July 10,2002 12:54 vra23151_fmt Sheet number 1 Page numberi black

FUNDAMENTALS
OF
Di1GITAL LOGIC WITH VERILOG DESIGN

Stephen Brown and Zvonko Vranesic
Department of Electrical and Computer Engineering
University of Toronto

G

Boston Burr Ridge, IL Dubuque, IA° Madison, WI New York San Francisco St. Louis
Bangkok Bogota Caracas KualaLumpur Lisbon London Madrid Mexico City
Milan Montreal New Delhi Santiago Seoul Singapore Sydney Taipei Toronto

Julk 15,2002 09:50 vra23151_cop Sheet number 1 Page numberii black

McGraw-Hill Higher Education gz

A Division of The McGraw-Hill Companies
FUNDAMENTALS OF DIGITAL LOGIC WITH VERILOG DESIGN

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the Americas,
New York, NY 10020. Copyright © 2003 by The McGraw-Hill Companies, Inc. All rights reserved. No part of
this publication may be reproduced or distributed in any form or by any means, or stored in a database or
retrieval system, without the prior written consent of The McGraw-Hill Companies, Inc., including, but not
limited to, in any network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the
United States.

This book is printed on acid-free paper.

International 1234567890QPF/QPF098765432
Domestic 1234567890QPF/QPF098765432

ISBN 0-07-282315-1
ISBN 0-07-121322-8 (ISE)

Publisher: Elizabeth A. Jones

Senior sponsoring editor: Carlise Paulson
Administrative assistant: Michaela M. Graham
Executive marketing manager: John Wannemacher
Senior project manager: Jill R. Peter

Production supervisor: Kara Kudronowicz

Lead media project manager: Judi David

Senior media technology producer: Phillip Meek
Coordinator of freelance design: Michelle D. Whitaker
Cover designer: Rokusek Design

Cover image: Stephen Brown and Zvonko Vranesic
Senior photo research coordinator: Lori Hancock
Compositor: Techsetters, Inc.

Typeface: 10/12 Times Roman

Printer: Quebecor World Fairfield, PA

Library of Congress Cataloging-in-Publication Data

Brown, Stephen D.
Fundamentals of digital logic with Verilog design / Stephen D. Brown, Zvonko G. Vranesic.—1st ed.
p. cm. (McGraw-Hill Series in electrical and computer engineering)
Includes index.
ISBN 0-07-282315-1
1. Logic circuits—Design and construction—Data processing. 2. Verilog (Computer hardware
description language). 3. Computer-aided design. . Vranesic, Zvonko G. II. Title. IIIL. Series.

TK7868.L6 B76 2003
621.39'2—dc21 2002071439
CIP

INTERNATIONAL EDITION ISBN 0-07-121322-8

Copyright © 2003. Exclusive rights by The McGraw-Hill Companies, Inc., for manufacture and export. This
book cannot be re-exported from the country to which is is sold by McGraw-Hill. The International Edition is
not available in North America.

www.mhhe.com

June 14, 2002 09:52 vra23151_ded Sheet number 1 Page numberiii black

To Susan and Anne

June 20, 2002 09:49 vra23151_ata Sheet number 1 Page number v black

ABOUT THE AUTHORS

Stephen Brown received his B.A.Sc. degree in Electrical Engineering from the University
of New Brunswick, Canada, and the M.A.Sc. and Ph.D. degrees in Electrical Engineering
from the University of Toronto. He joined the University of Toronto faculty in 1992, where
he is now an Associate Professor in the Department of Electrical & Computer Engineering.
He is also Director of Software Development at the Altera Toronto Technology Center.

His research interests include field-programmable VLSI technology and computer
architecture. He won the Canadian Natural Sciences and Engineering Research Council’s
1992 Doctoral Prize for the best Ph.D. thesis in Canada.

He has won four awards for excellence in teaching electrical engineering, computer
engineering, and computer science courses. He is a coauthor of two other books: Funda-
mentals of Digital Logic with VHDL Design and Field-Programmable Gate Arrays.

Zvonko Vranesic received his B.A.Sc., M.A.Sc., and Ph.D. degrees, all in Electrical Engi-
neering, from the University of Toronto. From 1963-1965, he worked as a design engineer
with the Northern Electric Co. Ltd. in Bramalea, Ontario. In 1968 he joined the University
of Toronto, where he is now a Professor in the Departments of Electrical & Computer Engi-
neering and Computer Science. During the 1978—79 academic year, he was a Senior Visitor
at the University of Cambridge, England, and during 1984-85 he was at the University of
Paris, 6. From 1995 to 2000 he served as Chair of the Division of Engineering Science at
the University of Toronto. He is also involved in research and development at the Altera
Toronto Technology Center.

His current research interests include computer architecture, field-programmable VLSI
technology, and multiple-valued logic systems.

He is a coauthor of four other books: Computer Organization, 5th ed.; Fundamentals
of Digital Logic with VHDL Design; Microcomputer Structures; and Field-Programmable
Gate Arrays. In 1990, he received the Wighton Fellowship for “innovative and distinctive
contributions to undergraduate laboratory instruction.”

He has represented Canada in numerous chess competitions. He holds the title of
International Master.

Julk 10,2002 15:44 vra23151_ser Sheet number 1 Page number vi ~ black

McGraw-Hill Series in Electrical and Computer Engineering

Brown, Vranesic: Fundamentals of Digital Logic with VHDL Design

Givone: Digital Principles and Design

Ham, Kostanic: Principles of Neurocomputing for Science and Engineering
Hamacher, Vranesic, and Zaky: Computer Organization

Hayes: Computer Architecture and Organization

Hwang: Advanced Computer Architecture: Parallelism, Scalability, Programmability
Hwang: Scalable Parallel Computing: Technology, Architecture, Programming
Leon-Garcia, Widjaja: Communication Networks

Marcovitz: Inroduction to Logic Design

Navabi: VHDL: Analysis and Modeling of Digital Systems

Patt, Patel: Introduction to Computing Systems: From Bits & Gates to C & Beyond
Schalkoff: Artificial Neural Networks

Shen, Lipasti: Modern Processor Design

vi

July 10,2002 14:23 vra23151_fwd Sheet number 1 Page number vii black

FOREWORD

Chess is a game that provides a splendid vehicle for displaying human intelligence in a
competitive environment. During the past 30 years, it has also served as a platform for
determining the extent to which machines can emulate intelligent behavior. Many chess
programs are available for today’s computers. Chess machines, comprising a computer and
a chess-playing program, are now capable of defeating even the strongest human players.

The ultimate challenge took place in 1997, when IBM’s Deep Blue chess machine
defeated the World Champion Garry Kasparov in a six-game match. The essence of this
machine are logic circuits, algorithms, and software—coupled with people who know how
to use these resources. Although all of these factors are crucial, the greatest leap forward,
in terms of chess-playing strength, was made when extremely powerful logic circuits were
developed. Most of these circuits are used in general purpose computers, but some are
specialized for the chess-playing application. A key reason why the Deep Blue machine is
so strong is that it can evaluate about 200 million chess position in one second.

This textbook deals with logic circuits and explains how they are designed. We have
included in the book the moves from the decisive sixth game of the 1997 match to remind
the reader of the incredible possibilities that are attainable with well-designed logic circuits.
Deep Blue played with the white pieces.

vii

JulL 10,2002 14:25 vra23151_pr Sheet number 1 Page number viii black

PREFACE

This book is intended for an introductory course in digital logic design, which is a basic
course in most electrical and computer engineering programs. A successful designer of
digital logic circuits needs a good understanding of basic concepts and a firm grasp of
computer-aided design (CAD) tools. The purpose of our book is to provide the desirable
balance between teaching the basic concepts and practical application through CAD tools.
To facilitate the learning process, the necessary CAD software is included as an integral
part of the book package.

A serious drawback of many books on digital logic design is that they cover too much
material. A book that covers a large number of topics is not easy to use in a classroom,
particularly if the topics are not covered in sufficient depth. Also, in their desire to provide
a vast amount of practical advice, the authors often make the text difficult to follow by the
students who are still struggling with the fundamental concepts. Our aim is to avoid both
of these problems.

The main goals of the book are (1) to teach students the fundamental concepts in
classical manual digital design and (2) illustrate clearly the way in which digital circuits
are designed today, using CAD tools. Even though modern designers no longer use manual
techniques, except in rare circumstances, our motivation for teaching such techniques is
to give students an intuitive feeling for how digital circuits operate. Also, the manual
techniques provide an illustration of the types of manipulations performed by CAD tools,
giving students an appreciation of the benefits provided by design automation. Throughout
the book, basic concepts are introduced by way of examples that involve simple circuit
designs, which we perform using both manual techniques and modern CAD-tool-based
methods. Having established the basic concepts, more complex examples are then provided,
using the CAD tools. Thus our emphasis is on modern design methodology to illustrate
how digital design is carried out in practice today.

TECHNOLOGY AND CAD SUPPORT

The book discusses modern digital circuit implementation technologies. We briefly discuss
SSI, as well as semi-custom and full-custom technologies. However, the emphasis is on
programmable logic devices (PLDs). This is the most appropriate technology for use in a
textbook for two reasons. First, PLDs are widely used in practice and are suitable for almost
all types of digital circuit designs. In fact, students are more likely to be involved in PLD-
based designs at some point in their careers than in any other technology. Second, circuits
are implemented in PLDs by end-user programming. Therefore, students can be provided
with an opportunity, in a laboratory setting, to implement the book’s design examples in
actual chips. Students can also simulate the behavior of their designed circuits on their own
computers. We use the two most popular types of PLDs for targeting of designs: complex
programmable logic devices (CPLDs) and field-programmable gate arrays (FPGAs).

viii

July 10,2002 14:25 vra23151_pr Sheet number 2 Page number ix black

PREFACE

Our CAD support is based on Altera MAX+plusll software. MAX+pluslI provides
automatic mapping of a design into Altera CPLDs and FPGAs, which are among the most
widely used PLDs in the industry. The features of MAX+plusll that are particularly attrac-
tive for our purposes are:

e It is a commercial product. The version included with the book supports all major
features of the product. Students will be able to easily enter a design into the CAD
system, compile the design into a selected device (the choice of device can be changed
at any time and the design retargeted to a different device), simulate the functionality
and detailed timing of the resulting circuit, and if laboratory facilities are provided at
the student’s school, implement the designs in actual devices.

e It provides for design entry using both hardware description languages (HDLs) and
schematic capture. In the book, we provide examples of design using schematic capture,
but we emphasize the HDL-based design because it is the most efficient design method
to use in practice. We describe in detail the IEEE Standard Verilog language and use
it extensively in examples. The CAD system included with the book has a Verilog
compiler, which allows the student to automatically create circuits from the Verilog
code and implement these circuits in real chips.

e [t can automatically target a design to various types of devices. This feature allows us
to illustrate the ways in which the architecture of the target device affects a designer’s
circuit.

e [t can be used on most types of popular computers. We expect that most students will
use the version of the software that runs on IBM-compatible computers (running any
version of Microsoft windows), which is provided with the book. However, through
Altera’s university program the software is also available for other machines, such as
SUN or HP workstations.

A MAX+plusIl CD-ROM is included with each copy of the book. Use of the software
is fully integrated into the book so that students can try, firsthand, all design examples. To
teach the students how to use this software, the book includes three, progressively advanced,
hands-on tutorials.

SCOPE OF THE BOOK

Chapter 1 provides a general introduction to the process of designing digital systems. It
discusses the key steps in the design process and explains how CAD tools can be used to
automate many of the required tasks.

Chapter 2 introduces the basic aspects of logic circuits. It shows how Boolean algebra
is used to represent such circuits. It also gives the reader a first glimpse at Verilog, as an
example of a hardware description language that may be used to specify the logic circuits.

The electronic aspects of digital circuits are presented in Chapter 3. This chapter shows
how the basic gates are built using transistors and presents various factors that affect circuit
performance. The emphasis is on the latest technologies, with particular focus on CMOS
technology and programmable logic devices.

Chapter 4 deals with the synthesis of combinational circuits. It covers all aspects of
the synthesis process, starting with an initial design and performing the optimization steps
needed to generate a desired final circuit. It shows how CAD tools are used for this purpose.

Julk 10,2002 14:25 vra23151_pr Sheet number 3 Page number x black

PREFACE

Chapter 5 concentrates on circuits that perform arithmetic operations. It begins with
a discussion of how numbers are represented in digital systems and then shows how such
numbers can be manipulated using logic circuits. This chapter illustrates how Verilog can
be used to specify the desired functionality and how CAD tools provide a mechanism for
developing the required circuits. We chose to introduce the number representations at this
point, rather than in the very beginning of the book, to make the discussion more mean-
ingful and interesting, because we can immediately provide examples of how numerical
information may be processed by actual circuits.

Chapter 6 presents combinational circuits that are used as building blocks. It includes
the encoder, decoder, and multiplexer circuits. These circuits are very convenient for
illustrating the application of many Verilog constructs, giving the reader an opportunity to
discover more advanced features of Verilog.

Storage elements are introduced in Chapter 7. The use of flip-flops to realize regular
structures, such as shift registers and counters, is discussed. Verilog-specified designs of
these structures are included.

Chapter 8 gives a detailed presentation of synchronous sequential circuits (finite state
machines). It explains the behavior of these circuits and develops practical design tech-
niques for both manual and automated design.

Asynchronous sequential circuits are discussed in Chapter 9. While this treatment is
not exhaustive, it provides a good indication of the main characteristics of such circuits.
Even though the asynchronous circuits are not used extensively in practice, they should be
studied because they provide an excellent vehicle for gaining a deeper understanding of
the operation of digital circuits in general. They illustrate the consequences of propagation
delays and race conditions that may be inherent in the structure of a circuit.

Chapter 10 is a discussion of a number of practical issues that arise in the design of real
systems. It highlights problems often encountered in practice and indicates how they can
be overcome. Examples of larger circuits illustrate a hierarchical approach in designing
digital systems. Complete Verilog code for these circuits is presented.

Chapter 11 introduces the topic of testing. A designer of logic circuits has to be aware
of the need to test circuits and should be conversant with at least the most basic aspects of
testing.

Appendix A provides a complete summary of Verilog features. Although use of Verilog
is integrated throughout the book, this appendix provides a convenient reference that the
reader can consult from time to time when writing Verilog code.

Appendices B, C, and D contain a sequence of tutorials on the MAX+plusIl CAD tools.
This material is suitable for self-study; it shows the student in a step-by-step manner how
to use the CAD software provided with the book.

Appendix E gives detailed information about the devices used in illustrative examples.
It also includes a brief discussion of TTL technology.

WHAT CAN BE COVERED IN A COURSE

All the material in the book can be covered in 2 one-quarter courses. A good coverage
of the most important material can be achieved in a single one-semester, or even a one-
quarter, course. This is possible only if the instructor does not spend too much time teaching
the intricacies of Verilog and CAD tools. To make this approach possible, we organized

July 10,2002 14:25 vra23151_pr Sheet number 4 Page number xi ~ black

PREFACE

the Verilog material in a modular style that is conducive to self-study. Our experience in
teaching different classes of students at the University of Toronto shows that the instructor
may spend only 2 to 3 lecture hours on Verilog, concentrating mostly on the specification
of sequential circuits. The Verilog examples given in the book are largely self-explanatory,
and students can understand them easily. Moreover, the instructor need not teach how to use
the CAD tools, because the MAX+pluslI tutorials in Appendices B, C, and D are suitable
for self-study.

The book is also suitable for a course in logic design that does not include exposure to
Verilog. However, some knowledge of Verilog, even at a rudimentary level, is beneficial
to the students, and it is a great preparation for a job as a design engineer.

One-Semester Course

A natural starting point for formal lectures is Chapter 2. The material in Chapter 1 is
a general introduction that serves as a motivation for why logic circuits are important and
interesting; students can read and understand this material easily.

The following material should be covered in lectures:
e Chapter 2—all sections.

e Chapter 3—sections 3.1 to 3.7. Also, it is useful to cover sections 3.8 and 3.9 if the
students have some basic knowledge of electrical circuits.

e Chapter 4—sections 4.1 to 4.7 and section 4.12.
¢ Chapter 5—sections 5.1 to 5.5.

e Chapter 6—all sections.

e Chapter 7—all sections.

e Chapter 8—sections 8.1 to 8.9.

If time permits, it would also be very useful to cover sections 9.1 to 9.3 and section 9.6 in
Chapter 9, as well as one or two examples in Chapter 10.

One-Quarter Course

In a one-quarter course the following material can be covered:

e Chapter 2—all sections.

¢ Chapter 3—sections 3.1 to 3.3.

e Chapter 4—sections 4.1 to 4.5 and section 4.12.
e Chapter 5—sections 5.1 to 5.3 and section 5.5.

e Chapter 6—all sections.

e Chapter 7—sections 7.1 to 7.10 and section 7.13.
e Chapter 8—Sections 8.1 to 8.5.

A MORE TRADITIONAL APPROACH

The material in Chapters 2 and 4 introduces Boolean algebra, combinational logic circuits,
and basic minimization techniques. Chapter 2 provides initial exposure to these topics using
only AND, OR, NOT, NAND, and NOR gates. Then Chapter 3 discusses the implementation
technology details, before proceeding with the synthesis techniques and other types of gates

Julk 10,2002 14:25 vra23151_pr Sheet number 5 Page number xii black

xii

PREFACE

in Chapter 4. The material in Chapter 4 is appreciated better if students understand the
technological reasons for the existence of NAND, NOR, and XOR gates, and the various
programmable logic devices.

An instructor who favors a more traditional approach may cover Chapters 2 and 4 in
succession. To understand the use of NAND, NOR, and XOR gates, it is necessary only
that the instructor provide a functional definition of these gates.

VERILOG

Verilogis a complex language, which some instructors feel is too hard for beginning students
to grasp. We fully appreciate this issue and have attempted to solve it. It is not necessary
to introduce the entire Verilog language. In the book we present the important Verilog
constructs that are useful for the design and synthesis of logic circuits. Many other language
constructs, such as those that have meaning only when using the language for simulation
purposes, are omitted. The Verilog material is introduced gradually, with more advanced
features being presented only at points where their use can be demonstrated in the design
of relevant circuits.

The book includes more than 140 examples of Verilog code. These examples illustrate
how Verilog is used to describe a wide range of logic circuits, from those that contain only
a few gates to those that represent digital systems such as a simple processor.

HOMEWORK PROBLEMS

More than 400 homework problems are provided in the book. Solutions to these problems
are available to instructors in the Solutions Manual that accompanies the book.

LABORATORY

The book can be used for a course that does not include laboratory exercises, in which case
students can get useful practical experience by simulating the operation of their designed
circuits by using the CAD tools provided with the book. If there is an accompanying labora-
tory, then a number of design examples in the book are suitable for laboratory experiments.
Additional experiments are available on the authors’ website.

ACKNOWLEDGMENTS

We wish to express our thanks to the people who have helped during the preparation of the
book. Kelly Chan helped with the technical preparation of the manuscript. Dan Vranesic
produced a substantial amount of artwork. He and Deshanand Singh also helped with the
preparation of the solutions manual. The reviewers, William Barnes, New Jersey Institute
of Technology; James Clark, McGill University; Stephen DeWeerth, Georgia Institute of
Technology; Clay Gloster, Jr., North Carolina State University (Raleigh); Carl Hamacher,
Queen’s University; Wei-Ming Lin, University of Texas (Austin); Wayne Loucks, Univer-
sity of Waterloo; Chris Myers, University of Utah; James Palmer, Rochester Institute of

July 10,2002 14:25 vra23151_pr Sheet number 6 Page number xiii black

PREFACE xiii

Technology; Gandhi Puvvada, University of Southern California; Teodoro Robles, Milwau-
kee School of Engineering; Tatyana Roziner, Boston University; Rob Rutenbar, Carnegie
Mellon University; Charles Silio, Jr., University of Maryland; Scott Smith, University of
Missouri (Rolla); Arun Somani, Iowa State University; and Zeljko Zilic, McGill University
provided constructive criticism and made numerous suggestions for improvements. We
are grateful to the Altera Corporation for providing the MAX+plusIl CAD system. The
support of McGraw-Hill people has been exemplary. We truly appreciate the help of Kel-
ley Butcher, Catherine Fields Shultz, Michaela Graham, Betsy Jones, Kara Kudronowicz,
Carlise Paulson, Jill Peter, John Wannemacher, and Michelle Whitaker.

Stephen Brown and Zvonko Vranesic

July 2,2002 09:33 vra23151_tc ~ Sheet number 1 Page number xv black

CONTENTS

Chapter 1 2.10 Introduction to Verilog 54
DESIGN CONCEPTS 1 2.10.1 Structural Specification of Logic
Circuits 55
1.1 Digital Hardware 2 2.10.2 Behavioral Specification of Logic
1.1.1 Standard Chips 4 Cirucits 58
1.1.2 Programmable Logic Devices 4 2.10.3 How Not to Write Verilog Code 60
1.1.3 Custom-Designed Chips 5 2.11 Concluding Remarks 60
1.2 The Design Process 6 Problems 61
1.3 Design of Digital Hardware 8 References 65
1.3.1 Basic Design Loop 8
1.3.2 Design of a Digital Hardware Unit 9 Chapter 3
1.4 Logic Circuit Design in This Book 11 IMPLEMENTATION TECHNOLOGY 67
1.5 Theory and Practice 14
References 15 3.1 Transistor Switches 69
3.2 NMOS Logic Gates 71
Chapter 2 3.3 CMOS Logic Gates 74
INTRODUCTION TO LOGIC 3.3.1 Speed of Logic Gate Circuits 81
Circulits 17 3.4 Negative Logic System 82
3.5 Standard Chips 83
2.1 Variables and Functions 18 351 7400-Series Standard Chips 83
2.2 Inversion 21 3.6 Programmable Logic Devices 87
2.3 Truth Tables 22 3.6.1 Programmable Logic Array (PLA) 87
2.4 Logic Gates and Networks = 23 3.6.2 Programmable Array Logic (PAL) 90
241 Analysis of a Logic Network 24 3.6.3 Programming of PLAs and PALs 92
2.5 Boolean Algebra 27 3.6.4 Complex Programmable Logic Devices
2.5.1 The Venn Diagram 30 (CPLDs) 94
252 Notation and Terminology 34 3.6.5 Field-Programmable Gate Arrays 98
253 Precedence of Operations 34 3.6.6 Using CAD Tools to Implement
2.6 Synthesis Using AND, OR, and NOT Circuits in CPLDs and FPGAs 102
Gates 35 3.7 Custom Chips, Standard Cells, and Gate
2.6.1 Sum-of-Products and Product-of-Sums Arrays 103
Forms 37 3.8 Practical Aspects 106
2.7 NAND and NOR Logic Networks 41 3.8.1 MOSFET Fabrication and
2.8 Design Examples 44 Behavior 106
2.8.1 Three-Way Light Control 44 3.8.2 MOSFET On-Resistance 110
2.8.2 Multiplexer Circuit 45 3.8.3 Voltage Levels in Logic Gates 111
2.9 Introduction to CAD Tools 48 3.8.4 Noise Margin 113
2.9.1 Design Entry 48 3.8.5 Dynamic Operation of Logic
29.2 Synthesis 51 Gates 114
293 Functional Simulation 52 3.8.6 Power Dissipation in Logic
294 Summary 52 Gates 117

XV

Julk 2,2002 09:33 vra23151_tc ~ Sheet number 2 Page number xvi black

3.9

3.10

3.11

CONTENTS

3.8.7 Passing 1s and Os Through Transistor
Switches 118
3.8.8 Fan-in and Fan-out in Logic
Gates 120
Transmission Gates 126
3.9.1 Exclusive-OR Gates 127
392 Multiplexer Circuit 128
Implementation Details for SPLDs, CPLDs,
and FPGAs 129
3.10.1 Implementation in FPGAs 135
Concluding Remarks 137
Problems 138
References 147

Chapter 4

OPTIMIZED IMPLEMENTATION
oF LoGIic FUNCTIONS 149

4.1
4.2
43
4.4

4.5
4.6

4.7
4.8

4.9

4.10

4.11
4.12

Karnaugh Map 150
Strategy for Minimization 158
4.2.1 Terminology 159
422 Minimization Procedure 160
Minimization of Product-of-Sums
Forms 164
Incompletely Specified Functions 166
Multiple-Output Circuits 167
Multilevel Synthesis 171
4.6.1 Factoring 172
4.6.2 Functional Decomposition 175
4.6.3 Multilevel NAND and NOR
Circuits 181
Analysis of Multilevel Circuits 184
Cubical Representation 189
4.8.1 Cubes and Hypercubes 189
A Tabular Method for Minimization 193
4.9.1 Generation of Prime Implicants 193
49.2 Determination of a Minimum Cover 195
493 Summary of the Tabular Method 200
A Cubical Technique for Minimization 201
4.10.1 Determination of Essential Prime
Implicants 204
4.10.2 Complete Procedure for Finding
a Minimal Cover 206
Practical Considerations 208
CAD Tools 209
4.12.1 Logic Synthesis and Optimization 210
4.12.2 Physical Design 211
4.12.3 Timing Simulation 213

4.12.4 Summary of Design Flow 213
4.12.5 Examples of Circuits Synthesized
from Verilog Code 216
4.13 Concluding Remarks 220
Problems 221
References 226

Chapter 5

NUMBER REPRESENTATION
AND ARITHMETIC CIRCUITS 229

5.1 Positional Number Representation 230
5.1.1 Unsigned Integers 230
512 Conversion Between Decimal
and Binary Systems 231
5.1.3 Octal and Hexadecimal
Representations 232
5.2 Addition of Unsigned Numbers 234
5.2.1 Decomposed Full-Adder 238
522 Ripple-Carry Adder 239
523 Design Example 240
5.3 Signed Numbers 240
5.3.1 Negative Numbers 240
532 Addition and Subtraction 224
533 Adder and Subtractor Unit 248
534 Radix-Complement Schemes 249
5.3.5 Arithmetic Overflow 253
53.6 Performance Issues 254
5.4 Fast Adders 255
54.1 Carry-Lookahead Adder 255
5.5 Design of Arithmetic Circuits Using CAD
Tools 262
5.5.1 Design of Arithmetic Circuits Using
Schematic Capture 262
552 Design of Arithmetic Circuits Using
Verilog 265
553 Using Vectored Signals 268
554 Using a Generic Specification 269
5.5.5 Nets and Variables in Verilog 270
5.5.6 Arithmetic Assignment
Statements 271
5.5.7 Representation of Numbers in Verilog
Code 275
5.6 Multiplication 277
5.6.1 Array Multiplier for Unsigned
Numbers 279
5.6.2 Multiplication of Signed Numbers 279

July 2,2002 09:33 vra23151_tc Sheet number 3 Page number xvii ~ black

CONTENTS xvii

5.7 Other Number Representations 282 7.4 Master-Slave and Edge-Triggered

5.7.1 Fixed-Point Numbers 282 D Flip-Flops 359

572 Floating-Point Numbers 282 7.4.1 Master-Slave D Flip-Flop 359

573 Binary-Coded-Decimal 7.4.2 Edge-Triggered D Flip-Flop 360

Representation 284 743 D Flip-Flops with Clear and

5.8 ASCII Character Code 289 Preset 362

Problems 291 7.5 TFlip-Flop 364

References 295 7.5.1 Configurable Flip-Flops 367

7.6 JKFlip-Flop 367
7.7 Summary of Terminology 368

Chapter 6 .
C C 7.8 Registers 368
OMBINATIONAL-CIRCUIT 7.8.1 Shift Register 369

BuiLpING BLOCKS 297 7.8.2 Parallel-Access Shift Register 370

7.9 Counters 371
7.9.1 Asynchronous Counters 371
7.9.2 Synchronous Counters 374
7.9.3 Counters with Parallel Load 378
7.10 Reset Synchronization 378
7.11 Other Types of Counters 382
7.11.1 BCD Counter 382
7.11.2 Ring Counter 383
7.11.3 Johnson Counter 384
7.11.4 Remarks on Counter Design 385
7.12 Using Storage Elements with CAD

6.1 Multiplexers 298
6.1.1 Synthesis of Logic Functions Using
Multiplexers 303
6.1.2 Multiplexer Synthesis Using Shannon’s
Expansion 304
6.2 Decoders 311
6.2.1 Demultiplexers 314
6.3 Encoders 316
6.3.1 Binary Encoders 316
6.3.2 Priority Encoders 317
6.4 Code Converters 318

3 3 - o Tools 385
6.5 Arithmetic Comparison Circuits 320 7.12.1 Including Storage Elements
6.6 Verilog for Combinational Circuits 320 in Schematics 385
6.6.1 The Conditional Operator 321 7.12.2 Using Verilog Constructs for Storage
6.6.2 The If-Else Statement 323 Elements 388
6.6.3 The Case Statement 326 7.123 Blocking and Non-blocking
6.6.4 The For Loop 331 Assignments 390
6.6.5 Verilog Operators 333 7.12.4 Non-blocking Assignments for
6.6.6 The Generate Construct 338 Combinational Circuits 394
6.6.7 Tasks and Functions 339 7.12.5 Flip-Flops with Clear Capability 395
6.7 Concluding Remarks 343 7.13 Using Registers and Counters with CAD
Problems 343 Tools 396
References 347 7.13.1 Including Registers and Counters

in Schematics 396

Chapter 7 7.13.2 Using Library Modules in Verilog

Code 399

FLIP'FLOPS9 REGISTERS, 7.13.3 Using Verilog Constructs for Registers
COUNTERS, AND A SIMPLE and Counters 400
PROCESSOR 349 7.14 Design Examples 405

7.14.1 Bus Structure 405
7.1 Basic Latch 351 7.14.2 Simple Processor 417
7.2 Gated SR Latch 353 7.14.3 Reaction Timer 429

7.2.1 Gated SR Latch with NAND Gates 355 7.14.4 Register Transfer Level (RTL)

7.3 Gated D Latch 356 Code 433

7.3.1 Effects of Propagation Delays 358 7.15 Concluding Remarks 434

Julk 2,2002 09:33 vra23151_tc Sheet number 4 Page number xviii ~ black

xviii

CONTENTS

Problems 434
References 442

Chapter 8

SYNCHRONOUS SEQUENTIAL
Circurrs 445

8.1

8.2

8.3
8.4

8.5

8.6

8.7

Basic Design Steps 447
8.1.1 State Diagram 447
8.1.2 State Table 449
8.1.3 State Assignment 449
8.14 Choice of Flip-Flops and Derivation
of Next-State and Output
Expressions 451
8.1.5 Timing Diagram 453
8.1.6 Summary of Design Steps 454
State-Assignment Problem 458
8.2.1 One-Hot Encoding 460
Mealy State Model 462
Design of Finite State Machines Using CAD
Tools 467
8.4.1 Verilog Code for Moore-Type
FSMs 467
842 Synthesis of Verilog Code 468
843 Simulating and Testing the Circuit 470
8.4.4 Alternative Styles of Verilog Code 471
8.4.5 Summary of Design Steps When Using
CAD Tools 473
8.4.6 Specifying the State Assignment in
Verilog Code 474
8.4.7 Specification of Mealy FSMs Using
Verilog 475
Serial Adder Example 477
8.5.1 Mealy-Type FSM for Serial Adder 477
852 Moore-Type FSM for Serial Adder 479
853 Verilog Code for the Serial Adder 480
State Minimization 486
8.6.1 Partitioning Minimization
Procedure 486
8.6.2 Incompletely Specified FSMs 493
Design of a Counter Using the Sequential
Circuit Approach 495
8.7.1 State Diagram and State Table
for a Modulo-8 Counter 495
8.7.2 State Assignment 496
8.7.3 Implementation Using D-Type
Flip-Flops 497
8.74 Implementation Using JK-Type
Flip-Flops 498
8.7.5 Example—A Different Counter 502

8.8

8.9

8.10

8.11
8.12

FSM as an Arbiter Circuit 505

8.8.1 Implementation of the Arbiter
Circuit 508

8.8.2 Minimizing the Output Delays
foran FSM 511

8.8.3 Summary 511

Analysis of Synchronous Sequential

Circuits 512

Algorithmic State Machine (ASM)

Charts 516

Formal Model for Sequential Circuits 519

Concluding Remarks 521

Problems 521

References 525

Chapter 9

ASYNCHRONOUS SEQUENTIAL
Circuits 527

9.1
9.2
9.3
9.4
9.5

9.6

9.7

9.8

Asynchronous Behavior 528

Analysis of Asynchronous Circuits 531

Synthesis of Asynchronous Circuits 540

State Reduction 553

State Assignment 568

9.5.1 Transition Diagram 571

9.5.2 Exploiting Unspecified Next-State
Entries 574

9.5.3 State Assignment Using Additional
State Variables 578

9.5.4 One-Hot State Assignment 582

Hazards 584

9.6.1 Static Hazards 585

9.6.2 Dynamic Hazards 590

9.6.3 Significance of Hazards 592

A Complete Design Example 592

9.7.1 The Vending-Machine Controller 592

Concluding Remarks 599

Problems 599

References 604

Chapter 10
DiGITAL SYSTEM DESIGN 605

10.1

Building Block Circuits 606

10.1.1 Flip-Flops and Registers with Enable
Inputs 606

10.1.2 Shift Registers with Enable
Inputs 607

July 2, 2002 09:33

vra23151_tc

Sheet number 5 Page number xix

10.1.3 Static Random Access Memory A3
(SRAM) 609 A4
10.1.4 SRAM Blocks in PLDs 611 A5
10.2 Design Examples 612 A6
10.2.1 A Bit-Counting Circuit 612
10.2.2 ASM-Chart-Implied Timing
Information 613
10.2.3 Shift-and-Add Multiplier 618
1024 Divider 623 AT
10.2.5 Arithmetic Mean 631 A.8
10.2.6 Sort Operation 641 A9
10.3 Clock Synchronization 653 A.10
10.3.1 Clock Skew 653
10.3.2 Flip-Flop Timing Parameters 655
10.3.3 Asynchronous Inputs to Flip-Flops 656 Al
10.3.4 Switch Debouncing 657
10.4 Concluding Remarks 659
Problems 659
References 663
Chapter 11
TESTING OF LoGIc CIRCUITS 665
11.1 Fault Model 666
11.1.1 Stuck-at Model 666
11.1.2 Single and Multiple Faults 667 A2
11.1.3 CMOS Circuits 667
11.2 Complexity of a Test Set 667
11.3 Path Sensitizing 669 A.13
11.3.1 Detection of a Specific Fault 671 A.14
11.4 Circuits with Tree Structure 673
11.5 Random Tests 674
11.6 Testing of Sequential Circuits 677
11.6.1 Design for Testability 677
11.7 Built-in Self-Test 681
11.7.1 Built-in Logic Block Observer 685
11.7.2 Signature Analysis 687
11.7.3 Boundary Scan 688
11.8 Printed Circuit Boards 688
11.8.1 Testing of PCBs 690
11.8.2 Instrumentation 691
11.9 Concluding Remarks 692
Problems 692
References 695
Appendix A 212
VERILOG REFERENCE 697 '
A.1 Documentation in Verilog Code 699 A17

A.2 White Space 699

black

CONTENTS xix
Signals in Verilog Code 699
Identifier Names 699
Signal Values, Numbers, and Parameters 700
Net and Variable Types 701
A.6.1 Nets 701
A.6.2 Variables 702
A.6.3 Memories 703
Operators 703
Verilog Module 705
Gate Instantiations 706
Concurrent Statements 708
A.10.1 Continuous Assignments 709
A.10.2 Using Parameters 710
Procedural Statements 711
A.11.1 Always and Initial Blocks 711
A.11.2 The If-Else Statement 713
A.11.3 Statement Ordering 714
A.11.4 The Case Statement 715
A.11.5 Casex and Casez Statements 717
A.11.6 Loop Statements 717
A.11.7 Blocking versus Non-blocking

Assignments for Combinational
Circuits 721
Using Subcircuits 721
A.12.1 Subcircuit Parameters 723
A.12.2 Verilog 2001 Generate Capability 725
Functions and Tasks 726
Sequential Circuits 730

A.141 AGated D Latch 730

A.142 D Flip-Flop 730

A.14.3 Flip-Flops with Reset 731

A.14.4 Instantiating a Flip-Flop from a
Library 732

A.145 Registers 733

A.14.6 Shift Registers 734

A.14.7 Counters 735

A.14.8 An Example of a Sequential
Circuit 736

A.149 Moore-Type Finite State
Machines 737

A.14.10 Mealy-Type Finite State
Machines 739

Guidelines for Writing Verilog Code 742
MAX+PluslI Verilog Support 745

A.16.1 Limitations in MAX+PlusIll 745
Concluding Remarks 746

References 746

Julk 2,2002 09:33 vra23151_tc ~ Sheet number 6 Page number xx black

CONTENTS

Appendix B
TuTORIAL 1 747

B.1

B.2

B.3

B.4

B.5

Introduction 748

B.1.1 Getting Started 748

Design Entry Using Schematic

Capture 751

B.2.1 Specifying the Project Name 752

B22 Using the Graphic Editor 752

B.2.3 Synthesizing a Circuit from the
Schematic 758

B24 Performing Functional Simulation 759

B.2.5 Using the Message Processor to Locate
and Fix Errors 763

Design Entry Using Verilog 765

B.3.1 Specitying the Project Name 765

B.3.2 Using the Text Editor 765

B.3.3 Synthesizing a Circuit from the Verilog
Code 767

B.34 Performing Functional Simulation 767

B.3.5 Using the Message Processor to Debug
Verilog Code 768

Design Entry Using Truth Tables 768

B.4.1 Using the Waveform Editor 769

B.4.2 Create the Timing Diagram 769

B.4.3 Synthesizing a Circuit from the
Waveforms 770

Mixing Design-Entry Methods 772

B.5.1 Creating a Schematic that Includes a
Truth Table 772

B.52 Synthesizing and Simulating a Circuit
from the Schematic 774

B.5.3 Using the Hierarchy Display 775

B.54 Concluding Remarks 775

Appendix C
TuTORIAL 2 777

C.1

C2

Implementing a Circuit

ina MAX 7000 CPLD 778

C.1.1 Using the Compiler 779

Cl2 Selecting a Chip 780

C.13 Viewing the Logic Synthesis
Options 781

Cl4 Examining the Implemented
Circuit 782

C.1.5 Running the Timing Simulator 783

C.1.6 Using the Floorplan Editor 784

Implementing a Circuit in a FLEX 10K

FPGA 787

C.3 Downloading a Circuit into a Device 789
C.4 Making Pin Assignments 790
C4.1 Assigning Signals to Pins in the
Floorplan Editor 792
Cc4.2 Making Pin Assignments
Permanent 794
C.5 Concluding Remarks 795

Appendix D
TUTORIAL 3 797

D.1 Design Using Verilog Code 798
D.1.1 The Ripple-Carry Adder Code 798
D.1.2 Using the Timing Analyzer
Module 801
D.2 Using an LPM Module 802
D.3 Design of a Sequential Circuit 806
D.3.1 Using the Graphic Editor 806
D.3.2 Synthesizing a Circuit and Using the
Timing Simulator 812
D.3.3 Using the Timing Analyzer 813
D.3.4 Using Verilog Code 814
D.4 Design of a Finite State Machine 815
D.4.1 Implementation in a CPLD 815
D.4.2 Implementation in an FPGA 816
D.5 Concluding Remarks 819

Appendix E
CoMMERCIAL DEVICES 821

E.1 Simple PLDs 822
E.1.1 The 22V10 PAL Device 822
E.2 Complex PLDs 824
E.2.1 Altera MAX 7000 825
E.3 Field-Programmable Gate Arrays 826
E3.1 Altera FLEX 10K 827
E3.2 Xilinx XC4000 830
E.3.3 Altera APEX 20K 831
E3.4 Altera Stratix 832
E.3.5 Xilix Virtex 834
E.4 Transistor-Transistor Logic 835
E.4.1 TTL Circuit Families 836
References 837

INDEX 838

June 10, 2002 11:03

vra23151_chO1 Sheet number 1 Page number 1 black

chapter

DESIGN CONCEPTS

Jur‘e 10,2002 11:03 vra23151_chO1 Sheet number 2 Page number 2 black

2 CHAPTER 1 e DEsiGN CONCEPTS

This book is about logic circuits—the circuits from which computers are built. Proper understanding of
logic circuits is vital for today’s electrical and computer engineers. These circuits are the key ingredient of
computers and are also used in many other applications. They are found in commonly used products, such as
digital watches, various household appliances, CD players, and electronic games, as well as in large systems,
such as the equipment for telephone and television networks.

The material in this book will introduce the reader to the many issues involved in the design of logic
circuits. It explains the key ideas with simple examples and shows how complex circuits can be derived from
elementary ones. We cover the classical theory used in the design of logic circuits in great depth because it
provides the reader with an intuitive understanding of the nature of such circuits. But throughout the book we
also illustrate the modern way of designing logic circuits, using sophisticated computer aided design (CAD)
software tools. The CAD methodology adopted in the book is based on the industry-standard design language
called Verilog. Design with Verilog is first introduced in Chapter 2, and usage of Verilog and CAD tools is
an integral part of each chapter in the book.

Logic circuits are implemented electronically, using transistors on an integrated circuit chip. With modern
technology itis possible to fabricate chips that contain tens of millions of transistors, as in the case of computer
processors. The basic building blocks for such circuits are easy to understand, but there is nothing simple
about a circuit that contains tens of millions of transistors. The complexity that comes with the large size of
logic circuits can be handled successfully only by using highly organized design techniques. We introduce
these techniques in this chapter, but first we briefly describe the hardware technology used to build logic
circuits.

| 1.1 DiciTAL HARDWARE

Logic circuits are used to build computer hardware, as well as many other types of products.
All such products are broadly classified as digital hardware. The reason that the name digital
is used will become clear later in the book—it derives from the way in which information
is represented in computers, as electronic signals that correspond to digits of information.

The technology used to build digital hardware has evolved dramatically over the past
four decades. Until the 1960s logic circuits were constructed with bulky components, such
as transistors and resistors that came as individual parts. The advent of integrated circuits
made it possible to place a number of transistors, and thus an entire circuit, on a single
chip. In the beginning these circuits had only a few transistors, but as the technology
improved they became larger. Integrated circuit chips are manufactured on a silicon wafer,
such as the one shown in Figure 1.1. The wafer is cut to produce the individual chips,
which are then placed inside a special type of chip package. By 1970 it was possible to
implement all circuitry needed to realize a microprocessor on a single chip. Although early
microprocessors had modest computing capability by today’s standards, they opened the
door for the information processing revolution by providing the means for implementation
of affordable personal computers. About 30 years ago Gordon Moore, chairman of Intel
Corporation, observed that integrated circuit technology was progressing at an astounding
rate, doubling the number of transistors that could be placed on a chip every 1.5 to 2 years.

June 10,2002 11:03 vra23151_chO1 Sheet number 3 Page number 3 black

1.1 DiGITAL HARDWARE

Figure 1.1 Asilicon wafer (courtesy of Altera Corp.).

This phenomenon, informally known as Moore’s law, continues to the present day. Thus in
the early 1990s microprocessors could be manufactured with a few million transistors, and
by the late 1990s it became possible to fabricate chips that contain more than 10 million
transistors. Presently chips can have a few hundreds of millions of transistors.

Moore’s law is expected to continue to hold true for at least the next decade. A con-
sortium of integrated circuit manufacturers called the Semiconductor Industry Association
(SIA) produces an estimate of how the technology is expected to evolve. Known as the SIA
Roadmap [1], this estimate predicts the minimum size of a transistor that can be fabricated
on an integrated circuit chip. The size of a transistor is measured by a parameter called its
gate length, which we will discuss in Chapter 3. A sample of the STA Roadmap is given in
Table 1.1. In 2002 the minimum possible gate length that can be reliably manufactured is
0.13 pwm. The first row of the table indicates that the minimum gate length is expected to
reduce steadily to about 0.035 pm by the year 2012. The size of a transistor determines how
many transistors can be placed in a given amount of chip area, with the current maximum
being about 20 million transistors per cm?. This number is expected to grow to 100 million
transistors by the year 2012. The largest chip size is expected to be about 1300 mm? at that
time; thus chips with up to 1.3 billion transistors will be possible! There is no doubt that
this technology will have a huge impact on all aspects of people’s lives.

The designer of digital hardware may be faced with designing logic circuits that can be
implemented on a single chip or, more likely, designing circuits that involve a number of
chips placed on a printed circuit board (PCB). Frequently, some of the logic circuits can be
realized in existing chips that are readily available. This situation simplifies the design task
and shortens the time needed to develop the final product. Before we discuss the design

Jur‘e 10,2002 11:03 vra23151_chO1 Sheet number 4 Page number 4 black

CHAPTER 1 e DEsiGN CONCEPTS

Table 1.1 A sample of the SIA Roadmap

Year
1999 2001 2003 2006 2009 2012
Transistor
gate length 0.14 um 0.12 um 0.10 um 0.07 um 0.05 um 0.035 pm
Transistors
per cm? 14 million 16 million 24 million 40 million 64 million 100 million
Chip size 800 mm? 850 mm? 900 mm? 1000 mm? 1100 mm? 1300 mm?

process in more detail, we should introduce the different types of integrated circuit chips
that may be used.

There exists a large variety of chips that implement various functions that are useful
in the design of digital hardware. The chips range from very simple chips with low func-
tionality to extremely complex chips. For example, a digital hardware product may require
a microprocessor to perform some arithmetic operations, memory chips to provide storage
capability, and interface chips that allow easy connection to input and output devices. Such
chips are available from various vendors.

For most digital hardware products, it is also necessary to design and build some logic
circuits from scratch. For implementing these circuits, three main types of chips may be
used: standard chips, programmable logic devices, and custom chips. These are discussed
next.

1.1.1 STANDARD CHIPS

Numerous chips are available that realize some commonly used logic circuits. We will
refer to these as standard chips, because they usually conform to an agreed-upon standard
in terms of functionality and physical configuration. Each standard chip contains a small
amount of circuitry (usually involving fewer than 100 transistors) and performs a simple
function. To build a logic circuit, the designer chooses the chips that perform whatever
functions are needed and then defines how these chips should be interconnected to realize
a larger logic circuit.

Standard chips were popular for building logic circuits until the early 1980s. However,
as integrated circuit technology improved, it became inefficient to use valuable space on
PCBs for chips with low functionality. Another drawback of standard chips is that the
functionality of each chip is fixed and cannot be changed.

1.1.2 PROGRAMMABLE LoGIc DEVICES

In contrast to standard chips that have fixed functionality, it is possible to construct chips
that contain circuitry that can be configured by the user to implement a wide range of
different logic circuits. These chips have a very general structure and include a collec-

June 10,2002 11:03 vra23151_chO1 Sheet number 5 Page number 5 black

1.1 DiGITAL HARDWARE

Figure 1.2 A field-programmable gate array chip (courtesy of
Altera Corp.).

tion of programmable switches that allow the internal circuitry in the chip to be con-
figured in many different ways. The designer can implement whatever functions are
needed for a particular application by choosing an appropriate configuration of the switches.
The switches are programmed by the end user, rather than when the chip is manufactured.
Such chips are known as programmable logic devices (PLDs). We will introduce them in
Chapter 3.

Most types of PLDs can be programmed multiple times. This capability is advantageous
because a designer who is developing a prototype of a product can program a PLD to perform
some function, but later, when the prototype hardware is being tested, can make corrections
by reprogramming the PLD. Reprogramming might be necessary, for instance, if a designed
function is not quite as intended or if new functions are needed that were not contemplated
in the original design.

PLDs are available in a wide range of sizes. They can be used to realize much larger
logic circuits than a typical standard chip can realize. Because of their size and the fact that
they can be tailored to meet the requirements of a specific application, PLDs are widely
used today. One of the most sophisticated types of PLD is known as a field-programmable
gate array (FPGA). FPGAs that contain more than 100 million transistors are now available
[2, 3]. Aphotograph of an FPGA chip that has 10 million transistors is shown in Figure 1.2.
The chip consists of a large number of small logic circuit elements, which can be connected
together using the programmable switches. The logic circuit elements are arranged in a
regular two-dimensional structure.

1.1.3 CustoM-DESIGNED CHIPS

PLDs are available as off-the-shelf components that can be purchased from different sup-
pliers. Because they are programmable, they can be used to implement most logic circuits
found in digital hardwale. However, PLDs also have a drawback in that the programmable
switches consume valuable chip area and limit the speed of operation of implemented cir-

Jur‘e 10,2002 11:03 vra23151_chO1 Sheet number 6 Page number 6 black

CHAPTER 1 e DEsiGN CONCEPTS

cuits. Thus in some cases PLDs may not meet the desired performance or cost objectives.
In such situations it is possible to design a chip from scratch; namely, the logic circuitry
that must be included on the chip is designed first and then an appropriate technology is
chosen to implement the chip. Finally, the chip is manufactured by a company that has the
fabrication facilities. This approach is known as custom or semi-custom design, and such
chips are called custom or semi-custom chips. Such chips are intended for use in specific
applications and are sometimes called application-specific integrated circuits (ASICs).

The main advantage of a custom chip is that its design can be optimized for a specific
task; hence it usually leads to better performance. It is possible to include a larger amount
of logic circuitry in a custom chip than would be possible in other types of chips. The
cost of producing such chips is high, but if they are used in a product that is sold in large
quantities, then the cost per chip, amortized over the total number of chips fabricated, may
be lower than the total cost of off-the-shelf chips that would be needed to implement the
same function(s). Moreover, if a single chip can be used instead of multiple chips to achieve
the same goal, then a smaller area is needed on a PCB that houses the chips in the final
product. This results in a further reduction in cost.

A disadvantage of the custom-design approach is that manufacturing a custom chip
often takes a considerable amount of time, on the order of months. In contrast, if a PLD
can be used instead, then the chips are programmed by the end user and no manufacturing
delays are involved.

1.2 THE DESIGN PROCESS

The availability of computer-based tools has greatly influenced the design process in a wide
variety of design environments. For example, designing an automobile is similar in the
general approach to designing a furnace or a computer. Certain steps in the development
cycle must be performed if the final product is to meet the specified objectives. We will
start by introducing a typical development cycle in the most general terms. Then we will
focus on the particular aspects that pertain to the design of logic circuits.

The flowchart in Figure 1.3 depicts a typical development process. We assume that
the process is to develop a product that meets certain expectations. The most obvious
requirements are that the product must function properly, that it must meet an expected
level of performance, and that its cost should not exceed a given target.

The process begins with the definition of product specifications. The essential features
of the product are identified, and an acceptable method of evaluating the implemented
features in the final product is established. The specifications must be tight enough to
ensure that the developed product will meet the general expectations, but should not be
unnecessarily constraining (that is, the specifications should not prevent design choices
that may lead to unforeseen advantages).

From a complete set of specifications, it is necessary to define the general structure of
an initial design of the product. This step is difficult to automate. It is usually performed by
a human designer because there is no clear-cut strategy for developing a product’s overall
structure—it requires considerable design experience and intuition.

After the general structure is established, CAD tools are used to work out the details.
Many types of CAD tools are available, ranging from those that help with the design

June 10,2002 11:03 vra23151_chO1 Sheet number 7 Page number 7 black

1.2 THE DESIGN PROCESS

Required product

i

Define specifications

|

Initial design

i

Simulation Redesign

l [

. No
Design V - -
Yes -
i
Prototype implementation Make corrections

i

Testing

Minor errors?

:

Meets specifications?

Finished product

Figure 1.3 The development process.

of individual parts of the system to those that allow the entire system’s structure to be
represented in a computer. When the initial design is finished, the results must be verified
against the original specifications. Traditionally, before the advent of CAD tools, this step
involved constructing a physical model of the designed product, usually including just the
key parts. Today it is seldom necessary to build a physical model. CAD tools enable

Jur‘e 10,2002 11:03 vra23151_chO1 Sheet number 8 Page number 8 black

CHAPTER 1 e DEsiGN CONCEPTS

designers to simulate the behavior of incredibly complex products, and such simulations
are used to determine whether the obtained design meets the required specifications. If
errors are found, then appropriate changes are made and the verification of the new design
is repeated through simulation. Although some design flaws may escape detection via
simulation, usually all but the most subtle problems are discovered in this way.

When the simulation indicates that the design is correct, a complete physical prototype
of the product is constructed. The prototype is thoroughly tested for conformance with the
specifications. Any errors revealed in the testing must be fixed. The errors may be minor,
and often they can be eliminated by making small corrections directly on the prototype of
the product. In case of large errors, it is necessary to redesign the product and repeat the
steps explained above. When the prototype passes all the tests, then the product is deemed
to be successfully designed and it can go into production.

1.3 DESIGN OF DIGITAL HARDWARE

Our previous discussion of the development process is relevant in a most general way. The
steps outlined in Figure 1.3 are fully applicable in the development of digital hardware.
Before we discuss the complete sequence of steps in this development environment, we
should emphasize the iterative nature of the design process.

1.3.1 Basic DEsiGN Loor

Any design process comprises a basic sequence of tasks that are performed in various
situations. This sequence is presented in Figure 1.4. Assuming that we have an initial
concept about what should be achieved in the design process, the first step is to generate
an initial design. This step often requires a lot of manual effort because most designs have
some specific goals that can be reached only through the designer’s knowledge, skill, and
intuition. The next step is the simulation of the design at hand. There exist excellent
CAD tools to assist in this step. To carry out the simulation successfully, it is necessary
to have adequate input conditions that can be applied to the design that is being simulated
and later to the final product that has to be tested. Applying these input conditions, the
simulator tries to verify that the designed product will perform as required under the orig-
inal product specifications. If the simulation reveals some errors, then the design must
be changed to overcome the problems. The redesigned version is again simulated to de-
termine whether the errors have disappeared. This loop is repeated until the simulation
indicates a successful design. A prudent designer expends considerable effort to remedy
errors during simulation because errors are typically much harder to fix if they are dis-
covered late in the design process. Even so, some errors may not be detected during
simulation, in which case they have to be dealt with in later stages of the development
cycle.

June 10,2002 11:03 vra23151_chO1 Sheet number 9 Page number 9 black

1.3 DESIGN OF DIGITAL HARDWARE

i

Initial design

i

Simulation Redesign
l [

Design correct?

Successful design

Figure 1.4 The basic design loop.

1.3.2 DESIGN OF A DIGITAL HARDWARE UNIT

Digital hardware products usually involve one or more PCBs that contain many chips and
other components. Development of such products starts with the definition of the overall
structure. Then the required integrated circuit chips are selected, and the PCBs that house
and connect the chips together are designed. If the selected chips include PLDs or custom
chips, then these chips must be designed before the PCB-level design is undertaken. Since
the complexity of circuits implemented on individual chips and on the circuit boards is
usually very high, it is essential to make use of good CAD tools.

An example of a PCB is given in Figure 1.5. The PCB is a part of a large computer
system designed at the University of Toronto. This computer, called NUMAchine [4,5], is
a multiprocessor, which means that it contains many processors that can be used together
to work on a particular task. The PCB in the figure contains one processor chip and various
memory and support chips. Complex logic circuits are needed to form the interface between
the processor and the rest of the system. A number of PLDs are used to implement these
logic circuits.

To illustrate the complete development cycle in more detail, we will consider the steps
needed to produce a digital hardware unit that can be implemented on a PCB. This hardware

Jur‘e 10,2002 11:03 vra23151_chO1 Sheet number 10 Page number 10 black

10

CHAPTER 1 e DEsiGN CONCEPTS

Figure 1.5 A printed circuit board.

could be viewed as a very complex logic circuit that performs the functions defined by the
product specifications. Figure 1.6 shows the design flow, assuming that we have a design
concept that defines the expected behavior and characteristics of this large circuit.

An orderly way of dealing with the complexity involved is to partition the circuit into
smaller blocks and then to design each block separately. Breaking down a large task into
more manageable smaller parts is known as the divide-and-conquer approach. The design
of each block follows the procedure outlined in Figure 1.4. The circuitry in each block is
defined, and the chips needed to implement it are chosen. The operation of this circuitry is
simulated, and any necessary corrections are made.

Having successfully designed all blocks, the interconnection between the blocks must
be defined, which effectively combines these blocks into a single large circuit. Now it
is necessary to simulate this complete circuit and correct any errors. Depending on the
errors encountered, it may be necessary to go back to the previous steps as indicated by the
paths A, B, and C in the flowchart. Some errors may be caused by incorrect connections

June 10, 2002 11:03

vra23151_chOl Sheet number 11 Page number 11

1.3 DESIGN OF DIGITAL HARDWARE

black

i

Partition

!

! !

Design one block o o e Design one block

| V

Define interconnection between blocks

\

Functional simulation of complete system

l

No
Correct?/ -
Yes -
\
Physical mapping
i
Timing simulation
No
Correct? >

Yes

Implementation

Design flow for logic circuits.

Figure 1.6

Jur‘e 10,2002 11:03 vra23151_chO1 Sheet number 12 Page number 12 black

12

CHAPTER 1 e DEsiGN CONCEPTS

between the blocks, in which case these connections have to be redefined, following path C.
Some blocks may not have been designed correctly, in which case path B is followed and the
erroneous blocks are redesigned. Another possibility is that the very first step of partitioning
the overall large circuit into blocks was not done well, in which case path A is followed.
This may happen, for example, if none of the blocks implement some functionality needed
in the complete circuit.

Successful completion of functional simulation suggests that the designed circuit will
correctly perform all of its functions. The next step is to decide how to realize this circuit
on a PCB. The physical location of each chip on the board has to be determined, and the
wiring pattern needed to make connections between the chips has to be defined. We refer
to this step as the physical design of the PCB. CAD tools are relied on heavily to perform
this task automatically.

Once the placement of chips and the actual wire connections on the PCB have been
established, it is desirable to see how this physical layout will affect the performance of
the circuit on the finished board. It is reasonable to assume that if the previous functional
simulation indicated that all functions will be performed correctly, then the CAD tools
used in the physical design step will ensure that the required functional behavior will not
be corrupted by placing the chips on the board and wiring them together to realize the
final circuit. However, even though the functional behavior may be correct, the realized
circuit may operate more slowly than desired and thus lead to inadequate performance. This
condition occurs because the physical wiring on the PCB involves metal traces that present
resistance and capacitance to electrical signals and thus may have a significant impact on the
speed of operation. To distinguish between simulation that considers only the functionality
of the circuit and simulation that also considers timing behavior, it is customary to use
the terms functional simulation and timing simulation. A timing simulation may reveal
potential performance problems, which can then be corrected by using the CAD tools to
make changes in the physical design of the PCB.

Having completed the design process, the designed circuit is ready for physical im-
plementation. The steps needed to implement a prototype board are indicated in Figure
1.7. A first version of the board is built and tested. Most minor errors that are detected can
usually be corrected by making changes directly on the prototype board. This may involve
changes in wiring or perhaps reprogramming some PLDs. Larger problems require a more
substantial redesign. Depending on the nature of the problem, the designer may have to
return to any of the points A, B, C, or D in the design process of Figure 1.6.

We have described the development process where the final circuit is implemented
using many chips on a PCB. The material presented in this book is directly applicable to
this type of design problem. However, for practical reasons the design examples that appear
in the book are relatively small and can be realized in a single integrated circuit, either a
custom-designed chip or a PLD. All the steps in Figure 1.6 are relevant in this case as well,
with the understanding that the circuit blocks to be designed are on a smaller scale.

1.4 Locic Circult DESIGN IN THIS BOOK

In this book we use PLDs extensively to illustrate many aspects of logic circuit design.
We selected this technology because it is widely used in real digital hardware products

June 10,2002 11:03 vra23151_chO1 Sheet number 13 Page number 13 black

1.4 Locic Circult DESIGN IN THis Book

i

Build prototype

i

Testing Modify prototype

:

Minor errors?

Finished PCB Go to A, B, C, or D in Figure 1.6

Figure 1.7 Completion of PCB development.

and because the chips are user programmable. PLD technology is particularly well suited
for educational purposes because many readers have access to facilities for programming
PLDs, which enables the reader to actually implement the sample circuits. To illustrate
practical design issues, in this book we use two types of PLDs—they are the two types
of devices that are widely used in digital hardware products today. One type is known as
complex programmable logic devices (CPLDs) and the other as field-programmable gate
arrays (FPGAs). These chips are introduced in Chapter 3.

To gain practical experience and a deeper understanding of logic circuits, we advise the
reader to implement the examples in this book using CAD tools. Most of the major vendors
of CAD systems provide their tools through university programs for educational use. Some
examples are Altera, Cadence, Mentor Graphics, Synopsys, Synplicity, and Xilinx. The
CAD systems offered by any of these companies can be used equally well with this book.
For those who do not already have access to CAD tools, we include Altera’s MAX+plusII
CAD system on a CD-ROM. This industrial-quality software supports all phases of the
design cycle and is powerful and easy to use. The software is easily installed on a personal
computer, and we provide a sequence of complete step-by-step tutorials in Appendices B,
C, and D to illustrate the use of CAD tools in concert with the book.

For educational purposes, some PLD manufacturers provide laboratory development
printed circuit boards that include one or more PLD chips and an interface to a personal
computer. Once a logic circuit has been designed using the CAD tools, the circuit can be

Jur‘e 10,2002 11:03 vra23151_chO1 Sheet number 14 Page number 14 black

14

CHAPTER 1 e DEsiGN CONCEPTS

downloaded into a PLD on the board. Inputs can then be applied to the PLD by way of
simple switches, and the generated outputs can be examined. These laboratory boards are
described on the World Wide Web pages of the PLD suppliers.

1.5 THEORY AND PRACTICE

Modern design of logic circuits depends heavily on CAD tools, but the discipline of logic
design evolved long before CAD tools were invented. This chronology is quite obvious
because the very first computers were built with logic circuits, and there certainly were no
computers available on which to design them!

Numerous manual design techniques have been developed to deal with logic circuits.
Boolean algebra, which we will introduce in Chapter 2, was adopted as a mathematical
means for representing such circuits. An enormous amount of “theory” was developed,
showing how certain design issues may be treated. To be successful, a designer had to
apply this knowledge in practice.

CAD tools not only made it possible to design incredibly complex circuits but also
made the design work much simpler in general. They perform many tasks automatically,
which may suggest that today’s designer need not understand the theoretical concepts used
in the tasks performed by CAD tools. An obvious question would then be, Why should one
study the theory that is no longer needed for manual design? Why not simply learn how to
use the CAD tools?

There are three big reasons for learning the relevant theory. First, although the CAD
tools perform the automatic tasks of optimizing a logic circuit to meet particular design
objectives, the designer has to give the original description of the logic circuit. If the
designer specifies a circuit that has inherently bad properties, then the final circuit will also
be of poor quality. Second, the algebraic rules and theorems for design and manipulation
of logic circuits are directly implemented in today’s CAD tools. It is not possible for a user
of the tools to understand what the tools do without grasping the underlying theory. Third,
CAD tools offer many optional processing steps that a user can invoke when working on
a design. The designer chooses which options to use by examining the resulting circuit
produced by the CAD tools and deciding whether it meets the required objectives. The
only way that the designer can know whether or not to apply a particular option in a given
situation is to know what the CAD tools will do if that option is invoked—again, this implies
that the designer must be familiar with the underlying theory. We discuss the classical logic
circuit theory extensively in this book, because it is not possible to become an effective
logic circuit designer without understanding the fundamental concepts.

On a final note, there is another good reason to learn some logic circuit theory even if it
were not required for CAD tools. Simply put, it is interesting and intellectually challenging.
In the modern world filled with sophisticated automatic machinery, it is tempting to rely on
tools as a substitute for thinking. However, in logic circuit design, as in any type of design
process, computer-based tools are not a substitute for human intuition and innovation.
Computer-based tools can produce good digital hardware designs only when employed by
a designer who thoroughly understands the nature of logic circuits.

June 10,2002 11:03 vra23151_chO1 Sheet number 15 Page number 15 black

REFERENCES

| REFERENCES

1.

Semiconductor Industry Association, “National Technology Roadmap for Semi-
conductors,” http://www.semichips.org/

Altera Corporation, “APEX II Programmable Logic Devices,” http://www.altera.com

Xilinx Corporation, “Virtex II Field Programmable Gate Arrays,”
http://www.xilinx.com

S. Brown, N. Manjikian, Z. Vranesic, S. Caranci, A. Grbic, R. Grindley, M. Gusat,

K. Loveless, Z. Zilic, and S. Srbljic, “Experience in Designing a Large-Scale
Multiprocessor Using Field-Programmable Devices and Advanced CAD Tools,” 33rd
IEEE Design Automation Conference, Las Vegas, June 1996.

A. Grbic, S. Brown, S. Caranci, R. Grindley, M. Gusat, G. Lemieux, K. Loveless,
N. Manjikian, S. Srbljic, M. Stumm, Z. Vranesic, and Z. Zilic, “ The Design and
Implementation of the NUMAchine Multiprocessor,” IEEE Design Automation
Conference, San Francisco, June 1998.

15

June 10,2002 11:02 vra23151_ch02 Sheet number 1 Page number 17 black

chapter

2

INTRODUCTION TO LoGIc CIRCUITS

4 & & 5 4 4
O Qe Q@ Of

2. d2-d4, d7-d5

17

Jur‘e 10,2002 11:02 vra23151_ch02 Sheet number 2 Page number 18 black

18 CHAPTER 2 <« INTRODUCTION TO LOGIC CIRCUITS

The study of logic circuits is motivated mostly by their use in digital computers. But such circuits also form
the foundation of many other digital systems where performing arithmetic operations on numbers is not of
primary interest. For example, in a myriad of control applications actions are determined by some simple
logical operations on input information, without having to do extensive numerical computations.

Logic circuits perform operations on digital signals and are usually implemented as electronic circuits
where the signal values are restricted to a few discrete values. In binary logic circuits there are only two
values, 0 and 1. In decimal logic circuits there are 10 values, from 0 to 9. Since each signal value is naturally
represented by a digit, such logic circuits are referred to as digital circuits. In contrast, there exist analog
circuits where the signals may take on a continuous range of values between some minimum and maximum
levels.

In this book we deal with binary circuits, which have the dominant role in digital technology. We hope to
provide the reader with an understanding of how these circuits work, how are they represented in mathematical
notation, and how are they designed using modern design automation techniques. We begin by introducing
some basic concepts pertinent to the binary logic circuits.

| 2.1 VARIABLES AND FUNCTIONS

The dominance of binary circuits in digital systems is a consequence of their simplicity,
which results from constraining the signals to assume only two possible values. The simplest
binary element is a switch that has two states. If a given switch is controlled by an input
variable x, then we will say that the switch is open if x = 0 and closed if x = 1, as illustrated
in Figure 2.1a. We will use the graphical symbol in Figure 2.1b to represent such switches
in the diagrams that follow. Note that the control input x is shown explicitly in the symbol.
In Chapter 3 we will explain how such switches are implemented with transistors.
Consider a simple application of a switch, where the switch turns a small lightbulb
on or off. This action is accomplished with the circuit in Figure 2.2a. A battery provides
the power source. The lightbulb glows when sufficient current passes through its filament,
which is an electrical resistance. The current flows when the switch is closed, that is, when
x = 1. In this example the input that causes changes in the behavior of the circuit is the

" o

x=0 x=1

o
o

(a) Two states of a switch

S
|

X

(b) Symbol for a switch

Figure 2.1 A binary switch.

June 10,2002 11:02 vra23151_ch02 Sheet number 3 Page number 19 black

2.1 VARIABLES AND FUNCTIONS

il S '
i |

(a) Simple connection to a battery

Battery Light

]
-

S
Power J_
supply I X

(b) Using a ground connection as the return path

|||—l“ —

Figure 2.2 A light controlled by a switch.

switch control x. The output is defined as the state (or condition) of the light L. If the light
is on, we will say that L = 1. If the the light is off, we will say that L = 0. Using this
convention, we can describe the state of the light L as a function of the input variable x.
Since L= 11if x = 1 and L = 0 if x = 0, we can say that

Lx)=x

This simple logic expression describes the output as a function of the input. We say that
L(x) = x is a logic function and that x is an input variable.

The circuit in Figure 2.2a can be found in an ordinary flashlight, where the switch is a
simple mechanical device. In an electronic circuit the switch is implemented as a transistor
and the light may be a light-emitting diode (LED). An electronic circuit is powered by
a power supply of a certain voltage, perhaps 5 volts. One side of the power supply is
connected to ground, as shown in Figure 2.2b. The ground connection may also be used as
the return path for the current, to close the loop, which is achieved by connecting one side
of the light to ground as indicated in the figure. Of course, the light can also be connected
by a wire directly to the grounded side of the power supply, as in Figure 2.2a.

Consider now the possibility of using two switches to control the state of the light. Let
x; and x; be the control inputs for these switches. The switches can be connected either
in series or in parallel as shown in Figure 2.3. Using a series connection, the light will be
turned on only if both switches are closed. If either switch is open, the light will be off.
This behavior can be described by the expression

L(x1,x2) = x1 - x2
where L=1ifx; =1andx, =1,
L = 0 otherwise.

The “-” symbol is called the AND operator, and the circuit in Figure 2.3a is said to implement
a logical AND function.

19

JuJe 10,2002 11:02 vra23151_ch02 Sheet number 4 Page number 20 black

20 CHAPTER 2 <« INTRODUCTION TO LOGIC CIRCUITS

S S |
Power i [[

supply :|: X, Xy L

(a) The logical AND function (series connection)

S
I
*
Power .
I S L | Light

supply
| 1
X 2 =

Light

(b) The logical OR function (parallel connection)

Figure 2.3 Two basic functions.

The parallel connection of two switches is given in Figure 2.3b. In this case the light
will be on if either x; or x, switch is closed. The light will also be on if both switches are
closed. The light will be off only if both switches are open. This behavior can be stated as

L(x1, x2) = x1 + x2
where L=1ifxy=1orx;=1orifx; =x, =1,
L:Oif)q ZXZZO.

The 4 symbol is called the OR operator, and the circuit in Figure 2.3b is said to implement
a logical OR function.

In the above expressions for AND and OR, the output L(x, x,) is a logic function with
input variables x; and x,. The AND and OR functions are two of the most important logic
functions. Together with some other simple functions, they can be used as building blocks

S
[
X
1 S —|
Power | .
I S X3 Light

supply L
| I

Figure 2.4 A series-parallel connection.

June 10,2002 11:02 vra23151_ch02 Sheet number 5 Page number 21 black

2.2 INVERSION

for the implementation of all logic circuits. Figure 2.4 illustrates how three switches can be
used to control the light in a more complex way. This series-parallel connection of switches
realizes the logic function

L(x1, x2,x3) = (x1 + X2) - X3

The light is on if x3 = 1 and, at the same time, at least one of the x; or x, inputs is equal
to 1.

2.2 INVERSION

So far we have assumed that some positive action takes place when a switch is closed, such
as turning the light on. It is equally interesting and useful to consider the possibility that a
positive action takes place when a switch is opened. Suppose that we connect the light as
shown in Figure 2.5. In this case the switch is connected in parallel with the light, rather
than in series. Consequently, a closed switch will short-circuit the light and prevent the
current from flowing through it. Note that we have included an extra resistor in this circuit
to ensure that the closed switch does not short-circuit the power supply. The light will be
turned on when the switch is opened. Formally, we express this functional behavior as

Lix)=X
where L=1ifx=0,
L=0ifx=1

The value of this function is the inverse of the value of the input variable. Instead of
using the word inverse, it is more common to use the term complement. Thus we say that
L(x) is a complement of x in this example. Another frequently used term for the same
operation is the NOT operation. There are several commonly used notations for indicating
the complementation. In the preceding expression we placed an overbar on top of x. This
notation is probably the best from the visual point of view. However, when complements
are needed in expressions that are typed using a computer keyboard, which is often done
when using CAD tools, it is impractical to use overbars. Instead, either an apostrophe is

R
Power J_ /W\l T |

supply I - s L

Figure 2.5 An inverting circuit.

Jur‘e 10,2002 11:02 vra23151_ch02 Sheet number 6 Page number 22 black

22

CHAPTER 2 <« INTRODUCTION TO LOGIC CIRCUITS

placed after the variable, or the exclamation mark (!) or the tilde character (~) is placed in
front of the variable to denote the complementation. Thus the following are equivalent:

X =x = Ix = ~x

The complement operation can be applied to a single variable or to more complex
operations. For example, if
fGx) = x+x
then the complement of f is

fxi,x) = x +x

This expression yields the logic value 1 only when neither x| nor x; is equal to 1, that is,
when x; = x, = 0. Again, the following notations are equivalent:

xi+x = +x) =l +x) =~ +x)

2.3 TrutH TABLES

We have introduced the three most basic logic operations—AND), OR, and complement—by
relating them to simple circuits built with switches. This approach gives these operations a
certain “physical meaning.” The same operations can also be defined in the form of a table,
called a truth table, as shown in Figure 2.6. The first two columns (to the left of the heavy
vertical line) give all four possible combinations of logic values that the variables x; and x,
can have. The next column defines the AND operation for each combination of values of x;
and x,, and the last column defines the OR operation. Because we will frequently need to
refer to “combinations of logic values” applied to some variables, we will adopt a shorter
term, valuation, to denote such a combination of logic values.

The truth table is a useful aid for depicting information involving logic functions. We
will use it in this book to define specific functions and to show the validity of certain func-
tional relations. Small truth tables are easy to deal with. However, they grow exponentially
in size with the number of variables. A truth table for three input variables has eight rows
because there are eight possible valuations of these variables. Such a table is given in Figure
2.7, which defines three-input AND and OR functions. For four-input variables the truth
table has 16 rows, and so on.

X1 X2 X1-Xx2 | X1+ x2

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 1
AND OR

Figure 2.6 A truth table for the AND and OR operations.

June 10,2002 11:02 vra23151_ch02 Sheet number 7 Page number 23 black

2.4 Locic GATES AND NETWORKS

X1 X2 X3 X1 -X2-Xx3 | X1+ X2+ X3
0O 0 O 0 0
0o 0 1 0 1
o 1 0 0 1
0 1 1 0 1
1 0 0 0 1
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Figure 2.7 Three-input AND and OR operations.

The AND and OR operations can be extended to n variables. An AND function
of variables xi, x2, ..., x, has the value 1 only if all n variables are equal to 1. An OR
function of variables x1, x,, ..., x, has the value 1 if at least one, or more, of the variables
is equal to 1.

23

2.4 1.oGIic GATES AND NETWORKS

The three basic logic operations introduced in the previous sections can be used to implement
logic functions of any complexity. A complex function may require many of these basic
operations for its implementation. Each logic operation can be implemented electronically
with transistors, resulting in a circuit element called a logic gate. A logic gate has one or
more inputs and one output that is a function of its inputs. It is often convenient to describe
a logic circuit by drawing a circuit diagram, or schematic, consisting of graphical symbols
representing the logic gates. The graphical symbols for the AND, OR, and NOT gates are
shown in Figure 2.8. The figure indicates on the left side how the AND and OR gates are
drawn when there are only a few inputs. On the right side it shows how the symbols are
augmented to accommodate a greater number of inputs. We will show how logic gates are
built using transistors in Chapter 3.

A larger circuit is implemented by a network of gates. For example, the logic function
from Figure 2.4 can be implemented by the network in Figure 2.9. The complexity of a
given network has a direct impact on its cost. Because it is always desirable to reduce
the cost of any manufactured product, it is important to find ways for implementing logic
circuits as inexpensively as possible. We will see shortly that a given logic function can
be implemented with a number of different networks. Some of these networks are simpler
than others, hence searching for the solutions that entail minimum cost is prudent.

In technical jargon a network of gates is often called a logic network or simply a logic
circuit. We will use these terms interchangeably.

Jur‘e 10,2002 11:02 vra23151_ch02 Sheet number 8 Page number 24 black

24 CHAPTER 2 <« INTRODUCTION TO LOGIC CIRCUITS

xl —

x2 1
xl —

xl-xz . x1~x2~...-xn

xz — .

P —

n

X

1 .
B X+ X, X tXy .t
5 .

(b) OR gates

x 4>07 X
(c) NOT gate

Figure 2.8 The basic gates.

2.4.1 ANALYSIS OF A LoGgic NETWORK

A designer of digital systems is faced with two basic issues. For an existing logic network, it
must be possible to determine the function performed by the network. This task is referred
to as the analysis process. The reverse task of designing a new network that implements a
desired functional behavior is referred to as the synthesis process. The analysis process is
rather straightforward and much simpler than the synthesis process.

Figure 2.10a shows a simple network consisting of three gates. To determine its
functional behavior, we can consider what happens if we apply all possible input signals to
it. Suppose that we start by making x; = x, = 0. This forces the output of the NOT gate

*1
)
_)7 f= (xl+xz)-x3

X3

Figure 2.9 The function from Figure 2.4.

June 10,2002 11:02 vra23151_ch02 Sheet number 9 Page number 25 black

2.4 Locic GATES AND NETWORKS

0-50—-1—>1 l1->1—->0->0
X Py A

051501)\ 0001 |B

I1->1->50->1

*2
(a) Network that implements f = ;‘1 +xg X,
X1 X | f(xl, x2)
0 0 1
0 1 1
1 0 0
1 1 1
(b) Truth table for f
1
x| 0 I

1

>
S —

o]
oS =

—

I |

— Time

=]

(c) Timing diagram

. 0-50—-1—1 Dolﬁl—)()%o
1
l->1-50—>1
0->1-0-1 8
X2

(d) Network that implements g = x, +x,

Figure 2.10 An example of logic networks.

to be equal to 1 and the output of the AND gate to be 0. Because one of the inputs to the
OR gate is 1, the output of this gate will be 1. Therefore, f = 1 if x; = x, = 0. If we let
x; = 0 and x, = 1, then no change in the value of f will take place, because the outputs of
the NOT and AND gates will still be 1 and 0, respectively. Next, if we apply x; = 1 and
x, = 0, then the output of the NOT gate changes to O while the output of the AND gate

25

Jur‘e 10,2002 11:02 vra23151_ch02 Sheet number 10 Page number 26 black

26

CHAPTER 2 <« INTRODUCTION TO LOGIC CIRCUITS

remains at 0. Both inputs to the OR gate are then equal to 0; hence the value of f will be 0.
Finally, let x; = x, = 1. Then the output of the AND gate goes to 1, which in turn causes
f to be equal to 1. Our verbal explanation can be summarized in the form of the truth table
shown in Figure 2.10b.

Timing Diagram

We have determined the behavior of the network in Figure 2.10a by considering the four
possible valuations of the inputs x; and x,. Suppose that the signals that correspond to these
valuations are applied to the network in the order of our discussion; that is, (x;, x,) = (0, 0)
followed by (0, 1), (1, 0), and (1, 1). Then changes in the signals at various points in the
network would be as indicated in blue in the figure. The same information can be presented
in graphical form, known as a timing diagram, as shown in Figure 2.10c. The time runs
from left to right, and each input valuation is held for some fixed period. The figure shows
the waveforms for the inputs and output of the network, as well as for the internal signals
at the points labeled A and B.

Timing diagrams are used for many purposes. They depict the behavior of a logic
circuit in a form that can be observed when the circuit is tested using instruments such as
logic analyzers and oscilloscopes. Also, they are often generated by CAD tools to show
the designer how a given circuit is expected to behave before it is actually implemented
electronically. We will introduce the CAD tools later in this chapter and will make use of
them throughout the book.

Functionally Equivalent Networks

Now consider the network in Figure 2.10d. Going through the same analysis procedure,
we find that the output g changes in exactly the same way as f does in part (a) of the figure.
Therefore, g(x;,x2) = f(x1, x2), which indicates that the two networks are functionally
equivalent; the output behavior of both networks is represented by the truth table in Figure
2.10b. Since both networks realize the same function, it makes sense to use the simpler
one, which is less costly to implement.

In general, a logic function can be implemented with a variety of different networks,
probably having different costs. This raises an important question: How does one find the
best implementation for a given function? Many techniques exist for synthesizing logic
functions. We will discuss the main approaches in Chapter 4. For now, we should note that
some manipulation is needed to transform the more complex network in Figure 2.10a into
the network in Figure 2.10d. Since f (x1, x2) = X1 + X1 - X and g(x1, x2) = X| + X2, there
must exist some rules that can be used to show the equivalence

X1 +Xx1-X =X +x

We have already established this equivalence through detailed analysis of the two circuits
and construction of the truth table. But the same outcome can be achieved through algebraic
manipulation of logic expressions. In the next section we will discuss a mathematical
approach for dealing with logic functions, which provides the basis for modern design
techniques.

June 10,2002 11:02 vra23151_ch02 Sheet number 11 Page number 27 black

2.5 BOOLEAN ALGEBRA

2.5 BOOLEAN ALGEBRA

In 1849 George Boole published a scheme for the algebraic description of processes involved
in logical thought and reasoning [1]. Subsequently, this scheme and its further refinements
became known as Boolean algebra. It was almost 100 years later that this algebra found
application in the engineering sense. In the late 1930s Claude Shannon showed that Boolean
algebra provides an effective means of describing circuits built with switches [2]. The
algebra can, therefore, be used to describe logic circuits. We will show that this algebra
is a powerful tool that can be used for designing and analyzing logic circuits. The reader
will come to appreciate that it provides the foundation for much of our modern digital
technology.

Axioms of Boolean Algebra

Like any algebra, Boolean algebra is based on a set of rules that are derived from a
small number of basic assumptions. These assumptions are called axioms. Let us assume
that Boolean algebra B involves elements that take on one of two values, 0 and 1. Assume
that the following axioms are true:

la. 0-0=0
1b. 1+1=1
2a. 1-1=1
2b. 04+0=0

3a. 0-1=1-0=0

3. 1+40=0+1=1
4a. Ifx=0,thenx =1
4b. Ifx=1,thenx =0

Single-Variable Theorems

From the axioms we can define some rules for dealing with single variables. These
rules are often called theorems. If x is a variable in B, then the following theorems hold:

5a. x-0=0
5b. x+1=1
6a. x-1=x
6b. x+0=x
Ta. x-x=x
7b. x+x=x
8a. x-x=0
8. x+x=1
9. X=x

It is easy to prove the validity of these theorems by perfect induction, that is, by substituting
the values x = 0 and x = 1 into the expressions and using the axioms given above. For
example, in theorem 5a, if x = 0, then the theorem states that 0 - 0 = 0, which is true

Jur‘e 10,2002 11:02 vra23151_ch02 Sheet number 12 Page number 28 black

28

CHAPTER 2 <« INTRODUCTION TO LOGIC CIRCUITS

according to axiom la. Similarly, if x = 1, then theorem 5a states that 1 - 0 = 0, which
is also true according to axiom 3a. The reader should verify that theorems 5a to 9 can be
proven in this way.

Duality

Notice that we have listed the axioms and the single-variable theorems in pairs. This
is done to reflect the important principle of duality. Given a logic expression, its dual is
obtained by replacing all + operators with - operators, and vice versa, and by replacing
all Os with 1s, and vice versa. The dual of any true statement (axiom or theorem) in
Boolean algebra is also a true statement. At this point in the discussion, the reader will
not appreciate why duality is a useful concept. However, this concept will become clear
later in the chapter, when we will show that duality implies that at least two different ways
exist to express every logic function with Boolean algebra. Often, one expression leads to
a simpler physical implementation than the other and is thus preferable.

Two- and Three-Variable Properties

To enable us to deal with a number of variables, it is useful to define some two- and
three-variable algebraic identities. For each identity, its dual version is also given. These
identities are often referred to as properties. They are known by the names indicated below.
If x, y, and z are the variables in B, then the following properties hold:

10a. x-y=y-x Commutative
10b. x4+y=y+x

Ila. x-(y-2)=x-y)-z Associative
11b. x+(y+2)=x+y) +z

12a. x-(y+2)=x-y+x-z Distributive
12b. x+y-z=x+y) - (x+2)

13a. x+x-y=x Absorption
13b. x-(x+y) =x

14a. x-y+x-y=x Combining
14b. x+y)-x+y) =x

15a. xy=Xx+Yy DeMorgan’s theorem

150. x+y=Xx-y
16a. x+Xx-y=x+y
16b. x-x+y)=x-y

Again, we can prove the validity of these properties either by perfect induction or by
performing algebraic manipulation. Figure 2.11 illustrates how perfect induction can be
used to prove DeMorgan’s theorem, using the format of a truth table. The evaluation of
left-hand and right-hand sides of the identity in 15a gives the same result.

We have listed a number of axioms, theorems, and properties. Not all of these are
necessary to define Boolean algebra. For example, assuming that the 4+ and - operations
are defined, it is sufficient to include theorems 5 and 8 and properties 10 and 12. These
are sometimes referred to as Huntington’s basic postulates [3]. The other identities can be
derived from these postulates.

June 10,2002 11:02 vra23151_ch02 Sheet number 13 Page number 29 black

2.5 BOOLEAN ALGEBRA

X yYl||lx-y|lx-y|x|y|x+Yy

0 O 0 1 111 1

0 1 0 1 110 1

1 0 0 1 011 1

1 1 1 0 0|0 0
LHS RHS

Figure 2.11 Proof of DeMorgan's theorem in 154.

The preceding axioms, theorems, and properties provide the information necessary for
performing algebraic manipulation of more complex expressions.

29

Let us prove the validity of the logic equation
(1 +x3) - (X1 +X3) =x1 - X3 + X1 - X3

The left-hand side can be manipulated as follows. Using the distributive property, 12a,
gives

LHS = (x; +x3) - X1 + (x; +x3) - X3
Applying the distributive property again yields
LHS = x1 - X1 + X3 - X1 + X1 - X3 + X3 - X3

Note that the distributive property allows ANDing the terms in parenthesis in a way analo-
gous to multiplication in ordinary algebra. Next, according to theorem 8a, the terms x; - X
and x3 - X3 are both equal to 0. Therefore,

LHS=0+x3-X1+x;-x3+0
From 60 it follows that
LHS =x3 - X; +x1 - X3
Finally, using the commutative property, 10a and 10b, this becomes
LHS =x; - X3+ X1 - x3

which is the same as the right-hand side of the initial equation.

Example 2.1

Consider the logic equation
X1 X3+X2 - X3+X1-X3+X2-X3=X1-X2+X1-X2+X] X2
The left-hand side can be manipulated as follows

LHS =x; - X3 +x1 - x3+ X - X3 + X, -x3 using 10b
=x1 - (63 +x3) + X2 - (X3 + x3) using 12a

Example 2.2

Jur‘e 10,2002 11:02 vra23151_ch02 Sheet number 14 Page number 30 black

30

CHAPTER 2 <« INTRODUCTION TO LOGIC CIRCUITS

=x;-14+X,-1 using8b
=Xx] + X2 using 6a

The right-hand side can be manipulated as

RHS =X - X, +x; - (xo + %) using 12a
=X -X+x-1 using 8D
=X X2+ X using 6a
=X+ XX using 10b
=x1+ X using 16a

Being able to manipulate both sides of the initial equation into identical expressions estab-
lishes the validity of the equation. Note that the same logic function is represented by either
the left- or the right-hand side of the above equation; namely

fxr, X2, x3) = X1 - X3 + X2 - X3+ X1 - X3 + X2 X3
=X X2+ XX+ XX
As a result of manipulation, we have found a much simpler expression
f (1, x2,x3) = X1 + X2

which also represents the same function. This simpler expression would result in a lower-
cost logic circuit that could be used to implement the function.

Examples 2.1 and 2.2 illustrate the purpose of the axioms, theorems, and properties
as a mechanism for algebraic manipulation. Even these simple examples suggest that it is
impractical to deal with highly complex expressions in this way. However, these theorems
and properties provide the basis for automating the synthesis of logic functions in CAD
tools. To understand what can be achieved using these tools, the designer needs to be aware
of the fundamental concepts.

2.5.1 THE VENN DIAGRAM

We have suggested that perfect induction can be used to verify the theorems and properties.
This procedure is quite tedious and not very informative from the conceptual point of view.
A simple visual aid that can be used for this purpose also exists. It is called the Venn
diagram, and the reader is likely to find that it provides for a more intuitive understanding
of how two expressions may be equivalent.

The Venn diagram has traditionally been used in mathematics to provide a graphical
illustration of various operations and relations in the algebra of sets. A set s is a collection
of elements that are said to be the members of s. In the Venn diagram the elements of
a set are represented by the area enclosed by a contour such as a square, a circle, or an
ellipse. For example, in a universe N of integers from 1 to 10, the set of even numbers is
E ={2,4,6, 8, 10}. Acontour representing E encloses the even numbers. The odd numbers
form the complement of E; hence the area outside the contour represents E = {1,3,5,7,9}.

June 10,2002 11:02 vra23151_ch02 Sheet number 15 Page number 31 black

2.5 BOOLEAN ALGEBRA

Since in Boolean algebra there are only two values (elements) in the universe, B =
{0, 1}, we will say that the area within a contour corresponding to a set s denotes that s = 1,
while the area outside the contour denotes s = 0. In the diagram we will shade the area
where s = 1. The concept of the Venn diagram is illustrated in Figure 2.12. The universe B
is represented by a square. Then the constants 1 and 0 are represented as shown in parts (a)
and () of the figure. A variable, say, x, is represented by a circle, such that the area inside
the circle corresponds to x = 1, while the area outside the circle corresponds to x = 0.
This is illustrated in part (¢). An expression involving one or more variables is depicted by

(a) Constant 1 (b) Constant 0

=1
=

(c) Variable x (d) x
(e) x-y (f) x+y
(@ x-y (h) xy+z

Figure 2.12 The Venn diagram representation.

31

JuJe 10,2002 11:02 vra23151_ch02 Sheet number 16 Page number 32 black

32

CHAPTER 2 <« INTRODUCTION TO LOGIC CIRCUITS

shading the area where the value of the expression is equal to 1. Part (d) indicates how the
complement of x is represented.

To represent two variables, x and y, we draw two overlapping circles. Then the area
where the circles overlap represents the case where x = y = 1, namely, the AND of x and
¥, as shown in part (e). Since this common area consists of the intersecting portions of x
and y, the AND operation is often referred to formally as the intersection of x and y. Part
(f) illustrates the OR operation, where x + y represents the total area within both circles,
namely, where at least one of x or y is equal to 1. Since this combines the areas in the
circles, the OR operation is formally often called the union of x and y.

Part (g) depicts the product term x - y, which is represented by the intersection of the
area for x with that for y. Part (h) gives a three-variable example; the expression x - y + z
is the union of the area for z with that of the intersection of x and y.

To see how we can use Venn diagrams to verify the equivalence of two expressions,
let us demonstrate the validity of the distributive property, 124, in section 2.5. Figure 2.13
gives the construction of the left and right sides of the identity that defines the property

x-(y+)=x-y+x-z

Part (@) shows the area where x = 1. Part (b) indicates the area for y 4 z. Part (c) gives the
diagram for x - (y 4 z), the intersection of shaded areas in parts (a) and (b). The right-hand

"‘

(@) x (d) x-y

(b) y+2z (e) x-z
(©) x-(y+2) (M x-y+x-z

Figure 2.13 Verification of the distributive property x- (y +2) = x-y+x-z.

June 10,2002 11:02 vra23151_ch02 Sheet number 17 Page number 33 black

2.5 BOOLEAN ALGEBRA

side is constructed in parts (d), (e), and (f). Parts (d) and (e) describe the terms x - y and
x - z, respectively. The union of the shaded areas in these two diagrams then corresponds
to the expression x - y + x - z, as seen in part (f). Since the shaded areas in parts (¢) and (f)
are identical, it follows that the distributive property is valid.

As another example, consider the identity

X-y+XxX-z+y-z=x-y+Xx-2

which is illustrated in Figure 2.14. Notice that this identity states that the term y - z is fully
covered by the terms x - y and X - z; therefore, this term can be omitted.

The reader should use the Venn diagram to prove some other identities. Itis particularly
instructive to prove the validity of DeMorgan’s theorem in this way.

@

x-y x-y
@

Xz Xz
@

y-z X-y+x-2
@
X y+x-z+y-z

Figure 2.14 Verificationof x -y +X-z4+y-z=x-y+x-z.

33

Jur‘e 10,2002 11:02 vra23151_ch02 Sheet number 18 Page number 34 black

34

CHAPTER 2 <« INTRODUCTION TO LOGIC CIRCUITS

2.5.2 NOTATION AND TERMINOLOGY

Boolean algebra is based on the AND and OR operations. We have adopted the symbols
- and + to denote these operations. These are also the standard symbols for the familiar
arithmetic multiplication and addition operations. Considerable similarity exists between
the Boolean operations and the arithmetic operations, which is the main reason why the
same symbols are used. In fact, when single digits are involved there is only one significant
difference; the result of 1 4 1 is equal to 2 in ordinary arithmetic, whereas it is equal to 1
in Boolean algebra as defined by theorem 7b in section 2.5.

When dealing with digital circuits, most of the time the + symbol obviously represents
the OR operation. However, when the task involves the design of logic circuits that perform
arithmetic operations, some confusion may develop about the use of the + symbol. To avoid
such confusion, an alternative set of symbols exists for the AND and OR operations. It is
quite common to use the A symbol to denote the AND operation, and the Vv symbol for the
OR operation. Thus, instead of x; - x,, we can write x; A x,, and instead of x| + x,, we can
write x; V xa.

Because of the similarity with the arithmetic addition and multiplication operations,
the OR and AND operations are often called the logical sum and product operations. Thus
X1 + X7 is the logical sum of x| and x,, and x; - x, is the logical product of x; and x,. Instead
of saying “logical product” and “logical sum,” it is customary to say simply “product” and
“sum.” Thus we say that the expression

X1+ Xp X3+ X|-Xg4+ X2 X3 X4
is a sum of three product terms, whereas the expression
(1 4 x3) - (01 +X3) - (62 +x3 + x4)

is a product of three sum terms.

2.5.3 PRECEDENCE OF OPERATIONS

Using the three basic operations—AND, OR, and NOT—it is possible to construct an infinite
number of logic expressions. Parentheses can be used to indicate the order in which the
operations should be performed. However, to avoid an excessive use of parentheses, another
convention defines the precedence of the basic operations. It states that in the absence of
parentheses, operations in a logic expression must be performed in the order: NOT, AND,
and then OR. Thus in the expression

X1 X2+ X1 X%

it is first necessary to generate the complements of x; and x,. Then the product terms x; - x;
and X, - X, are formed, followed by the sum of the two product terms. Observe that in the
absence of this convention, we would have to use parentheses to achieve the same effect as
follows:

(1 - x2) + ((x1) - (32))

June 10,2002 11:02 vra23151_ch02 Sheet number 19 Page number 35 black

2.6 SYNTHESIS USING AND, OR, aAND NOT GATES

Finally, to simplify the appearance of logic expressions, it is customary to omit the -
operator when there is no ambiguity. Therefore, the preceding expression can be written as

X1X2 + X1 X2

We will use this style throughout the book.

35

2.6 SyYNTHESIS USING AND, OR, AND NOT GATES

Armed with some basic ideas, we can now try to implement arbitrary functions using the
AND, OR, and NOT gates. Suppose that we wish to design a logic circuit with two inputs,
x1 and x,. Assume that x; and x, represent the states of two switches, either of which may
be open (0) or closed (1). The function of the circuit is to continuously monitor the state
of the switches and to produce an output logic value 1 whenever the switches (x;, x,) are
in states (0, 0), (0, 1), or (1, 1). If the state of the switches is (1, 0), the output should be
0. Another way of stating the required functional behavior of this circuit is that the output
must be equal to 0 if the switch x; is closed and x; is open; otherwise, the output must be
1. We can express the required behavior using a truth table, as shown in Figure 2.15.

A possible procedure for designing a logic circuit that implements the truth table is to
create a product term that has a value of 1 for each valuation for which the output function
f has to be 1. Then we can take a logical sum of these product terms to realize f. Let us
begin with the fourth row of the truth table, which corresponds to x; = x, = 1. The product
term that is equal to 1 for this valuation is x; - x,, which is just the AND of x; and x,. Next
consider the first row of the table, for which x; = x, = 0. For this valuation the value 1 is
produced by the product term X; - X,. Similarly, the second row leads to the term X - x5.
Thus f may be realized as

[, x2) = x1x0 + X1 X2 + X1x2

The logic network that corresponds to this expression is shown in Figure 2.16a.
Although this network implements f correctly, it is not the simplest such network. To
find a simpler network, we can manipulate the obtained expression using the theorems and

X1 X2 fx1, x2)
0 0 1
0 1 1
1 0 0
1 1 1

Figure 2.15 A function to be synthesized.

Jur‘e 10,2002 11:02

36

vra23151_ch02 Sheet number 20 Page number 36 black

CHAPTER 2 <« INTRODUCTION TO LOGIC CIRCUITS

.)—
Y

)

o

(a) Canonical sum-of-products

e IS

(b) Minimal-cost realization

Figure 2.16 Two implementations of the function in Figure 2.15.

properties from section 2.5. According to theorem 7b, we can replicate any term in a logical
sum expression. Replicating the third product term, the above expression becomes

F (X1, x2) = x10 + XX + X100 + X1X2

Using the commutative property 105 to interchange the second and third product terms
gives

S (1, x2) = x1x2 + X102 + X1X2 + X102
Now the distributive property 12a allows us to write
f (1, x2) = (a1 +X1)x2 + X1 (%2 + x2)
Applying theorem 8b we get
f,x)=1x+x-1
Finally, theorem 6a leads to
J(x,x2) =x + X

The network described by this expression is given in Figure 2.16b. Obviously, the cost of
this network is much less than the cost of the network in part (a) of the figure.

This simple example illustrates two things. First, a straightforward implementation of
a function can be obtained by using a product term (AND gate) for each row of the truth
table for which the function is equal to 1. Each product term contains all input variables,

June 10,2002 11:02 vra23151_ch02 Sheet number 21 Page number 37 black

2.6 SYNTHESIS USING AND, OR, aAND NOT GATES

and it is formed such that if the input variable x; is equal to 1 in the given row, then x; is
entered in the term; if x; = 0, then X; is entered. The sum of these product terms realizes
the desired function. Second, there are many different networks that can realize a given
function. Some of these networks may be simpler than others. Algebraic manipulation can
be used to derive simplified logic expressions and thus lower-cost networks.

The process whereby we begin with a description of the desired functional behavior
and then generate a circuit that realizes this behavior is called synthesis. Thus we can
say that we “synthesized” the networks in Figure 2.16 from the truth table in Figure 2.15.
Generation of AND-OR expressions from a truth table is just one of many types of synthesis
techniques that we will encounter in this book.

2.6.1 Sum-or-Propucts AND PRODUCT-OF-SUMS FORMS

Having introduced the synthesis process by means of a very simple example, we will now
present it in more formal terms using the terminology that is encountered in the technical
literature. We will also show how the principle of duality, which was introduced in section
2.5, applies broadly in the synthesis process.

If a function f is specified in the form of a truth table, then an expression that realizes
f can be obtained by considering either the rows in the table for which f = 1, as we have
already done, or by considering the rows for which f = 0, as we will explain shortly.

Minterms

For a function of n variables, a product term in which each of the n variables appears
once is called a minterm. The variables may appear in a minterm either in uncomplemented
or complemented form. For a given row of the truth table, the minterm is formed by
including x; if x; = 1 and by including %; if x; = 0.

To illustrate this concept, consider the truth table in Figure 2.17. We have num-
bered the rows of the table from O to 7, so that we can refer to them easily. (The reader
who is already familiar with the binary number representation will realize that the row
numbers chosen are just the numbers represented by the bit patterns of variables xj,
X», and x3; we will discuss number representation in Chapter 5.) The figure shows all
minterms for the three-variable table. For example, in the first row the variables have
the values x; = x, = x3 = 0, which leads to the minterm x;x,x3. In the second row
x1 = x» = 0 and x3 = 1, which gives the minterm X;X,x3, and so on. To be able to
refer to the individual minterms easily, it is convenient to identify each minterm by an
index that corresponds to the row numbers shown in the figure. We will use the nota-
tion m; to denote the minterm for row number i. Thus my = X;X2X3, m; = X1X2x3, and
SO on.

Sum-of-Products Form

A function f can be represented by an expression that is a sum of minterms, where each
minterm is ANDed with the value of f for the corresponding valuation of input variables.
For example, the two-variable minterms are my = X|Xp, m; = XX, My = X|Xp, and
m3 = x1x;. The function in Figure 2.15 can be represented as

37

Jur‘e 10,2002 11:02 vra23151_ch02 Sheet number 22 Page number 38 black

38

CHAPTER 2 <« INTRODUCTION TO LOGIC CIRCUITS

Row
number X1 X2 X3 Minterm Maxterm
0 0 0 0 my = X1X2X3 Mo= x1+ x2 + X3
1 0 0 1 mp = X1X2X3 My = x1+ x2 +Xx3
2 0 1 0 my = X1X2X3 My = x; + X+ x3
3 0 1 1 ms3 = X|X2X3 Mz = x; + X + X3
4 1 0 0 mq = X|X2X3 Myi= X1+ x2 + x3
5 1 0 1 ms = X|X2X3 Ms = X1+ x3 + X3
6 1 1 0 me = X1X2X3 Me= X1+ X2+ x3
7 1 1 1 m7 = X1X2X3 M7= X1+ X2+ X3

Figure 2.17 Three-variable minterms and maxterms.

f=my-14+m-1+m-04+msz-1
=mp +m; +m3
= X1X2 + X1X + X1X2

which is the form that we derived in the previous section using an intuitive approach. Only
the minterms that correspond to the rows for which f = 1 appear in the resulting expression.

Any function f can be represented by a sum of minterms that correspond to the rows
in the truth table for which f = 1. The resulting implementation is functionally correct and
unique, but it is not necessarily the lowest-cost implementation of . A logic expression
consisting of product (AND) terms that are summed (ORed) is said to be of the sum-of-
products form. If each product term is a minterm, then the expression is called a canonical
sum-of-products for the function f. As we have seen in the example of Figure 2.16, the first
step in the synthesis process is to derive a canonical sum-of-products expression for the
given function. Then we can manipulate this expression, using the theorems and properties
of section 2.5, with the goal of finding a functionally equivalent sum-of-products expression
that has a lower cost.

As another example, consider the three-variable function f (x1, x;, x3), specified by the
truth table in Figure 2.18. To synthesize this function, we have to include the minterms m;,
my, ms, and mg. Copying these minterms from Figure 2.17 leads to the following canonical
sum-of-products expression for f

S (1, X2, X3) = X1X0X3 + X1 X2X3 + X1X2X3 + X1 X02X3
This expression can be manipulated as follows

S = &1+ x1)Xox3 + x1 (2 + x2)X3
=1-Xx3+x1-1-X3
= XX3 + X1X3

This is the minimum-cost sum-of-products expression for f. It describes the circuit shown
in Figure 2.19a. A good indication of the cost of a logic circuit is the total number of gates

June 10,2002 11:02 vra23151_ch02 Sheet number 23 Page number 39 black

2.6 SYNTHESIS USING AND, OR, aAND NOT GATES

Row
number X1 X2 X3 f(x1, x2, x3)
0 0 0 0 0
1 0 0 1 1
2 0 1 0 0
3 0 1 1 0
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

Figure 2.18 A three-variable function.

plus the total number of inputs to all gates in the circuit. Using this measure, the cost of
the network in Figure 2.19a is 13, because there are five gates and eight inputs to the gates.
By comparison, the network implemented on the basis of the canonical sum-of-products
would have a cost of 27; from the preceding expression, the OR gate has four inputs, each
of the four AND gates has three inputs, and each of the three NOT gates has one input.

X, 4>o_
>

(a) A minimal sum-of-products realization

.) O
>)

x24>o

(b) A minimal product-of-sums realization

X3

X

Figure 2.19 Two realizations of the function in Figure 2.18.

39

Jur‘e 10,2002 11:02 vra23151_ch02 Sheet number 24 Page number 40 black

40

CHAPTER 2 <« INTRODUCTION TO LOGIC CIRCUITS

Minterms, with their row-number subscripts, can also be used to specify a given func-
tion in a more concise form. For example, the function in Figure 2.18 can be specified
as

G, x0,x3) = Z(ml,mm ms, M)

or even more simply as
fe,x,x3) =) m(1,4,5,6)

The)_ sign denotes the logical sum operation. This shorthand notation is often used in
practice.

Maxterms

The principle of duality suggests that if it is possible to synthesize a function f by
considering the rows in the truth table for which f = 1, then it should also be possible to
synthesize f by considering the rows for which f = 0. This alternative approach uses the
complements of minterms, which are called maxterms. All possible maxterms for three-
variable functions are listed in Figure 2.17. We will refer to a maxterm M; by the same row
number as its corresponding minterm »1; as shown in the figure.

Product-of-Sums Form

If a given function f is specified by a truth table, then its complement f can be rep-
resented by a sum of minterms for which f = 1, which are the rows where f = 0. For
example, for the function in Figure 2.15

S, x0) =my
= XX

If we complement this expression using DeMorgan’s theorem, the result is
f=f=xx
=X +x2

Note that we obtained this expression previously by algebraic manipulation of the canonical
sum-of-products form for the function f. The key point here is that

f=m =M

where M5 is the maxterm for row 2 in the truth table.
As another example, consider again the function in Figure 2.18. The complement of
this function can be represented as

F 1, %2, x3) = mo + my +my 4+ my

= X1X2X3 + X1 X2X3 + X1X2X3 + X1 X223

Then f can be expressed as

f=mo+my+m3+my

= Ty - 71y - 73 - Ty

June 10,2002 11:02 vra23151_ch02 Sheet number 25 Page number 41 black

2.7 NAND aAnD NOR LoGic NETWORKS

=My M- M- M,
= (X1 +x2 +x3)(x1 + X2 + x3) (X1 + X2 + X3) (X1 + X2 +X3)

This expression represents f* as a product of maxterms.

Alogic expression consisting of sum (OR) terms that are the factors of a logical product
(AND) is said to be of the product-of-sums form. If each sum term is a maxterm, then the
expression is called a canonical product-of-sums for the given function. Any function f can
be synthesized by finding its canonical product-of-sums. This involves taking the maxterm
for each row in the truth table for which f = 0 and forming a product of these maxterms.

Returning to the preceding example, we can attempt to reduce the complexity of the
derived expression that comprises a product of maxterms. Using the commutative property
100 and the associative property 115 from section 2.5, this expression can be written as

S = (1 +x3) +x2) (01 +x3) +X2) (%1 + (2 +X3)) (X1 + (X2 +X3))
Then, using the combining property 14b, the expression reduces to
f = +x3)(x2 +X3)

The corresponding network is given in Figure 2.19b. The cost of this network is 13. While
this cost happens to be the same as the cost of the sum-of-products version in Figure 2.19a,
the reader should not assume that the cost of a network derived in the sum-of-products form
will in general be equal to the cost of a corresponding circuit derived in the product-of-sums
form.

Using the shorthand notation, an alternative way of specifying our sample function is

S &1, x2, x3) = (Mo, Ma, M3, M7)
or more simply
Jf(xr,x0,x3) =TIM (0, 2,3,7)

The IT sign denotes the logical product operation.

The preceding discussion has shown how logic functions can be realized in the form
of logic circuits, consisting of networks of gates that implement basic functions. A given
function may be realized with circuits of a different structure, which usually implies a
difference in cost. An important objective for a designer is to minimize the cost of the
designed circuit. We will discuss the most important techniques for finding minimum-cost
implementations in Chapter 4.

a1

2.7 NAND AnD NOR LoGic NETWORKS

We have discussed the use of AND, OR, and NOT gates in the synthesis of logic circuits.
There are other basic logic functions that are also used for this purpose. Particularly use-
ful are the NAND and NOR functions which are obtained by complementing the output
generated by AND and OR operations, respectively. These functions are attractive because
they are implemented with simpler electronic circuits than the AND and OR functions, as

Jur‘e 10,2002 11:02 vra23151_ch02 Sheet number 26 Page number 42 black

42

CHAPTER 2 <« INTRODUCTION TO LOGIC CIRCUITS

we will see in Chapter 3. Figure 2.20 gives the graphical symbols for the NAND and NOR
gates. A bubble is placed on the output side of the AND and OR gate symbols to represent
the complemented output signal.

If NAND and NOR gates are realized with simpler circuits than AND and OR gates,
then we should ask whether these gates can be used directly in the synthesis of logic circuits.
In section 2.5 we introduced DeMorgan’s theorem. Its logic gate interpretation is shown
in Figure 2.21. Identity 154 is interpreted in part (a) of the figure. It specifies that a
NAND of variables x; and x; is equivalent to first complementing each of the variables
and then ORing them. Notice on the far-right side that we have indicated the NOT gates
simply as bubbles, which denote inversion of the logic value at that point. The other half of
DeMorgan’s theorem, identity 15b, appears in part (b) of the figure. It states that the NOR
function is equivalent to first inverting the input variables and then ANDing them.

In section 2.6 we explained how any logic function can be implemented either in sum-
of-products or product-of-sums form, which leads to logic networks that have either an
AND-OR or an OR-AND structure, respectively. We will now show that such networks
can be implemented using only NAND gates or only NOR gates.

Consider the network in Figure 2.22 as a representative of general AND-OR networks.
This network can be transformed into a network of NAND gates as shown in the figure.
First, each connection between the AND gate and an OR gate is replaced by a connection
that includes two inversions of the signal: one inversion at the output of the AND gate and
the other at the input of the OR gate. Such double inversion has no effect on the behavior of
the network, as stated formally in theorem 9 in section 2.5. According to Figure 2.21a, the

Xl — .
xl-xz i xl~x2~...-xn
XZ — .

(a) NAND gates

X1

X

X
1 — . e rerT——
x :Do— Xy +x, : X+ Xyt X,

(b) NOR gates

Figure 2.20 NAND and NOR gates.

June 10,2002 11:02 vra23151_ch02 Sheet number 27 Page number 43 black

2.7 NAND aAnD NOR LoGic NETWORKS 43

(a) xlxz = .;C] +.;C2

) e ﬁjﬁ[} =

X w—>o—
D = Do

(b) xl +x2 = X1Xp

Figure 2.21 DeMorgan’s theorem in terms of logic gates.

Xl _ Xl
Xy ———— X
M I 1 : X3
)C4 _ X4
XS —l_ XS
X
X
X3
X4
X5

piingl

X, —d
Xy —Q

pliggl

I
Bal
Bl

Figure 2.22 Using NAND gates to implement a sum-of-products.

Ba

OR gate with inversions at its inputs is equivalent to a NAND gate. Thus we can redraw
the network using only NAND gates, as shown in Figure 2.22. This example shows that
any AND-OR network can be implemented as a NAND-NAND network having the same

topology.

Jur‘e 10,2002 11:02 vra23151_ch02 Sheet number 28 Page number 44 black

44

CHAPTER 2 <« INTRODUCTION TO LOGIC CIRCUITS

—) o) >
) D=
=2 =2

X1

R)

X

RY)

X3
Xy

Xs

Figure 2.23 Using NOR gates to implement a product-of-sums.

Figure 2.23 gives a similar construction for a product-of-sums network, which can be
transformed into a circuit with only NOR gates. The procedure is exactly the same as the
one described for Figure 2.22 except that now the identity in Figure 2.21b is applied. The
conclusion is that any OR-AND network can be implemented as a NOR-NOR network
having the same topology.

2.8 DESIGN EXAMPLES

Logic circuits provide a solution to a problem. They implement functions that are needed to
carry out specific tasks. Within the framework of a computer, logic circuits provide complete
capability for execution of programs and processing of data. Such circuits are complex and
difficult to design. But regardless of the complexity of a given circuit, a designer of logic
circuits is always confronted with the same basic issues. First, it is necessary to specify the
desired behavior of the circuit. Second, the circuit has to be synthesized and implemented.
Finally, the implemented circuit has to be tested to verify that it meets the specifications.
The desired behavior is often initially described in words, which then must be turned into
a formal specification. In this section we give two simple examples of design.

2.8.1 THREE-WAY LiGHT CONTROL

Assume that a large room has three doors and that a switch near each door controls a light
in the room. It has to be possible to turn the light on or off by changing the state of any one
of the switches.

June 10,2002 11:02 vra23151_ch02 Sheet number 29 Page number 45 black

2.8 DESIGN EXAMPLES

As a first step, let us turn this word statement into a formal specification using a truth
table. Let x1, xp, and x3 be the input variables that denote the state of each switch. Assume
that the light is off if all switches are open. Closing any one of the switches will turn the
light on. Then turning on a second switch will have to turn off the light. Thus the light
will be on if exactly one switch is closed, and it will be off if two (or no) switches are
closed. If the light is off when two switches are closed, then it must be possible to turn
it on by closing the third switch. If f (x1, x, x3) represents the state of the light, then the
required functional behavior can be specified as shown in the truth table in Figure 2.24.
The canonical sum-of-products expression for the specified function is

f=m +my+my+m;

= X1X2X3 + X1X2X3 + X1 X2X3 + X1X2X3

This expression cannot be simplified into a lower-cost sum-of-products expression. The
resulting circuit is shown in Figure 2.25a4.

An alternative realization for this function is in the product-of-sums forms. The canon-
ical expression of this type is

f=My-Ms-Ms- Mg
= (X1 +x2 +x3)(x1 + X2 +X3) (X1 +x2 +X3) (X1 + X2 + x3)

The resulting circuit is depicted in Figure 2.25b. It has the same cost as the circuit in part
(a) of the figure.

When the designed circuit is implemented, it can be tested by applying the various
input valuations to the circuit and checking whether the output corresponds to the values
specified in the truth table. A straightforward approach is to check that the correct output
is produced for all eight possible input valuations.

2.8.2 MULTIPLEXER CIRCUIT

In computer systems it is often necessary to choose data from exactly one of a number
of possible sources. Suppose that there are two sources of data, provided as input signals
x1 and x,. The values of these signals change in time, perhaps at regular intervals. Thus

X X2 X3 f
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Figure 2.24 Truth table for the three-way light control.

45

Jur‘e 10,2002 11:02 vra23151_ch02 Sheet number 30 Page number 46 black

46 CHAPTER 2 <« INTRODUCTION TO LOGIC CIRCUITS

T AAA ||

1

sjelele

X3

(a) Sum-of-products realization

S :) —
1YYV
=D

!

(b) Product-of-sums realization

Figure 2.25 Implementation of the function in Figure 2.24.

sequences of Os and 1s are applied on each of the inputs x; and x,. We want to design a
circuit that produces an output that has the same value as either x; or x,, dependent on the
value of a selection control signal s. Therefore, the circuit should have three inputs: xi,
X2, and 5. Assume that the output of the circuit will be the same as the value of input x; if
s = 0, and it will be the same as x, if s = 1.

Based on these requirements, we can specify the desired circuit in the form of a truth
table given in Figure 2.26a. From the truth table, we derive the canonical sum of products

F(s, X1, x2) = 5x1% + Sx1X2 + 5X100 + 5x1%2
Using the distributive property, this expression can be written as

f=5sx10(0 +x) + sG1 +x1)x2

June 10,2002 11:02 vra23151_ch02 Sheet number 31 Page number 47 black

2.8 DESIGN EXAMPLES

S X122 f(s, 1, 22)
000 0
001 0
010 1
011 1
100 0
101 1
110 0
111 1

(2) Truth table

Xy s
S X
f
s R
X2
(b) Circuit (c) Graphical symbol
s f(s, 21, 22)
0 Tr1
1 Tr2
(d) More compact truth-table representation
Figure 2.26 Implementation of a multiplexer.

Applying theorem 8b yields
f=sx1-14+s-1-x
Finally, theorem 6a gives

f =5sx; 4+ 5%

47

Jur‘e 10,2002 11:02 vra23151_ch02 Sheet number 32 Page number 48 black

48

CHAPTER 2 <« INTRODUCTION TO LOGIC CIRCUITS

A circuit that implements this function is shown in Figure 2.26b. Circuits of this type are
used so extensively that they are given a special name. A circuit that generates an output
that exactly reflects the state of one of a number of data inputs, based on the value of one
or more selection control inputs, is called a multiplexer. We say that a multiplexer circuit
“multiplexes” input signals onto a single output.

In this example we derived a multiplexer with two data inputs, which is referred to
as a “2-to-1 multiplexer.” A commonly used graphical symbol for the 2-to-1 multiplexer
is shown in Figure 2.26c. The same idea can be extended to larger circuits. A 4-to-1
multiplexer has four data inputs and one output. In this case two selection control inputs
are needed to choose one of the four data inputs that is transmitted as the output signal. An
8-to-1 multiplexer needs eight data inputs and three selection control inputs, and so on.

Note that the statement “f = x; if s = 0, and f = x, if s = 1” can be presented in a
more compact form of a truth table, as indicated in Figure 2.26d. In later chapters we will
have occasion to use such representation.

We showed how a multiplexer can be built using AND, OR, and NOT gates. The same
circuit structure can be used to implement the multiplexer using NAND gates, as explained
in section 2.7. In Chapter 3 we will show other possibilities for constructing multiplexers.
In Chapter 6 we will discuss the use of multiplexers in considerable detail.

Designers of logic circuits rely heavily on CAD tools. We want to encourage the reader
to become familiar with the CAD tool support provided with this book as soon as possible.
We have reached a point where an introduction to these tools is useful. The next section
presents some basic concepts that are needed to use these tools. We will also introduce, in
section 2.10, a special language for describing logic circuits, called Verilog. This language
is used to describe the circuits as an input to the CAD tools, which then proceed to derive
a suitable implementation.

2.9 InTrRODUCTION TO CAD ToOLS

The preceding sections introduced a basic approach for synthesis of logic circuits. A
designer could use this approach manually for small circuits. However, logic circuits
found in complex systems, such as today’s computers, cannot be designed manually—they
are designed using sophisticated CAD tools that automatically implement the synthesis
techniques.

To design alogic circuit, a number of CAD tools are needed. They are usually packaged
together into a CAD system, which typically includes tools for the following tasks: design
entry, synthesis and optimization, simulation, and physical design. We will introduce some
of these tools in this section and will provide additional discussion in later chapters.

2.9.1 DESIGN ENTRY

The starting point in the process of designing a logic circuit is the conception of what the
circuit is supposed to do and the formulation of its general structure. This step is done
manually by the designer because it requires design experience and intuition. The rest
of the design process is done with the aid of CAD tools. The first stage of this process

June 10,2002 11:02 vra23151_ch02 Sheet number 33 Page number 49 black

2.9 INTRODUCTION TO CAD TooOLS

involves entering into the CAD system a description of the circuit being designed. This
stage is called design entry. We will describe three design entry methods: using truth tables,
using schematic capture, and writing source code in a hardware description language.

Design Entry with Truth Tables

We have already seen that any logic function of a few variables can be described
conveniently by a truth table. Many CAD systems allow design entry using truth tables,
where the table is specified as a plain text file. Alternatively, it may also be possible
to specify a truth table as a set of waveforms in a timing diagram. We illustrated the
equivalence of these two ways of representing truth tables in the discussion of Figure 2.10.
The CAD system provided with this book supports both methods of using truth tables for
design entry. Figure 2.27 shows an example in which the Waveform Editor is used to
draw the timing diagram in Figure 2.10. The CAD system is capable of transforming this
timing diagram automatically into a network of logic gates equivalent to that shown in
Figure 2.10d.

Because truth tables are practical only for functions with a small number of variables,
this design entry method is not appropriate for large circuits. It can, however, be applied
for a small logic function that is part of a larger circuit. In this case the truth table becomes
a subcircuit that can be interconnected to other subcircuits and logic gates. The most
commonly used type of CAD tool for interconnecting such circuit elements is called a
schematic capture tool. The word schematic refers to a diagram of a circuit in which circuit
elements, such as logic gates, are depicted as graphical symbols and connections between
circuit elements are drawn as lines.

Schematic Capture

A schematic capture tool uses the graphics capabilities of a computer and a computer
mouse to allow the user to draw a schematic diagram. To facilitate inclusion of basic gates
in the schematic, the tool provides a collection of graphical symbols that represent gates
of various types with different numbers of inputs. This collection of symbols is called a
library. The gates in the library can be imported into the user’s schematic, and the tool
provides a graphical way of interconnecting the gates to create a logic network.

Any subcircuits that have been previously created, using either different design entry
methods or the schematic capture tool itself, can be represented as graphical symbols and
included in the schematic. In practice it is common for a CAD system user to create a circuit
that includes within it other smaller circuits. This methodology is known as hierarchical
design and provides a good way of dealing with the complexities of large circuits.

Marne: _ Type: 1IZID.IDn5 2DD.IDns SDEI.IEIns 4008

el =

x| INPUT |
E}Q INPUT
b | COMB

Figure 2.27 Screen capture of the Waveform Editor.

Jur‘e 10,2002 11:02 vra23151_ch02 Sheet number 34 Page number 50 black

50

CHAPTER 2 <« INTRODUCTION TO LOGIC CIRCUITS

Figure 2.28 gives an example of a hierarchical design created with the schematic capture
tool, provided with the CAD system, called the Graphic Editor. The circuit includes a
subcircuit represented as a rectangular graphical symbol. This subcircuit represents the
logic function entered by way of the timing diagram in Figure 2.27. Note that the complete
circuit implements the function f = x| + x,X3.

In comparison to design entry with truth tables, the schematic-capture facility is more
amenable for dealing with larger circuits. A disadvantage of using schematic capture is that
every commercial tool of this type has a unique user interface and functionality. Therefore,
extensive training is often required for a designer to learn how to use such a tool, and this
training must be repeated if the designer switches to another tool at a later date. Another
drawback is that the graphical user interface for schematic capture becomes awkward to
use when the circuit being designed is large. A useful method for dealing with large circuits
is to write source code using a hardware description language to represent the circuit.

Hardware Description Languages

A hardware description language (HDL) is similar to a typical computer programming
language except that an HDL is used to describe hardware rather than a program to be
executed on a computer. Many commercial HDLs are available. Some are proprietary,
meaning that they are provided by a particular company and can be used to implement cir-
cuits only in the technology provided by that company. We will not discuss the proprietary
HDLs in this book. Instead, we will focus on a language that is supported by virtually
all vendors that provide digital hardware technology and is officially endorsed as an Insti-
tute of Electrical and Electronics Engineers (IEEE) standard. The IEEE is a worldwide
organization that promotes technical activities to the benefit of society in general. One of
its activities involves the development of standards that define how certain technological
concepts can be used in a way that is suitable for a large body of users.

Two HDLs are IEEE standards: Verilog HDL and VHDL (Very High Speed Integrated
Circuit Hardware Description Language). Both languages are in widespread use in the
industry. We use Verilog in this book. Although the two languages differ in many ways, the
choice of using one or the other when studying logic circuits is not particularly important,
because both offer similar features. Concepts illustrated in this book using Verilog can be
directly applied when using VHDL.

In comparison to performing schematic capture, using Verilog offers a number of ad-
vantages. Because it is supported by most companies that offer digital hardware technology,

x1 >

fige_&27
w2 — :: > f
3

Figure 2.28 Screen capture of the Graphic Editor.

June 10,2002 11:02 vra23151_ch02 Sheet number 35 Page number 51 black

2.9 INTRODUCTION TO CAD TooOLS

Verilog provides design portability. A circuit specified in Verilog can be implemented in dif-
ferent types of chips and with CAD tools provided by different companies, without having
to change the Verilog specification. Design portability is an important advantage because
digital circuit technology changes rapidly. By using a standard language, the designer can
focus on the functionality of the desired circuit without being overly concerned about the
details of the technology that will eventually be used for implementation.

Design entry of a logic circuit is done by writing Verilog code. Signals in the cir-
cuit can be represented as variables in the source code, and logic functions are expressed
by assigning values to these variables. Verilog source code is plain text, which makes
it easy for the designer to include within the code documentation that explains how the
circuit works. This feature, coupled with the fact that Verilog is widely used, encourages
sharing and reuse of Verilog-described circuits. This allows faster development of new
products in cases where existing Verilog code can be adapted for use in the design of new
circuits.

Similar to the way in which large circuits are handled in schematic capture, Verilog
code can be written in a modular way that facilitates hierarchical design. Both small and
large logic circuit designs can be efficiently represented in Verilog code. Verilog has been
used to define circuits such as microprocessors with millions of transistors.

Verilog design entry can be combined with other methods. For example, a schematic-
capture tool can be used in which a subcircuit in the schematic is described using Verilog.
We will introduce Verilog in section 2.10.

2.9.2 SYNTHESIS

In section 2.4.1 we said that synthesis is the process of generating a logic circuit from a truth
table. Synthesis CAD tools perform this process automatically. However, the synthesis
tools also handle many other tasks. The process of translating, or compiling, Verilog code
into a network of logic gates is part of synthesis.

When the Verilog code representing a circuit is passed through initial synthesis tools,
the output is a lower-level description of the circuit. For simplicity we will assume that
this process produces a set of logic expressions that describe the logic functions needed to
realize the circuit. These expressions are then manipulated further by the synthesis tools.
If the design entry is performed using schematic capture, then the synthesis tools produce
a set of logic equations representing the circuit from the schematic diagram. Similarly, if
truth tables are used for design entry, then the synthesis tools generate expressions for the
logic functions represented by the truth tables.

Regardless of what type of design entry is used, the initial logic expressions produced
by the synthesis tools are not likely to be in an optimal form. Because these expressions
reflect the designer’s input to the CAD tools, it is difficult for a designer to manually produce
optimal results, especially for large circuits. One of the most important tasks of the synthesis
tools is to manipulate the user’s design to automatically produce an equivalent but better
circuit. This step of synthesis is called logic synthesis, or logic optimization.

The measure of what makes one circuit better than another depends on the particu-
lar needs of a design project and the technology chosen for implementation. In section
2.6 we suggested that a good circuit might be one that has the lowest cost. There are
other possible optimization goals, which are motivated by the type of hardware technology

Jur‘e 10,2002 11:02 vra23151_ch02 Sheet number 36 Page number 52 black

52

CHAPTER 2 <« INTRODUCTION TO LOGIC CIRCUITS

used for implementation of the circuit. We will discuss implementation technologies in
Chapter 3 and return to the issue of optimization goals in Chapter 4.

After logic synthesis the optimized circuit is still represented in the form of logic
equations. The final task in the synthesis process is to determine exactly how the circuit will
be realized in a specific hardware technology. This task involves deciding how each logic
function, represented by an expression, should be implemented using whatever physical
resources are available in the technology. The task involves two steps called fechnology
mapping, followed by layout synthesis, or physical design. We will discuss these steps in
detail in Chapter 4.

2.9.3 FUNCTIONAL SIMULATION

Once the design entry and synthesis are complete, it is useful to verify that the designed
circuit functions as expected. The tool that performs this task is called a functional simulator,
and it uses two types of information. First, the user’s initial design is represented by the logic
equations generated during synthesis. Second, the user specifies valuations of the circuit’s
inputs that should be applied to these equations during simulation. For each valuation, the
simulator evaluates the outputs produced by the equations. The output of the simulation is
provided either in truth-table form or as a timing diagram. The user examines this output
to verify that the circuit operates as required.

The logic equations used by the simulator are those produced by the synthesis tools
before any optimizations are applied during logic synthesis. There would be no advantage
in using the optimized form of the equations, because the intent is to evaluate the basic
functionality of the design, which does not change as a result of optimization. The functional
simulator assumes that the time needed for signals to propagate through the logic gates is
negligible. In real logic gates this assumption is not realistic, regardless of the hardware
technology chosen for implementation of the circuit. However, the functional simulation
provides a first step in validating the basic operation of a design without concern for the
effects of implementation technology. Accurate simulations that account for the timing
details related to technology can be obtained by using a timing simulator. We will discuss
timing simulation in Chapter 4.

2.9.4 SUMMARY

The CAD tools discussed in this section form a part of a CAD system. A typical design flow
that the user follows is illustrated in Figure 2.29. After the design entry, initial synthesis tools
perform various steps. For a function described by a truth table, the synthesis approach
discussed in section 2.6 is applied to produce a logic expression for the function. For
Verilog the translation process turns the Verilog source code into logic functions, which can
be represented as logic expressions. As mentioned earlier, the designer can use a mixture of
design entry methods. In Figure 2.29 this flexibility is reflected by the step labeled Merge,
in which the components produced using any of the design entry methods are automatically
merged into a single design. At this point the circuit is represented in the CAD system as a
set of logic equations.

June 10,2002 11:02 vra23151_ch02 Sheet number 37 Page number 53 black

2.9 INTRODUCTION TO CAD TooOLS

Design conception

y

DESIGN ENTRY

Simple synthesis Translati
(see section 2.8.2) ranstation

A
G

INITIAL SYNTHESIS TOOLS Boolean equations

\

Functional simulation

No

%COI‘TGCW

Yes

|

Logic synthesis, physical design, timing simulation

(see section 4.12)

Figure 2.29 The first stages of a typical CAD system.

After the initial synthesis the correct operation of the designed circuit can be verified by
using functional simulation. As shown in Figure 2.29, this step is not a requirement in the
CAD flow and can be skipped at the designer’s discretion. In practice, however, it is wise to
verify that the designed circuit works as expected as early in the design process as possible.

53

Jur‘e 10,2002 11:02 vra23151_ch02 Sheet number 38 Page number 54 black

54

CHAPTER 2 <« INTRODUCTION TO LOGIC CIRCUITS

Any problems discovered during the simulation are fixed by returning to the design entry
stage. Once errors are no longer apparent, the designer proceeds with the remaining tools
in the CAD flow. These include logic synthesis, layout synthesis, timing simulation, and
others. We have mentioned these tools only briefly thus far. The remaining CAD steps will
be described in Chapter 4.

At this point the reader should have some appreciation for what is involved when using
CAD tools. However, the tools can be fully appreciated only when they are used first-
hand. In Appendexes B to D, we provide step-by-step tutorials that illustrate how to use the
MAX+plusIl CAD system, which is included with this book. The tutorial in Appendix B
covers design entry with both schematic capture and Verilog, as well as functional simula-
tion. We strongly encourage the reader to work through the hands-on material. Because the
tutorial uses Verilog for design entry, we provide an introduction to Verilog in the following
section.

2.10 INTRODUCTION TO VERILOG

In the 1980s rapid advances in integrated circuit technology lead to efforts to develop
standard design practices for digital circuits. Verilog was produced as a part of that effort.
The original version of Verilog was developed by Gateway Design Automation, which was
later acquired by Cadence Design System. In 1990 Verilog was put into the public domain,
and it has since become the most popular language for describing digital circuits. In 1995
Verilog was adopted as an official IEEE Standard, called 1364-1995. An enhanced version
of Verilog, called Verilog 2001, was adopted as IEEE Standard 1364-2001 in 2001. The vast
majority of the examples presented in this book are compatible with the original Verilog
standard, and we also introduce some of the key features of Verilog 2001.

Verilog was originally intended for simulation and verification of digital circuits. Sub-
sequently, with the addition of synthesis capability, Verilog has also become popular for
use in design entry in CAD systems. The CAD tools are used to synthesize the Verilog
code into a hardware implementation of the described circuit. In this book our main use of
Verilog will be for synthesis.

Verilog is a complex, sophisticated language. Learning all of its features is a daunting
task. However, for use in synthesis only a subset of these features is important. To simplify
the presentation, we will focus the discussion on the features of Verilog that are actually
used in the examples in the book. The material presented is sufficient to allow the reader
to design a wide range of circuits. The reader who wishes to learn the complete Verilog
language can refer to one of the specialized texts [4—10]. Verilog has a number of constructs
similar to the C programming language. A reader who knows C will find Verilog easy to
learn.

Verilog is introduced in several stages throughout the book. Our general approach will
be to introduce particular features only when they are relevant to the design topics covered
in that part of the text. In Appendix A we provide a concise summary of the Verilog features
covered in the book. The reader will find it convenient to refer to that material from time to
time. In the remainder of this chapter we discuss the most basic concepts needed to write
simple Verilog code.

June 10,2002 11:02 vra23151_ch02 Sheet number 39 Page number 55 black

2.10 INTRODUCTION TO VERILOG

Representation of Digital Circuits in Verilog

When using CAD tools to synthesize a logic circuit, the designer can provide the initial
description of the circuit in several different ways, as we explained in section 2.9.1. One
efficient way is to write this description in the form of Verilog source code. The Verilog
compiler translates this code into a logic circuit.

Verilog allows the designer to represent circuits in two fundamentally different ways.
One possibility is to use Verilog constructs that represent simple circuit elements such as
logic gates or even transistors. A larger circuit is defined by writing code that connects
such elements together. This is referred to as the structural representation of logic circuits.
The second possibility is to describe a circuit by using logic expressions and programming
constructs that define the behavior of the circuit but not its actual structure in terms of gates.
This is called the behavioral representation.

2.10.1 STRUCTURAL SPECIFICATION OF LoGIic CIRCUITS

Verilog includes a set of gate level primitives that correspond to commonly used logic gates.
A gate is represented by indicating its functional name, output, and inputs. For example, a
two-input AND gate, with inputs x; and x, and output y, is denoted as

and (y, x1, x2);
A four-input OR gate is specified as
or (y,x1,x2,x3, x4);

The keywords nand and nor are used to define the NAND and NOR gates in the same way.
The NOT gate given by

not (y, x);

implements y = x. The gate level primitives can be used to specify larger circuits. All of
the available Verilog gate level primitives are listed in Table A.2 in Appendix A.

A logic circuit is specified in the form of a module that contains the statements that
define the circuit. The module may have inputs and outputs, which are referred to as its
ports. The name port is a commonly used term that refers to an input or output connection
to an electronic circuit. Consider the circuit in Figure 2.30. This circuit can be represented
by the Verilog code in Figure 2.31. The first statement gives the module a name, examplel,
and indicates that there are four port signals. The next two statements declare that x;, x;,
and x3 are to be treated as input signals, while fis the output. The actual structure of the
circuit is specified in the four statements that follow. The NOT gate gives k = X,. The
AND gates produce g = x1x, and & = X,x3. The outputs of AND gates are combined in
the OR gate to form

f=g+h
= X1X2 +)_CzX3

The module ends with the endmodule statement. We have written the Verilog keywords
in bold type to make the text easier to read. We will continue this practice throughout the
book.

Jur‘e 10,2002 11:02 vra23151_ch02 Sheet number 40 Page number 56 black

56

CHAPTER 2 <« INTRODUCTION TO LOGIC CIRCUITS

X

X

D-
SDS
D

X3

Figure 2.30 A simple logic function.

module examplel (x1, x2, x3, f);
input x1, x2, x3;
output f;

and (g, x1, x2);
not (k, x2);
and (h, k, x3);
or (f, g, h);

endmodule

Figure 2.31 Verilog code for the circuit in Figure 2.30.

A second example of Verilog code is given in Figure 2.32. It defines a circuit that has
four input signals, x1, x,, x3, and x4, and three output signals, f, g, and &. It implements the
logic functions

g = Xx1x3 + x4
h = (x; +X3)(2 +x4)
f=g+h

Instead of using explicit NOT gates to define X, and X3, we have used the Verilog operator
“~” (tilde character on the keyboard) to denote complementation. Thus, X, is indicated as
~x2 in the code. The circuit produced by the Verilog compiler for this example is shown
in Figure 2.33.

Verilog Syntax

The names of modules and signals in Verilog code follow two simple rules: The name
must start with a letter and it can contain any letter or number plus the “_” underscore and $
characters. Verilog is case sensitive. Thus, the name k is not the same as K and Examplel
is not the same as examplel. The Verilog syntax does not enforce a particular style of code.
For example, multiple statements can appear on a single line. White space characters, such
as SPACE and TAB, and blank lines are ignored. As a matter of good style, code should be

June 10,2002 11:02 vra23151_ch02 Sheet number 41 Page number 57 black

2.10 INTRODUCTION TO VERILOG

module example2 (x1, x2, x3, x4, f, g, h);
input x1, x2, x3, x4;
output f, g, h;

and (z1, x1, x3);
and (z2, x2, x4);
or (g, z1, 72);

or (z3, x1,~x3);
or (z4,~x2, x4);
and (h, z3, z4);
or (f, g, h);

endmodule

Figure 2.32 Verilog code for a four-input circuit.

X

X3

D

X

Xy

D=

Ny

Figure 2.33 Logic circuit for the code in Figure 2.32.

formatted in such a way that it is easy to read. Indentation and blank lines can be used to
make separate parts of the code easily recognizable, as we have done in Figures 2.31 and
2.32. Comments may be included in the code to improve its readability. A comment begins
with the double slash “//” and continues to the end of the line.

57

Jur‘e 10,2002 11:02

58

vra23151_ch02 Sheet number 42 Page number 58 black

CHAPTER 2 <« INTRODUCTION TO LOGIC CIRCUITS

2.10.2 BEHAVIORAL SPECIFICATION OF LoGic CIRCUITS

Using gate level primitives can be tedious when large circuits have to be designed. An
alternative is to use more abstract expressions and programming constructs to describe the
behavior of a digital circuit. One possibility is to define the circuit using logic expressions.
Figure 2.34 shows how the circuit in Figure 2.30 can be defined with the expression

[=x1x+Xx3

The AND and OR operations are indicated by the “&” and “|” signs, respectively. The
assign keyword provides a continuous assignment for the signal f. The word continuous
stems from the use of Verilog for simulation; whenever any signal on the right-hand side
changes its state, the value of f will be re-evaluated. The effect is equivalent to using the
gate level primitives in Figure 2.31. Following this approach, the circuit in Figure 2.33 can
be specified as shown in Figure 2.35.

Using logic expressions makes it easier to write Verilog code. But even higher levels
of abstraction can often be used to advantage. Consider again the circuit in Figure 2.30.
This circuit is similar to the 2-to-1 multiplexer circuit discussed in section 2.8.2, with x,
being the selection control input and x; and x3 being the data inputs. The circuit can be
described in words by saying that f = x; if x, = 1 and f = x3 if x, = 0. In Verilog, this

module example3 (x1, x2, x3, f);
input x1, x2, x3;
output f;

assign f=(x1 & x2) | (~x2 & x3);
endmodule

Figure 2.34 Using the continuous assignment to specify the
circuit in Figure 2.30.

module example4 (x1, x2, x3, x4, f, g, h);
input x1, x2, x3, x4;
output f, g, h;

assign g =(x1 & x3) | (x2 & x4);
assign h = (x1 | ~x3) & (~x2 | x4);
assign f=g | h;

endmodule

Figure 2.35 Using the continuous assignment fo specify the
circuit in Figure 2.33.

June 10,2002 11:02 vra23151_ch02 Sheet number 43 Page number 59 black

2.10 INTRODUCTION TO VERILOG

behavior can be defined with the if-else statement

ifx2==1)
f=x1;
else
f=x3;

The complete code is given in Figure 2.36. The first line illustrates how a comment can be
inserted. The if-else statement is an example of a Verilog procedural statement. We will
introduce other procedural statements, such as loop statements, in Chapters 5 and 6.

Verilog syntax requires that procedural statements be contained inside a construct called
an always block, as shown in Figure 2.36. An always block can contain a single statement,
as in this example, or it can contain many statements. A typical Verilog design module may
include several always blocks, each representing a part of the circuit being modeled. An
important property of the always block is that the statements it contains are evaluated in
the order given in the code. This is in contrast to the continuous assignment statements,
which are evaluated concurrently and hence have no meaningful order.

The part of the always block after the @ symbol, in parentheses, is called the sensitivity
list. This list has its roots in the use of Verilog for simulation. The statements inside
an always block are executed by the simulator only when one or more of the signals in
the sensitivity list changes value. In this way, the complexity of a simulation process is
simplified, because it is not necessary to execute every statement in the code at all times.
When Verilog is being employed for synthesis of circuits, as in this book, the sensitivity list
simply tells the Verilog compiler which signals can directly affect the outputs produced by
the always block.

If a signal is assigned a value using procedural statements, then Verilog syntax requires
that it be declared as a variable; this is accomplished by using the keyword reg in Figure
2.36. This term also derives from the simulation jargon: It means that, once a variable’s

/I Behavioral specification
module example5 (x1, x2, x3, f);
input x1, x2, x3;
output f;
reg f;

always @(x1 or x2 or x3)
if(x2==1)
f=xI1;
else
f=x3;

endmodule

Figure 2.36 Behavioral specification of the circuit in Figure
2.30.

59

Jur‘e 10,2002 11:02 vra23151_ch02 Sheet number 44 Page number 60 black

60

CHAPTER 2 <« INTRODUCTION TO LOGIC CIRCUITS

value is assigned with a procedural statement, the simulator “registers” this value and it will
not change until the always block is executed again. We will discuss this issue in detail in
Chapter 5.

All Verilog statements end with a semicolon. Appendix A provides a full definition of
Verilog statements.

Behavioral specification of a logic circuit defines only its behavior. CAD synthesis
tools use this specification to construct the actual circuit. The detailed structure of the
synthesized circuit will depend on the technology used. As we will see in the chapters that
follow, it is possible to achieve the same functional behavior using differently structured
circuits.

2.10.3 How Nor To WRITE VERILOG CODE

When learning how to use Verilog or other hardware description languages, the tendency for
the novice is to write code that resembles a computer program, containing many variables
and loops. It is difficult to determine what logic circuit the CAD tools will produce when
synthesizing such code. This book contains more than 100 examples of complete Verilog
code that represent a wide range of logic circuits. In these examples the code is easily
related to the described logic circuit. The reader is advised to adopt the same style of code.
A good general guideline is to assume that, if the designer cannot readily determine what
logic circuit is described by the Verilog code, then the CAD tools are not likely to synthesize
the circuit that the designer is trying to model.

Once complete Verilog code is written for a particular design, the reader is encouraged
to analyze the resulting circuit produced by the synthesis tools. Much can be learned about
Verilog, logic circuits, and logic synthesis through this process.

2.11 CoNCLUDING REMARKS

In this chapter we introduced the concept of logic circuits. We showed that such circuits can
be implemented using logic gates and that they can be described using a mathematical model
called Boolean algebra. Because practical logic circuits are often large, it is important to
have good CAD tools to help the designer. This book is accompanied by the MAX+PlusII
software, which is a CAD tool provided by Altera Corporation. We introduced a few basic
features of this tool and urge the reader to start using this software as soon as possible.

Our discussion so far has been quite elementary. We will deal with both the logic
circuits and the CAD tools in much more depth in the chapters that follow. But first, in
Chapter 3 we will examine the most important electronic technologies used to construct
logic circuits. This material will give the reader an appreciation of practical constraints that
a designer of logic circuits must face.

June 10,2002 11:02 vra23151_ch02 Sheet number 45 Page number 61 black

PROBLEMS 61

PROBLEMS
2.1

2.2
2.3
24

2.5

2.6

2.7

2.8

2.9

2.10

Use algebraic manipulation to prove that x + yz = (x +) - (x + z). Note that this is the
distributive ruxe, as stated in identity 125 in section 2.5.

Use algebraic manipulation to prove that (x +y) - (x +y) = x.
Use the Venn diagram to prove the identity in problem 1.

Use the Venn diagram to prove DeMorgan’s theorem, as given in expressions 15a and 156
in section 2.5.

Use the Venn diagram to prove
(1 +x2+x3) - (X1 +x2+X3) =x1 + X2

Determine whether or not the following expressions are valid, i.e., whether the left- and
right-hand sides represent same function.

(@) X1x3 + X1X0X3 + X1 X2 + X1 X2 = XoX3 + X1X3 + X2X3 + X1X2X3

(b) x1X3 + x0x3 + X2X3 = (x1 + X2 + x3) (X1 + X2 + X3) (X1 + X2 + X3)

(©) (x1 +x3) (X1 + X2 +X3) (X1 + x2) = (x1 + x2) (X2 + x3) (X1 + X3)

Draw a timing diagram for the circuit in Figure 2.19a. Show the waveforms that can be
observed on all wires in the circuit.

Repeat problem 2.7 for the circuit in Figure 2.19b.

Use algebraic manipulation to show that for three input variables xi, x,, and x3
> m(1,2,3,4,5.6,7) =x1 +x, + 13
Use algebraic manipulation to show that for three input variables x;, x,, and x3
IMM(@0,1,2,3,4,5,6) = x1xx3

Use algebraic manipulation to find the minimum sum-of-products expression for the func-
tiOl’lf = X1x3 + Xl)_Cz +)_C]}CZX?, +)_Cl)_Cz}_C?,.

Use algebraic manipulation to find the minimum sum-of-products expression for the func-
tion f = x1X2X3 + X1X2X4 + X1 X2X3X4.

Use algebraic manipulation to find the minimum product-of-sums expression for the func-
tion f = (x; +x3 +x4) - (x1 + X2 +x3) - (X1 + X2 + X3 + x4).

Use algebraic manipulation to find the minimum product-of-sums expression for the func-
tionf = (x; +x2 +x3) - (x1 + X2+ x3) - (61 +X2 +x3) - (X1 + x2 +X3).

(a) Show the location of all minterms in a three-variable Venn diagram.
(b) Show a separate Venn diagram for each product term in the function f = x;xx3 +x1x, +
X1x3. Use the Venn diagram to find the minimal sum-of-products form of f.

Jur‘e 10,2002 11:02 vra23151_ch02 Sheet number 46 Page number 62 black

62 CHAPTER 2 <« INTRODUCTION TO LOGIC CIRCUITS

2.16 Represent the function in Figure 2.18 in the form of a Venn diagram and find its minimal
sum-of-products form.

2.17 Figure P2.1 shows two attempts to draw a Venn diagram for four variables. For parts (a)
and (b) of the figure, explain why the Venn diagram is not correct. (Hint: the Venn diagram
must be able to represent all 16 minterms of the four variables.)

(a) (b)

Figure P2.1 Two attempts to draw a four-variable Venn diagram.

2.18 Figure P2.2 gives a representation of a four-variable Venn diagram and shows the location
of minterms myg, m;, and m,. Show the location of the other minterms in the diagram.
Represent the function f = XX,x3%4 + X1 X2x3%4 + XX on this diagram.

EANGY

Figure P2.2 A four-variable Venn diagram.

2.19 Design the simplest sum-of-products circuit that implements the function f (x|, x2, x3) =
> m(3,4,6,7).

2.20 Design the simplest sum-of-products circuit that implements the function f (x;, x, x3) =
> m(1,3,4,6,7).

2.21 Design the simplest product-of-sums circuit that implements the function f (x1, x2, x3) =
1M (0,2,5).

June 10,2002 11:02 vra23151_ch02 Sheet number 47 Page number 63 black

PROBLEMS 63

2.22 Design the simplest product-of-sums expression for the function f(xi,xs,x3) =
M 0,1,5,7).

2.23 Design the simplest circuit that has three inputs, x;, x», and x3, which produces an output
value of 1 whenever two or more of the input variables have the value 1; otherwise, the
output has to be 0.

2.24 For the timing diagram in Figure P2.3, synthesize the function f (x{, x, x3) in the simplest
sum-of-products form.

1
xlO I
xz(l) I I I
s, [LI LI LI
fl

] I L

— Time

o

Figure P2.3 A timing diagram representing a logic function.

2.25 For the timing diagram in Figure P2.4, synthesize the function f (x;, x,, x3) in the simplest
sum-of-products form.

xl(l) I

xz(]) I | I

sy LT LI LI
1

Ty —1 | |

— Time

Figure P2.4 A timing diagram representing a logic function.

2,26 Design a circuit with output f and inputs x;, xo, y;, and yp. Let X = xjxy be a number,
where the four possible values of X, namely, 00, 01, 10, and 11, represent the four numbers

Jur‘e 10,2002 11:02 vra23151_ch02 Sheet number 48 Page number 64 black

64

2,27

2.28
2.29
2.30
2.31

2.32

2.33
2.34
2.35

2.36

2.37
2.38
2.39

2.40

2.41

CHAPTER 2 <« INTRODUCTION TO LOGIC CIRCUITS

0, 1, 2, and 3, respectively. (We discuss representation of numbers in Chapter 5.) Similarly,
let Y = y,yo represent another number with the same four possible values. The output f
should be 1 if the numbers represented by X and Y are equal. Otherwise, f should be 0.

(a) Show the truth table for f.

(b) Synthesize the simplest possible product-of-sums expression for f.

Repeat problem 2.26 for the case where f should be 1 only if X > Y.
(a) Show the truth table for f.

(b) Show the canonical sum-of-products expression for f.

(c) Show the simplest possible sum-of-products expression for f.

Implement the function in Figure 2.24 using only NAND gates.
Implement the function in Figure 2.24 using only NOR gates.
Implement the circuit in Figure 2.33 using NAND and NOR gates.

Design the simplest circuit that implements the function f (x1, x2, x3) = > m(3,4,6,7)
using NAND gates.

Design the simplest circuit that implements the function f (x;, x2, x3) = »_m(1,3,4,6,7)
using NAND gates.

Repeat problem 2.31 using NOR gates.
Repeat problem 2.32 using NOR gates.

(a) Use a schematic capture tool to draw schematics for the following functions

J1 = X0X3X4 + X1X2X4 + X1X2X3 + X1X2X3
Jo = xaX4 + X120 + x2x3

(b) Use functional simulation to prove that f; = f>.

(a) Use a schematic capture tool to draw schematics for the following functions

=01 +x+%x) O +x3+%) - (6 +x3 +Xg) - (6] +X3 +X4)
fo=00+x) (3+X1) X1 +x4)

(b) Use functional simulation to prove that f; = f5.
Write Verilog code to implement the circuit in Figure 2.25a using the gate level primitives.
Repeat problem 2.37 for the circuit in Figure 2.25b.

Write Verilog code to implement the function f (x1, x2, x3) = > _m(1,2,3,4,5, 6) using
the gate level primitives. Ensure that the resulting circuit is as simple as possible.

Write Verilog code to implement the function f (x1, x2, x3) = > m(0, 1,3,4,5, 6) using
the continuous assignment.

(a) Write Verilog code to describe the following functions

J1 = X1X3 + x2X3 + X3X4 + X1X2 + X1X4
fr= @ +Xx3) (xr +x20+X4) - (02 +X3+X4)

(b) Use functional simulation to prove that f; = f5.

June 10,2002 11:02 vra23151_ch02 Sheet number 49 Page number 65 black

REFERENCES 65

2.42 Consider the following Verilog statements

fl=x1&x3)| (~x1 & ~x3) | (x2 & x4) | (~x2 & ~x4);
f2=(x1 &x2 & ~x3 & ~x4) | (~x1 & ~x2 & x3 & x4) |
(x1 & ~x2 & ~x3 & x4) | (~x1 & x2 & x3 & ~x4);

(a) Write complete Verilog code to implement /1 and f2.
(b) Use functional simulation to prove that f 1 = f2.

REFERENCES

1.

10.

G. Boole, An Investigation of the Laws of Thought, 1854, reprinted by Dover
Publications, New York, 1954.

C. E. Shannon, “A Symbolic Analysis of Relay and Switching Circuits,” Transactions
of AIEE 57 (1938), pp. 713-723.

E. V. Huntington, “Sets of Independent Postulates for the Algebra of Logic,”
Transactions of the American Mathematical Society 5 (1904), pp. 288-309.

D. A. Thomas and P. R. Moorby, The Verilog Hardware Description Language, 4th
ed., (Kluwer: Norwell, MA, 1998).

S. Palnitkar, Verilog HDL—A Guide to Digital Design and Synthesis, (Prentice Hall:
Upper Saddle River, NJ, 1996).

D. R. Smith and P. D. Franzon, Verilog Styles for Synthesis of Digital Systems,
(Prentice Hall: Upper Saddle River, NJ, 2000).

Z. Navabi, Verilog Digital System Design, (McGraw-Hill: New York, 1999).

J. Bhasker, Verilog HDL Synthesis—A Practical Primer, (Star Galaxy Publishing:
Allentown, PA, 1998).

D.J. Smith, HDL Chip Design, (Doone Publications: Madison, AL, 1996).

S. Sutherland, Verilog 2001—A Guide to the New Features of the Verilog Hardware
Description Language, (Kluwer: Hingham, MA, 2001).

July 2,2002 09:34 vra23151_ch03 Sheet number 1 Page number 67 black

chapter

3

IMPLEMENTATION TECHNOLOGY

SrywYyre .
vy Y Y Yy

Y 6

ALY ¢

o
> > B

A A4
SN Qom0

3. Nb1-c3, d5xed

D= Do

Julk 2,2002 09:34 vra23151_ch03 Sheet number 2 Page number 68 black

68 CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

In section 1.2 we said that logic circuits are implemented using transistors and that a number of different
technologies exist. We now explore technology issues in more detail.

Let us first consider how logic variables can be physically represented as signals in electronic circuits.
Our discussion will be restricted to binary variables, which can take on only the values O and 1. In a circuit
these values can be represented either as levels of voltage or current. Both alternatives are used in different
technologies. We will focus on the simplest and most popular representation, using voltage levels.

The most obvious way of representing two logic values as voltage levels is to define a threshold voltage;
any voltage below the threshold represents one logic value, and voltages above the threshold correspond to
the other logic value. It is an arbitrary choice as to which logic value is associated with the low and high
voltage levels. Usually, logic 0 is represented by the low voltage levels and logic 1 by the high voltages.
This is known as a positive logic system. The opposite choice, in which the low voltage levels are used to
represent logic 1 and the higher voltages are used for logic 0 is known as a negative logic system. In this
book we use only the positive logic system, but negative logic is discussed briefly in section 3.4.

Using the positive logic system, the logic values 0 and 1 are referred to simply as “low” and “high.”
To implement the threshold-voltage concept, a range of low and high voltage levels is defined, as shown in
Figure 3.1. The figure gives the minimum voltage, called Vs, and the maximum voltage, called Vpp, that
can exist in the circuit. We will assume that Vg is 0 volts, corresponding to electrical ground, denoted Gnd.
The voltage Vpp represents the power supply voltage. The most common levels for Vpp are between 5 volts
and 1.5 volts. In this chapter we will usually assume that Vpp = 5 V. Figure 3.1 indicates that voltages in the
range Gnd to Vj ..y represent logic value 0. The name V) ,,,, means the maximum voltage level that a logic
circuit must recognize as low. Similarly, the range from V) ,,;, to Vpp corresponds to logic value 1, and V| .,
is the minimum voltage level that a logic circuit must interpret as high. The exact levels of Vi e and Vi in

Voltage A

Vop T W
Logic value 1

V],min T L

Undefined

VO,max T L
Logic value 0

Vs (Gnd) — A

Figure 3.1 Representation of logic values by voltage levels.

July 2, 2002 09:34

depend on the particular technology used; a typical example might set Vj ;.. to 40 percent of Vpp and Vi in
to 60 percent of Vpp. The range of voltages between Vg ;. and Vi, is undefined. Logic signals do not
normally assume voltages in this range except in transition from one logic value to the other. We will discuss

vra23151_ch03 Sheet number 3 Page number 69

3.1

black

TRANSISTOR SWITCHES

the voltage levels used in logic circuits in more depth in section 3.8.3.

3.1

Logic circuits are built with transistors. A full treatment of transistor behavior is beyond
the scope of this text; it can be found in electronics textbooks, such as [1] and [2]. For
the purpose of understanding how logic circuits are built, we can assume that a transistor
operates as a simple switch. Figure 3.2a shows a switch controlled by alogic signal, x. When
x is low, the switch is open, and when x is high, the switch is closed. The most popular type
of transistor for implementing a simple switch is the metal oxide semiconductor field-effect
transistor (MOSFET). There are two different types of MOSFETSs, known as n-channel,

TRANSISTOR SWITCHES

abbreviated NMOS, and p-channel, denoted PMOS.

Figure 3.2b gives a graphical symbol for an NMOS transistor. It has four electrical
terminals, called the source, drain, gate, and substrate. In logic circuits the substrate (also

¥ = “low” x = “high”
—o/ o—— —o—o0——

(a) A simple switch controlled by the input x

Gate

Source —-I_ L Drain

Substrate (body)

(b) NMOS transistor

Ve

L

Vs — 1T,
(c) Simplified symbol for an NMOS transistor

Figure 3.2 NMOS transistor as a switch.

Julk 2,2002 09:34 vra23151_ch03 Sheet number 4 Page number 70 black

70

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

called body) terminal is connected to Gnd. We will use the simplified graphical symbol in
Figure 3.2¢, which omits the substrate node. There is no physical difference between the
source and drain terminals. They are distinguished in practice by the voltage levels applied
to the transistor; by convention, the terminal with the lower voltage level is deemed to be
the source.

A detailed explanation of how the transistor operates will be presented in section 3.8.1.
For now it is sufficient to know that it is controlled by the voltage V; at the gate terminal.
If Vi is low, then there is no connection between the source and drain, and we say that
the transistor is turned off. If Vi is high, then the transistor is turned on and acts as a
closed switch that connects the source and drain terminals. In section 3.8.2 we show how
to calculate the resistance between the source and drain terminals when the transistor is
turned on, but for now assume that the resistance is 0 Q.

PMOS transistors have the opposite behavior of NMOS transistors. The former are
used to realize the type of switch illustrated in Figure 3.3a, where the switch is open when
the control input x is high and closed when x is low. A symbol is shown in Figure 3.3b.
In logic circuits the substrate of the PMOS transistor is always connected to Vpp, leading
to the simplified symbol in Figure 3.3¢c. If Vi is high, then the PMOS transistor is turned
off and acts like an open switch. When Vj; is low, the transistor is turned on and acts as a
closed switch that connects the source and drain. In the PMOS transistor the source is the
node with the higher voltage.

x = “high” ¥ = “low”
—c/ o—— ——o0—o0—

(a) A switch with the opposite behavior of Figure 3.2(a)

Gate

Drain J L Source

VoD
Substrate (body)

(b) PMOS transistor

Ve

&

Vs /1 Vp
(c) Simplified symbol for an PMOS transistor

Figure 3.3 PMOS transistor as a switch.

July 2,2002 09:34 vra23151_ch03 Sheet number 5 Page number 71 black

3.2 NMOS Locic GATES

VD VD = O A\ VD
) AI i i
VS = 0 V — — —
Closed switch Open switch
when VG = VDD when VG =0V
(a) NMOS transistor
Vs=Vpp VoD Vbp

T

Vb Vb Vp=Vpp
Open switch Closed switch
when Vi =Vpp when V=0V

(b) PMOS transistor

Figure 3.4 NMOS and PMOS transistors in logic circuits.

Figure 3.4 summarizes the typical use of NMOS and PMOS transistors in logic circuits.
An NMOS transistor is turned on when its gate terminal is high, while a PMOS transistor
is turned on when its gate is low. When the NMOS transistor is turned on, its drain is
pulled down to Gnd, and when the PMOS transistor is turned on, its drain is pulled up to
Vpp. Because of the way the transistors operate, an NMOS transistor cannot be used to
pull its drain terminal completely up to Vpp. Similarly, a PMOS transistor cannot be used
to pull its drain terminal completely down to Gnd. We discuss the operation of MOSFETs
in considerable detail in section 3.8.

71

3.2 NMOS Logcic GATES

The first schemes for building logic gates with MOSFETs became popular in the 1970s
and relied on either PMOS or NMOS transistors, but not both. Since the early 1980s, a
combination of both NMOS and PMOS transistors has been used. We will first describe
how logic circuits can be built using NMOS transistors because these circuits are easier

Julk 2,2002 09:34 vra23151_ch03 Sheet number 6 Page number 72 black

72

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

to understand. Such circuits are known as NMOS circuits. Then we will show how
NMOS and PMOS transistors are combined in the presently popular technology known as
complementary MOS, or CMOS.

In the circuit in Figure 3.5a, when V, = 0 V, the NMOS transistor is turned off. No
current flows through the resistor R, and V; = 5 V. On the other hand, when V, =5V, the
transistor is turned on and pulls V; to a low voltage level. The exact voltage level of V;
in this case depends on the amount of current that flows through the resistor and transistor.
Typically, Vy is about 0.2 V (see section 3.8.3). If V; is viewed as a function of V,, then the
circuit is an NMOS implementation of a NOT gate. In logic terms this circuit implements
the function f = x. Figure 3.5b gives a simplified circuit diagram in which the connection
to the positive terminal on the power supply is indicated by an arrow labeled Vpp and the
connection to the negative power-supply terminal is indicated by the Gnd symbol. We will
use this simplified style of circuit diagram throughout this chapter.

The purpose of the resistor in the NOT gate circuit is to limit the amount of current that
flows when V, = 5 V. Rather than using a resistor for this purpose, a transistor is normally
used. We will discuss this issue in more detail in section 3.8.3. In subsequent diagrams
a dashed box is drawn around the resistor R as a reminder that it is implemented using a
transistor.

Figure 3.5¢ presents the graphical symbols for a NOT gate. The left symbol shows the
input, output, power, and ground terminals, and the right symbol is simplified to show only

R
5V +—..—
- Vi
v
(a) Circuit diagram (b) Simplified circuit diagram

(c) Graphical symbols

Figure 3.5 A NOT gate built using NMOS technology.

July 2,2002 09:34 vra23151_ch03 Sheet number 7 Page number 73 black

3.2 NMOS Locic GATES

the input and output terminals. In practice only the simplified symbol is used. Another
name often used for the NOT gate is inverter. We use both names interchangeably in this
book.

In section 2.1 we saw that a series connection of switches corresponds to the logic AND
function, while a parallel connection represents the OR function. Using NMOS transistors,
we can implement the series connection as depicted in Figure 3.6a. If V,, = V,, =5V,
both transistors will be on and V; will be close to 0 V. But if either V., or V,, is 0, then no
current will flow through the series-connected transistors and Vy will be pulled up to 5 V.
The resulting truth table for f, provided in terms of logic values, is given in Figure 3.6b.
The realized function is the complement of the AND function, called the NAND function,
for NOT-AND. The circuit realizes a NAND gate. Its graphical symbols are shown in Fig-
ure 3.6¢.

The parallel connection of NMOS transistors is given in Figure 3.7a. Here, if either
Vi, =5VorV,, =5YV,then V; will be close to 0 V. Only if both V,, and V,, are 0 will V¢
be pulled up to 5 V. A corresponding truth table is given in Figure 3.7b. It shows that the
circuit realizes the complement of the OR function, called the NOR function, for NOT-OR.
The graphical symbols for the NOR gate appear in Figure 3.7c¢.

0 0 1

0 1 1

1 0 1

1 1 0
(a) Circuit (b) Truth table

X, —] x; —]
A D D

(c) Graphical symbols

Figure 3.6 NMOS realization of a NAND gate.

73

Julk 2,2002 09:34 vra23151_ch03 Sheet number 8 Page number 74 black

74

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

Vbp

| |

I |

Vi

0 0 1
Ve % V., 4| 0 1 |0
1 0 0
1 1 0
(a) Circuit (b) Truth table

X1 X
X f X, f
(c) Graphical symbols

Figure 3.7 NMOS redlization of a NOR gate.

In addition to the NAND and NOR gates just described, the reader would naturally
be interested in the AND and OR gates that were used extensively in the previous chapter.
Figure 3.8 indicates how an AND gate is built in NMOS technology by following a NAND
gate with an inverter. Node A realizes the NAND of inputs x; and x,, and f represents the
AND function. In a similar fashion an OR gate is realized as a NOR gate followed by an
inverter, as depicted in Figure 3.9.

3.3 CMOS Locic GATES

So far we have considered how to implement logic gates using NMOS transistors. For
each of the circuits that has been presented, it is possible to derive an equivalent circuit
that uses PMOS transistors. However, it is more interesting to consider how both NMOS
and PMOS transistors can be used together. The most popular such approach is known as
CMOS technology. We will see in section 3.8 that CMOS technology offers some attractive
practical advantages in comparison to NMOS technology.

In NMOS circuits the logic functions are realized by arrangements of NMOS transistors,
combined with a pull-up device that acts as a resistor. We will refer to the part of the circuit

July 2,2002 09:34 vra23151_ch03 Sheet number 9 Page number 75 black

3.3 CMOS LogGIic GATES

‘AL
1

f

Vv 0 0 0

N 01 |0

1 0 0

1 1 1

(a) Circuit (b) Truth table

x; — b —
S D e D

(c) Graphical symbols

Figure 3.8 NMOS realization of an AND gate.

that involves NMOS transistors as the pull-down network (PDN). Then the structure of the
circuits in Figures 3.5 through 3.9 can be characterized by the block diagram in Figure
3.10. The concept of CMOS circuits is based on replacing the pull-up device with a pull-up
network (PUN) that is built using PMOS transistors, such that the functions realized by the
PDN and PUN networks are complements of each other. Then a logic circuit, such as a
typical logic gate, is implemented as indicated in Figure 3.11. For any given valuation of
the input signals, either the PDN pulls Vy down to Gnd or the PUN pulls V¢ up to Vpp. The
PDN and the PUN have equal numbers of transistors, which are arranged so that the two
networks are duals of one another. Wherever the PDN has NMOS transistors in series, the
PUN has PMOS transistors in parallel, and vice versa.

The simplest example of a CMOS circuit, a NOT gate, is shown in Figure 3.12. When
Vi = 0V, transistor 75 is off and transistor 7 is on. This makes V; = 5V, and since 7> is

75

Julk 2,2002 09:34 vra23151_ch03 Sheet number 10 Page number 76 black

76

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

Vbp
r A
[}]
I]
L 4

(a) Circuit (b) Truth table

(c) Graphical symbols

Figure 3.9 NMOS realization of an OR gate.

off, no current flows through the transistors. When V, = 5V, T; is on and T is off. Thus
V¢ = 0V, and no current flows because T is off.

Akey point is that no current flows in a CMOS inverter when the input is either low or
high. This is true for all CMOS circuits; no current flows, and hence no power is dissipated
under steady state conditions. This property has led to CMOS becoming the most popular
technology in use today for building logic circuits. We will discuss current flow and power
dissipation in detail in section 3.8.

Figure 3.13 provides a circuit diagram of a CMOS NAND gate. It is similar to the
NMOS circuit presented in Figure 3.6 except that the pull-up device has been replaced by
the PUN with two PMOS transistors connected in parallel. The truth table in the figure
specifies the state of each of the four transistors for each logic valuation of inputs x; and
x;. The reader can verify that the circuit properly implements the NAND function. Under
static conditions no path exists for current flow from Vpp to Gnd.

The circuit in Figure 3.13 can be derived from the logic expression that defines the
NAND operation, f = x7x,. This expression specifies the conditions for which f = 1;
hence it defines the PUN. Since the PUN consists of PMOS transistors, which are turned
on when their control (gate) inputs are set to 0, an input variable x; turns on a transistor if

July 2,2002 09:34 vra23151_ch03 Sheet number 11 Page number 77 black

3.3 CMOS LogGIic GATES

Vop
S
I >I
[Vf
v,
: Pull-down network
. PDN
v, ()

L

Figure 3.10 Structure of an NMOS circuit.

x; = 0. From DeMorgan’s law, we have
=X =X +x

Thus f = 1 when either input x; or x, has the value 0, which means that the PUN must have
two PMOS transistors connected in parallel. The PDN must implement the complement of

f, which is

f=xx

Vop

Pull-up network
(PUN)

— Vv

° Pull-down network
(PDN)

L

Figure 3.11 Structure of a CMOS circuit.

77

Julk 2,2002 09:34 vra23151_ch03 Sheet number 12 Page number 78 black

78 CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

X|T1T2|f

N
|||—I - -5
) _ﬂ S

=

0 on off 1
1 off on 0
(a) Circuit (b) Truth table and transistor states

Figure 3.12 CMOS redlization of a NOT gate.

Sincef = 1 when both x; and x, are 1, it follows that the PDN must have two NMOS
transistors connected in series.

The circuit for a CMOS NOR gate is derived from the logic expression that defines the
NOR operation

f=x1+x=XxX

Since f = 1 only if both x; and x, have the value 0, then th_e PUN consists of two PMOS
transistors connected in series. The PDN, which realizes f = x; + x;, has two NMOS
transistors in parallel, leading to the circuit shown in Figure 3.14.

Vbp

T, B T,

T
Ve T, Xp X | Ty Ty T3 Ty | f
] 0 0 on on off off 1
0 1 on off off on 1
Vi, T, 1 0 | off on on off [1
1 1 off off on on 0

(a) Circuit (b) Truth table and transistor states

Figure 3.13 CMOS redlization of a NAND gate.

July 2,2002 09:34 vra23151_ch03 Sheet number 13 Page number 79 black

3.3 CMOS LogGIic GATES

Vxl
v,
X X, T, T, Ty T, | f
0 0 on on off off 1
0 1 on off off on 0
1 0 off on on off | (
1 1 off off on on 0
(a) Circuit (b) Truth table and transistor states

Figure 3.14 CMOS realization of a NOR gate.

A CMOS AND gate is built by connecting a NAND gate to an inverter, as illustrated
in Figure 3.15. Similarly, an OR gate is constructed with a NOR gate followed by a NOT
gate.

The above procedure for deriving a CMOS circuit can be applied to more general logic
functions to create complex gates. This process is illustrated in the following two examples.

| NS
S

3
L |
[2
T

Figure 3.15 CMOS redlization of an AND gate.

79

Julk 2,2002 09:34 vra23151_ch03 Sheet number 14 Page number 80 black

80

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

Example 3.1

Consider the function
f =% +xx;
Since all variables appear in their complemented form, we can directly derive the PUN.

It consists of a PMOS transistor controlled by x; in parallel with a series combination of
PMOS transistors controlled by x; and x3. For the PDN we have

f =% +%% = x(x +x3)

This expression gives the PDN that has an NMOS transistor controlled by x; in series with
a parallel combination of NMOS transistors controlled by x, and x3. The circuit is shown
in Figure 3.16.

Example 3.2

Consider the function
f=%+ G +X3)x4
Then
f = x1(oxs + x4)

These expressions lead directly to the circuit in Figure 3.17.

Figure 3.16 The circuit for Example 3.1.

July 2,2002 09:34 vra23151_ch03 Sheet number 15 Page number 81 black

3.3 CMOS LogGIic GATES

Tt

E2)

Figure 3.17 The circuit for Example 3.2.

The circuits in Figures 3.16 and 3.17 show that it is possible to implement fairly complex
logic functions using combinations of series and parallel connections of transistors (acting
as switches), without implementing each series or parallel connection as a complete AND
(using the structure introduced in Figure 3.15) or OR gate.

3.3.1 SPEED OF LoGIic GATE CIRCUITS

In the preceding sections we have assumed that transistors operate as ideal switches that
present no resistance to current flow. Hence, while we have derived circuits that realize
the functionality needed in logic gates, we have ignored the important issue of the speed of
operation of the circuits. In reality transistor switches have a significant resistance when
turned on. Also, transistor circuits include capacitors, which are created as a side effect
of the manufacturing process. These factors affect the amount of time required for signal
values to propagate through logic gates. We provide a detailed discussion of the speed of
logic circuits, as well as a number of other practical issues, in section 3.8.

Julk 2,2002 09:34 vra23151_ch03 Sheet number 16 Page number 82 black

82

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

3.4 NEGATIVE LoGIc SYSTEM

At the beginning of this chapter, we said that logic values are represented as two distinct
ranges of voltage levels. We are using the convention that the higher voltage levels represent
logic value 1 and the lower voltages represent logic value 0. This convention is known
as the positive logic system, and it is the one used in most practical applications. In this
section we briefly consider the negative logic system in which the association between
voltage levels and logic values is reversed.

Let us reconsider the CMOS circuit in Figure 3.13, which is reproduced in Figure
3.18a. Part (b) of the figure gives a truth table for the circuit, but the table shows voltage
levels instead of logic values. In this table, L refers to the low voltage level in the circuit,
which is 0 V, and H represents the high voltage level, which is Vpp. This is the style of
truth table that manufacturers of integrated circuits often use in data sheets to describe the
functionality of the chips. It is entirely up to the user of the chip as to whether L and H are
interpreted in terms of logic values such that L=0and H = 1,orL =1and H = 0.

Figure 3.19a illustrates the positive logic interpretation in which L = 0 and H = 1.
As we already know from the discussions of Figure 3.13, the circuit represents a NAND
gate under this interpretation. The opposite interpretation is shown in Figure 3.19b. Here
negative logic is used so that L = 1 and H = 0. The truth table specifies that the circuit
represents a NOR gate in this case. Note that the truth table rows are listed in the opposite
order from what we normally use, to be consistent with the L and H values in Figure 3.18b.
Figure 3.19b also gives the logic gate symbol for the NOR gate, which includes small
triangles on the gate’s terminals to indicate that the negative logic system is used.

As another example, consider again the circuit in Figure 3.15. Its truth table, in terms
of voltage levels, is given in Figure 3.20a. Using the positive logic system, this circuit

Vbp
Vi

Ve L L|H
L H H
H L H
H H L

sz

(a) Circuit (b) Voltage levels

Figure 3.18 Voltage levels in the circuit in Figure 3.13.

July 2,2002 09:34 vra23151_ch03 Sheet number 17 Page number 83 black

3.5 STANDARD CHIPS

Xl_
S Doy

_—— O O
—_ o = O
O = =

(b) Negative logic truth table and gate symbol

Figure 3.19 Interpretation of the circuit in Figure 3.18.

represents an AND gate, as indicated in Figure 3.205. But using the negative logic system,
the circuit represents an OR gate, as depicted in Figure 3.20c.

It is possible to use a mixture of positive and negative logic in a single circuit, which
is known as a mixed logic system. In practice, the positive logic system is used in most
applications. We will not consider the negative logic system further in this book.

83

3.5 STANDARD CHIPS

In Chapter 1 we mentioned that several different types of integrated circuit chips are avail-
able for implementation of logic circuits. We now discuss the available choices in some
detail.

3.5.1 7400-SERIES STANDARD CHIPS

An approach used widely until the mid-1980s was to connect together multiple chips, each
containing only a few logic gates. A wide assortment of chips, with different types of logic
gates, is available for this purpose. They are known as 7400-series parts because the chip
part numbers always begin with the digits 74. An example of a 7400-series part is given
in Figure 3.21. Part (a) of the figure shows a type of package that the chip is provided in,
called a dual-inline package (DIP). Part (b) illustrates the 7404 chip, which comprises six
NOT gates. The chip’s external connections are called pins or leads. Two pins are used
to connect to Vpp and Gnd, and other pins provide connections to the NOT gates. Many

Julk 2,2002 09:34 vra23151_ch03 Sheet number 18 Page number 84 black

84 CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

(a) Voltage levels

X —
Xy —) f

f
0
0
0
1

_—— O O

(b) Positive logic

1
0
1
0

1 X

1

X

1 2
0

(c) Negative logic

Figure 3.20 Interpretation of the circuit in Figure 3.15.

7400-series chips exist, and they are described in the data books produced by manufacturers
of these chips [3-7]. Diagrams of some of the chips are also included in several textbooks,
such as [8-12].

The 7400-series chips are produced in standard forms by a number of integrated circuit
manufacturers, using agreed-upon specifications. Competition among various manufac-
turers works to the designer’s advantage because it tends to lower the price of chips and
ensures that parts are always readily available. For each specific 7400-series chip, several
variants are built with different technologies. For instance, the part called 74LS00 is built
with a technology called transistor-transistor logic (TTL), which is described in Appendix
E, whereas the 74HCOO is fabricated using CMOS technology. In general, the most popular
chips used today are the CMOS variants.

As an example of how a logic circuit can be implemented using 7400-series chips,
consider the function f = x;x, + X,x3, which is shown in the form of a logic diagram

July 2,2002 09:34 vra23151_ch03 Sheet number 19 Page number 85 black

3.5 STANDARD CHIPS

(a) Dual-inline package

INIEEREEEEEEE

Vop

P Do (D

EREREREREREEE

(b) Structure of 7404 chip

Figure 3.21 A 7400-series chip.

in Figure 2.30. A NOT gate is required to produce x;, as well as 2 two-input AND gates
and a two-input OR gate. Figure 3.22 shows three 7400-series chips that can be used to
implement the function. We assume that the three input signals xi, x,, and x3 are produced
as outputs by some other circuitry that can be connected by wires to the three chips. Notice
that power and ground connections are included for all three chips. This example makes
use of only a portion of the gates available on the three chips, hence the remaining gates
can be used to realize other functions.

Because of their low logic capacity, the standard chips are seldom used in practice
today, with one exception. Many modern products include standard chips that contain
buffers. Buffers are logic gates that are usually used to improve the speed of circuits. An
example of a buffer chip is depicted in Figure 3.23. It is the 74244 chip, which comprises
eight tri-state buffers. We describe how tri-state buffers work in section 3.8.8. Rather than
showing how the buffers are arranged inside the chip package, as we did for the NOT gates
in Figure 3.21, we show only the pin numbers of the package pins that are connected to the
buffers. The package has 20 pins, and they are numbered in the same manner as shown for
Figure 3.21; Gnd and Vpp connections are provided on pins 10 and 20, respectively. Many
other buffer chips also exist. For example, the 162244 chip has 16 tri-state buffers. It is
part of a family of devices that are similar to the 7400-series chips but with twice as many
gates in each chip. These chips are available in multiple types of packages, with the most
popular being a small-outline integrated circuit (SOIC) package. An SOIC package has a
similar shape to a DIP, but the SOIC is considerably smaller in physical size.

85

JulL 2,2002 09:34 vra23151_ch03 Sheet number 20 Page number 86 black

86

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

Vbp
!
|J_||_||_||_||_||_||_|

D 7404
D>

L I_ILI_I_

O

E

]

000000 [

b 50 S0 b

L INNREEE Ll_IL‘JLJI_II_II_I

—{]

—

—L

X1

X

X3

Figure 3.22

An imp|ementation of f = x1x2 + Xoxs.

As integrated circuit technology has improved over time, a system of classifying chips
according to their size has evolved. The earliest chips produced, such as the 7400-series
chips, comprise only a few logic gates. The technology used to produce these chips is
referred to as small-scale integration (SSI). Chips that include slightly more logic circuitry,
typically about 10 to 100 gates, represent medium-scale integration (MSI). Until the mid-
1980s chips that were too large to qualify as MSI were classified as large-scale integration

o <)) o = o) ~
- = = = == 24 = —
= = g g g .8 8 R= g
A A [a% A A A A A A
| | | | |

!5 ‘-€7
[[[[[
— & < o o0 n N ~ o
=B = = = = = = =
£ & B = = | g 5 g
A A A~ A~ A~ A~ A~ 2% [a®

Figure 3.23 The 74244 buffer chip.

July 2,2002 09:34 vra23151_ch03 Sheet number 21 Page number 87 black

3.6 PROGRAMMABLE LoGIC DEVICES

(LSI). In recent years the concept of classifying circuits according to their size has become
of little practical use. Most integrated circuits today contain many thousands or millions
of transistors. Regardless of their exact size, these large chips are said to be made with
very large scale integration (VLSI) technology. The trend in digital hardware products is
to integrate as much circuitry as possible onto a single chip. Thus most of the chips used
today are built with VLSI technology, and the older types of chips are used rarely.

87

3.6 PROGRAMMABLE LoGIic DEVICES

The function provided by each of the 7400-series parts is fixed and cannot be tailored to suit
a particular design situation. This fact, coupled with the limitation that each chip contains
only a few logic gates, makes these chips inefficient for building large logic circuits. It is
possible to manufacture chips that contain relatively large amounts of logic circuitry with
a structure that is not fixed. Such chips were first introduced in the 1970s and are called
programmable logic devices (PLDs).

A PLD is a general-purpose chip for implementing logic circuitry. It contains a col-
lection of logic circuit elements that can be customized in different ways. A PLD can be
viewed as a “black box” that contains logic gates and programmable switches, as illustrated
in Figure 3.24. The programmable switches allow the logic gates inside the PLD to be
connected together to implement whatever logic circuit is needed.

3.6.1 PROGRAMMABLE LoGic ARRAY (PLA)

Several types of PLDs are commercially available. The first developed was the pro-
grammable logic array (PLA). The general structure of a PLA is depicted in Figure 3.25.
Based on the idea that logic functions can be realized in sum-of-products form, a PLA

—_— —
—_— e
Inputs Logic gates Outputs
(logic variables) and (logic functions)
E—— programmable — ™
. switches .
—_— e
—_— —

Figure 3.24 Programmable logic device as a black box.

Julk 2,2002 09:34 vra23151_ch03 Sheet number 22 Page number 88 black

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

X1 X Xn
Input buffers
and
inverters
X 5c1 X, 5cn
| v Yy
Py
AND plane . OR plane
Py o
f 1 f m

Figure 3.25 General structure of a PLA.

comprises a collection of AND gates that feeds a set of OR gates. As shown in the figure,

the PLA’s inputs x1, . . ., x,, pass through a set of buffers (which provide both the true value
and complement of each input) into a circuit block called an AND plane, or AND array.
The AND plane produces a set of product terms Py, ..., P;. Each of these terms can be
configured to implement any AND function of xy, ..., x,. The product terms serve as the
inputs to an OR plane, which produces the outputs fi, . . ., f,,. Each output can be config-
ured to realize any sum of Py, ..., P; and hence any sum-of-products function of the PLA
1nputs.

A more detailed diagram of a small PLA is given in Figure 3.26, which shows a PLA
with three inputs, four product terms, and two outputs. Each AND gate in the AND plane
has six inputs, corresponding to the true and complemented versions of the three input
signals. Each connection to an AND gate is programmable; a signal that is connected to
an AND gate is indicated with a wavy line, and a signal that is not connected to the gate is
shown with a broken line. The circuitry is designed such that any unconnected AND-gate
inputs do not affect the output of the AND gate. In commercially available PLAs, several
methods of realizing the programmable connections exist. Detailed explanation of how a
PLA can be built using transistors is given in section 3.10.

In Figure 3.26 the AND gate that produces P; is shown connected to the inputs x; and
xp. Hence P; = x1x,. Similarly, P, = x1x3, P3 = X1X»x3, and P4 = x;x3. Programmable
connections also exist for the OR plane. Output f; is connected to product terms P,
P,, and P5. It therefore realizes the function fj = x1x; + x;X3 + X1 X>x3. Similarly, output

July 2,2002 09:34 vra23151_ch03 Sheet number 23 Page number 89 black

3.6 PROGRAMMABLE LoGIC DEVICES

X1 X2 X3
Programmable
/ connections
] OR plane
N\ \ Py
R
N\
4 \ »
1 J
—_—
M\ P
A
L]
N\
_ \ Py
A/ ! -~
L]
AND plane
N Rp)

Figure 3.26 Gate-level diagram of a PLA.

> = x1x+X1X2x3 +x1x3. Although Figure 3.26 depicts the PLA programmed to implement
the functions described above, by programming the AND and OR planes differently, each
of the outputs f] and f, could implement various functions of xj, x,, and x3. The only
constraint on the functions that can be implemented is the size of the AND plane because it
produces only four product terms. Commercially available PLAs come in larger sizes than
we have shown here. Typical parameters are 16 inputs, 32 product terms, and eight outputs.

Although Figure 3.26 illustrates clearly the functional structure of a PLA, this style of
drawing is awkward for larger chips. Instead, it has become customary in technical literature
to use the style shown in Figure 3.27. Each AND gate is depicted as a single horizontal
line attached to an AND-gate symbol. The possible inputs to the AND gate are drawn as
vertical lines that cross the horizontal line. At any crossing of a vertical and horizontal
line, a programmable connection, indicated by an X, can be made. Figure 3.27 shows the
programmable connections needed to implement the product terms in Figure 3.26. Each
OR gate is drawn in a similar manner, with a vertical line attached to an OR-gate symbol.

89

Julk 2,2002 09:34 vra23151_ch03 Sheet number 24 Page number 90 black

90 CHAPTER 3 ¢ IMPLEMENTATION TECHNOLOGY
X X2 3
OR plane

%% k% —
—X% X 2 x

x—|—%—x) LR S
—% X — X

AND plane Ej (j
N p)

Figure 3.27 Customary schematic for the PLA in Figure 3.26.

The AND-gate outputs cross these lines, and corresponding programmable connections can
be formed. The figure illustrates the programmable connections that produce the functions
fi and f, from Figure 3.26.

The PLA is efficient in terms of the area needed for its implementation on an integrated
circuit chip. For this reason, PLAs are often included as part of larger chips, such as
microprocessors. In this case a PLA is created so that the connections to the AND and OR
gates are fixed, rather than programmable. In section 3.10 we will show that both fixed and
programmable PLAs can be created with similar structures.

3.6.2 PROGRAMMABLE ARRAY LogIic (PAL)

I PEABGIRREAND A ORI plaACSATSIogmMmmabIe. Historically, the programmable

switches presented two difficulties for manufacturers of these devices: they were hard to
fabricate correctly, and they reduced the speed-performance of circuits implemented in the
PLAs. These drawbacks led to the development of a similar device in which the AND plane
is programmable, but the OR plane is fixed. Such a chip is known as a programmable array
logic (PAL) device. Because they are simpler to manufacture, and thus less expensive than
PLAs, and offer better performance, PALs have become popular in practical applications.

zeinab
Highlight

July 2,2002 09:34 vra23151_ch03 Sheet number 25 Page number 91 black

3.6 PROGRAMMABLE LoGIC DEVICES

An example of a PAL with three inputs, four product terms, and two outputs is given
in Figure 3.28. The product terms P; and P, are hardwired to one OR gate, and P3 and P4
are hardwired to the other OR gate. The PAL is shown programmed to realize the two logic
functions f; = x;x,X3 +X1xx3 and f, = XX, + x1x2x3. In comparison to the PLA in Figure
3.27, the PAL offers less flexibility; the PLA allows up to four product terms per OR gate,
whereas the OR gates in the PAL have only two inputs. To compensate for the reduced
flexibility, PALs are manufactured in a range of sizes, with various numbers of inputs and
outputs, and different numbers of inputs to the OR gates. An example of a commercial PAL
is given in Appendix E.

So far we have assumed that the OR gates in a PAL, as in a PLA, connect directly to
the output pins of the chip. In many PALs extra circuitry is added at the output of each OR
gate to provide additional flexibility. It is customary to use the term macrocell to refer to
the OR gate combined with the extra circuitry. An example of the flexibility that may be
provided in a macrocell is given in Figure 3.29. The symbol labeled flip-flop represents a
memory element. It stores the value produced by the OR gate output at a particular point
in time and can hold that value indefinitely. The flip-flop is controlled by the signal called
clock. When clock makes a transition from logic value O to 1, the flip-flop stores the value
at its D input at that time and this value appears at the flip-flop’s Q output. Flip-flops are
used for implementing many types of logic circuits, as we will show in Chapter 7.

In section 2.8.2 we discussed a 2-to-1 multiplexer circuit. It has two data inputs, a
select input, and one output. The select input is used to choose one of the data inputs as

X1 X X3
\ P
—X 3 X))
1
\ P
K —XK 3)
_\ P,
X X)
bp)
\ P4
—X 3 3)

AND plane

Figure 3.28 An example of a PAL.

91

Julk 2,2002 09:34 vra23151_ch03 Sheet number 26 Page number 92 black

92 CHAPTER 3 ¢ IMPLEMENTATION TECHNOLOGY
Select
Enable
IS
Flip-flop
D Q
Clock >
To AND plane

: <

Figure 3.29 Extra circuitry added to OR-gate outputs from Figure 3.28.

the multiplexer’s output. In Figure 3.29 a 2-to-1 multiplexer selects as an output from the
PAL either the OR-gate output or the flip-flop output. The multiplexer’s select line can be
programmed to be either 0 or 1. Figure 3.29 shows another logic gate, called a tri-state
buffer, connected between the multiplexer and the PAL output. We discuss tri-state buffers
in section 3.8.8. Finally, the multiplexer’s output is “fed back” to the AND plane in the
PAL. This feedback connection allows the logic function produced by the multiplexer to be
used internally in the PAL, which allows the implementation of circuits that have multiple
stages, or levels, of logic gates.

A number of companies manufacture PLAs or PALs, or other, similar types of simple
PLDs (SPLDs). Apartial list of companies, and the types of SPLDs that they manufacture, is
given in Appendix E. An interested reader can examine the information that these companies
provide on their products, which is available on the World Wide Web (WWW). The WWW
locator for each company is given in Table E.1 in Appendix E.

3.6.3 PROGRAMMING OF PLAs AND PALS

In Figures 3.27 and 3.28, each connection between a logic signal in a PLA or PAL and the
AND/OR gates is shown as an X. We describe how these switches are implemented using
transistors in section 3.10. Users’ circuits are implemented in the devices by configuring,
or programming, these switches. Commercial chips contain a few thousand programmable
switches; hence it is not feasible for a user of these chips to specify manually the desired
programming state of each switch. Instead, CAD systems are employed for this purpose. We
introduced CAD tools in Chapter 2 and described methods for design entry and simulation
of circuits. For CAD systems that support targeting of circuits to PLDs, the tools have the
capability to automatically produce the necessary information for programming each of the

July 2,2002 09:34 vra23151_ch03 Sheet number 27 Page number 93 black

3.6 PROGRAMMABLE LoGIC DEVICES

switches in the device. A computer system that runs the CAD tools is connected by a cable
to a dedicated programming unit. Once the user has completed the design of a circuit, the
CAD tools generate a file, often called a programming file or fuse map, that specifies the
state that each switch in the PLD should have, to realize correctly the designed circuit. The
PLD is placed into the programming unit, and the programming file is transferred from the
computer system. The programming unit then places the chip into a special programming
mode and configures each switch individually. A photograph of a programming unit is
shown in Figure 3.30. Several adaptors are shown beside the main unit; each adaptor is
used for a specific type of chip package.

The programming procedure may take a few minutes to complete. Usually, the pro-
gramming unit can automatically “read back” the state of each switch after programming,
to verify that the chip has been programmed correctly. A detailed discussion of the process
involved in using CAD tools to target designed circuits to programmable chips is given in
Appendices B, C, and D.

PLAs or PALs used as part of a logic circuit usually reside with other chips on a printed
circuit board (PCB). The procedure described above assumes that the chip can be removed
from the circuit board for programming in the programming unit. Removal is made possible
by using a socket on the PCB, as illustrated in Figure 3.31. Although PLAs and PALs are
available in the DIP packages shown in Figure 3.21a, they are also available in another
popular type of package, called a plastic-leaded chip carrier (PLCC), which is depicted in
Figure 3.31. On all four of its sides, the PLCC package has pins that “wrap around” the
edges of the chip, rather than extending straight down as in the case of a DIP. The socket
that houses the PLCC is attached by solder to the circuit board, and the PLCC is held in the
socket by friction.

e

= g

N

L= N

Figure 3.30 A PLD programming unit (courtesy of Data IO Corp.).

93

JulL 2,2002 09:34 vra23151_ch03 Sheet number 28 Page number 94 black

94

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

Figure 3.31 A PLCC package with socket.

Instead of relying on a programming unit to configure a chip, it would be advantageous
to be able to perform the programming while the chip is still attached to its circuit board. This
method of programming is called in-system programming (ISP). It is not usually provided
for PLAs or PALSs, but is available for the more sophisticated chips that are described below.

3.6.4 ComPLEX PROGRAMMABLE LoGIc DEVICES (CPLDs)

PLAs and PALs are useful for implementing a wide variety of small digital circuits. Each
device can be used to implement circuits that do not require more than the number of inputs,
product terms, and outputs that are provided in the particular chip. These chips are limited
to fairly modest sizes, typically supporting a combined number of inputs plus outputs of not
more than 32. For implementation of circuits that require more inputs and outputs, either
multiple PLAs or PALs can be employed or else a more sophisticated type of chip, called
a complex programmable logic device (CPLD), can be used.

A CPLD comprises multiple circuit blocks on a single chip, with internal wiring re-
sources to connect the circuit blocks. Each circuit block is similar to a PLA or a PAL; we
will refer to the circuit blocks as PAL-like blocks. An example of a CPLD is given in Figure
3.32. It includes four PAL-like blocks that are connected to a set of interconnection wires.
Each PAL-like block is also connected to a subcircuit labeled /O block, which is attached
to a number of the chip’s input and output pins.

July 2,2002 09:34 vra23151_ch03 Sheet number 29 Page number 95 black

3.6 PROGRAMMABLE LoGIC DEVICES

. PAL-like PAL-like .
. block block .

I/O block
32019 O/1

. PAL-like PAL-like .
block block °

1/O block
Y0019 O/

Figure 3.32 Structure of a complex programmable logic device (CPLD).

Figure 3.33 shows an example of the wiring structure and the connections to a PAL-like
block in a CPLD. The PAL-like block includes 3 macrocells (real CPLDs typically have
about 16 macrocells in a PAL-like block), each consisting of a four-input OR gate (real
CPLDs usually provide between 5 and 20 inputs to each OR gate). The OR-gate output
is connected to another type of logic gate that we have not yet introduced. It is called an
Exclusive-OR (XOR) gate. We discuss XOR gates in section 3.9.1. The behavior of an
XOR gate is the same as for an OR gate except that if both of the inputs are 1, the XOR gate
produces a 0. One input to the XOR gate in Figure 3.33 can be programmably connected
to 1 or O; if 1, then the XOR gate complements the OR-gate output, and if 0, then the
XOR gate has no effect. In many CPLDs the XOR gates can be used in other ways also,
which we will see in Example 4.21, in Chapter 4. The macrocell also includes a flip-flop, a
multiplexer, and a tri-state buffer. As we mentioned in the discussion for Figure 3.29, the
flip-flop is used to store the output value produced by the OR gate. Each tri-state buffer
(see section 3.8.8) is connected to a pin on the CPLD package. The tri-state buffer acts as
a switch that allows each pin to be used either as an output from the CPLD or as an input.
To use a pin as an output, the corresponding tri-state buffer is enabled, acting as a switch
that is turned on. If the pin is to be used as an input, then the tri-state buffer is disabled,
acting as a switch that is turned off. In this case an external source can drive a signal onto
the pin, which can be connected to other macrocells using the interconnection wiring.

The interconnection wiring contains programmable switches that are used to connect
the PAL-like blocks. Each of the horizontal wires can be connected to some of the vertical
wires that it crosses, but not to all of them. Extensive research has been done to decide
how many switches should be provided for connections between the wires. The number
of switches is chosen to provide sufficient flexibility for typical circuits without wasting

95

JulL 2,2002 09:34 vra23151_ch03 Sheet number 30 Page number 96 black

96 CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

PAL-like block (details not shown)

Figure 3.33 A section of the CPLD in Figure 3.32.

many switches in practice. One detail to note is that when a pin is used as an input, the
macrocell associated with that pin cannot be used and is therefore wasted. Some CPLDs
include additional connections between the macrocells and the interconnection wiring that
avoids wasting macrocells in such situations.

Commercial CPLDs range in size from only 2 PAL-like blocks to more than 100 PAL-
like blocks. They are available in a variety of packages, including the PLCC package that
is shown in Figure 3.31. Figure 3.34a shows another type of package used to house CPLD
chips, called a quad flat pack (QFP). Like a PLCC package, the QFP package has pins on all
four sides, but whereas the PLCC’s pins wrap around the edges of the package, the QFP’s
pins extend outward from the package, with a downward-curving shape. The QFP’s pins

July 2,2002 09:34 vra23151_ch03 Sheet number 31 Page number 97 black

3.6 PROGRAMMABLE LoGIC DEVICES

(a) CPLD in a quad flat pack (QFP) package

To computer

Printed
circuit board

(b) JTAG programming

Figure 3.34 CPLD packaging and programming.

are much thinner than those on a PLCC, which means that the package can support a larger
number of pins; QFPs are available with more than 200 pins, whereas PLCCs are limited
to fewer than 100 pins.

Most CPLDs contain the same type of programmable switches that are used in SPLDs,
which are described in section 3.10. Programming of the switches may be accomplished
using the same technique described in section 3.6.3, in which the chip is placed into a special-
purpose programming unit. However, this programming method is rather inconvenient for
large CPLDs for two reasons. First, large CPLDs may have more than 200 pins on the chip
package, and these pins are often fragile and easily bent. Second, to be programmed in a
programming unit, a socket is required to hold the chip. Sockets for large QFP packages
are very expensive; they sometimes cost more than the CPLD device itself. For these
reasons, CPLD devices usually support the ISP technique. A small connector is included
on the PCB that houses the CPLD, and a cable is connected between that connector and a
computer system. The CPLD is programmed by transferring the programming information
generated by a CAD system through the cable, from the computer into the CPLD. The
circuitry on the CPLD that allows this type of programming has been standardized by the
IEEE and is usually called a JTAG port. It uses four wires to transfer information between
the computer and the device being programmed. The term JTAG stands for Joint Test Action

97

Julk 2,2002 09:34 vra23151_ch03 Sheet number 32 Page number 98 black

98

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

Group. Figure 3.34b illustrates the use of a JTAG port for programming two CPLDs on a
circuit board. The CPLDs are connected together so that both can be programmed using
the same connection to the computer system. Once a CPLD is programmed, it retains the
programmed state permanently, even when the power supply for the chip is turned off. This
property is called nonvolatile programming.

CPLDs are used for the implementation of many types of digital circuits. In industrial
designs that employ some type of PLD device, CPLDs are used in about half the cases
(SPLDs are used in only a small fraction of recently produced designs). A number of
companies offer competing CPLDs. Appendix E lists, in Table E.2, the names of the major
companies involved and shows the company’s WWW locator. The reader is encouraged
to examine the product information that each company provides on its Web pages. One
example of acommercially available CPLD is described in detail in Appendix E. This CPLD
family, manufactured by Altera and called the MAX 7000, is used in several examples
presented later in the book.

3.6.5 FIELD-PROGRAMMABLE GATE ARRAYS

The types of chips described above, 7400 series, SPLDs, and CPLDs, are useful for im-
plementation of a wide range of logic circuits. Except for CPLDs, these devices are rather
small and are suitable only for relatively simple applications. Even for CPLDs, only mod-
erately large logic circuits can be accommodated in a single chip. For cost and performance
reasons, it is prudent to implement a desired logic circuit using as few chips as possible, so
the amount of circuitry on a given chip and its functional capability are important. One way
to quantify a circuit’s size is to assume that the circuit is to be built using only simple logic
gates and then estimate how many of these gates are needed. A commonly used measure is
the total number of two-input NAND gates that would be needed to build the circuit; this
measure is often called the number of equivalent gates.

Using the equivalent-gates metric, the size of a 7400-series chip is simple to measure
because each chip contains only simple gates. For SPLDs and C