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PREFACE

Since the Second Edition was written in 1988, the pace of change in
medicine has accelerated. Changes have brought greater recognition of the
persp('(tivcs and methods of clinical epidemiology.

COlmtries throughout the world have, in their efforts to provide high
quality health care, experienced growing difficulties controlling the cost
of care. The tension between demands for care and resources to provide
it have increased the need for better information about clinical effectiveness
in setting priorities. It has become dearer that not all clinical care is effective
and that the outcomes of care are the best way of judging effectiveness.
Variations in care among clinicians and regions, not explained by patients'
needs and not accompanied by similar differences in outcomes, hilve wised
questions ilbout which practices are best. All these forces in modern society
have increased the villue of good clinical research and of those who can
perfonn and interpret this research properly.

Phenomenill advances in understanding the biology of disease, espe
cially at the molecular level, have also occurred. Discoveries in the labora
tory increase the need for good patient~basedresearch. They must be tested
in patients before they can be accepted as clinically useful. Thus the two
laboratory science and clinicill epidemiology-complement each other and
are not alternatives or competitors.

Other aspects of medicine are timeless. Piltients and physicians still face
the same kinds of questions about diagnosis, prognosis, and treiltment ilod
still value the same outcomes: to relieve suffering, restore function, and
prevent untimely death. We rely on the same basic strategies (cohort and
case-control studies, randomized trials, and the like) to answer the ques
tions. The inherent uncertainty of all clinical information, even that based
on the best studies, persists.

In preparing the third edition of this text, we have tried to take into
account the sweeping changes in medicine as well as what has not changed.
We have left the basic structure of the book intact. We updated examples
throughout in recognition that some diseases, such as AIDS, are new and
others, such as peptic ulcer disease, arc better understood.

We have tried to remember that the book's niche is as an introduction
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vi PREFACE

to clinical epidemiology and to avoid pitching the presentation to our
colleagues who already have a firm grasp of the basics. The presentation
is meant to be as simple as the topic allows. However, the field is covered
in somewhat greater depth on the belief that readers expect more of the
book now than they did when the field was new.

This edition is still primarily for clinicians who wish to develop a sys
tematic understanding of how the evidence base for patient care is devel
oped and assessed. Researchers begin with many of the same basic needs.
The text should be useful at any level of clinical training: from medical
student to practicing clinician.
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1

INTRODUCTION

A 51-year-old man asks to sec you because of chest pain. He was well
until 2 weeks ago, when he noticed tightness in the center of his chest
while walking uphill. The tightness stopped after 2 to 3 min of rest. A
similar discomfort occurred several times since then, sometimes during
exercise and sometimes at rest. He smokes one pack of cigarettes per day
and has been told that his blood pressure is "a little high." He is otherwise
well and takes no medications. However, he is worried about his health,
particularly about heart disease. A complete physical examination
and resting electrocardiogram are normal except for a blood pressure of
150/96.

This patient is likely to have many questions. Am 1 sick? How sure are
you? If Tam sick, what is causing my illness? How will it affect me? What
can be done about it? How much will it cost?

As the clinician caring for this patient, you must respond to these ques
tions and use them to guide your course of action. Ts the probability of
serious, treatable disease high enough to proceed immediately beyond
simple explanation and reassurance to diagnostic tests? How well do vari
ous tests distinguish among the possible causes of chest pain: ilngina pecto
ris, esophageal spilsm, muscle strain, anxiety, and the like. For example,
how helpful will an exercise electrocardiogram be in either confirming or
ruling out coronary artery disease? Tf coronary disease is found, how long
can the patient expect to have the pain? Will the condition shorten his
life? How likely is it that other complications-congestive heart failure,
myocardial infarction, or atherosclerotic disease of other organs-will oc
cur? Will reduction of his risk factors for coronary disease-cigareUt> smok
ing and hypertension-reduce his risk? If medications control the pain,
should the patient have coronary ilftery bypass surgery anyway?

Clinicians use various sources of information to answer these questions:
their own experiences, the advice of their colleagues, and the medical
literature. In general, they depend on past observations on other similar
patients to predict what will hilppen to the patient at hand. The manner
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2 CLINICAL EPIDEMIOLOGY

in which such observations are made and interpreted determines whether
the conclusions they reach are valid, and thus how helpful the conclusions
will be to patients.

Clinical Epidemiology
Clinical epidemiology is the science of making predictions about indi

vidual patients by counting clinical events in similar patients, using strong
scientific methods for studies of groups of patients to ensure that the pre
dictions are accurate. The purpose of clinical epidemiology is to develop
and apply methods of clinical observation that will lead to valid conclu
sions by avoiding being misled by systematic error and chance. It is one
important approach to obtaining the kind of information clinicians need
to make good decisions in the care of patients.

CLINICAL MEDICINE AND EPIDEMIOLOGY

The term clinical epidemiology is derived from its two parent disciplines:
clinical medicine and epidemiology. It is "clinical" because it seeks to
answer clinical questions and to guide clinical decision making with the
best available evidence. It is "epidemiologic" because many of the methods
used to answer these questions have been developed by epidemiologists
and because the care of individual patients is seen in the context of the
larger population of which the patient is a member.

Clinical medicine and epidemiology began together (1). The founders
of epidemiology were, for the most part, clinicians. It is only during this
century that the h\'o disciplines drifted apart, with separate schools, train
ing, journals, and opportunities for employment. More recently, clinicians
and epidemiologists have become increasingly aware that their fields inter
relate and that each is limited without the other (2).

TRADITIONAL CLINICAL PERSPECTIVE

Clinicians have a special set of experiences and needs that has condi
tioned how they go about answering clinical questions. They are, by and
large, concerned with individual patients. They know all of their patients
personally; take their own histories; do their own physical examinations;
and they accept an intense, personal responsibility for each patient's wel~

fare. As a result, they tend to see what is distinctive about each one and
are reluctant to lump patients into crude categories of risk, diagnosis, or
treatment and to express patients' membership in these categories as a
probability.

Because their work involves the care of a succession of individual pa
tients and is demanding in its own right, clinicians tend to be less interested
in patients who have not come to their attention because they are in some
other medical setting or are not under medical care at all-even though
these patients may be just as sick as the patients they see.
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Clinical training has been oriented towilfd the mechanisms of disease
through the shldy of biochemistry, anatomy, physiology, and other tradi
tional basic sciences. These sciences powerfully influence medical students
during their formative years and are a predominant force in clinical re
search and publications. This training fosters the belief that to understand
the detailed processes of disease in individual patients is to understand
medicine. The implication is that one can predict the course of disease and
select appropriate treatments through knowledge of the mechanisms of
disease.

THE NEED FOR AN ADDITIONAL "BASIC SCIENCE"

This traditional approach serves clinicians well under the right circum
stances. It has identified many promising interventions-for example, vac
cines, antimicrobial and vasoactive drugs, and synthetic hormones. It
works well for correcting acid-base abnormalities and diagnosing and
treating nerve compressions.

However, clinical predictions from knowledge of the biology of disease
should ordinarily be considered hypotheses, to be tested by clinical re
search, about what might transpire in patients, because the mechanisms
are only partly understood and many other factors in the genetic, physical,
and social environments also affect outcome. For example, it has been
shown, despite predictions to the contrary, that feeding diabetics simple
sugars produces no worse metabolic effects than feeding them complex
sugars, that some antiarrhythmic drugs actually cause arrhythmias, and
that drugs that favorably affect the rheologic properties of sickle cells do
not necessarily reduce the frequency and severity of sickle cdl crises.

Personal experience is also a guide to clinical decision making. However,
no one clinician can have enough direct experience to recognize all the
subtle, long-term, interacting relationships that characterize most chronic
diseases (see Chapter 6).

TIwrefore, for clinicians who intend to make up their own minds about
the soundness of clinical information, some understanding of clinical epi
demiology is as necessary as an understanding of anatomy, pathology,
biochemistry, and pharmacology. Indeed, clinical epidemiology is one of
the basic sciences, a foundation on which modern medicine is practiced.

ELEMENTS OF CLINICAL EPIDEMIOLOGY

Personal experience and medicine's basis in the biology of disease are
both valuable, but they do not take into account some of the realities of
clinical science, which might be summarized as follows:

• In most clinical situations the diagnosis, prognosis, and results of treat
ment are Wlcertain for individual patients and, therefort', must be ex
pressed ,1S probabilities
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• Probability for an individual patient is best estimated by rderring to
past experience with groups of similar patients

• Because clinical observations are made on people who are free to do as
they please and by clinicians with variable skills and biases, the observa
tions may be affected by systematic errors that can cause misleading
conclusions

• All observations, including clinical ones, are also influenced by the play
of chance

• To avoid being mislead, clinicians should rely on observations that are
based on sound scientific principles, including ways to reduce bias and
estimate the role of chance.

THE SOCIAL CONTEXT OF CLINICAL EPIDEMIOLOGY

Important forces in modern society have accelerated the recognition of
dinical epidemiologic methods and perspectives. The costs of medical care
are rising beyond the point where even the most affluent societies are able
to pay for all the care people want. Studies have shown wide variation in
clinical practices without corresponding variation in outcomes of care,
suggesting that not all common and expensive practices are usdul. More
rigorous methods of evaluating clinical evidence are being developed and
are valued by decision makers. These observations have led to the consen
sus that clinical care should be based on the strongest possible research
and should be judged by the outcomes it achieves at a cost society can
afford. Also, individual patients are increasingly seen in relation to the
larger group of which they are members, both to make accurate predictions
about them and to assist in deciding which uses of limited medical re
sources do the most good for the most people.

Basic Principles
The basic purpose of clinical epidemiology is to foster methods of clini

cal observation and interpretation that lead to valid conclusions. The most
credible answers to clinical questions are based on the fo]]owing principles.

CLINICAL QUESTIONS

Types of questions addressed by clinical epidemiology are listed in
Table 1.1. These are the same questions confronting the doctor and patient
in the example presented at the beginning of this chapter. They are at issue
in most doctor-patient encOlmters.

HEALTH OUTCOMES

The clinical events of primary interest in clinical epidemiology are the
health outcomes of particular concern to patients and those caring for them
(Table 1.2). They are the events doctors try to understand, predict, interpret,
and change when caring for patients. An important distinction between
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Table 1.1
Clinical Questions

Question

Abnormality
Diagnosis
Frequcncy
Risk
Prognosis
Treatment
Prevention

Cause

Cost

Is the patient sick or well"!
How accurate are tests uscd to diagnose disease?
How oftcn docs a disease occur')
What factors are associated with an increased risk ot disease?
What are the consequences of having a disease?
How does treatment change the course of disease?
Docs an interJcntion on wcll peoplc keep disease from arising? DOGS

early detection and treatment improve the course of disease?
What conditions lead to disease? What me the pathogenetic

mcchanisms ot disease')
How much will care for an illness cost?

Table 1.2
Outcomes of Disease {the Five Ds)B

Dcath
DiseaseD
Discomfort
Disability
Dissatisfaction

A barj outcome it untimely
A set of symptoms, physical signs, and laboratory abnormalities
Symptoms such as pain, nausea, dyspnea, itching, and tinnitis
Impaired ability to go about usual actFvities at home, work, or recreation
I::motionat reaction to disease and its care, such as sadness or anger

Perhaps a sixth 0, destitution, belongs on this list because the financial cost of illness (for individ",,1 patients
or society) is an importanf oonsequElnOO of diseaso,
"Or illness, the patient's experience of disease

clinical epidemiology and other medical sciences is that the events of inter
est in clinical epidemiology can be studied directly only in intact humans
and not in animals or parts of humans, such as humeral transmitters, tissue
cultures, cell membranes, and genetic sequences,

Biologic outcomes carmot properly be substituted for clinical ones with
out direct evidence that the two are related. Table 1.3 summarizes some
biologic and clinical outcomes for the modern treatment of a patient with
human immwlOdeficiency virus (HIV) infection. It is plausible, from what
is known about the biology of HIV infection, that clinical outcomes such
as opportunistic infections, Kaposi's sarcoma, and death would be better
if an intervention reduced the decline in CD4+ cell counts and p34 antigen.
However, there is evidence that these are incomplete markers of disease
progression and response to treatment. It is too much to assume that patient
outcomes would improve as a result of the intervention just because bio
logic markers do, because many other factors might determine the end
result. Clinical decisions should, therefore, be based on direct evidence
that clinical outcomes themselves arc improved.
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Table 1.3
Biologic and Clinical Outcomes; Treatment of Human Immunodeficiency
Virus Infection

Outcomes

HIV infection

Interventions

Zidovudine
001
DOC

8iolooic

CD4+ counts
p24 antigenemia
Viremia

Clinical

Opporiunistic infections
Quality of life
Death

NUMBERS AND PROBABILITY

Association kflowrl or ,lssumod?

Clinical science is at its strongest when measurements are quantitative,
in part because numerical information allows better confirmation, more
precise communication among clinicians and between clinicians and pa
tients, and estimation of error. Clinical outcomes such as death, symptoms,
or disability, can be counted and expres~ed as numbers. Although qualita
tive observation is also important in clinical medicine, it is not part of
clinical epidemiology.

Individual patients will either experience a clinical outcome or not, but
predicting whether or not an individual will do so is seldom exact. Rather,
clinicians use the results of resemch to assign probabilities that the outcome
will occur. The clinical epidemiologic approach accepts that clinical predic
tions are uncertain, but can be quantitated, by expressing predictions as
probabi1itie~-forexample, that symptomatic coronary disease occurs in
1 in 100 middle-aged men per year, that cigarette smoking doubles one's
ri~k of dying at all ages, and that exogenous estrogens reduce the risk of
fractures from osteoporo~is by half.

POPULATIONS AND SAMPLES

In general, populatiolls are large groups of people in a defined setting
(such as North Carolina) or with a certain characteristic (such as age >65
years). These include relatively unselected people in the community, the
usual population for epidemiologic ~tudies of cause, as well as groups of
people selected because of their attendance in a clinic or hospital or because
of a characteristic such as the presence or severity of disease, as is more
often the ca~l' in clinical studies. Thus Olle speaks of the general population,
a hospitalized population, or a population of patients with a specific
disease.

A sample is a subset of a population and is selected from the population.
Clinical research i~ ordinarily carried out on samples. One is interested in
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the characteristics of the defined population but must, for practica1reasons,
estimate them by describing a sample.

BIAS

Bias is "il process at any stage of inference tending to produce results
that depart systemiltically from the true values" (3). Suppose, for example,
thilt treatment A is found La work better than treatment B. What kinds of
biases might have brought 'lbout this (lbservation if it were not true? Per
haps A is given to healthier piltients than is B; then the results could be
due to the systemiltic difference in health between the groups of patients
whether or not they were treated rather than to differences in the effective
neSS of treatment. Or A might taste better than B so that p"tients take the
drug more regularly. Or A might be " new, very popular drug 'lnd B ,Ill
old one, so that researchers and patients are more inclined to think th<lt
the new drug works better whether or not it really does. All of these 'lre
examples of potential biases.

Observations on patients (whether for p"tlent care or research) <lre par
ticularly susceptible to bias. The process tends to be just plain untidy. As
participants in a study, human beings h"ve the disconcerting habit of doing
as they please and not necessarily v"hat would be required for producing
scientifically rigorous answers. When researchers attempt to conduct 'ln
experiment with them, as one might in a laboratory, things tend to go
wrong. Some people refuse to participate, \vhi1c others drop out or choose
ilnother treatment. Wh'lt is more, some of the most important things about
humans-feelings, comfort, performance-are generally more difficult to
measure than physical characteristics, such as blood pressure or serum
sodium. Then, too, clinicians arc inclined to believe that their therapies are
successful. (Most patients would not want a physician who felt otherwise.)
This attitude, so impurtant in the practice of medicine, makes clinical obser
vations particularly vu]ncr<lble to bias.

Although dozens of biases have been defined (4), most fall into one of
three broild categories (Table 1.4).

Scll'ctiOil IJins occurs when comparisons are made behveen groups of p"
bents that differ in \vays, other than the main f"dors tmder study, that <lffecl

Table 1.4
Bias in Clinical Observation

• Selection bidS occurs wherl c:ornp8risons are Iliade hetween groups of patients th<lt differ
in (jeterrnillant~; of outcoille other than the one under study,

• Measurement bl~gs occurs when the metllods of measurement me dissimilJr among
groups of patients,

• Confounding bias occurs when two fuctors [lrc <lssoci8tcd {"'trilvet togdll,~r"i dnd H18
effect of one is confused with or distorted by tile dfect of the on1er
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the outcome of the shldy. Croups of patients often differ in many ways
age, sex, severity of disease, the presence of other diseases, and the care they
receive. If we compare the experience of two groups that differ on a spedfic
characteristic of interest (for example, a treatment or a suspected cause of
disease) but are dissimilar in these other ways and the differences are them
selves related to outcome, the comparison is biased imd little can be concluded
about the independent effects of the characteristic of interest. In the example
used earlier, selection bias would have occurred if patients given treahnent
A were healthier than those givL>tl treahnent B.

Measurement bins occurs when the methods of measurement are consis
tently dissimilar in different groups of patients. An example of a potential
measurement bias would be the use of information taken from medical
records to determine if women on birth control pills were at greater risk
for thromboembolism than those not on the Pill. Suppose a study were
made comparing the frequency of oral contraceptive use among women
admitted to a hospital because of thrombophlebitis and a group of women
admitted for other reasons. It is entirely possible that women with throm
bophlebitis, if aware of the reported association between estrogens and
thrombotic events, might report use of oral contraceptives more completely
than women without thrombophlebitis, because they had already heard
of the association. For the same reasons, clinicians might obtain and record
infonnation about oral contraceptive use more completely for women with
phlebitis than for those without it. If so, an association between oral contra
ceptives and thrombophlebitis might be observed because of the way in
which the history of exposure was reported and not because there really
is an association.

Corifoundillg bias occurs when two factors <lfe associated with each other,
or "travel together," and the effect of one is confused with or distorted by
the effect of the other. This could occur because of selection bias, by chance,
or because the two really are associated in nature.

Lxample Is herpesvirus infection a cau~e of cervical cancer) It has becn
con~i~tently observed that the prevalence of herpesvirus infection is higher
in women with cervical cancer than in those without. However, both herpes
virus ilnd a number of other infectious agents, themselve~ possible causes of
cervica Icancer, arc transmitted by sexual contact. In particular, there i~ strong
evidence that human papillomavirus infection Icads to cervical cancer. Per
haps the higher prevalence of herpesviru~ infection in women with cervical
cancer i~ only a consequence of greater sexual activity and so is indirectly
related to a true cause, which is also transmitted sexually (Fig. 1.1). To show
that herpesvirus infection is ,lssociated with cervical cancer independently
of other agents, it would be necessary to observe the effecls of herpesvirus
frcc of the other factors related to increased sexual activity (5).

Selection bias and confounding bias are not mutually exclusive. They arc
described separately, however, because they present problems at different
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MAIN QUESTION

CONFOUNDING
FACTORS

I
sexual activity

! I
HPV

Figure 1.1. Confounding bias: Is herpesvirus 2 (HSV-2) a possible cause of cervical
cancer? Only if its association with cervical cancer is independent of human papillo
mavirus (HPV) infection, known to be a cause of cervical cancer. Both viruses are
related to increased sexual activity.

points in a clinical observation or study. Selection bias is at issue primarily
when patients arc chosen for observation, and so it is important in the
design of a study. Confounding bias must be dealt with during analysis
of the data, once the observations have beell made.

Often in the Silme study more thiln one bias operiltes, i1S in the following
hypothetical example.

Example A study was done to de\('rmine whether reglJl;u exercise low
ers the risk of coronary heart disease (CHD). An exercise program was offered
to employees of a plant, and the rate of subsequent coronary events was
compared between employees who volunteer('d for the program and those
who did not volunteer. Coronilry events were determined by means of regu
lar voluntary checkups, including a careful history, an electrocardiogram,
and a review of routine health records. The group that exercised had lower
rates of CHD. However, they also smoked cigarettes less.

In this example, selection bias could be present if volunteers for the
exercise program were i1t lower risk for coronary disease even before the
program began-for example, because they had lower serum lipids or less
family history of coronary disease. Measurement bias might have occurred
because the exercise group stood a better chance of having a coronary
event detected, because more of them were examined routinely. Finally,
the conclusion that exercise lowered the risk of coronary disease might be
the result of a confoW1ding bias if the i1ssociation between exercise and
coronary events in this particular study resulted from the fact that smoking
cigarettes is a risk factor for coronary disease and the exercise group
smoked less.

A potential for bias does not mean that bias is actually present in a
particular study. For a researcher or reader to deal effectively with bias,
it is first necessary to know where and how to look for it and what can
be done about it. But one should not stop there. It is also necessary to
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determine whether bias is actually present and how large it is likely to be
to decide whether it is important enough to change the conclusions of the
study in a clinically meaningful way.

CHANCE

Observations about disease are ordinarily made on a sample of patients
rather than all those with the disease in question. Observations on a sample
of patients, even if unbiased, may misrepresent the situation in the popula
tion as a whole because of chance. However, if the observations were
repeated on many such patient samples, results for the samples would
vary about the true value. The divergence of an observation on a sample
from the tme population value, due to chance alone, is called random
mrilltiol1.

We are all familiar with chance as an explanation for why il coin does
not come up heads exactly 50'~<, of the time when it is flipped, say, 100
times. The same effect, random variation, applies when assessing the effects
of treatments A and 13, discussed earlier. Suppose all biases were removed
from a study of the relative effects of the two treatments. Suppose, further,
that the two treatments are, in reality, equally effective, each improving
about 50'10 of the patients treated. Even so, because of chance alone a single
study including small numbers of patients in each treatment group might
easily find A improving a larger proportion of patients than 13 or
vice versa.

Chance can affect all of the steps involved in clinical observations. In
the assessment of treahnents A and B, random variation occurs in the
sampling of patients for the study, the selection of treahnent groups, and
the measurements made on the groups.

Unlike bias, which deflects values in one direction or another, random
variation is as likely to result in observations above the true value as below
it. As a consequence, the mean of many unbiased observations on samples
tends to correspond to the true value in the population, even though the
results of individual small samples may not.

Statistics can be used to estimate the probability of chance (random
variation) accounting for clinical results. A knowledge of statistics can also
help reduce that probability by allowing one to formulate a better design
and analyses. However, random variation can never be totally eliminated,
so chance should always be considered when assessing the results of clini
cal observations.

The relationship betwl'en bias and chance is i11ustrated in Figure 1.2.
The measurement of diastolic blood pressure on a single patient is taken
as an example. True blood pressure can be obtained by an intraarterial
carulUla, which is SO mm Hg for this patient. But this method is not possible
for routine measurements; blood pressure is ordinarily measured indi-
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Figure 1.2. Relationship between bias and chance: Blood pressure measurements
by intraarterial cannula and sphygmomanometer.

reetly, using a sphygmomanometer. The simpler instrument is prone to
error, or deviations from the true value. In the figure, the error is repre
sented by all of the sphygmomanometer readings falling to the right of
the true value. The deviation of sphygmomanometer readings to the right
(bias) may have several explanations-for example, a poorly calibrated
sphygmomanometer, the wrong cuff size, or a deaf clinician. Bias could
also result if different sounds were chosen to represent diastolic blood
pressure. The usual end points-phase IV and phase V Korotkoff
sounds-tend to be above and below the true diastolic pressure, respec
tively, and even that is unpredictable in obese people. Individual blood
pressure readings are also subject to error because of random variation
in measurement, as illustrated by the spread of the sphygmomanometer
readings around the mean value (90 mm Hg).

The two sources of error-bias and chance-are not mUhlally exclusive.
In most sirnations, both are present. The main reason for distinguishing
between the two is that they are handled differently.

Bias can in theory be prevented by conducting clinical investigations
properly or corrected through proper data analysis. Tf not eliminated, bias
often can be detected by the discerning reader. Most of this book is about
how to recognize, avoid, or minimize bias. Chance, on the other hand,
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cannot be eliminated, but its influence can. be reduced by proper design
of research, and the remaining: error can be estima~{'dby statistics. Statistics
can also help remove the effects of known biases. However, no amount of
statistical treatment can correct for unknown biases in data. Some statisti
cians would go so far as to suggest thilt statistics not be applied to data
vulnerable to bias because of poor research design, for fear of giving false
respectability to misleading work.

INTERNAL AND EXTERNAL VALIDITY

When making: inferences about a population from observations on a
sample, two fundamental questions arise (Fig. 1.3): First, are the conclu
sions of the research correct for the people in the sample? Second, if so,
does the sample represent fairly the population of interest?

Internal validity is the degrec to which the results of a study are correct
for the sample of patients being studied. It is "internal" because it applies
to the conditions of the particular group of patients being observed and
not necessarily to others. The internal validity of clinical research is deter
mined by how we]] the design, data collection, and analyses are carried
out and is threatened by all of the biases and random variation discussed
above. For a clinical observation to be usefuL internal validity is a necessary
but not sufficient condition.

External validity (genl'ralizability) is the degree to which the results of an

All patients with the
condition of interest

INTERNAL
VALIDITY

? -

EXTERNAL
VALIDITY

(generalizability)

selection
bias

~ ~
measurement,

confounding bias

... chance 1
CONCLUSION

--

Figure 1.3. Internal and external validity,
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observation hold true in other settings. for an individual physician, it is
an answer to the question, "Assuming that the res:dts of a srudy are true,
do they apply to my patient as well?" Gcneralizability expresses the valid
ity of assuming that patients in a study arc comparable with other patients.

An wtimpeachable study, with high internal validity, may be totally
misleading if its results are genera lizcd to the wrong patients.

Example What is the risk that an abdominal aortic aneurysm will rup
ture? Clinicians seeing patients with ant:'urysms must have this information
to make wise decisions about the need for elective surgical repair. The answer
dl.'pends on which kinds of patients arc described. Among patients with
aneurysms <5 cm in diameter, above which surgt:'ry is commonly advised,
those seen in referral centers have about a 10 times greater rate of rupture
during 5 yt:'ars of follow-up than those in the general population (Fig 1.4)
(6). This may be because patients in cenlers are referred for symptoms or
sib'lls of impending rupture. If clinicians in office practice were to use the
results of research from referra 1centers to predict rupture, they would greatly
overestimate the risk and perhaps make the wrong decision about the need
for elective surgical repair.

The gcncralizability of clinical observations, even those with high inter
nal validity, is a matter of opinion about which reasonable people might
disagrce.

Example The Physician's Health Study showed th(lt low-dost:' aspirin
(325 mg every other day) prevented myocardial infarction in male physicians

30

•"••,..
~- 20
l
~•
"' 10

Population Referral
centers

Figure 1.4. Sampling bias: Range of risk of rupture (shaded area) in the next 5
years of abdominal aortic aneurysm «5.0 cm in diameter) according to whether the
patient is from the general population or a referral center (6).
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without known coronary heart disease (7). The 11,037 physicians randomly
assigned to take aspirin had a 44~;) lower rate (,f myocardial infarction than
the 11,034 assigned to take placebo. The study was C"arcfully conducted and
used a strong research design; its findings have stood up well to criticisms.
However, only healthy male physicians wefe in the study. When the results
of the study Ivere first released, clinicians had to decide whether it was
justified to i;ive aspirin to women, peopl,> with many risk fadors, and patients
who arc already known to have coronary dis<'ase. Subsequently, rlOviews of
evidence from all available studies have suggested that <lspirin is also effec
tiVIO in these other groups of people (8).

Cener<lliz<lbility can rarely be dealt with satisfactorily in anyone study.
Even a defined, geographically based population is a biased s<lmple of
larger populations; for eX<lmple, hospital patients ilre biased samples of
county residents; counties, of stiltes; states, of regions, and so on. Doing <I

study in many centers m<lY improve generaliz<lbility, but does not settle
the issue.

Usually, the best a researcher can do about generalizilbility is to ensure
intemal validity, have the study population fit the reseilrch question, and
avoid studying groups so lll1USllill that experience with them generalizes
to few other patients. It then remains for other studies, in other settings,
to extend generalizability.

Sampling bias has occurred when the sample of patients in a Shldy is
systematically different from those appropriilte for the research question
or the clinical usc of the information. Because most clinical studies take
pl<lcl' in medicill centers and beciluse patients in such centers llsually over
represent the serious cod of the disease spectrum, sampling bias in clinical
research tends to result in an exaggerated view of the seriolls nahue of
disease.

Uses of Clinical Epidemiology
Learning and applying clinical epidemiology adds time to an already

busy clinician's schedule. What can he or she expect in return?
Understanding the strengths and weaknesses of dinical evidence, such

as reports of research, gives intellectual satisfaction and confidence where
there might otherwise be bewilderment and frustration. It can increase
efficiency in acquiring sound information by allowing one to decide
quickly, from basic principles, which articles or sources of clinical informa
tion ilre credible. During interi:lction with colleagues, it provides a sounder
alternative to other ways of deciding where to invest belief in an asser
tion~lhe conviction, rhetoric, seniority, or specialty of the proponent. By
rdying on clinical epidemiology, clinicians of <111 backgrounds are on a
more equal footing, all depending mainly on the interpretation of the s<lme
set of strong studies. Finally, clinical epidemiology gives clinicians a per
spective on the extent to which their efforts, relative to other factors, such
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as the biology of disease and the physical and social environment, deter
mine health outcomes, so that they can know whdt they can and cannot
change.

For these reasons, we believe the time invested in learning clinical epide
miology is more than repaid.

Information and Decisions
The primary concerns of this book are the quality of clinical information

i:md its correct interpretation. Making decisions is another matter. True,
good decisions depend on good information; but they involve a great deal
more as well, including value judgments and the weighing of competing
risks and benefits.

In recent years, medical decision making has become a valued discipline
in its own right. The field includes qualitative studies of how clinicians
make decisions and how the process might be biased and can be improved.
It also includes quantitative methods-decision analysis, cost-benefit anal
ysis, and cost-effectiveness analysis-that present the decision-making
process in an explicit way so its components and the consequences of
assigning various probabilities and values to them can be examined.

Some aspects of decision analysis, such as evaluation of diagnostic tests,
are included in this book. However, we have elected not to go deeply into
medical decision making itself. Our justification is that decisions are only
as good as the information used to make them, and we have found enough
to say about the essentials of collecting and interpreting clinical information
to fill a book. Readers who wish to delve more deeply into medical decision
making can begin with some of the suggested readings listed at the end
of this chapter.

Organization of the Book
TIlis book is written for clinicians who wish to understand for them

selves the validity of clinical observations to be able to judge the credibility
of their own clinical observations, those of their colleagues, and research
findings in the medical literature. We have not written primarily for those
who do clinical research, but for all the rest who depend on it. However,
we believe that the basic needs of those who do and those who use clinical
research findings are similar.

Tn most textbooks of clinical medicine, information about disease is
presented as answers to traditional clinical questions: diagnosis, clinical
course, treatment, and the like. On the other hand, most books about
clinical investigation are organized around research strategies such as clini
cal trials, surveys, and case-control studies. This way of organizing a book
may serve those who perform clinical research, but it is mvkward for
clinicians.
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We have organized the book primarily according to the clinical ques
tions encountered when doctors care for patients. Figure 1.5 illustrates how
these questions correspond to the book chapters, taking lung cancer as an
example. The questions relate to the entire natural history of disease, from
the time people without lung cancer arc first exposed to risk, through
when some acquire the disease and emerge as patients, until the end results
of diseasc are manifest.

In each chapter, we describe research strategies used to answer that
chapter's clinical questions. Some strategies, such as cohort studies, are
useful for answering several different kinds of clinical questions. For the
purposes of presentation, wc have discussed each strategy primarily in
one chapter and simply referred to the discussion when the method is
relevant to other questions in other chapters.
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ABNORMALITY

Clinicians spend a great deal of time distinguishing "normal" from
"abnormal." When confronted with something grossly different from
the usual, there is Ii ttle difficulty telling the two apart. We all are fami liar
with pictures in textbooks of physical diagnosis showing massive hepa
tosplenomegaly, huge goiters, or severe changes of rheumatoid arthritis
in the hand. We can take no particular pride in recognizing this degree
of abnormality. More often, however, clinicians must make subtler dis
tinctions between normal and abnormal. Is fleeting chest pain angina
or inconsequential? Is a soft systolic heart sound a sign of valvular heart
disease or an innocent murmur? Is a slightly elevated serum alkaline
phosphatase evidence for liver disease, asymptomatic Paget's disease,
or nothing important?

Decisions about what is abnormal are most difficult among relatively
unselected patients, usually found outside of hospitals. When patients
have already been selected for special attention, as is the case in most
referral centers, it is usually clear that something is wrong. The tasks
are then to refine the diagnosis and to treat the problem. Tn primary
carl.' settings, however, patients with subtle manifestations of disease
are mixed with those with the everyday complaints of healthy people.
It is not possible to pursue all of these complaints aggressively. Which
of many patients with abdominal pain have self-limited gastroenteritis
and which have early appendicitis? Which patients with sore throat and
hoarseness have a garden variety pharyngitis and which the rare but
potentially lethal Haemophillls epiglottitis? These are examples of how
difficult, and important, distinguishing various kinds of abnormalities
can bc.

The point of distinguishing normal from abnormal is to separate out
those clinical observations that should be considered for action from
those that mn be simply noted. Observations that are thought to be
normal arC' usually described as "within norma] limits," "unremark
able," or "noncontributory" and remain buried in the body of a medical

19
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record. The abnormal findings are set out in a problem list or under the
heading "impressions" or "diagnoses" and c.re the basis for action.

Simply calling clinical findings normal or abnormill is undoubtedly
crude and results in some misclassification. The justification for taking this
approach is that it is often impractical or unnecessary to consider the raw
data in all their detail. As Bertrand Russell put it, "To be perfectly intelligi
ble one must be inaccurate, and to be perfectly accurate, one must be
unintelligible." Physicians usually choose to err on the side of being intelli
gible-to themselves and others-even at the expense of some accuracy.
Another reason for simplifying data is that each aspect of a clinician's
work ends in a decision-to pursue evaluation or to wait, to select a
treatment or reassure. Under these circumstances some sort of present/
absent classification is necessary.

Table 2.1 is an example of how relatively simple expressions of abnor
mality are derived from more complex clinical data. On the left is a typical
problem list, a statement of the patient's important medical problems. On
the right are some of the data on which the decisions to call them problems
are based. Conclusions from the data, represented by the problem list, are
by no means noncontroversial. For example, the mean of the four diastolic
blood pressure measurements is 94 mm Hg. Some might argue that this
level of blood pressure does not justify the label "hypertension," because
it is not particularly high and there are some disadvantages to telling
patients they are sick and giving them pills. Others might consider the
label fair, considering that this level of blood pressure is associated with
an increased risk of cardiovascular disease and that the risk may be re
duced by treatment. Although crude, the problem list serves as a basis
for decisions-about diagnosis, prognosis, and trcahnent-and clinical

Table 2.1
Summarization of Clinical Data: A Patient's Problem List and the Data
on Which It Is Based

Problurrl Li~l

Hypertension

2. Diabetes mellitus

J Renal insufficiency

11<lwD<l1<l

S(Neral blood pre~;slJre readings (Imn Hg):
1(0/102, 150/86. 166/92, 172/96

Glucose tolerance test:
Time (h) 0 0.5 1 ?
Jll8sm8 glucose 110 190 170 140
(rTlg/1 DD rill)

Serum chemistries:
Crealinine 2.7 mg/100 ml
Urea nitrogen 40 mg/100 ml
Bicarbonate 18 mEqll
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decisions must be made, whether actively (by additional diagno~tic tests
and treatment) or passively (by no intervention).

This chapter describes some of the ways clinicians di~tinguish normal
from abnormal. To do ~o, first it will be necessary to consider how biologic
phenomena are measured, vary, and are summarized. Then it will be possi
ble to consider how these data are used as a ba~i~ for value judgments
about what is worth calling abnormal.

Clinical Measurement

Measurement~ of clinical phenomena yield three kinds of data: nominal,
ordinal, ilnd interval.

Nominal data occur in categories without any inherent order. Examples
of nominal data are characteristics that are determined by a small set of
genes (e.g., tissue antigens, sex, inborn errors of metabolism) or are dra
matic, discrete events (e.g., death, dialysis, or surgery). These data can be
placed in categories without much concern about misdassification. Nomi
nal data that can be divided into two categories (e.g., present/absent, yes/
no, alive/dead) are called dichotomous.

Ordinal data posse~s some inherent ordering or rank, such as small to
large or good to bad, but the size of the intervals between categories cannot
be specified. Some clinical examples include 1+ to 4+ leg edema, grade~

I to VI murmurs (heard only with special effort to audible with the stetho
scope off the chest), and grades 1 to 5 muscle strength (no movement to
normal strength)

For intemal data, there is inherent order and the intelVal between successive
value~ is equal, no matter wheT(' one is on the scale. There are two types of
interval data. Continuous data can take on any value in a continuum. Exam
ples include most serum chemistries, weight, blood pressure, and partial
pressure of oxygen in arterial blood. The meaSUTem('J1t and descriptions of
continuous variables may in practice be confined to a limited number of points
on the continuum, often integers, because the precision of the measurement, or
its usc, does not warrant greater detail. For example, a particular blood glucose
reading may in fact be 1':)3.2846573 ... mg/lOO mL but simply reported as
193 mg/100 mT.. Discrete data, can take on only specific values and arc ex
presslx.! as counts. Examples of discrete data arc the number of a woman's
pregnancies and live births and the number of seizures a patient has per
month.

It is for ordinal and numerical data that the follmving question arises:
Where docs normal leave off and abnormal begin? When, for example,
does a large normal prostate become too large to be considered normal?
Clinicians are free to choose any cutoff point. Some of the reasons for the
choices will be considered later in this chapter.
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Performance of Measurements
Whatever the type of measurement, its performance can be described

in several ways, discussed below.

VALIDITY

As pointed out in Chapter 1, validity is the degree to which the data
measure what they were intended to measun'~that is, the results of a
measurement correspond to the true state of the pl~enomenon being mea
sured. Another word for validity is IIcCliracy.

foor clinical observations that can be measured by physical means, it is
relatively easy to establish validity. The observed measurement is com
pared with some accepted standard. For example, serum sodium can be
measured on an instrument recently calibrated against solutions made up
with known concentrations of sodium. Clinical laboratory measurements
are commonly subjected to extensive ilnd repeated validity checks. For
example, it is a national standard in the United States that blood glucose
measurements be monitored for accuracy by comparing readings against
high and low standards at the beginning of each day, before each technician
begins a day, and after any changes in the techniques such as a new bottle
of reagents or a new battery for the instrument. Similarly, the validity
of a physical finding Ciln be established by the results of surgery or an
autopsy.

Other clinical measurements such as pain, nausea, dyspnea, depression,
and fear cannot be verified physically. In clinical medicine, information
about these phenomena is obtained by "taking a history." More formal
and standardized approaches, used in clinical research, are structured in
terviews and questionnaires. Groups of individual questions (items) are
designed to measure specific phenomena (such as symptoms, feelings,
attitudes, knowledge, beliefs) called "constructs." Responses to questions
concerning a construct are converted to numbers and grouped together to
form "scales."

There are three general strategies for establishing the validity of mea
surements that cannot be directly verified by the physical senses.

ContCliI validily is the extent to which a particular method of measure
ment includes all of the dimensions of the construct one intends to measure
and nothing more. For example, a scale for measuring pain would have
content v<llidity if it included questions about aching, throbbing, burning,
and stinging but not about pressure, itching, nausea, tingling, and the like.

Construct validity is present to the extent that the measurement is consis
tent with other measurements of the same phellomenon. For example, the
researcher might show that responses to a sC<lle lllCilsuring pain are related
to other manifestations of the severity of pain such as sweating, moaning,
writhing, and asking for pain mediCiltions.
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Criterion villidity is present to the extent that the measurements predict
a directly observable phenomenon. for example, one might see if responses
on a scale measuring pain bear il predictable relationship to pain of known
severity: mild pain from minor abrasion, moderate pain from ordinary
headache and peptic ulcer, and severe pain from renal colic.

Validity is not, as is often asserted, either present or absent; Rather,
with these strategies one can build a case for or against the validity of a
scale, under the conditions in which it is used, so as to convince others
that the scale is more or less valid.

Because of their selection and training, physicians tend to prefer the
kind of precise measurements the physicill and biologic sciences afford,
and they avoid or discount others, especially for research. Yet relief of
symptoms and promoting satisfaction and a feeling of well-being are
among the most important outcomes of care, central concerns of patients
and doctors alike. To guide clinical decisions, research must include them,
Jest the "picrure" of medicine painted by the research be distorted.

As Feinstein (1) put it:

The term "hard" is usually applied to data that are reliable and preferably
dimensional k.g., laboratory data, demogrJphic data, and financial costs).
Hut clinical performance, convenience, anticipation, ,1nd familial data are
"soft." They depend on subjl.'ctive statements, usually expressed in words
rather than numbers, by the people who are the observers and til(' observed.

To avoid sllch soft data, the results of treatml.'nt arc commonly restricted
to laborJtory information that Cilll be objective, dinwnsional, and reliable
but it is also dehumilnized. If we are told lhat the serum cholesterol is 230
mg per 100 ml, that the chest X-rily shuws CilrdiJc enlargement, and that the
electrocardiogram has Q Wilves, we would not know whether the treated
object was a dog or a person. If we were told that capacity at work was
restored, that the Illedicine tasted good ,1nd W,lS easy to take, and that the
family was happy about the results, we would recognize a human set of
responses.

RELIABILITY

Reliability is the extent to which repeated measurements of a stable
phenomenon-by different people and instruments, at different times and
pbces-get similar results. Reproducibility and precision are other words
for this property.

The reliability of laboratory measurements is established by repeated
measures-for example, of the same serum or tissue specimen-some
times by different people and with different instruments. TIle reliability of
symptoms can be established by Shll',ving that they are similarly described
to different observers under different conditions.

The relationships between reliability and validity are shown in Figure
2.1. An instrument (laboratory apparatus or a qucstionnain') used to collect
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Figure 2.1. Validity and reliability. A, High validity and high reliability. B, Low validity
and high reliability. C, High validity and low reliability, 0, Low validity and low reliability_
Tile dotted lines represent the true values.

a large set of measurements can be valid (accurate) on the average but not
be reliable, because the measures obtained are widely scattered about the
true value. On the other hand, an instrument can be very reliable but be
systematically off the mark (inaccurate). A single measurement with poor
reliability has low validity because it is likely to be off the mark simply
because of chance alone.

RANGE

An instrument may not register very low or high values of the thing
being measured, limiting the information it conveys. Thus the "first
generation" method of measuring serum thyroid-stimulating hormone
(1'Sl I) was not useful for diagnosing hyperthyroidism or for precise titra
tion of thyroxine administration because the method could not detect low
levels of TSH. Similarly, the Activities of Daily Living scale (which mea
sures people's ability at feeding, continence, transferring, going to the toi
let, dressing, and bathing) docs not measure inability to read, write, or play
the piano-activities that might be very important to individual patients.
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RESPONSIVENESS

An instrument is responsive to the extent that its rl.:sults change as condi
tions change. For example, the New York Heart Association scale-classes
1 to IV (no symptoms, symptoms with slight and moderate exertion, and
symptoms at rest)-is not sensitive to subtle changes in congestive heart
failure, ones patients would value, whereas laboratory measurements of
ejection fraction can detect changes too subtle for patients to notice.

INTERPRETABILITY

A disadvantage of scales based on questionnaires that is not generally
shared by physical measurl'ments is that the results may not have meaning
to clinicians and patients. for example, just how bad is it to have a Zung
depression scale value of 72? To overcome this disadvantage, researchers
can "anchor" scale values to familiar phenomena-for example, by indi
cating that people with scores below 50 are considered normal and those
with scores of 70 or over are severely or extremely dl'pressl'd, requiring
immediate care.

Variation
Clinical measurements of the same phenomenon can take on a range of

values, depending on the circumstances in which they are made. To avoid
erroneous conclusions from data, clinicians should be aware of the reasons
for variation in a given siLuation and know which are likely to play a large
part, a small part, or no part aL all in what has becn observed.

Overall variation is the sum of variation related to the act of measure
ment, biologic differences within individuals from time to time, and bio
logic differences from person to person (Table 2.2).

MEASUREMENT VARIATION

All observations are subject to variation because of the performance of
the instruments and observers involved in making the measurement. The
conditions of measurement can lead to a biased result (lack of validity) or

Table 2.2
Sources of Variation

Source

Measurement
InstrumE~llt

Observer
Biologic

Within individuals
Among individlJills

Dc'ipition

The rne<m~; of rnClking the rneasuremelll
The person making the measurernent

Changes in people with tirnc and situation
Biologic differences frorn person to person
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simply random error (lack of reliability). It is possible to reduce this source
of variation by making measurements with great care and by following
standard protocols. However, when measurements involve human judg
ment, rather than machines, variation can be particularly large and difficult
to control.

Example Fetal heart rate is oftt;'n monitored by auscultation, which is
subject to observer error. Electronic monitoring gives the true ratc.Fetal heart
rates that are unusually high or low arc markers of fetal distress, suggt..sting
a need for early delivery.

Day et al. (2) compared fdal heart rates obtained by auscultation by hospi
tal st",ff with rates obtaint;'d by electronic monitoring (Fig. 2.2). When the
true fetal heart rate was in the normal range, rates by auscultation wert;'
evenly distributed about the true valu!.', i.e., there was only random error.
But when the true fetal ht;'art rak was unusually high or low, rates by auscul
tation werc bias!.'d toward normal. Low rates tended to be reported as higher
than the trut;' ratt;'s, and high rates as lower than the true rates.

This study illustrates both random and systematic errors in clinical ob
servations. In this case, the bias toward normal rates might have arisen
because the hospital staff hoped the ferus was \vell and were reluctant to
undertake a major intervention based on their observation of an abnor
mally high or low heart rate.

Variations in measurements also arise because measurements are mtlde on
only a sample of the phenomenon being described, which mtly misrepresent
the whole. Often the samplingfraction (the fraction of the whole that is included
in the sample) is very small. For example, a liver biopsy represents only about
l/JOO,OOO of the liver. Because such a small part of the whole is examined,
there is room for considerable variation from one sample to another.

If measurements are made by several different methods (e.g., different
laboratories, technicitlns, or instruments) some of the determinations may
be unreliable and/or manifest systematic differences from the correct
value, contributing to the spread of values obtained.

BIOLOGIC VARIATION

Variation also arises because of biologic chtlnges within individuals over
time. Most biologic phenomena change from moment to moment. A mea
surement at a point in time is a sample of measurements during a period
of time ilnd mtly not represent the usual value of these measurements.

Example Clinicians estimiltl' the frequency of ventricular premature de
polarization (V!'!)) to help determine the need for and effectiveness of treilt
men\. For practical rt;'asons, they may do so by making relatively brief obser
vations-perhaps feeling a pulse for 1 min or reviewing an electrocardiogram
(a record of about 10 sec). llowever, the frequency of VI'Os in a given patient
varies over time. To obtain ,1 lilrger sample of VPO rate, a portable (Holter)
monitor is sometimes used. f}ut monitoring eveil for extended periods of
time can be misll'ilding. figure 23 shows observations on one patient with
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Figure 2.2. Observer variability. Error in reporting fetal heart rate according to
whether the true rate, determined by electronic monitor, is within the normal range,
low, or high. (Redrawn from Day E, Maddern L, Wood C. Auscultation of foetal heart
rate: an assessment of its error and significance. Br Med J 1968;4:422-424.)

VPDs, similar to other patients studied (3). VPDs per hour varied from less
than 20 to 380 during a 3-day period, according to day and time of day. The
authors concluded: "To distinguish a reduction in VPD frequency attribut
able to therapeutic intervention rather than biologic or spontaneous variation
alone required a greater than 83% reduction in VPD frequency if only two
24-hour monitoring periods were compared."

Vilriation also arises because of differences among people. Biologic dif
ferences among people predominate in many situations. For example, sev
eral studies have shown that high blood pressure on single, casual mea-
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Figure 2.3. Biologic variability. The number of ventricular premature depolarizations
(VPDs) for one untreated patient on 3 consecutive days, (Redrawn from Morganroth
J, Michelson EL, HorowitL LN, Josephson ME, Pearlman AS, Dunkman WB, Limita
tions of routine long-term electrocardiographic monitoring to assess ventricular ec
topic frequency, Circulation 1978;58:408-414,)

surements, although subject to all other forms of variation, is related to
subsequent cardiovascular disease.

TOTAL VARIATION

The several sources or variation are cumulative. Figure 2.4 i11ustrates
this for the measurement of blood pressure. Variation from measurement
contributes relatively little, although it covers as much as a 12 mm Hg
range among various observers. On the other hand, each patient's blood
pressure varies a great deal from moment to moment throughout the day,
so th<lt any single blood pressure reading might not represent the usual
for that patient. Much of this variation is not random: blood pressure is
generally higher when people are awake, excited, visiting physicians, or
taking over-the-counter cold medications, Of course, we are most inter
ested in knowing how an individual's blood pressure compares with that
of his or her peers, especially if the blood pressure level is related to
complications of hypertension and the effectiveness of treatment.

EFFECTS OF VARIATION

Another way of thinking about variation is in tenns of its net effect on the
validity <lnd reliability of a measurement and what com be done about it.

Random variation-for example, by unstable instruments or many ob-
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servers with various biases that tend to balance each other out-results
on average in no net misrepresentation of the true state of a phenomenon
if a set of measurements are made; individual measurements, however,
may be misleading. Inaccuracy resulting from random variation can be
reduced by taking a larger sample of what is being measured, for example,
by counting more cells on a blood smear, examining a larger area of a
urine sediment, or studying more patients. Also, the extent of random
variation can be estimated by statistical methods (see Chapter 9).

On the other hand, biased results are systematically different from the true

Conditions of
Measurement

One patient, one observer,
repeated observations
at one point in time

One patient, many
observers, at one time

Distribution of
Measurements

J\

Source(s)
of Variation

Measurement

One patient, one observer,

almanYI;meSOf~ ,

Many patients

Biologic and
Measurement

60 70 80 90 100 110 120 130

DIASTOLIC BLOOD PRESSURE (mm Hg)

-----------------

Figure 2.4. Sources of variation. The measurement of diastolic (phase V) blood
pressure, (Data from Fletcher RH and Fletcher SW; and Boe J, Humerfell S, Weder
vang F, Oecon C, The blood pressure in a population [Special Issue]. Acta Med
Scand 1957;321:5·-313.)
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value, no matter how mallY times they are repeated. For example, when investi
gating a patient suspected of having ,In infiltrative hver disease (perhttps follow
ing up an elevated senun alkaline phosphatase) a single liver biopsy may be
misleading, depending on how the lesions are distributed in the liver. If the
lesion is a metastasis in the left lobe of the jiver, a biopsy in the usual place
(the right lobe) would miss it. On the other halld, a biopsy for miliary tul:x'Tculo
sis, which is represented by miJliOl'LS of small grallulomata throughout the liver,
would be inaccurate only through random variation. Similarly, all of the high
values for VPDs shown in Figure 2.3 were recorded on the first day, and most
of the low valm.'S on the third. The days were bia..<;Lu estimates of each other,
because of variation in VPD rate from day to day.

Distributions
Data that are measured on interval scales are often presented as a figure,

called a frequency distributiol1, showing the number (or proportion) of a
defined group of people possessing the different values of the measure
ment (Fig. 2.5). Presenting interval d<lta as a frequency distribution conveys
the information in relatively fine detail.
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Figure 2.5. Measures of central tendency and dispersion, The distribution of pros
tate-specific antigen (PSA) levels in presumably normal men, (Data from Kane RA,
Littrup PJ, Babaian R, Drago JR, Lee F, Chesley A, Murphy GP, Mettlin C. Prostate
specific antigen levels in 1695 men without evidence of prostate cancer. Cancer
1992;69:1201-1201,)
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Table 2.3
Expressions of Central Tendency and Dispersion

Expression Definition Advantages Disadvantages

Mean Sum of values
for observations

Number of
observations

Central Tendency

Well suited tor
mathematical
manipulation

Affected by extreme
values

Median

Mode

The point where the rlumber
ot observations above
equals the number below

Most frequently occurring
value

Not easily
influenced by
extreme values

Simplicity of
meaning

Not well suited for
mathematical
manipulation

Sometimes there
are no, or many,
most frequent
values

Dispersion

Range

Standard
deviation"

Percentile, decile,
quartile, etc.

From lowest to highest
value in a (Jistribution

The absolute value of the
average difference 01
individual values tram the
mean

The proportion of all
observations falling
between specified values

Indudes all values

Well suited tor
mathematical
manipulation

Describes the
"unusualness"
of a value
without
assumptions
about the shape
of a distribution

Greatly affected by
extreme values

For non-Gaussian
distributions,
does not describe
a known
proportion of the
observations

Not well suited for
statistical
manipulation

where X ~ each obse""Rtion; X = rT""''' of ali observations; and N ~ number of observations
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DESCRIBING DISTRIBUTIONS

It is convenient to smnmari/..l' distributions. IndeeJ, summari7...ation is imper
ative if a large number of distribution',; art:' to be presentLx:! and compared.

Two basic properties of distributions aTe used to summarize them: cen
tral tendency, the middle of the distribution, and dispersion, how spread out
the values are. Several ways of expressing centriJI tendency and dispersion,
along with their advantages and disadvantiJges, iJre summarized in Table
2.3 iJnd illustrated in Figure 2.5.

ACTUAL DISTRIBUTIONS

The frequency distributions of four common blood tests (potassium,
alkaline phosphatiJse, glucose, and hemoglobin) are shown in Figure 2.6.
In geneT<\l, most of the values appear near the middle, and except fOT the
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Figure 2.6. Actual clinical distributions. (Data from Martin HF, Gudzinowicz BJ,
Fanger H. Normal values in clinical chemistry. New York: Marcel Dekker, 1975.)
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central part of the curves, there are no "humps" or irregularities. The high
and low ends of the distributions stretch out into tails, with the tail at one
end often being more elongated than the tail at the other (i.e., the curves
are "skewed" toward the long end). Whereas some of the distributions
are skewed toward higher values, others are skewed toward lower values.
Tn other words, all these distributions are unimodal, are roughly bell
shaped, and are not necessary symmetric; otherwise they do not resemble
each other.

The distribution of values for many laboratory tests changes with char
acteristics of the patients such as agc, sex, racl', and nutrition. figure 2.7
shows how the distribution of one such test, blood urea nitrogen (BUN),
changes with age. A BUN of 25 mg/lOO mL would be unusually high for
a young person, but not particularly remarkable for an older person.

THE NORMAL DISTRIBUTION

I\nother kind of distribution, called the "nonna)" or Caussian distribution,
is sometimes asswned to approximate naturally oCCllTring distributions,
though it is based in statistical theory and has no nC"Cl'ssary relationship to
natural distributions. The normal curve describes the frequency distribution
of repeated measurements of the same physical object by the same instrument.
Dispersion of values represents random variation alone. A normal curve is
shown in Figure 2.R. The curve is symmetrical and bell shaped. It has the
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~80 years old

10 20 30 40 50

BUN mg/l00 mL

Figure 2.7. The distribution of clinical variables changes with age: BUN for people
aged 20-29 versus those 80 or older, (Data from Martin HF, Gudzinowicz BJ, Fanger
H. Normal values in clinical chemistry. New York: Marcel Dekker, 1975.)
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Figure 2.8. The normal (Gaussian) distribution.

mathematical property that about two-thirds of the observations fall within
] standard deviation of the mean, and about 95'\"0 within 2 standard deviations.

Although clinical distributions often resemble a normal distribution the
resemblance is superficial. As nne statistician (4) put it:

The experimental fact is that for most physiologic variables the distribution
is smooth, unimodal, and skewed, and that mean ::'::2 standard deviations
does not cut off the desired ':15%. We have no mathematical, stillistical, or
other theorems that enable us to predict the shape of the distribution.,; of
phySiologic measurements.

VVhereas the normal distribution is derived from mathematical theory
and reflects only random variation, many other sources of variation con
tribute to distributions of clinical measurements, especially biologic differ
ences among people. Therefore, if distributions of clinical measurements
resemble normal curves, it is largely by accident. Even so, it is often as
sumed, as a matter of convenience (because means and standard deviations
are relatively easy to calculate and manipulate mathematically), that clini
cal measurements are "normally" distributed.

Criteria for Abnormality
It would be convenient if the frequency distributions of clinical measure

ments for normal and abnormal people were so different that these distri
butions could be used to distinguish two or more distinct populations.
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Thii::i is the case for specific DNA and RNA sequences and antigens (Fig.
2.9A), which are either present or absent, although their clinical manifesta
tions may not be so dear-cut.

However, most distributions of clinical variables are not easily di
vided into "normal" and "abnormal," because they are not inherently
dichotomous and they do not display sharp breaks or two peaks that
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Normal Mutant

B
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A lIeles for Phenylalanine Hydroxylase

2 4 6 8

Blood Phenylalanine (mg IdL)
10

Figure 2.9. Screening for phenylketonuria (PKUj in infants: dichotomous and over
lapping distributions of normal and abnormal. A, Alleles coding for phenylalanine
hydroxylase are either normal or mutant. B, The distributions of blood phenylalanine
levels in newborns with and without PKU overlap and are of greatly different magni
tude. (The prevalence of PKU, actually about 1/10,000, is exaggerated so that its
distribution can be seen in the figure.)
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ch<lr<lcterize normal <lnd abnormal results. There are sever<ll reasons
why this is so.

For m<lny laboratory tests there are not even theoretical w<lsons for
believing that distinct popul<ltions-weJl <lnd diseased---exist. Disease is
acquired by degrees, and so there is a smooth transition from low to high
v<llues with increasing degrees of dysfunction. Laboratory tests reflecting
organ f<lilure, such <IS serum creatinine for renal failure, behave in
this \\'<lY.

In other situations, well and diseased persons do in fact belong to sepa
rate populations, but when the two populatio11s are mixed together they
C<ltlHot be recognized as separate bec<luse values for the abnormals v<lry,
they overlap thosc for normals, and there are few <lbnormals in the
popul<ltion.

Example Phenylketonuriil (I'KU) is <1 disease characterized by progres
sive mental retilfliiltiotl in childhood. 1\ variety of mutant ilileles coding for
phenylalanine hydroxylase results in dysfunction of the enzyme and, with iI

normal diet, accumulation of phenylalanine. The diah'llosis, which becomes
appilrent in the first year of life, is confirmed by persistently high phenylala
nine len'ls (several times the usual range) and low tyrosine levels in
the blood.

11 is common prilclice to screen newborns for PKC with a blood test for
phenylalanine a few dilys after birth, in time to treat before there is irrevers
ible damilgl'. However, the test misclassifies some infants, because ilt th,lt
age there is an overlap in the distributions of serum phenylalanine concentril
tions in infants with ilnd without PKU and bl.'cause infants with I'KU make
up only a small proportion of those screened, about IIlO,OOO (Fig. 2.9Ll).
Some newborns with PKU are in Lhe normill range either beciluse they have
not yet ingested enough protein or because they ha~ e a combiniltion of alleles
associated with mild disease. Some childrell who are not destined to develop
PKU hilvc relatively high levels ··-for eXMnple, bec,ltlsc their mothers have
abnormill phenylalanine mdilbolism. The test is set Lo be positive at the lower
end of tlw overlap between normal and abnonnill levels, to detect most
infants with thl.' disease, even though only about lout of 5 infants with an
ilhn(lrmal screening test turns out to hilve I'KL'.

In unse!cctcd populations, the diseased patients often do not stand out
because there are very few of them relative to normal pc'ople and bL'Cause
laboratory valucs for the diseased popubtion overlap thosc for normals. The
curve for diseased people is "swallowed up" by the larger curve for normal
people. If, on the other hand, normal and diseased populations are mixed in
more equal proportions-perhaps by selecting out for testing people with an
unusually high likelihood of disease-thc11 the resulting distribution could
be truly bimodal. Eve11 so, it would not be possible to choose a test value
th<lt dearly separates diseased and nnndiscased persons (see Chapter 3).

If there is no sharp dividing line between normal and abnormaL and
the clinician can choose where the Hne is placed, what ground rules should
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be used to decide? Three criteria have proven useful: being unusual, being
sick, and being treatable. For a given measuremer,t, the results of these
approaches bear no necessary relation to each other, so that what might
be considered abnormal using one criterion might be normal by another.

ABNORMAL ~ UNUSUAL

Normal often refers to the most frequently occurring or usual condition.
Whatever occurs often is considered normal, and whatever occurs infre
quently is abnormal. This is a statistical definition, based on the frequency
of a characteristic in a defined population. Commonly, the reference popu
lation is made up of people without disease, but this need not be the case.
For example, we may say that it is normal to have pain after surgery or
for eczema to itch.

It is tempting to be more specific by defining what is unusual in mathe
matical terms. One commonly used way of establishing a cutoff point
between nonnal and abnormal is to agree, somewhat arbitrarily, that all
values beyond 2 standard deviations from the mean are abnormal. On
the assumption that the distribution in question approximates a normal
(Gaussian) distribution, 2.5°/" of observations would then appear in each
tail of the distribution and be considered abnormal.

Of course, as already pointed out most biologic measurements are not
normally distributed. So it is better to describe unusual values, whatever
the proportion chosen, as a fraction (or percentile) of the actual distribution.
In this way, it is possible to make a direct statement about how infrequent
a value is without making assumptions about the shape of the distribution
from which it came.

A statistical definition of normality is commonly used but there are
several ways in which it can be ambiguous or misleading.

First, if all values beyond an arbitrary statistical limit, say the 95th
percentile, were considered abnormal, then the prevalence of all diseases
would be the same, 5'%. This is inconsistent with our usual way of thinking
about disease frequency.

Second, there is no general relationship between the degree of statistical
unusualness and clinical disease. The relationship is specific to the disease
in question. For some measurements, deviations from usual are associated
with disease to an important degree only at quite extreme values, well
beyond the 95th or even the 99th percentile.

Example The World Health Organization (WHO) considers anemia to
be prcs<'nt when hemoglobin (lib) le\'('ls are below 12 g/lOO mL in adult
nonpregnant females. In a British survey of women aged 20-64, Hb was
below 12 g/lOO mL in 11% of 920 nonpregnant women, twice as many as
would be expected if the criterion for abnormality were excel;'ding 2 standard
deviations (5). But were the women with Hb levels below 12 g/lOO mL
"diseased" in any way because of their rl;'jiltively low llb? Two possibilities
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come to mind: The low I Ib may be ,1ssociated with symptoms or il may be
a manifestation of serious underlying disease. Symptoms such as fatigue,
dizziness, ilnd irritabilitv were not correlaled with Hb level, at least for
women whose Hb was above 8.0. Moreover, oral iron, given to women with
Hb between .s.o and 12.0, increased fib by an average of 2..iO g/100 mL but
did not lead to any greater improvement in symptom::; than was experienced
by women given placebo. As for serious underlying disease, it is lrue that
occasionally low Hb may be a manifestation of cancer, chronic infection, or
rheumatic disea::;es. But only il very small proportion of women with low Hb
have these conditions_

Thus only at Hb level::; below 8.0, which occurred in less than 1':;, of these
women, might anemia he an important health problem.

Third, many laboratory tests are rl'lated to risk of disease over their entire
range of vaIUl_'S, from low to high. for serum cholesterol, there is an almost
threefold increase in risk from the "low normal" to the "high normal" range.

Fourth, some extreme values are distinctly unusual but preferable to
more usual ones. This is particularly true at the low end of some distribu
tions. Who would not be plea~ed to have a ~erum creatinine of 0.4 mg/
100 mL or a ~y~tolic blood pressure of 105 mm Hg? Both are unusual1y
low but they represent better than average health or risk.

Finally, sometimes patients may have, for laboratory t{'~ts diagnostic of
their disease, values in the usual range for healthy people, yet clearly be
disea~ed. Examples include low pressure hydrocephalus, normal pressure
glaucoma, and norm()Gllcemic hyperparJthyroidism.

ABNORMAL --= ASSOCIATED WITH DISEASE

A sowlder approach to distingUishing normal from abnormal is to call
abnormal those observations that Jfe regularly associated with disease,
disability, or death, i.e., clinically meaningful departures from good health.

Example What is a "normal" alcohol (ethanol) intake? S<.'veral studies
have shown a U-shaped relationship between alcohol intake and mortality:
high death rates in abstainers, lower rates in moderate drinkers, and high
rates in heavy drinkers (Fig. 2.10). It has been suggested lhat the lower death
rates with increasing alcohol consumption, ilt the lower end of the curve,
occur because alcohol raises high density lipoprotein levels, which protects
against cardiovascular disease. Alternatively, when people become ill they
reduce their alcohol consumption and this could explain the high rate of
mortality assocbted with low alcohol intake (6)_ High deilth rales at high
intake is less controversial: alcohol i::; a cause of several fatal diseases (heart
disease, cancer, and stroke). The interprclation of the causes for the U-shaped
curve determines whether it is as abnormal to abstain as it is to drink heavily.

ABNORMAL - TREATABLE

Par some conditions, particularly those that are not troublesome in their
own right (i.e., are asymptomatic), it is better to consider a measurement
abnorm<ll only if treatment of the condition represented by the mC<lsure-
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Figure 2.10. Abnormal as associated with disease. n,e relationship botween alco
hol consumption and mortillity, (From Stlaper AG, Wannamethee G, Walker M, Alco
hol and mortality in British men: explaining the U-shaped curve, Lancet
1888;2:12l';7-1 )73)

ment leads to <l better outcome. This is because not everything that is
<Issoci<lted with an increased risk can be successfully treated: the removal
of the condition may not remove risk, either because the condition itself
is not a cause of disease bu t is only related to il ca use or because irreversible
damage has already occurred. Also, to label people abnormal can cause
adverse psychological effects that ilre not justified if treatment cannot im
prove the outlook.

What we consider treatable changes with time. At their best, therapeutic
decisions are grotmded on evidence from well-conducted clinical trials
(Chapter 8). As ne"v knowledge is acquired from the results of clinical
trials, the level at which treiltment is considered useful may change. For
eX<lmple, accumulating evidence for treating hypertension has changed
the definition of what level is treatilble. As more studies are conducted,
successively lower levels of diaslolic blood pressure have been shown to
be worth treating.

Regression to the Mean
When clinicians encounter an unexpectedly abnormal lest result, they

tend to repeat the test. Often the second test result is closer to normal.
Why dm's this happen? Should it be reassuring7
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Patients selected because they represent an extreme value in a distribu
tion can be expected, on the average, to have le,:;s extreme values on subse
quent measurements, This occurs for purely statistical reasons, not because
the patients have necessarily improved. The phenomenon is called regres
sion to tile meall.

Regression to the mean arises in the following way (fig 2.11). People
are first selected for inclusion in a study or for further diagnosis or treat
ment because their initial measurement for a trait fell beyond an arbitrarily
selected cutoff point in the t<lil of a distribution of values for all the patients
examined. Some of these people will remain above the cutoff point on
subsequent measurements, because their true v<llues are usually higher
than average. But others who were found to have values above the cutoff
point during the initial screening usually have lower values. They were
selected only because they happened, through random variation, to have
a high value at the time they were first measured. When the measurement
is taken again, these people have lower values than they had during the
first screening. This phenomenon tends to drag down the mean value of
the subgroup originally found to have values above the cutoff point.

Thus patients who are singled out from others because of a laboratory
test result that is unusually high or low can be expected, on average, to
be closer to the center of the distribution if the test is repe<lted. Moreover,
subsequent values are likely to be more accurate estimates of the true
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Figure 2.11. Regression to the mean.
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value, which could be obtained if measurements were repmted for a partic
ular patient many times. So the time-honored pr.:;~tice of repeating labora
tory tests that are found to be abnormal and of considering the second
one, which is often within normal limits, the correct one is not just wishful
thinking. It has a sound theoretical basis. It also has an empirical basis.
For example, it has been shown that half of serum T4 tests found to be
outside normal limits on screening were within normal limits when re
pmtcd (7). However, the more extreme the initial reading is, the less likely
it is to be normal if it is repeated.

Summary
Clinical phenomena are measured on nominal, ordinal, and interval

scales. Although many clinical observations fall on a continuum of values,
for practical reasons they are often simplified into dichotomous (normal!
abnormal) categories. Observations of clinical phenomena vary because
of measurement error, differences in individuals from time to time, and
differences among individuals. The performance of a method of measure
ment is characterized by validity (Does it measure what it intends to mea
sure?), reliability (Do repeated measures of the same thing give the same
result?), range, responsiveness, and interpretability.

Frequency distributions for clinical variables have different shapes,
which can be summarized by describing their central tendency and
dispersion.

Laboratory values from normal and abnormal people often overlap;
because of this and the relatively lovv prevalence of abnormals, it is usually
not possible to make a dean distinction between the two groups using the
test result alone. Choice of a point at which normal ends and abnormal
begins is arbitrary and is often related to one of three definitions of abnor
mality: statistically unusuaL associated with disease, or treatable. If patients
with extreme values of a test are selected and the test is repeated, the
second set of va lues is likely to fa 11 closer to the central (statistically normal)
part of the frequency distribution, a phenomenon called regression to
the mean.
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DIAGNOSIS

Appearances to the mind are offour kinds. Things either arc what
they appear to be; or they neither arc, nor appear to be; or they arc,
and do not appear to be; or they are not, yet appear to be. Rightly
to aim i/1 all these cases is the wise man's task

Epictetus, 2nd century A.D.

Clinicians devote a great deal of time to detennining diagnoses for
complaint!; or abnormalities presented by their patients. They arrive at the
diilgnost.'s after applying various diagnostic tests. Most competent clini
cians use good judgment, a thorough knowledge of the literature, and
a kind of rough-and-ready approach to how the informiltion should be
organized. However, there are also basic principles with which a clinician
should be familiar when interpreting diagnostic tests. This chapter deals
with those principles.

A diagnostic test is ordinarily taken to mean a test performed in a labora
tory. But the principles discussed in this chapter apply equally well to
clinic<ll inform<ltion obtained from history, physical examination, and im
aging procedures. They <llso apply where a constellation of findings serves
as a diagnostic test. Thus one might speak of the value of prodromal
neurologic symptoms, headache, nausea, and vomiting in diagnosing clas
sic migraine or of hemoptysis and weight loss in a cigarette smoker as
indicators of lung cancer.

Simplifying Data
In Chapter 2, it was pointed out that clinical measurements, including

data from diagnostic tests, are expressed on nominal, ordinal, or interval
scales. Regardless of the kind of data produced by diagnostic tests, clini
cians generally reduce the data to a simpler form to make them useful in
pradice. Most ordinal scales are examples of this simplification process.
Obviously, heart murmurs can vary from very loud to inaudible. But trying
to express subtle gradations in the intensity of murmurs is unnecessary
for clinical decision making. A simple ordinal scale-grades I to VI-

43
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serves just as welL More often, complex data are reduced to a simple
dichotomy, e.g" present/absent, <lbnormal/no,mal, or diseased/well. This
is particularly done when test results Me used to decide on treatment. At
any given point in time, therapeutic decisions are either/or decisions. Ei
ther treatment is begun or it is withheld.

The use of blood pressure d<lt<l to decide about therapy is an example
of how we simplify inform<ltion for practical clinical purposes. Blood
pressure is ordin<lrily measured to the nearest 2 mm Hg, i.e" on an
interval scale. However, most hypertension treatment guidelines, such
as those of the Joint National Committee on the Detection, Evaluation,
and Treatment of Hypertension (1) and of most physicians, choose a
particular level (e.g., % mm Hg diastolic pressure) at which to initiate
drug treatment. In doing so, clinici<lns have transformed interval data
into nominal (in this case, dichotomous) data. To take the example
further, the Joint National Committee recommends that a physician
choose a treatment plan according to whether the patient's diastolic
blood pressure is "mildly elevated" (90-94 mm Hg), "moderately ele
vated" (95-114 mm Hg), or "severely e]cvated" (:2:115 mm Hg), an
ordinal scale,

The Accuracy of a Test Result

Establishing diagnoses is an imperfect procei:is, resulting in a probability
rather than a certainty of bei.ng right. In the past, the doctor's diagnostic
certainty or uncertainty was expressed by using terms such as rule Ollt or
possible before a clinical diagnosis. Increasingly, the modem cHllician expresses
the likelihood that a patient has a disease by using a probability. Tha.t being
the case, it behooves the clinician to become familiar with the mathematical
relationships between the properties of diagnostic tests and the information
they yield in v<lriom; clinical situations. In many in.<;tances, understanding
these issues will help the clinician resolve some uncertainty surrounding the
use of diagnostic tests. In other situations, it may only increase understanding
of the uncertainty. Occasionally, it may convince the clinician to increase his
or her level of uncertainty.

A simple way of looking at the relationships between a test's results
and the true diagnosis is shown in Pigure 3,1. The test is considered to be
either positive (abnormal) or negative (normal), and the discai:ie is either
present or absent. There are then four possible interpretations of the test
results, two of which are correct and two wrong. The tei:it has given the
corrc'Ct answer when it is positive in the presence of disease or negative
in the absence of the disease. On the other hand, the test has been mis
leading if it is positive when the disease is absent (false positive) or negative
when the disease is present (false negative).
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DISEASE

Present

Positive

TEST f------+

Negative True
negative

Figure 3.1. The relationship between a diagnostic lest result and the occurrence
of disease, There are two possibilities for the test result to be correct (true positive
and true negative) and two possibilities for the result to be incorrect (false positive
and false negative),

THE GOLD STANDARD

A5sessment of the test's accuracy rest5 on its relationship to some way
of knowing whether the disease is truly present or not-a sounder indica
tion of the truth often referred to as the "gold standard." As it turn5 out,
the gold standard i5 often elusive. Sometimes the standard of accuracy is
itself a relatively 5impk and inexpensive test, such a5 a throat culhtre for
group A (:I-hemolytic streptococcus to validate the clinical impression of
strep throat or an antibody test for human immunodeficiency virus. How
ever, this is usually not the case. More often, one must turn to relatively
elaborate, expensive, or risky tests to be certain whether the disease is
present or absent. Among these are biopsy, surgical exploration, and of
course, autop5Y.

For di5eases that are not self-limited and ordinarily become overt in a
matter of a few years after they are first suspected, the results of follow
up can serve as a gold standard. Most cancers and chronic, degenerative
diseases fall into this category. For them, validation is possible even if on
the-spot confirmation of a test's performance is not fea5ibk because the
immediately available gold standard is too risky, involved, or expensive.
Some care must be taken in deciding the length of the follow-up period,
which must be long ('fi{lUgh for the disease to manifest but not so long
that cases can arise after the original testing.

l3ecause it is alm05t always more costly and more dangerous to use
these more accurate ways of establishing the truth, clinicians and patients
prefer simpler tests to the rigorous gold standard, at least initially. Chest
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x-rays and sputum smears are useo to determine the nature of pneumonia,
r<lther than hmg biopsy vvith examination of :he diseased lung tissue.
Similarly, electrocardiograms and serum enzymes are often used to estab
lish the diagnosis of <lCute myocardial infarction, rather than catheterization
or imaging procedures. The simpler tests arc used as proxies for more
elaborate but more accurate ways of est<lblishing the presence of disease,
with the understanding that some risk of misdassification results. This risk
is justified by the safety and convenience of the simpler tests. But Simpler
tests are only useful when the risks of misclassificaLion are known <'Ind
fOlUld to be acceptably 1m,\,. This requires sound data that compare their
accuracy to an appropriate standard.

LACK OF INFORMATION ON NEGATIVE TESTS

The goal of all clinical studies describing the value of diagnostic tests
should be to obtain data for all four of the cells shown in Figure 3.1.
Without all these data, it is not possible to assess the risks of misdassifica
tion, the critical questions about the performance of the tests. Given that
the goal is to fill in all four cells, it must be st<lted that sometimes this is
difficult to do in the real world. It may be that an objective and valid
means of establishing the diagnosis exists, but it is not available for the
purposes of formally establishing the properties of a diagnostic test for
ethical or practical reasons. Consider the situation in which most informa
tion about diagnostic tests is obtained. Published accounts come primarily
from clinical, and not research, settings. Under these circumstances, physi
cians are using the test in the process of caring for patients. They feel
justified in proceeding with more exhaustive evalu<ltion, in the patient's
best interest, only when preliminary diagnostic tests arc positive. They are
naturally reluctant to initi<lte an aggressive workup, with its associated
risk and expense, when the test is negative. As a result, information on
negative tests, whether true negative or false negative, tends to be much
less complete in the medical literature.

This problem is illustrated by an influential study of the utility of the
blood test that detects prostate specific antigen (PSA) in looking for prostate
cancer (2). Patients with PSAs above a cutoff level \vt're subjected to biopsy
while patients with PSAs belmv the cutoff were not biopsied. The authors
understandably were reluctant to subject men to an uncomfortable proce
dure without supporting evidellce. As J result, the study I('av('~ us unable
to determine the false-negative rate for PSA screening.

LACK OF INFORMATION ON TEST RESULTS IN THE NONDISEASED

As discussed above, clinicians are understandably loath to perform elab
orate testing on patients who do not have problems. An evalu<ltion of a
test's performance can be grossly misleading if the test is only applied to
patients with the condition.
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Example Magnetic resonance imaging (MI~I) of the lumbar spine is fre
quently used in the evaluation of patients with low L'ack pain. Many patients
with back pain show herniated intervertebral disks on MRI, which often
serves to explain the pain and guide treatment.

MRls were performed on 98 asymptomatic volunteers (3). The studies
were read by radiologists who did not know the symptom status of the
patients. Bulging or protruding disks were found in nearly two-thirds of
asymptomatic subjects, only slightly lower than the frequency of similar
abnormality in patients with back pain. The authors concluded that such
findings "may frequently be coincidentaL"

LACK OF OBJECTIVE STANDARDS FOR DISEASE

For some conditions, there are simply no hard-and-fast criteria for diag
nosis. Angina pectoris is one of these. The clinical manifestations were
described nearly a century ago, Yet there is still no better way to substanti
ate the presence of angina pectoris than a carefully taken history. Certainly,
a great many objectively measurable phenomena arc related to this clinical
syndrome, for example, the presence of coronary artery stenoses seen on
angiography, delayed perfusion on a thallium stress test, and characteristic
abnormalities on electrocardiograms both at rest and with exercise. All are
more commonly found in patients believed to have angina pectoris. But
none is so closely tied to the clinical syndrome that it can serve as the
standard by which the condition is considered present or absent.

Sometimes, usually in an effort to be "rigorous," circular reasoning is
applied. The validity of a laboratory test is established by comparing its
results to a clinical diagnosis, based on a careful history of symptoms and
a physical examination. Once established, the test is then used to validate
the clinical diagnosis gained from history and physical examination! An
example would be the use of milnometry to "confirm" irritable bowel
syndrome, because the contraction pattern demonstrated by manometry
and believed to be characteristic of irritilble bowel was validated by clinical
impression in the first place.

CONSEQUENCES OF IMPERFECT STANDARDS

Because of such difficulties as these, it is sometimes not possible for
physicians in practice to find information on how well the tests they use
compare with a thoroughly trustworthy standard. They must choose as
their standard of validity another test that admittedly is imperfect but is
considered the best available. This may force them into comparing one
weak test against another, with one being taken as a stand<Hd of validity
because it has had longer use or is considered superior by a consensus of
experts. In doing so, a paradox may arise. If a new test is compared with
an old (but inaccurate) standard test, the new test may seem worse even
when it is actually bdte'. For example, if the new test is more sensitive
than the standard test, the additional patients identified by the new test
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would be considered false positives in relation to the old test. Just such a
situation occurred in a comparison of real-time ultrasonography and ora]
cholecystography for the detection of gallstones (4).]n five patients, ultra
sound was positive for stones that were missed on an adequate chok'Cysto
gram. Two of the patients later underwent surgery and gallstones were
found, so that for at least those two patients, the standard oral cholecysto
gram was actually less accurate than the newer real-time ultrasound. Simi
larly, if the new test is more often negative in patients who really do nnt
have the disease, results for those patients will be considered false nega
tives compared with the old test. Thus, if an inaccurate standard of validity
is used, a new test can perform no better than that standard and will seem
inferior when it approximates the truth more closely.

Sensitivity and Specificity
Figure 3.2 summarizes some relationships between a diagnostic test and

the actual presence of disease. It is an expansion of Figure 3.1, with the
addition of some useful definitions. Most of the rest of this chapter deals

DISEASE

Present

Positive a a+b +pv",~
a+b

TEST

Negative d c+d -PV = ---<L
c+d

a+c b+d a+b+c+d

Se",~ SP=~
a+c b+d

P a+c
'" a+b+c+d

---'L
LR+ = a + c
~
b+d

-"--
LR_=a+c

---<L
b+d

Figure 3.2. Diagnostic test characteristics and definitions. Se - sensitivity; Sp -,-
specificty; P """ prevalence; PV - predictive value.
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with these relationships in detail. Figure 3.3 illustrates these relationships.
The diagnostic test is housestaff's clinical impression of whether patients
complaining of pharyngitis have a group A tJ-hemolytic streptococcus in
fection or not, and the gold standard is a throat culture.

DEFINITIONS

As can be seen in Figure 3.2 sensitivity is defined as the proportion of
people with the disease who have a positive test for the disease. A sensitive
test will rarely miss people with the disease. Specificity is the proportion
of people without the disease who have a negative test. A specific test will
rarely misdassify people without the disease as diseased.

Applying these definitions to the pharyngitis example (Fig. 3.3), we see
that 37 of the 149 patients with sore throats had positive cultures, and

Group A
B = Hemolytic
Streptococcus on
Throat Culture

Present

Clinical Ves 27 62 + PV == 27 == 44%
Diagnosis 62

of Strep
Pharyngitis No 77 87 -pV== 77 =88%

87

37 112 149

Se ==~~ == 73% Sp = 1~~== 69% p == ?I9 == 25%

27
LR+ == 27 + 10 == 2.3

35
35 + 77

10
10 + 27

LR - == ---- == 0.39
77

77 + 35

Figure 3.3. The accuracy of the clinical diagnosis of streptococcal pharyngitis
compared with the results of throat culture, (Data from Fletcher SW, Hamann C.
Emergency room management of patients with sore throats in a teaching hospital;
influence of non-physician factors. J Comm Health 1976; 1:196--204,)



50 CLINICAL EPIDEMIOLOGY

housestaff correctly diagnosed 27 of these-for a sensitivity of 73%, On the
other hand, 112 patients had negative culture results; housestaff correctly
withheld antibiotics from 77, for a specificity of 69%.

USES OF SENSITIVE TESTS

Clinicians should take the sensitivity and specificity of a diagnostic test
into account when a test is selected. A sensitive test (Le., one that is usually
positive in the presence of disease) should be chosen when there is an
important penalty for missing a disease. This would be so, for example,
when there is reason to suspect a dangerous but treatable condition, such as
tuberculosis, syphilis, or Hodgkin's disease. Sensitive tests are also helpful
during the early stages of a diagnostic workup, when a great many possi
bilities are being considered, to reduce the number of possibilities. Diagnos
tic tests are used in these situations to rule out diseases, i.e., to establish
that certain diseases are unlikely possibilities. For example, one might
choose an HIV antibody test early in the evaluation of lung infiltrates and
weight loss to rule out an AIDS~related infection. In sum, a sensitive test
is most helpful to the clinician when the test result is negative.

USES OF SPECIFIC TESTS

Specific tests are useful to confinn (or "rule in") a diagnosis that has
been suggested by other data. This is because a highly specific test is rarely
positive in the absence of disease, i.e., it gives few false-positive results.
Highly specific tests are particularly needed when false-positive results
can harm the patient physica1ly, emotionally, or financially. Thus, before
patients are subjected to cancer chemotherapy, with all its attendant risks,
emotional trauma, and financial costs, tissue diagnosis is generally required
instead of relying on less specific tests. In sum, a specific test is most
helpful when the test result is positive.

TRADE-OFFS BETWEEN SENSITIVITY AND SPECIFICITY

It is obviously desirable to have a test that is both highly sensitive and
highly specific. Unfortunately, this is usually not possible, Instead, there
is a trade-off between the sensitivity and specificity of a diagnostic test.
This is true whenever clinical data take on a range of values. In those
sihtations, the location of a cut-off point, the point on the continuum be
tween normal and ,1bnormal, is an arbitrary decision. As a consequence,
for any given test result expressed on a continuous scale, one characteristic
(e.g., sensitivity) can be increased only at the expense of the other (e.g.,
specificity). Table 3.1 demonstrates this interrelationship for the diagnosis
of diabetes. If we require that a blood sugar taken 2 ill after eating be
greater than 180 mg ''/0 to diagnose diabetes, all of the people diagnosed
as "diabetic" would certainly have the disease, but many other people
with diabetes would be missed using this extremely demanding definition
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Table 3.1
Trade~Off between Sensitivity and Specificity when Diagnosing Diabetes"

I1lood Sugar Level
? hr ~fter FOating Sfmsitivity Specificity

{mgilOO mL) (%) {%)

70 986 88
SO 97,1 25,5
90 94,3 41,6

100 88.6 69,8
110 85.7 84,1
120 71.4 92,5
130 64.3 96.9
140 57.1 99.4
150 500 99.6
160 47,1 99,(>
110 42,9 100.0
180 38,6 100,0
190 34,3 100,0
200 271 1000

Publ,c Health Service DiHhetHs program guide, !'ublication no. GOll. W~sh,nnton, DC: U,S, Gove",,,,ent
Printin(] Office, 1960,

of the disease. The test would be very specific at the expense of sensitivity.
At the other extreme, if anyone with a blood sugar of greater than 70 mg
'X, were diagnosed as diabetic, very few people with the disease would be
missed, but most normal people would be falsely labeled as having diabe
tes. The test would then be sensitive but nonspecific There is no way,
using a single blood sugar determination under standard conditions,
that one can improve both the sensitivity and specificity of the test at the
same time.

Another way to express the relationship between sensitivity and speci
ficity for a given test is to construct a curve, called a receiver operator charac
teristic (1{00 curve. An ROC curve for the use of a single blood sugar
determination to diagnose diabetes mellitus is illustrated in Figure 3.4. It
is constructed by plotting the true-positive rate (sensitivity) against the
false-positive rate (I-specificity) over a range of cut-off values. The values
on the axes run from a probability of 0 to 1.0 (or, alternatively, from 0 to
100'};,). Figure 3.4 illustrates the dilemma created by the trade-off between
sensitivity and specificity. A blood sugar cutoff point of 100 will miss only
11% of diabetics, but 30'~o of normals will be alarmed by a false-positive
report. Raising the cutoff to 120 reduces false-positives to less than 10% of
normals, but at the expense of missing nearly 30% of cases.

Tests that discriminate well crowd toward the upper left comer of the
ROC curve; for them, as the sensitivity is progressively incrmsed (the
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Figure 3.4. A ROC curve. The accuracy of 2-hr postprandial blood sugar as a
diagnostic test for diabetes mellitus. (I)ata Iron I Public Health Service, Diabetes
program guide. PuhliC8tion no, 506 Washington, DC: U.S. Government Printing
Office. 1960.)

cutoff point is lowered) there is little or no loss in specificity until very
high levels of sensitivity <Ire achieved. Tests that perform less well have
curves that fall closer to the diagon<l] running from lower left to upper
right. The diagonal shows the relationship between true-positive and false
positive r<ltes that would occur for a test yielding no inform<ltion, e.g., if
the clinician merely fljpped a coin.

The ROC curve shows how severe the trade-off between sensitivity and
specificity is for a test and c<ln be used to help decide where the best cutoff
point should be, Generally, the best cutoff point is at or near the "shoulder"
of the ROC curve, unless there are clinic<ll reasons for minimizing either
false negatives or false positives.

ROC curves are particularly valuable ways of comparing alternative
tests for the same diagnosis. The overall accuracy of a test C<ln be described
as the area under the ROC curve; thl' larger the area, thl' better the test.
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Figure 3.5 compares the ROC curves for two questionnaire tests used to
screen for alcoholism in elderly patients-the CAGE and the MAST (Michi
gan Alcoholism Screening Test) (5). The CAGE is both more sensitive and
more specific than the MAST and includes a much larger area under its
curve.

Obviously, tests that are both sensitive and specific are highly sought
after and GlIl be of enormous value. However, practicing clinicians rarely
work with tests that are both highly sensitive and specific. So for the
present, we must use other means for circumventing the trade-off between
sensitivity and specificity. The most common way is to use the results of
several tests together (as discussed below).

Establishing Sensitivity and Specificity
Not infrequently, a new diagnostic test is described in glowing temlS

when first introduced, only to be found wanting later when more experi
ence with it has accumulated. Enthusiasm for the clinical value of scrum
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Figure 3.5. ROC curves for the CAGE and MAST questionnaires in elderly patients
with and without alcoholism. (Redrawn tram Jones TV, Lindsey BA, Yount P, Soltys
R, Farani-Enayat B, Alcoholism screening questionnaires: arc they valid in elderly
medical outpatients? J Gen Intern Med 1993;8:674-678,)



54 CLINICAL EPIDEMIOLOGY

carcinoembryonic antigen (CEA) waxed and then waned in this way. At
first, CEi\ was considered a very promising means of diagnosing colon
cancer. 13ut subsequently CEA was shown to be increased in a wide variety
of other conditions as \vell as in approximately 20% of smokers without
cancer. This kind of confusion-initial enthusiilsm followed by disappoint
ment-arises not from any dishonesty on the part of early investigators
or unfair skepticism by the medical community later. Rather, it is related
to limitations in the methods by 'which the properties of the test were
established in the first place. At the crudest level, the properties of a diag
nostic test-sensitivity and specificity, for examp!e-·-may be inaccurately
described because an improper standard of validity has been chosen, as
discussed previously. However, two other issues related to the selection
of diseased and nondiseased patients can profoundly affect the determina
tion of sensitivity and specificity as well. They are the spectrum of patients
to which the test is applied and bias in judging the test's performance. A
third problem that can lead to inaccurate estim<:ltes of sensitivity and speci
ficity is chance.

SPECTRUM OF PATIENTS

Difficulties may arise \vhen patients used to describe the test's properties
arc different from those to whom the test will be applied in clinical practice,
Early reports often assess the test's value among people who are deilfly
diseased compared with people who are clearly not diseased, e.g., medical
student volunteers. Thc tcst may be able to distinguish between these
extremcs very well.

Even patients with the disease in question can differ in severity, stage,
or duration of the disease, and a test's sensitivity will tend to be higher in
more severely affected patients.

Example Pigure 3.6 illuslrCltes how th., performance of the test CEA
vClries with the stage of (olmeda] cancer. CEA performs well for metastatic
diseCise Jnd poorly for localized cancer. Thus the sensitivity (or "colorecta!
cancer" depends on the pcHliculiH 111 ix of stagc'S of pCltic'nts with disease used
to describe the test, C1nd its i1c("urCiCY is 1110f(-' stable within stages (6).

Simila.r1y, some kinds of people without disease, such as those in whom
disease is suspected, may have other conditions that cause a positive test,
thereby increasing the false-positive rate and decreasing specificity. For exam
ple, CEA is also elevated in many patienls with ulcerative colitis or c;rrhosis.
If patients with these diseases wcrc includcd in the nondiseased group when
studying the performance or CEA for (oloreda! cancer, false positives would
increase and the specificity of the test for cancer would fall.

In theory, the sensitivity and specificity of a test are said to be indepmdent
of the prevalence of diseased individuals in the sample in which the test is
being evaluilted. (Work wilh Pigurc 1.2 to confirm this for yourself.) In prac-
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Figure 3.6. ROC curve for CEA as a diagnostic test for colorectal cancer, according
to stage of disease. The sensitivity and sp8cificity of a test vary with the slage of
disease. (Redrawn from Fletcher RH. Carcinoembryonic antigen, Ann Intern Med
1986; 104:66-73,)

tice, however, several characteristics of patients, such as stage and severity
of disease, may be related both to the sensitivity and specificity of <l test and
to the prevalence, because different kinds of patients are fOlmd in high- and
low-prevalence situations. Using a test to screen for disease illustrates this
point (see Chapter 8 for a fuller discussion of screening). Screening involves
the usc of the test in an <Jsymptom<Jtic population where the prevalence of
the disease is generally low and the spectrum of disease favors earlier and
less SeVlc'l'e cases. In such situations, sensitivity tends to be lower and specific
ity higher than when the same test is applied to patients suspected of having
the disea'>e, more of whom have adv,lnced disease.

BIAS

Sometimes the sensitivity and specificity of a test are not established
independently of the means by which the true diagnosis is established,
leading to a biased assessment of the test's properties. This may occur in
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several ways, As already pointed out, if the test is evaluated using data
obtained during the course of a clinical evalu.;'ltion of patients suspected
of having the disease in question, a positive test may prompt the clinician
to continue pursuing the diagnosis, increasing the likelihood that the dis
ease will be found, On the other hand, a negative test may cause the
clinician to abandon further testing, making it more likely that the disease,
if present, will be missed.

In other situations, the test result may be part of the information used
to establish the diagnosis, or conversely, the results of the test may be
interpreted taking other clinical information or the final diagnosis into
account. Radiologists are frequently subject to this kind of bias when they
read x-rays. Because x-ray interpretation is somewhat subjective, it is easy
to be influenced by the clinical information provided. All clinicians experi
ence the situation of having x-rays overread because of a clinical impres
sion, or conversely, of going back over old x-rays in which a finding was
missed because a clinical event was not known at the time, and therefore,
attention was not directed to the particular area in the x-ray. Because of
these biases, some radiologists prefer to read x-rays twice, first without
and then with the clinical information. All of these biases tend to increase
the agreement between the test and the stand<lTd of validity. That is, they
tend to make the test seem more useful than it actually is, as, for example,
when an MRJ of the lumbar spine shows a bulging disc in a patient with
back pain (see earlier example in this chapter).

CHANCE

Values for sensitivity and specificity (or likelihood ratios, another char
acteristic of diagnostic tests, discussed below) arc usually estimated from
observations on relatively small samples of people with and without the
disease of interest. Because of chance (random variation) in anyone sample,
particularly if it is small, the true sensitivity and specificity of the test can
be misrepresented, even if there is no bias in the study. The particular
values observed are compatible with a range of true values, typically char
acterized by the "95% confidence intervals"] (sec Chapter lJ). The width
of this range of values defines the degree of precision of the estimates of
sensitivity and specificity. Therefore, reported values for sensitivity and
specificity should not be taken too literally if a small number of patients
is studied.

Tl", 9."'~·;, confidence interval of a prop"'lion is ~asily ~stim"led by the following formula, b""'-'d on the
binomiol th"orcm:

wh"", {' i, th" "h-",,,',,<I proportiOIl aml ,,,, i, the numbe, "f people ol"erved. Tn be more nearly cx"c!,
Illulliply by 1.Y6,
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FiguH' 3.7 shows how the precision of estimates of sensitivity increases
as the number of people on which the estimate is b2sed increases. In this
particular example, the observed sensitivity of the diagnostic test is 75'Yo.
Figure 1.7 shows that if this estimate is based on only 10 patients, by
chance alone the true sensitivity could be as low as 4SO;;, and as high as
nearly 100'];,. When more patients are studied, the 95°/., confidence interval
narrows, i.e., the precision of the estimate increases.

Predictive Value
As noted previously, sensitivity and specificity are properties of a test that

are taken into aCCotlllt when a decision is made whether or not to order the
test. But once the results of a diagnostic test are available, whether positive
or negative, the sensitivity and specificity of the test are no longer relevant,
because these values pertain to persons known to have or not to have the
disease. But if one knew the disease status of the patient, it would not be
necessary to order the test! For the clinician, the dilerruna is to determine
whether or not the patient has the disease, given the results of a test.
DEFINITIONS

The probability of disease, given the results of a test, is caned the pre
dictive vallie of the test (see Fig. 3.2). Positive predictive vallie is the probability
of disease in a patient with a positive (abnormal) test result. Negative pre-
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Figure 3.7. The precision of an estimate of sensitivity, The 95% confidence interval
for an observed sensitivity of 75%, according to the number of people observed,



58 CLINICAL EPIDEMIOLOGY

dictive value is the probability of not having the disease when the test
result is negative (normal). Predictive value amwers the question, "If my
patient's test result is positive (negative) what are the chances that my
patient does (does not) have the disease?" Predictive value is sometimes
called posterior (or posUest) probability, the probability of disease after the
test result is known. Figure 3.3 illustrates these concepts. Among the pa~

tients treated with antibiotics for streptococcal pharyngitis, less than half
(44%) had the condition by culture (positive predictive value). The negative
predictive value of the housestaff's diagnostic impressions was better; of
the 87 patients thought not to have streptococcal pharyngitis, the impres
sion was correct for 77 (88~';,).

Terms summarizing the overall value of a test have been described.
One such term, accuracy, is the proportion of all test results, both positive
and negative, that are correct. (For the pharyngitis example in Figure
3.3, the accuracy of the hOllsestaff's diagnostic impressions was 70%.)
The area under the ROC curve is another useful summary measure of
the information provided by a test result. However, these summary
measures are too crude to be useful clinically because specific informa
tion about the component parts-sensitivity, specificity, and predictive
value at specific cutoff points-is lost when they are aggregated into a
single index.

DETERMINANTS OF PREDICTIVE VALUE

The predictive value of a test is not a property of the test alone. It is
determined by the sensitivity and specificity of the test and the prevalence
of disease in the population being tested, where prevalence has its custom
ary meaning-the proportion of persons in a defined population at a given
point in time with the condition in question. Prevalence is also called prior
(or pretest) probability, the probability of disease before the test result is
known. (For a full discussion of prevalence, see Chapter 4.)

The mathematical formula relating sensitivity, specificity, and preva
lence to positive predictive value is derived from Bayes's theorem of condi
tional probabilities:

Positive

predictive = (Sensitivity
value

Sensitivity x Prevalence
x Prevalence) + (I-Specificity) x (I-Prevalence)

The more sensitive a test is, the better will be its negative predictive
value (the more confident the clinician can be that a negative test result
rules out the disease being sought). Conversely, the more specific the test
is, the better will be its positive predictive value (the more confident the
clinician can be that a positive test confirms or rules in the diagnosis being
sought). Because predictive value is also influenced by prevalence, it is not



CHAPTER 3 I DIAGNOSIS 59

independent of the setting in which the test is used. Positive results even
for a very specific test, when applied to patients with a low likelihood of
having the disease, will be largely false positives. Similarly, negative re
sults, even for a very sensitive test, when applied to patients with a high
chance of having the disease, are likely to be false negatives. In sum, the
interpretiltion of a positive or negative diagnostic test result varies from
setting to setting, according to the estimated prevalence of disease in the
particular setting.

It is not intuitively obvious what prevalence has to do with an individual
patient. For those who arc skeptical it might help to consider how a test
would perform at the extremes of prevalence. Remember that no matter
how sensitive and specific a test might be (short of perfection), there will
still be a small proportion of patients who are misdassified by it. Imagine
a population in which no one has the disease. In such a group all positive
results, even for a very specific test, will be false positives. Therefore, as
the prevalence of disease in a population approaches zero, the positive
predictive value of a test also approaches zero. Conversely, if everyone in
a population tested has the disease, all negative results will be false nega
tives, even for a very sensitive test. As prevalence approaches 100%, nega
tive predictive value approaches zero. Another way for the skeptic to con
vince himself or herself of these relationships is to work with Figure 3.2,
holding sensitivity and specificity constant, changing prevalence, and cal
cuhlting the resulting predictive values.

The effect of prevalence on positive predictive value, for a test at differ
ent but generally high levels of sensitivity and specificity, is illustrated in
Figure 3.8. When the prevalence of disease in the population tested is
relatively high-more than several percent-the test performs well. But
at lower prevalences, the positive predictive value drops to nearly zero,
and the test is virtually useless for diagnosing disease. As sensitivity and
specificity fall, the influence of changes in prevalence on predictive value
becomes more acute.

Example The predictive value of PSA for diagnosing carcinoma of the
prostate has been studied in various clink'll situations, corresponding to
different prevalences or prior probabilities. In older asymptomatic men,
where the prevalence of prostatic carcinoma is estimated to be 6~12%, only
about 15~~ of men with a PSA of 4 m/!;/dL or more actually had cancer. In
higher risk men (with symptoms or a suspiciolls rectal exam), where the
prevalence of prostatic carcinoma is 26'%, 4()'Yo of men with positive l'SAs
had cancer (7). If PSA were used as il screening test in asymptomatic men,
5 or 6 healthy men would have to undergo additional tests, often induding
biopsy, to find one man with cancer. However, when there is a strong clinical
sllspicion of mali/!;nancy, nearly 50% of men with a positive test will have
prostatic cancer.
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Figure 3.8. Positive predictive value according to sensitivity, specificity, and-preva·
lence of disease.

Current efforts to prevent transmission of acquired immunodeficiency
syndrome (AIDS) through blood products is another example of the effect
of disease prevalence on positive predictive value.

Example A blood test for antibodies to human immunodeficiency viru~

(HIV) is used to screen blood donors. At one cutoff point, the sensitivity is
97,8°/" and the spl:'cificity is 90.4%. In 1985, the positive predictive value of
the test was estimated from the prevalence of infectious lUlits to be no more
than 1/10,000. Thus there would be 9,250 false-positive test results for every
true-positive result (8). Almost 10,000 units would have to be discarded or
investigated further to prevent one transfusion of contaminated blood. The
authors concluded that, for this emotionally charged subject, "careful adher
ence to the principles of diagnostic test evaluation will avoid unreali~tic

expectations."
But the situation changed. As the prevalence of HIV infection increased

in the general population, the positive predictive value of the screening test
improved. In a publication a year later, the prevalence of infected units
among 67,190 tested was 25/10,000, and at similar levels of sensitivity and
specificity, the positive predictive value would be 2.5°;':" much higher than a
few years before (9).

ESTIMATING PREVALENCE

How can clinicians estimate the prevalence or probability of disease in
a patient to determine the predictive value of a test result? There are several
sources of infonnation: the medical literature, local databases, and clinical
judgment. Although the resulting estimate of prevalence is seldom very
precise, error is not likely to be so great as to change clinical judgments
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that are based on the estimate. In any case, the process is bound to be
more accurate than implicit judgment alone.

Tn general, prevalence is more important than sensitivity and specificity
in determining predictive value (see fig. 3.8). One reason why this is so
is that prevalence commonly varies over a wider range. Prevalence of
disease can vary from a fraction of a percent to near certainty in clinical
settings, depending on the age, gender, risk factors, and clinical findings
of the patient. Contrast the prevalence of liver disease in a healthy, young
adult who uses no drugs, illicit or otherwise, and consumes only occasional
alcohol, with that of a jaundiced intravenous drug user. By current stan
dards, clinicians arc not particularly interested in tests with sensitivities
and specificities much below 50'Yo, but if both sensitivity and specificity
are 99°/;" the test is considered a great one. In other words, in practical
terms sensitivity and specificity rarely vary more than twofold.

INCREASING THE PREVALENCE OF DISEASE

Considering the relationship between the predictive value of a test and
prevalence, it is obviously to the physician's advantage to apply diagnostic
tests to patients with an increased likelihood of having the disease being
sought. In fact as Figure 3.8 shows, diagnostic tests are most helpful when
the presence of disease is neither very likely nor very unlikely.

There Me a variety of ways in which the probability of a disease can
be increased before using a diagnostic test.

Referral Process

The referral process is one of the most common ways in which the
probability of disease is increased. Referral to teaching hospital wards,
clinics, and emergency departments increases the chance that significant
disease will tmderlie patients' complaints. Therefore, relatively more ag
gressive use of diagnostic tests might be justified in these settings. In pri
mary care practice, on the other hand, and particularly among patients
without complaints, the chance of finding disease is considerably smaller,
and tests should be used more sparingly.

Example While practicing in a military clinic, one of the authors saw
hundreds of people with headache, rarely ordered diagnostic tests, and never
encountered a patient with a severe underlying caUSl' of headache. (It is
lUllikely that important conditions were missed bccause the clinic was virtu
.,lIy the only source of medical care for the~ patients and proloneed follow
up was available.) However, during the first week back in a medical resi
dency, a patient visiting the hospital's emergency department because of a
headache similar to the ones managed in the military was found to have a
cerebellar absCl':'s!

Because clinicians may work at different extremes of the prevalence spec
trum at various times in their clinical practices, they should bear in mind



62 CLINICAL EPIDEMIOLOGY

that the intensity of diagnostic evaluation may need to be adjusted to suit
the specific situation.

Selected Demographic Groups

In a given setting, physicians can increase the yield of diagnostic tests
by applying them to demographic groups known to be at higher risk for
a disease. 1\ man of 65 is 15 times more likely to have coronary artery
disease as the cause of atypical chest pain than a woman of 30i thus the
electrocardiographic stress test, a particular diagnostic test for coronary
disease, is less useful in confirming the diagnosis in the younger woman
than in the older man (10). Similarly, a sickle-cell test would obviously
have a higher positive predictive value among blacks than among whites.

Specifics of the Clinical Situation

The specifics of the clinical situation are clearly the strongest influence
on the decision to order tests. Symptoms, signs, and disease risk factors
all raise or lower the probability of finding a disease. For example, a woman
with chest pain is more likely to have coronary disease if she has typical
angina and hypertension and she smokes. As a result, an abnormal electro
cardiographic stress test is more likely to represent coronary disease in
such a woman than in persons with nonspecific chest pain and no coronary
risk factors.

The value of applying diagnostic tests to persons more likely to have a
particular illness is intuitively obvious to most doctors. Nevertheless, with
the increasing availability of diagnostic tests, it is easy to adopt a less
selective appmach when ordering tests. However, the less selective the
approach, the lower the prevalence of the disease is likely to be and the
lower will be the positive predictive value of the test.

The magnitude of this effect can be larger than most of us might think.

Example Factors that influence the interpretation of an abnormal electro
cardiographic stress test arl:' illustrated in Figure 3.9. It shows that the positive
predictive value for coronary artery disease (CAD) associated with an abnor
mal test can vary from 1.7 to 99.8%, depending on age, symptoms, and the
degree of abnormality of the test. Thus an exercise test in an asymptomatic
3.'i-year-old man showing 1 mm ST seh'lllent depression will be a false
positive test in more than 98% of cases. The same test result in a 60-year-old
man with typical l'mgina by history will be associated with coronary artery
disease in more than 90% of cases (10).

Because of this effect, physicians must interpret similar test results dif
ferently in different clinical situations. A negative stress test in an asymp
tomatic 35-year-old man merely confirms the already low probability of
coronary artery disease, but a positive test usually will be misleading if it
is used to search for unsuspected disease, as has been done among joggers,
airline pilots, and business executives. The opposite applies to the 65-
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year-old man with typical angina. In this case, the test may be helpful in
confirming disease but not in excluding disease. The test is most useful in
intermediate situations, in which prevalence is neither very high nor very
low. For example, a 60-year-old man with atypical chest p<lin h<ls a 6n:,
chance of coronary artery disease before stress testing (see Fig. 3.9); but
afterward, with gre<lter th<ln 2.5 mm ST segment depression, he has a 99%
probability of coron<lry disease.

Because prevalence of disease is such <l powerful determinant of how
useful a diagnostic test will be, clinicians must consider the probability of
disease before ordering a test. Until recently, clinicians relied on clinical
observations and their experience to estim<lte the pretest probability of a
disease. Research using large clinical computer data b<lnks now provide
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quantitative estimates of the probability of disease, given various combina
tions of clinical findings (11).

IMPLICATIONS FOR THE MEDICAL LITERATURE

Published descriptions of diagnostic tests often include, in addition to
sensitivity and specificity, some conclusions about the interpretation of a
positive or negative test, i.e., predictive value. This is done, quite rightly,
to provide information directly useful to clinicians. But the data for these
publications are often gathered in university teaching hospitals where the
prevalence of serious disease is relatively high. As a result, statements
about predictive value in the medical literature may be misleading when
the test is applied in less highly selected settings. What is worse, authors
often compare the performance of a test in a number of patients known
to have the disease and an equal number of patients without the disease.
This is an efficient way to describe sensitivity and specificity. However, any
reported positive predictive value from such shtdies means little because it
has been determined for a group of patients in which the prevalence of
disease was set by the investigators at 50()'0.

Likelihood Ratios
Likelihood ratios are an alternative way of describing the performance

of a diagnostic test. They summarize the same kind of information as
sensitivity and specificity and can be used to calculate the probability of
disease after a positive or negative test.
ODDS

Because use of likelihood ratios depends on odds, to understand them
it is first necessary to distinguish odds from probability. Probability-used
to express sensitivity, specificity, and predictive value-is the proportion
of people in whom a particular characteristic, such as a positive test, is
present. Odds, on the other hand, is the ratio of two probabilities. Odds
and probability contain the same information, but express it differently.
The two can be interconverted using simple formulas:

Odds = Probability of event -~ 1 - Probability of event

Probability - Odds -'-- I + Odds

These terms should be familiar to most readers because they are used in
everyday conversation. For example, we may say that the odds are 4:1 that
the Seattle Supers\mics will win tonight or that they have an 80% probabil
ity of wiruting.
DEFINITIONS

The likelihood fIItio for a particular value of a diagnostic test is defined
as the probability of that test result in people with the disease divided by
the probability of the result in people without disease. I.ikelihood ratios
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express how many times more (or less) likely a test result is to be fmUld
in diseased, compared with nondiseased, people. If a test is dichotomous
(positive/negative) two types of likelihood ratios describe its ability to
discriminate between diseased and nondiseased people: one is associated
with a positive test and the other with a negative test (sec Fig. 3.2).

In the pharyngitis example (see Fig. 3.3), the data can be used to calculate
likelihood ratios for streptococcal pharyngitis in the presence of a positive
or negative test (clinical diagnosis). A positive test is about 2.5 times more
likely to be made in the presence of streptococcal pharyngitis than in the
absence of it. If the clinicians believed streptococcal pharyngitis was not
present, the likelihood ratio for this negative test was 0.39; the odds were
about 1:2.6 that a negative clinical diagnosis would be made in the presence
of streptococcal pharyngitis compared with the absence of the disease.

USES OF LIKELIHOOD RATIOS

Pretest probability (prevalence) can be converted to pretest odds using
the formula presented earlier. Likelihood ratios can then be used to convert
pretest odds to posttest odds, by means of the following formula:

Pretest odds X Likelihood ratio = Posttest odds

Posttest odds can, in turn, be converted back to a probability, using the
formula described earlier in this chapter. Tn these relationships, pretest
odds contains the same information as prior probability (prevalence), likeli
hood ratios the same as sensitivity / specificity, and posttest odds the same
as positive predictive value (posttest probability).

The main advi1ntage of likelihood ratios is that they make it easier for
us to go beyond the simple i1nd clumsy classification of a test result as
either abnormi1l or normal, as is usually done when describing the accuracy
of a diagnostic test only in terms of sensitivity and specificity at a single
cutoff point. Obviously, disease is more likely in the presence of an ex
tremely abnorm<ll test result than it is for a marginal one. With likelihood
ratios, it is possible to summarize the information contained in a test result
at different levels. One can define likelihood ratios for any number of test
results, over the entire range of possible values. In this way, information
represented by the degree of abnormality, rather than the crude presence
or absence of it, is not discarded. In computing likelihood ratios across a
range of test results, sensitivity refers to the ability of that particular test
result to identify people with the disease, not individuals with that result
or worse. The Si1me is true for the calculation of specificity.

Thus likelihood ratios can accommodate tht.' common and reasonable
clinical practice of putting more weight on extremely high (or low) test
results than on borderline ones when estimating the probability (or odds)
that a particular disease is present.



66 CLINICAL EPIDEMIOLOGY

Example How accurate is serum thyroxine (T4 ) alone as a test for hypo
thyroidism? This question was addressed in a study of 120 ambulatory gen
eral medical patients suspected of having hypothyroidism (' 2). Patients were
diagnosed as being hypothyroid if serum thyrotropin (TSH) wa~ elevated
and if subsequent evaluations, including other thyroid tests and response to
treatment, were consistent with hypothyroidism. The authors shtdied the
initial T,lcvel in 27 patients with hypothyroidism and 93 patients whn we.re
found not to llave it to determine how accurately the simple test alone might
have diah'l1osed hypothyroidism.

As expected, likelihood ratios for hypothyroidism were highest for low
levels of T1 and lowest for high levels (Table 3.2). The lowest value~ in the
distribution ofT,s «4.0 pg/dL) were only ~een in patients with hypothyroid
ism, i.e., these levds filled in the diagnosis. The highest levels (>8.0 pg/dL)
were not seen in patients with hypothyroidism, i.e., the pre~nce of these
levels ruled out the disease.

The authors concluded that "it may be possible to achieve cost savings
without loss of diagnostic accuracy by using a single total It meaSllre
ment for the initial evaluation of suspected hypothyroidism in selected
patients."

The likelihood ratio has several other advantages over sensitivity and
specificity as a description of test performance. The infonnation contrib
uted by the test is summarized in 011e number instead of two. The calcula
tions necessary for obtaining posttest odds from pretest odds arc easy.

Table 3.2
Distribution of Values for Serum Thyroxine in Hypothyroid and Normal Patients,
with Calculation of Likelihood Ratios'

P;lt,eflts w',th Test Result
Total Serum

Illyroxine Ilypothyroid Nor",,,1 likelihood
l!-'gidLj (numbHr, pHrCHnt) rnuillber, percent) Ratio

<11 2 (7.4) 1
1.1-2,0 3 (11.1) Ruled in

? 1·-3,0 1 (3.7)

J::11-40 8 (29,6)
4,1-5,0 4 (14,8) 1 (11) 13,8
5,1-6.0 4 (148) 6 (6,5) 23
61 7.0 3 (11 1) 11 (11.8) 9
7,1-8.0 2 {7.41 19 (20.4) A
8,1-9.0 1/ (1S,:J)

191-10 20 (21,5)
101-11 11 (11,8) Ruled out

11.1-12 4 (43) j-,12 4 !'1.3)
Tolal 27 (100) 93 (WO)

, I,om Goldstein BJ, Musillin AI. Use 01 a 'linglH thyroxine test to evaluate ambulatory medical paliHnts for
s1I5pecWd 11YlX}lIlyroidis",. ,t Gellintern Med 19fJ7;2;20 2·1
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I\lso, likelihood ratios are partku lady well suited far describing the overa 11
probability of disease when a serics of diagnostic tests is used (see below).

Likelihood ratios (LR) also have disadvantages. One must use odds, not
probabilities, and most of us find thinking in terms of odds more difficult
than probabilities. Also, the conversion from probability to odds and back
requires math or the use of a nomogram, which partly offsets the simplicity
of calculating posttest odds using LRs. Finally, for tests with a range of
results, LRs use measures of sensitivity and specificity that are different
from those usually described.

Multiple Tests
Because clinicians commonly use imperfect diagnostic tests, with less

than IOO'/'o sensitivity and specificity and intermediate likelihood ratios, a
single test frequently results in a probability of disease that is neither very
high nor very low, e.g., somewhere between 10')'0 and 90%. Usually it is
not acceptable to stop the diagnostic process at such a point. Would a
physician or patient be satisfied with the conclusion that the patient has
even a 20% chance of having carcinoma of the colon? Or that an asymptom
atic 35-year~ald man with 2.5 mm 5T segment depression on a stress test
has a 42% chance of coronary artery disease (see Fig. 3.9)? Even for less
deadly diseases, such as hypothyroidism, tests with intermediate posttest
probabilities are of little help. The physician is ordill<lrily bound to raise
or lower the probability of disease substantially in such situations-unless,
of coursc, the diagnostic possibilities are all trivial, nothing could be done
about the result, or the risk of proceeding further is prohibitive. When
these exceptions do not apply, the doctor will want to proceed with
further tcsts.

When multiple tests are performed and all are positive or all are nega
tive, the interpretation is straightforward. All too often, however, some
are positive and others are negative. lnterpretation is then more compli
cated. This section discusses the principles by which multiple tests are
applied and interpreted.

Multiple tests can be applied in two general ways (Fig. 3.10). They can
be llsed in parallel (i.e., all at once), and a positive result of any test is
considered evidence for disease. Or they can be done serially (i.e., consecu
tively), based on the results of the previolls test. for serial testing, all
tests must give a positive result for the diagnosis to be made, because the
diagnostic process is stopped when a negative result is obtained.

PARALLEL TESTS

Physicians usually order tests in parallel when rapid as.';('Ssment is necessary,
as in hospitalia>d or emergency patients, or for ambulatory patients who cannot
rehm1. easily because they have come from a long distance for evaluation.
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STRATEGY SEQUENCE OF EVENTS CONSEQUENCES

Serial testing

Test A and test B and test C are positive

Parallel testing

Test A or test 8 or test C is positive

A--'>

s--'>

c--'>

Figure 3.10. Serial and parallel testing.
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Multiple tests in parallel generally increase the sensitivity and, therefore,
the negative predictive value for a given disease prevalence above those
of each individual test. On the other hand, specificity and positive pre
dictive value are lowered. That is, disease is less likely to be missed (parallel
testing is probably one reason referral centers seem to diagnose disease
that local physicians miss), but false-positive diagnoses are also more likely
to be made (thus the propensity for nvcrdiagnosing in such centers as
well). The degree to which sensitivity and negative predictive value in
creases depends on the extent to which the tests identify patients with the
disease missed by the other tests used. ]-lor example, if two tests are used
in parallel with 60 and 8(),~{, sensitivities, the sensitivity of the parallel
testing will be only 80% if the better test identifies all the cases found by
the less sensitive test. If the two tests each detect all the cases missed by
the other, the sensitivity of parallel testing is, of course, 10m!". Tf the hvo
tests are completely independent of each other, then the sensitivity of
parallel testing would be 92'\"0.

Parallel testing is particularly useful when the clinician is faced with
the need for a very sensitive test but has available only two or more
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relatively insensitive ones that measure different clinical phenomena. By
using the tests in parallel, the net effect is a mere sensitive diagnostic
strategy. The price, however, is evaluation or treatment of some patients
without the disease.

Lxam}/Ie PSi\. and digital reclal exam are both insensitive tests for the
diagnosis of prostate cancer (7). Tahle 3.3 shows their sensitivity, specificity,
and predictive values in the screening selling (men without symptoms).
When the two tests arc used in parallel, the sensitivity increases but the
specificity falls. The positive predictivl:' vlllue is lower thnn for PSA
testing alone.

SERIAL TESTING

Physicians most commonly use serial testing strategies in clinical situ<1
tions where rapid assessment of patients is not required, such as in office
practices and hospital clinics in which ambulatory patients are followed
over time. Serial testing is also used when some of the tests are expensive
or risky, these tests being employed only after simpler and safer tests
suggest the presence of disease. For example, maternal age and blood tests
(a-fetoprotein, chorionic gonadotropin and estriol) are used to identify
pregnancies at higher risk of delivering a baby with Down's syndrome.
Mothers found to be at high risk by those tests are then offered amniocente
sis (D). Serial testing leads to less laboratory usc than parallel testing,
because additional evaluation is contingent on prior test results. However,
serial testing takes more time because additional tests are ordered only
after the results of previous ones become available.

Serial testing maximizes specificity and positive predictive value, but
lowers sensitivity and the negative predictive value (sec Table 3.3). One
ends up surer that positive test results represent disease, but runs an in
creased risk that disease will be missed. Serial testing is particularly useful
when none of the individual tests available to a clinician is highly specific.

1£ a physicia11 is going to use two tests in series, the process will be

Table 3.3
Tests Characteristics of PSA and Digital Rectal Examination (ORE)"

PSA 4,0 pg/lTlL
Abnormal LJRE
Abnormal PSA or ORE':
Abrlormal PSA 8nd I)RE

Sensitivily

0.67
0.50
OEl~

034

Specilicily

0,97
0.94
0.92
0.995

Positive Preddive
Value

Cl.43
0,24
0,28
0.49

"I 'SI\ and ORE, alono ond in combi"alion (parallel and SG,illl lestinR) in tll" liiJflnosis 01 pr08l11to mncer
(l\daptHd from Kramer RS et al Prostato cancer screc·ning: what WH know and what we flood to know. Arm
Int MO{j 1993;1199H 923,)
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more efficient if the test with the highest specificity is used first. Table 3.4
shows the effect of sequence on serial testing. Test A is more specific than
test B, whereas B is more sensitive than A. By using A first, fewer patients
are subjected to both tests, even though equal numbers of diseased patients
are diagnosed, regardless of the sequence of tests. However, if one test is
much cheaper or less risky, it may be more prudent to use it first.

ASSUMPTION OF INDEPENDENCE

When multiple tests are used, as discussed above, the accuracy of the
result depends on whether the additional information contributed by each
test is somewhat independent of that already available from the preceding
ones, i.e., the next test does not simply duplicate known information. In
fact, this premise underlies the entire approach to predictive value we have
discussed. However, it seems unlikely that the tests for most diseases

Table 3.4
Effect of Sequellce ill Serial Testing: A theil B versus B Theil A"

Prevalence of Disease

Number of patients tested
Number of patients with disease

1000
200 (20% prevalence)

Test
A
8

Sensilivity iJ.nd Specificity of Tests

Sensitivity
80
gO

Sequence of I esting

Specificity
90
80

Begin wittl Test A Begin with Test B

Disease Disease
+

A 160 80 240 B + 180 160 340
40 no l60 20 640 660

200 SUO 1000 200 600 1000

240 Patients Retested with B 340 Patients Retested with A

Disease Disease
+ +

B , 144 16 160 A + 144 16 160
16 6' 80 46 144 180

160 80 240 180 160 340

.., Note that in both sequenG8S the samo number of patienfs aro idenlili",d as diseased (160) arld the same
number of true positives (t44) arp identified. But WllB" tAst A (wrth tho higher specificity) is usod first, fewpr
patIents am retest"d. The lower sensitivity oJ test II does not ndwrs"ly affect tll0 final result
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are fully independent of one another. If the assumption that the tests are
completely independent is wrong, cillculation of the probilbility of disease
from several tests would tend to overestimate the tests' value.

SERIAL LIKELIHOOD RATIOS

When a series of tests is used, an overall probability can be ca1cul<lted,
using the likelihood ratio for each test result, as shown in Figure 3.11. The
prevalence of disease before testing is first converted to pretest odds. As
each test is done, the posttest odds of one becomes the pretest odds for
the next. Tn the end, a new probability of disease is found that takes into
account the information contributed by aU the tests in the series.

Responsiveness
The clinical status of patients changes continually either in response to

treatment or because of the effects of aging or illness. Clinicians regulilrly
face the question, "HilS my patient improved or deteriorated?" The tests
used to monitor the clinical course (e.g., symptom severity, functional
st<ltus) are often somewh<lt different from those used to diagnose disease,
but the assessment of their performance is very similar.

The ability of changes in the value of a test to identify correctly changes
in clinical status is called its respollsiveness. It is conceptually related to
the validity of a diagnostic test, except that the presence or absence of a
meaningful change in clinical st<ltus, not the presence or absence of disease,
is the gold standard. The m<lgnitude of a test's responsiveness can be
expressed as sensitivity, specificity, and predictive value or as the ilreil
under the ROC curve.

Example Several self-report meaS\Jres of health and. fWlctional status are
commonly u;;ed to monitor the health of populations illld cvaluate the effects
of trcatment. Two such measure;; are restricted activity days-number of

~jj"ll!:i'iI!IIT "PRC>&A8ILIH

"
Test A Pretest odds x LRA = Posttest odds

"Test B Pretest odds x LRs = Posttest odds

"
PC>i"tTIiIlT PRC>IIA8ILIH

Figure 3.11. Use of likelihood ratios in serial testing.
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dilYs on which usual ilctivities were limilt'd by illness or injury-ilnd sdf
reported health-a question asking respond('nts to rilte their health from
excellent to poor compared with others their age. The responsiveness of these
measures administered 1 year apart was assessed by comparing changes in
each measure between older adults who experienced a major illness during
the year and those thai did not have a major illness (14). The l.:OC curves in
Figure 3.12 show that the changes in self-reported health performed slightly
bdkr than chaneI' in picking up changes in health associated with major
illness, while changes in restricted activity days performed much better, ac
counting for 80''l;, of the area und('r the ReX: curve,

Summary
Diagnostic test performance is judged by comparing the results of the

test to the presence of disease in a two-by-two table. All four cells of the
table must be filled. When estimating the sensitivity and specificity of a
new diagnostic test from information in the medicalliteraturc, there mllst
be a gold standard to which the accuracy of the test is compared. The
diseased and nondiscilsed subjects should both resemble the kinds of pa-
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Figure 3.12. Hle responsiveness ot two questionnaire measures of health status,
Distinguishing between elderly patients with and without a major intervening illness.
(Adapted from Wagner EH, LaCroix IV, Grothaus Le, Hecht JA. Responsiveness
of health status measures to change among older adults. J Am Geriatr Soc
1993;41 :241-248.)
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bents for whom the test might be useful in practice. In addition, knowledge
of the final diagnosis should not bias the interpr('ta~ionof the test results
or vice versa. Changing the cutoff point betwecn normal and abnormal
changes sensitivity and specificity. Likelihood ratios are another way of
describing the accuracy of a diagnostic test.

The predictive value of a test is the most relevant characteristic when
clinicians interpret test results. It is determined not only by sensitivity and
specificity of the test but also by the prevalence of the disease, which may
change from setting to setting. Usually it is necessary to use several tests,
either in parallel or in series, to achieve acceptable diagnostic certainty.
Responsiveness, a test's ability to detect change in clinical status, is also
judged by the same h\'o-by-two table.
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FREQUENCY

In Chapter 1, we outlined the central questions facing clinicians as they
caTC for patients. In this chapter, we define and describe the quantitative
evidence that clinicians use to guide their diagnostic and therapeutic deci
sions. Let us introduce the subject with a patient.

i\ 72-year-old man presents with slowly progressive urinary frequency,
hesitancy, and dribbling. Digital rectal examination Tevmls a symmetrically
enlarged prostate gland. Urinary flow measurements show signWc<lnt re
duction in flow rate and serum PSA is not elevated. A diagnosis of benign
prostatic hyperplasia (I3PH) is made. In deciding on treatment, the clinician
and patient must weigh the costs and benefits of various therapeutic op
tions: for example, the risk<; of worsened symptoms or obstructive renal
disease with medical treatment versus operative mortality or sexual dys
function with surgery.

The decisions have traditionally been made by "clinical judgment,"
which we learn at the bedside and in the clinics. In recent years, methods
for quantitative clinical decision making have been introduced into medi
cine. The most commonly used cUnical strategies are decision analysis,
cost-effectiveness analysis, and cost-benefit analysis. These methods usc
quantitative data about the frequency of key clinical events and the conse
quences of those events to patients to derive the best course of action. The
methods, described in more detail at the end of the chapter, are only as
good as the estimates of the probability or frequency of clinical outcomes
on which they rely.

For the patient with BPH, sound clinical judgment requires accurate
information about the probability of symptom deterioration, acute reten
tion or renal damage with medical treatment; and symptom relief, mortal
ity, impotence, or retrograde ejaculation with surgery. These are, in general,
the kinds of evidence needed to answer most clinical questions. Decisions
are guided by the probability of outcomes under alternative circumstances:
in the presence of a positive test versus a negative test or after treatment
A versus treatment B. Because the probability of disease, improvement,

75
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deterioration, cure, or death forms the basis for answering most clinical
questions, this chapter examines measures of clin.ical frequency.

Assigning Numbers to Probability Statements
Physicians often communicate probabilities as words-usually, some

times, rarely, etc.-rather than as numbers. Substituting words for numbers
is convenient and avoids making a precise statement when one is uncertain
about a probability. However, it has been shown that there is little
agreement about the meanings of commonly used words for frequency.

Example Physicians were asked to estimate the likelihood of disease
for each of 30 expressions of probability found by reviewing radiology and
laboratory reports. There was great difference of opinion for each expression.
Probabilities for consistent with ranged from 0.18 to 0.98; for unlikely, the range
was 0.01-0.9-1. These data support the authors' assertion that "difference of
opinion among physicians regarding: the management of a problem may
reflect differences in the meaning ascribed to words used to define
probability" (1).

Patients also assign widely varying values for expressions of probability.
In another study, highly skilled and professional workers thought usually
referred to probabilities of 0.35-1.0 (::'::2 standard deviations from the
mean); rarely meant to them a probability of 0-0.15 (2).

Thus substituting words for numbers diminishes the information con
veyed. We advocate using numbers whenever possible.

PERCEPTIONS OF FREQUENCY

Pcrsonal experience colors the clinician's perception of the probability
of conditions and outcomes. I laving a recent patient experience an outcome
will tend to make the clinician inflate the probability of that outcome.
Conversely, dinicians tend to underestimate the frequency of occurrences
that they have not yet experienced or that patients may be reluctant to
discuss. For example, systematic interviews of patients after transurethral
resection of the prostate gland (TUR..P) reveal that more than 50% of men
experience retrograde ejaculation (3). Most urologists would estimate the
frequency to be much lower, since many mall' patients are reluctant to
discuss sexual issues.

Prevalence and Incidence
Tn general, clinically relevant measures of the frequency or probability

of events are fractions in which the numerator is the number of patients
experiencing the outcome (cases) and the denominator is the number of
people in whom the outcome could have occurred. Such fractions are, of
course, proportions; but by common usage, they are referred to as "rates."

Clinicians encounter two meilsures of frequency-prevalence and
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incidence. A prevalCl/cc is the fraction (proportion) of a group of people
possessing a clinical condition or outcome at a given point in time.
Prevalence is measured by surveying a defined population containing
people with and without the condition of interest, at a single slice in
time. There are 1\.vo kinds of prevalence. Point prevalencc is measured at
the time of the survey for each person, although not necessarily the
same point in time for all the people in the defined population. Period
prevalcnce refers to cases that were present at any time during a specific

period of time.
An incidCllce is the fra.ction or proportion of a group initially free of the

condition that develops it over a given period of time. Incidence refers
then to new cases of disease occurring in a population initially free of the
disease or new outcomes, such as disability or death, occurring in patients
with a specific disease. As described later in this chapter and in greater
detail in Chapter 5, incidence is measured by identifying a susceptible
group of people (i.e., people frec of the disease or the outcome) and examin
ing them periodically over an interval of time to discover and count new
cases that develop during the interval.

Example To illustrate the di{ferenCl.'S between prevalence <md incidence,
riguH' 4.1 shows the occurrence of disease in a group of 100 people over the
course of 3 years (1992-1994). As time passes, individuals in the group de·
velnp the disease. They remain in this shlle until they either recover or di<'.
In the 3 y<'ars, In people suffer Ihe onset of disease and 4 alreCldy had it. The
remClinin~ 80 people do not develop disease and do not appear in the figure.

At the beginning of 1992, there arc four CClses, so the prevalence at that
point in lime is 4/H](I. If all 100 individuals, including prior cases, are ,'XCllll
ined at the beginning of each year, one can compute the prevCllence at those
points in time. At the begiJming of 1993, the prevalence is 5/100 because two
of the pre-1992 cases Iinger<'d on into 1993 and Iwo of the new cases devel
oping in 1992 terminilted (hopefully in a cure) before the examination at th<'
start of 1993. Prevalences can be computed for each of the other Iwo ilnnual
examinations, and assuming that none of the original 100 people died, moved
away, or refused examination, thes<' prevalences arc 7/100 at the beginning
of 1':1':14 and 5/100 at the beginning of 1995.

To calculate the incidence of new cases developing in the populiltion, we
consider only the 9h individuals frc{' of the disease at the beginning ()f 1'192 and
what happens to them over th<, next 3 years. Five new cases developed in 1992;
six new cascs developed in 1993, and five .ldditional new cases develop<'d in
1'194. The 3-year incidence of the diseas<' is all new cascs developing in the 3
years (which is In) divided by the number of susceptible individuals at the
beginnin~ of the follow-up period (% prople), or 16/% in 3 years. Whal are
tlw Clnnual incidences for 1'192, 1'193, and 1994, respectively? Rememoc'ring to
remove the previous c.ases from the denominator, we would caleu late the annual
incidences as 5/% for 1992, 6/91 for 1993, and 5/85 for 1994.

Every measurc of disease frequency necessarily contains some indica
tion of time. With measures of prevalence, time is assumed to be instanta~
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Figure 4.1. Occurrence of disease in 100 people at risk from 1992 to 1994.

neous, as in a single frame from a motion picture. Prevalence depicts the
situation at that point in time for each p8tient, even though it may, in
re8lity, have taken several weeks or months to collect observations on the
various people in the group studied. For incidence, time is the essence
becam;c it defines the interval during which susceptible subjects were mon
itored for the emergence of the event of interest.

Table 4.1 summarizes the characteristics of incidence and prevalence.
Although the distinctions between the two seem clear, the literature is
replete with misuses of the terms, particularly incidence (4).

Why is it important to know the difference between prevalence and
incidence? Bec8use they answer two different questions: (n) What propor
tion of a group of people h8ve a condition? and (b) At what rate do new
cases arise in 8 group of people as time passes? The anS\'lier to one question
cannot be obt8ined directly from the answer to the other.
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Measuring Prevalence and Incidence
PREVALENCE STUDIES

The prevalence of disease is meai;Ufed by surveying a group of people,
some of whom are diseased at that point in time while others are healthy
(Fig. 4.2). The fraction or proportion of the group that is diseased (i.e.,
cases) constitutes the prevalence of the disease.

Such one-shot examinations or surveys of a population of individuals,
including cases and noncases, are called prevalence studies. Another tcrm
is cross-sectional studies, because people a re studied at a point (cross-section)
in time. They are among the more common types of research designs
reported in the medical literature.

The following is an example of a typical prevalence study.

Table 4.1
Characteristics of Incidence and Prevalence

CI,8rflClerislic

Numerator

Denominator

Time
How measured

Inc,dence

New cases occurring during a
period of time among a
group initially free at
disease

All susceptible people present
at the heginninq of the
period

Duration ot the period
Cohort study (sec Ch(lpj(~r 5)

t'rcvalol1ce

All cases counted on a single
surveyor examination of Cl

group

All people examined. includirlg
casas and nonC8S8S

Single point
Prevalence (clOss-sectional)

study

Defined
Population

Representative
Sample

Disease/Outcome
Present?

Figure 4.2. The design of a prevalence survey.
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Example What is the prevalence of dementia in the general population
of older adults? To answer this question, 1965 people 75 years of age and
older living in Cambridge, England, were surveyed. Each participant under
went an examination that induded the Mini-Mental State Examination
(MMSE), a test for cognitive impairment. The presence of dementia was
identified by a serial testing strategy: Those with MMSE scores of 25 or less
were examined using a standardized protocol by a psychiatrist who made
the final diagnosis. The prevalence of dementia was about 10% overall, and
rates doubled in each 5-year age band (5).

INCIDENCE STUDIES

Tn contrast to prevalence, incidence is measured by first identifying a
popubtion free of the event of interest and then following them through
time with periodic examinations to determine occurrences of the event.
The popul<ltion under examination in <In incidence shldy, referred to as <I
cohort, may be healthy individuals followed for the emergence of disease
or diseased individuals followed for outcomes of the disease. This process,
also called a cohort study, will be discussed in detail in Chapter 5.

To this point, the term incidence has been used to describe the r<lte of
new events in a group of people of fixed size, all of whom are observed
over a period of time. This is called cumulative incidCllcc, because new cases
are accwnulated over time,

Example To study the incidence of dementia, the Cambridge investiga
tors identified a cohort by removing from the follow-up study population
those older individuals diagnosed with dementia in the prevalence study
described above (6). The remaining 1778 nondemented people were tracked.
Of the::;e, 305 died, 190 refused further testing, and 88 could not be found or
were ton ill to be examined. The remaining-II\J5 were reexamined an aver,ig<'
of 2.5 year::; after the original exnmination. Overall, the aJUUlal incidence rate
of dcmention in thi::; cohort was 4.3')(, and exceeded 8')\, per year for those
who were over age 85 at the time of the prevalence examination.

A second approach to estimating incidence is to measure the number
of nev,,, cases emerging in an ever-changing population, where people are
under study and susceptible for varying lengths of time. The incidence
measure derived from shldies of this type is sometimes called incidence
density. Typical examples are clinic<ll trials of chronic treatment in which
eligible patients are enrolled over several years so that early enrollees are
treated and followed longer than late enrollees. Tn an effort to keep the
contribution of individual subjects commensurate with their follow-up in
terval, the denomin<ltor of an incidence density measure is not persons at
risk for a specific time period but person-time at risk of the event. An
individual followed for 10 years without becoming <I case contributes 10
person-years, whereas an individual followed for 1 year contributes only
one person-year to the denominator. Incidence density is expressed as the
number of IWW cases per tot<ll number of person-years at risk.
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The person-years approach is also useful for estimating the incidence
of disease in large populations (If known size when an accurate count of
new cases and an estimate of the population at risk are available, e.g., a
population-based cancer registry.

A disadvantage of the incidence density approach is that it lumps to
gether different lengths of follow-up. A small number of patients followed
for a long time can contribute as much to the denominator as a large
number of patients followed for a short time. Tf these long-term follow-up
patients are systematically different from short-term follow-up patients,
the resulting incidence measures may be biased.

Interpreting Measures of Clinical Frequency
To make sense of a prevalence or incidence rate, the first steps involve

careful definition of both the numerator and the denominator.

WHAT IS A CASE?-DEFINING THE NUMERATOR

Up to this point, the general term case has been used to indicate an
individual suffering from the disease or outcome of interest. In classical
epidemiology, cases tend to be individuals with a disease, and prevalence
and incidence refer to the frequency of cases among population groups
like the residents of a community. However, clinical decisions often depend
on information about the frequency or rate of disease manifestations, such
as symptoms, signs, or laboratory abnormalities, or the frequency of dis
ease outcomes, such as death, disability, or symptomatic improvement. In
clinical practice, then, "cases" are often those patients with a disease who
manifest a particular clinical finding or experience a particular outcome.

To interpret rates, it is necessary to know the basis on which a case is
defined, because the criteria used to define a case can strongly affect rates.

Example One simple way to identify a case is to ask people whether they
have a certain condition. How does this method compare to more rigorous
methods? In the Commission on Chronic Illness study, the prevalences of
various conditions, as determined by personal interviews in the home, were
compared with the prevalences as determined by physician examination of
the same individuals. Figure 4.3 illustrates the interview prevalences and the
clinical examination prevalences for various conditions.

The data illustrate that these two methods of defining a case can generate
very different estimates of prevalence and in different directions, depending
on the condition (7).

For some conditions, broadly accepted, explicit diagnostic criteria are
available. The Centers for Disease Control and Prevention criteria for defi
nite Lyme disease (Table 4.2) can be used as an example (8). These criteria
demonstrate the specificity required to define reliably a disease that is as
much in the public eye as is Lyme disease. They also illustrate a trade-off
between rigorous definitions and clinical reality. If only "definite" cases



82 CLINICAL EPIDEMIOLOGY

Method of Defining Case

Clinical Examination Questionnaire

Hernia

Heart disease

Peptic ulcer

Diabetes

Hypertension

Arthritis

Asthma/hayfever

Chronic sinusitis

I
10

I
8 6 4 2 o 2 4 6

PREVALENCE (%)

Figure 4.3. Prevalence depends on the definition of a case. The prevalence of
diseases in the general population based on people's opinions (survey) and clinical
evaluation. (Data from Sanders BS. Have morbidity surveys been oversold? Am J
Public Health 1962;52:1648-1659.)

Table 4.2
Criteria for Reporting L.yme Disease8

Clinical Case Definition (Confirmerl)
Erythema Migrans or
At least one late manifestation and laboratory contirmation ot infection

Late Manifesfation (VVhen Altcrnotive r.xplanation Not Found)
Musculoskeletal

Recurrent tJricf attacks of objective joint swelling
Nervous system: any of the following

Lymphocytic meningitis
Cranial neuritis (particularly facial palsy)
encephalomyelitis with antibody in CSF

Cardiovdscular
Acute onset 2 or 3° atrioventricular conduction defecls that resolve.

Laboratory Confirmation (Any of fhe Following)
Isolation of Borrelia burgdorfei
Diagnostic levels of fgM 8.nd fgG antibodies to the spirochete in serum or CSF-
Significant change in antibody responses in p8.ired 8.cute- and convalescent-phase serum

~;"mples.

"Contors for lJisoaso ContlOl ami f'rovenliun crileria. (Adupled from U.S. OepHrtlTlHrlt of HeHlfh HnrllllJman
Services. C""e (!HrlrlitioflS for plJblic health SI.Jtv81I1ance. MMWR 198(1;c!Y; 19-~O.)
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were included in a rate, most patients who ordinarily would be considered
to have the disease would not be included. On the other hand, including
"probable" cases could overestimate the true rate of disease.

Example The incidence rate of Lyme disease was estimated in Olmstead
County, :Minnesota (9). Between 1980 and 1990, 68 cases had been clinically
diagnosed in residents of the COW1ty. Only 17 (25%) met CDC criteria. In
Mirmesota, it is mandatory to report Lyme disease to a public health official,
yet only 7 cases Wl're reported, of which four met CDC crikria. 'fhese data
illustrate how difficult it is to make accurate estimates of the frel..juency of
diseases whose diagnosis relies on multiple clinical criteria.

WHAT IS THE POPULATION?-DEFINING THE DENOMINATOR

A rate is useful only to the extent that the individual practitioner can
decide to which kinds of patients the rate applies. The size and characteris
tics of the group of individuals in which the cases arose must be known.

Customarily, the group included in the denominator of a rate is referred
to as the population or, more particularly, the population at risk, where at
risk means susceptible to the disease or outcome cmmted in the numerator.
For example, the incidence or prevalence of cervical cancer will be underes
timated if the population includes women who have had hysterectomies
or includes men.

The denominator of a rate should include the population relevant to
the question being asked, or a representative sample of them. But what is
relevant depends on one's perspective. For example, if we wanted to know
the true prevalence of rheumatoid arthritis in Americans, we would prefer
to include in the denominator a random sample of all people in the United
States. But if we wanted to know the prevalence of rheumatoid arthritis
in medical practice-perhaps to plan services-the relevant denominator
would be patients seen in office practice, not people in the population at
large. In one survey, only 25(~~ of adults found to have arthritic and rheu
matic complaints (not necessarily rheumatoid arthritis) during a commu
nity survey had received services for such complaints from any health
professional or institution (10).

It is customary for epidemiologists to think of a population as consisting
of all individuab residing in a geographic area. And so it should be for
studies of cause and effect in the general population. But in studies of
clinical questions, the relevant populations generally consist of patients
suffering from certain diseases or exhibiting certain clinical findings and
who are fotmd in clinical settings that are similar to those in which the
information will be used. Commonly, such patients are assembled at a
limited number of clinical facilities where academic physicians see patients.
They may make up a small and peculiar subset of all patients with the
findings in some geographic area and may even be an unusual group for
office practice in general.
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What difference might the choice of a popubtion make? What is at issue
is the generalizability of observed rates.

SAMPLING

It is rarely possible to study all the people who have or might develop
the condition of interest. Usually, one takes a sample, so that the number
studied is of manageable size. This raises a question: Is the sample repre
sentative of the population?

In general, there are two ways to obtain a rL'Presentative sample. In a
random samp!e, every individual in the population has an equal probability of
being selected. The more general term probability sample is used if every person
has a known (not necessarily equal) probability of being selected. It is often
important that a study sample includes a sufficient number of members of
particular subgroups of interest such as etlmic minorities. If these subgroups
are small, a simple random sample of the entire population may not include
enough subgroup members. To remedy this, a larger percentage of each of
these subgroups is selected at random. TIle fina.l sample will still be represen
tative of the entire population if the different sampling fractions are accounted
for in the analysi.<;. On the <lverage, the characteristics of people in probability
samples are similar to those of the population from which they were selected,
particularly if a large sample is chosen.

Other methods of selecting samples may well be biased and so do not
necessarily represent the parent population. Most groups of patients de
scribed in the medical literature, and found in most clinicians' experience,
arc bascd on biased s<lmples. Typically, patients are included in studies
bccause they are under care in an academic institution, aV<lilable, willing
to be studied, and perhaps <lIsa particularly interesting and/or severely
affected. There is nothing wrong with this practice-as long as it is under
stood to whom the results do (or do not) apply.

Relationship among Incidence, Prevalence,
and Duration of Disease

Anything that increases the dur<ltion of the disease or clinical finding
in a patient will increase the chance that that p<ltient will be identified in a
pn.'v<llence study. A glance at Figurc 4.1 will confirm this. The relationship
among incidence and prevalence and duration of disease in <I ste<ldy
state-i.e., where none of the variables is changing much over time-is
approximated by the following expression:

Prevalence = Incidence x Average duration of the disease

Example Table 4.3 shows approximate annual incidence and prevalence
rates for asthma. Incidence falls with increasing age, illustrating the fact thai
the disease arises primarily in childhood. But prevalence stays fairly stable
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over the entire age span, indicating that asthma tends to be chronic and is
especially chronic among older individuals. Also, because the pool of preva
lent cases does not increase in ~ize, about the same number of patients are
recovering from their asthma as new patients are acquiring it.

If we usc the following formula, we can determine that asthma has an
average duration of 10 years:

Average duration = Prevalence -;- Incidence

When the duration of asthma is determined for each age category by divid
ing the prevalences by the incidences, it is apparent that the duration of
asthma increases with increasing age. This reflects the cliniCi:ll observation
that childhood asthma often clears with time, whereas adult asthma tends
to be more chronic.

Bias in Prevalence Studies
Prevalence studies can be used to investigate potentially causal relation

ships between risk factors and a diseasc or prognostic factors and an out
come. For this purpose, they arc quick but inferior alternatives to incidencl'
studies. Two characteristics of prcvalence studies are particularly trouble
some: uncertainty about the temporal sequence and biases associated with
the study of cases of longer duration-"old" cases.

UNCERTAINTY ABOUT TEMPORAL SEQUENCES

In prevalence studies, disease and the possible factors responsible for
the disease are measured simultaneously, and so it is often unclear which
came first. The time sequence is obscured, and if it is important to the
interpretation it must be inferred. If the risk or prognostic factor is certain
to have preceded the onset of disease or outcome-e.g., family history or
a genetic marker-interpretation of the cause-and-effect sequence is Jess
worrisome. If the risk or prognostic factor can be a manifestation of the

Table 4.3
The Relationships among Incidence, Prevalence, and Duration of Disease: Asthma
in the United States R

" ,
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disease or outcome-e.g., an abnormal laboratory test or a psychological
state-determining the sequence of events is lruch more difficult. In con
h'ast, studies of incidence have a built-in sequence of events because possi
ble causes of disease are measured initially, before disease has occurred.
These relationships are i1Justrated in Figure 4.4.

BIASES STUDYING "OLD" CASES

1be difference between cases found in the numerator of incidence rates
and of prevalences rates is illustrated in Figure 45. In an incidence study, all
G1SeS are new and most cases OCCUlTing in the population at risk can be
ascertained if followed carefully through time. Tn contrast, a prevalence stu.dy
includes a mixture of old and ne,,,, cases that are available at the time of the
single examination-that is, they identify cases that happen to be both active
(i.e., diagnosable) and alive at the time of the survey. Obviously, prevalence
rates will be dominated by those patients who are able to survive their disease
without losing its manifestations. 1be differences between the kinds of cases
included in the numerator of an incidence and the kimb of cases included
in the numerator of a prevalence may influence how the rates are interpreted.

Possible Causes Disease or Outcome

Incidence Study

causes

Measurement is
development of
new cases of
disease over time

Prevalence Study

Measurement is
past or present
exposure to
possible causes

Figure 4.4. Temporal relationship between possible causal factors and disease for
incidence and prevalence studies.
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Enter population

\
\TI~\>

Early Cures
deaths

Leave
population:

Severe disease
Mild disease
Prefer other care, etc.

Figure 4.5. The difference in cases for inciderlce and prevalence studies.

Prevalence is affected by the average duration of disease. Rapidly fatal
episodes of a disease ·would be induded in an incidence study, but most
would be missed by a prevalence sfudy. For example, 25-40~/;,of all deaths
from coronary heart disease occur within 24 hr of the onset of symptoms
in people with no prior evidence of disease. A prevalence study would,
therdore, underestimate cases of coronary heart disease. On the other
hand, diseases of long duration are well represented in prevalence surveys,
even if their incidence is low. For example, although the incidence of
Crohn's disease is only about 2 to 7 per 100,OOO/year, its prevalence is
more than 100 per 100,000, reflecting the chronic nature of the disease (11).

Prevalence rates also selectively include more severe cases of nonfatal
diseases. For example, patients with quiescent rheumatoid arthritis might
not be diagnosed in a study based on current symptoms and physical
findings. Similarly, patients with recurrent but controllable illnesses, such
as congestive heart failure or depression, may be well at a given point in
time and, therefore, might not be discovered on a single examination.
Unremitting disease, on the other hand, is less likely to be overlooked
and, therefore, would contribute disproportionately to the pool of cases
assembled by a prevalence shtdy.

Uses of Incidence and Prevalence

What purposes do incidence and prevalence serve? Clinicians use them
in three different ways: predicting the future course of a patient, assigning
a probability to a patient, and making comparisons.
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PREDICTING THE FUTURE

Incidence is a description of the rate at which a disease or a disease
outcome has arisen over time in a group of people known to be free of
the disease at the beginning of follow-up. It can be used to predict the
probability that similar people will develop the condition in the future.

Example The probabilities of outcomes following TURI', needed to de
cide the most appropriate treatment for the man with BPH described at the
opening of this chapter, were estimated from a large cohort shldy of older
men in New England (12). Interviews with more than 300 men undergoing
TURP revealed that symptom resolution varied with the severity of symp
toms before surgery; 93'1., of lll('n with severe symptoms improved with
surgery while only 79';;, of those with moderate baseline symptoms improved.

On the other hand, prevalence studies offer no sound basis for pre
dicting the future. Tf a prevalence study finds that 30% of patients with
stroke are depressed, this does not mean that 30% of nondepressed stroke
patients will become depressed in the future. It may be that depression
predisposes to stroke, that stroke predisposes to depression, or that nonde
pn:.·ssed stroke patients recover quickly. To find out the percentage of stroke
patients who become depressed, new stroke patients must be followed
over time with repeat measures of depressive symptoms.

ASSIGNING A PROBABILITY THAT A PATIENT HAS THE CONDITION

Prevalence studies are particularly useful in guiding decisions about
diagnosis and treatment. As pointed out in Chapter 3, knowing that a
patient with a combination of demographic and clinical characteristics has
a given probability of having a disease influences the use and interpretation
of diagnostic tests. It may also may affect the selection among various
treatment options.

A patient with pharyngitis illustmtes how variations in prevalence or
prior probability can influence the approach to a clinical problem.

Example A study compared three approaches to the treatment of phar
yngitis. The villue of the approaches was judged by weighing the potential
benefits of prevt'nting rheumatic fever against the costs of penicililn allergy.
The three options \'I'ere to obtain a throat culture and treat only those patit.·nts
with thrOill cultures positive for group A (I-hemolytic streptococcus, treat all
patients without obtaining a culture. and neither culture nor treat any patient.

The analysis revealed that the optimill strategy depended on the likelihood
that a patient would have a positive culture, which can be estimated from
the prevalence of streptococcal infection in the community ill the time and
the presence or absence of fever. The authors concluded that if the probability
of a positive culture fm an individual patient exceeds 20'};), the patient sh(lU ld
be trealed; if it is less than .S':;" the patient should not be cultured or treated;
and if the probilbility lies between 5 and 20%, the patienl should be cultured
first and tre<lted based on the result (13).

This study represents a rational approach to the use of prevalences as
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indicators of individual probabilities of disease in guiding clinical decision
making.

MAKING COMPARISONS

Although isolated incidences and prevalences are useful descriptions,
they become much more powerful tools in support of decision making
when used to make comparisons. It is the comparison between the frequen
cies of disease among individuals with certain characteristics and individu
als not sharing those characteristics that provides the strongest evidence.
For example, the risk (incidence) of lung cancer among males who smoke
heavily is of the order of 0.17% pcr year, hardly a common event. Only
when this incidence is contrasted with the incidence in nonsmokers (ap
proximately 0.007':'0 per year) does the devastating effect of smoking
emerge. Clinicians use measures of frequency as the ingredients in compar~

ativc measures of the association behveen a factor and the disease or dis
ease outcome. Ways of comparing rates are described in more detail in
Chapter 5.

Clinical Decision Analysis
Quantitative approaches to assisting in decision making have been used

to define the most effective and efficient way to deal with specific problems
in individual patients (cliniCilI policy) or for allocating resources to larger
groups of people, such as communities or political jurisdictions (public
policy).

In decision analysis, one sets out alternative courses of <Jction (e.g., surgery
versus medical treatment for BPII or culture then tre<Jt or tre<Jt everybody
for streptococcal pharyngitis) and then cakul<Jtes which choice is likely to
result in the most valued outcome, based on estimates of frequencies for
each branch in the sequences of events and judgments about the relative
value of the possible outcomes. The basic steps "lre clearly presented else
where (14) and are described only briefly below.

1. Create a decision tree. Clinical decision analysis begins with a patient who
poses a dilemma. Which of the possible courses of action should be
taken? The tree begins with these alternative dccisions, then branches
out to include all of the important consequcnces of those decisions,
and ends with the clinically important outcomes. Branch points involve
either patient care decif;ions ("choice nodes," indicated by squares) or
spontaneous events ("chemct' nodes," indicated by circles). Although
there is an infinite number of sequences of events and outcomes, usually
only a small number <Jf(' truly important and are reasonably likely to
occur. To make the analysis manageable, it is necessary to "prune" the
tree so that only the most important branches are included -typically
no more than several branch points.
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2. Assign probabilities to chance nodes. Th{'~e probabilities are assessments
of the frequency of clinical events, which are usually derived from the
medical literature.

3. Assign utilities to the oil/comes. Utilitie~ are quantitative expressions of
the relative value of the various outcomes considered. They are best
obtained from patients who may confront the deci~ion. The units <Ire
<lrbitrary, but mu~t be on an interval scale, e.g., () to 100. It may seem
awkward to put <I number on the re~pective values of the various out
comes (death, suffering, loss of function), especially when they are mm
sured in different units, such as the length and quality of life. But pa
tients <lttach values to outcomes in any case, and the numbers only
make the values explicit.

4. Calculate the expected utilities for the alternative courses of action. Starting
with utilities (at the end of the branches, to the right), multiply utilities
by probabilities for each branch and add branches at each node in suc
cession until the expected utility at the main branch point, the decision
that h<ls to be made, is reached.

5. Select the choice with the highest expected utility.
6. Sensitivity analysis. Estim<lte~ of probabi[itie~and utilities are uncertain

in the fir~t place. The final ~tep in decision <Ina lysis is to see how the
results of the analysis change as these estimates are varied over a range
of plausible values. That is, one must find out how "sensitive" the
decision is to imprecision in the estimates. Sensitivity analysis indicate~

which point in the sequence of evcnt~ have the most effecl on the deci
sion and how large the effect might be.

Example The therapeutic options facing the older man with urinary
symptoms from benign prostatic hyperplasia (described <It the opening of
this chapter) have been evaluated using decision analysis (15). Before drugs
and laser prostatectomy made the decision more complicated, the options
were surgery (transurethral resection of the prostate, TURP) or careful follow
up, called "watchful waiting." Figure 4.6 shows the decision tree that the
authors used lo evaluate the options. The frequencies of the various outcomes
were derived in the incidence study of New England men described earlier
in the chilptcr (12) and other published sources (15). Note that the optimal
decision in this case is surgery (net utility 0.94). In this case, TURP is the
favored treatment beciHlse the risk of operative death is low and the utilities
i1ssigned 10 incontil1ence or impotence are the same as that assigned to living
with stable moderate urinary symptoms. If stable moderate symptoms were
preferred over incontinence or impotence, the balance would shift.

Summary
Most clinical que~tions are an~w('red by reference to the frequency of

events under varying circumstances. The frequency of clinical events is
indicated by probabilities or fractions, the numerators of which include
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Figure 4.6. A decision tree. Management of a 70-year-old man with moderate
symptoms from benign prostatic hyperplasia. (Data adapted lrom Barry MJ, Mulley
AG, Fowler FJ, Wennberg JW. Watchful wailing Vg, immediate transurethral resection
for symptomatic prostatism. JAMA 1988;259(20):3010-3017.)

the number of cases and the denominators of which include the number
of people from whom the cases arose.

There are two measures of frequency: prevalence and incidence. Preva
lence is the proportion of a group with the disease at a single point in
time. lncidt'nce is the proportion of a susceptible group th<Jt develops new
cases of the disease over an interval of time.

Prevalence is measured by a single survey of a group containing cases
and noncases, whereas measurement of incidence requires examinations
of a previously disease-free group over time. Thus prevalence studies iden
tify only those cases who are alive and diagnosable at the time of the
survey, whereas cohort (incidence) studies ascertain all new cases. Preva
lent cases, therefore, may be a biased subset of all cases because they do
not include those who have already succumbed (lr been cured. In addition,
prevalence studies frequently do not permit a clear understanding of the
temporal relationship between a causal factor and a disease.

To make sense of incidence and prev<Jknce, the clinician must under
stand the basis on which the disease is di<Jgnosed and the characteristics
of the popul<Jtion represented in the denominator. The latter is of particul<Jr
importance in trying to decide if a given measure of incidence or prevalence
pertains to patients in one's own practice.
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Incidence is the most appropriate measure of frequency with which to
predict the future. Prevalence serves to qua.ltitate the likelihood that a
patient with certain characteristics has the disease at a single point in time
and is used for decisions about diagnosis and screening. The most powerful
use of incidence and prevalence, however, is to compare different clinical
alternatives.

Measures of disease or outcome incidence are essential ingredients in
methods for quantitative decision making. Approaches such as decision
analysis define alternative clinical strategies and then evaluate those strate
gies quantitatively by comparing their expected utilities detennined from
the frequencies and values assigned to the major outcomes associated with
each strategy.

Postscript
Counting clinical events as described in this chapter may seem to be

the most mlUldane of tasks. It seems so obvious that examining counts of
clinical events under various circumstances is the foundation of clinical
science. It may be worth reminding the reader that Pierre Louis introduced
the "numerical method" of evaluating therapy less than 200 years ago.
Louis had the audacity to count deaths and recoveries from febrile illness
in the presence and absence of blood-letting. He was vilified for allowing
lifeless numbers to cast doubt on the healing powers of the leech, powers
that had been amply confirmed by decades of astute qualitative clinical
observation.
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5

RISK

Risk generally refers to the probability of some untoward event. Tn this
chapter, the term risk is used in a more restricted sense to indicate the
likelihood that people who aft' exposed to certam factors ("risk factors")
will subsequently develop a particular disease.

People have a strong interest in their risk of diseasc. This concern has
spawned many popular books about risk reduction and is reflected in
newspaper headlines about the risk of breast cancer from exposure to toxic
chemicals, of AIDS from blood transfusions, or of prostatic cancer after
vasectomy.

This chapter describes how investigators obtain estimates of risk by
observing the relationship between exposure to possible risk factors and
the subsequent incidence of disease. We discuss several ways of comparing
risks, as they affect both individuals and populations.

Risk Factors
Characteristics that are associated with an increased risk of becoming

diseased are called riskfactors. Some risk factors arc inherited. For example,
having the haplotype HLA-B27 greatly increases one's risk of acquiring the
spondylarthropathies. Work on the Human Genome Project has identified
several other diseases for which specific genes are risk factors, including
colon cancer, osteoporosis, and amyotropic lateral sclerosis. Other risk
factors, such as infectious agents, drugs, and toxins, are fOlUld in the physi
cal environment. Still others are part of the social environment. For exam
ple, bereavement due to the loss of a spouse, change in daily routines,
and crowding all have been shown to increase rates of disease-not only
emotional illness but physical illness as well. Some of the most powerful
risk factors are behavioral; examples are smoking, drinking alcohol to ex
cess, driving without seat belts, and engaging in unsafe sex.

Exposure to a risk factor means that a person has, before becoming ill,
come in contact with or has manifested the factor in question. Exposure
can take place at a single point in time, as when a community is exposed

94
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to radiation during a nuclear accident. More often, however, contact with
risk factors for chronic disease takes place over a pl.-'riod of time. Cigarette
smoking, hypertension, sexuill promiscuity, and SWl exposure are
examples.

There are several different ways of characterizing the amount of expo
sure or contact with a putative risk factor: ever exposed, current dose,
Jilrgest dose taken, total cumuliltive dose, yeMs of exposure, years since
first contact, etc. (1). Although the various measures of dose tend to be
related to each other, some may show iln exposure-disease relationship,
whereas others do not. For example, cumulative doses of sun exposure
constitute a risk factor for nonmelanoma skin cancer, whereas episodes of
severe sunburn <He a better predictor of melanoma. Choice of an appro
priate measure of exposure to a risk factor is usually based on all that is
known about the biologic effects of the exposure and the pathophysiology
of the disease.

Recognizing Risk
Large risks associated with effects that occur rapidly after exposure are

easy for anyone to recognize. Thus it is not difficult to ilppreciate the
relationship between exposure and disease for conditions such as chick
enpox, sunburn, and aspirin overdose, because these conditions follow
exposure relatively rapidly and with obvious effects. But most morbidity
and mortality is caused by chronic diseases. Por these, relationships be
tween exposure and disease are far less obvious. It becomes virtually im
possible for individual clinicians, however ilshtte, to develop estimates of
risk based on their own experiences with patients. This is true for several
reasons, which are discussed below.

LONG LATENCY

Many diseases have long latency periods between exposure to risk
factors and the first manifestations of disease. This is particulilrly true
for certain cancers, such as thyroid cancer in ildults after radiiltion treat
ment for childhood tonsillitis. When patients experience the conse
quence of exposure to a risk factor years later, the original exposure
may be all but forgotten. The link between exposure and disease is
thereby obscured.

FREQUENT EXPOSURE TO RISK FACTORS

Many risk factors, such as cigarette smoking or eating a diet high in
cholesterol and saturated fats, are so common in our society that for many
years they scarcely seemed dangerous. Only by comparing patterns of
disease among people with and without these risk factors or by investigat
ing special subgroups-e.g., Mormons (who do not smoke) and vegetari-
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ans (who eat diets low in cholesterol)~did we recognize risks that are, in
fact, large.

LOW INCIDENCE OF DISEASE

Most diseases, even ones thought to be "common," are aetuaJly quite
rare. Thus, although lung cancer is the mo~t common cause of cancer
deaths in Americans, the yearly incidence of lung cancer even in heavy
smokers is less than 2 in 1000. In the average physician's practice, years
may pass between patients with new cases of lung cancer. It is difficult to
draw conclusions about such infrequent events.

SMALL RISK

If a factor confers only a small ri~k for a disease, a large number of
people are required to observe a difference in disease rates between
exposed and unexposed persons. This is so even if both the risk factor
and the disease occur relatively frequently. for example, it is still uncer
tain whether birth control pills increase the risk of breast cancer, because
estimate~ of this risk are all small and, therefore, easily discounted as
resulting from bias or chance. In contrast, it i~ not controversial that
hepatitis B infection i~ il risk factor for hepatoma, because people with
hepatitis B infection are hundreds of times more likely to get liver cancer
than those without it.

COMMON DISEASE

If a disease is c()mmon~heart diseilse, cancer, or stroke~and some of
the ri~k factors for it are already known, it become~ difficult to di~tinguish

a new risk factor from the others. Also, there is les~ incentive to look for
new ri~k factors. For example, the ~yndrome of sudden, unexpected death
in adults is a common way to die. Many cases secm related to coronary
heart disease. However, it is entirely conceivable that there are other im
portant causes, as yet unrecognized because an adequate explanation for
most cases is available.

On the other hand, rare disease~ and unusual clinical presentations
invite efforts to find a cau~e. AIDS was ~uch an unusual syndrome that
the appearance of just a few cases raised suspicion that ~ome new agent
(as it turned out, a retrovirus) might be responsible. Similarly, physicians
were quick to notice when several ca~es of carcinoma of the vagina, a very
rare condition, began appearing. A careful search for an explanation was
undertaken, and maternal exposure to diethylstilbestrol was found.

MULTIPLE CAUSES AND EFFECTS

There is usually not a dose, one-to-one relationship between a risk
factor and a particular disease. The relationship between hypertension and
congestive f<lilure is an example (Fig. 5.1). Some people with hypertension
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Figure 5.1. Relationship between risk factors and disease: hypertension (1 BP)
Clnd congestive heart failure (CHF). Hypertension causes many diseases, including
congestive heart failure, and congestive heart failure has many causes, including
hypertension.

develop congestive heart failure and many do not. Also, many people who
do not have hypertension develop congestive heart failure, because there
are several different causes. The relationship is also obscured because hy
pertension causes several diseases other than congestive heart failure.
Thus, although people with hypertension are about 3 times more likely
than those without hypertension to develop congestive heart failure and
hypertension is the leading cause of the condition, physicians were not
particularly attuned to this relationship until the 1970s, when adequate
data became available after careful study of large numbers of people over
many years.

For all these reasons, individual clinicians are rarely in a position to
confirm associations betvveen exposure and disease, though they may sus
peet them. For accurate information, they mw;t tum to the ffiedicallitera
ture, particularly to studies th<lt are carefully constructed <lnd involve 01

large number of patients.
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Uses of Risk
PREDICTION

Risk factors are used, first and foremost, to predict the occurrence of
disease. In fact, risk factors, by definition, predict some future event. The
best available information for predicting disease in an individual person
is past experience with a large number of people with a similar risk factor.
The quality of such predictions depends on the similarity of the people
on whom the estimate is based and the person for whom the prediction
is made.

It is important to keep in mind that the presence of even a strong risk
factor does not mean that an individual is very likely to get the disease.
For example, studies have shown that a heavy smoker has a 20-fold greater
risk of lung cancer compared with nonsmokers, but he or she shU has only
a 1 in a 100 chance of getting lung cancer in the next 10 years.

There is a basic incompatibility betwecn the incidence of a disease in
groups of people and the chance that an individual will contract that
disease. Quite naturally, both patients and clinicians would like to answer
questions about the future occurrence of disease as precisely as possible.
They arc uncomfortable about assigning a probability, such as the chances
that a person will get lung cancer or stroke in the next 5 years. Moreover,
anyone person wilL at the end of 5 years, either have the disease or not.
So in a sense, the average is always wrong because the two are expressed
in different terms, a probability venms the presence or absence of disease.
Nevertheless, probabilities can guide clinkal decision making. Even if a
prediction does not come true in an individual patient, it will usually be
borne out in many such patients.

CAUSE

Just because risk factors predict disease, it docs not necessarily follow
that they cause disease. A risk factor may mark a disease outcome indi
rectly, by virtue of an association with some other determinant(s) of dis
ease, i.e., it may be confounded with a causal factor. For example, lack of
maternal education is a risk factor for low birth weight infants. Yet, other
factors related to education, such as poor nutrition, less prenatal care,
cigarette smoking, etc., are more directly the causes of low birth weight.

A risk factor that is not a cause of disease is called a marker, because it
"marks" the increased probability of disease. Not being a cause does not
diminish the value of a risk factor as a way of predicting the probability
of disease, but it does imply that removing the risk factor might not remove
the excess risk associated with it. For example, as pointed out in Chapter
1, although there is growing evidence that the human papillomavirus
(HPV) is a risk factor for cervical cancer, the role of other sexually transmit-
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ted diseases, such as herpes simplex virus and Chlalllydia, is not as dear.
Antibodies to these agents are more common among patients with cervical
cancer than in women without cancer, but the agents may be markers for
risk of cervical cancer rather than causes, If so, curing them would not
necessarily prevent cervical cancer. On the other hand, decreasing promis
cuity might prevent the acquisition of both the causative agent for cervical
cancer and other sexually transmitted diseases (2).

There are several ways of deciding whether a risk factor is (I cause or
merely a marker for disease. These are covered in Chapter 1L

DIAGNOSIS

Knowledge of risk can be used in the diagnostic process, since the pres
ence of a risk factor increases the prevalence (probability) of disease among
patients-one way of improving the positive predictive value of a diagnos
tic test.

However, in individual patients, risk factors usually are not as strong
predictors of disease as art' clinical findings of early disease. As Rose (3)

put it:
Often the best predictor of future major diseases is the presence of existing

minor disease. A low ventilatory function today is the best predictor of its
future rate of decline. A high blood pressure today is the best predictor of
its future rate of rise. Early coronary heart disease is better than all of the
conventional risk factors as a predictor of future fatal disease.

Risk factors can provide the most help with diagnosis in situations
where the factor confers a substantial risk and the prevalence of the disease
is increased by clinical findings. For example, age and sex are relatively
strong risk factors for coronary artery disease, yet the prevalence of disease
in the most at risk age and sex group, old men, is only 12%. When specifics
of the clinical sihtation, such as presence and type of chest pain and re
sults of an electrocardiographic stress test, "lre considered as we]], the
prevalence of coronary disease can be raised to 99'10 (4).

More often, it is helpful to use the absence of a risk factor to help rule
out disease, particularly when one factor is strong and predominant. Thus
it is reasonable to consider mesothelioma in the differential diagnosis of a
pleural mass in a patient who is an asbestos worker, but mesothelioma is
a much less likely diagnosis for the patient who has never worked with
asbestos.

Knowledge of risk factors is also used to improve the efficiency of
screening programs by selecting subgroups of patients at increased risk.

PREVENTION

If a risk factor is also a cause of disease, its removal can be used to
prevent disease whether or not the mechanism by which the disease takes
place is known. Some of the classic successes in the history of epidemiology
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illustrate this point. For example, before bacteria were identified, Snow
found an increased rate of cholera among people drinking water supplied
by a particular company and controlJed an epidemic by cutting off that
supply. More recently, even before HIV had been identified, studies
showed that a lifestyle of multiple sexual partners among homosexual men
was a risk factor for acquiring AIDS (5). The concept of cause and its
relationship to prevention is discussed in Chapter 11.

Studies of Risk
The most powerful way of determining whether exposure to a potentiill

risk factor results in an increased risk of disease is to conduct an experi
ment. People currently without disease would be divided into groups of
equal susceptibility to the disease in question. One group would be ex
posed to the purported risk factor and the other would not, but the groups
would otherwise be treated the same. Later, any difference in observed
rates of disease in the groups could be attributed to the risk factor.

Unfortunately, the effects of most risk factors for humans cannot be
studied with experimental studies, in which the researcher dett~mlineswho
is exposed. Consider some of the questions of risk that concern us today.
I low much are inactive people at increased risk for cardiovascular disease,
everything else being equal? Do cellular phones cause brain cancer? Does
alcohol increase the risk of breast cancer? For such questions as these, it
is usually not possible to conduct an experiment. first, the experiment
would have to go on for decades. Second, it would be unethical to impose
possible risk factors on a group of the people in the study. Finally, most
people would balk at having their diets and behaviors determined by
others for long periods of time. As a result, it is usually necessary to study
risk in less obtrusive ways.

Clinical shtdies in which the researcher gathers data by simply observ
ing events as they happen, without playing an active part in what takes
place, are called observational studies. Most studies of risk are observational
studies, either cohort studies, described in the rest of this chapter, or case
control st1ldies, described in Chapter 10.

COHORTS

The term cohort is used to describe a group of people who have some
thing in common when they are first assembled and who are then observed
for a period of time to sec what happens to them. Table 5.1 lists some of
the ways in which cohorts are used in clinical research. Whatever members
of a cohort have in common, observations of them should fulfill two criteria
if they are to provide sound information about risk.

First, cohorts should be observed over a meaningful period of time in
the natural history of the disease in question. This is so there will be
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Table 5.1
Cohorts and Their pUl'll0SeS

Ommcteristic in Common
fa Assess
[!feci of bampie

---'--- ------ ~--

Agc

Dale at birth

Exposure

Disease

Prev(llhve interventiOIl

Therapeutic intervention

Age

Calendar time

Risk factor

Prognosi~;

Prevention

TrCJtrllent

Life expectancy tor people age
70 (regardless of when born)

Tuberculosis rates for peoplc
born in HJ10

Lung GlllCer in people who
smoke

Survival rate tor patients with
breJst ccll1cer

Reduction in incidence of
pneumoni[l atter
pneumococcal vaccimtiorl

Improvernellt in sUlvivJI for
pJtierll>; with Hodgkin's
disease given combination
chemotherapy

sufficient time for the risk to be expressed. If we wish to learn whether
neck irradiation during childhood results in thyroid neoplasms, as-year
follow-up would not be a fair test of the hypothesis that thyroid cancer is
associated with irradiation, because the usual time period between irradia
tion expusure and the onset of di.sease is considerably longer.

Second, all members of the cohort should be observed over the full
period of follow-up. To the extent that people drop out of the study and
their reasons for dropping out are relilted in some way to the outcome,
the information provided by an incomplete cohort can be il distortion of
the true state of affairs.

COHORT STUDIES

In a cohort study (Fig. 5.2), a group of people (a cohort) is assembled,
none of whom has experienced the outcome of interest, but all of whom
could experience it. (for example, in a study of risk factors for endometrial
Cilncer, each member of the cohort should have an intact uterus.) On entry
to the study, people in the cohort are classified according to those charilcter
istics (possible risk factors) that might be related to outcome. These people
are then observed over time to see which of them experience the outcome.
It is then possible to see how initial characteristics relate to subsequent
outcome events. Other names for cohort studies are longitudinal (emphasiz
ing that patients are followed over time), pmc.-p1'ctive (implying tht.' forward
direction in which the patients are pursued), and iI/tide/Ice (calling attention
to the basic measure of new disease events over time).
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Figure 5.2. Design of a cohort study of risk

The following is a description of a classical cohort study, which has
made important contributions to our understanding of cardiovascular
disease.

Example The Framingham Study (6) was begun in 1949 to identify fac
tors associated with an increased risk of coronary heart dist;>ase (CI-ID). A
reprt;>sentative sample of .'),209 men and women, aged 30-59, was selected
from approximately] 0,000 persons of that age living in Framingham, a small
town near Boston. Of tlwse, 5,127 were frcc of CHlJ when first examined <md,
therdore, were at risk of developing CHD. These people were ret;>xamined
biennially for evidenn' of coronary disease. The study ran for 30 yt;>ars and
demonstrated that risk of developing CHD is associated with elevated blood
prt;>ssure, high serum cholesterol, cigardte smoking, glucose intolerance, and
left ventricular hypertrophy. There was a large difference in risk between
those with none and those with all of these risk factors.

HISTORICAL COHORT STUDIES

Cohort studies can be conducted in two ways (Fig. 5.3). The cohort can
be assembled in the present and followed into the future (a concurrent
cohort study), or it can be identified from past records and followed forward
from that time up to the present (an historical cohort study).

Most of the advantages and disadvantages of cohort studies discussed
below apply whether the study is concurrent or historical. However, the
potential for difficulties with the quality of data is different for the two.
In concurrent studies, data can be collected specifically for the purposes
of the study and with full anticipation of what is needed. It is thereby
possible to avoid biases that might undermine the accuracy of the data.
On the other hand, data for historical cohorts arc often gathered for other
purposes-usually as part of medical records for patient care. These data
may not be of sufficient quality fnr rigorous research.
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Figure 5.3. Historical and concurrent cohort studies.

ADVANTAGES AND DISADVANTAGES OF COHORT STUDIES

Some of the ildvantages and disadvantages of cohort studies, for the
purpose of describing risk factors, are summarized in Table 5.2. Cohort
studies of risk are the best available substitutes for a true experiment when
experimentation i~ not possible. They follow the same logic as a clinical
trial, and they allow determination of exposure to a possible risk factor
while avoiding any possibility of bias that might occur if exposure is deter
mined after the outcome is already known.

The principal disadvantage is that if the outcome is infrequent (which
is usually the case) a large number of people must be entered in <J study
and remain under observation for a long time before results are available.
Pur example, the Pramingham Study of coronary heart disease-one of
the most frequent of the chronic diseases in America-was the largest

T<lble 5.2
Advantages and DiS<ldv<lntages of Cohort Studies

Advantages

The only WaY of establishing incidence (i,e.,
ubsolute risk) directly

Follows tile same logic as tile clinical
question: If persons exposed. then do
they get the disease?

Exposure Gan he elicited without the l)i,JS
th<lt mighl occur if outcome wcre ,llreacJy
known

Carl 8ssess the relationship between
exposure 8nd m<lny di~;(~ases

rJbcHlvantagcs___-==oc _
Inefficient because m"lrly more subjects

must be enrolled than experience the
event of illterest; Iherefore, C[lnnol he
u~;e{j (or rare dise8ses

l:xpensive because of resources necessary
to study many people over time

Results not <Ivail<ltlle tor a long time
Assessee; nl(o reldtionship between disease

8nd exposure tD only relatively few tClctors
(ie, those recorded at the ouhet Df the
~;tlJdy)
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study of its kind when it began. Nevertheless, more than 5000 people had
to be followed for several years before the first, preliminary conclusions
could be published. Only 5% of the people had experienced a coronary
event during the first oS years!

A rd<lted problem with cohort studies results from the fact that the
people being studied are usually "free living" and not under the control
of researchers. 1\ great deal of effort and money must be expended to keep
track of them. Cohort studies, therefore, are expensive, sometimes costing
many millions of dollars.

Because of the time and money required for cohort studies, this ap
proach cannot be used for all clinical questions <lbout risk. For practical
[('<I sons, the cohort approach has been reserved for only the most important
questions. This has led to efforts to find more efficient, yet dependable,
ways of assessing risk. (TIl(' most common of these, case control studies,
is discussed in Chapter 10.)

The most important scientific disadvantage of observational shldies,
including cohort studies, is that they are subject to a great many more
potential biases than are experiments. People ,vho are exposed to a certain
risk factor in the natural course of events arc likely to differ in a great
many ways from a comparison group of people not exposed to the factor.
1£ these other differences arc also related to the disease in question, they
could account for any association observed behveen the putative risk factor
and the disease.

This leads to the main challenge of observational studies: to deal with
extraneous differences between exposed and nonexposcd groups to mimic
as closely as possible an experiment. The differences arc considered "extra
neous" from the point of view of someone hying to determine callse
and-effect relationships. The following example illustrates one approach
to handling such differences.

Example Although the presence of sickle-cell trait (HbAS) is generally
regcuded as a benign condition, several studies have suggested that it is
associated with defects in physical growth and cognitive d<'\·e1opment. A
study was undertaken, therefore, to see if children born with HbAS experi
enced problems in growth and development more frequently than children
with norm,ll hemoglobin (HbAA), everything else being equal (7). It WdS

recogni,..,ed that a great many other factors are related to growth ,md develop
Ilwnt and also to having IIbAS, Among these are race, sex, birth date, birlh
wei;;ht, gestntional age, 5-min Apgar score, and socioeconomic status. If these
olher factors were not taken into <lccount, Ont,' or more of them cO\Jld bias
the results of the study, and it would not be possible to distinguish the dfects
of HbAS, in and of itself, from the effects of the other factors. The authors
chos<' to deal \vith these other factors by matching. For each child with HbAS,
th<'y selected a child with IfbAA who was similar with respect to the seven
o[her factors. A toh,l of 100 newborns--50 with HbAS and 50 with HbAA-
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were followed from birth to 3-5 vei1rs old, No difference::; in growth and
development were found. •

Major biases in observational studies and ways of dealing them are
described in Chapter 6.

Comparing Risks
The basic expression of risk is incidence, defined in Chapter 4 as the

number of new cases of disease arising in a defined population during a
given period of time. But usually we want to compare the incidence of
disease in two or more groups in a cohort that differ in exposure to a
possible risk factor. To compare risks, several measures of the association
between exposure and disease, called mf'llsures of effect, are commonly used.
They represent different concepts of risk and are used for different pur
pOses. four measures of effect are discussed below (Tables 5.3 and 5.4).

ATTRIBUTABLE RISK

First, one might ask, "What is the additional risk (incidence) of disease
following exposure, over and above that experienced by people who are
not exposed?" The answer is expressed as attributable risk, the incidence
of disease in exposed persons minus the incidence in nonexposed persons.
Attributable risk is the additional incidence of disease related to exposure,
taking into account the background incidence of disease, presumably from
other causes. Note that this way of comparing rates implies that the risk
factor is a cause and not just a marker. Because of the way it is calculated,
attributable risk is also called risk differcllce.

Table 5.3
Measures of Effect

AR=I,,-li.-

AR~=ARxP

Expression

Atlnbutable risk
(risk difference)

Relative risk (risk ratio)

Population attributable risk

Population attributable
fraction

Ouestion

What is the incidence 01 disca.<;e
llttrioutable to exposure?

How many times mor(~ likely are
exposed persons to become
diseasrxt, relative to nonexpo,,f:Jrl
persons?

Whal is the incidence of rlisease in a
population, llssociated with the
occurrence of a risk factor?

What fractiol1 of disease in CI
population is attributClble to
exposure to a risk tactor?

RR

Definition"

Ie
I,

'Where I, = incidonce in exposed persons; r; - im;id,mce in nonoxposed pl1rscms; f' - prevalence of
exposure to a nsk filetor; Clnd I,. - total inci<iHneH of disease ill a population,
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Table 5.4
Calculating Measures of Effect: Cigarette Smoking and Death from Lung Cancer~

Simplp. risks

Dealtl rille from lung canGcr in cigarette smokers
De8lh rate from tung cancer in rlonsmokers
Prevalence of cigarette smoking
Tolal (leath rate trom lurlg cancer

Com[J8rp:!l risks

Attributable riSk .'" O.96/1000/yeilr - Q,07/WOO/year
O.89/1000/year

Relative ri~;k ~ 0.96/WOO/Yf~ar ,. 0.07/1000/year
= 1:1.7

Poputation ilttributable risk ~ 0.89/WOO/yeilr x 0.56
= O.50/10oo/year

Populdlion attributable fr<lction = O.oO/Woo/year ~ O,5Ej/1000/year
= 0.89

'btirnated datJ tmm Doll R, Hill A8. 8r Med J 196~; t 1399-1410,

RELATIVE RISK

o 96/1000/yfW
O,07/1000/year

56%
0,56/ IOlJO/YC8r

On the other hand, one might ask, "How many times are exposed per
son5 more likely to get the disease relative to nonexposed persons?" To
answer this question, we speilk of relative risk or risk ratio, the ratio of
incidence in exposed persons to incidence in nonexposed persons. Relative
risk tells us nothing about the magnitude of absolute risk (incidence). Even
for larg;e relative risks, the absolute risk might be quite 5ma1l if the di5ease
is uncommon. It does tell us the strength of the associ<ltion between expo
sure and disease <lnd so is a useful measure of effect for studies of disease
etiology.

INTERPRETING ESTIMATES OF INDIVIDUAL RISK

The clinical meaning attached to relative and attributable risk is often
quite different, because the two expressions of risk stand for entirely differ
ent concepts. The appropriate expression of risk depends on which ques
tion is being <Isked.

Example Risk factors for cardiovascular diseasl;' are generally thought
to be weaker among the elderly than thl;' middle-aged. This assertion was
examined by comparing the relative risks and attributable risks of conunon
risk factors for cardiovascular disl;'ase among different agc groups (8). An
l;'xample is thl;' risk of stroke from smoking (Table 5..'). The relative risk
decreases with age, from 4.0 in persons ages 45·49 to 1.4 in persons aged
65-69. However, thl.' attributable risk increases slightly with age, mainly
because stroke is more common in the elderly regardless of smoking status,
Thus, although the causal link betwel;'n smoking and stroke decreases with
age, ,m elderly individual who smokes increases his or her actual risk of
stroke to a similar, indeed slightly greater, degree than a younger person.
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Table 5.5
Comparing Relative Risk and Attributable Risk in the Relationship of Smoking,
Stroke, and Age~

1"';idcllco (per 10001
Ilelative AttributablH

A!JH Nonsmoker,; Smokers Risk Risk

45--49 7.4 297 4.0 22.3
50-54 1f.2 37.D 2.2 19.8
55-59 27.9 64./ 2.3 367
60-64 47,~ 76.9 1.6 29.5
65- 69 1l0.2 110~ 14 30.2

'Adapted from F-'saty 8M el al. J Clin Epiderniol 1990; 43:961 -970

Tn most clinical situations, because attributable risk represents the actua I
additional probability of disease in those exposed, it is a more meaningful
expression of risk for individuals than is relative ri~k. On the other hand,
relative risk is more useful for expressing the strength of a causal
relationship.

POPULATION RISK

Another way of looking at risk is to ask, "How much does a risk factor
contribute to the overall rates of disease in groups of people, rather than
individuals?" Thi~ information is useful for deciding which risk factors
are particularly important and which are trivial to the overall health of a
community, and so it can inform those in policy positions how to choo~e

priorities for the deployment of health care re~ources. A relatively weak
risk factor (i.e., one with a small relative risk) that is quite prevalent in a
community could account for more disease than a very strong, but rare,
risk factor.

To estimate population risk, it is necessary to take into account the
frequency with which members of a community are expo~ed to a ri~k

factor. Population attributable risk i~ the product of the attributable risk and
the prevalence of the risk factor in a population. It measures the excess
incidence of disease in a community that i~ associated with a risk factor.
One can also describe the fwction of disease occurrence in a population
that is associated with a particular risk factor, the papulation attributa/JI1'
fraction. It is obtained by dividing the population attributable risk by the
total incidence of disease in the population.

Figure 5.4 illustrates how the prevalence of a risk factor determines the
relationship between individual and population risk. Figure 5.4A shows
the attributable risk of death according to diastolic blood pressure. Risk
increases with increasing blood pressure. However, few people have ex
tremely high blood pressure (Fig. 5.4B). When hypertension is defined as
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Figure 5.4. Relationships among attributable risk, prevalence of risk factor, and
population risk for hypertension, (Adapted from The Hypertension Detection and
Follow-up Cooperative Group, Mild hypertensives in the hypertension detection and
follow-up program. Ann NY Acad Sci 1978;304:254-266.)

having a diastolic blood pressure >',10 mm Hg, most hypertensive people
aTe just over 90 mm Hg, and very few are in the highest category (~115 mm
Hg). As a result, the greatest percentage of excess deaths in the population
(58.4°/<,) is attributable to relatively [ow-grade hypertension, 90-105 mm
Hg (Fig. S.4C). Paradoxically, then, physicians could save more lives by
effective treatment of mild hypertension than severe hypertension. This
fact, so counterintuitive to clinical thinking, has been termed "the preven
tion paradox" (',I).

Measures of population risk are less frequently encountered in the clini-



CHAPTER 5 I RISK 109

cill literature thiln are measures of individual risk, e.g., attributable and
relative risks. But a particular clinical practice i;: as much a population
for the dodor as is a community for health poJicymakers. /\Iso, how the
pn.'valence of exposu re affects community risk can be imporlant in the care
of individual patients. for instance, when patients cannot give a history or
when exposure is difficult for them to recognize, we depend on the usual
prevalence of exposure to estimate the likelihood of various diseases. When
considering treatable causes of cirrhosis in a North American patient, for
example, it would be more profitable to consider alcohol than schistosomes,
inasmuch as few North Americilns are exposed to Schistosoma I1lllrlsoni. Of
course, one might take a very different stance in the Nile delta, where
schistosomes are prevalent and the people, who are mostly Musl ims, rilrdy
drink alcohol.

Summary
Risk filctors are characteristics that are associated with an increased risk

of becoming diseased. Whether or not a particubr risk factor is a cause
of disease, its presence allows one to predict the probability that disease
will occur.

Most suspected risk factors cannot be manipulated for the purposes of
an experiment, so it is usually necessary to study risk by simply observing
people's experience with risk factors and disease. One way of doing so is
to select a cohort of people, some members of which are and some of which
are not exposed to a risk factor, and observe the subsequent incidence of
disease. Although it is scientifically preferable to study risk by means of
cohort studies, this approach is not always feasible because of the time,
e[fort, and expense it ent<lils.

When diseilsc rates are compared among groups with different expo
su res to a risk factor, the results can be expressed in several ways. Attribut
able risk is the excess incidence of diseilse related to exposure. Relative
risk is the number of times more likely exposed people are to become
diseased relative to nonexposed people. The impact of a risk factor on
groups of people takes into account not only the risk related to exposure
but the prevalence of exposure as well.
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6

PROGNOSIS

When people become sick, they have a great many questions about how
their illness will affect them. Is it dangerous? Could I die of it? Will there
be pain? How long will I be able to continue my present activities? Will
it ever go away altogether? Most patients and their families want to know
what to expect, even if little can be done about their illness.

ProfillOsis is a prediction of the future course of disease following its
onset. In this chapter, we review the ways in which the course of disease
can be described. We then consider the biases that can affect these descrip
tions and how these biases can he controlled. Our intention is to give
readers a better lll1derstanding of a difficult but indispensable task-pre
dicting patients' futures as closely as possible. The object is to avoid ex
pressing prognosis with vagueness when it is unnecessary, and with cer
tainty when it is misleading.

Doctors and patients think about prognosis in severa] different ways.
First, they want to know the general course of the illness the patient has.
A young patient suffering from postherpetic neuralgia associated with
herpes zoster can be assured that the pain usually resolves in less than a
month. Second, they usually want to know, as much as possible, the prog
nosis in the particular case. Even though HIV infection is virtually univer
sally f<ltal, individuals with the infection may live from a few months to
more than a decade; a patient wants to know where on this continuum
his or her particular case falls. Third, patients especially are interested to
know how <In illness is likely to affect their lives, not only whether it will
or will not kill them, but how it will change their ability to work, to walk,
to talk, how it will alter their relationships with family and friends, how
much pain and discomfort they will have to endure.

Prognosis Studies
Studies of prognosis tackle these clinical questions in ways similar to

cohort studies of risk. A gnup of patients having something in common
(a particular medical disease or condition, in the case of prognostic studies)

111



112 CLINICAL EPIDEMIOLOGY

are assembled and followed fonvard in time, and clinical outcomes are
measured. Often, conditions that are associatrcd with a given outcome of
the disease, i.e., prugnostic factors, are sought.

CLINICAL COURSE/NATURAL HISTORY OF DISEASE

Disease prognosis can be described for either the clinical course or
the natural history of Hlness. The term clinical course has been used to
describe the evolution (prognosis) of disease that has come under medi
cal care and is then treated in a variety of ways that might affect the
subsequent course of events. Patients usually come under medical care
at some time in the course of their illness when they have diseases that
cause symptoms such as pain, failure to thrive, disfigurement, or un
usual behavior. Examples include type 1 diabetes mellitus, carcinoma
of the lung, and rabies. Once disease is recognized, it is also likely to
be treated.

The prognosis of disease without medical intervention is termed the
natural history of disease. Natural history describes how patients will
fare if nothing is done for their disease. A great many medical condi
tions, even in countries with advanced medical care systems, often do
not come under medical care. They remain unrecognized, perhaps be
cause they are asymptomatic or are considered among the ordinary
discomforts of daily living, Examples include mild depression, anemia,
and cancers that are occult and slow growing (e.g., some cancers of the
thyroid and prostate).

ZERO TIME

Cohorts in prognostic studies are observed starting from a point in time,
called zero time. This point should be specified clearly and be the same
well-defined location along the course of disease (e.g., the onset of symp
toms, time of diagnosis, or beginning of treatment) for each patient. The
Lerm inception cohurt is used to describe a group of people who are assem
bled near the onset (inception) of disease.

Tf observation is begun at different points in the course of disease for
the various patients in the cohort, description of their subsequent course
will lack precision. The relative timing of such events as recovery, recur
rence, and death would be difficult to interpret or misleading.

For example, suppose we wanted to describe the clinical course of pa
tients with lung cancer. We would assemble a cohort of people with the
disease and follow them forward over time to such outcomes as complica
tions and death. Hut what do we mean by "with disease"? If zero time
was detection by screening for some patients, onset of symptoms for others,
and hospitaliz<lLion or the beginning of treatment for still others, then
observed prognosis would depend on the particular mix of zero times in
the study. Worse, if we did not explicitly describe when in the course of



CHAPTER 6 / PROGNOSIS 113

disease patients entered the cohort, we would not know how to interpret
or use the reported prognosis.

DESCRIBING OUTCOMES OF DISEASE

Descriptions of prognosis should include the full range of manifestations
that would be considered important to patients. This means not only death
and disease but also consequences of disease such as pain, anguish, and
inability to care for one's self or pursue usual activities. (The Five Os listed
in Table 1.2 are a simple way to summarize important clinical outcomes.)

In their efforts to be "scientific," physicians sometimes value certain
kinds of outcomes over others, at the expense of clinical relevance. Clinical
effects that cannot be directly perceived by patients (e.g., reduction in
tumor size, normalization of blood chemistries, or change in serology)
are not ends in themselves. It is appropriate to substitute these biologic
phenomena for clinical outcomes only if the two are known to be related
to each other. Thus hypercalcemia is an important clinical outcome of
hyperparathyroidism only if it causes symptoms such as drowsiness or
thirst or if there is reason to believe that it will eventually lead to complica
tions such as bone or kidney disease. If an outcome cannot be related to
something patients will recognize, the information should not be used to
guide patient care, although it may be of considerable value in understand
ing the origins and mechanisms of disease.

HEALTH-RELATED QUALlTY·OF~L1FE MEASURES

There is growing recognition that "health" involves more than the
avoidance of negative aspects such as death and disease. Clinical activities
should have a positive impiJct on how a person functions and lives. This
concept has been referred to as health-related quality of life, health status, or
functional status. Questionnaires have been developed to measure patients'
quality of life. Sometimes their use strengthens arguments for certain clini
cal interventions. For example, a study showed that erythropoietin treat
ment of patients with chronic renal failure not only increased patients'
hematocrits but improved their health-related quality of life (1). On the
other hand, sometimes quality-of-life measurements reveal complicated
trade-offs. A study of zidovudine (AZT) treatment in patients with mildly
symptomatic HIV infection showed that although the drug delayed pro
gression to AIDS by an average of 0.9 months, the positive result was
offset by adverse effects of the drug. Thus patients receiving the drug had
an average of 14.5 months without disease progression or severe symptom
atic adverse effects from AZT compared with an average of 14.7 months
for patients not receiving the drug (2). What looked like a small benefit in
delayed progression to AIDS was not so clear when quality-of-life mea
sures were added to the study.
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Prognostic Factors
Although most patients are interested in the course of their disease in

general, they Me even more interested in a prediction for their given case.
Prognostic factors help identify groups of patients with the same disease
who have different prognoses.

DIFFERENCES BETWEEN PROGNOSTIC FACTORS AND RISK FACTORS

Studies of risk factors usually deal with healthy people, whereas prog
nostic factors-conditions that are associated with an outcome of disease
are, by definition, studied in sick people. There arc other important differ
ences as well, outlined below.

Different Factors

Factors associated with an increased risk are not necessarily the same
as those marking a worse prognosis and are often considerably different
for a given disease. for example, low blood pressure decreases one's
chances of having an acute myocardial infarction, but it is a bad prognostic
sign when present during the acute event (fig. 6.1). Similarly, intake of
exogenous estrogens during menopause increases women's risk of endo
metrial cancer, but the associated cancers are found ilt an earlier stage and
seem to have a better-than-average prognosis.

OutcomesWell Onset of Acute
Myocardia Infarction

~~~~~~~_. Death

1m!' UWj~~~ii~~~t.1 i;]L> ~:~~~arction

Risk Factors

rAge
Male

Cigarette smoking

Hypertension

!LDLI lHDL
Inactivity

Prognostic (Poor) Factors

rAge
Female

Cigarette smoking

Hypotension

Anterior infarction

Congestive heart failure

Ventricular arrhythmia

Figure 6.1. Differences between risk and prognostic factors for acute myocardial
infarction
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Some factors do have a similar effect on both risk and prognosis. For
example, both the risk of experiencing an acute myocardial infarction and
the risk of dying of it increase with age.

Different Outcomes

Risk and prognosis describe different phenomena. For risk, the event
being counted is the onset of disease. For prognosis, a variety of consc
quences of disease are counted, including death, complications, disability,
and suffering.

Different Rates
Risk factors generally predict low probability events. Yearly rates for

the onset of various diseases are on the order of 1/100 to 1/10,000. As a
result, relationships between exposure and risk usually elude even astute
clinicians unless they rely on carefully executed studies, often involving a
large number of people over extended periods of time. Prognosis, on the
other hand, describes relatively frcquent events. Clinicians often can form
good estimates of prognosis on their own, from their personal experience.
For example, they know that few patients with lung or pancreatic cancer
survive as long as 5 years, whereas most with chronic lymphocytic leuke
mia survive much longer.

MULTIPLE PROGNOSTIC FACTORS AND PREDICTION RULES

A combination of factors may give a more precise prognosis than each
of the same factors taken one at a time. Clinical prediction rules estimate the
probability of outcomes according to a set of patient characteristics.

[xaml,le Once patients with HIV infection develop A[DS, the pHlI-,'l1osis
is poor and survival time is short. Even so, and bdore antiviral and prophy
lactic therapy for opportunistic infections became standard treatment, it was
clear that some patients with AIDS survived much longer than others. A
study was done to determine which patient characteristics predicted survival
(3). Each of several physiologic characteristics was found to be related to
survival. Using these factors in combination, the investigators developed a
prognostic staging system, with [ point for the presence of each of 7 factors:
severe diarrhea or a serum albumin <2.0 gm/dL, any neurologic dl.'ficit, Pl.':2
less than or equal to 50 mm Hg, helllatocrit <30(}:" lymphocyte count < 150/
mL, white COlmt <25001mL, and platelet count < 140,000/mL. The total ;;core
determined the prognostic stage (I, 0 points; II, 1 point; ][[, greater th;m or
equal to 2 points). Figure 6.2 shows the survival of AIDS patients in each
prognostic stage. Using multiple prognostic factors together, the authors
noted that prediction for median length of survival varied from [[.5 months
for patients in stage I to 2.1 months for patients in stage Ill.

Describing Prognosis
PROGNOSIS AS A RATE

It is convenient to summarize the course of disease as a single number,
or rate: the proportion of people experiencing an event. Rates commonly
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Figure 6.2. Survival of AIDS patients according to prognostic stage. Median sur
vival times (in months): stage I, 11.6; stage II, 5.1, stage III, 2.1. (Adapted from
JusliceAC, Feinstein AR, Weils CK. A new prognostic staging system for the acquired
immunodeficiency syndrome. N Eng J Med 1989: 320:1388-1393,)

used for this purpose are shown in Table 6.1. These rates have in common
the same basic components of incidence, events arising in a cohort of
patients over time.

All the components of the rate must be specified: zero time, the specific
clinical characteristics of the patients, definition of outcome events, and
length of follow-up. Follow-up must be long enough for all the events to
occur; otherwise, the observed rate will understate the true one.

A TRADE-OFF: SIMPLICITY VERSUS MORE INFORMATION

Expressing prognosis as a rate has the virhte of simplicity. Rates can be
committed to memory and communicated succinctly. Their drawback is
that relatively little information is conveyed, and large differences in prog
nosis can be hidden within similar summary rates.

Figure 6.3 shows 5-year survival for patients with four conditions. For
each condition, about 10°;;, of the patients are alive at 5 years. But similar
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Table 6.1
Rates Commonly Used to Describe Prognosis

Hntn Detiniti!)rr'

5-year survivJI

Case fatality
lJise<Jse-specific mortality

Response

Rcrni~;si()n

Recurrence

Percent of patients surviving 5 years from some point in the
course of their disease

Percent of patients with a disease who die of it
Number of people per 10,000 {or 100,0(0) population dying

of a specific disease
Percent 01 patients showing some evidence of improvement

following an intervention
Percent of patients entering a phase in which disCilSlo is no

longer detectable
Percerlt ot patients who have return of disease after a

disease-free interval

"Timo undor obsorvation is oithor stated or assumed to be \OufticiArltly 10"9 so tllil! "II ffi'Arlls lila! will OcCur
havo beon obSDlVed,

summary rates of approximately 10% survival obscure differences of con
siderable importance to patients. Early survival in patients with dissecting
(Ineurysms is very poor, but if they survive the first few months, their risk
of dying is not <Iffected by having had the aneurysm (Eg. 6.3A). On the
other hand, HIV positive patients who develop AIDS die throughout the
.i ymrs (Fig. 6.38). Chronic granulocytic leukemi<l is a condition that has
relatively little effect on survival during the first few ymrs after diagnosis
(Fig. 6.3C). Later, there is an acceleration in mortality rate until nearly all
patients are dead 5 years after diagnosis. Pigure 6.30 is presented as a
benchmark. Only at age 100 do people in the general population have a
5-year survival rate comp<lrab1c to that of patients with the three diseases.

SURVIVAL ANALYSIS

When interpreting prognosis, we would like to know the likelihood, on
the average, that patients with a given condition will experience an out
come at any point in time. When prognosis is expressed as a summary
rate it does not contain this information. However. there are methods for
presenting inform<ltion about average time to event for any point in the
course of disease.

SURVIVAL OF A COHORT

The most str<lightforward way to learn about survival is to assemble a
cohort of patients with the condition of interest at some point in the course
of their illness (e.g., onset of symptoms, diagnosis, or beginning of treat
ment) and keep them under observation until all could have experienced
the outcome of interest. For a small cohort, one might then represent the
experience with these patients' course of disease as shown in Figure fi.4A.
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Figure 6.3. A limitation of 5-year survival rates: four conditions with the same ti
year survival rate of 10%. (Data from Anagnostopoulos CD et al. Aortic dissections
and dissecting aneurysms. Am J Cardiology 1972:30:263-273; Sash JA, Hoover
DR et al. Factors influencing survival after AIDS: mport from the Multicenter AIDS
Cohort Study (MACS). J Acquir Immune Defic Syndr 1994;7:287-?95; Ksrdinal
CG el al. Chronic [Jrsnulocytic leukemia, Review of 536 cases. Arch Intern Med
1976; 136:30tJ-313: and Americcln College of I ite Insurance. 1979 life insurance
fact book, Washington, DC: ACLI 1979,)

The plot of survival against time displays steps, corresponding: to the death
of each of the 10 patients in the cohort. If the number of patients were
increased (Fig. 6.48), the size of the steps would diminish. If a very large
number of patients were represented, the figure would approximate a
smooth curve. This information could then be used to predict the year-by
year, or even wl'ek-by-week, prognosis of similar patients.

Unfortunately, obtaining the information in this way is impractical for
several reasons. Some of the patients would undoubtedly drop out of the
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study before the end of the follow-up pt'riod, perhaps because of another
illness, a move to a place where follow-up was imIJractical, or dissatisfac
tion with the study. These patients would have to be excluded from the
cohort, even though considerable effort may have been exerted to gather
data on them up to the point at which they dropped out. Also, it would
be necessary to wait until all of the cohort's members had reached each
point in time before the probability of surviving to that point could be
calculated. Because patients ordinarily become available for a study over
a period of time, at any point in calendar time there would be a relatively
long follow-up for patients who entered the study first, but only brief
experience with those who entered recently. The last patient who entered
the study would have to reach each year of follow-up before any informa
tion on survival to that year would be available.

SURVIVAL CURVES

To make efficient use of all available data from each patient in the
cohort, a way of estimating the wrvival of a cohort over time, called
survival analysis, has been developed. (The usual method is called a Kaplan
Meir analysis, after the originators.) The purpose of survival analysis is
not (as its name implies) only to describe whether patients live or die. Any
outcome that is dichotomous and occurs only once during follow-up
e.g., time to coronary event or to recurrence of cancer-can be described
in this way. 'When an event other than survival is described, the term timc
to-c'vcnt analysis is sometimes used.

Figure 6.5 shows a typical survival curve. On the vertical axis is the
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Figure 6.4. Survival of two cohorts, small and large, when all members are ob
served for the full period of tallow-up.
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Figure 6.5. A typical survival curve, with detail for ona part of the curve,

probability of surviving, ;;md on the horizontal axis is the period of time
following the beginning of observation. Often, the numbers of patients at
risk at various points in time are shown to give some idea of the contribu
tion of chance to the observed rates.

The probability of surviving to any point in time is estimated from the
cumulative probability of surviving each of the time intervals that preceded
it. Time intervals can be made as small as necessary; in Kaplan-Meir an<lly
ses, the intervals are between each new event (death) and the preceding
one. Most of the time, no one dies, and the probability of surviving is 1.
When one or more patients die, the probability of surviving is calculated
as the ratio of the number of patients surviving to the number at risk of
dying at that time. Patients who have already died, dropped out, or have
not yet been followed-up to that point are not at risk of dying and so are
not used to estimate survival for that time. When patients are lost from
the study at any point in time, for any reason, they are cCllsorcd, i.e., they
arc no longer counted in the denominator. The probability of surviving
does not change during intervals in which no one dies; so in pradicc, the
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probability of surviving is recalculated only for times when there is a
death. Although the probability assigned at any given interval is not very
accurate, because of the small number of events involved, the overall prob~
ability of surviving up to each point in time (which is the product of all
preceding probabilities) is remarkably accurate.

A part of the survival curve in Figure 65 (from 3 to 5 years after zero
time) is presented in detail to illustrate the data used to estimate survival:
patients at risk, patients no longer at risk (censored), and patients experi
encing outcome events at each point in time.

INTERPRETING SURVIVAL CURVES

Several points must be kept in mind when interpreting survival curves.
First, the vertical axis represents the estimated probability of surviving for
members of a hypothetical cohort, not the percent surviving for an actual
cohort.

Second, points on a survival curve are the best estimate, for a given set
of data, of the probability of survival for members of a cohort. However,
the precision of these estimates depends, as do all observations on samples,
on the number of observations on which the estimate is based. One can
be mOTe confident that the estimates on the left-hand side of the curve are
sound, because more patients are at risk during this time. But at the tail
of the curve, on the right, the number of patients on whom estimates of
survival are based often becomes relatively small because deaths, dropouts,
and late entrants to the study result in fewer and fewer patients being
followed for that length of time. As a result, estimates of survival toward
the end of the follow-up period are imprecise and can be strongly affected
by what happens to relatively few patients. For example, in Figure 6.5, thc
probability of surviving is 8'1" at 5 years. If at that point the one remaining
patient happens to die, the probability of surviving would fall to zcro.
Clearly, this would be a too literal reading of the data. Estimates of survival
at the tails of survival curves must, therefore, be interpreted with caution.

Finally, the shape of some survival curves, particularly those in which
most patients experience the event of interest, gives the impression that the
event occurs more frequently early on than later, when the slope reaches a
plateau and it appears that the risk of outcome events is considerably less.
But this impression is deceptive. As time passes, rates of survival are being
applied to a diminishing number of people, causing the slope of the curve
to flatten even when the rate of outcome events does not change.

Variations on the basic survival curve are found in the medical literature
(Fig. 6.(,). Often the proportion with, rather than without, the outcome
event is indicated on the vertical axis; the curve then sweeps upv,'ard and
to the right. Other variations increase the amount of information presented
with the curve. The number of patients at risk at various points in time



122 CLINICAL EPIDEMIOLOGY

45

40

'" 35
.0_
~~,,- 30"<II-- Severeo ~

" ~ 25 (~75% stenosis)
1ijW
c: .!:! 20
" E" "1ij.r::

15
E ":;::::;.!?
81 10

Normal

5 (:'030"1., stenosis)

6 12 18 24 30 36 42

Time from Detection of
Asymptomatic Neck Bruit (months)

N{severe 94 80 68 52 42 28 21 7
Normal 242 236 211 169 158 69 56 1

Figure 6.6. Survival curve showing comparison of two cohorts, number of people
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cumulative probability of a cerebral ischemic event from time of diagnosis, according
to the initial degree of carotid stenosis. (Data from Chambers SR, Norris, JW. Out
come in patients with asymptomatic neck bruits. N Engl J Med 1986; 315:860-865.)

can be included under the horizontal axis; the precision of estimates of
survival, which declines with time because fewer and fewer patients are
still under observation as time passes, can be identified by confidence
intervals (see Chapter 9); and survival curves for patients with different
characteristics (e.g., patients with different prognostic factors or treat
ments) can be compared in the same figure. Sometimes tics (not shown in
Fig. 6.6) are added to the survival curves, to indicate each time a patient
is censored.

Survival curves mn be constructed for combinations of prognostic fac-
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tors. This can be done by stratifying patients according to the presence or
absence of a set of prognostic factors, as shown eadier in this chapter. A
statistical technique called the Cox proportional hazards regression model can
be used to identify a combination of factors that best predicts prognosis
in the group of patients under study or the efft'ct of individual factors
independently (Chapter 9).

Bias in Cohort Studies
Potential for bias exists in any observation. Bias in cohort studies

whether to study risk or prognosis-can create apparent differences when
they do not actually exist in nature or obscure differences when they really
do exist.

Bias can be recognized more easily when one knows where it is most
likely to occur in the course of a study. First, it is important to determine
if bias could be present under the conditions of the study. Second, deter
mine if bias is actually present in the particular study being considered.
Third, decide if the consequences of bias are sufficiently large that they
distort the conclusions in a clinically important way. If damage to the
study's conclusions is not very great, then the presence of bias will not
lead to misleading results. Some of the characteristic locations of bias in
cohort research are illustrated in Figure 6.7 and described below.

SUSCEPTIBILITY BIAS

A form of selection bias, called susceptibility bias, occurs when groups
of patients assembled for study differ in ways other than the factors under
study. These extrancous factors, not the particular factors being studied,
may determine the outcome. A comparable term is assembly bias. Groups

Present

Outcomes

I
~

Absent .. 1.1!Iii;!·1

LMeasurement~

Prognostic
Factor

Selection
SamplingPotential

Biases

Figure 6.7. Locations of potential bias in cohort studies.
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Figure 6.8. Disease-free survival according to CEA levels in colorectal cancer pa
tients with similar pathological staging (Dukes B). (Redrawn from Wolmark N et
al. The prognostic significance of preoperative carcinoembryonic antigen levels in
colorectal cancer. Results from NSABP clinical trials. Ann 8urg 1984; 199:375-382.)

being; compared are not equally susceptible to the outcome of interest,
other than the factor under study.

Susceptibility bias in prognosis studies may be due to one or more
differences among cohorts, including the extent of disease, the presence of
other diseases, the point of time in the course of disease, and prior treat
ment. The following illustrates how susceptibility bias was assessed in a
study of the prognostic value of carcinoembryonic antigen results in pa
tients with colorectal cancer.

Example Increased levels of carcinoembryonic antigen (CEA), a tumor
associated fetal antigen, arc found in sevl;'ral types of tumors, induding colo
n,dal e<mcer. /\. study was undertaken to determine if preoperative CEA
levels predict relapse of disease after surgical resection with the intent to cure
(4). CEA levels Wl;'re found to correlate with the extent of disease (frequently
categori7.ed according to "Dukes classification": A, tumors confined to the
bowd wall; H, tumors extending through the bowel wall but not to the lymph
nodes; C, tumors involving regional lymph nodes; and 0, tumors having
distant metastases). Mean CEA levels varied with extent of disease: 4 for
Dukes A, 9 for B, 32 for C, and 251 for D. Both Dukes classification and
CEA level strongly predicted disease relapse. But did the CEA level prt-dict
independently of the Dukes classification or was susceptibility of relapse
explained by Dukes classification alone? To answer this question, the associa
tion of preoperativl;' CFA levels to disease relapse was examined for patients
in l;'ach Dukes classification. Figure 6.8 shows that for Dukes B classification,
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CEA levels independently predicted relapse. Similar results were fOWld for
patients with Dukes C tumors. Therefore, the ass()ciation beh'l'ecn CEA levels
and likelihood of relapse could not be explained by susceptibility bias for
patients with Dukes Hand C colorectal cancers, and CEA is an important
independent prognostic factor.

SURVIVAL COHORTS

True cohort studies should be distinguished from studies of survival
cohorts in which patients ,Jfe included in a study because they both have
a disease and are currently available-perhaps because they are being
seen in a specialized clinic. Another term for such groups of patients is
available patient cohorts. Reports of survival cohorts arc misleading if they
are presented as true cohorts. Tn a survival cohort, people are assembled
at various times in the course of their disease, rather than at the beginning,
as in a true cohort study. Their clinical course is then described by going
back in time and seeing how they have fared up to the present (Fig. 6.9).

The experiences of survival cohorts are sometimes presented as if they

True Cohort

Assemble Measure outcomes
cohort Improved: 75

(N= 150) Not improved: 75

Survival Cohort

Observed
Improvement

50%

True
Improvement

50%

Assemble

1
patients

Begin Measure outcomes
follow-up

Improved: 40
(N.501 Not improved: 10-

1 Not 1

1 observed 1
1 1- - --I

1 (N=100) 1 ~
1 1 Dropouts

Improved: 35
Not improved: 65

80% 50%

Figure 6.9. Comparison of a true and a "survival" cohort: in the survival col1ort,
some at the patients present at the beginning are not included in tile follow-up.
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weTe descriptions of the course of disease from its inception. However,
they may represent a biased view, because they include only those patients
who are available for study some time after their disease began. For lethal
conditions, the patients in a survival cohort are the ones who are fortunate
enough to have survived and so are available for observation years later.
For diseases that remit, the patients aTe the ones who are unfortunate
enough to have persistent disease. In effect, survival cohorts describe the
past history of prevalent cases and not what one would expect over the
time following the onset of disease. Thus a survival cohort is a special case
of assembly bias.

Reports of survival cohorts are relatively common in the medical litera
ture, particularly in the form of "case series" (discussed in Chapter 10).
Such reports can make an important contribution, primarily by describing
early experiences with newly defined syndromes, but they Tepresent tenta
tive, not conclusive, observations.

Example Concern has been raised about the possibility that siliconl;'
breast implants may cause autoimmunl;' symptoms of rhl;'umatic diseasl;'. A
study was, therefore, done of 156 women with silicone breast implants ,md
rheumatic disease complaints (5). The patients were consecutive referrals to
three rheumatologists who were known for their interest in silicone implants
and rheumatic disease. Serologic tests in the women were compared to those
of women without implants but with fibromyalgia and to tests in women
with implants but no rheumatic symptoms. The clinical findings in the
women with implants and complaints were described; most did not fulfill
criteria for rheumatoid arthritis and most had normal immunologic tests.
However, l4 patients had scleroderma-like iJJness and abnormal serology
that was not found in the comparison groups. Because of the possible biases
that can occur in the assembly of patients for this ca~e series, the authors
were cautious about their findings, concluding that "the hypotheses raised
in this study and others should be tested in large, population-based studies."
Publication of the first such study does not support the hypothesis (6).

MIGRATION BIAS

Migration bias, another form of selection bias, can occur when patients
in one group leave their original group, dropping out of the study alto
gether or moving to one of the other groups under study. If these changes
take place on a sufficiently large scale, they can affect the validity of
conclusions.

In nearly all shldies, some members of an original group drop out over
time. If these dropouts occur randomly, such that the characteristics of lost
subjects in one group are on the average similar to those lost from the
other, then no bias would be introduced. This is so whether or not the
number of dropouts is large or the number is similar in the groups. But
ordinarily the characteristics of lost subjects arc not the same in various
groups. The rC<lsons for dropping out-death, recovery, side effects of
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treatment, etc.-are often related to prognosis and may also affect one
group more than another. As a result, groups in a cohort that were compa
rable at the outset may become less so as time passes.

As the proportion of people in the cohort who are nnt followed up
increases, the potential for bias increases. It is not difficult to estimate how
large this bias could be. All one needs is the number of people in thc
cohort, the number not accOlUlted for, and the observed outcome rate.

Example Thompson et al. described the long-term outcomes of gastro
gastrostomy {7)./\ cohort of 123 morbidly obese patients was studied 19-47
months after surgery. Success was defined as hilving lost more than 30% of
excess weight.

Only 103 patients (84%) could be located. In these, the success rate of
surgery was 60/lO3 (58°1<». To dett'rmine the range within which the true
success rate must lie, the authors did a best case/worst case analysis. Success
rates were calculated, assuming that all of the patients losl to fol1;wv-up were,
on the one hand, successes (best case) and, on the other hand, failures (worst
case). Of the total cohort of 123 patients, 103 were followed up and 20 were
lost to follow-up. The observed success rate was 60/103, or 58%. In the best
case, all 20 patit'nts lost to follow-up would be counted as successes, and the
success rate would be (60 + 20)/123, or 65':0. In the worst case, all 20 patients
would be counted as failures, and the success rate would be 60/123, or 49"/0.
Thus the true rate must have been bdween 49 and 65%; probably, it was
doser to 58%, the observed rate, because patients not followed up are unlikely
to be all successes or all failures.

Patients may also cross over from nne group to another in the cohort
during their follow-up. Whenever this occurs, the original reasOIls for pa
tients being in one group or the other no longer apply. Tf exchange of
patients between groups takes place on a large scale, it can diminish the
observed difference in risk compared to what might have been observed
if the original groups had rcmained intact. Migration bias due to crossover
is more often a problem in risk than in prognosis studies, because risk
shldies often go on for many years. On the other hand, migration from
one group to another can be used in the analysis of a study.

Example The reliltionship between lifestyle and mortality was studied
by classifying 10,269 Harvard College aluIrcIl.i by physical activity, smoking
status, weight, and blood pressure in 1966 and again in 1977 (8). Mortality
rates were tht'll observed over a 9-year period from 1977 to 1985. It was
recognized that original classificatiol{s might change, obscuring any relation
ship that might exist between lifestyle and mortality. To deal with this, the
investigators defined four categories: men who maintained high-risk life
style~, those who changed from low- to high-ri~k lifestyles, those who
changed from high- to low-risk life~tyles, and those who maintained 101'.'
risk lifestyles. After adjusting for other risk factors, mt'n who increast'd their
physical activity from low to moderate amount~, '-luit smoking, lost weight
to normal levels, and/or became normoten~ive all had lower mortality than
men who maintained or adopted high-risk characteristic~,but not as low as
the rates for alumni who never had any risk factors_
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MEASUREMENT BIAS

Measurement hias is possible if patients in one ,jroup stand a better chance
of having their outcome detected than those in another group. Obviously,
some outcomes, such as death, cardiovascular catastrophes, and major
cancers, arc so obtrusive that they are tmlikely to be missed. But for less
dear-cut outcomes-the specific cause of death, subclinical disease, side
effects, or disability-measurement bias can occur because of differences
in the methods with which the outcome is sought or classified.

Measurement bias can be minimized in three general ways. One can
ensure that those who make the observations are unaware of the group to
which each patient belongs, can set careful rules for deciding whether or
not an outcome event has occurred (and follow the rules), and can apply
efforts to discover events equally in all groups in the study.

Example Chambers and Norris studied the outcome of patients with
asymptomatic neck bruits (9). A total of 500 asymptomatic piltients with
cervical bnJils were observed for up to 4 years. I'atients were classified ac
cording to the degrec of initial carotid artery stenosis by Doppler ultrasonog
raphy. OlJtcomes were change in degree of carotid s!t.'nosis and incidence of
cerebral ischemk events.

To avoid biased measurements, the authors estimated carotid sh.'llosis
using established, explicit criterid fur interprding Doppler scans ,md made
the readings without knowledge of the ausclJltatory or previous Doppler
findings. Clinical and Doppler assessments were repeated every 6 months,
and all noncomplying patients were telephoned to determine whether out
comes had occurred.

This study showed, among other things, that patients with >75'1" carotid
stenosis had a >2IY:;, incidence of cerebral ischemic events in 3 years, more
than 4 times the rate of patients with <30% stenosis (see Fig. fl.fl).

Dealing with Selection Bias
Tn determine how a factor is related to prognosis, ideiJlly we would

like to compare cohorts with and without the factor, everything else being
equal. But in Teal life "everything else" is usually not equal in cohort
studies.

What can be done about this problem? There are several possible ways
of controlling for differences during either designing or analyzing research
(Table 6.2).1 For any observational study, if one or more of these strategies
have not been applied, the reader should be skeptical. The basic question
is, "Are the differences in prognosis in the groups related to the particular
factor under study or to some other fador(s)?"

I Co"I,,,1 h,,, ,,'v,'r~1 m,'~nings in r""'arch: I,,) gcner"I term ror any Im,,-,'," -_. n..stridion. !notching, ~l," lifi
Glth",. "djll'lrHt'!lt-~im"d ~l ,,'mo,'in,. the' efi,'cts of exl,"neo", vari,'ble' while ,,,,,milling the' ind,'pen
d,'nl di,'cts 01 one variabk. (bJ lhe non'''I"""d p~"rl" in" cohort ,tudy (0 conlusing use of H", It"",),

(<.'! th .. npnt"',lt,'{i p"tic,~ts i~" clinical tl'i<11. "nd (.1.1 ,,,,ndi,,',,,,·d I'~"pl,' (non,·"",,) ;n ,1 (~",' conll'ol study
(sec Chapter "111).



CHAPTER 6 I PROGNOSIS 129

Table 6.2
Methods for Controlling Selection Bias

Phase of Study

Method

Randomization

Restriction

Matching

Stratiiication

Adjustment
Simple

Multiple

Best casel
worst case

Description

Assign patients to groups in a way that
gives each patient an equal chance
of falling into one or the other group

Unlit the wnge at characteristics of
pJtients in the study

~or each patient in one group, select
one or more pJtients with the same
charJcteristics {except for the one
under study) for a comparison group

Compare rates within subgroups
(strata) with otherwise similar
probability of the outcome

Mathematically adjust crude rates for
one or a few characteristics so that
equal weight is given to strata at
similar riSk

Adjust for differences in a large number
of factors related to outcome. using
mathematical modeling techniques

Describe how different the results
could be under the most extreme (or
simpty very unlikely) conditions at
selection bias

lJesign

+

Analys,s

+

+

RANDOMIZATION

The only way to equalize aU extraneous factors, or "everything else," is to
assign patients to groups randomly so that each patient has an equal chance
of falling into the exposed or unexposed group. A special feature of random
ization is that it not only equalizes factors we think might affect prognosis,
it also equalizes factors we do not know about. Thus randomization goes a
long way in protecting: us from incorrect conclusions about prognostic factors.
However, it is usually not possible to srudy prognosis in this way. The special
simations in which it i[; possible to allocate exposure randomly, usually to
study the eff{c'Cts of treatment on prognosis, will be discussed in Chapter 7.

RESTRICTION

Patients who are enrolled in a study can be restricted to only those
possessing a narrow rilnge of characteristics, to equalize important extrane
ous factors. For example, the effect of age on progno[;js after acute myocar
dial infarction could be studied in white males with uncomplicated anterior
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myocardial infarctions. However, one should keep in mind that although
restriction on entry to a study can certainly produce homogeneous groups
of patients, it does so at the expense of generalizability. In the course of
excluding potential subjects, cohorts may be selected that are unusual and
not representative of most patients with the condition.

MATCHING

Patients can be matched as they enter a study so that for each patient
in one group there are one or more patients in the comparison group with
the same characteristics except for the factor of interest. Often patiellts are
matched for age and sex, because these factors are strongly related to the
prognosis of many diseases. But matching for other factors may be called
for as well, such as stage or severity of disease, rate of progression,
and prior treatments. An example of matching in a cohort study of sicklc
cell trait was presented in the discussion of observational studies in
Chapter 5.

Although matching is commonly used and can be very useful, it controls
for bias only for those factors involved in the match. Also, it is usually not
possible to match for more than a few factors, because of practical difficul
ties in finding patients who meet a]] the matching criteria. Moreover, if
categories for matching are relatively crude, there may be room for sub
stantial differences behveen matched groups. For example, if a study of
risk for Down's syndrome were conducted in which there was matching
for maternal age within 10 years, there could be a nearly lO-fold difference
in frequency related to age if most of the womell in one group were 30
and most in the other 39. Also, once one restricts or matches on a variable,
its effects on outcomes can no longer be evaluated in the study.

STRATIFICATION

After data are collected, they can be analyzed and results presented
according to subgroups of patients, or stmta, of similar characteristics.

Example Let us suppose we want to compare the operative mortality
rates for coronary bypass surgery at hospitals A and B. Overall, hospital A
noted 48 deaths in 1200 bypass opemtiom (4'\,), and hospital B experienced
64 deaths in 2400 operations (2.6%,).

The crude rales suggest that hospital 13 is superior. Or do they? Perhaps
patients in the two hospitals were not otherwise of comparable prognosis.
On the basis of age, myocardial function, extent of occlusive diseast', ,md
other characteristics, the patients can be divided into subgroups based on
preoperative risk (Table 6.3); tht'n the operative mortality rates within each
category Of stratum of risk can be compared.

Table 6.3 shows that when patients arc divided by preoperative risk, the
operative mortality rates in each risk stratum afe identical in two hospitals:
6';;', in high-risk patients, 4uj" in medium-risk patients, and 0.67~j, in low
risk patienls. The obvious source of the misleading impression created by
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Table 6,3
Example of Stratification: Hypothetical Death Rates after Coronary BYP8SS Surgery
in Two Hospitals, Stratified by Preoperative Risk

Hospital A Hospital B
,jreoperativf! ._--_.

Ri"k Patients [)calhs R~te (%) Patients Dpatlls Rate {%)

High SOO ~m 6 400 24 6
Mediurrt 400 16 4 800 32 4
L.ow 300 2 0.67 1200 !J 0,67

ToWI 1200 48 4 2400 64 2.6

examining only the crude rates is the important differences in the risk charac
teristics of the patients treated at the two hospitals: 42% of hospital I\'s
patients ilnd only 17% of hospital B's patients were high risk.

Stratification is one of the most common and most revealing ways of
examining for bias,

STANDARDIZATION

Two rates can be compared without bias if they are adjusted so as to
equalize the weight given to another factor that could be related to out
come, This process, called standardization (or adjustment), shows what the
overall rate would be if strata-specific rates were applied to a population
made up of similar proportions of people in each stratum. Tn the previous
example, the mortality rate of 6% for high-risk patients receives a weight
of 500/1200 in hospital A and a much lower weight of 400/2400 in hospital
B, and so on, such that the crude rate for hospital A = (500/1200 x 0.06)
+ (400/1200 x 0.04) + (300/1200 - 0.0067) = 0.04 and the crude rate for
hospital 13 equals (400/2400 x 0.06) + (800/2400 x 0.04) + (1200/2400 x
O. 0067) = 0.026.

If equal weights are used, let us say 1/3 (but they could be based on
one or the other hospital or any reference population), then the standard
ized rate for hospital A = (1/3 x 0,(6) + (1/3 x 0.(4) + (1 /3 x 0.0067)
= 0.036, which is exactly the same as the standardized r<lte for hospital B.
The consequence of giving equal weight to strata in each group is to remove
totally the apparent excess risk of hospital A.

The difference between the crude operative mortality rates in the two
hospitals fesults from the bias introduced by the differences in patients'
preoperative risk. We are only interested in differences attributable to the
hospitals and their surgeons, not to the patients per se. The difference in
the crude mortality rates is confounded by the differences in patients,
whereas standardized mortality rates equalize the weight of patients' pre
operative risk in the two hospitals. Standardization is found much more
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commonly in studies of risk (in which rates <Ire frequently stand<lrdized
for <lge, sex, <lnd/or race) than in studies of prugnosis. In contrast to strati
fication (which is often used in prognosis studies), standardization removes
the effect of the extraneous factor. With stratification, the effect can still be
examined, even if controlled for. Thus, with standardization, we found
th<lt patients had similar prognoses in hospitals A and 13. With stratification,
we also learned the mortality rates among patients in different risk strata.
MULTIVARIABLE ADJUSTMENT

In most clinical situations, many factors act together to produce effects.
The associations among these variables are complex. They may be rdated
to each other as well as to the outcome of interest, the effect of one might
be modified by the presence of others, and the joint effects of two or more
might be greater th<ln the sum of their individual effects.

Multivariable analysis is a method for simultaneously considering the
effects of many variables (Chapter (1). It is used to adjust (control) simulta
neously for the effects of many variables to determine the independent
effects of one. Also, the method can select from a large set of variables a
smaller subset that independently and significantly contributes to the over
<111 variation in outcome and can arrange variables in order of the strength
of their contribution. Cox's proportional hazard analysis is a type of multivari
able <lnalysis used when the outcome is the time to an event (as in survival
analyses).

Multivariable analysis is the only feasible way to deal with many vari
ables at one time during the analysis phase of a study. (Randomization
also controls for mulhple variables, but during the design and conduct
phases of a study.) Simpler methods, such as str<ltification or matching,
can only consider <I few vari<lbles at a time and then only by sacrificing
statistical power.

SENSITIVITY ANALYSIS

When data on important prognostic factors are not available, it is possi
ble to e~timate the potential effects on the study by assuming various
degrees of maldistribution of the factors between the groups being com
pared and seeing how that would affect the results. The general term
for this process is sensitivity analysis. The be~t case/worst case <lnalysis,
described earlier in this chapter, i~ a ~pecial type of sensitivity analysis in
which one compares results assuming the best and w()r~t possible maldis
tribution of a prognostic variable. 2

Assuming the worst is a particubrly stringcnt test of how a factor might
afk'Ct the conclusions of <I study. A less conserv<ltive approach is to a~sume

th<lt the factor is distributed between the groups in an unlikely way.

) Sen~itivit}' ;ll1~Jysis can ,,1.,0 lx, used to assess the )Jol,·nti,,1 l'ifects of in"eeur"de, in the dat" o,~d in
J~("i-,ion analysi, '1-' discussed in Ch,'pkr 4.
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Example A ~tudy of treatment for mild diabete~ found that patilmts
given the ~ulfonylun=a tolbutamide experienced '1 greater risk of dying from
cardiovascular disease than th(l~<' given insulin or diet ;;Ilone. The results
were criticized because data on smoking-known to be ;;Is~ociJled with car
diovascular death-were not collected and not taken into account in the
analysis. It was suggested that if cigarette ~mokeTS were unequally distrib
uted among the groups, such that there were more smokers among those
receiving tolbutamide than in the other groups, then the difference in death
rates might be related to smoking, not tolbutamide. Howev<'r, Cornfield (IO)
pointed out that even if cigarette smokers in the tolbutamide group exceeded
those in the control group by 20%, a situation that w{mld have been extremely
unlikely by chance (1/50,000), an increased risk in the tolbutamide group
would have persisted. Thus bias in the distribution of smoker~ was unlikely
to have ,KcolUlted for the observed differences.

OVERALL STRATEGY

Except for randomization, all ways of dealing with extraneous differ
ences between groups have a limitation: They are effective against only
those factors that are singled out for consideration. They do not deal with
prognostic factors that are not known at the time of the study or are known
but not taken into account.

Ordinarily, one does not rely on only one or another method of control
ling for bias; one uses several methods together, layered one on another.
Thus in a study of whether the presence of ventricular premature contrac
tions decreases survival in the years following acute myocardial infarction,
one might (a) restrict the study to pi;ltients who arc not very old or young
and do not have unusual causes (e.g., mycotic aneurysm) for their in
farction; (b) match for age, a factor strongly related to prognosis but extra
neous to the main question; (c) examine the resull" sepilriltely for strata of
differing clinical severity (e.g., the presence or absence of congestive heart
failure or other diseases, such as chronic obstructive pulmonary disease);
and (d) using multivariable analysis, adjust the crude results for the effects
of all the variables other than the arrhythmia, taken together, that might
be rdated to prognosis.

Generalizability and Sampling Bias
Published accounts of disease prognosis that are based on experience in

special centers can paint a misleading picture of prognosis in less selected
patients. This is so even if a study is well done, biases arc carefully con
trolled for, and the reported prognosis for a medical condition is correct
for the particular sample of patients. Because of the sample of patients
used, it may be that the study findings are not generalizable to most other
patients with the condition, or to your patient.

Sometimes, patients in randomized controlled trials who are assigned
to the control group are srudied to better determine the usual clinical
course of a disease. But such patients may not be representative of most
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patients because volunteers for studies tend to do better than patients who
do not volunteer. For example, in a large Cam.dian study of breast cancer
screening among women in their 40s, 90'1" of women who were in the
control group and had invasive breast cancer were alive 7 years later, and
the number of deaths from breast cancer were lower than for Canadian
women generally (11).

Summary
Prognosis is a description of the course of disease from its onset. Com

pared to risk, prognostic events arc relatively frequent and often can be
estimated by personal clinical experience. However, cases of disease ordi
narily seen in medical centers and reported in the medical literature are
often biased samples of all cases and tend to overestimate severity.

Prognosis is best described by the probability of having experienced an
outcome event at any time in the course of disease. Tn principle, this can
be done by observing a cohort of patients until all who will experience
the outcome of interest have done so. However, because this approach is
inefficient, another method-called survival, or time-to-event analysis
is often used. TIle onset of events over time is estimated by accumulating
the rates for a]] patients at risk during the preceding time intervals.

As for any observations on cohorts, studies comparing prognosis in
different groups of patients can be biased if differences arise because of
the way cohorts arc assembled, if patients do not remain in their initial
groups, and if outcome events arc not assessed equally. A variety of strate
gies arc available to deal with such differences as might arise, so as to
allow fair (unbiased) comparisons. These include restriction, matching,
stratification, standardization, multivariable analysis, and sensitivity analy
sis. One or more of these strategies should be found whenever comparisons
are made.
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TREATMENT

Once the nature of a patient's illm.'bS has been established and its ex
pected course predicted, the next question is, 'What can be done about it?
Is there a treatment that improves the outcome of disease? This chilptcr
describes the evidence used to decide whether a well-intentioned treatmcnt
is effective.

Ideas and Evidence
The discovery of new treatments requires both rich sources of promising

possibilities and ways of establishing th8t the treatments aTe in fact usefuL

IDEAS

Tdeas (hypotheses) about what might be useful treatment arise from
virtually any activity within medicine. Some therapeutic hypotheses are
suggested by the mechanisms of disease at the cellular or molecular leveL
Drugs against antibiotic resistant bacteria are developed through knowl
edge of the mechanism of resistance. Hormone analogues are based on the
structure of native hormones. The effectiveness of afterload reduction in
congestive heart failure was suggested by studies of the importance of
afterload in the pathophysiology of heart failure.

Other hypotheses about treatments have come from astute observations
by clinicians. Two examples are the discovery that patients with Parkin
son's disease who arc given amantadine to prevent influenza show im
provement in their neurologic status and the reports that colchicine, given
for gout, reduces the frequency of attacks of familial Mediterranean fever.
The value of these treatments was not predicted by an understanding of
the mechanism of these diseases, and the ways in which these drugs work
arc not yet understood. Similarly, folk remedies from throughout the
world, bolstered by centuries of experience but few scientific studies, are
potentially useful treatments.

Other ideas come from trial and error. Snme anticancer drugs have been
found by methodically screening huge numbers of substances for activity.

136
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Ideas about treatment, but more often prevention, also come from epide
miologic studies of populations. Burkitt observed that colonic diseases are
less frequent in African countries, where diet is high in fiber, than in
developed countries, where intake of dietary fiber is low. This observation
has led to efforts to prevent bowel diseases-irriL<Jble bowel syndrome,
diverticulitis, appendicitis, and colorectal cancer-with high-fiber diets.
Comparisons across countries have also suggested the value of red WlOe
to prevent heart disease and fluoride to prevent dental caries.

TESTING IDEAS

Some treatment effects are so prompt and powerful that their value is
self-evident even without formal testing. Clinicians do not have resef"l,'a
Hons about the value of penicillin for pneumonia, surgery for appendicitis,
or colchicine for gout. CliniC<J1 experience has been sufficient.

Usually, however, the effects of treatment are considerably less dra
matic. Tt is then necessary to put ideas about treatments to a formal test,
through clinical research, because a variety of conditions-coincidence,
faulty comparisons, spontaneous changes in the course of disease, wishful
thinking-can obscure the true relationship between treatment and effect.

Sometimes knowledge of mechanisms of disease, based on work with
laboratory modeli:i or phyi:iio[ogic studies in humans, has become so exten
sive that it is tempting to predict effects in humans without formal testing.
However, relying solely on our current understanding of mechanisms,
without testing ideas on intact humans, can lead to unpleasant surprises
because the mechanisms are only partly understood.

[xam"le Many strokes are caused by cerebrill infarction in the area distal
to an obstructed segment of the internal carotid artery. It should be possible
to prt;>vt;>nt the manifestatiuns of disease in people with these lesions by
bypassing the diseilsed segment so that blood can flow to the thrC'iltened area
normillly. It is tedmimlly feasible to anastilmose the superficial temporal
artery to the internal carotid diswJ to an obstruction. Because its value seemed
self-evident on physiologic grounds and because of the documented success
of an analogous proct;>dure, coronary artt;>ry bypass, tht;> surgery became
widely used.

The EC/IC Bypass Study Croup Cl) conduded a randomized controlled
trial of temporal artery bypass surgery. Patients with cerebral ischemia anJ
an obstructed internal carotid ilrtery were randomly illlocated to surgical
versus medical treiltment. The operation was a teclmical success; 96°;', of
anastomoses were patent just after surgery_ Yel, the surgery did not help the
patil.'llts. Mortality and stroke rates after 5 years were nearly identical in
the surgically and medically treated patients, but deaths occurred earlier in
the surgically treated patients.

This study illustriltes hmv treatments that make good sense, based on
whilt we know ilbout the mechilnisms of disease, may be found ineffective
in human terms when put to a rigorous test. Of course, it is not always the
case that ideas arc debunked; the value of carotid l.'lldarterectomy, suggestt>d
on similar grounds, has been confirmed (2).
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Therefore, it is almost always necessary to test therapeutic hypotheses
by means of clinical research, in which datiJ are collected on the clinical
course of treated and untreated patients. As one author (3) put it, treat
ments should be given "not because they ought to work, but because they
do work."

Studies of Treatment Effects
Treatment is usually considered to be what physicians prescribe for

patients with established disease: surgery, drugs, diet and exercise. But
there are a great many other ways of intervening to improve health. Among
these are efforts to prevent disease in individual patients (counseling and
early detection with treatment, discussed in Chapter 8), intervention on
communities and changes in the organization and financing of heiJlth care.
Regardless of the nature of iJ well-intentioned intervention, the principles
by which it is judged superior to its alternatives are the same.

There are tv.'o general ways to establish the effects of treatment: observa
tional and experimental shtdies. They differ in their scientific strength and
feasibility.

Observational studies of treatment are a special case of studies of prog
nosis in general, where the prognostic factor of interest is a therapeutic
intervention. What has been said about cohort studies (Chapters 5 and 6)
applies to observational studies of treatment as well. The main advantage
of these studies is that they are feasible. The main drawback is the likeli
hood that there are systematic differences in treatment groups other than
the treatment itself, which lead to misleading conclusions about the effects
of treatment.

Clinical trials arc a special kind of cohort study in which the conditions of
study-selection of treatment groups, nature of interventions, miJnagement
during follow-up, and measurement of outcomes-are specified by the inves
tigator for the purpose of making unbiased comparisons. Clinical trials arc
more highly controlled and managed than arc cohort shJdies. The investiga
tors iJre conducting an experiment, analogous to those done in the laboratory.
They have taken it upon themselves (with their patients' permission) to isolate
for study the unique conhibution of one factor by holding constant, as much
as possible, all other determinants of the outcome. Hence, other names for
clinical trials are experimental and intervention studies.

Randomized controlled trials are the standard of excellence for scientific
studies of the effects of treatment. We will consider them in detail first,
then consider alternative ways of answering the same question.

Randomized Controlled Trials
The structure of a clinical trial is shown in Figure 7.1. The patients to

be studied arc first selected from a larger number of patients with the
condition of interest. They are then divided, using randomization, into two
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Figure 7.1. The structure of a clinical trial.

groups of comparable prognosis. One group, called the experimental or
treated group, is exposed to an intervention that is believed to be helpfuL
The other group, called a control or comparison group, is treated the same
in all ways except that its members are not exposed to the intervention.
The clinical course of both groups is then observed and any differences in
outcome are attributed to the intervention.

The main rcason for structuring clinical trials in this way is to avoid
bias (systematic error) when comparing the respective value of the two or
more kinds of treatments. The validity of clinical trials depends on how
well they result in an equal distribution of all determinants of prognosis,
other than the one being tested, in treated and control patients.

In the following discussion, we will describe the design and interpreta
tion of clinical trials in detail, with reference to Figurc 7.2.

SAMPLING

The kinds of patients that are included in a trial determine the extent
to which conclusions can be gem'ralized to other patients. Of the many
reasons why patients with the condition of interest may not be part of a
trial, three account for most of the losses: They do not meet specific entry
criteria, they rduse to participate, or they do not cooperate with the con
duct of the trial.

The first, entry criteria, is intended to restrict the heterogeneity of pa
tients in the trial. Common exclusion criteria are atypical disease, the pres
ence of other diseases, an unusually poor prognosis (which may C<luse
patients to drop out of the assigned treatment group), and evidence of
unreliability. Patients with contra indications to one of the treatments arc
also excluded, for obvious reasons. As heterogeneity is restricted in this
way, the internal validity of the study is improved; there is less opportuni ty
for differences in outcome that are not related to treatment itself. Also,
generalizing the results is more precise because one knows exactly to whom
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Figure 7.2. Bias in clinical trials.

the results apply. But exclusions come at the price of diminished scope of
generalizability, because characteristics that exclude patients occur com
monly among those ordinarily seen in clinical practice, limiting generaliz
ability to these patients, the very ones for whom the information is needed.

Second, patients can refuse to participate in a trial. They may not want
a particular type of treatment or to have their medical care decided by a
flip of a coin or by someone other than their own physician. Patients who
refuse to participate are usually systematically different-in socioeconomic
class, severity of disease, other health-related problems, and other ways
from those who agree to enter the trial.

Third, patients who are found to be unreliable during the early stages
of the trial are excluded. This avoids wasted effort and the reduction in
internal validity that would occur if patients moved in and out of treatment
groups or out of the trial altogether.

for these reasons, patients in clinical trials are usually a highly selected,
biased sample of all patients with the condition of interest (Fig. 7.3). Be
cause of the high degree of selection in trials, it often requires considerable
faith to generalize the results of clinical trials to ordinary practice settings.
INTERVENTION

The intervention itself can be described in relation to three general char
acteristics: generalizability, complexity, ilnd strength.

First, Is the intervention in question one that is likely to be implemented
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Patients with noninsulin-
dependent diabetes mellitus in one
hospital

Inclusion Criteria

Age >40 years

Diabetes diagnosed after 30 years old

Require medication for hyperglycemia

Plan to remain in practice >2 years

Other illness, disability, etc.

24

13

12

Eligible

Uncooperative

Refused to participate
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Randomized
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Figure 7.3. Sampling for a clinical trial. A study of the effectiveness of a program
to reduce lower extremity problems in patients with diabetes, (Data from Litzelman
OK, Slemenda CW, Langfeld CD, Hays LM, Welch MA, Bild DE, rord ES, Vinicor F,
Reduction in lower extremity clinical abnormalities in patients with non-insulin depen
dent diabetes mellitus, A randomized controlled trial, Ann Intern Med 1993; 11 9:
36-41.)
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in usual clinical practice? In an effort to standardize therapy so it can be
easily described and reproduced in other setting:" some investigators end
up srudying treatments that are so unlike those in usual practice that the
results of the trial are not usefu L

Second, single, highly specific interventions make for tidy science, be
cause they can be described precisely and applied in a reproducible way.
However, clinicians regularly make choices among alternative treatments
that involvc many elements. Multifaceted intcrventions arc amenable to
careful evaluation as long as their cssence can be communicated and repro
duced in other settings.

Example Falls are a major problem in the elderly, have a variety of
musICS, and tend to recuT. Rubenstdn et al. (4) studied the effects of a program
to prevent falls in the elderly. Elderly people in a long-term residential care
facility were randomized after a fall to a special progrilm or to usual care.
The program included a detailed examination, laboratory tests, and envirun
mental assessment; therapeutic recommendations were given to the patient's
primary physician. Over the next 2 years, the intervention group had fewer
falls, 26% fewer hospitalizations, and a 52% reduction in hospital days com~
pared with controls.

Third, Is the intervention in question sufficiently different from alterna
tive managements that it is reasonable to expect that outcome will be
affected? Some diseases can be reversed by treating a single, dominant
cause, e.g., treating hyperthyroidism with radioisotope ablation or surgery.
But most diseases arise from a combination of factors acting in concert.
Interventions that change only one of them, and only a small amount,
cannot be expected to show strong treatment effects. If the conclusion of
a trial evaluating such interventions is that a new treatment is not effective,
it should come as no surprise.

COMPARISON GROUPS

The value of a treatment can only be judged by comparing the results
of the treatment to those of some alternative course of action. rhe question
is not whether a point of comparison is used, but how appropriate it is.
Results among patients receiving an experimental treatment can be mea
sured against one or morc of several kinds of comparison groups.

No Intervention

Do patients receiving the cxperimental treatment end up better than
those receiving nothing at all? Comparing treatment with no treatment
measures the total effects of health care, both specific and nonspecific.

Observation

Do treated patients do better than other patients who are simply ob
served? A great deal of special attention is directed toward patients 111

clinical trials, and they are well aware of it. People have a tendency to
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change their behavior because they are the target of special interest and
attention in a shtdy, regardless of the specific nature of the intervention
they might be receiving, a phenomenon called the Hawthorne effect. The
reasons for this changed behavior are not clear. Patients are anxious to
please their doctors and make them feel successful. Also, patients who
volunteer for trials want to do their part to see that "good" results are
obtained. Thus comparison of treatment with simple observation measures
treatment effect over and above the Hawthorne effect.

Placebo Treatment

Do treated patients do better than similar patients given a placebo, an
intervention that is intended to be indistinguishable from the active treat
ment~in physical appearance, color, taste, and smell~butdoes not have
a specific, known mechanism of action? Sugar pills and saline injections
are examples of placebos. It has been shown that placebos, given with
conviction, relieve severe, W1pleasant symptoms, such as postoperative
pain, nausea, or itching, of about one-third of patients, a phenomenon
called the placebo effect.

Example Patients with chronic severe itching were entered in a trial of
antipruritic drugs. During each of ::; weeks, 46 patients received in random
order either cyproheptadine Hel, trimeprazine tartrate, or placebo. There
was a I-week rest period, randomly introduced into the sequence, in which
no pills were given. Results were assessed without knowledge of medication
and expressed as "itching scores"; the higher the score, the worse the itching.
Itching scores for the various treatments were cypmheptadine Hel, 28; trime
pra7ine tartrate, 35; placebo, 30; and no treatment, 50. The two active drugs
and placebo were all similarly effective and all gave much better results than
no treatment (5).

Placebo effects have different meaning for researchers and clinicians.
Researchers are more likely to be interested in establishing specific ef
fects-ones that are consistent with current theories about the causes of
disease. They consider the placebo effect the baseline against which to
measure specific effects. Clinicians, on the other hand, should welcome
the placebo effect and attempt to maximize it or any other way of helping
patients.

Many clinical interventions have both specific and nonspecific effects
(Fig. 7.4). What is important to clinicians and their patients is the total
effect of the intervention beyond what would have otherwise occurred in
the course of disease without treatment. However, it is also useful to know
what part of the total effect is specific and whiJt is nonspecific so as to
avoid dangerous, uncomfo:table, or costly interventions when relatively
little of their effect can be attributed to their specific actions.
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Figure 7.4. The effects of most drugs are partly attributable to the placebo effect.
(Redrawn from Fletcher RH. The clinical importance of placebo effects. Fam Med
Rev 1983; 1:40-48.)
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Figure 7.5. Total effects of tmatment are the sum of spontaneous improvement,
nonspecific responses, and the effocts of specific treatments.

Usual Treatment

Do patients given the experimental treatment do better than those re
ceiving usual treahnent? This is the only meaningful (and ethical) question
if the usual treatment is already known to be efficacious.

The cumulative effects of these various reasons for improvement in
treated patients are diagrammed in Figure 7.5.
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ALLOCATING TREATMENT

To study the effects of a clinical intervention free of other effects, the best
way to allocate patients to treatment groups is by means of randomiwtion.
Patients are given either the experimental or the control treatment by one
of a variety of disciplined procedures-analogous to flipping a coin
whereby each patient has an equal (or at least known) chance of being
assigned to anyone of the treatment groups.

Random allocation of patients is preferable to other methods of alloca
tion, because randomization assigns patients to groups without bias. That
is, patients in one group are, on the average, as likely to possess a given
characteristic as patients in another. Only with randomization is this so
for all factors related to prognosis, whether or not they are known before
the srudy takes place.

In the long run, with a large number of patients in the trial, randomization
usually works as described. above. However, random allocation does not
guarantee that the groups will be similar. Although the process of random
allocation is lUlbiased, the results may not be. Dissimilarities between groups
can arise by chance alone, particularly when the number of patients random
ized is small. To assess whether this kind of "bad luck" has occurred, authors
of randomized controlled trials often present a table comparing the frequency
of a variety of characteristics in the treated and control groups, espl.-"CiaJly
those known to be related to outcome. Tt is reassuring to see that important
cha.racteristics have, in fact, fallen out nearly equally in the groups being
compared. If they have not, it is possible to see what the differences are and
attempt to control them in the analysis (see Chapter 6).

Some investigators believe it is best to make sure, before randomization,
that at least some of the characteristics known to be strongly associated
with outcome appear equally in treated and control groups, to reduce the
risk of bad luck. They suggest that patients first be gathered into groups
(strata) of similar prognosis and then randomized separately within each
stratum-a process called stratified randomizatioll. The groups arc then
bound to be comparable, at least for the characteristics that were used to
create the strata. Others argue that whatever differences arise by bad luck
arc unlikely to be large and can be dealt with mathematically after the
data are collected.

DIFFERENCES ARISING AFTER RANDOMIZATION

Not all patients in a clinical trial participate as originally planned. Some
are found not to have the disease they were thought to have when they
entered the trial. Others drop out, do not take their medications, are taken
out of the study because of side effects or other illnesses, or somehow
obtain the other study treatment or treatments that are not part of the
study at all. The result is comparison of treatment groups that might have
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been comparable just after randomization but have become less so by the
time outcomes are counted.

Patients Do Not Have the Disease

Tt may be necessary to decide which treatment to give (in a clinical trial
or in practice) before it is certain the patient actually has the disease for
which the trmtment is designed.

Example To study whether a monoclonal antibody against endotoxin im
prove:; survival from sepsis, 543 patient~ with sepsis and suspected Gram
negative infection were nmdomizcd to receive antiendotoxin or placebo (6). In
the subgroup of patients who actually had Gram-negative bacteremia, death
ratt' was reduced from 49 to 3ln:" a large differem:e that was well beyond what
could be accmmted for by dtance, lIowever, only 200 patients (37'1<,) had Gram~

negative bacteremia, confirmed by blood culture. There is no known reason
why the other 63% would be helped by the drug. For all patients with sepsis
(soml' of whom had bacteremia and others did not) mortality rate was 43)}~ in
the placebo group and 39'% in the group receiving antiendotoxin, a small differ
ence that was not beyond that expected by chance alone.

Thus, from this trial, there was evidence that the drug was effective against
Cram-negative bacteremia, but not for sepsis. Hoth are important questions:
the former for reSl'archers, who are interested in the biologic effed of antien
dotoxin in bacteremia, and the latter for clinicians, who needed to know the
clinical effects of their decision to give the drug to patients with sepsis--·a
decision that musl be made before it is known whether or not bacteremia is
actually present.

When patients suspected of having the specific disease in question later
turn out not to have it, there is a price to pay. Studying additional patients
who could not benefit from the specific action of the treatment decreases
the efficiency of the trial; mOTe patients must be studied to see the effect.
Looked at another way, because patients experiencing the speeific effect
are mixed with others who cannot, the effect size is reduced relative to a
trial including only patients with the disease. This decreases the chances,
for a given number of patients in the trial, that an effect will be found (see
Chapter 9). However, this kind of trial has the important advantage of
providing information on the consequences of a decision as the clinician
encounters it (see "Management and Explanatory Trials," later in this
chapter).

Compliance

Compliance is the extent to which patients follow medical advice. Some
prder the term adherence, because it connotes a less subservient relationship
beh\'een patient and doctor. Compliance is another characteristic of pa
tients that can arise after randomization. Although noncompliance sug
gests a kind of willful neglect of good advice, in medicine other factors
also contribute. Patients may misunderstand which drugs and doses are
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intended, run out of prescription medications, confuse various prepara
tions of the same drug, or have no money or insunnce to pay for drugs.
Taken together, these may limit the usefulness of treatments that have
been shown to work under specially favorable conditions.

Compliance is particularly important in medical care outside the hospi
ta 1. In the hospital, many factors act to constrain patients' personal behavior
and render them compliant. Hospitalized patients are generally sicker and
more frightened. They arc in strange surroundings, dependent on the skill
and attention of the staff for everything-even their life. What is more,
doctors, nurses, and pharmacists have developed a well-organized system
for ensuring that patients receive what is ordered for them. As a result,
clinical experience and a medical Iiterahtre developed on the wards may
underestimate the importance of compliance outside the hospital, where
most patients and doctors are and where doing what clinicians advise is
more difficult.

Comparing responses among compliant and noncompliant patients in
a randomized trial can be misleading.

Example During a large study of the effects oi several lipid-lowering
drugs on coronary hearl disease, 1103 men werc given clofibrate and 2789
mt'n Wt'yt' g-iven placebo. The 5-year mortality rate was 20.()')';, for the clofi
brate group and 20.9'>;) for the placebo group, indicating that the drug \Vas
not effective.

It was recugnized that not all patients took their medications. Was clofi
brate effective among patit'nts who actually took the drug? The answer ap
peared to be yes. Among patients given cloiibrate, 5-year mortality for pa
tients taking most oi their prescribed dnl';; was 15.0%, compared with 24.m;,
for the less cooperativt' patients (p < 10 '), Howt'ver, taking the prescribed
drug was also related to lower mortality rates among patients prescribed
placebo. For them, 5-year mortality was 15.1% ior patients taking most of
their placebo medication and 28.3 ior patients who did not (I' < 10- 15

). Thus
there was an ilssociation bdwe{'n dnJg taking and prognosis thilt was not
related to tht' active drug itself.

The authors (7) cautioned against evaluating treatment effects in sub
groups determined by patient responscs to the treatment protocol after
randomization.

Cointerventions

After randomization, patients may receive a variety of interventions
other than the ones being studied. If these occur unequally in the two
groups and affect outcomes, they can introduce systematic differences
(bias) between the groups compared.

Example The care of AIDS is emotional, in part because it affects young
adults and is universally fatal within a few years of the onset of symptoms.
['Horts to study the effectiveness of trcatmt'nt hilve been hinden'd by disrup
tion of the usual procl;'dures of randomiz.ed trials, as patients try to maximize
their chances of survival. Patients in randomized trials sometimes exchange



148 CLINICAL EPIDEMIOLOGY

the drugs being studied in the trial (researchers call the exchang(' of trCiltment
regimens among study participants "contamination") or obtain drugs that
are not part of the trial through"drug clubs." Information about this behavior
is usuallv not shared with the reseClrchers and so cannot be accounted for in
the study_ The result is to bias the study toward observing no effect, since
the contrast between the (reatment of the "treated" group and the comparison
group is diminished.

Comparing Responders with Nonresponders

In some c1inicill trials, particularly those ilbout cancer, the outcomes of
piltients who initially improve after treatment (responders) ilT(' compared
with outcomes in those who do not (nonresponders). The implication is
that one Gill learn something ilbout the efficacy of treatment in this way.

This approach is scientifically unsound and often misleading:, because
response and non response might be associated with milny characteristics
related to the ultimate outcome: stage of disease, rate of progression, com~
pUance, dose ilnd side effects of drugs, and the presence of other diseases.
If no patient actually improved because of the treatment, and patients were
destined to follow various clinical courses for other reasons, then some
(the ones who happened to be doing well) would be called "responders"
and others (the ones having a bad course) would be considered "nonre
sponders." Responders 'Nould, of course, have a better outcome whether
or not they received the experimental treatment.

BLINDING

Participants in a trial may change their behavior in a systematic way
(i.e., be biased) if they are aware of which patients receive which treatment.
One way to minimize this effect is by blillding, an attempt to make the
various participants in a study unaware of which treatment patients have
been offered, so that the knovvledge does not cause them to act differently,
thereby damaging: the internal validity of the study. "Masking" is a mOTe
appropriate metaphor, but blinding is the time-honored term.

Blinding can take place at four levels in a clinical trial. First, those
responsible for allocating patients to treatment groups should not know
which treatment will be assigned next so that the knowledge does not
affect their willingness to enter patients in the trial or take them in the
order they arrived. Second, patients should be unaware of which treatment
they are takingi they arc thereby less likely to change their compliance or
their reporting of symptoms because of this information. Third, physicians
who take care of patients in the study should not know which treatment
each patient has been given; then they will not, perhaps unconsciously,
manage them differently. Finally, if the researchers who assess outcomes
cannot distinguish treatment groups, that knowledge cannot affect their
measurements.

The terms sil1xldllind (p(ltients) and dOl/ble-Mind (patients and research-
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ers) are sometimes used, but their meaning is ambiguous. Tt is better simply
to describe what was done. A trial in which there is no attempt at blinding
is called opcn or opcn label.

When blinding is possible, mainly for studies of drug effects, it is usually
accomplished by means of a placebo. Howevef, fOf many important clinical
questions-the effects of surgery, radiotherapy, diet, or the organization
of medical care-blinding of patients and m<lnaging physicians is not
possible.

Even when blinding appears to be possible, it is more often claimed
than successful. Physiologic effects, such as lowered pulse rate with beta
blocking drugs, or bone marrow depression with canccr chemotherapy,
are regular features of some medications. Symptoms may also be a clue.

Example In the Lipids Research Clinics (B) trial of the prim<lry preven
tion of cardiovascular disease, a nearly perfect placebo was llsed. Soml" Pl.'O
pie received cholestyramine <lnd others a powder of the same appearance,
odor, and taste. However, side effects were substantially more common in
the cholcstyramine group. At the end of theIst year of the trial, there were
much higher rates in the experimental (cholestyramine) group th<ln the con
trol group for constipation (39 versus 10%), heartburn (27 versus 1m:.),
bdching and bloating (27 versus 16%), and nausea (16 versus 8'1.,). Patients
might have been prompted by new symptoms to guess which treatment they
\vere getting.

TIlere is also objective evidence that patients and physicians in some
blinded trials can guess who received what treatment.

Example A double-blind, randomized trial was conducted tu ~ee if pro
pranolol could prevent another myocardial infarction in patients who hild
already had one (9). At the conclusion of the trial, but before unblinding,
patients and clinic personnel were asked to guess the treatment group assign
ment of each patient. For patients, 79.9% guessed propranolol correctly and
';7.2% placeho correctly. Physicians and clinic personnel were similarly accu
rate. Clinical personnel seemed to he aided in their guessing by observation
of heart rate; it was unclear how patients knew.

ASSESSMENT OF OUTCOMES

When the outcome of a trial is measured in unequivocal terms, such as
being alive or dead, it is unlikely that patients will be misdassified. On
the other h<lnd, when outcomes are decided by the opinion of one of
the participants, there is much greater opportunity for bias. For example,
although the fact of death is usually dear, the cause of death is often not.
Most people die for a combination of reasons or for obscure reasons,
allowing some room for judgment in assigning cause of death. This judg
ment can be influenced by knmvlcdge of Wh,lt went before, including the
treatments that were given. Opportunities for bias are even greater when
assessing symptoms such as pain, nause<!, or depression. Bias in assessing
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outcomes is avoided by searching for outcome events equally in all pa
tients, using explicit criteria for when an outcome has occurred, and by
blinding.

Short-term, easily measurable "outcomes" may be substituted for clini
cal ones so as to speed the rate at which trials can be completed and
reported. For example, it has been common in clinical trials of treatment
of HIV infection to take as the main outcome measures biologic tests that
reflect the extent of infection (such as ClJ4+ counts and p32 antigen) rather
than clinical progression of disease (opportunistic infections and death).
However, it has been shown that CD4+ counts are an imperfect marker
of clinical treahnent effect. As discllssed in Chapter 1, the practice of substi
tuting biologic outcomes for clinical ones in studies thilt Me to guide patient
care is defensible only if the proxy is known to be itself strongly relilted
to the clinical outcome.

There are several options for summarizing the relative effects of two
treatments Cfable 7.1). It has been suggested that the most clinically rele
vant expression is number needed to treat, the number of patients that must
be treated to prevent one outcome event (10). Number needed to treat is
the reciprocal of ilbsolute risk reduction.

Perception of the size of a treatment effect, both by patients and clini
cians, is influenced by hO'w the effect is reported. In general, effects reported
as relative risks seem larger than the same effects described as attributable
risks, which in turn seem larger than reports of the number needed to treat
(11,12). Also, patients told their probability of survivill believe they have
a better chance than those told the complement, their probability of dying
(13). Thus, to understand and communicate treiltment effects, it is neces
sary to examine the main results of a trial in several ways. It is moot which
is the "correct" statistic.

Table 7.1
Summarizing Treatment Effects"

Summary Moasure"

Hel,llive risk reduction

Absolute risk reduction

Number needed to treat

DHfi"itiOrl

Control evcnt rllte- Treated event rate

Control event rate

Control event rale - Treated evertt rdte

1"" "~c-'-~~~
OJiltrol event rdte I rcatcd event rate

'Loupacls A Sackelt DL llolJHrfs RS. An H~,*,~SrTlf1flt of clinically useful measures of the consequences of
treatment. New Engl J Med t988;3 t8 t728 t733
I, ,or continuous data, when there are measurements at tXlseline and alter treotnlOnt, analogous rlIeilsurH~

are basHd Oil thH "'Ha" values for treated and control "fOUp" either aftof 1reatnx'nt or for the differenco
between baseline and posttreatment "llluo,;
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MANAGEMENT AND EXPLANATORY TRIALS

The results of a randomized controlled trial can oe analyzed and pre
sented in two ways: according to the treatment to which the patients were
randomized or to the one they actually received. The correct presentation
of results depends on the question being <lske'!.

If the question is which treahnent policy is best ilt the time the decision
must be milde, then illlillysis according to the <Issigned (randomized) group
is appropri<lte-whether or not some patients did not ilctually receive the
treatment they were supposed to receive. Tri<lls analyzed in this way are
called intention to treat or management trials (14). The <ldvantilges of this
approach are that the question corresponds to the one actua]]y faced by
clinicians and the patients compared are really randomized. The disadvan~

tage is that if many patients do not receive the treatment to which they
were randomized differences between experimental and control groups
will tend to be obscured, increasing the chances of a negative study. Then
if the study shows no difference, it is uncertain whether the experimental
treatment is truly ineffective or was just not received.

Another question is whether the experimental treatment itself is better?
For tills question, the proper analysis is according to the treahnent each
patient actually received, reg<lrdlcss of the treatment to which they were
randomized. Trials analyzed in this way are called explanatory trials because
they emph<lsize the mechanism by which effects are exerted. The problem
with this <Ipproach is that unless most patients receive the treatment to
which they are assigned the study no longer represents a randomized
trial; it is simply a cohort study. Therefore, one must be concerned about
dissimilarities between groups, other than the experimental tn.'<Itment, and
must use one or more methods (restriction, matching, stratification, or
adjustment) to achieve comp<lrability, just as one would for any nonexperi
mental study. These two approaches are illustrated in Figure 7.6.

EFFICACY AND EFFECTIVENESS

A trial's results are judged in relation to two broad questions. Can
the treatment work under ideal circumstances? Does it work in ordinary
settings? The words efficacy and efj('cfivcl1e~s have been appHed to these
concepts (Fig. 7.7).

The question of whether a treatment can work is one of Ijficacy. An
efficacious treatment is one that has the desired effects among those who
receive it. Efficacy is established by restricting patients in a study to those
who will cooperate fully with medical advice.

In contrast, a treahnent is l:(fectivf' if it does more good than harm in those
to whom it is offered. Effectiveness is established by offering a treatment or
program to patients and allowing them to accept or reject it as they might
ordinarily do. Only a small proportion of clinical trials set out to answer
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Intention to Treat Analysis

,
........4,- - - - - - - ~

Drop out

,,,
Cross over,,

Drop out

Explanatory Analysis

Drop out

~/
Cross over

.--.0."'\ .,

\'rop out

,,,
, , ,

Analysis
according to
treatment
assigned

Analysis
according to
treatment
received

Figure 7.6. Intention to treat and explanatory trials.

questions of effectiveness. This is in part because of the risk that the result
will be inconclusive. If a treatment is found to be ineffective, it could be
because of a lack of efficacy, lack of patient acceptance, or both.

Tailoring the Results of Trials to Individual Patients
Clinical trials involve pooling the experience of many patients who arc

admittedly dissimilar and describing what happens to them on the average.
How can we obtain more precise estimates for individual patients? Two
ways are to examine subgroups and to study individual patients using
rigorous methods similar to those in randomized trials.
SUBGROUPS

The principal result of a clinical trial is a description of the most im
portant outcome in each of the major treatment groups. But it is tempting
to examine the results in more detail than the overall conclusions afford.
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We look at subgroups of patients with special characteristics or with partic
ular outcomes. In doing so, however, there <lre some risks of being misled
thi;lt <lre not present when examining the principal conclusions alone, and
these should be taken into account when interpreting information from
subgroups. (Some of the concepts on which this section is based are dis
cussed in Chapter 9.)

One danger in examining SUbgroups is the increased chance of finding
effects in a particular subgroup that are not present, ill the long run, in
nature. This arises because multiple comparisons lead to a greater chance
of a false-positive finding than is estimated by the individual p value for
that comparison alone (see Chapter 9). Table 7.2 lists wme guidelines for
deciding whether a finding in a subgroup is real.

A second danger is of a false-negative conclusion. Examining subgroups
in a clinical trial-either certain kinds of patients or specific kinds of out
comes-involves a great reduction in the dat<l avail<lble, so it is frequently
impossible to come to firm conclusions. Nevertheless, the temptation to
look is there, and some tentative information can be gleaned.

Example The Physicians' Health Study (15) is a randomized controlled
trial designed to assess whether daily aspirin prevents mortality from cardio
vascutar disease in healthy male physicians. Another aspect of the trial is to
Shldy the l:'ffl:'ct of l3-carotene on the incidence of cancer. Ttll;' aspirin part of
the study was stoppl:'d kmg before there were enough deaths to dl;'\l:'rmine
if aspirin affected mortillity, because the physicians had a much lower thiln
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expected death rate. The trial was also stopped because there were fewer
myocardial infarctions in the treated than the control group. The authors
thought that the effect on myocardial infarction, although not the answer to
a main study question at the outset, was real because it was biologically
plausible, because it was found in other studies, and because the chance of
a false-positive conclusion was estimated to be very small (1/10,000). On the
other hand, although the authors observed a small increase in risk of stroke
in the treated group, they could not be certain whether this effect was real
or not, as there were too few physicians with this end point. Thus, in a study
that could not address the main research question, the authors interpreted
the validity of findings in subgroups (bolh positive and negative) in relation
to the totality of information that might bear on the validity of these findings.

EFFECTIVENESS IN INDIVIDUAL PATIENTS

A treatment that is effective on the average may not work on an individ
ual patient. The results of valid clinical research provide a good reason to
begin treating a patient, but experience with that patient is a better reason
to continue therapy. Therefore, when conducting a treatment program it
is useful to ask the following series of questions:

• Is the treatment known to be efficacious for any patients?
• Is the treatment known to be effective, on the average, in patients like

mine?
• Are the benefits worth the discomforts and risks?
• Is the treiltment working in my piltient?

By asking these questions, and not simply following the results of trials
alone, one can guard against ill-fOlmded choice of treatment or stubborn
persistence in the face of poor results.

Table 7.2
Guidelines for Deciding Whether Apparent Differences in Effects
within Subgroups Are Real"

From the stucly itself
• b the magnitude of the observed difference clinically important?
• How likely is the effect to have arisen by chance, taking into account

The number of subgroups exanlined?
rhe rTldgnitucJe ot the p value?

• Was a ~lYP(JUlesis that the eltect would be observed
Made before its discovery (or was justification for the effect argued for after it was

found)?
One of Cl smCll1 number of hypotheses')

From other infOrrTkltiOrl
• Was the difference suggesled by comparisons within rather than between studies?
• Has the effect been observed in other studies?
• Is tllere indirect evidence tllat supports the existence of the effect?

.., Adapled from OxrndO Arl. Guyatl GIL A corwurners glJidp. to subgrolJp arlHlysis A"" 1"1",,, M"d
1992: 116:78 8~_
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TRIALS OF N = 1

Rigorous clinic<ll trials, with proper attention to bias and chance, can
be done with individual patients, one at a time (16). The method-called
trials of N = 1-is an improvement in the more informal process of trial
and error that is so common in clinical practice. A patient is given one or
another treatment (e.g., active treatment or placebo) in random order, each
for a brief period of time, such as a week or two. Patients and physicians
are blind to which treatment is given. Outcomes (e.g., a simple preference
for a treatment or a symptom score) are assessed after each period <lnd
subjected to statistical analysis.

This method is useful when activity of disease is unpredictable, response
to treatment is prompt, and there is no carryover effect from period to
period. Examples of diseases for which the method can be used include
migraine, bronchospasm, fibrositis, and functional bowel disease.

N of 1 trials can be useful for guiding clinical decision making, although
for a relatively sma]] proportion of patients. It can also be used to screen
interesting clinical hypotheses to select some that are promising enough
to be evaluated using a full randomized controlled trial involving many
patients.

Alternatives to Randomized Trials
Randomized, controlled, blinded trials are the standard of excellence

for comparisons of treatment effects over time. They should be given prece
dence over other information about treatment effects whenever they are
available. However, it is not always possible to rely on clinical trials.

LIMITATIONS OF RANDOMIZED TRIALS

Clinical trials are limited for several reasons. There may not be enough
patients with the disease of interest, at one time and place, to carry out a
scientifically sound trial. Clinical trials are costly, more than $50-100 mil
lion for some large trials. Years pass before results are available, which
may be politicalIy unacceptable for severe, emotion-laden diseases such as
AIDS.

Sometimes a practice may h<lve become so well established, in the ab
sence of conclusive evidence of its benefit, that it is difficult to convince
physicians and potential participants that a trial is needed. It could be
argued that if the treatment effect is not really known then the only ethic<ll
thing is to do the study (and it is unethical to continue to use treatments
of uncertain benefit), but this argument demands a level of analytic reason
ing that is uncommon among patients and their physicians. Because of this
problem, some physicians have advocated "randomization from the first
patient," beginning trials just after a new treatment is introduced. Others
argue that it is better to conduct rigorous clinical trials somewhat later,
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after the best way to deliver the treatment has been worked out, so that a
good example of the intervention is tested. h~ any case, it is generally
agreed that if a controlled trial is postponed too long, the opportunity to
do it all may be lost.

For these reasons, guidance from clinical trials is not available for many
treatment decisions. But the decisions must be made nonetheless. What
are the alternatives and how credible are they?

ADVANTAGES AND DISADVANTAGES

Alternatives to randomized trials usually make use of large databases
such as those collected for patient care, billing, or ad ministration. Sometime
data collected to answer another research question are used. A research
question, and a study to answer it, can be devised after the data have been
collected so that most of the resources needed for the study go into analyses
of the data. This process is called secondary data anI/lysis, because answering
the research question was not the primary reason for collecting the data.

Using secondary data for rese<Jrch has several advantages, all of them
practical. First, if the database includes experience from a large number of
patients, as is often the case, then the research question can be answered
with a high degree of confidence that the results are not just by chance. It
may even be possible to examine subgroups (e.g., elderly women taking
estrogens or young men with a first anterior myocardial infarction) with
statistical confidence. Most clinical trials are not designed with such an
abundance of patients because of the cost; the best trials are sufficient to
answer the main research question for aU patients in the study but are
rarely sufficient to answer questions about subgroups of patients.

Second, these databases are collected in more natural settings than clini
cal trials. They reflect experience in health care organizations or perhaps
entire regions or nations, rather than a highly selected group of experimen
tal subjects. Therefore, the results are more generalizable.

Third, it costs less to use existing data than to collect new data in a clinical
trial. Randomin~d trials cost thousands of dollars per patient to recruit, evalu
ate, L'IU"oll, and follow up each patient, whereas analyses of existing data can
be relatively inexpensive.

Finally, by using existing data, it is possible to have an answer to an
important question in a relatively short time. Clinical trials often take years
from enrollment of the first patient to the end of follow-up. Sometimes
clinicians need an answer, however imperfect, sooner because they are
making high-stakes decisions on alternative treatments every day.

Balanced against all of these practical advantages are disadvantages.
The data are usually not collected and classified with as much care as they
would be for a well-run clinical trial. For example, a claims data diagnosis
of "hypertellsion" stands for whatever the responsible physicians believes
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hypertension is, whereas a research definition of hypertension would spec
ify a level of blood pressure, method, and frequency, perhaps adjusted for
age. Some important variables may be missing from the database because
they were not important for the database's original purposes, though they
arc important for the research. Of course, there is also the problem of
making unbiased comparisons.

The trade-off behveen speed and ease, on the one himd, and validity,
on the other, wj]] be discussed for each alternative design in the next
sections.

COMPARISONS ACROSS TIME AND PLACE

Control patients can be chosen from a time and place different from the
experimental patients. For example, we may compare the prognosis of
recent patients treated with current medications to experience with past
patients who were treated when current medications were not available.
Similarly, we may compare the results of surgery in one hospital to results
in another, where a different procedure is used. This approach is conve
nient. The problem is that time and place are almost always strongly related
to prognosis. Clinical trials that attempt to make fair comparisons between
groups of patients arising in different eras, or in different settings, have a
particularly difficult task.

The results of current treatment are sometimes compared with experi
ence with similar patients in the past, called historical or nonconcurrent
col/lmls. Although it may be done well, this design has many pitfalls.
Methods of diagnosis change with time, and with them the average prog
nosis. It has been shown that new diagnostic technologies have created
the impression that the prognosis of treated lung cancer have improved
over time when it has not (17). With better ability to detect occult metasta
ses, patients are classified in a worse stage than they would have been
earlier, and this "stage migration" has resulted in a better prognosis in
each stage than was reported in the past. Supporting treatments (e.g.,
antibiotics, nutritional supplementation and peptic ulcer prevention) also
improve with time, creating a general improvement in prognosis that might
not be attributable to the specific treatment given in a later time period.

Example Sacb et al. (18) reviewed cJ;nical trials of six therapies 10 sec
if lriab with concurrent controls produced different results than studies of
the same treatments with historical cuntrols. They studied 50 r;::ndomized
trials and 56 studies with historical controls. A total of 7';l'}:, of trials with
historical conlrols but unly 20'%, of trials with a concurrent, randomized con
lrol group found the experimental treatment to be better. Differences between
the two kinds of trials occurred mainly because the control patients in the
historical trials did worse. Adjustment for prognostic factors, when possible,
did not change the results, i.e., the differences were prob<lhly because of
gener<ll improvements in therapy or to selection of less ill patients.
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Therefore, if concurrent, randomized controlled trials <Ire taken as a
standard of validity it seems that published historical trials are biased in
favor of the experimental treatment and that the bias cannot be overcome
by adjusting for known prognostic variables.

If historical controls arc used, the shorter the period of time between
selection of treated and control groups and the less other aspects of medical
care have changed during the interval, the safer the comparison. Thus
some oncology centers study a succession of chemotherapeutic regimens
by comparing results of the newest regimen with those of the immediately
preceding one, often given as recently as the previous year. In general,
however, choosing concurrent controls (i.e., patients treated during the same
period of time) is a better way of avoiding bias.

Experience in other settings, using different treattru'nts, can serve as a
standard of comparison. However, it is prefer<:lble to choose both treated
and control patients from the same setting, because a variety of factors
referral patterns, organization and skill of staff, etc.-often result in very
different prognoses in different settings, independently of the treatment
under study.

Example The mortality rate for hospitals where coronary bypass surgery
was done varied almost threefold across hospitals in central Pennsylvania
(Fig. 7.8) (19). The severity of illness, and therefore prognosis, of patients in
these hospitals varied too. !\fter taking into account the number of de<lths
explXted, by considering patients' prognostic factors, one hospital had fewer
than expected deaths, another the expected number, and a third more than
expected. Any fair comparison of treatment effects across these hospitals
would have to take into ilccount not only the differences in severity of the
patients in these hospitals bllt also the skills of the surgeons.

UNCONTROLLED TRIALS

Uncontrolled trials describe the course of disease in a single group of
patients who have been exposed to the intervention of interest. Another
name for this design is a "before-after study." The assumption of this
approach is that whatever improvement is observed after treatment is
because of treatment. This assumption may be unwarranted for several
reasons.

Unpredictable Outcome

When the clinical course of a disease is quite predictable, a separate
control group is less important. We know that subacute bacterial endocar
ditis without antibiotics and rabies without vaccine invariably lead to
death, that most patients with hypothyroidism will only get worse without
exogenous thyroid hormone, and that bawd infarction will rarely improve
without surgery.

However, most therapeutic decisions do not involve conditions with
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expected (taking into account case mix) death rate from coronary bypass surgery
in 1I1reB hospitals. (Data from Topol EJ, Califf RM. Scorecard cardiovascular medicine.
Its impact and future direction. Ann Intern Med 1994; 120:65- 70,)

such predictable outcomes. In situations where the clinical course is ex
tremely variable for a given patient and from one patient to another, as
sessing treatment effects by observing changes in the course of disease
aftef treatment is unreliable.

Many severe diseases that are not self-limited may nevertheless undergo
spontaneous remissions in activity that call be misinterpreted as treatment
effects. figure 7.Y shows the clinical course of a patient with systemic lupus
erythematosus over a 10-year period, 1955-1%4 (20). Although powerful
treatments were not given (because none was available during most of
these years), the disease passed through dramatic periods of exacerbation,
followed by prolonged remissions. Of course, exacerbations, such as those
illustrated, are alarming to both patients and doctors, so there is often a
feeling that something must be dune at these times. If treatment were



160 CLINICAL ePIDEMIOLOGY

4+

3+
",-> 2+-()

<I:
1+

0

1955 1960 1964

Time

Figure 7.9. The unpredictable course of disease, The natural history of systemic
lupus erythematosus in a patient observed before the advent of immunosuppressive
drugs, (Redrawn from Ropes M. Systemic lupus erythematosus. Cambridge, MA:
Harvard University Press, 1976.)

begun at the peak of activity, improvement would have followed. Without
any better comparison than the previous activity of the diseasE', the tfeat
ment vmuld h8\'8 received credit for the improvement.
Nonspecific Effects

In uncontrolled trials, there is no way of separating Hawthorne and
placebo effects from treatment effects. But if there are control patients who
receive the same attention as the treated ones and a placebo, then these
effects cancel out in the comparison.
Regression to the Mean

Treatments are often tried because a manifestation of disease, e.g., a
pilrticuliHly high blood pressure or fever, is extreme or unusual. In this
situiltion, subsequent measurements are likely to show improvement for
purely statistical reasons. As discussed in Chapter 2, piltients selected be
cause they represent an extreme high value in a distribution are likely, on
the average, to have lower values for later measurements. If those patients
are treated after first being found abnormal and the effects of treatment
are assessed by subsequent measurements, improvement could be ex
pected even if treahnent were ineffective.
Predictable Improvement

The usual course of some diseases is to improve; if so, therapeutic efforts
may coincide with improvement but not cause it. For example, patients
tend to seek care for many acute, self-limited diseases, such as upper
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respiratory infections or gastroenteritis, when symptoms are at their worst.
They often begin to recover after seeing the doctor because of the natural
course of events regardless of what was done.

NONRANDOM ALLOCATION OF TREATMENT

One way to allocate patients to treated and control groups is to have
the physicians caring for the patients decide. When this is done, the study
has all the advantages and disadvantages of cohort studies.

Studies of treated cohorts take advantage of the fact thilt therilpeutic
decisions must be made for sick patients regardless of the qUillity of ex
isting evidence on the subject. In the absence of a clear-cut consensus
favoring one mode of treatment over others, various treatments are often
given. As a result, in the course of ordinary patient care large numbers of
patients receive various treatments ilnd go on to manifest their effects. If
experience with these patients Ciln be Cilptured and properly analyzed, it
can be used to guide therapeutic decisions.

Unfortunately, it is often difficult to be sure that observational studies
of treatment involve unbiased compilfisons. Decisions about treatment are
determined by a great many filctors-severity of illness, concurrent dis
eases, local preferences, piltient cooperation, etc. Patients receiving the
different treatments are likely to differ not only in their treiltment but in
other ways as well. Efforts to determine the results of treiltment illone, free
from other factors, are thereby compromised.

Phases of Studies of Treatment
For studies of drugs, it is customary to define three phases of triills, in

the order they are undertaken (21). Phase [ trials arc intended to identify
a dose range that is well tolerilted ilmi safe (at least for high-frequency,
severe side effects) and include very small numbers of patients (perhaps
il dozen), without a control group. Phase II trials provide preliminary infor
mation on whether the drug is efficacious and the relationship between
dose and efficacy; these trials may be controlled but include too few pa
tients in treatment groups to detect any but the lilTgest treiltment effects.
They milY not be blinded. Phase III trials provide definitive evidence of
efficilcy and the presence of common side effects. They include enough
patients-~dozensto thousands-to detect clinically important treatment
effects and are commonly published in clinical journals and lIsed by regula
tory agencies to decide whether to license drugs.

Phase III trials are not large enough to detect differences in the rate-or
even the existence-of uncommon side effects. (See discussion of stiltistical
power, Chapter Y.) For this, it is necessary to follow up very large numbers
of patients after a drug is in general use, a process cillied "postmarkcting
surveillance" or, sometimes, phase IV of drug development.
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Summary
Promising ideas about what might be good treatment should be put to

a rigorous test before being used as a basis for clinical decisions. The best
test is a randomized controlJed trial, a special case of a cohort study in
which the intervention is allocated randomly and, therefore, without bias.
Patients in clinical trials are usually highly selected, reducing gcneralizabil
ity. They are randomly allocated to receive either an experimental interven
tion or some comparison mamlgement: usual treatment, a placebo, or sim
ple observation. On the average, the compared groups have a similar
prognosis just after randomization (and before the interventions). How
ever, differences not attributable to treatment can arise later, including not
taking the assigned treatment, dropping out of the study, receiving the
other treatment, being managed differently in other ways, or getting treat
ments that are not part of the study. Blinding all participants in the trial
can help minimize bias in how patients are randomized, managed, and
assessed for outcomes but is not always possible or successful.

The results of randomized trials can be summarized according to the
treatment assigned; an intention-to-treat analysis, which is a test of the
clinical decision and maintains a randomized trial design; or according to
the treatment actually received, which bears on the biology of disease, but
not directly on the clinical decision, and has the disadvantage that patients
may not remain with the treatment they were originally assigned. To obtain
information more closely tailored to individual patients than the main
results of randomized trials afford, clinicians can use results in subgroups
of patients, which carry the additional risk of being misleading, or do trials
on their own patients, one at a time.

For many clinical qm'stions it is not possible, or not practical, to rely
on a randomized controlled trial. Compromises with the ideal include
making comparisons to experience with past patients, to past expericllce
with the same patients, or to a concurrent group of patients who are not
randomly allocated. When these compromises arc done, the internal valid
ity of the study is weakened.

REFIiRENCES
l. ECjlC Ilyp~~~ Study Group, Failun, "f ",xtr~cranial-intracranialarterial hYr~~s to reduce

the risk of ischemic ~troke. N Engl J Med 19S5;313:1191-1200,
2. M~j-'berg MR, Wilson E, Y~t~u F, Weiss DG, Messina I., Ht%hey LA, Colling C bkri(lgt'

L Deykin D, Winn UK Carotid ",ndart",r",clomy and prevention of c",r",bral ischemic' in
symptomatic carotid stenosis. JAMAI991 ;266:3289-3294.

:I, Opie On the h",artIEditoriall. LancctI9S0;1:692.
4, Rubenstein LZ, R(lhhin~ AS, Josephson KI':, Schulm~n ilL, Osterweil 0. rlw valu", of

as~essing falls in an elderly population. A randomiz",d controlled trial. Ann Intern Med
1990; 113:30t!-316.

S. Fisch"r RW Comparison of antipruritic drug~ administered orally. JAMA 1968;2U3:4Hl
419.



CHAPTER 7 ! TREATMENT 163

6. 7iegler Ej, et ~l. Treatment of gram neg"tive bacteremia and septic shock with HA-IA
human monoclonal antibody against endotoxin. New Engl J Med 1991,.124:429-43(,.

7, COronMy Drug Project Research Croup. Influence of adherence to treatment ~nd response
of cholesterol on mortality in th" coronary drug project. r-..: Engl j Med 19S0;303:1038

1041-
R l.ipid Research Clinics Program. The Lipid Research Clinics coronary primary prevention

trial results. 1 Reduction in incidence of coronary heart disease, jAMAI9M;251:351-1M,
9. l:Iyington RP, et al. A~s;,~~ment of double-blindne~~at the conclusion of the bda·blocker

heart "tbck triaL JAMA 1985;253:1733-1736.
10. l,aupacis A, S"ckelt DL, Roberb R.S. An ~~s;,~sment of clinically useful mea~UreS of the

mnsequence~ of treatment New Engl.l Med 1988;318:I72H-1733,
11. Naylor CD, Chen E, Str"u~s 1:1. Mea~ured enthusia~m: does the method of reporting trial

re~ulb alter perceptions of tht'f~peutic effectiveness? Ann Inkrn Med 1992;117:916-921
12, Malenka OJ, Hamn .lA, joh"ns;,n S, Wahr"nberger jW, Ross .1M. nlC framing effect of

rdative "nd absolute rbk ] Cen Intern Med 1993;8:541-54H.
13. McNeil Hj, Pauker SG, Sox I IC Ir, Tvt'fsky A. On th" elicitation of preference~ for <llierna

tive th"rapies .. New Engl.l Med 19H2;306:12.S9.
14. Sackett DL, Gent M. Controver~y in counting ~nd attributing events in clinical trials. N

Fngl j Med 1979;301:1410-1412.
15 Ste<:ering Commilte<:e of tile Physicians' Ht'alth Study R,,~eMCh Group !'inal report of the

aspirin component of the ongoing Physicians' Hl'alth Study. New Engl .I Mcd

1989;321 :129-135.
16. Guyatt C, Sackett D, T<lylor OW, Chong j, Rob"rts R, Pugsley S. Determining optimal

th",rapy-randomized trials in individual patients. N Engl.l Med 1986;314:RS9-S92.
17 Feinstein AR, Sosin DM, W"lls CK, The Will Roger~ pht'nornenon, Stage migration ~l1d

new diagnostic techniques as a source of misleading statistics for survival in cancer. New
Engl.l Med 1985;312:1(,04-2608.

18. S<:t\K.s II, Chalmers TC, Smith II Jr. Randomized ver~\l~ historical controls for clinical
trials, Am j \1cd 1982;72:211-240.

19. Topol Fj, C~liff RM. Scorecard cardiovascular medkin<:e. lis impa(·t and future direction.
Ann Intern Med 1994;120:65-70.

21l, Rope~ M. Systemic lupus erythematosus. Cambridge, MA: H"vnrd Univer~ityPress, 1976.
21 Spilker B. Guide to clinical interpretation of data, New York: Raven Pn'ss, 19!16.

SUGGESTl-iD READINGS

Chalm(,rs TC, Smith II jr, Blackbum 1:1, Silverman 1:1, SchrtwJer 1:1, Reitm"n U, Ambro;c A.
A method for nssessing tht, quality of a randomized control triaL Control Clin Tri~lsI9Hl;

2:31-49
lJ€partmeTlt of Clinical Epidemiology and Biostatistics, McMa~ter University, H~milton, Ont.

How to read clinical journals. V: To distinguish useful from useJes~ Dr even harmful thnllpy,
Can /l.1ed Assoc .I 1981,124:1 l:i6-1162.

DerSimonian R, Charette Lj, McP"",k 1:1, Mostelkr F. Reporting on mcthod~ ill clinical trial~.

N Engl J Med 19H2;30fi:1332-B37.
Feinstein AR An additional basic science for clinical medicine, J1: The limitations of r"ndom

ized trial~. Ann lntelll Mcd 19f\3;99:544-550.
hiedman LM, I'urberg CD, De Met~ DL. I,'undamt'ntllis of dinical trials, 2nd ed, Littleton,

MA: john Wright PSC, 1985.
Guyatt CII, Sackett DL, Cook D.l. How to read clinical journals. II: How tu use and article

about ther~py or prevention. A: Are the results of the ~tudy valid? .lAMA 1993;270:259H

2601.
Guyatt CH, Sackett DI" Cook DJ. How to read clinical journals. II: I low to use ilnd article



164 CLINiCAL EPIDEMIOLOGY

about therapy or prevention, B: What were the n'~ult5 and will they help me in caring for
my patient~? JAMA 1994;271:59-63,

Guyatl G, Sackett 0, Taylor OW, Chong J, Roberts I{, PUI-,,,,Iey S. Determining optimal ther
apy-randomized trials in indiviuual patients. N Engl J Med I'JH6;::l14889-892.

Hdlman 5, Hellman DS, Of mice anu men Problems of the randomized clinkal trial. New
Engl J MedI991;324:1585-15H'J,

Laupakis A, Welb G, Richardson S, Tugwdl P U~l'r~' guide to the medicalliteratun:, V: How
to use an article about progno~is. 1994;272:234-2::17,

Lavori PW, Louis I'A, lJaiiar Je 1J1, Polan~ky M. Design for experim"nt~-parallel comparisons
of tn,atmenL N Engl J Med 19H::l;109:1291-1298

Meinert (:1.. Clinical trials: design, conduct and analysis. New York Oxford Univn~ity Press,
1986.

Mu~tell1er F, Gilbert]l', McPeek B. I''''porting ~tandards and research ~trategie~ for controlled
triab, Control CEn Trials I'JHO;L37-'i8.

Oxman AO, Cuyutt CH. A consumer's guide to ~ubgrOlJp analysis. AJUl Intern M<od
1992; 116:7H-Il4.

Peto R, Pike MC, Armitage P, Bre~low NE, Cox DR, Howard SV, Mantel N, McPherson K,
Pdo J, Smith PC, Design and analysi8 of randomized clinical triab requiring prolonged
observation of each patient, part l. Br J C~n,,,,r, 1976;34:5lJ5-612,

Peto R, Pike Me, Armitage P, Breslow NE, Cox DR, Howard SV, Mantel N, MrPher~on K,
Pelo J, Smith Pc. Oe~ign and analysis of randomiz<,d clinical trials requiring prolong<,d
observation of each patitnt, port 2. Br J Cancer, 1'J77;::l5:1-,~9.

Pocock 5J. Clinical trials: a practical approach, New York; John Wiky & Son~, 1983.
Yusuf S, Collin~ R, Peto R Why do we n"ed ~ome large, simple randomized tria]s7 Stat Med

19H4;3:409-420.



8

PREVENTION

l.ivc sensibly-among Ii t!lol/sand people, only Dill' dies a natural
dellth, tile rest succumb to irratiollal modes of living.

Maimonides 1135-1204 A.I).

Most doctors are attracted to medicine because they look forward to
curing disease. But all things considered, most patients would prder never
to contract a disease in the first place-Of, if they cannot i1void an illness,
they prefer that it be caught early and stamped out before it causes them
any harm. To accomplish this, procedures are performed on patients with
out specific complaints, to identify and modify risk factors to avoid the
onset of disease or to find disease early in its course so that by intervening
patients can remain well. Such activity is referred to as health mainlt'iWl1CI'

or till' periodic health examination.
Health maintenance constitutes a large portion of clinical practice (1).

Often, health maintenance activities can be incorporated into the ongoing
care of patients, as whcn a doctor checks the blood pressure in a patient
complaining of a sore throat; sometimes, a special visit just for health
maintenance is scheduled.

Physicians should understand the conceptual basis and content of the
periodic health eX<lmination. They should be prepared to answer questions
from patients such <IS "Why do J h<lve to get a Pap smear <lgain this year,
Doctor?" or "My neighbor gets <I chest x-ray every year; why aren't you
ordering one for me?"

This ch<lpter concentrates on prevention activities clinicians undertake
with individual patients. However, prevention at the community level is
also effective. Immuniz<ltion requirements for students, no-smoking regu
l<ltions in public buildings, and legislation restricting the sale of firearms
are examples of community wide prevention. For some problems, such as
injury prevention from firearms, community prcvention works best. For
others, such as colorectal cancer, screening in clinical settings works best.
For still others, clinical efforts can complement commlUlitywide <lctivities,
<IS in smoking prevention efforts by which clinicians help individual pa-
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tients stop smoking and public education, regulations, and taxes prevent
teenagers fTOm starting to smoke.

Much of the scientific approach to prevention in clinical medicine, par
ticularly the principles underlying the use of a diagnostic tests, disease
prognosis, and efrectiveness of interventions, has already been covered in
this book. This chapter expands on those principles and strategies as they
specifically relate to prevention.

Levels of Prevention
Webster's (2) dictionary defines prevention as "the act of keeping from

happening." With this definition in mind, almost aU activities in medicine
could be defined as prevention. After all, clinicians' efforts are aimed at
preventing the untimely occurrences of death, disease, disability, discom
fort, dissatisfaction, and destitution (Chapter 1). However, in clinical medi
cine, the definition of prevention is usually restricted, as outlined below.
Although more prevention is practiced than ever before, clinicians still
spend most of their time in diagnosing and trcating rather than in pre
venting diseasc.

Depending on when in the coursc of disease interventions are made,
three types of prevention are possible (pig. 8.1).

PRIMARY PREVENTION

Primary preventio/1 keeps dise<lse from occurring at a]], by removing its
causes. Folic acid administration to prevent l1eura I tube defects, immuniza
tions for many communicable diseases, and counseling patients to adopt
healthy lifestyles (e.g., helping patients to stop smoking, to eat foods low
in saturated f<lts and cholesterol and high in fiber, to exercise appropriately,
and to engage in safe sexual practices) are examples of primary prevention.

Onset
Clinical

Diagnosis

~f ASYMPTOMATIC CLINICAL COURSE
~ DISEASE

PRIMARY

Remove risk
factors

SECONDARY

Early detection
and treatment

TERTIARY

Reduce
complications

Figure 8.1. Levels of prevention.
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Primary prevention is often accomplished outside the health care system
at the community level, as noted above. ChlorinaEon and fluorid<ltion of
the water supply and laws mandating seat belt use in automobiles and
helmets for motorcycle use <In' examples. Certain primary prevention activ
ities occur in specific occupational settings (use of ear plugs or dust masks),
in schools (immunizations), or in specialized health c<lre settings (usc of
tests to detect the hepatitis B or HIV in blood domtions in blood banks).

SECONDARY PREVENTION

Secondary prevention detects disease early when it is asymptomatic and
when early treatment can stop it from progressing; Pap smears, mammo
grams, and fecal occult blood tests are examples. Most second<lry preven
tion is done in clinical settings, and all physicians, especi,J11y those caring
for adults, undertake secondary prevention. There <Ire a few community
wide programs (shopping mall fairs for glaucoma screening are an
example).

SCREENING

Screening is the identification of <In unrecognized disease or risk factor
by history taking (e.g., asking if the patient smokes), physical examination
(e.g., a prostate examination), laboratory test (e.g., a serum phenylalanine
determination), or other procedure (c.g., a sigmoidoscopy) that can be
applied rapidly. Screening tests sort out apparently well persons who have
a disease or a risk factor for a disease from those who do not. It is part of
many primary and all secondary prevention activities. A screening test is
not intended to be diagnostic. If the clinician is not COlllmitted to further
investigation of abnormal results and trei:ltment, if necessary, the screening
test should not be performed at alL

TERTIARY PREVENTION

Tertiary prevention refers to those clinical activities that prevent further
deterioration or reduce complications after a disease has declared itself.
An example is the use of bet<l-blocking drugs to decrease the risk of death
in patients who have recovered from myocardial infarction. The bound
aries of tertiary prevention blend into curative medicine, but weU
performed tertiary prevention goes beyond treating the problems patients
present with. For example, in diabetic patients, tertiary prevention requires
more than good control of blood glucose; patients need regular ophthalmo
logic examinations for early diabetic retinopathy, education for routine
foot care, searches for and treatment of other cardiovascular risk factors,
and monitoring for urinary protein so that angiotensin-converting enzyme
inhibitors can be used to prevent renal failure.

TerLiary prevention is particularly important in thl' management of pa
tients with fatal disease. The goal here is not to prevent death but to
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maximize the amount of high-quality time a patient has left. For example,
presently there is no specific therapy for patien~s with amyotrophic lateral
sclerosis, a neurologic condition ending in paralysis of respiratory and
swallowing muscles. But careful medical management C,In lead to early
intervention with a gastrostomy for administering food and liquids to
prevent dehydration and weakness from starvation, a tracheostomy for
better suctioning to prevent pneumonia for as long as possible, and if the
patient wishes, a portilble respirator to rest respiratory muscles. Without
such a proilctive approach, the patient may present with acute respiratory
failure due to the combined effects of the underlying disease, dehydration,
and pneumonia. Patient, family, and physician are then faced with endotra
cheal intubation and admission to the intensivc care unit, with the hope
of reversing enough of the processes to reestablish decent quality of life
for a little longer. Tertiary prevention can help avoid this scenario.

There are few, if any, tertiary prevention programs outside the health
care system, but many health care professionals in addition to physicians
are active in these programs.

Approach to the Periodic Health Examination
When considering what to do routinely for patients without specific

symptoms for a given disease, the clinician must first decide which medical
problems or diseases he or she should try to prevent. This statement is so
straightforward that it would seem unnecessary. But the fact is that many
preventive procedures, especially screening tests, are performed without
a clear understanding of what is being sought. For instance, a urinalysis
is frequently ordered by physicians performing routine checkups on their
patients. However, a urinillysis might be used to search for ilny number
of medical problems, including diabetes, asymptomatic urinary tract infec
tions, and renal calculi. It is necessary to decide which, if any, of these
conditions is worth screening for before undertaking the test.

Three criteria are importilnt when deciding what condition to include
in a periodic health examination (Table 8,1): (a) the burden of suffering:
caused by thc condition, (b) the quality of screcning test if one is to be
performed, and (c) the effectiveness of the intervention for primary preven
tion (e.g., cOlUlseling patients to practice safe sex) or the effectiveness of
treatment for secondary prevention after the condition is found on screen
ing (e.g., prostate cancer treatment).

Burden of Suffering
Is screening justified by the severity of the medical condition in terms

of mortality, morbidity, and suffering caused by the condition? Only condi
tions posing threats to life or health (the six Os) should be sought. Dle
severity of the medical condition is determined primarily by the risk it
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Table 8.1 •
Criteria for Deciding Whether a Medical Condition Should Be Included in Periodic
Health Examinations

1. How greflt is thc burden of $utterirlg caused by lhe condition in terms of:
Death Discomfon
Disease Dissatisfaction
Disability Destitution

2. How good is the screening test, it onc is 1o tJC performed, in term,; 01:
Sensitivity end Labeling effects
Speciticity Safety
Simplicity Acceptability

3. a. For primary prevention, how effcctivl} i~; Ihe intervention?

"b For secondary prevention, if the condition is tourld, how cffccfivc i~; the en~;uirlg

lreatment in terms ot
Efficacy
Patient compliElnc8
Farly trcatment being illOie efleclive than later treatment

poses or its prognosis (discussed in Ch<lpters 5 and 6). For example, except
during pregn<lncy and before urologic surgery, the health consequences
of <lsymptomatic b<lcteriuria are not dear. We do not know if it causes
ren<ll f<Jilure <lnd/or hypertension. Even so, bacteriuria is frequently sought
in periodic health examinations.

Burden of suffering takes into account the frequency of a condition.
Often a particular condition causes great suffering for individuals unfortu
nate enough to get it, but occurs too r<lrely-perhaps in the individual's
particular age group-for screening to be considered. Breast cancer and
colorectal cancer are two such examples. I\lthough both can occur in much
younger people, they primarily occur in persons older than 50 years. For
women in their early 20s, breast cancer incidence is 1 in 100,000 (one-fifth
the rate for men in their e<ITly 70s) (3). I\lthough breast cancer should be
sought in periodic hmlth examinations in women over 50, it is too uncom
mon in 20-ye<IT-old women (or 70-year-old men) for screening. Screening
for very rare diseases means not only that at most very few people will
benefit but, because of false-positive tests, that many people may suffer
harm from labeling and further workup (sec below).

A particularly difficult dilemma faced by clinicians and patients is the
sihtation in which a person is known to bc at high risk for a condition,
but there is no evidence that early treatment is effective. What should the
physician and patient do? For example, there is evidence that people with
Barrett's esophagus (a condition in which the squamous mucosa in the
distal esophagus is replaced by columll<lr epithelium) run a 30- to 40-fold
greater risk of developing esoph<lgeal cancer than persons \vithout Barrett's



170 CLINICAL EPIDEMIOLOGY

esophagus (4). However, the effectiveness of screening such people with
periodic endoscopic examinations followed by early treatment if cancer
occurs is unknown.

There is no easy answer to this dilemma. But if physicians remember
that screening will not work unless early therapy is effective, they can
weigh carefully the evidence about therapy with the patient. If the evidence
is against effectiveness, they may hurt rather than help the patient by
screening.

Which Tests?
The following criteria for a good screening test apply to a]] types of

screening tests, whether they are history, physical examination, laboratory
tests or procedures.

SENSITIVITY AND SPECIFICITY

The very nature of searching for a disease in people without symptoms
for the disease means prevalence is usually very low, even among high
risk groups selected because of age, sex, and other characteristics. A good
screening test must, therefore, have a high sensitivity, so it does not miss
the few cases of disease that are present, and a high specificity, to reduce
the number of people with false-positive results who require further
workup.

Sensitivity and specificity arc determined for screening tests much as
they are for diagnostic tests, except that the gold standard for the presence
of disease uSU<llly is not another test but rather a period of follow-up. For
example, in a study of fecal occult blood tests for colorectal cancer, the
sensitivity of the test was determined by the ratio of the number of c010
rectal cancers found during screening to that number plus the number of
interval cancers, colorectal cancers subsequently discovered over the follow
ing year in the people with negative test results (the assumption being that
interval cancers were present at screening but were missed, i.e., the test
results were false negative) (5). Determination of sensitivity and specificity
for screening tests in this way is sometimes referred to as the detection
method.

The detection method for calculating sensitivity works well for many
screening tests, but there are two difficulties with the method for some
cancer screening tests. First, it requires that the appropriate amount of
follow-up time is known; often it is not known and must be guessed. The
method also requires thiJt the abnormalities detected by the screening test
would go on to cause trouble if left alone. This second issue is a problem
in screening for prostate cancer. Because histologic prostate cancer is so
common in men (it is estimated that 25')'0 of 50-year-old men have histologic
foci of prostate cancer, and by the age of 90, virtually all men do), scft'ening
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tests can find such cancers in milny men, but for most, the cancer will
never become malignant. Thus, when the sensitivity of prostate cancer
tests such as prostate-specific antigen (PSA) is determined by the detection
method, the test may look quite good, since the numerator includes all
cancers found, not just those with malignant potential.

To get around these problems, the illcidel/ce mcfhod, a new method,
calculates sensitivity by using the incidence in persons not undergoing
screening and the interval cancer rate in persons who are screened. The
rationale for this approach is that the sensitivity of a test should affect
interval cancer rates but not disease incidence. For prostate cancer, the
incidence method defines sensitivity of the test as 1 minus the ratio of the
interval prostate cancer rate in a group of men undergoing periodic screen
ing to the incidence of prostate cancer in a group of men not undergoing
screening (control group). The incidence method of caJculilting sensitivity
gets around the problem of counting "benign" prostate cancers, but it may
underestimate sensitivity because it excludes cancers with long lead times.
True sensitivity of a test is, therefore, probably between the estimates of
the two methods.

Because of the low prevalence of most diseases, the positive predictive
value of most screening tests is low, even for tests with high specificity.
Clinicians who practice preventive health care by performing screening
tests on their patients must accept the fact that they will have to work up
many patients who will not have disease. However, they can minimize
the problem by concentrating their screening efforts on people with a
higher prevalence for diSease.

Example The incidt;'nce of breast cancer increases with age, from approx
imately 1 in 100,000/yl:'ar at age 20 tal in 200/year over age 71). Therefore,
a lump found during screening in a young woman's breast is more likely Lo
be nonmalignant than a lump in an older woman. In a large demonstration
project 011 breast cancer scnX_'lling, biopsy results of breast masses varied
markedly according to the age of women (6); in women under age 40, more
than 16 benign lesions Wl:'re found for ev,'ry malignancy, but in women over
age 70 fewer than .'1 benign lesions were found for every malignancy (Fig.
8.2). Sensitivity and specificity of the clinical breilst examination and mam
mography arc better in older women ilS well, because of changl:'s in breast
tis>lue as women grow older.

The yield of screening dc'Creases as screening is repeated over time in
a group of people. Figure 8.3 demonstrates why this is true. The first time
that screening is carried out-the prevalence screen-cases of the medical
condition will have been present for varying lengths of time. During the
second round of screening, most cases found will have had their onset
between the first and second screening. (A few will have been missed by
the first screen.) Therefore, second and subsequent screenings are called
incidence screens, Figure 8.3 illustrates how, when a group of people are
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Figure 8.2. Yiold of a screoning test according to patients' age. Ratio of nonmalig
nantmalignant biopsy results among women screened for breast cancer. (Data from
Baker LH. Breast Cancer Detection DOrTlonstration Project: five-year summary report.
CA 1982;32:195-231.)

periodically rescreened, the number of CJses of disease present in the group
drops after the prevalence screen. This means that the positive predictive
value for test results will decrease after the first round of screening.

SIMPLICITY AND LOW COST

An ideal screening test should take only a few minutes to perform,
require minimum preparation by the patient, depend on no special ap
pointments, and be inexpensive.

Simple, quick examinations such as blood pressure detenninations Jre
ideal screening tests. Conversely, complicated diagnostic tests such as co
lonoscopy, which are expensive and require an appointment and bowel
preparation, arc reJsonabJe in patients with symptoms and clinical indica
tions but may be unacceptable as screening tests, especially if they must
be repeated frequently. Other tests, such as visUJl field testing for the
detection of glaucoma and audiograms for the detection of hearing loss,
fall between these two extremes. Even if done carefully, such tests, <11-
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though not as difficult as colonoscopy, are probably too complex to be
used as screening tests.

The financial "cost" of the test depends not only on the cost of (or
charge for) the procedure itself but also on the cost of subsequent evalua
tions performed on patients with positive test results. Thus sensitivity,
specificity, and predictive value affect cost. Cost is also affected by whether
the test requires a special visit to the physician. Screening tests performed
while the patient is seeing his or her physician for other reasons (as is
frequently the case with blood pressure measurements) are much cheaper
for patients thiln tests requiring special visits, extril time off from work,
and additional trilnsportation.

SAFETY

Tt is reasonable and ethical to accept a certain risk for diagnostic tests
applied to sick patients seeking help for specific complaints. The patient comes
asking for help, sometimes with a problem about which little is known.
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The physician cannot postpone action and does his or her best. It is quite
another matter to subject presumably well peoI_Ie to risks when there is
no known problem. In such circumstances, the procedure should be espe
cially safe. This is partly because the chilnces of finding disease in healthy
people arc so low. Thus, illthough colonoscopy is hilrdly thought of as a
"dangerous" procedure when used on patients \vith gastrointestinal com
plaints, it may be too d'lllgerous to use as a screening procedure because
of the possibility of bmvcl perforation. In f.xt, if colonoscopy, with a perfo
ration rate of 0.2°,{" were used to screen for colorect,,1 cancer in women in
their 50s, almost two perforiltions would occur for every cancer found. For
women in their 70s, the ratio would reverse, because colorectal cancer is
so much more common (7).

ACCEPTABLE TO BOTH PATIENTS AND CLINICIANS

The importance of acceptability is iJ1ustrilted by experience with tests
for early cervical cancer and early (olon Cilncer. Women at greatest risk
for cervical cancer are least likely to get routine [',Ip smears. The same
problem holds true for colorectal cancer. Studies indicilte there is a strong
rductilnce among ilsymptomatic North Americans to submit to periodic
examinations of their lower gilstrointestinal tracts-a finding that should
be no surprise to any of us!

Table 8.2 shows acceptance of screening for colorectal cancer by various
kinds of people. People who voluntarily attended a (olmeda I cancer
screening clinic were very cooperative; they were willing to collect stool
samples, smear the samples on guaiac-impregnated paper slides, and mail
the slides to their doctors for clinical testing. Patients \vho did not volunteer
were less willing to participate. Older persons, who <lre at greatest risk for
(olmectal cancer because of their age, were ]eilst willing to be screened.

Table 8.2
Patients' Acceptance of Screening Tests: Reported Response Rates for Returning
Guaiac-impregnated Slides in Different Settings·

SHitin'1
-- --'----

Colorectal Cdnccr screening progr8m
tJroast cancer ~;cr(~cninlJ progrdlTi
HMO members agee) 50-74 years
HMO ITl(;mbers aged [iO-74 years ,;el1t kit. rGlninder leU()r. and sell

help booklet ,md who were VllIGd with il1~;lrlJctiOllS and remim.Jers

I·'mticirilnts
Returning SlidHS

fPArGent\

85
70
27
4e'

"Ofltd trom Myc,,'; 11[. Ross EA, Wult TA. llalsr'CIll A, ,JAIH1I1 C, Millner I IlAha'jioral intmvAfltions to
incrCi]>';8 adhArAllce in CGlorHc1,,1 'icroening. M"d Colee 1YY 1;2'1: I fXN-1ilbil: Jnd HHld\er SW, llaupllillAe
Wi!. Should culorAclal carcinonli; bH oouqht in periodic IlAillth 0Xlllllindtiofls'! 1\11 Jpproilch 10 the evidenco
eli" IrlVHst Med t')SI:'1Z]-Jl
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Substantial extra effort can result in getting more people (but still fewer
than half) to participate.

TIlt' acceptability of the tcst to clinicians is a criterion usually overlooked
by all but the ones performing it. After one large, well-conducted study
on the usefulness of screening, sigmoidoscopy was abandoned because the
physicians performing the procedure-gastroenterologists, at that-found
it too cumbersome and time-consuming to be justified by the yield (8).
(Patient acceptancc, 1RClj,), was not good either.)

LABELING

The labl'lillg effect describes the psychological effect of test results or
diagnoses on patients. Studies of labeling suggest that test results can
sometimes have important psychological effects on patients.

Labeling can either help or hurt patients. A positive labeling effect may
occur when a patient is told that all the screening test results were normal.
Most clinicians have heard such responses as, "Great, that means I can keep
working for another year." If being given a dean bill of health promotes a
positive attitude toward one's daily activities, a positive labeling effect has
occurred.

On the other hand, being told that something is abnormal may have an
adverse psychological effect. A study of "vomen who had false-positive
mammograms (women with suspicious mammograms who on subsequent
evaluation were found not to have cancer) found that several months later
almost half reported mammography-related anxiety (47%) and worries
about breast cancer (4l'~;,); 17'};, said the worries affected their daily func
tion (9).

Labeling effects of screening tests may become a major concern with
progress made in genetic screening. A gene has been identified for Hun
tington's chorea, and relatives of affected individuals can be tested to sce
if they carry the dominant, universally fatal gene. Such a test may help
people who wonder if they should marry and have children. More compli
cated are the much more common situations in which genes are associated
with a risk, not a certainty, of future disease. For example, several genes
are known to be associated with colorectal and breast cancer. In these
situations, many people with the genes will not get cancer, and many
without the particular genes will get the cancer. Because the events are in
the future, persons who have been told they have one of these genes will
have to live with the possibility of a dire event for a long time.

Negative labeling effects are particularly worrisome ethically when they
occur among patients with false-positive tests. In such situations, screening
efforts might promote a sen;e of vulnerability instead of health and might
do more harm than good.
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RISK OF A FALSE-POSITIVE RESULT

The previous discussion applies to each of the individual screening
tests that a clinician might consider performing during a periodic health
examination. However, most clinicians do not perform only one or two
tests on patients presenting for routine checkups. In one study, practicing
internists believed that 57 different tests should be performed during peri
odic health examinations (10). Modern technology, and perhaps the threat
of lawsuit, has fueled this propensity to "cover an the bases." Automated
blood tests allow physicians to order up to several dozen tests with a few
checks in the appropriate boxes.

When the measurements of screening tests are expressed on interval
scales (as most are) and when normal is defined by the range covered by
95% of the results (as is usual), the more tests the clinician orders, the
greater the risk of a false-positive result. In fact, as Table 8.3 shows, if
the physician orders enough tests, "abnormalities" will be discovered in
virrnally all healthy patients.

Effectiveness of Treatment
"Treatments" in primary prevention are immunizations, such as tetanus

toxoid to prevent tetanus; drugs, such as aspirin to prevent myocardial
infarction; and behavioral counseling, such as helping patients stop smok
ing or adopt low-cholesterol diets. Whatever the intervention, it should be
efficacious (produce a beneficial result in ideal situations) and effective
(produce a beneficial result under usual conditions). Efficacy and effective
ness of pharmaceuticals are usually better documented than they are for
behavioral wunseling. Federal laws require rigorous evidence of efficacy
before pharmaceuticals are approved for use. The same is not true for
behavioral wunseling methods, but clinicians should require scientific evi
dence before incorporating routine counseling into health maintenance.
Health behaviors are among the most important determinants of health in
modern society; effective counseling methods could promote health more

Table 8.3
Relation between Number of Tests Ordered and Percentage of Normal People with
at Least One Abnormal Test Resutt"

Number of Tests

20
100

PeoplH with at I east O"e
Abnornmlily {I-'ercenl)

5
:<3
(;4

99.4

"rom Sackett OL, Clinical Jiagnosis Hmj the c1imcallaboratofY. C1in Invesl MH<t 19713: l:M -4:3,



CHAPTER 8 I PREVENTION 177

than most anything else a clinician can do, but counseling that does not
work wastes time, costs money, and may harm pati<:nts.

Example Two different smoking cessation counseling strategies
weekly hour-long group counseling sessions for 8 weeks and weekly 10- to
20-min individual counseling sessions for 8 weeb-were combined with
nicotine patch therapy and evaluated for their effectiveness in promoting
smoking cessation (11,12). Compared with patients randomized to control
groups, the patients receiving the interventions did somewhat better, with a
third of patients in the group colmseling sessions having stopped smoking
at 6 months follow-up. llowever, fewer than 20% of patients receiving indi
vidual counseling had stopped smoking. furthermore, the authors found
that most failures at fi months could be predicted by patients smoking at
some time during the first 2 weeks after trying to stop. These findings suggest
that counseling should be "front loaded" By carefully evaluating behavioral
counseling, studies such as this are determining what approaches work.

Treatments for secondary prevention are generally the same as treat
ments for curative medicine. Like interventions for primary prevention,
they should be both efficacious and effective. If early treatment is not
effective, it is not worth screening for a medical problem regardless of how
easily it can be found, because early detection alone merely extends the
length of time the disease is known to exist, without helping the patient.

Another criterion important for treatments in secondary prevention is
that patient outcome must be better if the disease is found by screening,
when it is asymptomatic, than when it is discovered later, after the condi
tion becomes symptomatic and the person seeks medical care. If outcome
in the two situations is the same, screening is not necessary.

Example In a study of the use of chest x-rays and sputum cytology to
screen for lung cancer, mille cigarette smokers who were screened every 4
months and treated promptly if cancer was found did no better than those
not offered screening (13); at the end of the study, death rates from lung
cancer were the same in the two groups-3.2 per lOOO person-years in the
screened men versus 3.0 per 1000 persons·years in men not offered screening.
Farly ddection and treiltment did nol help pilticnts with lung cancer more
than treahnent of people at the time they presented with symptoms.

BIASES

As discussed in Chapter 7, the best way to establish the efficacy of
treatment is with a randomized controlled trial. This is true for all interven
tions but especially for early treatment after screening. To establish that a
preventive intervention is effective typically takes years and requires large
numbers of people to be studied. for example, early treatment after colo
rectal cancer screening can decrease colorectal cancer deaths by approxi
mately one-third. But to show this effect, a study with 13 years of follow
up was required (5). A "clinical impression" of the effect of screening
simply does not suffice in this situation.
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DIAGNOSIS
Onset Early Usual Death

UNSCREENED

SCREENED
Early treatment 0 ---- Dx ",*i!'i;i#ii*i!'i;i#ii*#ii*#ii*#ii*#ii*t
not effective

SCREENED ,,~~~~~~~;;;,Early treatment 0 ---- Dx 7
is effective

Improved
Survival

t

Figure 8.4. How lead time affects sUNival lime after screening; shaded areas
indicate length of sUNival after diagnosis (Ox).

Careful studies an' also necessary because of biases that are specific to
studies of the effectiveness of screening programs. Three such biases are
described below.

lead Time Bias

read time is the period of time between the detection of a medical condi~
tion by screening and when it ordinarily would be diagnosed because a
pati('nt experiences symptoms and seeks medical care (Fig. 8.4). The
amount of lead time for a given disease depends on both the biologic rate
of progression of the disease and on the ability of the screening test to
detect early disease. When lead time is very short, as is presently the case
with lung cancer, treatment of medical conditions picked up on screening
is likely to be no more effective than treatment after symptoms appear.
On the other hand, when lead time is long, as is true for cervical cancer
(on average, it takes approximately 30 years to progress from carcinoma
in situ to clinically invasive disease), treatment of the medical condition
found on screening can be very effective.

How can lead time cause biased results in a study of the efficacy of
early treatment? As Figure 8.4 shows, because of screening, a disease is
found earlier than it would have been after the patient developed symp
toms. As a result, people who are diagnosed by screening for a deadly
disease will, on average, survive longer from the time of diagnosis than
people who are diagnosed after they get symptoms, even if eilrly treatment
is no more effective than. treatment at clinical presentation. Tn such a situa
tion screening would appear to help people live longer, when in il reality
they would be given not more "survival time" but more "disease time."
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Screening
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Figure 8.5. Length time bias. Cases that progress rapidly from onset (0) to symp
toms and diagnosis (Ox) are less likely 10 be detected during a screening examination.

An appropriate method of analysis to avoid lead time bias is to study both
a screened group of people and a control group of people and compare age
specific mortaJity rates rather than survival rates from the time of diagnoses.
We can be confident that early diagnoses and treatment of colorectal cancer
are effective, because studies have shown that mortality rates of sLTecncd per
sons are lower than those of a comparable group of unscreened people (5).

Length Time Bias
Length lime bias (see Figs. 8.5 and 8.6), another bias that can affect studies

of screening, occurs because the proportion of slow-growing lesions diag
nosed during screening programs is greater than the proportion of those
diagnosed during usual medical care. The effect of including a greater
number of slow-growing cancers makes it seem that screening and early
treatment are more effective than usual care.

Length time bias occurs in the following way. Screening works best
when a medical condition develops slowly. Most types of cancers, how
ever, demonstrate a wide range of growth rates. Some cancers grow slowly,
some very fast. Screening tests arc likely to find mostly slow-growing
tumors because they are present for a longer period of time before they
cause symptoms; fast-growing tumors are more likely to cause symptoms
that lead to diagnosis in the interval between screening examinations.
Screening, therefore, tends to find tumors with inherently better prognoses.
As a result, the mortality rates of cancers found on screening may be better
than those not fOlmd on screening, but it is not because of the screening
itself.
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Compliance Bias

Compliance bias, the third major type of bias that can occur in effective
ness studies of presymptomatic treatment is the result of the extent to
which p<Jtients follow medical advice. Compliant patients tend to have
better prognoses regardless of screening. If a study compares disease out
comes among volunteers for a screening program with outcomes in a group
of people who did not volunteer, better results for the volunteers might not
be due to treatment but be the result of other factors related to compliance.

Example In a study of the effect of a health maintenance prog:ram, one
group nf patients was invited fur an annual periodic health examination and
a comparable g:roup was not invited (14). Over the years, however, some of
the control group ilsked for periodic heillth examinations. As seen in Figure
8.7, those patients in the control group who ilctivdy sought out the examina
tions had betler mortality ratl'S lhi!l1 the patients who were invited for SCft't'll

ing. The latter group contained not only compliant patients but also ones
who had to bl' persuaded to participate.

Biases due to length time and patient compliance can be avoided by
relying on randomized conLrolled trials thilt count all the outcomes in the
groups, regardless of the method of diagnosis or degree of participation.
Groups of patients that are randomly allocated wiJ] have comparable num-

Diagnosis after
symptoms

1

Onset

DOD

T/T
Rapid Growth I

S

/ / ~~~Detection'possible
~/ by screenmg

Slow Growth I~

~-:::::::L----
- I

---~..---~

~==-- "C---
Screened

-----Time-----~

Figure 8.6. Length time bias. Rapidly growing tumors come to medical attention
before screening is petiorrned, whereas more slowly growing tumors allow time for
detection. D, diagnosis after symptoms; S, diagnosis after screening,
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Number of MHCs

Figure 8.7. Effect of patient compliance on a screening program. The control group
of patients (e) had 8 lower standardized rnort81ity ratio (observed:expected deaths,
stand8rdized for age) than the study group offered {OJ screening; but the control
group included only patients who requested screening, wllereas the study group
included all patients offered screening. MI-JCs, multiphasic health checkups, (Re
drawn trom Friedman GO, Collen MF, Fireman BH, Multiphasic health checkup evalu
ation: a 16-year follow-up. J Chron Dis 1986; 39:453-463.)

bers of s]ow- and fast-growing tumors and, on average, comparable levels
of compliance. These groups then can be fol1owed over time with mortality
rates, rather than survival rates to avoid lead time bias.

Because randomized controlled trials are difficult to conduct, take so
long:, and are expensive, investigators sometimes try to use other kinds of
studies, such as cohort studies (Chapter 5) or case control studies (Chapter
10), to investigate preventive maneuvers and effectiveness of treatment
after screening.

Example To tl;'st whethl;'r pl;'riodic scrl;'ening with sigmoido:;copy rl;'
duces mortality from colorectal Cilncer within the reach of the sigmoidoscope,
Selby et al. (15) investigiltcd the frequency of screening sigmoidoscopy over
the previOIlS 10 years alllong patients dying of colorcctal cancer and alllong
well pdtil;'nt;;, matchl;'d for age and Sl;'X. To deal with ll;'ad timl;' and ll;'ngth
time biasl;'s, they investigated scret'ning only in peuple who were known to
hilve died (mse group) or not to hilve died (control group) from colorectal
Cilncer. To deal with compliilnce biils, they adjusted their results for the
number of generill periodic health examinations each person had. They also
adjusted the res\Jlts for the prescnCl' of medic-ill conditions thilt could have
led to both increased screening and incn'ased likelihood of coloredal cancer.
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Patients dying of colOfectal cancef in the fectum Of distilnt sigmoid were less
likely \0 have undergone a screening sigmoidoscopy in the previous 10 years
(8.8'\.) than those jn the control group (24.2%), ilnd sigmoidoscopy foJJowed
by early lherapy prevented aImos\ 60(:'~, of dealhs [rom distal colorectill cancer.
Also, by showing thi1t there was no protection for colorectal cancers above
the level reached by sigmoidoscopy, the authors suggested that "it is difficult
to conceive of how such ilnatomieal specificity of effect could be <'xplained
by confounding."

Case series, in which a group of people pilrticipating in il screening
program arc followed over time, Me a common but inappropriate method
of evaluating the effectiveness of screening progrilms; they Me subject to
all the biilses discussed (see Chilpterl0 for more on case series).

How Much Harm for How Much Good?

Health promotion and disease prevention are becoming increasingly
popular. The goal of keeping people as healthy as possible is liludable, but
as this chapter points out, the concepts behind the goal are complex. Most
important, health promotion activities can cause harm. In filet, it is probably
bir to say that they usually do cause harm, even though totally lmintended.
At the ]eilst, they cost money, patients' time and often discomfort. At the
worst, they can cause serious physical hilrm in the rMc piltient, either
because of complications of the screening test itself or beciluse of adverse
consequcnces of subsequent tests or treiltment, particulilfly in patients with
false-positive test results. Fillse-positive tests can cause psychological dam
age as well. Thus it is importilnt thilt the c1iniriiln have solid evidence
ilbout how much good ilncl how much harm heillth promotion activities
accomplish. Good intentions are not enough.

Before undertaking il health promotion procedure on a patient, espe
cially if the procedure is controversiill ilm(mg expert groups, the clinician
should discuss both the pros (probilbility of known ilnd hoped-for health
benefits) and cons (probability of unintended effects) of the procedure with
the patient.

Example Although clinical breast examinations and mammography
screening for breasl cancer ,lTe universally recommended for older women,
there is controversy about screening for women ages 40 to 49; rilndomized
controlled trials show that screening does not work \\'10'11 in this age group,
but il protective effect of about 15':;, may still be possible after many years.
Expert groups are divided in their H'commend"tions. When discussing this
dilemma with" patient, it is lJsdul to demonslrate bolh benefits <lnd harms
resulting from screening (Fig 8.8). Such iln approach not only is more honest
with the patient but helps clarify the situation for her so that her consent for
whatever is chosen is trulv informed. (ost dfectiveness analvsis formalizes
this approach for policymilkus (16). .
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Figure 8.8. Weighing bcnefit and harm tl"Om screening. What happens during a
decade of annual mammography in 1OOll women starting at ago 40,

Current Recommendations
With progress in the science of prevention, current recommendations

on health maintenance are quite different from those of the past. Several
groups have recommended abandoning routinc annual checkups in favor
of a selective approach in which the Lests Lo be donc depend on a person's
agc, sex, and clinical characteristics (thereby increasing prevalence and
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positive predictive value). They have also tended to recommend fewer
tests than previously (thereby decreasing the percentage of patients with
false-positive results). Several groups h,;1Ve turned their attention to the
selection process for deciding what medical conditions should be sought.
There is increasing concern for dear delineation of the criteria that tests
should meet before they are incorporated into periodic health examina
tions. Croups with explicit criteria for selecting medical conditions are
more conservative in their recommendations than groups without such
criteria.

Summary
Disease can be prevented by keeping it from occurring in the first place

(primary prevention), with interventions such as immunization and behav
ioral counseling. Such interventions should be evaluated for effectiveness
as rigorously as other kinds of clinical interventions.

Il] effects from disease can also b(' prevented by conducting screening
tests at a time when presymptomatic treatment is more effective than treat
ment when symptoms occur (secondary prevention). A disease is sought
if the disease causes a substantial burden of suffering, if a good screcning
test is available, and if presymptomatic treatment is more effective than
treatment at the usual time. Screening tests should be sensitive enough to
pick up most cases of the condition sought, specific enough that there are
not too many false-positive results, inexpensive, safe, and well accepted
by both patients and clinicians.

In secondary prevention, three potential biases threaten studies of the
effectiveness of presymptomatic treatment: failure to account for the lead
time gained by early detection, the tendency to dete'Ct a disproportionate
number of slowly advancing cases when screening prevalent cases, and
confounding the good prognosis associated with compliance with the ef
fects of the preventive intervention itself.

Based on these criteria, i\ limited number of primary prevention inter
ventions and screening tests for secondary prevention are recommended
for health maintenance, according to the age, sex, and clinical status of the
patient.
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CHANCE

When clinici<ln~ attempt to learn from clinical experience, whether dur
ing forma] research or in the course of patient care, their efforts are im
peded by two processes: bias and chance. As we discussed (Chapter 1),
bias is systematic error, the result of any process that causes observations
to differ systematically from the true values. In clinical research, a great
deiJl of the effort is aimed at avoiding bias where possible and controlling
for and estimating its effects when bias is unavoidable.

Random error, on the other hand, is inherent in all observations. It can
be minimized but never avoided altogether. Random variation can arise
from the process of measurement itself or the biologic phenomenon being
measured (Chapter 2). This source of error is called "random," because
on average it is as likely to result in observed values being on one side of
the true value as on the other.

Most of us tend to overestimate the importance of chance relative to
bias when interpreting data. We might say, in essence, "If pis <0.001, a
little bit of bias can't do much harm!" However, if data are assembled
with unrecognized bias, no amount of statistical elegance can save the day.
As one scholar put it, perhaps taking an extreme position, "A well de
signed, carefully executed study usually gives results that are obvious
without a formal analysis and if there arc substantial flaws in design or
execution a formal analysis will not help" (1).

In this chapter, chance is discussed in the context of a controlled clinical
trial, because that is a simple way of presenting the concepts. However,
application of the concepts is not limited to comparisons of treatments in
clinical trials. Statistics are used whenever one makes inferences about
populations based on information obtained from samples.

Random Error
The observed differences between treated and control patients in a clini

cal trial cannot be expected to represent the true differences exactly because
of random variation in both of the groups being compared. Statistical tests

186
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help estimate how well the observed difference approximates the true
one. Why not me<lsure the phenomenon directly and do away with this
uncertainty? Because research must ordinarily be conducted on a sample
of patients <lnd not all patients with the condition under study. As a result,
there is always a possibility that the particular sample of patients in a
study, even though selected in an unbiased way, might not be similar to
the population of patients as a whole.

Two general approaches are used to assess the role of chance in clinical
observations. The first, called hypothesis testillg, asks whether an effect (dif
ference) is present or not by using statistical tests to eX<lmine the hypothesis
that there is no differencc (the "null hypothesis"). This is the traditional
way of assessing the role of chance, popular since statistical testing W<lS
introduced at the beginning of this century and associated with the familiar
"p values." The other approach, called estimation, uses statistical methods
to estimate the range of values that is likely to include the true value.
This approach has gained popularity recently and is now favored by most
journals for rea~:lOns that we describe below.

We begin with a description of the traditional approach.

Hypothesis Testing
In the usual situation, where the principal conclusions of a trial are

expressed in dichotomous terms (e.g., the treatment is considered to be
either successful or not) and the results of the statistical test is also dichoto
mous (the result is either "statistically significant"~i.e., unlikely to oe
purely by chance~or not), there are four ways in which the conclusions
of the test might relate to reality (Fig. 9.1).

Two of the four possibilities lead to correct conclusions: (a) when the
trcatments really do have different effects and that is the conclusion of the
study and (b) when the treatments really have similar effects and the shldy
makes that conclusion.

There are also two ways of being wrong. The treatments under study
may actually have similar effects, but it is concluded that the study treat
ment is better. Error of this kind, resulting in the "false-positive" conclu
sion that the treatment is effective, is referred to as an a or Type 1 error.
Alpha is the probability of saying that there is a difference in treatment
effects when there is not. On the other hand, treatment might be effective,
but the study concludes that it is not. This "false-negative" conclusion is
called a f3 or Type II error. Beta is the probability of saying that there is
no difference in treatment effects when there is onc. "No difference" is a
simplified way of saying that the true difference is unlikely to be larger
than a certain size. It is not possible to establish that there is no differcnce
at all between two treatments.

Figure 4.1 is similar to the two-by-two table comparing the results of a
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TRUE
DIFFERENCE

Present Absent-
§ ••••.• ,,,

CONCLUSION Significant Correct l~~!&f!X1
OF

STATISTICAL .• (1~~~r~r·TEST Not
CorrectSignificant

Figure 9.1. The relationship between the results of a statistical test and the true
difference between two treatment groups. 'Absent is a simplification. It really means
that the true difference is not greater than a specified amount.)

diagnostic test to the true diagnosis (Chapter 3). Here the "test" is the
conclusion of a clinical tri,ll, based on a statistical test of results from a
sample of patients. Reality is the true relative merits of the treatments
being compared-if it could be established, for example, by making obser
vations on all patients with the illness under study or a large number of
samples of these patients. Alpha error is analogous to a false-positive and
(i error to a false-negative test result. [n the absence of bias, random varia~

tion is responsible for the uncertainty of the statistical conclusion.
Because random variation plays a part in all observations, it is an over

simplification to ask whether or not chance is responsible for the results.
Rather, it is a question of how likely random variation is to account for
the findings under the particular conditions of the study. The probability
of error due to random variation is estimated by means of inferel1tial statis
tics, a quantitative science that, based on assumptions about the mathemati
cal properties of the data, allows calculations of the probability that the
results could have occurred by chance alone.

Statistics is a specialized field with its own jargon-null hypothesis,
variance, regression, power, and modeling-Lhat is unfamiliar to many
clinicians. However, leaving aside the genuine complexity of statistical
methods, inferential statistics should be regarded by the nonexpert as a
useful means to an end. Sti-ltistical tests are the means by which the effects
of random variation arc estimated.

The next two sectiolls discuss a and f3 error, respectively. We will at
tempt to place hypothesis testing, as it is used to estimate the probabilities
of these errors, in context. However, we will make no attempt to deal with
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these subjectl; in a rigorous, quantitative fashion. for that, we i;uggest that
readers consult any of a number of excellent textbooks of biostiltistics (see
"Suggested Readings," later in this chapter).

CONCLUDING THAT A TREATMENT WORKS

Most of the statistics encountered in the current medical literature con
cern the likelihood of an a error and are expressed by the familiar p value.
The p value is a quantitiltive estimate of the probilbility that observed
differences in treiltment effects in the particul;1r study at hand could have
happened by chance alone, assuming that thcre is in fact no difference
between the groupi;. Another way of expressing this is that p is an answer
to the question, If there were no difference between treatments and the
trial was repeated many times, what proportion of the triills would
lead to the conclusion that a treatment is as or more effective thiln found
in the study?

We will call the p value "p,," to distinguish it from estimates of the
other kind of error due to random variation, f3 error, which we will refer
to as "Pi/' When a simple Pis found in the scientific literature it ordinarily
refers to what we call p".

The kind of error estimated by p" applies whenever it is concluded that
one trmtment is more effective than another. If it is concluded that the p"
exceeds some limit and so there is no difference between treatments, then
the particular value of p" is not as relevant; in that situation, PiJ (probability
of f3 error) applies.

DICHOTOMOUS AND EXACT P VALUES

It has become customary to attach speciill significance to p values falling
below 0.05 because it is generally agreed that less than 1 chance in 20 is a
small risk of being wrong. A rate of 1 in 20 is so small, in fact, that it is
reasonable to conclude that such an occurrence is unlikely to have arisen
by chance alone. It could have arisen by chance, and 1 in 20 times it will.
But it is unlikely.

Differences associated with p" less than 0.05 are called "statistically
significant." Tt is important to remember, however, that setting a cutoff
point at 0.05 is entirely arbitrary. Reilsonable people might accept higher
villues or insist on lower ones, depending on the consequences of a false
positive conclusion in a given situation.

To ilccommodate various opinions about what is and is not unlikely
cnough, some researchers report the exact probabilities of p"s (e.g., 0.03,
0.07, 0.11, etc.), rather thiln lumping them into two ciltegories, <U.05 or
>0.05. The interpretation of what is statistically significant is then left to
the reader. However, p Vil]ues greater than 1 in 5 ilre usually reported as
simply p > U.20, becaui;e nearly everyone can agree that a probability of
an a error that is grmter than one in five is unacceptably high. Simi]ilr]y,
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below very low Ii villues (such as p (l.OOl) chance if; il vcry unUkely
explanation for the observed differenCl" and little further information is
imparted by describing this chJnce more precisely.

STATISTICAL SIGNIFICANCE AND CLINICAL IMPORTANCE

A statisticaJJy f;ignificilnL difference, no matter how smJII the p, does
not mean that the difference is dinicJlly important. A p < 0.0001, if it
emerges from a well-def;igned study, conveys a high degree of confidence
that a difference really exists. But this Ii villue tells us nothing about the
magnitude of that difference or itf; dinic;:l1 importance. In fact, entirely
trivial differences may be highly statistically significant if a large enough
number of patients '''/(IS studied.

Examplr In the carll' 1990s there was a hCillcd debate about which
thrombolytic ilgt'nl, stt·cptokinase or tissue plasmin0i-\('n il(liv;;Jlor (tPA), is
most effective during ilcote myocilfliiill infarction, Large trials had shov,in iI

difference in reperfusion riltes but nol mortality. The two were (ompal"('d
(along with subcutaneous nr intrilVt'nous heparin) in a brge randomized
controlled trial. called CUSTO, involvini-\ 4'1,021 piltiel1ts in 15 countries (2),
tl'A Ivas givcn by a more aggressive regimen than in carlier studies. The
death rate at 30 days WilS lower among patients receiving: tl'A (63\,) (h,ln
among those receiving: streptokinil-Sl' (7.2 or 7.4%, depending on how hepa
rin was given) and this difference was highly unlikely to be by chance
(p ().OOI), However, the difference is not large; one would have to treat
about 100 patients vl'ith tl'A inskad of with streptokinase tn pr('vent onl'
short-term death. Because trA is Illuch Illore ('xpl'nsive than streptokinase
it would cost nearly $250 thousand to prevent that death (3)-and because
trA is mOl"(' likely to cause hemorrhagic strokes, smne have questioned
whether the marginal bendit of tl'A is worl hwhi Ie, Le., whether the differem','
in mortality between trA and streptokinilse (reatment, all things considered,
is "clinically significant:·

On the other hand, very unimpressive p values can result from studies
showing strong treatment effects if there afe few patients in the study (sec
the following section),

STATISTICAL TESTS

Commonly llsed statistical tests, familiar to many readers, are used to
estimate the probability of an a error. The tests arc applied to the data to
give a test statistic, which in turn can be used to omH' up with a probability
of error (Pig. 9.2). The tests Me of the l1ul/ h.llpofhe.c.i.s, the proposition that
there is no true difference in outcome benveen the 1\'/0 treatment groups.
This device is for mJthematici:ll reasons, not because "no difference" is the
working f;cientifir hypothesis of the study. One ends up Yt'jeding the null
hypothesis (concluding there is a difference) or failing to reject it (conclud
ing there is no difference).

Some commonly used st,ltisticallcsts are listed in Table 9.1. The validity
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Data • Test • Estimate of

Statistical statistic Compare to probability that

test standard observed value

distribution could be by
(using tables, chance alone
etc.)

Figure 9.2. Statistical testing.

Table 9.1
Some Statistical Techniques Commonly Used in Clinical Research

Chi square (x?)

Fisher's exact

Mann-Whitney U
Student I
Ftest

Regression coefficient

Pearson's r

To test the statistical signifJ'cance of a difference

Between two or more proportions (wilen there is a large number
of obscrvations)

Between two proportions (when there is a small number of
ob5ervations)

Between two medians
Between two means
Between two or ITime means

To describe the extent of association

Bctw(~en an imJepenrJent (predictor) variable and a dependent
(outcome) variable

Between two w:Jriablc5

To model the effects of multiple variables

Logistic regression
Cox proportional haLards

On a dichotomous oulcOlTlC
On a lime-to-event outcomc

of each test depends on certain assumptions about the data. If the data at
hand do not satisfy these assumptions, the [esulting p" may be misleading.
A discussion of how these statistical tests are derived and calculated and
of the assumptions on which they rcst can be found in any biostatistics

textbook.

Example The chi squan.· (X') test, for nominal data (counts) is more easily
understood thiln most and so can be llsed to illustrate how statistical testing
works_ Consider the following data from a randomized trial of two ways of
initiating anticoagulation with heparin: a weight-based dosing nomogram
and standard care (4). The outcome WilS a pilftial thromboplastin time (PTT)
exceeding the therapeutic threshold within 24 hr of begirming anticoagula
tion. In the nomogrilm group hO of h2 (97(:~) did so; in the standard care
grO\Jp, 37 of 4,s (77%).
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Observed Rates

I 'TT [xceedrng -rhw~h(Jld

Nomogram
SlanrJard care

TotiJl

Yes

60
3i

97

No

,
11

13

rulHI

62
48

110

How likely would it be for a study of this size to observe a difference
in rates al; great as thil; or greater if there were in fact no differences in
effectivenel;S? That depends on how far the observed results depart from
what might hilve been expected if the treatmentl; were of similar value
ilnd only random variation caused them to differ in the samples studied.
If treatment had no effect on outcome, applying the success rate for the
p<ltients as a whole (8W'!<,) to the number of patients in each treatment
group gives the expected number of I;uccesses in each group:

Expected Rates (Rounded to Nearest Integer)

PTI I::xceedinq Threshold

Nomogram
Stand<Jrd care

rotal

Yes No Total

55 7 62
42 6 48

97 13 110

The X2 st<Jtistic, which quantitates the difference betw"een the observed
and expected numbers, is the sum for all four ce]]s of:

(Obse~ved number - Expected~umber)2

Expected number

The magnitude of the X2 statistic is determined by how different all of
the observed numbers are from what would be expected if there were no
treatment effect. Because they are squared, it does not matter whether the
observed rates exceed or fall short of the expected. By dividing the squared
difference in each cdl by the cxpl'cted number, the difference for that cell
is adjusted for the number of patients in that cell.

The X2 statistic for these data is

~(6~Ucc-;c'5~5,-f + (2 - 7)2 + (37 - 42)2 + (11 - 6f = R.79
55 7 42 6
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This X2 is then compared to a t<lble rdating X2 values to prob<lbilities
(available in books and computer programs) for that number of cells, to
obtain the probability ofaX2 that l<lrge or larger. It is intuitivdy obvious
that the larger the X2

, the less likely chance is to account for the observed
differences.The result in this case is p = 0.004, which is the probability of
a false-positive conclusion that the trcatments had different effects.

CONCLUDING THAT A TREATMENT DOES NOT WORK

Some trials come to the conclusion tha.1 neither treatment is better than the
other. There are some very influential examples, including shtdies showing
that coronary artery bypass surgery does not prolong life in patients with
chronic stable angina (except for those with left main coronary artery obstruc
tion), that antioxidents do not prevent cancer, and that antibodies against
endotoxin do not improve the prognosis of most patients with septic shock.

The question arises, could results like these have occurred by chance
alone? Could the findings of such trials have misrepresented the truth
because these particular studies had the bad luck to turn out in relatively
unlikely ways? Specifically, what is the probability of a false-negative result
(a f3 or Type II error)? The risk of a false-negative result is particularly
large in studies with relatively few patients.

Beta eITor has received less attention than a error for several reasons.
It is more difficult to calculate. Also, most of us simply prefer things that
work. Negative results arc unwelcome: authors are less likely to submit
negative studies to journals and if negative studies are reported at all, the
authors may prefer to emphasize subgroups of patients in which treahnent
differences are found, even if the differences are not statistically significant.
Authors may also emphasize reasons other than chance for why true differ
ences might have been missed. Whatever the reason for not considering
the probability of f3 error, it is the m<lin question that should be asked
when the results of a study indicate no difference.

The probability that a trial will find a statistically significant difference
when a difference really exists is called the statistical power of the trial.

Statistical power = 1 -- pf3

Power and prJ are complell1l'!ltary ways ofe:xpressing the saine collcept. Power
is ana/ogolls to the sCllsitivity of a diasnostic test. 1n faet, one speaks of (j study
being powe/illl if it has a high probability ofddectins as di;ffercnt treatments that
rcally arc differenl.

HOW MANY PATIENTS ARE ENOUGH?

Suppose you are reading about a clinical trial comparing a promising
new therapy to the current form of treatment. You are aware that r<lndom
variation can be the sourcc of whatever differences are observed, and you
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wonder if the number of piJtients (sample _~ize) in this study is large enough
to make chance an unlikely explanation for wh"t was found. How many
patients would be necessary to make an adequate comparison of the effects
of the two treatments? The answer depends on four characteristics of the
study: the miJgnitude of the difference in outcome between treatment
groups, p", pfj, and the nahlre of the study's data. These are taken into
account when the researcher plans the study and when the reader decides
whether the study has a reasonable chance of giving a useful answer.

Effect Size

Sample size depends on the magnitude of the difference to be detected.
We are free to look for differences of any magnitude, and of course, we
hope to be able to detect even very small differences. But more piJtients
are needed to detect small differences, everything else being equal. So it
is best to ask only that there is a sufficient number of patients to detect
the smallest degree of improvement thiJt would be clinically meaningful.
On the other hand, if we Me interested in detecting only very large differ
ences between treated and control groups (i.e., strong treatment effects),
then fewer patients need be studied.

Alpha Error

Sample size is also related to the risk of an a error (conduding that
treatment is effective when it is not). The acceptable size for a risk of this
kind is a value judgment; the risk could be as large as 1 or as small as O.
If one is prepared to accept the consequences of a large chance of falsely
concluding that the therapy is valuable, one can reach conclusions with
relatively few patients. On the other hand, if one wants to take only a
small risk of being wrong in this way, a larger number of patients will be
required. As we discussed earlier, it is customary to set p" at 0.05 (1 in 20)
or sometimes 0.01 (I in 100).

Beta Error

The chosen risk of a /j error is another determinant of sample size. An
acceptable probability of this error is also a judgment that can be freely
made and changed, to suit individual tastes. Probability of 13 is often set
at 0.20, a 20% chance of missing true differences in a particulM study.
Conventional (J errors are much larger than a errors, reflecting the higher
value usually placed on being sure an effect is really present when we say
it is.

Characteristics of the Data

The statistical power of a study is also determined by the nature of the
data. When the outcome is expressed on a nominal scale and so is described
by counts or proportions of events, its statistical power depends on the
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rate of events: the larger the number of events, the greater the statistic<ll
power for a given number of people at risk. As Pete et al. (5) put it,

In clinical trials of time to death (or of the time to some other particular
"evt'nt" -rdapst', metastasis, first thrombosis, stroke, recurrence, or time to
death from a particular cause), the ability of the trial to distinguish between
thl;' merits of two treatments depends on how many patients die (or suffer a
relevant event), rather than on the number of patil;'nts entered. A study of
100 patients, 50 of whom die, is about as sensitive as a study with 1000
patients, 50 of whom die.

If the outcome is a continuous variable, such as blood pressure or serum
cholesterol, power is affected by the degree to which patients vary among
themselves: The greater the variation from patient to patient with respect
to the ch<lracteristic being measured, the more difficult it is to be confident
that the observed differences (or lack of difference) ben\'een groups is not
because of this variation, rather than a true difference in treatment effects.
In other words, the larger the variation among patients, the lower the
statistical power.

In designing a study, the investigator chooses the size of treatment effect
that is clinically important and the Type I and Type II errors he or she
will accept. It is possible to design studies that maximize power for a given
sample size-e.g., by choosing patients with a high event rate or similar
characteristics-as long as they match the research question. But for a
given data set and question the investigator cannot control the way that
the characteristics of the data determine statistical power.

INTERRELATIONSHIPS

The interrelationships among the four variables discussed above are
summarized in Table 9.2. The variables can be traded off against each
other. Tn general, for any given number of patients in the study there is a
trade-off between a and f3 error. Everything else being equaL the more

Table 9,2
Determinants of Sample Size

lJotermined by

N varies according to

Invostgator

and

The Data

V I- or
I P

WllElre n = numr)(~r or patients studierl; .0. = size of rlifference in outcome between groups;
P" = probability of an" !Type I) error, i.e., talse-positive results: p" = probability of a {3
(Type II) error, i,e" talse-negative result; V variability ot observations (tor inlerval data):
and P proportion ot patients experiencing outcome of interest (for nominal data)
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one is willing to accept one kind of error, the less it will be nece~sary to
risk the other, Neither kind of error is inherenl1y Norse than the other. The
consequencc~ of accepting erroneous information depend on the dinical
~ituation. When a better treatment is badly needed (e.g., when the disease
is very dangerous and no satisfactory alternative treatment is available)
and the proposed trc<ltment is not dangerous, it would be reasonable to
accept a rc1<ltively high risk of conduding a new treatment is effective
when it really is not (large u enol') to minimize the pos~ibility of missing
a valuable tn'<Itment (small /3 error). On the other hand, if the discilse is
less serious, alternative tn'iltments are availablc, or the new treahnent is
expen~ive or dangerous, one might want to minimize the risk of accepting
the new treatment when it is not really efredive (low IX error), even at thc
expense of d relatively large challce of mis~ing an effective treatment (large
/3 error). Tt is of course possible to reduce both a and (i errors if the number
of patients is incn'<lsed, outcome events <lre more frequent, variability is
decreabcd, OJ a larger treatment effect is f>ought.

For conventional levels of p" and Pi)' the relationship between the size
of the treatment effect and the number of patientf> needed for a trial if>
illustrated by the following examples, one representing d situation in which
a relatively small number of patients was sufficient and the other in which
a very large numbcr of patients WdS required.

Example Small sample si7,c: Case s<'ries sugglCst thilt the nonsleroidal
antiinflammatory drug sulindac is active "gainSl colonic polyps. This possi
bility wa~ te'5ted in a randomized tri<ll (6). A total of 22 patient'5 with famili<ll
adenomatous polyposis were randomized; 11 r"cdved sulind<lC and II pla
cebo_ After Y months, patients receiving 5ulindac had <1n Hv"ragc of 44'1'0
fewer polyps than those receiving placebo. This difference was statistically
significant (p =- 0.(14)- Because of lhe larK" effect size ,md tile large number
of polyps per patient ('5ome had more than IOU), few patit'nts were needed
to establish that the effecl was beyond cham:". (In lhis ,l/M]ysis it was ne(l'S~

sary to assume that treatmenl affected polyps independently of vl'hich patient
tht,y occurred in---an unlih'ly, but prohably not damilging, assumption.)

Example Large sample size: The GUSTO lrial, dlCscribed above, WilS de
signed to include 41,000 patients to have a YO':;, chance of detecting a 15'%.
reduction in mortality or a 1'%, decH'ilse in mortalilV rate, whichever was
larger, betwlCen the experimental and conlrol treat!ll~nts with a pa of ll.05,
assuming the lllOrtalily rate in the control paUents was at least R% (2). The
sample si;>;e had to he so large h<'cause a relatively small proportion of Pil~

tients experienced the outcome event (death), the effect size was small (L,)'~(,),

and the investigators wanted a relatively high chance of detecting the efflCct
if it were present (90%).

For m{lst of the therapeutic questions encountered today, a surprisingly
large number of patients is required. The value of dramatic, powerful
treiltments, such as insulin for diabetic ketoacidosis or surgery for append i-
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citis, could be established by studying a small number of patients. But
such treatments come along rarely and many of them CHI.' already well
established. We arc left with diseases, many of them chronic and with
multiple, interacting causes, for which the effects of new treatments are
generally small. This places special importance on whether the size of
clinical trials is adequate to distinguish real from chance effects.

Clinicians should be able to estimate the power of published shldies.
Toward that end, Figure 9.3 shows the relationship between sample size
and treatment difference for several baseline rates for outcome events. It
is apparent that studies involving fewer than 100 patients have a rather
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Figure 9.3. The number of people required in each of two treatment groups (of
equal size) to have an 80% chance of detecting a difference (p = 0.05) in a given
outcome rate (P) between treated and untreated patients, for various rates of out
come events in the untreated group, (Calculated from formula in Weiss NS, Clinical
epidemiology. The study of the outcome of illness, New York: Oxford University
Press, 1986.)
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poor chance of detecting statistically significant differences of even large
treatment effects. Also, it is difficult to detect dfect sizes of less th;;m 25'\,.
Tn practice, statistic'll power can be estimJted by means of readily available
formulas, tables, nomograms, or computer progTilms.

Point Estimates and Confidence intervals
The effect size (e.g., treJtment dfect in a clinical trial or relative risk in

a cohort study) observed in ,1 particular study is called the poiJlII'slimlllc
of the effect. It is the best estimate from the study of the true effect size
and is the summary statistic usually given the most emphasis in reports
of research.

f Towever, the true dfect size is unlikely to be exactly that observed in
the study. Because of rJndom variation, Jny one study is likely to find il
result higher or lovver thilll the true value. Therefore, a summary medsure
of the extent of variation that might be expected by chance is needed.

The statistical precision (stability of the estimate) of an observed dfect
size is expressed as a (ou(J'dencc il1term/, usually the 9.5'};, confidence interval,
around the point estimate. Confidence intervals around an effect size are
interpreted in the fol1mving mJnner: if the study is unbiased, there is ,1

95'\,;, chance that the intprval includes the true dfect size. The narrower
the confidence interval, the more certain one can be about the size of the
true effect. The lrue value is most likely to be dose to the point estimate,
less likely to be near the outer limits of the interval, and could (5 times
out of 100) fall outside these limits altogether. Statistical precision increases
with the statistical power of the stuJy.

Confidence intervals cuntain information similar to statistical signifi
cance. If the value corresponding to no effect (such as a rdative risk of 1
or a treatment difference of 0) falls outside the 95'~;) confidence intervals
for the observed effect, it is likely that the results are statisticillly sib'llificant
ilt the 0.05 level. If the confidence intl'rvJls include this point, the results
are not statistically significant.

But confidence intervals have other advilntages. They put the emphasis
where it belongs, on the size of the effect. Confidence intervals illlow the
reader to sec the range of plausihle values and so to decide whether an
effecl size they regard as clinically mpaningfuJ is consistent with or ruled
out by the data (7). They also provide information about statistical power;
if the confidence interval barely includes the value corresponding to no
effect and is relatively wide, a signifiGll1t difference might have been found
if the study had hJd more power.

Example Figure 9.4 illustrates point ('slinlates and confidence intervals
for the estimJted relative risk of exogenous estrogens for three diseases:
endometrial cancer, bn'asl CJncer, ,md hip frarlure. (!'-Joticc that the risk is
on a log scale, giving the sUjlc!·licial impression th;]l confident"(' intervals for
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Breast cancer

Risk

Protection
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Figure 9.4. Point estimates (0) and confidence intervals (1): the risks ami benefits
of exogenous fJstrogens for postmenopausal women. (Data from Grady D, Rubin
8M, Petitti DB, Fox GS, Black lJ, tttinger R, Ernster VL, Cummings SR. Ilormonal
thempy lo prevent disease and prolong life in postmenopausal women, Ann Intern
Mod 1992; 117:1016-1037; Coldit7 GA, Starnpfer MJ, Willett we, Hennekens CH,
Rosner [3, Speizer FE. Prospective study of estrogen replacement therapy and risk
of broast cancer in postmenopausal women. JAMA 1990;264:2648-2653; and
Paganini-Hill A, nos; RK, Gerkin::; VR, Ilcndcrson t)c, Arthur M, Mack TM Meno
pausal estrogen therapy and hip fractures. Ann Intern Med 1981 ;95:?8-31.)

tille higher risks arc narrower lh<Jn they really are.) The estimate of risk lor
endometrial cancer (illter 8 or mure year~ of estrogens) is 8.22, but the true
v,llue i~ not precisely estimated and could easily be ,l~ high <JS 10.61 or as
low as 6.2,:;, In any case, it is unlikelv to be il~ low ilS 1.0 (no ri~k). In contrast,
this one study sLlggesls thilt e~lrog<'ns are unlikely to be a risk factor for
breast cancer; the be~t <'stimak of relative risk is nearly 1.0, although the
d,lt,1 Me consistent with either a small h.umful or a sm,l]J prolectiV<' dfeet.
Finally, estrogens Me likely to protect again~l hip frilclure. That the upper
boundary uf the confidence interval falls below ].0 is another way of indicat
ing that the protectivc dfect is ~l,lli~tically significant at the 0.05 level.

Point estimates and confidence intervills are used to characterize the
st<ltistical precision of any rate (incidence and prev<l1cnce), comparisons of
T<lks (relative and attributable risks), and other summary statistics. l-ior
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example, individual studies have shown that :14% of U.s. adults have used
unconventional therapy (95'X, confidence interval 31-37%) (8), that inten
sive treatment of insulin-dependcnt diabetes lowers the risk of develop
ment of retinopathy by 76(~;' (95°/', confidence interval 62-85%) relative to
conventional therapy (9), and that the sensitivity of clinical examination
for splenomegaly is 2n;, (95% confidence interval 19-36')';,) (10).

Confidence intervals havc become the usual way of reporting the main
results of clinical research because of their many advantages over the hy
pothesis testing (p value) approach. The p values are still used because of
traditioll and as a convenience when many results are reported and it
would not be feasible to include confidence intervals for all.

Statistical Power before and after a Study Is Done
Calculation of statistical power based on the hypothesis testing approach

is done by the researchers before a study is tmdertaken to ensure that
enough patients will be entered to have a good chance of detecting a
clinically meaningful effect if it is present. However, after the study is
completed this approach is no longer as relevant (11). There is no need to
estimate effect size, outcome event rates, and variability among patients;
they are now known.

Therefore, for researchers who report the results of clinical research
and readers who try to understand their meaning, the confidence interval
approach is more relevant. One's attention should shift from statistical
power for a somewhat arbitrarily chosen effect size, which may be relevant
in the planning stagc, to the actual effect size observed in the study and
the statistical precision of that estimate of the true value.

Detecting Rare Events
It is sometimes important to detect a relatively uncommon event (e.g.,

1/1000), particularly if that event is severe, such as aplastic ,memia or Iifc
threatening arrhythmia following a drug. In such circumstances, a great
many people must be observed in order to have a good chance of detecting
('ven one such event, much less to develop a rdatively stable estimate of
its frequency.

Figure 95 shows the probabHity of detecting an event as a function of
the number of people under observation. A rule of thumb is as follows:
To have a good chance of detecting a l/x event one must observe 3x people
(12). For example, to detect a 1/1 OUO event, one would need to observe
3000 people.

Multiple Comparisons
The statistical conclusions of research have an aura of authority that

defies challenge, particularly by nonexperts. But as many skeptics have
suspected, it is possible to "lie with statistics," even if unintentionally.
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Figure 9.5. The probability of detecting one event according to the rate of the
event and the number of people observed, (From Guess HA, Rudnick SA, Use at
cost effectiveness analysis in planning carlCRr chemoprophylaxis trials, Control Clin
Trials 1983:4:89-100.)

What is more, this is possible even if the research is well designed, the
mathematics flawless, and the investigators' intentions beyond reproilch.

Statistical conclusions can be mislmding because the strength of stiltisti
cal tests depends on the number of research questions considered in the
study and when those questions were asked. If many comparisons arc
made among the variables in a large set of data, the p value associated
with each individual comparison is an underestimate of how often the
result of that comparison, ilmong the others, is likely to arise by chance.
I\s implausible as it might seem, the interpretation of the p value from a
single statistical test depends on the context in which it is done.

To understand how this might happen, consider the following example.
Suppose a large study has been done in which there ilrc multiple subgroups
of patients and many different outcomes. ror instance, it might be a clinical
trial of the value of a treatment for coronary artery disease for which
patients arc in several clinically meaningful groups (e.g., 1-, 2-, and 3
vessel disease; good and bad ventricular function; the presence or absence
of arrhythmias; and various combinations of these) and several outcomes
are considered (e.g., death, myocardial infarction, and angina). Suppose
also that therc arc no true associations between treatment and outcome in
any of the subgroups and for any of the outcomes. Finally, suppose that
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the effect~ of treatment are as~e~~ed separately for each subgroup and for
each outcome-a process that involves a great many comparisons. As
pointed out earlier in this chapter, I in 20 of these comparisons is likely
to be statisticillly significant at the 0.05 level. In the general case, if 20
comparison~ ilre made, on the average, 1 would be found to be statistically
significant; if 100 comparisons are made, about 5 would be likely to emerge
as significant, ilnd so on. Thus, when a great many comparisons have been
made, a few will be fOlUld that are unusual enough, because of random
variation, to exceed the level of stati~tical significance even irno true assl}Ci
ations between variilbles exist in nature. The more comparisons that are
made, the more likely that one of them wHl be found statistically
significant.

This phenomenon i~ referred to as the multiple comparisons problem.
Becau~e of this problem, the strength of evidence from clinical research
depends on how focu~ed its questions were at the outset.

Unfortunately, when the results of research are presented, it i~ not al
way~ possible to know how many comparisons really were made. Often,
intere~ting findings arc selected from a larger number of uninteresting
one~. This process of deciding what is and is not important about a mass
of data can introduce considerilble distortion of reality.

How can the statistical effects of multiple comparisons be taken into
account when interpreting research? Although ways of ildjusting p" have
been proposed, probably the best advice is to be aware of the problem
and to be cautious about ilccepting positive conclusions of studie~ where
multiple comparisons were made. As one statistician (13) put it:

If you dredge the data sufficiently deeply and sufficiently often, you will
find something odd. M;my of these bizarre findings will be due to chance. I
do not imply thai data dredging is not iln occupation for honorable persons,
but rather that discoveries that wefe nol initially postulatl.'d as among the
major objectives of the trial should be treated with extreme caution. Statistical
theory milY in dul;' course show us how to allow for such incidental findings.
At present, I think the best attitude to adopt is caution, coupled with an
attempt to confirm or rdute the findings by further studies.

An approach to asse~sing the validity of ~tati~ticallysignificant findings
in subgroups was presented in Chapter 7.

Describing Associations
Statistics are also u~ed to describe the degree of association between

variables, e.g., the re-lation~hip between body ma~s and blood pressure.
Familiar expressions of a~sodation are l'earson'~ product moment correla
tion (r) for interval data and Spearman's rank correlation for ordinal data.
Each of these statistics expre~ses in quantitative terms the extent to which
the value of one variable is associated with the value of another. Each has
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a corresponding statistical test to assess whether the observed association
is greater than might have arisen by chance alone.

Multivariable Methods
Most clinical outcomes are the result of many variables acting together

in complex way,;. For example, coronary heart disease is the joint result
of lipid abnormalities, hypertension, cigarette smoking, family history, dia
betes, exercise, and perhaps personality. It is appropriate first to try to
understand these relationships by examining relatively simple arrange
ments of the data, such as 2-by-2 tables (for one variable at a time) or
contingency tables (stratified analyses, examining whether the effect of
one variable is changed by the presence or absence of one or more other
variables), because it is easy to understand the data when they arc dis
played in this way. However, it is usually not possible to account for more
than a few variables using this method, because there arc not enough
patients with each combination of characteristics to allow stable estimates
of rates. For example, if 120 patients were studied, 60 in each treatment
group, and just one additional dichotomous variables were taken into
account, there would only be at most about 15 patients in each subgroup;
if patients were unevenly divided, there would be fewer in some.

What is needed then, in addition to contingency tables, is a way of
examining the effeels of several variables at a time. This is accomplished
by multivariable modeling, developing a mathematical expression of the ef
fects of many variables taken together. It is "multivariable" because it
examines the effects of multiple variables simultaneously. It is "modeling"
because it is a mathematical construct, calculated from the data but also
based on simplifying assumptions about characteristics of the data (e.g.,
that the variables arc all normally distributed and have the same variance).

Mathematical models cun be used in studies of cause, when onc wants
to define the independent effect of one variable by adjusting for the effects
of several other, extraneous variables. They can also be used to give mOTe
precise predictions than individual variables allow by including several
variables together in a predictive model.

The basic structure of a multivariable model is

Outcome variable = constant + (/31 X variable]) + (/32 X variabl(2) + .

where /31, /32< . arc coefficients that are determined by the data; and
variable" variable",. . are the predictor variables that might be related
to outcome. The best estimates of the coefficients are determined mathe
matically, depending on the powerful calculating ability of modern
computers.
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Modeling involves severdl steps.

• Identify and measure all the vilriilbles thilt might be related to the out
come of interest.

• Reduce the number of viHiables to be considered in the model to a
manageable number, usually no more than several. Often this is done
by selecting variables that are, when taken one at a time, most strongly
related to outcome. If a statistical criterion is used at this stage, it is usual
to err on the side of including variables, e.g., by choosing all variables
showing an association with the outcome of interest at a cutoff level of
p < 0.10. Evidence for the biologic importance of the variable is also
considered in making the selection.

• Some variables may be strongly related to each other. If so, only one is
included since both contain about the same information.

• The remaining variables aIe entered in the model, with the strategy for
the order in which they aIC tried determined by the research question.
For example, if some are to be controlled for in a causal analysis, they
are entered in the model first, followed by the variable of primary inter
est. The model will then identify thc independent effect of the main
variable. On the other hand, if the investigator wants to make a predic
tion based on several variables, the variables can be entered in order of
the strength of their association to the outcome variable, as determined
by the model.

Modeling is now a regular feature of the medical literature, appearing
in about 18% of articles in major journals (14) and in nearly all large studies
of cause. Some commonly used kinds of the models are logistic regression
(for dichotomous outcome variables such as occur in case-control studies)
and Cox proportioned hazards models ({or time-to-event studies).

Multivariable modeling is an essential part of many clinical studies;
there is no other way to adjust for or to include many variables at the
same time. Hmvever, this advantage comes at a price. Models tend to be
black boxes, and it is difficult to "get inside" them and understand how
they work. TIleir validity is based on assumptions about the data that may
not be met. They are clumsy at recognizing effect modification (different
effects in different subgroups of patients). An exposure variable may be
strongly related to outcome yet not appear in the model because it occurs
rarely-and there is little direct information on the statistical power of the
model for that variable. Final1y, model results are easily affected by quirks
In the datil, the results of random variaLion in the characteristics of patients
from s<lmple to s<lmple. It has becn shown, for example, that a model
frequently identified a different set of predictor variables ilnd produced a
different ordering of variables on different random samples of the Silme
data set (15). To protect against this possibility, a rule of thumb is that
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there should be at least 10 outcome events for each predictor variable in
the model.

for these reasons, the models themselves cannot be taken as a standard
of validity; they must be independently validated. Commonly, this is done
by seeing if the model predicts what is found in another, independent
sample of patients (see Chapter 12). The results of the first model are
considered a hypothesis, to be tested by new data. If random variation is
mainly responsible for the results of the first model, it is unlikely that the
same random effects will occur in the validating data set too. Other evi
dence for the validity of a model is its biologic plausibility and its consis
tency with simpler, mOTC transparent analyses of the data such as stratified
analyses.

Summary
Clinical information is based on observations made on samples of pa

tients. Even samples that are selected without bias may misrepresent events
in a larger population of such patients because of random variation in its
members.

Two general approaches to assessing the role of chance in clinical obser
vations arc hypothesis testing and estimation. With the hypothesis testing
approach, statistical tef;ts are used to estimate the probability that the ob
served result was by chance. Vv'hen two treahnents arc compared, there
are two ·ways in which the conclusions of the trial can be WTOng: The
treatments may be no different, and it is concluded one is better; or one
treatment may be better, and it is concluded there is no difference. The
probabilities that these errors will occur in a given situation arc called pI)
and p~, respectively.

The power of a statistical test (1 - fill) is the probability of finding a
statistically significant difference when a difference of a given size really
exists. Statistical power is related to the number of patients in the trial,
size of the treahnent effect, J!", and the rate of outcome events or variability
of responses among patients. Everything else being equal, power can be
increased by increasing the number of patients in a trial, but that is not
always feasible.

Estimation involves using the data to define the range of values that is
likely to include the true effect size. Point estimates (the observed effects)
and confidence intervElls are used. This approach has many advantages
over hypothesis testing: It emphasizes effect size, not II value; indicates the
range of plausible values for the effect, which the user can relate to clini
cally meaningful effects; and provides information about power.

lndividual studies run an increa~C'd risk of reporting a false-positive
result if many subsets of the data are compared; they are at increased risk
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of a false-negative result if they lack statistical power, usually because they
include too few patients or outcome events are ul':.common.

Most clinical studies concern the effects of multiple interacting variables.
With multivariable modeling, it is possible to take all into account simulta
neously, either to control for extraneous variables in a causal study or to
provide a stronger prediction than would be possible by including nne
variable at a time. However, these models must be interpreted \vith caution
because their inner workings arc relatively inaccessible, they are sensitive
to random variation, <Ind they are based on assumptions that may not
be met.

R[·:FEREl\'CES

1, Johnson AF. Beneath the technological fix. Outliers and prohability stclkments. J Chmn
Dis 1Y85;38:957-96L

2. The GUSTO Investigators. An international randomized tri,,1 comparing fpur thrombolytk
strategies for acute myocardiill infJrdion. New Engl J:vIed 1<f93;329:673-liIi2.

3. Farkouh ME, LangJD, Sackett lJl Thrombolytic agents: till' science of the art of choosing
the better treatment. Ann Intern Med 1994;120:886-88R

4, Raschke RA, Reilly 8M, GUidry JR, FontanJ jR, Srinivas ,;, The \\'cight-based heparin
dosing nomogram compared with" "standard care" nomof\'ram. A randomized controlled
trial. Ann Intern Med 1993;1t9:874-·Rfll

5. Peto R, Pike MC, Armitage P, Breslow ;,\E, Cox DR, Howard SV, Mantel N, McPherson
K, Peto J, Smith Pc. Design and annlysis of randol11i7ed clinic'll trials requiring: prolonged
observation of each patient l. Introduction and dpsign, Br J emu"r 1976;34:51i5-612,

6. Giardiel10 FlVl, Hamilton SR, Krush AJ, Piantadosi S, Hylind 1.\1, Celano P, l300ker SV,

Robinson CR, OfferhJus GjA. Tr<'cltm~nl of colonic and rectal adenomas \vith suJindac in
familial adenomatous polyposis. New Eng! j M<,<J 1993;328:1313-1316.

7, Braitman LE. Confidence intervals assess both clinical significance and Mutistical signifi
cance. Ann Intern Med 1991;114:515-517.

8. Eisenberg OM, Kessler RC, foster C, '\IorJock FE, Cillkins OK Delbilnco TL. Unconven
tional medicine in the United StJte~. Prevalence, costs and piltterns of liS". New Engl J
Med 1993;328:246·-252.

9, LJiabeles Control and Complications Trial Rc'search Croup. The effect of intensive treot
ment of diabetes on the d"vdopl1lent ane! progression of long-term complications in
insulin-dependent diabetes mellitis New lingl J Med 199:1;329:977-'186.

10. Grover SA, lJorkun A"-;, Sockett LJI.. Does the pcltient have spl<'nomegaly? JAMA
1993; 270:2218-2221.

11 Goodm"n Si\, Berlin jA. The usc of predicted confidence intervals when planning experi
ments and the l11isuse of power when interpreting results. Ann l"lPm IvIed 19',14; l2l :200
206.

12. Sackett DL, llaynes RI3, Gent \1, T"ylor DVV, COl11pli,'JKC. Ill: Inm,ln \-VIIW, "d. Monitoring
for drug safety, I.Jncasler, L'K: MTP Prt'ss,IY8il.

13 Armitage 1', Importance of prognostic f"ctors in the ;m"ly~is of d"t" from clinical trials,
Control Clin Triab 1'J81;I:J47-J5J.

14. ("oneato J, reinstl'in AR, Ilolford TR. The risk of determilling risk with mllitivariabl"
JIlodds. Ann Intern Med l'N:1;llS:2111-2W,

I.~ Diamond C.-\. Future iJllpl'rf<'ct: the limit"tipns or clinical prc'dicli"n [llo<!"b and thl' limits
of clinical pr"dktion,1 Am Coil Clrdiol 19S9; 14:12/\ 221\



CHAPTER 9 ! CHANCF 207

SUGGESTElJ l':EAlJINCS

Altman DC, Gore 511.1, GJrdner MJ, Pocock SJ. Statisti,,,l guidelines ~or contributors 10 medical
jOllrnJIs, Ilr Med J 1983;286;1489·-1493,

Ilailer Je Ill, Mostdler r, cds..V1edical uses of statistics. Waltham, MA: New England ]ournJI
of Medicine Books, 1986.

Cupples LA, Heeren T, Schatzkin A, Colton T. Multiple kbting uf hypotheses in comparing
two groups. Ann Intern Med 1984; 100:122-129.

Detsky AS, Sackett 01 .. When WclS" "negJtive" clinical trial big enough? How many patients
you net'd dep"nd~ on whclt you found, Arch Intern Med 1985;145:70'J-712,

facts, figllrc>, and fallacies ,cries

Clrpenkr LM, Is Ihe study worth doing? Lancet 1993;343:221-223
Dalla M, You cannot exclude the explanJlion you haven't considered. Lmcet 1993;342:345-

347
Clyrl1l JI\. A question of attribution, Lancet 1993;342:530-532.
Crisso JA. I\.laking comparisons. Lancet 1993;342:157-160.
Jolley T.TIle glitter of the I table IJncel 1993;342:27-29.
Leon D. Failed or mi~leading 'ldJustment for confounding. Lancel 1993;342:479-481.
Mertens TF. Estimating the effccts of misclassification, Lancet 1'J'J3;342:418-421.
Silthi-amorn C I'oshachinda V. Bias. Lancet 1993;343:286-288.
Victoria CG. ~Vhat's the denominator? Lancet 1993;342:97-99.

Friedman GD. Primer of epidemiology. 4th ed. New York: McCmw·Hill, 1994.
Gardner Mj. Altman DG. Stilti~tks with ("(lIlfidence confidcnce intervJls Jnd statistical

guidelines. LonJon: 13r>'1J l3ooKs, 1989,
Coodman SN, lJerlin JA, The usc of predicted confidence intervJIs when pbnning expnim'mts

Jnd the mibuse of power when inte'lweting r~SIlIts. Ann Intern Med '1994;'12'1:2(KI-206,
Hilnky lA, Lil'mcln.IIJnd A. If nothing goes wrong is everything right? Interpreting zero

nUlllerators. JA1I.1'\ 1'J~3:24'J:1743.

Hl'nnekens CH, Bllring IF. Fpid~miology in medicine. Boston: Little, Brown & Co., 1987,
Ingelfinger JA. r>-l%tdkr F. Thihodeau I,A, VI/Me Jll, I:)ioslatistics in clinical medicine, New

York: Ma"milklll, 1983,
Moses 1£ StatistiGll concepts fundamental to inVl'stigJtion,; N Engl J Med 1985;312:890··H97.
]\iegclman I{K, Hirsch RP SI.udying and stLldy ~nd testing a tebt. 2nd "d. Boston; Little,

Brown & Co., 1989,
Rothman KI A bhow of confidence. N Fllgi J MedI97fl;299:B62 1361.
Young l\ilJ, Bresnitz EA, Strom ilL. Sample size nomograms for interpreting negative clinic,,1

studie~, /\nn Intern Med 1'JH3;9'J;24B-251.



10

STUDYING
CASES

Eacii case lias its lesson-a lesson which may be but is not always
learned.

-Sir William Osler

Most medical knowledge has emanated from the intensive study of sick
patients. The exhausted but engrossed physician at the bedside of the
febrile child, chin in hand, is a f<lV(Jrite medical image. The presentation
and discussion of a "case" is the foundation of modern medical education.
Most clinicopathologic conferences and grand rounds begin with the pre
sentation of an interesting case and then use the GHil;' to illustrate general
principles and relationships. So, too, much of the medical literature is
devoted to studying cases, whether narrative descriptions of a handful of
cases (case reports), quantitative analyses of larger groups of patients (case
series), or comparisons of groups of cases with noncases (cilse control
studies).

Case Reports
Cilse reporls Me detailed presentations of il single case or a handful of

Cilses. They represent an important way in which new or unfamiliar dis
eases, or milnifestations or ilssociations of disease Me brought to the atten
tion of the medicill community. Approximately 20-30~;, of the original
ilrticles published in miljor generill medical journals are studies of 10 or
fewer patients.

USES OF CASE REPORTS

Case reports serve sever,d different purposes. First, they ilre virtually
our only means of describing rare clinical events. Therefore, they Me a rich
source of ideas (hypotheses) about disease presentation, risk, prognosis,
and treatment. Case reports rarely can be used to test these hypotheses,
but they do place issues before the medical commlUlity and often trigger

208
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more decisive studies. Some conditions that were first recognized through
case reports include birth defects from thalidomide, fetal alcohol syndrome,
toxic shock syndrome, Lyme disease, and HANTA virus infection.

Case reports also serve to elucidate the mechanisms of disease and
treatment by reporting highly detailed and methodologically sophisticated
clinical and laboratory studics of a patient or small group of patients. In
this instance, the complexity, cost, and often experimental nature of the
investigations limit their application to small numbers of patients. Such
studies have contributed a great deal to our understanding of the genetic,
metabolic, and physiologic basis of human diseases. These studies repre
sent the bridge between laboratory research and clinical rescarch and have
a well-established place in the annals of medical progress.

The following is an example of how a report of a single case can reveal
a great deal about the mechanism of a disease.

Example The anesthetic halothane was suspected of causing hepatitis.
However, because the frequency of hepatitis after exposure to ha lothane was
low and there were many other causes of hcpatitis ilfter surgery, "hillothane
hepiltitis" was controversial.

Experience with a single individual helped clarify the problem (I). An
anesthetist was found to have recurrent hepatitis, leading to cirrhosis. Attacks
of hepatitis regularly occurred within hours of his rdurn to work. When he
was exposed to small doses of halothane under experimental conditions,
his hepatitis recurred and was well documented by clinical observiltions,
biochemical tests, and liver histology.

Because of this unusual case, it was clear that halothane can cause hepa
titis. But the Cilse report provided l1() inf()rmation as to \v hether this reaction
was rare or common. Subsequent studies showed that it was not a rare
reaction, which contributed to the replacement of halothane with less hepa
totoxic agents.

Another use of the case report is to describe unusual manifestations of
disease. Sometimes this can becollle the medical version of Ripley'S Be/ie-ve
l! or Not, an informal compendium of medical oddities, with the interest
lying in the sheer unbelievability of the case. The larger the lesion and the
more outrageous the foreign body, the more likely a case report is to find
its way into the literature. Oddities that are simply bizarre aberrations
from the usual course of events may titillate, but usually are less clinically
important than other types of studies.

Some so-caned oddities are, however, are the result of a fresher, more
insightful look at a problem and prove to be the first evidence of a subse
quently useful finding. nlC problem for the reader is how to distinguish
between the freak and the fresh insight. There are no rules. When all else
fails, one can only rely on common sense and a well-developed sense of
skepticism.
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BIASED REPORTING

Because case reports involve a small and highly selected group of pa
tients, they are particularly susceptible to bias. For example, case reports
of successful therapy may be misleading because journals <lfe unlikely to
receive or publish case reports of unsuccessful therapy. Perhaps the wisest
stance to take when reviewing a case report is to use it as ,1 signal to look
for further evidence of the described phenomenon in the literature or
among your patients.

Example A case report (2) described a 23-year-old woman who deve!"
oped severe abdominal pain while on treatment with enalapril for essential
hypertension. An elevated serum lipase led to a diagnosis of pancreatitis.
Symptoms resolved, and the lipase returned to normal shortly after discontin
uing the drug. The investigators found only one published case and began
an exhaustive search of the published and unpublished literature. The search
revealed an additional flO cases, the majority of which were unpublished
cases reported to the drug manufacturl:'T. The i1dditional cases lent strength
to the possibility of a causal association betwl:'en enalapril treatment and
pancn.·atitis.

With very few exceptions, case reports on their own should not serve
as the basis for altering clinical practice because of their inability to estimate
the frequency of the described occurrence or the role of bias or chance.

THE JOINT OCCURRENCE OF RARE EVENTS

Case reports often describe the joint occurrence of uncommon events,
particularly if the observed association lends itself to an interesting biologic
explanation. But even rare events occur together by chance alone; simply
observing thif; occurrence does not mean they are biologically related. As
one author (3) put it, "In a large population the issue is not whether rare
events occur, but whether they occur more frequently than expected by
chance."

Table 10.1 ilJustrates how often two relatively uncommon conditions
end-stage renal failure and use of a specific nonsteroidal antiinflammatory
drug-might occur together by chance alone. If there were no biologic
association between the two (and, as discussed later in this chapter, there
may we]] be such an association), then the probability that they would
occur together is the product of their separate frequencies. In the United
States alone, 100 cases would occur annually, more than enough to spawn
severnl case reports.

There an.' also reasons why such cases might be f;cen in medical centers
and be reported in the literature out of proportion to their frequency in
the population at large. Patients with two severe diseases might be more
likely to come to hospitals than those with either disease alone, simply
because they are sicker. It has also been shown that two discilses not
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Table 10.1
The Joint Occurrence of Two Rare Conditions: An Estimate of the Frequency and
Number of Cases of Exposure to a Nonsteroidal Antiinflammatory Drug and End
Stage Renal Failure Occurring Together if the Two Were Not Biologically RelatedB

Frequency separately
Prevalence of use of the drug (hypothetical)
Incidence of end-stlJgo ronal discClse

Incidonce of joint occurr8I1Ce

Population of the United States
Cases in the Unitcd Statos

1/100 persons
40/1.000,000/year

t/lOO x 40/1,000,000/year
= 4/1 O,OOO,OOO/year

250.000,000
'1/10,OOO,OOO/year x 250,rXJO,OOO

100/year

., Data from Hiatt RA, Friedman GD, Characteristics 01 patients referred for treatment 01 end-stage renal disease
'n a defined population, Am J Public I iealth 1911?: 7:::':8?9-8,'3,').

associated in the general population can be associated in hospitals if pa
tients with two diseases are admitted at different rates (4). Moreover, pa
tients with rn'o diseases are more interesting and so are more likely to be
written up in articles, submitted to journals, and accepted for publication.

Therefore, one should be skeptical about reports of association that arc
based on case reports only. They are simply hypotheses to be tested by
stronger methods before being believed.

Case Series
i\ case series is a study of a larger group of patients (e.g., 10 or more) with

a particular disease. The larger number of cases allows the investigator to
assess the play of chance, and p values and other statistics often appear in
case series, unlike in case reports. A case series is a particularly common
way of delineating the clinical picture of a disease and serves this purpose
well-but with important limitations.

Case series suffer from the absence of a comparison group. Occasionally,
this is not a major problem.

Example Betweeo Juoe J981 and FebnJary 1983, a ft'w years after A]])S
was first recognized and while its manifestations were being defined, re
searchers from the Centers for Disease Control gathered information on 1000
patients living in the United States who met a surveillance definition for
the disease. They described demographic and behavioral charactl;'ristics of
patients aod complications of the disease.

Pnellnlocystis carirlii pneumonia (PCP) was found in smo, Kaposi's sarcoma
in 28%, and both in 8% of pntients; 14% had opportunistic infections other
than PCP. All but6~;. of the patients could be classified into one or more of the
following groups: homosexual or bisex\Jal men, intravenous drug abusers,
Haitian natives, and patients with hemophilia (.'i).
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This report includes no comparison group of people without AIDS.
Also, the definition of cases excluded some patiellts who have AIDS by
later standards. Nevertheless, becilllse the complications arc so uncommon
in otherwise well people and the pattern of at risk groups so striking, the
report clarified our view of ATDS ilnd set the stage for m(lrc det<Jiled studies
of its manifestations and risk factors.

On the other hand, often a rel<Jtively frequent associ<Jtion <Jnd the ab
sence of a comparison group h<lve led to erroneous conclusions.

Example ]\;[;my physici,lIls iltlrihute low back pain to protrusion of one
or more intervertebral disks. Several case series used magnetic resonance
imaging (MI\I) to define the anatomy of the lumbosacral spine in patients
with low back pdin. Th~'se studies found that the majority of patients had
disk ilbnormaiities, providing- ilppilren\ support for the importance of disk
abnormalities in low back pain. However, as described in Chapter 3, MI<.I
studies of asymptomatic individuills revealed similar prevalences of disk
abnormalities, undl'rmining the argument that protruding disks seen on MRT
arc the cause of bdek pain (6).

I\nother limitation of case series is that they generally describe the clini
Gd manifestations of disease and its treiltments in a group of piltients
assembled at one point in time, a survival cohort (see Chapter 6). They
must be distinguished, therefore, from cohort studies or trials of treatment
for which <In inception cohort of patients wilh a disease is followed over
time with the purpose of looking for the outcomes of the disease. C<lse
series often look bilckward in time and th<lt restricts their value as a me<lns
of studying prognosis or GlUsl'-and-effect relationships.

Case-Control Studies
To find out whether a finding or possible cause really is more common

in patients with a given disease, olle needs a study with several features.
First ilnd foremost, in addition to il series of cases there must be <I compari
son group that does not have the disease. Second, there must be enough
people in the study so that ch<lnce is less likely to playa large pilrt in the
observed results. Third, the groups must be similar enough, even though
one is nondiseasec!, lo produce a credible comparison. Finally, if one wants
to show that a risk factor is independent of others-and, therefore, a
possible c<luse- it is necessary to Gllltn,l for aII other important differences
in the analysis of the findings.

Case reports and case series cannot tilke us this far. Neither can cohort
studies in many situations, because it is not feasible to accrue enough cases
to rule out the pl<lY of chancC'. Case-control studies, studies that compare
the frequency of a purported risk factor (generally cillied the "exposure")
in a group of cases and it group of controls, have these features.
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Figure 10.1. The design of case-control studies.

DESIGN

The basic design of a case-control study is diagrammed in Figure 10.1.
Patients who have the disease and a group of otherwise similar people who
do not have the disease are selected. The researchers then look backward in
time to determine the frequency of exposure in the two groups. These data
can be used to estimate the relative risk of disease related to the characteris
tic of interest.

Example Does the use of nonsteriodal antiinflammatory drugs (NSAJDs)
incrmse the risk of renal dismse? Resmrchcrs have addressed this question
using a Glse-control study (7). How did they go about it?

First, they had to define renal disease and find a sizable group of cases
available to he interviewed. For obvious reasons, they looked in tertiary care
hospitals, where many such cases are gathered. The cases, of course, included
only patients in whom the diagnosis had been made in the course of usual
medical care. For example, asymptomatic patients with mild renal failure
were much less likdy to be induded among the cases.

Once the Glses were assembled and the diagnosis confirmed, a compari
son, or control,' group was selected. Before deciding which people to choose
as controls, the investigators considered the purpose of the study. They
wanted to ascertain whether patients with renal failure were more likely to
have received NSAJD therapy in the past than a similar group of people with
no evidence of renal disease.

The invesligiltors found thill thecslimiltcd rdiltive risk of NSAID exposure
for renal failun' WilS 2.1, using d olta on the rates of t'xposure in Cilses and
controls, and that the excess risk was largely nmfined to older men.
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What is meant by similar? There is some controversy about this. In a
cohort study of the risk of NSI\IDs for reml disease, similarity would
mean membership in the cohort from which the cases arose, all of whom
were initially free of renal disease at the inception of the study, e.g., people
residing in the same community or enrolled in the same HMO. Is there a
natural cohort from which a group of cases receiving care at a given tertiary
care hospital can emerge?

Because of referral pf<lctices, cases assembled at hospitals and other
treatment centers usually reside in many communities, receive their care
from many physicians, and belong to no common group before becoming
ill. Therefore, there was no obviously similar group of people without
renal disease, and one had to be created.

This was done by randomly sampling people who resided in the vicinity
of each hospital. Tn this way, controls were assembled VI/ho, it was hoped,
would provide an accurate estimate of the likely prevalence of NSAllJ usc
ilmong the cases if there were no association behveen renal disease and
the use of the drugs (8).

Once the cases and controls were selected and their consent obtained,
the next step was to measure exposure to the risk factor of interest. The
drug-taking history of each case and each control had to be reconstructed.
As opposed to a cohort study where drug taking can be tracked over time,
assessment of drug exposure in this Cdse-control study rdied on memory_

It is often the past that is important in case-contra] studies, and therein
lies a potential for bias. it is difficult not to interpret the past in the light
of nne's present condition. Pm cases, this is particularly so when the present
includes a disease as serious as renal failure. Investigators can attempt to
avoid bias by using objective data such as computerized pharmacy records,
blinding subjects to the purpose of the study, blinding observers to case
status if possible, and by using cMefully defined criteri,1 to decide which
of the cases and controls received prior NSAIO therapy.

COHORT VERSUS CASE-CONTROL RESEARCH

Cohort and case-control studies arc both observational sludies of risk
factors. Sometimes the two are confused. A distinguishing feature of the
case-control design is that cases have the outcome of interest at the time
that information on risk factors is sought. In cohort research, on the other
hand, people are free of disease at the beginning of obsen'ation when
the measurement of the risk factors is made. Figure 10.2 summarizes the
differences behv('en case-control ,1Od cohort designs. Since the temporal
relationship between putative Cduse and effect is ,10 important criterion
for causality (sec Chapter 11), cohort studies provide ,1 stronger basis for
a causal interpretation.

Table 10.2 summarizes the essential characteristics of cohort, case-
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Figure 10.2 A comparison of case-control alld cohort studies. Studies of NSAIDs
as a risk factor for retial failure.

controL and prevalence research designs and illustrates their differences.
As will be discussed later, it is these difrerellces that make the cilse-control
study particularly susceptible to bias_

THE ODDS RATIO

How do we decide whether thefe is an increased risk? Figure 10.3 shows
the calculation of risk for cohort and case-control studies. In a cohort study,
the susceptible population is divided into two groups-exposed to
NS/\lDs (/\ + B) and unexposed (C t D)-at the outset. Cases of renal
disease emefge naturally ovef time in the exposed group (A) and the
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Case-Control, and Prevalence Designs

Controls selected by investigator to resemble
cases

Exposure measured, reconstructed, or
recollected after development of disease

Risk or incidence 01 disease cannot be
measured directly: relat've nsk of exposure
can be estimated by the odds ratio

Noncases include those free at disease at the
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by a single

Prevalence

Begins with a defined population

Cases not selected buf ascertained
examination of the population

Exposure measured, reconstructed. or
recollected after development of disease

Risk or incidence of disease cannot be
measured directly: relative risk of exposure
can be estimated by the odds ratio

00

Case-Control

Population at risk often undefined

Cases selected by investigator from
available pool of patients

Begins with a defined population at risk

Cases not selected but ascertained by
continuous surveillance {presumably all
cases)

Controls, the comparison group (i.e ..
nonc.."ISes), not selected-evolve naturally

Exposure measured before the development
of disease

ColKlrt

Risk or incidence of disease and relative risk
nleasured directly

Table 10.2
Summary of Characteristics of Cohort,
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Cases Noncases

..............
Exposed A i

Not ) Dexposed .....
A+C

Cohort Study

Relative risk ==

AI (A +B)
C I (C + D)

B+D

Case-control Stu~r

Odds ratio ==

A/(A+C)

C/(A+C) A/C AD
B I (B + D) = BID = BC
D/(B+ D)

Figure 10.3 Calculation at relative risk for Cl cohort study and odds ratio (estimated
relative risk) for a case-control study.

unexposed group (e). This provides us with appropriate numerators and
denominators to calculate the incidences of renal disease in the exposed
[A/(Al B)] and unexposed [C/(C + D)] cohorts. It is also possible to
calculate the relative risk.

Incidence of disease in the exposed
Relative risk =

Incidence of disease in the unexposed
A/(A + B)

C/(C + lJ)

Case-control studies, on the other hand, begin 'Nith the selection of a
group of cases of renal disease (A-I C) and another group of controls
(B + 0). There is no way of knowing disease rates because these groups
are determined not by nature but by the investigators' selection criteria.
Therefore, an incidence rate of disease among those exposed to NSAIOs
and those not exposed C8Ilnot be computed. Consequently, it is not possible
to obtain a rdative risk by dividing incidence among users by incidence
among nonusers. What does have meaning, however, are the relative fre
quencies of people exposed to NSAIDs among the cases and controls.

It has been demonstrated that one approach for comparing the fre
quency of exposure among cases and controls provides a ml'ilsure of risk
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that is conceptually and mathematically similar to thc relative risk. This is
the odds ratio, defined as the odds2 that a case is exposed divided by the
odds that a control is exposed

[AliA + C) 7 C/IA + C)[

[B/IB + OJ O/(B + 0)1

The odds ratio simplifies to

A/C
BID

AD

BC

As is seen in Figure 10.3, the odds ratio can be obtained by multiplying
diagonally <lcross the table and then dividing these cross-products.

Note th<lt if the frequency of exposure is higher among cases, the odds
r<ltio win exceed 1, indic<lting increased risk. Thus the stronger the associa
tion between the exposure and disease, the higher the odds ratio. Con
versely, if the frequency of exposure is lower among C<lses, the odds ratio
will be less than 1, indicating protection. The meaning of the odds ratio,
therefore, is analogous to the relative risk obtained from cohort studies.
The similarity of the information conveyed by the odds ratio and the rela
tive risk h<ls led some investigators to report odds ratios as "estimated
relative risks" or simply "relative risks."

The odds ratio is approximately equal to the relative risk only when
the incidence of disease is low, because of assumptions that must be made
in the calculations. How low must the rates be? The answer depends in
part on the size of the relative risk (9). In general, however, distortion of
the relative risk becomes large enough to matter at disease rates in unex
posed people of greater than about 1/100. Fortunately, most diseases, par
ticularly those examined by means of case-control studies, are considerably
less common than that rate.

ADVANTAGES OF CASE-CONTROL STUDIES

The case-control design has become a common and important method
used to study etiology and clinical questions. What are its advantages?
first, the investigators can identify cases unconstrained by the natural
frequency of disease and yet can still make a comparison. Cohort studies
<Ire quite inefficient for this purpose. For example, to gather information
<lbout the risk of NSAID use in 100 individu<lls with end-stage ren<ll dis
ease, one would have to follow a cohort of 1,000,000 for about 21

/ 2 years
(see Table 10.1). Obviously, because of the expense and logistic difficulties
of such a study, it would usually not be feasible. In contrast, it has been
relatively inexpensive and easy to assemble 100 or more cases from hasp i-

'For a l'cmindcl' of whal odd' mca"5, scc pagc 04,
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tals and other treatment facilities, find simililf groups without the disease,
and compare frequencies of past NSAID use. Tn this way, several hundred
study subjects can be interviewed in a matter of weeks or months, and an
answer can be obtained at a fraction of the cost of a cohort study.

A real advantage of the case-control study in exploring the effect of
some causal or prognostic factors is that one need not wait for a long time
for the answer. Many diseases have a long latency-the period of time
between exposure to a risk factor and the expression of its pathologic
effects. For example, it has been estimated that at least 10-20 years must
pass before the carcinogenicity of various chemicals becomes manifest. It
would require an extremely patient investigator and scientific community
to wait so many years to see if a suspected risk to health can be confirmed.

Because of their ability to address important questions rapidly and effi
ciently, case-control shtdies play an increasingly prominent role in the
medical literature. If one wants to study cause and effect using a relatively
strong method, the case-control approach is the only practical way to study
some diseases. Case-control studies comprise a growing percentage of all
original articles and the majority of epidemiologic articles. Their quickness
and cheapness justify their popularity as long as their results are valid;
and here is the problem, because case-control studies are particularly prone
to biased results. These biases are discussed in the next section.

Avoiding Bias in Case-Control Studies
In many case-control studies, the investigators create the comparison

groups rather than allow nature to determine who in a population becomes
a case and who remains a noncase or control as in cohort or prevalence
studies. This element of manipulation is a necessary evil because the valid
ity of a case~control study depends on the comparability of cases and
controls.

Cases and controls are comparable if the controls would have been
captured as cases if they developed the condition under study. In other
words, to be comparable, cases and controls must be members of the same
base population. A second, more controversial issue is whether to be com
parable, cases and controls must have an equal opportunity to receive the
exposure (10). For example, the opportunity to have received NSAIDs
(discussed earlier) would presumably be greater among those who have
received regular medical care and perhaps still greater among those with
joint symptoms. Should both cases and controls have similar symptoms
and medical care experiences. Opinions differ, but it is clear that if one
insists that cases and controls have the same degree of arthritic symptoms
and the same doctor, the opportunity to evaluate risk may be impossible
if the doctors involved tend to either prescribe or not prescribe NSAIDs
to most of their patients with common causes of musculoskeletal pain.
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Therefore, ensuring comparability between cases and controls requires
careful consideration of the circumstances under which an individual be
comes exposed.

SELECTING CASES

In the past, most case groups in case-control studies were assembled
from among patients receiving care in hospitals or other medical treatment
facilities. The proliferation of disease registries, such as the National Cancer
Institute's Cancer Surveillance System, and computerized diagnostic data
from health plans has made it much more feasible to select all or a represen
tative sample of all cases occurring in a defined population. Population
based cases should be more typical and include a wider spectrum of disease
severity.

The cases in case-control research should, if possible, be new (incident)
cases, not existing (prevalent) ones. The reasons are based on the concepts
discussed in Chapter 4. The prevalence of a disease at a point in time is a
function of both the incidence and duration of that disease. Duration is in
turn determined by the rate at which patients leave the disease state (be
cause of recovery or death) or persist in it bf..>cause of a slow course or
sllccessful palliation. Tt follows from these relationships that risk factors
for prevalent disease may be risk factors for either incidence and duration
or both; the relative contributions of the two cannot be distinguished. An
exposure that causes a particularly lethal form of the disease, thereby
lowering the proportion of prevalent cases that are exposed, would result
in a lowered relative risk if prevalent cases were studied. The rcader can
be somewhat reassured that the results of a case-control study are not
biased by the selection of prevalent cases if the odds ratios obtained are
similar in short- and long-duration cases.

SELECTING CONTROLS

A major potential for bias exists in many case-control studies because
the controls are not a naturally occurring group, but one constructed for
the study by the investigators. Which controls are appropriate in relation
to the cases?

There are several strategies for choosing the right controls. First, the
best way to minimize selection bias is by selecting both cases and controls
from the same defined population. If cases comprise all cases or an un
biased sample of all cases arising in the population, whether accrued in a
cohort study or identified in a prevalence survey, then controls can be a
random sample of all the other people in the same population. TIlis strategy
is called a population-based or nested (in a cohort) case-control study. Controls
should meet the same general inclusion/exclusion criteria as the cases and
be sampled from the population or cohort ilt about the same times as the
cases arose.
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Example Does habitual, vigorous physical activity protect against pri
mMy cardiac arrest in people without apparent heart disease? An emergency
medical information system facilitated the conduct of a population-based
case-control study to answer this question (11). Cases were selected from
1250 people living in Seattle and suburban King County, Washington, who
had suffered out-of-hospital primary cardiac arrest (PCA) during a ddinl'd
period of time. Cases were chosen from paramedic reports; paramedics at
tended nearly all instances of peA in the area at the time.

Controls were sell'cted by dialing randomly selected telephone numbers
in the same area; most people in the area had telephones in their homes.
Both cases and controb had to meet criteria for entry: ag-e 25-7.'i years; no
clinically recognizable heart disease; no prior disease that limited activity;
and a spouse who could provide information about habitual exercise, the
exposure of interest. Controls were matched to cases on age, sex, marital
status, and urban or suburban residence. Spouses of both cases and controls
were asked about leisure-time aetivity_ The entry criteria sought to ensure
that cases and controls were members of the same base population and hild
opportunities to engage in physical activity_

The results, based on lb.') eligible Cilses and controls, confirmed previous
studies. The risk of PCA ,vas 6_'i-75~;) lower in persons with high-intensity
leisure-time activity than in more sedentary people.

Although selecting cases and controls from a defined population or
cohort is preferable, selecting both from hospitals or other health organiza
tions is often more feasible. But studying people in health care settings is
also more fallible because patients are usually a biased sample of all people
in the community, the people to whom the results should apply.

A second set of strategies for having controls who are comparable to
cases include the ones illustrated by the examples in this chapter and
presented in Chapter 6: restriction, matching, stratification, and adjust~

ment. Matching poses the greatest challenges and will be discussed here,
Cases can be matched with controls so that for each case one or more

controls are selected that possess characteristics in common with the case.
Researchers commonly match for age, sex, and residence, because these
are frequently related to disease. But matching often extends beyond these
demographic characteristics when other factors are known to be important.
Matching increases the useful information obtainable from a set of cases
and controls because it reduces differences between groups in determi
nants of disease other than the one being considered and thereby allows
for a more powerful (sensitive) test of association. But matching: carries a
risk. If the investigator happens to match on a factor that is itself related
to the exposure under study, there is an increased chance that the matched
case and control will have the same history of exposure. For example, if
cases and controls were matched for the presence of <lrthritic symptoms,
which are commonly treated with NSA1Us, more matched pairs would
likely have the same history of NSAJD use. This process, called OVlTltlufch·
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ing, will bias the odds ratio toward 1 and diminish the ability of a study
to detect a significantly increased or deCfmsed cdds ratio.

A third strategy is to choose more than one control group. Because of
the difficulties attending the selection of truly comparable control groups,
a systematic error in the odds ratio may arise for <lny one of them. One
way to guard against this possibility is to choose more than one control
group from different sources.:l One approach used when Cilses are drawn
from a hospital is to choose one control group from other patients in the
samc hospit<ll ilnd a second control group from the neighborhoods in which
the cases livc. If similar odds ratios are obtained using different control
groups, this is evidence ag<linst bias, because it is unlikely that bias would
affect othenvise dissimilar groups in the same direction and to the same
extent. If the estimates of relative risks arc different, thilt is a signal that
one or both are biased, and an opportunity exists to investigate where the
bias lies.

Example In a case-control study of l:'strogl:'n and endometrial cancer,
cases were identified from a single teclC"hing hospitid. Two control groups
wen' selected: one from among gynecologic admissions to the same hospital
and the second from a random sample of women living in the area served
by the hospital.

The presence of other diseases, such as hypertension, diabetes, and gall
bladder disease, was much more common among the cast's and the hospital
control group, presumably reflecting the various forces that lead to hospital
i7.ation. Despite these differences, the two control groups reported much less
long-term t'strogen usc than did the cases and yielded very similar odds
ratios (4.1 and 16).

The authors (l2l cOll{lud<,d that "this consistency of results with two very
different comparison groups suggests thilt neither is significantly biased and
lhal the results .. are reasonably clccurate."

Options for selecting cases and controls are summarized in Figure 10.4.
If cases are all occurring in i1 defined populaLion (or a representative sample
of all cases), then controls should be too. nlis is the optimal situation. If
cases are a biased sample of all cases, as they arc in most hospital samples,
then controls should be selected with similar biases.

MEASURING EXPOSURE

Even if selection bias can be avoided in choosing cases and controls,
the investigator faces problems associated with validly measuring expo
sure after the disease or outcome has occurred, i.e., avoiding measurement
bias. Case-control studies are prone to three forms of mC<lsurement bias

1Ch",."ing tw" or more conlr,,1 gmup' ,'cr cose t;r0up, i, dilf~"·,,t f",m ch"'''ing Iw(' or m(m.' c"ntr,,1s
pcr case, Til., btkr i, d"",·, to illn",,,,, ,r,lh,ti,al pow"r (or prc",i,ion "I the c,t,male of rd"ti"" 'i,kl. Tn
W'n"ral, using mOl'e thon ,'n,' contr"T ,uhi~ct T)(" """, ,,-,ults in ,m"IT I:>ulu,dul gain, in pnwer. bullherc
i, Tittle u",fuT ,d"ant"I:<' to "dding mor,' controls ,'er C05C beyond thr~~ <>r lour.
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Figure 10.4 Two strategies for selecting cases and controls from the general popu
lation: unbiased samples and samples witll matchirlg biases.

because the exposure is measured after the onset of the disease or outcome
under study.

l. nl(' presence of the outcome directly affects the exposure;
2. The presence of the outcome affects the subject's recollection of the

exposure; and
3. The presence of the outcome affects the measurement or recording of

the exposure.

nl(' first bias is particularly problematic if the exposure under study is
a medical treatment, since the early manifestations of the illness may lead
to treatment. This is sometimes referred to as confounding by indication.
ror example, a case-control design was used to determine whether beta
blocker drugs prevented first myocardial infMctions in patients being
treated for hypertension (13). Because angina is a major indication for use
of beta-blockers, the investigators carefully excluded any subjects with a
history suggesting angina or other mani festation of coronary heMt disease.
They found that hypertensive patients treated with beta-blockers still had
a significantly reduced risk of nonfatal myocardial infarctions, even after
those with angina or other evidence of coronary disease \ve[(' carefully
excluded.

Second, people with il disease may recall exposure differently from those
without the disease. With all the publicity surrounding the possible risks
of various environmental exposures or drugs, it is entirely possible that
victims of disease would remember their previous exposures more acutely
than nonvictims or even overestirnilte their exposure. The intluence of
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disease on memory status, called reca]] bias, must be considered when
measurement of exposure relics on memory.

There aTe two protections against biased remembering. First, there
should be alternative sources of the same information, whether written
documents, such as medical or other records, or interviews with rc!iJ
tives or other knowledgeable individuals. Second, the specific purpose
of the study should be concealed from the study subjects. It would be
unethical not to inform subjects of the general nature of the study ques
tion. But to provide detailed information to subjects about the specific
hypotheses could so bias the resulting information obtiJined as to com
mit another breach of ethics-involving subjects in a worthless research
project.

The third problem, whether the presence of the outcome influences
the way in which the exposure is measured or recorded, should be
understandable to all students of physical diagnosis. If a resident admit
ting a patient with renal disease to the hospital is aware of a possible
link between NSAID usc and renal failure one could expect the resident
to question the patient more intensely about previous analgesic use and
to record the information mOTe carefully. lntcrvie"wers who iJTe aware
of a possible relationship between exposure and disease and also the
outcome status of the interviewee would be remarkiJble indeed if they
conducted identiCiJl interviews for cases and controls. The protections
against these sources of biiJS iJre the same as those mentioned above:
multiple sources of information and blinding the data gatherers, 1.('.,

keeping them in the dark as to the hypothesis under study.

SCIENTIFIC STANDARDS FOR CASE-CONTROL RESEARCH

It has been suggested that one should judge the validity of a case
control study by first considering how a TiJndomized controlled trial of
the SiJme question would have been conducted (14). Of course, one could
not actually do the study that \ViJY. But a randomized controlled trial
would bl' the scientific standard against which to consider the effects
of the various compromises that are inherent in a case-control study.

One would enter into a trial only those patients who could take the
experimental intervention if it were offered, so in a case-control study
one would select cases and controls who could have been exposed. For
example, a study of whether NSl\lDs are a cause of renal failure would
include men and women who had no c(lntraindications to taking
NSI\IDs, such as peptic ulcer. Similarly, both cases and controls should
have been subjected to equal efforts to discovcr renal disease if it were
present. These and other piHalle1s betwcen clinical trials and case-con
trol studies can be exploited whell trying to think through just what
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could go wrong, how serious a problem il; it, and what can be done
about it.

There have also been efforts to set out criteria for sound case-control
studies (15). To apply these guidelines requires an in-depth understand
ing of the lllany possible determinants of exposure and disease, as well
as the detection of both, in actual clinical situations.

USING CASE·CONTROL STUDIES TO EXAMINE HEALTH CARE

The major use of case-control studies has been to tel;t hypotheses about
the etiology of disease. More recently, investigatorl; have exploited the
advantages of the case-control design to study questions related to the
provision and quality of health care.

Example 1s cerebral palsy and fetal death preventable? BTitish investiga
tors (16) used a caslO-control design to compUTe the antepartum care received
by 141 babies developing cerebral palsy and 62 dying intrapartum or neona
tally. Each case was matched with two healthy babies born at the same time
and place. A failure to respond to signs of severe fetal distTess was more
common among cases than controls but only accounted fOT a V,'Ty small
percentage of babies with cerebral palsy.

Because most I;erious adverse effects of poor-quality medical care are
relatively rare, the case-control design providel; an efficient strategy for
examining the relationship between deviations from guidelines or other
protocols and poor outcomes.

Summary
Much of medical progress is derived from the careful study of sick

individuals. Cal;l;' reports are studies of just a few patients, e.g., -dO. They
are a useful means of describing unusual presentations of disease, examin
ing the mechanisms of disease, and raising hypotheses about causes ilnd
treatments. However, case reports are particularly prone to bias ilnd
chance. Case series-studies of larger collections of patients-still I;uffer
from the absence of a reference group with which to compare the C'xperi
ence of the cases and from sampling cases at various times in the course
of their disease.

In case-control studiel;, a group of cases is compared with a similar
group of noncaSes (controls). A major advantage resides in the ability to
assemble easel; from treatment centers or disease registries as opposed to
finding them or waiting for them to develop in a defined populiltion at
risk. Thus case-control studies are much less expensive and much quicker
to perform than cohort studies and the only feasible strategy for studying
risk factors for mrc diseases. Relative risk can be estimated by the odds
ratio, although it is not possible to compute incidences or relative risk
directly. The disadvantages of the case-control design all relate to its con-
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siderable sus~~eptibilityto bias. This problem is most related to two charac~

teristics of case-control research. First, the grouFs to be compared are com
monly constructed by the researcher and are not constituted naturally;
second, the exposure is measured after the disease has already occurred.

Given the vulnerability of case-control studies to bias, what place do
they have in clinical epidemiologic research? To some, case-control studies
are unscientific, illogical, and a curse. To others, they are viewed as the
essential first step in studying many medically important questions. TIlere
is nearly universal agreement that cohort studies provide stronger, more
valid evidence and, if feasible, are the design of choice. But with appro
priate attention to possible sources of bias, case-control studies can provide
a valid and efficient method to answer many clinical and health services
questions.
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Examf,Ie Some yf.'iHS ago, medical students were presented a study of
the relationship betwlCen the cigarette smoking habits of obstetricians and
the vigor of babies they delivered. Infant vigor is measured by an Apgar
score; a high score (9-10) indicates that the bahy is healthy, Wh<.'fCilS a low
score indicates the baby might be in trouble and require close monitoring.
The study suggested that smoking bv obstetricians (not in the delivery suite!)
had an ,{dvcrse effect on Apgilf sCI)re:; in newborns. Tnt' medical studl'nts
wefe then asked to (omment on what lVilS wrong with this study. Afkr
many suggestions, someone finally said that the conclusion simply did not
make sense,

It W,lS then acknowledged thilt, altholJgh the study was rca!, the "expo
sure" and "disease" had been illtered for the presentation. Insteild of compar
ing smoking habils of obstetricians with Apgar scores of newborns, the study,
published in 1R4.1 by Oliver Wendell Holmes (then professor of anatomy
and physiology and later dean of Harvard Medical School), concerned hand
washing habits by obstetricians and subsequent puerpeml sepsis in mothers.
The observations led Holmes (1) to conclude: "The disease kWl\'m as puer
peral fever is so far contagious, as to be frequently carried from patient to
patient by physicians and nurses."

One mid-19th century response to Holmes's assertion that unwashed
hands caused puerperal fever was remarkably similar to that of the medical
students: The findings made no sense. "1 prder to attribute them [puerperal
sepsis casesl to accident, or Providence, of which I em form a umn'ption,
rather than to conta/;ion of which I cannot form any dear idea, at least as to
this particular malady," wrote Dr. Charll;'s D. Meigs, profl;'ssor of midwifery
and the diseases of women and children at Jefferson Medical College (1).

Holmes and Meigs wcrc confronted with a question iJbout cause.
Uolmes was convinced by his data that the spread of puerperal sepsis was
caused by obstetricians not washing their hands between deliveries. He
could not, however, supply the pathogenetic mechanism by which hand
washing was related to thc disease, as bacteria had not yet bcen discovered.
Meigs, therefore, remained unconvinced that the cause of puerperal sepsis
had been cstablished (and presumably did not bother to wash his hands).

Clinicians frequently arc confronted with information about possible

228
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causill relationships. Tn fact, most of this book has been about methods
used to establish cause, although we have not c,,!led special attention to
the term.

Tn this chapter, we review concepts of Ciluse in clinical medicine. We
then outline the kinds of evidence that, when present, strengthen the likeli
hood that an association represents a causal relationship. We illso deal
briefly with a kind of research design not yet considered in this book:
studies in which exposure to a possible cause is known only for groups
and not specifically for individuals in the groups.

Concepts of Cause
Webster's (2) defines cmlse ilS "something that brings about an effect or

a result." In medical textbooks, cause is usually discussed under such
headings as "etiology," "pathogenesis," "mechilnisms," or "risk factors."

Ciluse is important to pfilcticing physicians primarily in guiding their
approach to three clinical tasks: prevention, diagnosis, and treatment. The
clinical example at the beginning of this chapter illustrates how knowledge
of cause-and-effect relationships can lead to successful preventive strate
gies. Likewise, when we periodically check patients' blood pressures, ,ve
are reacting to evidence that hypertension causes morbidity and mortality
and that treatment of hypertension prevents strokes and myocardial in
farction. The diagnostic process, especially in infectious disease, frequently
involves a search for the causative agent. Less directly, the diagnostic
process often depends on information about cause when the presence of
risk factors is used to identify groups of patients in whom disease preva
lenn~ is high (see Chapter 3). Finally, belief in a causal relation..<;hip under
lies every therapeutic maneuver in clinical medicine. Why give penicilHn
for pneumococcal pneumonia unless we think it will cause a cure? Or
advise a patient with metastatic cancer to undergo chemotherapy unless
we beli('ve the antimetabolite will cause a regression of metastases and a
prolongation of survival, comfort, and/or ability to carryon daily
activities?

By and large, clinicians are more interested in treatable or reversible
than immutable causes. Researchers, on the other hand, might also be
interested in studying causal factors for which no efficacious treatment
or prevention exists, in hopes of developing preventive or therapeutic
interventions in the future.

SINGLE AND MULTIPLE CAUSES

In 1882, 40 years after the Holmes-Meigs confrontation, Koch set forth
postulates for determining that an infectious agent is the cause of a disease.
Basic to his approach was the assumption that il pilrticular disease has one
cause and a particular cause results in one disease. He stipulated that:
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1. The organism must be present in every case of the disease;
2. The organism must be isolated and grovvn in pure culture;
3. The organism must cause ,1 specific disease when inoculated into an

illlimal; and
4. The organism mllst then be recovered from the ilnimal and identified.

Interestingly, he did not consider the effect of treatment in establishing
cause, something he might have added a century later when effective
treatments had become more common in medicine.

Koch's postulates contributed greatly to the concept of cauS(' in medi
cine. Before Koch, it was believed that many different bacteria caused any
given disease. The application of his postulates helped bring oreler out of
chaos. They are still useful today. That a given organism causes a given
disease was the basis for the discovery in 1977 that Legionnaire's disease
is caused by a Gram-negative bacterium, and the determination in the
1980s that the newly discovered HTV causes ATns.

For most diseases, however, cause cannot be established simply by
Koch's rules. Sometimes, too much reliance on Koch's approach has gotten
the medical community into trouble by narrowing our perspectives. Would
that disease was so simple that we always had a single cause-single disease
relationship. Smoking causes lung caIlcer, chronic obstructive pulmonary
disease, peptic ukers, bladder cancer, and coronary artery disease. Coro
nary artery disease has multiple causes, including cigarette smoking, hy
pertension, hypercholesterolemia, and heredity. It is also possible to have
coronary artery disease without any of these knuwn risk factors.

Usually, many factors act together to cause disedse in what has been
called the "",'eb of causation" (3). A causal web is well understood in
conditions such as coronary artery disease, but is also true for infectious
diseases, where presence of the organism is necessary for disease to occur
but not necessarily sufficicnt. ,\Ins cannot occur without exposure to TTlV,
but exposure to the virus does not necessarily result in disease. .For exam
ple, exposure to HIV rarely results in AIDS after needlesticks (3 or 4/10(0),
because the virus is not nearly as infectious as, say, the hepatitis U virus.

PROXIMITY OF CAUSE TO EFFECT

lNhen biomedical scientists study cause, they usually search for the
underlying pathogenetic mechanism or final common pathway of disease.
Sickle-cell anemia is an example, with the genetic change associated with
hemoglobin S (HbS) leading to polymerization and erythrocytic sickling
when fTbS gives up its oxygen. J::Iucidating pathogenesis of disease has
played a crucial part in the advancement of medical science in this century.

However, disease is abo determined by less specific, more remote
causes, or risk factors, such as people's behavior or characteristics of their
environments. These factors may be even more important causes of disease
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than are pilthogendic mechanisms. For eXilmp1c, a large proportion of
cardiovascular and cancer deilths in the United States can be traced to
behavioral and environment,l! factors; the spread of AIDS is due primarily
to sexual behaviors and drug use; and deaths from violence and acci
dents are rooted in social conditions, acct.'ss to guns, and alcohol and
:-;eatbelt ust.'.

To view cause in medicine exclusively as cellular and subcellular pro
cesses restricts the possibilities for useful cl inical interventions. Tf the patho
genetic mechanism is not clear, knowledge of risk factors milY still lead to
very effective treatments and preventions. Thus Holmes was right in his
assertion that obstetricians should wash their hands, evell though he had
little notion of bacteria.

For many diseases, both pathogclletic mechanisms <lnd nonspecific risk
factors have been important in the spread and control of the diseases.
Sometimes the many different causes interact in complicated ways.

Examp!l' Koch's postulates were orig-inilily used to l.'stablish thilt tuber
culosis is cilused by inoculiltion uf thl.' acid-fast bacillus Mycobacterium tuber
Cillosis into susceptible hosts_ TIll' final comrnon pathway of tuberculosis is
the invasion of host tissue by the bilcteria_ horn a pathogenetic perspective,
conquering the diseils<, required antibiolics or vaccines th,lt 'werl.' effective
ilg-ainst the organism. Through bioml.'dical research efforts, both hilve been
achieved.

However, the develupment of the disease tuberculosis is h1r more com
plex. Other impurtant causes arc the susceptibility of the host and the degree
of exposuH' (Fif;. 11.1). In fad, th,'se Ciluses delennim" whether invilsion of
host tissue cail occur.

Crowding
Malnutrition
Vaccination
Genetic

~xP9slJreto
MYCOBACTtRiUM

Tissue Invasion and Reaction

~',r, INFECTION TUBERCULOSIS
~4iil'

Risk Factors for
Tuberculosis Pathogenesis

Mechanisms of
Tuberculosis

'II Distant from Outcome ----. +- Proximal to Outcome -----+

Figure 11.1. Causes of tuberculosis.
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Some clinicians would be hesitant to label host susceptibility and level
of exposure as causes of tuberculosis, but they <Ire very important compo
nents of cause. Tn fact, social ilnd economic improvements influencing- host
susceptibility, such as less crovvded living space and better nutrition, may
have played a more prominent role in the decline in tuberculosis rates in
developed countries than treatments developed through the biomedical
pathogenetic research model. Figure 11.2A shows that the death rate from
tuberculosis had dropped dramatically long before antibiotics were intro
duced. (The vaccine came even later.)

Since 1985 the number of TB cases in the United States has increased
(4) (Fig. 11.2B). 'Why is this so? A total of 60°/,) of the increase occurred in
foreign-born persons. HIV infections arc also a factor, with an increasing
number of susceptible people, as AIDS spreads and weakens the immune
systems of its victims. These susceptible hosts are more likely than the
general population to be exposed to tuberculosis, because both AIDS and
tuberculosis are more common in economically depressed populations.
FinalIy, changes have occurred in the baci1lus itself, with the evolution of
multidrug resistant strains. To complicate the picture further, multidrug
resistance also is caused by a wcb of circumstances. Genetic changes in
the Mycobacterium are more likely to occur with medication noncompliance
(5), which is more likely among- intravenous drug users, an important risk
group for ATDS. Changes in the bacterium's genetic makeup may also be
related to high replication rates in immunodeficient hosts. Thus the inter
play of environment, behavior and subcellular biology may be incredibly
complex when thinking about cause.

Another example of the importance of both pathogenetic and epidemio
logic approaches to cause is the recent decline in deaths from coronary
arkry disease in the United States.

Example During the polsl two decades, the death rate from coronary
artery disease has dropped more than a third. This decline accompanied
decreclsed exposure, in the popUlation as a whole, to several risk factors for
cardiovascular disease: A larger proportion of people with hypertension are
being tn.'ated effectively, middle-aged Inen are smoking less, and fat and
chok'stero! consumption has declined. These developments were, at least in
part, the result of both epidemiologic and biOinedica Istudies and have spared
tens of thousands of lives per year. It is doubtful that they would have
occurred without understanding" of both the proximal ml'cha"nisms and the
more remotl' origins of cardiovascular disease (6).

INTERPLAY OF MULTIPLE CAUSES

When more than one cause act together, the resulting risk may be greater
or kss than would be expected by simply combining the effects of the
separate causes. Clinicians call this phenomenon synergism if the joint
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Figure 11.2. A, Declining death rate from respirafory tuberculosis in England and
Wales over the past 150 years. (From McKeown T The role of medicine: dream,
mirage or nemesis. London: Nuffield Provincial Hospital Trust, 1976.) B, Excess
tuberculosis cases in the United States, 1985-1992. Difference between expected
and observed number of cases. Dotted line, observed cases; solid line, expected
cases. (From Cantwell MF, et al. Epidemiology of tuberculosis in the United States,
1985 through 1992. JAMA 1994;272:535-539.)
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Figure 11.3. Interaction of multiple causes of disease, The risk of developing car
diovascular diseaso in men according to the level at several risk factors alone and
in combination. Abnormal values are in shaded boxes. (Redrawn from Kannel WB,
Prevontive cardiology. Postgrad Med 1977;61:74-85.)

effect is grcilter than the sum of the effects of the individual causes, and
antagonism if it is less,l

Example Figure 11.3 shows the probdbility of developing cardiovascular
disease over an 8-pcilf period among men aged 40. Men who did not smoke
cigarettes, had low serum cholesterol values, and had low systolic blood
pressure readings were at low risk of developing disease (l2/IOOO). Risk
increased, in the range of 20 to 61/1000, when the various factors were
present individually. But when all three factors wen~ present, the absolute
risk of cardiovascular disease (317/1000) was ahnost three times greater than
the sum of the individual risks (7).

Elucidation of cause is more difficult when many factors playa part
than when a single one predominates. However, when multiple causative

i Slnli,licu! ;"lemc/ioll is pr~,~nt when combination, of "ariahks in a malhemoti""l modd add to the
model's expldnah>ry power aller lhe nd ~fh~·t,or the individual pr",lict,,, variables have been t"k~n into
.m"Ollllt. It is eoneeplu"lly rt'btl'd to biologic SY"~Tgy ond Jnla8oni,m but is " m<1themillical con,trud,
not <1n ob"'rvabh' phenomenon in nalur<'
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factors are pre[;ent and interact, it may be possible to make a substantial
impact on a patient's health by changing only one, or a small number, of
the causes. Thus, in the previous example, getting patients to give up
[;moking and treating hypertemion might substantially lower the risk of
developing cardiovascular disea[;e in men, even in the continuing presence
of other causative factors.

EFFECT MODIFICATION

Effect modifiration is a special type of interaction. It is present when the
strength of the relationship between two variables is different according
to the level of some third variable, called an effect modifier.

t;xample Because of conflicting results of studies evaluating the eHec"
tiveness of thia7ide diuretics in preventing coronary heart disease, a study
was done to examine whether there was a relationship between the dose of
thiazide and the risk of sudden death, and whether adding potassium
sparing therapy modified the effect. Figure 11.4 summarizes the results. TIle
dOSl' lif thiazide dell'rmint;>s its effect, with a low dose, 25 mg, protecting
against sudden death and a high dose, IOU rng, increasing the chances of
sudden death. Adding potassium-sparing tht;>rapy modifies the effect at sev
eral doses, adding a protective effect (8).

Establishing Cause
Tn clinical medicine, it is not possible to prove causal relationships be

yond any doubt. It is only possible to increase one's conviction of a cause
and-effect relationship, by means of empiric evidence, to the point at which,
for all intents and purposes, cause is established. Conversely, evidence
against a cau[;e can be mounted until a cause-and-effect relationship be
comes implausible. The possibility of a postulated cause-and-effect rela
tionship should be examined in as many different ways as pos[;ible. This
usually means that several studies must be done to build evidence for or
against cause.

ASSOCIATION AND CAUSE

Two factors-the suspected cause and the effect-obviously must
appear ttl be associated if they are to be considered as cause and effect.
However, not all associations are causal. Figure 11.5 outlines other
kinds of associations that must be excluded. Fir[;t, a decision must be
made as to whether an apparent association between a purported cause
and an effect is real or merely all artifact because of bias or random
variation. Selection and measurement biases and chance are most likely
to give rise to apparent associations that do not exist in nature. If these
problems can be considered unlikely, a true association exists. But
before deciding that the association is causal, it is necessary to know
if the association occurs indirectly, through another (confounding) fac-
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Figure 11.4. Example of effect moditication: how the risk of cardiac arrest in pa
tients using thiazide diuretics (compamd with the risk of cardiac arrest in patients
using beta-blockers) changes according to use of potassium-sparing diuretics, Odds
ratios-with 95% confidence intervals (GI) ---increase with increasing dose of diumtic,
suggesting that it is safer to use beta-blockers than thiazide diuretics. However, with
the addition of potassium sparing diuretics, thiazide diuretics cause a lower risk of
cardiac arrest than beta-blocker therapy, (Redrawn from Siscovick OS, et al. Diuretic
therapy for hypertension and the risk of primary cardiac arrest. N Engl J Med
1994; 330:1852-1857,)

tor, or directly. If confounding is not found, a causal relationship is
likely.

At some future time another factor may be found that is more di
rectly causal. Por example, several studies found that women fared
more ponrly than men after coronary bypass surgery and it was
thought that sex was related to postoperative prognosis. On further
study, small body surface area-which correlated with small-diameter
coronary arteries-was found to be an important variable leading to
heart failure and death, not being female per se (9). Thus factors that
,lTe considered Gluses at one time are sometimes found to be indirectly
related to disease later, when more evidence is available.
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Figure 11.5. Association and cause.

RESEARCH DESIGN

When considering a possible GlUsal relationship, the strength of the
research design used to establish the relationship is an important piece of
evidence.

Of the research designs so far discussed in this book, well-conducted
randomized controlled trials, with adequate numbers of patients; blinding
of therapists, patients, and researchers; and carefully standardized meth
ods of measurement and analysis are the best evidence for a Ciluse-and
effect relationship. Randomized controlled trials guard against differences
in the groups being compared, both for factors already known to be im
portant, which can be overcome by other methods, and for unknown con
founding factors.

We ordinarily usc randomized controlled trials to provide evidence
about causal relationships for treatments and prevention, However, as
pointed out in Chapter 6, randomized controlled trials are rardy feasible
when studying causes of disease. Observational studies must be used
instead.

In general, the further one must depart from randomized trials, the less
the research design protects against possible biases and the weaker the
evidence is for a cause-and-effect relationship. Well-conducted cohort stud
ies are the next best design, beGlUse they can be performed in a way that
minimizes known confounding, selection and measurement biases. Cross
sectional studies are vulnerable because they provide no direct evidence
of the sequence of events. Trlle prevalence surveys- cross-sectional stud
ies of a defined population-guard against selection bias but are subject
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to measurement and confounding biases. Case-control studies Me vulnera
ble to selection bias ZlS welL Weakest of all arc cases series, because they
have no defined population and no comparison group.

This hier.:Hchy of rese.:Hch designs is only ZI rough guide, based on
extent of susceptibility to bias. The mZlllner in which an individual study
is performed can do a great deal to increase or decrease its validity, reg.:Hd
less of the type of design used.

POPULATION STUDIES

Up until now, we have discussed evidence for cause when exposure
and disease status are known for each individual in the study. In a different
kind of research, most often used for epidemiologic studies of large popula
tions, exposure is knovvn only for the groups, not for the individuals in
the groups.

Studies in which exposure to a risk factor is char<.lcterized by the average
exposure of the group to which individuClls belong are called aggregate risk
studi!'s. Another term is ecological studies, because people are classified by
the general 1cvel of exposure in their environment.

Example What factors are associilled with cilrdi,lC mortality in developed
countries? 51. I.eger et al. (10) gathencd dilla on rates of ischemic heart diseast'
mortality in 18 developed countries to <'xplore the contribution of various
economic, health services, and dic(Jry variables. One finding that was not
ilnticipated WilS a strong neg<ltive association betwe,'n ischemic h,'art disease
death and wine consumption (Fig. 11.6).

This study raist's thc hypothesis that alcohol protects against ischemic
heart diseasc. Since then, studies on individuals have shown th,ll levels uf
serum high-density lipoprotein. a prott'din' factor for cardiovascular disease,
are increased by illcohol consumption.

Aggregate risk studies arc rardy definitive in and of themselves. TIle
main problem is a potential bias (Cllled the ecological jI1/1I1(y: Affected indi
viduals in a generally exposed group may not themselves have been ex
posed to the risk. Also, exposure may not be the only characteristic that
distinguishes people in the exposed group from those in the nonexposed
group, i.e., there may be confounding factors. Thus aggregate risk studies
arc most useful in raising hypotheses, \vhich must then be tested with
more rigorous reseClrch.

TIME SERIES STUDIES

Evidence from aggregate risk studies thilt a factor is iJetl/ally responsible
for an effect can be strengthened if obserVAtions are m,:llie at more than
two points in time (before and after) and in more than one place. In a time
sail'S study, the effect is ml'asured at various points in time before and
after the purported cause has been introduced. 1t is then possible to see if
the effect varies as expected. If changes in the pu rported ca use arc followed
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Figure 11.6. Example of an aggregate risk study: relationship between wine con
sumption and cardiac mortality in developed countries. (Drawn from 81. Leger AS,
Cochrane AL, Moore F. Factors associaterl willl cardiac mortality in developed coun
tries with particular reference to the consumption of wine. Lancet 19/9; 1.1017
1020,)

by changes in the purported effect, the association is less likely to be
spurious.

Example The risk of CI(J$tridiulri difficiic-associated diarrhea and pseudo
membranous col itis has been shown to be rebted to the use of antibiotics,
particularly clindamycin, ampicillin, and cephalosporins. An epidemic of C.
dijJicilc diarrhea broke out in a hospital in 1990 after usc of dindamycin
increased sharply (Hg. 11.7) (Il). Education, inkction control, and environ
mental hygiene efforts were imnlcdiately instituted, but the epidemic contin
ued unabiltcd. Clindamycin waS then removed fmm the hospital formulary,
and its usc plummeted, along with the number of cases of C. d@cile-diarrhea.
To investigate the i1ssociation further, the authors conducted a case-control
study, which corroborilted the findings of the timc series analysis.

In a multiple tilt/e series study, the suspected cause is introduced into
several different groups at various times. Measurements of effect are then
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made among the groups to determine if the effect occurs in the same
sequential manner in which the suspected cause was introduced. If the
effect regularly follows introduction of the suspected cause at various times
and places, there is stronger evidence for cause than if this phenomenon
is observed only once, because it is even more improbable that the same
extraneous factor(s) occurred at the same time in relation to the cause in
many different places and eras.

Example Hecause there were no randomized controlled trials of cervical
cancer screening programs before they became widely accepted, their effec
tiveness must be evaluated by means of observational studies. A multiple
time series study has provided some of the most convincing evidence of their
effectiveness (12). Data were gathered on screening programs begun in the
various Canadian provinces at various times during a 10-year period in the
1960s and 1970s. Reduction;; in mortality regularly followed the introduction
of screening programs regardless of time and location. With these data, it
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Figure 11.7. A time-series study of the relationship of c1indamycin use and Clostrid·
ium diffie/Ie-associated diarrhea (Redrawn from Pear SM, Williamson TH, Bettin KM,
Gerding ON, Galgiani IN. Decrease in nosocomial Clos/ridium difficile-associated
diarrhea by restricting c1indamycin use. Ann Intern Medl1 94;120:272--277_)
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was concluded that "~creenill!;had a significant effect on reduction in mortal
ity from carcinoma of the uterus."

ELEMENTS FOR OR AGAINST CAUSE

In 1965, the British statistician Sir Austin Bradford Hill (13) proposed a
set of fcahtres that should be sought when deciding whether a relationship
between a sickness and some environmental factor is causal or just an
association. His proposals have been widely used, sometimes with modifi
cations (Table 11.1). We will comment briefly on the individual elements.
They are not all of equal weight in deciding about cause.

Temporal Relationships between Cause and Effect

Causes should obviously precede effects. This fundamental principle
seems self-evident, but it can be overlooked when interpreting most cross
sectional studies and case-control studies, in which both the purported
cause and the effect are measured at the same point in time. It is some
times assumed that one variable precedes another without actually estab
lishing that this is so. In other cases, it may be difficult to establish which
came first.

Examplt' It has long been noted that overweight persons are at higher
risk of death, especially cardiovascular death, than people with normal
weight. Thus it is reasonable to assume that weight loss would be protective
among overweight people_ Howevt'r, several cohort studies have found ex
cess mortality among people who lose weight, even among people without
any apparent preexisting disease. These distressing findings may be ex
plained if a subtle, predinic<d effect of fatal il1ne~s is weight loss (14). Thus
fatal conditions may precede and cause weight loss, not vice versa. (This
possibility could be excluded if it was known whether the weight loss was
voluntary in those losing weight.)

Table 11.1
Evidence That an Association Is Cause and Effect"

Criteria CormTlHrlts

Tempor[llity
Strength
Dose-response
Reversibility
Corlsistency

Biologic plausibility
Specilicity
AnCllogy

Cause precedes effecl
Large relative risk
Larger exposures 10 cause associated with higher rates of disease
Reduclion in exposure associated with lower rates of disease
Repeatedly observed by different persons, in differenl places,

circumSlances. and tim8s

M[lkes serlSC, according 10 biologic knowledge of the time
One cause leads to one effecf
Cause-and-effect relationship alreCldy estClblished lor a similar

exposure or disease

"Moditiod from Bradford-Hill A8 The erlVirorHT1Hni and di,mase ~s30ciation Dnd causatiol1, Proc R Soc Med
190S; :,B:?9:"i -300
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Although it is absolutely necessary for a cause to precede an effed in
clinical medicine-and, therefore, the lack of such a sequence is powerful
evidence against cause-an appropriate temporal sequence alone is weak
evidence for cause.

Strength of the Association
A strong association between a purported cause and an effect, as ex

pressed by a large relative or absolute risk, is better evidence for a causal
relationship than a weak association. Thus the 4- to 16-fold higher incidence
of lung cancer among smokers than nonsmokers in many different prospec
tive studies is much stronger evidence that smoking causes lung cancer
than the findings in these same studies that smoking may be related to
renal cancer, for which the relative risks are much smaller (1.1-1.6) (15).
Similarly, that the relative risk of hepatitis B infection for hepatocellular
cancer is nearly 300 leaves little doubt that the virus is D cause of liver
cancer (16). Bias can sometimes result in large rc\Dtive risks. However,
unrecognized bias is less likely to produce large relative risks than to
prod uce small ones.
Dose-Response Relationships

A dose-response relationship is present when varying amounts of the
purported cause are related to varying amounts of the effect. If a dose
response relationship can be demonstrated, it strengthens the argument
for cause and effect. Figure 11.8 shows a clear dose-response curve when
lung cancer death rates (responses) are plotted against number of cigarettes
smoked (doses).

Although a dose-response curve is good evidence for a causal relation
ship, especially when coupled with a large relative or absolute risk, its
existence does not exclude confounding factors.

Example Both the strong association between smoking and lung cancer
and the dose-response relationship have been dismissed by the tobacco in
dustry as examples of confounding. According to this argument, there is
some lUlknown variable that both causes people to smoke i1nd increases their
risk of developing lung cancer. The more the factor is present, the more both
smoking and lung cancer are found-hence, the dose-response relationship_
Such an argument is it theoretically po~sible explanation for the association
between smoking and lung cancer, i1Jthough just what the confounding factor
might he hilS never been clarified. Short of iI randomized controlled triill
(which would, on the ilverilge, allocate the people with the confounding
filctor equally to smoking and nonsmoking groups) the confounding argu
ment is difficult to rdute completl;'ly.

Reversible Associations
A factor is more likely to be a cause of disease if its removal results in

a decreased risk of disease, i.e, the association between suspected cause
and effect is reversible. Figure 11.9 shows that when people give up smok
ing they decrease their likelihood of getting lung cancer.
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Figure 11.8. Example of a dose-response relationship: lung cancer deaths ac
cording to dose of cigarettes in male physicians. (Drawn from Doll R, Peto R. Mortality
in relation to smoking: 20 years' observations on male British doctors. Br Med J
1976; 2: 1525-1536.)

Reversible associations are strong, but not infallible, evidence of a causal
relationship. Confounding could conceivably explain a reversible associa
tion. For eX<lmple, in Figure 11.9 it is possible (but unlikely) that people
willing to give up smoking have smaller amounts of the unidentified factor
th<ln those who continue to smoke.

Consistency

When several studies conducted <It different times in different settings
and with different kinds of patients <Ill come to the same conclusion, evi
dence for a causal relationship is strengthened. That screening for colorectal
cancer is effective becomes more plausible when <I randomized controlled
trial of fecal occult blood testing (17) and a case-control study of sigmoidos
copy (18) both find a protective effect. Causation is particularly supported
when studies using several different research designs all lead to the same
result, because studies using the same design can all make the samt'
mistake.

It is often the case that different studies produce different results. Lack
of consistency does not necessarily mean that the results of a particul<lr
study are invalid. One good study should outvveigh several poor ones.
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Biologic Plausibility

Whether the assertion of cause and effect is .:::onsistent with our knowl
edge of the mechanisms of disease as they are currently understood is
often given considerable weight when assessing causation. When we have
absolutely no idea how an association might have arisen, we tend to be
skeptical that the association is real. Such skepticism often serves us well.
For example, the substance Laetrile was touted as a cure for cancer in the
early 1980s. However, the scientific community was not convinced, because
they could think of no biologic reason why an extract of apricot pits not
chemically related to compounds with known anticancer activity should
be effective against cancer cells. To nail down the issue, Laetrile was finally
submitted to a randomized controlled trial in which it was shown that the
substance was, in fact, without activity against the cancers studied (19).

It is important to remember, however, that what is considered biologi
cally plausible depends on the state of medical knowledge at the time. In
Meig's day, contagious diseases were biologically implausible. Today, a
biologically plausible mechanism for puerperal sepsis, the effects of strep
tococcal infection, has made it easier for us to accept Holmes's observations.
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Figure 11.9. Reversible association: declining mortality from lung cancer in ex
cigarette smokers. The data exclude people who stopped smoking after gettin9
cancer. (Drawn from 0011 R, Petro R. Mortality in relation to smoking: 20 years'
observations on male British doctors Br Med J 1976;2:1525-1536.)
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On the other hand, the mechanism by which acupuncture causes anesthesia
is far Jess clear. To many scientists in the Western world, the suggestion
that anesthesia is caused by sticking needles into the body and t\virling
them seems biologically implausible, and so they do llOt believe in the
effectiveness of acupuncture.

In sum, biologic plausibility, whell present, strengthens the case for
causation. When it is absent, other evidence for causation should be sought.
If the other evidence is strong, the lack of biologic pl,lllsibility miJY ind iCiJte
the limitations of medical knowledge, rather than the Jack of a causal
association.

Specificity

Specificity-one cause, one effect-is more often found for acute infec
tious diseases (such as poliomyelitis and tetanus) and for inborn errors of
metabolism (such as gout, ochronosis, and familial hypercholesterolemia).
I\s we pointed out, for chronic, degenerative diseases there are often many
causes for the same effect or many effects from the same cause. Lung
cancer is caused by cigarette smoking, asbestos, and r<ldiation. Cigarettes
cause not only lung cancer but also bronchitis, peptic ulcer disease, peri
odontal disease, and wrinkled skin. The presence of specificity is strong
evidence for cause, but the absence of specificity is weak evidence iJgainst
a cause-and-effect relationship.

Analogy

The argument for a cause-and-effect relationship is strengthened if there
arc examples of well-established CiJuses that arc analogous to the one in
question. Thus if we know that a slow virus can cause iJ chronic, degeneril.~

tive central nervous system dise<lse (subacute sclerosing panencephalitis),
it is easier to accept that another virus might cause degeneration of the
immunologic system (acquired immunodeficiency syndrome). Tn general,
however, analogy is weak evidence for cause.

Weighing the Evidence
Most of this chapter has been a discussion of whiJt to look for in individ

ual studies when considering the possibility of a causal rel<ltionship. Hut,
when deciding about cause, one must consider all the available evidence,
from all available studies. I\fter examining the pattern of evidence, the
case for causality can be strengthened or eroded. This calls for a good deal
of judgment, especially when the evidence from different studies is con
flicting. In such cases, clinicians must decide where the weight of the
evidence lies.

Figure 11.10 summarizes the different types of evidence for and against
cause, depending on the research design, and features that strengthen or
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Randomized controlled trial Randomized controlled trial
Multiple time series Multiple time series

Nonrandomized trial DESIGN Nonrandomized trial
Cohort Cohort

Case-control Case-control
Cross-sectional Cross-sectional

Case series Case series
Case report

Strong AGAINST Weak FOR Strong

Not specific
Not reversible

No dose-response
No analogy

Not biologically plausible
No effect

Incorrect temporal sequence

Temporal sequence
Small effect

Specificity
Analogy

FINDING Biologic plausibility
Consistency

Large effect
Dose response

Reversibility

Figure 11.10. Relative strength of evidence for and against a causal effect Note
that with study designs, except for case reports cHld time smies, the strerlgth of
evidence for a causClI relatiorlship is a mirror image of tr18l iJ9iJinsl. Wilh findings,
evidence for a causal effect docs not mirror evidence against an effect.

weaken the evidence for G.luse. The figure roughly indicates reldtive
strengths in helping to establish or discard a causal hypothesis. Thus a
carefully done cohort study showing a strong association and a dose
response relationship is strong evidence for cause, \'-/hile a cross-sectional
study finding no effect is \'-/eak evidence against cause.

Summary
Cause-and-effect relationships underlie diagnostic, preventive, and ther

apeutic activities in clinical medicine.
Diseases usually have many causes, although occasionally one might

predominate. Often, several causes interact with one another in such a
way that the risk of disease is more th<:1)) would be expected by simply
combining the effects of the individual causes taken separately. In other
cases, the presence of a third variable, an effect modifier, modifies the
strength of a cause-and-effect relationship between two variClbles.

Causes of disease can be proximal pathogenetic mechClnisms or more
remote genetic, environmental, or behavioral factors. Medic,Ji interventions
to prevent or reverse disease can occur at any plClce in the development
of disease, from remote origins to proximal l11ech,misms.
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The case for causation is usually built over time with several different
studies. It rests primarily on the strength of the research designs used to
establish it. Because 'we rarely have the opportunity to establish cause
using randomized controlled trials, observational studies are necessary.
Some studies of populations (time series and multiple time series studies)
may suggest causal relationships when a given exposure of groups of
people is followed by a given effect.

features that strengthen the argument for a cause-and-effect relation
ship include an appropriate temporil] relationship, a strong ilssociation
between purported cause and effect, the existence of a dose-response re]a~

tionship, a fall in risk when the purported cause is removed, and consistent
results among several studies. Bio]ogic plausibility and coherence with
knmvn facts are other features that argue for a causal relationship.
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SUMMING UP

Where is the knowledge we hiJve lost in informlltiol/?
T. S. Eliot, "The l{ock"

The usefulness of cliniCiJl research depends on its scientific credibility
its believability to thoughtful, unbiased scientists-and its relevance to
the problems faced by clinicians and their patients. Both clinicians, \vho
base their decisions on the rnedicalliterature, and researchers, who cre<lLe
it, need to understand \'\'h"lt adds to and subtr<lcts from the strength of
scientific research.

To judge scientific credibility, readers must take illl active role. They
must decide what they wanL to discover from the lllcdicalliterature and
then sec if the information is present and meets their standards of scientific
credibility. By just reading: passively, without considering the basic scien
tific principles systematically and ill advance, they will be less likely to
notice shortcomings and more likely to be misled.

This chapter describes hmv the methodolog-ic principles discussed in
previous chapters can be applied by busy clinicians to thc lifelong task of
trying to practice evidencc-based medicine. First, we discuss how research
articles pertaining to a given clinical question are identified and how their
numbers C,1ll be reduced to manageable proportions without sacrificing
needed information. Next, vve summarize basic rules for judging the
strength of individUill articles; that section deals with concepts th<lt have
been discussed throughout the book. Third, we consider how the many
articles on a given research question, as a group, are summarized to dis
cover where the best available esLimate of the truth lies. It is on this estimate
that clinicians must base their clinical decisions until better information
becomes aVililable. Throughout the chapter we consider how these steps
article identification, study evaluation, and evidence synthesis-relate to
strategies for keeping abreast of the literature throughout one's life as a
c1iniciiln,

Whatever the strength of the best available evidence, clinicians must
use it <IS a basis for action-sometimes rather bold action-yet regard it as

249
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famble and subject to revision. One scholar (1) has distinguished behveen
"decisions" and "conclusions." We decide something is true if we will act
as if it is so, for the present, until better infonnation COffies along. Conclu
sions, on the other hand, are settled issues and are expected to be more
durable. Clinicians are mainly concerned with decisions. The integrity of
the scientific enterprise rests on the willingness of its participants to engage
in open-minded, welHnfonned arguments for and against a current view
of the truth, to accept new evidence, and to change their minds.

Approaches to Reading the Literature
Clinicians examine the medical literature from different perspectives,

depending on their purpose. They browse to sec what is interesting, they
read articles of clinical interest to keep up, they look up the answers to
specific clinical questions, and they systematically review the literature
about a clinical issue to develop or change a clinical policy. We mainly
deal with the full review of the literahtre. We understand that clinicians
rarely have the time to do a full-blown review of existing information.
However, if they understand the basic principles by which literature
searches <lTe done, they are in a better position to identify credible articles
efficiently and judge the results for themselves when they browse, keep
up, or look up information.

WHICH ARTICLES ARE IMPORTANT FOR CLINICAL
DECISION MAKING?

All articles are not equally important for clinical decision making.
Thoughtful clinicians must find and value the soundest articles in the face
of an almost overwhelming body of available infonnation.

figure 12.1 summarizes <In appro<lch to distinguishing articles of funda
mental importance to clinical decision making from those that are not.
Many articles-reviews, teaching articles, editorials-arc \vritten to de
scribe what is generally believed to be true but are not themselves reports
of original rescarch aimed at establishing that truth. Thesc articles are a
convenient source of summary information, but they are interpretations
of the true knowledge base and arc not independent contributions to it.
Moreover, they are usually written by people \'lrith an established point of
view, so that there is the potential for bias.

Example How well do review artides and textbook chapters summarize
the available body of scientific evidence about a dinical 1juestion7 Investiga
tors produced estimates of the effectiveness of vdriuus interventions to reduce
morbidity and mortality from myocardial infarction (MI) by performing
mcta-ilnalyses (describl.·d lakr in this chapter) of randomized cIinicdl tri cl1s
(r~CTs) (2). The estimates were compared with expert recommendations pub
lished at the same point in time in review artick'S ,md textbook chapters.
They found that "expert opinion" generally lagged behind the cumulative
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Contribution to Answering
the Clinical Question

Laboratory ("bench,"
"basic") research

T
Secondary

r
Primary

T
Analogy

t
Direct

T
Weak

t
Strong

Figure 12.1. The literature on a research question: the relative value of various
kinds of articles for answering a clinical question.

evidence by several year~ and not infrequently disagreed with it. For exam
pie- by 1980 thl.'re were 12 RCTs in the literature that had examined the
efficacy of prophylactic lidocaine in the treatment of acute MI. Essentially,
all showed that treatment with lidocaine was no better and often worse than
placebo, yet the majority of review articles and chapters published during
the 19805 contl.nued to recommend routine or ;;elective use of Iiducaine.

Other articles describe original research done in laboratories for the
purpose of understanding the biology of disease. These shldies provide
the richest source of hypotheses about health and disease. Yet, "bench"
research carmot, in itself, establish with certainty what will happen in
humans, because phenomena in actual patients, who are complex organ
isms in a similarly complex physical and social environment, involve vari
ables that have been deliberately excluded from laboratory experiments.

Research involving intact humans and intended to guide clinical deci
sion making ("clinical research") is, of course, conducted with varying
degrees of scientific rigor. Even by crude standards, most shidies are rela
tively weak. For example, a recent review of the methods of clinical studies
in three surgical journals revealed that more than 80% had no comparison
group, much less a randomized control group (3).

Throughout this book we have argued that the validity of clinical re
search depends on the strength of its methods (internal validity) and the
extent to which it applies to a particular clinical setting (generalizability).
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If this is so, a few good articles are more valuable than many weak or
inappropriate ones. Thus the overall conclusion frun the medical literature
often depends on how a relatively few articles are interpreted. A review
of the literature should involve selecting these articles carefully, identifying
their scientific strengths and 'weaknesses, and synthesizing the evidence
when their conclusions differ.

FINDING USEFUL ARTICLES

When systematically reviewing the literature, the first task is to locate
articles that may be useful. This is most challenging when reviewing the
literature, where it is first necessary to sort through a large number of
titles, often thousands, to find the small number of articles that are useful.
The objective is to reduce the literature to manageable proportions with
out missing important articles. The task can be intimidating and time
consuming. We describe a plan of attack, starting first with the full review
of the literature.

The first step is to develop a set of criteria for screening titles to select
articles that may be relevant while excluding a much larger number that
dearly are not. The criteria should provide a sellsitive test for the articles
that one hopes to find in the same sense as a screening test should be
sensitive for a disease, i.e., few useful articles should be missed. Initially,
specificity can be sacrificed to achieve sensitivity, with the understanding
that it will be necessary to evaluate many "false-positive" articles in more
detail for each one that meets the final critC'ria. Often a useful screening
algorithm is defined by the joint occurrence of a few key words in the
title, e.g., sarcoidosis, pulmonary, and corticosteroid or ennea, pallcrClltic, and
dillglwsis.

Second, the screening criteria are applied to a list of journal titles, gener
ally the list maintained by the National Library of Medicine, MEDUNE.
Although available in bound volumes, many clinicians are currently ac
cessing the medical literature electronically via modem, CD-ROM, or other
computer-b<lsed systems. Because computer searching usually misses some
important articles, one should also identify articles from other sources of
titles such as recent review articles, other articles on the same topic, text
books, and suggestions from experts in the field. The result of this search
is a large number of titles, some of which represent relevant <lrticles and
many of which do not.

Third, one must apply specific criteria to identify the articles that arc
actually <lppropriate for the question <It hand. Three kinds of criteria are
often used:

• Does the article address the specific clinical question that was the reason
for the search in the first place?
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• Does the article represent original research, not secondary information
or opinion?

• Is the research based on relatively strong methods?

Many inappropriate articles can be excluded by examination of the full
title. Often, however, more information is required, and the abstract serves
this purpose well. Perusal of abstracts should revcal to the reader whether
a study of treatment used a comparison group and random allocation, a
study of prognosis was on an inception cohort, whether a study has suffi
cient statistical power or precision, and so on.

Structured a/Jstracts (4), which have been adopted by many of the leading
medical journals, provide a better opporhmity to judge potentially useful
articles. The structured ah;tract summarizes in outline format those ele
ments of a study-the research question, study design, setting, patients,
interventions, measurements, results, and conclusions-required to distin
guish valid and informative studies from the larger number that are not
original or are inadequately rigorous.

Fina]]y, one must actually look at the articles that remain to see which
meet the final criteria. By this time, the number of articles should havc
been reduced enough that the task is feasible. Figure 12.2 summarizes
these steps and illustrates the search process for a specific question: the
outcome of total knee replacement (5).

If there is not sufficient time for a full, broadly based search for articles
or the reader is browsing or trying to stay abreast of important develop
ments, the early steps of this process must be abbreviated. One can examine
only those journals that publish original research with high methodologic
standards. However, this is an insensitive strategy: one would have to
examine at least 11 of the world's best journals just to find 80% of the best
<lrticles on a question (6).

Another approach, is to have the screening of articles done by others.
One would want them to be experts in both clinical medicine and clinical
research methods, to examine all of the world's articles, and to make their
criteria for inclusion explicit. The journal ACr Journal Club presents struc
tured abstracts for the scientifically strong, clinically relevant original re
search in inkoMI medicine, selected by explicit criteria published in each
issue. The results of selection in this way are powerful: in 1993, there were
more than 6 million articles published in clinical journals, of which about
350-a manageable number-met the criteria. Another option, the Coch~

rane Collaboration, is being developed. Expert groups from throughout
the world are working together to select the best studies of clinical interven
tions, surrunarize them in a standard form, disseminate the information
electronically, correct the database when errors arc found, and keep it up
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Articles Reasons for
Remaining Exclusion

OOOOD 1631

OODDD

~
369 no original dates

DOODD 362 non-English language

D 70 with 10 or fewer patients

27 no outcomes reported

DDOOD 803

DDD

~
115 not a cohort undergoing the replica

96 no pertinent outcomes reported

37 different surgical procedures

DOODD 553

~
336 inadequate outcome assessment

DD 217

~ 87 other exclusions

DO 130

Figure 12.2. Literature search: identifying the few most important articles from the
medical literature as a whole, (Callahan CM, Drake BG, Heck DA, Dittus RS. Patient
outcome following Iricompartmental total knee replacement. JAMA 1994; 271 1349
1357,)

to date. The results, <It least for some clinical questions, should be available
in the mid-1990s.

Judging Individual Articles
Once individual articles of interest have been identified, the next task

is to evaluate the quality of the evidence they contain. The approach uses
the scientific principles described in this book.
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We have outlined basic criteria for the scientific credibility of specific
research designs in the appendix to this chapter. We summarized a set of
questions that should be asked of most studies-by investigators and read
ers alike. They concern the nature of the research question, the generaliz
ability and clinical usefulness of the results, and hvo processes that can
affect intcrn;;ll validity: bi.:ls and chance. We considered ground rules for
studks of diagnosis, frequency, prognosis, treatment, and cause. The ap
pendix describes bdsic issues that should be considered when deciding
whether an article might be sufficiently strong to be useful in a literature
review and in setting criteria to assign weights to articles when preparing
a synthesis of the results of several articles.

DOES THE DESIGN FIT THE QUESTION?

One cannot speak of "good" or "bad" research designs in general with
out reference to the question they are intended to answer. Many clinically
oriented methodo\ogic assessment schemes give lower grades to observa
tional designs such as the prevalencl' survey. Ihis may be justified if the
clinical question concerns preventive or therapeutic interventions, but in
appropriate if considering studies of diagnostic tests. Table 1201 matches
clinical questions to the best research designs used to answer them. The
table is meant to offer a guideline; it should not preclude creative but
scientifically sound approaches other than those listed. For example, the
best available evidence that periodic screening sigmoidoscopy may reduce
deaths from coloredal cancC'f came from a rigorous case-control study (7).
Because of the large numbers of patients and lengthy follow-up period
required to test the dficilCy of sigmOidoscopy in a randomized trial, this
may be the only form of evidence availabk for some time.

Table 12.1
Matching the Strongest Research Designs to Clinical Questions

OIJe.qjon

DiagnDsis
Prevalence
Incidence
Hisk

PIO~_JrI{)sis

TrealiTlen1
I'reven1ion
Cause

Prevalence
Prevalence
Cr)~IOr1

COllort
Case control
Cohorl
CliniCdl trial
C1lrllcal tnal
CDhort
Case ronlrol
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Table 12.2
Characteristics of a Study That Detennine Whethe, It Can Test
or Only Raise Hypotheses

Chmucteri'itic

DeSign
HypoUwses

Comparisons
p v81ue
Results confirmed on separate

data set

Weak
None (or 8fter data collected

anej clrlalysed)
Many
Lflrge
No

Strong
Smted before study begun

Few
Small
Yes

RAISING OR TESTING A HYPOTHESIS

The conclusions of an individual piece of research fall on a spectrum
of believability according to the decisiveness of the scientific strategy used
(see Chapter 11). At one end of the spectrum are reports that only suggest
relationships. albeit potentially useful ones, without putting these ideas to
the test. Most case reports serve this function. The conclusions of these
studies "lre tentative; many are later refuted. At the other end of the spec
trum are studies-e.g., large randomized controlled trials-that have put
ideas to a rigorous test. Conclusions from these studies are more definitive.
Most studies fall between these extremes.

A priori hypotheses are important. Without them, false-positive findings
can make their way into the literature in the following way. Suppose one
examines a large number of variables in a data set none of which is associ
ated with any of the others in nature. As discussed in Chapter 9, if a large
number of associations between variables are examined, some of them will
be extreme enough to appear "rea!," even though the associations are only
by chance. At a conventional level of statistical significance, p < 0.05, about
I in 20 such comparisons will be statistically significant, by definition. Of
course, the observed associ"ltions are "real" for the particular data set <It
hand-but not necessarily in the population-because the current sample
may misrepresent all such samples from the population of interest.

Now suppose that one of these comparisons is selected out of the larger
set of all possible comparisons and given special emphasis, perhaps be
cause it fits we]] with existing biomedical theories. Suppose the other com
parisons are minimized in the final report. Then the association, taken out
of context. can <lppe<Jr very important. This process-random (ch<lnce)
occurrenCe of <lssociations followed by bi<lsed selection of interesting
ones-is not unuSU<ll in published research.

There are several dues that signal the degree to which a given study is
hypothesis testing rather th<ln hypothesis raising (T<lble 12.2).
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The first, a strong research design, is not il strictly separate factor from
the others. Making hypotheses in advance and limiting the number of
comparisons examined reduce the number of apparently "significant"
comparisons that emerge from a study. The exploration for effects in vari
ous subgroups of a larger study population is a common analytic strategy
that may result in chance or spurious associations. When hypotheses made
in advance, a priori hypotheses, are confirmed, one can place more confi
dence in the findings. Alternatively, investigators can simply limit the
number of comparisons made after the fact, so that there is less chance of
false-positive findings for the study as a whole. Or they can insist on a
particularly small p value before ruling out the role of chance in explaining
particular findings.

Another strategy to protect against the acceptance of spurious or chance
associations is to raise hypotheses on one set of data and test them on a
separate one (fig. 12.3). The availability of large data sets and statistical
computer software makes it relatively easy for the analysis to include
multiple variables, considered either separately or together in models. The
analysis of multiple variables should be viewed as raising hypotheses, as
the investigators rarely specify in advance what the model will find, much
less the weight given to each finding. 1£ the data set is large l'llough, it can
be divided randomly in hillf, with one half being used to develop the
model and the second half used to confirm it. Or it can be tested in a
different setting. This latter process is illustrated in the follmving example.

Example Investigators developed an index, including seven physical
signs, for predicting the e'lrly recurrence of acute 'lsthm'l after discharge
from 'In emergency dep'lrtment (tl). Among 20.S patients at the investigiltors'
medic'll center, p<ltients from whom the index was developed, the index had
a sensitivity of 9.S':,;, and a specificity of 97'1;,. The results were so striking that
the index began to be put into dinic'li prilctice elsewhere.

Liller, two other groups oC inVl'stigiltors independently tested the index
in other settings (9,1(]). The results were disappointing. The sensitivity and
sped ficity were 40% and 71 '~;" respectively, in one study, ilnd 1K.l )~;) ami
82.4'::, in the other.

Process

Data Set

Hypothesis
Raising

Derivatidn

Hypothesis
Testing

Validation

Figure 12.3. Developing a IIYPotllesis on Orle data set and testing it Ofl anolhcr.
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These studies illustrate the dangers of placing too much confidence in
a relationship that has been suggested in on\.: data set but not tested in
another, independent one. There are several possible rcasons for the differ
ence in performance. Patients in the original sample might have been sys
tematically different, the index might have been applied differently, or
chance might have resulted in unusual findings in the initial study.

Whatever the strategies used to increase the hypothesis-testing character
of a srudy, it is the author's responsibility to make it dearwhere a particular
study stands on the hypotheses-raising, hypothesis-testing: spectrum and
why. The readers' task is to seek out this infomlation or reconstruct it, if
it is not apparent. However, one should not eschew studies that mainly
raise hypotheses; they are important, just not definitive.

Summarizing the Results of Many Studies
The current state of knowledge on a question is usually decided by the

pattern of results from all studies addressing the question, rather than by
one definitive study. Until recently, the commonest way of establishing
this pattern was by implicit judgment, i.e., opinion, without having stated
in advance the ground rules by which the contributions of individual
studies would be weighted. Judgments of this sort often take the form of
a traditional ("narrative") review article by an expert in the relevant field
or a consensus of scholars representing the many points of view that bear
on a question, e.g., the National Institutes of Health's Consensus Develop
ment Conferences.

A variety of more structured methods of summarizing published re
search is now used. These methods have the advantage of making explicit
the assumptions behind the relative weights givcn to the various studies.
They also follow the scientific mcthod more directly; setting criteria in
advance, gathering data (in this case, the results of individual studies),
analyzing the data, and allowing the conclusions to follow from the criteria
and data.

The process of summing up the research on a question, lIsing structured
methods, is referred to as meta-analysis-literally, analysis of analysis-or
information synthesis. This approach is particularly useful when there is one
specific question and at least a few relatively strong studies with apparently
different conclusions. The use of these methods has exploded in the last
fev,/ years. MEDLTNE listed nearly 2000 articles under the subject heading
"meta-analysis" between 1990 and mid-1994.

There are three general steps in performing a meta-analysis. first is to
identify the best articles from all possible articles, as described earlier in
this chapter. Second is to evaluate each study according to how well it
meets methodological criteria, which are decided on in advanee. In some
meta~analyses, this evaluation results in the assignmcllt of an overall qual-
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Relative Risk
or Odds Ratio

Randomized trials
RCT 1
RCT2
RCT3
RCT 4
RCT5
RCT6
RCT7

0.41
0.20
0.26
0.24
0.20
1.01
0.63

Treatment
- Better

x
x

x
x

x

Treatment
Worse --.---.

x

Nonrandomized trials
Study 1 0.80 X
Study 2 0.46 X
Study 3 0.25 X
Study 4 1.56 X
Study 5 0.71 ·x
Study 6 0.98 X

Overall relative risk 0.49 •
95%CI 0.34--0.70

10 Case-control studies
Overall odds ratio 0.50 •95%CI 0.39-0.64

0.5 1.0 1.5

Figure 12.4. Results of a meta-analysis of the effectiveness of BeG vaccination
to prevent tuberculosis. C/, confidence interval. (Based on Colditz GA Brewer TF,
Berkey es, Wilson ME, Burdick E. Fineberg HV, Mosteller F, Efficacy of BeG vaccine
in the prevention of tuberculosis: meta-analysis of the published literature. JAMA
1994;271 :698-702.)

ity score; in others, quality-related study characteristics of design, number
and source of patients, and data collection methods are considered sepa
rately. The third step is to summarize, with numbers, the results of many
studies to form, in effed, one large study with more statistical power than
any of the individual studies alone. Each individual study is weighted by
it~ sample size, i.e., large studies get more weight than ones with smaller
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numbers of patients. In addition, many meta-analyses also include the
quality senre as a weighting factor. Statistical mdhods, usually some form
of regression analysis, arc then used to estimate an overall effect measure,
such as a rdative risk or percentage reduction in mortality. Reports of
meta-analyses include graphical displays of the results of the individual
studies as well as the overall measure of effect.

Although meta-analysis has become the standard against which other
approaches to literature synthesis are judged, there continues to be contro
versy about many of its dements, particularly the evaluation of quality
and its inclusion in the overall assessment. But quality measures, while
lumping dispMate mcthodologic features in a single number, may help
explain differences among studies.

Example Although B'lCille Cahnettc-Guerin (HeG) vaccine has been used
to prevent tuberculosis for more than 50 years and is required in many
countries, iIs efficacy is contrnversial. In part this is hlxause the several Iarge
sca Ie clinical trials to eva luate Bee; have reported conflicting results. An early
nwtil-analysis compared the methods used in these trials to their r<-'sults (11 j.
The investigators found that the unbiased detection of tuh,'rcuJosis in Bee
and control grnups was availilble only for the three trials H'porting 75'1,. or
greater efficacy.

A more recent meta-analysis of the same question summarized the re
sults of studies examining vaccine efficacy (12). figure 12.4 shows the
results of the seven randomized trials, six nonrandom trials, and the overall
findings of the 10 case-control studies published as of 1YY4. Overall, in
studies using mch of the three designs, the risk of tuberculosis was found
to be reduced by about half for those receiving the vaccination compared
with those who did not. To help explain. differences in observed magnitude
of e[fect, the investigators developed overall scores fnr the quality of each
study's methods. Using regression analysis, they found that better quality
scores predicted findings of greater vaccine effect. The meta-analyses
clearly establish the efficacy of BCe vaccine.

Often, however, there is no dear relationship betwecn global quality
ratings and their results. In this case, the meta-analysts must look at the
specific methodolngic features of studies to see why they are reaching
dispilfate conclusions (13).

POOLING

Not uncommonly, the results of various individual studies are indeci
sive because each study describes too few patients or too few outcome
events to have sufficient statistical power or pre{:ision. Consequently, esti
mates of rates from these studies are unstable, and each study's comparison
of rates runs an uniJcceptably high risk of missing true effects (Type II
error).
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Pooling refers to the process of aggregating the data from several rela
tively small studies of the same question to form, in effect, one large one.
It is permissible when it can be shown t11M the studies are sufficiently
similar to each other (in patients, intervention and outcome measures) to
treat them as if they are part of a single shldy. Pooling attempts to assemble
enough observiltions to generate a precise overall estimate of effect, not to
account for differences in conclusions among studies. The advantage of
pooling is that it can result in adt.'quatc sbtistica1power to detect meaning
ful differences, if they exist. Pooling is particuhlrly useful when the disease
and/or the outcome events of interest occur infrequently. Under these
circumstances there are no other feasible ways to achieve statistical power.

Example There arc many reports of peptic ulcer disease during cortico
steroid therapy. Yet, it has been difficult to establish by means of observa
tional studies whether corticosteroids cause ulcers, because manv or the situa
tions in which they are given-e.g., during stress and in conjunction with
gastric-irritating drugs-may themselves predispose to peptic ulcer disease.
Abo, ulcers may be sought more diligently in patients receiving corticoste
roids and go undetected in other patients.

Randomized controlled trials ,He the best wav to determine cause and
effect. There have been man\, r,mdomi:led trials in ;....hich corticosteroids were
used to tre<1l various lunditiolls and peptic ulcer disea,~e was a side effect.
None of these studies was large enough in itself to test the corticosteroid!
ulcer hypothesis. But together they provide an opportunity to examine the
rate of rare event.

In one review of 71 controlled trials of corticosteroids in which patients
were randomized (or its e4uiv,1lcnt) and plc'j)tic uker disease was considered,
there were about 86 patients <md 1 case of peptic ulcer disease per study;
only 31 of the trials reported any patients with ulcers (14). The investigators
pooled the results of these 71 trials to increilse statistical power. In the pooled
study, there were 6111 p,ltients and about 80 ulcer~;. The rate of peptic ulcer
disease was 1.8 in the corticosteroid group and 0.8 in the control group
(relative risk, 2.3; 95°;;. confidence interval, 1.4-3.7). The results were similar
when examined separately according to the presence and absence of other
risk factors; various doses, routes of administration, and duration of therapy;
and whcther the disease was suspected, defined as bleeding, or specifically
diagnosed.

Thus the combined results of many studies, each with relatively sound
design but too small to answer the question, gave sufficient statistical power
to detect risk.

Advocates of pooling point out that examination of the pattern of evi
dence, effectively summarized, can give new insights into the strengths
and weaknesses of the evidence. For example, a single figure can show
the number of strong shldies, the point estimate and statistical precision
of each study's observed effect size, the relationship between dfed size
and precision, and the point estimate and precision of their pooled effect
(see Fig. 12.4).
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Opponents of pooling argue that the ways in which patients, interven
tions, and outcomes were selected in the various studies are so dissimilar
that it is not reasonable to combine them. "Splitters" are not as satisfied
with pooling as "Jumpers." Also, pooling deals only with statistical power.
It does not correct for whatever biases existed in the designs of the various
individual studies, nor can it be assumed that these biases cancel each
other out when the studies are aggregated. In any cast', meta-analyses only
supplement and do not replJce the insights gained by examining each of
the best studies of a clinical question carefully.

PliblicaUon and Bias
Clinicians prder good news, as does everyone else. Thus such words

as t:ffiCllcy, predicting, and corrclatilJ/l are the order of the day in journal
titles. It is considerably less appealing to contemplate things that do not
work. In fact, such observations arc often considered fOlilures. Researchers
with the bad fortune to make such observations arc likely to be advised
by their friends, "vith gentle malicc, to seck publication in the /ol/I"IUlI (~f
Negative Resl/lts.

It may be that (lUr penchant for pl)sitive results leads to bias in the kinds
of articles selected for publication in medical journals.

Example The final disposition of 285 studies that had been reviewed by
an English r~esearch Flhics Comrnittee and bmug-ht to nmclusion hy the
inve~tigiltnrs WilS studied (15). Stillistically ~ignificant results were found in
54')'" of ~tudics, a nonsignificant trend in 16'(;" and null results in .'I()':;,. Of tht,
studies with significant reS1J!ts, 85% were eitht'r published or pre~ented as
opposed tu only 56':;, of studies with neg;ilivc resulls (odds l"iltiO, 434; 95':;,
confidence intl'rVill, 2.4-R6). Studies with nul! resulls were not of poorer
quality, nor were they 1l101·e likely 10 be unpublished because of editorial
rejectiun.

Articles actu<llly reaching publication arc a biased sample of all research
findings, tending to represent efforts to find causes, diagnostic tests, <Ind
treatments as being more effective than they actually are. For example, a
meta-analysis of the relative effectiveness of single versus multiple drugs
in ovarian cancer found a large survival adv<lntage with multiple drugs
in published data. When the investig<ltor (16) <Idded unpublished results,
the difference disappe<lfed. There is no reason to assert that biased judg
ments arc made deliberately. Everyone does his or her part to put the
"best" work forward, but publication is not a random process. There are
forces favoring positive over negative results that are quite independent
of the relative proportions of these results among all research projects
undertaken. Readers should be aware of this bias lest they become unrealis
tically impressed with the many new and promising findings that appear
in medical journals.
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One way to avoid this bias is to give more credibility to large studies
than to small ones. Most large studies, having required great effort and
expense in their execution, will be published regardless of ·whether they
have a positive or negative finding. Smaller studies, on the other hand,
require less investment and so are more easily discarded in the selection
process.

DifferCllt Answers: The Same Questions?
Until now, we have emphasized how studies can come to different

conclusions because they have different methods, better for some than for
others. Rut there is an alternative explanation: The research questions,
although superficially the same, may actually be fundamentally different.
Rather than one or the other study being misleading, both might be right.
It may be that human biology, not research methods, accounts for the
difference.

Example Scveral authors (17,lH) have performed meta-analyses i1S
sessing the effectiveness of drug treatment for hyperk'nsion. Early trials dem
onstrated S\Jbstantial and st,ltistically significant n'ductions in stroh'S but
smaller and often not st,ltistically significant reductions in coronary heart
discase (CHD) (Fig. 12.5). The confidence inkrval for the pooled rdative risk
for (HD across JII trials includes I.

More reccnt trials have focused on or at least included older adults. TheSto'
neV\'er trials, also summarized in Figure 12.5, showed the saine degree of risk
n.'ductim\ for stroke but larger and consistently significant reductions in the
risk of coronary heart diseilse. While the larger effectiveness of treatment
observed in more recent triJIs suggests thill drug therapy for hypertension
is more effective in older patients than WilS previously believed, these newer
tri,ils tended to use diuretics and beta-blockers, the principal drugs in the
trials, in lower dos,'s, This may illso have contributed to the greater eHect of
treatment on (HD.

Studies of cause and effect that seem to be asking similar questions
can in fact present different questions in at least four ways: The patients,
interventions, follow-up, and end results may not be the same. Differences
among studies in anyone of these may be enough to give different results.

Other Sources of Information
Until now the main source of information we have considered is journal

articles reporting original research and meta-analyses based on them. What
about other sources of information?

Textbooks are convenient and trustworthy for reporting well-estab
lished faets. l3ut they have the disadvantage of being out of date (as much
as 1 year old at time of publication) and reflecting the opinions of single
authors, with little external review. Colleagues, especJa11y those specialized
in the area of the clinical questions, <If(' also practical sources of informa-
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Outcome
Relative Risk (and Intervals)
95% Confidence

Stroke (fatal and nonfatal)
Middle-aged subjects

Treatment
- better

Treatment
worse --

HOFP
MRC·younger
10 other trials
Pooled RR

Older sUbjects

STOP
MRC-older
SHEP
3 other trials
Pooled RR

0.64
0.55
0.67
0.62
(0.53--{).73)

0.55
0.76
0.65
0.43
0.61
(0.53-0.70)

x
:X

X

+

X
X

X
X:
:+

Coronary heart disease
(fatal and nonfatal)

Middle-aged subjects

HOFP
MRC-younger
10 other trials
Pooled RR

Older subjects
STOP
MRC-older
SHEP
3 other trials
Pooled RR

0.90
0.94
0_92
0.92
(0.82-1.04)

0.90
0.74
0.82
0.76
0.78
(0.68-0.90)

X
X

X

+

X
X

X

X
+

0.5 1.0 1.5

Figure 12.5. Results of a meta-analysis of the efficacy of hypertension control on
the risk 01 stroke and coronary heart disease. (Adapted from Cutler JA, Pstay 8M,
MacMahon S, Furberg CD. Public health issues in hypertension control. What has
been learned from clinical trials? In: Laragh JH, Brenner 8M, eds. Hypertension:
physiology, diagnosis, and management. 2nd ed. New York: Raven Press, 1995.)
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tion, but their opinions <Ire only as good <IS the consultant, who m<lY be
biased by the beliefs <lnd financial interests of his or ~ler field. For example,
it is natural for gastroenterologists to believe in endoscopy more than
radiologic contrast studies and surgeons to believe in surgery over medical
therapy.

A growing number of dat<lbases are complete, up to date, and widely
available by telephone, fax, floppy disks, CD-ROM, and e-mail, the In
ternet, and cmnpter bulletin board. Examples include a 24-hr telephone
cormection to the Centers for Disease Control and Prevention for informa
tion about disease prevention offered to those traveling to any part of the
world; Toxline for information on poisonings; PDQ for current recommen
dation for cancer chemotherapy; ,md an alTay of databases on drugs, their
toxicities, and adjushlH:,nt of dose in renal failure. These databases contain
information that is essential to the practice of medicine but are too infre
quently needed and too extensive for clinicians to carry around in their
heads. Clinicians should find ways to access them in their location. 'Ihey
should also usc these databases with the lessons of this book in mind: The
data are only as good as the methods used to select them. Many of the
databases, such as guidelines of the Agency for Health Care Policy <Ind
Research, the U.S. Preventive Services Task f.orce, and the American Col
lege of Physicians, are created by excellent methods and make the process
clear. Some are the results of individui:lls or industries with conflict of
interest, and they should be used with skepticism.

Clinical Guidelines

Throughout the book we have argued that clinical research provides
the soundest grounds for establishing one's 8pproach to dinical practice
and making decisions about patients. The shift away from anecdote and
personal experienn' has been called "evidence-based medicine" (19). An
important element in evidence-based !nedicinc is the translation of research
findings into cleM, unambiguous recommend<ltions for dinici8ns. Practice
guidelines are system8tically developed statements to assist clinicians in
deciding about appropriate health care for specific clinical problems (19).
Their development and use are now commonplace in many organized
medical settings. At their best, the validity of guidelines is established by
including in the panel that prepZlres them people who represent all relevant
aspects of the question (ranging from highly specialized resC<lrchers to
clinicians, economists ,and patients) to cover all important aspects of the
question and to balance, if not eliminate, the vested interests of anyone
or another participant. The best guidelines are based on H'sc<lrch evidence,
not just expert opinion, and so often usc formal processes of liter<lture
review and synthesis, as described in this chapter (20).
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Guidelines are meant to guide, not prescribe clinical judgment There
are good reasons not to follow guidelines ~n the care of some individual
patients.

Do guidelines change physicians' behavior? 1\ meta-analysis identified
and summarized 59 published articles that evaluated the impact of explicit
guidelines using more rigorous research designs-randomized trials, non
randomized comparative trials, and interrupted time series designs (21).
More than 90% of the studies demonstrated significant changes in care in
accordance with the guidelines, and 9 out of the 11 studies examining
patient outcomes showed improvements.
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APPENDIX 12.1. BASIC CUlIJEUNES POR lJETERMININC THE VALIDITI
OF CUNICAL STUDIES

ALL STU 1)1 ES

1. What killd of clinical question is the research intended to answer?
The research design should match the clinical question (see Table 12.1)

2. What patiel1ts, variables, and outcomes were studied?
These determine the generalizability of the results.
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3. How likely is it th<lt the findings arc the result of bias?
System<ltic differences between compared gf!.lUpS (e.g., in patients' char
acteristics, interventions, or risk f<lctors; outcomes; or measurement
methods) diminish internil! validity.

4. How big is the effect?
Clinic<ll decisions depend on the magnitude (not just on the existance)
of effect.

5. How likely is it th<lt the findings occurred by chance?
Clinicians need to know the range of values within which the true
effect is likely to fan (confidence interval) or (less useful) how likely the
observed effect is by ch<lnce alone (p value for "positive" results and
power for "neg<1!ive" results).

STU DIES OF DIAGNOSTIC TESTS

1. Is the test clearly described (including the point at which it is considered
abnormal)?

ff the test result C<lll take on il range of values, the performance varies
according to the choice of cutoff point.

2. Is the true presence or ilbsence of disl'ilse (>::old standard) estilblished for
all patients?
It is possible to know all important aspects of test performance only if
there are d<ltil for all four cells of the 2 by 2 table.

3. Does the spectrum (~f patients with and without disease match the charac
teristics of patients for whom the test 'will be used?
Sensitivity is often affected by the severity of disl'ilse and specificity by
the characteristics of those in the study without the disl'ilse.

4. Ts there an Jmln'asl'd assessment of test and disease status?
Bias can occur if the test result is determined with knowledge of dise<lse
status and vice versa.

5. Ts test p('~{i.mlJalJce summarized by sensitivity <lnd specificity or likelihood
ratio?

This information is needed to decide \vhcther to use the test.
6. For tests with a range of valucs, how does mOI,ing Ih" cutolfpoint affect

test performance?
The information conveyed by the test depends on the degree of
abnorm<llity.

7. 1£ predictive value is reported, is it in rl'1<1tion to a clinically sensible
prevalence?

Predictive value depends on prevaknce (as well as the sensitivity and
specificity of the test). If people with and without the disease are chosen
separately, without relation to the clinicaly occurring prevalence, the
resulting predictive value has no dinic<ll meaning.



CHAPTER 12 I SUMMING UP 269

PREVALENCE STUDIES

1. What ilre the criteriil for being a case?
Previl!ence depends on what one calls a case.

2. In wh<lt population ilre the cases found?
Prevalence depends on the group of people in which it is described.

3. Is prev<llence described for an unbiased sample of the population?
Prevalence for the sample estimates prevalence for the population to
the extent that the sample is unbiased.

COHORT STUDIES

1. Arc all members of the cohort:
a. Entered at the beginning of follow-up (inception cohor!)?

Otherwise people who do unusually well or badly will not be
counted in the result.

b. At risk for d('veloping the outcome?
It makes no sense to describe how outcomes develop over time in
people who already have the disease or cannot develop it.

e. At a similar point (zero time) in the course of disease?
Prognosis varies according to the point in the course of disease at
which one begins counting outcome events.

2. Is there complete follow-up on all members?
LJrop-outs can bias the results if they on average have a better or worse
course than those who remain in the study.

3. Are <Ill members of the cohort assessed for outconu's with the same illll'nsity?
Otherwise differences in outcome rates might be from measurement
bias, not true differences.

4. Are comparisons unbiased? (would members of the cohorts have the same
outcome rate except for the variable of interest?)
To attribute outcome to the factor of interest other determinants of
outcome must occur equally in the groups compared.

KANDOMIZED TRIALS

1. Are the basic guidelines for cohort studies satisfied?
Clinical trials are cohort studies

2. Were plltienl~ randomly al/ocaled to treated and control groups?
This is the only effective way to make a completely unbiased comparison
of treatments.

3. Were patients, caregivers, and researchers unaware of the treatment
group (masked) to which each patient belonged?
Masking participants in a trial helps assure that they aTe unbiased.

4. Were cointervcntions the same in both groups?
Treating patients differently can destroy the comparability that was
achieved by randomization.
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5. Were rc[;u Its described according to the trl'a/ment al/ocated or the treatmelIl
actually received?
If not all patients receive the treatment assigned to them there are two
kinds of analyses with different objectives and scientific strengths. "In
tention to treat" analyses arc for management deci[;ions and are of the
randomly constituted groups. "Efficacy" analyses <He to explain the
effect of the intervention itself, are of the treatment actually received,
and are a cohort study.

CASE-CONTl~OL STU 1)1 ES

1. Were cases entered at the onsl'! of disease?
Risk factors for pH'valent Gl[;CS may be rdlted to onset or duration of
disease.

2. Were controls similar to cases except for exposure?
A valid estimilte of relative risk depends on an unbiased comparison.

3. Were there similar and unbiased efforts to dl'kcf exposure in Glses and
controls?
Biased measurement of exposure can increase or decrease the estimate
of relative risk.

META-ANALYSFS

1. Is all relevant research (both published and unpublished studies) found?
The objective is to summarize the results of OJ]] completed research, not
a biased sample of it.

2. Does the meta-analysis include only sciflltijically strong studies (those
with a low probability of bias)?
The objective is to summarize the most credible evidence.

3. Tf a summary estimate of effect is calculated
a. Are the studies Iwmogeneous (are patients, interventions, and out

comes similar)?
It is inappropriate to seck a single, overall measure of effect from
inherently dissimilar studies.

b. Are the studies weigh/I'd by their size?
Larger (more precise) studies deserve more weight than smaller (less
precise) ones.

4. Are study quality and result relil/ed?
Better studies arc more believable.
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