. UNIX is also standard on worksta-
tions powered by high-performance RISC chips, such as those sold by Hewlett-
Packard and Sun Microsystems.

Many UNIX users, especialy experienced programmers, prefer a command-
based interface to a GUI, so nearly al UNIX systems support a windowing system
caled the X Window System (also known as X11) produced at M.I.T. This sys-
tem handles the basic window management, allowing users to create, delete,
move, and resize windows using a mouse. Often a complete GUI, such as Gnome
or KDE is available to run on top of X 11 giving UNIX alook and fed something
like the Macintosh or Microsoft Windows, for those UNIX users who want such a
thing.

An interesting development that began taking place during the mid-1980s is
the growth of networks of personal computers running network operating sys-
tems and distributed operating systems (Tanenbaum and Van Steen, 2007). In
a network operating system, the users are aware of the existence of multiple com-
puters and can log in to remote machines and copy files from one machine to an-
other. Each machine runs its own local operating system and has its own local
user (or users).

Network operating systems are not fundamentally different from single-proc-
essor operating systems. They obviousy need a network interface controller and
some low-level software to drive it, as well as programs to achieve remote login
and remote file access, but these additions do not change the essential structure of
the operating system.

A distributed operating system, in contrast, is one that appears to its users as a
traditional uniprocessor system, even though it is actually composed of multiple
processors. The users should not be aware of where their programs are being run
or where their files are located; that should al be handled automatically and effi-
ciently by the operating system.

True distributed operating systems require more than just adding a little code
to a uniprocessor operating system, because distributed and centralized systems
differ in certain critical ways. Distributed systems, for example, often allow appli-
cations to run on several processors at the same time, thus requiring more com-
plex processor scheduling agorithms in order to optimize the amount of paralr
lelism.

Communication delays within the network often mean that these (and other)
algorithms must run with incomplete, outdated, or even incorrect information.
This situation is radically different from a single-processor system in which the
operating system has complete information about the system state.
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1.3 COMPUTER HARDWARE REVIEW

An operating system is intimately tied to the hardware of the computer it runs
on. It extends the computer's instruction set and manages its resources. To work,
it must know a great deal about the hardware, at least about how the hardware
appears to the programmer. For this reason, let us briefly review computer hard-
ware as found in modern personal computers. After that, we can start getting into
the details of what operating systems do and how they work.

Conceptually, a simple personal computer can be abstracted to a model
resembling that of Fig. 1-6. The CPU, memory, and 1/O devices are al connected
by a system bus and communicate with one another over it. Modern persona
computers have a more complicated structure, involving multiple buses, which we
will look at later. For the time being, this model will be sufficient. In the follow-
ing sections, we will briefly review these components and examine some of the
hardware issues that are of concern to operating system designers. Needless to
say, this will be a very compact summary. Many books have been written on the
subject of computer hardware and computer organization Two well-known ones
are by Tanenbaum (2006) and Patterson and Hennessy (2004).

Monitor
. Hard
Keyboard USB printer disk drive

£3

; Hard
Video Keyboard usB ;
CPU Memory disk
o controller controller controller controller
Bus

Figure 1-6. Some of the components of a simple personal computer.

1.3.1 Processors

The "brain" of the computer is the CPU. It fetches instructions from memory
and executes them. The basic cycle of every CPU is to fetch the first instruction
from memory, decode it to determine its type and operands, execute it, and then
fetch, decode, and execute subsequent instructions. The cycle is repeated until the
program finishes. In thisway, programs are carried out.
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Each CPU has a specific set of instructions that it can execute. Thus a Pen-
tium cannot execute SPARC programs and a SPARC cannot execute Pentium pro-
grams. Because accessing memory to get an instruction or data word takes much
longer than executing an instruction, al CPUs contain some registers inside to
hold key variables and temporary results. Thus the instruction set generally con-
tains instructions to load a word from memory into a register, and store a word
from a register into memory. Other instructions combine two operands from regis-
ters, memory, or both into aresult, such as adding two words and storing the re-
sult in aregister or in memory.

In addition to the genera registers used to hold variables and temporary re-
sults, most computers have several special registers that are visible to the pro-
grammer. One of these is the program counter, which contains the memory ad-
dress of the next instruction to be fetched. After that instruction has been fetched,
the program counter is updated to point to its successor.

Another register is the stack pointer, which points to the top of the current
stack in memory. The stack contains one frame for each procedure that has been
entered but not yet exited. A procedure's stack frame holds those input parame-
ters, local variables, and temporary variables that are not kept in registers.

Yet another register is the PSW (Program Status Word). This register con-
tains the condition code bits, which are set by comparison instructions, the CPU
priority, the mode (user or kernel), and various other control bits. User programs
may normally read the entire PSW but typically may write only some of its fields.
The PSW plays an important role in system calls and |/O.

The operating system must be aware of dl the registers. When time multi-
plexing the CPU, the operating system will often stop the running program to
(re)start another one. Every time it stops a running program, the operating system
must save dl the registers so they can be restored when the program runs later.

To improve performance, CPU designers have long abandoned the simple
model of fetching, decoding, and executing one instruction at a time. Many mod-
ern CPUs have facilities for executing more than one instruction at the same time.
For example, a CPU might have separate fetch, decode, and execute units, so that
while it was executing instruction n, it could also be decoding instruction n + 1
and fetching instruction n + 2. Such an organization is called a pipeline and isiil-
lustrated in Fig. 1 -7(a) for a pipeline with three stages. Longer pipelines are com-
mon. In most pipeline designs, once an instruction has been fetched into the pipe-
line, it must be executed, even if the preceding instruction was a conditional
branch that was taken. Pipelines cause compiler writers and operating system
writers great headaches because they expose the complexities of the underlying
machine to them.

Even more advanced than a pipeline design is a superscalar CPU, shown in
Fig. 1 -7(b). In this design, multiple execution units are present, for example, one
for integer arithmetic, one for floating-point arithmetic, and one for Boolean oper-
ations. Two or more instructions are fetched at once, decoded, and dumped into a
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Figure 1-7. (a) A three-stage pipeline, (b) A superscalar CPU.

holding buffer until they can be executed. As soon as an execution unit is free, it
looks in the holding buffer to see if there is an instruction it can handle, and if so,
it removes the instruction from the buffer and executes it. An implication of this
design is that program instructions are often executed out of order. For the most
part, it is up to the hardware to make sure the result produced is the same one a
sequential implementation would have produced, but an annoying amount of the
complexity is foisted onto the operating system, as we shall see.

Most CPUs, except very simple ones used in embedded systems,.have two
modes, kerned mode and user mode, as mentioned earlier. Usualy, a bit in the
PSW controls the mode. When running in kernel mode, the CPU can execute
every instruction in its instruction set and use every feature of the hardware. The
operating system runs in kernel mode, giving it access to the complete hardware.

In contrast, user programs run in user mode, which permits only a subset of
the instructions to be executed and a subset of the features to be accessed. Gener-
aly, al instructions involving 1/0 and memory protection are disallowed in user
mode. Setting the PSW mode bit to enter kernel mode is also forbidden, of course.

To obtain services from the operating system, a user program must make a
system call, which traps into the kernel and invokes the operating system. The
TRAP instruction switches from user mode to kernel mode and starts the operating
system. When the work has been completed, control is returned to the user pro-
gram at the instruction following the system call. We will explain the details of
the system call mechanism later in this chapter but for the time being, think of it
as a specid kind of procedure call instruction that has the additional property of
switching from user mode to kernel mode. As a note on typography, we will use
the lower case Helvetica font to indicate system calls in running text, like this:
read.

It is worth noting that computers have traps other than the instruction for exe-
cuting a system call. Most of the other traps are caused by the hardware to warn of
an exceptional situation such as an attempt to divide by O or a floating-point
underflow. In all cases the operating system gets control and must decide what to
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do. Sometimes the program must be terminated with an error. Other times the
error can be ignored (an underflowed number can be set to 0). Finally, when the
program has announced in advance that it wants to handle certain kinds of condi-
tions, control can be passed back to the program to let it deal with the problem.

Multithreaded and Multicore Chips

Moore's law states that the number of transistors on a chip doubles every 18
months. This "law" is not some kind of law of physics, like conservation of mo-
mentum, but is an observation by Intel cofounder Gordon Moore of how fast proc-
ess engineers at the semiconductor companies are able to shrink their transistors.
Moore's law has held for three decades now and is expected to hold for at least
one more.

The abundance of transistors is leading to a problem: what to do with all of
them? We saw one approach above: superscalar architectures, with multiple func-
tiona units. But as the number of transistors increases, even more is possible.
One obvious thing to do is put bigger caches on the CPU chip and that is defin-
itely happening, but eventually the point of diminishing returns is reached.

The obvious next step is to replicate not only the functiona units, but aso
some of the control logic. The Pentium 4 and some other CPU chips have this
property, caled multithreading or hyperthreading (Intel's name for it). To a
first approximation, what it does is alow the CPU to hold the state of two dif-
ferent threads and then switch back and forth on a nanosecond time scale. (A
thread is a kind of lightweight process, which, in turn, is a running program; we
will get into the details in Chap. 2.) For example, if one of the processes needs to
read a word from memory (which takes many clock cycles), a multithreaded CPU
can just switch to ancther thread. Multithreading does not offer true parallelism.
Only one process at a time is running, but thread switching time is reduced to the
order of a nanosecond.

Multithreading has implications for the operating system because each thread
appears to the operating system as a separate CPU. Consider a system with two
actua CPUs, each with two threads. The operating system will see this as four
CPUs. If thereis only enough work to keep two CPUs busy at a certain point in
time, it may inadvertently schedule two threads on the same CPU, with the other
CPU completely idle. This choice is far less efficient than using one thread on
each CPU. The successor to the Pentium 4, the Core (also Core 2) architecture
does not have hyperthreading, but Intel has announced that the Core's successor
will have it again.

Beyond multithreading, we have CPU chips with two or four or more com-
plete processors or cores on them. The multicore chips of Fig. 1-8 effectively
carry four minichips on them, each with its own independent CPU. (The caches
will be explained below.) Making use of such amulticore chip will definitely re-
quire a multiprocessor operating system.
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Figure 1-8. (a) A quad-core chip with a shared L2 cache, (b) A quad-core chip
with separate L 2 caches.

132 Memory

The second major component in any computer is the memory. Idealy, a mem-
ory should be extremely fast (faster than executing an instruction so the CPU is
not held up by the memory), abundantly large, and dirt cheap. No current tech-
nology satisfies all of these goals, so a different approach is taken. The memory
system is constructed as a hierarchy of layers, as shown in Fig. 1-9. The top lay-
ers have higher speed, smaller capacity, and greater cost per bit than the lower
ones, often by factors of a billion or more.

Typical accesstime Typical capacity
1 nsec Registers <1 KB
2 nsec Cache 4MB
10 nsec Main memory 512-2048MB
10 msec Magnetic disk 200-1000GB
100 sec Magnetictape 400-800 GB

Figure 1-9. A typical memory hierarchy. The numbers are very rough approximations.

The top layer consists of the registers interna to the CPU. They are made of
the same materia as the CPU and are thusjust as fast as the CPU. Consequently,
there is no delay in accessing them. The storage capacity available in them is typi-
caly 32 x 32-hits on a 32-bit CPU and 64 x 64-bits on a 64-bit CPU. Lessthan 1
KB in both cases. Programs must manage the registers (i.e., decide what to keep
in them) themselves, in software.



INTRODUCTION CHAP. 1

Next comes the cache memory, which is mostly controlled by the hardware.
Main memory is divided up into cache lines, typicaly 64 bytes, with addresses 0
to 63 in cache line 0, addresses 64 to 127 in cache line 1, and so on. The most
heavily used cache lines are kept in a high-speed cache located inside or very
close to the CPU. When the program needs to read a memory word, the cache
hardware checks to see if the line needed is in the cache. Ifiitis, caled a cache
hit, the request is satisfied from the cache and no memory request is sent over the
bus to the main memory. Cache hits normally take about two clock cycles. Cache
misses have to go to memory, with a substantial time penalty. Cache memory is
limited in size due to its high cost. Some machines have two or even three levels
of cache, each one slower and bigger than the one before it.

Caching plays a major role in many areas of computer science, notjust cach-
ing lines of RAM. Whenever there is a large resource that can be divided into
pieces, some of which are used much more heavily than others, caching is often
invoked to improve performance. Operating systems use it dl the time. For ex-
ample, most operating systems keep (pieces of) heavily used files in main memo-
ry to avoid having to fetch them from the disk repeatedly. Similarly, the results of
converting long path names like

/home/ast/projects/minix3/src/kemel/clock.c

into the disk address where the file is located can be cached to avoid repeated
lookups. Finally, when an address of a Web page (URL) is converted to a network
address (IP address), the result can be cached for future use. Many other uses
exist.

In any caching system, severa questions come up fairly soon, including:

1. When to put a new item into the cache.

2. Which cache line to put the new item in.

3. Which item to remove from the cache when aslot is needed.
4

. Where to put a newly evicted item in the larger memory.

Not every question is relevant to every caching situation. For caching lines of
main memory in the CPU cache, a new item will generally be entered on every
cache miss. The cache line to use is generally computed by using some of the
high-order bits of the memory address referenced. For example, with 4096 cache
lines of 64 bytes and 32 bit addresses, bits 6 through 17 might be used to specify
the cache line, with bits 0 to 5 the byte within the cache line. In this case, the
item to remove is the same one as the new data goes into, but in other systems it
might not be. Finally, when a cache line is rewritten to main memory (if it has
been modified since it was cached), the place in memory to rewrite it to is
uniquely determined by the address in question.
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Caches are such a good idea that modern CPU's have two of them. The first
level or L1 cache is aways inside the CPU and usually feeds decoded instructions
into the CPUs execution engine. Most chips have a second LI cache for very
heavily used data words. The LI caches are typically 16 KB each. In addition,
there is often a second cache, called the L2 cache, that holds severa megabytes
of recently used memory words. The difference between the LI and L2 caches
liesinthetiming. Accessto the LI cacheis done without any delay, whereas ac-
cess to the L2 cache involves adelay of one or two clock cycles.

On multicore chips, the designers have to decide where to place the caches.
In Fig. 1-8(a), there is asingle L2 cache shared by all thecores. This approach is
used in Intel multicore chips. In contrast, in Fig. 1-8(b), each core has its own L2
cache. This approach is used by AMD. Each strategy has its pros and cons. For
example, the Intel shared L2 cache requires a more complicated cache controller
but the AMD way makes keeping the L2 caches consistent more difficult.

Main memory comes next in the hierarchy of Fig. 1-9. This is the workhorse
of the memory system. Main memory is usually called RAM (Random Access
Memory). Old-timers sometimes call it core memory, because computers in the
1950s and 1960s used tiny magnetizable ferrite cores for main memory. Currently,
memories are hundreds of megabytes to severa gigabytes and growing rapidly.
All CPU requests that cannot be satisfied out of the cache go to main memory.

In addition to the main memory, many computers have a small amount of
nonvolatile random access memory. Unlike RAM, nonvolatile memory does not
lose its contents when the power is switched off. ROM (Read Only Memory) is
programmed at the factory and cannot be changed afterward. It is fast and inex-
pensive. On some computers, the bootstrap loader used to start the computer is
contained in ROM. Also, some I/O cards come with ROM for handling low-level
device control.

EEPROM (Electrically Erasable PROM) and flash memory are aso non-
volatile, but in contrast to ROM can be erased and rewritten. However, writing
them takes orders of magnitude more time than writing RAM, so they are used in
the same way ROM s, only with the additional feature that it is now possible to
correct bugs in programs they hold by rewriting them in the field.

Flash memory is also commonly used as the storage medium in portable elec-
tronic devices. It serves asfilmin digital cameras and as the disk in portable mu-
sic players, to namejust two uses. Flash memory isintermediate in speed between
RAM and disk. Also, unlike disk memory, if it is erased too many times, it wears
out.

Y et another kind of memory is CMOS, which is volatile. Many computers use
CMOS memory to hold the current time and date. The CMOS memory and the
clock circuit that increments the time in it are powered by a small battery, so the
time is correctly updated, even when the computer is unplugged. The CMOS
memory can also hold the configuration parameters, such as which disk to boot
from. CMOS is used because it draws so little power that the original factory-
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installed battery often lasts for severa years. However, when it begins to fail, the
computer can appear to have Alzheimer's disease, forgetting things that it has
known for years, like which hard disk to boot from.

1.3.3 Disks

Next in the hierarchy is magnetic disk (hard disk). Disk storage is two orders
of magnitude cheaper than RAM per bit and often two orders of magnitude larger
as well. The only problem is that the time to randomly access data on it is close to
three orders of magnitude slower. This low speed is due to the fact that adisk is a
mechanical device, as shown in Fig. 1-10.

Read/write head (1 per surface}
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Surface 2 =
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Figure 1-10, Structure of a disk drive.

A disk consists of one or more metal platters that rotate at 5400, 7200, or
10,800 rpm A mechanical arm pivots over the platters from the comer, similar to
the pickup arm on an old 33 rpm phonograph for playing vinyl records. Infor-
mation is written onto the disk in a series of concentric circles. At any given arm
position, each of the heads can read an annular region called a track. Together,
al the tracks for a given arm position form a cylinder.

Each track is divided into some number of sectors, typicaly 512 bytes per
sector. On modem disks, the outer cylinders contain more sectors than the inner
ones. Moving the arm from one cylinder to the next one takes about 1 msec.
Moving it to arandom cylinder typically takes 5 msec to 10 msec, depending on
the drive. Once the arm is on the correct track, the drive must wait for the needed
sector to rotate under the head, an additional delay of 5 msec to 10 msec, depend-
ing on the drive's rpm. Once the sector is under the head, reading or writing oc-
curs at arate of 50 MB/sec on low-end disks to 160 MB/sec on faster ones.

Many computers support a scheme known as virtual memory, which we will
discuss at some length in Chap. 3. This scheme makes it possible to run programs
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larger than physical memory by placing them on the disk and using main memory
as a kind of cache for the most heavily executed parts. This scheme requires re-
mapping memory addresses on the fly to convert the address the program gen-
erated to the physical address in RAM where the word is located. This mapping is
done by a part of the CPU caled the MMU (Memory Management Unit), as
shown in Fig. 1-6.

The presence of caching and the MMU can have a maor impact on per-
formance. In a multiprogramming system, when switching from one program to
another, sometimes called a context switch, it may be necessary to flush al modi-
fied blocks from the cache and change the mapping registers in the MMU. Both
of these are expensive operations and programmers try hard to avoid them. We
will see some of the implications of their tactics later.

1.3.4 Tapes

The find layer in the memory hierarchy is magnetic tape. This medium is
often used as a backup for disk storage and for holding very large data sets. To
access a tape, it must first be put into a tape reader, either by a person or a robot
(automated tape handling is common at installations with huge databases). Then
the tape may have to be spooled forward to get to the requested block. All in all,
this could take minutes. The big plus of tape is that it is exceedingly cheap per bit
and removable, which is important for backup tapes that must be stored off-site in
order to survive fires, floods, earthquakes, and other disasters.

The memory hierarchy we have discussed is typical, but some installations do
not have al the layers or have a few different ones (such as optical disk). Still, in
al of them, as one goes on down the hierarchy, the random access time increases
dramatically, the capacity increases equally dramatically, and the cost per bit
drops enormously. Consequently, it is likely that memory hierarchies will be
around for years to come.

1.3.5 1I/O Devices

The CPU and memory are not the only resources that the operating system
must manage. /0 devices also interact heavily with the operating system. As we
saw in Fig. 1-6, 1/O devices generally consist of two parts: a controller and the de-
vice itsdlf. The controller is a chip or a set of chips that physically controls the de-
vice. It accepts commands from the operating system, for example, to read data
from the device, and carries them out.

In many cases, the actual control of the device is very complicated and de-
tailed, so it is thejob of the controller to present a simpler interface to the operat-
ing system (but till very complex). For example, a disk controller might accept a
command to read sector 11,206 from disk 2. The controller then has to convert
this linear sector number to a cylinder, sector, and head. This conversion may be
complicated by the fact that outer cylinders have more sectors than inner ones and
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that some bad sectors have been remapped onto other ones. Then the controller
has to determine which cylinder the disk arm is on and give it a sequence of
pulses to move in or out the requisite number of cylinders. It has to wait until the
proper sector has rotated under the head and then start reading and storing the bits
as they come off the drive, removing the preamble and computing the checksum.
Finaly, it has to assemble the incoming bits into words and store them in memo-
ry. To do dl this work, controllers often contain small embedded computers .that
are programmed to do their work.

The other piece is the actua device itsef. Devices have farly smple inter-
faces, both because they cannot do much and to make them standard. The latter is
needed so that any IDE disk controller can handle any IDE disk, for example.
IDE stands for Integrated Drive Electronics and is the standard type of disk on
many computers. Since the actual device interface is hidden behind the controller,
al that the operating system sees is the interface to the controller, which may be
quite different from the interface to the device.

Because each type of controller is different, different software is needed to
control each one. The software that talks to a controller, giving it commands and
accepting responses, is called adevice driver. Each controller manufacturer has
to supply adriver for each operating system it supports. Thus a scanner may come
with drivers for Windows 2000, Windows XP, Vista, and Linux, for example.

To be used, the driver has to be put into the operating system so it can run in
kernel mode. Drivers can actualy run outside the kernel, but only a few current
systems support this possibility because it requires the ability to alow a user-
space driver to be able to access the device in a controlled way, a feature rarely
supported. There are three ways the driver can be put into the kernel. The first
way is to relink the kernel with the new driver and then reboot the system. Many
older UNIX systems work like this. The second way is to make an entry in an op-
erating system filetelling it that it needs the driver and then reboot the system. At
boot time, the operating system goes and finds the drivers it needs and loads them.
Windows works this way. The third way is for the operating system to be able to
accept new drivers while running and install them on the fly without the need to
reboot. This way used to be rare but is becoming much more common now. Hot
pluggable devices, such as USB and |IEEE 1394 devices (discussed below) always
need dynamically loaded drivers.

Every controller has asmall number of registers that are used to communicate
with it. For example, aminimal disk controller might have registers for specifying
the disk address, memory address, sector count, and direction (read or write). To
activate the controller, the driver gets a command from the operating system, then
translates it into the appropriate values to write into the device registers. The col-
lection of al the device registers forms the 1/0 port space, a subject we will
come back to in Chap. 5.

On some computers, the device registers are mapped into the operating sys-
tem's address space (the addresses it can use), so they can be read and written like
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ordinary memory words. On such computers, no specia /O instructions are re-
quired and user programs can be kept away from the hardware by not putting
these memory addresses within their reach (e.g., by using base and limit regis-
ters). On other computers, the device registers are put in a special 1/0 port space,
with each register having a port address. On these machines, special iN and OUT
instructions are available in kernel mode to alow drivers to read and write the
registers. The former scheme eliminates the need for specia 1/0 instructions but
uses up some of the address space. The latter uses no address space but requires
specia instructions. Both systems are widely used.

Input and output can be donein three different ways. In the simplest method,
auser program issues a system call, which the kernel then translates into a proce-
dure call to the appropriate driver. The driver then starts the I/O and sits in atight
loop continuously polling the device to see if it is done (usualy there is some bit
that indicates that the device is still busy). When the 1/0 has completed, the driv-
er puts the data (if any) where they are needed and returns. The operating system
then returns control to the caller. This method is called busy waiting and has the
disadvantage of tying up the CPU polling the device until itis finished.

The second method isfor the driver to start the device and ask it to give an in-
terrupt when it isfinished. At that point the driver returns. The operating system
then blocks the caller if need be and looks for other work to do. When the con-
troller detects the end of the transfer, it generates an interrupt to signa comple-
tion.

Interrupts are very important in operating systems, so let us examine the idea
more closely. In Fig. 1-11(a) we see a three-step process for 1/0. In step 1, the
driver tells the controller what to do by writing into its device registers. The con-
troller then starts the device. When the controller has finished reading or writing
the number of bytes it has been told to transfer, it signals the interrupt controller
chip using certain bus lines in step 2. If the interrupt controller is prepared to ac-
cept the interrupt (which it may not be if it is busy with a higher-priority one), it
asserts a pin on the CPU chip informing it, in step 3. In step 4, the interrupt con-
troller puts the number of the device on the bus so the CPU can read it and know
which device hasjust finished (many devices may be running at the same time).

Once the CPU has decided to take the interrupt, the program counter and
PSW are typically then pushed onto the current stack and the CPU switched into
kernel mode. The device number may be used as an index into part of memory to
find the address of the interrupt handler for this device. This pat of memory is
caled the interrupt vector. Once the interrupt handler (part of the driver for the
interrupting device) has started, it removes the stacked program counter and PSW
and saves them, then queries the device to learn its status. When the handler is all
finished, it returns to the previously running user program to the first instruction
that was not yet executed. These steps are shown in Fig. 1-11(b).

The third method for doing 1/0 makes use of specia hardware: a DMA
(Direct Memory Access) chip that can control the flow of bits between memory
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Figure 1-11. (a) The steps in starting an 1/O device and getting an interrupt, (b)
Interrupt processing involves taking the interrupt, running the interrupt handler,
and returning to the user program.

and some controller without constant CPU intervention. The CPU sets up the
DMA chip, telling it how many bytes to transfer, the device and memory ad-
dresses involved, and the direction, and lets it go. When the DMA chip is done, it
causes an interrupt, which is handled as described above. DMA and 1/O hardware
in general will be discussed in more detail in Chap. 5.

Interrupts can often happen at highly inconvenient moments, for example,
while another interrupt handler is running. For this reason, the CPU has a way to
disable interrupts and then reenable them later. While interrupts are disabled, any
devices that finish continue to assert their interrupt signals, but the CPU is not in-
terrupted until interrupts arc enabled again. If multiple devices finish while inter-
rupts are disabled, the interrupt controller decides which one to let through first,
usualy based on static priorities assigned to each device. The highest-priority de-
Vice wins.

1.3.6 Buses

The organization of Fig. 1-6 was used on minicomputers for years and also on
theorigina IBM PC. However, as processors and memories got faster, the ability
of a single bus (and certainly the IBM PC bus) to handle al the traffic was
strained to the breaking point. Something had to give. As a result, additional
buses were added, both for faster 1/0 devices and for CPU-to-memory traffic. As
a consequence of this evolution, a large Pentium system currently looks some-
thing like Fig. 1-12.

This system has eight buses (cache, local, memory, PCI, SCSI, USB, IDE,
and I1SA), each with a different transfer rate and function. The operating system
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Figure 1-12. The structure of a large Pentium system

must be aware of dl of them for configuration and management. The two main
buses are the original IBM PC ISA (Industry Standard Architecture) bus and
its successor, the PCI (Peripheral Component Interconnect) bus. The ISA bus,
which was originally the B3V PC/AT bus, runs at 8.33 MHz and can transfer 2
bytes at once, for amaximum speed of 16.67 MB/sec. It is included for backward
compatibility with old and slow 1/O cards. Modern systems frequently leave it out
and it is dying off. The PCI bus was invented by Intel as a successor to the ISA
bus. It can run a 66 MHz and transfer 8 bytes at a time, for a data rate of 528
MB/sec. Most high-speed 1/0 devices use the PCI bus now. Even some non-Intel
computers use the PCI bus due to the large number of I/O cards available for it.
New computers are being brought out with an updated version of the PCI bus call-
ed PCI Express.

In this configuration, the CPU talks to the PCI bridge chip over the local bus,
and the PCI bridge chip talks to the memory over a dedicated memory bus, often
running a 100 MHz. Pentium systems have a level-1 cache on chip and a much
larger level-2 cache off chip, connected to the CPU by the cache bus.

In addition, this system contains three specialized buses: IDE, USB, and
SCSI. The IDE bus is for attaching peripheral devices such as disks and CD-
ROMs to the system. The IDE bus is an outgrowth of the disk controller interface
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on the PC/AT and is now standard on nearly al Pentium-based systems for the
hard disk and often the CD-ROM.

The USB (Universal Serial Bus) was invented to attach al the slow 1/0 de-
vices, such as the keyboard and mouse, to the computer. It uses asmall four-wire
connector, two of which supply electrical power to the USB devices. USB is a
centralized busin which aroot device pollsthe 1/O devices every 1 msec to seeif
they have any traffic. USB 10 could handle an aggregate load of 15 MB/sec but
the newer USB 2.0 bus can handle 60 MB/sec. All the USB devices share asingle
USB device driver, making it unnecessary to install a new driver for each new
USB device. Consequently, USB devices can be added to the computer without
the nead to reboot.

The SCSI (Small Computer System Interface) bus is a high-performance
bus intended for fast disks, scanners, and other devices needing considerable
bandwidth. 1t can run at up to 160 MB/sec. It has been present on Macintosh sys-
tems since they were invented and is also popular on UNIX and some Intel-based
systems.

Y et another bus (not shown in Fig. 1-12) is|EEE 1394. Sometimes it is call-
ed FireWire, athough gtrictly speaking, FireWire is the name Apple uses for its
implementation of 1394. Like USB, IEEE 13%4 is bit serial but is designed for
packet transfers at speeds up to 100 MB/sec, making it useful for connecting digi-
tal camcorders and similar multimedia devices to a computer. Unlike USB, |IEEE
1394 does not have a central controller.

Towork in an environment such as that of Fig. 1-12, the operating system has
to know what peripheral devices are connected to the computer and configure
them. This requirement led Intel and Microsoft to design a PC system called plug
and play, based on a similar concept first implemented in the Apple Macintosh.
Before plug and play, each 1/0O card had a fixed interrupt request level and fixed-
addresses for its 1/O registers. For example, the keyboard was interrupt 1 and used
1/0O addresses 0x60 to 0x64, the floppy disk controller was interrupt 6 and used
1/0 addresses Ox3FO to 0x3F7, and the printer was interrupt 7 and used 1/O ad-
dresses 0x378 to 0x37A, and so on.

So far, so good. The trouble came when the user bought a sound card and a
modem card and both happened to use, say, interrupt 4. They would conflict and
would not work together. The solution was to include DIP switches or jumpers on
every 1/0O card and instruct the user to please set them to select an interrupt level
and 1/O device addresses that did not conflict with any othersin the user's system.
Teenagers who devoted their lives to the intricacies of the PC hardware could
sometimes do this without making errors. Unfortunately, nobody else could, lead-
ing to chaos.

What plug and play does is have the system automatically collect information
about the I/O devices, centrally assign interrupt levels and 1/0 addresses, and then
tell each card what its numbers are. This work is closely related to booting the
computer, so let us look at that. It isnot completely trivial.
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1.3.7 Booting the Computer

Very briefly, the Pentium boot process is as follows. Every Pentium contains
a parentboard (formerly called a motherboard before political correctness hit the
computer industry). On the parentboard is a program called the system BIOS
(Bask Input Output System). The BIOS contains low-level 1/0 software, in-
cluding procedures to read the keyboard, write to the screen, and do disk /O,
among other things. Nowadays, it is held in a flash RAM, which is nonvolatile but
which can be updated by the operating system when bugs are found in the BIOS.

When the computer is booted, the BIOS is started. It first checks to see how
much RAM is ingtalled and whether the keyboard and other basic devices are in-
stalled and responding correctly. |t starts out by scanning the ISA and PCI buses
to detect all the devices attached to them. Some of these devices are typically
legacy (i.e., designed before plug and play was invented) and have fixed interrupt
levels and 1/O addresses (possibly set by switches or jumpers on the 1/O card, but
not modifiable by the operating system). These devices are recorded. The plug
and play devices are also recorded. [f the devices present are different from when
the system was last booted, the new devices are configured.

The BIOS then determines the boot device by trying alist of devices stored in
the CMOS memory. The user can change this list by entering aBIOS configura-
tion program just after booting. Typically, an attempt is made to boot'from the
floppy disk, if one is present. If that fails the CD-ROM driveis queried to see if a
bootable CD-ROM is present. If neither a floppy nor a CD-ROM is present, the
system is booted from the hard disk. The first sector from the boot device is read
into memory and executed. This sector contains a program that normally exam-
ines the partition table at the end of the boot sector to determine which partition is
active. Then a secondary boot loader is read in from that partition. This loader
reads in the operating system from the active partition and starts it.

The operating system then queries the BIOS to get the configuration infor-
mation. For each device, it checks to seeif it has the device driver. If not, it asks
the user to insert a CD-ROM containing the driver (supplied by the device's
manufacturer). Once it has al the device drivers, the operating system loads them
into the kernel. Then it initializes its tables, creates whatever background proc-
esses are needed, and starts up a login program or GUI.

14 THE OPERATING SYSTEM ZOO

Operating systems have been around now for over hdf a century. During this
time, quite a variety of them have been developed, not all of them widely known.
In this section we will briefly touch upon nine of them. We will come back to
some of these different kinds of systems later in the book.
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1.4.1 Mainframe Operating Systems

At the high end are the operating systems for the mainframes, those room-
sized computers till found in major corporate data centers. These computers dif-
fer from personal computers in terms of their 1/0 capacity. A mainframe with
1000 disks and millions of gigabytes of data is not unusual; a personal computer
with these specifications would be the envy of its friends. Mainframes are also
making something of a comeback as high-end Web servers, servers for large-scale
electronic commerce sites, and servers for business-to-business transactions.

The operating systems for mainframes are heavily oriented toward processing
many jobs at once, most of which need prodigious amounts of I/0. They typically
offer three kinds of services: batch, transaction processing, and timesharing. A
batch system is one that processes routine jobs without any interactive user pres-
ent. Claims processing in an insurance company or sales reporting for a chain of
stores is typicaly done in batch mode. Transaction processing systems handle
large numbers of small requests, for example, check processing at a bank or air-
line reservations. Each unit of work is small, but the system must handle hundreds
or thousands per second. Timesharing systems alow multiple remote users to run
jobs on the computer at once, such as querying a big database. These functions are
closdly related; mainframe operating systems often perform al of them. An ex-
ample mainframe operating system is OS/390, a descendant of OS/360. However,
mainframe operating systems are gradually being replaced by UNIX variants such
asLinux.

1.4.2 Server Operating Systems

One level down are the server operating systems. They run on servers, which
are either very large personal computers, workstations, or even mainframes. They
serve multiple users at once over a network and allow the users to share hardware
and software resources. Servers can provide print service, file service, or Web ser-
vice. Internet providers run many server machines to support their customers and
Websites use servers to store the Web pages and handle the incoming requests.
Typica server operating systems are Solaris, FreeBSD, Linux and Windows Ser-
ver 200x.

1.4.3 Multiprocessor Operating Systems

An increasingly common way to get major-league computing power is to con-
nect multiple CPUs into a single system. Depending on precisely how they are
connected and what is shared, these systems are caled parale computers,
multicomputers, or multiprocessors. They need special operating systems, but
often these are variations on the server operating systems, with specia features
for communication, connectivity, and consistency.

SEC. 14 THE OPERATING SYSTEM Z0OO 33

With the recent advent of multicore chips for personal computers, even con-
ventional desktop and notebook operating systems are starting to deal with at least
small-scale multiprocessors and the number of cores is likely to grow over time.
Fortunately, quite a hit is known about multiprocessor operating systems from
years of previous research, so using this knowledge in multicore systems should
not be hard. The hard part will be having applications make use of al this comput-
ing power. Many popular operating systems, including Windows and Linux, run
on multiprocessors.

1.4.4 Personal Computer Operating Systems

The next category is the personal computer operating system. Modem ones all
support multiprogramming, often with dozens of programs started up at boot time.
Their job is to provide good support to asingle user. They are widely used for
word processing, spreadsheets, and Internet access. Common examples are Linux,
FreeBSD, Windows Vista, and the Macintosh operating system. Persona com-
puter operating systems are so widely known that probably little introduction is
needed. In fact, many people are not even aware that other kinds exist.

1.45 Handheld Computer Operating Systems

Continuing on down to smaller and smaller systems, we come to handheld
computers. A handheld computer or PDA (Personal Digital Assistant) is a small
computer that fits in a shirt pocket and performs a small number of functions,
such as an electronic address book and memo pad. Furthermore, many mobile
phones are hardly any different from PDAs except for the keyboard and screen.
In effect, PDAs and mobile phones have essentially merged, differing mostly in
size, weight, and user interface. Almost all of them are based on 32-bit CPUs with
protected mode and run a sophisticated operating system.

The operating systems that run on these handhelds are increasingly sophisti-
cated, with the ability to handle telephony, digita photography, and other func-
tions. Many of them also run third-party applications. In fact, some of them are
beginning to resemble the personal computer operating systems of a decade ago.
One mgjor difference between handhelds and PCs is that the former do not have
multigigabyte hard disks, which changes alot. Two of the most popular operating
systems for handhelds are Symbian OS and Palm OS.

1.4.6 Embedded Operating Systems.

Embedded systems run on the computers that control devices that are not gen-
erally thought of as computers and which do not accept user-installed software.
Typica examples are microwave ovens, TV sets, cars, DVD recorders, cell
phones, MP3 players. The main property which distinguishes embedded systems
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from handhelds is the certainty that no untrusted software will ever run on it. You
cannot download new applications to your microwave oven—all the software isin
ROM. This means that there is no need for protection between applications, lead-
ing to some simplification. Systems such as QNX and VxWorks are popular in
this domain.

14.7 Sensor Node Operating Systems

Networks of tiny sensor nodes are being deployed for numerous purposes.
These nodes are tiny computers that communicate with each other and with a base
dation using wireless communication. These sensor networks are used to protect
the perimeters of buildings, guard national borders, detect fires in forests, measure
temperature and precipitation for weather forecasting, glean information about
enemy movements on battlefields, and much more.

The sensors are small battery-powered computers with built-in radios. They
have limited power and must work for long periods of time unattended outdoors,
frequently in environmentally harsh conditions. The network must be robust
enough to tolerate failures of individual nodes, which happen with ever increasing
frequency as the batteries begin to run down.

Each sensor node is areal computer, with a CPU, RAM, ROM, and one or
more environmental sensors. It runs a small,, but real operating system, usualy
one tha is event driven, responding to external events or making measurements
periodically based on an internd clock. The operating system has to be small and
smple because the nodes have little RAM and battery lifetime is a major issue.
Also, as with embedded systems, all the programs are loaded in advance; users do
not suddenly start programs they downloaded from the Internet, which makes the
design much simpler. TinyOS is a well-known operating system for a sensor node.

14.8 Real-Time Operating Systems

Another type of operating system is the rea-time system. These systems are
characterized by having time as a key parameter. For example, in industrial proc-
ess control systems, real-time computers have to collect data about the production
process and use it to control machines in the factory. Often there are hard dead-
lines that must be met. For example, if a car is moving down an assembly line,
certain actions must take place at certain instants of time. If a welding robot
welds too early or too late, the car will be ruined. If the action absolutely must
occur a a certain moment (or within a certain range), we have a hard real-time
system. Many of these are found in industrial process control, avionics, military,
and similar application areas. These systems must provide absolute guarantees
that a certain action will occur by a certain time.

Another kind of real-time system is a soft real-time system, in which missing
an occasional deadline, while not desirable, is acceptable and does not cause any
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permanent damage. Digital audio or multimedia systems fal in this category.
Digital telephones are also oft real-time systems.

Since meeting strict deadlines is crucial in real-time systems, sometimes the
operating system is simply a library linked in with the application programs, with
everything tightly coupled and no protection between parts of the system. An ex-
ample of this type of real-time system is e-Cos.

The categories of handhelds, embedded systems, and real-time systems over-
lap considerably. Nearly dl of them have at least some soft real-time aspects.
The embedded and real-time systems run only software put in by the system de-
signers; users cannot add their own software, which makes protection easier. The
handhelds and embedded systems are intended for consumers, whereas real-time
systems are more for industrial usage. Nevertheless, they have a certain amount in
common.

149 Smart Card Operating Systems

The smallest operating systems run on smart cards, which are credit card-
sized devices containing a CPU chip. They have very severe processing power
and memory constraints. Some are powered by contacts in the reader into which
they are inserted, but contactless smart cards are inductively powered, which
greatly limits what they can do. Some of them can handle only a single function,
such as electronic payments, but others can handle multiple functions on the same
smart card. Often these are proprietary systems.

Some smart cards are Java oriented. What this means is that the ROM on the
smart card holds an interpreter for the Java Virtua Machine (JVM). Java applets
(small programs) are downloaded to the card and are interpreted by the VM in-
terpreter. Some of these cards can handle multiple Java applets at the same time,
leading to multiprogramming and the need to schedule them. Resource man-
agement and protection also become an issue when two or more applets are pres-
ent at the same time. These issues must be handled by the (usualy extremely
primitive) operating system present on the card.

15 OPERATING SYSTEM CONCEPTS

Most operating systems provide certain basic concepts and abstractions such
as processes, address spaces, and files that are central to understanding them. In
the following sections, we will look a some of these basic concepts ever so
briefly, as an introduction. We will come back to each of them in great detail
later in this book. To illustrate these concepts we will use examples from time to
time, generaly drawn from UNIX. Similar examples typicaly exist in other sys-
tems as well, however, and we will study Windows Vista in detail in Chap. 11.
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1.5.1 Processes

A key concept in al operating systems is the process. A process is basically
a program in execution. Associated with each process is its address space, a list
of memory locations from 0 to some maximum, which the process can read and
write. The address space contains die executable program, the program'’s data, and
its stack. Also associated with each process is a set of resources, commonly in-
cluding registers (including the program counter and stack pointer), a list of open
files, outstanding alarms, lists of related processes, and al the other information
needed to run the program. A process is fundamentally a container that holds all
the information needed to run a program.

We will come back to the process concept in much more detail in Chap. 2, but
for the time being, the easiest way to get a good intuitive fed for a process is to
think about a multiprogramming system. The user may have a stalled a video edit-
ing program and instructed it to convert a one-hour video to a certain format
(something that can take hours) and then gone off to surf the Web. Meanwhile, a
background process that wakes up periodically to check for incoming e-mail may
have started running. Thus we have (at least) three active processes. the video edi-
tor, the Web browser, and the e-mail receiver. Periodically, the operating system
decides to stop running one process and start running another; for example, be-
cause the first one has used up more than its share of CPU time in the past second
or two.

When a process is suspended temporarily like this, it must later be restarted in
exactly the same state it had when it was stopped. This means that all information
about the process must be explicitly saved somewhere during the suspension. For
example, the process may have severa files open for reading at once. Associated
with each of these files is a pointer giving the current position (i.e., the number of
the byte or record to be read next). When a process is temporarily suspended, all
these pointers must be saved so that a read cal executed after the process is
restarted will read the proper data. In many operating systems, dl the information
about each process, other than the contents of its own address space, is stored in
an operating system table called the process table, which is an array (or linked
list) of structures, one for each process currently in existence.

Thus, a (suspended) process consists of its address space, usualy called the
core image (in honor of the magnetic core memories used in days of yore), and its
process table entry, which contains the contents of its registers and many other
items needed to restart the process later.

The key process management system calls are those dealing with the creation
and termination of processes. Consider a typica example. A process called the
command interpreter or shell reads commands from a termina. The user has
just typed a command requesting that a program be compiled. The shell must
now create a new process that will run the compiler. When that process has fin-
ished the compilation, it executes a system call to terminate itsalf.
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If a process can create one or more other processes (referred to as child
processes) and these processes in turn can create child processes, we quickly
arrive at the process tree structure of Fig. 1-13. Related processes that are cooper-
ating to get some job done often need to communicate with one another and syn-
chronize their activities. This communication is called interprocess communica-
tion, and will be addressed in detail in Chap. 2.

Figure 1-13. A process free. Process A created two child processes, B and C.
Process B created three child processes, £, £, and F.

Other process system calls are available to request more memory (or release
unused memory), wait for a child process to terminate, and overlay its program
with a different one.

Occasionally, there is a need to convey information to a running process that
is not sitting around waiting for this information. For example, a process that is
communicating with another process on a different computer does so by sending
messages to the remote process over a computer network. To guard against the
possibility that a message or its reply is lost, the sender may request that its own
operating system notify it after a specified number of seconds, so that it can
retransmit the message if no acknowledgement has been received yet. After set-
ting this timer, the program may continue doing other work.

When the specified number of seconds has elapsed, the operating system
sends an alarm signal to the process. The signa causes the process to temporarily
suspend whatever it was doing, save its registers on the stack, and start running a
speciad signd handling procedure, for example, to retransmit a presumably lost
message. When the signal handler is done, the running process is restarted in the
state it was in just before the signal. Signals are the software analog of hardware
interrupts and can be generated by a variety of causes in addition to timers expir-
ing. Many traps detected by hardware, such as executing an illegal Instruction or
using an invalid address, are also converted into signals to the guilty process.

Each person authorized to use a system is assigned a UID (User IDentifica-
tion) by the system administrator. Every process started has the UID of the person
who started it. A child process has the same UID as its parent. Users can be
members of groups, each of which has a GID (Group |Dentification).

One UID, caled the super-user (in UNIX), has special power and may violate
many of the protection rules. In large installations, only the system administrator
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knows the password needed to become superuser, but many of the ordinary users
(especidly students) devote considerable effort to trying to find flaws in the sys-
tem that allow them to become superuser without the password.

We will study processes, interprocess communication, and related issues in
Chap. 2.

1.5.2 Address Spaces

Every computer has some main memory that it uses to hold executing pro-
grams. In avery smple operating system, only one program & atimeisin memo-
ry. Torun asecond program, the first one has to be removed and the second one
placed in memory.

More sophisticated operating systems allow multiple programs to be in mem-
ory at the same time. To keep them from interfering with one another (and with
the operating system), some kind of protection mechanism is needed. While this
mechanism has to be in the hardware, it is controlled by the operating system.

The above viewpoint is concerned with managing and protecting the com-
puter's main memory. A different, but equally important memory-related issue, is
managing the address space of the processes. Normally, each process has some set
of addresses it can use, typically running from O up to some maximum. In the
smplest case, the maximum amount of address space a process has is less than the
main memory. In this way, a process can fill up its address space and there will
be enough room in main memory to hold it all.

However, on many computers addresses are 32 or 64 bits, giving an address
space of 2°* or | bytes, respectively. What happens if a process has more ad-
dress space than the computer has main memory and the process wants to use it
al? In the first computers, such a process wasjust out of luck. Nowadays, atech-
nique caled virtual memory exists, as mentioned earlier, in which the operating
system keeps part of the address space in main memory and part on disk and shut-
tles pieces back and forth between them as needed. In essence, the operating sys-
tem creates the abstraction of an address space as the set of addresses a process
may reference. The address space is decoupled from the machine's physical mem-
ory, and may be either larger or smaller than the physical memory. Management
of address spaces and physical memory form an important part of what an operat-
ing system does, so dl of Chap. 3 is devoted to this topic.

1.5.3 Files

Another key concept supported by virtually al operating systems is the file
system. As noted before, a mgjor function of the operating system is to hide the
peculiarities of the disks and other 1/O devices and present the programmer with a
nice, clean abstract model of device-independent files. System calls are obviously
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needed to create files, remove files, read files, and write files. Before a file can be
read, it must be located on the disk and opened, and &fter it has been read it should
be closed, so calls are provided to do these things.

To provide a place to keep files, most operating systems have the concept of a
directory as a way of grouping files together. A student, for example, might have
one directory for each course he or sheis taking (for the programs needed for that
course), ancther directory for his electronic mail, and till another directory for his
World Wide Web home page. System calls are then needed to creste and remove
directories. Calls are also provided to put an existing file in a directory, and to re-
move a file from a directory. Directory entries may be either files or other direc-
tories. This modd also gives rise to a hierarchy—the file system—as shown in
Fig. 1-14.
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Figure 1-14. A file system for a university department.

The process and file hierarchies both are organized as trees, but the similarity
stops there. Process hierarchies usually are not very deep (more than three levels
is unusual), wheress file hierarchies are commonly four, five, or even more levels
deep. Process hierarchies are typicaly short-lived, generally minutes at most,
wheress the directory hierarchy may exist for years. Ownership and protection
also differ for processes and files. Typically, only a parent process may control or
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even access a child process, but mechanisms nearly aways exist to alow files and
directories to be read by a wider group thanjust the owner.

Every file within the directory hierarchy can be specified by giving its path
name from the top of the directory hierarchy, the root directory. Such absolute
path names consist of the list of directories that must be traversed from the root
directory to get to the file, with slashes separating the components. In Fig. 1-14,
the path for file CS101 is/Faculty/Prof.Brown/Courses/CS0OI. The leading slash
indicates that the path is absolute, that is, starting at the root directory. As an
aside, in MSDOS and Windows, the backslash 0) character is used as the separa-
tor instead of the dash (/) character, so the file path given above would be written
as XFaculty\Prof.Brown\Courses\CS OIl. Throughout this book we will generally
use the UNIX convention for paths.

At every instant, each process has a current working directory, in which path
names not beginning with a dash are looked for. As an example, in Fig. 1-14, if
/Faculty/Prof.Brown were the working directory, then use of the path name
Courses/CH0I would yield the same file as the absolute path name given above.
Processes can change their working directory by issuing a system call specifying
the new working directory.

Before afile can be read or written, it must be opened, at which time the per-
missions are checked. If the access is permitted, the system returns a small inte-
ger caled afile descriptor to use in subsequent operations. If the access is prohi-
bited, an error code is returned.

Another important concept in UNIX is the mounted file system. Nearly dl per-
sonal computers have one or more optical drives into which CD-ROMs and DVDs
can be inserted. They amost aways have USB ports, into which USB memory
sticks (redly, solid state disk drives) can be plugged, and some computers have
floppy disks or external hard disks. To provide an elegant way to dea with these
removable media UNIX alows the file system on a CD-ROM or DVD to be
attached to the main tree. Consider the situation of Fig. 1-15(a). Before the mount
call, the root file system, on the hard disk, and a second file system, on a CD-
ROM, are separate and unrelated.

However, the file system on the CD-ROM cannot be used, because thereis no
way to specify path names on it. UNIX does not alow path names to be prefixed
by adrive name or number; that would be precisely the kind of device dependence
that operating systems ought to eliminate. Instead, the mount system cdl alows
the file system on the CD-ROM to be attached to the root file system wherever the
program wants it to be. In Fig. 1-15(b) the file system on the CD-ROM has been
mounted on directory b, thus alowing access to files fb/x and /bly. If directory b
had contained any files they would not be accessible while the CD-ROM was
mounted, since /b would refer to the root directory of the CD-ROM. (Not being
able to access these files is not as serious as it at first seems: file systems are
nearly always mounted on empty directories.) If a system contains multiple hard
disks, they can all be mounted into asingle tree as well.
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Figure 1-15. (&) Before mounting, the files an the CD-ROM are not accessible,
(b) After mounting, they arejrart of thefile hierarchy.

Another important concept in UNIX is the special file. Specia files are pro-
vided in order to make I/O devices look like files. That way, they can be read and
written using the same system calls as are used for reading and writing files. Two
kinds of specia files exist: block special files and character special files. Block
specia files are used to model devices that consist of a collection of randomly ad-
dressable blocks, such as disks. By opening a block specia file and reading, say,
block 4, a program can directly access the fourth block on the device*, without
regard to the structure of the file system contained on it. Similarly, character spe-
cid files are used to model printers, modems, and other devices that accept or out-
put a character stream. By convention, the special files are kept in the/dev direc-
tory. For example, /dev/lp might be the printer (once called the line printer).

The last feature we will discuss in this overview is one that relates to both
processes and files: pipes. A pipe is a sort of pseudofile that can be used to con-
nect two processes, as shown in Fig. 1-16. If processes A and B wish to talk using
apipe, they must set it up in advance. When process A wants to send data to proc-
ess B, it writes on the pipe as though it were an output file. In fact, the imple-
mentation of a pipe is very much like that of a file. Process B can read the data by
reading from the pipe as though it were an input file. Thus, communication be-
tween processes in UNIX looks very much like ordinary file reads and writes.
Stronger yet, the only way a process can discover that the output file it is writing
onis not redly afile, but apipe, is by making a specia system call. File systems
are very important. We will have much more to say about them in Chap. 4 and
asoin Chaps. 10and 11.

1.5.4 Input/Output

All computers have physical devices for acquiring input and producing output.
After all, what good would a computer be if the users could not tell it what to do
and could not get the results after it did the work requested? Many kinds of input
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Process Process
(=)

Figure 1-16. Two processes connected by a pipe.

and output devices exist, including keyboards, monitors, printers, and so on. It is
up to the operating system to manage these devices.

Consequently, every operating system has an 1/0 subsystem for managing its
I/0O devices. Some of the I/O software is device independent, that is, applies to
many or al 1/0 devices equally well. Other parts of it, such as device drivers, are
specific to particular 1/0O devices. In Chap. 5 we will have alook at 1/0 software.

155 Protection

Computers contain large amounts of information that users often want to pro-
tect and keep confidential. This information may include e-mail, business plans,
tax returns, and much more. It is up to the operating system to manage the system
security so thet files, for example, are only accessible to authorized users.

As asimple example, just to get an idea of how security can work, consider
UNIX. Filesin UNIX are protected by assigning each one a 9-bit binary protection
code. The protection code consists of three 3-hit fields, one for the owner, one for
other members of the owner's group (users are divided into groups by the system
adminigtrator), and one for everyone else. Each field has a bit for read access, a
hit for write access, and a bit for execute access. These 3 bhits are known as the
rwx bits. For example, the protection code rwxr-X-x means that the owner can
read, write, or execute the file, other group members can read or execute (but not
write) the file, and everyone else can execute (but not read or write) the file. For a
directory, x indicates search permission. A dash means that the corresponding
permission is absent.

In addition to file protection, there are many other security issues. Protecting
the system from unwanted intruders, both human and nonhuman (e.g., viruses) is
one of them. We will look at various security issues in Chap. 9.

156 The Shell

The operating system is the code that carries out the system calls. Editors,
compilers, assemblers, linkers, and command interpreters definitely are not part of
the operating system, even though they are important and useful. At the risk of
confusing things somewhat, in this section we will look briefly at the UNIX com-
mand interpreter, called the shell. Although it is not part of the operating system,
it makes heavy use of many operating system features and thus serves as a good
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example of how the system calls can be used. It is also the primary interface be-
tween a user sitting at his termina and the operating system, unless the user is
using a graphical user interface. Many shells exist, including sh, csh, ksh, and
bash. All of them support the functionality described below, which derives from
the original shell (sh).

When any user logs in, a shell is started up. The shell has the terminal as stan-
dard input and standard output. It starts out by typing the prompt, a character
such as a dollar sign, which tells the user that the shell is waiting to accept a com-
mand. |f the user now types

date

for example, the shell creates a child process and runs the date program as the
child. While the child process is running, the shell waits for it to terminate. When
the child finishes, the shell types the prompt again and tries to read the next input
line.
The user can specify that standard output be redirected to a file, for example,
date >file
Similarly, standard input can be redirected, asin
sort <fiiel >file2

which invokes the sort program with input taken from ftlel and output sent to
file2.

The output of one program can be used as the input for another program by
connecting them with a pipe. Thus

cat fild file2 file3 | sort >/dev/Ip

invokes the cat program to concatenate three files and send the output to son to
arrange al the lines in alphabetical order. The output of sort is redirected to the
file/dev/lp, typicaly the printer.

If a user puts an ampersand after a command, the shell does not wait for it to
complete. Instead it just gives a prompt immediately. Consequently,

cat fild file2 file3 | sort >/devilp &

starts up the sort as a background job, allowing the user to continue working nor-
maly while the sort is going on. The shell has a number of other interesting fea
tures, which we do not have space to discuss here. Most books on UNIX discuss
the shell a some length (e.g., Kernighan and Pike, 1984; Kochan and Wood,
1990; Medinets, 1999; Newham and Rosenblatt, 1998; and Robbins, 1999).

Many personal computers use aGUI these days. In fact, the GUI isjust apro-
gram running on top of the operating system, like a shell. In Linux systems, this
fact is made obvious because the user has achoice of (at least) two GUIs: Gnome
and KDE or noneat al (using a terminal window on X11). In Windows, it is aso
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possible to replace the standard GUI desktop (Windows Explorer) with a different
program by changing some values in the registry, athough few people do this.

15.7 Ontogeny Recapitulates Phylogeny

After Charles Darwin's book On the Origin of the Species was published, the
German zoologist Ernst Haeckel stated that "ontogeny recapitulates phylogeny."
By this he meant that the development of an embryo (ontogeny) repeats (i.e.,
recapitulates) the evolution of the species (phylogeny). In other words, after fer-
tilization, a human egg goes through stages of being afish, apig, and so on before
turning into a human baby. Modern biologists regard this as a gross simplification,
but it still has akernel of truthinit.

Something vaguely analogous has happened in the computer industry. Each
new species (mainframe, minicomputer, personal computer, handheld, embedded
computer, smart card, etc.) seems to go through the development that its ancestors
did, both in hardware and in software. We often forget that much of what hap-
pens in the computer business and a lot of other fields is technology driven. The
reason the ancient Romans lacked cars is not that they liked walking so much. It
is because they did not know how to build cars. Personal computers exist not be-
cause millions of people have a centuries-old pent-up desire to own a computer,
but because it is now possible to manufacture them cheaply. We often forget how
much technology affects our view of systems and it is worth reflecting on this
point from time to time.

In particular, it frequently happens that a change in technology renders some
idea obsolete and it quickly vanishes. However, another change in technology
could revive it again. This is especialy true when the change has to do with the
relative performance of different parts of the system. For instance, when CPUs
became much faster than memories, caches became important to speed up the
"slow" memory. If new memory technology someday makes memories much
faster than CPUs, caches will vanish. And if a new CPU technology makes them
faster than memories again, caches will reappear. In biology, extinction is for-
ever, but in computer science, it is sometimes only for afew years.

As a consequence of this impermanence, in this book we will from time to
time look at "obsolete" concepts, that is, ideas that are not optimal with current
technology. However, changes in the technology may bring back some of the so-
caled "obsolete concepts." For this reason, it is important to understand why a
concept is obsolete and what changes in the environment might bring it back
again.

To make this point clearer, let us consider a simple example. Early computers
had hardwired instruction sets. The instructions were executed directly by hard-
ware and could not be changed. Then came microprogramming (first introduced
on alarge scale with the IBM 360), in which an underlying interpreter carried out
the "hardware instructions" in software. Hardwired execution became obsolete.
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Not flexible enough. Then RISC computers were invented, and microprogram-
ming (i.e., interpreted execution) became obsolete because direct execution was
faster. Now we are seeing the resurgence of interpretation in the form of Java
applets that are sent over the Internet and interpreted upon arrival. Execution
speed is not always crucia because network delays are so great that they tend to
dominate. Thus the. pendulum has already swung several cycles between direct
execution and interpretation and may yet swing again in the future.

Large Memories

Let us now examine some historical developments in hardware and how they
have affected software repeatedly. The first mainframes had limited memory. A
fully loaded IBM 7090 or 7094; which played king of the mountain from late 1959
until 1964, had just over 128 KB of memory. It was mostly programmed in as-
sembly language and its operating system was written in assembly language to
save precious memory.

As time went on, compilers for languages like FORTRAN and COBOL got
good enough that assembly language was pronounced dead. But when the first
commercial minicomputer (the PDP-1) was released, it had only 4096 18-bit
words of memory, and assembly language made a surprise comeback. Eventually,
minicomputers acquired more memory and high-level languages became pre-
vaent on them.

When microcomputers hit in the early 1980s, the first ones had 4-KB mem-
ories and assembly language programming rose from the dead. Embedded com-
puters often used the same CPU chips as the microcomputers (8080s, Z80s, and
later 8086s) and were also programmed in assembler initially. Now their descen-
dants, the personal computers, have lots of memory and are programmed in C,
C++, Java, and other high-level languages. Smart cards are undergoing a similar
development, athough beyond a certain size, the smart cards often have a Java
interpreter and execute Java programs interpretively, rather than having.Java
being compiled to the smart card's machine language.

Protection Hardware

Early mainframes, like the IBM 7090/7094, had no protection hardware, so
they just ran one program at atime. A buggy program could wipe out the operat-
ing system and easily crash the machine. With the introduction of the IBM 360, a
primitive form of hardware protection became available and these machines could
then hold several programs in memory at the same time and let them take turns
running (multiprogramming). Monoprogramming was declared obsolete.

At least until the first minicomputer showed up—without protection hard-
ware—so multiprogramming was not possible. Although the PDP-1 and PDP-8
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had no protection hardware, eventualy the PDP-11 did, and this feature led to
multiprogramming and eventually to UNIX.

When the first microcomputers were built, they used the Intel 8080 CPU chip,
which had no hardware protection, so we were back to monoprogramming. It
wasn't until the Intel 80286 that protection hardware was added and multipro-
gramming became possible. Until this day, many embedded systems have no pro-
tection hardware and run just a single program.

Now let us look at operating systems. The firg mainframes initialy had no
protection hardware and no support for multiprogramming, so they ran simple op-
erating systems that handled one manually loaded program at a time. Later they
acquired the hardware and operating system support to handle multiple programs
at once, and then full timesharing capabilities.

When minicomputers first appeared, they also had no protection hardware and
ran one manually loaded program at a time, even though multiprogramming was
welt established in the mainframe world by then. Gradually, they acquired protec-
tion hardware and the ability to run two or more programs at once. The first
microcomputers were also capable of running only one program at a time, but
later acquired the ability to multiprogram. Handheld computers and smart cards
went the same route.

In dl cases, the software development was dictated by technology. The first
microcomputers, for example, had something like 4 KB of memory and no protec-
tion hardware. High-level languages and multiprogramming were simply too
much for such atiny system to handle. As the microcomputers evolved into mod-
em personal computers, they acquired the necessary hardware and then the neces-
say software to handle more advanced features. It is likely that this development
will continue for years to come. Other fields may also have this wheel of reincar-
nation, but in the computer industry it seems to spin faster.

Disks

Ealy mainframes were largely magnetic-tape based. They would read in a
program from tape, compile it, run it, and write the results back to another tape.
There were no disks and no concept of a file system. That began to change when
IBM introduced the first hard disk—the RAMAC (RAndoM ACcess) in 1956. It
occupied about 4 square meters of floor space and could store 5 million 7-hit char-
acters, enough for one medium-resolution digital photo. But with an annua rental
fee of $35,000, assembling enough of them to store the equivalent of aroll of film
got pricey quite fast. But eventually prices came down and primitive file systems
were developed.

Typical of these new developments was the CDC 6600, introduced in 1964
and for years by far the fastest computer in the world. Users could create so-called
"permanent files' by giving them names and hoping that no other user had aso
decided that, say, "data" was a suitable name for a file. This was a single-level

SEC. 15 OPERATING SYSTEM CONCEPTS 47

directory. Eventualy, mainframes developed complex hierarchical file systems,
perhaps culminating in the MULTICS file system.

As minicomputers came into use, they eventualy aso had hard disks. The
standard disk on the PDP-11 when it was introduced in 1970 was the RK05 disk,
with a capacity of 2.5 MB, about half of the IBM RAMAC, but it was only about
40 cm in diameter and 5 cm high. But it, too, had a single-level directory initially.
When microcomputers came out, CP/M was initially the dominant operating sys-
tem, and it, too, supported just one directory on the (floppy) disk.

Virtual Memory

Virtual memory (discussed in Chap. 3), gives the ability to run programs larg-
er than the machine's physical .memory by moving pieces back and forth between
RAM and disk. It underwent a similar development, first appearing on main-
frames, then moving to the minis and the micros. Virtua memory also enabled the
ability to have a program dynamically link in alibrary at run time instead of hav-
ing it compiled in. MULTICS was the first system to alow this. Eventualy, the
idea propagated down the line and is now widely used on most UNIX and Win-
dows systems.

In dl these developments, we see ideas that are invented in one context and
later thrown out when the context changes (assembly language programming,
monoprogramming, single-level directories, etc.) only to reappear in a different
context often a decade later. For this reason in this book we will sometimes ook
at ideas and algorithms that may seem dated on today's gigabyte PCs, but which
may soon come back on embedded computers and smart cards.

16 SYSTEM CALLS

We have seen that operating systems have two man functions. providing
abstractions to user programs and managing the computer's resources. For the
mogt part, the interaction between user programs and the operating system deals
with the former; for example, creating, writing, reading, and deleting files. The re-
source management part is largely transparent to the users and done automat-
ically. Thus the interface between user programs and the operating system is pri-
marily about dealing with the abstractions. To really understand what operating
systems do, we must examine this interface closely. The system calls available in
the interface vary from operating system to operating system (athough the under-
lying concepts tend to be similar).

We are thus forced to make a choice between (I) vague generalities ("operat-
ing systems have system cals for reading files') and (2) some specific system
("UNIX has aread system call with three parameters: one to specify the file, one
to tell where the data are to be put, and one to tell how many bytes to read").
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We have chosen the latter approach. It's more work that way, but it gives
more insight into what operating systems really do. Although this discussion spe-
cifically refers to POSIX (International Standard 9945-1), hence also to UNIX,
System V, BSD, Linux, MINIX 3, and so on, most other modern operating systems
have system calls that perform the. same functions, even if the details differ. Since
the actual mechanics of issuing a system call are highly machine dependent and
often must be expressed in assembly code, aprocedure library is provided to make
it possible to make system calls from C programs and often from other languages
as well.

It is useful to keep the following in mind. Any single-CPU computer can exe-
cute only one instruction at atime. If a process is running a user program in user
mode and needs a system service, such as reading data from afile, it has to exe-
cute a trap instruction to transfer control to the operating system. The operating
system then figures out what the calling process wants by inspecting the parame-
ters. Then it carries out the system call and returns control to the instruction fol-
lowing the system call. In a sense, making a system call is like making a special
kind of procedure call, only system calls enter the kernel and procedure calls do
not.

To make the system call mechanism clearer, let us take a quick look at the
read system call. As mentioned above, it has three parameters: thefirst one speci-
fying the file, the second one pointing to the buffer, and the third one giving the
number of bytes to read. Like nearly al system calls, it is invoked from C pro-
grams by calling alibrary procedure with the same name as the system call: read.
A call from a C program might look like this:

count = read(fd, buffer, nbytes);

The system call (and the library procedure) return the number of bytes actualy
read in count. This value is normaly the same as nbytes, but may be smaller, if,
for example, end-of-file is encountered while reading.

If the system call cannot be carried out, either due to an invalid parameter or a
disk error, count is set to —1, and the error number is put in a global variable,
errno. Programs should always check the results of a system call to see if an error
occurred.

System calls are performed in a series of steps. To make this concept clearer,
let us examine the read call discussed above. In preparation for calling the read
library procedure, which actually makes the read system call, the calling program
first pushes the parameters onto the stack, as shown in steps 1-3in Fig. 1-17.

C and C++ compilers push the parameters onto the stack in reverse order for
historical reasons (having to do with making the first parameter to printf, the for-
mat string, appear on top of the stack). The first and third parameters are called
by value, but the second parameter is passed by reference, meaning that the ad-
dress of the buffer (indicated by &) is passed, not the contents of the buffer. Then
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Address

OXFFFFFFFF
Return to caller Library
Trap tothe kernd . . « procedure

S Put codefor read in register read
User space <

Increment SP 11
Cdl read
Push fd User program
Push &buffer caling read
Push nbytes

Kerne! space
{Operating system)

Figure 1-17. The 11 steps in making the system call read{fd, buffer, nbytes).

comes the actual call to the library procedure (step 4). This instruction is the nor-
mal procedure call instruction used to call al procedures.

The library procedure, possibly written in assembly language, typicaly puts
the system call number in aplace where the operating system expects it, such as a
register (step 5). Then it executes aTRAP instruction to switch from user mode to
kernel mode and start execution at afixed address within the kernel (step 6). The
TRAP ingtruction is actualy fairly similar to the procedure call instruction in the
sense that the instruction following it is taken from a distant location and the re-
turn address is saved on the stack for use later.

Nevertheless, the TRAP instruction aso differs from the procedure call in-
struction in two fundamental ways. First, as a side effect, it switches into kernel
mode. The procedure call instruction does not change the mode. Second, rather
than giving arelative or absolute address where the procedure is located, the TRAP
instruction cannot jump to an arbitrary address. Depending on the architecture, it
either jumps to a single fixed location, there is an 8-bit field in the instruction giv-
ing the index into a table in memory containing jump addresses, or equivalent.

The kernel code that starts following the TRAP examines the system call num-
ber and then dispatches to the correct system call handler, usualy via a table of
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pointers to system call handlers indexed on system call number (step 7). At that
point the system cdl handler runs (step 8). Once the system call handler has com-
pleted its work, control may be returned to the user-space library procedure at the
ingtruction following the TRAP instruction (step 9). This procedure then returns to
the user program in the usual way procedure cals return (step 10).

To finish the job, the user program has to clean up the stack, as it does after
any procedure cal (step 11). Assuming the stack grows downward, as it often
does, the compiled code increments the stack pointer exactly enough to remove
the parameters pushed before the call to read. The program is now free to do
whatever it wantsto do next.

In step 9 above, we said "may be returned to the user-space library proce-
dure" for good reason. The system call may block the caler, preventing it from
continuing. For example, if it is trying to read from the keyboard and nothing has
been typed yet, the caller has to be blocked. In this case, the operating system
will look around to see if some other process can be run next. Later, when the
desired input is available, this process will get the attention of the system and
steps 9-11 will oceur.

In the following sections, we will examine some of the most heavily used
POSIX system calls, or more specifically, the library procedures that make those
system calls. POSIX has about 100 procedure calls. Some of the most important
ones are liged in Fig. 1-18, grouped for convenience in four categories. In the
text we will briefly examine each call to see what it does.

To alarge extent, the services offered by these calls determine most of what
the operating system has to do, since the resource management on personal com-
puters is minimd (a least compared to big machines with multiple users). The
services include things like creating and terminating processes, creating, deleting,
reading, and writing files, managing directories, and performing input and output.

As an aside, it is worth pointing out that the mapping of POSIX procedure
calls onto system calls is not one-to-one. The POSIX standard specifies a number
of procedures that a conformant system must supply, but it does not specify
whether they are system calls, library calls, or something else. If aprocedure can
be carried out without invoking a system call (i.e., without trapping to the kernel),
it will usudly be done in user space for reasons of performance. However, most of
the POSIX procedures do invoke system calls, usualy with one procedure map-
ping directly onto one system call. In afew cases, especialy where several re-
quired procedures are only minor variations of one another, one system call hand-
les more than one library call.

1.6.1 System Callsfor Process M anagement

The first group of calls in Fig. 1-18 deals with process management. Fork isa
good place to start the discussion. Fork is the only way to create a new process in
POSIX. It creates an exact duplicate of the original process, including al the file
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Process management
Call Description
pid = fork() Create a child process identical to the parent

pid = waitpid(pid, & statloc, options)

Waif for a child to terminate

s = execve(name, argv, environp)

Replace a process' core image

exit(status)

Terminate process execution and return status

File management

Call

Description

fd = open(fife, how,...)

Open afile for reading, writing, or both

s = close(fd)

Close an open file

n = read(fd, buffer, nbytes)

Read data from a file into a buffer

n = write(fd, buffer, nbytes)

Write data from a buffer into a file

position = Iseek(fd, offset, whence)

Move the file pointer

s = stat(narne, &buf)

Get a fife's status information

Directory and file system management

Call

Description

s = mkdir(name, mode)

Create a new directory

s = rmdir(name)

Remove an empty directory

s = link(namel, name2)

Create a new entry, name2, pointing to namel

2]
|

= unlink(name)

Remove a directory entry

2]
I

= mount(speciaf, name, flag)

Mount a file system

1]
|

= umount(special)

Unmount a file system

M

scellaneous

Call

Description

s = chdir(dirname)

Change the working directory

s = chmod(name, mode)

Change a file's protection bits

s = kill(pid, signal)

Send a signal to a process

seconds = time(& seconds)

Get the elapsed time since Jan. 1, 1970

Figure 1-18. Some of the major POSIX system calls. The return code s is -1 if
an error has occurred. The return codes are as follows: pidis a process \dfd is a
file descriptor, n is a byte count, position is an offset within the file, and seconds
isthe elapsed time. The parameters are explained in the text.
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descriptors, registers—everything. After the fork, the original process and the
copy (the parent and child) go their separate ways. All the variables have identical
values at the time of the fork, but since the parent's data are copied to create the
child, subsequent changes in one of them do not affect the other one. (The pro-
gram text, which is unchangeable, is shared between parent and child.) The fork
cal returns a value, which is zero in the child and equal to the child's process
identifier or PID in the parent. Using the returned PID, the two processes can see
which one is the parent process and which one is the child process.

In most cases, after a fork, the child will need to execute different code from
the parent. Consider the case of the shell. It reads a command from the terminal,
forks off a child process, waits for the child to execute the command, and then
reads the next command when the child terminates. To wait for the child to fin-
ish, the parent executes a waitpid system call, which just waits until the child ter-
minates (any child if more than one exists). Waitpid can wait for a specific child,
or for any old child by setting the first parameter to - 1. When waitpid completes,
the address pointed to by the second parameter, statloc, will be set to the child's
exit status (norma or abnormal termination and exit value). Various options are
also provided, specified by the third parameter.

Now consider how fork is used by the shell. When a command is typed, the
shell forks off a new process. This child process must execute the user command.
It does this by using the execve system call, which causes its entire core image to
be replaced by the file named in its first parameter. (Actualy, the system call it-
sf is exec, but several library procedures call it with different parameters and
sightly different names. We will treat these as system calls here.)) A highly sim-
plified shell illustrating the use of fork, waitpid, and execve is shown in Fig. 1-19.

#define TRUE 1

while (TRUE) { I* repeat forever */
type_prompt(); * display prompt onthe screen*/
read_command(command, parameters); * read input from termind */
if (fork() 1= 0) { /* fork off child process */

/* Parent code. */

waitpid(-1, & status, 0);
} else{

/* Child code. */

execve(command, parameters, 0); /* execute command */

/* wait for child to exit */

Figure 1-19. A stripped-down shell. Throughout this book, TRUE is assumed to
be defined as 1.

In the most general case, execve has three parameters: the name of the file to
be executed, a pointer to the argument array, and a pointer to the environment

SEC. 16 SYSTEM CALLS 53

array. These will be described shortly. Various library routines, including execl,
execv, execle, and execve, are provided to alow the parameters to be omitted or
specified in various ways. Throughout this book we will use the name exec to
represent the system call invoked by al of these.

Let us consider the case of acommand such as

cp fild file2

used to copy filel to file2. After the shell has forked, the child process locates and
executes the file cp and passes to it the names of the source and target files.

The main program of cp (and main program of most other C programs) con-
tains the declaration

main(argc, argv, envp)

where argc is a count of the number of items on the command line, including the
program name. For the example above, argc is 3.

The second parameter, argv, is apointer to an array. Element i of that array is
a pointer to the i-th string on the command line. In our example, argv¥{0] would
point to the string "cp”, arg¥{\\ would point to the string "filel" and argv[2]
would point to the string "file2".

The third parameter of main, envp, is a pointer to the environment, gi array of
strings containing assignments of the form name = value used to pass information
such as the terminal type and home directory name to programs. There are library
procedures that programs can call to get the environment variables, which are
often used to customize how a user wants to peform certain tasks (e.g., the
default printer to use). In Fig. 1-19, no environment is passed to the child, so the
third parameter of execve is a zero.

If exec seems complicated, do not despair; it is (semantically) the most com-
plex of al the POSIX system calls. All the other ones are much simpler. As an
example of a simple one, consider exit, which processes should use when they are
finished executing. It has one parameter, the exit status (0 to 255), which is re-
turned to the parent via statloc in the waitpid system call.

Processes in UNIX have their memory divided up into three segments: the text
segment (i.e., the program code), the data segment (i.e., the variables), and the
stack segment. The data segment grows upward and the stack grows downward,
as shown in Fig. 1-20. Between them is a gap of unused address space. The stack
grows into the gap automatically, as needed, but expansion of the data segment is
done explicitly by using a system call, brk, which specifies the new address where
the data segment is to end. This call, however, is not defined by the POSIX stan-
dard, since programmers are encouraged to use the malloc library procedure for
dynamically allocating storage, and the underlying implementation of malloc was
not thought to be a suitable subject for standardization since few programmers use
it directly and it is doubtful that anyone even notices that brk is not in POSIX.
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Address (hex)
FFFF
Stack 1
Data !
Text
0000

Figure 1-20- Processes have three segments: text, data, and stack.

1.6.2 System Callsfor File Management

Many system calls relate to the file system. In this section we will look at
calls that operate on individua files; in the next one we will examine those that
involve directories or the file sysem as a whole.

To read or write a file, the file must first be opened using open. This call
specifies the file name to be opened, either as an absolute path name or relative to
the working directory, and a code of O"RDONLY, O"WRONLY, or O-RDWR,
meaning open for reading, writing, or both. To create a new file, the O-CRBAT
parameter is used. The file descriptor returned can then be used for reading or
writing. Afterward, the file can be closed by close, which makes the file descrip-
tor available for reuse on a subsequent open.

The most heavily used calls are undoubtedly read and write. We saw read
earlier. Write has the same parameters.

Although most programs read and write files sequentialy, for some applica-
tions programs need to be able to access any part of a file at random. Associated
with each file is a pointer that indicates the current position in the file. When read-
ing (writing) sequentially, it normally points to the next byte to be read (written).
The Iseek call changes the value of the position pointer, so that subsequent calls to
read or write can begin anywhere in the file.

Lseek has three parameters: the first is the file descriptor for the file, the sec-
ond is afile position, and the third tells whether the file position is relative to the
beginning of the file, the current position, or the end of the file. The value re-
turned by Iseek is the absolute position in the file (in bytes) after changing the
pointer.

For each file, UNIX keeps track of the file mode (regular file, specid file, di-
rectory, and so on), size, time of last modification, and other information. Pro-
grams can ask to see this information via the stat system call. The first parameter
specifies the file to be inspected; the second one is a pointer to a structure where
the information isto be put. Thefstat calls does the same thing for an open file.
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1.6.3 System Calls for Directory Management

In this section we will ook at some system calls that relate more to directories
or the file system as a whole, rather than just to one specific file as in the previous
section. The first two calls, mkdir and rmdir, create and remove empty directories,
respectively. The next cal is link. Its purpose is to allow the same file to appear
under two or more names, often in different directories. A typica useis to alow
several members of the same programming team to share a common file, with
each of them having the file appear in his own directory, possibly under different
names. Sharing afile is not the same as giving every team member a private copy;
having a shared file means that changes that any member of the team makes are
instantly visible to the other members—there is only one file. When copies are
made of afile, subsequent changes made to one copy do not affect the others.

To see how link works, consider the situation of Fig. 1-21(a). Here are two
users, ast andjim, each having his own directory with some files. If ast now exe-
cutes aprogram containing the system call

I ink(7usr/jim/memoa”, 7usr/ast/note");

the file memo in jim's directory is now entered into asfs directory under the name
note. Thereafter, /usr/jim/memo and /usr/ast/note refer to the same file. As an
aside, whether user directories are kept m/usr, /user, /home, or somewhere else is
simply adecision made by the local system administrator.

@

Figure 1-21. (a) Two directories before Jinking /usr/jiin/memo to ast's directory,
(b) The same directories after linking.

Understanding how link works will probably make it clearer what it does.
Every file in UNIX has a unique number, its i-number, that identifies it. This i-
number is an index into a table of i-nodes, one per file, telling who owns the file,
where its disk blocks are, and so on. A directory is simply afile containing a set
of (i-number, ASCIl name) pairs. In the first versions of UNIX, each directory
entry was 16 bytes—2 bytes for the i-number and 14 bytes for the name. Now a
more complicated structure is needed to support long file names, but conceptually
adirectory is still aset of (i-number, ASCII name) pairs. InFig. 1-21, mail hasi-
number 16, and so on. What link does is simply create a new directory entry with a
(possibly new) name, using the i-number of an existing file. In Fig. 1-21(b), two
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entries have the same i-number (70) and thus refer to the same file. If either one
is later removed, using the unlink system call, the other one remains. If both are
removed, UNIX OOsss that no entries to the file exist (a field in the i-node keeps
track of the number of directory entries pointing to the file), so the file is removed
from the disk.

As we have mentioned earlier, the mount system call alows two file systems
to be merged into one. A common situation is to have the root file system con-
taining the binary (executable) versions of the common commands and other
heavily used files, on a hard disk. The user can then insert a CD-ROM disk with
files to be read into the CD-ROM drive.

By executing the mount system call, the CD-ROM file system can be attached
to the root file system, as shown in Fig. 1-22. A typica statement in C to perform
the mount is

mount(7dev/fd0", Vmnt", 0);

where the first parameter is the name of a block specia file for drive 0, the second
parameter is the place in the tree where it is to be mounted, and the third parame-
ter tells whether the file system is to be mounted read-write or read-only.

bin  dev b mnt usr bi%

2] usr
@ ®
Figure 1-22. (a) File system before the mount, (b) File system after the mount.

After the mount call, a file on drive 0 can be accessed by just using its path
from the root directory or the working directory, without regard to which drive it
ison. In fact, second, third, and fourth drives can also be mounted anywhere in
the tree. The mount call makes it possible to integrate removable media into a
single integrated file hierarchy, without having to worry about which device a file
is on. Although this example involves CD-ROMSs, portions of hard disks (often
caled partitions or minor devices) can also be mounted this way, as well as ex-

ternal hard disks and USB sticks. When a file system is no longer needed, it can
be unmounted with the umount system call.

1.6.4 Miscellaneous System Calls

A variety of other system calls exist as well. We will look at just four of them
here. The chdir call changes the current working directory. After the call

chdir("/usr/ast/test");
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an open on the file xyz will open /usr/ast/test/xyz. The concept of a working di-
rectory eliminates the need for typing (long) absolute path names dl the time.

In UNIX every file has a mode used for protection. The mode includes the
read-write-execute bits for the owner, group, and others. The chmod system call
makes it possible to change the mode of a file. For example, to make a file read-
only by everyone except the owner, one could execute

chmod(“file, 0644);

The kill system call is the way users and user processes send signals. If a
process is prepared to catch a particular signal, then when it arrives, asignal hand-
ler isrun. If the process is not prepared to handle asignal, then its arrival kills the
process (hence the name of the call).

POSIX defines several procedures for dealing with time. For example, time
just returns the current time in seconds, with 0 corresponding to Jan. 1, 1970 at
midnight (just as the day was starting, not ending). On computers using 32-hit
words, the maximum value time can return is 2°* - 1 seconds (assuming an un-
signed integer is used). This value corresponds to a little over 136 years. Thusin
the year 2106, 32-hit UNIX systems will go berserk, not unlike the famous Y 2K
problem that would have wreaked havoc with the world's computers in 2000,
were it not for the massive effort the IT industry put into fixing the problem. [f
you currently have a 32-bit UNIX system, you are advised to trade it in for a 64-hit
one sometime before the year 2106.

1.65 The Windows Win32 API

So far we have focused primarily on UNIX. Now itis time to look briefly at
Windows. Windows and UNIX differ in a fundamental way in their respective
programming models. A UNIX program consists of code that does something or
other, making system calls to have certain services performed. In contrast, aWin-
dows program is normally event driven. The main program waits for some event
to happen, then calls a procedure to handle it. Typical events are keys being
struck, the mouse being moved, a mouse button being pushed, or a CD-ROM
inserted. Handlers are then called to process the event, update the screen and
update the internal program state. All in all, this leads to a somewhat different
style of programming than with UNIX, but since the focus of this book is on oper-
aing system function and structure, these different programming models will not
concern us much more.

Of course, Windows also has system calls. With UNIX, there is amost a one-
to-one relationship between the system cals (e.g., read) and the library proce-
dures (e.g., read) used to invoke the system calls. In other words, for each system
cal, there isroughly one library procedure that is called to invoke it, as indicated
inFig. 1-17. Furthermore, POSIX has only about 100 procedure calls.
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With Windows, the situation is radicaly different. To start with, the library
cdls and the actual system calls are highly decoupled. Microsoft has defined a set
of procedures called the Win32 API (Application Program Interface) that pro-
grammers are expected to use to get operating system services. This interface is
(partially) supported on al versions of Windows since Windows 95. By decou-
pling the interface from the actual system calls, Microsoft retains the ability to
change the actua system cdls in time (even from release to release) without
invaidating existing programs. What actualy constitutes Win32 is dso dightly
ambiguous because Windows 2000, Windows XP, and Windows Vista have many
new cdls that were not previoudy available. In this section, Win32 means the in-
terface supported by al versions of Windows.

The number of Win32 APl cals is extremely large, numbering in the
thousands. Furthermore, while many of them do invoke system calls, a substantial
number are carried out entirely in user space. As aconsequence, with Windows it
is impossible to see what is a system call (i.e., performed by the kernel) and what
is amply a user-space library call. In fact, what is a system call in one version of
Windows may be done in user space in a different version, and vice versa. When
we discuss the Windows system calls in this book, we will use the Win32 proce-
dures (where appropriate) since Microsoft guarantees that these will be stable
over time. But it is worth remembering that not dl of them are true system calls
(i.e, trapsto the kernel).

The Win32 API has a huge number of calls for managing windows, geometric
figures, text, fonts, scrollbars, dialog boxes, menus, and other features of the GUI.
To the extent that the graphics subsystem runs in the kernel (true on some ver-
sions of Windows but not on al), these are system calls; otherwise they arejust li-
brary cdls. Should we discuss these calls in this book or not? Since they are not
redly related to the function of an operating system, we have decided not to, even
though they may be carried out by the kernel. Readers interested in the Win32
AP should consult one of the many books on the subject (e.g., Hart, 1997; Rector
and Newcomer, 1997; and Simon, 1997).

Even introducing al the Win32 APl calls here is out of the question, so we
will restrict ourselves to those calls that roughly correspond to the functionaity of
the UNIX calls listed in Fig. 1-18. These are listed in Fig. 1-23.

Let us now briefly go through the list of Fig. 1-23. CreateProcess creates a
new process. It does the combined work of fork and execve in UNIX. It has many
parameters specifying the properties of the newly created process. Windows does
not have a process hierarchy as UNIX does so there is no concept of a parent proc-
ess and a child process. After a process is created, the creator and crestee are
equas. WaitForSingleObject is used to wait for an event. Many possible events
can be waited for. If the parameter specifies a process, then the caler waits for
the specified process to exit, which is done using ExitProcess.

The next six calls operate on files and are functionally similar to their UNIX
counterparts although they differ in the parameters and details. Still, files can be
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UNIX Win32 Description

fork CreateProcess Create a new process

waitpid | WaitForSingleObject| Can wait for a process to exit
execve | (none) CreateProcess = fork + execve

exit ExitProcess Terminate execution

Gpen CreateFile Create afile or open an existing file
close CloseHandle Close afile

read ReadFile Read data from a file

write WriteFile Write data to a file

| seek SetFilePointer Move the file pointer

stat GetFileAttributesEx | Get variousfile attributes

mkdir CreateDirectory Create a new directory

rmdir RemoveDi rectory Remove an empty directory

link (none) Win32 does not support links

unlink DeleteFile Destroy an existing file

mount (none) Win32 does not support mount

umount | (none) Win32 does not support mount

crtdir SetCurrentDirectory | Change the current working directory

chmod | (none) Win32 does not support security (although NT does)
kill (none) Win32 does not support signals

time GetLocalTime Get the current time

Figure 1-23. The Win32 API calls that roughly correspond to the UNIX calls of
Fig. 1-18.

opened, closed, read, and written pretty much asin UNIX. The SetFilePointer and
GetFileAttributesEx calls set the file position and get some of the file attributes.

Windows has directories and they are created with CreateDirectory and Re-
moveDirectory APl calls, respectively. There is also a notion of a current direc-
tory, set by SetCurrentDirectory. The current time of day is acquired using GetLo-
caTime.

The Win32 interface does not have links to files, mounted file systems, secu-
rity, or signals, so the calls corresponding to the UNIX ones do not exist. Of
course, Win32 has a huge number of other calls that UNIX does not have, espe-
cidly for managing the GUI. And Windows Vista has an'elaborate security sys-
tem and aso supports file links.

One lagt note about Win32 is perhaps worth making. Win32 is not a terribly
uniform or consistent interface. The main culprit here was the need to be back-
ward compatible with the previous 16-bit interface used in Windows 3.x.
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1.7 OPERATING SYSTEM STRUCTURE

Now that we have seen what operating systems look like on the outside (i.e.,
the programmer's interface), it is time to take a look inside. In the following sec-
tions, we will examine six different structures that have been tried, in order to get
some idea of the spectrum of possibilities. These are by no means exhaustive, but
they give an idea of some designs that have been tried in practice. The Sx designs
are monolithic systems, layered systems, microkernels, client-server systems, vir-
tual machines, and exokernels.

1.7.1 Monolithic Systems

By far the most common organization, in this approach the entire operating
system runs as a single program in kernel mode. The operating system is written
as a collection of procedures, linked together into a single large executable binary
program. When this technique is used, each procedure in the system is free to call
any other one, if the latter provides some useful computation that the former
needs. Having thousands of procedures that can call each other without restriction
often leads to an unwieldy and difficult to understand system.

To construct the actua object program of the operating system when this ap-
proach is used, one first compiles al the individua procedures (or the files con-
taining the procedures) and then binds them all together into a single executable
file using the system linker. In terms of information hiding, there is essentially
none—every procedure is visible to every other procedure (as opposed to a struc-
ture containing modules or packages, in which much of the information is hidden
away inside modules, and only the officially designated entry points can be called
from outside the module€).

Even in monolithic systems, however, it is possible to have some structure.
The services (system calls) provided by the operating system are requested by put-
ting the parameters in a well-defined place (e.g., on the stack) and then executing
atrap instruction. This instruction switches the machine from user mode to kernel
mode and transfers control to the operating system, shown as step 6 in Fig. 1-17.
The operating system then fetches the parameters and determines which system
cal is to be carried out. After that, it indexes into a table that contains in slot k a
pointer to the procedure that carries out system cdl k (step 7 in Fig. 1-17).

This organization suggests a basic structure for the operating system:
1. A main program that invokes the requested service procedure.
2. A st of service procedures that carry out the system calls.

3. A st of utility procedures that help the service procedures.

In this model, for each system call there is one service procedure that takes care
of it and executes it. The utility procedures do things that are needed by several
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service procedures, such as fetching data from user programs. This division of the
procedures into three layers is shown in Fig. 1-24.

Main
procedure

Service
procedures

Utility
procedures

Figure 1-24. A straple structoring model for a monolithic system.

In addition to the core operating system that is loaded when the computer is
booted, many operating systems support loadable extensions, such as 1/0 device
drivers and file systems. These components are loaded on demand.

»

1.7.2 Layered Systems

A generalization of the approach of Fig. 1-24 is to organize the operating sys-
tem as a hierarchy of layers, each one constructed upon the one below it. The first
system constructed in this way was the THE system built a the Technische
Hogeschool Eindhoven in the Netherlands by E. W. Dijkstra (1968) and his stu-
dents. The THE system was a simple batch system for a Dutch computer, the
Electrologica X8, which had 32K of 27-bit words (bits were expensive back then).

The system had six layers, as shown in Fig. 1-25. Layer O dealt with aloca
tion of the processor, switching between processes when interrupts occurred or
timers expired. Above layer O, the system consisted of sequential processes, each
of which could be programmed without having to worry about the fact that multi-
ple processes were running on a single processor. In other words, layer O pro-
vided the basic multiprogramming of the CPU.

Layer 1 did the memory management. It allocated space for processes in
man memory and on a 512K word drum used for holding parts of processes
(pages) for which there was no room in main memory. Above layer 1, processes
did not have to worry about whether they were in memory or on the drum; the lay-
er 1 software took care of making sure pages were brought into memory whenever
they were needed.

Layer 2 handled communication between each process and the operator con-
sole (that is, the user). On top of this layer each process effectively had its own
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Layer Function
5 The operator
4 User programs
3 Input/output management
2 Operator -process communication
1 Memory and drum management
0 Processor allocation and multiprogramming

Figure 1-25. Structure of the THE operating system.

operator console. Layer 3 took care of managing the 1/0 devices and buffering
the information streams to and from them. Above layer 3 each process could dedl
with abstract 1/0 devices with nice properties, instead of real devices with many
peculiarities. Layer 4 was where the user programs were found. They did not
have to worry about process, memory, console, or 1/O management. The system
operator process was located in layer 5.

A further generalization of the layering concept was present in the MULTICS
system. Instead of layers, MULTICS was described as having a series of concen-
tric rings, with the inner ones being more privileged than the outer ones (which is
effectively the same thing). When a procedure in an outer ring wanted to call a
procedure in an inner ring, it had to make the equivalent of asystem call, that is, a
TRAP instruction whose parameters were carefully checked for validity before al-
lowing the call to proceed. Although the entire operating system was part of the
address space of each user process in MULTICS, the hardware made it possible to
designate individual procedures (memory segments, actually) as protected against
reading, writing, or executing.

Whereas the THE layering scheme was realy only a design aid, because al
the parts of the system were ultimately linked together into a single executable
program, in MULTICS, the ring mechanism was very much present at run time
and enforced by the hardware. The advantage of the ring mechanism is that it can
easily be extended to structure user subsystems. For example, a professor could
write a program to test and grade student programs and run this program in ring n,
with the student programs running in ring n + | so that they could not change their
grades.

1.7.3 Microkernels

With the layered approach, the designers have a choice where to draw the
kernel-user boundary. Traditionally, al the layers went in the kernel, but that is
not necessary. In fact, a strong case can be made for putting as little as possible in
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kernel mode because bugs in the kernel can bring down the system instantly. In
contrast, user processes can be set up to have less power so that a bug there may
not be fatal.

Various researchers have studied the number of bugs per 1000 lines of code
(e.g., Basilli and Perricone, 1984; and Ostrand and Weyuker, 2002). Bug density
depends on module size, module age, and more, but a ballpark figure for serious
industria systems is ten bugs per thousand lines of code. This means that a mono-
lithic operating system of five million lines of code is likely to contain something
like 50,000 kernel bugs. Not all of these are fatal, of course, since some bugs may
be things like issuing an incorrect error message in a situation that rarely occurs.
Nevertheless, operating systems are sufficiently buggy that computer manufact-
urers put reset buttons on them (often on the front panel), something the manu-
facturers of TV sets, stereos, and cars do not do, despite the large amount of soft-
ware in these devices.

The basic idea behind the microkernel design isto achieve high reliability by
splitting the operating system up into small, well-defined modules, only one of
which—the microkernel—runs in kernel mode and the rest run as relatively pow-
erless ordinary user processes. In particular, by running each device driver and
file system as a separate user process, a bug in one of these can crash that com-
ponent, but cannot crash the entire system. Thus a bug in the audio driver will
cause the sound to be garbled or stop, but will not crash the computer. In contrast,
in a monolithic system with all the drivers in the kernel, a buggy audio driver can
easily reference an invalid memory address and bring the system to agrinding halt
instantly.

Many microkernels have been implemented and deployed (Accetta et al.,
1986; Haertig et a., 1997; Heiser et al., 2006; Herder et al., 2006; Hildebrand,
1992; Kirsch et al, 2005; Liedtke, 1993, 1995, 1996; Pike et al., 1992; and Zuberi
et a., 1999). They are especially common in real-time, industria, avionics, and
military applications that are mission critical and have very high reliability re-
quirements. A few of the better-known microkernels are Integrity, K42, L4,
PikeOS, QNX, Symbian, and MINIX 3. We will now give a brief overview of
MINIX 3, which has taken the idea of modularity to the limit, breaking most of the
operating system up into a number of independent user-mode processes. MINIX 3
is a POSIX conformant, open-source system fredy available at www.minix3.org
(Herder et al., 2006a; Herder et al., 2006b).

The MINIX 3 microkernd is only about 3200 lines of C and 800 lines of
assembler for very low-level functions such as catching interrupts and switching
processes. The C code manages and schedules processes,, handles interprocess
communication (by passing messages between processes), and offers a set of
about 35 kernel calls to dlow the rest of the operating system to do its work.
These calls perform functions like hooking handlers to interrupts, moving data be-
tween address spaces, and installing new memory maps for newly created proc-
esses. The process structure of MINIX 3 is shown in Fig. 1-26, with the kernel call
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handlers labeled Sys. -The device driver for the clock is aso in the kernel because
the scheduler interacts closely with it. All the other device drivers run as separate
USer processes.

__—aProcess

{ T - A
{gl:ell @ / User progs.
User P 4 o /
i
- = ,!

Figure 1-26. Structure of the MINIX 3 system.

Outside the kernel, the system is structured as three layers of processes all
running in user mode. The lowest layer contains the device drivers. Since they
run in user mode, they do not have physical access to the I/O port space and can-
not issue I/0 commands directly. Instead, to program an /O device, the driver
builds a structure telling which values to write to which I/O ports and makes a
kernel call telling the kernel to do the write. This approach means that the kernel
can check to see that the driver is writing (or reading) from 1/O it is authorized to
use. Consequendy, (and unlike a monoalithic design), a buggy audio driver cannot
accidentally write on the disk.

Above the drivers is another user-mode layer containing the servers, which do
most of the work of the operating system. One or more file servers manage the
file system(s), the process manager creates, destroys, and manages processes, and
so on. User programs obtain operating system services by sending short messages
to the servers asking for the POSIX system calls. For example, a process needing
to do a read sends a message to one of the file servers telling it what to read.

One interesting server is the reincarnation server, whose job is to check if
the other servers and drivers are functioning correctly. In the event that a faulty
one is detected, it is automatically replaced without any user intervention. In this
way the system is sdlf healing and can achieve high reliability.

The system has many restrictions limiting the power of each process. As
mentioned, drivers can only touch authorized /O ports, but access to kernel calls
is also controlled on aper process basis, as is the ability to send messages to other
processes. Processes can aso grant limited permission for other processes to have
the kernel access their address spaces. As an example, a file system can grant
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permission for the disk driver to let the kernel put a newly read in disk block at a
specific address within the file system's address space. The sum total of dl these
restrictions is that each driver and server has exactly the power to do its work and
nothing more, thus greatly limiting the damage a buggy component can do.

An idea somewhat related to having a minimal kernel is to put the mechan-
ism for doing something in the kernel but not the policy. To make this point bet-
ter, consider the scheduling of processes. A relatively simple scheduling algo-
rithm is to assign a priority to every process and then have the kernel run the
highest-priority process that is runnable. The mechanism—in the kernel—is to
look for the highest-priority process and run it. The policy—assigning priorities
to processes—can be done by user-mode processes. In this way policy and mech-
anism can be decoupled and the kernel can be made smaller.

1.7.4 Client-Server Model

A dight variation of the microkernel idea is to distinguish two classes of proc-
esses, the servers, each of which provides some service, and the clients, which
use these services. This model is known as the client-server model. Often the
lowest layer is amicrokernel, but that is not required. The essence is the presence
of client processes and server processes.

Communication between clients and servers is often by message passing. To
obtain a service, a client process constructs a message saying what it wants and
sends it to the appropriate service. The service then does the work and sends back
the answer. If the client and server run on the same machine, certain optimiza-
tions are possible, but conceptually, we are talking about message passing here.

An obvious generalization of this idea is to have the clients and servers run on
different computers, connected by a local or wide-area network, as depicted in
Fig. 1-27. Since clients communicate with servers by sending messages, the cli-
ents need not know whether the messages are handled locally on their own ma-
chines, or whether they are sent across a network to servers on a remote machine.
As far as the client is concerned, the same thing happens in both cases: requests
are sent and replies come back. Thus the client-server model is an abstraction that
can be used for a single machine or for a network of machines.

Increasingly many systems involve users at their home PCs as clients and
large machines elsewhere running as servers. In fact, much of the Web operates
this way. A PC sends a request for a Web page to the server and the Web page
comes back. Thisis atypica use of the client-server model in a network.

1.7.5 Virtual Machines
Theinitial releases of OS/360 were strictly batch systems. Nevertheless, many

360 users wanted to be able to work interactively at aterminal, so various groups,
both inside and outside IBM, decided to write timesharing systems for it. The
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Machine1 Machine 2 Machine 3 Machine 4
Client File server Process server Termina server
Kernel Kernel Kernel Kernel

Network
M essage from

client to server

Figure 1-27. Theclient-server model over a network.

officia IBM timesharing system, TSS/360, was delivered late, and when it finaly
arrived it was so big and dow that few sites converted to it. It was eventualy
abandoned &fter its development had consumed some $50 million (Graham,
1970). But agroup at IBM's Scientific Center in Cambridge, Massachusetts, pro-
duced aradically different system that IBM eventually accepted as a product. A
linear descendant of it, called z/VM, is now widely used on IBM's current main-
frames, the zSeries, which are heavily used in large corporate data centers, for ex-
ample, as e-commerce servers that handle hundreds or thousands of transactions
per second and use databases whose sizes run to millions of gigabytes.

VM7370

This system, originally caled CRICMS and later renamed VM/370 (Seawright
and MacKinnon, 1979), was based on an astute observation: a timesharing system
provides (1) multiprogramming and (2) an extended machine with a more con-
venient interface than the bare hardware. The essence of VM/370 is to completely
separate these two functions.

The heart of the system, known as the virtual machine monitor, runs on the
bare hardware and does the multiprogramming, providing not one, but severd vir-
tual machines to the next layer up, as shown in Fig. 1-28. However, unlike all
other operating systems, these virtual machines are not extended machines, with
files and other nice features. Instead, they are exact copies of the bare hardware,
including kernel/user mode, 1/O, interrupts, and everything else the real machine
hes.

Because each virtua machine is identical to the true hardware, each one can
run any operating system that will run directly on the bare hardware. Different
virtual machines can, and frequently do, run different operating systems. On the
origina VM/370 system, some ran OS/360 or one of the other large batch or
transaction processing operating systems, while other ones ran a single-user,
interactive system called CM S (Conversational Monitor System) for interactive
timesharing users. The latter was popular with programmers.

SEC. 17 OPERATING SYSTEM STRUCTURE 67

Virtua 370s

- System calls here
/O instructionshere —|»-j CMS CMS CMS - Trap here
Traphere' —|-Mm VM/370

370 Bare hardware

Figure 1-28. The gructure of ViM/370 with CMS.

When a CMS program executed a system call, the call was trapped to the op-

erating system in its own virtual machine, not to VM/370, just as it would" if it
wererunning on areal machine instead of avirtual one. CM S then issued the nor-
mal hardware 1/O instructions for reading its virtua disk or whatever was needed
to carry out the call. These I/O instructions were trapped by VM/370, which then
performed them as part of its simulation of the real hardware. By completely sep-
arating the functions of multiprogramming and providing an extended machine,
each of the pieces could be much simpler, more flexible, and much easier to main-
tain.

In its modern incarnation, z/VM is usually used to run multiple complete op-
erating systems rather than stripped-down single-user systems like CMS. For ex-
ample, the zSeries is capable of running one or more Linux virtual machines
along with traditional IBM operating systems.

Virtual Machines Rediscovered

While IBM has had a virtual machine product available for four decades, and
a few other companies, including Sun Microsystems and Hewlett-Packard, have
recently added virtual machine support to their high-end enterprise servers, the
idea of virtualization has largely been ignored in the PC world until recendy. But
in the past few years, a combination of new needs, new software, and new techno-
logies have combined to make it a hot topic.

First the needs. Many companies have traditionally run their mail servers,
Web servers, FTP servers, and other servers on separate computers, sometimes
with different operating systems. They see virtualization as a way to run them all
on the same machine without having a crash of one server bring down the rest.

Virtualization is also popular in the Web hosting world. Without it, Web host-
ing customers are forced to choose between shared hosting (which just gives
them a login account on a Web server, but no control over the server software)
and dedicated hosting (which gives them their own machine, which is very flexi-
ble but not cost effective for small to medium Websites). When a Web hosting
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company offers virtual machines for rent, a single physical machine can run many
virtual machines, each of which appears to be a complete machine. Customers
who rent a virtual machine can run whatever operating system and software they
want to, but at afraction of the cost of a dedicated server (because the same phys-
ica machine supports many virtual machines at the same time).

Another use of virtualization is for end users who want to be able to run two
or more operating systems at the same time, say Windows and Linux, because
some of their favorite application packages run on one and some am on the other.
This situation is illustrated in Fig. 1-29(a), where the term "virtual machine moni-
tor" has been renamed type 1 hypervisor in recent years.

Guest OS process

Excel Word Mplayer Apollon » Hogt OS
[ | | *OsP. 808 process

| Guest OS

Type 2 hypervisor 6 O
Type 1 hypervisor Host operating system

(2) ()

Figure 1-29. (a) A type 1 hypervisor. (b) A type 2 hypervisor.

Now the software. While no one disputes the attractiveness of virtua ma
chines, the problem was implementation. In order to run virtual machine software
on a computer, its CPU must be virtualizable (Popek and Goldberg, 1974). In a
nutshell, here is the problem. When an operating system running on a virtual ma-
chine (in user mode) executes a privileged instruction), such as modifying the
PSW or doing 1/O, it is essentid that the hardware trap to the virtual machine
monitor so the instruction can be emulated in software. On some CPUs—notably
the Pentium, its predecessors, and its clones—attempts to execute privileged in-
structions in user mode are just ignored. This property made it impossible to have
virtual machines on this hardware, which explains the lack of interest in the PC
world. Of course, there were interpreters for the Pentium that ran on the Pentium,
but with a performance loss of typicaly 5-10x, they were not useful for serious
work.

This situation changed as a result of several academic research projects in the
1990s, notably Disco at Stanford (Bugnion et a., 1997), which led to commercial
products (e.g., VMware Workstation) and a revival of interest in virtual machines.
VMware Workstation is a type 2 hypervisor, which is shown in Fig. 1-29(b). In
contrast to type 1 hypervisors, which run on the bare metal, type 2 hypervisors run
as application programs on top of Windows, Linux, or some other operating sys-
tem, known as the host operating system. After a type 2 hypervisor is started, it
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reads the instalation CD-ROM for the chosen guest operating system and
installs on a virtual disk, which isjust a big file in the host operating system's file
system.

When the guest operating system is booted, it does the same thing it does on
the actua hardware, typically starting up some background processes and then a
GUI. Some hypervisors translate the binary programs of the guest operating sys-
tem block by block, replacing certain control instructions with hypervisor calls.
The trandated blocks are then executed and cached for subsequent use.

A different approach to handling control instructions is to modify the operat-
ing system to remove them. This approach is not true virtualization, but paravir-
tualization. We will discuss virtualization in more detail in Chap. 8.

The Java Virtual Machine

Another area where virtual machines are used, but in a somewhat different
way, is for running lava programs. When Sun Microsystems invented the Java
programming language, it aso invented a virtual machine (i.e., a computer archi-
tecture) caled the JVM (Java Virtual Machine). The Java compiler produces
code for VM, which then typically is executed by a software VM interpreter.
The advantage of this approach is that the VM code can be shipped over the In-
ternet to any computer that has a VM interpreter and run there. If the'compiler
had produced SPARC or Pentium binary programs, for example, they could not
have been shipped and run anywhere as easily. (Of course, Sun could have pro-
duced a compiler that produced SPARC binaries and then distributed a SPARC
interpreter, but VM is a much simpler architecture to interpret.) Another advan-
tage of using VM is that if the interpreter is implemented properly, which is not
completely trivial, incoming VM programs can be checked for safety and then
executed in a protected environment so they cannot steal data or do any damage.

1.7.6 Exokernels

Rather than cloning the actual machine, as is done with virtual machines, an-
other strategy is partitioning it, in other words, giving each user a subset of the re-
sources. Thus one virtual machine might get disk blocks 0 to 1023, the next one
might get blocks 1024 to 2047, and so on.

At the bottom layer, running in kernel mode, is a program called the exoker -
nel (Engler et al., 1995). Itsjob is to alocate resources to virtual machines and
then check attempts to use them to make sure no machine is trying to use some-
body else's resources. Each user-level virtual machine can run its own operating
system, as on VM/370 and the Pentium virtual 8086s, except that each one is res-
tricted to using only the resources it has asked for and been allocated.

The advantage of the exokernel scheme is that it saves a layer of mapping. In
the other designs, each virtual machine thinks it has its own disk, with blocks
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running from 0 to some maximum, so the virtual machine monitor must maintain
tables to remap disk addresses (and al other resources). With the exokernel, this
remapping is not needed. The exokernel need only keep track of which virtual ma-
chine has been assigned which resource. This method till has the advantage of
separating the multiprogramming (in the exokernel) from the user operating sys-
tem code (in user space), but with less overhead, since al the exokernel has to do
is keep the virtual machines out of each other's hair.

18 THE WORLD ACCORDING TO C

Operating systems are normally large C (or sometimes C++) programs con-
sisting of many pieces written by many programmers. The environment used for
developing operating systems is very different from what individuals (such as stu-
dents) are used to when writing small Java programs. This section is an attempt to
give a very brief introduction to the world of writing an operating system for
small-time Java programmers.

1.8.1 The C Language

This is not a guide to C, but a short summary of some of the key differences
between C and Java. Javais based on C, so there are many similarities between
the two. Both are imperative languages with data types, variables, and control
statements, for example. The primitive data types in C are integers (including
short and long ones), characters, and floating-point numbers. Composite data
types can be constructed using arrays, structures, and unions. The control state-
ments in C are similar to those in Java, including if, switch, for, and while state-
ments. Functions and parameters are roughly the same in both languages.

One feature that C has that Java does not is explicit pointers. A pointer is a
variable that points to (i.e., contains the address of) a variable or data structure.
Consider the statements

charcl, c2, *p;
d =X,
p=&cy,
c2="*p;

which declare ¢l and c2 to be character variables and p to be a variable that points
to (i.e., contains the address of) a character. The first assignment stores the ASCII
code for the character 'c' in the variable cl. The second one assigns the address
of cl to the pointer variable p. The third one assigns the contents of the variable
pointed to by p to the variable c2, so after these statements are executed, c2 aso
contains the ASCII code for 'c'. In theory, pointers are typed, so you are not sup-
posed to assign the address of a floating-point number to a character pointer, but
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in practice compilers accept such assignments, albeit sometimes with a warning.
Pointers are a very powerful construct, but also a great source of errors when used
carelesdly.

Some things that C does not have include built-in strings, threads, packages,
classes, objects, type safety, and garbage collection. The last one is a show stop-
per for operating systems. All storage in C is either static or explicitly alocated
and released by the programmer, usualy with the library function malloc and. free.
It is the latter property—total programmer control over memory—along with
explicit pointers that makes C attractive for writing operating systems. Operating
systems are basically real-time systems to some extent, even genera purpose
ones. When an interrupt occurs, the operating system may have only a few
microseconds to perform some action or lose critical information. Having the gar-
bage collector kick in at an arbitrary moment is intolerable.

1.8.2 Header Files

An operating system project generally consists of some number of directories,
each containing many .c files containing the code for some part of the system,
aong with some .h header files that contain declarations and definitions used by
one or more code files. Header files can also include simple macros, suctt as

#define BUFFEFLSIZE 4096

which allows the programmer to name constants, so that when BUFFER_S1ZE is
used in the code, it is replaced during compilation by the number 4096. Good C
programming practice is to name every constant except 0, 1, and - 1, and some-
times even them. Macros can have parameters, such as

#define max(a, b) (a>b?a:b)
which allows the programmer to write
i = max(j, k+1)
and get
i=( >k+1 ?j :k+1)

to store the larger of j and k+1 in i. Headers can also contain conditional compi-
lation, for example

#ifdef PENTIUM
intel Jnt_ack();
#endif

which compiles into acall to the function inteUnt_ock if the macro PENTIUM is
defined and nothing otherwise. Conditional compilation is heavily used to isolate
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architecture-dependent code so that certain code is inserted only when the system
is compiled on the Pentium, other code is inserted only when the system is com-
piled on a SPARC, and so on. A .c file can bodily include zero or more header
files using the ffinclude directive. There are also many header fdes that are com-
mon to nearly every .c and are stored in a central directory.

1.8.3 Large Programming Projects

To build the operating system, each .c is compiled into an object file by the C
compiler. Object files, which have the suffix .0, contain binary instructions for the
target machine. They will later be directly executed by the CPU. There is nothing
like Java byte codein the C world.

The first pass of the C compiler is caled the C preprocessor. As it reads
each .cfile, every time it hits a include directive, it goes and gets the header file
named in it and processes it, expanding macros, handling conditional compilation
(and certain other things) and passing the results to the next pass of the compiler
as if they were physically included.

Since operating systems are very large (five million lines of code is not un-
usual), having to recompile the entire thing every time one file is changed would
be unbearable. On the other hand, changing a key header file that is included in
thousands of other files does require recompiling those files. Keeping track of
which object files depend on which header files is completely unmanageable
without help.

Fortunately, computers are very good at precisely this sort of thing. On UNIX
systems, there is a program called make (with numerous variants such as gmake,
pmake, etc.) that reads the Makefde, which tells it which files are dependent on
which other files. What make does is see which object files are needed to build the
operating system binary needed right now and for each one, check to see if any of
the files it depends on (the code and headers) have been modified subsequent to
the last time the object file was created. If so, that object file has to be recom-
piled. When make has determined which .c files have to recompiled, it invokes
the C compiler to recompile them, thus reducing the number of compilations to
the bare minimum. In large projects, creating the Makefile is error prone, so there
are tools that do it automaticaly.

Once al the .o files are ready, they are passed to a program called the linker
to combine al of them into a single executable binary file. Any library functions
caled are dso included at this point, interfunction references are resolved, and
machine address are relocated as need be. When the linker is finished, the result is
an executable program, traditionally called a.out on UNIX systems. The various
components of this process are illustrated in Fig. 1-30 for a program with three C
files and two header files. Although we have been discussing operating system
development here, all of this applies to developing any large program.
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Figure 1-30. The process of compiling C and header files to make an executable.

1.84 The Model of Run Time

Once the operating system binary has been linked, the computer can be
rebooted and the new operating system started. Once running, it may dynamically
load pieces that were not statically included in the binary such as device drivers
and file systems. At run time the operating system may consist of multiple seg-
ments, for the text (the program code), the data, and the stack. The text segment is
normally immutable, not changing during execution. The data segment starts out
a acertain size and initialized with certain values, but it can change and grow as
need be. The stack is initially empty but grows and shrinks as functions are caled
and returned from. Often the text segment is placed near the bottom of memory,
the data segment just above it, with the ability to grow upward, and the stack seg-
ment at a high virtual address, with the ability to grow downward, but different
systems work differently.

In all cases, the operating system code is directly executed by the hardware,
with no interpreter and no just-in-time compilation, as is normal with Java.
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19 RESEARCH ON OPERATING SYSTEMS

Computer science is a rapidly advancing field and it is hard to predict where it
is going. Researchers a universities and industrial research labs are constantly
thinking up new ideas, some of which go nowhere but some of which become the
cornerstone of future products and have massive impact on the industry and users.
Telling which is which turns out to be easier to do in hindsight than in real time.
Separating the wheat from the cheff is especially difficult because it often takes
20 to 30 years from idea to impact.

For example, when President Eisenhower set up the Dept. of Defense's Ad-
vanced Research Projects Agency (ARPA) in 1958, he was trying to keep the
Army from killing the Navy and the Air Force over the Pentagon's research bud-
get. He was not trying to invent the Internet. But one of the things ARPA did
was fund some university research on the then-obscure concept of packet switch-
ing, which led to the first experimental packet-switched network, the ARPANET.
It went live in 1969. Before long, other ARPA-funded research networks were
connected to the ARPANET, and the Internet was born. The Internet was then
happily used by academic researchers for sending e-mail to each other for 20
years. Inthe early 1990s, Tim Berners-Lee invented the World Wide Web at the
CERN research lab in Geneva and Marc Andreesen wrote a graphical browser for
it a the University of Illinois. All of a sudden the Internet was full of chatting
teenagers. President Eisenhower is probably rolling over in his grave.

Research in operating systems has also led to dramatic changes in practica
systems. As we discussed earlier, the first commercial computer systems were al
batch systems, until M.I.T. invented interactive timesharing in the early 1960s.
Computers were al text-based until Doug Engelbart invented the mouse and the
graphical user interface at Stanford Research Institute in the late 1960s. Who
knows what will come next?

In this section and in comparable sections throughout the book, we will take a
brief look at some of the research in operating systems that has taken place during
the past 5 to 10 years, just to give a flavor of what might be on the horizon. This
introduction is certainly not comprehensive and is based largely on papers that
have been published in the top research journals and conferences because these
ideas have at least survived a rigorous peer review process in order to get pub-
lished. Most of the papers cited in the research sections were published by either
ACM, the |IEEE Computer Society, or USENIX and are available over the Inter-
net to (student) members of these organizations. For more information about these
organizations and their digital libraries, see

ACM http://wvvw.acm.org
IEEE Computer Society http://www.computer.org
USENIX http://www.usenix.org
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Virtually all operating systems researchers realize that current operating sys-
tems are massive, inflexible, unreliable, insecure, and loaded with bugs, certain
ones more than others (names withheld here to protect the guilty). Consequently,
there is a lot of research on how to build better operating systems. Work has
recently been published about new operating systems (Krieger et al., 2006), oper-
aing system structure (Fassino et al., 2002), operating system correctness
(Elphinstone et a., 2007; Kumar and Li, 2002; and Yang et a., 2006), operating
system reliability (Swift et al., 2006; and LeVasseur et al., 2004), virtua ma-
chines (Barham et al., 2003; Garfinkel et al., 2003; King et a., 2003; and Whi-
taker et al., 2002), viruses and worms (Costa et a., 2005; Portokalidis et a., 2006;
Tucek et al., 2007; and Vrable et al., 2005), bugs and debugging (Chou et d.,
2001; and King et a., 2005), hyperthreading and multithreading (Fedorova, 2005;
and Bulpin and Pratt, 2005), and user behavior (Yu et a., 2006), among many
other topics.

110 OUTLINE OF THE REST OF THISBOOK

We have now completed our introduction and bird's-eye view of the operating
system. It istime to get down to the details. As mentioned aready, from the pro-
grammer's point of view, the primary purpose of an operating system is to provide
some key abstractions, the most important of which are processes and threads, ad-
dress spaces, and files. Accordingly the next three chapters are devoted to these
critical topics.

Chapter 2 is about processes and threads. It discusses their properties and
how they communicate with one another. It also gives a number of detailed ex-
amples of how interprocess communication works and how to avoid some of the
pitfals.

In Chap. 3 we will study address spaces and their adjunct, memory man-
agement, in detail. The important topic of virtual memory will be examined, along
with closely related concepts such as paging and segmentation.

Then, in Chap. 4, we come to the all-important topic of file systems. To a
considerable extent, what the user sees is largely the file system. We will look at
both the file system interface and the file system implementation.

Input/Output is covered in Chap. 5. The concepts of device independence and
device dependence will be looked at. Several important devices, including disks,
keyboards, and displays, will be used as examples.

Chapter 6 is about deadlocks. We briefly showed what deadlocks are in this
chapter, but there is much more to say. Ways to prevent or avoid them are dis-
cussed.

At this point we will have completed our study of the basic principles of sin-
gle-CPU operating systems. However, there is more to say, especialy about ad-
vanced topics. In Chap. 7, we examine multimedia systems, which have a number
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of properties and requirements that differ from conventional operating systems.
Among other items, scheduling and the file system are affected by the nature of
multimedia. Another advanced topic is multiple processor systems, including mul-
tiprocessors, parallel computers, and distributed systems. These subjects are
covered in Chap. 8.

A hugely important subject is operating system security, which is covered in
Chap 9. Among the topics discussed in this chapter are threats (e.g., viruses and
worms), protection mechanisms, and security models.

Next we have some case studies of real operating systems. These are Linux
(Chap. 10), Windows Vista (Chap. 11), and Symbian (Chap. 12). The book con-
cludes with some wisdom and thoughts about operating system design in Chap.
13.

111 METRIC UNITS

To avoid any confusion, it is worth stating explicitly that in this book, as in
computer science in general, metric units are used instead of traditional English
units (the furlong-stone-fortnight system). The principal metric prefixes are listed
in Fig. 1-31. The prefixes are typicaly abbreviated by their first letters, with the
units greater than 1 capitalized. Thus a I-TB database occupies 10* bytes of stor-
age and a 100 psec (or 100 ps) clock ticks every 10""* seconds. Since milli and
micro both begin with the letter "m," achoice had to be made. Normally, "m" is
for milli and "p." (the Greek letter mu) is for micro.

Exp. Explicit Prefix | Exp. Explicit Prefix
10" | 0.001 milli 10 1,000 | Kilo
10"* | 0.000001 micro | 10° 1,000,000 | Mega
10" O0000QC0L nano 10° 1,000,000,000 | Giga
io-"* | 0.000000000001 pico 10" 1,000.000.000.000 | Tera
io-* | 0.000000000000001 femlo | 10" 1,000,000,000,000,000 | Peta
io-* | 0.0000000000000000001 atto 10" 1,000,000,000,000,000,000 | Exa
jo-** | 0.0000000000000000000001 zepto | 10* 1,000,000,000,000,000,000,000 | Zetta
jo-** | 0.0000000000000000000000001 | yocto | 10* | 1,000,000,000,000,000,000,000,000 | Yoita

Figure 1-3L The prindipal metric prefixes

It is also worth pointing out that for measuring memory sizes, in common
industry practice, the units have dightly different meanings. There Kilo means 2*°
(1024) rather than 10° (1000) because memories are always a power of two. Thus
a 1-KB memory contains 1024 bytes, not 1000 bytes. Similarly, a 1-MB memory
contains 2°° (1,048,576) bytes and a 1-GB memory contains 2°° (1,073,741,824)
bytes. However, a 1-Kbps communication line transmits 1000 bits per second and
a 10-Mbps LAN runs at 10,000,000 hits/sec because these speeds are not powers
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of two. Unfortunately, many people tend to mix up these two systems, especially
for disk sizes. To avoid ambiguity, in this book, we will use the symbols KB,
MB, and GB for 2, 2*°, and 2°° bytes respectively, and the symbols Kbps,
Mbps, and Gbps for 10°,10° and 10° bits/sec, respectively.

112 SUMMARY

Operating systems can be viewed from two viewpoints. resource managers
and extended machines. In the resource manager view, the operating system'sjob
is to manage the different parts of the system efficiently. In the extended machine
view, thejob of the system is to provide the users with abstractions that are more
convenient to use than the actua machine. These include processes, address
spaces, and files.

Operating systems have a long history, starting from the days when they
replaced the operator, to modern multiprogramming systems. Highlights include
early batch systems, multiprogramming systems, and personal computer systems.

Since operating systems interact closely with the hardware, some knowledge
of computer hardware is useful to understanding them. Computers are built up of
processors, memories, and 1/O devices. These parts are connected by buses.

The basic concepts on which all operating systems are built are processes,
memory management, 1/0O management, the file system, and security. Each of
these will be treated in a subsequent chapter.

The heart of any operating system is the set of system calls that it can handle.
These tell what the operating system really does. For UNIX, we have looked at
four groups of system calls. The first group of system calls relates to process crea
tion and termination. The second group is for reading and writing files. The third
group is for directory management. The fourth group contains miscellaneous
cals.

Operating systems can be structured in several ways. The most common ones
are as a monoalithic system, ahierarchy of layers, microkernel, client-server, virtu-
a machine, or exokemel.

PROBLEMS

1. What are the tv/o main functions of an operating sysem?
2. Wha is the difference between timesharing and multiprogramming sysems?

3. On early computers, every byte of data reed or written was handled by the CPU (i.e.,
there was no DMA). What implications does this have for multiprogramming?

4. Why weas timesharing not widespread on second-generation computers?
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5. The family of computers idea was introduced in the 1960s with the IBM System/360
manframes Isthisidea now deed as adoornail or does it live on?

6. Ore reason GUIs were initidly dow to be adopted was the cost of the hardware need-
ed to support them. How much video RAM is needed to support a 25 line x 80 row
character monochrome text screen? How much for a 1024 x 768 pixd 24-bit color
hitmap? What was the cogt of this RAM a 1980 prices ($5/KB)? How much is it
now?

7. There are severa design gods in building an operating system, for example, resource
utilization, timeliness, robustness, and so on. Give an example of two design goals that
mey contradict one another.

8. Wha is the difference between kernd and user mode? Explain how having two dis-
tinct modes aidsin designing an operating system.

9. Which of the fdlowing instructions should be dlowed only in kernd mode?

(@ Disdhledl interrupts

(b) Read the time-of-day clock.
() Set the time-of-day clock.
(d) Chenge the mamary map.

10. Condder a system that hes two CPUs and each CPU has two threads (hyperthreading).
Suppose three programs, PO, P, and P2, are darted with run times of 5, 10 and 20
mses, respectively. How long will it take to complete the execution of these programs?
Asaume that dl three programs are 100% CPU bound, do not block during execution,
and do nat change CPUs once assigned.

11. Lig some differences between persond computer operating systems and mainframe
operdting systems.

12. Condder a computer system that has cache memory, main memory (RAM) and disk,
and the operating sysem uses virtud memory. It takes 2 usee to access a word from
the cache, 10 ngec to access aword from the RAM, and 10 ms to access aword from
the disk. If the cache hit rate is 95% and main memary hit rate (after a cache miss) is
9%, what is the average time to access aword?

13. When a user program miakes a system call to reed or write a disk file, it provides an
indication of which file it wants, a pointer to the data buffer, and the count. Contral is
then trandfared to the operating system, which cdls the appropriate driver. Suppose
that the driver darts the disk and terminates until an interrupt occurs. In the case of
reeding fram the disk, obvioudy the caler will have to be blocked (because there are
no data for it). Whet about the case of writing to the disk? Need the caller be block-
ing awating completion of the disk transfer?

14. Whet is atrep ingruction? Explain its use in operating systems.
15. What is the key difference between atrap and an interrupt?

16. Why is the process table needed in atimesharing system? Is it also nesded in persond
computer systems in which only one process exists, that process teking over the entire
mechineuntil it is finished?
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17. Is there any reason why you might want to mournt a file system on a nonempty direc-
tory? If so, whet isit?

18 What is the purpose of asysem cdl in an operating system?

19. For eech of the folowing sysem calls, give a condition that causes it to fail: fork,
exec, and unlink.

20. A file whose file descriptor is fd contains the following sequence of bytes: 3, 1,4, 1,5,
9,2,6,5, 3, 5. Thefdlowing sysem cdls are made:

lseek(fd, 3, SEEK_SET);
reed(fd, &buffe, 4);

where the Iseek call makes a seek to byte 3 of the file. What does bufferr contain after
the read has completed?

21. V\llhat is the essentid difference between a block specid file and a character specid
file?

22. In the example given in Fig. 1-17, the library procedure is called read and the sysem
cdl itsdf is caled reed. Is it essentid thet both of these have the same name? If not,
which one is more important?

23. The client-server modd is popular in distributed systems. Can it dso beusad in asin-
gle-computer system?

24. To aprogrammer, a sysem cdl looks like any other cdl to a library procedure. Is it
important that a programmer know which library procedures result in sysem cals?
Under what circumstances and why?

25. Fgure 1-23 shows that a number of UNIX system cdlls have no Win32 APl equiva
lents. For each of the calls listed as having no Win32 equivaent, what are the conse-
quences for a programmer of converting aUNIX program to run under Windows?

26. A portable operating sysem is one that can be ported from one system architecture to
another without any modification. Explain why it is infeasible to build an operating
sysem tha is completdly portable. Describe two high-level layers that you will have
in designing an operating sysem that is highly portable.

27. Explan how separation of policy and mechaniam ads in building microkernel-based
operating systems.
28. Here are some questions for practicing unit conversions.
(@) How long is amicroyear in seconds?
(b) Micrometers are often called microns. How long is agigamicron?
(c) How many bytes are therein a I-TB memory?
(d) The mass of the earth is 6000 yottagrams. What is that in kilograms?

29. Write a shel that is smilar to Fig. 1-19 but contains enough code thet it actudly
works 0 you can test it. You might also add some features such as redirection of input
and output, pipes, and background jobs.

30. If you have a persond UNIX-ike sysem (Linux, MINIX, Free BSD, etc)) available
that you can safey crash and reboot, write a shell script that attempts to create an
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unlimited number of child processes and observe what happens. Before running the
experiment, type sync to the shell to flush the file system buffers to disk to avoid ruin-
ing the file sysem. Note: Do not try this on a shared system without first getting per-
misson from the sysem adminigtrator. The consequences will be ingantly obvious so
you are likdly to be caught and sanctions may follow.

Examine and try to interpret the contents of a UNIX-like or Windows directory with a
tool like the UNIX od program or the MSDOS DEBUG program. Hint: How you do
this will depend upon what the OS alows. One trick that may work is to create adi-
rectory on a floppy disk with one operating sysem and then reed the raw disk data
usng adifferent operating system that adlows such access.

PROCESSES AND THREADS

We are now about to embark on a detailed study of how operating systems are
designed and constructed. The most central concept in any operating system is the
process. an abstraction of a running program. Everything else hinges on this con-
cept, and it is important that the operating system designer (and student) have a
thorough understanding of what aprocess is as early as possible.

Processes are one of the oldest and most important abstractions that operating
systems provide. They support the ability to have (pseudo) concurrent operation
even when there is only one CPU available. They turn a single CPU into multiple
virtua CPUs. Without the process abstraction, modem computing could not exist.
In this chapter we will go into considerable detail about processes and their first
cousins, threads.

21 PROCESSES

All modern computers often do several things at the same time. People used
to working with personal computers may not be fully aware of this fact, so a few
examples may make the point clearer. First consider a Web server. Reguests
come in from all over asking for Web pages. When a request comes in, the server
checks to see if the page needed isin the cache. If itis, it is sent back; if it is not,
a disk request is started to fetch it. However, from the CPU's perspective, disk re-
quests take eternity. While waiting for the disk request to complete, many more
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requests may come in. If there are multiple disks present, some or al of them
may be fired off to other disks long before the first request is satisfied. Clearly
some way is needed to model and control this concurrency. Processes (and espe-
cidly threads) can help here.

Now consider a user PC. When the system is booted, many processes are
secretly started, often unknown to the user. For example, a process may be started
up to wait for incoming e-mail. Another process may run on behdf of the anti-
virus program to check periodicaly if any new virus definitions are available. In
addition, explicit user processes may be running, printing files and burning a CD-
ROM, dl while the user is surfing the Web. All this activity has to be managed,
and a multiprogramming system supporting multiple processes comes in very
handy here.

In any multiprogramming system, the CPU switches from process to process
quickly, running each for tens or hundreds of milliseconds. While, strictly speak-
ing, a any instant of time, the CPU is running only one process, in the course of 1
second, it may work on several of them, giving the illusion of parallelism. Some-
times people spesk of pseudoparallelism in this context, to contrast it with the
true hardware parallelism of multiprocessor systems (which have two or more
CPUs sharing the same physical memory). Keeping track of multiple, parallel
activities is hard for people to do. Therefore, operating system designers over the
years have evolved a conceptual model (sequential processes) that makes paral -
Idlism easier to ded with. That model, its uses, and some of its consequences form
the subject of this chapter.

2.1.1 The Process Model

In thismodd, dl the runnable software on the computer, sometimes including
the operating system, is organized into a number of sequential processes, or just
processes for short. A process isjust an instance of an executing program, in-
cluding the current values of the program counter, registers, and variables. Con-
ceptudly, each process has its own virtual CPU. In reality, of course, the real
CPU switches back and forth from process to process, but to understand the sys-
tem, it is much easier to think about a collection of processes running in (pseudo)
pardld then to try to keep track of how the CPU switches from program to pro-
gram. This rapid switching back and forth is called multiprogramming, as we
saw in Chap. 1.

In Fig. 2-1(a) we see a computer multiprogramming four programs in memo-
ry. InFig. 2-1(b) we see four processes, each with its own flow of control (i.e., its
own logical program counter), and each one running independently of the other
ones. Of course, there is only one physical program counter, so when each proc-
€ss runs, its logica program counter is loaded into the real program counter.
When it is finished (for the time being), the physical program counter is saved in
the process gtored logical program counter in memory. In Fig. 2-1(c) we see that
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viewed over a long enough time interval, all the processes have made progress,
but at any given instant only one process is actualy running.

One program counter
Four program counters

Process
switch
B : § 0
* 8
A
Time -
@ (0 ©

Figure 2-1. (a) Multiprogramming of four programs, (b) Conceptual model of
four independent, sequential processes, (c) Only one program isactive at once.

In this chapter, we will assume there is only one CPU. Increasingly, however,
that assumption is not true, since new chips are often multicore, with two, four, or
more CPUs. We will look at multicore chips and multiprocessors in genera in
Chap. 8, but for the time being, it is simpler just to think of one CPU at atime. So
when we say that a CPU can really only run one process at atime, if there are two
cores (or CPUs) each one of them can run only one process at a time.

With the CPU switching rapidly back and forth among the processes, the rate
at which a process performs its computation will not be uniform and probably not
even reproducible if the same processes are run again. Thus, processes must not
be programmed with built-in assumptions about timing. Consider, for example,
an 1/0 process that starts a streamer tape to restore backed-up files, executes an
idle loop 10,000 times to let it get up to speed, and then issues a command to read
the first record. If the CPU decides to switch to another process during the idle
loop, the tape process might not run again until after the first record was aready
past the read head. When a process has critical rea-time requirements like this,
that is, particular events must occur within a specified number of milliseconds,
special measures must be taken to ensure that they do occur. Normally, however,
most processes are not affected by the underlying multiprogramming of the CPU
or the relative speeds of different processes.

The difference between a process and a program is subtle, but crucia. An
analogy may help here. Consider a culinary-minded computer scientist who is
baking a birthday cake for his daughter. He has a birthday cake recipe and a
kitchen well stocked with dl the input: flour, eggs, sugar, extract of vanilla, and
so on. In this analogy, the recipe is the program (i.e., an agorithm expressed in
some suitable notation), the computer scientist is the processor (CPU), and the
cake ingredients are the input data. The process is the activity consisting of our
baker reading the recipe, fetching the ingredients, and baking the cake.
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Now imagine that the computer scientist's son comes running in screaming
his head off, saying that he has been stung by a bee. The computer scientist re-
cords where he was in the recipe (the state of the current process is saved), gets
out a first aid book, and begins following the directions in it. Here we see the
processor being switched from one process (baking) to a higher-priority process
(administering medical care), each having a different program (recipe versus first
aid book). When the bee sting has been taken care of, the computer scientist goes
back to his cake, continuing at the point where he left off.

The key idea here is that a process is an activity of some kind. It has a pro-
gram, input, output, and a state. A single processor may be shared among several
processes, with some scheduling algorithm being used to determine when to stop
work on one process and service adifferent one.

It is worth noting that if a program is running twice, it counts as two proc-
esses. For example, it is often possible to start a word processor twice or print two
files at the same time if two printers are available. The fact that two running proc-
esses happen to be running the same program does not matter; they are distinct
processes. The operating system may be able to share the code between them so
only one copy isin memory, but that is atechnical detail that does not change the
conceptual situation of two processes running.

2.1.2 Process Creation

Operating systems need some way to create processes. In very simple sys-
tems, or in systems designed for running only a single application (e.g., the con-
troller in a microwave oven), it may be possible to have al the processes that will
ever be needed be present when the system comes up. In genera-purpose sys-
tems, however, some way is needed to create and terminate processes as needed
during operation. We will now look at some of the issues.

There are four principal events that cause processes to be created:
1. System initialization.
2. Execution of a process creation system call by arunning process.
3. A user request to create a new process.
4. Initiation of a batchjob.

When an operating system is booted, typically several processes are created.
Some of these are foreground processes, that is, processes that interact with
(human) users and perform work for them. Others are background processes,
which are not associated with particular users, but instead have some specific
function. For example, one background process may be designed to accept incom-
ing e-mail, sleeping most of the day but suddenly springing to life when incoming
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e-mail arrives. Another background process may be designed to accept incoming
requests for Web pages hosted on that machine, waking up when arequest arrives
to service the request. Processes that stay in the background to handle some
activity such as e-mail, Web pages, news, printing, and so on are called daemons.
Large systems commonly have dozens of them. In UNIX, the ps program can be
used to list the running processes. In Windows, the task manager can be used.

In addition to the processes created at boot time, new processes can be created
afterward as well. Often a running process will issue system calls to create one or
more new processes to help it do itsjob. Creating new processes is particularly
useful when the work to be done can easily be formulated in terms of several re-
lated, but otherwise independent interacting processes. For example, if a large
amount of data is being fetched over a network for subsequent processing, it may
be convenient to create one process to fetch the data and put them in a shared buf-
fer while a second process removes the data items and processes them. On a mul-
tiprocessor, alowing each process to run on a different CPU may also make the
job go faster.

In interactive systems, users can start a program by typing a command or
(double) clicking an icon. Taking either of these actions starts a new process and
runs the selected program in it. In command-based UNIX systems running X, the
new process takes over the window in which it was started. In Microsoft Win-
dows, when a process is started it does not have a window, but it can create one
(or more) and most do. In both systems, users may have multiple windows open
at once, each running some process. Using the mouse, the user can select a win-
dow and interact with the process, for example, providing input when needed.

The last situation in which processes are created applies only to the batch sys-
tems found on large mainframes. Here users can submit batch jobs to the system
(possibly remotely). When the operating system decides that it has the resources
to run another job, it creates a new process and runs the next job from the input
queuein it.

Technically, in all these cases, a new process is crested by having an existing
process execute a process creation system call. That process may be a running
user process, a system process invoked from the keyboard or mouse, or a batch
manager process. What that process does is execute a system cal to create the
new process. This system call tells the operating system to create a new process
and indicates, directly or indirectly, which program to runinit.

In UNIX, there is only one system call to create a new process: fork. This call
creates an exact clone of the calling process. After the fork, the two processes, the
parent and the child, have the same memory image, the same environment strings,
and the same open files. That is al thereis. Usualy, the child process then exe-
cutes execve or asimilar system call to change its memory image and run a new
program. For example, when a user types a command, say, sort, to the shell, the
shell forks off a child process and the child executes sort. The reason for this
two-step process is to alow the child to manipulate its file descriptors after the
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fok but before the execve in order to accomplish redirection of standard input,
standard output, and standard error.

In Windows, in contrast, a single Win32 function call, CreateProcess, hand-
les both process creation and loading the correct program into the new process.
This cal has 10 parameters, which include the program to be executed, the com-
mand-line parameters to feed that program, various security attributes, bits that
control whether open files are inherited, priority information, a specification of
the window to be created for the process (if any), and a pointer to a structure in
which information about the newly created process is returned to the caller. In ad-
dition to CreateProcess, Win32 has about 100 other functions for managing and
synchronizing processes and related topics.

In both UNIX and Windows, after a process is created, the parent and child
have their own distinct address spaces. If either process changes aword in its ad-
dress space, the changeis not visible to the other process. In UNIX, the child's in-
itial address space is a copy of the parent's, but there are definitely two distinct
address spaces involved;, no writable memory is shared (some UNIX imple-
mentations share the program text between the two since that cannot be modified).
It is, however, possible for a newly created process to share some of its creator's
other resources, such as open files. In Windows, the parent's and child's address
spaces are different from the start.

2.1.3 Process Termination

After a process has been created, it starts running and does whatever itsjob is.
However, nothing lasts forever, not even processes. Sooner or later the new proc-
ess will terminate, usually due to one of the following conditions:

1. Normal exit (voluntary).

2. Error exit (voluntary).

3. Fata error (involuntary).

4. Killed by another process (involuntary).

Mogt processes terminate because they have done their work. When a compi-
ler has compiled the program given to it, the compiler executes a system call to
tell the operating system that it is finished. This call is exit in UNIX and ExitProc-
ess in Windows. Screen-oriented programs also support voluntary termination.
Word processors, Internet browsers and similar programs always have an icon or
menu item that the user can click to tell the process to remove any temporary files
it has open and then terminate.

The second reason for termination is that the process discovers a fata error.
For example, if a user types the command

cc foo.c
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to compile the program foo.c and no such file exists, the compiler smply exits.
Screen-oriented interactive processes generally do not exit when given bad pa-
rameters. Instead they pop up a dialog box and ask the user to try again.

The third reason for termination is an error caused by the process, often due to
a program bug. Examples include executing an illega instruction, referencing
nonexistent memory, or dividing by zero. In some systems (e.g., UNIX), a process
can tell the operating system that it wishes to handle certain errors itsdf, in which
case the process is signded (interrupted) instead of terminated when one of the er-
rors occurs.

The fourth reason a process might terminate is that the process executes a sys-
tem call telling the operating system to kill some other process. In UNIX this call
is kill. The corresponding Win32 function is TerminateProcess. In both cases, the
killer must have the necessary .authorization to do in the killee. In some systems,
when a process terminates, either voluntarily or otherwise, all processes it created
are immediately killed as well. Neither UNIX nor Windows works this way, how-
ever.

2.1.4 Process Hierarchies

In some systems, when a process creates another process, the parent process
and child process continue to be associated in certain ways. The child process can
itself create more processes, forming a process hierarchy. Note that unlike plants
and animals that use sexua reproduction, a process has only one parent (but zero,
one, two, or more children).

In UNIX, a process and dl of its children and further descendants together
form a process group. When a user sends a signal from the keyboard, the signal is
delivered to al members of the process group currently associated with the key-
board (usualy ail active processes that were created in the current window). Indi-
vidually, each process can catch the signal, ignore the signal, or take the default
action, which is to bekilled by the signal.

As another example of where the process hierarchy plays arole, let us look at
how UNIX initializes itself when it is started. A specia process, called init, is
present in the boot image. When it starts running, it reads a file telling how many
terminals there are. Then it forks off one new process per terminal. These proc-
wait for someone to log in. If alogin is successful, the login process exe-
cutes a shell to accept commands. These commands may start up more processes,
and so forth. Thus, al the processes in the whole system belong to a single tree,
with init at the root.

In contrast, Windows has no concept of a process hierarchy. All processes are
equal. The only hint of a process hierarchy is that when a process is created, the
parent is given a specia token (caled a handle) that it can use to control the
child. However, it is free to pass this token to some other process, thus invalidat-
ing the hierarchy. Processes in UNIX cannot disinherit their children.
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2.1.5 Process States

Although each process is an independent entity, with its own program counter
and internal state, processes often need to interact with other processes. One proc-
€ss may generate some output that another process uses as input. In the shell
command

cat chapterl chapter2 chapters | grep tree

the fird process, running cat, concatenates and outputs three files. The second
process, running grep, selects al lines containing the word "tree." Depending on
the relative speeds of the two processes (which depends on both the relative com-
plexity of the programs and how much CPU time each one has had), it may hap-
pen thet grep is ready to run, but there is no input waiting for it. It must then
block until some input is available.

When a process blocks, it does so because logicaly it cannot continue, typi-
cally because it is waiting for input that is not yet available. It is aso possible for
a process that is conceptually ready and able to run to be stopped because the op-
erating sysem has decided to allocate the CPU to another process for a while.
These two conditions are completely different. In the first case, the suspension is
inherent in the problem (you cannot process the user's command line until it has
been typed). In the second case, it is a technicality of the system (not enough
CPUs to give each process its own private processor). In Fig. 2-2 we see a state
diagram showing the three states a process may be in:

1. Running (actually using the CPU at that instant).
2. Ready (runnable; temporarily stopped to let another process run).
3. Blocked (unable to run until some external event happens).

Logicdly, the first two states are similar. In both cases the process is willing to
run, only in the second one, thereis temporarily no CPU available for it. The third
sate is different from the first two in that the process cannot run, even if the CPU
has nothing el se to do.

1. Process blocks for input

Running
1 3 2 2. Scheduler picks another process
3. Scheduler picks this process
4. Input becomes available

Fgure 2-2. A process can be in running, blodked, or reedy e Trangtions
bewemn these dates are ss shown.

Four transitions are possible among these three states, as shown. Transition 1
occurs when the operating system discovers that a process cannot continue right
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now. In some systems the process can execute a system call, such as pause, to
get into blocked state. In other systems, including UNDC, when a process reads
from a pipe or specia file (e.g., a terminal) and there is no input available, the
process is automatically blocked.

Transitions 2 and 3 are caused by the process scheduler, a part of the operat-
ing system, without.the process even knowing about them. Transition 2 occurs
when the scheduler decides that the running process has run long enough, and it is
time to let another process have some CPU time. Transition 3 occurs when al the
other processes have had their fair share and it is time for the first process to get
the CPU to run again. The subject of scheduling, that is, deciding which process
should run when and for how long, is an important one; we will look at it later in
this chapter. Many agorithms have been devised to try to balance the competing
demands of efficiency for the system as a whole and fairness to individua proc-
esses. We will study some of them later in this chapter.

Transition 4 occurs when the external event for which a process was waiting
(such as the arrival of some input) happens. If no other process is running at that
instant, transition 3 will be triggered and the process will start running. Otherwise
it may have to wait in ready state for a little while until the CPU is available and
its turn comes.

Using the process model, it becomes much easier to think about what is going
on inside the system. Some of the processes run programs that carry «out com-
mands typed in by a user. Other processes are part of the system and handle tasks
such as carrying out requests for file services or managing the details of running a
disk or atape drive. When adisk interrupt occurs, the system makes a decision to
stop running the current process and run the disk process, which was blocked
waiting for that interrupt. Thus, instead of thinking about interrupts, we can think
about user processes, disk processes, termina processes, and so on, which block
when they are waiting for something to happen. When the disk has been read or
the character typed, the process waiting for it is unblocked and is €ligible to run
again.

This view gives rise to the model shown in Fig. 2-3. Here the lowest level of
the operating system is the scheduler, with a variety of processes on top of it. All
the interrupt handling and details of actually starting and stopping processes are
hidden away in what is here called the scheduler, which is actualy not much
code. The rest of the operating system is nicely structured in process form. Few
real systems are as nicely structured as this, however.

2.1.6 Implementation of Processes

To implement the process model, the operating system maintains a table (an
array of structures), called the process table, with one entry per process. (Some
authors call these entries process control blocks.) This entry contains important
information about the process' state, including its program counter, stack pointer,
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Processes

Scheduler

Figure 2-3. The lowest layer of a process-structured operating system handles
interrupts and scheduling. Above that layer are sequential processes.

memory alocation, the status of its open files, its accounting and scheduling in-
formation, and everything else about the process that must be saved when the
process is switched from running to ready or blocked state so that it can be restart-
ed later asif it had never been stopped.

Figure 2-4 shows some of the key fields in a typical system. The fidds in the
first column relate to process management. The other two relate to memory man-
agement and file management, respectively. It should be noted that precisely
which fields the process table has is highly system dependent, but this figure gives
a generd idea of the kinds of information needed.

Process management Memory management File management
Registers Pointer to text segment info Root directory
Program counter Pointer to data segment info Working directory
Program statusword Pointer to stack segment info | File descriptors

Stack pointer User ID
Process state Group 1D
Priority

Scheduling parameters
ProcessID

Parent process

Process group

Signals

Time when process started
CPU time used

Children's CPU time

Time of next alarm

Figure 2-4. Some of the fields of a typical process table entry.

Now that we have looked at the process table, it is possible to explain a little
more about how the illusion of multiple sequential processes is maintained on one
(or each) CPU. Associated with each 1/0 class is a location (typically at a fixed
location near the bottom of memory) called the interrupt vector. It contains the
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address of the interrupt service procedure. Suppose that user process 3 is running
when a disk interrupt happens. User process 3's program counter, program status
word, and sometimes one or more registers are pushed onto the (current) stack by
the interrupt hardware. The computer then jumps to the address specified in the
interrupt vector. That is al the hardware does. From here on, it is up to the soft-
ware, in particular, the interrupt service procedure.

All interrupts start by saving the registers, often in the process table entry for
the current process. Then the information pushed onto the stack by the interrupt is
removed and the stack pointer is set to point to a temporary stack used by the
process handler. Actions such as saving the registers and setting the stack pointer
cannot even be expressed in high-level languages such as C, so they are per-
formed by a small assembly language routine, usualy the same one for dl inter-
rupts since the work of saving the registers is identical, no matter what the cause
of the interrupt is.

When this routine is finished, it calls a C procedure to do the rest of the work
for this specific interrupt type. (We assume the operating system is written in C,
the usual choice for al real operating systems.) When it has done itsjob, possibly
making some process now ready, the scheduler is caled to see who to run next.
After that, control is passed back to the assembly language code to load up the
registers and memory map for the now-current process and start it running. Inter-
rupt handling and scheduling are summarized in Fig. 2-5. It is worth noting that
the details vary somewhat from system to system.

1. Hardware stacks program counter, etc.

2. Hardware loads new program counter from interrupt vector.
3. Assembly language procedur e saves registers.

4. Assembly language procedure sets up new stack.

5. C interrupt service runs {typically reads and buffers input).

6. Scheduler decideswhich processisto run next.

7. C procedure returns to the assembly code.

8. Assembly language procedure starts up new current process.

Figure 2-5. Skeleton of what the lowest level of the operating system does
when an interrupt occurs.

When the process finishes, the operating system displays a prompt character and
waits for a new command. When it receives the command, it loads a new program
into memory, overwriting the first one.

2.1.7 Modeling Multiprogramming
When multiprogramming is used, the CPU utilization can be improved.

Crudely put, if the average process computes only 20% of the time it is sitting in
memory, with five processes in memory at once, the CPU should be busy dl the
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time. This modd is unredistically optimistic, however, since it tacitly assumes
that all five processes will never be waiting for 1/0 at the sametime.

A better mode! is to look at CPU usage from a probabilistic viewpoint. Sup-
pose that a process spends a fraction p of its time waiting for I/0 to complete.
With n processes in memory at once, the probability that al n processes are wait-
ing for I/O (in which case the CPU will beidle) isp". The CPU utilization is then
given by the formula

CPU utilization ~\-p"

Figure 2-6 shows the CPU utilization as a function of n, which is caled the
degree of multiprogramming.
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Figure 2-6. CPU utilization as a function of the number of processes in memory.

From the figure it is clear that if processes spend 80% of their time waiting for
1/0, at least 10 processes must be in memory at once to get the CPU waste below
10%. When you redlize that an interactive process waiting for a user to type some-
thing at a terminal is in I/O wait state, it should be clear that I/O wait times of
80% and more are not unusual. But even on servers, processes doing alot of disk
1/0 will often have this percentage or more.

For the sake of complete accuracy, it should be pointed out that the proba-
bilistic mode just described is only an approximation. It implicitly assumes that
al n processes are independent, meaning that it is quite acceptable for a system
with five processes in memory to have three running and two waiting. But with a
single CPU, we cannot have three processes running at once, so a process becom-
ing ready while the CPU is busy will have to wait. Thus the processes are not in-
dependent. A more accurate model can be constructed using queueing theory, but
the point we are making—multiprogramming lets processes use the CPU when it
would otherwise become idle—is, of course, till valid, even if the true curves of
Fig. 2-6 are dightly different from those shown in the figure.
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Even though the model of Fig. 2-6 is simple-minded, it can nevertheless be
used to make specific, although approximate, predictions about CPU performance.
Suppose, for example, that a computer has 512 MB of memory, with the operating
system taking up 128 MB and each user program also taking up 128 MB. These
sizes alow three user programs to be in memory at once. With an 80% average
I/O wait, we have a CPU utilization (ignoring operating system overhead) of
1 - 0.8 or about 49%. Adding another 512 MB of memory alows the system to
go from three-way multiprogramming to seven-way multiprogramming, thus rais-
ing the CPU utilization to 79%. In other words, the additional 512 MB will raise
the throughput by 30%.

Adding yet another 512 MB would only increase CPU utilization from 79% to
91%, thus raising the throughput by only another 12%. Using this model the com-
puter's owner might decide that the first addition is a good investment but that the
second is not.

2.2 THREADS

In traditional operating systems, each process has an address space and a sin-
gle thread of control. In fact, that is almost the definition of a process. Neverthe-
less, there are frequently situations in which it is desirable to have, multiple
threads of control in the same address space running in quasi-parallel, as though
they were (almost) separate processes (except for die shared address space). In
the following sections we will discuss these situations and their implications.

2.2.1 Thread Usage

Why would anyone want to have akind of process within a process? It turns
out there are several reasons for having these miniprocesses, called threads. Let
us now examine some of them. The main reason for having threads is that in many
applications, multiple activities are going on at once. Some of these may block
from time to time. By decomposing such an application into multiple sequential
threads that run in quasi-parallel, the programming model becomes simpler.

We have seen this argument before. It is precisely the argument for having
processes. Instead of thinking about interrupts, timers, and context switches, we
can think about parallel processes. Only now with threads we add a new element:
the ability for the parallel entities to share an address space and al of its data
among themselves. This ability is essential for certain applications, which is why
having multiple processes (with their separate address spaces) will not work.

A second argument for having threads is that since they are lighter weight
than processes, they are easier (i.e., faster) to create and destroy than processes.
In many systems, creating a thread goes 10-100 times faster than creating a proc-
ess. When the number of threads needed changes dynamically and rapidly, this
property is useful to have.
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A third reason for having threads is also a performance argument. Threads
yield no peformance gain when al of them are CPU bound, but when there is
substantial computing and also substantial 1/0, having threads allows these activi-
ties to overlap, thus speeding up the application.

Finally, threads are useful on systems with multiple CPUs, where rea paral-
lelism is possible. We will come back to thisissue in Chap. 8.

It is easiest to see why threads are useful by looking a some concrete ex-
amples. As afirst example, consider a word processor. Word processors usualy
display the document being created on the screen formatted exactly as it will
appear on the printed page. In particular, dl the line breaks and page breaks are
in their correct and find positions, so that the user can inspect them and change
the document if need be (e.g., to eliminate widows and orphans—incomplete top
and bottom lines on a page, which are considered esthetically unpleasing).

Suppose that the user is writing a book. From the author's point of view, itis
easiest to keep the entire book as a single file to make it easier to search for to-
pics, perform global substitutions, and so on. Alternatively, each chapter might be
a separate file. However, having every section and subsection as a separate file is
area nuisance when globa changes have to be made to the entire book, since
then hundreds of files have to be individualy edited. For example, if proposed
standard xxxx is approved just before the book goes to press, dl occurrences of
"Draft Standard xxxx" have to be changed to "Standard xxxx" at the last minute.
If the entire book is one file, typically a single command can do al the substitu-
tions. In contragt, if the book is spread over 300 files, each one must be edited
separately.

Now consider what happens when the user suddenly deletes one sentence
from page 1 of an 800-page document. After checking the changed page for cor-
rectness, he now wants to make another change on page 600 and types in a com-
mand telling the word processor to go to that page (possibly by searching for a
phrase occurring only there). The word processor is how forced to reformat the
entire book up to page 600 on the spot because it does not know what the first line
of page 600 will be until it has processed al the previous pages. There may be a
substantial delay before page 600 can be displayed, leading to an unhappy user.

Threads can help here. Suppose that the word processor is written as a two-
threaded program. One thread interacts with the user and the other handles refor-
meatting in the background. As soon as the sentence is deleted from page 1, the
interactive thread tells the reformatting thread to reformat the whole book. Mean-
while, the interactive thread continues to listen to the keyboard and mouse and
responds to simple commands like scrolling page 1 while the other thread is com-
puting madly in the background. With a little luck, the reformatting will be com-
pleted before the user asks to see page 600, so it can be displayed instantly.

While we are at it, why not add a third thread? Many word processors have a
feature of automatically saving the entire file to disk every few minutes to protect
the user againg losing a day's work in the event of a program crash, system crash,
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or power failure. The third thread can handle the disk backups without interfering
with the other two. The situation with three threads is shown in Fig. 2-7.

Kernel

S _J Drisk

Figure2-7. A word processor with three threads.

Keyhoard

If the program were single-threaded, then whenever a disk backup started,
commands from the keyboard and mouse would be ignored until the backup was
finished. The user would surely perceive this as sluggish performance. Alterna
tively, keyboard and mouse events could interrupt the disk backup, allowing good
performance but leading to a complex interrupt-driven programming model. With
three threads, the programming model is much simpler. The first thread just
interacts with the user. The second thread reformats the document when told to.
The third thread writes the contents of RAM to disk periodically.

It should be clear that having three separate processes would not work here
because al three threads need to operate on the document. By having three
threads instead of three processes, they share a common memory and thus al have
access to the document being edited.

An analogous situation exists with many other interactive programs. For ex-
ample, an electronic spreadsheet is a program that allows a user to maintain a ma-
trix, some of whose elements are data provided by the user. Other elements are
computed based on the input data using potentially complex formulas. When a
user changes one element, many other elements may have to be recomputed. By
having a background thread do the recomputation, the interactive thread can alow
the user to make additional changes while the computation is going on. Similarly,
a third thread can handle periodic backups to disk on its own.

Now consider yet another example of where threads are useful: a server for a

World Wide Web site. Requests for pages come in and the requested page is sent
back to the client. At most Web sites, some pages are more commonly accessed
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than other pages. For example, Sony's home page is accessed far more than a
page deep in the tree containing the technical specifications of any particular cam-
corder. Web servers use this fact to improve performance by maintaining a collec-
tion of heavily used pages in main memory to eliminate the need to go to disk to
get them. Such a collection is called a cache and is used in many other contexts as
well. We saw CPU caches in Chap. 1, for example.

One way to organize the Web server is shown in Fig. 2-8(a). Here one thread,
the dispatcher, reads incoming requests for work from the network. After exa
mining the request, it chooses an idle (i.e., blocked) worker thread and hands it
the request, possibly by writing a pointer to the message into a special word asso-
ciated with each thread. The dispatcher then wakes up the sleeping worker, mov-
ing it from blocked state to ready state.

Web server process

Dispatcher |hread

—\ ) \Worker thread User

space

\-*f- Web page cache
Kernd
Kernd space
Network

connection

Figure 2-8. A multithreaded Web server.

When the worker wakes up, it checks to see if the request can be satisfied
from the Web page cache, to which al threads have access. If nat, it starts a read
operation to get the page from the disk and blocks until the disk operation com-
pletes. When the thread blocks on the disk operation, another thread is chosen to
run, possibly the dispatcher, in order to acquire more work, or possibly another
worker that is now ready to run.

This model alows the server to be written as a collection of sequentia
threads. The dispatcher's program consists of an infinite loop for getting a work
request and handing it off to a worker. Each worker's code consists of an infinite
loop consisting of accepting a request from the dispatcher and checking the Web
cache to seeif the page is present. If so, it isreturned to the client, and the worker
blocks waiting for a new request. If not, it gets the page from the disk, returns it
to the client, and blocks waiting for a new request.
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A rough outline of the code is given in Fig. 2-9. Here, as in the rest of this
book, TRUE is assumed to be the constant 1. Also, bufmd page are structures
appropriate for holding awork request and a Web page, respectively.

while (TRUE) { while (TRUE) {

get_next_request(& buf); wait_for_work(& buf)

handoff_work(& buf); look_for_page_in_cache(& buf, Spage);
} if (page_not_in_cache(& page))

read_page_from_disk(& buf, & page);
return _page(Spage);
@
m

Figure 2-9. A rough outline of the code for Fig. 2-8. (a) Dispatcher thread, (b)
Worker thread.

Consider how the Web server could be written in the absence of threads. One
possihility is to have it operate as a single thread. The main loop of the Web ser-
ver gets a request, examines it, and carries it out to completion before getting the
next one. While waiting for the disk, the server is idle and does not process any
other incoming requests. If the Web server is running on a dedicated machine, as
is commonly the case, the CPU is smply idle while the Web server is Waiting for
the disk. The net result is that many fewer requests/sec can be processed. Thus
threads gain considerable performance, but each thread is programmed sequential-
ly, in the usual way.

So far we have seen two possible designs: a multithreaded Web server and a
single-threaded Web server. Suppose that threads are not available but the system
designers find the performance loss due to single threading unacceptable. If a
nonblocking version of the read system call is available, athird approach is pos-
sible. When a request comes in, the one and only thread examines it. If it can be
satisfied from the cache, fine, but if not, a nonblocking disk operation is started.

The server records the state of the current request in a table and then goes and
gets the next event. The next event may either be a request for new work or a
reply from the disk about a previous operation. If it is new work, that work is
started. If itis areply from the disk, the relevant information is fetched from the
table and the reply processed. With nonblocking disk 1/0, a reply probably will
have to take the form of asigna or interrupt.

In this design, the "sequential process’ model that we had in the first two
cases is lost. The state of the computation must be explicitly saved and restored in
the table every time the server switches from working on one request to another.
In effect, we are simulating the threads and their stacks the hard way. A design
like this, in which each computation has a saved state, and there exists some set of
events that can occur to change the state is called a finite-state machine. This
concept is widely used throughout computer science.
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It should now be clear what threads have to offer. They make it possible to re-
tain the idea of sequential processes that make blocking system calls (e.g., for disk
1/0) and till achieve paralelism. Blocking system calls make programming easi-
er, and paralelism improves performance. The single-threaded server retains the
simplicity of blocking system calls but gives up performance. The third approach
achieves high performance through parallelism but uses nonlocking calls and in-
terrupts and is thus is hard to program. These models are summarized in Fig. 2-10.

M odel Characteristics

Threads Parallelism, blocking system calls
Single-threaded process No parallelism, blocking system calls
Finite-state machine Parallelism, nonbiocking system calls, interrupts

Figure 2-10. Three ways to construct a server.

A third example where threads are useful is in applications that must process
very large amounts of data. The norma approach is to read in a block of data,
process it, and then write it out again. The problem here is that if only blocking
system calls are available, the process blocks while data are coming in and data
are going out. Having the CPU go idle when there is lots of computing to do is
clearly wasteful and should be avoided if possible.

Threads offer a solution. The process could be structured with an input thread,
a processing thread, and an output thread. The input thread reads data into an
input buffer. The processing thread takes data out of the input buffer, processes
them, and puts the results in an output buffer. The output buffer writes these re-
sults back to disk. In this way, input, output, and processing can all be going on at
the same time. Of course, this model only works if a system call blocks only the
cdling thread, not the entire process.

222 The Classical Thread Model

Now that we have seen why threads might be useful and how they can be
used, let us investigate the idea a bit more closely. The process model is based on
two independent concepts: resource grouping and execution. Sometimes it is use-
ful to separate them; this is where threads come in. First we will look at the classi-
ca thread moddl; after that we will examine the Linux thread model, which blurs
the line between processes and threads,

One way of looking at a process is that it is a way to group related resources
together. A process has an address space containing program text and data, as
well as other resources. These resource may include open files, child processes,
pending darms, signal handlers, accounting information, and more. By putting
them together in the form of a process, they can be managed more easily.
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The other concept a process has is a thread of execution, usualy shortened to
just thread. The thread has a program counter that keeps track of which instruc-
tion to execute next. It has registers, which hold its current working variables. It
has a stack, which contains the execution history, with one frame for each proce-
dure called but not yet returned from. Although a thread must execute in some
process, the thread and its process are different concepts and can be treated sepa-
rately. Processes are used to group resources together; threads are the entities
scheduled for execution on the CPU.

What threads add to the process mode is to alow multiple executions to take
place in the same process environment, to a large degree independent of one an-
other. Having multiple threads running in paralel in one process is analogous to
having multiple processes running in parallel in one computer. In the former case,
the threads share an address space and other resources. In the latter case, proc-
share physical memory, disks, printers, and other resources. Because threads
have some of the properties of processes, they are sometimes called lightweight
processes. The term multithreading is aso used to describe the situation of al-
lowing multiple threads in the same process. As we saw in Chap, 1, some CPUs
have direct hardware support for multithreading and allow thread switches to hap-
pen on a nanosecond time scale.

In Fig. 2-11 (a) we see three traditional processes. Each process has its own
address space and a single thread of control. In contrast, in Fig. 2-11(b)'we see a
single process with three threads of control. Although in both cases we have three
threads, in Fig. 2-11(a) each of them operates in a different address space, where-
asinFig. 2-11(b) dl three of them share the same address space.

Process 1 Process t Process 1 Process
User
space
Thread
Thread
Kernel
space Karnet Kernd

@ (b)

Figure 2-11. (a) Three processes each with one thread, (b) One process with
threethreads.

When a multithreaded process is run on a single-CPU system, the threads take
turns running. In Fig. 2-1, we saw how multiprogramming of processes works.
By switching back and forth among multiple processes, the system gives the
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illusion of separate sequential processes running in parallel. Multithreading works
the same way. The CPU switches rapidly back and forth among the threads, pro-
viding the illusion that the threads are running in paralel, abeit on a slower CPU
than the real one. With three compute-bound threads in a process, the threads
would appear to be running in parallel, each one on a CPU with one-third the
speed of thereal CPU.

Different threads in a process are not as independent as different processes.
All threads have exacdy the same address space, which means that they aso share
the same global variables. Since every thread can access every memory address
within the process' address space, one thread can read, write, or even wipe out an-
other thread's stack. There is no protection between threads because (1) it is im-
possible, and (2) it should not be necessary. Unlike different processes, which
may be from different users and which may be hostile to one another, a process is
aways owned by a single user, who has presumably created multiple threads so
that they can cooperate, not fight. In addition to sharing an address space, al the
threads can share the same set of open flies, child processes, aarms, and signals,
an so on, as shown in Fig. 2-12. Thus the organization of Fig. 2-11 (a) would be
used when the three processes are essentially unrelated, whereas Fig. 2-11(b)
would be appropriate when the three threads are actually part of the samejob and
are actively and closely cooperating with each other.

Per process items Per thread items
Address space Program counter
Global variables Registers

Open files Stack

Child processes State

Pending alarms
Signals and signal handlers
Accounting information

Figure2-12. The first column lists some items shared by all threads in a proc-
ess. The second one lists some items private to each thread.

Theitems in the first column are process properties, not thread properties. For
example, if one thread opens afile, that file is visible to the other threads in the
process and they can read and writeit. Thisislogical, since the process is the unit
of resource management, not the thread. If each thread had its own address space,
open files, pending alarms, and so on, it would be a separate process. What we are
trying to achieve with the thread concept is the ability for multiple threads of ex-
ecution to share a set of resources so that they can work together closely to per-
form some task.

Like atraditional process (i.e., a process with only one thread), a thread can
be in any one of several states: running, blocked, ready, or terminated. A running
thread currently has the CPU and is active. A blocked thread is waiting for some
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event to unblock it. For example, when a thread performs a system call to read
from the keyboard, it is blocked until input is typed. A thread can block waiting
for some external event to happen or for some other thread to unblock it. A ready
thread is scheduled to run and will as soon as its turn comes up. The transitions
between thread states are the same as the transitions between process states and
areillustrated in Fig.- 2-2.

It is important to realize that each thread has its own stack, as illustrated in
Fig. 2-13. Each thread's stack contains one frame for each procedure called but
not yet returned from. This frame contains the procedure's local variables and the
return address to use when the procedure call has finished. For example, if proce-
dure X calls procedure Y and Y calls procedure Z, then while Z is executing, the
frames for X, Y, and Z will al be on the stack. Each thread will generaly call dif-
ferent procedures and a thus have a different execution history. This is why each
thread needs its own stack.

Thread 2
Thread 1 Thread 3
5 /
//?mcess

2 é é ’

Thread 1s E H H — Thread 3's stack
stack
Kernel

Figure 2-13. Each thread hasits own stack.

When multithreading is present, processes normally start with a single thread
present. This thread has the ability to create new threads by calling a library pro-
cedure, for example, thread “create. A parameter to thread"create typically
specifies the name of aprocedure for the new thread to run. Itis not necessary (or
even possible) to specify anything about the new thread's address space, since it
automatically runs in the address space of the creating thread. Sometimes threads
are hierarchical, with a parent-child relationship, but often no such relationship
exists, with all threads being equal. With or without a hierarchical relationship,
the creating thread is usualy returned a thread identifier that names the new
thread.

When a thread has finished its work, it can exit by calling a library procedure,
say, thread-exit. It then vanishes and is no longer schedulable. In some thread
systems, one thread can wait for a (specific) thread to exit by calling a procedure,
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for example, thread-join. This procedure blocks the calling thread until a (specif-
ic) thread has exited. In thisregard, thread creation and termination is very much
like process creation and termination, with approximately the same options as
well.

Another common thread call is thread-yield, which alows a thread to volun-
tarily give up the CPU to let another thread run. Such a call is important because
there is no clock interrupt to actually enforce multiprogramming as there is with
processes. Thus it is important for threads to be polite and voluntarily surrender
the CPU from time to time to give other threads a chance to run. Other calls alow
one thread to wait for another thread to finish some work, for a thread to announce
that it has finished some work, and so on.

While threads are often useful, they also introduce a number of complications
into the programming model. To start with, consider the effects of the UNDC fork
system call. If the parent process has multiple threads, should the child also have
them? If not, the process may not function properly, since al of them may be
essential.

However, if the child process gets as many threads as the parent, what hap-
pens if athread in the parent was blocked on a read call, say, from the keyboard?
Are two threads now blocked on the keyboard, one in the parent and one in the
child? When aline is typed, do both threads get a copy of it? Only the parent?
Only the child? The same problem exists with open network connections.

Another class of problems is related to the fact that threads share many data
structures. What happens if one thread closes afile while another one is till read-
ing from it? Suppose that one thread notices that there is too little memory and
starts allocating more memory. Partway through, a thread switch occurs, and the
new thread also notices that there is too little memory and also starts allocating
more memory. Memory will probably be alocated twice. These problems can be
solved with some effort, but careful thought and design are needed to make mul-
tithreaded programs work correctly.

2.2.3 POSIX Threads

To make it possible to write portable threaded programs, |EEE has defined a
standard for threads in IEEE standard 1003.1c. The threads package it defines is
caled Pthreads. Most UNIX systems support it. The standard defines over 60
function calls, which is far too many to go over here. Instead we will just de-
scribe afew of the mgjor ones to give an idea of how it works. The calls we will
describe are listed in Fig. 2-14.

All Pthreads threads have certain properties. Each one has an identifier, a set
of registers (including the program counter), and a set of attributes, which are
stored in a structure. The attributes include the stack size, scheduling parameters,
and other Items needed to use the thread.
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Thread call Description

Pthread_create Create a new thread

Pthread_exit Terminate the calling thread

Pthread_join Wait for a specific thread to exit

Pthread_yieid Release the CPU to let another thread run
Pthread_attr_init Create and initialize a thread's attribute structure
Pthread_attr_destroy | Remove a thread's attribute structure

Figure 2-14. Some of the Pthreads function calls.

A new thread is created using the pthread-create call. The thread identifier of
the newly created thread is returned as the function value. This cal is intention-
aly very much like the fork system call, with the thread identifier playing the role
of the PID, mosdy for identifying threads referenced in other calls.

When a thread has finished the work it has been assigned, it can terminate by
calling pthread-exit. This call stops the thread and releases its stack.

Often a thread needs to wait for another thread to finish its work and exit be-
fore continuing. The thread that is waiting calls pthread-join to wait for a specific
other thread to terminate. The thread identifier of the thread to wait for i given as
a parameter;

Sometimes it happens that a thread is not logically blocked, but feels that it
has run long enough and wants to give another thread a chance to run. It can
accomplish this goal by calling pthread-yield. There is no such call for processes
because the assumption there is that processes are fiercely competitive and each
one wants al the CPU time it can get. However, since the threads of a process are
working together and their code is invariably written by the same programmer,
sometimes the programmer wants them to give each other upa chance.

The next two thread calls deal with attributes. Pthread, attr_init creates the
attribute structure associated with a thread and initializes it to the default values.
These values (such as the priority) can be changed by manipulating fields in the
attribute structure.

Findly, pthread-attr-destroy removes a thread's attribute structure, freeing
up its memory. It does not affect threads using it; they continue to exist.

To get a better fed for how Pthreads works, consider the simple example of
Fig. 2-15. Here the main program loops NUMBER-OF-THREADS times, creat-
ing a new thread on each iteration, after announcing its intention. If the thread
creation fails, it prints an error message and then exits. After creating dl the
threads, the main program exits.

When a thread is created, it prints a one-line message announcing itself, then
it exits. The order in which the various messages are interleaved is nondetermi-
nate and may vary on consecutive runs of the program.
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Nincdude <pthread.h>
#include <stdio.h>
#include <stdlib.h>

Sdefine NUMBER _OF TH READS 10
void *print_helio world(void *tid)

[* This function prints the thread's identifier and then exits, */
printffHello World. Greetings from thread %d0, tid);
pihread_exit(NUU_);

int main{int argc, char *argvQ)

[* The main program creates 10 threads and then exits. */
pthread_tthreadsINUMBER_OF_THREADS];
int status, i;

for(i=0; i < NUMBER_OF THREADS; i++) {
printf("Main here. Creating thread %d0, i);
status = pthread_creaie{&threads][i], NULL, print_heilo_world, (void

if (status 1= 0) {
printffOops. pthread_create returned error code %d0, status);
exit(-1);

}
exit(NULL);
Figure 2-15. An example program using threads.

The Pthreads calls described above are not the only ones by any means; there
are many more. We will examine some of the others later after we have discussed
process and thread synchronization.

2.2.4 Implementing Threads in User Space

There are two main ways to implement a threads package: in user space and
in the kernel. The choice is moderately controversial, and a hybrid imple-
mentation is also possible. We will now describe these methods, along with their
advantages and disadvantages.

The first method is to put the threads package entirely in user space. The ker-
nel knows nothing about them. As far as the kernel is concerned, itis managing
ordinary, single-threaded processes. The first, and most obvious, advantage is that
auser-level threads package can be implemented on an operating system that does
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not support threads. All operating systems used to fal into this category, and even
now some still do. With this approach, threads are implemented by alibrary.

All of these implementations have the same genera structure, which isillus-
trated in Fig. 2-16(a). The threads run on top of a run-time system, which is a col-
lection of procedures that manage threads. We have seen four of these already:
pthread_create, pthread™exit, pthread join, and pthread“yield, but usualy there
are more.

Process Thread Process Thread
User
space J
\P nl/\] Hi/
T LIV ARl 7
Kernel
space /I Kernel Kernel @ %
—
Run-time Thread érocess Process *Thread
system table table table tabie

Figure 2-16. (a) A ttser-levei threads package, (b) A threads package managed
by the kemnel.

When threads are managed in user space, each process needs its own private
thread table to keep track of the threads in that process. This table is analogous
to the kernel's process table, except that it keeps track only of the per-thread prop-
erties, such as each thread's program counter, stack pointer, registers, state, and so
forth. The thread table is managed by the run-time system. When a thread is
moved to ready state or blocked state, the information needed to restart it is stored
in the thread table, exactly the same way as the kernel stores information about
processes in the process table.

When a thread does something that may cause it to become blocked locally,
for example, waiting for another thread in its process to complete some work, it
cals arun-time system procedure. This procedure checks to see if the thread must
be put into blocked state. If so, it stores the thread's registers (i.e., its own) in the
thread table, looks in the table for a ready thread to run, and reloads the machine
registers with the new thread's saved values. As soon as the stack pointer and
program counter have been switched, the new thread comes to life again automat-
ically. If the machine has an instruction to store dl the registers and another one
to load them all, the entire thread switch can be done in just a handful of instruc-
tions. Doing thread switching like thisis at least an order of magnitude—maybe
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.ore—faster than trapping to the kernel and is a strong argument in favor of
user-level threads packages.

However, there is one key difference with processes. When a thread is fin-
ished running for the moment, for example, when it cals thread-.yield, the code
of thread yield can save the thread's information in the thread table itself. Fur-
thermore, it can then call the thread scheduler to pick another thread to run. The
procedure that saves the thread's state and the scheduler arejust loca procedures,
so invoking them is much more efficient than making a kernel call. Among other
issues, no trap is needed, no context switch is needed, the memory cache need not
be flushed, and so on. This makes thread scheduling very fast.

User-level threads aso have other advantages. They allow each process to
have its own customized scheduling algorithm. For some applications, for exam-
ple, those with a garbage collector thread, not having to worry about a thread
being stopped at an inconvenient moment is a plus. They also scale better, since
kerne threads invariably require some table space and dack, space in the kernel,
which can be a problem if there are a very large number of threads.

Despite their better performance, user-level threads packages have some
mgor problems. First among these is the problem of how blocking system calls
are implemented. Suppose that a thread reads from the keyboard before any keys
have been hit. Letting the thread actually make the system call is unacceptable,
since this will stop dl the threads. One of the main goals of having threads in the
first place was to alow each one to use blocking calls, but to prevent one blocked
thread from affecting the others. With blocking system calls, it is hard to see how
this goal can be achieved readily.

The system calls could dl be changed to be nonblocking (e.g., aread on the
keyboard would just return O bytes if no characters were already buffered), but
requiring changes to the operating system is unattractive. Besides, one of the arg-
uments for user-level threads was precisely that they could run with existing oper-
ating systems. In addition, changing the semantics of read will require changes to
many user programs.

Ancther dternative is possible in the event that it is possible to tell in advance
if acal will block. In some versions of UNIX, a system call, select, exists, which
dlows the caller to tell whether a prospective read will block. When this call is
present, the library procedure read can be replaced with a new one that first does
a select cdl and then only does the read call if it is safe (i.e., will not block). If
the read call will block, the call is not made. Instead, another thread is run. The
next time the run-dme system gets control, it can check again to see if the read is
now safe. This approach requires rewriting parts of the system call library, is inef-
ficient and inelegant, but there is little choice. The code placed around the system
cdl to do the checking is cdled ajacket or wrapper.

Somewhat analogous to the problem of blocking system calls is the problem
of page faults. We will study these in Chap. 3. For the moment, it is sufficient to
sy that computers can be set up in such a way that not al of the program is in
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main memory a once. If the program calls or jumps to an instruction that is not in
memory, a page fault occurs and the operating system will go and get the missing
ingtruction (and its neighbors) from disk. Thisis called a page fault. The process
is blocked while the necessary instruction is being located and read in. If a thread
causes a page fault, the kernel, not even knowing about the existence of threads,
naturally blocks the entire process until the disk 1/O is complete, even though
other threads might be runnable.

Another problem with user-level thread packages is that if a thread starts run-
ning, no other thread in that process will ever run unless the first thread volun-
tarily gives up the CPU. Within a single process, there are no clock interrupts,
making it impossible to schedule processes round-robin fashion (taking turns).
Unless a thread enters the run-time system of its own free will, the scheduler will
never get achance.

One possible solution to the problem of threads running forever is to have the
run-time system request a clock signa (interrupt) once a second to give it control,
but this, too, is crude and messy to program. Periodic clock interrupts at a higher
frequency are not aways possible, and even if they are, the total overhead may be
substantial. Furthermore, a thread might also need a clock interrupt, interfering
with the run-time system's use of the clock.

Ancther, and really the most devastating, argument against user-level threads
is that programmers generally want threads precisely in applications where the
threads block often, as, for example, in a multithreaded Web server. These threads
are constantly making system calls. Once a trap has occurred to the kernd to
carry out the system cdll, it is hardly any more work for the kernel to switch
threads if the old one has blocked, and having the kernel do this eiminates the
need for constantly making select system calls that check to see if read system
cals are safe. For applications that are essentially entirely CPU bound and rarely
block, whet is the point of having threads at all? No one would seriously propose
computing the first n prime numbers or playing chess using threads because there
is nothing to be gained by doing it that way.

2.2.5 Implementing Threads in the Kernel

Now let us consider having the kernel know about and manage the threads.
No run-time system is needed in each, as shown in Fig. 2-16(b). Also, there is no
thread table in each process. Instead, the kernel has a thread table that keeps track
of al the threads in the system. When a thread wants to create a new thread or
destroy an existing thread, it makes akernel call, which then does the creation or
destruction by updating the kernel thread table.

The kernel's thread table holds each thread's registers, state, and other infor-
mation. The information is the same as with user-level threads, but now kept in
the kernel instead of in user space (inside the run-time system). This information
is a subset of the information that traditional kernels maintain about their single-
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threaded processes, that is, the process state. In addition, the kernel also main-
tains the traditional process table to keep track of processes.

Ail calls that might block a thread are implemented as system calls, at consid-
erably greater cost than a call to a run-time system procedure. When a thread
blocks, the kernel, at its option, can run either another thread from the same proc-
ess (if one is ready) or a thread from a different process. With user-level threads,
the run-time system keeps running threads from its own process until the kernel
takes the CPU away from it (or there are no ready threads left to run).

Dueto the relatively greater cost of creating and destroying threads in the ker-
nel, some systems take an environmentally correct approach and recycle their
threads. When a thread is destroyed, it is marked as not runnable, but its kernel
data structures are not otherwise affected. Later, when anew thread must be creat-
ed, an old thread is reactivated, saving some overhead. Thread recycling is aso
possible for user-level threads, but since the thread management overhead is much
smaller, there is less incentive to do this.

Kernel threads do not require any new, nonblocking system calls. In addition,
if one thread in a process causes a page fault, the kernel can easily check to see if
the process has any other runnable threads, and if so, run one of them while wait-
ing for the required page to be brought in from the disk. Their main disadvantage
isthat the cost of a system call is substantial, o if thread operations (creation, ter-
mination, etc.) are common, much more overhead will be incurred.

While kernd threads solve some problems, they do not solve al problems.
For example, what happens when a multithreaded process forks? Does the new
process have as many threads as the old one did, or does it have just one? In
many cases, the best choice depends on what the process is planning to do next. If
it is going to call exec to start a new program, probably one thread is the correct
choice, but if it continues to execute, reproducing al the threads is probably the
right thing to do.

Another issue is signals. Remember that signals are sent to processes, not to
threads, at least in the classical model. When a signal comes in, which thread
should handle it? Possibly threads could register their interest in certain signals,
so when a signa came in it would be given to the thread that said it wants it. But
what happens if two or more threads register for the same signal. These are only
two of the problems threads introduce, but there are more.

2.2.6 Hybrid Implementations

Various ways have been investigated to try to combine the advantages of
user-level threads with kernel-level threads. One way is use kernel-level threads
and then multiplex user-level threads onto some or al of the kernel threads, as
shown in Fig. 2-17. When this approach is used, the programmer can determine
how many kernd threads to use and how many user-level threads to multiplex on
each one. This modd gives the ultimate in flexibility.
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Figure 2-17. Multiplexing user-level threads onto kernel-level threads.

With this approach, the kernedl is aware of only the kernel-level threads and
schedules those. Some of those threads may have multiple user-level threads mul-
tiplexed on top of them. These user-level threads are created, destroyed, and
scheduled just like user-level threads in a process that runs on an operating system
without multithreading capability. In this model, each kernel-level thread has
some set of user-level threads that take turns using it.

2.2.7 Scheduler Activations

While kemel threads are better than user-level threads in some key ways, they
are also indisputably slower. As a consequence, researchers have looked for ways
to improve the situation without giving up their good properties. Below we will
describe one such approach devised by Anderson et a. (1992), called scheduler
activations. Related work is discussed by Edler et al. (1988) and Scott et al.
(1990).

The goals of the scheduler activation work are to mimic the functiondity of
kernel threads, but with the better performance and greater flexibility usualy as-
sociated with threads packages implemented in user space. In particular, user
threads should not have to make specia nonblocking system calls or check in ad-
vance if it is safe to make certain system calls. Nevertheless, when athread blocks
on asystem call or on a page fault, it should be possible to run other threads with-
in the same process, if any are ready.

Efficiency is achieved by avoiding unnecessary transitions between user and
kernel space. If a thread blocks waiting for another thread to do something, for
example, there is no reason to involve the kernel, thus saving the overhead of the
kemel-user transition. The user-space run-time system can block the synchroniz-
ing thread and schedule a new one by itsdlf.
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When scheduler activations are used, the kernel assigns a certain number of
virtua processors to each process and lets the (user-space) run-time system allo-
cate threads to processors. This mechanism can aso be used on a multiprocessor
where the virtual processors may be real CPUs. The number of virtual processors
dlocaed to a process is initially one, but the process can ask for more and can
aso return processors it no longer needs. The kernel can also take back virtual
processors already alocated in order to assign them to more needy, processes.

The basic idea that makes this scheme work is that when the kernel knows
that a thread has blocked (e.g., by its having executed a blocking system call or
caused a page fault), the kernel notifies the process run-time system, passing as
parameters on the stack the number of the thread in question and a description of
the event that occurred. The notification happens by having the kernel activate the
run-time syssem at a known starting address, roughly analogous to a signa in
UNIX. This mechanism is caled an upcall.

Once activated like this, the run-time system can reschedule its threads, typi-
cdly by marking the current thread as blocked and taking another thread from the
ready list, setting up its registers, and restarting it. Later, when the kernel learns
that the original thread can run again (e.g., the pipe it was trying to read from now
contains data, or the page it faulted over has been brought in from disk), it makes
another upcal to the run-time system to inform it of this event. The run-time sys-
tem, at its own discretion, can either restart the blocked thread immediately or put
it on the ready list to be run later.

When a hardware interrupt occurs while a user thread is running, the inter-
rupted CPU switches into kernel mode. If the interrupt is caused by an event not
of interest to the interrupted process, such as completion of another process' 1/0,
when the interrupt handler has finished, it puts the interrupted thread back in the
state it was in before the interrupt. If, however, the process is interested in the in-
terrupt, such as the arrival of a page needed by one of the process' threads, the in-
terrupted thread is not restarted. Instead, the interrupted thread is suspended, and
the run-time system is started on that virtual CPU, with the state of the interrupted
thread on the stack. It isthen up to the run-time system to decide which thread to
schedule on that CPU: the interrupted one, the newly ready one, or some third
choice.

An objection to scheduler activations is the fundamental reliance on upcalls, a
concept thet violates the structure inherent in any layered system. Normally, layer
n offers certain services that layer n + 1 can cal on, but layer n may not cal pro-
cedures in layer n + 1. Upcalls do not follow this fundamental principle.

2.2.8 Pop-Up Threads
Threads are frequently useful in distributed systems. An important example is

how incoming messages, for example requests for service, are handled. The tradi-
tiond gpproach is to have a process or thread that is blocked on a receive system
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call waiting for an incoming message. When a message arrives, it accepts the
message, unpacks it, examines the contents, and processes it.

However, a completely different approach is aso possible, in which the
arrival of a message causes the system to create a new thread to handle the mes-
sage. Such athread is caled a pop-up thread and is illustrated in Fig. 2-18. A
key advantage of pop-up threads is that since they are brand new, they do not have
any history—registers, stack, whatever—that must be restored. Each one starts out
fresh and each one is identicd to al the others. This makes it possible to create
such athread quickly. The new thread is given the incoming message to process.
The result of using pop-up threads is that the latency between message arrival and
the start of processing can be made very short.

Pop-up thread
Process .created to handle
e, incoming message
\ Exiggng thread
Incoming message
Network

@ ()

Figure 2-18. Creation of a new thread when a message arrives, (a) Before the
message arrives, (b) After the message arrives.

Some advance planning is needed when pop-up threads are used. For ex-
ample, in which process does the thread run? If the system supports threads run-
ning in the kernel's context, the thread may run there (which is why we have not

shown the kernd in Fig. 2-18). Having the pop-up thread run in kernel space is

usually easier and faster than putting it in user space. Also, a pop-up thread in ker-
nd space can easily access al the kernel's tables and the 1/O devices, which may
be needed for interrupt processing. On the other hand, a buggy kernel thread can

do more damage than a buggy user thread. For example, if it runs too long and
there is no way to preempt it, incoming data may be lost.
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2.29 Making Single-Threaded Code Multithreaded

Many existing programs were written for single-threaded processes. Convert-
ing these to multithreading is much trickier than it may at first appear. Below we
will examinejust a few of the pitfalls.

As a gtart, the code of a thread normally consists of multiple procedures, just
like a process. These may have local variables, global variables, and parameters.
Loca variables and parameters do not cause any trouble, but variables that are
globa to a thread but not global to the entire program are a problem. These are
variables that are global in the sense that many procedures within the thread use
them (as they might use any global variable), but other threads should logicaly
leave them alone.

As an example, consider the errno variable maintained by UNIX. When a
process (or a thread) makes a system call that fails, the error code is put into
errno. In Fig. 2-19, thread 1 executes the system call access to find out if it has
permission to access a certain file. The operating system returns the answer in the
globa variable errno. After control has returned to thread 1, but before it has a
chance to read errno, the scheduler decides that thread 1 has had enough CPU
time for the moment and decides to switch to thread 2. Thread 2 executes an
open cal that fails, which causes errno to be overwritten and thread |'s access
code to be lost forever. When thread 1 starts up later, it will read the wrong value
and behave incorrectly.

Thread 1 Thread 2

Access (errno set)

~+— Time

Open (errno overwritten)

I

Errnoinspected
Figure 2-19. Conflicts between threads over the use of a global variable.

Various solutions to this problem are possible. One is to prohibit globa vari-
ables altogether. However worthy this ideal may be, it conflicts with much exist-
ing software. Another is to assign each thread its own private global variables, as
shown in Fig. 2-20. In thisway, each thread has its own private copy of errno and
other global variables, so conflicts are avoided. In effect, this decision creates a
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new scoping level, variables visible to al the procedures of athread, in addition to
the existing scoping levels of variables visible only to one procedure and variables
visible everywhere in the program.

Thread 1's
code

Thread 2's
code

Thread 1's
stack

Thread 2's
stack

Thread 1's
globals

Thread 2's
globals

Figure 2-20. Threads can have private global variables.

Accessing the private global variables is a bit tricky, however, since most pro-
gramming languages have a way of expressing local variables and globa vari-
ables, but not intermediate forms. It is possible to alocate a chunk of memory for
the globals and pass it to each procedure in the thread as an extra parameter.
While hardly an elegant solution, it works.

Alternatively, new library procedures can be introduced to create, set, and
read these thread-wide global variables. The first call might look like this:

create_globd ("bufptr");

It allocates storage for a pointer called bufptr on the heap or in a special storage
area reserved for the caling thread. No matter where the storage is allocated,
only the calling thread has access to the global variable. If another thread creates
agloba variable with the same name, it gets a different storage location that does
not conflict with the existing one.

Two calls are needed to access global variables: one for writing them and the
other for reading them. For writing, something like

set_globai("bufptr”, &buf);

will do. It stores the value of apointer in the storage location previously created
by the call to create -global. To read a global variable, the call might look like

bufptr = read_global ("bufptr");
It returns the address stored in the global variable, so its data can be accessed.



114 PROCESSESAND THREADS CHAP. 2

The next problem turning a single-threaded program into a multithreaded pro-
gram is that many library procedures are not reentrant. That is, they were not de-
signed to have a second call made to any given procedure while a previous call
has not yet finished. For example, sending a message over the network may well
be programmed to assemble the message in a fixed buffer within the library, then
to trap to the kerndl to send it. What happens if one thread has assembled its mes-
sage in the buffer, then a clock interrupt forces a switch to a second thread that
immediately overwrites the buffer with its own message?

Similarly, memory allocation procedures, for example malloc in UNIX, main-
tain crucia tables about memory usage, for example, a linked list of available
chunks of memory. While malloc is busy updating these lists, they may tem-
porarily be in an inconsistent state, with pointers that point nowhere. If a thread
switch occurs while the tables are inconsistent and a new cal comes in from a dif-
ferent thread, an invalid pointer may be used, leading to a program crash. Fixing
al these problems effectively means rewriting the entire library. Doing so is a
nontrivial activity.

A different solution is to provide each procedure with ajacket that sets a bit to
mark the library as in use. Any attempt for another thread to use a library proce-
dure while a previous call has not yet completed is blocked. Although this ap-
proach can be made to work, it greatly eliminates potential parallelism.

Next, consider signals. Some signas are logicaly thread specific, whereas
others are not. For example, if a thread calls darm, it makes sense for the re-
sulting signa to go to the thread that made the call. However, when threads are
implemented entirely in user space, the kernel does not even know about threads
and can hardly direct the signal to the right one. An additional complication oc-
curs if a process may only have one alarm pending a a time and severa threads
cdl aarm independently.

Other signals, such as keyboard interrupt, are not thread specific. Who should
catch them? One designated thread? All the threads? A newly created pop-up
thread? Furthermore, what happens if one thread changes the signal handlers
without telling other threads? And what happens if one thread wants to catch a
particular signal (say, the user hitting CTRL-C), and another thread wants this sig-
na to terminate the process? This Stuation can arise if one or more threads run
standard library procedures and others are user-written. Clearly, these wishes are
incompatible. In general, signals are difficult enough to manage in a single-
threaded environment. Going to a multithreaded environment does not make them
any easier to handle.

One last problem introduced by threads is stack management. In many sys-
tems, when a process' stack overflows, the kernel just provides that process with
more stack automatically. When a process has multiple threads, it must aso have
multiple stacks. If the kernel is not aware of all these stacks, it cannot grow them
automatically upon stack fault. In fact, it may not even redlize that a memory
fault is related to the growth of some thread's stack.
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These problems are certainly not insurmountable, but they do show that just
introducing threads into an existing system without a fairly substantial system
redesign is not going to work at all. The semantics of system calls may have to be
redefined and libraries have to be rewritten, at the very least. And al of these
things must be done in such a way as to remain backward compatible with exist-
ing programs for the limiting case of a process with only one thread. For addi-
tional information about threads, see (Hauser et al., 1993; and Marsh et a., 1991).

2.3 INTERPROCESS COMMUNICATION

Processes frequently need to communicate with other processes. For example,
in a shell pipeline, the output of the first process must be passed to the second
process, and so on down the line. Thus there is a need for communication between
processes, preferably in a well-structured way not using interrupts. In the follow-
ing sections we will look at some of the issues related to this Interprocess Com-
munication, or |PC.

Very briefly, there are three issues here. The first was aluded to above: how
one process can pass information to another. The second has to do with making
sure two or more processes do not get in each other's way, for example, two proc-
esses in an airline reservation system each trying to grab the last seat on a plane
for a different customer. The third concerns proper sequencing when dependen-
cies are present: if process A produces data and process B prints them, B has to
wait until A has produced some data before starting to print. We will examine al
three of these issues starting in the next section.

It is also important to mention that two of these issues apply equally well to
threads. The first one—passing information—is easy for threads since they share a
common address space (threads in different address spaces that need to communi-
cate fail under the heading of communicating processes). However, the other
two—Kkeeping out of each other's hair and proper sequencing—apply equally well
to threads. The same problems exist and the same solutions apply. Below we will
discuss the problem in the context of processes, but please keep in mind that the
same problems and solutions also apply to threads.

2.3.1 Race Conditions

In some operating systems, processes that are working together may share
some common storage that each one can read and write. The shared storage may
be in main memory (possibly in a kernel data structure) or it may be a shared file;
the location of the shared memory does not change the nature of the communica-
tion or the problems that arise. To see how interprocess communication works in
practice, let us consider a simple but common example: a print spooler. When a
process wants to print afile, it enters the file name in a special spooler directory.
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Another process, the printer daemon, periodicaly checks to see if there are any
files to be printed, and if there are, it prints them and then removes their names
from the directory.

Imagine that our spooler directory has avery large number of slots, numbered
0, 1, 2 ... each one capable of holding a file name. Also imagine that there are
two shared variables, out, which points to the next file to be printed, and in, which
points to the next free ot in the directory. These two variables might well be kept
on atwo-word file available to al processes. At acertain instant, slots 0 to 3 are
empty (the files have aready been printed) and slots 4 to 6 are full (with the
names of files queued for printing). More or less simultaneously, processes A and
B decide they want to queue afile for printing. This situation is shown in Fig. 2-
21.

Spooler
directory

abc out =4

prog.c
prog.n

Figure2-21. Two processes want to access shared memory at thesame time.

~ @ o

Injurisdictions where Murphy's lawf is applicable, the following could hap-
pen. Process A reads in and stores the value, 7, in a local variable called
next-free slot. Just then a clock interrupt occurs and the CPU decides that proc-
ess A has run long enough, so it switches to process B. Process B also reads in,
and also gets a 7. It too stores it in its local variable next-free dot. At this
instant both processes think that the next available dot is 7.

Process B now continues to ran. It stores the name of its file in slot 7 and
updates in to be an 8. Then it goes off and does other things.

Eventually, process A runs again, starting from the place it left off. It looks at
next, free dot, finds a 7 there, and writes its file name in slot 7, erasing the name
that process B just put there. Then it computes next-free slot + 1, which is 8, and
sets into 8. The spooler directory is now internally consistent, so the printer dae-
mon will not notice anything wrong, but process B will never receive any output,
t If something can go wrong, it will.
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User B will hang around the printer room for years, wistfully hoping for output
that never comes. Situations like this, where two or more processes are reading or
writing some shared data and the final result depends on who runs precisely when,
are called race conditions. Debugging programs containing race conditions is no
fun at all. The results of most test runs are fine, but once in arare while something
weird and unexplained happens.

2.3.2 Critical Regions

How do we avoid race conditions? The key to preventing trouble here and in
many other situations involving shared memory, shared files, and shared every-
thing elseis to find some way to prohibit more than one process from reading and
writing the shared data at the same time. Put in other words, what we need is
mutual exclusion, that is, some way of making sure that if one process is using a
shared variable or file, the other processes will be excluded from doing the same
thing. The difficulty above occurred because process B started using one of the
shared variables before process A was finished with it. The choice of appropriate
primitive operations for achieving mutual exclusion is a major design issue in any
operating system, and a subject that we will examine in great detail in the follow-
ing sections. *

The problem of avoiding race conditions can also be formulated in an abstract
way. Part of the time, a process is busy doing internal computations and other
things that do not lead to race conditions. However, sometimes a process has to
access shared memory or files, or do other critical things that can lead to races.
That part of the program where the shared memory is accessed is called the criti-
cal region or critical section. If we could arrange matters such that no two proc-
esses were ever in their critical regions at the same time, we could avoid races.

Although this requirement avoids race conditions, it is not sufficient for hav-
ing parallel processes cooperate correctly and efficiently using shared data. We
need four conditions to hold to have a good solution:

1. No two processes may be simultaneously inside their critical regions.
2. No assumptions may be made about speeds or the number of CPUs.
3. No process running outside its critical region may block other processes.

4. No process should have to wait forever to enter its critical region.

In an abstract sense, the behavior that we want is shown in Fig. 2-22. Here
process A enters its critical region at time Tj. A littlelater, at time T, process B
attempts to enter its critical region but fails because another process is dready in
its critical region and we alow only one at atime. Consequently, B is temporarily
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sugpended until time 7, when A leaves its critical region, alowing B to enter im-
mediately. Eventudly B leaves (at T,) and we are back to the origina Situation
with no processes in their critical regions.

A enterscritica region

I /

A leavescritical region

ProcessA I
1 1
B attemptsto 8 enters . B leaves
enter critical critical region critical region
nn region I /
ProcessB 1 v ; ’ — |
1 ’ i i
i . B blocked i i
Time

nge 2-22. Mutual exclusion using critical regions.

2.3.3 Mutual Exclusion with Busy Waiting

In this section we will examine various proposals for achieving mutual exclu-
sion, so that while one process is busy updating shared memory in its critical re-
gion, no other process will enter itscritical region and cause trouble.

Disabling Interrupts

On a sngle-processor system, the simplest solution is to have each process
dissble dl interrupts just after entering its critical region and re-enable them just
before leaving it. With interrupts disabled, no clock interrupts can occur. The
CPU is only switched from process to process as a result of clock or other inter-
rupts, after dl, and with interrupts turned off the CPU will not be switched to an-
other process. Thus, once a process has disabled interrupts, it can examine and
update the shared memory without fear that any other process will intervene.

This gpproach is generally unattractive because it is unwise to give user proc-
esxs the power to turn off interrupts. Suppose that one of them did it, and never
turned them on again? That could be the end of the system. Furthermore, if the
sysem is a multiprocessor (with two or possibly more CPUs) disabling interrupts
dfects only the CPU that executed the disable instruction. The other ones will
continue running and can access the shared memory.
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On the other hand, it is frequently convenient for the kernel itsdf to disable
interrupts for a few instructions while it is updating variables or lists. If an inter-
rupt occurred while the list of ready processes, for example, was in an inconsistent
state, race conditions could occur. The conclusion is: disabling interrupts is often
a useful technique within the operating system itself but is not appropriate as a
general mutual exclusion mechanism for user processes.

The possibility of achieving mutua exclusion by disabling interrupts—even
within the kernel—is becoming less every day due to the increasing number of
multicore chips even in low-end PCs. Two cores are aready common, four are
present in high-end machines, and eight or 16 are not far behind. In a multicore
(i.e,, multiprocessor system) disabling the interrupts of one CPU does not prevent
other CPUs from interfering with operations the first CPU is performing. Conse-
quently, more sophisticated schemes are needed.

Lock Variables

As a second attempt, let us look for a software solution. Consider having a
single, shared (lock) variable, initially 0. When a process wants to enter its criti-
cd region, it first tests the lock. If the lock is O, the process sets it to 1 and enters
the critical region. If the lock is already 1, the process just waits until il becomes
0. Thus, a 0 means that no process is in its critical region, and a 1 means that
some process is in itscritical region.

Unfortunately, this idea contains exactly the same fatal flaw that we saw in
the spooler directory. Suppose that one process reads the lock and sees that it is 0.
Before it can set the lock to 1, another processis scheduled, runs, and sets the lock
to 1. When the first process runs again, it will also set the lock to 1, and two proc-
esses will bein their critical regions at the same time.

Now you might think that we could get around this problem by first reading
out the lock value, then checking it again just before storing into it, but that really
does not help. The race now occurs if the second process modifies the lock just
after the first process has finished its second check.

Strict Alternation

A third approach to the mutual exclusion problem is shown in Fig. 2-23. This
program fragment, like nearly dl the others in this book, is written in C. C was
chosen here because real operating systems are virtually always written in C (or
occasionaly C++), but hardly ever in languages like Java, Modula 3, or Pascal. C
is powerful, efficient, and predictable, characteristics critical for writing operating
systems. Java, for example, is not predictable because it might run out of storage
at a critical moment and need to invoke the garbage collector to reclaim memory
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at a most inopportune time. This cannot happen in C because there is no garbage
collection in C. A quantitative comparison of C, C++, Java, and four other lan-
guages is given in (Prechelt, 2000).

while (TRUE) { while (TRUE) {
while (turn 1= 0) /* loop */; while (tun!=1) /* loop */
aiticd _regiorf); aitical _region();
tun=1, tum=0; )
noncritica_region(); noncriticd _region();
} }
@ )

Figure 2-23. A proposed solution to the aritical regjon problem, (8) Process 0.,
(b) Process 1. In both cases, be sure to note the samicolons terminating the while
daements

In Fig. 2-23, the integer variable turn, initialy 0, keeps track of whose turn it
is to enter the critical region and examine or update the shared memory. Initially,
process 0 inspects turn, finds it to be 0, and enters its critical region. Process 1
aso finds it to be 0 and therefore sits in a tight loop continually testing turn to see
when it becomes 1. Continuously testing a variable until some value appears is
caled busy waiting. It should usually be avoided, since it wastes CPU time.
Only when there is a reasonable expectation that the wait will be short is busy
waitingused. A lock that uses busy waiting is called aspin lock.

When process 0 leaves the critical region, it sets turn to 1, to alow process 1
to enter its critical region. Suppose that process 1 finishes its critical region quick-
ly, so that both processes are in their noncritical regions, with turn set to 0. Now
process O executes its whole loop quickly, exiting its critical region and setting
turnto 1. At this point turnis 1 and both processes are executing in their noncriti-
ca regions.

Suddenly, process O finishes its noncritical region and goes back to the top of
its loop. Unfortunately, it is not permitted to enter its critical region now, because
turn is 1 and process 1 isbusy with its noncritical region. It hangs in its while
loop until process 1 sets turn to 0. Put differently, taking turnsis not a good idea
when one of the processes is much slower than the other.

This situation violates condition 3 set out above: process 0 is being blocked by
a process not in its critical region. Going back to the spooler directory discussed
above, if we now associate the critical region with reading and writing the spooler
directory, process 0 would not be alowed to print another file because process 1
was doing something else.

In fact, this solution requires that the two processes strictly aternate in enter-
ing their critical regions, for example, in spooling files. Neither one would be per-
mitted to spool two in arow. While this algorithm does avoid dl races, it is not
really aserious candidate as a solution because it violates condition 3.
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Peterson's Solution

By combining the idea of taking turns with the idea of lock variables and
warning variables, a Dutch mathematician, T. Dekker, was the first one to devise
a software solution to the mutua exclusion problem that does not require strict
alternation. For a discussion of Dekker's algorithm, see (Dijkstra, 1965).

In 1981, G.L. Peterson discovered a much simpler way to achieve mutual
exclusion, thus rendering Dekker's solution obsolete. Peterson's agorithm is
shown in Fig. 2-24. Thisagorithm consists of two procedures written in ANS| C,
which means that function prototypes should be supplied for all the functions de-
fined and used. However, to save space, we will not show the prototypes in this or
subsequent examples.

Sdefine FALSE 0
SdefineTRUE 1

#define N 2 /¥ number of processes */

int turn; /* whoseturn isit?*/

int tnierested{N]; * dl valuesinitidly O (FALSE) */

void enter_region(int process); [* processisOor 1%/

{
int other; /* number of the other process*/ *
other =1 - process, [* the opposite of process*/
interestedjprocess] = TRUE; * show thet you are interested */
turn = process, /* setflag*/

while (turn == process & & tnterested[other] == TRUE) /* null statement */;
I

void leave region(int process) [* process: who isleaving */
i

interestedfprocess] - FALSE; * indicate departure from critical region */

Figure 2-24. Peterson's solution for achieving mutual exdusion.

Before using the shared variables (i.e., before entering its critical region),
each process calls enter “region with its own process number, O or 1, as parame-
ter. This call will cause it to wait, if need be, until it is safe to enter. After it has
finished with the shared variables, the process calls leave-.region to indicate that
it isdone and to allow the other process to enter, if it so desires.

Let us see how this solution works. Initially neither processisin its critical re-
gion. Now process O calls enter.region. Itindicates its interest by setting its ar-
ray element and setsturn to 0. Since process 1 is not interested, enter"region re-
turns immediately. |If process 1 now makes a call to enter“region, it will hang
there until interested[0] goes to FALSE, an event that only happens when process
0 calls leave “region to exit the critical region.
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Now consider the case that both processes call enter_region amost simultan-
eoudly. Both will store their process number in turn. Whichever store is done last
isthe one that counts; the first one is overwritten and lost. Suppose that process 1
stores last, so turn is 1. When both processes come to the while statement, process
0 executes it zero times and enters its critical region. Process 1 loops and does not
enter its critical region until process 0 exits its critical region.

The TSL Instruction

Now let us look at a proposal that requires a little help from the hardware.
Some computers, especialy those designed with multiple processors in mind,
have an ingtruction like

TSL REGISTER,LOCK

(Test and Set Lock) that works as follows. It reads the contents of the memory
word lock into register RX and then stores a nonzero value at the memory address
lock. The operations of reading the word and storing into it are guaranteed to be
indivisble—no other processor can access the memory word until the instruction
is finished. The CPU executing the TSL instruction locks the memory bus to prohi-
bit other CPUs from accessing memory until it is done.

It is important to note that locking the memory bus is very different from disa-
bling interrupts. Disabling interrupts then performing a read on a memory word
followed by a write does not prevent a second processor on the bus from ac-
cessing the word between the read and the write. In fact, disabling interrupts on
processor 1 has no effect at al on processor 2. The only way to keep processor 2
out of the memoiy until processor 1 is finished is to lock the bus, which requires a
specia hardware facility (basically, abus line asserting that the bus is locked and
not available to processors other than the one that locked it).

To use the TSL instruction, we will use a shared variable, lock, to coordinate
access to shared memory. When lock is O, any process may set it to 1 using the
TSL ingtruction and then read or write the shared memory. When it is done, the
process sets lock back to 0 using an ordinary move instruction.

How can this ingtruction be used to prevent two processes from simultan-
eoudy entering their critical regions? The solution is given in Fig. 2-25. There a
four-ingtruction subroutine in a fictitious (but typical) assembly language is
shown. The first instruction copies the old value of lock to the register and then
sats lock to 1. Then the old value is compared with O. If it is nonzero, the lock
was adready set, so the program just goes back to the beginning and tests it again.
Sooner or later it will become O (when the process currently in its critical region is
done with its critical region), and the subroutine returns, with the lock set. Clear-
ing the lock is very simple. The program just stores a O in lock. No specia syn-
chronization instructions are needed.
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enter_region:

TSL REGISTER.LOCK j copy lock to register and set lock to 1

CMP REGISTER,#0 j was lock zero?

JNE enter_region j if it was nonzero, lock was set, so loop

RET j return to caller; critical region entered
leave_region:

MOVE LOCK #0 j storea0in lock

RET j return tocaller

Figure 2-25. Entering and leaving a critical region using the TSL instruction.

One solution to the critical.region problem is now straightforward. Before en-
tering its critica region, a process calls enter-region, which does busy waiting
until the lock is free; then it acquires the lock and returns. After the critical region
the process calls leave-region, which stores a 0 in lock. As with al solutions
based on critical regions, the processes must call enter-region and leave-region
at the correct times for the method to work. If a process cheats, the mutua exclu-
sion will fail.

An dternative instruction to TSL is XCHG, which exchanges the contents of
two locations atomically, for example, aregister and a memory word. The codeis
shown in Fig. 2-26, and, as can be seen, is essentially the same as the solution
with TsL. All Intel x86 CPUs use XCHG instruction for low-level synchronization.

enter_region:
MOVE REGISTERS
XCHG REGISTER.LOCK

| put alin theregister

CMP REGISTER,#0 j was lock zer0?

JNE enter.region | if it was non zero, lock was set, so loop

RET j return to caller; critical region entered
leave_region:

MOVE LOCK #0 | store a0in lock

RET j return to caller

Figure 2-26. Entering and leaving a critical region using the XCHG instruction.

2.3.4 Sleep and Wakeup

Both Peterson's solution and the solutions using TSL or XCHG are correct, but
both have the defect of requiring busy waiting. In essence, what these solutions
do is this: when a process wants to enter its critical region, it checks to see if the
entry is alowed. If it is not, the processjust sits in atight loop waiting until it is.

j swap the contentsof the register and lock variable
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Not only does this approach waste CPU time, but it can also have unexpected
effects. Consider a computer with two processes, H, with high priority, and L,
with low priority. The scheduling rules are such that H is run whenever it is in
ready state. At acertain moment, with L in its critical region, H becomes ready to
run (e.g., an I/O operation completes). H now begins busy waiting, but sincelL is
never scheduled while H is running, L never gets the chance to leave its critical
region, so H loops forever. This situation is sometimes referred to as the priority
inversion problem.

Now let us look at some interprocess communication primitives that block in-
stead of wasting CPU time when they are not alowed to enter their critical re-
gions. One of the simplest is the pair sleep and wakeup. Sleep is a system call
that causes the caller to block, that is, be suspended until another process wakes it
up. The wakeup cal has one parameter, the process to be awakened. Alterna-
tively, both sleep and wakeup each have one parameter, a memory address used
to match up sleeps with wakeups.

The Producer-Consumer Problem

As an example of how these primitives can be used, let us consider the
producer-consumer problem (also known as the bounded-buffer problem).
Two processes share a common, fixed-size buffer. One of them, the producer, puts
information into the buffer, and the other one, the consumer, takes it out. (It is
also possible to generalize the problem to have m producers and n consumers, but
we will only consider the case of one producer and one consumer because this
assumption simplifies the solutions.)

Trouble arises when the producer wants to put a new item in the buffer, but it
is dready full. The solution is for the producer to go to sleep, to be awakened
when the consumer has removed one or more items. Similarly, if the consumer
wants to remove an item from the buffer and sees that the buffer is empty, it goes
to deep until the producer puts something in the buffer and wakes it up.

This approach sounds simple enough, but it leads to the same kinds of race
conditions we saw earlier with the spooler directory. To keep track of the number
of items in the buffer, we will need a variable, count. If the maximum number of
items the buffer can hold is N, the producer's code will first test to see if count is
N. If it is, the producer will go to sleep; if it is not, the producer will add an item
and increment count.

The consumer's code is similar: first test count to see if it is 0. If itis, go to
sleep; if it is nonzero, remove an item and decrement the counter. Each of the
processes aso tests to see if the other should be awakened, and if so, wakes it up.
The code for both producer and consumer is shownin Fig. 2-27.

To express system calls such as sleep and wakeup in C, we will show them as
cals to library routines. They are not part of the standard C library but presum-
ably would be made available on any system that actually had these system calls.
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#define N 100
int count = 0;

void producer(void)

{

int item;

while (TRUE) {
item = produce_item{);
if (count = N) sieepQ;
insert_item(item);
count = count + 1,

if (count == 1) wakeup(consumer);

void consumer(void)
{

int item;

while (TRUE) {

if (count = 0) sleep();
item = remove_item();
count = count - 1;

if (count == N - 1)) wakeup(producer);

consume_item(item);
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/* number of slots in the buffer */
/* number of items in the buffer */

* repeat forever */

/* generate next item */

[* if buffer is full, go to sleep */

[* put item in buffer */

/* increment count of items in buffer */
/* was buffer empty? */

* repeat forever */

/* if buffer is empty, got to sleep */

[* take item out of buffer */

/* decrement count of items in buffer */
/* was buffer full? */

[* print item */

Figure 2-27. The producer-consumer problem with a fatal race condition.

The procedures insert-item and remove-item, which are not shown, handle the
bookkeeping of putting itemsinto the buffer and taking items out of the buffer.

Now let us get back to the race condition. It can occur because access to
count is unconstrained. The following situation could possibly occur. The buffer
is empty and the consumer hasjust read count to see if it is 0. At that instant, the
scheduler decides to stop running the consumer temporarily and start running the
producer. The producer inserts an item in the buffer, increments count, and no-
tices that it is now 1. Reasoning that count was just O, and thus the consumer
must be sleeping, the producer calls wakeup to wake the consumer up.

Unfortunately, the consumer is not yet logicaly asleep, so the wakeup signa
is lost. When the consumer next runs, it will test the value of count it previously
read, find it to be 0, and go to sleep. Sooner or later the producer will fill up the
buffer and also go to sleep. Both will eep forever.

The essence of the problem here is that a wakeup sent to a process that is not
(yet) deeping is lost. If it were not lost, everything would work. A quick fix is to
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modify the rules to add a wakeup waiting bit to the picture. When a wakeup is
sent to a process that is still awake, this bit is set. Later, when the process tries to
go to deep, if the wakeup waiting bit is on, it will be turned off, but the process
will stay awake. The wakeup waiting bit is a piggy bank for storing wakeup sig-
nas.

While the wakeup watting bit saves the day in this simple example, it is easy
to congtruct examples with three or more processes in which one wakeup waiting
bit is insufficient. We could make another patch and add a second wakeup wait-
ing bit, or maybe 8 or 32 of them, but in principle the problem is till there.

2.3.5 Semaphores

This was the situation in 1965, when E. W. Dijkstra (1965) suggested using an
integer variable to count the number of wakeups saved for future use. In his pro-
posd, a new variable type, which he caled a semaphore, was introduced. A
semaphore could have the value O, indicating that no wakeups were saved, or
some positive value if one or more wakeups were pending.

Dijkstra proposed having two operations, down and up (generalizations of
sleep and wakeup, respectively). The down operation on a semaphore checks to
see if the vadue is greater than 0. If so, it decrements the value (i.e., uses up one
stored wakeup) and just continues. |f the vaue is 0, the process is put to sleep
without completing the down for the moment. Checking the value, changing it,
and possibly going to sleep, are al done as asingle, indivisible atomic action. It
is guaranteed that once a semaphore operation has started, no other process can
access the semaphore until the operation has completed or blocked. This atomicity
is absolutely essentia to solving synchronization problems and avoiding race con-
ditions. Atomic actions, in which a group of related operations are either al per-
formed without interruption or not performed at all, are extremely important in
mary other areas of computer science as well.

The up operation increments the value of the semaphore addressed. If one or
more processes were sleeping on that semaphore, unable to complete an earlier
doan operation, one of them is chosen by the system (e.g., a random) and is a-
lowed to complete its down. Thus, after an up on a semaphore with processes
deeping on it, the semaphore will still be 0, but there will be one fewer process
deeping on it. The operation of incrementing the semaphore and waking up one
process is aso indivisible. No process ever blocks doing an up, just as no process
ever blocks doing a wakeup in the earlier model.

As an aside, in Dijkstra's original paper, he used the names P and V instead of
down and up, respectively. Since these have no mnemonic significance to people
who do not speak Dutch and only margina significance to those who do—
Proberen (try) and Verhogen (raise, make higher), we will use the terms down and
up instead. These were first introduced in the Algol 68 programming language.
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Solving the Producer-Consumer Problem Using Semaphores

Semaphores solve the lost-wakeup problem, as shown in Fig. 2-28. To make
them work correctly, it is essential that they be implemented in an indivisible way.
The normal way is to implement up and down as system calls, with the operating
system briefly disabling dl interrupts while it is testing the semaphore, updating
it, and putting the process to sleep, if necessary. As al of these actions take only
a few instructions, no harm is done in disabling interrupts. If multiple CPUs are
being used, each semaphore should be protected by a lock variable, with the TSL
or XCHG instructions used to make sure that only one CPU at a time examines the
semaphore.

Be sure you understand that using TSL or XCHG to prevent severa CPUs from
accessing the semaphore at the-same time is quite different from the producer or
consumer busy waiting for the other to empty or fill the buffer. The semaphore
operation will only take a few microseconds, whereas the producer or consumer
might take arbitrarily long.

This solution uses three semaphores. one called full for counting the number
of slots that are full, one called empty for counting the number of slots that are
empty, and one called mutex to make sure the producer and consumer do not ac-
cess the buffer at the same time. Full is initidly 0, empty is initially equa to the
number of dots in the buffer, and mutex is initially 1. Semaphores thdt are ini-
tialized to 1 and used by two or more processes to ensure that only one of them
can enter its critical region at the same time are called binary semaphores. If
each process does a down just before entering its critical region and an up just
after leaving it, mutua exclusion is guaranteed.

Now that we have a good interprocess communication primitive at our dispo-
sd, let us go back and look at the interrupt sequence of Fig. 2-5 again. In a sys-
tem using semaphores, the natural way to hide interrupts is to have a semaphore,
initially set to 0, associated with each 1/0 device. Just after starting an 1/O device,
the managing process does a down on the associated semaphore, thus blocking
immediately. When the interrupt comes in, the interrupt handier then does an up
on the associated semaphore, which makes the relevant process ready to run
again. In this model, step 5 in Fig. 2-5 consists of doing an up on the device's
semaphore, so that in step 6 the scheduler will be able to run the device manager.
Of course, if severa processes are now ready, the scheduler may choose to run an
even more important process next. We will look at some of the algorithms used
for scheduling later on in this chapter.

In the example of Fig. 2-28, we have actualy used semaphores in two dif-
ferent ways. This difference is important enough to make explicit. The mutex
semaphore is used for mutual exclusion. It is designed to guarantee that only one
process at atime will be reading or writing the buffer and the associated variables.
This mutual exclusion is required to prevent chaos. We will study mutual exclu-
son and how to achieve it in the next section.
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#define N 100 /* number of slots in the buffer */

typedef int semaphore; /* semaphores are a special kind of int */
semaphore rnutex = 1; /* controls access to critical region */
semaphore empty = N; /* counts empty buffer slots */
semaphore full = 0; /* counts full buffer slots */

void producer (void)

{
int item;
while (TRUE) { /* TRUE isthe constant 1 */
i - . /* generate something to put in buffer */
item = produce_ttem(); 9 gtop
down(& empty); /* decrement empty count */
down(Smutex); /* enter critical region */
insert-item(item); /* put new item in buffer */
up(& mutex); /* leave critical region */
up(&fuli); /* increment count of full slots */
}
void consumer (void)
{
int item;
while (TRUE) { /* infinite loop */
down(& full); /* decrement full count */
down(& mutex); /* enter critical region */
item = remove_item(); /* take item from buffer */
up(& mutex); /* leave critical region */
up(& empty); /* increment count of empty slots */
consume, item(item); /* do something with the item */

Figure 2-28. The producer-consumer problem using semaphores.

The other use of semaphores is for Synchronization. The/«// and empty sem-
aphores are needed to guarantee that certain event sequences do or do not occur.
In this case, they ensure that the producer stops running when the buffer is full,
and that the consumer stops running when it is empty. This use is different from
mutual exclusion.

2.3.6 Mutexes

When the semaphore's ability to count is not needed, a simplified version of
the semaphore, called a mutex, is sometimes used. Mutexes are good only for
managing mutual exclusion to some shared resource or piece of code. They are
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easy and efficient to implement, which makes them especially useful in thread
packages that are implemented entirely in user space.

A Mutex is a variable that can be in one of two states: unlocked or locked.
Consequently, only 1 bitisrequired to represent it, but in practice an integer often
is used, with 0 meaning unlocked and all other values meaning locked. Two pro-
cedures are used with mutexes. When a thread (or process) needs access to a crit-
ical region, it calls mutex-lock. 1fthe mutex is currently unlocked (meaning that
the critical region is available), the call succeeds and the calling thread is free to
enter the critical region.

On the other hand, if the mutex is already locked, the calling thread is blocked
until the thread in the critical region is finished and calls mutex-.unlock. 1f multi-
ple threads are blocked on the mutex, one of them is chosen at random and allow-
ed to acquire the lock.

Because mutexes are so simple, they can easily be implemented in user space
provided that a TSL or XCHG instruction is available. The code for mutex-lock and
mutex-unlock for use with a user-level threads package are shown in Fig. 2-29.
The solution with XCHG is essentially the same,

mutexjock:
TSL REGISTER.MUTEX [ copy mutex to register and set mutex to 1
CMP REGISTER,#0 j was mutex zero?
JNE ok | if it was zero, mutex was unlocked, so return
CALL thread_yield j mutex is busy; schedule another thread
JMP mutexjock j try again

ok: RET j return to caller; critical region entered

mutex_ unlock:
MOVE MUTEX #0 | store a0 in mutex
RET j return to caller

Figure 2-29. Implementation of mutex“lock and mutex ..unlock.

The code of mutex-lock is similar to the code of enter-region of Fig. 2-25
but with a crucial difference. When enter-region fails to enter the critical region,
it keeps testing the lock repeatedly (busy waiting). Eventually, the clock runs out
and some other process is scheduled to run. Sooner or later the process holding
the lock gets torun and releases it.

With (user) threads, the situation is different because there is no clock that
stops threads that have run too long. Consequendy, a thread that tries to acquire a
lock by busy waiting will loop forever and never acquire the lock because it never
allows any other thread to run and release the lock.

That is where the difference between enter-region and mutex-lock comes in.
When the later fails to acquire a lock, it calls thread-yield to give up the CPU to
another thread. Consequently there is no busy waiting. When the thread runs the
next time, it tests the lock again.
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Since thread-yield isjust a call to the thread scheduler in user space, it is
vay fes. As a consequence, neither mutex-lock nor mutex-unlock requires any
kernd calls. Using them, user-level threads can synchronize entirely in user space
using procedures that require only ahandful of instructions.

The mutex system that we have described above is a bare-bones set of calls.
With al software, there is aways a demand for more features, and synchroniza-
tion primitives are no exception. For example, sometimes a thread package offers
acdl mutex-trylock that either acquires the lock or returns a code for failure, but
does nat block. This cal gives the thread the flexibility to decide what to do next
if there are alternatives to just waiting.

Up until now there is a subtle issue that we have glossed over lightly but
which isworth at least making explicit. With auser-space threads package there is
no problem with multiple threads having access to the same mutex, since al the
threads operate in a common address space. However, with most of the earlier sol-
utions, such as Peterson's agorithm and semaphores, there is an unspoken as-
sumption that multiple processes have access to at least some shared memory,
perhaps only one word, but something. If processes have disjoint address spaces,
as we have consstently said, how can they share the turn variable in Peterson's
agorithm, or semaphores or acommon buffer?

There are two answers. First, some of the shared data structures, such as the
semagphores, can be stored in the kernel and only accessed via system calls. This
approach eliminates the problem. Second, most modern operating systems (in-
duding UNIX and Windows) offer a way for processes to share some portion of
their address space with other processes. In this way, buffers and other data struc-
tures can be shared. In the worst case, that nothing else is possible, a shared file
canbeused.

If two or more processes share most or al of their address spaces, the distinc-
tion between processes and threads becomes somewhat blurred but is nevertheless
present. Two processes that share a common address space still have different
open files, darm timers, and other per-process properties, whereas the threads
within a single process share them. And it is always true that multiple processes
sharing a common address space never have the efficiency of user-level threads
snce diekerne is deeply involved in their management.

Mutexes in Pthreads

Pthreads provides a number of functions that can be used to synchronize
threeds. The basic mechanism uses a mutex variable, which can be locked or
unlocked, to guard each critical region. A thread wishing to enter a critical region
first tries to lock the associated mutex. If the mutex is unlocked, the thread can
enter immediately and the lock is atomically set, preventing other threads from
entering. If the mutex is aready locked, the calling thread is blocked until it is
unlocked. If multiple threads are waiting on the same mutex, when it is unlocked,
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only one of them is allowed to continue and relock it. These locks are not manda-
tory. Itisup to the programmer to make sure threads use them correctly.

The major calls relating to mutexes are shown in Fig. 2-30. Asexpected, they
can be created and destroyed. The calls for performing these operations are
pthread-mutex-init and pthread-mutex-destroy, respectively. They can aso be
locked—by pthread-mutex— ock—which tries to acquire the lock and blocks if
is aready locked. There is also an option for trying to lock a mutex and failing
with an error code instead of blocking if it is aready blocked. This cal is
pthread-mutex-trylock. This call alows a thread to effectively do busy waiting
if that is ever needed. Finally, Pthread-mutex-unlock unlocks a mutex and re-
leases exactly one thread if one or more are waiting on it. Mutexes can aso have
attributes, but these are used only for specialized purposes.

Thread call Description
Pthread_mutex_init Create a mutex

Pthread, mutex_destroy | Destroy an existing mutex
Pthread_mutex_iock Acquire a lock or block

Pthread , mutex_ try lock Acquire a lock or fait
Pthread _mutex_unlock Release a lock

Figure 2-30. Some of the Pthreads calls relating to mutexes.

In addition to mutexes, pthreads offers a second synchronization mechanism:
condition variables. Mutexes are good for allowing or blocking access to a criti-
ca region. Condition variables alow threads to block due to some condition not
being met. Almost always the two methods are used together. Let us now look at
the interaction of threads, mutexes, and condition variables in a bit more detail.

As a smple example, consider the producer-consumer scenario again: one
thread puts things in a buffer and.another one takes them out. If the producer dis-
covers that there are no more free slots available in the buffer, it has to block until
one becomes available. Mutexes make it possible to do the check atomically with-
out interference from other threads, but having discovered that the buffer is full,
the producer needs a way to block and be awakened later. This is what condition
variables allow.

Some of the calls related to condition variables are shown in Fig. 2-31. As
you would probably expect, there are calls to create and destroy condition vari-
ables. They can have attributes and there are various calls for managing them (not
shown). The primary operations on condition variables are pthread-cond-wait
and pthread-condsignal. The former blocks the calling thread until some other
thread signals it (using the latter call). The reasons for blocking and waiting are
not part of the waiting and signaling protocol, of course. The blocking thread
often is waiting for the signaling thread to do some work, release some resource,
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or perform some other activity. Only then can the blocking thread continue. The
condition variables allow this waiting and blocking to be done atomically. The
pthread_cond™.broadcast call is used when there are multiple threads potentially
al blocked and waiting for the same signal.

Thread call Description

Pthread_cond_init Create a condition variable

Pthread, cond_destroy Destroy a condition variable

Rhread_cond_wait Block waiting for a signal

Pthread_cond_signal Signal another thread and wake it up

Pthread_cond _broadcast | Signal multiple threads and wake all of them

Figure 2-31. Some of the Pthreads calls relating to condition variables.

Condition variables and mutexes are aways used together. The pattern is for
one thread to lock a mutex, then wait on a conditional variable when it cannot get
what it needs. Eventually another thread will signa it and it can continue. The
pthread _cond wait call atomicaly and atomically unlocks the mutex it is hold-
ing. For this reason, the mutex is one of the parameters.

It is dso worth noting that condition variables (unlike semaphores) have no
memory. If asignd is sent to a condition variable on which no thread is waiting,
the signal islost. Programmers have to be careful not to lose signals.

As an example of how mutexes and condition variables are used, Fig. 2-32
shows a very simple producer-consumer problem with a single buffer. When the
producer has filled the buffer, it must wait until the consumer empties it before
producing the next item. Similarly, when the consumer has removed an item, it
must wait until the producer has produced another one. While very simple, this
example illustrates the basic mechanisms. The statement that puts a thread to
deep should always check the condition to make sure it is satisfied before con-
tinuing, as the thread might have been awakened due to a UNIX signal or some
other reason.

2.3.7 Monitors

With semaphores and mutexes interprocess communication looks easy, right?
Forget it. Look closely at the order of the downs before inserting or removing
items from the buffer in Fig. 2-28. Suppose that the two downs in the producer's
code were reversed in order, so mutex was decremented before empty instead of
dter it. If the buffer were completely full, the producer would block, with mutex
st to 0. Consequently, the next time the consumer tried to access the buffer, it
would do a down on mutex, now O, and block too. Both processes would stay
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#include <stdio.h>

#include <pthread.h>

#define MAX 1000000000
pthread_mutex_t the _mutex;
pthread, cond_t condc, condp;

tnt buffer = 0;

void *producer (void *ptr)

{

int i;

for(i*1;i<= MAX; N-+) {

pthread_mutexJock(&the_mutex);

INTERPROCESS COMMUNICATION

/s, ., many numbers to produce

lo o vie b vodien o

/* produce data 7

I* get exclusive access to buffer 7

while (buffer = 0) pthread_cond, wait(& condp, &the_.mutex);

butter

pthread_cond_signal (& condc);

/* put item in buffer 7
f wake up consumer 7

" pthread_mutex_unlock(&the_mutex),7* release access to buffer 7

pthread_exit(0);

void *consumer (void *ptr)

{

int i;
for ( =1 i <= MAX; {

pthread_mutexJock (& the_mutex);

/* consume data 7

/* get exclusive access to buffer V

while (buffer ==0) pthread_cond_wait(& condc, &the_mutex);

buffer = 0;

pthread_cond_signal(& condp);

/* take item out of buffer 7
/* wake up producer 7

pthread_mutex_unlock(&the_mutex);/* release access to buffer 7

pthread_extt(0);

int main(int argc, char **argv)

{

pthread_t pro, con;

pthread_mutex_init(& the_mutex, 0);

pthread_cond_init(& condc, 0);
pthread_cond_init(& condp, 0);

pthread_create(& con, 0, consumer, 0);
pthread, create(& pro, o, producer, 0);

pthread_join(pro, 0);
pthread_join(con, 0);
pthread_cond_destroy(& condc);
pthread_cond_destroy(& condp);

pthread_mutex_destroy(& the_mutex);

Figure 2-32. Using threads to solve the producer-consumer problem.
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blocked forever and no more work would ever be done. This unfortunate situation
iscalled a deadlock. We will study deadlocks in detail in Chap. 6.

This problem is pointed out to show how careful you must be when using
semaphores. One subtle error and everything comes to a grinding halt. It is like
programming in assembly language, only worse, because the errors are race con-
ditions, deadlocks, and other forms of unpredictable and irreproducible behavior.

To make it easier to write correct programs, Brinch Hansen (1973) and Hoare
(1974) proposed a higher-level synchronization primitive called a monitor. Their
proposds differed dightly, as described below. A monitor is a collection of pro-
cedures, variables, and data structures that are al grouped together in a special
kind of module or package. Processes may call the procedures in a monitor when-
ever they want to, but they cannot directly access the monitor's internal data
structures from procedures declared outside the monitor. Figure 2-33 illustrates a
monitor written in an imaginary language, Pidgin Pascal. C cannot be used here
because monitors are a language concept and C does not have them.

monitor example
integer /;
condition c;

procedure producer”);

end;

procedure consumer”);

end;
end monitor;

Figure 2-33. A monitor.

Monitors have an important property that makes them useful for achieving
mutud exclusion: only one process can be active in amonitor a any instant. Mon-
itors are a programming language construct, so the compiler knows they are spe-
cia and can handle cdls to monitor procedures differently from other procedure
calls. Typicaly, when a process calls a monitor procedure, the first few instruc-
tions of the procedure will check to see if any other process is currently active
within the monitor. If so, the calling process will be suspended until the other
process has Ieft the monitor. |f no other process is using the monitor, the calling
process may enter.

It is up to the compiler to implement mutual exclusion on monitor entries, but
a common way is to use a mutex or a binary semaphore. Because the compiler,
not the programmer, is arranging for the mutual exclusion, it is much less likely
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that something will go wrong. In any event, the person writing the monitor does
not have to be aware of how the compiler arranges for mutual exclusion. It is suf-
ficient to know that by turning all the critical regions into monitor procedures, no
two processes will ever execute their critical regions at the same time.

Although monitors provide an easy way to achieve mutua exclusion, as we
have seen above, that is not enough. We also need a way for processes to block
when they cannot proceed. In the producer-consumer problem, it is easy enough
to put dl the tests for buffer-full and buffer-empty in monitor procedures, but how
should the producer block when it finds the buffer full?

The solution lies in the introduction of condition variables, along with two
operations on them, wait and signal. When a monitor procedure discovers that it
cannot continue (e.g., the producer finds the buffer full), it does a wait on some
condition variable, say, full. This action causes the calling process to block. It
also alows another process that had been previously prohibited from entering the
monitor to enter now. We saw condition variables and these operations in the
context of Pthreads earlier.

This other process, for example, the consumer, can wake up its seeping
partner by doing a signal on the condition variable that its partner is waiting on.
To avoid having two active processes in the monitor a the same time, we need a
rule telling what happens after a signal. Hoare proposed letting the newly awak-
ened process run, suspending the other one. Brinch Hansen proposed fine* ssing the
problem by requiring that a process doing a signal must exit the monitor im-
mediately. In other words, a signal statement may appear only as the fina state-
ment in a monitor procedure. We will use Brinch Hansen's proposal because it is
conceptually simpler and is also easier to implement. If asignal is done on a con-
dition variable on which severa processes are waiting, only one of them, deter-
mined by the system scheduler, is revived.

As an aside, there is also a third solution, not proposed by either Hoare or
Brinch Hansen. This is to let the signaler continue to run and dlow the waiting
process to start running only after the signaler has exited the monitor.

Condition variables are not counters. They do not accumulate signas for later
use the way semaphores do. Thus if a condition variable is signaled with no one
waiting on it, the signal is lost forever. In other words, the wait must come before
the signal. This rule makes the implementation much simpler. In practice it is not
a problem because it is easy to keep track of the state of each process with vari-
ables, if need be. A process that might otherwise do a signal can see that this op-
eration is not necessary by looking at the variables.

A skeleton of the producer-consumer problem with monitors is given in
Fig. 2-34 in an imaginary language, Pidgin Pascal. The advantage of using Pidgin
Pascal here is that it is pure and ssimple and follows the Hoare/Brinch Hansen
mode exactly.

You may be thinking that the operations wait and signal look similar to sleep
and wakeup, which we saw earlier had fata race conditions. Well, they are very
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monitor  Producer Consumer
condition full, empty;
integer count;

procedure insert(item: integer);
begin
if count = N then v/avt(full);
insert-item(item);
count := count + 1;
H count = 1 then signa\(empty)
end;

function remove: integer;
begin
if count = 0 then v/ait(empty);
remove = remove-item;
count := count - I;
if count = N-I then signaltfutf)
end,
count:= 0;
end monitor;

procedure producer;

begin
while true do
begin
item = produce Jtem;
ProducerConsumer.  insert( item)
end
end;
procedure consumer;
begin
while true do
begin
item = ProducerConsumer.remove;
consume _ itemf item)
end
end;

Figure 2-34. An outline of the producer-consumer problem with monitors. Only
one monitor procedure at atimeis active. The buffer has N slots.

similar, but with one crucid difference: sleep and wakeup failed because while
one process was trying to go to sleep, the other one was trying to wake it up. With
monitors, that cannot happen. The automatic mutual exclusion on monitor proce-
dures guarantees that if, say, the producer inside a monitor procedure discovers
that the buffer is full, it will be able to complete the wait operation without having
to worry about the possibility that the scheduler may switch to the consumer just
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before the wait completes. The consumer will not even be let into the monitor at
al until the wait is finished and the producer has been marked as no longer run-
nable.

Although Pidgin Pasca is an imaginary language, some rea programming
languages also support monitors, athough not always in the form designed by
Hoare and Brinch Hansen. One such language is Java. Java is an object-oriented
language that supports user-level threads and also alows methods (procedures) to
be grouped together into classes. By adding the keyword synchronized to a meth-
od declaration, Java guarantees that once any thread has started executing that
method, no other thread will be allowed to start executing any other synchronized
method of that object.

A solution to the producer-consumer problem using monitors in Java is given
in Fig. 2-35. The solution consists of four classes. The outer class, Producer Con-
sumer, creates and starts two threads, p and c. The second and third classes, pro-
ducer and consumer, respectively, contain the code for the producer and consu-
mer. Finaly, the class our-monitor, is the monitor. It contains two synchronized
threads that are used for actually inserting items into the shared buffer and taking
them out. Unlike in the previous examples, we have finaly shown the full code of
insert and remove here.

The producer and consumer threads are functionaly identica to their count-
erparts in all our previous examples. The producer has an infinite loop generating
data and putting it into the common buffer. The consumer has an equally infinite
loop taking data out of the common buffer and doing some fun thing with it.

The interesting part of this program is the class our-monitor, which contains
the buffer, the administration variables, and two synchronized methods. When the
producer is active inside insert, it knows for sure that the consumer cannot be ac-
tive inside remove, making it safe to update the variables and the buffer without
fear of race conditions. The variable count keeps track of how many items are in
the buffer. It can take on any value from O through and including N—1, The
variable lo is the index of the buffer ot where the next item is to be fetched. Sim-
ilarly, hi is the index of the buffer dot where the next item is to be placed. It is
permitted that o = hi, which means that either 0 items or N items are in the buff-
er. The value of count tells which case holds.

Synchronized methods in Java differ from classical monitors in an essential
way: Java does not have condition variables built in. Instead, it offers two proce-
dures, wait and notify, which are the equivalent of sleep and wakeup except that
when they are used inside synchronized methods, they are not subject to race con-
ditions. In theory, the method wait can be interrupted, which is what the code sur-
rounding it is all about. Java requires that the exception handling be made explicit.
For our purposes, just imagine that go-tosleep is the way to go to sleep.

By making the mutual exclusion of critical regions automatic, monitors make
paralel programming much less error-prone than with semaphores. Still, they too
have some drawbacks. It is not for nothing that our two examples of monitors
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were in Pidgin Pasca instead of C, as are the other examples in this book. Aswe
said earlier, monitors are a programming language concept. The compiler must
recognize them and arrange for the mutual exclusion somehow. C, Pascal, and
most other languages do not have monitors, so it is unreasonable to expect their
compilers to enforce any mutua exclusion rules. In fact, how could the compiler
even know which procedures were in monitors and which were not?

These same languages do not have semaphores either, but adding semaphores
is easy: ail you need to dois add two short assembly code routines to the library to
issue the up and down system calls. The compilers do not even have to know that
they exist. Of course, the operating systems have to know about the semaphores,
but at least if you have a semaphore-based operating system, you can still write
the user programs for it in C or C++ (or even assembly language if you are
masochigtic enough). With monitors, you need a language that has them builtin.

Ancther problem with monitors, and aso with semaphores, is that they were
designed for solving the mutua exclusion problem on one or more CPUs that al
have access to a common memory. By putting the semaphores in the shared
memory and protecting them with TS. or XCHG instructions, we can avoid races.
When we go to a distributed system consisting of multiple CPUs, each with its
own private memory, connected by aloca area network, these primitives become
inapplicable. The conclusion is that semaphores are too low level and monitors
are not ussble except in a fev programming languages. Also, none of the primi-
tives alow information exchange between machines. Something else is needed.

2.3.8 Message Passing

That something else is message passing. This method of interprocess com-
munication uses two primitives, send and receive, which, like semaphores and
unlike monitors, are system calls rather than language constructs. As such, they
can easily beputinto library procedures, such as

send(destination, & message);
and
receive(source, & message);

The former cal sends a message to a given destination and the latter one receives
a message from a given source (or from ANY, if the receiver does not care). If no
message is available, the receiver can block until one arrives. Alternatively, it can
return immediately with an error code.

Design Issues for Message-Passing Systems
Message passing systems have many challenging problems and design issues

that do not arise with semaphores or with monitors, especially if the communi-
cating processes are on different machines connected by a network. For example,
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public class Producer Consumer {

static find int N = 100; // constant giving the buffer size

static producer p = new produced); // instantiate a new producer thread
daic consumer ¢ = new consumer”); // instantiate & NV consumer thread
static our_monitor mon = new our_monitor(); /l instantiate a new monitor

public static void main(Siring arggR {
psart{); //gart the producer thread
cstart{}; // sart the consumer thread
}

dtatic class producer extends Thread {
pubdic void run{} {// run method contains the thread code
irt item;
while (true) {  // producer loop
item = produce_item();
mon.insert(item);
o}
i
A private int produce_item(){...} // actually produce

static classconsumer extends Thread {
public void run() {run method containsthethread code
intitem;
white (true) {  // consumer loop
item = moar emove();
consume-item (item);
}

}
A privatevoid consume_item(int item) {...}// actually consume

static class our_monitor { // thisisa monitor

private int buffed.! = new intfNJ;

privateint count =0, to=0, hi = 0; // countersand indices

public synchronized void inseri(int val) {
if (count == N) go_to, sleep(); // if the buffer isfull, go to sleep
buffer [hi] =val; // insert an item into the buffer
hi = (hi +1) % N; // dot to place next item in
count = count + 1; // one more item in the buffer now

A if (count == 1) notify(); // if consumer was sleeping, wake it up

public synchronized int remove) {
int val;
if (Count = 0) go_to_s!eep(); // if the buffer is empty, go to sleep
val = buffer (io); 11 fetch an item from the buffer
o= (lo+ 1) % (M // dot to felch next item from
count = count - 1; // one few itemsin the buffer
if (count N - 1) natfyG; // if producer was sleeping, wake it up
return val;
}
privatevoid go_to_sleep() {try{wait();} catch(InterruptedException exc) {};}

Fgure 2-35. A solution to the producer-consumer prablemin Java,

139
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messages can be lost by the network. To guard against lost messages, sender and
receiver can agree that as soon as a message has been received, the receiver will
send back a specia acknowledgement message. If the sender has not received
the acknowledgement within a certain time interval, it retransmits the message.

Now consider what happens if the message is received correctly, but the ac-
knowledgement back to the sender islost. The sender will retransmit the message,
so the receiver will get it twice. It is essential that the receiver be able to distin-
guish a new message from the retransmission of an old one. Usually, this problem
is solved by putting consecutive sequence numbers in each original message. |If
the receiver gets a message bearing the same sequence number as the previous
message, it knows that the message is a duplicate that can be ignored. Successful-
ly communicating in the face of unreliable message passing is a mgjor part of the
study of computer networks. For more information, see (Tanenbaum, 1996).

Message systems also have to deal with the question of how processes are
named, so that the process specified in a send or receive call is unambiguous.
Authentication is also an issue in message systems: how can the client tell that it
is communicating with the real file server, and not with an imposter?

At the other end of the spectrum, there are also design issues that are impor-
tant when the sender and receiver are on the same machine. One of these is per-
formance. Copying messages from one process to another is aways slower than
doing a semaphore operation or entering a monitor. Much work has gone into
making message passing efficient. Cheriton (1984), for example, suggested limit-
ing message size to what will fit in the machine's registers, and then doing mes-
sage passing using the registers.

The Producer-Consumer Problem with Message Passing

Now let us see how the producer-consumer problem can be solved with mes-
sage passing and no shared memory. A solutionisgiven in Fig. 2-36. We assume
that dl messages are the same size and that messages sent but not yet received are
buffered automatically by the operating system. In this solution, a total of N mes-
sages is used, analogous to the N dlots in a shared-memory buffer. The consumer
starts out by sending N empty messages to the producer. Whenever the producer
has an item to give to the consumer, it takes an empty message and sends back a
full one. In this way, the total number of messages in the system remains constant
in time, so they can be stored in a given amount of memory known in advance.

If the producer works faster than the consumer, all the messages will end up
full, waiting for the consumer; the producer will be blocked, waiting for an empty
to come back. If the consumer works faster, then the reverse happens: al the
messages will be empties waiting for the producer to fill them up; the consumer
will be blocked, waiting for a full message.

Many variants are possible with message passing. For starters, let us look at
how messages are addressed. One way is to assign each process a unique address
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#define N 100 /* number of slotsin the buffer */

void producer (void)

{

int item;
message m; [* message buffer */

while (TRUE) {

item = produce.Jtem();
receive(consumer, &m);

Benitrl B RSFRAS Sgm)item);

/* gener ate something to put in buffer */
/* wait for an empty to arrive */

f* songtitech adnemReRdo-send */

}

void consumer (void)
{
int item, i;
message m;

for (i =0; i <N; i++) send(producer, &m); /* send N empties */
while (TRUE) {

receivefproducer, &m); /* get message containing item */
item = extract_item(&m); [* extract item from message */ *
send(producer, &m); /* send back empty reply */

n consume_item(item); /* do something with the item */

Figure 2-36. The producer-consumer problem with N messages.

and have messages be addressed to processes. A different way is to invent a new
data structure, called a mailbox. A mailbox is a place to buffer a certain number
of messages, typically specified when the mailbox is created. When mailboxes are
used, the address parameters in the send and receive cals are mailboxes, not
processes. When a process tries to send to a mailbox that is full, it is suspended
until a message is removed from that mailbox, making room for anew one.

For the producer-consumer problem, both the producer and consumer would
create mailboxes large enough to hold N messages. The producer would send
messages containing actual data to the consumer's mailbox, and the consumer
would send empty messages to the producer's mailbox. When mailboxes are used,
the buffering mechanism is clear: the destination mailbox holds messages that
have been sent to the destination process but have not yet been accepted.

The other extreme from having mailboxes is to eliminate all buffering. When
this approach is followed, if the send is done before the receive, the sending proc-
ess is blocked until the receive happens, at which time the message can be copied
directly from the sender to the receiver, with no intermediate buffering. Similarly,
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if the receive is donefirgt, the receiver is blocked until a send happens. This strat-
egy is often known as a rendezvous, it is easier to implement than a buffered
message scheme but is less flexible since the sender and receiver are forced to run
in lockstep.

Message passing is commonly used in parallel programming systems. One
well-known message-passing system, for example, is MPI (Message-Passing
Interface). Itis widdly used for scientific computing. For more information about
it, see for example (Gropp et al., 1994; and Snir et al, 1996).

2.3.9 Barriers

Our last synchronization mechanism is intended for groups of processes rather
than two-process producer-consumer type situations. Some applications are divid-
ed into phases and have the rule that no process may proceed into the next phase
until al processes are ready to proceed to the next phase. This behavior may be
achieved by placing a barrier at the end of each phase. When a process reaches
the barrier, it is blocked until all processes have reached the barrier. The operation
of abarrier isillustrated in Fig. 2-37.

|5 ® ®
® (D ®
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®eor @ ®
Time Time Time
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Figure 2-37. Use of a barrier, (a) Processes approaching a barrier, (b) Ail proc-
esses but one blocked at the barrier, (c) When the last process arrives at the bar-
rier, all of them are let through.

In Fig. 2-37 (8) we see four processes approaching a barrier. What this means
is that they are just computing and have not reached the end of the current phase
yet. After a while, the first process finishes all the computing required of it during
the firs phase. It then executes the barrier primitive, generally by calling alibrary
procedure. The process is then suspended. A little later, a second and then athird
process finish the first phase and also execute the barrier primitive. This situation
isillugtrated in Fig. 2-37(b). Finally, when the last process, C, hits the barrier, dll
the processes are released, as shown in Fig. 2-37(c).
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As an example of a problem requiring barriers, consider a typica relaxation
problem in physics or engineering. There is typically a matrix that contains some
initial values. The values might represent temperatures at various points on a
sheet of metal. The idea might be to calculate how long it takes for the effect of a
flame placed at one corner to propagate throughout the sheet.

Starting with the current values, a transformation is applied to the matrix to
get the second version of the matrix, for example, by applying the laws of thermo-
dynamics to see what dl the temperatures are AT later. Then the process is re-
peated over and over, giving the temperatures at the sample points as a function of
time as the sheet heats up. The algorithm produces a series of matrices over time.

Now imagine that the matrix is very large (say, 1 million by 1 million), so that
parallel processes are needed (possibly on a multiprocessor) to speed up the calcu-
lation. Different processes work on different parts of the matrix, calculating the
new matrix elements from the old ones according to the laws of physics. Howev-
er, No process may start on iteration n + 1 until iteration n is complete, that is,
until all processes have finished their current work. The way to achieve this goal
is to program each process to execute a barrier operation after it has finished its
part of the current iteration. When al of them are done, the new matrix (the input
to the next iteration) will be finished, and all processes will be simultaneously re-
leased to start the next iteration.

24 SCHEDULING

When a computer is multiprogrammed, it frequently has multiple processes or
threads competing for the CPU at the same time. This situation occurs whenever
two or more of them are simultaneously in the ready state. If only one CPU is
available, a choice has to be made which process to run next. The part of the oper-
ating system that makes the choice is called the scheduler, and the agorithm it
uses is called the scheduling algorithm. These topics form the subject matter of
the following sections.

Many of the same issues that apply to process scheduling also apply to thread
scheduling, although some are different. When the kernel manages threads, sched-
uling is usually done per thread, with little or no regard to which process the
thread belongs. Initially we will focus on scheduling issues that apply to both
processes and threads. Later on we will explicitly look at thread scheduling and
some of the unique issues it raises. We will deal with multicore chips in Chap. 8.

2.4.1 Introduction to Scheduling
Back in the old days of batch systems with input in the form of card images

on amagnetic tape, the scheduling algorithm was simple: just run the next job on
the tape. With multiprogramming systems, the scheduling algorithm became more
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complex because there were generally multiple users waiting for service. Some
mainframes till combine batch and timesharing service, requiring the scheduler
to decide whether a batch job or an interactive user at a terminal should go next.
(Asan aside, a batch job may be a request to run multiple programs in succession,
but for this section, we will just assume it is a request to run a single program.)
Because CPU time is a scarce resource on these machines, a good scheduler can
make a hig difference in perceived performance and user satisfaction. Conse-
quently, a great deal of work has gone into devising clever and efficient schedul-
ing dgorithms.

With the advent of personal computers, the situation changed in two ways.
First, mogt of the time there is only one active process. A user entering a docu-
ment on a word processor is unlikely to be simultaneously compiling aprogram in
the background. When the user types a command to the word processor, the
scheduler does not have to do much work to figure out which process to run—the
word processor is the only candidate.

Second, computers have gotten so much faster over the years that the CPU is
rarely a scarce resource any more. Most programs for personal computers are lim-
ited by the rate at which the user can present input (by typing or clicking), not by
the rate the CPU can process it. Even compilations, a major sink of CPU cycles in
the past, take just a few seconds in most cases nowadays. Even when two pro-
grams are actualy running at once, such as a word processor and a spreadshest, it
hardly matters which goes first since the user is probably waiting for both of them
to finish. As a consegquence, scheduling does not matter much on simple PCs. Of
course, there are applications that practically eat the CPU dlive, for instance ren-
dering one hour of high-resolution video while tweaking the colors in each of the
108,000 frames (in NTSC) or 90,000 frames (in PAL) requires industrial-strength
computing power. However, similar applications are the exception rather than the
rule.

When we turn to networked servers, the situation changes appreciably. Here
multiple processes often do compete for the CPU, so scheduling matters again.
For example, when the CPU has to choose between running a process that gathers
the daily statistics and one that serves user requests, the users will be a lot happier
if the latter gets first crack at the CPU.

In addition to picking the right process to run, the scheduler also has to worry
about making efficient use of the CPU because process switching is expensive.
To sart with, a switch from user mode to kernel mode must occur. Then the state
of the current process must be saved, including storing its registers in the process
table so they can be reloaded later. In many systems, the memory map (eg.,
memory reference bits in the page table) must be saved as well. Next a new proc-
ess must be selected by running the scheduling algorithm. After that, the MMU
must be reloaded with the memory map of the new process. Finaly, the new proc-
ess must be started. In addition to all that, the process switch usualy invalidates
the entire memory cache, forcing it to be dynamicaly reloaded from the main
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memory twice (upon entering the kernel and upon leaving it). All in al, doing too
many process switches per second can chew up a substantial amount of CPU time,
S0 caution is advised.

Process Behavior

Nearly al processes aternate bursts of computing with (disk) 1/O requests, as
shown in Fig. 2-38. Typically the CPU runs for a while without stopping, then a
system call is made to read from a file or write to a file. When the system call
completes, the CPU computes again until it needs more data or has to write more
data, and so on. Note that some 1/O activities count as computing. For example,
when the CPU copies hits to avideo RAM to update the screen, it is computing,
not doing I/O, because the CPU is in use. 1/O in this sense is when a process
enters the blocked state waiting for an external device to complete its work.

/

Long CPU burst

Short CPU burst

(b) EH . B D . LT LMT

Time

Figure 2-38. Bursts of CPU usage alternate with periods of waiting for 1/0. (a)
A CPU-bound process, (b) An 1/0-bound process.

The important thing to notice about Fig. 2-38 is that some processes, such as
the one in Fig. 2-38(a), spend most of their time computing, while others, such as
the one in Fig. 2-38(b), spend most of their time waiting for 1/0. The former are
cdled compute-bound; the latter are called 1/0-bound. Compute-bound proc-
esses typicaly have long CPU bursts and thus infrequent 1/O waits, whereas 1/0O-
bound processes have short CPU bursts and thus frequent 1/0O waits. Note that the
key factor is the length of the CPU burgt, not the length of the 1/O burst. 1/O-
bound processes are 1/0 bound because they do not compute much between 1/0
requests, not because they have especialy long 1/O requests. It takes the same
time to issue the hardware request to read a disk block no matter how much or
how little time it takes to process the data after they arrive.
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It is worth noting that as CPUs get faster, processes tend to get more I/O-
bound. This effect occurs because CPUs are improving much faster than disks.
As a consequence, the scheduling of 1/O-bound processes is likely to become a
more important subject in the future. The basic idea here is that if an I/O-bound
process wants to run, it should get a chance quickly so that it can issue its disk re-
quest and keep the disk busy. As we saw in Fig. 2-6, when processes are 1/0
bound, it takes quite a few of them to keep the CPU fully occupied.

When to Schedule

A key issue related to scheduling is when to make scheduling decisions. It
turns out that there are a variety of situations in which scheduling is needed. First,
when a new process is created, a decision needs to be made whether to run the
parent process or the child process. Since both processes are in ready state, it isa
norma scheduling decision and can go either way, that is, the scheduler can legiti-
mately choose to run either the parent or the child next.

Second, a scheduling decision must-be made when a process exits. That proc-
ess can no longer run (since it no longer exists), so some other process must be
chosen from the set of ready processes. If no process is ready, a system-supplied
idle process is normaly run.

Third, when a process blocks on /O, on a semaphore, or for some other rea
son, another process has to be selected to run. Sometimes the reason for blocking
may play arolein the choice. For example, if A is an important process and it is
waiting for B to exit its critical region, letting B run next will alow it to exit its
critical region and thus let A continue. The trouble, however, is that the scheduler
generdly does not have the necessary information to take this dependency into
account.

Fourth, when an 1/O interrupt occurs, a scheduling decision may be made. If
the interrupt came from an /O device that has now completed its work, some
process that was blocked waiting for the I/O may now be ready to run. It is up to
the scheduler to decide whether to run the newly ready process, the process that
was running at the time of the interrupt, or some third process.

If a hardware clock provides periodic interrupts at 50 or 60 Hz or some other
frequency, a scheduling decision can be made at each clock interrupt or a every
k-th clock interrupt. Scheduling algorithms can be divided into two categories
with respect to how they deal with clock interrupts. A nonpreemptive scheduling
agorithm picks a process to run and then just lets it run until it blocks (either on
1/0 or waiting for another process) or until it voluntarily releases the CPU. Even
if it runs for hours, it will not be forceably suspended. In effect, no scheduling
decisons are made during clock interrupts. After clock interrupt processing has
been completed, the process that was running before the interrupt is resumed,
unless a higher-priority process was waiting for a now-satisfied timeout.
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In contrast, a preemptive scheduling algorithm picks a process and lets it run
for a maximum of some fixed time. If it is till running at the end of the time
interval, it is suspended and the scheduler picks another process to run (if one is
available). Doing preemptive scheduling requires having a clock interrupt occur
at the end of the time interval to give control of the CPU back to the scheduler. [If
no clock is available, nonpreemptive scheduling is the only option.

Categories of Scheduling Algorithms

Not surprisingly, in different environments different scheduling algorithms are
needed. This situation arises because different application areas (and different
kinds of operating systems) haye different goals. In other words, what the sched-
uler should optimize for is not the same in al systems. Three environments worth
distinguishing are

1. Batch.
2. Interactive.
3. Red time.

Batch systems are still in widespread use in the business world for doing payroll,
inventory, accounts receivable, accounts payable, interest caculation (at banks),
claims processing (at insurance companies), and other periodic tasks. In batch
systems, there are no users impatiently waiting at their terminas for a quick
response to a short request. Consequently, nonpreemptive algorithms, or preemp-
tive algorithms with long time periods for each process, are often acceptable. This
approach reduces process switches and thus improves performance. The batch a-
gorithms are actualy fairly general and often applicable to other situations as
well, which makes them worth studying, even for people not involved in corporate
mainframe computing.

In an environment with interactive users, preemption is essential to keep one
process from hogging the CPU and denying service to the others. Even if no proc-
ess intentionally ran forever, one process might shut out al the others indefinitely
due to a program bug. Preemption is needed to prevent this behavior. Servers also
fal into this category, since they normally serve multiple (remote) users, al of
whom are in a big hurry.

In systems with real-time constraints, preemption is, oddly enough, sometimes
not needed because the processes know that they may not run for long periods of
time and usualy do their work and block quickly. The difference with interactive
systems is that real-time systems run only programs that are intended to further
the application at hand. Interactive systems are general purpose and may run arbi-
trary programs that are not cooperative or even malicious.
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Scheduling Algorithm Goals

In order to design ascheduling algorithm, it is necessary to have some idea of
what a good agorithm should do. Some goals depend on the environment (batch,
interactive, or red time), but there are dso some that are desirable in dl cases.
Some gods are listed in Fig. 2-39. We will discuss these in turn below.

AH systems
Faimess - gving each process afar share of the CRU
Rdicy enforcament - seeing that stated pdlicy is carried out
Bdance- kegping A! parts of the system busy

Batch systems
Throughput - maximize jobs per hour
Tumaround time - minimize time between submisson and termingtion
CRU utilization - kegp the CRU busy dl thetime

Interactive systems

Response time - regpond to requests quickly
Propartiondlity - meat users' expectations

Real-time systems
Mesdting deadlines - avaid losing data
Predictahility - avaid quelity degradation in mutimedia systems

Figure 2-39. Some goals of the scheduling algorithm under different circumstances.

Under dl circumstances, fairness is important. Comparable processes should
get comparable service. Giving one process much more CPU time than an equiv-
dent one is not fair. Of course, different categories of processes may be treated
differently. Think of safety control and doing the payroll a a nuclear reactor's
computer center.

Somewhat related to fairness is enforcing the system's policies. If the loca
policy is that safety control processes get to run whenever they want to, even if it
means the payroll is 30 sec late, the scheduler has to make sure this policy is
enforced.

Ancther generd god is keeping al parts of the system busy when possible. [If
the CPU and dl the 1/O devices can be kept running all the time, more work gets
done per second then if some of the components are idle. In a batch system, for
example, the scheduler has control of which jobs are brought into memory to run.
Having some CPU-bound processes and some 1/0O-bound processes in memory to-
gether is a better idea then first loading and running all the CPU-bound jobs and
then, when they are finished, loading and running all the I/O-bound jobs. If the
latter strategy is used, when the CPU-bound processes are running, they will fight
for the CPU and the disk will be idle. Later, when the I/O-bound jobs come in,
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they will fight for the disk and the CPU will beidle. Better to keep the whole sys-
tem running at once by a careful mix of processes.

The managers of large computer centers that run many batch jobs typicaly
look at three metrics to see how well their systems are performing: throughput,
turnaround time, and CPU utilization. Throughput is the number of jobs per
hour that the system, completes. All things considered, finishing 50 jobs per hour
is better than finishing 40 jobs per hour. Turnaround time is the statistically
average time from the moment that a batch job is submitted until the moment it is
completed. It measures how long the average user has to wait for the output.
Here the rule is: Small is Beautiful.

A scheduling.algorithm that maximizes throughput may not necessarily mini-
mize turnaround time. For example, given a mix of short jobs and long jobs, a
scheduler that always ran short Jobs and never ran long jobs might achieve an ex-
cellent throughput (many short jobs per hour) but at the expense of a terrible tur-
naround time for the long jobs. If short jobs kept arriving at afairly steady rate,
the long jobs might never run, making the mean turnaround time infinite while
achieving a high throughput.

CPU utilization is often used as a metric on batch systems. Actualy though, it
is not such a good metric. What really matters is how many jobs per hour come
out of the system (throughput) and how long it takes to get ajob back (turnaround
time). Using CPU utilization as a metric is like rating cars based on how many
times per hour the engine turns over. On the other hand, knowing when the CPU
utilization is approaching 100% is useful for knowing when it is time to get more
computing power.

For interactive systems, different goals apply. The most important one is to
minimize response time, that is, the time between issuing a command and getting
the result. On a personal computer where a background process is running (for
example, reading and storing e-mail from the network), a user request to start a
program or open afile should take precedence over the background work. Having
all interactive requests go first will be perceived as good service.

A somewhat related issue is what might be cdled proportionality. Users
have an inherent (but often incorrect) idea of how long things should take. When a
request that is perceived as complex takes along time, users accept that, but when
a request that is perceived as simple takes along time, users get irritated. For ex-
ample, if clicking on aicon that starts sending a fax takes 60 seconds to compl ete,
the user will probably accept that as a fact of life because he does not expect a fax
to be sent in 5 seconds.

On the other hand, when a user clicks on the icon that breaks the phone con-
nection after the fax has been sent, he has different expectations. If it has not
completed after 30 seconds, the user will probably be swearing a blue streak, and
after 60 seconds he will be frothing at the mouth. This behavior is due to the com-
mon user perception that placing a phone call and sending a fax is supposed to
take a lot longer than just hanging the phone up. In some cases (such as this one),
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the scheduler cannot do anything about the response time, but in other cases it
can, especially when the delay is due to a poor choice of process order.

Real-time systems have different properties than interactive systems, and thus
different scheduling goals. They are characterized by having deadlines that must
or a least should be met. For example, if a computer is controlling a device that
produces data at a regular rate, failure to run the data-collection process on time
may result in lost data. Thus the foremost need in areal-time system is meeting all
(or most) deadlines.

In some real-time systems, especially those involving multimedia, predictabil-
ity is important. Missing an occasional deadline is not fatal, but if the audio proc-
ess runs too erratically, the sound quality will deteriorate rapidly. Video is also an
issue, but the ear is much more sensitive tojitter than the eye. To avoid this prob-
lem, process scheduling must be highly predictable and regular. We will study
batch and interactive scheduling algorithms in this chapter but defer most of our
study of real-time scheduling until we come to multimedia operating systems in
Chap. 7.

2.4.2 Scheduling in Batch Systems

It is now time to turn from general scheduling issues to specific scheduling al-
gorithms. In this section we will look at algorithms used in batch systems. In the
following ones we will examine interactive and real-time systems. It is worth
pointing out that some algorithms are used in both batch and interactive systems.
We will study these later.

First-Come First-Served

Probably the simplest of all scheduling agorithms is nonpreemptive first-
come first-served. With this algorithm, processes are assigned the CPU in the
order they request it. Basically, there is a single queue of ready processes. When
the first job enters the system from the outside in the morning, it is started im-
mediately and allowed to run as long as it wants to. It is not interrupted because it
has run too long. As other jobs come in, they are put onto the end of the queue.
When the running process blocks, the first process on the queue is run next.
When a blocked process becomes ready, like a newly arrived job, it is put on the
end of the queue.

The great strength of this algorithm is that it is easy to understand and equally
easy to program. It is also fair in the same sense that allocating scarce sports or
concert tickets to people who are willing to stand on line starting at 2 AM. is fair.
With this algorithm, a single linked list keeps track of dl ready processes. Pick-
ing a process to run just requires removing one from the front of the queue. Add-
ing a new job or unblocked process just requires attaching it to the end of the
queue. What could be simpler to understand and implement?
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Unfortunately, first-come first-served also has a powerful disadvantage. Sup-
pose that there is one compute-bound process that runs for 1 sec at a time and
many IAO-bound processes that uselittle CPU time but each have to perform 1000
disk reads to complete. The compute-bound process runs for 1 sec, then it reads a
disk block. All the I/O processes now run and start disk reads. When the
compute-bound process gets its disk block, it runs for another 1 sec, followed by
al the 1/0-bound processes in quick succession.

The net result is that each 1/0-bound process gets to read 1 block per second
and will take 1000 sec to finish. With a scheduling algorithm that preempted the
compute-bound process every 10 msec, the 1/0-bound processes would finish in
10 sec instead of 1000 sec, and without slowing down the compute-bound process
very much.

Shortest Job First

Now let us look at another nonpreemptive batch algorithm that assumes the
run times are known in advance. In an insurance company, for example, people
can predict quite accurately how long it will take to run a batch of 1000 claims,
since similar work is done every day. When severa equally important jobs are sit-
ting in the input queue waiting to be started, the scheduler picks the shortest job
first. Look at Fig. 2-40. Here we find four jobs A, B, C, and D with run times of
8,4,4, and 4 minutes, respectively. By running them in that order, the turnaround
time for A is 8 minutes, for B is 12 minutes, for C is 16 minutes, and for D is 20
minutes for an average of 14 minutes.

8 4 4 4 4 4 4 8
‘ A ‘ B | C ‘ D ‘ B | C ‘ D A ‘
@ (b)

Figure 2-40. An example of shortest job first scheduling, (a) Running four jobs
in the original order, (b) Running them in shortest job first order.

Now let us consider running these four jobs using shortest job first, as shown
in Fig. 2-40(b). The turnaround times are now 4, 8, 12, and 20 minutes for an
average of 11 minutes. Shortest job first is provabiy optimal. Consider the case of
four jobs, with run times of a b, ¢, and d, respectively. The first job finishes at
time a, the second finishes at time a + b, and so on. The mean turnaround time is
(4a +3b +2c + d)/A. It is clear that a contributes more to the average than the
other times, so it should be the shortest job, with b next, then ¢, and finaly d as
the longest as it affects only its own turnaround time. The same argument applies
equally well to any number of jobs.
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It is worth pointing out that shortest job first is only optimal when dl the jobs
are available amultaneoudy. As a counterexample, consider fivejobs, A through
E, with run times of 2, 4,1, 1, and 1, respectively. Their arrival times are 0, O, 3,
3, and 3. Initidly, only A or B can be chosen, since the other three jobs have not
arived yet. Usng shortest job first we will run thejobs in the order A, B, C, D, £,
for an average wait of 4.6. However, running them in the order B, C, D, E, A has
an average wait of 4.4.

Shortest Remaining Time Next

A preemptive verson of shortest job first is shortest remaining time next.
With this dgorithm, the scheduler always chooses the process whose remaining
run time is the shortes. Again here, the run time has to be known in advance.
When anew job arrives, its totd time is compared to the current process remain-
ing time. If the new job needs less time to finish than the current process, the cur-
rent process is sugpended and the new job started. This scheme allows new short
jobsto get good service.

2.4.3 Scheduling in Interactive Systems

We will now look a some agorithms that can be used in interactive systems.
These are common on personal computers, servers, and other kinds of systems as
well.

Round-Robin Scheduling

Ore of the oldest, smplest, fairest, and most widely used algorithms is round
robin. Each processis asigned atimeinterval, called its quantum, during which
itisdlowed to run. If the process is ill running a the end of the quantum, the
CPU is preempted and given to another process. If the process has blocked or fin-
ished before the quantum has elapsed, the CPU switching is done when the proc-
ess blocks, of course. Round robin is easy to implement. All the scheduler needs
to doismaintain alist of runnable processes, as shown in Fig. 2-41(a). When the
process uses up its quantum, it is put on the end of the list, as shown in Fig. 2-
41(b).

The only interesting issue with round robin is the length of die quantum.
Switching from one process to another requires a certain amount of time for doing
the administration—saving and loading registers and memory maps, updating var-
ious tables and lists, flushing and reloading the memory cache, and so on. Sup-
pose that this process switch or context switch, as it is sometimes called, takes 1
msec, induding switching memory maps, flushing and reloading the cache, etc.
Al suppose that the quantum is set at 4 msec. With these parameters, after do-
ing 4 msec of useful work, the CPU will have to spend (i.e., waste) 1 msec on
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Figure 2-41. Round-robin scheduling, (a) The list of runnable processes, (b)
The list of runnable processes after B uses up its quantum.

process switching. Thus 20% of the CPU time will be thrown away on administra-
tive overhead. Clearly, thisis too much.

To improve the CPU efficiency, we could set the quantum to, say, 100 msec.
Now the wasted time is only 1%. But consider what happens on a server system
if 50 requests come in within a very short time interval and with widely varying
CPU reguirements. Fifty processes will be put on the list of runnable processes. If
the CPU is idle, the first one will start immediately, the second one may not start
until 100 msec later, and so on. The unlucky last one may have to wait 5 sec be-
fore getting a chance, assuming all the others use their full quanta. Most users will
perceive a 5-sec response to a short command as duggish. This situation is espe-
cidly bad if some of the requests near the end of the queue required only a few
milliseconds of CPU time. With a short quantum they would have gotten better
service.

Another factor is that if the quantum is set longer than the mean CPU burst,
preemption will not happen very often. Instead, most processes will perform a
blocking operation before the quantum runs out, causing a process switch. Elim-
inating preemption improves performance because process switches then only
happen when they are logically necessary, that is, when a process blocks and can-
not continue.

The conclusion can be formulated as follows: setting the quantum too short
causes too many process switches and lowers the CPU efficiency, but setting it
too long may cause poor response to short interactive requests. A quantum
around 20-50 msec is often a reasonable compromise.

Priority Scheduling

Round-robin scheduling makes the implicit assumption that al processes are
equally important. Frequently, the people who own and operate multiuser com-
puters have different ideas on that subject. At a university, for example, the peck-
ing order may be deans first, then professors, secretaries, janitors, and finaly stu-
dents. The need to take external factors into account leads to priority scheduling.
The basic idea is straightforward: each process is assigned a priority, and the run-
nable process with the highest priority is allowed to run.
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Even on a PC with asingle owner, there may be multiple processes, some of
them more important than others. For example, a daemon process sending elec-
tronic mail in the background should be assigned a lower priority than a process
displaying a video film on the screen inreal time.

To prevent high-priority processes from running indefinitely, the scheduler
may decrease the priority of the currently running process at each clock tick (i.e.,
at each clock interrupt). If this action causes its priority to drop below that of the
next highest process, a process switch occurs. Alternatively, each process may be
assigned a maximum time quantum that it is alowed to run. When this quantum is
used up, the next highest priority process is given achance to run.

Priorities can be assigned to processes saticaly or dynamicaly. On a mili-
tary computer, processes started by generals might begin at priority 100, processes
started by colonels at 90, mgors at 80, captains at 70, lieutenants a 60, and so on.
Alternatively, a a commercial computer center, high-priority jobs might cost
$100 an hour, medium priority $75 an hour, and low priority $50 an hour. The
UNIX system has a command, nice, which alows a user to voluntarily reduce the
priority of his process, in order to be nice to the other users. Nobody ever uses it.

Priorities can aso be assigned dynamicaly by the system to achieve certain
sysem goals. For example, some processes are highly 1/0O bound and spend most
of their time waiting for 1/0 to complete. Whenever such a process wants the
CPU, it should be given the CPU immediately, to let it start its next 1/O reguest,
which can then proceed in parale with another process actually computing. Mak-
ing the 1/O-bound process wait a long time for the CPU will just mean having it
around occupying memory for an unnecessarily long time. A simple algorithm for
giving good service to 1/0O-bound processes is to set the priority to Iff, where/is
the fraction of the last quantum that a process used. A process that used only 1
msec of its 50 msec quantum would get priority 50, while a process that ran 25
msec before blocking would get priority 2, and a process that used the whole
quantum would get priority 1.

It is often convenient to group processes into priority classes and use priority
scheduling among the classes but round-robin scheduling within each class. Fig-
ure 2-42 shows a system with four priority classes. The scheduling algorithm is as
follows: as long as there are runnable processes in priority class 4, just run each
one for one quantum, round-robin fashion, and never bother with lower-priority
classes. If priority class 4 is empty, then run the class 3 processes round robin. If
classes 4 and 3 are both empty, then run class 2 round robin, and so on. If priori-
ties are not adjusted occasionally, lower priority classes may dl starve to death.

Multiple Queues

One of the earliest priority schedulers was in CTSS, the M.I.T. Compatible
Timesharing System that ran on the IBM 7094 (Corbatd et al., 1962). CTSS had
the problem that process switching was very sow because the 7094 could hold
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Priority 1 (Lowest priority)
Figure 2-42. A scheduling algorithm with four priority classes.

only one process in memory. Each switch meant swapping the current process to
disk and reading in a new one from disk. The CTSS designers quickly realized
that it was more efficient to give CPU-bound processes a large quantum once in a
while, rather than giving them small quanta frequently (to reduce swapping). On
the other hand, giving al processes a large quantum would mean poor response
time, as we have aready seen. Their solution was to set up priority classes. Proc-
esses in the highest class were run for one quantum. Processes in the next-highest
class were run for two quanta. Processes in the next class were run for four
quanta, and so on. Whenever a process used up al the quanta allocated to it, it
was moved down one class.

As an example, consider a process that needed to compute continuously for
100 quanta. It would initially be given one quantum, then swapped out. Next
time it would get two quanta before being swapped out. On succeeding runs it
would get 4, 8, 16, 32, and 64 quanta, although it would have used only 37 of the
find 64 quanta to complete its work. Only 7 swaps would be needed (including
theinitial load) instead of 100 with a pure round-robin algorithm. Furthermore, as
the process sank deeper and deeper into the priority queues, it would be run less
and less frequently, saving the CPU for short, interactive processes.

The following policy was adopted to prevent a process that needed to run for a
long time when it first started but became interactive later, from being punished
forever. Whenever acarriage return (Enter key) was typed at a terminal, the proc-
ess belonging to that terminal was moved to the highest priority class, on the
assumption that it was about to become interactive. One fine day, some user with
a heavily CPU-bound process discovered that just sitting at the terminal and typ-
ing carriage returns at random every few seconds did wonders for his response
time. He told al his friends. Moral of the story: getting it right in practice is
much harder than getting it right in principle.

Many other agorithms have been used for assigning processes to priority
classes. For example, the influentiadl XDS 940 system (Lampson, 1968), built at
Berkeley, had four priority classes, caled terminal, 1/0, short quantum, and long
quantum. When a process that had been waiting for termina input was finaly
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awakened, it went into the highest priority class (terminal). When a process wait-
ing for a disk block became ready, it went into the second class. When a process
was dill running when its quantum ran out, it was initially placed in the third
class. However, if aprocess used up its quantum too many times in arow without
blocking for terminal or other 1/0O, it was moved down to the bottom queue. Many
other systems use something similar to favor interactive users and processes over
background ones.

Shortest Process Next

Because shortest job first dways produces the minimum average response
time for batch systems, it would be nice if it could be used for interactive proc-
eses aswell. To acertain extent, it can be. Interactive processes generaly fol-
low the pattern of wait for command, execute command, wait for command, exe-
cute command, and so on. If we regard the execution of each command as a sepa-
rate "job," then we could minimize overal response time by running the shortest
one firs. The only problem is figuring out which of the currently runnable proc-
es¥s isthe shortest one.

One gpproach isto make estimates based on past behavior and run the process
with the shortest estimated running time. Suppose that the estimated time per
command for some terminal is T,. Now suppose its next run is measured to be
TV We could update our estimate by taking a weighted sum of these two num-
bers that is, aT, + (1-a)7/,. Through the choice of a we can decide to have the
egimation process forget old runs quickly, or remember them for a long time.
With a = 1/2, we get successive estimates of

r, rJ2+r|/2, rJ4+Tild-rr,/2, rol8 +ril8+r,/4+71,/2

After three new runs, the weight of T, in the new estimate has dropped to 1/8.

The technique of estimating the next value in a series by taking the weighted
average of the current measured value and the previous estimate is sometimes
cdled aging. It is applicable to many situations where a prediction must be made
based on previous values. Aging is especialy easy to implement when a = 1/2.
All thet is needed is to add the new vaue to the current estimate and divide the
aum by 2 (by shifting it right 1 bit).

Guaranteed Scheduling

A completely different approach to scheduling is to make real promises to the
users about performance and then live up to those promises. One promise that is
redigtic to make and easy to live up to is this: If there are n users logged in while
you are working, you will receive about 1/n of the CPU power. Similarly, on a
sngleuser system with n processes running, all things being equal, each one
should get \/n of the CPU cycles. That seems fair enough.
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To make good on this promise, the system must keep track of how much CPU
each process has had since its creation. |t then computes the amount of CPU each
oneis entitled to, namely the time since creation divided by n. Since the amount
of CPU time each process has actually had is also known, it is straightforward to
compute the ratio of actua CPU time consumed to CPU time entitled. A ratio of
0.5 means that a process has only had haf of what it should have had, and a ratio
of 2.0 means that a process has had twice as much as it was entitled to. The algo-
rithm is then to run the process with the lowest ratio until its ratio has moved
aboveits closest competitor.

Lottery Scheduling

While making promises to the users and then living up to them is a fine idea,
it is difficult to implement. However, another algorithm can be used to give simi-
larly predictable results with a much simpler implementation. It is called lottery
scheduling (Waldspurger and Weihl, 1994).

The basic idea is to give processes lottery tickets for various system re-
sources, such as CPU time. Whenever a scheduling decision has to be made, alot-
tery ticket is chosen at random, and the process holding that ticket gets the re-
source. When applied to CPU scheduling, the system might hold a lottery 50
times a second, with each winner getting 20 msec of CPU time as a prize.

To paraphrase George Orwell: "All processes are equal, but some processes
are more equal." More important processes can be given extra tickets, to increase
their odds of winning. If there are 100 tickets outstanding, and one process holds
20 of them, it will have a 20% chance of winning each lottery. In the long run, it
will get about 20% of the CPU. In contrast to a priority scheduler, where it is
very hard to state what having a priority of 40 actually means, here the rule is
clear: a process holding a fraction/of the tickets will get about a fraction /of the
resource in question.

Lottery scheduling has several interesting properties. For example, if a new
process shows up and is granted some tickets, at the very next lottery it will have
a chance of winning in proportion to the number of tickets it holds. In other
words, lottery scheduling is highly responsive.

Cooperating processes may exchange tickets if they wish. For example, when
a client process sends a message to a server process and then blocks, it may give
all of its tickets to the server, to increase the chance of the server running next.
When the server is finished, it returns the tickets so that the client can run again.
In fact, in the absence of clients, servers need no tickets at all.

Lottery scheduling can be used to solve problems that are difficult to handle
with other methods. One example is a video server in which several processes are
feeding video streams to their clients, but at different frame rates. Suppose that
the processes need frames at 10, 20, and 25 frames/sec. By dlocating these proc-
esses 10, 20, and 25 tickets, respectively, they will automatically divide the CPU
in approximately the correct proportion, that is, 10 : 20 : 25.
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Fair-Share Scheduling

So far we have assumed that each process is scheduled on its own, without
regard to who its owner is. Asaresult, if user 1 starts up 9 processes and user 2
starts up 1 process, with round robin or equal priorities, user 1 will get 90% of the
CPU and user 2 will get only 10% of it.

To prevent this Stuation, some systems take into account who owns a process
before scheduling it. In this model, each user is alocated some fraction of the
CPU and the scheduler picks processes in such away as to enforce it. Thus if two
users have each been promised 50% of the CPU, they will each get that, no matter
how many processes they have in existence.

As an example, consider a system with two users, each of which has been
promised 50% of the CPU. User 1 has four processes, A, B, C, and D, and user 2
has only 1 process, E. If round-robin scheduling is used, a possible scheduling se-
quence that meets dl the condraints is this one:

AEBECEDEAEBECEDE...

On the other hand, if user 1 is entitled to twice as much CPU time as user 2, we
might get
ABECDEABECDE...

Numerous other possibilities exist, of course, and can be exploited, depending on
what the notion of farmess is.

2.4.4 Scheduling in Real-Time Systems

A real-time system is one in which time plays an essential role. Typically,
one or more physical devices external to the computer generate stimuli, and the
computer must react gopropriately to them within a fixed amount of time. For ex-
ample, the computer in a compact disc player gets the bits as they come off the
drive and must convert them into music within a very tight time interval. If the
calculation takes too long, the music will sound peculiar. Other real-time systems
are patient monitoring in a hospita intensive-care unit, the autopilot in an aircraft,
and robot control in an automated factory. In al these cases, having the right
answer but having it too late is often just as bad as not having it at all.

Real-time systems ate generdly categorized as hard real time, meaning there
are absolute deadlines thet must be met, or else, and soft real time, meaning that
missing an occasiond deadline is undesirable, but nevertheless tolerable. In both
cases, red-time behavior is achieved by dividing the program into a number of
processes, each of whose behavior is predictable and known in advance. These
processes are generdly short lived and can run to completion in well under a sec-
ond. When an externd evernt is detected, it is the job of the scheduler to schedule
the processes in such a way thet all deadlines are met.
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The events that a real-time system may have to respond to can be further
categorized as periodic (occurring at regular intervals) or aperiodic (occurring
unpredictably). A system may have to respond to multiple periodic event streams.
Depending on how much time each event requires for processing, it may not even
be possible to handle them all. For example, if there are m periodic events and
event i occurs with period P- and requires C, seconds of CPU time to handle each
event, then the load can only be handled if

A red-time system that meets this criterion is said to be schedulable.

As an example, consider a.soft real-time system with three periodic events,
with periods of 100, 200, and 500 msec, respectively. |f these events require 50,
30, and 100 msec of CPU time per event, respectively, the system is schedulable
because 0.5 + 0.15 + 0.2 < 1. If afourth event with a period of 1 secis added, the
system will remain schedulable as long as this event does not need more than 150
msec of CPU time per event. Implicit in this calculation is the assumption that the
context-switching overhead is so small that it can be ignored.

Real-time scheduling agorithms can be static or dynamic. The former make
their scheduling decisions before the system starts running. The latter make their
scheduling decisions at run time. Static scheduling only works when there is per-
fect information available in advance about the work to be done and the deadlines
that have to be met. Dynamic scheduling algorithms do not have these restrictions.
We will defer our study of specific algorithms until we treat real-time multimedia
systems in Chap. 7.

2.45 Policy versus Mechanism

Up until now, we have tacitly assumed that al the processes in the system
belong to different users and are thus competing for the CPU. While this is often
true, sometimes it happens that one process has many children running under its
control. For example, a database management system process may have many
children. Each child might be working on a different request, or each one might
have some specific function to perform (query parsing, disk access, etc.). Itisen-
tirely possible that the main process has an excellent idea of which of its children
are the most important (or time critical) and which the least. Unfortunately, none
of the schedulers discussed above accept any input from user processes about
scheduling decisions. As aresult, the scheduler rarely makes the best choice.

The solution to this problem is to separate the scheduling mechanism from
the scheduling policy, a long-established principle (Levin et al, 1975). What this
means is that the scheduling algorithm is parameterized in some way, but the
parameters can be filled in by user processes. Let us consider the database ex-
ample once again. Suppose that the kernel uses a priority-scheduling algorithm
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but provides a system call by which a process can set (and change) the priorities
of its children. In this way the parent can control in detail how its children are
scheduled, even though it itself does not do the scheduling. Here the mechanism is
in the kernel but policy is set by a user process.

2.4.6 Thread Scheduling

When several processes each have multiple threads, we have two levels of
parallelism present: processes and threads. Scheduling in such systems differs
substantially depending on whether user-level threads or kernel-level threads (or
both) are supported.

Let us consider user-level threads first. Since the kernel is not aware of the
existence of threads, it operates as it always does, picking a process, say, A, and
giving A control for its quantum. The thread scheduler inside A decides which
thread to run, say Al. Since there are no clock interrupts to multiprogram threads,
this thread may continue running as long as it wants to. If it uses up the process'
entire quantum, the kernel will select another process to run.

When the process A findly runs again, thread Al will resume running. It will
continue to consume al of A's time until it is finished. However, its antisocial be-
havior will not affect other processes. They will get whatever the scheduler con-
siders their appropriate share, no matter what is going on inside process A.

Now consider the case that A's threads have relatively little work to do per
CPU burgt, for example, 5 msec of work within a 50-msec quantum. Consequent-
ly, each one runs for alittle while, then yields the CPU back to the thread schedul-
er. This might lead to the sequence Al, A2, A3, Al, A2, A3, Al, A2, A3, Al, before
the kernel switches to process B. This situation is illustrated in Fig. 2-43(a).

The scheduling algorithm used by the run-time system can be any of the ones
described above. In practice, round-robin scheduling and priority scheduling are
most common. The only constraint is the absence of a clock to interrupt a thread
that has run too long.

Now consider the situation with kernel-level threads. Here the kernel picks a
particular thread to run. It does not have to take into account which process the
thread belongs to, but it can if it wants to. The thread is given a quantum and is
forceably suspended if it exceeds the quantum. With a 50-msec quantum but
threads that block after 5 msec, the thread order for some period of 30 msec might
be Al, Bl, A2, B2, A3, B3, something not possible with these parameters and
user-level threads. This situation is partialy depicted in Fig. 2-43(b).

A mgor difference between user-level threads and kernel-level threads is the
performance. Doing a thread switch with user-level threads takes a handful of ma-
chine instructions. With kernel-level threads it requires a full context switch,
changing the memory map and invalidating the cache, which is severa orders of
magnitude slower. On the other hand, with kernel-level threads, having a thread
block on 1/0 does not suspend the entire process as it does with user-level threads.
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Since the kemel knows that switching from a thread in process A to a thread
in process B is more expensive than running a second thread in process A (due to
having to change the memory map and having the memory cache spoiled), it can
take this information into account when making a decision. For example, given
two threads that are otherwise equally important, with one of them belonging to
the same process as a thread that just blocked and one belonging to a different
process, preference could be given to the former.

Another important factor is that user-level threads can employ an applica
tion-specific thread scheduler. Consider, for example, the Web server of Fig. 2-8.
Suppose that a worker thread has just blocked and the dispatcher thread and two
worker threads are ready. Who should run next? The run-time system, knowing
what all the threads do, can easily pick the dispatcher to run next, so that it can
start another worker running. This strategy maximizes the amount of parallelism
in an environment where workers frequently block on disk 1/0. With kernel-level
threads, the kernel would never know what each thread did (although they could
be assigned different priorities). In general, however, application-specific thread
schedulers can tune an application better than the kernel can.

25 CLASSICAL IPCPROBLEMS

The operating systems literature is full of interesting problems that have been
widely discussed and analyzed using a variety of synchronization methods. In the
tollowmg sections we will examine three of the better-known problems
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2.5.1 The Dining Philosophers Problem

In 1965, Dijkstra posed and solved a synchronization problem he caled the
dining philosophers problem. Since that time, everyone inventing yet another
synchronization primitive hes fdt obligated to demonstrate how wonderful the
new primitive is by showing how eegantly it solves the dining philosophers prob-
lem. The problem can be gtated quite Smply as follows. Five philosophers are
seeted aound a circular table. Each philosopher has a plate of spaghetti. The
spaghetti is so dippery that a philosopher needs two forks to eat it. Between each
pair of plates isone fork. The layout of the table is illustrated in Fig. 2-44.

Figure 2-44. Lunch timein the Philosophy Department.

The life of a philosopher consists of aternate periods of eating and thinking.
(This is something of an abstraction, even for philosophers, but the other activities
are irrdlevant here) When a philosopher gets hungry, she tries to acquire her left
and right forks, one at atime, in either order. If successful in acquiring two forks,
she eats for a while, then puts down the forks, and continues to think. The key
question is: Can you write a program for each philosopher that does what it is sup-
posad to do and never gets stuck? (It has been pointed out that the two-fork re-
quirement is somewhat artificia; perhaps we should switch from Italian food to
Chinese food, substituting rice for spaghetti and chopsticks for forks.)

Figure 2-45 shows the obvious solution. The procedure take-fork waits until
the specified fork is available and then seizes it. Unfortunately, the obvious solu-
tion is wrong. Suppose that dl five philosophers take their left forks simultan-
eoudy. None will be able to take their right forks, and there will be a deadlock.
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#define N 5 /* number of philosophers */

void philosopher(int i) [* i: philosopher number, from 0to 4 */

{

while (TRUE) {

thinkO: /* philosopher is thinking */
take_fork(i); /* take left fork */
take _(ork((i+1) % N); /* take right fork; % is modulo operator */
eat(); /* yum-yum, spaghetti */
put_fork(t); /* put left fork back on the table */
put_fork{(i+1) % N); * put right fork back on the table */

Figure2-45. A nonsolution to the dining philosophers problem.

We could modify the program so that after taking the left fork, the program
checks to see if the right fork is available. If it is not, the philosopher puts down
the I€ft one, waits for some time, and then repeats the whole process. This propo-
sal too, fails, although for a different reason. With a little bit of bad luck, al the
philosophers could start the algorithm simultaneously, picking up their left forks,
seeing that their right forks were not available, putting down their left forks, wait-
ing, picking up their left forks again simultaneously, and so on, forever. A situa-
tion like this, in which al the programs continue to run indefinitely but fail to
make any progress is caled starvation. (It is caled starvation even when the
problem does not occur in an Italian or a Chinese restaurant.)

Now you might think that if the philosophers would just wait a random time
ingtead of the same time &fter failing to acquire the right-hand fork, the chance
that everything would continue in lockstep for even an hour is very small. This
observation is true, and in nearly all applications trying again later is not a prob-
lem. For example, in the popular Ethernet local area network, if two computers
send a packet at the same time, each one waits a random time and tries again; in
practice this solution works fine. However, in a few applications one would prefer
a solution that always works and cannot fail due to an unlikely series of random
numbers. Think about safety control in a nuclear power plant.

One improvement to Fig. 2-45 that has no deadlock and no starvation is to
protect the five statements following the call to think by a binary semaphore. Be-
fore starting to acquire forks, a philosopher would do a down on mutex. After re-
placing the forks, she would do an up on mutex. From a theoretical viewpoint,
this solution is adequate. From a practical one, it has a performance bug: only one
philosopher can be eating a any instant. With five forks available, we should be
able to alow two philosophersto eat at the same time.

The solution presented in Fig. 2-46 is deadlock-free and allows the maximum
paralelism for an arbitrary number of philosophers. It uses an array, state, to
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#define N 5 /* number of philosophers */
#defineL EFT (i+N-1)%N /* number of i's |eft neighbor */
#define RIGHT (i+1)%N /* number of i's right neighbor */
#define THINKING O /* philosopher is thinking */
#define HUNGRY 1 /* philosopher is trying to get forks */
#define EATING 2 /* philosopher is eating */
typedef int semaphore; /* semaphores are a special kind of int */
int state[N]; /* array to keep track of everyone's state */
semaphore mutex = 1; /* mutual exclusion for critical regions */
semaphore s[N]; /* one semaphore per philosopher */
void philosopher (int i) /* i: philosopher number, from 0 to N-1 */
{
: /* repeat forever */
hile (TRUE
o et(hink()-) { /* philosopher is thinking */
take f(;rks(i)' * acquire two forks or block */
eat(); ' /* yum-yum, spaghetti */
put_forks(i); I* put both forks back on table */
L |
}
void take forks(int i) [* i: philosopher number, from 0 to N-1 */
{ down(Smutex); [* enter critical region */
statefi] = HUNGRY; I* record fact that philosopher i is hungry */
test(i); /* try to acquire 2 forks */
up(& mutex); /* exit critical region */
down{& di]); * block if forks were not acquired */
}
void put_forks(i) [* i: philosopher number, from 0 to N-1 */
{ down(& mutex); /[* enter critical region */
StatepjaTHIN’KING- /* philosopher has finished eating */
test(LEFT); ' /* see if left neighbor can now eat */
test(RIGH1")- /* seeif right neighbor can now eat */
up(Smutex)'y /* exit critical region */

}
void test(i) /* i: philosopher number, from 0to N-1 */
if (stateh] = HUNGRY && state]LEFTJ != EATING && statefRIGHTI != EATING) {

statefi] = EATING;
up(&Hi);

Figure 2-46. A solution to the dining philosophers problem.
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keep track of whether a philosopher is eating, thinking, or hungry (trying to ac-
quire forks). A philosopher may only move into eating state if neither neighbor is
eating. Philosopher i's neighbors are defined by the macros LEFT and RIGHT. In
other words, if i is2, LEFTis1 and RIGHT is 3.

The program uses an array of semaphores, one per philosopher, so hungry
philosophers can block if the needed forks are busy. Note that each process runs
the procedure philosopher as its main code, but the other procedures, take-forks,
put-forks, and test, are ordinary procedures and not separate processes.

2.5.2 The Readers and Writers Problem

The dining philosophers problem is useful for modeling processes that are
competing for exclusive access-to a limited number of resources, such as /O de-
vices. Another famous problem is the readers and writers problem (Courtois et al.,
1971), which models access to a database. Imagine, for example, an airline reser-
vation system, with many competing processes wishing to read and write it. It is
acceptable to have multiple processes reading the database at the same time, but if
one process is updating (writing) the database, no other processes may have ac-
cess to the database, not even readers. The question is how do you program the
readers and the writers? One solution is shown in Fig. 2-47.

In this solution, the first reader to get access to the database does adown on
the semaphore db. Subsequent readers merely increment a counter, rc. As read-
ers leave, they decrement the counter, and the last one out does an up on the sem-
aphore, alowing a blocked writer, if there isone, to get in.

The solution presented here implicidy contains a subtle decision worth noting.
Suppose that while a reader is using the database, another reader comes along.
Since having two readers at the same time is not a problem, the second reader is
admitted. Additional readers can also be admitted if they come along.

Now suppose that a writer shows up. The writer may not be admitted to the
database, since writers must have exclusive access, so the writer is suspended.
Later, additional readers show up. As long as at least one reader is still active,
subsequent readers are admitted. As a consequence of this strategy, as long as
there is a steady supply of readers, they will al get in as soon as they arrive. The
writer will be kept suspended until no reader is present. If a new reader arrives,

say, every 2 seconds, and each reader takes 5 seconds to do its work, the writer
will never getin.

To prevent this situation, the program could be written dightly differently:
when a reader arrives and a writer is waiting, the reader is suspended behind the
writer instead of being admitted immediately. In this way, a writer has to wait for
readers that were active when it arrived to finish but does not have to wait for
readers that came along after it. The disadvantage of this solution is that it
achieves less concurrency and thus lower performance. Courtois et al. present a
solution that gives priority to writers. For details, we refer you to the paper.
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typedef int semaphore;
semaphor e mutex = 1;
semaphoredb = 1;
intrc=0;

void reader (void)

while (TRUE) {
down(S.mutex);
rc=rc+1;

if (rc*= 1) down(&db);

up(& mutex);
read_data_base();
down(& mutex);
rc*rc-1;

if (rc = 0) up(&db);
up(& mutex);
use_data_read();

void writer (void)

while (TRUE) {
think_up_dat&f);
down(Sdb);
write_data_base();
up(&db);

/* use your imagination */

/* controls accessto 'rc' */

/* controls access to the database */

/* # of processes reading or wanting to */

/* repeat forever */

/* get exclusive accessto 'rc' */

/* one reader more now */

/* if thisisthe firg reader... */

/* release exclusive accessto 'rc' */
/* access the data */

/* get exclusive accessto 'rc’ */

/* one reader fewer now */

/* if thisisthe last reader... */

/* release exclusive accessto 'rc' */
/* noncritical region */

/* repeat forever */

/* noncritical region */

/* get exclusive access */

/* update the data */

/* release exclusive access */

Figure 2-47. A solution to the readers and writers problem.

26 RESEARCH ON PROCESSES AND THREADS

CHAP. 2

In Chap. 1, we looked at some of the current research in operating system
structure. In this and subsequent chapters we will look at more narrowly focused
research, starting with processes. As will become clear in time, some subjects are
much more settled than others. Most of the research tends to be on the new to-
pics, rather than ones that have been around for decades.

The concept of a process is an example of something that is fairly well settled.
Almog every system has some notion of a process as a container for grouping to-
gether rdated resources such as an address space, threads, open files, protection
permissons, and so on. Different systems do the grouping dightly differently, but
these arejust engineering differences. The basic idea is not very controversia any
more, and there is little new research on the subject of processes.
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Threads are a newer idea than processes, but they, too, have been chewed
over quite a hit. Still, the occasional paper about threads appears from time to
time, for example, about thread clustering on multiprocessors (Tarn et a., 2007)
or scaling the number of threads in a process to 100,000 (Von Behren et al.,
2003).

Process synchronization is pretty much cut and dried by now, but there is till
a paper once in a while, such as one on concurrent processing without locks
(Fraser and Harris, 2007) or nonblocking synchronization in real-time systems
(Hohmuth and Haertig, 2001)

Scheduling (both uniprocessor and multiprocessor) is till a topic near and
dear to the heart of some researchers. Some topics being researched include ener-
gy-efficient scheduling on mobile devices (Yuan and Nahrstedt, 2006), hyper-
threading-aware scheduling (Bulpin and Pratt, 2005), what to do when the CPU
would otherwise be idle (Eggert and Touch, 2005), and virtual-time scheduling
(Nieh et al., 2001). However, few actual system designers are walking around all
day wringing their hands for lack of a decent thread-scheduling algorithm, so it
appears that this type of research is more researcher-push than demand-pull. All in
all, processes, threads, and scheduling are not hot topics for research as they once
were. The research has moved on.

2.7 SUMMARY

To hide the effects of interrupts, operating systems provide a conceptual
model consisting of sequential processes running in parallel. Processes can be
created and terminated dynamically. Each process has its own address space.

For some applications it is useful to have multiple threads of control within a
single process. These threads are scheduled independently and each one has its
own stack, but all the threads in a process share a common address space. Threads
can be implemented in user space or in the kernel.

Processes can communicate with one another using interprocess communica-
tion primitives, such as semaphores, monitors, or messages. These primitives are
used to ensure that no two processes are ever in their critical regions at the same
time, a Stuation that leads to chaos. A process can be running, runnable, or
blocked and can change state when it or another process executes one of the
interprocess communication primitives. Interthread communication is similar.

Interprocess communication primitives can be used to solve such problems as
the producer-consumer, dining philosophers, and reader-writer. Even with these
primitives, care has to be taken to avoid errors and deadlocks.

A grest many scheduling algorithms have been studied. Some of these are pri-
marily used for batch systems, such as shortest job first scheduling. Others are
common in both batch systems and interactive systems. These agorithms include
round robin, priority scheduling, multilevel queues, guaranteed scheduling, lottery
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scheduling, and fair-share scheduling. Some systems make a clean separation be-
tween the scheduling mechanism and the scheduling policy, which allows users to
have control of the scheduling algorithm.

PROBLEMS

1. Suppose that you were to design an advanced computer architecture that did process
switching in hardware, instead of having interrupts. What information would the CPU
need? Describe how the hardware process switching might work.

2. On all current computers, at least part of the interrupt handlers are written in assembly
language. Why?

3. A computer system has enough room to hold four programs in its main memory.
These programs are idle waiting for I/O half the time. What fraction of the CPU time
is wasted?

4. A computer has 2 GB of RAM of which the operating system occupies 256 MB. The

processes are all 128 MB (for simplicity) and have the same characteristics. If the
goal is 99% CPU utilization, what is the maximum 1/O wait that can be tolerated?

5. In the text it was stated that the model of Fig. 2-11(a) was not suited to a file server
using a cache in memory. Why not? Could each process have its own cache?

6. If a multithreaded process forks, a problem occurs if the child gets copies of all the
parent's threads. Suppose that one of the original threads was waiting for keyboard
input. Now two threads are waiting for keyboard input, one in each process. Does this
problem ever occur in single-threaded processes?

7. In the text, we described a multithreaded Web server, showing why it is better than a
single-threaded server and a finite-state machine server. Are there any circumstances
in which a single-threaded server might be better? Give an example.

8. In Fig. 2-12 the register set is listed as a per-thread rather than a per-process item.
Why? After all, the machine has only one set of registers.

9. Why would a thread ever voluntarily give up the CPU by calling thread-yield? After
all, since there is no periodic clock interrupt, it may never get the CPU back.

10. Can a thread ever be preempted by a clock interrupt? If so, under what circum-
stances? If not, why not?

11. What is the biggest advantage of implementing threads in user space? What is the
biggest disadvantage?

12. In Fig. 2-15 the thread creations and messages printed by the threads are interleaved at
random. Is there a way to force the order to be strictly thread 1 created, thread 1 prints

message, thread 1 exits, thread 2 created, thread 2 prints message, thread 2 exists, and
so on? If so, how? If not, why not?
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13. In the discussion on global variables in threads, we used a procedure create-global to
allocate storage for a pointer to the variable, rather than the variable itself. Is this
essential, or could the procedures work with the values themselves just as well?

14. Consider a system in which threads are implemented entirely in user space, with the
run-time system getting a clock interrupt once a second. Suppose that a clock interrupt
occurs while some thread is executing in the run-time system. What problem might
occur? Can you suggest a way to solve it?

15. Suppose that an operating system does not have anything like the select system call to
see in advance if it is safe to read from a file, pipe, or device, but it does allow alarm
clocks to be set that interrupt blocked system calls. Is it possible to implement a
threads package in user space under these conditions? Discuss.

16. Can the priority inversion problem discussed in Sec. 2.3.4 happen with user-level
threads? Why or why not?

17. In Sec. 2.3.4, a situation with a high-priority process, H, and a low-priority process, L,
was described, which led to H looping forever. Does the same problem occur if
round-robin scheduling is used instead of priority scheduling? Discuss.

18. In a system with threads, is there one stack per thread or one stack per process when
user-level threads are used? What about when kernel-level threads are used? Explain.

19. What is arace condition?

20. When a compuiter is being developed, it is usually first simulated by a program that
runs one instruction at a time. Even multiprocessors are simulated strictly sequentially
like this. Is it possible for a race condition to occur when there are no simultaneous
events like this?

21. Does the busy waiting solution using the turn variable (Fig. 2-23) work when the two
processes are running on a shared-memory multiprocessor, that is, two CPUs sharing a
common memory?

22. Does Peterson's solution to the mutual exclusion problem shown in Fig. 2-24 work
when process scheduling is preemptive? How about when it is nonpreemptive?

23. Give a sketch of how an operating system that can disable interrupts could implement
semaphores.

24. Show how counting semaphores (i.e., semaphores that can hold an arbitrary value) can
be implemented using only binary semaphores and ordinary machine instructions.

25. If a system has only two processes, does it make sense to use a barrier to synchronize
them? Why or why not?

26. Synchronization within monitors uses condition variables and two special operations,
wait and signal. A more general form of synchronization would be to have a single
primitive, waituntil, that had an arbitrary Boolean predicate as parameter. Thus, one
could say, for example,

waituntil *<0ory + z<n

The signal primitive would no longer be needed. This scheme is clearly more general
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27.

28.

29.

30.

31.

32.

33.

34.
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than that of Hoare or Brinch Hansen, but it is not used. Why not? Hint: Think about
the implementation.

A fagt food restaurant has four kinds of employees: (1) order takers, who take custo-
mers' orders; (2) cooks, who prepare the food; (3) packaging specialists, who stuff the
food into bags; and (4) cashiers, who give the bags to customers and take their money.
Each employee can be regarded as a communicating sequential process. What form of
interprocess communication do they use? Relate this model to processes inUNIX-

Suppose that we have a message-passing system using mailboxes. When sending to a
full mailbox or trying to receive from an empty one, a process does not block. Instead,
it getsan error code back. The process responds to the error code by just trying again,
over and over, until it succeeds. Does this scheme lead to race conditions?

The CDC 6600 computers could handle up to 10 1/O processes simultaneously using
an interesting form of round-robin scheduling called processor sharing. A process
switch occurred after each instruction, so instruction 1 came from process 1, instruc-
tion 2 came from process 2, etc. The process switching was done by special hardware,
and the overhead was zero. If a process needed T sec to complete in the absence of
competition, how much time would it need if processor sharing was used with n proc-
esses?

Round-robin schedulers normally maintain a list of all runnable processes, with each
process occurring exactly once in the list. What would happen if a process occurred
twice in the list? Can you think of any reason for allowing this?

Can a measure of whether a process is likely to be CPU bound or 1/0 bound be deter-
mined by analyzing sour ce code? How can this be determined at run time?

In the section "When to Schedule," it was mentioned that sometimes scheduling could
be improved if an important process could play a role in selecting the next process to
run when it blocks. Give a situation where this could be used and explain how.

Fivejobs are waiting to berun. Their expected run times are 9, 6, 3,5, and X. In what
order should they be run to minimize average response time? (Your answer will
depend on X.)

Five batch jobs A through E, arrive at a computer center at almost the same time. They
have estimated running times of 10, 6, 2, 4, and 8 minutes. Their (externally deter-
mined) priorities are 3, 5, 2, 1, and 4, respectively, with 5 being the highest priority.
For each of the following scheduling algorithms, determine the mean process turn-
around time. Ignore process switching overhead.

(a) Round robin.

(b) Priority scheduling.

(c) First-come, first-served (runin order 10,6,2,4,8).
(d) Shortest job first.

For (a), assume that the system is multiprogrammed, and that each job gets its fair
share of the CPU. For (b) through (d) assume that only onejob at atime runs, until it
finishes. All jobs are completely CPU bound.
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A process running on CTSS needs 30 quanta to complete. How many times must it be
swapped in, including the very first time (before it has run at all)?

Can you think of a way to save the CTSS priority system from being fooled by ran-
dom carriage returns?
The aging algorithm with a = 111 is being used to predict run times. The previous four

runs, from oldest to most recent, are 40, 20, 40, and 15 msec. What is the prediction
of the next time?

A soft real-time system has four periodic events with periods of 50, 100, 200, and 250
msec each. Suppose that the four events require 35, 20, 10, and x msec of CPU time,
respectively. What is the largest value of x for which the system is schedulable?

Explain why two-level scheduling is commonly used.

Consider a system in which it is desired to separate policy and mechanism for the
scheduling of kernel threads. Propose a means of achieving this goal.

In the solution to the dining philosophers problem (Fig. 2-46), why is the state variable
set to HUNGRY in the procedure take-forkst

Consider the procedure put_forksin Fig. 2-20. Suppose that the variable state[i) was
set to THINKING after the two calls to test, rather than before. How would this
change affect the solution?

The readers and writers problem can be formulated in several ways with regard to
which category of processes can be started when. Carefully describe three different
variations of the problem, each one favoring (or not favoring) some category of proc-
esses. For each variation, specify what happens when a reader or a writer becomes
ready to access the database, and what happens when a process is finished using the
database.

Write a shell script that produces afile, of sequential numbers by reading the last num-
ber in the file, adding | toit, and then appending it to the file. Run one instance of the
script in the background and one in the foreground, each accessing the same file. How
long does it take before a race condition manifests itself? What is the critical region?
Modify the script to prevent therace (Hint: use

in file file.lock

to lock the data file).

Assume that you have an operating system that provides semaphores. Implement a
message system. Write the procedures for sending and receiving messages.

Solve the dining philosophers problem using monitors instead of semaphores.
Rewrite the program of Fig. 2-23 to handle more than two processes.

Write a producer-consumer problem that uses threads and shares a common buffer.
However, do not use semaphores or any other synchronization primitives to guard the
shared data structures. Just let each thread access them when it wants to. Use sleep
and wakeup to handle the full and empty conditions. See how long it takes for a fatal
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race condition to occur. For example, you might have the producer printa™* " »
once in a while. Do not print more than one number every minute because the /O
could affect the race conditions.

49. A process can be put into a round-robin queue more than once to give it a higher prior-
ity. Running multiple instances of a program each working on a different part of a data
pool can have the same effect. First write a program that tests a list of numbers for pn-
mality. Then devise a method to allow multiple instances of the program to run at
once in such a way that no two instances of the program will work on die same num-
ber. Can you in fact get through the list faster by running multiple copies of the pro-
gram? Note that your results will depend upon what else your computer is doing; on a
personal computer running only instances of this program you would not expect an
improvement, but on a system with other processes, you should be able to grab a
bigger share of the CPU this way.

MEMORY MANAGEMENT

Main memory (RAM) is an important resource that must be carefully man-
aged. While the average home computer nowadays has 10,000 times more memo-
ry as the IBM 7094, the largest computer in the world in the early 1960s, pro-
grams are getting bigger faster than memories. To paraphrase Parkinson's Law,
"Programs expand to fill the memory available to hold them." In this chapter we
will study how operating systems create abstractions from memory and how they
manage them.

What every programmer would like is a private, infinitely large, infinitely fast
memory that is also nonvolatile, that is, does not lose its contents when the elec-
tric power is switched off. While we are at it, why not make it inexpensive, too?
Unfortunately, technology does not provide such memories at present. Maybe
you will discover how to doit.

What is the second choice? Over the years, people discovered the concept of
amemory hierarchy, in which computers have afew megabytes of very fast, ex-
pensive, volatile cache memory, a few gigabytes of medium-speed, medium-
priced, volatile main memory, and a few terabytes of slow, cheap, nonvolatile
disk storage, not to mention removable storage, such as DVDs and USB sticks. It
is the job of the operating system to abstract this hierarchy into a useful model and
then manage the abstraction.

The part of the operating system that manages (part of) the memory hierarchy
is caled the memory manager. Itsjob is to efficiently manage memory: keep
track of which parts of memory are in use, allocate memory to processes when
they need it, and deallocate it when they are done.

173
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In this chapter we will investigate several different memory management
schemes, ranging from very simple to highly sophigticated. Since managing the
lowest level of cache memory is normaly done by the hardware, the focus of this
chapter will be on the programmer's modd of main memory and how it can be
managed well. The abstractions for, and the management of, permanent stor-
age__the disk—are the subject of the next chapter. We will start at the beginning

and look first a the smplest possible schemes and then gradudly progress to
more and more elaborate ones.

31 NO MEMORY ABSTRACTION

The smplest memory abstraction is no abgtraction at all. Early mainframe
computers (before 1960), early minicomputers (before 1970), and early personal
computers (before 1980) had no memory abstraction. Every program smply saw
the physica memory. When a program executed an instruction like

MOV REGISTERS,1000

the computer just moved the contents of physicd memory location 1000 to
REGISTER 1. Thus the model of memory presented to the programmer was sim-
ply physica memory, a set of addresses from 0 to some maximum, each address
corresponding to acell containing some number of bits, commonly eight.

Under these conditions, it was not possible to have two running programs in
memory a the same time. If the first program wrote a new value to, say, location
2000, this would erase whatever value the second program was storing there.
NoUiing would work and both programs would crash amost immediately.

Even with the modd of memory being just physical memory, several options
are possible. Three variations are shown in Fig. 3-1. The operating system may
be at the bottom of memory in RAM (Random Access Memory), as shown in
Fig. 3-1(a), or it may be in ROM (Read-Only Memory) at the top of memory, as
shown in Fig. 3-1(b), or the device drivers may be at the top of memory in a ROM
and the rest of the system in RAM down below, as shown in Fig. 3-1(c). The first
modd was formerly used on mainframes and minicomputers but is rarely used
any more. The second modd is used on some handheld computers and embedded
systems. The third modd was used by early personal computers (e.g., running
MSDOS), where the portion of the system in the ROM is called the BIOS (Basic
Input Output System). Models (a) and (c) have the disadvantage that a bug in the
user program can wipe out the operating system, possibly with disastrous results
(such as garbling the disk).

When the system is organized in this way, generally only one process a a
time can be running. As soon as the user types acommand, the operating system
copies the requested program from disk to memory and executes it. When the
process finishes, the operating system displays a prompt character and waits for a
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Figure 3-1. Three simple ways of organizing memory with an operating system
and one user process. Other possibilities also exist.

new command. When it receives the command, it loads a new program into mem-
ory, overwriting the first one.

One way to get some paralelism in a system with no memory abstraction is to
program with multiple threads. Since al threads in a process are supposed to see
the same memory image, the fact that they are forced to is not a problem. While
this idea works, it is of limited use since what people often want is unrelated pro-
grams to be running at the same time, something the threads abstraction does not
provide. Furthermore, any system that is so primitive as to provide no memory
abstraction is unlikely to provide a threads abstraction.

Running Multiple Programs Without a Memory Abstraction

However, even with no memory abstraction, it is possible to run multiple pro-
grams at the same time. What the operating system has to do is save the entire
contents of memory to a disk file, then bring in and run the next program. As long
as there is only one program at a time in memory, there are no conflicts. This
concept (swapping) will be discussed below.

With the addition of some special hardware, it is possible to run multiple pro-
grams concurrently, even without swapping. The early models of the IBM 360
solved the problem as follows. Memory was divided into 2-KB blocks and each
one was assigned a 4-bit protection key held in special registers inside the CPU.
A machine with a I-MB memory needed only 512 of these 4-bit registers for a
total of 256 bytes of key storage. The PSW (Program Status Word) also contained
a4-hit key. The 360 hardware trapped any attempt by a running process to access
memory with a protection code different from the PSW key. Since only the oper-
ating system could change the protection keys, user processes were prevented
from interfering with one another and with the operating system itself.
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Nevertheless, this solution had a major drawback, depicted in Fig. 3-2. Here
we have two programs, each 16 KB in size, as shown in Fig. 3-2(a) and (b). The
former is shaded to indicate that it has a different memory key than the latter. The
first program starts out by jumping to address 24, which contains a MOV instruc-
tion. The second program starts out by jumping to address 28, which contains a
CMP instruction. The instructions that are not relevant to this discussion are not
shown. When the two programs are loaded consecutively in memory starting a
address 0, we have the situation of Fig. 3-2(c). For this example, we assume the
operating system isin high memory and thus not shown.

32764

CMP 16412
16408
16404
16400
16396
16392
16388
JMP 28 16384
K '-0 i 16380 o) 1 16380 16380
17= -5
~ _ADD 28 CMP 28 ADD |28
MOV 24 24 MOV'%2| 24
20 20 2
16 16 16
12 12 12
8 8 a
4 4 4
L IMP 24 O IMP 28 0 AMP_24 0
@ ) ©

Figure 3-2. Illustration of the relocation problem, (a) A 16-KB program, (b)
Another 16-KB program, (c) The two programs loaded consecutively into mem-

ory.

After the programs are loaded they can be run. Since they have different
memory keys, neither one can damage the other. But the problem is of a different
nature. When the first program starts, it executes the IMP 24 instruction, which
jumps to the instruction, as expected. This program functions normally.

However, after the first program has run long enough, the operating system
may decide to run the second program, which has been loaded above the first one,
at address 16,384. The first instruction executed is JMP 28, which jumps to the
ADD instruction in the first program, instead of the CM P instruction it is supposed
to jump to. The program will most likely crash in well under 1 sec.
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The core problem here is that the two programs both reference absolute physi-
cal memory. That is not what we want at all. We want each program to reference
aprivate set of addresses local to it. We will show how this is achieved shortly.
What the IBM 360 did as a stop-gap solution was modify the second program on
the fly as it loaded it into memory using a technique known as static relocation.
It worked like this. When a program was loaded at address 16,384, the constant
16,384 was added to every program address during the load process. While this
mechanism works if done right, it is not a very general solution and slows down
loading. Furthermore, it requires extra information in all executable programs to
indicate which words contain (relocatable) addresses and which do not. After all
the "28" in Fig. 3-2(b) has to be relocated but an instruction like

MOVREGISTER1,28

which moves the number 28 to REGISTERI must not be relocated. The loader
needs some way to tell what is an address and what is aconstant.

Finally, as we pointed out in Chap. 1, history tends to repeat itself in the com-
puter world. While direct addressing of physical memory is but a distant memory
(sorry) on mainframes, minicomputers, desktop computers, and notebooks, the
lack of a memory abstraction is still common in embedded and smart card sys-
tems. Devices such as radios, washing machines, and microwave ovens are al full
of software (in ROM) these days, and in most cases the software addresses abso-
lute memory. This works because al the programs are known in advance and
users are not free to run their own software on their toaster.

While high-end embedded systems (such as cell phones) have elaborate oper-
ating systems, simpler ones do not. In some cases, there is an operating system,
but itisjust alibrary that is linked with the application program and provides sys-
tem calls for performing I/O and other common tasks. The popular e-cos operat-
ing system is a common exampl e of an operating system as library.

3.2 AMEMORY ABSTRACTION: ADDRESS SPACES

AH in all, exposing physical memory to processes has several major draw-
backs. First, if user programs can address every byte of memory, they can easily
trash the operating system, intentionally or by accident, bringing the system to a
grinding halt (unless there is specia hardware like the IBM 360's lock and key
scheme). This problem exists even if only one user program (application) is run-
ning. Second, with this model, it is difficult to have multiple programs running at
once (taking turns, if there is only one CPU). On personal computers, it is com-
mon to have several programs open at once (aword processor, an e-mail program,
and a Web browser, with one of them having the current focus, but the others
being reactivated at the click of a mouse. Since this situation is difficult to achieve
when there is no abstraction from physical memory, something had to be done.
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3.2.1 The Notion of an Address Space

Two problems have to be solved to alow multiple applications to be in mem-
ory at the same time without their interfering with each other: protection and relo-
caion. We looked a a primitive solution to the former used on the IBM 360:
labd chunks of memory with a protection key and compare the key of the execut-
ing process to that of every memory word fetched. However, this approach by it-
df does not solve the latter problem, athough it can be solved by relocating pro-
grams as they are loaded, but thisis adow and complicated solution.

A better solution is to invent a new abstraction for memory: the address space,
lust as the process concept creates a kind of abstract CPU to run programs, the ad-
dress gpace creates a kind of abstract memory for programs to live in. An ad-
dress space is the set of addresses that a process can use to address memory. Each
process has its own address space, independent of those belonging to other proc-
(except in some specid circumstances where processes want to share their
address spaces).

The concept of an address space is very general and occurs in many contexts.
Congder telephone numbers. In the U.S. and many other countries, alocal tele-
phone number is usudly a 7-digit number. The address space for telephone num-
bers thus runs from 0,000,000 to 9,999,999, although some numbers, such as those
beginning with 000 not used. With the growth of cell phones, modems, and fax
machines, this space is becoming too small, in which case more digits have to be
used. The address space for /O ports on the Pentium runs from 0 to 16383. 1Pv4
addresses are 32-bit numbers, so their address space runs from 0to 2** - 1 (again,
with some reserved numbers).

Address spaces do not have to be numeric. The set of .com Internet domains is
dso an address space. This address space consists of al the strings of length 2 to
63 characters that can be made using letters, numbers, and hyphens, followed by
.com. By now you should get theidea. It isfarly smple.

Somewhat harder is how to give each program its own address space, so ad-
dress 28 in one program means a different physical location than address 28 in an-
other program. Below we will discuss asmple way that used to be common but
has fdlen into disuse due to the ahility to put much more complicated (and better)
schemes on modern CPU chips.

Base and Limit Registers

This smple solution uses a particularly smple version of dynamic reloca-
tion. What it does is map each process address space onto a different part of
physcd memory in asimple way. The classcal solution, which was used on ma-
chines ranging from the CDC 6600 (the world's first supercomputer) to the Intel
(the heart of the origina IBM PC), is to equip each CPU with two special
hardware registers, usudly caled the base and limit registers. When base and
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limit registers are used, programs are loaded into consecutive memory locations
wherever there is room and without relocation during loading, as shown in Fig. 3-
2(c). When a process is run, the base register is loaded with the physical address
where its program begins in memory and the limit register is loaded with the
length of the program. In Fig. 3-2(c), the base and limit values that would be
loaded into these hardware registers when the first program is run are 0 and
16,384, respectively. The values used when the second program is run are 16,384
and 32,768, respectively. If a third 16-KB program were loaded directly above
the second one and run, the base and limit registers would be 32,768 and 16,384.

Every time a process references memory, either to fetch an instruction or read
or write a data word, the CPU hardware automatically adds the base value to the
address generated by the process before sending the address out on the memory
bus. Simultaneoudly, it checks if the address offered is equal to or greater than the
value in the limit register, in which case a fault is generated and the access is
aborted. Thus in the case of the first instruction of the second program in Fig. 3-
2(c), the process executes a

JMP28
instruction, but the hardware treats it as though it were
IJMP 16412

so it lands on the CMP instruction as expected. The settings of the base.and limit
registers during the execution of the second program of Fig. 3-2(c) are shown in
Fig. 3-3.

Using base and limit registers is an easy way to give each process its own pri-
vate address space because every memory address generated automatically has the
base register contents added to it before being sent to memory. In many imple-
mentations, the base and limit registers are protected in such a way that only the
operating system can modify them. This was the case on the CDC 6600, but not
on the Intel 8088, which did not even have the limit register. It did, however,
have multiple base registers, allowing program text and data, for example, to be
independently relocated, but offered no protection from out-of-range memory ref-
erences.

A disadvantage of relocation using base and limit registers is the need to per-
form an addition and a comparison on every memory reference. Comparisons can

be done fast, but additions are slow due to carry propagation time unless special
addition circuits are used.

3.2.2 Swapping

If the physical memory of the computer is large enough to hold al the proc-
esses, the schemes described so far will more or less do. But in practice, the total
amount of RAM needed by al the processes is often much more than can fit in
memory. On atypica Windows or Linux system, something like 40-60 processes
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Figure 3-3. Baseand limit registers can be used to give each process a separate
address space.

or more may be started up when the computer is booted. For example, when a
Windows gpplication is installed, it often issues commands so that on subsequent
sysem boots, a process will be started that does nothing except check for updates
to the application. Such a process can easily occupy 5-10 MB of memory. Other
background processes check for incoming mail, incoming network connections,
and many other things. And al this is before the first user program is started
Serious user gpplication programs nowadays can easily run from 50 to 200 MB
and more. Consequently, keeping all processes in memory all the time requires a
huge amount of memory and cannot be done if there is insufficient memory.

Two general approaches to dealing with memory overload have been devel-
oped over the years. The simplest strategy, called swapping, consists of bringing
in each process in its entirety, running it for a while, then putting it back on the
disk. Idle processes are mostly stored on disk, so they do not take up any memory
when they are not running (although some of them wake up periodically to do
their work, then go to sleep again). The other strategy, called virtual memory,
dlows programs to run even when they are only partially in main memory. Below
we will study swapping; in Sec. 3.3 we will examine virtual memory.
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The operation of a swapping system is illustrated in Fig. 3-4. Initially, only
process A is in memory. Then processes B and C are created or swapped in from
disk. In Fig. 3-4(d) A is swapped out to disk. Then D comes in and B goes out.
Finally A comes in again. Since A is now at a different location, addresses con-
tained in it must be relocated, either by software when it is swapped in or (more
likely) by hardware during program execution. For example, base and limit regis-
ters would work fine here.

Timeg
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Figure 34, Memory allocation changes as processes come inio memory and
leave it. The shaded regions are unused memory.

When swapping creates multiple holes in memory, it is possible to combine
them all into one big one by moving all the processes downward as far as pos-
sible. This technique is known as memory compaction. Itisusually not done be-
cause it requires a lot of CPU time. For example, on a 1-GB machine that can
copy 4 bytes in 20 nsec, it would take about 5 sec to compact al of memory.

A point that is worth making concerns how much memory should be allocated
for aprocess when it is created or swapped in. If processes are created with a fix-
ed size that never changes, then the alocation is simple: the operating system al-
locates exactly what is needed, no more and no less.

If, however, processes data segments can grow, for example, by dynamically
alocating memory from a heap, as in many programming languages, a problem
occurs whenever a process tries to grow. If a hole is adjacent to the process, it
can be alocated and the process alowed to grow into the hole. On the other
hand, if the process is adjacent to another process, the growing process will either
have to be moved to a hole in memory large enough for it, or one or more proc-
esses will have to be swapped out to create a large enough hole. If a process can-
not grow in memory and the swap area on the disk is full, the process will have to
suspended until some space is freed up (or it can be killed).



182 MEMORY MANAGEMENT CHAP. 3

If it is expected that most processes will grow as they run, it is probably a
good idea to alocate a little extra memory whenever a process is swapped in or
moved, to reduce the overhead associated with moving or swapping processes that
no longer fit in their alocated memory. However, when swapping processes to
disk, only the memory actudly in use should be swapped; it is wasteful to swap
the extra memory as well. In Fig. 3-5(a) we see a memory configuration in which
space for growth has been alocated to two processes.

B-Stack
R f h
oom for gront | Room for growth
B-Data
Actually in use B-Program
A-Stack
Room for growth
Room for growth
A-Data
Actually in use
A-Program
; Operating
Operating
System system

@ ®

Figure 3-5. (a) Allocating space for a growing data segment, (b) Allocating
space for a growing stack and a growing data segment.

If processes can have two growing segments—for example, the data segment
being used as a heap for variables that are dynamically allocated and released and
a stack segment for the norma loca variables and return addresses—an aterna-
tive arrangement suggests itsdf, namely that of Fig. 3-5(b). In this figure we see
that each process illustrated has a stack at the top of its allocated memory that is
growing downward, and a data segment just beyond the program text that is grow-
ing upward. The memory between them can be used for either segment. If it runs
out, the process will either have to be moved to a hole with sufficient space,
swapped out of memory until alarge enough hole can be created, or killed.

3.2.3 Managing Free Memory
When memory is assigned dynamically, the operating system must manage it.

In generd terms, there are two ways to keep track of memory usage: bitmaps and
freelists. In this section and the next one we will look at these two methods.
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Memory Management with Bitmaps

With a bitmap, memory is divided into allocation units as small as a few
words and as large as severa kilobytes. Corresponding to each alocation unit is a
bit in the bitmap, which is O if the unit is free and 1 if it is occupied (or vice
versa). Figure 3-6 shows part of memory and the corresponding bitmap.
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Figure 3-6. (a) A part of memory with five processes and three holes. The tick
marks show the memory allocation units. The shaded regions (0 in the bitmap)
are free, (b) The corresponding bitmap, (c) The same information as a list.

The size of the allocation unit is an important design issue. The smaller the a-
location unit, the larger the bitmap. However, even with an alocation unit as
small as 4 bytes, 32 bits of memory will require only 1 bit of the map. A memory
of 32n bits will use n map bits, so the bitmap will take up only 1/33 of memory. If
the allocation unit is chosen large, the bitmap will be smaller, but appreciable
memory may be wasted in the last unit of the process if the process size is not an
exact multiple of the alocation unit.

A bitmap provides a simple way to keep track of memory words in a fixed
amount of memory because the size of the bitmap depends only on the size of
memory and the size of the allocation unit. The main problem is that when it has
been decided to bring a k unit process into memory, the memory manager must
search the bitmap to find arun of k consecutive 0 bits in the map. Searching a bit-
map for a run of a given length is a slow operation (because the run may straddle
word boundaries in the map); thisis an argument against bitmaps.

Memory Management with Linked Lists
Another way of keeping track of memory is to maintain a linked list of allo-

cated and free memory segments, where a segment either contains a process or is
an empty hole between two processes. The memory of Fig. 3-6(a) is represented
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in Fig. 3-6(C) as a linked list of segments. Each entry in the list specifies a hole
(H) or process (P), the address at which it starts, the length, and a pointer to the
next entry.

In this example, the segment list is kept sorted by address. Sorting this way
has the advantage that when a process terminates or is swapped out, updating the
lig is straightforward. A terminating process normally has two neighbors (except
when it is at the very top or bottom of memory). These may be either processes or
holes, leading to the four combinations of Fig. 3-7. In Fig. 3-7(a) updating the list
requires replacing aP by an H. In Fig. 3-7(b) and Fig. 3-7(c), two entries are coa
lesced into one, and the list becomes one entry shorter. In Fig. 3-7(d), three en-
tries are merged and two items are removed from thelist.

Since the process table dlot for the terminating process will normally point to
the list entry for the process itsdlf, it may be more convenient to have thelist as a
double-linked list, rather than the single-linked list of Fig. 3-6(c). This structure
makes it easier to find the previous entry and to see if a merge is possible.

Before X terminates After X terminates

(3 X becomes m

(b) becomes
becomes

becomes

> >
3 I
3 H H

Figure 3-7. Four neighbor combinations for the terminating process, X.

When the processes and holes are kept on alist sorted by address, severa a-
gorithms can be used to alocate memory for a created process (or an existing
process being swapped in from disk). We assume that the memory manager
knows how much memory to alocate. The smplest agorithm is first fit. The
memory manager scans aong the list of segments until it finds a hole that is big
enough. The hole is then broken up into two pieces, one for the process and one
for the unused memory, except in the statistically unlikely case of an exact fit.
First fit isafast algorithm because it searches as little as possible.

A minor variation of first fit isnext fit. It works the same way as first fit, ex-
cept that it keeps track of where it is whenever it finds a suitable hole. The next
time it is called to find a hole, it starts searching the list from the place where it
left off last time, instead of always a the beginning, as first fit does. Simulations
by Bays (1977) show that next fit gives slightly worse performance than first fit.

Another well-known and widely used algorithm is best fit. Best fit searches
the entire list, from beginning to end, and takes the smallest hole that is adequate.
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Rather than breaking up a big hole that might be needed later, best fit tries to find
a hole that is close to the actua size needed, to best match the request and the
available holes.

As an example of first fit and best fit, consider Fig. 3-6 again. If a block of
size 2 is needed, first fit will allocate the hole at 5, but best fit will alocate the
holeat 18.

Best fit is slower than first fit because it must search the entire list every time
it is caled. Somewhat surprisingly, it also results in more wasted memory than
first fit or next fit because it tends to fill up memory with tiny, useless holes. First
fit generates larger holes on the average.

To get around the problem of bresking up nearly exact matches into a process
and a tiny hole, one could think about worst fit, that is, always take the largest
available hole, so that the new hole will be big enough to be useful. Simulation
has shown that worgt fit is not a very good idea either.

All four agorithms can be speeded up by maintaining separate lists for proc-
esses and holes. In this way, al of them devote their full energy to inspecting
holes, not processes. The inevitable price that is paid for this speedup on aloca-
tion is the additional complexity and slowdown when deallocating memory, since
a freed segment has to be removed from the process list and inserted into the hole
list.

If distinct lists are maintained for processes and holes, the hole list may be
kept sorted on size, to make best fit faster. When best fit searches a list of holes
from smallest to largest, as soon as it finds a hole that fits, it knows that the hole is
the smallest one that will do the job, hence the best fit. No further searching is
needed, as it is with the single list scheme. With a hole list sorted by size, first fit
and best fit are equally fast, and next fit is pointless.

When the holes are kept on separate lists from the processes, a smal optimi-
zation is possible. Instead of having a separate set of data structures for maintain-
ing the hole ligt, as is done in Fig. 3-6(c), the information can be stored in the
holes. The first word of each hole could be the hole size, and the second word a
pointer to the following entry. The nodes of the list of Fig. 3-6(c), which require
three words and one bit (P/H), are no longer needed.

Yet another alocation algorithm is quick fit, which maintains separate lists
for some of the more common sizes requested. For example, it might have a table
with n entries, in which the first entry is a pointer to the head of a list of 4-KB
holes, the second entry is apointer to a list of 8-KB holes, the third entry a pointer
to 12-KB holes, and so on. Holes df, say, 21 KB, could be put on either the 20-KB
list or on a specid list of odd-sized holes.

With quick fit, finding a hole of the required size is extremely fagt, but it has
the same disadvantage as all schemes that sort by hole size, namely, when a proc-
ess terminates or is swapped out, finding its neighbors to see if amerge is possible
is expensive. If merging is not done, memory will quickly fragment into a large
number of smjfofo&[; into which no processes fit.
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3.3 VIRTUAL MEMORY

While base and limit registers can be used to create the abgtraction of address
spaces, there is another problem that has to be solved: managing bloatware. While
memory sizes are increasing rapidly, software sizes are increasing much faster. In
the 1980s, many universities ran a timesharing system with dozens of (more-or-
less satisfied) users running smultaneously on a 4-MB VAX. Now Microsoft
recommends having at least 512-MB for a single-user Vista system to run simple
applications and 1 GB if you are doing anything serious. The trend toward multi-
media puts even more demands on memory.

As a conseguence of these developments, there is a need to run programs that
are too large to fit in memory, and there is certainly a need to have systems that
can support multiple programs running simultaneoudly, each of which fits in
memory but which collectively exceed memory. Swapping is not an attractive
option, since atypica SATA disk has a peak trandfer rate of at most 100 MB/sec,
which means it takes at least 10 sec to swap out a 1-GB program and another 10
Sec to swap in a 1-GB program.

The problem of programs larger than memory has been around since the
beginning of computing, albeit in limited areas, such as science and engineering
(smulating the creation of the universe or even simulating a new arcraft takes a
lot of memory). A solution adopted in the 1960s was to split programs into little
pieces, caled overlays. When aprogram started, al that was loaded into memory
was the overlay manager, which immediately loaded and ran overlay 0. When it
was done, it would tell the overlay manager to load overlay 1, either above over-
lay 0 in memory (if there was space for it) or on top of overlay O (if there was no
space). Some overlay systems were highly complex, alowing many overlays in
memory at once. The overlays were kept on the disk and swapped in and out of
memory by the overlay manager.

Although the actual work of swapping overlays in and out was done by the
operating system, the work of splitting the program into pieces had to be done
manudly by the programmer. Splitting large programs up into small, modular
pieces was time consuming, boring, and error prone. Few programmers were
good at this. It did not take long before someone thought of a way to turn the
wholejob over to the computer.

The method that was devised (Fotheringham, 1961) has come to be known as
virtual memory. The basic idea behind virtua memory is that each program has
its own address space, which is broken up into chunks caled pages. Each pageis
a contiguous range of addresses. These pages are mapped onto physical memory,
but not al pages have to be in physicad memory to run the program. When the
program references a part of its address space that is in physica memory, the
hardware performs the necessary mapping on the fly. When the program refer-

ences apat of its address gpace that isnot in physicd memory, the operating sys-
tem is derted to go get the missing piece and re-execute the instruction that failed.
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In a sense, virtua memory is a generaization of the base and limit register
idea. The 8088 had separate base registers (but no limit registers) for text and
data. With virtuad memory, instead of having separate relocation for just the text
and data segments, the entire address space can be mapped onto physical memory
in fairly small units. We will show how virtual memory isimplemented below.

Virtual memory.worksjust fine in a multiprogramming system, with bits and
pieces of many programs in memory at once. While a program is waiting for piece
of itself to be read in, the CPU can be given to another process.

3.3.1 Paging

Most virtual memory systems use a technique called paging, which we will
now describe. On any computer, programs reference a set of memory addresses.
When a program executes an instruction like

MOV REG, 1000

it does so to copy the contents of memory address 1000 to REG (or vice versa, de-
pending on the computer). Addresses can be generated using indexing, base reg-
isters, segment registers, and other ways.

The CPU sends virtual

CPU addressesto the MMU
package
CPU
Memory Disk
- management Memary controller
unit
\ Bus
The MMU sends physical
addresses to the memory

Figure 3-8. The position and function of the MMU. Here the MMU is shown
as being a part of the CPU chip because it commonly is nowadays. However,
logically it could be a separate chip and was in years gone by.

These program-generated addresses are called virtual addresses and form the

virtual address space. On computers without virtual memory, the virtual address
is put directly onto the memory bus and causes the physical memory word with
the same address to be read or written. When virtual memory i$ used, the virtual
addresses do not go directly to the memory bus. Instead, they go to an MMU
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(Memory Management Unit) that maps the virtual addresses onto the physical
memory addresses, asiillustrated in Fig. 3-8.

A very smple example of how this mapping works is shown in Fig. 3-9. In
this example, we have a computer that generates 16-bit addresses, from O up to
64K. These are the virtud addresses. This computer, however, has only 32 KB of
physicd memory. So although 64-KB programs can be written, they cannot be
loaded into memory in their entirety and run. A complete copy of a program's
core image, up to 64 KB, must be present on the disk, however, so that pieces can
be brought in as needed.

The virtud address space is divided into fixed-size units called pages. The
corresponding units in the physicd memory are called page frames. The pages
and page frames are generally the same size. In this example they are 4 KB, but
page sizes from 512 bytes to 64 KB have been used in real systems. With 64 KB
of virtual address space and 32 KB of physicd memory, we get 16 virtual pages
and 8 page frames. Transfers between RAM and disk are always in whole pages.

Virtual
address
space
60K -64K X
56K -60K X |]e Virtud page
52K -56K X
48K-52K X
44K -48K 7
40K-44K X Physical
36K -40K 5 memory
32K-36K X \ \ address
28K-32K| X \ 28K-32K
24K -28K X 24K -28K
20K-24K| 3 20K-24K
16K-20K 4 16K-20K
12K-16K| O 12K-16K
8K-12K 6 8K-12K
AK8K| 1 4K-8K
ok-ak| 2 |/ \ }yOK-4K
Pagje frame

Figure 3-9. The reation between virtual addresses and physical memory ad-
dresses is given by the page table. Every page begins on a multiple of 4096 and
ends 4095 addresses higher, so 4K-8K really means 4096-8191 and 8K to 12K
means 8192-12287.

The notetion in Fig. 3-9 is as follows. The range marked OK-"K means that
the virtud or physical addresses in that page are 0 to 4095. The range 4K-8K

SEC. 33 VIRTUAL MEMORY 189

refers to addresses 4096 to 8191, and so on. Each page contains exactly 4096 ad-
dresses starting at a multiple of 4096 and ending one shy of a multiple of 4096.
When the program tries to access address O, for example, using the instruction

MOV REG,0

virtual address 0 is sent to the MMU. The MMU sees that this virtual address falls
in page 0 (0 to 4095), which according to its mapping is page frame 2 (8192 to
12287). It thus transforms the address to 8192 and outputs address 8192 onto the
bus. The memory knows nothing at all about the MMU and just sees a request for
reading or writing address 8192, which it honors. Thus, the MMU has effectively
mapped al virtual addresses between 0 and 4095 onto physical addresses 8192 to
12287.

Similarly, theinstruction

MOV REG.8192
is effectively transformed into

MOV REG.24576

because virtual address 8192 (in virtua page 2) is mapped onto 24576 (in physical
page frame 6). As a third example, virtual address 20500 is 20 bytes from the
start of virtual page 5 (virtua addresses 20480 to 24575) and maps onto'physical
address 12288 + 20 = 12308.

By itsdlf, this ability to map the 16 virtual pages onto any of the eight page
frames by setting the MMU's map appropriately does not solve the problem that
the virtual address spaceis larger than the physical memory. Since we have only
eight physical page frames, only eight of the virtual pages in Fig. 3-9 are mapped
onto physical memory. The others, shown as a cross in the figure, are not mapped.
In the actual hardware, a Present/absent bit keeps track of which pages are phys-
ically present in memory.

What happens if the program references an unmapped addresses, for example,
by using the instruction

MOV REG.32780

which is byte 12 within virtual page 8 (starting at 32768)? The MMU notices that
the page is unmapped (indicated by a cross in the figure) and causes the CPU to
trap to the operating system. This trap is called a page fault. The operating sys-
tem picks alittle-used page frame and writes its contents back to the disk (if it is
not already there). It then fetches the pagejust referenced into the page frame just
freed, changes the map, and restarts the trapped instruction.

For example, if the operating system decided to evict page frame I, it would
load virtual page 8 at physical address 8192 and make two changes to the MMU
map. First, it would mark virtual page |I's entry as unmapped, to trap any future
accesses to virtual addresses between 4096 and 8191. Then it would replace the
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cross in virtud page 8's entry with a 1, so that when the trapped instruction is re-
executed, it will map virtual address 32780 to physical address 4108 (4096 + 12).
Now let us look inside the MMU to see how it works and why we have cho-
sen to use a page Sze that is apower of 2. In Fig. 3-10 we see an example of a
virtua address, 8196 (0010000000000100 in binary), being mapped using the
MMU map of Fig. 39- The incoming 16-bit virtual address is split into a 4-bit
page number and a 12-bit offset. With 4 bits for the page number, we can have 16
pages, and with 12 bits for the offset, we can address all 4096 bytes within a page.

) ) ) o Outgoing
Li)110l0)o j oololbiolo  glVjda pryscal
| (24580)

000
000
000
000
11
000
101
000
teble 000
000
011
100
000
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010

12-bit offset
copied directly
frominput

to output

110

bk |k |k |r|o|o|o|k|o|r|o|o|o|o

-Present/
absent bit

Virtud page=2is used

asan index into the )

page table Incoming
virtual
address

foloh iolojoiofojojojoioloh joT™] (8196)

Figure 3-10. Theinternal operation of the MM U with 16 4-K B pages.

The page number is used as an index into the page table, yielding the number
of the page frame corresponding to that virtual page. If the Present/absent bit is
0, atrap to the operating system is caused. If the bit is 1, the page frame number
found in the page table is copied to the high-order 3 bits of the output register,
along with the 12-hit offset, which is copied unmodified from the incoming virtual
address. Together they form a 15-bit physical address. The output register is then
put onto the memory bus as the physical memory address.
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3.3.2 Page Tables

In a simple implementation, the mapping of virtual addresses onto physica
addresses can be summarized as follows: the virtual address is split into a virtual
page number (high-order bits) and an offset (low-order bits). For example, with a
16-hit address and a4-KB page size, the upper 4 hits could specify one of the 16
virtual pages and the lower 12 bits would then specify the byte offset (0 to 4095)
within the selected page. However a split with 3 or 5 or some other number of bits
for the page is also possible. Different splits imply different page sizes.

The virtual page number is used as an index into the page table to find the
entry for that virtua page. From the page table entry, the page frame number (if
any) is found. The page frame number is attached to the high-order end of the
offset, replacing the virtua page number, to form a physical address that can be
sent to the memory.

Thus the purpose of the page table is to map virtual pages onto page frames.
Mathematically speaking, the page table is a function, with the virtual page num-
ber as argument and the physical frame number as result. Using the result of this
function, the virtual page field in a virtua address can be replaced by a page
frame field, thus forming a physical memory address.

Structure of a Page Table Entry

Let us now turn from the structure of the page tables in the large, to the details
of a single page table entry. The exact layout of an entry is highly machine depen-
dent, but the kind of information present is roughly the same from machine to ma-
chine. In Fig. 3-11 we give a sample page table entry. The size varies from com-
puter to computer, but 32 bits is a common size. The most important field is the
Pageframe number. After all, the goa of the page mapping is to output this val-
ue. Next to it we have the Present/absent bit. If this bit is 1, the entry is vaid and
can be used. If it is0, the virtua page to which the entry belongs is not currently
in memory. Accessing a page table entry with this bit set to O causes a page faullt.

Caching
disabled  Modified Present/absent
=4
Page frame number
, 11

S 4
Referenced  Protection

Figure 3-11. A typical page table entry.
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The Protection bits tell what kinds of access are permitted. In the simplest
form, this fidd contains 1 bit, with O for read/write and 1 for read only. A more
sophigticated arrangement is having 3 bits, one hit each for enabling reading, writ-
ing, and executing the page.

The Modified and Referenced hits keep track of page usage. When a page is
written to, the hardware automatically sets the Modified bit. This bit is of value
when the operating system decides to reclaim a page frame. If the page in it has
been modified (i.e., is "dirty"), it must be written back to the disk. If it has not
been modified (i.e., is "clean"), it can just be abandoned, since the disk copy is
dill valid. The hit is sometimes called the dirty bit, since it reflects the page's
Sate.

The Referenced hit is set whenever apage is referenced, either for reading or
writing. Its vadue is to help the operating system choose a page to evict when a
page fault occurs. Pages that are not being used are better candidates than pages
that are, and this bit plays an important role in severa of the page replacement al-
gorithms that we will study later in this chapter.

Findly, the lagt bit allows caching to be disabled for the page. This feature is
important for pages that map onto device registers rather than memory. If the op-
erating system is gitting in atight loop waiting for some 1/O device to respond to a
command it was just given, it is essentia that the hardware keep fetching the word
from the device, and not use an old cached copy. With this bit, caching can be
turned off. Machines that have a separate 1/0 space and do not use memory map-
ped 1/O do not need this hit.

Note that the disk address used to hold the page when it is not in memory is
not part of the page table. The reason is simple. The page table holds only that
information the hardware needs to trandate a virtual address to a physical address.
Information the operating system needs to handle page faults is kept in software
tables insgde the operating system. The hardware does not need it.

Before getting into more implementation issues, it is worth pointing out again
thet what virtua memory fundamentally does is create a new abstraction—the ad-
dress gpace—which is an abstraction of physicd memory, just as a process is an
abstraction of the physical processor (CPU). Virtual memory can be implemented
by bresking the virtud address space up into pages, and mapping each one onto
some page frame of physicd memory or having it (temporarily) unmapped. Thus
this chapter is badicaly about an abstraction created by the operating system and

how that abstraction is managed.

3.3.3 Speeding Up Paging

We have just seen the basics of virtual memory and paging. It is now time to
go into more detail about possible implementations. In any paging system, two
mgor issues must be faced:
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1. The mapping from virtual address to physical address must be fast.
2. If the virtual address space is large, the page table will be large.

The first point is a consequence of the fact that the virtual-to-physical map-
ping must be done on every memory reference. All instructions must ultimately
come from memory.and many of them reference operands in memory as well.
Consequently, it is necessary to make one, two, or sometimes more page table ref-
erences per instruction. If an instruction execution takes, say, 1 nsec, the page
table lookup must be done in under 0.2 nsec to avoid having the mapping become
a major bottleneck.

The second point follows from the fact that al modern computers use virtual
addresses of at least 32 bits, with 64 bits becoming increasingly common. With,
say, a4-KB page size, a 32-hit address space has 1 million pages, and a 64-hit ad-
dress space has more than you want to contemplate. With | million pages in the
virtual address space, the page table must have 1 million entries. And remember
that each process needs its own page table (because it has its own virtual address
space).

The need for large, fast page mapping is a significant constraint on the way
computers are built. The simplest design (at least conceptually) is to have a single
page table consisting of an array of fast hardware registers, with one entry for
each virtual page, indexed by virtual page number, as shown in Fig. 3-10." When a
process is started up, the operating system loads the registers with the process
page table, taken from a copy kept in main memory. During process execution, no
more memory references are needed for the page table. The advantages of this
method are that it is straightforward and requires no memory references during
mapping. A disadvantage is that it is unbearably expensive if the page table is
large. Another is that having to load the full page table a every context switch
hurts performance.

At the other extreme, the page table can be entirely in main memory. All the
hardware needs then is a single register that points to the start of the page table.
This design allows the virtual-to-physical map to be changed at a context switch
by reloading one register. Of course, it has the disadvantage of requiring one or
more memory references to read page table entries during the execution of each
instruction, making it very slow.

Translation Lookaside Buffers

Let us now look at widely implemented schemes for speeding up paging and
for handling large virtual address spaces, starting with the former. The starting
point of most optimization techniques is that the page table is in memory. Poten-
tidly, this design has an enormous impact on performance. Consider, for example,
a l-byte instruction that copies one register to another. In the absence of paging,
this instruction makes only one memory reference, to fetch the instruction. With
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paging, at least one additional memory reference will be needed, to access the
page table. Since execution speed is generdly limited by the rate at which the
CPU can get ingtructions and data out of the memory, having to make two memo-
ry references per memory reference reduces performance by hdf. Under these
conditions, no one would use paging.

Computer designers have known about this problem for years and have come
up with a solution. Their solution is based on the observation that most programs
tend to make a large number of references to a small number of pages, and not the
other way around. Thus only a smadll fraction of the page table entries are heavily
read; the rest are barely used at all.

The solution that has been devised is to equip computers with a small hard-
ware device for mapping virtua addresses to physical addresses without going
through the page table. The device, cdled a TLB (Trandation Lookaside Buff-
er) or sometimes an associative memory, is illustrated in Fig. 3-12. It is usually
ingde the MMU and congists of a small number of entries, eight in this example,
but rarely more than 64. Each entry contains information about one page, includ-
ing the virtua page number, a bit that is set when the page is modified, the protec-
tion code (read/write/execute permissions), and the physical page frame in which
the page is located. These fidds have a one-to-one correspondence with the fields
in the page table, except for the virtual page number, which is not needed in the
page table. Another bit indicates whether the entry is valid (i.e., in use) or not.

valid | Virtual page | Modified | Protection | Page frame
1 140 1 RW 31
1 20 0 R X 38
1 130 1 RW 29
1 129 1 RW 62
1 19 0 R X 50
1 21 0 R X 45
1 860 1 RW 14
1 861 1 RW 75

Figure3-12. A TLB to speed up paging.

An example that might generate the TLB of Fig. 3-12 is a process in a loop
that spans virtual pages 19, 20, and 21, so that these TLB entries have protection
codes for reading and executing. The main data currently being used (say, an
array being processed) are on pages 129 and 130. Page 140 contains the indices
usd in the array calculations. Findly, the stack is on pages 860 and 861.

Let us now see how the TLB functions. When a virtual address is presented to
the MMU for trandation, the hardware first checks to see if its virtual page num-
ber is present in the TLB by comparing it to al the entries simultaneoudly (i.e., in
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parallel). If a valid match is found and the access does not violate the protection
bits, the page frame is taken directly from the TLB, without going to the page
table. If the virtual page number is present in the TLB but the instruction is trying
to write on aread-only page, a protection fault is generated.

The interesting case is what happens when the virtual page number is not in
the TLB. The MMU detects the miss and does an ordinary page table lookup. It
then evicts one of the entries from the TLB and replaces it with the page table
entry just looked up. Thus if that page is used again soon, the second time it will
result in a TLB hit rather than a miss. When an entry is purged from the TLB, the
modified hit is copied back into the page table entry in memory. The other values
are dready there, except the reference bit. When the TLB is loaded from the page
table, al the fields are taken from memory.

Software TLB Management

Up until now, we have assumed that every machine with paged virtual memo-
ry has page tables recognized by the hardware, plus a TLB. In this design, TLB
management and handling TLB faults are done entirely by the MMU hardware.
Traps to the operating system occur only when a page is not in memory.

In the past, this assumption was true. However, many modern RISC ma
chines, including the SPARC, MIPS, and HP PA, do nearly all of this page man-
agement in software. On these machines, the TLB entries are explicitly loaded by
the operating system. When a TLB miss occurs, instead of the MMU just going to
the page tables to find and fetch the needed page reference, it just generates a
TLB fault and tosses the problem into the lap of the operating system. The system
must find the page, remove an entry from the TLB, enter the new one, and restart
the instruction that faulted. And, of course, all of this must be donein a handful of
instructions because TLB misses occur much more frequently than page faults.

Surprisingly enough, if the TLB is reasonably large (say, 64 entries) to reduce
the miss rate, software management of the TLB turns out to be acceptably effi-
cient. The main gain here is a much simpler MM U, which frees up a considerable
amount of area on the CPU chip for caches and other features that can improve
performance. Software TLB management is discussed by Uhlig et al. (1994).

Various strategies have been developed to improve performance on machines
that do TLB management in software. One approach attacks both reducing TLB
misses and reducing the cost of a TLB miss when it does occur (Bala et al., 1994).
To reduce TLB misses, sometimes the operating system can use its intuition to
figure out which pages are likely to be used next and to preload entries for them in
the TLB. For example, when a client process sends a message to a server process
on the same maching, it is very likely that the server will have to run soon. Know-
ing this, while processing the trap to do the send, the system can also check to see
where the server's code, data, and stack pages are and map them in before they
get achance to cause TLB faults.
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The normal way to process a TLB miss, whether in hardware or in software,
is to go to the page table and perform the indexing operations to locate the page
referenced. The problem with doing this search in software is that the pages hold-
ing the page table may not be in the TLB, which will cause additional TLB faults
during the processing. These faults can be reduced by maintaining a large (e.g.,
4-KB) software cache of TLB entries in a fixed location whose page is always
kept in the TLB. By first checking the software cache, the operating system can
substantially reduce TLB misses.

When software TLB management is used, it is essential to understand the dif-
ference between two kinds of misses. A soft miss occurs when the page refer-
enced is not in the TLB, but is in memory. All that is needed here is for the TLB
to be updated. No disk 1/0 is needed. Typically a soft miss takes 10-20 machine
ingtructions to handle and can be completed in a few nanoseconds. In contrast, a
hard miss occurs when the page itsdf is not in memory (and of course, aso not in
the TLB). A disk access is required to bring in the page, which takes severa
milliseconds. A hard miss is easily a million times slower than a soft miss.

3.3.4 Page Tablesfor Large Memories

TLBs can be used to speed up virtual address to physical address trandation
over the origina page-table-in-memory scheme. But that is not the only problem
we have to tackle. Another problem is how to deal with very large virtual address
spaces. Below we will discuss two ways of dealing with them.

Multilevel Page Tables

As afirgt approach, consider the use of a multilevel page table. A simple ex-
ample is shown in Fig. 3-13. In Fig. 3-13(8) we have a 32-hit virtual address that
is partitioned into a 10-bit PT1 fidd, a 10-hit PT2 field, and a 12-bit Offset field.
Since offsets are 12 hits, pages are 4 KB, and there are atotal of 2°° of them.

The secret to the multilevel page table method is to avoid keeping all the page
tables in memory all the time. In particular, those that are not needed should not
be kept around. Suppose, for example, that a process needs 12 megabytes, the
bottom 4 megabytes of memory for program text, the next 4 megabytes for data,
and the top 4 megabytes for the stack. In between the top of the data and the bot-
tom of the stack is agigantic hole that is not used.

In Fig. 3-13(b) we see how the two-level page table works in this example.
On the left we have the top-level page table, with 1024 entries, corresponding to
the 10-bit PT1 fiddd. When a virtual address is presented to the MMU, it first
extracts the PT1 field and uses this value as an index into the top-level page table.
Each of these 1024 entries represents 4M because the entire 4-gigabyte (i.e., 32-
bit) virtua address space has been chopped-into chunks of 4096 bytes.
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Figure 3-13. (a) A 32-bit address with two page table fields, (b) Two-level
pagetables.

The entry located by indexing into the top-level page table yields the address
or the page frame number of a second-level page table. Entry O of the top-level
page table points to the page table for the program text, entry 1 points to the page
table for the data, and entry 1023 points to the page table for the stack. The other
(shaded) entries are not used. The PT2 field is now used as an index into the
selected second-level page table to find the page frame number for the page itsalf.

As an example, consider the 32-bit virtual address 0x00403004 (4,206,596
decimal), which is 12,292 bytes into the data. This virtual address corresponds to
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memory
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PT 1 =1, PT2 = 2, and Offset =4. The MMU first uses PT1 to index into the
top-level page table and obtain entry 1, which corresponds to addresses 4M to 8M.
It then uses PT2 to index into the second-level page table just found and extract
entry 3, which corresponds to addresses 12288 to 16383 within its 4M chunk (i.e.,
absolute addresses 4,206,592 to 4,210,687). This entry contains the page frame
number of the page containing virtual address 0x00403004. If that page is not in
memory, the Present/absent bit in the page table entry will be zero, causing a
page fault. If the page is in memory, the page frame number taken from the sec-
ond-level page table is combined with the offset (4) to congtruct the physicd ad-
dress. This address is put on the bus and sent to memory.

The interesting thing to note about Fig. 3-13 is that dthough the address space
contains over amillion pages, only four page tables are actualy needed: the top-
level table, and the second-level tables for 0 to 4M (for the program text), 4M to
8M (for the data), and the top 4M (for the stack). The Present/absent bitsin 1021
entries of the top-level page table are st to O, forcing a page fault if they are ever
accessed. Should this occur, the operating system will notice that the process is
trying to reference memory that it is not supposed to and will take appropriate ac-
tion, such as sending it a signa or killing it. In this example we have chosen
round numbers for the various sizes and have picked PT1 equa to PT2, but in ac-
tud practice other values are also possible, of course.

The two-level page table system of Fig. 3-13 can be expanded to three, four,
or more levels. Additiond levels give more flexibility, but it is doubtful that the
additional complexity is worth it beyond three levels.

Inverted Page Tables

For 32-bit virtud address spaces, the multilevel page table works reasonably
well. However, as 64-bit computers become more common, the situation changes
dragticdly. If the address space is now 2°* bytes, with 4-KB pages, we need a
page table with 2°* entries. If each entry is 8 bytes, the table is over 30 million
gigabytes (30 PB). Tying up 30 million gigabytesjust for the page table is not a
good idea, not now and probably not next year either. Consequently, a different
solution is needed for 64-bit paged virtua address spaces.

One such solution is the inverted page table. In this design, there is one
entry per page frame in real memory, rather than one entry per page of virtual ad-
dress space. For example, with 64-bit virtual addresses, a4-KB page, and 1 GB of
RAM, an inverted page table only requires 262,144 entries. The entry keeps track
of which (process, virtud page) is located in the page frame.

Although inverted page tables save vast amounts of space, a least when the
virtud address space is much larger than the physical memory, they have a seri-
ous downside: virtual-to-physical trandation becomes much harder. When process
n references virtud page p, the hardware can no longer find the physical page by
using p as an index into the page table. Instead, it must search the entire inverted
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page table for an entry (n, p). Furthermore, this search must be done on every
memory reference, not just on page faults. Searching a 256K table on every mem-
ory reference is not the way to make your machine blindingly fast.

The way out of this dilemma is to use the TLB. If the TLB can hold dl of the
heavily used pages, trandation can happen just as fast as with regular page tables.
On a TLB miss, however, the inverted page table has to be searched in software.
One feasible way to accomplish this search is to have a hash table hashed on the
virtud address. All the virtual pages currently in memory that have the same hash
value are chained together, as shown in Fig. 3-14. If the hash table has as many
dots as the machine has physical pages, the average chain will be only one entry
long, greatly speeding up the mapping. Once the page frame number has been
found, the new (virtual, physical) pair is entered into the TLB.

Traditional page
table with an entry
far each of the 252
pages

252-1

1-GB physical
memory has2**

4KB page frames Hash table
2's -1 218-1

0

Indexed Indexed
by virtual by hash on Virtua Page
page virtual page page frame

Figure 3-14. Comparison of atraditional page table with an inverted page table.

Inverted page tables are common on 64-bit machines because even with a
very large page size, the number of page table entries is enormous. For example,
with 4-MB pages and 64-bit virtual addresses, 2** page table entries are needed.
Other approaches to handling large virtual memories can be found in Taluri et al.
(1995).

34 PAGE REPLACEMENT ALGORITHMS

When a page fault occurs, the operating system has to choose a page to evict
(remove from memory) to make room for the incoming page. |f the page to be re-
moved has been modified while in memory, it must be rewritten to the disk to
bring the disk copy up to date. If, however, the page has not been changed (e.g., it
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contains program text), the disk copy is aready up to date, so no rewrite is need-
ed. The page to be read in just overwrites the page being evicted.

While it would be possible to pick a random page to evict at each page fault,
system performance is much better if a page that is not heavily used is chosen. If
a heavily used page is removed, it will probably have to be brought back in quick-
ly, resulting in extra overhead. Much work has been done on the subject of page
replacement algorithms, both theoretical and experimental. Below we will
describe some of the most important agorithms.

It is worth noting that the problem of "page replacement” occurs in other
areas of computer design as well. For example, most computers have one or more
memory caches consisting of recently used 32-byte or 64-byte memory blocks.
When the cache is full, some block has to be chosen for removal. This problem is
precisaly the same as page replacement except on a shorter time scale (it has to be
done in a few nanoseconds, not milliseconds as with page replacement). The rea
son for the shorter time scale is that cache block misses are satisfied from main
memory, which has no seek time and no rotationa latency.

A second example is in a Web server. The server can keep a certain number
of heavily used Web pages in its memory cache. However, when the memory
cache is full and a new page is referenced, a decision has to be made which Web
page to evict. The considerations are similar to pages of virtual memory, except
for the fact that the Web pages are never modified in the cache, so there is always
a fresh copy "on disk." In a virtual memory system, pages in main memory may
be either clean or dirty.

In dl the page replacement algorithms to be studied below, a certain issue
arises. when a page is to be evicted from memory, does it have to be one of the
faulting process' own pages, or can it be a page belonging to another process? In
the former case, we are effectively limiting each process to a fixed number of
pages, in the latter case we are not. Both are possibilities. We will come back to
thispointin Sec. 3-5.1.

3,4.1 The Optimal Page Replacement Algorithm

The best possible page replacement algorithm is easy to describe but impossi-
ble to implement. It goes like this. At the moment that a page fault occurs, some
set of pages is in memory. One of these pages will be referenced on the very next
ingtruction (the page containing that instruction). Other pages may not be refer-
enced until 10, 100, or perhaps 1000 instructions later. Each page can be labeled
with the number of instructions that will be executed before that page is first ref-
erenced.

The optima page replacement algorithm says that the page with the highest
label should be removed. If one page will not be used for 8 million instructions
and another page will not be used for 6 million instructions, removing the former
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pushes the page fault that will fetch it back as far into the future as possible. Com-
puters, like people, try to put off unpleasant events for as long as they can.

The only problem with this algorithm is that it is unrealizable. At the time of
the page fault, the operating system has no way of knowing when each of the
pages will be referenced next. (We saw a similar situation earlier with the shor-
test job first scheduling agorithm—how can the system tell which job is shor-
test?) Still, by running a program on a simulator and keeping track of al page ref-
erences, it is possible to implement optimal page replacement on the second run
by using the page reference information collected during the first run.

In this way it is possible to compare the performance of realizable agorithms
with the best possible one. If an operating system achieves a performance dof, say,
only 1% worse than the optimal algorithm, effort spent in looking for a better al-
gorithm will yield at most a 1%. improvement.

To avoid any possible confusion, it should be made clear that this log of page
references refers only to the one program just measured and then with only one
specific input. The page replacement algorithm derived from it is thus specific to
that one program and input data. Although this method is useful for evaluating
page replacement algorithms, it is of no use in practical systems. Below we will
study agorithms that are useful on red systems.

3.4.2 The Not Recently Used Page Replacement Algorithm

In order to dlow the operating system to collect useful page usage statistics,
most computers with virtual memory have two status bits associated with each
page. R is set whenever the page is referenced (read or written). M is set when
the page is written to (i.e., modified). The bits are contained in each page table
entry, as shown in Fig. 3-11. It is important to realize that these bits must be
updated on every memory reference, so it is essential that they be set by the hard-
ware. Once abit has been set to 1, it stays 1 until the operating system resetsit.

If the hardware does not have these bits, they can be simulated as follows.
When a process is started up, al of its page table entries are marked as not in
memory. As soon as any page is referenced, a page fault will occur. The operat-
ing system then sets the R hit (in itsinternal tables), changes the page table entry
to point to the correct page, with mode READ ONLY, and restarts the instruction.
If the page is subsequently modified, another page fault will occur, alowing the
operating system to set the M bit and change the page's mode to READAVRITE.

The R and M hits can be used to build a smple paging algorithm as follows.
When a process is started up, both page bits for all its pages are set to 0 by the op-
erating system. Periodically (e.g., on each clock interrupt), the R bit is cleared, to
distinguish pages that have not been referenced recently from those that have
been.

When a page fault occurs, the operating system inspects al the pages and
divides them into 4 categories based on the current values of their R and M bits:
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Class 0: not referenced, not modified.
Class 1. not referenced, modified.
Class 2: referenced, not modified.
Class 3: referenced, modified.

Although class 1 pages seem, at first glance, impossible, they occur when a class
3 page has its R hit cleared by aclock interrupt. Clock interrupts do not clear the
M bit because this information is needed to know whether the page has to be
rewritten to disk or not. Clearing R but not M leads to aclass 1 page.

The NRU (Not Recently Used) agorithm removes a page at random from the
lowest-numbered nonempty class. Implicit in this algorithm is the idea that it is
better to remove a modified page that has not been referenced in at least one clock
tick (typicaly about 20 msec) than a clean page that is in heavy use. The main
attraction of NRU s that it is easy to understand, moderately efficient to imple-
ment, and gives a performance that, while certainly not optimal, may be adequate.

3.43 The First-In, First-Out (FIFO) Page Replacement Algorithm

Another low-overhead paging algorithm is the FIFO (First-1n, First-Out) a-
gorithm. To illustrate how this works, consider a supermarket that has enough
shelves to display exactly k different products. One day, some company intro-
duces a new convenience food—instant, freeze-dried, organic yogurt that can be
reconstituted in a microwave oven. It is an immediate success, so our finite su-
permarket has to get rid of one old product in order to stock it.

One possibility is to find the product that the supermarket has been stocking
the longest (i.e., something it began selling 120 years ago) and get rid of it on the
grounds that no one is interested any more. In effect, the supermarket maintains a
linked list of al the products it currently sells in the order they were introduced.
The new one goes on the back of the list; the one at the front of the list is dropped.

As a page replacement algorithm, the same idea is applicable. The operating
system maintains a list of all pages currently in memory, with the most recent
ariva at the tail and the least recent arrival at the head. On apage fault, the page
a the head is removed and the new page added to the tail of the list. When applied
to stores, FIFO might remove mustache wax, but it might also remove flour, sdlt,
or butter. When applied to computers the same problem arises. For this reason,
FIFO in its pure form is rarely used.

3.4.4 The Second-Chance Page Replacement Algorithm

A smple modification to FIFO that avoids the problem of throwing out a
heavily used page is to inspect the R bit of the oldest page. If it is O, the page is
both old and unused, so it is replaced immediately. If the R bit is 1, the bit is
cleared, the page is put onto the end of the list of pages, and its load time is
updated as though it had just arrived in memory. Then the search continues.
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The operation of this algorithm, called second chance, is shown in Fig. 3-15.
In Fig. 3-15(a) we see pages A through H kept on a linked list and sorted by the
time they arrived in memory.

Page loaded first

Most recently

2 14 15 18 loaded page

@
D U B B D el

(o)

Figure 3-15. Operation of second chance, (a) Pages sorted in FIFO order, (b)
Page list if a page fault occurs at time 20 and A has its R bit set. The numbers
above the pages are their load times.

Suppose that a page fault occurs at time 20. The oldest page is A, which
arrived at time O, when the process started. If A has the R bit cleared, it is evicted
from memory, either by being written to the disk (if it is dirty), or just abandoned
(if it is clean). On the other hand, if the R bit is set, A is put onto the end of the
list and its "load time" isreset to the current time (20). The R bit is aso cleared.
The search for a suitable page continues with B.

What second chance is looking for is an old page that has not been referenced
in the most recent clock interval. If al the pages have been referenced, second
chance degenerates into pure FIFO. Specificaly, imagine that al the pages in
Fig. 3-15(a) have their R bits set. One by one, the operating system moves the
pages to the end of the list, clearing the R bit each time it appends a page to the
end of the list. Eventually, it comes back to page A, which now has its R hit
cleared. At thispoint A is evicted. Thus the algorithm aways terminates.

3.4.5 The Clock Page Replacement Algorithm

Although second chance is a reasonable algorithm, it is unnecessarily ineffi-
cient because it is constantly moving pages around on its list. A better approach
is to keep all the page frames on acircular list in the form of a clock, as shown in
Fig. 3-16. The hand points to the oldest page.

When a page fault occurs, the page being pointed to by the hand is inspected.
If its R bit is O, the page is evicted, the new page is inserted into the clock in its
place, and the hand is advanced one position. If Ris 1, it is cleared and the hand
is advanced to the next page. This process is repeated until a page is found with
R =0. Not surprisingly, this algorithm is called clock.
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When a page fault occurs,
the page the hand is
pointing to is inspected.

@ The action taken depends

on the R bit:
R m 0: Evict the page

R = 1: dear R and advance hand
[] =]
] £]
L+ F ]
Figure 3-16. The clock page replacement algorithm.

3.4.6 The Least Recently Used (LRU) Page Replacement Algorithm

A good approximation to the optimal algorithm is based on the observation
that pages that have been heavily used in the last few instructions will probably be
heavily used again in the next few. Conversely, pages that have not been used for
ages will probably remain unused for along time. This idea suggests a realizable
algorithm: when a page fault occurs, throw out the page that has been unused for
the longest time. This strategy is called LRU (Least Recently Used) paging.

Although LRU is theoretically realizable, it is not cheap. To fully implement
LRU, it is necessary to maintain a linked list of all pages in memory, with the
most recently used page at the front and the least recently used page at the rear.
The difficulty is that the list must be updated on every memory reference. Find-
ing apage in thelist, deleting it, and then moving it to the front is a very time con-
suming operation, even in hardware (assuming that such hardware could be built).

However, there are other ways to implement LRU with specia hardware. Let
us consider the simplest way first. This method requires equipping the hardware
with a 64-bit counter, C, that is automatically incremented after each instruction.
Furthermore, each page table entry must also have afield large enough to contain
the counter. After each memory reference, the current value of C is stored in the
page table entry for the page just referenced. When a page fault occurs, the oper-
aing system examines al the counters in the page table to find the lowest one.
That page is the least recently used.

Now let us look at a second hardware LRU agorithm. For a machine with n
page frames, the LRU hardware can maintain a matrix of n x n bits, initialy al
zero. Whenever page frame Kk is referenced, the hardware first sets dl the bits of
row k to 1, then sets al the hits of column kto 0. At any instant of time, the row
whose binary value is lowest is the least recently used, the row whose value is
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next lowest is next least recently used, and so forth. The workings of this algo-

rithm are given in Fig. 3-17 for four page frames and page references in the order
0123210323

After page 0 is referenced, we have the situation of Fig. 3-17(a). After page 1 is
referenced, we have the situation of Fig. 3-17(b), and so forth.

Page Page Page Page Page
12 1 2 12 0o 1 2 3 0o 1 2 3
o 1| 1] 1 00| 1|1 o001 ojlo|o|o 0O|lo|o0|O
ojo|olo 10011 10|01 1{0 oo 1/0|0 |0
olo|lalo olololo 1101 1100 1)1]0]1
olo|ofo o|lo oo o|lo|olo 11|10 1l1)0]o0
() (0) ©
oo |0 o o 1] 1|1 0l 1| 1]o0 ol 1/0]o0 0l 1|00
10|11 00| 1] 1 0o 0 o|o0o|ofo 0ojo|o|o
1{o0 o] 1 ojojo| 1 ojo|o0]o 10101 1|1]0]o0
1|0 |o0fo o|lo|o|o 1110 1|10 |o 11|10
® © (h) @) 0]

Figure3-17. LRU using a matrix when pages are referenced in the order 0, 1
2,3,2,10,3,2,3.

3.4.7 Simulating LRU in Software

Although both of the previous LRU agorithms are (in principle) realizable,
few, if any, machines have the required hardware. Instead, a solution that can be
implemented in software is needed. One possibility is caled the NFU (Not Fre-
quently Used) agorithm. It requires a software counter associated with each
page, initially zero. At each clock interrupt, the operating system scans dl the
pages in memory. For each page, the R bit, which is 0 or 1, is added to the count-
er. The counters roughly keep track of how often each page has been referenced.
When a page fault occurs, the page with the lowest counter is chosen for replace-
ment.

The main problem with NFU is that it never forgets anything. For example, in
a multipass compiler, pages that were heavily used during pass 1 may till have a
high count well into later passes. Infact, if pass 1 happens to have the longest ex-
ecution time of al the passes, the pages containing the code for subsequent passes
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may dways have lower counts than the pass 1 pages. Consequently, the operating
sysem will remove useful pages instead of pages no longer in use.

Fortunately, a small modification to NFU makes it able to smulate LRU quite
well. The modification has two parts. First, the counters are each shifted right 1
bit before the R bit is added in. Second, the R bit is added to the |eftmost rather
then the rightmost bit.

Figure 3-18 illustrates how the modified algorithm, known as aging, works.
Suppose that after the first clock tick the R bits for pages 0 to 5 have the values 1,
0,1,0,1, and 1, respectively (page Ois 1, page 1 is0, page 2 is 1, etc.). In other
words, between tick 0 and tick 1, pages O, 2, 4, and 5 were referenced, setting
their R bits to 1, while the other ones remain 0. After the Six corresponding count-
ers have been shifted and the R bit inserted at the left, they have the values shown
in Fig. 3-18(a). The four remaining columns show the six counters after the next
four clock ticks.

R bitsfor R bitsfor R bitsfor R bilsfor R bitsfor
pages 0-5, pages 0-5, pages 0-5, pages 0-5, pages 0-5,
dlock tid 0 clook tick 1 clock tick 2 clock tick 3 clock tick 4

’1’0‘1’0‘1‘1‘1‘1’1’0’0’1’0‘ . |l[tooo10[[[o11000
1 1 Uil U T
Page
0 10000000 11000000 11100000 ||| 11110000 ||| 01111000
1 00000000 10000000 11000000 \ 01100000 \ ] 10110000
2 10000000 01000000 00100000 [ oo00000 || ] 10010000

00000000 00000000 10000000 | | | 01000000 [ || 00100000

10000000 11000000 01100000 | | | 10110000 ||| 02011000

10000000 01000000 10100000 | || 01010000 || ] 00101000

@ (b) © @ C)

Figure 3-18. The aging algorithm smulates LRU in software. Shown are six
pages for five clock ticks. The five clock ticks arerepresented by (a) to (e).

When a page fault occurs, the page whose counter is the lowest is removed. It
is clear that a page that has not been referenced for, say, four clock ticks will have
four leading zeros in its counter and thus will have a lower vaue than a counter
thet has not been referenced for three clock ticks.

This dgorithm differs from LRU in two ways. Consider pages 3 and 5 in
Fig. 3-18(e). Neither has been referenced for two clock ticks; both were refer-
encad in the tick prior to that. According to LRU, if a page must be replaced, we
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should choose one of these two. The trouble is, we do not know which of them
was referenced last in the interval between tick 1 and tick 2. By recording only
one bit per time interval, we have lost the ability to distinguish references early in
the clock interval from those occurring later. All we can do is remove page 3, be-
cause page 5 was aso referenced two ticks earlier and page 3 was not.

The second difference between LRU and aging is that in aging the counters
have a finite number of bits (8 bits in this example) which limits its past horizon.
Suppose that two pages each have a counter value of 0. All we can do is pick one
of them at random. In reality, it may well be that one of the pages was last refer-
enced nine ticks ago and the other was last referenced 1000 ticks ago. We have
no way of seeing that. In practice, however, 8 hits is generally enough if a clock
tick is around 20 msec. |If a page has not been referenced in 160 msec, it probably
is not that important.

3.4.8 The Working Set Page Replacement Algorithm

In the purest form of paging, processes are started up with none of their pages
in memory. As soon as the CPU tries to fetch the first instruction, it gets a page
fault, causing the operating system to bring in the page containing the first instruc-
tion. Other page faults for global variables and the stack usually follow quickly.
After a while, the process has most of the pages it needs and setdes down to run
with relatively few page faults. This strategy is called demand paging because
pages are loaded only on demand, not in advance.

Of course, it is easy enough to write a test program that systematically reads
al the pages in alarge address space, causing so many page faults that there is not
enough memory to hold them all. Fortunately, most processes do not work this
way. They exhibit a locality of reference, meaning that during any phase of ex-
ecution, the process references only a relatively small fraction of its pages. Each
pass of a multipass compiler, for example, references only a fraction of al the
pages, and a different fraction at that.

The set of pages that a process is currendy using is known as its working set
(Denning, 1968a; Denning, 1980). If the entire working set is in memory, the
process will run without causing many faults until it moves into another execution
phase (e.g., the next pass of the compiler). If the available memory is too small to
hold the entire working set, the process will cause many page faults and run
slowly, since executing an instruction takes a few nanoseconds and reading in a
page from the disk typically takes 10 milliseconds. At a rate of one or two in-
structions per 10 milliseconds, it will take ages to finish. A program causing page
faults every few instructions is said to be thrashing (Denning, 1968b).

In a multiprogramming system, processes are frequently moved to disk (i.e.,
al their pages are removed from memory) to let other processes have aturn at the
CPU. The question arises of what to do when a process is brought back in again.
Technically, nothing need be done. The process will just cause page faults until
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its working set has been loaded. The problem is that having 20, 100, or even 1000
page faults every time a process is loaded is dow, and it also wastes considerable
CPU time, since it takes the operating system a few milliseconds of CPU time to
process a page fault.

Therefore, many paging systems try to keep track of each process working
set and make sure thet it is in memory before letting the process run. This ap-
proachis caled the working set model (Denning, 1970). It isdesigned to greatly
reduce the page fault rate. Loading the pages before letting processes run is aso
called prepaging.Note that the working set changes over time.

It has long been known that most programs do not reference their address
space uniformly, but that the references tend to cluster on a small number of
pages. A memory reference may fetch an instruction, it may fetch data, or it may
store data. At any instant of time, /, there exists a set consisting of al the pages
used by the k most recent memory references. This set, w(k, t), is the working set.
Because the k = 1 most recent references must have used al the pages used by the
k > 1 most recent references, and possibly others, w(k, t) is a monotonically non-
decreasing function of k. The limit of w(k, t) as k becomes large is finite because
a program cannot reference more pages than its address space contains, and few
programs will use every single page. Figure 3-19 depicts the size of the working
set as a function of k.

wik,t)

k

Figure 3-19. The working set is the set of pages used by the k most recent
memory references. The function w(k, t) is the size of the working set at time t.

The fact that most programs randomly access a small number of pages, but
that this set changes slowly in time explains the initial rapid rise of the curve and
then the dow rise for large k. For example, a program that is executing a loop
occupying two pages using data on four pages, may reference al six pages every
1000 ingtructions, but the most recent reference to some other page may be a mil-
lion instructions earlier, during the initialization phase. Due to this asymptotic be-
havior, the contents of the working set is not sensitive to the value of k chosen.

SEC. 34 PAGE REPLACEMENT ALGORITHMS 209

To put it differently, there exists a wide range of k values for which the working
set is unchanged. Because the working set varies slowly with time, it is possible to
make a reasonable guess as to which pages will be needed when the program is
restarted on the basis of its working set when it was last stopped. Prepaging con-
sists of loading these pages before resuming the process.

To implement the working set model, it is necessary for the operating system
to keep track of which pages are in the working set. Having this information aso
immediately leads to a possible page replacement algorithm: when a page fault
occurs, find a page not in the working set and evict it. To implement such an a-
gorithm, we need a precise way of determining which pages are in the working
set. By definition, the working set is the set of pages used in the k most recent
memory references (some authors use the k most recent page references, but the
choice is arbitrary). To implement any working set algorithm, some value of k
must be chosen in advance. Once some value has been selected, after every mem-
ory reference, the set of pages used by the most recent k memory references is
uniquely determined.

Of course, having an operational definition of the working set does not mean
that there is an efficient way to compute it during program execution. One could
imagine a shift register of length k, with every memory reference shifting the reg-
ister left one position and inserting the most recently referenced page number on
the right. The set of dl k page numbers in the shift register would be the working
set. In theory, at a page fault, the contents of the shift register could be read out
and sorted. Duplicate pages could then be removed. The result would be the
working set. However, maintaining the shift register and processing it at a page
fault would both be prohibitively expensive, so this technique is never used.

Instead, various approximations are used. One commonly used approximation
is to drop the idea of counting back k memory references and use execution time
instead. For example, instead of defining the working set as those pages used dur-
ing the previous 10 million memory references, we can define it as the set of
pages used during the past 100 msec of execution time. In practice, such a defini-
tion isjust as good and much easier to work with. Note that for each process,
only its own execution time counts. Thus if a process starts running at time T and
has had 40 msec of CPU time at real time T+ 100 msec, for working set purposes
its time is 40 msec. The amount of CPU time a process has actualy used since it
started is often called its current virtual time. With this approximation, the
working set of a process is the set of pages it has referenced during the past x sec-
onds of virtual time.

Now let us look at a page replacement algorithm based on the working set.
The basic idea is to find a page that is not in the working set and evict it. In
Fig. 3-20 we see a portion of a page table for some machine. Because only pages
that are in memory are considered as candidates for eviction, pages that are absent
from memory are ignored by this algorithm. Each entry contains (at least) two key
items of information: the (approximate) time the page was last used and the R
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(Referenced) bit. The empty white rectangle symbolizes the other fields not need-
ed for thl agorithm, such as the page frame number, the protection bits, and the
U (Modified) hit.

[ 2204 | Current virtual time

Information about * R (Referenced) bit

one page 2084
2003
Timeof last use - 21980 11 Scaﬁfaégpag%s examining R bit:
i —
Page referenced 1213 0 set time of last use to current virtual time
during thistick 2014 if (R=»0andage>-c)

remove this page

2020 i1
. if (R=0andage<t)
Page not referenced 2032 1 remember the smallest time
during this tick 1620 10
Page table

Figure 3-20. The working set algorithm.

The agorithm works as follows. The hardware is assumed to set the R and M
bits, as discussed earlier. Similarly, aperiodic clock interrupt is assumed to cause
software to run that clears the Referenced bit on every clock tick. On every page
fault, the page table is scanned to look for a suitable page to evict.

As each entry is processed, the Rbit is examined. Ifitis 1, the current virtual
time is written into the Time of last use field in the page table, indicating that the
page was in use at the time the fault occurred. Since the page has been referenced
during the current clock tick, it is clearly in the working set and is not a candidate
for removal {%is assumed to span multiple clock ticks).

If Ris 0, the page has not been referenced during the current clock tick and
may be a candidate for removal. To see whether or not it should be removed, its
age (the current virtual time minus its Time of last use) is computed and compared
to x. If the age is greater than x, the page is no longer in the working set and the

new page replacesit. The scan continues updating the remaining entries.

However, if Ris 0 but the age is less than or equal to x, the page is il in the
working set. The page is temporarily spared, but the page with the greatest age
(smallest value of Time of last use) is noted. If the entire table is scanned without
finding a candidate to evict, that means that all pages are in the working set. In
that case, if one or more pages with R - 0 were found, the one with the greatest
age is evicted. In the worst case, al pages have been referenced during the cur-
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rent clock tick (and thus all have R = 1), so one is chosen at random for removal,
preferably aclean page, if one exists.

3.4.9 The WSClock Page Replacement Algorithm

The basic working set algorithm is cumbersome, since the entire page table
has to be scanned at each page fault until a suitable candidate is located. An
improved algorithm, that is based on the clock algorithm but also uses the work-
ing set information, is called WSClock (Carr and Hennessey, 1981). Due to its
simplicity of implementation and good performance, it is widely used in practice.

The data structure needed is a circular list of page frames, as in the clock al-
gorithm, and as shown in Fig. 3-21(a). Initially, thislist is empty. When the first
page is loaded, itis added to the list. As more pages are added, they go into the
list to form a ring. Each entry contains the Time of last use field from the basic
working set algorithm, as well as the R bit (shown) and the M bit (not shown).

As with the clock algorithm, at each page fault the page pointed to by the
hand is examined first If the Rbit is set to 1, the page has been used during the
current tick so it is not an ideal candidate to remove. The R bit is then set to 0, the
hand advanced to the next page, and the algorithm repeated for that page. The
state after this sequence of eventsis shown in Fig. 3-21 (b).

Now consider what happens if the page pointed to has R = 0, as .shown in
Fig. 3-21 (c). If the age is greater than x and the page is clean, it is not in the
working set and a valid copy exists on the disk. The page frame is simply claimed
and the new page put there, as shown in Fig. 3-21 (d). On the other hand, if the
page is dirty, it cannot be claimed immediately since no valid copy is present on
disk. To avoid a process switch, the write to disk is scheduled, but the hand is ad-
vanced and the algorithm continues with the next page. After all, there might be
an old, clean page further down the line that can be used immediately.

In principle, al pages might be scheduled for disk 1/0 on one cycle around the
clock. To reduce disk traffic, a limit might be set, allowing a maximum of n
pages to be written back. Once this limit has been reached, no new writes are
scheduled.

What happens if the hand comes al the way around to its starting point?
There are two cases to consider:

1. At least one write has been scheduled.
2. No writes have been scheduled.

In the first case, the hand just keeps moving, looking for a clean page. Since one
or more writes have been scheduled, eventually some write will complete and its
page will be marked as clean. The first clean page encountered is evicted. This
page is not necessarily the first write scheduled because the disk driver may
reorder writes in order to optimize disk performance.
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Figure 3-21. Operation of the WSClock algorithm, (a) and (b) give an example
of what happens when R= 1. (c) and (d) give an example of R=0.

In the second case, all pages are in the working set, otherwise at least one
write would have been scheduled. Lacking additional information, the simplest
thing to do is claim any clean page and use it. The location of a clean page could
be kept track of during the sweep. If no clean pages exist, then the current page is
chosen as the victim and written back to disk.
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3.4.10 Summary of Page Replacement Algorithms

We have now looked at a variety of page replacement algorithms. In this sec-
tion we will briefly summarize them. The list of algorithms discussed is given in
Fig. 3-22.

Algorithm Comment
Optimal Not implementable, but useful as a benchmark
NRU (Not Recently Used) Very crude approximation of LRU
FIFO (First-In, First-Out) Might throw out important pages
Second chance Big improvement over FIFO
Clock Realistic

LRU (Least Recently Used)' | Excellent, but difficult to implement exactly
NFU (Not Frequently Used) | Fairly crude approximation to LRU

Aging Efficient algorithm that approximates LRU well
Working set Somewhat expensive to implement
WSClock Good efficient algorithm

Figure 3-22. Page replacement algorithms discussed in the text.

The optima algorithm evicts the page that will be referenced furthest in the
future. Unfortunately, there is no way to determine which page thisis, soin prac-
tice this algorithm cannot be used. It is useful as a benchmark against which other
agorithms can be measured, however.

' The NRU algorithm divides pages into four classes depending on the state of
theR and M bits. A random page from the lowest-numbered class is chosen. This
algorithm is easy to implement, but it is very crude. Better ones exist.

FIFO keeps track of the order in which pages were loaded into memory by
keeping them in a linked list. Removing the oldest page then becomes trivial, but
that page might still bein use, so FIFO isabad choice.

Second chance is a modification to FIFO that checks if apageis in use before
removing it. If it is, the page is spared. This modification greatly improves the
performance. Clock is simply a different implementation of second chance. It has
the same performance properties, but takes a little less time to execute the algo-
rithm.

LRU is an excellent algorithm, but it cannot be implemented without special
hardware. If this hardware is not available, it cannot be used. NFU is acrude at-
tempt to approximate LRU. It is not very good. However, aging is a much better
approximation to LRU and can be implemented efficiently. Itisagood choice.

The last two algorithms use the working set. The working set algorithm gives
reasonable performance, but it is somewhat expensive to implement. WSClock is
a variant that not only gives good performance but is also efficient to implement.
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All'in al, the two best agorithms are aging and WSClock. They are based on
LRU ad the working s, respectively. Both give good paging performance and
can be implemented efficiently. A few other algorithms exist, but these two are
probably the most important in practice.

3.5 DESIGN ISSUES FOR PAGING SYSTEMS

In the previous sections we have explained how paging works and have given
a few of the basic page replacement agorithms and shown how to model them.
But knowing the bare mechanics is not enough. To desigh a system, you have to
know a lot more to make it work well. It is like the difference between knowing
how to move the rook, knight, bishop, and other pieces in chess, and being a good
player. In the following sections, we will look at other issues that operating sys-
tem designers must consider carefully in order to get good performance from a

paging system.
3.5.1 Local versus Global Allocation Policies

In the preceding sections we have discussed several agorithms for choosing a
page to replace when a fault occurs. A mgor issue associated with this choice
(which we have carefully swept under the rug until now) is how memory should
be dlocated among the competing runnable processes.

Take alook at Fig. 3-23(8). In this figure, three processes, A, B, and C, make
up the set of runnable processes. Suppose A gets a page fault. Should the page
replacement agorithm try to find the least recently used page considering only the
six pages currently alocated to A, or should it consider al the pages in memory?
Ifit looks only at A's pages, the page with the lowest age value is A5, so we get
the situation of Fig. 3-23(b).

On the other hand, if the page with the lowest age value is removed without
regard to whose page it is, page B3 will be chosen and we will get the situation of
Fig. 3-23(c). The agorithm of Fig. 3-23(b) is said to be alocal page replacement
agorithm, whereas that of Fig. 3-23(c) is said to be a global agorithm. Loca al-
gorithms effectively correspond to allocating every process a fixed fraction of the
memory. Globa agorithms dynamically allocate page frames among the runnable
processes. Thus the number of page frames assigned to each process varies in
time.

In genera, globa agorithms work better, especially when the working set
size can vary over the lifetime of a process. If a loca agorithm is used and the
working set grows, thrashing will result, even if there are plenty of free page
frames. If the working set shrinks, local dgorithms waste memory. If aglobal al-
gorithm is used, the system must continually decide how many page frames to
assign to each process. One way is to monitor the working set size as indicated by
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Figure 3-23. Local versus global page replacement, (a) Original configuration,
(b) Local page replacement, (c) Global page replacement.

the aging bits, but this approach does not necessarily prevent thrashing. The work-
ing set may change size in microseconds, whereas the aging bits are a crude meas-
ure spread over a number of clock ticks.

Another approach is to have an algorithm for allocating page frames to proc-
esses. One way is to periodicaly determine the number of running processes and
allocate each process an equal share. Thus with 12,416 available (i.e., non-operat-
ing system) page frames and 10 processes, each process gets 1241 frames. The
remaining six go into a pool to be used when page faults occur.

Although this method seems fair, it makes little sense to give equa shares of
the memory to a 10-KB process and a 300-KB process. Instead, pages can be allo-
cated in proportion to each process' total size, with a 300-KB process getting 30
times the alotment of a 10-KB process. It is probably wise to give each process
some minimum number, so that it can run no matter how small it is. On some ma-
chines, for example, a single two-operand instruction may need as many as Sx
pages because the instruction itself, the source operand, and the destination oper-
and may all straddle page boundaries. With an allocation of only five pages, pro-
grams containing such instructions cannot execute at all.

If aglobal algorithm is used, it may be possible to start each process up with
some number of pages proportiona to the process' size, but the alocation has to
be updated dynamically as the processes run. One way to manage the dlocation is
to use the PFF (Page Fault Frequency) agorithm. It tells when to increase or
decrease a process page allocation but says nothing about which page to replace
on afault. It just controls the size of the alocation set.
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For a large class of page replacement algorithms, including LRU, it is known
that the fault rate decreases as more pages are assigned, as we discussed above.
This is the assumption behind PFF. This property isillustrated in Fig. 3-24.

Page faulia/sec

Number of page frames assigned
Figure 3-24. Page fault rate as a function of the number of page frames assigned.

Measuring the page fault rate is straightforward: just count the number of
faults per second, possibly taking a running mean over past seconds as well. One
easy way to do this is to add the number of page faults during the immediately
preceding second to the current running mean and divide by two. The dashed line
marked A corresponds to a page fault rate that is unacceptably high, so the fault-
ing process is given more page frames to reduce the fault rate. The dashed line
marked B corresponds to a page fault rate so low that we can assume the process
has too much memory. In this case page frames may be taken away from it.
Thus, PFF tries to keep the paging rate for each process within acceptable bounds.

It is important to note that some page replacement algorithms can work with
either a local replacement policy or a global one. For example, FIFO can replace
the oldest page in al of memory (global agorithm) or the oldest page owned by
the current process (local algorithm). Similarly, LRU or some approximation to it
can replace the least recently used page in al of memory (globa agorithm) or the
least recently used page owned by the current process (local algorithm). The
choice of local versus globa is independent of the algorithm in some cases.

On the other hand, for other page replacement algorithms, only alocal strate-
gy makes sense. In particular, the working set and WSClock agorithms refer to
some specific process and must be applied in that context. There really is no
working set for the machine as a whole, and trying to use the union of al the
working sets would lose the locality property and not work well.

3.5.2 Load Control

Even with the best page replacement algorithm and optimal global allocation
of page frames to processes, it can happen that the system thrashes. In fact, when-
ever the combined working sets of al processes exceed the capacity of memory,
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thrashing can be expected. One symptom of this situation is that the PFF algo-
rithm indicates that some processes heed more memory but no processes need less
memory. In this case there is no way to give more memory to those processes
needing it without hurting some other processes. The only rea solution is to tem-
porarily get rid of some processes.

A good way to reduce the number of processes competing for memory is to
swap some of them to the disk and free up al the pages they are holding. For ex-
ample, one process can be swapped to disk and its page frames divided up among
other processes that are thrashing. If the thrashing stops, the system can run for a
while this way. If it does not stop, another process has to be swapped out, and so
on, until the thrashing stops. Thus even with paging, swapping is still needed, only
now swapping is used to reduce potential demand for memory, rather than to
reclaim pages.

Swapping processes out to relieve the load on memory is reminiscent of two-
level scheduling, in which some processes are put on disk and a short-term sched-
uler is used to schedule the remaining processes. Clearly, the two ideas can be
combined, with just enough processes swapped out to make the page-fault rate ac-
ceptable. Periodically, some processes are brought in from disk and other ones are
swapped out.

However, another factor to consider is the degree of multiprogramming.
When the number of processes in main memory is too low, the CPU may be idle
for substantial periods of time. This consideration argues for considering not only
process size and paging rate when deciding which process to swap out, but also its
characteristics, such as whether it is CPU bound or 1/0 bound, and what charac-
terigtics the remaining processes have.

3.5.3 Page Size

The page size is often a parameter that can be chosen by the operating system.
Even if the hardware has been designed with, for example, 512-byte pages, the
operating system can easily regard pagepairsOand 1, 2 and 3, 4 and 5, and so on,
as 1-KB pages by always alocating two consecutive 512-byte page frames for
them.

Determining the best page size requires balancing several competing factors.
As aresult, there is no overall optimum. To start with, there are two factors that
argue for a small page size. A randomly chosen text, data, or stack segment will
not fill an integral number of pages. On the average, half of the fina page will be
empty. The extra space in that page is wasted. This wastage is caled internal
fragmentation. With n segments in memory and a page size of p bytes, np/2
bytes will be wasted on internal fragmentation. This reasoning argues for a small
page size.

Another argument for a small page size becomes apparent if we think about a
program consisting of eight sequential phases of 4 KB each. With a 32-KB page
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size, the program must be dlocated 32 KB ail the time. With a 16-KB page size,
it needs only 16 KB. With a page size of 4 KB or smdller, it requires only 4 KB
a any instant. In general, alarge page size will cause more unused program to be
in memory than a smal page size.

On the other hand, smdl pages mean that programs will need many pages,
hence a large page table. A 32-KB program needs only four 8-KB pages, but 64
512-byte pages. Trandfers to and from the disk are generaly a page at a time,
with mogt of the time being for the seek and rotational delay, o that transferring a
small page takes dmost as much time as transferring a large page. It might take
64 x 10 msec to load 64 512-byte pages, but only 4 x 12 msec to load four 8-KB
pages.

On some machines, the page table must be loaded into hardware registers ev-
ey time the CPU switches from one process to another. On these machines hav-
ing asmal page size means that the time required to load the page registers gets
longer as the page size gets smdler. Furthermore, the space occupied by the page
table increases as the page Sze decreases.

This last point can be andyzed mathematicdly. Let the average process size
be s bytes and the page Sze be p bytes. Furthermore, assume that each page entry
requires e bytes. The gpproximate number of pages needed per process is then
s/p, occupying se/p bytes of page table space. The wasted memory in the last
page of the process due to internd fragmentation isp/2. Thus, the total overhead
due to the page table and the internd fragmentadon loss is given by the sum of
these two terms:

overhead = selp + p/2

The firgt term (page table size) is large when the page size is small. The sec-
ond term (internal fragmentation) is large when the page size is large. The
optimum must lie somewhere in between. By taking the first derivative with
respect to p and equating it to zero, we get the equation

selpt + 12=0

From this equation we can derive a formula that gives the optimum page size

(considering only memory wasted in fragmentation and page table size). The re-
alltis:

p=-"2se

For s = 1IMB and e - 8 bytes per page table entry, the optimum page size is4 KB.
Commercidly available computers have used page sizes ranging from 512 bytes
to 64 KB. A typicd vaue used to be 1 KB, but nowadays 4 KB or 8 KB is more
common. As memories get larger, the page size tends to get larger as well (but
not linearly). Quadrupling the RAM size rarely even doubles the page size.

SEC. 3.5 DESIGN ISSUES FOR PAGING SYSTEMS 219

3.5.4 Separate Instruction and Data Spaces

Most computers have a single address space that holds both programs and
data, as shown in Fig. 3-25(a). If this address space is large enough, everything
works fine. However, it is often too small, forcing programmers to stand on their
heads to fit everything into the address space.

Single address

space i space D space
il = ar
l } Unused page
Data { ]
| -
l ETET Data
[ PR [ R
Program l it 5 % Program | SRXEXXK
li] S Lnkx

@ ()
Figure 3-25. (a) One address space, (b) Separate | and D spaces.

One solution, pioneered on the (16-bit) PDP-11, is to have separate address
spaces for ingtructions (program text) and data, called |-Space and D-space, re-
spectively, as illustrated in Fig. 3-25(b). Each address space runs from 0 to some
maximum, typicaly 2*°- 1 or 2°* - 1. The linker must know when separate |-
and D-spaces are being used, because when they are, the data are relocated to vir-
tual address O instead of starting after the program.

In a computer with this design, both address spaces can be paged, indepen-
dently from one another. Each one has its own page table, with its own mapping
of virtua pages to physical page frames. When the hardware wants to fetch an in-
struction, it knows that it must use I-space and the I-space page table. Similarly,
references to data must go through the D-space page table. Other than this dis-
tinction, having separate I- and D-spaces does not introduce any special complica
tions and it does double the available address space.

3.5.5 Shared Pages

Another design issue is sharing. In a large multiprogramming system, it is
common for several users to be running the same program at the same time. Itis
clearly more €fficient to share the pages, to avoid having two. copies of the same
page in memory at the same time. One problem is that not "dl pages are sharable.
In particular, pages that are read-only, such as program text, can be shared, but
data pages cannot.

If separate |- and D-spaces are supported, it is relatively straightforward to
share programs by having two or more processes use the same page table for their
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I-space but different page tables for their D-spaces. Typicaly in an implementa-
tion that supports sharing in this way, page tables are data structures independent
of the process table. Each process then has two pointersin its process table: one to
the I-space page table and one to the D-space page table, as shown in Fig. 3-26.
When the scheduler chooses a process to run, it uses these pointers to locate the
appropriate page tables and sets up the MMU using them. Even without separate
I- and D-spaces, processes can share programs (or sometimes, libraries), but the
mechanism is more complicated.

—-]

Process l\»

tabie

Program Data 1 Data 2

Page tables

Figure 3-26. Two processes sharing the same program sharing its page table.

When two or more processes share some code, a problem occurs with the
shared pages. Suppose that processes A and B are both running the editor and
sharing its pages. If the scheduler decides to remove A from memory, evicting all
its pages and filling the empty page frames with some other program will cause B
to generate a large'number of page faults to bring them back in again.

Similarly, when A terminates, it is essential to be able to discover that the
pages are still in use so that their disk space will not be freed by accident. Search-
ing dl the pagetables to see if apage is shared is usually too expensive, so special
data structures are needed to keep track of shared pages, especidly if the unit of
sharing is the individual page (or run of pages), rather than an entire page table.

Sharing data is trickier than sharing code, but it is not impossible. In particu-
lar, in UNIX, &fter a fork system call, the parent and child are required to share
both program text and data. In a paged system, what is often done is to give each
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of these processes its own page table and have both of them point to the same set
of pages. Thus no copying of pages is done at fork time. However, al the data
pages are mapped into both processes as READ ONLY.

Aslong as both processesjust read their data, without modifying it, this situa-
tion can continue. As soon as either process updates a memory word, the viola-
tion of the read-only protection causes a trap to the operating system. A copy is
then made of the offending page so that each process now has its own private
copy. Both copies are now set to READ-WRITE, so subsequent writes to either
copy proceed without trapping. This strategy means that those pages that are
never modified (including all the program pages) need not be copied. Only the
data pages that are actually modified need to be copied. This approach, called
copy on write, improves performance by reducing copying.

3.5.6 Shared Libraries

Sharing can be done at other granularities than individual pages. If a program
is started up twice, most operating systems will automatically share al the text
pages so that only one copy is in memory. Text pages are aways read only, so
there is no problem here. Depending on the operating system, each process may
get its own private copy of the data pages, or they may be shared and marked read
only. If any process modifies a data page, a private copy will be made for it, that
i's, copy on write will be applied.

In modern systems, there are many large libraries used by many processes, for
example, the library that handles the dialog for browsing for files to open and
multiple graphics libraries. Statically binding all these libraries to every ex-
ecutable program on the disk would make them even more bloated than they al-
ready are.

Instead, a common technique is to use shared libraries (which are called
DLLs or Dynamic Link Libraries on Windows). To make the idea of a shared
library clear, first consider traditional linking. When a program is linked, one or
more object files and possibly some libraries are named in the command to the
linker, such as the UNIX command

Id*.0-lIc-Im

which links al the .o (object) files in the current directory and then scans two li-
braries, /usr/lib/libc.a and /usr/lib/libm.a. Any functions called in the object files
but not present there (e.g., print/) are called undefined externals and are sought
in the libraries. If they are found, they are included in the executable binary. Any
functions they call but are not yet present also become undefined externals. For
example, printf needs write, so if write is not aready included, the linker will look
for it and include it when found. When the linker is done, an executable binary
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file is written to the disk containing all the functions needed. Functions present in
the libraries but not called are not included. When the program is loaded into
memory and executed, al the functions it needs are there.

Now suppose common programs use 20-50 MB worth of graphics and user
interface functions. Statically linking hundreds of programs with al these libraries
would waste a tremendous amount of space on the disk as well as wasting space
in RAM when they were loaded since the system would have no way of knowing
it could share them. This is where shared libraries come in. When a program is
linked with shared libraries (which are dightly different than static ones), instead
of induding the actud function called, the linker includes a small stub routine that
binds to the cdled function at run time. Depending on the system and the confi-
guration details, shared libraries are loaded either when the program is loaded or
when functions in them are cdlled for the first time. Of course, if another program
has dready loaded the shared library, thereis no need to load it again—that is the
whole point of it. Note that when a shared library is loaded or used, the entire li-
brary is not read into memory in a single blow. It is paged in, page by page, as
needed, so functions that are not called will not be brought into RAM.

In addition to making executable files smaller and saving space in memory,
shared libraries have another advantage: if a function in a shared library is up-
dated to remove abug, it is not necessary to recompile the programs that cal it.
The old hinaries continue to work. This feature is especialy important for com-
mercid software, where the source code is not distributed to the customer. For ex-
ample, if Microsoft finds and fixes a security error in some standard DLL, Win-
dows Update will download the new DLL and replace the old one, and dl pro-
grams that use the DLL will automatically use the new version the next time they
are launched.

Shared libraries cojne with one little problem that has to be solved, however.
The problem is illustrated in Fig. 3-27. Here we see two processes sharing a li-
brary of sze 20 KB (assuming each box is 4 KB). However, the library is located
a a different address in each process, presumably because the programs them-
saves are not the same size. In process 1, the library starts at address 36K; in
process 2 it starts at 12K. Suppose that the firgt thing the first function in the li-
brary has to do isjump to address 16 in the library. If the library were not shared,
it could be relocated on the fly as it was loaded so that the jump (in process 1)
could be to virtual address 36K + 16. Note that the physical address in the RAM
where the library is located does not matter since dl the pages are mapped from
virtud to physica addresses by the MMU hardware.

However, since the library is shared, relocation on the fly will not work. After
all, when the first function is called by process 2 (at address 12K), the jump in-
struction hasto goto 12K + 16, not 36K + 16. Thisisthe little problem. One way
to solve it is to use copy on write and create new pages for each process sharing
the library, relocating them on the fly as they are created, but this scheme defeats
the purpose of sharing the library, of course.
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Process 1 RAM Process 2
Figure 3-27. A shared library being used by two processes.

A better solution is to compile shared libraries with a special compiler flag
telling the compiler not to produce any instructions that use absolute addresses.
Instead only instructions using relative addresses are used. For example, there is
almost always an instruction that saysjump forward (or backward) by n bytes (as
opposed to an ingtruction that gives a specific address to jump to). This instruc-
tion works correctly no matter where the shared library is placed in the virtual ad-
dress space. By avoiding absolute addresses, the problem can be solved. Code
that uses only relative offsets is caled position-independent code.

3.5.7 Mapped Files

Shared libraries are redly a specia case of a more genera facility called
memory-mapped files. The idea here is that a process can issue a system call to
map afile onto a portion of its virtual address space. In most implementations, no
pages are brought in at the time of the mapping, but as pages are touched, they are
demand paged in one at a time, using the disk file as the backing store. When the

process exits, or explicitly unmaps the file, dl the modified pages are written back
tothefile.

Mapped files provide an alternative model for I/O. Instead of doing reads and
writes, the file can be accessed as a big character array in memory. In some situa-
tions, programmers find this model more convenient.

If two or more processes map onto the same file at the same time, they can
communicate over shared memory. Writes done by one process to the shared
memory are immediately visible when the other one reads from the part of its vir-
tual address spaced mapped onto the file. This mechanism thus provides a high-
bandwidth channel between processes and is often used as such (even to the
extent of mapping a scratch file). Now it should be clear that if memory-mapped
files are available, shared libraries can use this mechanism.
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3.5.8 Cleaning Policy

Paging works best when there are plenty of free page frames that can be
damed as page faults occur. If every page frame is full, and furthermore modi-
fied, before a new page can be brought in, an old page must first be written to
disk. To ensure a plentiful supply of free page frames, many paging systems have
abackground process, cdled the paging daemon, that sleeps most of the time but
is avakened periodicaly to inspect the state of memory. If too few page frames
are freg, the paging daemon begins selecting pages to evict using some page
replacement agorithm. If these pages have been modified since being loaded,
they are written to disk.

In any event, the previous contents of the page are remembered. In the event
one of the evicted pages is needed again before its frame has been overwritten, it
can be reclamed by removing it from the pool of free page frames. Keeping a
supply of page frames around yields better performance than using al of memory
and then trying to find a frame a the moment it is needed. At the very least, the
paging daemon ensures that dl the free frames are clean, so they need not be writ-
ten to disk in abig hurry when they are required.

One way to implement this cleaning policy is with a two-handed clock. The
front hand is controlled by the paging daemon. When it points to a dirty page,
that page is written back to disk and the front hand is advanced. When it points to
aclean page, it isjust advanced. The back hand is used for page replacement, as
in the standard clock algorithm. Only now, the probability of the back hand hitting
aclean page isincreased due to the work of the paging daemon.

3.5.9 Virtual Memory Interface

Up until now, our whole discussion has assumed that virtual memory is trans-
parent to processes and programmers, that is, al they see is alarge virtua address
space on a computer with a small(er) physical memory. With many systems, that
is true, but in some advanced systems, programmers have some control over the
memory map and can use it in nontraditional ways to enhance program behavior.
In this section, we will briefly look at a few of these.

Orne reason for giving programmers control over their memory map is to
dlow two or more processes to share the same memory. If programmers can
name regions of their memory, it may be possible for one process to give another
process the name of a memory region so that process can also map it in. With two
(or more) processes sharing the same pages, high bandwidth sharing becomes pos-
shle—one process writes into the shared memory and another one reads from it.

Sharing of pages can also be used to implement a high-performance mes-
sage-passing system. Normdly, when messages are passed, the data are copied
from one address space to another, at considerable cost. If processes can control
their page map, a message can be passed by having the sending process unmap the
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page(s) containing the message, and the receiving process mapping them in. Here
only the page names have to be copied, instead of all the data.

Yet another advanced memory management technique is distributed shared
memory (Feeley et al, 1995; Li, 1986; Li and Hudak, 1989; and Zekauskas et al.,
1994). The idea here is to alow multiple processes over a network to share a set
of pages, possibly, but not necessarily, as a single shared linear address space.
When a process references a page that is not currently mapped in, it gets a page
fault. The page fault handler, which may be in the kernel or in user space, then
locates the machine holding the page and sends it a message asking it to unmap
the page and send it over the network. When the page arrives, it is mapped in and
the faulting instruction is restarted. We will examine distributed shared memory
in more detail in Chap. 8.

36 IMPLEMENTATION ISSUES

Implemented of virtual memory systems have to make choices among the
major theoretical algorithms, such as second chance versus aging, local versus
global page allocation, and demand paging versus prepaging. But they aso have
to be aware of a number of practical implementation issues as well. In this sec-
tion we will take a look at a few of the common problems and some solutions.

3.6.1 Operating System Involvement with Paging

There are four times when the operating system has paging-related work to
do: process creation time, process execution time, page fault time, and process
termination time. We will now briefly examine each of these to see what has to
be done.

When anew process is created in a paging system, the operating system has to
determine how large the program and data will be (initially) and create a page
table for them. Space has to be dlocated in memory for the page table and it has
to beinitialized. The page table need not be resident when the process is swapped
out but has to be in memory when the process is running. In addition, spacehas to
be alocated in the swap area on disk so that when a page is swapped out, it has
somewhere to go. The swap area aso has to be initialized with program text and
data so that when the new process starts getting page faults, the pages can be
brought in. Some systems page the program text directiy from the executable file,
thus saving disk space and initialization time. Finaly, information about the page
table and swap area on disk must be recorded in the process table.

When a process is scheduled for execution, the MMU has to be reset for the
new process and the TLB flushed, to get rid of traces of the previously executing
process. The new process page table has to be made current, usualy by copying
it or a pointer to it to some hardware register(s). Optionaly, some or al of the
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process pages can be brought into memory to reduce the number of page faults
initially (e.g., itis certain that the page pointed to by the PC will be needed).

When a page fault occurs, the operating system has to read out hardware reg-
isters to determine which virtual address caused the fault. From this information,
it must compute which page is needed and locate that page on disk. It must then
find an available page frame to put the new page, evicting some old page if heed
be. Then it must read the needed page into the page frame. Finaly, it must back
up the program counter to have it point to the faulting instruction and let that in-
struction execute again.

When a process exits, the operating system must release its page table, its
pages, and the disk space that the pages occupy when they are on disk. If some of
the pages are shared with other processes, the pages in memory and on disk can
only be released when the last process using them has terminated.

3.6.2 Page Fault Handling

We arefinally in a position to describe in detail what happens on a page faullt.
The sequence of eventsis as follows:

1. The hardware traps to the kernel, saving the program counter on the
stack. On most machines, some information about the state of the
current instruction is saved in special CPU registers.

2. Anassembly code routine is started to save the genera registers and
other volatile information, to keep the operating system from des-
troying it. This routine calls the operating system as a procedure.

3. The operating system discovers tha- a page fault has occurred, and
tries to discover which virtual page is needed. Often one of the hard-
ware registers contains this information. If not, the operating system
must retrieve the program counter, fetch the instruction, and parse it
in software to figure out what it was doing when the fault hit.

4. Once the virtual address that caused the fault is known, the system
checks to see if this address is valid and the protection consistent
with the access. If not, the processis sent a signal or killed. If the
address is valid and no protection fault has occurred, the system
checks to see if apage frame is free. If no frames are free, the page
replacement algorithm is run to select a victim.

5. If the page frame selected is dirty, the page is scheduled for transfer
to the disk, and a context switch takes place, suspending the faulting
process and letting another one run until the disk transfer has com-
pleted. In any event, the frame is marked as busy to prevent it from
being used for another purpose.
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6. As soon as the page frame is clean (either immediately or after it is
written to disk), the operating system looks up the disk address
where the needed page is, and schedules a disk operation to bring it
in. While the page is being loaded, the faulting process is still
suspended and another user process is run, if one is available.

7. When the disk interrupt indicates that the page has arrived, the page
tables are updated to reflect its position, and the frame is marked as
being in normal state.

8. The faulting instruction is backed up to the state it had when it began
and the program counter is reset to point to that instruction.

9. The faulting process is scheduled, and the operating system returns
to the (assembly language) routine that caled it.

10. This routine reloads the registers and other state information and re-
turns to user space to continue execution, as if no fault had occurred.

3.6.3 Instruction Backup

When a program references a page that is not in memory, the instruction caus-
ing the fault is stopped partway through and a trap to the operating system occurs.
After the operating system has fetched the page needed, it must restart the instruc-
tion causing the trap. Thisis easier said than done.

To see the nature of this problem at its worst, consider a CPU that has instruc-
tions with two addresses, such as the Motorola 680x0, widely used in embedded
systems. The instruction

MOV.L#6(A1),2(A0)
is 6 bytes, for example (see Fig. 3-28). In order to restart the instruction, the oper-
ating system must determine where the first byte of the instruction is. The value of

the program counter at the time of the trap depends on which operand faulted and
how the CPU's microcode has been implemented.

MOVE.L#6(A1), 2(A0)

-16 Bits-
1000 MOVE } Opcode
1002 } Firgt operand
1004 ) Second operand

Figure3-28. An instruction causing a page fault.

In Fig. 3-28, we have an instruction starting at address 1000 that makes three
memory references: the instruction word itself, and two offsets for the operands.
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Depending on which of these three memory references caused the page fault, the
program counter might be 1000, 1002, or 1004 at the time of the fault. Itis fre-
quently impossible for the operating system to determine unambiguously where
the instruction began. If the program counter is 1002 at the time of the fault, the
operating system has no way of telling whether the word in 1002 is a memory ad-
dress associated with an instruction at 1000 (e.g., the location of an operand) or an
ingtruction opcode.

Bad as this problem may be, it could have been worse. Some 680x0 ad-
dressing modes use autoincrementing, which means that a side effect of executing
the ingtruction is to increment one or more registers. Instructions that use autoin-
crement mode can aso fault. Depending on the details of the microcode, the
increment may be done before the memory reference, in which case the operating
sysem mugt decrement the register in software before restarting the instruction.
Or, the autoincrement may be done after the memory reference, in which case it
will not have been done at the time of the trap and must not be undone by the op-
erding system. Autodecrement mode also exists and causes a similar problem.
The precise details of whether autoincrements and autodecrements have or have
not been done before the corresponding memory references may differ from in-
struction to ingtruction and from CPU model to CPU model.

Fortunately, on some machines the CPU designers provide a solution, usually
in the form of a hidden internal register into which the program counter is copied
just before each ingtruction is executed. These machines may also have a second
register telling which registers have aready been autoincremented or autodecre-
mented, and by how much. Given this information, the operating system can
unambiguoudy undo al the effects of the faulting instruction so that it can be re-
darted. If this information is not available, the operating system has to jump
through hoops to figure out what happened and how to repair it. It is as though
the hardware designers were unable to solve the problem, so they threw up their
hands and told the operating system writers to deal with it. Nice guys.

3.6.4 Locking Pagesin Memory

Although we have not discussed 1/0 much in this chapter, the fact that a com-
puter has virtua memory does not mean that 1/O is absent. Virtual memory and
I/O interact in subtle ways. Consider a process that hasjust issued a system call
to read from somefile or device into abuffer within its address space. While wait-
ing for the 1/0O to complete, the process is suspended and another process is allow-
ed to run. This other process gets a page faullt.

If the paging agorithm is global, there is a small, but nonzero, chance that the
page containing the 1/0 buffer will be chosen to be removed from memory. If an
I/0 device is currently in the process of doing a DMA transfer to that page,
removing it will cause part of the data to be written in the buffer where they be-
long, and part of the data to be written over the just-loaded page. One solution to
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this problem is to lock pages engaged in I/O in memory so that they will not bere-
moved. Locking a page is often caled pinning it in memory. Another solution is
to do al 1/0 to kernel buffers and then copy the data to user pages later.

3.6.5 Backing Store

In our discussion of page replacement agorithms, we saw how a page is
selected for removal. We have not said much about where on the disk it is put
when it is paged out. Let us now describe some of the issues related to disk man-
agement.

The simplest agorithm for alocating page space on the disk is to have a spe-
cia swap partition on the disk, .or even better on a separate disk from the fde sys-
tem (to balance the I/O load). Most UNIX systems work like this. This partition
does not have a normal fde system on it, which eliminates al the overhead of con-
verting offsets in files to block addresses. Instead, block numbers relative to the
start of the partition are used throughout.

When the system is booted, this swap partition is empty and is represented in
memory as asingle entry giving its origin and size. In the simplest scheme, When
the first process is started, a chunk of the partition area the size of the first process
isreserved and the remaining area reduced by that amount. As new processes are
started, they are assigned chunks of the swap partition equal in size to their core
images. As they finish, their disk space is freed. The swap partition is managed
as alist of free chunks. Better algorithms will be discussed in Chap. 10.

Associated with each process is the disk address of its swap area, that is,
where on the swap partition its image is kept. Thisinformation is kept in the proc-
ess table. Calculating the address to write a page to becomes simple: just add the
offset of the page within the virtual address space to the start of the swap area.
However, before a process can start, the swap area must be initialized. One way
is to copy the entire process image to the swap area, so that it can be brought in as
needed. The other is to load the entire process in memory and let it be paged out
as needed.

However, this simple model has a problem: processes can increase in size
after starting. Although the program text is usualy fixed, the data area can some-
times grow, and the stack can always grow. Consequently, it may be better to
reserve separate swap areas for the text, data, and stack and alow each of these
areas to consist of more than one chunk on the disk.

The other extreme is to alocate nothing in advance and allocate disk space for
each page when it is swapped out and deallocate it when it is swapped back in. In
this way, processes in memory do not tie up any swap space. The disadvantage is
that a disk address is needed in memory to keep track of each page on disk. In
other words, there must a table per process telling for each page on disk where it
is. The two alternatives are shown in Fig. 3-29.
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Figure 3-29. (a) Paging to a static swap area, (b) Backing up pages dynamically.

InFig. 3-29(a), a page table with eight pages isillustrated. Pages 0,3,4, and 6
are in main memory. Pages 1, 2, 5, and 7 are on disk. The swap area on disk is as
large as the process virtud address space (eight pages), with each page having a
fixed location to which it is written when it is evicted from main memory. Calcu-
lating this address requires knowing only where the process' paging area begins,
since pages are stored in it contiguoudy in order of their virtual page number. A
page that is in memory aways has a shadow copy on disk, but this copy may be
out of date if the page has been modified since being loaded. The shaded pagesin
memory indicate pages not present in memory. The shaded pages on the disk are
(in principle) superseded by the copies in memory, athough if amemory page has
to be swapped back to disk and it has not been modified since it was loaded, the
(shaded) disk copy will be used.

In Fig. 3-29(b), pages do not have fixed addresses on disk. When a page is
swapped out, an empty disk page is chosen on the fly and the disk map (which has
room for one disk address per virtud page) is updated accordingly. A page in
memory has no copy ondisk. Their entries in the disk map contain an invalid disk
address or a bit marking them as not in use.

Having a fixed swap partition is not aways possible. For example, no disk
partitions may be available. In this case, one or more large, prealocated files
within the normd file system can be used. Windows uses this approach. Howev-
er, an optimization can be usad here to reduce the amount of disk space needed.
Since the program text of every process came from some (executable) file in the
file system, the executable file can be used as the swap area. Better yet, since the
program text is generaly read-only, when memory is tight and program pages
have to be evicted from memory, they are just discarded and read in again from
the executable file when needed. Shared libraries can aso work this way.
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3.6.6 Separation of Policy and Mechanism

An important tool for managing the complexity of any system is to separate
policy from mechanism. This principle can be applied to memory management by
having most of the memory manager run as a user-level process. Such a separa-
tion was first done in Mach (Young et a., 1987). The discussion below is loosely
based on Mach.

A simple example of how policy and mechanism can be separated is shown in
Fig. 3-30. Here the memory management system is divided into three parts:

1. A low-level MMU handler.
2. A pagefault handler that is part of the kernel.
3. An externa pager running in user space.

All the details of how the MMU works are encapsulated in the MMU handler,
which is machine-dependent code and has to be rewritten for each new platform
the operating system is ported to. The page-fault handler is machine-independent
code and contains most of the mechanism for paging. The policy is largely deter-
mined by the external pager, which runs as a user process.

|

space

Main ¥ ST, A .

Kemel
space

Figure 3-30. Page fault handling with an external pager.

When a process starts up, the external pager is notified in order to set up the
process page map and allocate backing store on the disk if need be. As the proc-
€ss runs, it may map new objects into its address space, so the external pager is
again notified.

Once the process starts running, it may get a page fault. The fault handler fig-
ures out which virtua page is needed and sends a message to the externa pager,
telling it the problem. The external pager then reads the needed page in from the
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disk and copies it to a portion of its own address space. Then it tells the fault
handler where the page is. The fault handler then unmaps the page from the ex-
terna pager's address space and asks the MMU handler to put it into the user's
address space at the right place. Then the user process can be restarted.

This implementation leaves open where the page replacement algorithm is
put. It would be cleanest to have it in the external pager, but there are some prob-
lems with this approach. Principal among these is that the external pager does not
have access to the R and M bits of al the pages. These bits play arole in many of
the paging agorithms. Thus either some mechanism is needed to pass this infor-
mation up to the external pager, or the page replacement algorithm must go in the
kernel. In the latter case, the fault handler tells the external pager which page it
has sdlected for eviction and provides the data, either by mapping it into the exter-
nd pager's address space or including it in a message. Either way, the externa
pager writes the data to disk.

The main advantage of this implementation is more modular code and greater
flexibility. The main disadvantage is the extra overhead of crossing the user-
kernd boundary severa times and the overhead of the various messages being
sent between the pieces of the system. At the moment, the subject is highly con-
troversia, but as computers get faster and faster, and the software gets more and
more complex, in the long run sacrificing some performance for more reliable
software will probably be acceptable to most implementers.

3.7 SEGMENTATION

The virtua memory discussed so far is one-dimensional because the virtua
addresses go from 0 to some maximum address, one address after another. For
many problems, having two or more separate virtual address spaces may be much
better than having only one. For example, a compiler has many tables that are
built up as compilation proceeds, possibly including

1. The source text being saved for the printed listing (on batch systems).
2. The symbol table, containing the names and attributes of variables.

3. The table containing al the integer and floating-point constants used.
4. The parse tree, containing the syntactic analysis of the program.

5. The stack used for procedure calls within the compiler.

Each of the first four tables grows continuously as compilation proceeds. The last
one grows and shrinks in unpredictable ways during compilation. In a one-
dimensiond memory, these five tables would have to be allocated contiguous
chunks of virtual address space, as in Fig. 3-31.

Consider what happens if a program has a much larger than usual number of
variables but a normal amount of everything else. The chunk of address space
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allocated for the symbol table may fill up, but there may be lots of room in the
other tables. The compiler could, of course, smply issue a message saying that
the compilation cannot continue due to too many variables, but doing so does not
seem very sporting when unused space is left in the other tables.

Another possibility is to play Robin Hood, taking space from the tables with
an excess of room and giving it to the tables with little room. This shuffling can
be done, but it is analogous to managing one's own overlays—a nuisance at best
and agreat deal of tedious, unrewarding work at worst.

What is really needed is a way of freeing the programmer from having to
manage the expanding and contracting tables, in the same way that virtual memo-
ry eliminates the worry of organizing the program into overlays.

A straightforward and extremely general solution is to provide the machine
with many completely independent address spaces, called segments. Each seg-
ment consists of a linear sequence of addresses, from O to some maximum. The
length of each segment may be anything from 0 to the maximum alowed. Dif-
ferent segments may, and usually do, have different lengths. Moreover, segment
lengths may change during execution. The length of a stack segment may be in-
creased whenever something is pushed onto the stack and decreased whenever
something is popped off the stack.

Because each segment congtitutes a separate address space, different seg-
ments can grow or shrink independently without affecting each other. If astack in
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a certain segment needs more address space to grow, it can have it, because there
is nothing elsein its address space to bump into. Of course, a segment can fill up,
but segments are usualy very large, so this occurrence is rare. To specify an ad-
dress in this segmented or two-dimensional memory, the program must supply a
two-part address, a segment number, and an address within the segment. Figure
3-32 illustrates a segmented memory being used for the compiler tables discussed
earlier. Five independent segments are shown here.

20K —m8 —1
1% 1K F—
PP — 12Kr~ 12K
Symbol
table 8K i Parse BK -
8 wr tree Cali
Source stack
4K me text e s 4K b=
Congants | I
oK x 0K oK
oK Segment Segment Segment Segment
Segment 91 2 3 4

0

Figure 3-32. A segmented memory allows each table to grow or shrink inde-

pendently of the other tables.

We emphasize that a segment is a logical entity, which the programmer is
aware of and uses as alogical entity. A segment might contain a procedure, or an
array, or a stack, or acollection of scalar variables, but usualy it does not contain

a mixture of different types.

A segmented memory has other advantages besides simplifying the handling
of data structures that are growing or shrinking. If each procedure occupies a sep-
arate segment, with address 0 as its starting address, the linking of procedures
compiled separately is greatly smplified. After al the procedures that constitute a
program have been compiled and linked up, a procedure call to the procedure in
segment n will use the two-part address (n, 0) to address word O (the entry point).

If the procedure in segment n is subsequently modified and recompiled, no
other procedures need be changed (because no starting addresses have been modi-
fied), even if the new version is larger than the old one. With a one-dimensional
memory, the procedures are packed tightly next to each other, with no address
space between them. Consequently, changing one procedure's size can affect the
starting address of other (unrelated) procedures. This, in turn, requires modifying
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al procedures that call any of the moved procedures, in order to incorporate their
new starting addresses. |If a program contains hundreds of procedures, this proc-
ess can be costly.

Segmentation also facilitates sharing procedures or data between severa proc-
esses. A common example is the shared library. Modern workstations that run
advanced window systems often have extremely large graphical libraries com-
piled into nearly every program. In a segmented system, the graphica library can
be put in a segment and shared by multiple processes, eliminating the need for
having it in every process' address space. While it is also possible to have shared
libraries in pure paging systems, it is more complicated. In effect, these systems
do it by simulating segmentation.

Since each segment forms alogical entity of which the programmer is aware,
such as a procedure, or an array, or a stack, different segments can have different
kinds of protection. A procedure segment can be specified as execute only, prohi-
biting attempts to read from it or store into it. A floating-point array can be speci-
fied as read/write but not execute, and attempts to jump to it will be caught. Such
protection is helpful in catching programming errors.

You should try to understand why protection is sensible in a segmented mem-
ory but not in aone-dimensional paged memory. In a segmented memory the user
is aware of what is in each segment. Normally, a segment would not contain a
procedure and a stack, for example, but only one or the other, not both. Since each
segment contains only a single type of object, the segment can have the protection
appropriate for that particular type. Paging and segmentation are compared in
Fig. 3-33.

The contents of a page are, in asense, accidental. The programmer is unaware
of the fact that paging is even occurring. Although putting a few bits in each
entry of the page table to specify the access allowed would be possible, to utilize
this feature the programmer would have to keep track of where in his address
space the page boundaries were. That is precisely the sort of administration that
paging was invented to eliminate. Because the user of a segmented memory has
the illusion that all segments are in main memory al the time—that is, he can ad-
dress them as though they were—he can protect each segment separately, without
having to be concerned with the administration of overlaying them.

3.7.1 Implementation of Pure Segmentation

The implementation of segmentation differs from paging in an essential way:
pages are fixed size and segments are not. Figure 3-34(a) shows an example of
physical memory initialy containing five segments. Now consider what happens
if segment 1 is evicted and segment 7, which is smaller, is put in its place. We
arrive a the memory configuration of Fig. 3-34(b). Between segment 7 and seg-
ment 2 is an unused area—that is, a hole. Then segment 4 is replaced by segment
5, asin Fig. 3-34(c), and segment 3 is replaced by segment 6, as in Fig. 3-34(d).
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Consideration Paging Segmentation
Need the programmer be aware No Yes
that this technique is being used?
Man
How many linear address 1 any
spaces are there?
Can the total address space Yes Yes
exceed the size of physical
memory?
Y
Can procedures and data be No es
distinguished and separately
protected?
Can tables whose size fluctuates No Yes
be accommodated easily?
Is sharing of procedures No Yes
between users facilitated?
Why was this technique To geta large To allow programs
invented? linear address and data to be broken
: space without up into logically
having to buy independent address
more physical spaces and to aid
memory sharing and
protection

Figure 3-33. Comparison of paging and segmentation.

After the system has been running for a while, memory will be divided up into a
number of chunks, some containing segments and some containing holes. This
phenomenon, called checkerboarding or external fragmentation, wastes memo-
ry in the holes. It can be dealt with by compaction, as shown in Fig. 3-34(e).

3.7.2 Segmentation with Paging: MULTICS

If the segments are large, it may be inconvenient, or even impossible, to keep
them in main memory in their entirety. This leads to the idea of paging them, so
that only those pages that are actually needed have to be around. Severa signifi-
cant systems have supported paged segments. In this section we will describe the
first one: MULTICS. In the next one we will discuss a more recent one: the Intel
Pentium.

MULTICS ran on the Honeywell 6000 machines and their descendants and
provided each program with a virtual memory of up to 2*° segments (more than
250,000), each of which could be up to 65,536 (36-bit) words long. To implement
this, the MULTICS designers chose to treat each segment as a virtual memory and
to page it, combining the advantages of paging (uniform page size and not having
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Figure 3-34. (a)-(d) Development of checkerboarding, (e) Removal of the
checkerboarding by compaction.

to keep the whole segment in memory if only part of it is being used) with the ad-
vantages of segmentation.(ease of programming, modularity, protection,'sharing).

Each MULTICS program has a segment table, with one descriptor per seg-
ment. Since there are potentially more than a quarter of a million entries in the
table, the segment table is itself a segment and is paged. A segment descriptor
contains an indication of whether the segment is in main memory or not. If any
part of the segment isin memory, the segment is considered to be in memory, and
its page table will bein memory. If the segment isin memory, its descriptor con-
tains an 18-hit pointer to its page table, asin Fig. 3-35(a). Because physical ad-
dresses are 24 hits and pages are aigned on 64-byte boundaries (implying that the
low-order 6 bits of page addresses are 000000), only 18 hits are needed in the de-
scriptor to store a page table address. The descriptor aso contains the segment
size, the protection bits, and a few other items. Figure 3-35(b) illustrates a MUL-
TICS segment descriptor. The address of the segment in secondary memory is not
in the segment descriptor but in another table used by the segment fault handler.

Each segment is an ordinary virtual address space and is paged in the same
way as the nonsegmented paged memory described earlier in this chapter. The
normal page size is 1024 words (although a few small segments used by MUL-
TICS itself are not paged or are paged in units of 64 words to save physical mem-
ory).

An address in MULTICS consists of two parts: the segment and the address
within the segment. The address within the segment is further divided into a page
number and a word within the page, as shown in Fig. 3-36. When a memory ref-
erence occurs, the following algorithm is carried out.
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memory, the main memory address of the start of the page is ex-
tracted from the page table entry.

-36 bits - 4. The offset is added to the page origin to give the main memory ad-
Page 2 entry dress where the word is located.
Page 1 entry 5. The read or store findly takes place.
i P 0 enti
Segment 6 descriptor age 0 entry Addresswithin
Segment 5 destriptor Page table for segment 3 the segment
Segment 4 descriptor
; Segment number Page Offset within
Segment 3 descriptor number the page
Segment 2 descriptor 18 6 10
Segment 1 destriptor Page 2 entry Figure3-36.. A 34-bit MULTICS virtual address.
Segment 0 descriptor Page 1 entry
Descriptor segment Page 0 entry This process is illustrated in Fig. 3-37. For simplicity, the fact that the de-
Page table for segment 1 scriptor segment is itself paged has been omitted. What really happens is that a

register (the descriptor base register) is used to locate the descriptor segment's

page table, which, in turn, points to the pages of the descriptor segment. Once the

9 descriptor for the needed segment has been found, the addressing proceeds as
shown in Fig. 3-37.

18 9 1113 3
Main memory address Seg(j_ment Ien)gth MULTICS virtual address
in pages
of the pagetable pag Segrment number nﬁ;%zr -
Pagesize:
0 = 1024 words———
1-64 words

0=segmentispaged _-

1 =segment isnot paged
Miscdlaneous bits————

Protection bits

>

Figure 3-35. The MULTICS virtual memory, (a) The descriptor segment
points to the page tables (b) A ssgment descriptor. The numbers are the field

lengths.

Segment Page Offset
The segment number is used to find the segment descriptor. number e scriptor numbst Page Page

t

A check is made to see if the segment's page table is in memory. If seamen tavle
the page table isin memory, it is quated. Ifitis not, a segment fault Figure 3-37. Conversion of a two-part MULTICS address into a main memory address.
occurs. If thereisaprotection violation, afault (trap) occurs.
The page table entry for the requested virtual page is examined. If As you have no doubt guessed by now, if the preceding algorithm were ac-

the page itsdlf is notin memory, a page fault is triggered. If itisin tually carried out by the operating system on every instruction, programs would
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not run very fagt. In reality, the MULTICS hardware contains a 16-word high-
peed TLB that can search dll its entries in parallel for a given key. Itisillustrat-
ed in Fig. 3-38. When an address is presented to the computer, the addressing
hardware first checks to see if the virtud address isin the TLB. If so, it gets the
page frame number directly from the TLB and forms the actua address of the ref-
erenced word without having to look in the descriptor segment or page table.

Canpgon iy

Segment  Virtua  Page .
number page frame Protection Age

4 1 7 Read/write 13 |1
6 0 2 Read only 10 |1
12 3 1 Read/write 2 |1

0
2 1 0 Executeonly | 7 | 1
2 2 12 Execute only 9 1

Figure 3-38. A smplified version of the MULTICS TLB. The existence of two
page sizes makes the actual TLB more complicated.

The addresses of the 16 most recently referenced pages are kept in the TLB.
Programs whose working s&t is smaler than the TLB size will come to equili-
brium with the addresses of the entire working set in the TLB and therefore will
run efficiently. If the page is not in the TLB, the descriptor and page tables are
actualy referenced to find the page frame address, and the TLB is updated to in-
clude this page, the least recently used page being thrown out. The age field keeps
track of which entry is the least recently used. The reason that aTLB is used is
for comparing the segment and page numbers of al the entries in parallel.

3.7.3 Segmentation with Paging: The Intel Pentium

In many ways, the virtua memory on the Pentium resembles that of MUL-
TICS, including the presence of both segmentation and paging. Whereas MUL-
TICS has 256K independent segments, each up to 64K 36-bit words, the Pentium
has 16K independent segments, each holding up to 1 hillion 32-bit words. Al-
though there are fewer segments, the larger segment size is far more important, as
few programs need more than 1000 segments, but many programs need large seg-
ments.

The heart of the Pentium virtud memory consists of two tables, caled the
LDT (Local Descriptor Table) and the GDT (Global Descriptor Table). Each
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program has its own LDT, but there is a single GDT, shared by dl the programs
on the computer. The LDT describes segments loca to each program, including
its code, data, stack, and so on, whereas the GDT describes system segments, in-
cluding the operating system itself.

To access a segment, a Pentium program first loads a selector for that segment
into one of the machine's six segment registers. During execution, the CS register
holds the selector for the code segment and the DS register holds the selector for
the data segment. The other segment registers are less important. Each selector is
a 16-hit number, as shown in Fig. 3-39.

Bits 13 t 2

Index

0=GDT/1 =LDT  Privilege level (0-3)
Figure 3-39. A Pentium selector.

One of the selector bits tells whether the segment is local or globa (i.e.,
whether it is in the LDT or GDT). Thirteen other bits specify the LDT or GDT
entry number, so these tables are each restricted to holding 8K segment descrip-
tors. The other 2 bits relate to protection, and will be described later. Descriptor O
is forbidden. It may be safely loaded into a segment register to indicate that the
segment register is not currently available. It causes a trap if used.

At the time a selector is loaded into a segment register, the corresponding de-
scriptor is fetched from the LDT or GDT and stored in microprogram registers, so
it can be accessed quickly. As depicted in Fig. 3-40, a descriptor consists of 8
bytes, including the segment's base address, size, and other information.

The format of the selector has been cleverly chosen to make locating the de-
scriptor easy. First either the LDT or GDT is selected, based on selector bit 2.
Then the selector is copied to an internal scratch register, and the 3 low-order bits
set to 0. Finaly, the address of either the LDT or GDT tableis added to it, to give
a direct pointer to the descriptor. For example, selector 72 refers to entry 9 in the
GDT, which islocated at address GDT + 72.

Let us trace the steps by which a (selector, offset) pair is converted to a physi-
cal address. As soon as the microprogram knows which segment register is being
used, it can find the complete descriptor corresponding to that selector in its inter-
nal registers. If the segment does not exist (selector 0), or is currently paged out,
atrap occurs.

The hardware then uses the Limit field to check if the offset is beyond the end
of the segment, in which case a trap also occurs. Logicaly, there should be a 32-
bit field in the descriptor giving the size of the segment, but there are only 20 hits
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0: 16-Bit segment
1:32-Bit segment

0: Liisin bytes
1: Liisin pages

0: Segment is absent from memory
1: Segment is present in memory

- Privilege level (0-3)

f 0: System

{ 1. Application

- Segment type and protection

Limi
Base 24-31 Glplor Mt b ppL|s| Type Base 16-23 4
I 16-19
Base 0-15 Limit 0-15 0
Relative
-32 Bits- address

Figure 3-40. Pentium code segment descriptor. Data segments differ slightly.

avallable, 20 a different scheme is used. If the chit (Granularity) field is 0, the
Limit fidd is the exact segment size, up to 1 MB. If it is 1, the Limit field gives
the segment size in pages instead of bytes. The Pentium page size is fixed at 4
KB, s0 20 hits are enough for segments up to 2°* bytes.

Assuming that the segment is in memory and the offset is in range, the Pen-
tium then adds the 32-bit Base field in the descriptor to the offset to form what is
cdled alinear address, as shown in Fig. 3-41. The Base field is broken up into
three pieces and spread dl over the descriptor for compatibility with the 286, in
which the Base is only 24 bits. In effect, the Base field alows each segment to
dart a an arbitrary place within the 32-bit linear address space.

Selector

Descriptor

Base address

Limit

Other fields

Offset

32-Bit linear address

Figure 3-41. Conversion of a (selector, offset) pair to a linear address.

If paging is disabled (by a bit in aglobal control register), the linear address is
interpreted as the physical address and sent to the memory for the read or write.
Thus with paging disabled, we have a pure segmentation scheme, with each seg-
ment's base address given in its descriptor. Segments are not prevented from
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overlapping, probably because it would be too much trouble and take too much
time to verify that they were dl digoint.

On the other hand, if paging is enabled, the linear address is interpreted as a
virtua address and mapped onto the physical address using page tables, pretty
much as in our earlier examples. The only real complication is that with a 32-hit
virtual address and a 4-KB page, a segment might contain 1 million pages, so a
two-level mapping is used to reduce the page table size for small segments.

Each running program has a page directory consisting of 1024 32-bit entries.
Itislocated at an address pointed to by a global register. Each entry in this direc-
tory points to a page table also containing 1024 32-bit entries. The page table en-
tries point to page frames. The scheme is shown in Fig. 3-42.

Linear address

Bits 10 10 12
Dir Page Offset
@
Page directory Page table Page frame
= \,,]n Word k-
selected | b
1024
Entries T T
Dir Ofiset
i Page
Directory entry Page table
poinds to entry points
page tabie to word

®)
Figure 3-42. Mapping of a linear address onto a physical address.

In Fig. 3-42(a) we see a linear address divided into three fields, Dir, Page,
and offset. The Dir fild is used to index into the page directory to locate a point-
er to the proper page table. Then the Page field is used as an index into the page
table to find the physica address of the page frame. Finally, Offset is added to the
address of the page frame to get the physical address of the byte or word needed.

The page table entries are 32 bits each, 20 of which contain a page frame
number. The remaining bits contain access and dirty bits, set by the hardware for
the benefit of the operating system, protection bits, and other utility bits.

Each page table has entries for 1024 4-KB page frames, so a single page table
handles 4 megabytes of memory. A segment shorter than 4M will have a page
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directory with a single entry, a pointer to its one and only page table. In this way,
the overhead for short segments is only two pages, instead of the million pages
that would be needed in a one-level page table.

To avoid making repeated references to memory, the Pentium, like MUL-
TICS, has asmall TLB that directly maps the most recently used Dir-Page com-
binations onto the physical address of the page frame. Only when the current com-
bination is not present in the TLB is the mechanism of Fig. 3-42 actualy carried
out and the TLB updated. Aslong as TLB misses are rare, performance is good.

Itis also worth noting that if some application does not need segmentation but
is content with a single, paged, 32-bit address space, that model is possible. All
the segment registers can be set up with the same selector, whose descriptor has
Base - 0 and Limit set to the maximum. The instruction offset will then be the lin-
ear address, with only a single address space used—in effect, normal paging. In
fact, al current operating systems for the Pentium work this way. OS/2 was the
only one that used the full power of the Intel MMU architecture.

All in dl, one has to give credit to the Pentium designers. Given the conflict-
ing goals of implementing pure paging, pure segmentation, and paged segments,
while at the same time being compatible with the 286, and doing dl of this effi-
ciently, the resulting design is surprisingly simple and clean.

Although we have covered the complete architecture of the Pentium virtual
memory, abeit briefly, it is worth saying a few words about protection, since this
subject is intimately related to the virtua memory. Just as the virtual memory
scheme is closdly modeled on MULTICS, so is the protection system. The Pen-
tium supports four protection levels, with level 0 being the most privileged and
level 3 the least. These are shown in Fig. 3-43. At each instant, a running pro-
gram is a acertain level, indicated by a 2-bit field in its PSW. Each segment in
the system also has a level.

Aslong as a program restricts itself to using segments at its own level, every-
thing works fine. Attempts to access data at a higher level are permitted. At-
tempts to access data at alower level areillegal and cause traps. Attempts to call
procedures at a different level (higher or lower) are alowed, but in a carefully
controlled way. To make an interlevel cal, the CALL instruction must contain a
selector instead of an address. This selector designates a descriptor caled a call
gate, which gives the address of the procedure to be called. Thus it is not possible
to jump into the middle of an arbitrary code segment at a different level. Only
officid entry points may be used. The concepts of protection levels and call gates
were pioneered in MULTICS, where they were viewed as protection rings.

A typical use for this mechanism is suggested in Fig. 3-43. At level 0, we
find the kernel of the operating system, which handles I/O, memory management,
and other critical matters. At level 1, the system call handler is present. User pro-
grams may cdl procedures here to have system calls carried out, but only a spe-
cific and protected list of procedures may be called. Level 2 contains library pro-
cedures, possibly shared among many running programs. User programs may call
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Figure 3-43. Protection on the Pentium.

these procedures and read their data, but they may not modify them. Finaly, user
programs run at level 3, which has the least protection.

Traps and interrupts use a mechanism similar to the cal gates. They'too, ref-
erence descriptors, rather than absolute addresses, and these descriptors point to
specific procedures to be executed. The Type field in Fig. 3-40 distinguishes be-
tween code segments, data segments, and the various kinds of gates.

3.8 RESEARCH ON MEMORY MANAGEMENT

Memory management, especially paging algorithms, was once a fruitful area
for research, but most of that seems to have largely died off, at least for general-
purpose systems. Most real systems tend to use some variation on clock, because
it is easy to implement and relatively effective. One recent exception, however, is
aredesign of the 4.4 BSD virtual memory system (Cranor and Parulkar, 1999).

There is still research going on concerning paging in newer kinds of systems
though. For example, cell phones and PDAs have become small PCs, and many of
them page RAM to "disk," only disk on acell phone is flash memory, which has
different properties than a rotating magnetic disk. Some recent work is reported
by (In et al., 2007; Joo et a., 2006; and Park et al., 2004a). Park et al. (2004b)
have also looked at energy-aware demand paging in mobile devices.

Research is aso taking place on modeling paging performance (Albers et a.,
2002; Burton and Kelly, 2003; Cascaval et al., 2005; Panagiotou and Souza, 2006;
and Peserico, 2003). Also of interest is memory management for multimedia sys-
tems (Dasigenis et a., 2001; Hand, 1999) and real-time systems (Pizlo and Vitek,
2006).
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3.9 SUMMARY

In this chapter we have examined memory management. We saw that the
smplest systems do not swap or page at all. Once a program is loaded into mem-
ory, it remains there in place until it finishes. Some operating systems allow only
one process at atime in memory, while others support multiprogramming.

The next step up is swapping. When swapping is used, the system can handle
more processes than it has room for in memory. Processes for which there is no
room are swapped out to the disk. Free space in memory and on disk can be kept
track of with a bitmap or ahole list.

Modern computers often have some form of virtual memory. In the simplest
form, each process address space is divided up into uniform-sized blocks called
pages, which can be placed into any available page frame in memory. There are
many page replacement algorithms, two of the better algorithms are aging and
WSClock.

Paging systems can be modded by abstracting the page reference string from
the program and using the same reference string with different algorithms. These
models can be used to make some predictions about paging behavior.

To make paging systems work well, choosing an algorithm is not enough;
atention to such issues as determining the working set, memory alocation policy,
and page size is required.

Segmentation helps in handling data structures that change size during execu-
tion and smplifies linking and sharing. It also facilitates providing different pro-
tection for different segments. Sometimes segmentation and paging are combined
to provide a two-dimensiona virtua memory. The MULTICS system and the
Intel Pentium support segmentation and paging.

PROBLEMS

1. The IBM 360 had a scheme of locking 2-KB blocks by assigning each one a 4-bit key
and having the CPU compare the key on every memory reference to the 4-bit key in
the PSW. Name two drawbacks of this scheme not mentioned in the text.

2. In Fig. 3-3 the base and limit registers contain the same value, 16,384. Is this just an
accident, or are they always the same? If this is just an accident, why are they the
same in this example?

3. A swapping system eliminates holes by compaction. Assuming a random distribution

e ond e (i, o0ty and @ time 10 read or write & 32-bit memory
“mm \\} {\Q\N \\ Ao ke o compact {1RMB? For smglicty, a5
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4. Consider a swapping system in which memory consists of the following hole sizes in
memory order: 10 KB, 4 KB, 20 KB, 18 KB, 7 KB, 9 KB, 12 KB, and 15 KB. Which
hole is taken for successive segment requests of

(@) 12KB
(b) 10 KB
(c) 9KB

for first fit? Now repeat the question for best fit, worst fit, and next fit.
5. What is the difference between a physical address and a virtual address?

6. Using the page table of Fig. 3-9, give the physical address corresponding to each of
the following virtual addresses:

(@ 20
(b) 4100
(c) 8300

7. The amount of disk space that must be available for page storage is related to the max-
imum number of processes, n, the number of bytes in the virtual address space, v, and
the number of bytes of RAM, r. Give an expression for the worst-case disk space re-
quirements. How realistic is this amount?

8. If an instruction takes 10 nsec and a page fault takes an additional n nsec, give a for-
mula for the effective instruction time if page faults occur every k instructions.

9. A machine has a 32-bit address space and an 8-KB page. The page table is entirely in
hardware, with one 32-bit word per entry. When a process starts, the page table is
copied to the hardware from memory, at one word every 100 nsec. If each process
runs for 100 msec (including the time to load the page table), what fraction of the CPU
time is devoted to loading the page tables?

10. Suppose that a machine has 48-bit virtual addresses and 32-bit physical addresses.

(a) If pages are 4 KB, how many entries are in the page table if it has only a single-
level? Explain.

(b) Suppose this same system has a TLB (Translation Lookaside Buffer) with 32 en-
tries. Furthermore, suppose that a program contains instructions that fit into one
page and it sequentially reads long integer elements from an array that spans
thousands of pages. How effective will the TLB be for this case?

11. A computer with a 32-bit address uses a two-level page table. Virtual addresses are
split into a 9-bit top-level page table field, an 11-bit second-level page table field, and
an offset. How large are the pages and how many are there in the address space?

12. Suppose that a 32-bit virtual address is broken up into four fields, a, b, ¢, and d. The
first three are used for a three-level page table system. The fourth field, d, is the offset.
Does the number of pages depend on the sizes of all four fields? If not, which ones
matter and which ones do not?

n A comrjuter has 32-bit virtual addresses and 4-KB pages. The program and data toget-
Nest page (04095) The stack fits in the highest page. How " en-
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tries are needed in the page table if traditional (one-level) paging is used? How many
page table entries are needed for two-level paging, with 10 bits in each part?

14. Below is an execution trace of a program fragment for a computer with 512-byte
pages. The program is located at address 1020, and its stack pointer is at 8192 (the
stack grows toward 0). Give the page reference string generated by this program.
Each instruction occupies 4 bytes (1 word) including immediate constants. Both in-
struction and data references count in the reference string.

Load word 6144 into register O

Push register 0 onto the stack

Call a procedure at 5120, stacking the return address
Subtract the immediate constant 16 from the stack pointer
Compare the actual parameter to the immediate constant 4
Jump if equal to 5152

15. A computer whose processes have 1024 pages in their address spaces keeps its page
tables in memory. The overhead required for reading a word from the page table is 5
nsec. To reduce this overhead, the computer has a TLB, which holds 32 (virtual page,
physical page frame) pairs, and can do a look up in 1 nsec. What hit rate is needed to
reduce the mean overhead to 2 nsec?

16. The TLB on the VAX does not contain an R bit. Why?

17. How can the associative memory device needed for a TLB be implemented in hard-
ware, and what are the implications of such a design for expandability?

18. A computer with an 8-KB page, a 256-KB main memory, and a 64-GB virtual address
space uses an inverted page table to implement its virtual memory. How big should
the hash table be to ensure a mean hash chain length of less than 1? Assume that the
hash table size is a power of two.

19. A student in a compiler design course proposes to the professor a project of writing a
compiler that will produce a list of page references that can be used to implement the
optimal page replacement algorithm. Is this possible? Why or why not? Is there any-
thing that could be done to improve paging efficiency at run time?

20. Suppose that the virtual page reference stream contains repetitions of long sequences
of page references followed occasionally by a random page reference. For example,
the sequence: O, 1, ..., 511,431,0, 1, ..., 511, 332, 0, 1, ... consists of repetitions of
the sequence 0,1, ..., 511 followed by a random reference to pages 431 and 332.

(a) Why won't the standard replacement algorithms (LRU, FIFO, Clock) be effective
in handling this workload for a page allocation that is less than the sequence
length?

(b) If this program were allocated 500 page frames, describe a page replacement ap-
proach that would perform much better than the LRU, FIFO, or Clock algorithms.

21. If FIFO page replacement is used with four page frames and eight pages, how many
page faults will occur with the reference string 0172327103 if the four frames are ini-
tially empty? Now repeat this problem for LRU.
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22. Consider the page sequence of Fig. 3-15(b). Suppose that the R bits for the pages B
through A are 11011011, respectively. Which page will second chance remove?

23. A small computer has four page frames. At the first clock tick, the R bits are 0111
(page O is O, the rest are 1). At subsequent clock ticks, the values are 1011, 1010,
1101, 0010, 1010, 1100, and 0001. Ifthe aging algorithm is used with an 8-bit count-
er, give the values of the four counters after the last tick.

24. Suppose that % = 400 in Fig. 3-20. Which page will be removed?

25. Give a simple example of a page reference sequence where the first page selected for
replacement will be different for the clock and LRU page replacement algorithms. As-
sume that a process is allocated 3 frames, and the reference string contains page num-
bers from the set0,1,2,3.

26. Suppose that the WSClock page replacement algorithm uses a x of two ticks, and the
system state is the following:'

Page Time stamp \% R M
0 6 1 0 1
1 9 1 1 0
2 9 1 1 1
3 7 1 0 0
4 4 0 0 0

Where the three flag bits stand for Valid, Referenced, and Modified, respectively.

(@) If a clock interrupt occurs at tick 10, show the contents of the new table entries.
Explain. (You can omit entries that are unchanged.)

(b) Suppose that instead of a clock interrupt, a page fault occurs at tick 10 due to a
read request to page 4. Show the contents of the new table entries. Explain. (You
can omit entries that are unchanged.)

27. How long does it take to load a 64-KB program from a disk whose average seek time
is 10 msec, whose rotation time is 10 msec, and whose tracks hold 32 KB
(a) for a 2-KB page size?
(b) for a 4-KB page size?
The pages are spread randomly around the disk and the number of cylinders is so large
that the chance of two pages being on the same cylinder is negligible.

28. A computer has four page frames. The time of loading, time of last access, and the R
and M bits for each page are as shown below (the times are in clock ticks):

Page Loaded Last ref. R M
0 126 280 1 0
1 230 265 0 1
2 140 270 0 0
3 110 285 1 1
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29.

30.

31.

32.

33.

34.

35.

36.

37.

MEMORY MANAGEMENT CHAP. 3

(@) Which page will NRU replace?
(b) Which page will FIFO replace?
(c) Which page will LRU replace?
(d) Which page will second chance replace?

Ore of the first timesharing machines, the PDP-1, had a memory of 4K 18-bit words.
It held one process at a time in memory. When the scheduler decided to run another
process, the process in memory was written to a paging drum, with 4K 18-bit words
around the circumference of the drum. The drum could start writing (or reading) at
any word, rather than only at word 0. Why do you suppose this drum was chosen?

A computer provides each process with 65,536 bytes of address space divided into
pages of 4096 bytes. A particular program has a text size of 32,768 bytes, a data size
of 16,386 bytes, and a stack size of 15,870 bytes. Will this program fit in the address
space? If the page size were 512 bytes, would it fit? Remember that a page may not
contain parts of two different segments.

If a page is shared between two processes, is it possible that the page is read-only for
one process and read-write for the other? Why or why not?

It hes been observed that the number of instructions executed between page faults is
directly proportional to the number of page frames allocated to a program. If the
available memory is doubled, the mean interval between page faults is also doubled.
Suppose that a normal instruction takes 1 microsec, but if a page fault occurs, it takes
2001 usee (i.e., 2 msec to handle the fault). If a program takes 60 sec to run, during
which time it gets 15,000 page faults, how long would it take to run if twice as much
memory were available?

A group of operating system designers for the Frugal Computer Company are thinking
about ways to reduce the amount of backing store needed in their new operating sys-
tem. The head guru has just suggested not bothering to save the program text in the
swap area at all, but just page it in directly from the binary file whenever it is needed.
Under what conditions, if any, does this idea work for the program text? Under what
conditions, if any, does it work for the data?

A machine language instruction to load a 32-bit word into a register contains the 32-
bit address of the word to be loaded. What is the maximum number of page faults this
instruction can cause?

Explain the difference between internal fragmentation and external fragmentation.
Which one occurs in paging systems? Which one occurs in systems using pure seg-
mentation?

When segmentation and paging are both being used, as in MULTICS, first the seg-
ment descriptor must be looked up, then the page descriptor. Does the TLB also work
this way, with two levels of lookup?

We consider a program which has the two segments shown below consisting of in-
structions in segment 0, and read/write data in segment 1. Segment O has read/execute
protection, and segment 1 has read/write protection. The memory system is a de-
mand-paged virtual memory system with virtual addresses that have a 4-bit page num-
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ber, and an 10-bit offset. The page tables and protection are as follows (all numbers in
the table are in decimal):

38.

39.

40.

41.

Segment 0 Segment 1
Read/E)<ecute Read/'Write
Virtual Feage # Page frame # Virtual Page # Page frame #
0 2 0 On Disk
1 On Disk 1 14
2 11 2 9
3 5 3 6
4 On Disk 4 On Disk
5 On Disk 5 13
6 4 6 8
7 3 7 12

For each of the following cases, either give the real (actual) memory address which re-
sults from dynamic address translation or identify the type of fault which occurs (ei-
ther page or protection fault).

(a) Fetch from segment 1, page 1, offset 3

(b) Store into segment 0O, page 0, offset 16

(c) Fetch from segment 1, page 4, offset 28

(d) Jump to location in segment 1, page 3, offset 32

Can you think of any situations where supporting virtual memory would be a bad idea,
and what would be gained by not having to support virtual memory? Explain.

Virtual memory provides a mechanism for isolating one process from another. What
memory management difficulties would be involved in allowing two operating sys-
tems to run concurrently? How might these difficulties be addressed?

Plot a histogram and calculate the mean and median of the sizes of executable binary
files on a computer to which you have access. On a Windows system, look at all .exe
and .dll files; on a UNIX system look at all executable files in /bin, hisr/bin, and
Aocal/bin that are not scripts (or use the file utility to find all executables). Determine
the optimal page size for this computer just considering the code (not data). Consider
internal fragmentation and page table size, making some reasonable assumption about
the size of a page table entry. Assume that all programs are equally likely to be run
and thus should be weighted equally.

Small programs for MS-DOS can be compiled as .COM files. These files are always
loaded at address 0x100 in a single memory segment that is used for code, data, and
stack. Instructions that transfer control of execution, such as JMP and CALL, or that ac-
cess static data from fixed addresses have the addresses compiled into the object code.
Write a program that can relocate such a program file to run starting at an arbitrary ad-
dress. Your program must scan through code looking for object codes for instructions
that refer to fixed memory addresses, then modify those addresses that point to memo-
ry locations within the range to be relocated. You can find the object codes in an as-
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42.

43.

sembly language programming text. Note that doing this perfectly without additiond
information is, in generd, an impossible task, because some data words may have
vaues that mimic instruction object codes.

Write aprogram that Smulates a paging sysem using the aging agorithm. The num-
ber of page frames is a parameter. The sequence of page references should be read
from afile For agiven input file, plot the number of page faults per 1000 memory ref-
erences as a function of the number of page frames available.

Write a program that demondrates the effect of TLB misses on the effective memory

access time by messuring the per-access time it takes to stride through a large array.

(8 Explain the main concepts behind the program, and describe what you expect the
output to show for some practica virtua memory architecture.

(b) Run the program on some computer and explain how well the data fit your expec-
tations.

(©) Repest part (b) but for an older computer with a different architecture and explain
any mgor differences in the output.

. Write a program that will demongrate the difference between using a locd page

replacement policy and a globd one for the smple case of two processes. You will

need a routine that can generate a page reference string basad on a statistical model.

This modd has N states numbered from 0 to N-1 representing each of the possible

page references and a probability p\ associated with eech dae i representing the

chance thet the next reference is to the same page. Otherwise, the next page reference

will be one of the other pages with equa probability.

(8) Demondrate that the page reference string generation routine behaves properly for
somesmal N.

(b) Compute the page fault rate for a smdl example in which there is one process ad
afixed number of page frames. Explain why the behavior is correct.

(©) Repest part (b) with two processes with independent page reference sequences and
twice asmany pageframes asin Part (b).

(d) Repest part (c) but using agloba policy instead of alocd one. Also, contrast the
per-process page fault rate with that of the loca policy approach.

FILE SYSTEMS

All computer applications need to store and retrieve information. While a
process is running, it can store a limited amount of information within its own ad-
dress space. However, the storage capacity is restricted to the size of the virtua
address space. For some applications this size is adequate, but for others, such as
airline reservations, banking, or corporate record keeping, it is far too small.

A second problem with keeping information within a process address space
is that when the process terminates, the information is lost. For many applications,
(e.g., for databases), the information must be retained for weeks, months, or even
forever. Having it vanish when the process using it terminates is unacceptable.
Furthermore, it must not go away when a computer crash kills the process.

A third problem is that it is frequently necessary for multiple processes to ac-
cess (parts of) the information at the same time. If we have an online telephone
directory stored inside the address space of a single process, only that process can
access it. The way to solve this problem is to make the information itself indepen-

dent of any one process.

Thus we have three essential requirements for long-term information storage:
1. It must be possible to store avery large amount of information.
2. Theinformation must survive the termination of the process using it.
3. Multiple processes must be able to access the information concurrently.

Magnetic disks have been used for years for this long-term storage. Tapes and
optical disks are also used, but they have much lower performance. We will study

253
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disks more in Chap. 5, but for the moment, it is sufficient to think of a disk as a
linear sequence of fixed-size blocks and supporting two operations:

1. Read block k.
2. Write block k

In redity there are more, but with these two operations one could, in principle,

solve the long-term storage problem.

However, these are very inconvenient operations, especidly on large systems
used by many applications and possibly multiple users (e.g., on a server). Just a
few of the questions that quickly arise are:

1. How do you find information?
2. How do you keep one user from reading another user's data?

3. How do you know which blocks are free?

and there are many more.

Just as we saw how the operating system abstracted away the concept of the
processor to cregte the abstraction of a process and how it abstracted away the
concept of physica memory to offer processes (virtual) address spaces, we can
solve this problem with a new abstraction: the file. Together, the abstractions of
processes (and threads), address spaces, and files are the most important concepts
relating to operating systems. If you really understand these three concepts from
beginning to end, you are well on your way to becoming an operating systems
expert.

Files are logicd units of information created by processes. A disk will usual-
ly contains thousands or even millions of them, each one independent of the oth-
ers. In fatt, if you think of each file as akind of address space, you are not that
far off, except that they are used to mode the disk instead of modeling the RAM.

Processes can read existing files and create new ones if need be. Information
gored in files must be persistent, that is, not be affected by process creation and
termination. A file should only disappear when its owner explicitly removes it
Although operations for reading and writing files are the most common ones,
there exist many others, some of which we will examine below.

Files are managed by the operating system. How they are structured, named,
accessed, used, protected, implemented, and managed are mgjor topics in operat-
ing sysem design. As awhole, that part of the operating system dealing with files
is known as the file system and is the subject of this chapter.

From the user's standpoint, the most important aspect of a file system is how
it appears, thet is, what constitutes a file, how files are named and protected, what
operations are dlowed on files, and so on. The details of whether linked lists or
bitmaps are used to keep track of free storage and how many sectors there are in a
logica disk block are of no interest, athough they are of great importance to the
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designers of the file system. For this reason, we have structured the chapter as
severa sections. The first two are concerned with the user interface to files and
directories, respectively. Then comes a detailed discussion of how the file system
is implemented and managed. Finally, we give some examples of real file sys-
tems.

4.1 FILES

In the following pages we will look at files from the user's point of view, that
is, how they are used and what properties they have.

4.1.1 File Naming

Files are an abstraction mechanism. They provide a way to store information
on the disk and read it back later. This must be done in such a way as to shield
the user from the details of how and where the information is stored, and how the
disks actualy work.

Probably the most important characteristic of any abstraction mechanism is
the way the objects being managed are named, so we will start our examination of
file systems with the subject of file naming. When a process creates afile, it gives
the file a name. When the process terminates, the file continues to exist and can
be accessed by other processes using its name.

The exact rules for file naming vary somewhat from system to system, but ll
current operating systems allow strings of one to eight letters as legal file names.
Thus andrea, bruce, and cathy are possible file names. Frequently digits and spe-
cid characters are also permitted, so names like 2, urgent!, and Fig.2-14 are often
vdid as well. Many file systems support hames as long as 255 characters.

Some file systems distinguish between upper and lower case letters, whereas
others do not. UNIX fdls in the first category; MSDOS fdls in the second. Thus a
UNIX system can have dl of the following as three distinct files. maria, Maria,
and MARIA. InMS-DOS, all these names refer to the same file.

An aside on file systems is probably in order here. Windows 95 and Windows
98 both use the MSDOS file system, called FAT-16, and thus inherit many of its
properties, such as how file names are constructed. Windows 98 introduced some
extensions to FAT-16, leading to FAT-32, but these two are quite similar. In ad-
dition, Windows NT, Windows 2000, Windows XP, and ,WV support both FAT
file systems, which are redly obsolete now. These four NT-based operating sys
tems have a native file system (NTFS) that has different properties (such as file
names in Unicode). In this chapter, when we refer to the MSDOS or FAT file
systems, we mean FAT-16 and FAT-32 as used on Windows unless specified
otherwise. We will discuss the FAT file systems later in this chapter and NTFS in
Chap. 11, where we will examine Windows Vistain detail.
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Many operating systems support two-part file names, with the two parts sepa-
rated by a period, as in prog.c. The part following the period is cdled the file
extension and usualy indicates something about the file. In MSDOS, for ex-
ample, file names are 1 to 8 characters, plus an optiona extension of 1 to 3 char-
acters. In UNIX, the size of the extension, if any, is up to the user, and a file may
even have two or more extensions, as in homepage.html.zip, where .html indicates
a Web page in HTML and .zip indicates that the file (homepage.html) has been
compressed using the zip program. Some of the more common file extensions and
their meanings are shownin Fig. 4-1.

Extension Meaning

file.bak Backup file

file.c C.<minfi program

file.gif Compuserve Graphical Interchange Format image
filehip Help file

filehtmi World WideWeb Hypertext Markup L anguage document
fileina Still picture encoded with the JPEG standard
fi|e_,rln‘,’)3 Music encoded in MPEG layer 3audio format
filempg Movie encoded with the MPEG standard

file.o Object file (compiler output, not yet linked)

filepdf - Portable Document Format file

fiie.ps PostScript file

file.tex Input for the TEX formatting program

filetxt General text file

fiie.zip 1 Compressed archive

Figure4-1. Sometypical file extensions.

In some systems (e.g., UNIX), file extensions arejust conventions and are not
enforced by the operating system. A file named file.txt might be some kind of text
file, but that name is more to remind the owner than to convey any actual infor-
mation to the computer. On the other hand, a C compiler may actualy insist that
files itisto compile endin .c, and it may refuse to compile them if they do not.

Conventions like this are especialy useful when the same program can handle
severd different kinds of files. The C compiler, for example, can be given alist of
several files to compile and link together, some of them C files and some of them
assembly language files. The extension then becomes essential for the compiler to
tell which are C files, which are assembly files, and which are other files.

In contrast, Windows is aware of the extensions and assigns meaning to them.
Users (or processes) can register extensions with the operating system and specify
for each one which program "owns" that extension. When a user double clicks on
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a file name, the program assigned to its file extension is launched with the file as
parameter. For example, double clicking onfile.doc starts Microsoft Word with
file.doc as the initid file to edit.

4.1.2 File Structure

Files can be structured in any of several ways. Three common possibilities are
depicted in Fig. 4-2. The file in Fig. 4-2(a) is an unstructured segquence of bytes.
In effect, the operating system does not know or care what is in the file. All it
sees are bytes. Any meaning must be imposed by user-level programs. Both
UNIX and Windows use this approach.

1 Byte 1 Record

ILCAI " Cow " Uﬂ l!Goat II Lion H Owt " ILPqny " Fat HWom'aJ]

(a) (b) (c)

?i)gure4—2. Threekinds of files, (a) Byte sequence, (b) Record sequence
c) Tree.

Having the operating system regard files as nothing more than byte sequences
provides the maximum flexibility. User programs can put anything they want in
their files and name them any way that is convenient. The operating system does
not help, but it also does not get in the way. For users who want to do unusua
things, the latter can be very important. All versions of UNIX, MS-DOS, and Win-
dows use this file model.

The first step up in structure is shown in Fig. 4-2(b). Inthis model, afileisa
sequence of fixed-length records, each with some internal structure. Central to the
idea of afile being a sequence of records is the idea that the read operation returns
one record and the write operation overwrites or appends one record. As a histori-
cal note, in decades gone by, when the 80-column punched card was king, many
(mainframe) operating systems based their file systems on files consisting of 80-
character records, in effect, card images. These systems also supported files of
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132-character records, which were intended for the line printer (which in those
days were big chain printers having 132 columns). Programs read input in units
of 80 characters and wrote it in units of 132 characters, athough the fina 52 could
be spaces, of course. No current general-purpose system uses this model as its
primary file system any more, but back in the days of 80-column punched cards
and 132-character line printer paper this was a common model on mainframe
computers.

The third kind of file structure is shown in Fig. 4-2(c). In this organization, a
file consists of a tree of records, not necessarily al the same length, each con-
taining a key field in a fixed position in the record. The tree is sorted on the key
field, to alow rapid searching for a particular key.

The basic operation here is not to get the "next" record, although that is also
possible, but to get the record with a specific key. For the zoo file of Fig. 4-2(c),
one could ask the system to get the record whose key is pony, for example, with-
out worrying about its exact position in the file. Furthermore, new records can be
added to the file, with the operating system, and not the user, deciding where to
place them. This type of file is clearly quite different from the unstructured byte
streams used in UNIX and Windows but is widely used on the large mainframe
computers still used in some commercial data processing.

4.1.3 File Types

Many operating systems support several types of files. UNIX and Windows,
for example, have regular files and directories. UNIX also has character and block
special files. Regular files are the ones that contain user information. All the
files of Fig. 4-2 are regular files. Directories are system files for maintaining the
structure of the file system. We will study directories below. Character special
files are related to input/output and used to model serial 1/O devices, such as ter-
minals, printers, and networks. Block special files are used to model disks. In
this chapter we will be primarily interested in regular files.

Regular files are generally either ASCII files or binary files. ASCII files con-
sist of lines of text. In some systems each line is terminated by a carriage return
character. In others, the line feed character is used. Some systems (e.g., MS
DOS) use both. Lines need not al be of the same length.

The great advantage of ASCII files is that they can be displayed and printed
asis, and they can be edited with any text editor. Furthermore, if large numbers of
programs use ASCII files for input and output, it is easy to connect the output of
one program to the input of another, as in shell pipelines. (The interprocess
plumbing is not any easier, but interpreting the information certainly is if a stan-
dard convention, such as ASCII, isused for expressing it.)

Other files are binary, which just means that they are not ASCII files. Listing
them on the printer gives an incomprehensible listing full of random junk. Usual-
ly, they have some internal structure known to programs that use them.

SEC. 41
FILES 259

For example, in Fig. 4-3(a) we see a simple executable binary file taken from
an early version of UNIX. Although technicaly the file isjust a sequence of
bytes, the operating system will only execute a file if it has the proper format. It
has five sections: header, text, data, relocation bits, and symbol table. The header
starts with a so-called magic number, identifying the file as an executable file (to
prevent the accidental execution of afile not in this format). Then come the sizes
of the various pieces of the file, the address at which execution starts, and some
flag bits. Following the header are the text arid data of the program itself. These
are loaded into memory and relocated using the relocation bits. The symbol table
is used for debugging.

Module

Magic number
name

. Header
Text size

Data size
BSS size Date
i Object
Symbol table size ] Oowner
module
Entr oint .
yp Protection
Flags Size
Header
Text
Object
module
Data
Header
Relocation
bits
Object
Symbol module
table
(a) (b)

Figure4-3. (8) An executablefile, (b) An archive

Our second example of a binary file is an archive, also from UNIX. It consists

of a collection of library procedures (modules) compiled but not linked. Each one
is prefaced by a header telling its name, creation date, owner, protection code and
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size. Just as with the executable file, the module headers are full of binary num-
bers. Copying them to the printer would produce complete gibberish.

Every operating system must recognize at least one file type: its own ex-
ecutable file, but some recognize more. The old TOPS-20 system (for the
DECsystem 20) went so far as to examine the creation time of any file to be exe-
cuted. Then it located the source file and saw if the source had been modified
since the binary was made. If it had been, it automatically recompiled the source.
In UNIX terms, the make program had been built into the shell. The file extensions
were mandatory, so the operating system could tell which binary program was
derived from which source.

Having strongly typed files like this causes problems whenever the user does
anything that the system designers did not expect. Consider, as an example, a sys-
tem in which program output files have extension .dat (datafiles). If a user writes
a program formatter that reads a .c file (C program), transforms it (e.g., by con-
verting it to a standard indentation layout), and then writes the transformed file as
output, the output file will be of type .dat. If the user tries to offer this to the C
compiler to compile it, the system will refuse because it has the wrong extension.
Attempts to copy fde.dat lofde.c will be rejected by the system as invalid (to pro-
tect the user against mistakes).

While this kind of "user friendliness' may help novices, it drives experienced
users up the wall since they have to devote considerable effort to circumventing
the operating system's idea of what is reasonable and what is not.

4.1.4 File Access

Early operating systems provided only one kind of file access. sequential
access. In these systems, aprocess could read all the bytes or records in afile in
order, starting a the beginning, but could not skip around and read them ouf of
order. Sequentia files could be rewound, however, so they could be read as often
as needed. Sequentid files were convenient when the storage medium was mag-
netic tape rather than disk.

When disks came into use for storing files, it became possible to read the
bytes or records of a file out of order, or to access records by key rather than by
position. Files whose bytes or records can be read in any order are called random
access files. They are required by many applications.

Random access files are essential for many applications, for example, data-
base systems. If an airline customer calls up and wants to reserve a seat on a par-
ticular flight, the reservation program must be able to access the record for that
flight without having to read the records for thousands of other flights first.

Two methods can be used for specifying where to start reading. In the first
one, every read operation gives the position in the file to start reading a. In the
second one, a specia operation, seek, is provided to set the current position. After
a seek, the file can be read sequentially from the now-current position. The latter
method is used in UNIX and Windows.
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4.1.5 FileAttributes

Every file has aname and its data. In addition, al operating systems associate
other information with each file, for example, the date and time the file was last
modified and the file's size. We will call these extra items the file's attributes.
Some people call them metadata. The list of attributes varies considerably from
system to system. The table of Fig. 4-4 shows some of the possibilities, but other
ones also exist. No existing system has al of these, but each one is present in
some system.

Attribute Meaning

Protection Who can access the file and in what wav

Password Password needed to access the file

Creator ID of the person who created the file

Owner Current owner

Read-only flag 0 for read/write; 1 for read only

Hidden flag 0 for normal; 1 for do not display in listings
System flag 0 for normal files; 1 for system file

Archive flag 0 for has been backed up; 1 for needs to be backed up
ASCli/binary flag 0 for ASCI file; 1 for binary file

Random access flag | o for sequential access only: 1 for random access
Temporary flag 0 for normal; 1 for delete file on process exit

Lock flags 0 for unlocked; nonzero for locked

Record length Number of bytes in a record

Key position Offset of the key within each record

Key length Number of bytes in the key field
Creation time Date and time the file was created
Time of last access Date and time the file was lastaccessed |
Time of last change | pate and time the file was last changed
Current size Number of bytes in the file
Maximum size Number of bytes the file may grow to

Figure4-4. Some possible file attributes.

The first four attributes relate to the file's protection and tell who may access
it and who may not. All kinds of schemes are possible, some of which we will
study later. In some systems the user must present a password to access a file in
wmcen case the password must be one of the attributes.

The flags are bits or short fields that control or enable some specific property
Hidden files, for example, do not appear in listings of al the files. The archive
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flag is a hit that keeps track of whether the file has been backed up recently. The
backup program clears it, and the operating system sets it whenever a file is
changed. In this way, the backup program can tell which files need backing up.
The temporary flag alows a file to be marked for automatic deletion when the
process thet cregted it terminates.

The record length, key position, and key length fields are only present in files
whose records can be looked up using a key. They provide the information re-
quiredtofind thekeys.

The various times keep track of when the file was created, most recently ac-
cessed, and mogt recently modified. These are useful for a variety of purposes.
For example, a source file that has been modified after the crestion of the corres-
ponding object file needs to be recompiled. These fields provide the necessary
informetion.

Thecurrent size tells how big the file is a present. Some old mainframe oper-
aing systems require the maximum size to be specified when thefile is created, in
order to let the operating system reserve the maximum amount of storage in ad-
vance. Workstation and personal computer operating systems are clever enough to
do without this fegture.

4.1.6 File Operations

Files exist to store information and alow it to be retrieved later. Different sys-
tems provide different operations to alow storage and retrieval. Below is a dis-
cusson of the most common system calls relating to files.

1 create. Thefileis created with no data. The purpose of the call is to
announce that the file is coming and to set some of the attributes.

2. Delete. When thefileis no longer needed, it has to be deleted to free
up disk space. There isaways a system call for this purpose.

3. Open. Before using afile, a process must open it. The purpose of the
open cdl isto alow the system to fetch the attributes and list of disk
addresses into main memory for rapid access on later calls.

4. cClose. When all the accesses are finished, the attributes and disk ad-
dreses are no longer needed, so the file should be closed to free up
internd table space. Many systems encourage this by imposing a
maximum number of open files on processes. A disk is written in
blocks, and closing a file forces writing of the file's last block, even
though that block may not be entirely full yet.

5. Read. Data are read from file. Usualy, the bytes come from the cur-
rent position. The caller must specify how many data are needed and
mugt aso provide a buffer to put them in.
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6. Write. Data are written to the file again, usually at the current posi-
tion. If the current position is the end of the file, the file's size
increases. If the current position is in the middle of the file, existing
data are overwritten and lost forever.

7. Append. This call is arestricted form of write. It can only add data
to the end of the file. Systems that provide a minimal set of system
calls do not generally have append, but many systems provide multi-
ple ways of doing the same thing, and these systems sometimes have

append.

8. Seek. For random access files, a method is needed to specify from
where to take the data. One common approach is a system call, seek,
that repositions the file pointer to a specific place in the file. After
this call has completed, data can be read from, or written to, that
position.

9. Get attributes. Processes often need to read file attributes to do their
work. For example, the UNIX make program is commonly used to
manage software development projects consisting of many source
files. When make is called, it examines the modification times of all
the source and object files and arranges for the minimum number of
compilations required to bring everything up to date. To doitsjob, it
must look at the attributes, namely, the modification times.

10. Set attributes. Some of the attributes are user settable and can be
changed &fter the file has been created. This system call makes that
possible. The protection mode information is an obvious example.
Most of the flags also fdl in this category.

11. Rename. It frequently happens that a user needs to change the name
of an existing file. This system call makes that possible. It is not a-
ways strictly necessary, because the file can usually be copied to a
new file with the new name, and the old file then deleted.

4.1.7 An Example Program Using File System Calls

In this section we will examine a simple UNIX program that copies one f
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from its source file to a destination file. It islisted in Fig. 4-5. The program has
minimal functionality and even worse error reporting, but it gives a reasonable

idea of how some of the system calls related to files work.
The program, copyfde, can be called, for example, by the command line

copyfile abc xyz

to copy the file abc to xyz- If xyz aready exists, it will be overwritten. Otherwise,
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1*

File copy program. Error checking and reporting is minimal. */

include <s,./ty,es.b> % Thelude necessary neader R
#include <fentl.h>

ffinclude <stdlib.h>

#include <unistd.h>

int main(int argc, char *argvQ);

#define BUF_SIZE 4096
#define OUTPUT_MODE 0700

/* ANSI prototype */

/* use a buffer size of 4096 bytes */
/* protection bits for output file */

int main(int argc, char *argv[])

{

int in_fd, out_fd, rd_count, wt_(
char buffer[BUF_SIZE];
if (arge 1= 3) exit(1); /* syntax error if argc isnot 3 */
/* Open the input file and create the output file */
in_fd = open(argv[1], 0_RDONLY); /* open the sour ce file */
if (in_fd < 0) exit(2); /* if it cannot be opened, exit */
out Jd = creat(argv[2], OUTPUT_MODE); /* create the destination file *|
if (out_fd < 0) exit(3); [* if it cannot be created, exit */
/* Copy loop */
while (TRUE) {
rd.count = read(in_fd, buffer, BUF_SIZE); /* read a block of data */
if (rd_count <= 0) break; /* if end of file or error, exit loop */
wt_count = write(out_fd, buffer, rd_count); /* write data */
if (wt_count <= 0) exit(4); /* wt_count <- 0 isan error */
}
* Close the files */
close(in_fd);
close(out-fd);
if (rd_count ==0) /* no error on last read-*/
exit(0);
else
exit(5); [* error on last read */
}

Figure 4-5. A simple program to copy a file.
it will be created. The program must be called with exactly two arguments, both
legal file names. The first isthe source; the second is the output file.
The four include statements near the top of the program cause a large hum-
ber of definitions and function prototypes to be included in the program. These are
needed to make the program conformant to the relevant international standards,
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but will not concern us further. The next line is a function prototype for main,
something required by ANSI C, but also not important for our purposes.

The firgt tfdefine statement is a macro definition that defines the character
string BUFSIZE as a macro that expands into the number 4096. The program
will read and write in chunks of 4096 bytes. It is considered good programming
practice to give names to constants like this and to use the names instead of the
constants. Not only does this convention make programs easier to read, but it also
makes them easier to maintain. The second ~define statement determines who can
access the output file.

The main program is called main, and it has two arguments, argc, and argv.
These are supplied by the operating system when the program is called. The first
one tells how many strings were present on the command line that invoked the
program, including the program name. It should be 3. The second one is an array
of pointers to the arguments. In the example call given above, the elements of this
array would contain pointers to the following values:

argv[Q] = "copyfile"
argv[l] = "abc"
argv[2] = "xyz"

Itis viathis array that the program accesses its arguments.

Five variables are declared. The first two, in_fd and out-fd, will hold the file
descriptors, small integers returned when a file is opened. The next two,
rd-count and wt-count, are the byte counts returned by the read and write system
cals, respectively. The last one, buffer, is the buffer used to hold the dataread and
supply the data to be written.

The first actual statement checks argc to see if it is 3. If not, it exits with stat-
us code 1. Any status code other than 0 means that an error has occurred. The
status code is the only error reporting present in this program. A production ver-
sion would normally print error messages as well.

Then we try to open the source file and create the destination file. If the
source file is successfully opened, the system assigns a small integer to in-fd, to
identify the file. Subsequent calls must include this integer so that the system
knows which file it wants. Similarly, if the destination is successfully created,
out-fd is given a value to identify it. The second argument to creat sets the pro-
tection mode. If either the open or the create fails, the corresponding file descrip-
torissetto - 1, and the program exits with an error code.

Now comes the copy loop. It starts by trying to read in 4 KB of data to buffer.
It does this by calling the library procedure read, which actually invokes the read
system call. The first parameter identifies the file, the second gives the buffer, and
the third tells how many bytes to read. The value assigned to rd-count gives the
number of bytes actually read. Normally, this will be 4096, except if fewer bytes
are remaining in the file. When the end of file ihas been reached, it will be 0. If
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rd”count isever zero or negative, the copying cannot continue, so the break state-
ment is executed to terminate the (otherwise endless) loop.

The cal to write outputs the buffer to the destination file. The first parameter
identifies the file, the second gives the buffer, and the third tells how many bytes
to write, analogous to read. Note that the byte count is the number of bytes ac-
tualy read, not BUF~SIZE. This point is important because the last reed will not
return 4096 unless the file just happens to be amultiple of 4 KB.

When the entire file has been processed, the first call beyond the end of file
will return O to rd_count, which will make it exit the loop. At this point the two
files are closed and the program exits with a status indicating norma termination.

Although the Windows system calls are different from those of UNIX, the
generd structure of a command-line Windows program to copy a file is moderate-
ly smilar to that of Fig. 4-5. We will examine the Windows Vigta cdls in Chap.
11.

42 DIRECTORIES

To keep track of files, file systems normally have directories or folders,
which in many systems are themselves files. In this section we will discuss direc-
tories, their organization, their properties, and the operations that can be perform-
ed on them.

4.2.1 Single-Level Directory Systems

The simplest form of directory system is having one directory containing all
thefiles. Sometimes itis called the root directory, but snce itistheonly one, the
name does not matter much. On early personal computers, this system was com-
mon, in part because there was only one user. Interestingly enough, the world's
first supercomputer, the CDC 6600, aso had only a single directory for al files,
even though it was used by many users at once. This decison was no doubt made
to keep the software design smple.

An example of a system with one directory is given in Fig. 4-6. Here the di-
rectory contains four files. The advantages of this scheme are its smplicity and
the ability to locate files quickly—there is only one place to look, after all. It is
often used on simple embedded devices such as telephones, digita cameras, and
some portable music players.

4.2.2 Hierarchical Directory Systems

The single-level is adequate for simple dedicated applications (and was even
usd on the first personal computers), but for modern users with thousands of
files, it would be impossible to find anything if al files were in a single directory.
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. Root directory

HEOB

Figure 4-6. A single-level directory system containing four files.

Consequently, a way is needed to group related files together. A professor, for
example, might have a collection of files that together form a book that he is writ-
ing for one course, a second collection of files containing student programs sub-
mitted for another course, a third group of files containing the code of an ad-
vanced compiler-writing system he is building, a fourth group of files containing
grant proposals, as well as other files for electronic mail, minutes of meetings,
papers he is writing, games, and so on.

What is needed is a hierarchy (i.e., atree of directories). With this approach,
there can be as many directories as are needed to group the files in natural ways.
Furthermore, if multiple users share acommon file server, as is the case on many
company networks, each user can have a private root directory for his or her own
hierarchy. This approach is shown in Fig. 4-7. Here, the directories A, B, and C
contained in the root directory each belong to a different user, two of whom have
created subdirectories for projects they are working on.

. Root directory

Figure4-7. A hierarchical directory system.

The ability for users to create an arbitrary number of subdirectories provides a
powerful structuring tool for users to organize their work. For this reason, nearly
al modern file systems are organized in this manner.

4.2.3 Path Names

When the file system is organized as a directory tree, some way is needed for
specifying file names. Two different methods are commonly used. In the first
method, each file is given an absolute path name consisting of the path from the
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root directory to the file. As an example, the path /usr/ast/mailbox means that the
root directory contains a subdirectory usr, which in turn contains a subdirectory
ast, which contains the file mailbox. Absolute path names aways start at the root
directory and are unique. In UNIX the components of the path are separated by /.
In Windows the separator is\. In MULTICS it was >. Thus the same path name
would be written as follows in these three systems:

Windows  \usr\ast\maiibox
UNIX Jusr/ast/maiibox
MULTICS  >usr>ast>mailbox

No matter which character is used, if the first character of the path name is the
separator, then the path is absolute.

The other kind of name is the relative path name. This is used in conjunc-
tion with the concept of the working directory (also called the current direc-
tory). A user can designate one directory as the current working directory, in
which case dl path names not beginning at the root directory are taken relative to
the working directory. For example, if the current working directory is /usr/ast,
then the file whose absolute path is /usr/ast/mailbox can be referenced simply as
mailbox. In other words, the UNIX command

cp /usr/ast/mailbox /usr/ast/mailbox.bak
and the command
cp malbox mailbox.bak

do exactly the same thing if the working directory is/usr/ast. The relative form is
often more convenient, but it does the same thing as the absolute form.

Some programs need to access a specific file without regard to what the'work-
ing directory is. In that case, they should aways use absolute path names. For
example, a spelling checker might need to read /usr/lib/dictionary to do its work.
It should use the full, absolute path name in this case because it does not know
what the working directory will be when it is called. The absolute path name will
adways work, no matter what the working directory is.

Of course, if the spelling checker needs a large number of files from /usr/lib,
an aternative approach is for it to issue a system call to change its working direc-
tory to /usr/lib, and then use just dictionary as the firs parameter to open. By
explicitiy changing the working directory, it knows for sure where it is in the di-
rectory tree, soit can then use relative paths.

Each process has its own working directory, so when it changes its working
directory and later exits, no other processes are affected and no traces of the
change are left behind in the file system. In this way it is always perfectly safe for
a process to change its working directory whenever that is convenient. On the
other hand, if a library procedure changes the working directory and does not
change back to where it was when it is finished, the rest of the program may not
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work since its assumption about where it is may now suddenly be invalid. For this
reason, library procedures rarely change the working directory, and when they
must, they always change it back again before returning.

Most operating systems that support a hierarchical directory system have two
special entries in every directory, "." and generally pronounced "dot" and
"dotdot." Dot refers, to the current directory; dotdot refers to its parent (except in
the root directory, where it refers to itself). To see how these are used, consider
the UNIX file tree of Fig. 4-8. A certain process has/usr/ast as its working direc-
tory. It can use .. to go higher up the tree. For example, it can copy the file
Jusr/lib/dictionary to its own directory using the command

cp ./lib/dictionary.

The first path instructs the system to go upward (to the usr directory), then to go
down to the directory lib to find the file dictionary.

bin | «x_ Root directory
€etc
lib
usr
tmp
bin elc b ) 0.1\3: \\tmp
— | ast
jim
— litz
ast” ' lib jim
dict. lusr/jim
e ——

Figure 4-8. A UNIX directory tree.

The second argument (dot) names the current directory. When the cp com-
mand gets a directory name (including dot) as its last argument, it copies al the
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files to that directory. Of course, a more norma way to do the copy would be to
use the full absolute path name of the source file:

cp /ust/lib/dictionary.
Here the use of dot saves the user the trouble of typing dictionary a second time.
Nevertheless, typing

cp /ugr/lib/dictionary dictionary
also works fine, as does

cp /usr/lib/dictionary /usr/ast/dictionary
All of these do exactly the same thing.

4.2.4 Directory Operations

The dlowed system cals for managing directories exhibit more variaion
from system to system than system cdls for files. To give an impression of what
they are and how they work, we will give asample (taken from UNIX).

1. Create. A directory is created. Itisempty except for dot and dotdot,
which are put there automatically by the system (or in a few cases,
by the mkdir program).

2. Deete. A directory is deleted. Only an empty directory can be de-
leted. A directory containing only dot and dotdot is considered em-
pty as these cannot usudly be deleted.

3. Opendir. Directories can be read. For example, to list al the files in
a directory, a listing program opens the directory to read out the
names of al the files it contains. Before a directory can be read, it
must be opened, analogous to opening and reading a file.

4. Closedir. When a directory has been read, it should be closed to free
upinternal table space.

5. Readdir. This cal returns the next entry in an open directory. Form-
erly, it was possible to read directories usng the usual read system
cal, but that approach has the disadvantage of forcing the pro-
grammer to know and deal with the internd structure of directories.
In contragt, readdir always returns one entry in a standard format, no
matter which of the possible directory structures is being used.

6. Rename. In many respects, directories arejust like files and can be
renamed the same way files can be.

7. Link. Linking is atechnique that dlows afile to appear in more than
one directory. This system call specifies an existing file and a path
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name, and creates a link from the existing file to the name specified
by the path. In this way, the same file may appear in multiple direc-
tories. A link of this kind, which increments the counter in the file's
i-node (to keep track of the number of directory entries containing
thefile), is sometimes called a hard link.

8. Unlink. A directory entry is removed. If the file being unlinked is
only present in one directory (the normal case), it is removed from
the file system. If it is present in multiple directories, only the path
name specified is removed. The others remain. In UNIX, the system
call for deleting files (discussed earlier) is, in fact, unlink.

The above ligt gives the most important calls, but there are a few others as well,
for example, for managing the protection information associated with a directory.

A variant on the idea of linking files is the symbolic link. Instead of having
two names point to the same internal data structure representing a file, a name can
be created that points to a tiny file naming another file. When the first file is used,
for example, opened, the file system follows the path and finds the name at the
end. Then it starts the lookup process dl over using the new name. Symbolic
links have the advantage that they can cross disk boundaries and even name files
on remote computers. Their implementation is somewhat less efficient than hard
links though.

43 FILE SYSTEM IMPLEMENTATION

Now it is time to turn from the user's view of the file system to the imple-
mentor's view. Users are concerned with how files are named, what operations
are alowed on them, what the directory tree looks like, and similar interface is-
sues. Implementors are interested in how files and directories are stored, how disk
space is managed, and how to make everything work efficiently and reliably. In
the following sections we will examine a number of these areas to see what the is-
sues and trade-offs are.

4.3.1 File System Layout

File systems are stored on disks. Mogt disks can be divided up into one or
more partitions, with independent file systems on each partition. Sector O of the
disk is caled the MBR (Master Boot Record) and is used to .boot the computer.
The end of the MBR contains the partition table. This table gives the starting and
ending addresses of each partition. One of the partitions in the table is marked as
active. When the computer is booted, the BIOS reads in and executes the MBR.
The first thing the MBR program does is locate the active partition, read in its first
block, caled the boot block, and execute it. The program in the boot block loads
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the operating system contained in that partition. For uniformity, every partition
starts with a boot block, even if it does not contain a bootable operating system.
Besides, it might contain one in the future-

Other than starting with a boot block, the layout of a disk partition varies a lot
from file system to file system. Often the file syssem will contain some of the
items shown in Fig. 4-9. The first one is the superblock. It contains al the key
parameters about the file system and is read into memory when the computer is
booted or the file system is first touched. Typical information in the superblock
includes a magic number to identify the file system type, the number of blocks in
the file system, and other key administrative information.

Entire disk ~~~|

Partition table Disk partition

wsr I

Boot block | Superblock | Free space mgmt I-nodes Root dir Files and directories

Figure4-9. A possiblefile system layout.
\

Next might come information about free blocks in the file system, for ex-
ample in the form of a bitmap or alist of pointers. This might be followed by die
i-nodes, an array of data structures, one per file, telling al about the file. After
that might come the root directory, which contains the top of the file system tree.
Finally, the remainder of the disk contains al the other directories and files.

43.2 Implementing Files
Probably the most important issue in implementing file storage is keeping
track of which disk blocks go with which file. Various methods are used in dif-

ferent operating systems. In this section, we will examine a few of them.

Contiguous Allocation

The simplest alocation scheme is to store each file as a contiguous run of disk
blocks. Thus on a disk with 1-KB blocks, a 50-KB file would be allocated 50 con-
secutive blocks. With 2-KB blocks, it would be alocated 25 consecutive blocks.
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We see an example of contiguous storage alocation in Fig. 4-10(a). Here the
first 40 disk blocks are shown, starting with block O on the left. Initidly, the disk
was empty. Then afile A, of length four blocks, was written to disk starting at the
beginning (block 0). After that a six-block file, B, was written starting right after
the end of file A.

Note that each file begins at the start of a new block, so that if file A was real-
ly 3/2 blocks, some space is wasted at the end of the last block. In the figure, a
totad of seven files are shown, each one starting at the block following the end of
the previous one. Shading is used just to make it easier to tell the files apart. It
has no actua significance in terms of storage.

File A FileC File E FileG
(4 blocks) (6 blocks) H (12 blocks) (3 blocks)
IIATUXLLLE mi j-ifHT~rTTTTTT. 1 1 MMM Kurrr
FileB FileD File F
(3 blocks) (5 blocks) (6 blocks)
@
{File A) (File C) (File E) (file G)
ITvil gig I 1L 1t | Mil 14 1 1 1 | frkhMs-I 2.1 1 1 1 14 in
File B S Free blocks 6 Free blocks

®)

Figure 4-10. (a) Contiguous allocation of disk space for seven files., (b) The
state of the disk after files D and F have been removed.

Contiguous disk space alocation has two significant advantages. First, it is
simple to implement because keeping track of where a file's blocks are is reduced
to remembering two numbers: the disk address of the first block and the number
of blocks in the file. Given the number of the first block, the number of any other
block can be found by a simple addition.

Second, the read performance is excellent because the entire file can be read
from the disk in a single operation. Only one seek is needed (to the first block).
After that, no more seeks or rotational delays are needed, so data come in at the
full bandwidth of the disk. Thus contiguous alocation is simple to implement and
has high performance.

Unfortunately, contiguous alocation also has a fairly significant drawback:
over the course of time, the disk becomes fragmented. To see how this comes
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about, examine Fig. 4-10(b). Here two files, D and F, have been removed. When
afileis removed, its blocks are naturaly freed, leaving a run of free blocks on the
disk. The disk is not compacted on the spot to squeeze out the hole since, that
would involve copying al the blocks following the hole, potentialy millions of
blocks. As a result, the disk ultimately consists of files and holes, as illustrated in
the figure.

Initialy, this fragmentation is not a problem, since each new file can be writ-
ten a the end of disk, following the previous one. However, eventualy the disk
will fill up and it will become necessary to either compact the disk, which is
prohibitively expensive, or to reuse the free space in the holes. Reusing the space
requires maintaining a list of holes, which is doable. However, when anew file is
to be created, it is necessary to know its fina size in order to choose a hole of the
correct size to placeitin.

Imagine the consequences of such a design. The user starts a text editor or
word processor in order to type a document. The first thing the program asks is
how many bytes the finad document will be. The question must be answered or the
program will not continue. If the number given ultimately proves too small, the
program has to terminate prematurely because the disk hole is full and there is no
placeto put the rest of the file. If the user tries to avoid this problem by giving an
unrealigtically large number as the final size, say, 100 MB, the editor may be un-
able to find such a large hole and announce that the file cannot be created. Of
course, the user would be free to gtart the program again and say 50 MB this time,
and so on until a suitable hole was located. Still, this scheme is not likely to lead
to happy users.

However, there is one stuation in which contiguous allocation is feasible and,
in fact, widely used: on CD-ROMs. Here dl the file sizes are known in advance
and will never change during subsegquent use of the CD-ROM file system. We
will study the most common CD-ROM file system later in this chapter.

The stuation with DVDs is a bit more complicated. In principle, a 90-min
movie could be encoded as a single file of length about 4.5 GB, but the file system
used, UDF (Universal Disk Format), uses a 30-bit number to represent file
length, which limits filesto 1 GB. Asaconsequence, DVD movies are generaly
dored as three or four 1-GB files, each of which is contiguous. These physical
pieces of the single logica file (the movie) are called extents.

As we mentioned in Chap. 1, history often repests itself in computer science
as new generations of technology occur. Contiguous allocation was actualy used
on magnetic disk file systems years ago due to its simplicity and high per-
formance (user friendliness did not count for much then). Then the idea was
dropped due to the nuisance of having to specify find file size at file creation
time. But with the advent of CD-ROMs, DVDs, and other write-once optical me-
dia, suddenly contiguous files are a good idea again. It is thus important to study
old systems and ideas that were conceptualy clean and simple because they may
be applicable to future systems in surprising ways.
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Linked List Allocation

The second method for storing files is to keep each one as alinked list of disk
blocks, as shown in Fig. 4-11. The first word of each block is used as a pointer to
the next one. The rest of the block is for data.

File A
— — 0
File File File File File
block block block block block
0 1 2 3 4
Physical 4 7 2 10 12
block
FileB
— — 1 o
File File File File
block block block block
0 1 2 3
Physical 6 3 11 14

block

Figure4-11. Storing a file asa linked list of disk blocks.

Unlike contiguous allocation, every disk block can be used in this method.
No space is lost to disk fragmentation (except for internal fragmentation in the last
block). Also, it is sufficient for the directory entry to merely store the disk ad-
dress of the first block. The rest can be found starting there.

On the other hand, athough reading a file sequentialy is straightforward, ran-
dom access is extremely slow. To get to block n, the operating system has to start
at the beginning and read the n - 1 blocks prior to it, one at atime. Clearly, doing
so many reads will be painfully slow.

Also, the amount of data storage in a block is no longer a power of two be-
cause the pointer takes up a few bytes. While not fatal, having a peculiar size is
less efficient because many programs read and write in blocks whose size is a
power of two. With the first few bytes of each block occupied to a pointer to the
next block, reads of the full block size require acquiring and concatenating infor-
mation from two disk blocks, which generates extra overhead due to the copying.

Linked List Allocation Using a Table in Memory
Both disadvantages of the linked list alocation can be eliminated by taking

the pointer word from each disk block and putting it in a table in memory. Figure
4-12 shows what the table looks like for the example of Fig. 4-11. In both figures,
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we have two files. File A uses disk blocks 4, 7, 2, 10, and 12, in that order, and
fde B uses disk blocks 6, 3,11, and 14, in that order. Using the table of Fig. 4-12,
we can start with block 4 and follow the chain dl the way to the end. The same
can be done starting with block 6. Both chains are terminated with a specia
marker (e.g., -1) that is not avalid block number. Such a table in main memory is
called aFAT (File Allocation Table).

Physical
block

0
10
File A starts here

File B starts here

© @ N o @ A w N e

J2_

-
)

14

N
w NP

-
IS

Unused block

-
2

Figure 4-12. Linked list allocation using a file allocation table in main memory.

Using this organization, the entire block is available for data. Furthermore,
random access is much easier. Although the chain must still be followed to find a
given offset within the file, the chain is entirely in memory, so it can be followed
without making any disk references. Like the previous method, it is sufficient for
the directory entry to keep a single integer (the starting block number) and still be
able to locate al the blocks, no matter how large the fileis.

The primary disadvantage of this method is that the entire table must be in
memory al the time to make it work. With a 200-GB disk and a 1-KB block size,
the table needs 200 million entries, one for each of the 200 million disk blocks.
Each entry has to be a minimum of 3 bytes. For speed in lookup, they should be 4
bytes. Thus the table will take up 600 MB or 800 MB of main memory al the
time, depending on whether the system is optimized for space or time. Not wildly
practical. Clearly the FAT idea does not scale well to large disks.
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I-nodes

Our last method for keeping track of which blocks belong to which file is to
associate with each file a data structure called an i-node (index-node), which lists
the attributes and disk addresses of the file's blocks. A simple example is de-
picted in Fig. 4-13. .Given the i-node, it is then possible to find dl the blocks of
the file. The big advantage of this scheme over linked files using an in-memory
table is that the i-node need only be in memory when the corresponding file is
open. If each i-node occupies n bytes and a maximum of k files may be open at
once, the total memory occupied by the array holding the i-nodes for the open
filesis only kn bytes. Only this much space need be reserved in advance.

File Attributes

Address of disk block 0

Address of disk block 1

Address of disk block 2

Address of disk block 3

Address of disk block 4

Address of disk block 5

Address of disk block 6

Address of disk block 7

Address of block of pointers

Disk block

containing

additional
disk addresses

Figure 4-13. An example i-node.

This array is usualy far smaller than the space occupied by the file table de-
scribed in the previous section. The reason is simple. The table for holding the
linked list of al disk blocks is proportional in size to the disk itsaf. If the disk
has n blocks, the table needs n entries. Asdisks grow larger, this table grows line-
arly with them. In contrast, the i-node scheme requires an array in memory whose
Size is proportiona to the maximum number of files that may be open at once. It
does not matter if the disk is 10 GB or 100 GB or 1000 GB.

One problem with i-nodes is that if each one has room for a fixed number of
disk addresses, what happens when a file grows beyond this limit? One solution
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is to reserve the last disk address not for a data block, but instead for the address
of a block containing more disk block addresses, as shown in Fig. 4-13. Even
more advanced would be two or more such blocks containing disk addresses or
even disk blocks pointing to other disk blocks full of addresses. We will come
back to i-nodes when studying UNIX later.

4.3.3 Implementing Directories

Before afile can be read, it must be opened. When afile is opened, the oper-
ating system uses the path name supplied by the user to locate the directory entry.
The directory entry provides the information needed to find the disk blocks. De-
pending on the sysem, thisinformation may be the disk address of the entire file
(with contiguous alocation), the number of the first block (both linked list
schemes), or the number of the i-node. In dl cases, the main function of the di-
rectory system is to map the ASCII name of the file onto the information needed
to locate the data

A closdly related issue is where the attributes should be stored. Every file sys-

tem maintains file attributes, such as each file's owner and cregtion time, and they
must be stored somewhere. One obvious possibility is to store them directly in the
directory entry. Many systems do precisdy that. This option is shown in Fig. 4-
14(a). In this sSmple design, a directory consists of a list of fixed-size entries, one
per file, containing a (fixed-length) file name, a structure of the file attributes, and
one or more disk addresses (up to some maximum) telling where the disk blocks
are.

games | attributes games -
mail J attributes mail

news I1 attributes news

work | attributes work

Q Data structure
(a)

* containing the
attributes

Figure 4-14. (a) A simple directory containing fixed-size entries with the disk addresses
and attributes in the directory entry, (b) A directory in which each entry just

refers to an i-node.

For sysems that use i-nodes, another possibility for storing the attributes isin
the i-nodes, rather then in the directory entries. In that case, the directory entry
can be shorter: just afile name and an i-node number. This approach is illustrated
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in Fig. 4-14(b). Aswe shall see later, this method has some advantages over put-
ting them in the directory entry. The two approaches shown in Fig. 4-14 corres-
pond to Windows and UNIX, respectively, as we will see later.

So far we have made the assumption that files have short, fixed-length names.
In MSDOS files have a 1-8 character base hame and an optiona extension of 1-3
characters. In UNIX Version 7, file names were 1-14 characters, including any
extensions. However, nearly al modern operating systems support longer, vari-
able-length file names. How can these be implemented?

The simplest approach is to st alimit on file name length, typically 255 char-
acters, and then use one of the designs of Fig. 4-14 with 255 characters reserved
for each file name. This approach is smple,' but wastes a great deal of directory
space, since few files have such long names. For efficiency reasons, a different
structure is desirable.

One dternative is to give up the idea that al directory entries are the same
size. With this method, each directory entry contains a fixed portion, typicaly
starting with the length of the entry, and then followed by data with a fixed for-
mat, usualy including the owner, creation time, protection information, and other
attributes. This fixed-length header is followed by the actua file name, however
long it may be, as shown in Fig. 4-15(a) in big-endian format (e.g., SPARC). In
this example we have three files, project-budget, personnel, and foo. Each file
name is terminated by a special character (usudly 0), which is represented in the
figure by a box with a cross init. To allow each directory entry to begin on a
word boundary, each file name isfilled out to an integral number of words, shown
by shaded boxes in the figure.

A disadvantage of this method is that when afile is removed, a variable-sized
gap is introduced into the directory into which the next file to be entered may not
fit. This problem is the same one we saw with contiguous disk files, only now
compacting the directory is feasible because it is entirely in memory. Another
problem is that a single directory entry may span multiple pages, so a page fault
may occur while reading a file name.

Another way to handle variable-length names is to make the directory entries
themselves al fixed length and keep the file names together in a heap at the end
of the directory, as shown in Fig. 4- 15(b). This method has the advantage that
when an entry is removed, the next file entered will dways fit there. Of course,
the heap must be managed and page faults can till occur while processing file
names. One minor win here is that there is no longer any rea need for file names
to begin at word boundaries, so no filler characters are needed after file names in
Fig. 4-15(b) asthey arein Fig. 4-15(a).

In al of the designs so far, directories are searched linearly from beginning to
end when a file name has to be looked up. For extremely long directories, linear
searching can be sow. One way to speed up the search is to use a hash table in
each directory. Cal the size of the table n. To enter a file name, the name is
hashed onto a value between 0 and n — |, for example, by dividing it by n and
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File 1 entry length Poainter tofile1'sname
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Pointer tofile2's name
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Figure 4-15. Two ways of handling long file names in a directory, (a) In-line,
(b) In aheap.

taking the remainder. Alternatively, the words comprising the file name canTje
added up and this quantity divided by n, or something similar.

Either way, the table entry corresponding to the hash code isinspected. Ifitis
unused, a pointer is placed there to the file entry. File entries follow the hash
table. If that dot is dready in use, a linked list is constructed, headed at the table
entry and threading through all entries with the same hash value.

Looking up a file follows the same procedure. The file name is hashed to
slect a hash table entry. All the entries on the chain headed at that dot are
checked to see if the file name is present. If the name is not on the chain, the file
is not present in the directory.

Using a hash table has the advantage of much faster lookup, but the disadvan-
tage of more complex administration. It is only really a serious candidate in sys-
tems where it is expected that directories will routinely contain hundreds or
thousands of files.

A different way to speed up searching large directories is to cache the results
of searches. Before starting a search, a check is firsg made to see if the file name
is in the cache. If so, it can be located immediately. Of course, caching only
works if a relatively smal number of files comprise the mgjority of the lookups.
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434 Shared Files

When several users are working together on a project, they often need to share
files. Asaresult, it is often convenient for a shared file to appear simultaneously
in different directories belonging to different users. Figure 4-16 shows the file
system of Fig. 4-7 again, only with one of Cs files now present in one of B's di-
rectories as well. The connection between £Ts directory and the shared file is call-
ed alink. The file system itself isnow a Directed Acyclic Graph, or DAG, rath-
er than a tree.

. Root directory

Shared file

Figure 4-16. File system containing a shared file.

Sharing files is convenient, but it also introduces some problems. To start
with, if directories realy do contain disk addresses, then a copy of the disk ad-
dresses will have to be made in S's directory when the fileislinked. If either B or
C subsequently appends to the file, the new blocks will be listed only in the direc-
tory of the user doing the append. The changes will not be visible to the other
user, thus defeating the purpose of sharing.

This problem can be solved in two ways. In the first solution, disk blocks are
not listed in directories, but in a little data structure associated with the file itsalf.
The directories would then point just to the little data structure. This is the ap-
proach used in UNIX (where the little data structure is the i-node).

In the second solution, B links to one of C's files by having the system create
anew file, of type LINK, and entering that file in B's directory. The new file con-
tains just the path name of the file to which it is linked. When B reads from the
linked file, the operating system sees that the file being read from is of type
LINK, looks up the name of the file, and reads that file. This approach is called
symbolic linking, to contrast it with traditional (hard) linking.
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Each of these methods has its drawbacks. In the first method, a the moment
that B links to the shared file, the i-node records the file's owner as C. Creating a
link does not change the ownership (see Fig. 4-17), but it does increase the link
count in the i-node, o the system knows how many directory entries currently
point to the file.

C's directory B's directory C's directory B's directory
Owner = C Owner e C
Count = 1 Count« 2
j Ownefg=C
j C -1
(a) (c)

Figure 4-17. (a) Situation prior to linking, (b) After the link is created, (c) After

the original owner removes the file.

If C subsequently tries to remove the file, the system is faced with a problem.
If it removes the file and clears the i-node, B will have a directory entry pointing
to an invaid i-node. If the i-node is later reassigned to another file, B's link will
paint to the wrong file. The system can see from the count in the i-node that the
file istill in use, but there is no easy way for it to find al the directory entries for
the file, in order to erase them. Pointers to the directories cannot be stored in the
i-node because there can be an unlimited number of directories.

The only thing to do is remove C's directory entry, but leave the i-node intact,
with count set to 1, as shown in Fig. 4-17(c). We now have a situation in which B
is the only user having a directory entry for afile owned by C. If the system does
accounting or has quotas, C will continue to be billed for the file until B decides to
remove it, if ever, a which time the count goes to 0 and the file is deleted.

With symbolic links this problem does not arise because only the true owner
has a pointer to the i-node. Users who have linked to thefilejust have path names,
not i-node pointers. When the owner removes the file, it is destroyed. Subsequent
attempts to use the file via a symbolic link will fail when the system is unable to
locate the file. Removing a symbolic link does not affect thefile at all.

The problem with symboalic links is the extra overhead required. The file con-
taining the path must be read, then the path must be parsed and followed, com-
ponent by component, until the i-node is reached. All of this activity may require
a consderable number of extra disk accesses. Furthermore, an extra i-node is
needed for each symboalic link, as is an extra disk block to store the path, although
if the path name is short, the system could store it in the i-node itsdlf, as a kind of
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optimization. Symbolic links have the advantage that they can be used to link to
files on machines anywhere in the world, by simply providing the network address
of the machine where the file resides in addition to its path on that machine.

There is aso another problem introduced by links, symbolic or otherwise.
When links are allowed, files can have two or more paths. Programs that start at a
given directory and. find al the files in tha directory and its subdirectories will
locate a linked file multiple times. For example, a program that dumps all the files
in a directory and its subdirectories onto a tape may make multiple copies of a
linked file. Furthermore, if the tape is then read into another machine, unless the
dump program is clever, the linked file will be copied twice onto the disk, instead
of being linked.

4.35 Log-Structured File Systems

Changes in technology are putting pressure on current file systems. In partic-
ular, CPUs keep getting faster, disks are becoming much bigger and cheaper (but
not much faster), and memories are growing exponentialy in size. The one pa
rameter that is not improving by leaps and bounds is disk seek time. The combina-
tion of these factors means that a performance bottleneck is arising in many file
systems. Research done at Berkeley attempted to alleviate this problem by de-
signing a completely new kind of file system, LFS (the Log-structured* File Sys-
tem). In this section we will briefly describe how LFS works. For a more com-
plete treatment, see (Rosenblum and Ousterhout, 1991).

The idea that drove the LFS design is that as CPUs get faster and RAM
memories get larger, disk caches are aso increasing rapidly. Consequently, it is
now possible to satify a very substantial fraction of al read requests directly
from the file system cache, with no disk access needed. It follows from this
observation that in the future, most disk accesseswill be writes, so the read-ahead
mechanism used in some file systems to fetch blocks before they are needed no
longer gains much performance.

To make matters worse, in most file systems, writes are done in very small
chunks. Small writes are highly inefficient, since a 50-psec disk write is often pre-
ceded by a 10-msec seek and a 4-msec rotationa delay. With these parameters,
disk efficiency drops to a fraction of 1%.

To see where dl the small writes come from, consider creating a new file on a
UNIX system. To write this file, the i-node for the directory, the directory block,
the i-node for the file, and the file itself must al be written. While these writes
can be delayed, doing so exposes the file system to serious consistency problems
if a crash occurs before the writes are done. For this reason, the i-node writes are
generally done immediately.

From this reasoning, the LFS designers decided to re-implement the UNIX file
system in such a way as to achieve the full bandwidth of the disk, even in the face
of aworkload consisting in large part of small random writes. The basic idea is to
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structure the entire disk as alog. Periodicaly, and when there is a specia need
for it, al the pending writes being buffered in memory are collected into a single
segment and written to the disk as a single contiguous segment at the end of the
log. A single segment may thus contain i-nodes, directory blocks, and data
blocks, al mixed together. At the start of each segment is a segment summary,
telling what can be found in the segment. If the average segment can be made to
be about 1 MB, admost the full bandwidth of the disk can be utilized.

In this design, i-nodes till exist and have the same structure as in UNIX, but
they are now scatered dl over the log, instead of being at a fixed position on the
disk. Nevertheless, when an i-node is located, locating the blocks is done in the
usud way. Of course, finding an i-node is now much harder, since its address
cannot simply be caculated from its i-number, asin UNIX. To make it possible to
find i-nodes, an i-node map, indexed by i-number, is maintained. Entry i in this
map points to i-node i on the disk. The map is kept on disk, but it is also cached,
so the most heavily used parts will be in memory most of the time.

To summarize what we have said so far, al writes are initialy buffered in
memory, and periodicdly al the buffered writes are written to the disk in asingle
segment, at the end of the log. Opening a file now consists of using the map to
locate the i-node for the file. Once the i-node has been located, the addresses of
the blocks can be found from it. All of the blocks will themselves be in segments,
somewhere in the log.

If disks were infinitely large, the above description would be the entire story.
However, red disks are finite, so eventudly the log will occupy the entire disk, at
which time no new segments can be written to the log. Fortunately, many existing
segments may have blocks that are no longer needed, for example, if afileisover-
written, its i-node will now point to the new blocks, but the old ones will-still be
occupying space in previoudy written segments.

To deal with this problem, LFS has a cleaner thread that spends its time scan-
ning the log circularly to compact it. It starts out by reading the summary of the
first segment in the log to see which i-nodes and files are there. It then checks the
current i-node map to see if the i-nodes are till current and file blocks are still in
use. If not, that information is discarded. The i-nodes and blocks that are still in
use go into memory to be written out in the next segment. The original segment is
then marked as free, so that the log can use it for new data. In this manner, the
cleaner moves aong the log, removing old segments from the back and putting
any live data into memory for rewriting in the next segment. Consequently, the
disk is a big circular buffer, with the writer thread adding new segments to the
front and the cleaner thread removing old ones from the back.

The bookkeeping here is nontrivial, since when a file block is written back to
a new segment, the i-node of the file (somewhere in the log) must be located,
updated, and put into memory to be written out in the next segment. The i-node
map must then be updated to point to the new copy. Nevertheless, it is possible to
do the administration, and the performance results show that al this complexity is
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worthwhile. Measurements given in the papers cited above show that LFS outper-
forms UNIX by an order of magnitude on small writes, while having a per-
formance that is as good as or better than UNIX for reads and large writes.

4.3.6 Journaling File Systems

While log-structured file systems are an interesting idea, they are not widely
used, in part due to their being highly incompatible with existing file systems.
Nevertheless, one of the ideas inherent in them, robustness in the face of failure,
can be easily applied to more conventiona file systems. The basic idea here is to
keep alog of what the file system is going to do before it does it, so that if the sys-
tem crashes before it can do its planned work, upon rebooting the system can look
in the log to see what was going on & the time of the crash and finish the job.
Such file systems, called journaling file systems, are actualy in use. Microsoft's
NTFS file system and the Linux ext3 and ReiserFS file systems use journaling.
Below we will give a brief introduction to this topic.

To see the nature of the problem, consider a simple garden-variety operation
that happens dl the time: removing afile. This operation (in UNIX) requires three
steps:

1. Remove the file from its directory.
2. Release thei-node to the pool of free i-nodes.

3. Return dl the disk blocks to the pool of free disk blocks.

In Windows analogous steps are required. In the absence of system crashes, the
order in which these steps are taken does not matter; in the presence of crashes, it
does. Suppose that the first step is completed and then the system crashes. The i-
node and file blocks will not be accessible from any file, but will also not be
available for reassignment; they are just off in limbo somewhere, decreasing the
available resources. If the crash occurs after the second step, only the blocks are
lost

If the order of operations is changed and the i-node is released first, then after
rebooting, the i-node may be reassigned, but the old directory entry will continue
to point to it, hence to the wrong file. If the blocks are released first, then a crash
before the i-node is cleared will mean that a valid directory entry points to an i-
node listing blocks now in the free storage pool and which are likely to be reused
shortly, leading to two or more files randomly sharing the same blocks. None of
these outcomes are good.

What thejournaling file system does is first write alog entry listing the three
actions to be completed. The log entry is then written to disk (and for good meas-
ure, possibly read back from the disk to verify its integrity). Only after the log
entry has been written, do the various operations begin. After the operations
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complete successtully, the log entry iserased. If the system now crashes, upon re-
covery the fde sysem can check the log to see if any operations were pending. If
s0, al of them can be rerun (multiple times in the event of repeated crashes) until
thefileis correctly removed.

To make journaling work, the logged operations must be idempotent, which
means they can be repeated as often as necessary without harm. Operations such
as "Update the bitmap to mark i-node k or block n as free" can be repeated until
the cows come home with no danger. Similarly, searching a directory and remov-
ing any entry caled foobar is also idempotent. On the other hand, adding the
newly fread blocks from i-node K to the end of the free list is not idempotent since
they may dready be there. The more-expensive operation "Search the list of free
blocks and add block n to it if it is not aready present” is idempotent. Journaling
fde systems have to arrange their data structures and loggable operations so they
al of them are idempotent. Under these conditions, crash recovery can be made
fast and secure.

For added rdiability, a file syssem can introduce the database concept of an
atomic transaction. When this concept is used, a group of actions can be brack-
eted by the begin transaction and end transaction operations. The fde system then
knows it must complete either dl the bracketed operations or none of them, but
not any other combinations.

NTFS has an extensvejournaling system and its structure is rarely corrupted
by system crashes. It has been in development since its first release with Win-
dows NT in 1993. The first Linux file system to do journaling was ReiserFS, but
its popularity was impeded by the fact that it was incompatible with the then-stan-
dard ext2 file system. In contrast, ext3, which is a less ambitious project than
ReiserFS, adso doesjournaling while maintaining compatibility with the previous
ext2 system.

4.3.7 Virtual File Systems

Many different file systems are in use—often on the same computer—even
for the same operating system. A Windows system may have a main NTFS file
system, but dso a legacy FAT-32 or FAT-16 drive or partition that contains old,
but still needed, data, and from time to time a CD-ROM or DVD (each with its
own unique file system) may be required as well. Windows handles these
disparate file systems by identifying each one with a different drive letter, as in
C:, D:, etc. When a process opens afile, the drive letter is explicitly or implicitly
present so Windows knows which file system to pass the request to. There is no
attempt to integrate heterogeneous file systems into a unified whole.

In contrast, al modern UNIX systems make a very serious attempt to integrate
multiple file systems into a single structure. A Linux system could have ext2 as
the root file system, with an ext3 partition mounted on /usr and a second hard disk
with a ReiserFS file system mounted on /home as well as an 1SO 9660 CD-ROM
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temporarily mounted on/mm. From the user's point of view, there is a single file
system hierarchy. That it happens to encompass multiple (incompatible) file sys-
tems is not visible to users or processes.

However, the presence of multiple file systems is very definitely visible to the
implementation, and since the pioneering work of Sun Microsystems (Kleiman,
1986), most UNIX systems have used the concept of a VFS (virtual file system)
to try to integrate multiplefile systems into an orderly structure. Thekey ideaisto
abstract out that part of the file system that is common to al file systems and put
that code in a separate layer that calls the underlying concrete file systems to ac-
tual manage the data. The overall structure is illustrated in Fig. 4-18. The dis-
cussion below is not specific to Linux or FreeBSD or any other version of UNIX,
but gives the general flavor of how virtua file systems work in UNIX systems.

User -
process
POSIX
Virtual file syster

i | | VFS interface

File —
system

ST - * T

Buffer cache

Figure 4-18. Pogtion of the virtual file system.

All system calls relating to files are directed to the virtua file system for ini-
tial processing. These calls, coming from user processes, are the standard POSIX
cals, such as open, read, write, 1seek, and so on. Thus the VFS has an "upper"
interface to user processes and it is the well-known POSIX interface.

The VFS adso has a "lower" interface to the concrete file systems, which is
labeled VFS interface in Fig. 4-18. This interface consists of several dozen func-
tion calls that the VFS can make to each file system to get work done. Thus to
create a new file system that works with the VFS, the designers of the new file
system must make sure that it supplies the function calls the VFS requires. An
obvious example of such a function is one that reads a specific, block from disk,
puts it in the file system's buffer cache, and returns a pointer to it. Thus the VFS

has two distinct interfaces: the upper one to the user processes and the lower one
to the concrete file systems.

While most of die file systems under the VFS represent partitions on a loca
disk, this is not always the case. In fact, the original motivation for Sun to build
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the VFS was to support remote file systems using the NFS (Network File Sys-
tem) protocol. The VFS design is such that as long as the concrete file system
supplies the functions the VFS requires, the VFS does not know or care where the
data are sored or what the underlying file system is like.

Internaly, most VFS implementations are essentialy object oriented, even if
they are written in C rather than C++. There are several key object types that are
normaly supported. These include the superblock (which describes a file system),
the v-node (which describes a file), and the directory (which describes a file sys-
tem directory). Each of these has associated operations (methods) that the con-
crete file systems must support. In addition, the VFS has some internal data struc-
tures for its own use, including the mount table and an array of file descriptors to
keep track of dl the open files in the user processes.

To understand how the VFS works, let us run through an example chronologi-
cally. When the system is booted, the root file system is registered with the VFS.
In addition, when other file systems are mounted, either a boot time or during op-
eration, they, too must register with the VFS. When a file system registers, what
it badcdly does is provide a list of the addresses of the functions the VFS re-
quires, either as one long call vector (table) or as several of them, one per VFS
object, as the VFS demands. Thus once a file system has registered with the VFS,
the VFS knows how to, say, read a block from it—it simply dalls the fourth (or
whatever) function in the vector supplied by the file system. Similarly, the VFS
then dso knows how to carry out every other function the concrete file system
mus supply: it just cals the function whose address was supplied when the file
sysem registered.

After afile system has been mounted, it can be used. For example, if a file
system has been mounted on/usr and a process makes the call

open(‘7usr/inciude/unistd.h”, CLRDONLY)

while parang the path, the VFS sees that a new file system has been mounted on
Jusr and locates its superblock by searching thelist of superblocks of mounted file
sysems. Having done this, it can find the root directory of the mounted file sys-
tem and look up the path include/unistdh there. The VFS then creates a v-node
and makes a cal to the concrete file system to return dl the information in the
file's i-node. This information is copied into the v-node (in RAM), along with
other information, most importantly the pointer to the table of functions to call for
operations on v-nodes, such as read, write, close, and so on.

After the v-node has been created, the VFS makes an entry in the file descrip-
tor table for the calling process and sets it to point to the new v-node. (For the
purigts, the file descriptor actually points to another data structure that contains
the current file position and a pointer to the v-node, but this detail is not important
for our purposes here,) Findly, the VS returns the file descriptor to the caller so
it can useit to read, write, and close the file.
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Later when the process does a read using the file descriptor, the VFS locates
the v-node from the process and file descriptor tables and follows the pointer to
the table of functions, all of which are addresses within the concrete file system
on which the requested file resides. The function that handles read is now called
and code within the concrete file system goes and gets the requested block. The
VFS has no idea whether the data are coming from the locd disk, a remote file
system over the network, a CD-ROM, a USB stick, or something different. The
data structures involved are shown in Fig. 4-19. Starting with the caller's process
number and the file descriptor, successively the v-node, read function pointer, and
access function within the concrete file system are located.
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4.4 FILE SYSTEM MANAGEMENT AND OPTIMIZATION

Making the file system work is one thing; making it work efficiently and
robustly in red life is something quite different. In the following sections we will
look at some of the issues involved in managing disks.

4.4.1 Disk Space Management

Files are normally stored on disk, so management of disk space is a mgor
concern to file system designers. Two genera strategies are possible for storing an
n byte file: n consecutive bytes of disk space are dlocated, or the file is split up
into a number of (ot necessarily) contiguous blocks. The same trade-off is pres-
ent in memory management systems between pure segmentation and paging.

As we have seen, storing a file as a contiguous sequence of bytes has the ob-
vious problem that if a file grows, it will probably have to be moved on the disk.
The same problem holds for segments in memory, except that moving a segment
in memary is a relatively fast operation compared to moving a file from one disk
postion to another. For this reason, nearly dl file systems chop files up into
fixed-size blocks that need not be adjacent.

Block size

Once it has been decided to store files in fixed-size blocks, the question arises
of how hig the block should be. Given the way disks are organized, the sector, the
track, and the cylinder are obvious candidates for the unit of alocation (although
these are all device dependent, which is a minus). In a paging system, the page
sizeis dso amgor contender.

Having alarge block size means that every file, even a 1-byte file, ties up an
entire cylinder. It also means that small files waste a large amount of disk space.
On the other hand, a small block size means that most files will span multiple
blocks and thus need multiple seeks and rotational delays to read them, reducing
performance. Thus if the alocation unit is too large, we waste space; if it is too
small, wewaste time.

Making a good choice requires having some information about the file size
digribution. Tanenbaum et a. (2006) studied the file size digtribution in the
Computer Science Department of a large research university (the VU) in 1984 and
then again in 2005, as well as on a commercia Web server hosting a political
Website (www.el ectoral-vote.com). The results are shownin Fig. 4-20, where for
each power-of-two file size, the percentage of dl files smaler or equa toit is list-
ed for each of the three data sets. For example, in 2005, 59.13% of all files at the
VU were 4 KB or smaler and 90.84% of al files were 64 KB or smdler. The

median file size was 2475 bytes. Some people may find this small size surprising.
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Length | VU 1984 | VU 2005| Web Length | VU1984 | vuU 2005 Web
1 1.79 138 | 6.67 16K B 92.53 78.92 |  86.79

2 1.88 153 | 7.67 32 KB 97.21 85.87 | 91.65

4 2.01 1.65 | 8.33 64 KB 99.18 90.84 | 94.80

8 231 1.80 | 11.30 128 KB 99.84 93.73 | 96.93

16 3.32 2.15 | 11.46 256 KB 99.96 96.12 | 98.48

32 5.13 3.15 | 12.33 512K B 100.00 97.73 | 98.99

64 8.71 4.98 | 26.10 1MB 100.00 98.87 | 99.62

128 14,73 8.03 | 28.49 2MB 100.00 99.44 | 99.80
256 23.09 13.29 | 32.10 4MB 100.00 99.71 | 99.87
512 34.44 20.62'| 39.94 8MB 100.00 99.86 | 99.94
1KB 48.05 30.91 | 47.82 16MB 100.00 99.94 | 99.97
2KB 60.87 46.09 | 59.44 32 MB 100.00 99.97 | 99.99
4K B 75.31 59.13 | 70.64 64 MB 100.00 99.99 | 99.99
8KB 84.97 69.96 | 79.69 128 MB 100.00 99.99 | 100.00

Figure 4-20. Percentage of files smaller than a given size (in bytes).

What conclusions can we draw from these data? For one thing, with a block
size of 1 KB, only about 30-50% of all files fit in a single block, whereas with a
4-KB block, the percentage of files that fit in a block goes up to the 60-70%
range. Other data in the paper show that with a 4-KB block, 93% of the disk
blocks are used by the 10% largest files. This means that wasting some space at
the end of each small file hardly matters because the disk is filled up by a small
number of large files (videos) and the total amount of space taken up by the small
files hardly matters at al. Even doubling the space the smallest 90% of the files
take up would be barely noticeable.

On the other hand, using a small block means that each file will consist of
many blocks. Reading each block normally requires a seek and arotational delay,
so reading a file consisting of many small blocks will be slow.

As an example, consider a disk with 1 MB per track, arotation time of 8.33
msec, and an average seek time of 5 msec. The time in milliseconds to read a
block of k bytes is then the sum of the seek, rotational delay, and transfer times:

5 + 4.165 + (&/1000000) x 8.33

The solid curve of Fig. 4-21 shows the data rate for such a disk as a function of
block size. To compute the space efficiency, we need to make an assumption
about the mean file size. For simplicity, let us assume that dl files are 4 KB. Al-
though this number is dightly larger than the data measured at the VU, students
probably have more small files than would be present in a corporate data center,


http://www.electoral-vote.com

292 ALE SYSTEMS CHAP. 4

so it might be a better guess on the whole. The dashed curve of Fig. 4-21 shows
the space efficiency as a function of block size.
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Figure 4-21. The solid curve (left-hand scale) gives Ihe data rate of a disk. The
dashed curve (right-hand scale) gives the disk space efficiency. All files are 4
KB.

The two curves can be understood as follows. The access time for ablock is
completely dominated by the seek time and rotational delay, so given that it is
going to cost 9 msec to access a block, the more data that are fetched, the better.
Hence the data rate goes up amost linearly with block size (until the transfers
take s0 long that the trandfer time begins to matter).

Now consider space efficiency. With 4-KB files and 1-KB, 2-KB, or 4-KB
blocks, files use 4, 2, and 1 block, respectively, with no wastage. With an 8-KB
block and 4-KB files, the space efficiency drops to 50%, and with a 16-KB block
it is down to 25%. In redlity, few files are an exact multiple of the disk block
size, so some space isaways wasted in the last block of a file.

What the curves show, however, is that performance and space utilization are
inherently in conflict. Smal blocks are bad for performance but good for disk
space utilization. For these data, no reasonable compromise is available. The size
closest to where the two curves cross is 64 KB, but the data rate is only 6.6
MB/sec and the space efficiency is about 7%, neither of which is-very good. His-
torically, file systems have chosen sizes in the 1-KB to 4-KB range, but with disks
now exceeding 1 TB, it might be better to increase the block size to 64 KB and
accept the wasted disk space. Disk spaceis hardly in short supply any more.

In an experiment to see if Windows NT file usage was appreciably different
from UNIX file usage, Vogels made measurements on files at Cornell University
(Voges, 1999). He observed that NT file usage is more complicated than on
UNIX. Hewrote:

When we type a few characters in the notepad text editor, saving thisto a
file will trigger 26 system calls, including 3 failed open attempts, 1 file
overwriteand 4 additional open and close sequences.
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Nevertheless, he observed a median size (weighted by usage) of filesjust read at 1
KB, filesjust written as 2.3 KB, and files read and written as 4.2 KB. Given the
different data sets measurement techniques, and the year, these results are cer-
tainly compatible with the VU results.

Keeping Track of Free Blocks

Once ablock size has been chosen, the next issue is how to keep track of free
blocks. Two methods are widely used, as shown in Fig. 4-22. The first one con-
sists of using a linked list of disk blocks, with each block holding as many free
disk block numbers as will fit. With a 1-KB block and a 32-bit disk block number,
each block on the free list holds the numbers of 255 free blocks. (One slot is re-
quired for the pointer to the next block.) Consider a 500-GB disk, which has
about 488 million disk blocks. To store all these address at 255 per block requires
about 19 million blocks. Generally, free blocks are used to hold the free list, so
the storage is essentially free.

Free disk blocks. 16,17,18

42 r 230 86 11001101101101100
136 162 234 0110110111110111
210 612 897 1010110110110110

97 342 422 0110110110111011
41 214 140 1110111011101111
63 160 223 1101101010001111
21 664 223 0000111011010111
48 216 160 1011101101101111

262 320 126 1100100011101111
g IS #j j
| R T
310 - 180 142 111011101110111
516 482 141 1101111101110111
A1KB dik o cn T 250 Abimep
(@ ()

Figure 4-22. (a) Storing thefree list on alinked list, (b) A bitmap.

The other free space management technique is the bitmap. A disk with n
blocks requires a bitmap with n bits. Free blocks are represented by Is in the map,
alocated blocks by Os (or vice versd). For our example 500-GB disk, we need
488 million bits for the map, which requires just under 60,000 1-KB blocks to
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gore It isnat aurprisng that the bitmap requires less space, since it uses 1 bit per
block, versus 32 bits in the linked list modd. Only if the disk is nearly full (i.e.,
has few free blocks) will the linked list scheme require fewer blocks than the bit-
map.
If free blocks tend to come in long runs of consecutive blocks, the freelist

sysem can be modified to keep track of runs of blocks rather than single blocks.

An 8-, 16-, or 32-hit count could be associated with each block giving the number

of consecutive free blocks In the best case, a bascally empty disk could be
represented by two numbers the address of the firg free block followed by the
count of free blocks. On the other hand, if the disk becomes sever dy fragmented,

kesping tradk of runsis less efficient than keeping track of individual blocks be-

cause not only must the address be sored, but also the count.

Thisissue illugtrates a problem operating system designers often have. There
are multiple data sructures and algorithms that can be used to solve a problem,
but choosing the best onerequires data that the designers do nat have and will not
have until the sysem is deployed and heavily used. And even then, the data may
nat be available For example, our own measurements of file sizes at the VU in
1984 and 1995, the Webste data, and the Cornell data are only four samples.
While a lot better than nothing, we have little idea if they are also representative
of home computers corporate computers, government computers, and others.
With some efort we might have been able to get a couple of samples from other
kinds of computers, but even then it would be foolish to extrapolate to ail com-
puters of the kind measured.

Getting badk to the free lis method for a moment, only one block of pointers
need be kept in main memory. When a file is created, the needed blocks are taken
from the block of pointers When it runs out, a new block of pointers is read in
from the disk. Smilarly, when a file is deleted, its blocks are freed and added to
the block of pointers in main memory. When this block fills up, it is written to
disk.

Under certain drcumaances, this method leads to unnecessary disk 1/0. Con-
dder the stuation of Fig. 4-23(a), in which the block of pointers in memory has
room for only two more entries. If a three-block file is freed, the pointer block
overflows and has to be written to disk, leading to the Stuation of Fig. 4~23(b). If
athreeblock file is now written, the full block of pointers hasto beread in again,
taking us badk to Fig. 4-23(a). If the three-block file just written was a temporary
file, when it is freed, anather disk write is needed to write the full block of point-
e's badk to the disk. In short, when the block of pointersis almost empty, a series
of short-lived temporary files can cause a lot of disk 1/0.

An dternative approach that avoids most of this disk 1/O is to split the full
blodk of pointers Thus ingead of going from Fig. 4-23(a) to Fig. 4-23 (b), we go
fram Fig. 4-23(a) to Fig. 4-23(c) when three blocks are freed. Now the system can
handle a series of temporary files without doing any disk 1/0. If the block in
memary fills up, it is written to the disk, and the half-full block from the disk is
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Figure 4-23. (a) An almost-full block of pointersto free disk blocksin memory
and three blocks of pointers on disk, (b) Result of freeing a three-block file, (c)
An alternative strategy for handling the three free blocks. The shaded entries
represent pointersto free disk blocks.

read in. The idea here isto keep most of the pointer blocks on disk full (to minim-
ize disk usage), but keep the one in memory about half full, o it can handle both
file creation and file removal without disk 1/0 on the freelist.

With a bitmap, it is also possible to keep just one block in memory* going to
dis for another only when it becomes full or empty. An additional benefit of this
approach is that by doing all the allocation from a single block of the bitmap, the
disk blocks will be close together, thus minimizing disk a'm motion. Since the bit-
map is a fixed-sze data sructure, if the kernd is (partially) paged, the bitmap can
be put in virtual memory and have pages of it paged in as needed.

Disk Quotas

To prevent people from hogging too much disk space, multiuser operating
systems often provide a mechanism for enforcing disk quotas The idea is that the
system adminigtrator assigns each user a maximum allotment of files and blocks,
and the operating system makes sure that the users do not exceed their quotas. A
typical mechanism is described below.

When auser opens a file, the attributes and disk addresses are located and put
into an open file table in main memory. Among the attributes is an entry telling
who the owner is. Any increases in the filé's size will be charged to the owner's
quota.

A second table contains the quota record for every user with a currently open
file, even if the file was opened by someone else. This table is shown in Fig. 4-24.
It is an extract from a quota file on disk for the users whose files are currently
open. When all the files are closed, the record iswritten back to the quota file.
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Open filetable Quota table
Soft block limit
Attributes o
gisk addresses Hard block limit
User=8 | Current # of blocks
X Quota
Quota painter # Block warnings left v/ record
Soft file limit I for user |
Hard file limit

Current* of files

# File warnings left

Figure 4-24. Quotas are kept track of on a per-user basisin a quota table.

When anew entry is made in the open file table, a pointer to the owner's
quota record is entered into it, to make it easy to find the various limits. Every
time a block is added to afile, the totd number of blocks charged to the owner is
incremented, and a check is made againgt both the hard and soft limits. The soft
limit may be exceeded, but the hard limit may not. An attempt to append to a file
when the hard block limit has been reached will result in an error. Analogous
checks dso exigt for the number of files.

When a user attempts to log in, the system examines the quota file to see if
the user has exceeded the soft limit for either number of files or number of disk
blocks. If ether limit has been violated, awarning is displayed, and the count of
warmnings remaining is reduced by one. If the count ever gets to zero, the user has
ignored the warning one time too many, and is not permitted to log in. Getting

permisson to log in again will require some discussion with the system adminis-
trator.

This method has the property that users may go above their soft limits during
a login s=sson, provided they remove the excess before logging out. The hard
limits mey never be exceeded.

4.4.2 File System Backups

Dedtrudtion of afile system is often a far greater disaster than destruction of a
computer. If a computer is destroyed by fire, lightning surges, or a cup of coffee
poured onto the keyboard, it is annoying and will cost money, but generaly a
replacement can be purchased with a minimum of fuss. Inexpensive persona
computers can even be replaced within an hour by just going to a computer store
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(except a universities, where issuing a purchase order takes three committees,
five signatures, and 90 days).

If a computer's file system is irrevocably lost, whether due to hardware or
software, restoring al the information will be difficult, time consuming, and in
many cases, impossible. For the people whose programs, documents, tax records,
customer files, databases, marketing plans, or other data are gone forever, the
consequences can be catastrophic. While the file system cannot offer any protec-
tion against physical destruction of the equipment and media, it can help protect
the information. It is pretty straightforward: make backups. But that is not quite
as simple as it sounds. Let us take alook.

Most people do not think making backups of their files is worth the time and
effort—until one fine day their disk abruptly dies, a which time most of them
undergo a deathbed conversion. Companies, however, (usually) well understand
the value of their data and generally do a backup at least once a day, usualy to
tape. Modern tapes hold hundreds of gigabytes and cost pennies per gigabyte.
Nevertheless, making backups is not quite as trivial as it sounds, so we will exam-
ine some of the related issues below.

Backups to tape are generally made to handle one of two potential problems:

1. Recover from disaster.
2. Recover from stupidity.

The first one covers getting the computer running again after a disk crash, fire,
flood, or other natural catastrophe. In practice, these things do not happen very
often, which is why many people do not bother with backups. These people also
tend not to have fire insurance on their houses for the same reason.

The second reason is that users often accidentally remove files that they later
need again. This problem occurs so often that when a file is "removed" in Win-
dows, it is not deleted at all, but just moved to a specia directory, the recycle bin,
so it can be fished out and restored easily later. Backups take this principle further
and dlow files that were removed days, even weeks, ago to be restored from old
backup tapes.

Making a backup takes a long time and occupies a large amount of space, so
doing it efficiently and conveniently is important. These considerations raise the
following issues. First, should the entire file system be backed up or only part of
it? At many installations, the executable (binary) programs are kept in a limited
part of the file system tree. It is not necessary to back up these files if they can dl
be reinstalled from the manufacturer's CD-ROMs. Also, most systems have a di-
rectory for temporary files. There is usually no reason to back it up either. In
UNDC, al the specid files (1/O devices) are kept in a directory /dev. Not only is
backing up this directory not necessary, it is downright dangerous because the
backup program would hang forever if it tried to read each of these to completion.
In short, it is usually desirable to back up only specific directories and everything
in them rather than the entire file system.
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Second, it iswasteful to back up files that have not changed since the previous
backup, which leads to the idea of incremental dumps. The smplest form of in-
crementa dumping isto make a complete dump (backup) periodicaly, say weekly
or morthly, and to make a daily dump of only those files that have been modified
since the lagt full dump. Even better is to dump only those files that have changed
since they were last dumped. While this scheme minimizes dumping time, it
makes recovery more complicated, because first the most recent full dump has to
be restored, followed by al the incremental dumps in reverse order. To ease
recovery, more sophisticated incremental dumping schemes are often used.

Third, since immense amounts of data are typically dumped, it may be desir-
able to compress the data before writing them to tape. However, with many com-
pression agorithms, a single bad spot on the backup tape can fail the decompres-
son dgorithm and make an entire file or even an entire tape unreadable. Thus the
decision to compress the backup stream must be carefully considered.

Fourth, it is difficult to perform a backup on an active file system. If files and
directories are being added, deleted, and modified during the dumping process,
the resulting dump may be inconsistent. However, since making a dump may take
hours, it may be necessary to take the system offline for much of the night to
make the backup, something that is not aways acceptable. For this reason, ago-
rithms have been devised for making rapid snapshots of the file system state by
copying critical data structures, and then requiring future changes to files and di-
rectories to copy the blocks instead of updating them in place (Hutchinson et al.,

1999). In this way, the file system is effectively frozen a the moment of the
sngpshat, so it can be backed up at leisure afterward.

Ffth and last, making backups introduces many nontechnical problems into
an organization. The best online security system in the world may be useless if the
sysem administrator keeps dl the backup tapes in his office and leaves it open
and unguarded whenever he walks down the hall to get output from the printer.
All a oy has to do is pop in for a second, put one tiny tape in his pocket, and
saunter off jauntily. Goodbye security. Also, making a daily backup has little use
if the fire that bums down the computers aso burns up al the backup tapes. For
this reason, backup tapes should be kept off-site, but that introduces more security
risks (because now two sites must be secured). For a thorough discussion of these
and other practical administration issues, see (Nemeth et al., 2000). Below we
will discuss only the technical issues involved in making file system backups.

Two strategies can be used for dumping a disk to tape: aphysical dump or a
logicd dump. A physical dump starts at block 0 of the disk, writes dl the disk
blocks onto the output tape in order, and stops when it has copied the last one.
Such a program is so simple that it can probably be made 100% bug free, some-
thing that can probably not be said about any other useful program.

Neverthdless, it is worth making several comments about physical dumping.
For one thing, there is no value in backing up unused disk blocks. If the dumping
program can obtain access to the free block data structure, it can avoid dumping
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unused blocks. However, skipping unused blocks requires writing the number of
each block in front of the block (or the equivalent), since it is no longer true that
block k on the tape was block k on the disk.

A second concern is dumping bad blocks. It is nearly impossible to manufac-
ture large disks without any defects. Some bad blocks are always present. Some-
times when a low-level format is done, the bad blocks are detected, marked as
bad, and replaced by spare blocks reserved at the end of each track for just such
emergencies. In many cases, the disk controller handles bad block replacement
transparently without the operating system even knowing about it.

However, sometimes blocks go bad after formatting, in which case the operat-
ing system will eventually detect them. Usually, it solves the problem by creating
a "file" consisting of all the bad blocks—just to make sure they never appear in
the free block pool and are never assigned. Needless to say, thisfile is completely
unreadable.

If dl bad blocks are remapped by the disk controller and hidden from the op-
erating system asjust described, physical dumping works fine. On the other hand,
if they are visible to the operating system and maintained in one or more bad-
block files or bitmaps, it is absolutely essential that the physical dumping program
get access to this information and avoid dumping them to prevent endless disk
read errors while trying to back up the bad-block file.

The main advantages of physical dumping are simplicity and great speed
(basicaly, it can run at the speed of the disk). The main disadvantages are the
inability to skip selected directories, make incremental dumps, and restore indivi-
dual files upon request. For these reasons, most installations make logical dumps.

A logical dump starts at one or more specified directories and recursively
dumps dl files and directories found there that have changed since some given
base date (e.g., the last backup for an incremental dump or system installation for
a full dump). Thus in a logical dump, the dump tape gets a series of carefully
identified directories and files, which makesit easy to restore a specific file or di-
rectory upon request.

Since logical dumping is the most common form, let us examine a common
agorithm in detail using the example of Fig. 4-25 to guide us. Most UNIX systems
use this agorithm. In the figure we see a file tree with directories (squares) and
files (circles). The shaded items have been modified since the base date and thus
need to be dumped. The unshaded ones do not need to be dumped.

This algorithm aso dumps all directories (even unmodified ones) that lie on
the path to a modified file or directory for two reasons. First, to make it possible
to restore the dumped files and directories to a fresh file system on a different
computer. In this way, the dump and restore programs can be used to transport
entire file systems between computers.

The second reason for dumping unmodified directories above modified files is
to make it possible to incrementally restore a single file (possibly to handle re-
covery from stupidity). Suppose that a full file system dump is done Sunday



CHAP. 4
FILE SYSTEMS
300

FRoot directory

Directory
trat has not
changed

File that has

@ @ @ not changed

,a« A file sysem to be dumped. The squares are directories and the
X £ L The Sea iems have been modified since the last dump. Each
directory and file is labeled by its ode number.

hag changed

evening and an incrementa dump is done on Monday evening. On Tuesday the
directory /usr/jhg/proj/nr3 is removed, dong with dl the directories and files
under it. On Wednesday morning bright and early the user wants to restore the
file /usr/jhd/proj/nr3/plans/summary However, is not possible to just restore the
file summary because there is no place to put it. The directories nr3 and plans
must be restored firg. To get their owners, modes, times, and whatever., correct,
these directories must be present on the dump tape even though they themselves
were not modified since the previous full dump.

The dump agorithm maintains a bitmap indexed by i-node number with sev-
erd bits per i-node. Bits will be st and cleared in this map as the agorithm
proceeds. The dgorithm operates in four phases. Phase 1 begins at the starting di-
rectory (the root in this example) and examines all the entriesinit. For each modi-
fied file, its i-node is maked in the bitmap. Each directory is also marked
(whether or nat it has been modified) and then recursively inspected.

At the end of phase 1, dl modified files and all directories have been marked
in the bitmap, as shown (by shading) in Fig. 4-26(a). Phase 2 conceptually recur-
sively waks the tree again, unmarking any directories that have no modified files
or directories in them or under them. This phase leaves the bitmap as shown in
Fig. 4-26(b). Note that directories 10, 11, 14, 27, 29, and 30 are now unmarked
because they contain nathing under them that has been modified. They will not be
dumped. By way of contregt, directories 5 and 6 will be dumped even though they
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themselves have not been modified because they will be needed to restore today's

changes to a fresh machine. For efficiency, phases 1 and 2 can be combined in
one tree walk.

©1il213]4]5]617]al Q{lpil 15| 16|Ip|lfjla] 19J20[21 jPRIPATSPSPRERA30RL IQ]

(1234567891011 12 13 14 15 16 17 [819 20 21 22 23 24 25 26 27 28 29 30 31 32

(d) 1 23;4Jjy6J7]M'9;1011 121314151617 18 19|20 21 22 23 24 25 26 27 28 29 30 31 32

Figure 4-26. Bitmaps used by the logical dumping algorithm.

At this point it is known which directories and files must be dumped. These
are the ones marked in Fig. 4-26(b). Phase 3 consists of scanning the i-nodes in
numerical order and dumping al the directories that are marked for "dumping.
These are shown in Fig. 4-26(c). Each directory is prefixed by the directory's a-
tributes (owner, times, etc.) so that they can be restored. Finaly, in phase 4, the

files marked in Fig. 4-26(d) are aso dumped, again prefixed by their attributes.
This completes the dump.

Restoring a file system from the dump tapes is straightforward. To start with,
an empty file system is created on the disk. Then the most recent full dump is re-
stored. Since the directories appear first on the tape, they are al restored first, giv-
ing a skeleton of the file system. Then the files themselves are restored. This
process is then repeated with the first incremental dump made after the full dump,
then the next one, and so on.

Although logical dumping is straightforward, there are afew tricky issues. For
one, since the free block list is not a file, it is not dumped and hence it must be
reconstructed from scratch after al the dumps have been restored. Doing o is a-
ways possible since the set of free blocks is just the complement of the set of
blocks contained in al the files combined.

Another issue is links. If afileis linked to two or more directories, it is im-
portant that the file is restored only one time and that al the directories that are
supposed to point to it do so.

Still another issue is the fact that UNIX files may contain holes. It islega to
open a file, write a few bytes, then seek to a distant file offset and write a few
more bytes. The blocks in between are not part of the file and should not be
dumped and must not be restored. Core files often have a hole of hundreds of
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megabytes between the data segment and the stack. If not handled properly, each
restored core file will fill this area with zeros and thus be the same size as the vir-
tual address space (e.g., 2°° bytes, or worse yet, 2°* bytes).

Finally, specid files, named pipes, and the like should never be dumped, no
matter in which directory they may occur (they need not be confined to/dev). For
more information about file system backups, see (Chervenak et al., 1998; and
Zwicky, 1991).

Tape densities are not improving as fast as disk dendties. This is gradudly
leading to a situation in which backing up a very large disk may require multiple
tapes. While tape robots are available to change tapes automaticdly, if this trend
continues, tapes will eventualy become too small to use as a backup medium. In
that case, the only way to back up a disk will be on another disk. While simply
mirroring each disk with a spare is one possibility, more sophisticated schemes,
called RAIDs, will be discussed in Chap. 5.

4.4.3 File System Consistency

Ancther area where reliability is an issue is file sysem consistency. Many file
systems read blocks, modify them, and write them out later. |If the system crashes
before dl the modified blocks have been written out, the file system can be left in
an inconsistent state. This problem is especidly critical if some of the blocks that
have not been written out are i-node blocks, directory blocks, or blocks containing
the free list.

To deal with the problem of inconsstent file systems, most computers have a
utility program that checks file syslem consistency. For example, UNIX has fsck
and Windows has scandisk. This utility can be run whenever the system is boot-
ed, especidly after a crash. The description below tells how fsck works. Scandisk
is somewhat different because it works on a different file system, but the general
principle of usng the file system's inherent redundancy to repair it is still valid.
All file system checkers verify each file system (disk partition) independently of
the other ones.

Two kinds of consistency checks can be made: blocks and files. To check for
block consistency, the program builds two tables, each one containing a counter
for each block, initially set to 0. The counters in the first table keep track of how
many times each block is present in afile; the counters in the second table record
how often each block is present in the free list (or the bitmap of free blocks).

The program then reads all the i-nodes using a raw device, which ignores the
file structure and just returns dl the disk blocks starting a 0. Starting from an i-
node, it is possible to build a list of dl the block numbers used in the correspond-
ing file. As each block number is read, its counter in the first table is incre-
mented. The program then examines the free list or bitmap to find al the blocks
that are not in use. Each occurrence of ablock in the free list results in its counter
in the second table being incremented.
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If the file system is consistent, each block will have a 1 either in the first table
or in the second table, as illustrated in Fig. 4-27(a). However, as a result of a
crash, the tables might look like Fig. 4-27(b), in which block 2 does not occur in
either table. It will be reported as being a missing block. While missing blocks
do no real harm, they waste space and thus reduce the capacity of the disk. The
solution to missing blocks is straightforward: the file system checker just adds
them to the free list.

Block number Block number
0 123456 7 89101112131415
1(0f1{1]1|1 11

0‘0
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Figure 4-27. File system states, (a) Consistent, (b) Missing block, (c) Dupli-
cate block in free list, (d) Duplicate data block.

Another situation that might occur is that of Fig. 4-27(c). Here we see a
block, number 4, that occurs twice in the free list. (Duplicates can occur only if
the free list is redly a list; with a bitmap it is impossible) The solution here is
also simple: rebuild the free list.

The worst thing that can happen is that the same data block is present in two
or more files, as shown in Fig. 4-27(d) with block 5. If either of these files is re-
moved, block 5 will be put on the free list, leading to a situation in which the
same block is both in use and free at the same time. If both files are removed, the
block will be put onto the free list twice.

The appropriate action for the file system checker to take is to alocate afree
block, copy the contents of block 5 into it, and insert the copy into one of the files.
In this way, the information content of the files is unchanged (athough amost
assuredly one is garbled), but the file system structure is at least made consistent.
The error should be reported, to adlow the user to inspect the damage.

In addition to checking to see that each block is properly accounted for, the
file system checker aso checks the directory system. It, too, uses a table of

counters, but these are per file, rather than per block. It starts at the root directory
and recursively descends the tree, inspecting each directory in the file system. For
every i-node in every directory, it increments a counter for that file's usage count

01234567
O‘O‘Blocksinuse 1l1fo|1joj1{1|1|1{Oo0|1|1|1/0|01Blocksin use
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Remember that due to hard links, a file may appear in two or more directories.
Symbolic links do not count and do not cause the counter for the target file to be
incremented.

When the checker is all done, it has alist, indexed by i-node number, telling
how many directories contain each file. It then compares these numbers with the
link counts stored in the i-nodes themselves. These counts start a | when afile is
created and are incremented each time a (hard) link is made to the file. In a con-
sgent file system, both counts will agree. However, two kinds of errors can oc-
cur: the link count in the i-node can be too high or it can be too low.

If the link count is higher than the number of directory entries, then even if dl
the files are removed from the directories, the count will still be nonzero and the
i-node will not be removed. This error is not serious, but it wastes space on the
disk with files that are not in any directory. It should be fixed by setting the link
count in thei-node to the correct value.

The other error is potentidly catastrophic. If two directory entries are linked
to afile, but the i-node says that there is only one, when either directory entry is
removed, the i-node count will go to zero. When an i-node count goes to zero, the
file system marks it as unused and releases dl of its blocks. This action will result
in one of the directories now pointing to an unused i-node, whose blocks may
so0n be assigned to other files. Again, the solution isjust to force the link count in
thei-node to the actual number of directory entries.

These two operations, checking blocks and checking directories, are often
integrated for efficiency reasons (i.e., only one pass over the i-nodes is required).
Other checks are adso possible. For example, directories have a definite format,
with i-node numbers and ASCIl names. If an i-node number is larger than the
number of i-nodes on the disk, the directory has been damaged.

Furthermore, each i-node has a mode, some of which are legal but strange,
such as 0007, which alows the owner and his group no access a all, but allows
outsders to read, write, and execute the file. It might be useful to at least report
files that give outsders more rights than the owner. Directories with more than,
say, 1000 entries are also suspicious. Files located in user directories, but which
are owned by the superuser and have the SETUID hit on, are potential security
problems because such files acquire the powers of the superuser when executed
by any user. With a little effort, one can put together a fairly long list of techni-
cdly legd but sill peculiar situations that might be worth reporting.

The previous paragraphs have discussed the problem of protecting the user
agang crashes. Some file systems aso worry about protecting the user against
himsdf. If the user intends to type

m*.0

to remove dl the files ending with .0 (compiler-generated object files), but ac-
cidentaly types

rm* .o
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(note the space after the asterisk), rm will remove all the filesin the current direc-
tory and then complain that it cannot find .0. In MSDOS and some other systems,
when afile is removed, all that happens is that a bit is set in the directory or i-
node marking the file as removed. No disk blocks are returned to the free list
until they are actually needed. Thus, if the user discovers the error immediately,
it is possible to run a specia utility program that "unremoves" (i.e., restores) the
removed files. In Windows, files that are removed are placed in the recycle bin (a
specia directory), from which they can later be retrieved if need be. Of course,
no storage is reclaimed until they are actually deleted from this directory.

4 . 4 . 4 File System Performance

Access to disk is much slower than access to memory. Reading a 32-bit mem-
ory word might take 10 nsec. Reading from a hard disk might proceed at 100
MB/sec, which is four times dower per 32-bit word, but to this must be added
5-10 msec to seek to the track and then wait for the desired sector to arrive under
the read head. If only a single word is needed, the memory accessis on the order
of a million times as fast as disk access. As a result of this difference in access
time, many file systems have been designed with various optimizations to
improve performance. In this section we will cover three of them.

Caching

The most common technique used to reduce disk accesses is the block cache
or buffer cache. (Cache is pronounced "cash" and is derived from the French
cacher, meaning to hide.) In this context, a cache is a collection of blocks that
logically belong on the disk but are being kept in memory for performance rea
sons.

Various algorithms can be used to manage the cache, 1 but a common one is to
check al read requests to see if the needed block isin the cache. Ifitis, the read
request can be satisfied without a disk access. If the block is not in the cache, it is
first read into the cache and then copied to wherever it is needed. Subsequent re-
quests for the same block can be satisfied from the cache.

Operation of the cache is illustrated in Fig. 4-28. Since there are many (often
thousands of) blocks in the cache, some way is needed to determine quickly if a
given block is present. The usua way is to hash the device and disk address and
look up the result in a hash table. All the blocks with the same hash value are
chained together on alinked list so that the collision chain can be followed.

When a block has to be loaded into a full cache, some block has to be re-
moved (and rewritten to the disk if it has been modified since being brought in).
This situation is very much like paging, and al the usua page replacement algo-
rithms described in Chap. 3, such as FIFO, second chance, and LRU, are applica
ble. One pleasant difference between paging and caching is that cache references
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Figure 4-28. Thebuffer cache data structures.

are relatively infrequent, so that it is feasible to keep al the blocks in exact LRU

order with linked lists.

In Fig. 4-28, we see that in addition to the collision chains starting at the hash
table, thereis also abidirectional list running through dl the blocks in the order of
usage, with the least recently used block on the front of this lis and the most
recently used block at the end of this list. When a block is referenced, it can be re-
moved from its position on the bidirectiona list and put at the end. In this way,
exact LRU order can be maintained.

Unfortunately, there is a catch. Now that we have a situation in which exact
LRU ispossible, it turns out that LRU is undesirable. The problem has to do with
the crashes and file system consistency discussed in the previous section. If acrit-
ical block, such as an i-node block, is read into the cache and modified, but not
rewritten to the disk, a crash will leave the file system in an inconsistent state. If
the i-node block is put at the end of the LRU chain, it may be quite awhile before
it reaches the front and is rewritten to the disk.

Furthermore, some blocks, such as i-node blocks, are rarely referenced two
times within a short interval. These considerations lead to a modified LRU
scheme, taking two factors into account

1. Istheblock likely to be needed again soon?

2. Isthe block essentia to the consistency of the file system?

For both questions, blocks can be divided into categories such as i-node blocks,
indirect blocks, directory blocks, full data blocks, and partially full data blocks.
Blocks that will probably not be needed again soon go on the front, rather than the
rear of the LRU list, so their buffers will be reused quickly. Blocks that might be
needed again soon, such as a partly full block that is being written, go on the end
of thelist, so they will stay around for along time.

The second question is independent of the first one. If the block is essentiad to
the file system consistency (basically, everything except data blocks), and it has
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been modified, it should be written to disk immediately, regardless of which end
of the LRU list it is put on. By writing critical blocks quickly, we greatly reduce
the probability that a crash will wreck the file system. While a user may be
unhappy if one of his files is ruined in a crash, he is likely to be far more unhappy
if the whole file system is lost.

Even with this measure to keep the file system integrity intact, it is undesir-
able to keep data blocks in the cache too long before writing them out. Consider
the plight of someone who is using a personal computer to write a book. Even if
our writer periodically tells the editor to write the file being edited to the disk,
there is a good chance that everything will still be in the cache and nothing on the
disk. If the system crashes, the file system structure will not be corrupted, but a
whole day's work will be lost.

This situation need not happen very often before we have a fairly unhappy
user. Systems take two approaches to dealing with it. The UNIX way is to have a
system call, sync, which forces al the modified blocks out onto the disk im-
mediately. When the system is started up, a program, usualy caled update, is
started up in the background to sit in an endless loop issuing sync calls, sleeping
for 30 sec between calls. As aresult, no more than 30 seconds of work is lost due
to acrash.

Although Windows now has a system call equivalent to sync, FlushFileBuff-
ers, in the past it did not. Instead, it had a different strategy that was in seme ways
better than the UNIX approach (and in some ways worse). What it did was to
write every modified block to disk as soon as it has been written to the cache.
Caches in which all modified blocks are written back to the disk immediately are
called write-through caches. They require more disk 1/0O than nonwrite-through
caches.

The difference between these two approaches can be seen when a program
writes a 1-KB block full, one character a a time. UNIX will collect all the charac-
ters in the cache and write the block out once every 30 seconds, or whenever the
block is removed from the cache. With a write-through cache, there is a disk ac-
cess for every character written. Of course, most programs do internal buffering,
so they normally write not a character, but a line or alarger unit on each write sys-
tem call.

A consequence of this difference in caching strategy is that just removing a
(floppy) disk from a UNIX system without doing a sync will aimost always result
in lost data, and frequently in a corrupted file system as well. With write-through
caching no problem arises. These differing strategies were chosen because UNIX
was developed in an environment in which dl disks were hard disks and not
removable, whereas the first Windows file system was inherited from MS-DOS,
which started out in the floppy disk world. As hard disks became the norm, the
UNIX approach, with its better efficiency (but worse reliability), became the
norm, and is aso used now on Windows for hard disks. However, NTFS takes
other measures (journaling) to improve reliability, as discussed earlier.
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Some operating systems integrate the buffer cache with the page cache. This
is especidly attractive when memory-mapped files are supported. If afile is map-
ped onto memory, then some of its pages may be in memory because they were
demand paged in. Such pages are hardly different from file blocks in the buffer
cache. In this case, they can be treated the same way, with asingle cache for both
file blocks and pages.

Block Read Ahead

A second technique for improving perceived file system performance is to try
to get blocks into the cache before they are needed to increase the hit rate. In par-
ticular, many files are read sequentialy. When the file system is asked to produce
block k in afile, it does that, but when it is finished, it makes a sneaky check in
the cache to see if block k + 1 is aready there. If it is not, it schedules a. read for
block k + I'm the hope that when it is needed, it will have aready arrived in the
cache. Atthe very lead, it will be on the way.

Of course, this read ahead strategy only works for files that are being read se-
quentidly. If afileis being randomly accessed, read ahead does not help. In fact,
it hurts by tying up disk bandwidth reading in useless blocks and removing poten-
tidly ussful blocks from the cache (and possibly tying up more disk bandwidth
writing them back to disk if they are dirty). To see whether read ahead is worth
doing, the file system can keep track of the access patterns to each open file. For
example, a bit associated with each file can keep track of whether the file is in
"sequential access mode" or "random access mode." Initidly, the file is given
the benefit of the doubt and put in sequential access mode. However, whenever a
seek is done, the bit is cleared. If sequential reads start happening again, the bit is
set once again. In this way, the file system can make a reasonable guess about
whether it should read ahead or not. If it gets it wrong once in awhile, it is not a
disaster, just alittle bit of wasted disk bandwidth.

Reducing Disk Arm Motion

Caching and read ahead are not the only ways to increase file system per-
formance. Another important technique is to reduce the amount of disk arm
motion by putting blocks that are likely to be accessed in sequence close to each
other, preferably in the same cylinder. When an output file is written, the file sys-
tem has to alocate the blocks one at a time, on demand. If the free blocks are
recorded in a bitmap, and the whole bitmap isin main memory, it is easy enough
to choose a free block as close as possible to the previous block. With a free list,
part of which is on disk, it is much harder to allocate blocks close together.

However, even with a free list, some block clustering can be done. The trick
is to keep track of disk storage not in blocks, but in groups of consecutive blocks.
If dl sectors consist of 512 bytes, the system could use 1-KB blocks (2 sectors)
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but allocate disk storage in units of 2 blocks (4 sectors). This is not the same as
having a 2-KB disk blocks, since the cache would still use 1-KB blocks and disk
transfers would still be 1 KB, but reading a file sequentially on an otherwise idle
system would reduce the number of seeks by a factor of two, considerably im-
proving performance. A variation on the same theme is to take account of rota
tional positioning. When alocating blocks, the system attempts to place consecu-
tive blocks in afile in the same cylinder.

Another performance bottleneck in systems that use i-nodes or anything like
them is that reading even a short file requires two disk accesses: one for the i-node
and one for the block. The usua i-node placement is shown inFig. 4~29(a). Here
all thei-nodes are near the beginning of the disk, so the average distance between
an i-node and its blocks will be about half the number of cylinders, requiring long
seeks.

I-nodes are Disk is divided into
located near cylinder groups, each
the start with its own i-nodes

of the disk

(a) )]

Figure4-29. (a) I-nodes placed at the start of the disk, (b) Disk divided into
cylinder groups, each with its own blocks and i-nodes.

One easy performance improvement is to put the i-nodes in the middle of the
disk, rather than at the start, thus reducing the average seek between the i-node
and the first block by a factor of two. Another idea, shown in Fig. 4-29(b), is to
divide the disk into cylinder groups, each with its own i-nodes, blocks, and free
list (McKusick et a., 1984). When creating a new file, any i-node can be chosen,
but an attempt is made to find a block in the same cylinder group as the i-node. If
noneis available, then ablock in a nearby cylinder group is used.

4.4.5 Defragmenting Disks
When the operating system is initialy installed, the programs and files it

needs are installed consecutively starting at the beginning of the disk, each one di-
rectly following the previous one. All free disk spaceisin a single contiguous unit
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following the installed files. However, as time goes on, files are created and re-
moved and typicaly the disk becomes badly fragmented, with files and holes all
over the place. As a consequence, when anew fileis created, the blocks used for
it may be spread al over the disk, giving poor performance.

The performance can be restored by moving files around to make them con-
tiguous and to put al (or a least most) of the free space in one or more large con-
tiguous regions on the disk. Windows has a program, dejrag, that does precisely
this. Windows users should runit regularly.

Defragmentation works better on file systems that have a fair amount of free
space in a contiguous region at the end of the partition. This space alows the
defragmentation program to select fragmented files near the start of the partition
and copy all their blocks to the free space. This action frees up a contiguous block
of space near the start of the partition into which the original or other files can be
placed contiguously. The process can then be repeated with the next chunk of disk
space, and so on.

Some files cannot be moved, including the paging file, the hibernation file,
and the journaling log, because the administration that would be required to do
thisis more trouble than it is worth. In some systems, these are fixed-size contig-
uous areas anyway, so they do not have to be defragmented. The one time when
their lack of mobility is a problem is when they happen to be near the end of the
partition and the user wants to reduce the partition size. The only way to solve this
problem is to remove them atogether, resize the partition, and then recreate them
afterward.

Linux file systems (especially ext2 and ext3) generally suffer less from
defragmentation than Windows systems due to the way disk blocks are selected,
s0 manua defragmentation is rarely required.

45 EXAMPLE FILE SYSTEMS

In the following sections we will discuss several example file systems, rang-
ing from quite simple to more sophisticated. Since modem UNIX file systems and
Windows Vista's native file system are covered in the chapter on UNIX (Chap.
10) and the chapter on Windows Vista (Chap. 11) we will not cover those systems
here. We will, however, examine their predecessors below.

45.1 CD-ROM File Systems

As our first example of a file system, let us consider the file systems used on
CD-ROMs. These systems are particularly simple because they were designed for
write-once media. Among other things, for example, they have no provision for
keeping track of free blocks because on a CD-ROM files cannot be freed or added
after the disk has been manufactured. Below we will take alook at the main CD-
ROM file system type and two extensions to it.
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Some years after the CD-ROM made its debut, the CD-R (CD Recordable)
was introduced. Unlike the CD-ROM, it is possible to add files after the initia
burning, but these are simply appended to the end of the CD-R. Files are never
removed (although the directory can be updated to hide existing files). As a
consequence of this "append-only" file system, the fundamental properties are
not atered. In particular, all the free space is in one contiguous chunk at the end
of the CD.

The 1SO 9660 File System

The most common standard for CD-ROM file systems was adopted as an
International Standard in 1988 under the name ISO 9660. Virtualy every CD-
ROM currently on the market is compatible with this standard, sometimes with
the extensions to be discussed below. One of the goals of this standard was to
make every CD-ROM readable on every computer, independent of the byte order-
ing used and independent of the operating system used. As a conseguence, some
limitations were placed on the file system to make it possible for the weakest op-
erating systems then in use (such as MS-DOS) to read it.

CD-ROMs do not have concentric cylinders the way magnetic disks do. In-
stead there is a single continuous spiral containing the bits in a linear sequence
(although seeks across die spira are possible). The bits along the spira are divid-
ed into logical blocks (also called logica sectors) of 2352 bytes. Some of these
are for preambles, error correction, and other overhead. The payload portion of
each logical block is 2048 bytes. When used for music, CDs have leadins,
leadouts, and intertrack gaps, but these are not used for data CD-ROMs. Often
the position of ablock along the spiral is quoted in minutes and seconds. It can be
converted to a linear block number using the conversion factor of 1 sec = 75
blocks.

1SO 9660 supports CD-ROM sets with as many as2*° - 1 CDs in the set. The
individual CD-ROMs may aso be partitioned into logical volumes (partitions).
However, below we will concentrate on 1SO 9660 for a single unpartitioned CD-
ROM.

Every CD-ROM begins with 16 blocks whose function is not defined by the
SO 9660 standard. A CD-ROM manufacturer could use this area for providing a
bootstrap program to alow the computer to be booted from the CD-ROM, or for
some other purpose. Next comes one block containing the primary volume
descriptor, which contains some general information about the-CD-ROM. This
information includes the system identifier (32 bytes), volume identifier (32 bytes),
publisher identifier (128 bytes), and data preparer identifier (128 bytes). The
manufacturer can fill in these fields in any desired way, except that only upper
case letters, digits, and a very small number of punctuation marks may be used to
ensure cross-platform compatibility.
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The primary volume descriptor also contains the names of three files, which
may contain the abstract, copyright notice, and bibliographic information, respec-
tively. In addition, certain key numbers are also present, including the logical
block size (normally 2048, but 4096, 8192, and larger powers of two are allowed
in certan cases), the number of blocks on the CD-ROM, and the creation and
expiration dates of the CD-ROM. Finally, the primary volume descriptor aso
contains a directory entry for the root directory, telling where to find it on the
CD-ROM (i.e.,, which block it starts at). From this directory, the rest of the file

sysgem can be located.

In addition to the primary volume descriptor, a CD-ROM may contain a sup-
plementary volume descriptor. It contains similar information to the primary, but
thet will not concern us here.

The root directory, and al other directories for that matter, consists of a vari-
able number of entries, the last of which contains abit marking it as the find one.
The directory entries themselves are also variable length. Each directory entry
conggts of 10 to 12 fields, some of which are in ASCII and others of which are
numerica fields in binary. The binary fields are encoded twice, once in little-
endian format (used on Pentiums, for example) and once in big-endian format
(used on SPARCs, for example). Thus a 16-bit number uses 4 bytes and a 32-bit
number uses 8 bytes.

The use of this redundant coding was necessary to avoid hurting anyone's
fedings when the standard was developed. If the standard had dictated little end-

ian, then people from companies whose products were big endian would have felt
like second-class citizens and would not have accepted the standard. The emo-
tiond content of a CD-ROM can thus be quantified and measured exactly in
kilobytes’hour of wasted space.

The format of an ISO 9660 directory entry is illustrated in Fig. 4-30. Since
directory entries have variable-lengths, the first field is abyte telling how long the
entry is. This byte is defined to have the high-order bit on the left to avoid any
ambiguity.

Padding
Bytes 1 1 8 . * 1 2.3 =+ +1§ A.....
Location of file File size Date and time GD# Filename J \ Sys
A Ffags" T B Ver
*—Extended attribute record length Interleave | Basename

- Directory entry length
Figure 4-30. ThelSO 9660 directory elity.

Directory entries may optionally have extended attributes. If this feature is
used, the second byte tells how long the extended attributes are.
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Next comes the starting block of the file itsalf. Files are stored as contiguous
runs of blocks, so a file's location is completely specified by the starting block
and the size, which is contained in the next field.

The date and time that the CD-ROM was recorded is stored in the next field,
with separate bytes for the year, month, day, hour, minute, second, and time zone.
Years begin to count a 1900, which means that CD-ROMs will suffer from a
Y2156 problem because the year following 2155 will be 1900. This problem
could have been delayed by defining the origin of time to be 1988 (the year the
standard was adopted). Had that been done, the problem would have been post-
poned until 2244. Every 88 extrayears helps.

The Flags field contains a few miscellaneous bits, including one to hide the
entry in listings (a feature copied from MS-DOS), one to distinguish an entry that
is afile from an entry that is a directory, one to enable the use of the extended at-
tributes, and one to mark the last entry in a directory. A few other bits are also
present in this field but they will not concern us here. The next field deals with
interleaving pieces of files in away that is not used in the simplest version of 1SO
9660, so we will not consider it further.

The next field tells which CD-ROM the file is located on. It is permitted that
adirectory entry on one CD-ROM refers to a file located on another CD-ROM in
the set. Inthisway itis possible to build a master directory on the first CD-ROM
that lists al the files on al the CD-ROMs in the complete set.

The field marked L in Fig. 4-30 gives the size of the file name in bytes. Itis
followed by the file name itself. A file name consists of a base name, a dot, an
extension, a semicolon, and a binary version number (1 or 2 bytes). The base
name and extension may use upper case letters, the digits 0-9, and the underscore
character. All other characters are forbidden to make sure that every computer can
handle every file name. The base name can be up to eight characters; the exten-
sion can be up to three characters. These choices were dictated by the need to be
MS-DOS compatible. A file name may be present in a directory multiple times, as
long as each one has a different version number.

The last two fields are not always present. The Padding field is used to force
every directory entry to be an even number of bytes, to dign the numeric fields of
subsequent entries on 2-byte boundaries. If padding is needed, a O byte is used.
Finaly, we have the System use field. Its function and size are undefined, except
that it must be an even number of bytes. Different systems use it in different ways.
The Macintosh keeps Finder flags here, for example.

Entries within a directory are listed in alphabetical order except for the first
two entries. The first entry is for the directory itself. The second oneis for its par-
ent. In this respect, these entries are similar to the UNIX . and .. directory entries.

The files themselves need not be in directory order.

There is no explicit limit to the number of entries in a directory. However,
there is alimit to the depth of nesting. The maximum depth of directory nesting is
eight. This limit was arbitrarily set to make some implementations simpler.
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1SO 9660 defines what are caled three levels. Level 1 is the most restrictive
and spexifies that file names are limited to 8 + 3 characters as we have described,
and also requires dl files to be contiguous as we have described. Furthermore, it
gpecifies that directory names be limited to eight characters with no extensions.
Use of this level maximizes the chances that a CD-ROM can be read on every
computer.

Level 2 relaxes the length restriction. It allows files and directories to have
names of up to 31 characters, but ill from the same set of characters.

Level 3 uses the same name limits as level 2, but partialy relaxes the assump-
tion that files have to be contiguous. With this level, afile may consist of several
sections (extents), each of which is a contiguous run of blocks. The same run may
occur multiple times in a file and may aso occur in two or more files. If large
chunks of data are repested in severd files, level 3 provides some space optimiza-
tion by not requiring the data to be present multiple times.

Rock Ridge Extensions

As we have seen, 1SO 9660 is highly restrictive in several ways. Shortly after
it came out, people in the UNIX community began working on an extension to
meake it possible to represent UNIX file systems on a CD-ROM. These extensions
were named Rock Ridge, after atown in the Gene Wilder movie Blazing Saddles,
probably because one of the committee members liked the film.

The extensions use the System use fidd in order to make Rock Ridge CD-
ROMs readable on any computer. All the other fields retain their normal 1SO
9660 meaning. Any system not aware of the Rock Ridge extensions just ignores
them and sees anorma CD-ROM.

The extensons are divided up into the following fields:
PX- POSIX attributes.

PN Maor and minor device numbers.

SL- Symbolic link.

NM - Alternative name,

CL Child location.

PL- Parent location.

RE - Relocation.

N o gk W N p

8. TF- Timestamps.

The PX fidd contains the standard UNIX rwxrwxrwx permission bits for the
owner, group, and others. It aso contains the other bits contained in the mode
word, such as the SETUID and SETGID bits, and so on.
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To dlow raw devices to be represented on a CD-ROM, the PN field is pres-
ent. It contains the mgjor and minor device numbers associated with the file. In
this way, the contents of the /dev directory can be written to a CD-ROM and later
reconstructed correctly on the target system.

The SL field is for symbalic links. It alows a file on one file system to refer
to afile on a different file system.

Probably the most important field is MM, It allows a second name to be asso-
ciated with the file. This name is not subject to the character set or length restric-
tions of 1SO 9660, making it possible to express arbitrary UNIX file names on a
CD-ROM.

The next three fields are used together to get around the 1SO 9660 limit of di-
rectories that may only be nested eight deep. Using them it is possible to specify
that a directory is to be relocated, and to tell where it goes in the hierarchy. It is
effectively a way to work around the artificia depth limit.

Finally, the TF field contains the three timestamps included in each UNIX i-
node, namely the time the file was created, the time it was last modified, and the
time it was last accessed. Together, these extensions make it possible to copy a
UNIX file system to a CD-ROM and then restore it correctly to a different system.

Joliet Extensions

The UNIX community was not the only group that wanted a way to extend
ISO 9660. Microsoft also found it too restrictive (although it was Microsoft's
own MSDOS that caused most of the restrictions in the first place). Therefore
Microsoft invented some extensions that were called Joliet. They were designed
to allow Windows file systems to be copied to CD-ROM and then restored, in pre-
cisely the same way that Rock Ridge was designed for UNIX. Virtualy al pro-
grams that run under Windows and use CD-ROMs support Joliet, including pro-
grams that bum CD-recordables. Usually, these programs offer a choice between
the various SO 9660 levels and Joliet.

The major extensions provided by Joliet are:
1. Long file names.
2. Unicode character set.
3. Directory nesting deeper than eight levels.

4. Directory names with extensions

The first extension alows file names up to 64 characters. The second extension
enables the use of the Unicode character set for file names. This extension is im-
portant for software intended for use in countries that do not use the Latin apha-
bet, such as Japan, Israel, and Greece. Since Unicode characters are 2 bytes, the
maximum file name in Joliet occupies 128 bytes.
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Like Rock Ridge, the limitation on directory nesting is removed by Joliet. Di-
rectories can be nested as deeply as needed. Finaly, directory names can have
extensons. Itis not clear why this extension was included, since Windows direc-
tories virtudly never use extensions, but maybe some day they will.

45.2 The MS-DOS File System

The MSDOS file system is the one the first IBM PCs came with. It was the
main file sysem up through Windows 98 and Windows ME. It is still supported
on Windows 2000, Windows XP, and Windows Vista, athough it is no longer
standard on new PCs now except for floppy disks. However, it and an extension
of it (FAT-32) have become widely used for many embedded systems. Most digi-
tal cameras use it. Many MP3 players use it exclusively. The popular Apple iPod
Uses it as the default file system, although knowledgeable hackers can reformat
the iPod and NERITTA diifferent file system. Thus the number of electronic devices
using the MSDOS file system is vastly larger now than a any time in the past, and
cetanly much larger than the number using the more modern NTFS file system.
For thet reason aone, it is worth looking at in some detail.

To read afile, an MSDOS program must first make an open system call to get
a handle for it. The open system cal specifies a path, which may be either abso-
lute or relative to the current working directory. The path islooked up component
by component until the final directory is located and read into memory. It is then
searched for the file to be opened.

Although MSDOS directories are variable sized, they use a fixed-size 32-byte
directory entry. The format of an MSDOS directory entry is shown in Fig. 4-31. It
contains the file name, attributes, creation date and time, starting block, and exact
file sze. File names shorter than 8 + 3 characters are Ieft justified and padded
with spaces on the right, in each field separately. The Attributes field is new and
contains hits to indicate that afile is read-only, needs to be archived, is hidden, or
is a sydem file. Read-only files cannot be written. This is to protect them from
accidentd damage. The archived bit has no actua operating system function (i.e.,
MSDOS does not examine or set it). The intention isto alow user-level archive
programs to clear it upon archiving a file and to have other programs set it when
modifying a file. In this way, a backup program can just examine this attribute bit
on every file to see which files to back up. The hidden bit can be set to prevent a
file from gppearing in directory listings. Its main useis to avoid confusing novice
users with files they might not understand. Finally, the system bit also hides files.
In addition, system files cannot accidentally be deleted using the del command.
The main components of MSDOS have this bit set.

The directory entry also contains the date and time the file was created or last
modified. The time is accurate only to +2 sec because it is stored in a 2-byte field,
which can store only 65,536 unique values (a day contains 86,400 seconds). The
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Bytes 8 3 1 10 2 2 2 4

File name Size

SN N TN
Extenson Attributes Reserved Time Date Firg

block
number

Figure4-31. The MS-DOS directory entry.

time field is subdivided into seconds (5 bits), minutes (6 bits), and hours (5 bits).
The date counts in days using three subfields: day (5 bits), month (4 bits), and
year-1980 (7 bits). With a 7-bit number for the year and time beginning in 1980,
the highest expressible year is 2107. Thus MSDOS has a built-in Y2108 problem.
To avoid catastrophe, MS-DOS users should begin with Y2108 compliance as
early as possible. 1f MS-DOS had used the combined date and time fields as a 32-
bit seconds counter, it could have represented every second exactly and delayed
the catastrophe until 2116.

MSDOS stores the file size as a 32-bit number, so in theory files can be as
large as 4 GB. However, other limits (described below) restrict the maximum file
sizeto 2 GB or less. A surprisingly large part of the entry (10 bytes) is unused.

MS-DOS keeps track of file blocks via a file dlocation table in main memory.
The directory entry contains the number of the first file block. This number is
used as an index into a 64K entry FAT in main memory. By following the chain,
al the blocks can be found. The operation of the FAT isillustrated in Fig. 4-12.

The FAT file system comes in three versions: FAT-12, FAT-16, and FAT-32,
depending on how many bits a disk address contains. Actudly, FAT-32 is some-
thing of a misnomer, since only the low-order 28 bits of the disk addresses are
used. It should have been called FAT-28, but powers of two sound so much
neater.

For all FATS, the disk block can be set to some multiple of 512 bytes (possib-
ly different for each partition), with the set of allowed block sizes (caled cluster
sizes by Microsoft) being different for each variant. The first version of MSDOS
used FAT-12 with 512-byte blocks, giving a maximum partition size of 2** x 512
bytes (actually only 4086 x 512 bytes because 10 of the disk addresses were used

as specia markers, such as end of file, bad block, etc.). With these parameters, the
maximum disk partition size was about 2 MB and the size of the FAT table in
memory was 4096 entries of 2 bytes each. Using a 12-bit table entry would have
been too slow.

This system worked well for floppy disks, but when hard disks came out, it
became a problem. Microsoft solved the problem by alowing additional block

sizes of 1 KB, 2 KB, and 4 KB. This change preserved the structure and size of
the FAT-12 table, but allowed disk partitions of up to 16 MB.
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Since MSDOS supported four disk partitions per disk drive, the new FAT-12
fde system worked up to 64-MB disks. Beyond that, something had to give. What
happened was the introduction of FAT-16, with 16-bit disk pointers. Additionally,
block sizes of 8 KB, 16 KB, and 32 KB were permitted. (32,768 is the largest
power of two thet can be represented in 16 bits.) The FAT-16 table now occupied
128 KB of main memory all the time, but with the larger memories by then avail-
able, it was viiddy used and rapidly replaced the FAT-12 file system. The largest
disk partition that can be supported by FAT-16 is 2 GB (64K entries of 32 KB
each) and the largest disk, 8 GB, namely four partitions of 2 GB each.

For business letters, this limit is not a problem, but for storing digital video
using the DV gtandard, a 2-GB file holdsjust over 9 minutes of video. As acon-
sequence of the fact that a PC disk can support only four partitions, the largest
video that can be stored on a disk is about 38 minutes, no matter how large the
disk is. This limit also means that the largest video that can be edited on line is
lessthan 19 minutes, since both input and output files are needed.

Starting with the second release of Windows 95, the FAT-32 file system, with
its 28-hit disk addresses, was introduced and the version of MSDOS underlying
Windows 95 was adapted to support FAT-32. In this system, partitions could
theoretically be 2°° x 2*° bytes, but they are actually limited to 2 TB (2048 GB)
because internaly the system keeps track of partition sizes in 512-byte sectors
using a 32-bit number, and 2 x 2 is2 TB. The maximum partition size for var-
ious block sizes and ail three FAT typesisshownin Fig. 4-32.

Block size | FAT-12 FAT-16 FAT-32

0.5 KB 2MB

1KB 4MB

2KB 8MB 128 MB

4KB 16MB 256 MB 1TB
8KB 512MB 27TB
16KB 1024 MB 2TB
32 KB 2048 MB 27TB

Figure4-32. Maximum partition size for different block sizes. The empty boxes
represent forbidden combinations.

In addition to supporting larger disks, the FAT-32 file system has two other
advantages over FAT-16. First, an 8-GB disk using FAT-32 can be a single parti-
tion. Using FAT-16 it has to be four partitions, which appears to the Windows
user as the C;, D., E:, and F: logicd disk drives. It is up to the user to decide
which file to place on which drive and keep track of what is where.

The other advantage of FAT-32 over FAT-16 is that for a given size disk par-
tition, a smaller block size can be used. For example, for a 2-GB disk partition,
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FAT-16 must use 32-KB blocks; otherwise with only 64K available disk ad-
dresses, it cannot cover the whole partition. In contrast, FAT-32 can use, for ex-
ample, 4-KB blocks for a 2-GB disk partition. The advantage of the smaller block
size is that most files are much shorter than 32 KB. |If the block size is 32 KB, a
file of 10 bytes ties up 32 KB of disk space. If the averagefileis, say, 8 KB, then
with a 32-KB block, % of the disk will be wasted, not a terribly efficient way to
use the disk. With an 8-KB file and a 4-KB block, there is no disk wastage, but
the price paid is more RAM eaten up by the FAT. With a4-KB block and a 2-GB
disk partition, there are 512K blocks, so the FAT must have 512K entries in mem-
ory (occupying 2 MB of RAM).

MSDOS uses the FAT to keep track of free disk blocks. Any block that is not
currently allocated is marked with a special code. When MSDOS needs a new
disk block, it searches the FAT for an entry containing this code. Thus no bitmap
or free list is reguired.

4.5.3 The UNIX V7 File System

Even early versions of UNIX had a fairly sophisticated multiuser file system
since it was derived from MULTICS. Below we will discuss the V7 file system,
the one for the PDP-11 that made UNIX famous. We will examine 'a modem
UNIX file system in the context of Linux in Chap. 10.

The file system is in the form of a tree starting at the root directory, with the
addition of links, forming a directed acyclic graph. File names are up to 14 char-
acters and can contain any ASCII characters except / (because that is the separator
between components in a path) and NUL (because that is used to pad out names
shorter than 14 characters). NUL has the numerical value of 0.

A UNIX directory entry contains one entry for each file in that directory. Each
entry is extremely simple because UNIX uses the i-node scheme illustrated in
Fig. 4-13. A directory entry contains only two fields: the file name (14 bytes) and
the number of the i-node for that file (2 bytes), as shown in Fig. 4-33. These pa
rameters limit the number of files per file system to 64K.

Like the i-node of Fig. 4-13, the UNIX i-nodes contains some attributes. The
attributes contain the file size, three times (creation, last access, and last modifica
tion), owner, group, protection information, and a count of the number of direc-
tory entries that point to the i-node. The latter field is needed due to links. When-
ever anew link is made to an i-node, the count in the i-node is increased. When a
link is removed, the count is decremented. When it gets to O, the i-node is re-
claimed and the disk blocks are put back in the free list.

Keeping track of disk blocks is done using a generdization of Fig. 4-13 in
order to handle very large files. The first 10 disk addresses are stored in the i-node
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Bytes 14
File name
I-node
number

Figure 4-33. A UNIX V7 directory entry.

itself, so for small files, al the necessary information is right in the i-node, which
is fetched from disk to main memory when the fde is opened. For somewhat larg-
er fdes, one of the addresses in the i-node is the address of a disk block called a
single indirect block. This block contains additional disk addresses. If this till
is not enough, another address in the i-node, called a double indirect block, con-
tains the address of a block that contains a list of single indirect blocks. Each of
these single indirect blocks points to a few hundred data blocks. If even this is not

enough, atriple indirect block can aso be used. The complete picture is given in
Fig. 4-34.

I-node
Altributes Single
i 1 indiract
.
T 37 block Addresses of
e Double X data biocks
R indirect
— block a— -
e | - = i

] R block

e m—— v -~
] = -

—_——— = Triple 5 i
s, / . indirect Ef E"
] =

== F——r

|

X

Figure 4-34. A UNIX i-node.
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up. We will use UNIX as an example, but the algorithm is basically the same for
dl hierarchical directory systems. First the fde system locates the root directory.
In UNIX its i-node is located at a fixed place on the disk. From this i-node, it
locates the root directory, which can be anywhere on the disk, but say block 1.

Then it reads the root directory and looks up the first component of the path,
usr, in the root directory to find the i-node number of the file /usr. Locating an i-
node from its number is straightforward, since each one has a fixed location on
the disk. From this i-node, the system locates the directory for /usr and looks up
the next component, ast, in it. When it has found the entry for ast, it has thei-node
for the directory /usr/ast. From this i-node it can find the directory itself and look
up mbox. Thei-node for this file is then read into memory and kept there until the
file is closed. The lookup processis illustrated in Fig. 4-35.

Block 132 i-node 26 Block 406
l-node 6 is/usr is for is /usr/ast
Root directory is for fust directory fustfast directory
6. .
717 Mode tode s
1 size 1 size 6
: i ;
4 | bin nes 19 | dick times 64 | grants
7 | dev 132 30 | eik 406 92 | books
14 | lib 51 | jim 60 | mbox
9 | etc 26 | ast 81 | minix
6 | usr 45 | ba 17 | src
8 | tmp
I-node 6 1-node 26
Looking up says that Jusr/ast says that Jusr/ast/mbox
usr yields Jus isin isi-node lusrfagtisin isi-node
i-node 6 block 132 26 block 406 60

Figure 4-35. The steps in looking up /usr/ast/mbox.

Relative path names are looked up the same way as absolute ones, only start-
ing from the working directory instead of starting from the root directory. Every
directory has entries for. and.. which are put there when the directory is created.
The entry . has the i-node number for the current directory, and the entry for ..
has the i-node number for the parent directory. Thus, a procedure looking up
.Idickiprog.c simply looks up.. inthe working directory, findsthe i-node number
for the parent directory, and searches that directory for dick. No specia mechan-
ism is needed to handle these names. As far as the directory system is concerned,
they arejust ordinary ASCII strings, just the same as any other names. The only
bit of trickery here is that.. in the root directory points to itself.
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4.6 RESEARCHONFILE SYSTEMS

File systems have always attracted more research than other parts of the oper-
ating system and that is still the case. While standard file systems are fairly well
understood, there is still quite a bit of research going on about optimizing buffer
cache management (Burnett et al., 2002; Ding et al, 2007; Gnaidy et al, 2004;
Kroeger and Long, 2001; Pai et al., 2000; and Zhou et al., 2001). Work is going
on about new kinds of Fde systems, such as user-level file systems (MazieTes,
2001), flash fde systems (Ga et a., 2005), journaling file systems (Prabhakaran et
a., 2005; and Stein et al., 2001), versioning file systems (Cornell et al., 2004),
peer-to-peer file systems (Muthitacharoen et al., 2002) and others. The Google
file system is aso unusual due to its great fault tolerance (Ghemawat et al., 2003).
Different ways of finding things in file systems are also of interest (Padioleau and
Ridoux, 2003).

Another area that has been getting attention is provenance—keeping track of
the history of the data, including where they came from, who owns them, and how
they has been transformed (Muniswarmy-Reddy et al., 2006; and Shah et a.,
2007). Thisinformation can be used in a variety of ways. Making backups is still
getting some attention, too (Cox et ai., 2002; and Rycroft, 2006), as is the related
topic of recovery (Keeton et al., 2006). Related to backups is keeping data around
and usable for decades (Baker et a., 2006; Maniatis et a., 2003). Reliability and
security are also far from solved problems (Greenan and Miller, 2006; Wires and
Feeley, 2007; Wright et al., 2007; and Yang et a., 2006). And finaly per-
formance has aways been a research topic and still is (Caudill and Gavrikovska,
2006; Chiang and Huang, 2007; Srein, 2006; Wang et a., 2006a; and Zhang and
Ghose, 2007).

47 SUMMARY

When seen from the outside, a file system is a collection of files and direc-
tories, plus operations on them. Files can be read and written, directories can be
created and destroyed, and files can be moved from directory to directory. Most
modern file systems support a hierarchica directory system in which directories
may have subdirectories and these may have subsubdirectories ad infinitum.

When seen from the inside, a file system looks quite different. The file system
designers have to be concerned with how storage is allocated, and how the system
keeps track of which block goes with which file. Possibilities include contiguous
files, linked lists, file allocation tables, and i-nodes. Different systems have dif-
ferent directory structures. Attributes can go in the directories or somewhere else
(e.g., an i-node). Disk space can be managed using free lists of bitmaps. File Sys-
SZ7ZbSeS © *"tttIti,"y "**'" S incremental dumps and by having a pro-

gram that can repair ., ck file systems. File system performance is important and
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can be enhanced in several ways, including caching, read ahead, and carefully
placing the blocks of a file close to each other. Log-structured file systems also
improve performance by doing writes in large units.

Examples of file systems include ISO 9660, MS-DOS, and UNIX These differ
in many ways, including how they keep track of which blocks go with which file,
directory structure, and management of free disk space.

PROBLEMS

1. Give five different path names for the file /etc/posswd. Hint. Think about the direc-
tory entries "." and

2. In Windows, when a user double clicks on a file listed by Windows Explorer, a pro-

gram is run and given that fde as a parameter. List two different ways the operating
system could know which program to run.

3. Inealy UNIX systems, executable files (a.out files) began with a very specific megic
number, not one chosen a random. These files began with a header, followed by the
text and data segments. Why do you think a very specific number was chosen for ex-
ecutable files, wheress other file types had a more-or-less random magic number as
the firgt word?

4. In Fig. 4-4, one of the attributes is the record length. Why does the operating sysem
ever care about this?

5. Sysems that support sequentid files dways have an operation to rewind files. Do
sysems that support random access files need thistoo?

6. In some systems it is possble to megp part of a file into memory. What restrictions
must Such systems impose? How is this partial mapping implemented?

7. A smple operating system only supports a single directory but alows that directory to
have arbitrarily many files with arbitrarily long file names. Can something gpproxi-
mating a hierarchical file sysem be smulated? How?

8. In UNIX and Windows, random access is done by having a specid system cdl that
moves the "current position” pointer associated with afile to a given byte in the file.
Propose an dternative way to do random access without having this system cdll.

9. Condder the directory tree of Fig. 4-8. If /usr/jimis the working directory, whet is the
absolute path name for the file whose relative path name is Jast/xl

10. Contiguous alocation of files leads to disk fragmentation, as mentioned in the text,
because some space in the last disk block will be wasted in files whose length is not an
integrd number of blocks. Is this internd fragmentation or externd fragmentation?

Mate an anaogy i t t something toed [l Tt jJEFfIIj ttg

11 In light of the answer to the previous question dors

ay FE? " Awral fIfriA
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12.

13.
14.

15.

16.

17.

19.

20.

21.

22.

23.

24.

25.
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Some digital consumer devices need to store data, for example as files. Name a mod-
ern device that requires file storage and for which contiguous allocation would be a
fine idea.

How does MS-DOS implement random access to files?

Consider the i-node shown in Fig. 4-13. If it contains 10 direct addresses of 4 bytes
each and all disk blocks are 1024 KB, what is the largest possible file?

It has been suggested that efficiency could be improved and disk space saved by stor-
ing the data of a short file within the i-node. For the i-node of Fig. 4-13, how many
bytes of data could be stored inside the i-node?

Name one advantage of hard links over symbolic links and one advantage of symbolic
links over hard links.

Free disk space can be kept track of using a free list or a bitmap. Disk addresses re-
quire D bits. For a disk with B blocks, F of which are free, state the condition under
which the free list uses less space than the bitmap. For D having the value 16 bits,
express your answer as a percentage of the disk space that must be free.

. What would happen if the bitmap or free list containing the information about free

disk blocks was completely lost due to a crash? Is there any way to recover from this
disaster, or is it bye-bye disk? Discuss your answers for UNIX and the FAT-16 file
system separately.

Oliver Owl's night job at the university computing center is to change the tapes used
for overnight data backups. While waiting for each tape to complete, he works on
writing his thesis that proves Shakespeare's plays were written by extraterrestrial visi-
tors. His text processor runs on the system being backed up since that is the only one
they have. Is there a problem with this arrangement?

We discussed making incremental dumps in some detail in the text. In Windows it is
easy to tell when to dump afile because every file has an archive bit. This bitis miss-
ing in UNIX. How do UNIX backup programs know which files to dump?

Suppose that file 21 in Fig. 4-25 was not modified since the last dump. In what way
would the four bitmaps of Fig. 4-26 be different?

It has been suggested that the first part of each UNIX file be kept in the same disk
block as its i-node. What good would this do?

Consider Fig. 4-27. Is it possible that for some particular block number the counters
in both lists have the value 2? How should this problem be corrected?

The performance of a file system depends upon the cache hit rate (fraction of blocks
found in the cache). Ifit takes 1 msec to satisfy a request from the cache, but 40 msec
to satisfy a request if a disk read is needed, give a formula for the mean time required
to satisfy a request if the hit rate is h. Plot this function for values of h varying from 0
to|JO.

Consider the idea behind Fig. 4-21, but now for a disk with a mean seek time of 8
msec, a rotational rafe "of-15,000 rpm, and 262,144 bytes per track. What are the data
rates for block sizes of 1 KB, 2 KB, and 4 KB, respectively?
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26. A certain file system uses 2-KB disk blocks. The median file size is 1 KB. If all files

27.

28.

29.

30.

31.

32.

33.

34.

35.

were exactly 1 KB, what fraction of the disk space would be wasted? Do you think
the wastage for a real file system will be higher than this number or lower than it?
Explain your answer.

The MS-DOS FAT-16 table contains 64K entries. Suppose that one of the bits had been
needed for some other purpose and that the table contained exactly 32,768 entries in-
stead. With no other changes, what would the largest MS-DOS file have been under
this condition?

Files in MS-DOS have to compete for space in the FAT-16 table in memory. If one
file uses k entries, that is k entries that are not available to any other file, what con-
straint does this place on the total length of all files combined?

A UNIX file system has |-KB blocks and 4-byte disk addresses. What is the maximum
file size if i-nodes contain 10 direet entries, and one single, double, and triple indirect
entry each?

How many disk operations are needed to fetch the i-node for the file
usr/ast/courses/og’handout.tl  Assume that the i-node for the root directory is in
memory, but nothing else along the path is in memory. Also assume that all directories
fit in one disk block.

In many UNIX systems, the i-nodes are kept at the start of the disk. An alternative de-
sign is to allocate an i-node when a file is created and put the i-node at the startof the
first block of the file. Discuss the pros and cons of this alternative.

Write a program that reverses the bytes of a file, so that the last byte is now first and
the first byte is now last. It must work with an arbitrarily long file, but try to make it
reasonably efficient.

Write a program that starts at a given directory and descends the file tree from that
point recording the sizes of all the files it finds. When it is all done, it should print a
histogram of the file sizes using a bin width specified as a parameter (e.g., with 1024,
file sizes of 0 to 1023 go in one bin, 1024 to 2047 go in the next bin, etc.).

Write a program that scans all directories in a UNIX file system and finds and locates
all i-nodes with a hard link count of two or more. For each such file, it lists together
all file names that point to the file.

Write a new version of the UNIX |sprogram. This version takes as an argument one or
more directory names and for each directory lists all the files in that directory, one line
per file. Each field should be formatted in a reasonable way given its type. List only
the first disk address, if any.






INPUT/OUTPUT

In addition to providing abstractions such as processes (and threads), address
spaces, and files, an operating system aso controls al the computer's 170
(Input/Output) devices. It must issue commands to the devices, catch interrupts,
and handle errors. It should also provide an interface between the devices and the
rest of the system that is simple and easy to use. To the extent possible, the inter-
face should be the same for al devices (device independence). The I/O code rep-
resents a significant fraction of the total operating system. How the operating sys-
tem manages I/O is the subject of this chapter.

This chapter is organized as follows. First we will ook at some of the princi-
ples of I/O hardware, and then we will look at I/O software in general. /O soft-
ware can be structured in layers, with each layer having a well-defined task. We
will look at these layers to see what they do and how they fit together.

Following that introduction, we will look a several J/O devices in detail:
disks, clocks, keyboards, and displays. For each device we will look at its hard-
ware and software. Finally, we will consider power management.

5.1 PRINCIPLES OF I/O HARDWARE

Different people look at I/O hardware in different ways. Electrical engineers
look at it in terms of chips, wires, power supplies, motors, and al the other physi-
ca components that make up the hardware. Programmers look at the interface
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presented to the software—the commands the hardware accepts, the functions it
carries out, and the errors that can be reported back. In this book we are con-
cerned with programming /O devices, not designing, building, or maintaining
them, so our interest will be restricted to how the hardware is programmed, not
how it works inside. Nevertheless, the programming of many 1/0 devices is often
intimately connected with their internal operation. In the next three sections we
will provide a little general background on /O hardware as it relates to pro-
gramming. It may be regarded as a review and expansion of the introductory
material in Sec. 14.

5.1.1 1/O Devices

I/O devices can be roughly divided into two categories: block devices and
character devices. A block device is one that stores information in fixed-size
blocks, each one with its own address. Common block sizes range from 512 bytes
to 32,768 bytes. All transfers are in units of one or more entire (consecutive)
blocks. The essential property of a block device is that it is possible to read or
write each block independently of ail the other ones. Hard disks, CD-ROMs, and
USB sticks are common block devices.

If you look closely, the boundary between devices that are block addressable
and those that are not is not well defined. Everyone agrees that a disk is a block
addressable device because no matter where the arm currently is, it is dways pos-
sible to seek to another cylinder and then wait for the required block to rotate
under the head. Now consider a tape drive used for making disk backups. Tapes
contain a sequence of blocks. If the tape drive is given a command to read block
N, it can always rewind the tape and go forward until it comes to block N. This
operation is analogous to a disk doing a seek, except that it takes much longer.
Also, it may or may not be possible to rewrite one block in the middle of a tape.
Even if it were possible to use tapes as random access block devices, that is
stretching the point somewhat: they are normally not used that way.

The other type of I/O device is the character device. A character device de-
livers or accepts a stream of characters, without regard to any block structure. It
is not addressable and does not have any seek operation. Printers, network inter-
faces, mice (for pointing), rats (for psychology lab experiments), and most other
devices that are not disk-like can be seen as character devices.

This classification scheme is not perfect. Some devices just do not fit in.
Clocks, for example, are not block addressable. Nor do they generate or accept
character streams. All they do is cause interrupts at well-defined intervals. Mem-
ory-mapped screens do not fit the model well either. Still, the model of block and
character devices is general enough that it can be used as a basis for making some
of the operating system software dealing with 1/0O device independent. The file
system, for example, deals just with abstract block devices and leaves the device-
dependent part to lower-level software.
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* ok s 3hUgerangeinSpeedstwhich Pu(scongderableprmreon
he software to perform well over many orders of magnitude in data rates. fS 5
1 shows the data rates of some common devices. Most of these devices tend torn

©

taster as time goes on.
Device Data rate
Keyboard 10 bytes/sec
Mouse 100 bytes/sec
56K modem 7 KB/sec
Scanner 400 KB/sec
Digital camcorder 3.5 MB/sec
802.11g Wireless 6.75 MB/sec
52x CD-ROM 7.8 MB/sec
Fast Ethernet 12.5 MB/sec
Compact flash card 40 M B/sec
FireWire (IEEE 1394) 50 M B/sec
USB 2.0 60 M B/sec
SONET OC-12 network 78 M B/sec
SCSI Ultra 2 disk 80 MB/sec
Gigabit Ethernet 125 MB/sec
SATA disk drive 300 M B/sec
Ultrium tape 320 M B/sec
PCI bus 528 MB/sec

Figure5-1. Sometypical device, network, and busdata rates.

5.1.2 Device Controllers

1/O units typically consist of a mechanical component and an electronic com-
ponent. It is often possible to separate the two portions to provide a more modular
and general design. The electronic component is called the device controller or
adapter. On personal computers, it often takes the form of a chip on the par-
entboard or a printed circuit card that can be inserted into a (PCl) expansion slot.
The mechanical component is the device itsdf. This arrangement is shown in
Fig. 1-6.

The controller card usudly has a connector on it, into which acable leading to
the device itself can be plugged. Many controllers can handle two, four, or even
eight identical devices. If the interface between the controller and device is a
standard interface, either an official ANSI, IEEE, or ISO standard or a de facto
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one, then companies can make controllers or devices that fit that interface. Many
companies, for example, make disk drives that match the IDE, SATA, SCSI,
USB, or FireWire (IEEE 1394) interface.

The interface between the controller and the device is often a very low-level
interface. A disk, for example, might be formatted with 10,000 sectors of 512
bytes per track. What actually comes off the drive, however, is a serid bit stream,
starting with a preamble, then the 4096 bits in a sector, and finally a checksum,
also called an Error-Correcting Code (ECC). The preamble is written when the
disk is formatted and contains the cylinder and sector number, the sector size, and
similar data, as well as synchronization information.

The controller'sjob is to convert the seria bit stream into a block of bytes and
perform any error correction necessary. The block of bytes is typicaly first as-
sembled, bit by bit, in a buffer inside the controller. After its checksum has been
verified and the block has been declared to be error free, it can then be copied to
main memory.

The controller for a monitor also works as a bit seria device at an equaly low
level. It reads bytes containing the characters to be displayed from memory and
generates the signals used to modulate the CRT beam to cause it to write on the
screen. The controller also generates the signals for making the CRT beam do a
horizontal retrace &fter it has finished a scan line, as well as the signals for mak-
ing it do a vertica retrace after the entire screen has been scanned. If it were not
for the CRT controller, the operating system programmer would have to explicitly
program the analog scanning of the tube. With the controller, the operating system
initializes the controller with a few parameters, such as the number of characters
or pixels per line and number of lines per screen, and lets the controller take care
of actudly driving the beam. Flat-screen TFT displays are different, but just as
complicated.

5.1.3 Memory-Mapped 1/0

Each controller has a few registers that are used for communicating with the
CPU. By writing into these registers, the operating system can command the de-
vice to deliver data, accept data, switch itself on or off, or otherwise perform
some action. By reading from these registers, the operating system can learn what
the device's state is, whether it is prepared to accept a new command, and so on.

In addition to the control registers, many devices have a data buffer that the
operating system can read and write. For example, a common way for computers
to display pixels on the screen is to have a video RAM, which is basicaly just a
data buffer, available for programs or the operating system to writeinto.

The issue thus arises of how the CPU communicates with the control registers
and the device data buffers. Two dternatives exist. In the first approach, each
control register is assigned an I/O port number, an 8 or 16-hit integer. The set of
dl the I/O ports form the 1/0O port space and is protected so that ordinary user
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gr%%t%ﬂs SlcJannot access it (only the operating system can). Using aspecia 1/O in-

IN REG,PORT,

glg é:PgmrT\gr lrﬁeﬁisw control register PORT and store the result in CPU register

OUT PORT.REG

the CPU can write the contents of REG to a control re%lster Most early computers,
including nearly al mainframes, such as the IBM 360 and all of itS successors,
worked this way.

In this scheme, the address spaces for memory and I/O are different, as shown
inFig. 5-2(8). Theinstructions .

IN RO,4
and
MOV RO0,4
mReL Tremtnme s eekanpres (xx <° different and unrelated address “ces
Twoaddress One address space Two addressspaces
OXFFFF.., Memory

rs

1/0 ports

@ - ® o)

Fsgﬂry%ﬁ(f (a) Separate 1/0 and memory space, (b) Memory-mapped 1/0.

The second approach, introduced with the PDP-11, isto map al the control
registers into the memory space, as shown in Fig. 5-2(b). Each control register is
assigned a unique memory address to which no memory is assigned. This system
is called memory-mapped /0. Usually, the assigned addresses are at the top of
the address space. A hybrid scheme, with memory-mapped 1/0O data buffers and
separate /O ports for the control registers is shown in Fig. 5-2(c). The Pentium
uses this architecture, with addresses 640K to 1M being reserved for device data
buffers in IBM PC compatibles, in addition to 1/0 ports 0 through 64K.



332 INPUT/OUTPUT CHAP. 5

How do these schemes work? In all cases, when the CPU wants to read a
word, either from memory or from an 1/O port, it puts the address it needs on the
bus' address lines and then asserts areap signal on a bus' control line. A second
signa line is usad to tell whether 1/O space or memory space is needed. If it is
memory space, the memory responds to the request. Ifit is /O space, the 1/O de-
vice responds to the request. If there is only memory space [asin Fig. 5-2(b)], ev-
ery memory module and every /O device compares the address lines to the range
of addresses that it services. If the address fals in itsrange, it responds to the re-
quest. Since no address is ever assigned to both memory and an 1/O device, there
is no ambiguity and no conflict.

The two schemes for addressing the controllers have different strengths and
wesknesses. Let us start with the advantages of memory-mapped 1/O. Firgt, if
specid 1/0 ingtructions are needed to read and write the device control registers,
access to them reguires the use of assembly code since there is no way to execute
an IN orOUT instruction in C or C++. Calling such aprocedure adds overhead to
controlling 1/0. In contrast, with memory-mapped 1/O, device control registers
arejust variables in memory and can be addressed in C the same way as any other
variables. Thus with memory-mapped 1/0, a I/O device driver can be written en-
tirdly in C. Without memory-mapped 1/0, some assembly code is needed.

Second, with memory-mapped 1/0, no special protection mechanism is need-
ed to keep user processes from performing 1/O. All the operating system has to do
is refrain from putting that portion of the address space containing the control reg-
isters in any user's virtua address space. Better yet, if each device has its control
registers on a different page of the address space, the operating system can give a
user control over specific devices but not others by simply including the desired
pages in its page table. Such a scheme can alow different device drivers to be
placed in different address spaces, not only reducing kernel size but also keeping
one driver from interfering with others.

Third, with memory-mapped |/O, every instruction that can reference memory
can aso reference control registers. For example, if there is an instruction, TesT,
that tests a memory word for O, it can also be used to test a control register for O,
which might be the signal that the device is idle and can accept a new command.
The assembly language code might look like this:

LOOP: TESTPORT_4 /I check if port 4 iso
BEQ READY /[ fitiso, goto ready
BRANCH LOOP /I otherwise, continue testing
READY:

If memory-mapped 1/O is not present, the control register must first be read into
the CPU, then tested, requiring two instructions instead of one. In the case of the
loop given above, a fourth instruction has to be added, dightly slowing down the
responsiveness of detecting an idle device.
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In computer design, practically everything involves trade-offs, and that is the
case here too. Memory-mapped 1/0 also has its disadvantages. First, most com-
puters nowadays have some form of caching of memory words. Caching a device
control register would be disastrous. Consider the assembly code loop given
above in the presence of caching. The first reference to PorT_4 would cause it to
be cached. Subsequent references would just take the value from the cache and
not even ask the device. Then when the device finally became ready, the software
would have no way of finding out. Instead, the loop would go on forever.

To prevent this situation with memory-mapped |/O, the hardware has to be
equipped with the ability to selectively disable caching, for example, on a per
page basis. This feature adds extra complexity to both the hardware and the oper-
ating system, which has to manage the selective caching.

Second, if there is only one address space, then al memory modules and all
1/0 devices must examine al memory references to see which ones to respond to.
If the computer has a single bus, as in Fig. 5-3(a), having everyone look at every
address is straightforward.

CPU readsand writes of memory
go over this high-bandwidth bus

CPU Memory 110 CPU Memory; 1o
All addr esses (memory Thismemory port is
and 1/0) go here Bus toallow 1/O devices
accessto memory

@ (b)
Figure 5-3. (a) A single-bus architecture, (b) A dual-bus memory architecture.

However, the trend in modern personal computers is to have a dedicated
high-speed memory bus, as shown in Fig. 5-3(b), a property also found in main-
frames, incidentally. This bus is tailored to optimize memory performance, with
no compromises for the sake of dow 1/O devices. Pentium systems can have mul”
tiple buses (memory, PCI, SCSI, USB, ISA), as shown in Fig. 1-12. ot~

The trouble with having a separate memory bus on memory-mapped machines
is that the 1/0 devices have no way of seeing memory addresses as they go by on
the memory bus, so they have no way of responding to them. Again, special meas-
ures have to be taken to make memory-mapped /O work on a system with multi-
ple buses. One possibility is to first send al memory references to the memory. |If
the memory fails to respond, then the CPU tries the other buses. This design can
be made to work but requires additional hardware complexity.
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A second possible design is to put a snooping device on the memory bus to
pass al addresses presented to potentialy interested 1/0 devices. The problem
here is that 1/0 devices may not be able to process requests at the speed the mem-
ory can.

A third possible design, which is the one used on the Pentium configuration of
Fig. 1-12, is to filter addresses in the PCI bridge chip. This chip contains range
registers that are preloaded at boot time. For example, 640K to 1M could be
marked as a nonmemory range. Addresses that fal within one of the ranges mark-
ed as nonmemory are forwarded onto the PCI bus instead of to memory. The
disadvantage of this scheme is the need for figuring out a boot time which mem-
ory addresses are not realy memory addresses. Thus each scheme has arguments
for and against it, o compromises and trade-offs are inevitable.

5.1.4 Direct Memory Access (DMA)

No matter whether a CPU does or does not have memory-mapped 1/0, it
needs to address the device controllers to exchange data with them. The CPU can
request data from an 1/0O controller one byte a a time but doing so wastes the
CPU's time, so a different scheme, caled DMA (Direct Memory Access) is
often used. The operating system can only use DMA if the hardware has a DMA
controller, which most systems do. Sometimes this controller is integrated into
disk controllers and other controllers, but such a design requires a separate DMA
controller for each device. More commonly, asingle DMA controller is available
(e.g., on the parentboard) for regulating transfers to multiple devices, often
concurrently.

No matter where it is physically located, the DMA controller has access to the
system bus independent of the CPU, as shown in Fig. 5-4. It contains several reg-
isters that can be written and read by the CPU. These include a memory address
register, a byte count register, and one or more control registers. The control reg-
isters specify the I/O port to use, the direction of the transfer (reading from the I/O
device or writing to the 1/0O device), the transfer unit (byte at a time or word at a
time), and the number of bytes to transfer in one burst.

To explain how DMA works, let us first look at how disk reads occur when
DMA is not used. Firgt the disk controller reads the block (one or more sectors)
from the drive seridly, bit by bit, until the entire block is in the controller's inter-
nd buffer. Next, it computes the checksum to verify that no read errors have oc-
curred. Then the controller causes an interrupt. When the operating system starts
running, it can read the disk block from the controller's buffer a byte or aword a
atime by executing aloop, with each iteration reading one byte or word from a
controller device register and storing it in main memory.

When DMA is used, the procedure is different. First the CPU programs the
DMA controller by setting its registers so it knows what to transfer where (step 1
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Figure 5-4. Operation of a DMA transfer.

in Fig. 5-4). It also issues a command to the disk controller telling it to read data
from the disk into its interna buffer and verify the checksum. When valid data are
in the disk controller's buffer, DMA can begin.

The DMA controller initiates the transfer by issuing a read request* over the
bus to the disk controller (step 2). This read request looks like any other read re-
quest, and the disk controller does not know or care whether it came from the
CPU or from a DMA controller. Typically, the memory address to write to is on
the bus' address lines so when the disk controller fetches the next word from its
internal buffer, it knows where to write it. The write to memory is another stan-
dard bus cycle (step 3). When the write is complete, the disk controller sends an
acknowledgement signal to the DMA controller, also over the bus (step 4). The
DMA controller then increments the memory address to use and decrements the
byte count. If the byte count is still greater than O, steps 2 through 4 are repeated
until the count reaches 0. At that time, the DMA controller interrupts the CPU to
let it know that the transfer is now complete. When the operating system starts up,
it does not have to copy the disk block to memory; it is aready there.

DMA controllers vary considerably in their sophistication. The simplest ones
handle one transfer at a time, as described above. More complex ones can be pro-
grammed to handle multiple transfers at once. Such controllers have multiple sets
of registers internally, one for each channel. The CPU starts by loading each set of
registers with the relevant parameters for its transfer. Each transfer must use a dif-
ferent device controller. After each word is transferred (steps 2 through 4) in
Fig. 5-4, the DMA controller decides which device to service next. It may be set
up to use a round-robin agorithm, or it may have a priority scheme design to
favor some devices over others. Multiple requests to different device controllers
may be pending at the same time, provided that there is an unambiguous way to
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tel the acknowledgements apart. Often a different acknowledgement line on the
bus is used for each DMA channel for this reason.

Many buses can operate in two modes: word-at-a-time mode and block mode.
Some DMA controllers can also operate in either mode. In the former mode, the
operation is as described above: the DMA controller requests for the transfer of
one word and getsit. If the CPU also wants the bus, it has to wait. The mechan-
ism is called cycle stealing because the device controller sneaks in and steals an
occasiond bus cycle from the CPU once in a while, delaying it slightly. In block
mode, the DMA controller tells the device to acquire the bus, issue a series of
transfers, then release the bus. This form of operation is called burst mode. It is
more efficient than cycle stealing because acquiring the bus takes time and multi-
ple words can be transferred for the price of one bus acquisition. The down side to
burst mode is that it can block the CPU and other devices for a substantial period
of time if along burst is being transferred.

In the model we have been discussing, sometimes called fly-by mode, the
DMA controller tells the device controller to transfer the data directly to main
memory. An aternative mode that some DMA controllers use is to have the de-
vice controller send the word to the DMA controller, which then issues a second
bus request to write the word to wherever it is supposed to go. This scheme re-
quires an extra bus cycle per word transferred, but is more flexible in that it can
also peform device-to-device copies and even memory-to-memory copies (by
firgt issuing aread to memory and then issuing a write to memory at a different
address).

Most DMA controllers use physical memory addresses for their transfers.
Using physical addresses requires the operating system to convert the virtual ad-
dress of the intended memory buffer into a physical address and write this physi-
cal address into the DMA controller's address register. An alternative scheme
usd in a few DMA controllers is to write virtual addresses into the DMA con-
troller instead. Then the DMA controller must use the MMU to have the virtual-
to-physica trandation done. Only in the case that the MMU is part of the memory
(possible, but rare) rather than part of the CPU, can virtual addresses be put on the
bus.

We mentioned earlier that the disk first reads data into its internal buffer be-
fore DMA can start. You may be wondering why the controller does not just store
the bytes in main memory as soon as it gets them from the disk. In other words,
why does it need an interna buffer? There are two reasons. First, by doing inter-
na buffering, the disk controller can verify the checksum before starting a trans-
fer. If the checksum isincorrect, an error is signaled and no transfer is done.

The second reason is that once a disk transfer has started, the bits keep arriv-
ing from the disk at a constant rate, whether the controller is ready for them or
not. If the controller tried to write data directly to memory, it would have to go
over the system bus for each word transferred. If the bus were busy due to some
other device using it (e.g., in burst mode), the controller would have to wait. If
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the next disk word arrived before the previous one had been stored, the controller
would have to store it somewhere. |f the bus were very busy, the controller might
end up storing quite a few words and having a lot of administration to do as well.
When the block is buffered internaly, the bus is not needed until the DMA
begins, so the design of the controller is much simpler because the DMA transfer
to memory is not time critical. (Some older controllers did, in fact, go directly to
memory with only a small amount of internal buffering, but when the bus was
very busy, a transfer might have had to be terminated with an overrun error.)

Not al computers use DMA. The argument against it is that the main CPU is
often far faster than the DMA controller and can do the job much faster (when the
limiting factor is not the speed of the 1/O device). If there is no other work for it
to do, having the (fast) CPU wait for the (Sow) DMA controller to finish is point-
less. Also, getting rid of the DMA controller and having the CPU do ail the work
in software saves money, important on low-end (embedded) computers.

5.1.5 Interrupts Revisited

We briefly introduced interrupts in Sec. 1.4.5, but there is more to be said. In
atypica personal computer system, the interrupt structure is as shown in Fig. 5-5.
At the hardware level, interrupts work as follows. When an I/O device'has fin-
ished the work given to it, it causes an interrupt (assuming that interrupts have
been enabled by the operating system). It does this by asserting a signal on a bus
line that it has been assigned. This signa is detected by the interrupt controller
chip on the parentboard, which then decides what to do.

Interrupt 1. Device is finished
CPU . controller /
7. Wl U QLR
intersupt Disk
,/‘—_\\L = [*————————"«BagaEsss\ Keyboard

— C!ock

2. Centroller —

\ jssues " Printer
{ e ]
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Bus
Figure 5-5. How an interrupt happens. The connections between the devices

and the interrupt controller actually use interrupt lines on the bus rather than
dedicated wires.

If no other interrupts are pending, the interrupt controller processes the inter-
rupt immediately. If another one is in progress, or another device has made a si-
multaneous request on a higher-priority interrupt request line on the bus, the
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device isjust ignored for the moment. In this case it continues to assert an inter-
rupt signa on the bus until it is serviced by the CPU.

To handle the interrupt, the controller puts a number on the address lines
specifying which device wants attention and asserts a signa to interrupt the CPU.

The interrupt signa causes the CPU to stop what it is doing and start doing
something else. The number on the address lines is used as an index into a table
cdled the interrupt vector to fetch a new program counter. This program counter
points to the start of the corresponding interrupt service procedure. Typically traps
and interrupts use the same mechanism from this point on, and frequently share
the same interrupt vector. The location of the interrupt vector can be hardwired
into the machine or it can be anywhere in memory, with a CPU register (loaded
by the operating system) pointing to its origin.

Shortly after it starts running, the interrupt service procedure acknowledges
the interrupt by writing a certain value to one of the interrupt controller's 1/O
ports. This acknowledgement tells the controller that it is free to issue another in-
terrupt. By having the CPU delay this acknowledgement until it is ready to hand-
le the next interrupt, race conditions involving multiple (almost simultaneous) in-
terrupts can be avoided. As an aside, some (older) computers do not have a cen-
tralized interrupt controller, so each device controller requests its own interrupts.

The hardware dways saves certain information before starting the service
procedure. Which information is saved and where it is saved varies greatly from
CPU to CPU. As a bare minimum, the program counter must be saved, so the in-
terrupted process can be restarted. At the other extreme, dl the visible registers
and alarge number of internal registers may be saved as well.

One issue is where to save this information. One option is to put it in interna
registers that the operating system can read out as needed. A problem with this
goproach is that then the interrupt controller cannot be acknowledged until all
potentidly relevant information has been read out, lest a second interrupt over-
write the internd registers saving the state. This strategy leads to long dead times
when interrupts are disabled and possibly lost interrupts and lost data.

Consequently, most CPUs save the information on the stack. However, this
approach, too, has problems. To start with: whose stack? If the current stack is
used, it may well be a user process stack. The stack pointer may not even be legal,
which would cause afatal error when the hardware tried to write some words at
the address pointed to. Also, it might point to the end of a page. After several
memory writes, the page boundary might be exceeded and a page fault generated.
Having a page fault occur during the hardware interrupt processing creates a
bigger problem: where to save the state to handle the page fault?

If the kernel stack is used, there is a much better chance of the stack pointer
being legd and pointing to a pinned page. However, switching into kernel mode
may require changing MMU contexts and will probably invalidate most or all of
the cache and TLB. Reloading al of these, statically or dynamically will increase
the time to process an interrupt and thus waste CPU time.
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Precise and Imprecise Interrupts

Another problem is caused by the fact that most modern CPUs are heavily
pipelined and often superscalar (internally parallel). In older systems, after each
instruction was finished executing, the microprogram or hardware checked to see
if there was an interrupt pending. If so, the program counter and PSW were
pushed onto the stack and the interrupt sequence begun. After the interrupt hand-
ler ran, the reverse process took place, with the old PSW and program counter
popped from the stack and the previous process continued.

This model makes the implicit assumption that if an interrupt occurs just after
some instruction, al the instructions up to and including that instruction have been
executed completely, and no instructions after it have executed at al. On older
machines, this assumption was aways valid. On modem ones it may not be.

For starters, consider the pipeline model of Fig. 1-6(a). What happens if an
interrupt occurs while the pipeline is full (the usual case)? Many instructions are
in various stages of execution. When the interrupt occurs, the value of the pro-
gram counter may not reflect the correct boundary between executed instructions
and nonexecuted instructions. In fact, many instructions may have been partialy
executed, with different instructions being more or less complete. In this situa-
tion, the program counter most likely reflects the address of the next instruction to
be fetched and pushed into the pipeline rather than the address of the instruction
that just was processed by the execution unit.

On a superscalar machine, such as that of Fig. 1-7(b), things are even worse.
Instructions may be decomposed into micro-operations and the micro-operations
may execute out of order, depending on the availability of internal resources such
as functiona units and registers. At the time of an interrupt, some instructions
started long ago may not have started and others started more recently may be al-
most done. At the point when an interrupt is signaled, there may be many instruc-
tions in various states of completeness, with less relation between them and the
program counter.

Aninterrupt that leaves the machine in a well-defined state is called a precise
interrupt (Waker and Cragon, 1995). Such an interrupt has four properties:

1. The PC (Program Counter) is saved in aknown place.

2. All ingtructions before the one pointed to by the PC have fully executed.
3. No instruction beyond the one pointed to by the PC has been executed.
4. The execution state of the instruction pointed to by the PC is known.

Note that there is no prohibition on instructions beyond the one pointed to by the
PC from starting. It isjust that any changes they make to registers or memory
must be undone before the interrupt happens. It is permitted that the instruction
pointed to has been executed. It is also permitted that it has not been executed.
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However, it must be clear which case applies. Often, if the interrupt isan I/O in-
terrupt, the instruction will not yet have started. However, if theinterrupt is realy
a trap or page fault, then the PC generadly points to the instruction that caused the
fault so it can be restarted later. The situation of Fig. 5-6(3) illustrates a precise
interrupt. All instructions up to the program counter (316) have completed and
none of those beyond it have started (or have been rolled back to undo their -
fects).

332
Not executed Not executed  3og

Not executed " 10% executed 324
Not executed cecutetf/. a5
Not executed 35% executed 31q
PC- pC- 20% executed 375
308
304
300

(@ (b)
Figure 5-6. (a) A precise interrupt, (b) An imprecise interrupt.

An interrupt that does not meet these requirements is caled an imprecise
interrupt and makes life most unpleasant for the operating system writer, who
now has to figure out what has happened and what till has to happen. Fig. 5-6(b)
shows an imprecise interrupt, where different instructions near the program count-
er are in different stages of completion, with older ones not necessarily more com-
plete than younger ones. Machines with imprecise interrupts usualy vomit a
large amount of internal state onto the stack to give the operating system the pos-
sibility of figuring out what was going on. The code necessary to restart the ma-
chine is typically extremely complicated. Also, saving a large amount of infor-
mation to memory on every interrupt makes interrupts sow and recovery even
worse. This leads to the ironic situation of having very fast superscalar CPUs
sometimes being unsuitable for real-time work due to slow interrupts.

Some computers are designed so that some kinds of interrupts and traps are
precise and others are not. For example, having I/O interrupts be precise but traps
due to fatal programming errors be imprecise is not so bad since no attempt need
be made to restart a running process &fter it has divided by zero. Some machines
have abit that can be set to force al interrupts to be precise. The downside of set-
ting this bit is that it forces the CPU to carefully log everything it is doing and
maintain shadow copies of registers so it can generate a precise interrupt at any
instant. All this overhead has a major impact on performance.

Some superscalar machines, such as the Pentium series have precise interrupts
to dlow old software to work correctly. The price paid for precise interrupts is
extremely complex interrupt logic within the CPU to make sure that when the in-
terrupt controller signals that it wants to cause an interrupt, al instructions up to
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some point are alowed to finish and none beyond that point are alowed to have
any noticeable effect on the machine state. Here the price is paid not in time, but
in chip area and in complexity of the design. If precise interrupts were not re-
quired for backward compatibility purposes, this chip area would be available for
larger on-chip caches, making the CPU faster. On the other hand, imprecise inter-
rupts make the operating system far more complicated and slower, so it is hard to
tell which approach is really better.

5.2 PRINCIPLES OF I/O0 SOFTWARE

Let us now turn away from the 1/O hardware and look at the I/0O software.
First we will look at the goals of the 1/0 software and then at the different ways
1/0 can be done from the point of view of the operating system.

5.2.1 Goals of the |/O Software

A key concept in the design of I/O software is known as device indepen-
dence. What it means is that it should be possible to write programs that can ac-
cess any 1/0O device without having to specify the device in advance. For example,
a program that reads a file as input should be able to read a file on a hard disk, a
CD-ROM, aDVD, or aUSB stick without having to modify the program for each
different device. Similarly, one should be able to type a command such as

sort <input >output

and have it work with input coming from any kind of disk or the keyboard and the
output going to any kind of disk or the screen. It is up to the operating system to
take care of the problems caused by the fact that these devices redly are different
and require very different command sequences to read or write.

Closely related to device independence is the goal of uniform naming. The
name of afile or a device should simply be a string or an integer and not depend
on the device in any way. In UNIX, al disks can be integrated in the file system
hierarchy in arbitrary ways so the user need not be aware of which name
corresponds to which device. For example, a USB stick can be mounted on top of
the directory /usr/ast/backup so that copying afile to /usr/astAbackup/monday cop-
ies the file to the USB stick. In this way, dl files and devices are addressed the
same way: by apath name.

Another important issue for 1/0 software is error handling. In generd, er-
rors should be handled as close to the hardware as possible.' If the controller dis-
covers aread error, it should try to correct the error itself if it can. If it cannot,
then the device driver should handle it, perhaps by just trying to read the block
again. Many errors are transient, such as read errors caused by specks of dust on
the read head, and will frequently go away if the operation is repeated. Only if the
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lower layers are not able to ded with the problem should the upper layers be told
about it. In many cases, error recovery can be done transparently at a low level
without the upper levels even knowing about the error.

Still another key issue is that of synchronous (blocking) versus asynchro-
nous (interrupt-driven) transfers. Most physical 1/O is asynchronous—the CPU
starts the transfer and goes off to do something else until the interrupt arrives.
User programs are much easier to write if the 1/O operations are blocking—after a
read system call the program is automatically suspended until the data are avail-
able in the buffer. Itis up to the operating system to make operations that are ac-
tualy interrupt-driven look blocking to the user programs.

Ancther issue for the 1/0 software is buffering. Often data that come off a
device cannot be stored directly in its find destination. For example, when a
packet comes in off the network, the operating system does not know where to put
it until it has stored the packet somewhere and examined it. Also, some devices
have severe real-time congtraints (for example, digital audio devices), so the data
must be put into an output buffer in advance to decouple the rate a which the
buffer is filled from the rate at which it is emptied, in order to avoid buffer under-
runs. Buffering involves considerable copying and often has a mgor impact on
1/O performance.

The fina concept that we will mention here is sharable versus dedicated de-
vices. Some 1/0O devices, such as disks, can be used by many users at the same
time. No problems are caused by multiple users having open files on the same
disk at the same time. Other devices, such as tape drives, have to be dedicated to a
single user until that user is finished. Then another user can have the tape drive.
Having two or more users writing blocks intermixed at random to the same tape
will definitely not work. Introducing dedicated (unshared) devices aso introduces
a variety of problems, such as deadlocks. Again, the operating system must be
able to handle both shared and dedicated devices in away that avoids problems.

5.2.2 Programmed 1/0

There are three fundamentaly different ways that I/0O can be performed. In
this section we will look at the first one (programmed 1/0O). In the next two sec-
tions we will examine the others (interrupt-driven 1/O and 1/O using DMA). The
simplest form of 1/O is to have the CPU do al the work. This method is called
programmed 1/0.

Itis smplest to illustrate programmed 1/O by means of an example. Consider
a user process that wants to print the eight-character string "ABCDEFGH" on the
printer. It first assembles the string in a buffer in user space, as shown in Fig. 5
7(a).

The user process then acquires the printer for writing by making a system call
to open it. If the printer is currently in use by another process, this call will fall
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Figure 5-7. steps in printing a string.

and return an error code or will block until the printer is available, depending on
the operating system and the parameters of the call. Once it has the printer, the
user process makes a system call telling the operating system to print the string on
the printer.

The operating system then (usually) copies the buffer with the strmg to an
array, say, p, in kernd space, where it is more easily accessed (because the kernel
may have to change the memory map to get at user space). It then checks to see if
the printer is currently available. If not, it waits until it is available. As soon as
the printer is available, the operating system copies the first character to the print-
er's data register, in this example using memory-mapped 1/O. This action
activates the printer. The character may not appear yet because some printers buf-
fer aline or a page before printing anything. In Fig. 5-7(b), however, we see that
the first character has been printed and that the system has marked the "B" as the
next character to be printed.

As soon as it has copied the first character to the printer, the operating system
checks to see if the printer is ready to accept another one. Generally, the printer
has a second register, which gives its status. The act of writing to the data register
causes the status to become not ready. When the printer controller has processed
the current character, it indicates its availability by setting some hit in its status
register or putting some value in it.

At this point the operating system waits for the printer to become ready again.
When that happens, it prints the next character, as shownin Fig: 5-7(c). Thisloop
continues until the entire string has been printed. Then control returns to the user
process.

The actions followed by the operating system are summarized in Fig. 5-8.
First the data are copied to the kernel. Then the operating system enters a tight
loop outputting the characters one at a time. The essential aspect of programmed
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1/0, clearly illustrated in this figure, is that after outputting a character, the CPU
continuoudly polls the device to see if it is ready to accept another one. This be-
havior is often called polling or busy waiting.

copy_from_user (buffer, p, count); /* Pisthekernel buffer */

for (i =0; i <count; i++) { /* loop on every character */
while (*printer_status reg != READY); /* 1oop until ready */
*printer_data register = pJ[i]; /* output one character */

}
return_to_user{);

Figure 5-8. Writing a string to the printer using programmed /0.

Programmed 1/O is simple but has the disadvantage of tying up the CPU full time
until al the 1/0O is done. If the time to "print" a character is very short (because
al the printer is doing is copying the new character to an internal buffer), then
busy waiting is fine. Also, in an embedded system, where the CPU has nothing
elseto do, busy waiting is reasonable. However, in more complex systems, where
the CPU has other work to do, busy waiting is inefficient. A better 1/0 method is
needed.

5.2.3 Interrupt-Driven 1/O

Now let us consider the case of printing on aprinter that does not buffer char-
acters but prints each one as it arrives. |If the printer can print, say 100 charac-
ters/sec, each character takes 10 msec to print. This means that after every charac-
ter is written to the printer's data register, the CPU will sit in an idle loop for 10
msec waiting to be alowed to output the next character. This is more than enough
time to do a context switch and run some other process for the 10 msec that would
otherwise be wasted.

The way to alow the CPU to do something else while waiting for the printer
to become ready is to use interrupts. When the system call to print the string is
made, the buffer is copied to kernel space, as we showed earlier, and the first
character is copied to the printer as soon as it iswilling to accept a character. At
that point the CPU calls the scheduler and some other process isrun. The process
that asked for the string to be printed is blocked until the entire string has printed.
The work done on the system call isshown in Fig. 5-9(a).

When the printer has printed the character and is prepared to accept the next
one, it generates an interrupt. This interrupt stops the current process and saves its
state. Then the printer interrupt service procedure is run. A crude version of this
code isshown in Fig. 5-9(b). If there are no more characters to print, the interrupt
handler takes some action to unblock the user. Otherwise, it outputs the next char-
acter, acknowledges the interrupt, and returns to the process that was running just
before the interrupt, which continues from where it left off.
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copy_frorn_user (buffer, p, count); if (count ==0) {
enable_interrupts(); unblock_user{);
while (*printer_status reg != READY); }else{
*printer_data_register = p[0]; *printer_data_ register = plij;
scheduler*); count = count - 1;

i=i+1

J

acknowledge_jnterrupt();
return_from, interrupt();

(@ ()

Figure 5-9. WriUng a string to the printer using interrupt-driven 1/0. (a) Code
executed at the time the print system call is made, (b) Interrupt service proce-
dure for the printer.

5.2.4 1/0 Using DMA

An obvious disadvantage of interrupt-driven 1/O is that an interrupt occurs on
every character. Interrupts take time, so this scheme wastes a certain amount of
CPU time. A solution isto use DMA. Here the ideaisto let the DMA controller
feed the characters to the printer one at time, without the CPU being bothered. In
essence, DMA is progranmed 1/O, only with the DMA controller doing al the
work, instead of the main CPU. This strategy requires special hardware (the
DMA controller) but frees up the CPU during the 1/O to do other work. An out-
line of the codeisgivenin Fig. 5-10.

copy_from_user (buffer, p, count); acknowledge_interrupi();
set_up_DMA_controfler(); unblock_user ();
scheduler*); return_from_interrupt{);

(@ (b)

Figure5-10. Printing a string using DMA. (a) Code executed when the print
system call ismade, (b) Interrupt service procedure.

The big win with DMA is reducing the number of interrupts from one per cha-
racter to one per buffer printed. If there are many characters and interrupts are
slow, this can be a major improvement. On the other hand, the DM A controller is
usually much slower than the main CPU. If the DMA controller is not capable of
driving the device at full speed, or the CPU usually has nothing to do anyway
while waiting for the DMA interrupt, then interrupt-driven 1/O or even pro-
grammed I/O may be better. Most of the time DMA is worth it though.
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5.3 1/0 SOFTWARE LAYERS

1/0 software is typicaly organized in four layers, as shown in Fig. 5-11. Each
layer has a well-defined function to perform and a well-defined interface to the
adjacent layers. The functiondity and interfaces differ from system to system, so
the discussion that follows, which examines dl the layers starting at the bottom, is
not specific to one machine.

User-level 1/0 software

Device-independent operating system software

Device drivers

Interrupt handlers

Hardware

Figure 5-11. Layers of the /O software system.

5.3.1 Interrupt Handlers

While programmed 1/O is occasiondly useful, for most 1/O, interrupts are an
unpleasant fact of life and cannot be avoided. They should be hidden away, deep
in the bowels of the operating system, so that as little of the operating system as
possible knows about them. The best way to hide them is to have the driver start-
ing an I/O operation block until the I/O has completed and the interrupt occurs.
The driver can block itsdf by doing a down on a semaphore, await on a condition
variable, a receive on a message, or something similar, for example.

When the interrupt happens, the interrupt procedure does whatever it hasto in
order to handle the interrupt. Then it can unblock the driver that started it. In
some cases it will just complete up on a semaphore. In others it will do a signal
on a condition variable in a monitor. In still others, it will send a message to the
blocked driver. In all cases the net effect of the interrupt will be that a driver that
was previoudy blocked will now be able to run. This model works best if drivers
are structured as kerndl processes, with their own states, stacks, and program
counters.

Of course, redity is not quite so simple. Processing an interrupt is not just a
matter of taking the interrupt, doing an up on some semaphore, and then executing
an IRET ingtruction to return from the interrupt to the previous process. There is a
great dead more work involved for the operating system. We will now give an
outline of this work as a series of steps that must be performed in software after
the hardware interrupt has completed. It should be noted that the details are very
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system dependent, so some of the steps listed below may not be needed on a par-
ticular machine and steps not listed may be required. Also, the steps that do occur
may be in a different order on some machines.

1. Save any registers (including the PSW) that have not dready been
saved by the interrupt hardware.

2. Set up a context for the interrupt service procedure. Doing this may
involve setting up the TLB, MMU and a page table.

3. Set up a stack for the interrupt service procedure.

4. Acknowledge the interrupt controller. If there is no centralized inter-
rupt controller, reenable interrupts.

5. Copy the registers from where they were saved (possibly some stack)
to the process table.

6. Run the interrupt service procedure. It will extract information from
the interrupting device controller's registers.

7. Choose which process to run next. If the interrupt has caused some
high-priority process that was blocked to become ready, it may be
chosen to run now.

8. Set up the MMU context for the process to run next. Some TLB set-
up may also be needed.

9. Load the new process registers, including its PSW.
10. Start running the new process.

As can be seen, interrupt processing is far from trivial. It aso takes a consid-
erable number of CPU instructions, especially on machines in which virtual mem-
ory is present and page tables have to be set up or the state of the MMU stored
(e.g., the R and M bits). On some machines the TLB and CPU cache may also
have to be managed when switching between user and kernel modes, which takes
additional machine cycles.

5.3.2 Device Drivers

Earlier in this chapter we looked at what device controllers do. We saw that
each controller has some device registers used to give it commands or some de-
vice registers used to read out its status or both. The number of device registers
and the nature of the commands vary radically from device to device. For ex-
ample, a mouse driver has to accept information from the mouse telling how far it
has moved and which buttons are currently depressed. In contrast, a disk driver
may have to know all about sectors, tracks, cylinders, heads, arm motion, motor
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drives, head settling times, and al the other mechanics of making the disk work
properly. Obviously, these drivers will be very different.

As a consequence, each 1/O device attached to a computer needs some de-
vice-specific code for controlling it. This code, called the device driver, is gen-
erdly written by the device's manufacturer and delivered along with the device.
Since each operating system needs its own drivers, device manufacturers com-
monly supply drivers for several popular operating systems.

Each device driver normally handles one device type, or a most, one class of
closdly related devices. For example, a SCSI disk driver can usualy handle multi-
ple SCSI disks of different sizes and different speeds, and perhaps a SCSI CD-
ROM as well. On the other hand, a mouse and joystick are so different that dif-
ferent drivers are usualy required. However, there is no technical restriction on
having one device driver control multiple unrelated devices. It isjust not a good
idea.

In order to access the device's hardware, meaning the controller's registers,
the device driver normally has to be part of the operating system kernel, at least
with current architectures. Actually, it is possible to construct drivers that run in
user space, with system calls for reading and writing the device registers. This de-
sign isolates the kernel from the drivers and the drivers from each other, eliminat-
ing a major source of system crashes—buggy drivers that interfere with the kernel
in one way or another. For building highly reliable systems, this is definitely the
way to go. An example of a system in which the device drivers run as user proc-
esses is MINIX 3. However, since most other desktop operating systems expect
drivers to run in the kerndl, that is the model we will consider here.

Since the designers of every operating system know that pieces of code (driv-
ers) written by outsiders will be installed in it, it needs to have an architecture that
alows such installation. This means having a well-defined model of what a driver
does and how it interacts with the rest of the operating system. Device drivers are
normally positioned below the rest of the operating system, as is illustrated in
Fig. 5-12.

Operating systems usudly classify drivers into one of a small number of cat-
egories. The most common categories are the block devices, such as disks, which
contain multiple data blocks that can be addressed independently, and the charac-
ter devices, such as keyboards and printers, which generate or accept a stream of
characters.

Mogt operating systems define a standard interface that al block drivers must
support and a second standard interface that dl character drivers must support.
These interfaces consist of a number of procedures that the rest of the operating
system can call to get the driver to do work for it. Typical procedures are those to
read ablock (block device) or write a character string (character device).

In some systems, the operating system is a single binary program that contains
al of the drivers that it will need compiled into it. This scheme was the norm for
years with UNIX systems because they were run by computer centers and 1/0 de-
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Figure5-12. Logical positioning of device drivers. In reality all communica-
tion between drivers and device controllersgoes over the bus.

vices rarely changed. If anew device was added, the system administrator simply
recompiled the kernel with the new driver to build a new binary.

With the advent of personal computers, with their myriad I/O devices, this
model no longer worked. Few users are capable of recompiling or relinking the
kernel, even if they have the source code or object modules, which is not aways
the case. Instead, operating systems, starting with MS-DOS, went over to a model
in which drivers were dynamically loaded into the system during execution. Dif-
ferent systems handle loading drivers in different ways.

A device driver has several functions. The most obvious one is to accept
abstract read and write requests from the device-independent software above it
and see that they are carried out. But there are also a few other functions they
must perform. For example, the driver must initialize the device, if needed. It
may also need to manage its power requirements and log events.

Many device drivers have a similar generd structure. A typica driver starts
out by checking the input parameters to see if they are valid. If not, an error is
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returned. If they are valid, a trandation from abstract to concrete terms may be
needed. For a disk driver, this may mean converting a linear block number into
the head, track, sector, and cylinder numbers for the disk's geometry.

Next the driver may check if the device is currently inuse. If itis, the request
will be queued for later processing. If the device is idle, the hardware status will
be examined to see if the request can be handled now. It may be necessary to
switch the device on or start a motor before transfers can be begun. Once the de-
viceis on and ready to go, the actua control can begin.

Controlling the device means issuing a sequence of commands to it. The driv-
er is the place where the command sequence is determined, depending on what
has to be done. After the driver knows which commands it is going to issue, it
starts writing them into the controller's device registers. After writing each com-
mand to the controller, it may be necessary to check to see if the controller ac-
cepted the command and is prepared to accept the next one. This sequence contin-
ues until dl the commands have been issued. Some controllers can be given a
linked list of commands (in memory) and told to read and process them al by it-
salf without further help from the operating system.

After the commands have been issued, one of two situations will apply. In
many cases the device driver must wait until the controller does some work for it,
so it blocks itself until the interrupt comes in to unblock it. In other cases, howev-
er, the operation finishes without delay, so the driver need not block. As an ex-
ample of the latter situation, scrolling the screen in character mode requires just
writing a few bytes into the controller's registers. No mechanical motion is need-
ed, so the entire operation can be completed in nanoseconds.

In the former case, the blocked driver will be awakened by the interrupt. In
the latter case, it will never go to dleep. Either way, after the operation has been
completed, the driver must check for errors. If everything is al right, the driver
may have data to pass to the device-independent software (e.g., a block just read).
Finaly, it returns some status information for error reporting back to its caller. If
any other requests are queued, one of them can now be selected and started. |If
nothing is queued, the driver blocks waiting for the next request.

This smple model is only a rough approximation to reality. Many factors
make the code much more complicated. For one thing, an I/O device may com-
plete while a driver is running, interrupting the driver. The interrupt may cause a
device driver to run. In fact, it may cause the current driver to run. For example,
while the network driver is processing an incoming packet, another packet may
arrive. Consequently, drivers have to be reentrant, meaning that a running driver
has to expect that it will be caled a second time before the first call has com-
pleted.

In a hat pluggable system, devices can be added or removed while the com-
puter is running. Asaresult, while adriver is busy reading from some device, the
system may inform it that the user has suddenly removed that device from the sys-
tem. Not only must the current 1/0 transfer be aborted without damaging any
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kernel data structures, but any pending requests for the now-vanished device must
also be gracefully removed from the system and their callers given the bad news.
Furthermore, the unexpected addition of new devices may cause the kernel to jug-
gle resources (e.g., interrupt request lines), taking old ones away from the driver
and giving it new ones in their place.

Drivers are not allowed to make system calls, but they often need to interact
with the rest of the kernel. Usually, calls to certain kernel procedures are permit-
ted. For example, there are usualy calls to allocate and deallocate hardwired
pages of memory for use as buffers. Other useful calls are needed to manage the
MMU, timers, the DMA controller, the interrupt controller, and so on.

5.33 Device-Independent I/O Software

Although some of the I/O software is device specific, other parts of it are de-
vice independent. The exact boundary between the drivers and the device-inde-
pendent software is system (and device) dependent, because some functions that
could be done in a device-independent way may actualy be done in the drivers,
for efficiency or other reasons. The functions shown in Fig. 5-13 are typicaly
done in the device-independent software.

Uniform interfacing for device drivers
Buffering
Error reporting

Allocating and releasing dedicated devices

Providing a device-independent block size

Figure 5-13. Functions of the device-independent 1/0 software.

The basic function of the device-independent software is to perform the 1/O
functions that are common to all devices and to provide a uniform interface to the
user-level software. Below we will ook at the above issues in more detail.

Uniform Interfacing for Device Drivers

A major issue in an operating system is how to make al /O devices and driv-
ers look more or less the same. If disks, printers, keyboards, and so on, are dl in-
terfaced in different ways, every time a new device comes aong, the operating
system must be modified for the new device. Having to hack on the operating sys-
tem for each new device is not a good idea.

One aspect of this issue is the interface between the device drivers and the
rest of the operating system. In Fig. 5-14(a) weillustrate a situation in which each
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device driver has a different interface to the operating system. What this means is
that the driver functions available for the system to call differ from driver to driv-
er It might also mean that the kernel functions that the driver needs aso differ
from driver to driver. Taken together, it means that interfacing each new driver re-
quires a lot of new programming effort.

Operating system

A g ke il

SATA disk driver IDE disk driver SCSl disk driver SATA disk driver IDE disk driver SCSI disk driver

Operating system

@ <>

Figure S-14. (a) Without a standard driver interface, (b) With a standard driver
interface.

In contrast, in Fig. 5-14(b), we show a different design in which al drivers
have the same interface. Now it becomes much easier to plug in a new driver, pro-
viding it conforms to the driver interface. It also means that driver writers know
what is expected of them. In practice, not all devices are absolutely identical, but
usualy there are only a small number of device types and even these are generaly
amost the same.

The way this works is as follows. For each class of devices, such as disks or
printers, the operating system defines a set of functions that the driver must sup-
ply. For a disk these would naturally include read and write, but also turning the
power on and off, formatting, and other disky things. Often the driver contains a
table with pointers into itself for these functions. When the driver is loaded, the
operating system records the address of this table of function pointers, so when it
needs to™all one of the functions, it can make an indirect call via this table. This
table of-function pointers defines the interface between-the driver and the rest of
the operating system. All devices of a given class (disks, printers, etc.) must obey
it.

Another aspect of having a uniform interface is how 1/O devices are named.
The dej*independent software takes care of mapping symbolic device names
onto ﬁG’ driver. For example, in UNIX a device name, such as/dev/diskO,
uniquely specifies the i-node for a specia file, and this i-node”tains the major
device number., which is used to locate the appropriate drh”™P he i-node aso
contains the minor device number, which is passed as a parameter to the driver
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in order to specify the unit to be read or written. All devices have major and minor
numbers, and al drivers are accessed by using the major device number to select
the driver.

Closely related to naming is protection. How does the system prevent users
from accessing devices that they are not entitied to access? In both UNIX and
Windows, devices appear in the file system as named objects, which means that
the usua protection rules for files also apply to I/O devices. The system adminis-
trator can then set the proper permissions for each device.

Buffering

Buffering is also an issue, both for block and character devices, for a variety
of reasons. To see one of them, consider a process that wants to read data from a
modem. One possible strategy for dealing with the incoming characters is to have
the user process do a read system call and block waiting for one character. Each
arriving character causes an interrupt. The interrupt service procedure hands the
character to the user process and unblocks it. After putting the character some-
where, the process reads another character and blocks again. This model is indi-
cated in Fig. 5-15(a).

User N
space

Kernel
space

User process

Modem
@

Figure 5-15. (a) Unbuffered input, (b) Buffering in user space, (c) Buffering in
the kerne followed by copying to user space, (d) Double buffering in the kernel.

The trouble with this way of doing business is that the user process has to be
started up for every incoming character. Allowing a process to run many times for
short runs is inefficient, so this design is not agood one.

An improvement is shown in Fig. 5-15(b). Here the user process provides an
n-character buffer in user space and does a read of n characters. The interrupt ser-
vice procedure puts incoming characters in this buffer until it fills up. Then it
wakes up the user process. This scheme is far more efficient than the previous
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one, but it has a drawback: what happens if the buffer is paged out when a charac-
ter arrives? The buffer could be locked in memory, but if many processes start
locking pages in memory, the pool of available pages will shrink and performance
will degrade.

Y et another approach is to create a buffer indde the kernedl and have the inter-
rupt handler put the characters there, as shown in Fig. 5-15(c). When this buffer
isfull, the page with the user buffer is brought in, if needed, and the buffer copied
there in one operation. This scheme is far more efficient.

However, even this scheme suffers from a problem: What happens to charac-
ters that arrive while the page with the user buffer is being brought in from the
disk? Since the buffer is full, there is no place to put them. A way out is to have
asecond kernd buffer. After the first buffer fills up, but before it has been emp-
tied, the second one is used, as shown in Fig. 5-15(d). When the second buffer
fills up, it is available to be copied to the user (assuming the user has asked for it).
While the second buffer is being copied to user space, the first one can be used for
new characters. In this way, the two buffers take turns. while one is being copied
to user space, the other is accumulating new input. A buffering scheme like thisis
cdled double buffering.

Another form of buffering that is widdy used is the circular buffer. It con-
sists of a region of memory and two pointers. One pointer points to the next free
word, where new data can be placed. The other pointer points to the first word of
datain the buffer that has not been removed yet. In many situations, the hardware
advances the first pointer asit adds new data (e.g., just arriving from the network)
and the operating system advances the second pointer as it removes and processes
data. Both pointers wrap around, going back to the bottom when they hit the top.

Buffering is also important on output. Consider, for example, how output is
done to the modem without buffering using the model of Fig. 5-15(b). The user
process executes a write system call to output n characters. The system has two
choices at this point. It can block the user until al the characters have been writ-
ten, but this could take a very long time over a dow telephone line. It could also
release the user immediately and do the I/O while the user computes some more,
but this leads to an even worse problem: how does the user process know that the
output has been completed and it can reuse the buffer? The system could generate
asgnd or software interrupt, but that style of programming is difficult and prone
to race conditions. A much better solution is for the kernel to copy the datato a
kernd buffer, analogous in Fig. 5-15(c) (but the other way), and unblock the caller
immediately. Now it does not matter when the actual 1/0 has been completed.
The user is free to reuse the buffer the instant it is unblocked.

Buffering is a widely used technique, but it has a downside as well. If data
get buffered too many times, performance suffers. Consider, for example, the net-
work of Fig. 5-16. Here a user does a system cdl to write to the network. The
kernd copies the packet to a kernd buffer to alow the user to proceed immediate-
ly (step 1). Atthis point the user program can reuse the buffer.
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Figure 5-16. Networking may involve many copies of a packet.

When the driver is called, it copies the packet to the controller for output (step
2). The reason it does not output to the wire directly from kernel memory is that
once a packet transmission has been started, it must continue at a uniform speed.
The driver cannot guarantee that it can get to memory at a uniform speed because
DMA channels and other I/O devices may be stealing many cycles. Faili'ng to get
a word on time would ruin the packet. By buffering the packet inside the con-
troller, this problem is avoided.

After the packet has been copied to the controller's internal buffer, it is copied
out onto the network (step 3). Bits arrive at the receiver shortly after being sent,
S0 just after the last bit has been sent, that bit arrives at the receiver, where the
packet has been buffered in the controller. Next the packet is copied to the re-
ceiver's kernel buffer (step 4). Findly, it is copied to the receiving process buff-
er (step 5). Usually, the receiver then sends back an acknowledgement. When the
sender gets the acknowledgement, it is free to send the next packet. However, it
should be clear that all this copying is going to dow down the transmission rate
considerably because all the steps must happen sequentially.

Error Reporting

Errors are far more common in the context of I/O than in other contexts.
When they occur, the operating system must handle them as best it can. Many er-
rors are device-specific and must be handled by the appropriate driver, but the
framework for error handling is device independent.

One class of 1/0 errors is programming errors. These occur when a process
asks for something impossible, such as writing to an input device (keyboard, scan-
ner, mouse, etc.) or reading from an output device (printer, plotter, etc.). Other
errors are providing an invalid buffer address or other parameter, and specifying
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an invaid device (e.g., disk 3 when the system has only two disks), and so on.
The action to take on these errors is straightforward: just report back an error code
tothecaller.

Another class of errors is the class of actual 1/0 errors, for example, trying to
write a disk block that has been damaged or trying to read from a camcorder that
has been switched off. In these circumstances, it is up to the driver to determine
what to do. If the driver does not know what to do, it may pass the problem back
up to device-independent software.

What this software does depends on the environment and the nature of the er-
ror. If it is a simple read error and there is an interactive user available, it may
display a dialog box asking the user what to do. The options may include retrying
a certain number of times, ignoring the error, or killing the calling process. If
there is no user available, probably the only real option is to have the system call
fail with an error code.

However, some errors cannot be handled this way. For example, a critical
data structure, such as the root directory or free block list, may have been des-
troyed. In thiscase, the system may have to display an error message and termi-
nate.

Allocating and Releasing Dedicated Devices

Some devices, such as CD-ROM recorders, can be used only by a single proc-
ess at any given moment. It is up to the operating system to examine requests for
device usage and accept or reject them, depending on whether the requested de-
vice is available or not. A smple way to handle these requestsiis to reguire proc-
esses to perform opens on the specia files for devices directly. If the device is
unavailable, the open fails. Closing such a dedicated device then releases it.

An alternative approach is to have specia mechanisms for requesting and
releasing dedicated devices. An attempt to acquire a device that is not available
blocks the caller instead of failing. Blocked processes are put on a queue. Sooner
or later, the requested device becomes available and the first process on the queue
is alowed to acquire it and continue execution.

Device-Independent Block Size

Different disks may have different sector sizes. Itis up to the device-indepen-
dent software to hide this fact and provide a uniform block size to higher layers,
for example, by treating several sectors as a single logical block. In this way, the
higher layers only deal with abstract devices that all use the same logical block
size, independent of the physical sector size. Similarly, some character devices
deliver their data one byte at a time (e.g., modems), while others deliver theirs in
larger units (e.g., network interfaces). These differences may also be hidden.
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5.3.4 User-Space I/O Software

Although most of the 1/0 software is within the operating system, a small por-
tion of it consists of libraries linked together with user programs, and even whole
programs running outside the kernel. System calls, including the 1/O system calls,
are normally made by library procedures. When a C program contains the call

count « write(fd, buffer, nbytes);

the library procedure write will be linked with the program and contained in the
binary program present in memory at run time. The collection of al these library
procedures is clearly part of the 1/O system.

While these procedures do little more than put their parameters in the
appropriate place for the system call, there are other I/O procedures that actually
do real work. In particular, formatting of input and output is done by library pro-
cedures. One example from C is printf, which takes a format string and possibly
some variables as input, builds an ASCII string, and then calls write to output the
string. As an example of printf, consider the statement

printf("The square of %3d is %6d\n", i, i*i);

It formats a string consisting of the 14-character string "The square of " followed
by the value i as a 3-character string, then the 4-character string " is ", then i* as
six characters, and finally aline feed.

An example of a similar procedure for input is scanf which reads input and
stores it into variables described in a format string using the same syntax as printf.
The standard 1/O library contains a number of procedures that involve 1/0 and all
run as part of user programs.

Not al user-level 1/O software consists of library procedures. Another impor-
tant category is the spooling system. Spooling is a way of dealing with dedicated
I/0 devices in a multiprogramming system. Consider a typical spooled device: a
printer. Although it would be technically easy to let any user process open the
character specia file for the printer, suppose a process opened it and then did
nothing for hours. No other process could print anything.

Instead what is done is to create a specia process, caled a daemon, and a
special directory, caled a spooling directory. To print afile, aprocess fust gen-
erates the entire file to be printed and puts it in the spooling directory. It is up to
the daemon, which is the only process having permission to use the printer's spe-
cia file, to print the files in the directory. By protecting the specia file against
direct use by users, the problem of having someone keeping it open unnecessarily
long is eliminated.

Spoaling is not only used for printers. It is aso used in other 1/O situations.
For example, file transfer over a network often uses a network daemon. To send a
file somewhere, a user puts it in a network spooling directory. Later on, the net-

work daemon takes it out and transmits it. One particular use of spooled file
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transmission is the USENET News system. This network consists of millions of
machines around the world communicating using the Internet. Thousands of news
groups exist on many topics. To post a news message, the user invokes a news
program, which accepts the message to be posted and then deposits it in a spool-
ing directory for transmisson to other machines later. The entire news system
runs outside the operating system.

Figure 5-17 summarizes the 1/0 system, showing al the layers and the princi-
pd functions of each layer. Starting at the bottom, the layers are the hardware, in-
terrupt handlers, device drivers, device-independent software, and finaly the user

processes.
110

Layer y reply I/0 functions

o User processes A Make 1/0 call; format 1/0; spooling

request
Device-independent Naming, protection, blocking, buffering, allocation

software

. . Set up device registers; check status
Device drivers

Wake up driver when 1/0 completed
Interrupt handlers

Hardware Perform 1/0 operation

Figure 5-17. Layers of the |/O system and the main functions of each layer.

The arrows in Fig. 5-17 show the flow of control. When a user program tries
to read a block from afile, for example, the operating system is invoked to carry
out the call. The device-independent software looks for it in the buffer cache, for
example. If the needed block is not there, it calls the device driver to issue the re-
quest to the hardware to go get it from the disk. The process is then blocked until
the disk operation has been completed.

When the disk is finished, the hardware generates an interrupt. The interrupt
handler is run to discover what has happened, that is, which device wants atten-
tion right now. It then extracts the status from the device and wakes up the sleep-
ing process to finish off the 1/0 request and let the user process continue.

5.4 DISKS

Now we will begin studying somereal 1/0O devices. We will begin with disks,
which are conceptualy simple, yet very important. After that we will examine
clocks, keyboards, and displays.
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5.4.1 Disk Hardware

Disks come in a variety of types. The most common ones are the magnetic
disks (hard disks and floppy disks). They are characterized by the fact that reads
and writes are equally fast, which makes them ideal as secondary memory (pag-
ing, file systems, etc.). Arrays of these disks are sometimes used to provide high-
ly reliable storage. For distribution of programs, data, and movies, various kinds
of optical disks (CD-ROMs, CD-Recordables, and DVDs) are also important. In
the following sections we will first describe the hardware and then the software
for these devices.

Magnetic Disks

Magnetic disks are organized into cylinders, each one containing as many
tracks as there are heads stacked vertically. The tracks are divided into sectors,
with the number of sectors around the circumference typicaly being 8 to 32 on
floppy disks, and up to several hundred on hard disks. The number of heads varies
from 1 to about 16.

Older disks have littie electronics and just deliver a simple seria bit stream.
On these disks, the controller does most of the work. On other disks, in particular,
IDE (Integrated Drive Electronics) and SAT A (Serial ATA) disks,' the disk
drive itself contains a microcontroller that does considerable work and alows the
real controller to issue a set of higher-level commands. The controller often does
track caching, bad block remapping, and much more.

A device feature that has important implications for the disk driver is the pos-
sihility of a controller doing seeks on two or more drives at the same time. These
are known as overlapped seeks. While the controller and software are waiting
for a seek to complete on one drive, the controller can initiate a seek on another
drive. Many controllers can also read or write on one drive while seeking on one
or more other drives, but a floppy disk controller cannot read or write on two
drives at the same time. (Reading or writing requires the controller to move hits
on a microsecond time scale, so one transfer uses up most of its computing pow-
er.) The situation is different for hard disks with integrated controllers, and in a
system with more than one of these hard drives they can operate simultaneously,
a least to the extent of transferring between the disk and the controller's buffer
memory. Only one transfer between the controller and the main memory is pos-
sible at once, however. The ability to perform two or more operations at the same
time can reduce the average access time considerably.

Figure 5-18 compares parameters of the standard storage medium for the orig-
inal IBM PC with parameters of a disk made 20 years later to show how much
disks changed in 20 years. It is interesting to note that not al parameters have
improved as much. Average seek time is seven times better than it was, transfer
rate is 1300 times better, while capacity is up by afactor of 50,000. This pattern
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has to do with relaively gradual improvements in the moving parts, but much
higher bit densities on the recording surfaces.

Parameter IBM 360-KB floppy disk | WD 18300 hard disk

Number of cylinders 40 10601
Tracks per cylinder 2 12
Sectors per track 9 281(avg)
Sectors per disk 720 35742000
Bytes per sector 512 512

|_Disk capacity 360 KB 18.3 GB
Seek time (adjacent cylinders) 6 msec 0.8 msec
Seek time (average case) 77 msec 6.9 msec
Rotation time 200 msec 8.33 msec
Motor stop/start time 250 msec 20 sec
Time totransfer 1 sector 22 msec 17 usee

Figure 5-18. Disk parameters for the original IBM PC 360-KB floppy disk and
aWestern Digital WD 18300 hard disk.

One thing to be aware of in looking at the specifications of modern hard disks
is that the geometry specified, and used by the driver software, is amost aways
different from the physical format. On old disks, the number of sectors per track
was the same for al cylinders. Modem disks are divided into zones with more
sectors on the outer zones than the inner ones. Fig. 5-19(a) illustrates a tiny disk
with two zones. The outer zone has 32 sectors per track; the inner one has 16 sec-
tors per track. A real disk, such asthe WD 18300, typically has 16 or more zones,
with the number of sectors increasing by about 4% per zone as one goes out from
the innermost zone to the outermost zone.

To hide the details of how many sectors each track has, most modem disks
have a virtua geometry that is presented to the operating system. The software is
instructed to act as though there are x cylinders, y heads, and z sectors per track.
The controller then remaps a request for (X, y, 2) onto the real cylinder, head, and
sector. A possible virtual geometry for the physical disk of Fig. 5-19(a) is shown
in Fig. 5-19(b). In both cases the disk has 192 sectors, only the published arrange-
ment is different than the real one.

For PCs, the maximum values for these three parameters are often (65535, 16,
and 63), due to the need to be backward compatible with the limitations of the
origind IBM PC. On this machine, 16-, 4-, and 6-bit fields were used to specify
these numbers, widi cylinders and sectors numbered starting at 1 and heads num-
bered starting at 0. With these parameters and 512 bytes per sector, the largest
possible disk is 31.5 GB. To get around this limit, all modern disks now support a

SEC. 54 DISKS 361

Figure 5-19. (a) Physical geometry of a disk with two zones, (b) A possible
virtual geometry for thisdisk.

system called logical block addressing, in which disk sectors are just numbered
consecutively starting at 0, without regard to the disk geometry.

RAID

CPU performance has been increasing exponentially over the past decade,
roughly doubling every 18 months. Not so with disk performance. In the 1970s,
average seek times on minicomputer disks were 50 to 100 msec. Now seek times
are dightly under 10 msec. In most technical industries (say, automobiles or avia-
tion), a factor of 5 to 10 performance improvement in two decades would be
major news (imagine 300 MPG cars), but in the computer industry it is an embar-
rassment. Thus the gap between CPU performance and disk performance has be-
come much larger over time.

As we have seen, paralel processing is being used more and more to speed up
CPU performance. It has occurred to various people over the years that paralel
I/0 might be a good idea too. In their 1988 paper, Patterson et al. suggested six
specific disk organizations that could be used to improve disk performance,
reliability, or both (Patterson et al., 1988). These ideas were quickly adopted by
industry and have led to a new class of I/O device called aRAID. Patterson et al.
defined RAID as Redundant Array of Inexpensive Disks, but industry redefined
the | to be "Independent” rather than "Inexpensive" (maybe so they could charge
more?). Since a villain was aso needed (as in RISC versus CISC, also due to
Patterson), the bad guy here was the SLED (Single L ar ge Expensive Disk).
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Thebasic idea behind a RAID isto ingtall abox full of disks next to the com-
puter, typicaly a large server, replace the disk controller card with a RAID con-
troller, copy the data over to the RAID, and then continue normal operation. In
other words, a RAID should ook like a SLED to the operating system but have
better performance and better reliability. Since SCSI disks have good per-
formance, low price, and the ability to have up to seven drives on a single con-
troller (15 for wide SCSl), it is natural that most RAIDs consist of a RAID SCSI
controller plus a box of SCSI disks that appear to the operating system as asingle
large disk. In this way, no software changes are required to use the RAID, abig
sdling point for many system administrators.

In addition to appearing like a single disk to the software, dl RAIDs have the
property that the data are distributed over the drives, to alow parale operation.
Severd different schemes for doing this were defined by Petterson et al, and they
are now known as RAID leve 0 through RAID level 5. In addition, there are a
few other minor levels that we will not discuss. The term "level" is something of
a misnomer since there is no hierarchy involved; there are smply six different

organizations possible.

RAID leve O isillugtrated in Fig. 5-20(8). It consists of viewing the virtua
single disk smulated by the RAID as being divided up into strips of k sectors
each, with sectors Oto k - 1 being strip O, sectorsk to 2k - 1 as strip 1, and so on.
For k = 1, each strip is a sector; for k=2 a strip is two sectors, etc. The RAID
levd O organization writes consecutive strips over the drives in round-robin
feshion, as depicted in Fig. 5-20(8) for a RAID with four disk drives.

Didtributing data over multiple drives like this is cdled striping. For ex-
ample, if the software issues a command to read a data block consisting of four
consecutive strips starting a a strip boundary, the RAID controller will break this
command up into four separate commands, one for each of the four disks, and
have them operate in parald. Thus we have pardld 1/0 without the software
knowing about it.

RAID leve 0 works best with large requests, the bigger the better. If are-
quest is larger than the number of drives times the strip size, some drives will get
multiple requests, so that when they finish the first request they start the second
one. Itisup to the contraller to split the request up and feed the proper commands
to the proper disks in the right sequence and then assemble the results in memory
correctly. Performance is excellent and the implementation is straightforward.

RAID level 0 works worst with operating systems that habitually ask for data
one sector a a time. The results will be correct, but there is no paralelism and
hence no performance gain. Another disadvantage of this organization is that the

rdigbility is potentidly worse than having a SLED. If a RAID congists of four
disks, each with a meen time to failure of 20,000 hours, about once every 5000
hours a drive will fal and al the data will be completely lost. A SLED with a
meen time to failure of 20,000 hours would be four times more reliable. Because
no redundancy is present in thisdesign, itis not really atrue RAID.
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The next option, RAID level 1, shown in Fig. 5-20(b), is a true RAID. It
duplicates al the disks, so there are four primary disks and four backup disks. On
awrite, every strip is written twice. On aread, either copy can be used, distribut-
ing the load over more drives. Consequently, write performance is no better than
for asingle drive, but read performance can be up to twice as good. Fault toler-
ance is excellent: if. a drive crashes, the copy is ssimply used instead. Recovery
consists of simply installing a new drive and copying the entire backup drive to it.

Unlike levels 0 and 1, which work with strips of sectors, RAID level 2 works
on aword basis, possibly even a byte basis. Imagine splitting each byte of the sin-
gle virtual disk into a pair of 4-bit nibbles, then adding a Hamming code to each
one to form a 7-bit word, of which bits 1, 2, and 4 were parity bits. Further ima-
gine that the seven drives of Fig. 5-20(c) were synchronized in terms of arm posi-
tion and rotational position. Then it would be possible to write the 7-bit Hamming
coded word over the seven drives, one bit per drive.

The Thinking Machines CM-2 computer used this scheme, taking 32-bit data
words and adding 6 parity bits to form a 38-bit Hainming word, plus an extra bit
for word parity, and spread each word over 39 disk drives. The total throughput
was immense, because in one sector time it could write 32 sectors worth of data.
Also, losing one drive did not cause problems, because loss of a drive amounted
to losing 1 hit in each 39-bit word read, something the Hamming code could hand-
le on the fly.

On the down side, this scheme requires all the drives to be rotationally syn-
chronized, and it only makes sense with a substantial number of drives (even with
32 data drives and 6 parity drives, the overhead is 19%). It also asks alot of the
controller, since it must do a Hamming checksum every bit time.

RAID level 3 is a simplified verson of RAID level 2. It is illustrated in
Fig. 5-20(d). Here a single parity bit is computed for each data word and written
to a parity drive. Asin RAID level 2, the drives must be exactly synchronized,
since individual data words are spread over multiple drives.

At first thought, it might appear that a single parity bit gives only error detec-
tion, not error correction. For the case of random undetected errors, this observa-
tion is true. However, for the case of a drive crashing, it provides full 1-bit error
correction since the position of the bad bit is known. If a drive crashes, the con-
troller just pretends that all its bits are Os. If aword has a parity error, the bit from
the dead drive must have been a 1, so it is corrected. Although both RAID levels 2
and 3 offer very high data rates, the number of separate 1/0 requests per second
they can handle is no better than for a single drive.

RAID levels 4 and 5 work with strips again, not individual words with parity,
and do not require synchronized drives. RAID level 4 [see Fig. 5-20(€)] is like
RAID level 0, with a strip-for-strip parity written onto an extra drive. For ex-
ample, if each strip is k bytes long, al the strips are EXCLUSIVE ORed together,
resulting in a parity strip k bytes long. If a drive crashes, the lost bytes can be
recomputed from the parity drive by reading the entire set of drives.
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Figure 5-20. RAID levels0 through 5. Backup and parity drives are shown shaded.
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This design protects against the loss of a drive but performs pooriy for small
updates. |If one sector is changed, it is necessary to read all the drives in order to
recalculate the parity, which must then be rewritten. Alternatively, it can read the
old user data and the old parity data and recompute the new parity from them.
Even with this optimization, a small update requires two reads and two writes.

As a consequence of the heavy load on the parity drive, it may become a
bottleneck. This bottleneck is eliminated in RAID level 5 by distributing the par-
ity bits uniformly over al the drives, round robin fashion, as shown in Fig. 5-
20(f). However, in the event of a drive crash, reconstructing the contents of the
faled drive is a complex process.

CD-ROMs

In recent years, optical (as opposed to magnetic) disks have become available.
They have much higher recording densities than conventional magnetic disks.
Optical disks were originally developed for recording television programs, but
they can be put to more esthetic use as computer storage devices. Due to their
potentially enormous capacity, optical disks have been the subject of a great deal
of research and have gone through an incredibly rapid evolution.

First-generation optical disks were invented by the Dutch electronics
conglomerate Philips for holding movies. They were 30 cm across and marketed
under the name Laser Vision, but they did not catch on, except in Japan.

In 1980, Philips, together with Sony, developed the CD (Compact Disc),
which rapidly replaced the 33 1/3-RPM vinyl record for music (except among
connoisseurs, who still prefer vinyl). The precise technical details for the CD
were published in an officid International Standard (IS 10149), popularly called
the Red Book, due to the color of its cover. (International Standards are issued by
the International Organization for Standardization, which is the international
counterpart of national standards groups like ANSI, DIN, etc. Each one has an IS
number.) The point of publishing the disk and drive specifications as an Interna-
tional Standard is to allow CDs from different music publishers and players from
different electronics manufacturers to work together. All CDs are 120 mm across
and 12 mm thick, with a 15-mm hole in the middle. The audio CD was the first
successful mass market digital storage medium. They are supposed to last 100
years. Please check back in 2080 for an update on how well the first batch did.

A CD is prepared in severa steps. The step consists of using a high-power
infrared laser to burn 0.8-micron diameter holes in a coated glass master disk.
From this master, a mold is made, with bumps where the laser, holes were. Into
this mold, molten polycarbonate resin is injected to form a CD with the same pat-
tern of holes as the glass master. Then a very thin layer of reflective duminum is
deposited on the polycarbonate, topped by a protective lacquer and finaly a label.
The depressions in the polycarbonate substrate are called pits; the unburned areas
between the pits are caled lands.
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When played back, a low-power laser diode shines infrared light with a wave-
length of 0.78 micron on the pits and lands as they stream by. The laser is on the
polycarbonate side, so the pits stick out toward the laser as bumps in the otherwise
flat surface. Because the pits have a height of one-quarter the wavelength of the
laser light, light reflecting off a pit is haf a wavelength out of phase with light
reflecting off the surrounding surface. Asaresult, the two parts interfere destruct-
ively and return less light to the player's photodetector than light bouncing off a
land. This is how the player tells a pit from a land. Although it might seem sim-
pler to use a pit to record a0 and a land to record a 1, it is more reliable to use a
pit/land or land/pit transition for a 1 and its absence as a0, so this scheme is used.

The pits and lands are written in a single continuous spiral starting near the
hole and working out a distance of 32 mm toward the edge. The spira makes
22,188 revolutions around the disk (about 600 per mm). If unwound, it would be
5.6 kmlong. The spira isillustratedin Fig. 5-21.

Spiral groove

X

~ 2K block of
user data

Figure 5-21. Recording structure of a compact disc or CD-ROM.

To make the music play at a uniform rate, it is necessary for the pits and lands
to stream by at a constant linear velocity. Consequently, the rotation rate of the
CD musgt be continuously reduced as the reading head moves from the inside of
the CD to the outside. At the inside, the rotation rate is 530 RPM to achieve the
desired streaming rate of 120 cm/sec; at the outside it has to drop to 200 RPM to
give the same linear velocity at the head. A constant linear velocity drive is quite
different than a magnetic disk drive, which operates at aconstant angular velocity,
independent of where the head is currently positioned. Also, 530 RPM is a far cry
from the 3600 to 7200 RPM that most magnetic disks whirl at.

In 1984, Philips and Sony realized the potential for using CDs to store com-
puter data, so they published the Yellow Book defining a precise standard for
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what are now called CD-ROMs (Compact Disc - Read Only Memory). To pig-
gyback on the by-then aready substantial audio CD market, CD-ROMs were to
be the same physica size as audio CDs, mechanicaly and optically compatible
with them, and produced using the same polycarbonate injection molding ma
chines. The consequences of this decision were not only that dow variable-speed
motors were required, but also that the manufacturing cost of a CD-ROM would
be well under one dollar in moderate volume.

What the Yellow Book defined was the formatting of the computer data. It
also improved the error-correcting abilities of the system, an essential step be-
cause athough music lovers do not mind losing a bit here and there, computer
lovers tend to be Very Picky about that. The basic format of a CD-ROM consists
of encoding every byte in a 14-bit symbol, which is enough to Hamming encode
an 8-hit byte with 2 bits left over. In fact, a more powerful encoding system is
used. The 14-to-8 mapping for reading is done in hardware by table lookup.

At the next level up, a group of 42 consecutive symbols forms a 588-bit
frame. Each frame holds 192 data bits (24 bytes). The remaining 396 bhits are
used for error correction and control. Of these, 252 are the error-correction bits in
the 14-bit symbols and 144 are carried in the 8-bit symbol payloads. So far, this
scheme isidentical for audio CDs and CD-ROMs.

What the Yellow Book adds is the grouping of 98 frames into a CD-ROM
sector, as shown in Fig. 5-22. Every CD-ROM sector begins with«a 16-byte
preamble, the first 12 of which are OOFFFFFFFFFFFFFFFFFFFFOO  (hexade-
cimal), to alow the player to recognize the start of a CD-ROM sector. The next 3
bytes contain the sector number, needed because seeking on a CD-ROM with its
single data spirad is much more difficult than on a magnetic disk with its uniform
concentric tracks. To seek, the software in the drive calculates approximately
where to go, moves the head there, and then starts hunting around for a preamble
to see how good its guess was. The last byte of the preamble is the mode.

Each symbol holds 8 data bits and 6 error-correction bits

42 Symbols make 1 frame of 14 x 42 = 588 bits

Each frame contains 192

cnarzjmaezjczia *co0atzjoao data bits (24 bytes) and
Preamble 98 Frames make 1 sector —' 396 error-correction bits
Mode 1
Data ECC sector
(2352 bytes)

Bytes 16 2048 288

Figure5-22. Logical data layout on a CD-ROM.

The Yellow Book defines two modes. Mode 1 uses the layout of Fig. 5-22,
with a 16-byte preamble, 2048 data bytes, and a 288-byte error-correcting code (a
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crossinterleaved Reed-Solomon code). Mode 2 combines the data and ECC fields
into a 2336-byte data field for those applications that do not need (or cannot
afford the time to perform) error correction, such as audio and video. Note that to
provide excellent reliability, three separate error-correcting schemes are used:
within a symbol, within a frame, and within a CD-ROM sector. Single-bit errors
are corrected at the lowest level, short burst errors are corrected at the frame level,
and any residual errors are caught at the sector level. The price paid for this
reliability is that it takes 98 frames of 588 bits (7203 bytes) to carry a single
2048-byte payload, an efficiency of only 28%.

Single-speed CD-ROM drives operate at 75 sectors/sec, which gives a data
rate of 153,600 bytes/sec in mode 1 and 175,200 bytes/sec in mode 2. Double-
speed drives are twice as fast, and so on up to the highest speed. Thus a40x drive
can deliver data at arate of 40 x 153,600 bytes/sec, assuming that the drive inter-
face, bus, and operating system can al handle this datarate. A standard audio CD
has room for 74 minutes of music, which, if used for mode 1 data, gives a capa-
city of 681,984,000 bytes. This figure is usually reported as 650 MB because 1
MB is 2*° bytes (1,048,576 bytes), not 1,000,000 bytes.

Note that even a 32x CD-ROM drive (4,915,200 bytes/sec) is no match for a
fast SCSI-2 magnetic disk drive at 10 MB/sec, even though many CD-ROM
drives use the SCSI interface (IDE CD-ROM drives also exist). When you realize
that the seek time is usually several hundred milliseconds, it should be clear that
CD-ROM drives are not in the same performance category as magnetic disk
drives, despite their large capacity.

In 1986, Philips struck again with the Green Book, adding graphics and the
ability to interleave audio, video, and data in the same sector, a feature essential
for multimedia CD-ROMSs.

Thelast piece of the CD-ROM puzzle is the fde system. To make it possible
to use the same CD-ROM on different computers, agreement was needed on CD-
ROM fde systems. To get this agreement, representatives of many computer
companies met at Lake Tahoe in the High Sierras on the California-Nevada boun-
dary and devised a file system that they called High Sierra. It later evolved into

an International Standard (1S 9660). It has three levels. Level 1 uses fde names of
up to 8 characters optionally followed by an extension of up to 3 characters (the
MSDOS fde naming convention). File names may contain only upper case
letters, digits, and the underscore. Directories may be nested up to eight deep, but
directory names may not contain extensions. Level 1 requires al files to be con-
tiguous, which is not a problem on a medium written only once. Any CD-ROM
conformant to IS 9660 level 1 can be read using MS-DOS, an Apple computer, a
UNIX computer, or just about any other computer. CD-ROM publishers regard
this property as being a big plus.

IS 9660 level 2 alows names up to 32 characters, and level 3 allows noncon-
tiguous files. The Rock Ridge extensions (whimsicaly named after the town in
the Gene Wilder film Blazing Saddles) alow very long names (for UNIX), UIDs,
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GIDs, and symbolic iinks, but CD-ROMSs not conforming to level 1 will not be
readable on al computers.

CD-ROMs have become extremely popular for publishing games, movies,
encylopedias, atlases, and reference works of al kinds. Most commercial software
now comes on CD-ROMs. Their combination of large capacity and low manufac-
turing cost makes them well suited to innumerable applications.

CD-Recordables

Initially, the equipment needed to produce a master CD-ROM (or audio CD,
for that matter) was extremely expensive. But as usud in the computer industry,
nothing stays expensive for long. By the mid 1990s, CD recorders no bigger than
a CD player were a common peripheral available in most computer stores. These
devices were dtill different from magnetic disks because once written, CD-ROMs
could not be erased. Nevertheless, they quickly found a niche as a backup medium
for large hard disks and also alowed individuals or startup companies to manufac-
ture their own small-run CD-ROMs or make masters for delivery to high-volume
commercial CD duplication plants. These drives are known as CD-Rs (CD-
Recordables).

Physically, CD-Rs start with 120-mm polycarbonate blanks that are like CD-
ROMs, except that they contain a 0.6-mm wide groove to guide the lasef for writ-
ing. The groove has a sinusoidal excursion of 0.3 mm at a frequency of exactly
22.05 kHz to provide continuous feedback so the rotation speed can be accurately
monitored and adjusted if need be. CD-Rs look like regular CD-ROMs, except
that they are gold colored on top instead of silver colored. The gold color comes
from the use of rea gold instead of aluminum for the reflective layer. Unlike
silver CDs, which have physical depressions on them, on CD-Rs the differing
reflectivity of pits and lands has to be simulated. This is done by adding a layer of
dye between the polycarbonate and the reflective gold layer, as shown in Fig. 5
23. Two kinds of dye are used: cyanine, which is green, and pthalocyanine, which
is a yellowish orange. Chemists can argue endlessly about which one is better.
These dyes are similar to those used in photography, which explains why Eastman
Kodak and Fuji are mgor manufacturers of blank CD-Rs.

In its initial state, the dye layer is transparent and lets the laser light pass
through and reflect off the gold layer. To write, the CD-R laser is turned up to
high power (8-16 mW). When the beam hits a spot of dye, it heats up, breaking a
chemical bond. This change to the molecular structure creates a dark spot. When
read back (at 0.5 mW), the photodetector sees a difference between the dark spots
where the dye has been hit and transparent areas where it is intact. This difference
is interpreted as the difference between pits and lands, even when read back on a
regular CD-ROM reader or even on an audio CD player.

No new kind of CD could hold up its head with pride without a colored book,
so CD-R has the Orange Book, published in 1989. This document defines CD-R
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Figure 5-23. Cross section of a CD-R disk and laser (not to scale). A silver
CD-ROM has a similar structure, except without the dye layer and with a pitted
aluminum layer instead of a gold layer.

and also a new format, CD-ROM XA, which alows CD-Rs to be written incre-
mentally, afew sectors today, a few tomorrow, and afew next month. A group of
consecutive sectors written at once is called a CD-ROM track.

One of the first uses of CD-R was for the Kodak PhotoCD. In this system the
customer brings arall of exposed film and his old PhotoCD to the photo processor
and gets back the same PhotoCD with the new pictures added &fter the old ones.
The new batch, which is created by scanning in the negatives, is written onto the
PhotoCD as a separate CD-ROM track. Incremental writing was needed because
when this product was introduced, the CD-R blanks were too expensive to provide
anew one for every film roll.

However, incrementa writing creates a new problem. Prior to the Orange
Book, al CD-ROMs had a single VTOC (Volume Table of Contents) at the
start That scheme does not work with incremental (i.e., multitrack) writes. The
Orange Book's solution is to give each CD-ROM track its own VTOC. The files
listed in the VTOC can include some or al of the files from previous tracks. After
the CD-R is inserted into the drive, the operating system searches through all the
CD-ROM tracks to locate the most recent VTOC, which gives the current status
of the disk. By including some, but not all, of the files from previous tracks in the
current VTOC, it is possible to give the illusion that files have been deleted.
Tracks can be grouped into sessions, leading to multisession CD-ROMs. Stan-
dard audio CD players cannot handle multisession CDs since they expect a single
VTOC at the start. Some computer applications can handle them, though.
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CD-R makes it possible for individuals and companies to easily copy CD-
ROMSs (and audio CDs), generaly in violation of the publisher's copyright Sever-
a schemes have been devised to make such piracy harder and to make it difficult
to read a CD-ROM using anything other than the publisher's software. One of
them involves recording al the file lengths on the CD-ROM as multigigabyte,
thwarting any attempts to copy the files to hard disk using standard copying soft-
ware. The true lengths are embedded in the publisher's software or hidden (pos-
sibly encrypted) on the CD-ROM in an unexpected place. Another scheme uses
intentionally incorrect ECCs in selected sectors, in the expectation that CD copy-
ing software will "fix" the errors. The application software checks the ECCs it-
sdf, refusing to work if they are correct Using nonstandard gaps between the
tracks and other physical "defects" are also possibilities.

CD-Rewritables

Although people are used to other write-once media such as paper and photo-
graphic film, there is a demand for a rewritable CD-ROM. One technology now
available is CD-RW (CD-ReWritable), which uses the same size media as CD-
R. However, instead of cyanine or pthalocyanine dye, CR-RW uses an dloy of
silver, indium, antimony, and tellurium for the recording layer. This dloy has two
stable states: crystalline and amorphous, with different reflectivities.

CD-RW drives use lasers with three different powers. At high power, the
laser melts the aloy, converting it from the high-reflectivity crystalline state to
the low-reflectivity amorphous state to represent a pit. At medium power, the
alloy melts and reforms in its natural crystalline state to become aland again. At
low power, the state of the material is sensed (for reading), but no phase transition
occurs.

The reason CD-RW has not replaced CD-R is that the CD-RW blanks are
more expensive than the CR-R blanks. Also, for applications consisting of back-
ing up hard disks, the fact that once written, a CD-R cannot be accidentally erased
isabigplus.

DVD

The basic CD/CD-ROM format has been around since 1980. The technology
has improved since then, so higher-capacity optical disks are now economically
feasible and there is great demand for them. Hollywood would dearly love to
eliminate analog video tapes in favor of digital disks, since disks have a higher
quality, are cheaper to manufacture, last longer, take up less shelf space in video
stores, and do not have to be rewound. The consumer electronics companies are
aways looking for a new blockbuster product, and many computer companies
want to add multimedia features to their software.

This combination of technology and demand by three immensely rich and
powerful industries led to DVD, originaly an acronym for Digital Video Disk,



372 INPUT/OUTPUT CHAP. 5
but now officialy Digital Versatile Disk. DVDs use the same general design as
CDs, with 120-mm injection-molded polycarbonate disks containing pits and
lands that are illuminated by a laser diode and read by a photodetector. What is
new is the use of

1. Smaller pits (0.4 microns versus 0.8 microns for CDs).
2. A tighter spiral (0.74 microns between tracks versus 16 microns for CDs).
3. A red laser (a 0.65 microns versus 0.78 microns for CDs).

Together, these improvements raise the capacity sevenfold, to 4.7 GB. A Ix DVD
drive operates at 14 MB/sec (versus 150 KB/sec for CDs). Unfortunately, the
switch to the red lasers used in supermarkets means that DVD players require a
second laser or fancy conversion optics to be able to read existing CDs and CD-
ROMSs. But with the drop in price of lasers, most of them now have both of them
so they can read both kinds of media. ™

Is 4.7 GB enough? Maybe. Using MPEG-2 compression (standardized in IS
13346), a 4.7 GB DVD disk can hold 133 minutes of full-screen, full-motion
video at high resolution (720 x 480), as well as soundtracks in up to eight lan-
guages and subtitles in 32 more. About 92% of al the movies Hollywood has ever
made are under 133 minutes. Nevertheless, some applications such as multimedia
games or reference works may need more, and Hollywood would like to put mul-
tiple movies on the same disk, so four formats have been defined:

1. Single-sided, single-layer (4.7 GB).
2. Single-sided, dual-layer (8.5 GB).
3. Double-sided, single-layer (9.4 GB).
4. Double-sided, dua-layer (17 GB).

Why so many formats? In aword: politics. Philips and Sony wanted single-sided,
dua-layer disks for the high capacity version, but Toshiba and Time Warner
wanted double-sided, single-layer disks. Philips and Sony did not think people
would be willing to turn the disks over, and Time Warner did not believe putting
two layers on one side could be made to work. The compromise: dl combinations,
but the market will determine which ones survive.

The dual layering technology has a reflective layer at the bottom, topped with
a semireflective layer. Depending on where the laser is focused, it bounces off
one layer or the other. The lower layer needs dlightly larger pits and lands to be
read reliably, so its capacity is dightly smaller than the upper layer's.

Double-sided disks are made by taking two 0.6-mm single-sided disks and
gluing them together back to back. To make the thicknesses of al versions the
same, a single-sided disk consists of a 0.6-mm disk bonded to a blank substrate
(or perhaps in the future, one consisting of 133 minutes of advertising, in the hope
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tiiat people will be curious as to what is down there). The structure of the
double-sided, dual-layer disk is illustrated in Fig. 5-24.

Polycarbonate substrate 1

0.6 mm
Single-sided
disk
8 \\‘\\\‘ \\ Rt Adhesive Iayer\\\\k\L\\ \\ \\\
0.6 mm T - '
Single-sided
disk

Polycarbonate substrate 2

Figure 5-24. A double-sided, dual-layer DVD disk.

DVD was devised by a consortium of 10 consumer electronics companies,
seven of them Japanese, in close cooperation with the mgor Hollywood studios
(some of which are owned by the Japanese electronics companies in the consor-
tium). The computer and telecommunications industries were not invited to the
picnic, and the resulting focus was on using DVD for movie rental and sales
shows. For example, standard features include real-time skipping of dirty scenes
(to dlow parents to turn afilm rated NCI7 into one safe for toddlers), six-channel
sound, and support for Pan-and-Scan. The latter feature allows the DVD player to
dynamicaly decide how to crop the left and right edges off movies (whose
width:height ratio is 3:2) to fit on current television sets (whose aspect ratio is
4:3).

Another item the computer industry probably would not have thought of is an
intentional incompatibility between disks intended for the United States and disks
intended for Europe and yet other standards for other continents. Hollywood de-
manded this "feature" because new films are aways released first in the United
States and then shipped to Europe when the videos come out in the United States.
The idea was to make sure European video stores could not buy videos in the U.S.
too early, thereby reducing new movies' European theater sales. If Hollywood
had been running the computer industry, we would have had 3.5-inch floppy disks
in the United States and 9-cm floppy disks in Europe.

The folks who brought you single/double-sided DV Ds and single/double-layer
DVDs are atit again. The next generation also lacks a single standard due to polit-
ical bickering by the industry players. One of the new devices is Blu-ray, which
uses a 0.405 micron (blue) laser to pack 25 GB onto a single-layer disk and 50-
GB onto a double-layer disk. The other one is HD DVD, which uses the same
blue laser but has a capacity of only 15 GB (single layer) and 30 GB (double
layer). This format war has split the movie studios, the computer manufacturers,
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and the software companies. As a result of the lack of standardization, this gen-
eration is taking off rather dowly as consumers wait for the dust to settle to see
which format will win. This stupidity on the part of the industry brings to mind
George Santayanas famous remark: "Those who cannot learn from history are
doomed to repeat it."

5.4.2 Disk Formatting

A hard disk consists of a stack of aluminum, aloy, or glass platters 5.25 inch
or 35 inch in diameter (or even smaller on notebook computers). On each platter
is deposited a thin magnetizable metal oxide. After manufacturing, there is no
information whatsoever on the disk.

Before the disk can be used, each platter must receive a low-level format
done by software. The format consists of a series of concentric tracks, each con-
taining some number of sectors, with short gaps between the sectors. The format
of a sector is shown in Fig. 5-25.

Preamble Data ECC

Figure 5-25. A disk sector.

The preamble starts with a certain bit pattern that alows the hardware to
recognize the start of the sector. It aso contains the cylinder and sector numbers
and some other information. The size of the data portion is determined by the
low-level formatting program. Most disks use 512-byte sectors. The ECC field
contains redundant information that can be used to recover from read errors. The
size and content of this field varies from manufacturer to manufacturer, depending
on how much disk space the designer is willing to give up for higher reliability
and how complex an ECC code the controller can handle. A 16-byte ECC fidd is
not unusua. Furthermore, al hard disks have some number of spare sectors alo-
cated to be used to replace sectors with a manufacturing defect.

The position of sector 0 on each track is offset from the previous track when
the low-level format is laid down. This offset, called cylinder skew, is done to
improve performance. The ideais to alow the disk to read multiple tracks in one
continuous operation without losing data. The nature of the problem can be seen
by looking at Fig. 5-19(a). Suppose that a request needs 18 sectors starting at sec-
tor 0 on the innermost track. Reading the first 16 sectors takes one disk rotation,
but a seek is needed to move outward one track to get the 17th sector. By the time
the head has moved one track, sector O has rotated past the head so an entire rota-
tion is needed until it comes by again. That problem is eliminated by offsetting the
sectors as shown in Fig. 5-26.
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Figure 5-26. An illustration of cylinder skew.

The amount of cylinder skew depends on the drive geometry. For example, a
10,000-RPM drive rotates in 6 msec. If atrack contains 300 sectors, a hnew sector
passes under the head every 20 usee. If the track-to-track seek time is 800 psec,
40 sectors will pass by during the seek, so the cylinder skew should be 40 sectors,
rather than the three sectors shown in Fig. 5-26. It is worth mentioning that
switching between heads also takes afinite time, so there is head skew as well as
cylinder skew, but head skew is not very large.

As aresult of the low-level formatting, disk capacity is reduced, depending on
the sizes of the preamble, intersector gap, and ECC, as well as the number of
spare sectors reserved. Often the formatted capacity is 20% lower than the unfor-
matted capacity. The spare sectors do not count toward the formatted capacity, so
all disks of a given type have exactly the same capacity when shipped, indepen-
dent of how many bad sectors they actually have (if the number of bad sectors
exceeds the number of spares, the drive will be rejected and not-shipped).

There is considerable confusion about disk capacity because some manufact-
urers advertised the unformatted capacity to make their drives look larger than
they really are. For example, consider a drive whose unformatted capacity is
200 x 10° bytes. This might be sold as a 200-GB disk. However, &fter formatting,
perhaps only 170 x 10° bytes are available for data. To add to the confusion, the
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operating system will probably report this capacity as 158 GB, not 170 GB be-
cause software considers a memory of 1 GB to be 2°° (1,073,741,824) bytes, not
10" (1,000,000,000) bytes.

To make things worse, in the world of data communications, 1 Gbps means
1,000,000,000 hits/sec because the prefix giga redly does mean 10° (akilometer
is 1000 meters, not 1024 meters, after al). Only with memory and disk sizes do
kilo, mega, giga, and teramean 2*°, 2*°, 2*°, and 2*°, respectively.

Formatting also affects performance. If a 10,000-RPM disk has 300 sectors
per track of 512 bytes each, it takes 6 msec to read the 153,600 bytes on a track
for a data rate of 25,600,000 bytes/sec or 24.4 MB/sec. It is not possible to go
fagter than this, no matter what kind of interface is present, even if it a SCSI inter-
face at 80 MB/sec or 160 MB/sec.

Actudly reading continuously at this rate requires a large* buffer in the con-
troller. Consider, for example, a controller with a one-sector buffer that has been
given a command to read two consecutive sectors. After reading the first sector
from the disk and doing the ECC calculation, the data must be transferred to main
memory. While this transfer is taking place, the next sector will fly by the head.
When the copy to memory is complete, the controller will have to wait almost an
entire rotation time for the second sector to come around again.

This problem can be eliminated by numbering the sectors in an interleaved
fashion when formatting the disk. In Fig. 5-27(a), we see the usua numbering
pattern (ignoring cylinder skew here). In Fig. 5-27(b), we see single interleav-

ing, which gives the controller some breathing space between consecutive sectors
in order to copy the buffer to main memory.

m

Figure 5-27. (a) No interleaving, (b) Single interleaving, (c) Double interleaving.

If the copying process is very dow, the double interleaving of Fig. 5-28(c)
may be needed. If the controller has a buffer of only one sector, it does not matter
whether the copying from the buffer to main memory is done by the controller, the
main CPU, or a DMA chip; it till takes some time. To avoid the need for inter-
leaving, the controller should be able to buffer an entire track. Many modern con-
trollers can do this.

After low-level formatting is completed, the disk is partitioned. Logically,
each partition is like a separate disk. Partitions are needed to allow multiple oper-
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ating systems to coexist. Also, in some cases, a partition can be used for swap-
ping. On the Pentium and most other computers, sector O contains the master
boot record, which contains some boot code plus the partition table at the end.
The partition table gives the starting sector and size of each partition. On the Pen-
tium, the partition table has room for four partitions. If all of them are for Win-
dows, they will be called C:, D:, E:, and F: and trested as separate drives. If three
of them are for Windows and one is for UNIX, then Windows will cal its parti-
tions C:, D:, and E:. The first CD-ROM will then be F:. To be able to boot from
the hard disk, one partition must be marked as active in the partition table.

The final step in preparing a disk for use is to perform a high-level format of
each partition (separately). This operation lays down a boot block, the free stor-
age administration (free list or bitmap), root directory, and an empty file system.
It aso puts a code in the partition table entry telling which file system isused in
the partition because many operating systems support multiple incompatible file
systems (for historical reasons). At this point the system can be booted.

When the power is turned on, the BIOS runs initially and then reads in the
master boot record and jumps to it. This boot program then checks to see which
partition is active. Then it reads in the boot sector from that partition and runs it.
The boot sector contains a small program that general loads a larger bootstrap
loader that searches the file system to find the operating system kernel. That pro-
gram is loaded into memory and executed. .

5.4.3 Disk Arm Scheduling Algorithms

In this section we will look at some issues related to disk drivers in general.
First, consider how long it takes to read or write adisk block. The time required is
determined by three factors:

1. Seek time (the time to move the arm to the proper cylinder).

2. Rotational delay (the time for the proper sector to rotate under the head).
3. Actua data transfer time.

For most disks, the seek time dominates the other two times, so reducing the mean
seek time can improve system performance substantialy.

If the disk driver accepts requests one at a time and carries them out in that
order, that is, First-Come, First-Served (FCFS), little can be done to optimize
seek time. However, another strategy is possible when the disk is heavily loaded.
It is likely that while the arm is seeking on behalf of one request, other disk re-
quests may be generated by other processes. Many disk drivers maintain a table,
indexed by cylinder number, with al the pending reguests for each cylinder
chained together in alinked list headed by the table entries.

Given this kind of data structure, we can improve upon the first-come, firgt-
served scheduling algorithm. To see how, consider an imaginary disk with 40
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cylinders. A request comes in to read a block on cylinder 11. While the seek to
cylinder 11 isin progress, new requests come in for cylinders 1, 36, 16, 34, 9, and
12, in that order. They are entered into the table of pending requests, with a sepa-
rate linked list for each cylinder. The requests are shown in Fig. 5-28.

Initial Pending
position requests
1
1 15 25 30 3 ylinder

0 5

Figure 5-28. Shortest Seek First (SSF) disk scheduling algorithm.

When the current request (for cylinder 11) is finished, the disk driver has a
choice of which request to handle next. Using FCFS, it would go next to cylinder
1, then to 36, and so on. This agorithm would require am motions of 10, 35, 20,
18,25, and 3, respectively, for atotd of 111 cylinders.

Alternatively, it could aways handle the closest request next, to minimize
seek time. Given the requests of Fig. 5-28, the sequenceis 12, 9,16,1, 34, and 36,
shown as thejagged line at the bottom of Fig. 5-28. With this sequence, the am
motions are 1, 3, 7, 15, 33, and 2, for atota of 61 cylinders. This algorithm,
Shortest Seek First (SSF), cuts the totd a@m motion dmost in half compared to
FCFS.

Unfortunately, SSF has a problem. Suppose more requests keep coming in
while the requests of Fig. 5-28 are being processed. For example, if, after going to
cylinder 16, a new request for cylinder 8 is present, that request will have priority
over cylinder 1. If arequest for cylinder 13 then comes in, the arm will next go to

13, ingtead of 1. With a heavily loaded disk, the aam will tend to stay in the mid-
dle of the disk most of the time, so requests at either extreme will have to wait
until a statisdca fluctuation in the load causes there to be no requests near the
middle. Requests far from the middle may get poor service. The goals of minimal
response time and fairness are in conflict here.

Tall buildings also have to ded with this trade-off. The problem of scheduling
an devator in a tdl building is similar to that of scheduling a disk arm. Requests
come in continuoudy caling the elevator to floors (cylinders) a random. The
computer running the elevator could easly keep track of the sequence in which
customers pushed the call button and service them using FCFS or SSF.

However, mogt eevators use a different agorithm in order to reconcile the
mutudly conflicting goals of efficiency and fairness. They keep moving in the
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same direction until there are no more outstanding requests in that direction, then
they switch directions. This algorithm, known both in the disk world and the
elevator world as the elevator algorithm, requires the software to maintain 1 bit:
the current direction bit, UP or DOWN. When a request finishes, the disk or
elevator driver checks the bit. If it is UP, the arm or cabin is moved to the next
highest pending request. If no requests are pending at higher positions, the direc-
tion bit is reversed. When the bit is set to DOWN, the move is to the next lowest
requested position, if any.

Figure 5-29 shows the elevator algorithm using the same Seven requests as
Fig. 5-28, assuming the direction bit was initially UP. The order in which the cyl-
inders are serviced is 12, 16, 34, 36, 9, and 1, which yields arm mations of 1, 4,
18, 2, 27, and 8, for atotal of 60 cylinders. In this case the elevator algorithm is
dightly better than SSF, although it is usualy worse. One nice property that the
elevator algorithm has is that given any collection of requests, the upper bound on
the total motion is fixed: it isjust twice the number of cylinders.

Initial
position

\
LOlXHHEIIHXIWIXIXHiﬁiXH!J&OHHLSHHHHfXHXHH

30 35 Cylinder

Sequence of seeks

Figure 5-29. The elevator algorithm for scheduling disk requests.

———Time

A dlight modification of this algorithm that has a smaller variance in response
times (Teory, 1972) is to always scan in the same direction. When the highest
numbered cylinder with a pending request has been serviced, the arm goes to the
lowest-numbered cylinder with a pending request and then continues moving in an
upward direction. In effect, the lowest-numbered cylinder is thought of as being
just above the highest-numbered cylinder.

Some disk controllers provide a way for the software to inspect the current
sector number under the head. With such a controller, another optimization is pos-
sible. If two or more requests for the same cylinder are pending, the driver can
issue a request for the sector that will pass under the head next. Note that when
multiple tracks are present in a cylinder, consecutive reguests can be for different
tracks with no penalty. The controller can select any of its heads amost instan-
taneously (head selection involves neither arm motion nor rotational delay).
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If the disk has the property that seek time is much faster than the rotational
delay, then a different optimization should be used. Pending requests should be
sorted by sector number, and as soon as the next sector is about to pass under the
head, the arm should be zipped over to the right track to read or write it.

With a modern hard disk, the seek and rotational delays so dominate per-
formance that reading one or two sectors at a time is very inefficient. For this rea-
son, many disk controllers always read and cache multiple sectors, even when
only one is requested. Typically any request to read a sector will cause that sector
and much or al the rest of the current track to be read, depending upon how much
space is available in the controller's cache memory. The disk described in Fig.
5-18 has a4-MB cache, for example. The use of the cache is determined dynami-
caly by the contraller. In its smplest mode, the cache is divided into two sec-
tions, one for reads and one for writes. If a subsequent read can be satisfied out of
the controller's cache, it can return the requested dataimmediately.

It is worth noting that the disk controller's cache is completely independent of
the operating system's cache. The controller's cache usualy holds blocks that
have not actually been requested, but which were convenient the read because
they just happened to pass under the head as a side effect of some other read. In
contrast, any cache maintained by the operating system will consist of blocks that
were explicitly read and which the operating system thinks might be needed again
in the near future (e.g., adisk block holding a directory block).

When severa drives are present on the same controller, the operating system
should maintain a pending request table for each drive separately. Whenever any
drive is idle, a seek should be issued to move its arm to the cylinder where it will
be needed next (assuming the controller allows overlapped seeks). When the cur-
rent transfer finishes, a check can be made to see if any drives are positioned on
the correct cylinder. If one or more are, the next transfer can be started on a drive
that is aready on the right cylinder. If none of the arms is in the right place, the
driver should issue a new seek on the drive that just completed a transfer and wait
until the next interrupt to see which arm gets to its destination first.

It is important to realize that all of the above disk scheduling algorithms
tacitly assume that the real disk geometry is the same as the virtual geometry. If it
is not, then scheduling disk requests makes no sense because the operating system
cannot really tell whether cylinder 40 or cylinder 200 is closer to cylinder 39. On
the other hand, if the disk controller can aceept multiple outstanding requests, it
can use these scheduling algorithms internally. In that case, the algorithms are
till valid, but one level down, inside the controller.

5.4.4 Error Handling

Disk manufacturers are constantly pushing the limits of the technology by
increasing linear bit densities. A track midway out on a 5.25-inch disk has a cir-
cumference of about 300 mm. If the track holds 300 sectors of 512 bytes, the
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linear recording density may be about 5000 bits'/mm taking into account the fact
that some space is lost to preambles, ECCs, and intersector gaps. Recording 5000
bits'/mm requires an extremely uniform substrate and a very fine oxide coating.
Unfortunately, it is not possible to manufacture a disk to such specifications with-
out defects. As soon as manufacturing technology has improved to the point
where it is possible to operate flawlesdy at such densities, disk designers will go
to higher densities to increase the capacity. Doing so will probably reintroduce
defects.

Manufacturing defects introduce bad sectors, that is, sectors that do not cor-
rectly read back the value just written to them. If the defect is very small, say,
only a few bits, it is possible to use the bad sector and just let the ECC correct the
errors every time. If the defect is bigger, the error cannot be masked.

There are two general approaches to bad blocks: deal with them in the con-
troller or dea with them in the operating system. In the former approach, before
the disk is shipped from the factory, it is tested and a list of bad sectors is written
onto the disk. For each bad sector, one of the spares is substituted for it.

There are two ways to do this substitution. In Fig. 5-30(a), we see a single
disk track with 30 data sectors and two spares. Sector 7 is defective. What the
controller can do is remap one of the spares as sector 7 as shown in Fig. 5-30(b).
The other way is to shift all the sectors up one, as shown in Fig. 5-30(c). In both
cases the controller has to know which sector is which. It can keep trade of this
information through internal tables (one per track) or by rewriting the preambles

to give the remapped sector numbers. If the preambles are rewritten, the method
of Fig. 5-30(c) is more work (because 23 preambles must be rewritten) but ulti-
mately gives better performance because an entire track can still be read in one
rotation.

Figure 5-30. (a) A disk track with a bad sector, (b) Substituting a spare for the
bad sector, (c) Shifting all the sectors to bypass the bad one.

Errors can also develop during normal operation after the drive has been
installed. The first line of defense upon getting an error that the ECC cannot hand-
leistojust try the read again. Some read errors are transient, that is, are caused by
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specks of dust under the head and will go away on a second attempt. If the con-
troller notices that it is getting repeated errors on a certain sector, it can switch to
a spare before the sector has died completely. In thisway, no data are lost and the
operating system and user do not even notice the problem. Usually, the method of
Fig. 5-30(b) has to be used since the other sectors might now contain data. Using
the method of Fig. 5-30(c) would require not only rewriting the preambles, but
copying dl the data as well.

Earlier we said there were two general approaches to handling errors: handle
them in the controller or in the operating system. If the controller does not have
the capability to transparently remap sectors as we have discussed, the operating
system must do the same thing in software. This means that it must first acquire a
list of bad sectors, either by reading them from the disk, or smply testing the en-
tire disk itself. Once it knows which sectors, are bad, it can build remapping tables.
If the operating system wants to use the approach of Fig. 5-30(c), it must shift the
datain sectors 7 through 29 up one sector.

If the operating system is handling the remapping, it must make sure that bad
sectors do not occur in any files and also do not occur in the free list or bitmap.
One way to do thisisto create a secret fde consisting of al the bad sectors. If this
fde is not entered into the fde system, users will not accidentally read it (or worse
ye, freeit).

However, there is still another problem: backups. If the disk is backed up fde
by fde, it is important that the backup utility not try to copy the bad block fde. To
prevent this, the operating system has to hide the bad block fde so well that even a
backup utility cannot find it. If the disk is backed up sector by sector rather than
file by file, it will be difficult, if not impossible, to prevent read errors during
backup. The only hope is that the backup program has enough smarts to give up
after 10 failed reads and continue with the next sector.

Bad sectors are not the only source of errors. Seek errors caused by mechani-
cd problems in the arm also occur. The controller keeps track of the arm position
internally. To perform a seek, it issues a series of pulses to the arm motor, one
pulse per cylinder, to move the arm to the new cylinder. When the arm gets to its
destination, the controller reads the actual cylinder number from the preamble of
the next sector. If the arm is in the wrong place, a seek error has occurred.

Most hard disk controllers correct seek errors automatically, but most floppy
controllers (including the Pentium's) just set an error bit and leave the rest to the
driver. The driver handles this error by issuing a recalibrate command, to move
the arm as far out as it will go and reset the controller's internal idea of the current
cylinder to 0. Usualy this solves the problem. If it does not, the drive must be
repaired.

As we have seen, the controller is realy a specialized little computer, com-
plete with software, variables, buffers, and occasionally, bugs. Sometimes an
unusua sequence of events, such as an interrupt on one drive occurring simultan-
eoudy with a recaibrate command for another drive will trigger a bug and cause
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the controller to go into a loop or lose track of what it was doing. Controller de-
signers usualy plan for the worst and provide a pin on the chip which, when
asserted, forces the controller to forget whatever it was doing and reset itself. If all
else fails, the disk driver can set a hit to invoke this signal and reset the controller.
If that does not help, al the driver can do is print amessage and give up.

Recalibrating a disk makes a funny noise but otherwise normally is not dis-
turbing. However, there is one situation where recalibration is a serious problem:
systems with real-time constraints. When a video is being played off a hard disk,
or files from a hard disk are being burned onto a CD-ROM, it is essential that the
bits arrive from the hard disk at a uniform rate. Under these circumstances, recali-
brations insert gaps into the bit stream and are therefore unacceptable. Special
drives, caled AV disks (Audio Visual disks), which never recdibrate are avail-
able for such applications.

5.4.5 Stable Storage

As we have seen, disks sometimes make errors. Good sectors can suddenly
become bad sectors. Whole drives can die unexpectedly. RAJDs protect against
a few sectors going bad or even a drive faling out. However, they do not protect
against write errors laying down bad data in the first place. They also do not pro-
tect against crashes during writes corrupting the original data without replacing
them by newer data.

For some applications, it is essential that data never be lost or corrupted, even
in the face of disk and CPU errors. Ideally, a disk should simply work al the time
with no errors. Unfortunately, that is not achievable. What is achievable is a disk
subsystem that has the following property: when awrite is issued to it, the disk ei-
ther correctly writes the data or it does nothing, leaving the existing data intact.
Such a system is called stable storage and is implemented in software (Lampson
and Sturgis, 1979). The god is to keep the disk consistent at al costs. Below we
will describe a dight variant of the original idea.

Before describing the algorithm, it is important to have a clear model of the
possible errors. The model assumes that when a disk writes a block (one or more
sectors), either the write is correct or it is incorrect and this error can be detected
on a subsequent read by examining the values of the ECC fields. In principle,
guaranteed error detection is never possible because with a, say, 16-byte ECC
field guarding a 512-byte sector, there are 2*°*° data values and only 2'** ECC
values. Thus if ablock is garbled during writing but the ECC is not, there are bil-
lions upon hillions of incorrect combinations that yield the same ECC. If any of
them occur, the error will not be detected. On the whole, the probability of ran-
dom data having the proper 16-byte ECC is about 2"***, which is smaII enough
that we will call it zero, even though it isreally not.

The model also assumes that a correctly written sector can spontaneously go
bad and become unreadable. However, the assumption is that such events are so
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rare that having the same sector go bad on a second (independent) drive during a
reasonable time interval (e.g., 1 day) issmall enough to ignore.

The modd aso assumes the CPU can fail, in which case it just stops. Any
disk write in progress at the moment of failure also stops, leading to incorrect data
in one sector and an incorrect ECC that can later be detected. Under dl these con-
ditions, stable storage can be made 100% reliable in the sense of writes either
working correctly or leaving the old data in place. Of course, it does not protect
against physical disasters, such as an earthquake happening and the computer fal-
ling 100 meters into a fissure and landing in a pool of boiling magma. It is tough
to recover from this condition in software.

Stable storage uses a pair of identical disks with the corresponding blocks
working together to form one error-free block. In the absence of errors, the cor-
responding blocks on both drives are the same. Either one can be read to get the
same result. To achieve this goal, the following three operations are defined:

1. Stable writes. A stable write consists of first writing the block on
drive 1, then reading it back to verify that it was written correctly. |If
it was not written correctly, the write and reread are done again up to
n times until they work. After n consecutive failures, the block is
remapped onto a spare and the operation repeated until it succeeds,
no matter how many spares have to be tried. After the write to drive
1 has succeeded, the corresponding block on drive 2 is written and
reread, repeatedly if need be, until it, too, finaly succeeds. In the
absence of CPU crashes, when a stable write completes, the block
has correctly been written onto both drives and verified on both of
them.

2. Stablereads. A stable read first reads the block from drive 1. If this
yields an incorrect ECC, the read is tried again, up to n times. If al
of these give bad ECCs, the corresponding block is read from drive
2. Given the fact that a successful stable write leaves two good cop-
ies of the block behind, and our assumption that the probability of the
same block spontaneously going bad on both drives in a reasonable
timeinterval is negligible, a stable read always succeeds.

3. Crash recovery. After a crash, a recovery program scans both disks
comparing corresponding blocks. If a pair of blocks are both good
and the same, nothing is done. If one of them has an ECC error, the
bad block is overwritten with the corresponding good block. If apair
of blocks are both good but different, the block from drive 1 is writ-
ten onto drive 2.

In the absence of CPLjg|"ashes, this scheme always works.because stable
writes always write two valid copies of every block and spontaneous errors are as-
sumed never to occur on both corresponding blocks at the same time. What about

in the presence of CPU crashes during stable writes? It depends on precisely
when the crash occurs. There are five possihilities, as depicted in Fig. 5-31.
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Figure 5-31. Analysis of the influence of crashes on stable writes.

In Fig. 5-31(a), the CPU crash happens before either copy of theblock is writ-
ten. During recovery, neither will be changed and the old vaue will continue to
exist, which is allowed.

In Fig. 5-31(b), the CPU crashes during the write to drive 1, destroying the
contents of the block. However the recovery program detects this error and re-
stores the block on drive 1 from drive 2. Thus the effect of the crash is wiped out
and the old state is fully restored.

In Fig. 5-31(c), the CPU crash happens after drive 1 is written but before
drive 2 is written. The point of no return has been passed here: the recovery pro-
gram copies the block from drive 1 to drive 2. The write succeeds.

Fig. 5-31(d) is like Fig. 5-31(b): during recovery, the good block overwrites
the bad block. Again, the final value of both blocks is the new one.

Finally, in Fig. 5-31(e) the recovery program sees that both blocks are the
same, so neither is changed and the write succeeds here too.

Various optimizations and improvements are possible to this scheme. For star-
ters, comparing dl the blocks pairwise after a crash is doable, but expensive. A
huge improvement is to keep track of which block was being written during a
stable write so that only one block has to be checked during recovery. Some com-
puters have a small amount of nonvolatile RAM, which is a special CMOS mem-
ory powered by a lithium battery. Such batteries last for years, possibly even the
whole life of the computer. Unlike main memory, which is lost &fter a crash, non-
volatile RAM is not lost after a crash. The time of day is normally kept here (and
incremented by a specia circuit), which is why computers gtill know what time it
is even after having been unplugged.

Suppose that a few bytes of nonvolatile RAM are available for operating sys-
tem purposes. The stable write can put the number of the block it is about to up-
date in nonvolatile RAM before starting the write. After successfully completing
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the stable write, the block number in nonvolatile RAM is overwritten with an
invaid block number, for example, -1. Under these conditions, after a crash the
recovery program can check the nonvolatile RAM to see if a stable write hap-
pened to be in progress during the crash, and if so, which block was being written
when the crashed happened. The two copies of the block can then be checked for

correctness and consistency.

If nonvolatile RAM is not available, it can be simulated as follows. At the
start of astable write, afixed disk block on drive 1 is overwritten with the number
of the block to be stably written. This block is then read back to verify it. After
getting it correct, the corresponding block on drive 2 is written and verified. When
the stable write completes correctly, both blocks are overwritten with an invalid
block number and verified. Again here, after acrash it is easy to determine wheth-
er or not a stable write was in progress during the crash. Of course, this technique
requires eight extra disk "operations to write a stable block, so it should be used
exceedingly sparingly.

One lagt point is worth making. We assumed that only one spontaneous decay
of a good block to a bad block happens per block pair per day. If enough days go
by, the other one might go bad too. Therefore, once a day a complete scan of both
disks must be done repairing any damage. That way, every morning both disks are
always identical. Even if both blocks in a pair go bad within a period of a few
days, al errors are repaired correctly.

5.5 CLOCKS

Clocks (also called timers) are essential to the operation of any multipro-
grammed system for a variety of reasons. They maintain the time of day and pre-
vent one process from monopolizing the CPU, among other things. The clock
software can take the form of a device driver, even though a clock is neither a
block device, like a disk, nor a character device, like a mouse. Our examination of
clocks will follow the same pattern as in the previous section: first alook at clock
hardware and then alook at the clock software.

5.5.1 Clock Hardware

Two types of clocks are commonly used in computers, and both are quite dif-
ferent from the clocks and watches used by people. The simpler clocks are tied to
the 110- or 220-volt power line and cause an interrupt on every voltage cycle, at
50 or 60 Hz. These clocks used to dominate, but are rare howadays.

The other kind of clock is built out of three components: a crystal oscillator, a
counter, and a holding register, as shown in Fig. 5-32. When a piece of quartz
crystal is properly cut and mounted under tension, it can be made to generate a
periodic signa of very great accuracy, typicaly in the range of several hundred
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megahertz depending on the crystal chosen. Using electronics, this base signa
can be multiplied by a small integer to get frequencies up to 1000 MHz or even
more. At least one such circuit is usually found in any computer, providing a syn-
chromzmg signa to the computer's various circuits. This signd is fed into the
counter to make it count down to zero. When the counter gets to zero, it causes a
CPU interrupt.

Crysal oscillator

—IDIl—
j—  Counter isdecremented at each pulse

Holding register is used to load the counter

Figure 5-32. A programmable clock.

Programmable clocks typically have several modes of operation. In one-shot
mode, when the clock is started, it copies the vaue of the holding register into the
counter and then decrements the counter at each pulse from the crystal. When the
counter gets to zero, it causes an interrupt and stops until it is explicitly started
again by the software. In square-wave mode, after getting to zero and causing the
interrupt, the holding register is automatically copied into the counter, and the

whole process is repeated again indefinitely. These periodic interrupts are called
clock ticks.

The advantage of the programmable clock is that its interrupt frequency can
be controlled by software. If a 500-MHz crystal is used, then the counter is pulsed
every 2 nsec. With (unsigned) 32-bit registers, interrupts can be programmed to
occur at intervals from 2 nsec to 8.6 sec. Programmable clock chips usualy con-
tain two or three independently programmable clocks and have many other
options as well (e.g., counting up instead of down, interrupts disabled, and more).

To prevent the current time from being lost when the computer's power is
turned off, most computers have a battery-powered backup clock, implemented
with the kind of low-power circuitry used in digital watches. The battery clock
can be read at startup. |f the backup clock is not present, the software may ask the
user for the current date and time. There is also a standard way for a networked
system to get the current time from a remote host. In any case the time is then

trandated into the number of clock ticks since 12 A.M. UTC (Universal Coordi-
nated Time) (formerly known as Greenwich Mean Time) on Jan. 1, 1970, as
UNIX does, or since some other benchmark moment. The origin of time for Win-
dows is Jan. 1, 1980. At every clock tick, the real time is incremented by one
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count. Usually utility programs are provided to manually set the system clock and
the backup clock and to synchronize the two clocks.

5.5.2 Clock Software

Ail the clock hardware does is generate interrupts at known intervals. Every-
thing else involving time must be done by the software, the clock driver. The ex-
act duties of the clock driver vary among operating systems, but usually include
most of the following:

1. Maintaining the time of day.
Preventing processes from running longer than they are allowed to.

Accounting for CPU usage. £
Handling the alarm system call made by user processes.

o > v N

Providing watchdog timers for parts of the system itsdlf.
6. Doing profiling, monitoring, and statistics gathering.

The firgt clock function, maintaining the time of day (also called the real
time) is not difficult. It just requires incrementing a counter at each clock tick, as
mentioned before. The only thing to watch out for is the number of bits in the
time-of-day counter. With a clock rate of 60 Hz, a 32-bit counter will overflow in
just over 2 years. Clearly the system cannot store the real time as the number of
tickssince Jan. 1, 1970in 32 hits.

Three approaches can be taken to solve this problem. The first way isto use a
64-bit counter, although doing so makes maintaining the counter more expensive
since it has to be done many times a second. The second way is to maintain the
time of day in seconds, rather than in ticks, using a subsidiary counter to count
ticks until a whole second has been accumulated. Because 2°* seconds is more
than 136 years, this method will work until the twenty-second century.

The third approach is to count in ticks, but to do that relative to the time the
system was booted, rather than relative to a fixed externa moment. When the
backup clock is read gj the user types in the real time, the Intern boot time is cal-
culated from the current time-of-day value and stored in memory in any con-
venient form. Later, when the time of day is requested, the stored time of day is
added to the counter to get the current time of day. All three approaches are
shown in Fig. 5-33.

The second clock function is preventing processes from running too long.
Whenever a process is started, the scheduler initializes a counter to the value of
that process' quantum in clock ticks. At every clock interrupt, the clock driver
decrements the quantum counter by 1. When it gets to zero, the clock driver calls
the scheduler to set up another process.
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Figure5-33. Three ways to maintain the time of day.

The third clock function is doing CPU accounting. The most accurate way to
do it is to start a second timer, distinct from the main system timer, whenever a
process is started. When that process is stopped, the timer can be read out to tell
how long the process hasrun. To do things right, the second timer should be saved
when an interrupt occurs and restored afterward.

A less accurate, but simpler, way to do accounting is to maintain a pointer to
the process table entry for the currently running process in a global variable. At
every clock tick, afield in the current process entry is incremented. In'this way,
every clock tick is "charged" to the process running at the time of the tick. A
minor problem with this strategy is that if many interrupts occur during a process
run, it is still charged for a full tick, even though it did not get much work done.
Properly accounting for the CPU during interrupts is too expensive and is rarely
done.

In many systems, a process can request that the operating system give it a
warning fter a certain interval. The warning is usually a signal, interrupt, mes-
sage, or something similar. One application requiring such warnings is network-
ing, in which a packet not acknowledged within a certain time interval must be
retransmitted. Another application is computer-aided instruction, where a student
not providing aresponse within acertain time is told the answer.

If the clock driver had enough clocks, it could set a separate clock for each re-
quest. This not being the case, it must simulate multiple virtual clocks with a sin-
gle physical clock. One way is to maintain a table in which the signal time for al
pending timers is kept, as well as a variable giving the time of the next one.
Whenever the time of day is updated, the driver checks to see if the closest signal
has occurred. If it has, the table is searched for the next one to occur.

If many signals are expected, it is more efficient to simulate multiple clocks
by chaining all the pending clock requests together, sorted on time, in a linked list,
as shown in Fig. 5-34. Each entry on the list tells how many clock ticks following
the previous one to wait before causing asignal. In this example, signals are pend-
ing for 4203,4207,4213,4215, and 4216.
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Figure 5-34. Simulating multiple timers with asingle clock.

In Fig. 5-34, the next interrupt occurs in 3 ticks. On each tick, Next signal is
decremented. When it gets to O, the signal corresponding to the first item on the
listis caused, and that item is removed from the list. Then Next signal is set to the
value in the entry now at the head of the list, in this example, 4.

Note that during a clock interrupt, the clock driver has severa things to do—
increment thered time, decrement the quantum and check for 0, do CPU account-
ing, and decrement the alarm counter. However, each of these operations has been
carefully arranged to be very fast because they have to be repeated many times a
second.

Parts of the operating system also need to set timers. These are called watch-
dog timers. For example, floppy disks do not rotate when not in use, to avoid
wear and tear on the medium and disk head. When data are needed from a floppy
disk, the motor must firgt be started. Only when the floppy disk is rotating at full
speed can 1/0 begin. When a process attempts to read from an idle floppy disk,
the floppy disk driver starts the motor and then sets a watchdog timer to cause an
interrupt after a sufficiently long time interval (because there is no up-to-speed in-
terrupt from the floppy disk itsdlf).

The mechanism used by the clock driver to handle watchdog timers is the
same as for user signals. The only difference is that when a timer goes off, instead
of causing a signal, the clock driver calls a procedure supplied by the caller. The
procedure is part of the caller's code. The caled procedure can do whatever is
necessary, even causing an interrupt, athough within the kernel interrupts are
often inconvenient and signals do not exist. That is why the watchdog mechanism
is provided. It is worth nothing that the watchdog mechanism works only when
the clock driver and the procedure to be called are in the same address space.

The last thing in our list is profiling. Some operating systems provide a me-
chanism by which a user program can have the system build up a histogram of its

program counter, o it can see where it is spending its time. When profiling is a
possibility, at every tick the driver checks to see if the current process is being
profiled, and if so, computes the bin number (arange of addresses) corresponding
to the current program counter. It then jMfements that bin by one. This mechan-
ism can aso be used to profile the system itself..
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5.5.3 Soft Timers

Most computers have a second programmable clock that can be set to cause
timer interrupts at whatever rate a program needs. This timer is in addition to the
main system timer whose functions were described above. As long as the inter-
rupt frequency is low, there is no problem using this second timer for application-
specific purposes. The trouble arrives when the frequency of the application-spe-
cific timer is very high. Below we will briefly describe a software-based timer
scheme that works well under many circumstances, even at farly high frequen-
cies. The ideais due to Aron and Druschel (1999). For more details, please see
their paper.

Generally, there are two ways to manage 1/O: interrupts and polling. Inter-
rupts have low latency, that is, they happen immediately after the event itself with
little or no delay. On the other hand, with modern CPUs, interrupts have a sub-
stantial overhead due to the need for context switching and their influence on the
pipeline, TLB, and cache.

The alternative to interrupts is to have the application poll for the event
expected itsdf. Doing this avoids interrupts, but there may be substantial latency
because an event may happen directly after a poll, in which case it waits aimost a
whole polling interval. On the average, the latency is half the polling interval.

For certaingpplications, neither the overhead of interrupts nor the latency of
polling is acceptable. Consider, for example, a high-performance network such as
Gigabit Ethernet. This network is capable of accepting or delivering a full-size
packet every 12 p.sec. To run at optima performance on output, one packet
should be sent every 12 p:sec.

One way to achieve this rate is to have the completion of a packet transmis-
sion cause an interrupt or to set the second timer to interrupt every 12 p.sec. The
problem is that this interrupt has been measured to take 4.45 ixsec on a 300 MHz
Pentium 1l (Aron and Druschel, 1999). This overhead is barely better than that of
computers in the 1970s. On most minicomputers, for example, an interrupt took
four bus cycles: to stack the program counter and PSW and to load a new program
counter and PSW. Nowadays dealing with the pipeline, MMU, TLB, and cache
adds a great deal to the overhead. These effects are likely to get worse rather than
better in time, thus canceling out faster clock rates.

Soft timers avoid interrupts. Instead, whenever the kernel is running for some
other reason, just before it returns to user mode it checks the real time clock to see
if a soft timer has expired. If the timer has expired, the scheduled event (e.g.,
packet tran