314 : Research Methodology
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12,

On the basis of the above test results determine whether the contractor shoukl place order for bricks'

with concern A or with concern B (You should answer using U test or Wilcoxon-Mann-Whitney test).

. The following are the kilometres per gallon which a test driver got for ten tankfuls each of three kinds of
gasoline:

GasolineA | 30, 41, 34, 43, 33, 343 26 9 %

GasolineB | 39, 28 39, 29, 30, 31, 4 43 4 B

GasolineC | 29, 41, 26, 36 41, 43, 38 38 35 40

Use the Kruskal-Wallis test at the level of significance o = 0.05 to test the null hypothesis that there is

no difference in the average kilometre yield of the three types of gasoline. .

(a) The following are the number of students absent from a college on 24 consecutive days:
29,25,31,28, 30,28, 33,31, 35, 29,31, 33,35, 28, 36, 30, 33 76, 30,28, 32, 31, 38 and 27. Test for
randomness at 1% level of significance. :

(b) The following arrangement indicates whether 25 consecutive persons interviewed by a social scientist
are for (F) or against (4) an increase in the number of crimes in a certain locality;
F,F,F,E.F,F.A,F.F,F,F,F.AF,FF,FAAFFFFFF.

Test whether this arrangement of A’ sandFsmayberegatdedasnndom at5% asweii asat 10%level
of significance.

UsearankmlaumanheI%sxgmﬁcmlevelanddue;m:m:fﬁmmslgmﬁumposmvemlmon
between the two samples on the basis of the following information:

Blender Al AR5 AT BEGEY I @Dy IR ES L !-'2 G l 02 H
model

Sample 1 1 Ho 1» ZigB 10 3 4 4 35 6 9 T B
Sample 2 4. 00200 B - ) 10 I L EEES L S 6 5 9 7

Three interviewers rank-order a group of 10 applicants as follows:-

Interviewers Applicants Y
a b (4 d 2 il i g h i Ny
A 1 2 3 B ‘S 6 7 8 9 10
B 2 3 L 5 1 7 6 9 8 10
oy 5 4 1 2 3 6 7 o 8

Compute the coefficient of concordance (W) and verify the same by using the relationship between
average of Spearman’s r's and the coefficient of concordance. Test the significance of W at 5% and 1%
levels of significance and state what should be inferred from the same. Also point out the best estimate
of true rankings.
Given are the values of Spearman’s 's as under;

r,=0.607

r,=0429

r,=0393
Calculate Kendall’s coefficient of concordance W from the above information and test its significance at
5% level.
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~Multivariate _Ana‘lysis Techniques

Al statistical techniques which simultaneously analyse more than two variables on a sample of
observations can be categorized as multivariate techniques. We may as well use the term ‘multivariate
analysis” which is a collection of methods for analyzmg data in which a number of observations are
available for each object. In the analysis of many problems, it is helpful to have a number of scores
for each object. For instance, in the field of mtelhgtmce testing if we start with the theory that general
intelligence is reflected in a variety of specific perfonnance measures, then to study intelligence in
the context of this theory one must administer many tests of mental skills, such as vocabulary, speed
of recall, menlal arithmetic, verbal analogies and so on. The score on each test is one variable, X, and
there are several, k, of such scores for each object, représented as X, X, ...X, Most of the tesearch
studies involve more than two variables in which situation a.nalyms is desired of the association
between one (at times many) criterion variable and several independent variables, or we may be
required to study the association between variables having no dependency relationships. All such
analyses are termed as multivariate analyses or multivariate techniques. In brief, techniques that
take account of the various relationships among variables are termed multivariate analyses or
multivariate techniques.

GROWTH OF MULTIVARIATE TECHNIQUES

Of late, multivariate techniques have emerged as a powerful tool to analyse data represented in
terms of many variables. The main reason being that a series of univariate analysis carried out
separately for each variable may, at times, lead to incorrect interpretation of the result. This is so .

~—because univariate analysis does not consider the correlation or inter-dependence among the variables.

As a result, during the last fifty years, a numberof statisticians have contributed to the development
of several multivariate techniques. Today, these techniques are being applied in many fields such as
economics, sociology, psychology, agriculture, anthropology, biology and medicine. These techniques
are used in analyzing social, psychological, medical and economic data, specially when the variables
concerning research studies of these fields are supposed to be correlated with each other and when
rigorous probabilistic models cannot be appropriately used. Applications of multivariate techniques in
practice have been accelerated in modem times because of the advent of high speed electronic
computers.
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CHARACTERISTICS AND APPLICATIONS :

Multivariate techniques are largely empirical and deal with the reality; they possess the ability to
analyse complex data. Accordingly in most of the applied and behavioural researches, we generally
resort to multivariate analysis techniques for realistic results. Besides being a tool for analyzing the
data, multivariate techniques also help in various types of decision-making. For example, take the
case of college entrance examination wherein a number of tests are administered to-candidates, and
the candidates scoring high total marks based on many subjects are admitted. This system, though
apparently fair, may at times be biased in favour of some subjects with the larger standard deviations,
Multivariate techniques may be appropriately used in such situations for developing norms as to who
should be admitted in college. We may also cite an example from medical field. Many medical
examinations such as blood pressure and cholesterol tests are administered to patients. Each of the
results of such examinations has significance of its own, but it is also important to consider relationships
between different test results or results of the same tests at different occasions in order to draw

proper diagnostic conclusions and to determine an appropriate therapy. Multivariate techniques can
assist us in such a situation. In view of all this, we can state that “if the researcher is interested in
making probability statements on the basis of sampled multiple measurements, then the best strategy
of data analysis is to use some suitable multivariate statistical technique.

The basic objective underlying multivariate techniques is to represent a col]ecuon of massive
data in a simplified way. In other words, multivariate techniques transform a mass of observations
into a smaller number of composite scores in such a way that they may reflect as much information
as possible contained in the raw data obtained concerning a research study. Thus, the main contribution
of these techniques is in arranging a large amount of complex information involved in the real data
into a simplified visible form. Mathematically, multivariate techniques consist in * ‘forming a linear
composite vector in a vector subspace, which can be represented in terms of projection of a vector
onto certain specified subspaces.”

For better appreciation and understanding of multivariate techniques, one must be familiar with
fundamental concepts of linear algebra, vector spaces, orthogonal and oblique projections and univariate
analysis. Even then before applying multivariate techniques for meaningful results, one must consider
the nature and structure of the data and the real aim of the analysis. We should also not forget that
multivariate techniques do involve several complex mathematical computations and as such can be
utilized largely with the availability of computer facility.

CLASSIFICATION OF MULTIVARIATE TECHNIQU ES

Today, there exista grear variety of multivariate techniques whlch can be conveniently classified into
two broad Gategories viz., dependence methods and interdependence methods. This sort of
classification; depends upon the question: Are some of the involved variables dependent upon others?
If the answer is ‘yes’, we have dependence methods; but in case the answer is ‘no’, we have
interdependence methods. Two more questions are relevant for understanding the nature of multivariate
techniques. Fifstly, in case some variables are dependent, the question is how many variables are
dependent? The other question is, whether the data are metric or non-metric? This means whether

'K. Takeuchi, H. Yanai and B.N. Mukherji, The Foundations of Multivartate Analysis, p. 54.
* Ibid., p. iii.
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the data are quantitative, collected on interval or ratio scale, or whether the data are qualitative,
collected on nominal or ordinal scale. The technique to be used for a given situation depends upon the
answers to all these very questions. Jadish N. Sheth in his article on “The multivariate revolution in
marketing research”™ has given the flow chart that clearly exhibits the nature of some important
multivariate techniques as shown in Fig. 13.1,

Thus, we have two types of multivariate techniques: one type for data containing both dependent
and independent variables, and the other type for data containing several variables without dependency
relationship. In the former category are included techniques like multiple regression analysis, multiple
discriminant analysis, multivariate analysis of variance and canonical analysis, whereas in the latter
category we put techniques like factor analysis, cluster analysis, multidimensional scaling or MDS
(both metric and non-metric) and the latent structure analysis.
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“Journal of Marketing, American Marketing Association, Vol. 35, No. 1 (Jan. 1971), pp. 13-19.
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VARIABLES IN MULTIVARIATE ANALYSIS

Before we describe the various multivariate techniques, it seems appropriate to have a clear idea
about the term, ‘variables’ used in the context of multivariate analysis. Many variables used in
multivariate analysis can be classified into different categories from several points of view. Important
ones are as under:

(i) Explunatory pariable and eriterion variable: If X may be considered to be the cause of ¥,
then X is described as explanatory variable (also termed as causal or independent variable) and Y is
described as criterion variable (also termed as resultant or dependent variable). In some cases both
explanatory variable and criterion variable may consist of a set of many variables in which case set
(X, X, X,, ..., X)) may be called a set of explanatory variables and the set (Y, ¥, ¥, ...., ¥ ) may
be called a set of criterion variables if the variation of the former may be supposed to cause the
variation of the latter as a whole. In economics, the explanatory variables are called external or
exogenous variables and the criterion variables are called endogenous variables. Some people use
the term external criterion for explanatory variable and the term internal criterion for criterion variable.
(ii) Observable variables and latent variables: Explanatory variables described above are supposed
to be observable directly in some situations, and if this is so, the same are termed as observable
variables. However, there are some unobservable variables which may influence the criterion variables.
We call such unobservable variables as latent variables.

(iii) Discrete variable and continuous variable: Discrete variable is that variable which when
measured may take only the integer value whereas continuous variable is one which, when measured,
can assume any real value (even in decimal points).

(iv) Dummy variable (or Pseudo variable): This term is being used in a techmcal sense and is
useful in algebraic manipulations in context of multivariate analysis. We call X (i=1,....m)a
dummy variable, if only one of X, is 1 and the others are all zero.
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IMPORTANT MULTIVARIATE TECHNIQUES

A brief description of the various multivariate techniques named above (with special emphasis on
factor analysis) is as under:
(i) Multiple regression”: In multiple regression we form a linear composite of explanatory variables
in such way that it has maximum correlation with a criterion variable. This technique is appropriate
when the researcher has a single, metric criterion variable. Which is supposed to be a function of
other explanatory variables. The main objective in using this technique is to predict the variability the
dependent variable based on its covariance with all the independent variables. One can predict the
level of the dependent phenomenon through multiple regression analysis model, given the levels of
independent variables. Given a dependent variable, the linear-multiple regression problem is to estimate
constants B, B, ... B, and A such that the expression ¥ = B X, + BX, + ... + BX, + A pare rovides
a good estimate of an individual's ¥ score based on his X scores.

In practice, ¥ and the several X variables are converted to standard scores; z,, z, z,, ... Z,; €ach
7 has a mean of 0 and standard deviation of 1. Then the problem is to estimate constants, B, , such
- zy=PBizy +Bazy +..4 By

'8 See Chapter 7 also for other relevant ilnfurrnaliou about multiple regression.

TR s i e e v R Y. Dt
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where ' stands for the predicted value of the standardized ¥ score, + 2, The expression on the right
side of the above equation is the linear combination of explanatory variables. The constant A is
eliminated in the process of converting Xs to z's. The least-squares-method is used, to estimate the
beta weights in such a way that the sum of the squared prediction errors is kept as small as possible

- - r 2 - o) . - -
i.e., the expression Z(z, = z,) is minimized. The predictive adequacy of a set of beta weights is

indicated by the size of the correlation coefficient fy. 7y between the predicted z, scores and the
actual 2, scores. This special correlation coefficient from Karl Pearson is termed the multiple correlation
coefficient (R). The squared multiple correlation, R?, represents the proportion of criterion (z,) variance

accounted for by the explanatory variables, i.e., the proportion of total vanance that is ‘Common
Variance'. .

Sometimes the researcher may use step-wise regression techniques to have a better idea of the
independent contribution of each explanatory variable. Under these techniques, the investigator
adds the independent contribution of each explanatory variable into the prediction equation one by
one, computing betas and R” at each step. Formal computerized techniques are available for the
purpose and the same can be used in the oomext of a particular problem being studied by the
researcher.

() Multiple discriminant analysis: Through discriminant analysis technique, researcher may classify

individuals or objects into one of two or more mutually exclusive and exhaustive groups on the basis
of a set of independent variables. Discriminant analysis requires interval independent variables and
anominal dependent variable. For example, suppose that brand preference (say brand x or y) is the
dependent variable of interest and its relationship to an individual’s income, age, education, etc. is
being investigated, then we should use the technique of discriminant analysis. Regression analysis in
such asituation is not suitable because the dependent variable is, not intervally scaled. Thus discriminant
analysis is considered an appropriate technique when the single dependent variable happens to be
non-metric and is to be classified into two or more groups, depending upon its relationship with
several independent variables which all happen to be metric. The objective in discriminant analysis
happens to be to predict an object’s likelihood of belonging to a particular group based on several
independent variables. In case we classify the dependent variable in more than two groups, then we
use the name multiple discriminant analysis; but in case only two groups are to be formed, we simply
use the term discriminant analysis. :
We may briefly refer to the technical aspects’ relating to discriminant analysis.

(i) There happens to be a simple scoring system that asmgns a score to each mdmdual or
Object. This score is a weighted average of the individual's numerical values of his
independent variables. On the basis of this score, the individual is assigned to the ‘most
likely" category. For example, an individual is 20 years old, has an annual income of

Rs 12,000,and has 10 years of formal education. Let b, b,, and b, be the weights attached .

to the independent variables of age, income and education mspecuvely The individual’s
= score (2), assuming linear score, would be:

z=b, (20) + b, (12000) + b, (10)

* Based on Robert Ferber, ed., Handbook of Marketing Research.

b Y



[

320 ‘ Research Methodology |

This numerical value of z can then be transformed into the probability that the individual is
an early user, a late user or a non-user of the newly marketed consumer product (here we
are making three categories viz. early user, late user or a non-user).

(i)) The numerical values and signs of the b’s indicate the importance of the independent

variables in their ability to discriminate among the different classes of individuals. Thus,
through the discriminant analysis, the researcher can as well determine which independent
variables are most useful in predicting whether the respondent is to be put into one group or
the other. In other words, discriminant analysis reveals which specific variables in the
profile account for the largest proportion of inter-group differences.

(iii) In case only two groups of the individuals are to be formed on the basisl of several

independent variables, we can then have a model like this
3=b,+bX, +bX, +..+bX,
where Xﬁ = the ith individual’s value of the jth independent variable;
bj = the discgminant coefficient of the jth variable;
z,=the ithindividual’s discriminant score;
%, = the critical value for the discriminant score.
The classification procedure in such a case would be
Ifz, >z, classify individual i as belonging to Group I
If z, < z__, classify individual / as belonging to.Group IL
When n (the number of independent variables) is equal to 2, we have a straight line
classification boundary. Every individual on one side of the line is classified as Group I and
on the other side, every one is classified as belonging to Group Il. When n = 3, the
classification boundary is a two-dimensional plane in 3 space and in general the classification
boundary is an n — 1 dimensional hyper-plane in n space.

(iv) In n-group discriminant analysis, a discriminant function is formed for each pair of groups.

If there are 6 groups to be formed, we would have 6(6 - 1)/2 = 15 pairs of groups, and
hence 15 discriminant functions. The b values for each function tell which variables are
important for discriminating between particular pairs of groups. The z score for each
discriminant function tells in which of these two groups the individual is more likely to
belong, Then use is made of the transitivity of the relation “more likely than”. Forexample,
if group I is more likely than group I and group Il is more likely than group I, then group
1l is also more likely than group I. This way all necessary comparisons are made am_i the
individual is assigned to the most likely of all the groups. Thus, the multiple-group mscnrmnant
analysis is just like the two-group discriminant analysis for the multiple groups are simply
examined two at a time, '

(v) For judging the statistical significance between two groups, we work out the Mahalanobis

statistic, D?, which happens to be a generalized distance between two groups, where each
group is characterized by the same set of n variables and where it is assumed that variance-
covariance structure is identical for both groups. It is worked out thus:

.

Dz=(U1‘U2)"‘I (UI_UI)

where U, = the mean vector for group I
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U, = the mean vector for group Il
v = the common variance matrix

By transformation procedure, this D? statistic becomes an F statistic which can be used to see if the
two groups are statistically different from each other.

From all this, we can conclude that the discriminant analysis provides a predictive equation,
measures the relative importance of each variable and is also a measure of the ability of the equation
to predict actual class-groups (two or more) concerning the dependent variable.

(iii) Multivariate analysis of variance: Multivariate analysis of variance isl an extension of bivariate
analysis of variance in which the ratio of among-groups variance to within-groups variance is calculated
on a set of variables instead of a single variable, This technique is considered appropriate when
several metric dependent variables are involved in a research study along with many non-metric
explanatory variables. (But if the study has only one metric dependent variable and several non-
metric explanatory variables, then we use the ANOVA technique as explained earlier in the book.)
In other words, multivariate analysis of variance is specially applied whenever the researcher wants
to test hypotheses concerning multivariate differences in group responses to experimental
manipulations. For instance, the market researcher may be interested in using one test market and
one control market to examine the effect of an advertising campaign on sales as well as awareness,
knowledge and attitudes. In that case he should use the technique of multivariate analysis of variance
for meeting his objective. ¢

(iv) Canonical correlation analysis: This technique was first developed by Hotelling wherein an
effort is made to simultaneously predict a set of criterion variables from their joint co-variance with
a set of explanatory variables. Both metric and non-metric data can be used in the context of this
multivariate technique. The procedure followed is to obtain a set of weights for the dependent and
independent variables in such a way that linear composite of the criterion variables has a maximpm
correlation with the linear composite of the explanatory variables. For example, if we want to relate
grade school adjustment to health and physical maturity of the child, we can then use canonical
correlation analysis, provided we have for each child a number of adjustment scores (such as tests,
teacher’s ratings, parent’s ratings and so on) and also we have for each child a number of health and
physical maturity scores (such as heart rate, height, weight, index of intensity of illness and so on).
The main objective of canonical correlation analysis is to discover factors separately in the two sets
of variables such that the multiple correlation between sets of factors will be the maximum possible.
Mathematically, in canonical correlation analysis, the weights of the two sets viz., a,a,...aandy,
Yys ¥y -, are so determined that the variables X = aX, +aX,+. . +aX +aadY=yY + Y,
+...y X + y have a maximum common variance. The process of finding the weights requires factor
analyses with two matrices.’ The resulting canonical correlation solution then gives an over all
description of the presence or absence of a relationship befween the two sets of variables. ;
(v) Factor analysis: Factor analysis is by far the most often used multivariate technique of research
studies, specially pertaining to social and behavioural sciences. It is a technique applicable when
there is a systematic interdependence among a set of observed or manifest variables and the researcher

is interested in finding out something more fundamental‘or latent which creates this commonality.

For instance, we might have data, say, about an individual’s income, education, occupation and dwelling

* See, Eleanor W. Willemsen, Understanding Statistical Reasoning, p. 167-168.
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area and want to infer from these some factor (such as social class) which summarises the commonality
of all the said four variables. The technique used for such purpose is generally described as factor
analysis. Factor analysis, thus, seeks to resolve a large set of measured variables in terms of relatively
few categories, known as factors. This technique allows the researcher to group variables into
factors (based on correlation between variables) and the factors so derived may be treated as new
variables (often termed as latent variables) and their value derived by summing the values of the
original variables which have been grouped into the factor. The meaning and name of such new
variable is subjectively determined by the researcher. Since the factors happen to be linear combinations
of data, the coordinates of each observation or variable is measured to obtain what are called factor
loadings. Such factor loadings represent the correlation between the particular variable and the
factor, and are usually place in a matrix of correlations between the variable and the factors,

The mathematical basis of factor analysis ‘concerns a data matrix” (also termed as score
matrix), symbolized as S. The matrix contains the scores of N persons of k measures. Thus a, is the
score of person | on measure g, a, is the score of person 2 on measure a, and k, is the score of
person N on measure k. The score matrix then take the form as shown following:

SCORE MATRIX (or Matrix §)
Measures (variables)
a b ¢ k
i a b, 3 r-'; : l
a b_,_ £ k |
3 ] b, 0y l
Persons (objects) ;
|
: i
y a b, Ca k. |
iV et 0.0 :

It is assumed that scores on each measure are standardized fi.e., x,= (X ~ X,)*/c;]- This
being so, the sum of scores in any column of the matrix, S, is zero and the variance of scores in any
column is 1.0. Then factors (a factor is any linear combination of the variables in a data matrix and
can be stated in a general way like: A = Wa + W,b + ... + W,k) are obtained (by any method of
factoring). After this, we work out factor loadings (i.e., factor-variable correlations). Then communality,
symbolized as I, the eigen value and the total sum of squares are obtained and the results interpreted.
For realistic results, we resort to the technique of rotation, because such rotations reveal different
structures in the data. Finally, factor scores are obtained which help in explaining what the factors
mean. They also facilitate comparison among groups of items as groups. With factor scores, one can
also perform several other multivariate analyses such as multiple regression, cluster analysis, multiple
discriminant analysis, etc.

'Altemalivclyblbe technique can be applied through the matrix of correlations, R as stated later on.
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IMPORTANT METHODS OF FACTOR ANALYSIS

There are several methods of factor analysis, but they do not necessarily give same results, As such
factor analysis is not a single unique method but a set of techniques. Important methods of factor
analysis are: '

(i) the centroid method:
(ii) the principal components method;
(i) the maximum likelihood methed.

Before we describe these different methods of factor analysis, it seems appropriate that some
basic terms relating to factor analysis be well understood.

(iy Factor: A factor is an underlying dimension that account for several observed variables. There
can be one or more factors, depending upon the nature of the study and the number of variables
involvedinit. i

(ii) Factor-loadings: Factor-loadings are those values which explain how closely the variables are
related to each one of the factors discovered. They are also known as factor-variable correlations.
In fact, factor-loadings work as key to understanding what the factors mean. It is the absolute size
(rather than the signs, plus or minus) of the loadings that is important in the interpretation of a factor.
(iiY) Communality (h*): Communality, symbolized as h?, shows how much of each variable is
accounted for by the underlying factor taken together. A high value of communality means that not
much of the variable is left over after whatever the factors represent is taken into consideration. It is
worked out in respect of each variable as under: o ?

h? of the ith variable = (ith factor loading of factor A)?
+ (ith factor loading of factor B + ...

(iv) Eigen value (or latent rovt): When we take the sum of squared values of factor loadings
relating to a factor, then such sum is referred to as Eigen Valuq or latent root. Eigen value indicates
the relative importance of each factor in accounting for the particular set of variables being analysed.

(v) Total sum of squares: When eigen values of all factors are totalled, the resulting value is termed
as the total sum of squares. This value, when divided by the number of variables (involved in a study),
results in an index that shows how the particular solution accounts for what all the variables taken
together represent. If the variables are all very different from each other, this index will be low. If
they fall into one or more highly redundant groups, and if the extracted factors account for all the
groups, the index will then approach unity. EIR

(vi) Rotation: Rotation, in the context of factor analysis, is something like staining a microscope
slide. Just as different stains on it reveal different stractures in the tissue, different rotations reveal
different structures in the data. Though different rotationssgive results that appear to be entirely
different, but from a statistical point of view, all results are taken as equal, none superior orinferior to >
others, However, from the standpoint of making sense of the results of factor analysis, one must
select the right rotation. If the factors are independent orthogonal rotation is done and if the factors
are correlated, an oblique rotation is made. Communality for each variables will remain undisturbed
regardless of rotation but the eigen values will change as result of rotation.

-22
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(vii) Factor scores: Factor score represents the degree to which each respondent gets high scores
on the group of items that load high on each factor. Factor scores can help explain what the factors
mean. With such scores, several other multivariate analyses can be performed.

We can now take up the important methods of factor analysis.

(A) Centroid Method of Factor Analysis

This method of factor analysis, developed by L.L. Thurstone, was quite frequently used until about
1950 before the advent of large capacity high speed computers.” The centroid method tends to
maximize the sum of loadings, disregarding signs; it is the method which extracts the largest sum of
absolute loadings for each factor in turn. It is defined by linear combinations in which all weights are
either + 1.0 or - 1.0, The main merit of this method is that it is relatively simple, can be easily
understood and inyolves simpler computations. If one understands this method, it becomes easy to
understand the mechanics involved in other methods of factor analysis.

Various steps™ involved in this method are as follows:

(i) This method starts with the computation of a matrix of correlations, R, wherein unities are
place in the diagonal spaces. The product moment formula is used for working out the
correlation coefficients.

(ii) Tf the correlation matrix so obtained happens to be positive manifold (i.., disregarding the
diagonal elements each variable has a large sum of positive correlations than of negative
correlations), the centroid method requires that the weights for all variables be +1.0. In
other words, the variables are not weighted; they are simply summed. But in case the
correlation matrix is not a positive' manifold, then reflections must be made before the first
centroid factor is obtained. :

(i) The first centroid factor is determined as under:

(a) The sum of the coefficients (including the diagonal unity) ineach column of the corelation
matrix is worked out. _
(b) Then the sum of these column sums (T) is obtained. _
(c) The sum of each column obtained as per (a) above is divided by the square root of T
obtained in (b) above, resulting in what are called centroid loadings, This way each
. centroid loading (one loading for one variable) is computed. The full set of loadings so
obtained constitute the first centroid factor (say A). v

(iv) To obtain second centroid factor (say B), one must first obtain a matrix of residual
coefficients. For this purpose, the loadings for the two variables on the first centroid factor
are multiplied. This is done for all possible pairs of variables (in each diagonal space is the
square of the particular factor loading). The resulting matrix of factor cross products may
be named as Q,. Then Q, is subtracted clement by element from the original matrix of

*But since 1950, Principal components method, to be discussed a little later, is being popularly used.
**See, Jum C. Nunnally, Psychometric Theory, 2nd ed., p. 345-357, for details.
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correlation, R, and the resultis the first matrix of residual coefficients, R ." After obtaining
R,, one must reflect some of the variables in it, meaning thereby that some of the variables
are given negative signs in the sum [This is usually done by inspection. The aim in doing this
should be to obtain a reflected matrix, R'v which will have the highest possible sum of
coefficients (7). For any variable which is so reflected, the signs of all coefficients in that
column and row of the residual matrix are changed. When this is done, the matrix is named
as "reflected matrix’ form which the loadings are obtained in the usual way (already explained
in the context of first centroid factor), but the loadings of the variables which were reflected
must be given negative signs. The full set of loadings so obtained constitutes the second
centroid factor (say B). Thus loadings on the second centroid factor are obtained from R

(V) For subsequent factors (C, D, etc.) the same process outlined above is repeated. After the
second centroid factor is obtained, cross products are computed forming, matrix, Q.. This
is then subtracted from R, (and not from R') resulting in R,. To obtain a third factor (C),
one should operate on R, in the same way as on R, . First, some of the variables would have
to be reflected to maximize the sum of loadings, which would produce R',. Loadings would
be computed from R', as they were from R’ . Again, it would be necessary to give negative
signs 1o the loadings of variables which were reflected which would result in third centroid
factor (C).

We may now illustrate this method by an example.
Hllustration 1
Given s the following correlation matrix, R, relating to eight variables with unities in !hediagonal-spaces:

Variables

1.000 J9 204 081, 626 .13 155 T4

709 1000 051 089 581 of 083 652

24 051 1000 671 A23 689 582072

Liriabiss 081 089 671 1000 02 798 613 .11

1 626 581 133 02 1000 M7 201 T4

JI3 098 689 798 (47 1000 801" 120
| JA55 0 083 582 613 201 801 1000 152
L T4 00652 - 072 74 020 152 1000 :

Q0 =) O L B W D e

Using the centroid method of factor analysis, work out the first and second centroid factors from the
above information.

* One shoold understand the nature of the elements in R, matrix. Each diagonal element is a partial variance i.e., the
variance that remains after the influence of the first factor is partialed. Each off-diagonal element is a partial co-variance i.c.,
the covariance between two variables after the influence of the first factor is removed. This can be verified by looking at the
partial correlation coefficient between any two variables say | and 2 when factor A is held constant

faa= ﬁz‘!’u' Ry
1= ry y1=r3

(The numerator in the above formula is what is found in R, corresponding to the entry for variables I and 2. In the
denominator, the square of the term on the leftis exactly what is found in the diagonal element for variable 1 in R). Likewise
the partial variance for 2 is found in the diagonal space for that variable in the residual matrix ) contd.
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Solution: Given correlation matrix, R, is a positive manifold and as such the weights for all variables
be +1.0. Accordingly, we calculate Lhe first centroid factor (A) as under:

Table 13.1(3)
Pt/ables

1 2 3 4 5 6 7 8
1 1000 J0 204 081 626 113 155 T4
2 A9 1000 051 089 581 ms 083 652
3 204 051 L0 671 123 689 582 on2
Variables 4 081 089 671 - 1000 02 T8 613 1
' 626 . 58 123 0221000 47 200 24
6 3 098 689 T8 047 1000 801 120
7 155 083 582 613 2m 801 1o 152
_ 8 T4 652 o2 111 724 5. Tl £ R 1

' T ? %
Column sums 3662 3.263 3392 3385 3324 3660 3__‘\3'? 3.605

“Sum ofthe co.Iumn sums (7= 27,334 ﬁ = 5281

3.662 "’\26? 3392 3385 3324 3(1(»6 1587 Ae5

5281 5281 5281 5281 5281 S’SI 5281 5281
=693, .618. 642, .641..629, 694, 679, 683

First centroid factor A =

We can also state this information as under:

Table 13.1 (b)

Variables : Factor loadings concerning
Jirst Centroid fuctor A

693
618
642
641
629
4
679
£33

R -

To obtain the second centroid factor B, we ﬁrsr of all develop (as shown on the next page) the
ﬁrst matnx of factor cross product Q

: Smce in R, the diagonal terms are partial v ariances and the off- diagonal terms are partial covariances, it is easy to convert
the entire tab}eto amatrix of partiak correlations. For this purpase one has to divide the elements in cach row by the square-
rooi of the dmgom! element for thateow and then dividing the elements in each column by the square-root of the diagonal
element for that column.
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First Matrix of Factor Cross Product (Q,)

First centroid 693 618 682 641 629 694 69 68

factor A l_.
63| 480 428 M5 44 436 481 4T 47
618|428 38 397 396 339 49 40 42
62| 445 397 A2 412 404 46 436 438
641 | 444 396 412 4l 403 M5 435 438
69| 43% 389 404 403 6 4 41 40
694 ] 481 429 A6 M5 431 AR AT 44
679 | 471 420 4% 435 AT ATl A6l 464
63| 473 42 48 4B 40 414 A4 466

Now we obtain first matrix*of residual coefficient (R, ) by subiracting 0, from R as shown
below: - '

First Matrix of Residual Coefficient (R )
Wm’qbks
jio g, s il D g of gy

Pl 50 281 —241 -363 190-368-316 301"
21 281 618 -346 -307 .192-.331-337 2%
3 | =241 -346 588 259 -281 243 .146 -.366
Torkable: 4 | -363-307 259 589 -381 353 .I78-327
5 190 192 —281 381 604 -390 -217 294
g | -368-331 243 "3-30 51§ 30 -354
-316 -337 .46 .78 -226 330 5319 -3
T 1 301 230 -366 -327,. 294 -354 - 312 5% |
d )

Reﬂeéting the variables 3, 4, 6 and 7, we obtain reflected matrix of residual coefficient (R") as
under and then we can extract the second centroid factor (B) from it as shown on the next page.
Reflected Matrix of Residual Coefficients (R') *

and Extraction of 2nd Centroid Factor (B)
Variables
| 2 N 4 5 6 1 8

1 520 281 241 363 190 J68 316 a0l

2 281 .GI_B 346 307 192 331 337 230

£y 241 36 588 259 281 243 146 366

Variables & 363 307 L99 589 J81 53 178l
5 190 192 281 381 604 390 217 294

6 368 331 243 " 353 390 518 330 354

7 316 337" U548 178 226 e _539 312

JORGASEITN S e v
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x g Jisg ¥ & 5 R SR
g0 50 o | 366, 32 M 2% 312 5%
Column sums: 2580 . 2642 2470 2757 2558 287 2315 2718
Sumof column sums{7)=20987 . JT = 4581

Second centroid factor B=.563 577 -.539 -.602 .558 -630 518 .593

*These variables were reflected.

Now we can write the matrix of factor loadings as under:

TR o R N AL T R T W™
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Variables Fuactor loadings Communality (')
Centroid Factor Centrpid Facton
ik : B
Eigen value o
(Variance |
accounted fori.c., A0 2631 6.121
common variance)
Pmponibn of total A a3 b
variance S (4anny, (33%) ATTHRY
Proportion of 1 57 7 §iER 100
COMMon variance” (57%) b (3% | (100G

Variables ... Factor'loadings
I . Centroid Factor Centroid Factor
A B
1 693 563
2 618 I X 577
3 42 -539
4 641 —602
5 629 558
6 694 -630
T 619 -518
8 683 593
MMustration 2

Work out the comm‘unal_itjr and eigen values from the final results obtained in illustration No. 1 of this
chapter. Also explain what they (along with the said two factors) indicate.

Al

Solution: We work out the communality and eigen values for the given problem as under:

, Table13.2
Variables Factor loadings C (mumula.‘u‘\ )
Centroid Factor Cenirpid Factor =
A B "

1 C 693 563 (.693) +(.563)*=.797
2 618 N1 (.618Y +(5777=.715
3 642 . -539 (.642)*+ (=539 =703
4 " 641 —602 (6417 +(—.602)'= 773

WL 629 558 (.629)* +(.558)*=.707

6 694 : -630 - (694)2+ (—630)2=.879

7 679 -518 (679 + (-.518)=.729
8 683 593 (.683)" +(.593)*= 818

Each communality in the above table represents the proportion of variance in the corresponding
(row) variable and is accounted for by the two factors (4 and B). For instance, 79.7% of the variance
in variable one is accounted for by the centroid factor A and B and the remaining 20.3% of the total'
variance in variable one scores is thought of as being made up of two parts: a factor specific to the
attribute represented by variable one, and a portion due to errors of measurement involved in the
assessment of variable one (but there is no mention of these portions in the above table because we
usually concentrate on common variance in factor analysis).

It has become customary in factor analysisliterature for a loading of 0.3 to be the minimum
absolute value to be interpreted. The portion of a variable’s variance accounted for by this minimum
loading is approximately 10%. This criterion, though arbitrary, is being used more or less by way of
convention, and as such must be keptin view when one reads and interprets the multivariate research
results. In our example, factor A has loading in excess of 0.33 on all variables; such a factor is usually
called “the general faclor" and is taken to represent whatever it is that all of the variables have in
common. We might consider all the eight variables to be product of some unobserved varidble (which
can be named subjectively by the researcher considering the nature of his study). The factor name is
_c_hoscn in such a way that it conveys what it is that all variables that correlate with it (that “Joad on
it”) have in common. Factor B in our example has all loadings in excess of 0.3, but half of them are
w:lh negative signs. Such a factor is called “bipolar factor” and is taken to represent a single
dimension with two poles. Each of these poles is defined by a cluster of variables—one pole by those
with positive loadings and the other pole with negative loadings.

We can give different names to the said two groups to help us-interpret and name factor B. The
rows at the bottom of the above table give us further information about the usefulness of the two
factors in explaining the réelations among the eight variables. The total variance (V) in the analysis is
taken as equal to the number of variables involved (on the presumption that variables are standardized).
In this present example, then V = 8.0. The row labeled “Eigen value” or “Common variance” gives

. the numerical value of that portion of the variance attributed to the factor in the concerning column

above it. These are found by summing up the squared values of the corresponding factor loadings.
Thus the total value, 8.0, is partitioned into 3.490 as eigen value for factor A and 2.631 as eigen value
for factor B and the total 6.121 as the sum of eigen values for these two factors. The corresponding
proportion of the total variance, 8.0, are shown in the next row; there we can notice that 77% of the
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total variance is related to these two factors, i.e., approximately 77% of the total variance is common
variance whereas remaining 23% of it is made up of portions unique to individual variables and the
techniques used to measure them. The last row shows that of the common variance approximately

57% is accounted for by factor A and the other 43% by factor B. Thus it can be concluded that the
two factors together “explain” the common variance.

Research Methodology |

(B) Principal-components Method of Factor Analysis

Principal-components method (or simply P.C. method) of factor analysis, developed by H. Hotelling,
seeks to maximize the sum of squared loadings of each factor extracted in tumn. Accordingly PC
factor explains more variance than would the loadings obtaine? from any other method of factoring.
The aim of the principal components method is the construction out of a given set of variables
X}.’s (7=1,2,...,k) of new variables (p), called principal components which are linear combinations
of the X, '
pi=a, X +a, X +..+a,X

. pz-a2,X|+anX2+ ...+aﬁX‘

p=a,X +a,X + e ¥ a, X,

b2
The method is being applied mostly by using standardized variables, i.c., Z; = _(X jn & _,-) /9.

The a s are called loadings and are worked out in such a way that the extracted principal
components satisfy two conditions: (i) principal components are uncorrelated (orthogonal) and (ii) the
first pnnc1pal component (p,) has the maximum variance, the second principal component (p,) has
the next maximum variance :md 50 on,

-

Fonvmg steps are u,nmh'y involved-in principal components method

(i) Estimates ofa s are obtained with which X’s are transformed into orthogonal variables
ie., the pnnclpal components. A decision is also taken with regard to the question: how
many of the components to retain into the analysm'?

(i) We then proceed with the regression of Y on these principal components i.c.,
Y =GPt Gapyt et S pr (m<k)
(iii) From the a; and 3y, we maf find b, ;:rf the original model, trmsfemng back from the p's
- into the standardized X’s.
Alternative method for finding the factor loadings is as under;

() Correlation coefficients (by the product moment method) between the pairs of k variables
are worked out and may be arranged in the form of a correlation matrix, R, as under:

e ———
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Correlation Matrix, R

Variables
X, X, X, X,
xi rll rfl rls e rll
xl rll rn rﬂ g r’*
Variables X, Y, Vo o i Ty .
X, .r*,! ¥ ia ol r

The main diagonal spaces include unities since such elements are self-correlations. The
correlation matrix happens to be a symmetrical matrix.

(i) Presuming the correlation matrix to be positive manifold (if this is not so, then reflections as

(iii) To obtain factor B, one seeks solutions for V,

mentioned in case of centroid method must be made), the first step is to obtain the sum of

. coefficients in each column, including the diagonal element. The vector of column sums is

referred to as U,, and when U, is normalized, we call it V. This is done by squaring and
summing the column sums in U and then dividing each element in U, by the square root
of the sum of squares (which may be termed as normalizing factor). Then elementsin V|
are accumulatively multiplied by the first row of R to obtain the first element in a new
vector U__. For instance, in multiplying V,, by the first row of R, the first elementin V,,
would be multiplied by the r,, value and this would be added to the product of the second
element in V, ‘multiplied by the r,, value, which would be added to the product of third
elementinV, muh.lphed by the r,, value, and 50 on for all the corresponding elementsin V|
and the first row of R. To obmm the second element of U, the same process would be
repeated i.c., the elements in V,, are accumulatively multlphed by the 2nd row of R. The
same process would be repeated for each row of R and the result would be a new vector
U, Then U, would be normalized to obtain V " One would then compare V. and V s If
they are nearly identical, then convergence is said to have occurred (If convergence does
not occur, one should go on using these trial vectors again and again till convergence
occurs). Suppose the convergence occurs when we work out V., in which case V. will be
taken as V, (the characteristic vector) which can be converted into loadings on the first
principal component when we multiply the said vector (l e., each element of V ) by the
square root of the number we obtain for normalizing U .

V,, and the actuai factor loadings for second
component factor, B, The same procedures are used as we had adopted for finding the first
factor, except that one operates off the first residual matrix, R, rather than the original
correlation matrix R (We operate on R, m just the same way as we did in case of centroid
method stated earlier).

(iv) This very procedure is repeated over and over again to obtain the successive PC factors:

(viz. C, D, etc.).
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Other irep: invalved in factor analysis

(a) Next the question is: How many principal components to retain in a particular study? Various
criteria for this purpose have been suggested, but one often used is Kaiser’s criterion.
According to this criterion only the principal components, having latent root greater lhan
one, are considered as essential and should be retained.

(b) The principal components so extracted and retained are then rotated from their beginning
position to enhance the interpretability of the factors.

(c) Communality, symbolized, #’, is then worked out which shows how much of each variable
is accounted for by the underlying factors taken together. A high communality figure means -
that not much of the variable is left over after whatever the factors represent is taken into
consideration. It is worked out in respect of each variable as under:

h? of the ith variable = (ith factor loading of factor A)}
+ (ith factor loading of factor B)* + ! -
Then follows the task of interpretation. The amount of variance explained (sum of squared
loadings) by each PC factor is equal to the corresponding characteristic root. When these
roots are divided by the number of variables, they showmechmmcmo!saspmporuons
of total variance explained.
(d) The variables are then regressed against each factor loading and the resulting regression
 coefficients are used to generate what are khiown as factor scores which are then used in
further analysis and can also be used as inputs in several other multivariate analyses.
lllustration 3 . :
Take the correlation matrix, R, for eight variables of illustration I of this chapter and then compute:
(i) the first two principal component factors;
(i) the communality for each vanable on the basis of sald lwo component factors;

(iii) the proportion of total variance as well as the proportion of common variance explained by
each of the two component factors. :

Solution: Since the given correlation matrix is a posstwe mamfold, we work out the first principal
'componem factor (using trial vectors) as under:
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i 2 3 4 5 6 7 3
7 J55 083 582 613 201 801 1000 152
8 T4 652 072 11 124 J20 152 1000
Column 3662 3263 3392 3385 3324 3666 3587 3605
sums U, ;
Normalizing
U, we
obtain V|
ie,V, = 37 331 34 343 33 312 363 365
U MNor-
lizing
factor”

"Normalizing factor = J{a&ﬁz)’ +(3263)" + (3392)" + (3385)" + (3324)" + (3666)" + (3587)° + (3605)’
= /97372 = 9868 '

Then we obtain U , by accumulatively multiplying V. row by row into R and the result comes as”
under: -

U, :[1.296, 1.143,1.201, 1.201, 1.165, 1.308, 1.280, 1.275] ‘

Normalizing it we obtain (normalizing factor for U, will be worked out as above and will be
=3.493):

vV, :[:371,.327,.344, 344, 334, 374, 366, .365]

Comparing V, and V_,, we find the two vectors are almost equal and this shows convergence
has occurred. Hence V. is taken as the characteristic vector, V.. Finally, we compute the loadings on
the first principal component by multiplying V_by the square root of the number that we obtain for
normalizing U . The result is as under:

Table 13.3
- Variables

tsuln og 3 4 5 6 7 8
1 1000 79 204 081 626 3155 M
2 700 1000 051 089 581 (98 083 652
3 204 051 1000 671 023 689 382 OR
4 081 089 671 1000 02 798 613 .11l
Variables S 626 581 23 022 1000 047 201 T24
6 113 008 689 798 047 1000 801 . .020

Contd.

Variables | (Characteristic X Jnomaliziug factor of U ;5 = Principal
vector V) Component ]
1 an X: 1.868 = 69
2 331 b3 1.868 = 62
3 344 x 1.868 = 64
4 343 X 1.868 = 64
5 337 X 1.868 = 63
6 312 ® 1.868 = 70
i i 363 X 1.868 = 68
8 365 X 1.868 = 68
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For finding principal component II, we have to proceed on similar lines (as stated in the context
of obtaining centroid factor B earlier in this chapter) to obtain the following result”:

Variables X --Pl.'f!.l{:f;t-'—f _(.w;Efmﬂm.f i
+57
+59
-52
=59
+57
-6
-49
-61

50~ ON LA B W N -

The other parts of the question can now be worked out (after first putting the above information ina
matrix form) as given below:

Variables . . Principul Components Connmunality, b
I n
| o +.57 (.69 +(.57F =801
2 62 L L ¥ (.62)' +(.5YF=.733
3 i) -52 (.64)° +{-.52)' = 680
4 i -39 ; (.64) + (=59 =758
5 63 +57 (63)'+(.57T) =722
6 70 Legl (70) +(~617 = 862
7 68 -49 (.68)° +(-49¢ =703
8 68 -6l (.68) +(-617=.835
Eigen value i
i.e., common © 34914 { 26007 1 2: ¢ 60921
variance : { i i i
Proportion 436 325 iy 761
' of total (43.6%) (325%) (76%)
variance
Proportion : 573 41 1.000
of common - (57%) (43%) (100%)
variance

All these values can be interpreted-in the same manner as stated earlier.

*This can easily be worked out. Actual working has been left as an exercise for the students.

o

_—T%
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 (C) Maximum Likelihood (ML) Method of Factor Analysis

The ML method consists in obtaining sets of factor loadings successively in such a way that each, in
turn, explains as much as possible of the population correlation matrix as estimated from the sample
correlation matrix. If R stands for the correlation matrix actually obtained from the data in a sample,
R, stands for the correlauon matrix that would be obtained if the entire population were tested, then
the ML method secks to extrapolate what is known from R_in the best possible way to estimate R,

(but the PC method only maximizes the variance explained in R) Thus, the ML method is a statlsucal
approach in which one maximizes some relationship between the sample of data and the population
from which the sample was drawn, ;

The arithmetic underlying the ML method is relatively difficult in comparison to that involved in
the PC method and as such is understandable when one has adequate grounding in calculus, higher
algebra and matrix algebra in particular. Iterative approach is employed in ML method also to find
each factor, but the iterative procedures have proved much more difficuit than what we find in the
case of PC method. Hence the ML method is generally not used for factor analysis in practice.’

The loadings obtained on the first factor are employed in the usual way to obtain a matrix of the
residual coefficients. A significance test is then applied to indicate whether it would be reasonable to

“ extract a second factor. This goes on repeatedly in search of one factor after another. One stops

factoring after the significance test fails to reject the null hypothesis for the residual matrix. The final
product is a matrix of factor loadings. The ML factor loadings can be interpreted in a similar fashion
as we Hiave explained in case of the centroid or the PC method.

ROTATION IN FACTOR ANALYSIS

One often talks about the rotated solutions in the context of factor analysis. This is done (i.e., a factor

~ matrix is subjected to rotation) to attain what is technically called “simple structure” in data. Simple

structure according to L.L. Thurstone is obtamed by rotatmg the axes™ until:

(i) Each row of the factor matrix has one zero.

(ii) Each column of the factor matrix has p zeros, where p is the number of factors.

(iii) For each pair of factors, there are several variables for which the loading on one is virtually
zero and the loading on the other is substantial.

{iv) If there are many factors, then for each pair of factors there are many variables for which
both loadings are'zero.

(v) For every pair of factors, the number of variables with non-vanishing loadmgs on both of
. them is small.

All these criteria simply imply that the factor analysis should reduce the complexity of all the
variables.

* The basic mathematical derivations of the ML method are well explaim:d in S.A. Mulaik's, The Foundations of Factor
Anaiysrs.
** Rotation constitutes the geomelric aspects of factor analysis. Only the axes of the graph (wherein the points
mprcsennng variables have been shown) are rotated keeping the location of these points relative to €ch other undisturbed.
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There are several methods of rotating the initial factor matrix (obtained by any of the methods of
factor analysis) to attain this simple structure. Varimax rotation is one such method that maximizes
(simultaneously for all factors) the variance of the loadings within each factor. The variance of a
factor is largest when its smallest loadings tend towards zero and its largest loadings tend towards
unity. In essence, the solution obtained through varimax rotation produces factors that are characterized
by large loadings on relatively few variables. The other method of rotation is known as guartimax
rotation wherein the factor loadings are transformed until the variance of the squared factor loadings
throughout the matrix is maximized. As a result, the solution obtained through this method permits a
general factor to emerge, whereas in case of varimax solution such a thing is not possible. But both
solutions produce orthogonal factors i.e., uncorrelated factors. It should, however, be emphasised
that right rotation must be selected for making sense of the results of factor a.naiysis.'

R-TYPE AND Q-TYPE FACTOR ANALYSES

Factor analysis may be R-type factor analysis or it may be Q-type factor analysis. In R-rype factor
analysis, high correlations occur wherrespondents who score high on variable 1 also score high on
 variable 2 and respondents who score low on variable 1 also score low on variable 2. Factors emerge
when there are high correlations within groups of variables. In Q-type factor analysis, the correlations
are computed between pairs of respondents instead of pairs of variables. High correlations occur
when respondent 1’s pattern of responses on all the variables is much like respondent 2°s pattern of
responses. Factors emerge when there are high correlations within groups of people. Q-type analysis
is useful when the object s to sort out people into groups based on their simultaneous responses.to all
the variables. i :

Factor analysis has been mainly used in developing psychological tests (such as Q tests, personality
tests, and the like) in the realm of psychology. In marketing, this technique has been used to look at
media readership profiles of people. :

Merits: The main merits of factor analysis can be stated thus:

(i) The technique of factor analysis is quite useful when we want to condense and simplify the

multivariate data.

(ii) The technique is helpful in pointing out important and interesting, relationships among
observed data that were there all-the time, but not easy to see from the data alone.

(iii) The technique can reveal the latent factors (i.e., underlying factors not directly observed)
that determine relationships among several variables concerning a research study. For
example, if people are asked to rate different cold drinks (say, Limca, Nova-cola, Gold Spot

- and s0 on) according to preference, a factor analysis may reveal some salient characteristics
of cold drinks that underlie the relative preferences.

(iv) The technique may be used in the context of empirical clustering of products, media or
people i:e., for providing a classification scheme when data scored on various rating scales
have to be grouped together.

Limitations: One should also be aware of several limitations of factor analysis. Important ones are
as follows:
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(i) Factor analysis, like all multivariate techniques, involves laborious computations involving
heavy cost burden. With computer facility available these days, there is no doubt that factor
analysis has become relatively faster and easier, but the cost factor continues to be the
same i.¢., large factor analyses are still bound to be quite expensive.

(ii) The results of a single factor analysis are considered generally less reliable and dependable
for very often a factor analysis starts with a set of imperfect data. “The factors are nothing
but blurred averages, difficult to be identified.”™ To overcome this difficulty, it has been
realised that analysis should at least be done twice. If we get more or less similar results
from all rounds of analyses, our confidence concerning such results increases.

(ii) _Factor-analys{is is acomplicated decision tool that can be used only when one has thorough
knowledge and enough experience of handling this tool. Even then, at times it may not work
well and may even disappoint the user,

To conclude, we can state that in spite of all the said limitations “when it works well, factor
analysis helps the investigator make sense of large bodies of intertwined data. When it works unusually
well, it also points out some interesting relationships that might not have been obvious from examination
of the input data alone”* A ;

(vi) Cluster Analysis

Cluster analysis consists of methods of classifying variables into clusters. Technically, a cluster
consists of variables that correlate highly with one another and have comparatively low correlations
with variables in other clusters. The basic objective of cluster analysis is to determine how many
mutually and exhaustive groups or clusters, based on the similarities of profiles among entities, really
exist in the population and then to state the composition of such groups. Various groups to be determined
in cluster analysis are not predefined as happens to be the case in discriminant analysis.

Steps: In general, cluster analysis contains the following steps to be performed:

(i) Firstof all, if some variables have a negative sum of correlations in the correlation matrix,
one must reflect variables so as to obtain a maximum sum of positive correlations for the
matrix as a whole.

(i) The second step consists in finding out the highest correlation in the correlation matrix and
the two variables involved (i.e., having the highest correlation in the matrix) form the nucleus
of the first cluster,

(iii) Then one looks for those variables that correlate highly with the said two variables and
includes them in the cluster. This is how the first cluster is formed.

(iv) To obtain the nucleus of the second cluster, we find two variables that correlate highly but
have low correlations with members of the first cluster. Variables that correlate highly with
the said two variables are then found. Such variables along the said two variables thus
constitute the second cluster,

(v) One proceeds on similar lines to search for a third cluster and so on.

* Srinibas Bhattacharya, Psychometrics and Behavioural Research, p. 177.
* William D. Wells and Jagdish N. Sheth in their article on "Fac:or_{\_pnlysis” forming chapter 9 in Robert Ferber, (ed.),
Handbook of Marketing Research, p. 2-471.
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From the above description we find that clustering methods in general are judgemental and are
devoid of statistical inferences. For problems concerning large number of variables, various cut-and-
try methods have been proposed for locating clusters. McQuitty has specially developed a number of
rather elaborate computational routines” for that purpose. .

In spite of the above stated limitation, cluster analysis has been found useful in context of market
research studies. Through the use of this technique we can make segments of market of a product
on the basis of several characteristics of the customers such as personality, socio-economic
considerations, psychological factors, purchasing habits and like ones.

(vii) Maltidiniensional Scaling
Multidimensional scaling (MDS) allows a researcher to measure an item in more than one dimension
at a time. The basic assumption is that people perceive a set of objects as being more ot less similar
to one another on a number of dimensions (usually uncorrelated with one another) instead of only
one. : 1 i '
There are several MDS techniques (also known as techniques for dimensional reduction) often
used for the purpose of revealing pattems of one sort or another in interdependent data structures. If
data happen to be non-metric, MDS involves rank ordering each pair of objects in terms of similarity.
Then the judged similarities are transformed into distances through statistical manipulations and are
consequently shown in n-dimensional space in a way that the interpoint distances best preserve the
original interpoint proximities. After this sort of mapping is performed, the dimensions are usually
interpreted and labeled by the researcher. R ;

. The significance of MDS lies in the fact that it enables the researcher to study “The perceptual
structure of a set of stimuli and the cognitive processes underlying the development of this structure....
MDS provides a mechanism for determining the truly salient attributes without forcing the judge to
appear irrational.™ With MDS, one can scale objects, individuals or both with a minimum of information.
The MDS analysis will reveal the most salient attributes which happen to be the primary determinants

_ for making a specific decision. ;

(viii) Latent Structure Anatysis

This type of analysis shares both of the objectives of factor analysis viz., to extract latent factors and
express relationship of observed (manifest) variables with these factors as their indicators and to
classify a population of respondents into pure types. This type of analysis is appropriate when the
variables involved in a study do not possess dependency relationship and happen to be non-metric.

In addition to the above stated multivariate techniques, we may also describe the salient features
of what is known as “Path analysis”, a technique useful for decomposing the total correlation between
any two variables in a causal system.

* These are beyond the scope of this book and hence have been omitted. Readers interested in such methods are referred

to “Cluster Analysis” by R. C. Tryon and D. E. Bailey. e .
** See, Chapter No, 5 of this book for other details about MDS. -
§ Robert Ferber, ed., Handboek of Marketing Research, p. 3-52.
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PATH ANALYSIS

The term ‘path analysis’ was first introduced by the biologist Sewall Wright in 1934 in connection
with decomposing the total correlation between any two variables in a causal system. The technique
of path analysis is based on a series of multiple regression analyses with the added assumption of
causal relationship between independent and dependent variables. This technique lays relatively
heavier emphasis on the heuristic use of visual diagram, technically described as a path diagram. An
illustrative path diagram showing interrelationships between Fathers’ education, Fathers’ occupation,
Sons’ education, Sons’ first and Sons’ present occupation can be shown in the Fig. 13.2.

Path analysis makes use of standardized partial regression coefficients (known as beta weights)
as effect coefficients. In linear additive effects are assumed, then through path analysis a simple set
of‘equations-can be built up showing how each variable depends on preceding variables. “The main
principle of path analysis is that any correlation coefficient between two variables, or a gross or
f)verall measure of empirical relationship can be decomposed into a series of parts: separate paths of
influence leading through chronologically intermediate variable to which both the correlated variables
have links,"” '

The merit of path apalysis in comparison to correlational analysis is that it makes possible the
assessment of the relative influence of each antecedent or explanatory variable on the consequent or
criterion variables by first making explicit the assumptions underlying the causal connections and
then by elucidating the indirect effect of the explanatory variables. '

Path analysis makes

Fig.13.2

“The use of the path analysis technique requires the assumption that there are lineag additive, a

; symmetric relationships among a set of variables which can be measured at least on a quasi-interval
., scale. Each dependent variable is regarded as determined by the variables preceding it in the path

diagram, and a residual variable, defined as uncorrelated with the other variables, is postulated to

] account for the unexplained portion of the variance in the dependent variable. The determining
variables are assumed for the analysis to be given (exogenous in the model).”

" K. Takeuchi, et al. op. cit., The Foundations of Multivariate Analysis, p, 122.
tIbid, p. 121-122.

=23
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We may illustrate the path analysis technique in connection with a simple problem of testing 2
causal model with three explicit variables as shown in the following path diagram:

; Path Diagram (with the variables)
Al

: Fig. 13.3
The structural equation for the above can be written as:

%)= )
X,|= Xt e =plte
X;]= puXyt PnXat e

where the X variables are measured as deviations from their respective means. p,, may be estimated
from the simple regression of X, on X, ie., X, = b, X, and p;, and p,, may be estimated from the
regression of X, on X, and X, as under:

: Xy=byy X+, X, :
where b,,, means the standardized partial regression coefficient for predicting variable 3 from
variable 1 when the effect of variable 2 is held constant. _

In path analysis the beta coefficient indicates the direct effect of X, (j # ¥ 2,' 3, ..,p) on the
dependent variable. Squaring the direct effect yields the proporﬁon of the variance in the dependent
variable ¥ which is due to each of the p number of independent variables X (i =1, 2 3 . ). After
calculating the direct effect, one may then obtain a summary measure oflhc total }nduect effect of
X on the dependent variable ¥ by subtracting from the zero correlation coefficient 7, the beta
coefficient bie.,

: Indirect effect of X, on Y=c =r.- b,
forallj=1,2,...p.
Such indirect effects include the unanalysed effects and spurious relationships due fo antecedent
variables. ' .

In the end, it may again be emphasised that the main virtue of path analysis lies in making explicit
the assumptions underlying the causal connections and in elucidating the indirect effects due to
antecedent variables of the given system. '

CONCLUSION

|

| .

[ From the brief account of multivariate techniques presented above, we may cont‘;ludc }hat. sutf:
techniques are important for they make it possible to encompass all the data from an mvels}?gaggrl rl. :

‘ one analysis. They in fact result in a clearer and better account of the Fe%eamh efff:_n ar:e B
piecemeal analyses of portions of data. These technion=5 yic!* more * salistic probability sta
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in hypothesis testing and interval estimation studies. Multivariate analysis (consequently the use of
multivariate techniques) is specially important in behavioural sciences and applied researches for
most of such studies involve problems in which several response variables are observed simultanieously.
The common source of each individual observation generally results into dependence or correlation

among the dimensions and it is this feature that distinguishes multivariate data and techniques from
their univariate prototypes.

Inspite of all this, multivariate techniques are expensive and involve laborious computations. As
such their applications in the context of research studies have been accelerated only with the advent
of high speed electronic computers since 1950's.

- What do you mean by multivariate techniques? Explain their significance in context of research studies.
- Write a brief essay on “Factor analysis” particularly pointing out its merits and limitations,

- Name the important multivariate techniques and explain the important characteristic of each one of such
techniques. ' :

4. Enumerate the steps involved in Thurstone’s centroid method of factor analysis.
5. Write a short note on *rofation’ in context of factor analysis.

+ Work out the first two centroid factors as well as first two principal components from the following
correlation matrix, R, relating to six variables;

Variables
1 2 3 4 5 6
1 1.00 55 43 32 36 ¢
2 1.00 50 25 31 32
Variables 3 1.00 39 25 33
- 1.00 43 49
5 1.00 44
6 1.00
Answers:
Variables Centroid factors Principal Components
! )/ ! I
1 )| 40 M| 39
2 0 A6 Tl A8
3: 70 37 70 32
4 69 —-41 69 ~42
5 65 -43 64 -45
i, 6 g =39 71 -.38

7. Compute communality for each of the variable based on first two centroid factors in question six above
and state what does it indicate.
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8. Compute the proportion of total variance explained by the two factors worked out in question s'u} above
by the principal components method. Also point out the proportion of common variance explained by

each of the two factors. * : : pp =
9. What is the significance of using multiple discriminant analysis? Explain in brief the technical details A | e n d Ix

involved in such a technique.
10. Write short notes on:

() Cluster analysis; (i) Multidimensional scaling; Sum mary c h d rt:

(iii) Reflections in context of factor analysis; : y -
(:) Meaximumlikelilmod method of factoranalysis;  (v) Path analysis. ShOWIng the Appropriateness ofa

Particular Multivariate Technique

Technigues of Number of
multivariate analysis

E,tp.*ariamry ; Criterion variables
variables

. Multiple regression ,
analysis (along with
‘ path analysis) ' “1"“  many one

2 Multiple discriminant one (to be classified
analysis many into many groups)
3. Multivariate analysis
of variance many many

4. Canonical
correlation analysis many many™! many™

5. Factor analysis many

6. Cluster analysis many

7. Multidimensional
scaling (MDS) many many

8. Latent structure
analysis many

Nature of data Non-metric metric Non-metric metric .

*! Any one of the wo.
2 Any one of the two.




