CHAPTER

2

Electrical
and

Thermal Conduction
in Solids

Electrical conduction involves the motion of charges in a material under the influence
of an applied electric field. A material can generally be classified as a conductor if it
containg a large number of “free™ or mobile charge carriers. In metals, due to the na-
ture of metallic bonding, the valence electrons from the atoms form a gea of electrons
that are free to move within the metal and are therefore called conduction electrons. In
this chapter, we will treat the conduction electrons in metal as “free charges™ that can
be accelerated by an applied electric field. In the presence of an electric field, the con-
duction electrons attain an average velocity, called the drift velocity, that depends on
the field, By applying Newton's second law to electron motion and using such con-
cepts as mean free time between electron collisions with lattice vibrations, crystal de-
fects, impurities, etc., we will derive the fundamental equations that govern electrical
conduction in solids. A key concept will be the drift mobility, which is a measure of the
ease with which charge carriers in the solid drift under the influence of an external
electric field.

Good electrical conductors, such as metals, are also known to be good thermal
conductors. The condoction of thermal energy from higher to lower temperature re-
gions in a metal involves the conduction electrons carrying the energy. Consequently,
there is an innate relationship between the electrical and thermal conductivities, which
is supported by theory and experiments.
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CHAPTER 2 + ELECTRICAL AND THERMAL CONDUCTION IN SOLIDS

2.1 CLASSICAL THEORY: THE DRUDE MODEL

2.1.1 METALS axNp CoNpUCTION BY ELECTRONS

The electric current density J is defined as the net amount of charge flowing across a
unit area per unit time, that is,

Ag
A At
where Ag is the net quantity of charge flowing through an area A in time A, Figure 2.1
shows the net flow of electrons in a conductor section of cross-sectional area A in the
presence of an apphied field E,. Notice that the direction of electron motion is opposite
to that of the electric field £, and of conventional current, because the electrons experi-
ence a Coulombic force eE, in the x direction, due to their negative charge.

We know that the conduction electrons are actually moving around randomly’ in
the metal, but we will assume that as a result of the application of the electric field £,
they all acquire a net velocity in the x direction. Otherwise, there would be no net flow
of charge through area A.

The average velocity of the electrons in the x direction at time ¢ is denoted vy, (t).
This is called the drift velocity, which is the instantaneous velocity v, in the x direc-
tion averaged over many electrons {perhaps, ~10% m™); that is

1
Ugr = —[ve) + o + woz + - -+ 18] [2.1]
N

where v,; is the x direction velocity of the ith electron, and N is the number of
conduction electrons in the metal. Suppose that # is the number of electrons per unit
volume in the conductor (h = N/V). In time Ar, electrons move a distance
Ax = 1y, Af, 50 the total charge Ag crossing the area A is enA Ax. This is valid
because all the electrons within distance Ax pass through A; thus, #{A Ax) is the total
number of electrons crossing A in time Ar.

The current density in the x direction is

_ fa¥y) _ enAug, At
T AAr A A
This general equation relaies J, to the average velocity v, of the electrons. 1t must be
appreciated that the average velocity al one time may not be the same as at another
time, because the applied field, for example, may be changing: E, = F_.(r). We there-
fore allow for a time-dependent corrent by writing

S () = envg, (t) [2.2]

To relate the current density J, to the electric field E,, we must examine the effect
of the electric field on the motion of the electrons in the conductor. To do so, we will
consider the copper crystal,

P = ERVyy

1l the conduction electrons ore “free”™ within the meled and mave craund rundomhf, being aratered fram vibrating
melal ions, as we discuss i this chapler.
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Figure 2.1 Drift of elections in o
conducter im the presence of an opplied
eleciric field,

Electrans drift with an average velocity v,
in the x direction.

The copper atom has a single valence electron in its 45 subshell, and this electron
is loosely bound. The solid metal consists of positive ion cores, Cut, at regular sites,
in the face-centered cubic (FCC) crystal structure. The valence electrons detach them-
selves from their parents and wander around freely in the solid, forming a kind of elec-
tron cloud or gas. These mobile electrons are free to respond to an applied field, creat-
ing a current density J,. The valence electrons in the electron gas are therefore
conduction electrons.

The attractive forces between the negative electron cloud and the Cu™ ions are re-
sponsible for metallic bonding and the existence of the solid metal, (This simplistic
view of metal was depicted in Figure 1.7 for copper.) The electrostatic attraction be-
tween the conduction electrons and the positive metal ions, like the electrostatic attrac-
tion between the electron and the proton in the hydrogen atom, results in the conduction
electron having both potential energy PE and kinetic energy KE. The conduction elec-
trons move about the crvstal lattice in the same way that gas atoms move randomly in a
cylinder. Although the average KF for gas atoms is %Fs T+ this is not the case for electrons
in a metal, because these electrons strongly interact with the metal ions and with each
other as a result of electrostatic interactions.

The mean KE of the conduction electrons in a metal is primarily determined
by the electrostatic interaction of these electrons with the positive metal ions and
also with each other. For most practical purposes, we will therefore neglect the
temperature dependence of the mean KE compared with other factors that control
the behavior of the conduction electrons in the metal crystal. We can speculate
from Example 1.1, that the magnitude of mean KF mwst be comparable to the
magnitude of the mean PE of electrostatic interaction® or, stated differently, to the
metal bond energy which is several electron volts per atom. If & is the mean speed
of the conduction electrons, then, from electrostatic interactions alone, we expect
Lm.u? to be several electron volts which means that u is typically ~10°% m s~!. This
purely classical and intuitive reasoning is not sufficient, however, to show that the
mean speed & is relatively temperature insensitive and much greater than that
expected from kinetic molecular theory. The true reasons are quantum mechanical
and are discussed in Chapter 4. (They arise from what is called the Pauli exclusion
prnciple.}

Thera is o thacrem in classical mechonics callad the viral theorem, which states thot for a collection of particles,
fhe mecn KE has half the magnitude af the mean PE i the anly forees acting on the particles are such that they
fellow an imverse squarae low dependence on the particle—particla separation {as in Coulembic end gravitoticnal
farcas)
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|a) A conduction elechran in the eleciron gos maves [b] In the presence of on applied fisld, 7., there
about randemly in @ metal {with o mean speed o] is a net drift alang the x direction, This net drift
being fre umfﬁr and randomly scatiered by along the force of the field is superimpased on
thermal v?bruﬁuns of the atoms. In the absence of the random motion of the electron. Ater many

on applied field there is no net drift in any direcion.  scattering events the alaciron has been displaced
by a net distance, & x, from its initial position
toward the positive terminal.

Figure 2.2 Motion of a conduction elactran in @ metal.

In general, the copper erystal will not be perfect and the atoms will not be sta-
tionary, There will be crystal defects, vacancies, dislocations, impurities, etc., which
will scatter the conduction electrons. More importantly, due to their thermal energy,
the atoms will vibrate about their lattice sites (equilibrium positions), as depicted in
Figure 2.2a. An electron will not be able to avoid collisions with vibrating atoms;
consequently, it will be “scattered” from one atom © another. In the absence of an
applied field, the path of an electron may be visualized as illustrated in Figure 2.2a,
where scattering from lattice vibrations causes the electron to move randomly in the
lattice. On those occasions when the electron reaches a crystal surface, it becomes
*deflected” (or “bounced™) back into the crystal, Therefore, in the absence of &
field, after some duration of time, the electron crosses its initial x plane position
again. Over a long time, the electrons therefore show no net displacement in any one

direction.

When the conductor is connected to a battery and an electric field is applied to the
crystal, as shown in Figure 2.2b, the electron experiences an acceleration in the x
direction in addition to its random motion, so after some time, it will drift a finite dis-
tance in the x direction. The electron accelerates along the x direction under the action
of the force ¢E,, and then it suddenly collides with a vibrating atom and loses the
gained velocity. Therefore, there is an average velocity in the x direction, which, if cal-
culated, determines the current via Equation 2.2. Note that since the electron experi-
ences an acceleration in the x direction, its trajectory between collisions is a parabola,

like the trajectory of a golf ball experiencing acceleration due Lo gravity.

To calculate the drift velocity vy, of the electrons due to applied ficld E., we first
consider the velocity v, of the ith electron in the x direction at time r. Suppose its last
collision was at time J;; therefore, for time (t = #;), it accelerated free of collisions, as
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Figure 2.3 "-"Eh:n:ily gained in the x direction ot time t from the eleciric field [ for three elactrans.
There will be M elacirons to consider in the metal.

indicated in Figure 2.3. Let u,; be the velocity of electron i in the x direction just after
the collision. We will call this the initial velocity. Since ¢E,/m, is the acceleration of
the electron, the velocity vy, in the x direction at time ¢ will be

Uy = Mg + L.Ei{f = 1)
Hig
However, this is only for the ith electron. We need the average velocity vy, for all
such electrons along x. We average the expression fori = 1 to ¥ electrons, as in Equa-
tion 2. 1. We assume that immediately after a collision with a vibrating ion, the electron
may move in any random direction; that is, it can just as likely move along the nega-
tive or positive x, so that u,; averaged over many electrons is zero, Thus,

1 et ; :
Var = =[x+ vz 4 F Uyl = _.,.i“ =) Drift velocity
N M,

where (¢ — #) is the average free time for & electrons between collisions.

Suppose that r is the mean free time, or the mean time between collisions (also
known as the mean scattering time). For some electrons, {fr — 1} will be greater than
7, and for others, it will be shorter, as shown in Figure 2.3. Ave; @E'ng it =4y for N
electrons will be the same as ¢. Thus, we can substitute ¢ for (r — ) in the prevmus
expression to obtain

Vg, = —E, (2.3]

Equation 2.3 shows that the drift velocity increases linearly with the applied field.
The constant of proportionality et/ m, bas been given a special name and symbol. It is

called the drift mobility i, which is defined as
Definition of

vax = pa L 24 1rif mobiliy
where
- Dirift moblity
Ly = — (2.5]  and meon free
M, .
time

Equation 2.5 relates the drift mobility of the electrons to their mean scattering
time 1. To reiterate, T, which is also called the relaxation time, is directly related to
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the microscopic processes that cause the scattering of the electrons in the metal; that is,
lattice vibrations, crysial imperfections, and impurities, to name a few.

From the expression for the drift velocity v, the corrent densicy J, follows im-
mediately by substituting Equation 2.4 into 2.2, that is,

J, =enuE. [2.6]

Therefore, the current density is proportional to the electric field and the condue-
tivity o is the term multiplying Z,, that is,

T = EnNjLy [2.7]

It is gratifying that by treating the eleciron as a particle and applying classical me-
chanics (F = ma), we are able to denve Ohm's law. We should note, however, that we
assumed r to be independent of the field.

Drift mobility is important because it is a widely used electronic parameter in
semiconductor device physics. The drift mobility gauges how fast electrons will drifi
when driven by an applied field. If the electron is not highly scattered, then the mean
free time between collisions will be long, © will be large, and by Equation 2.5, the
drift mobility will also be large; the electrons will therefore be highly mobile and be
able to “respond” to the field. However, a large drift mobility does not necessarily
imply high conductivity, because o also depends on the concentration of conduction
electrons n.

The mean time between collisions © has further significance. Its reciprocal 1/t
represents the mean frequency of collisions or scattering events; that is, 1/t is the
mean probability per unit time that the electron will be scattered (see Example 2.1).
Therefore, during a small time interval &r, the probability of scattering will be 8r/t.
The probability of scattering per unit time 1/t 15 time independent and depends only
on the nature of the electron scattering mechanism.

There is one wmportant assumption in the derivation of the drift velocity v, o
Equation 2.3, We obtained v, by averaging the velocities v,; of N electrons along x
at one instant, as defined in Equation 2.1. The drift velocity therefore represents the
average velocity of alf the electrons along x at one instant; that is, v, 1% a number ay-
erage at one instant. Figure 2.2b shows that after many collisions, after a time interval
At 3 v, an electron would have been displaced by a net distance Ax along x. The
term Ax/At represents the effective velocity with which the electron drifts along x. It
is an average velocity for one electron over many collisions, that 15, over a long time
{hence, At 3 1), 30 Ax/Af 1s a time average. Provided that Ar contwins many colli-
sions, it is reasonable to expect that the drift velocity Ax /At from the time average for
one electron is the same as the drift velocity vy, per electron from averaging for all
electrons at one instant, as in Equation 2.1, or

by
—_— = U
Al dx
The two velocities are the same only under steady-state conditions (A7 3% r), The
proof may be found in more advanced texts,
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PROBABILITY OF SCATTERING PER UNIT TIME AND THE MEAM FREE TIME  If 1/t is defined
as the mean probability per unit time that an electron is scattered, show that the mean time be-
tween collisions is €.

SOLUTION

Consider an infinitesimally small time interval &t af lime ¢, Let & be the number of unscatiered
electrons at time ¢, The probability of scattering during Jf is (1/7) <, and the number of scat-
tered electrons during 4t is & (1/t) dr. The change 4N in NV is thus

1
dN =-N (—) di
T
The negative sign indicates a reduction in N because, as electrons become scattered, N de-

creases, Integrating this equation, we can find N at any time ¢, given that at fime ¢ = 0, N is
the total number of unscattered electrons. Therefore,

F
N=~MN cxp(——)
T

This equation represents the number of unscattersd electrons at time ¢, It reflects an expo-
nential decay law for the number of unscattered electrons. The mean free time f can be calcu-
lated from the mathematical definition of 7,

Sy tN dt
f Nt

where we have used N = Ny exp(—+¢/1). Clearly, 1/7 is the mean probability of scattering per
unit time.

=T

i=

EXAMPLE 2.1

[fnscatrered
eleciron
CORCeRirg T

Mean free
time

ELECTRON DRIFT MOBILITY IN METALS Calculate the drift mobility and the mean scattering
time of conduction elecirons in copper at room temperature, given that the conductivity of copper
1559 = 10° 27! ¢m'. The density of copper is 896 g e~ and its atomic mass s 63.5 gmol~!.

SOLUTION

We can caleulate oy from & = enpy because we already know the conductivity o . The number
of free electrons # per unit volume can be taken as equal to the number of Cu atoms per unit
volume, if we assume that each Cu atom donates one electron o the conduction electron gas in
the metal, One mole of copper has &, (6.02 » 10**) atoms and a mass of 63.5 g. Therefore, the
number of copper atoms per unit volume is

_dN,
T
where d = density = 896 g e ?, and M, = atomic mass = 63.5 (g mol~!). Substituting for
d, Ny, and M, we find n = 8.5 = 10% electrons cm™?.
The electron drift mobility is therefore
@ 5.9 % 105Q em™!

B o T 16 % 1077 C)(R5 x 10% em-)]

=434cm® V15!

EXAMPLE 2.2
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From the drift mobility we can calculale the mean free time r between collisions by using
Equation 2.5,

Copgme (4345 1070 m? VT s T)0.1 % 1077 kg)
T T 16 % 109 C

Mote that the mean speed u of the conduction electrons is about 1.5 = 108 m 57!, s0 that
their mean free path is about 37 nm.

=235x107%s

e e

(U1 DRIFT VELOCITY AND MEAN SPEED  What is the applied electric field that will impose a drift

velocity equal to 0.1 percent of the mean speed u(~10* m s=') of conduction electrons in
copper? What 18 the ¢orresponding current density and current through a Cu wire of diameter
1 mm?

SOLUTION
The drift velocity of the conduction electrons is vy, = py'E,, where ¢, is the drift mebility, which
for copper is 43.4 cn® V! 57 (see Example 2.2). With vy, = 0.000a = 107 ms™!, we have
N e
o Par 1" ms

= 3 -1 -1
E S U T e 3= 107V m ar 230 KV m

This is an unattainably large electric field in a metal. Given the conductivity o of copper, the
equivalent current density 15
Se=mrE = (530 x0T 2 ' m 23 Y mTh)
=14x W0 Am? or I.4 % 107 A mm™2
This means a current of 1.1 x 107 A through a 1 mm diameter wire! It is clear from this
example that for all practical purposes, even snder the highest working cutrents and volt-
ages, the drift velocity is much smaller than the mean speed of the electrons. Consequently,

when an electnic field is applied to 2 conductor, for all practical purposes, the mean speed is
unaffected,

Distance
traversed
along 1 before
collision

DRIFT VELOCITY IN A FIELD: A CLOSER LOOK There is ancther way to explain the observed
dependence of the drift velocity on the field, and Equation 2.3. Consider the path of a conduc-
tion electren in an applied feld € as shown in Figere 2.4, Suppose that at ime ¢ = O the elec-
tron has just been scattered from a lattice wibration. Let w;, be the initial velocity in the
x direction just after this initial collision (to which we assign a collision number of zera). We
will assume that immediately after a collision, the velocity of the electron is in a random direc-
tin. Suppose that the first collision occurs at time 1 . Since ¢E, /m, is the acceleration, the dis-
tance 5; covered in the x direction during the free time 1 will be

1 ek
£ = Hagh + E( s )i‘f

At time £, the electron collides with a lattice vibration (its first collision}, and the velocity
15 randomized again o become & ;. The whole process is then repeated during the next interval
which lasts for a free time £;, and the electron traverses a distance s; along x. and so on. To find
the overall distance traversed by the electron after p such scattering events, we sum all the
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t Distance drifted in total time Ar 5= AX
above distances £, 53, ... for p free dme intervals,

F=stm by = [iaily b bl b gl -Ii(f*)[r;’* 47 4+ 1)) (28]

Since alter a collision the “initial” velocity w, is always random, the firse term has o, val-

ues that are randomly negative and positive, so for many collisions (large p) the first term on the

right-hand side of Equation 2.8 is nearly zerc and can certainly be neglected compared with the

second term. Thus, after many collisions, the net distance 5§ = Ax traversed in the x direction is

given by the second term in Equation 2.8, which is the electric field induced displacement term.
If r?is the mean square free time, then

- (&)
;_2 m, £

where :_’zl[:f+rf+---+r§]
P

Suppose that 7 is the mean free time between collisions, wherer = () + 4 --- + 2}/ p.
Then from straightforward elementary statistics it can be shown that 12 = 27 = 2¢%, Sain
terms of the mean fres time r between collisions, the overall distance s = Ax drifted in the
x direction after g collisions is

€L,
8= —(pr?)
e
Further, since the total time A¢ taken for these p scatlering events is simply pr, the deift
velocily 1g, is given by Ax/Ar ors/(pT), that is,

Uy = = Ex [2_5]

This is the same expression as Equation 2.3, except that 1 is defined here as the average
free fime for a single electron over a long time, that is, over many collisions, whereas previously
it was the mean free time averaged over many electrons. Further, in Equation 2.9 ,, is an
average drift for an clectron over a long time, over many collisions. In Equation 2.1 v,, is the

Distance
drifted after p
scattering
Vents

Mean square
free time
definition

Dwift velocity
and mean free
time
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average velocity averaped over all electrons at one instant. For all practical purposes, the two
are equivalent, {The equivalence breaks down when we are interested in events over a ime
scale that is comparable w one scattering, ~ 10~ second.)

The drift mobility gy from Equation 2.9 is identical to that of BEquation 2.5, g = et /m,.
Suppose that the mean speed of the electrons (not the drift velocity) is w. Then an electron
moves a distance § = ut in mean free time v, which is called the mean free path. The drifi
maobility and conductivity become,

ef e'ni
e and T o= effig =
MU mou
Equations 2.3 and 2.10 both assume that after each collision the velocity is randomized.
The scattering process, lattice scarlering, 1s able 1o randomize the velocity in one single scatter-
ing. In genaral not all electron scattering processes can randomize the velocity in one scattering
process. If it takes more than one collision to randomize the velocity, then the electron is able to
carry with it some velocity gained from a previous collision and hence possesses a higher drift
mobility. In such cases one needs to consider the effective mean free path a carrier has to move
to eventually randomize the velocity gained; this is a point considered in Chapter 4 when we
calculate the resistivity at low temperatires.

Hd =

[2.10]

22 TEMPERATURE DEPENDENCE OF RESISTIVITY:
IDEAL PURE METALS

When the conduction electrons are only scattered by thermal vibrations of the
metal jons, then t in the mobility expression g = et/m, refers to the mean time
between scattering events by this process. The resulting conductivity and resistivity
are denoted by o7 and pr, where the subscript T represents “thermal vibration scat-
tering.”

To find the temperature dependence of o, we first consider the_ temperature
dependence of the mean free time 7, since this determines the drift motility. An elec-
tron moving with a mean speed u is scattered when its path crosses llhe Cross-
sectional area § of a scattering center, as depicted in Figure 2.5. The scattering center

Figure 2.5 Scatering of an alectron from =t
the thermal vibrations of the afoms.

The electron travels @ mean distance £ = ur
batwaen colllsions. Since the scattering cross-
sectional orea is S, in the volume 5¢ there
must be of least ane scatterer, ™4, [Sut] = 1.

A vibrating
metal atom
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2.2 TEMPERATURE DEPENDENCE OF RESISTIVITY! InEAL PURKE METALS

may be a vibrating atom, impurity, vacancy, or some other crystal defect. Since 7 is
the mean time taken for one scattering process, the mean free path £ of the electron
between scattering processes is wr. If N, is the concentration of scattering centers,
then in the volume £, there is one scattering center, that is, (Sur)N; = 1. Thus, the
mean free time is given by

1

T = [2n
SuN, !

The mean speed u of conduction electrons in a metal can be shown to be only
slightly temperature dependent® In fact, electrons wander randomly around in the
metal crystal with an almost constant mean speed that depends largely on their con-
centration and hence on the crystal material. Taking the number of scattering centers
per unit volume to be the atomic concentration, the temperature dependence of t then
arises essentially from that of the cross-sectional area 5. Consider what a free electron
“sees” as it approaches a vibrating crystal atom as in Figure 2.5, Because the atomic
vibrations are random, the atom covers a cross-sectional area wa®, where a is the am-
plitude of the vibrations. If the electron’s path crosses ma?, it gets scattered. Therefore,
the mean time between scatlering events T is inversely proportional to the area ma®
that seatters the electron, that is, T o 1/ma’.

The thermal vibrations of the atom can be considered to be simple harmonic
motion, much the same way as that of a mass M attached to a spring. The average
kinetic energy of the oscillations is i:‘lrfang, where @ is the oscillation frequency.
From the kinetic theory of matter, this average kinetic energy must be on the order
of 1kT . Therefore,

IMa’w® ~ kT

soa” o T, Intuitively, this is comect because raising the temperature increases the am-
plitude of the atomic vibrations. Thus,

1 1 C
T O =— or T=—
mat T T

where C is a temperature-independent constant. Substituting for r in uy = et /m,, we
ohtain

eC
i = o
So, the resistivity of a metal is
1 1 m.I
pr=— = —— = ——

3 The fact that te mean speec] of alectrons in o melal s r:l|1|:.r we{'lkhr beingparature depzndenr con be proved fam
what it colled e Fermi—Dirac shafistics for the collaction of elecirens in a mehal |see Chaper 4). This result contrasis
shearply with the kinefic molecular theory of goses (Chapser 1), which predicts that the mean speed of molecules i
pmpql:nrlimnl to T, For the fime being, we limpfy use a cansdonl mean upzud o for the condeclion electrons in o
medal.
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that is,
P = AT [2.12!

where A is a temperature-independent constant. This shows that the resistivity of a pure metal
wire incresses linearly with the temperature, and that the resistivity is due simply (0 the scatler-
ing of conduction electrons by the thermal vibrations of the atoms. We term this conductivity
lattice-scattering-limited conductivity.

EXAMPLE 2.5

TEMPERATURE DEPEMDEMCE OF RESISTIVITY  What i the percentage change in the resistance

of a pure metal wire from Saskatchewan's summer to winter, neglecting the changes in the di-

mensions of the wire?

SOLUTHON

Assuming 20 °C for the summer and perhaps —30°C for the winter, from £ o ¢ = AT, we have
Rsumrmr T lRwinler _ Tmrmu' o T‘pi.nber _ (2‘} LD 2?3} e {_3{: =+ 2?3}

. — P h {20 + 273)
= 0171 or 17%

Notice that we have used the absolute temperature for T'. How will the outdoor cable power
losses be affected?

EXAMPLE 2.6

DRIFT MOBILITY AND RESISTIVITY DUE TO LATTICE VIBRATIOMNS Given that the mean speed
of conduction electrons in copper is 1.5 x 10% m 5" and the frequency of vibration of the cop-
PEr atoms at room emperature is about 4 » 10 77 estimate the drift mobility of electrons and
the conductivity of copper. The density d of copper is 8.96 g cm ™ and the atomic mass M, is
63,56 g mol .

SOLUTION

The methed for calculating the drift mobility and hence the conductivity is based on cvaluating
the mean frec time © vig Equation 2.11, that is, © = 1/ 5N, Since = is due (o scattering from
atomic vibrations, N, is the atomic concentration,

_dNy  (8.96 x 107 kg mT)(6.02 x 10* mol™")
M, 63.56 x 10~ kg mol '
=85x10¥m™
The cross-sectional area § = wa® depends on the amplitude a of the thermal vibrations as
shown in Figure 2.5, The average kinctic coergy KF,, assocviated with a vibrating mass M
attached to a spring is given by KE, = :Ma’w®, where w is the angular frequency of the
vibration {(w = 24 x 10" rad 57!, Applying this equation to the vibrating atom and equating

the average kinctic cnergy KE,, to +£T, by virtue of equipartition of energy theorem, we have
a® = 2T/ Mw® and thus

S=ma? = InkT 20138 = 1007 K300 K)
= T Mol F63.56 ¢ 107 k =1
( ﬁm,; 0 fnr;:ul )[’23 x 4 % 102 rad §')2
- w 108 g

=39 % 10~ % m?
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Therefore,
I 1
TOosuN, T (39« 1077 mAH15 x 108 ms )85 x 10¥ m-Y)
=2.0x 107"
The drift mobility is
et (L6 1072 CH20 = 10748
S e 9.1 % 107 kg)

=35 10 m* v izt =35emPv g

The conduectivity is then
o= enpy = (16 % 1077 CHES « 107 em (35 em? V' g7
=48x10°2 'em™

The cxperimentally measured value for the conductivity is 5.9 = 10° 27! em™!, so owr
erude caleulation based on Equation 2.11 is actually only 18 percent lower, which is not bad for
an estimate. (As we might have surmised, the agrecment is brought about by using reasonable
values for the mean speed » and the atomic vibrational frequency . These values were taken
from quantum mechanical calculations, so our evaluation for T was not truly based on classical

concepts. )
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23 MATTHIESSEN’S AND NORDHEIM’S RULES

23.1 MATTHIESSEN'S RULE AND THE TEMPERATURE
COEFFICIENT OF RESISTIVITY ()

The theory of conduction that considers scattering from lattice vibrations only works
well with pure metals; unfortunately, it fails for metallic alloys. Their resistivities are
only weakly temperature dependent. We must therefore search for a different type of
scattering mechanism.

Consider a metal alloy that has randomly distributed impurity atoms. An electron
can now be scattered by the impurity atoms because they are not identical to the host
atoms, as illustrated in Figure 2.6. The impurity atom need not be larger than the host
atom; it can be smaller. As long as the impurity atom results in a local distortion of the
crystal lattice, it will be effective in scattering. One way of looking at the scattering
process from an impurity is to consider the scattering cross section. What actually
scatters the electron is a local, unexpected change in the potential energy PE of the
electron as it approaches the impurity, because the force expenenced by the electron
is given by

d(PE}

F=- dx

For example, when an impurity atom of a different size compared to the host atom s
placed into the crystal lattice, the impurity atom distorts the region around it, either by
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from tharmal vibrations olone.

pushing the host atoms farther away, or by pulling them in, as depicted in Figure 2.6.
The cross section that scatters the electron is the lattice region that has been elastically
distorted by the impurity (the impurity atom itself and its neighboring host atoms}, so
that in this zone, the electron suddenly experiences a force F = —d(PE)/dx dueto a
sudden change in the PE. This region has a large scattering cross section, since the dis-
tortion induced by the impurity may extend a number of atomic distances. These impu-
tity atoms will therefore hinder the motion of the electrons, thereby increasing the
resistance.

We now effectively have two types of mean free times between collisions: one, tr,
for scattering from thermal vibrations only, and the other, 7, for scattering from im-
purities only. We define rr as the mean time between scattering events arising from
thermal vibrations alone and t; as the mean time between scattering events arising
from collisions with impurities alone. Both are illustrated in Figure 2.6,

In peneral, an electron may be scattered by both processes, so the effective mean
free time T between any two scattering events will be less than the individual scatler-
ing times rr and 1;. The electron will therefore be scattered when it collides with either
an atomic vibration or an impurity atom. Since in unit time, 1/7 is the net probability
of scattering, 1/77 is the probability of scattering from lattice vibrations alone, and
1/7; is the probability of scattering from impurities alone, then within the realm of
elementary probahility theory for independent events, we have

Aot d [2.13]
T Ir Tr

In writing Equation 2.13 for the various probabilities, we make the reasonable as-
sumption that, to a greater extent, the two scattering mechanisms are essentially inde-
pendent. Here, the effective mean scattering time 1 is clearly smaller than both tr and
t;. We can also interpret Equation 2,13 as follows: In unit time, the overall number of
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collisions {1/} is the sum of the number of collisions with thermal vibrations alone
(1/tr) and the number of collisions with impurities alone {1/1,).

The drift mobility pg depends on the effective scattering time r via py = et/m,,
go Equation 2.13 can also be written in terms of the drift mobilities determined by the
various scattering mechanisms. In other words,

1 1 1

= — {2.14]
ot iy My
where y; is the lattice-scattering-limited drift mobility, and w; is the impurity-
scattering-limited drift mobility. By definition, pu; = ery/m, and w; = etp/m,.
The effective (or overall) resistivity p of the material is simply 1 fenp g, or
1 | |

p= = -
ENLLS GHLy B}

which can be written
#=pr+ o [2.15]

where 1/enp; 1s defined as the resistivity due to scattering from thermal vibrations,
and 1/enyi; is the resistivity due to scattering from impurities, or
1 1

and = ——
ErpL SRy

=

The final result in Equation 2,15 simply states that the effective resistivity g is the
sum of two contributions, First, pr = 1/enp; is the resistivity due to scattering by ther-
mal vibrations of the host atoms. For those near-perfect pure metal crystals, this is the
dominating contribution. As soon as we add impurities, however, there is an additional
resistivity, oy = 1/eny;, which arises from the scattering of the electrons from the im-
purities. The first term is temperature dependent because 17 o T~ (see Section 2.2),
but the second term is not.

The mean time 1; between scattering events involving electron collisions with im-
purity atoms depends on the separation between the impurnity atoms and therefore on
the concentration of those atoms (see Figure 2.6). If £; 1s the mean separation between
the impurities, then the mean free time between collisions with impurities alone will be
£;/u, which is temperature independent because £; is determined by the impurity con-
centration & (Le., £, = N ,'”3]. and the mean speed of the electrons & is nearly con-
stant in @ metal. In the absence of impurities, 1 is infimtely long, and thus p; = 0, The
summation rule of resistivities from different scattering mechanisms, as shown by
Equation 2.15, is called Matthiessen’s rule.

There may also be electrons scattering from dislocations and other crystal defects,
as well as from grain boundaries. All of these scattering processes add to the resistiv-
ity of a metal, just as the scattering process from impurities. We can therefore write the
effective resistivity of a metal as

P = pr+ fe ] [2.18]
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where pp is called the residual resistivity and is due to the scattering of electrons by
impurities, dislocations, interstitial atoms, vacancies, grain boundaries, etc. (which
means that pg also includes gr). The residual resistivity shows very little temperature
dependence, whereas pr = AT, so the effective resistivity g is given by

p= AT+ R [2.17f

where A and B are temperature-independent constants.

Equation 2.17 indicates that the resistivity of a metal varies almost linearly with
the temperature, with A and B depending on the material. Instead of listing A and B in
resistivity tables, we prefer to use a temperature coefficient that refers to small, nor-
malized changes around 4 reference temperature. The temperature coefficient of
resistivity (TCR) o is defined as the fractional change in the resistivity per unit tem-
perature increase at the reference temperature T, that is,

1[4
og = -—l:—EJ [2.18]
LoL8T Jp_p

where gy is the resistivity at the reference temperature Ty, usually 273 K (0 "C) or
293 K (20°C), and 8p = p — py is the change in the resistivity due to a small increase
in temperature, §T = T' — T;.

When the resistivity follows the behavior p = AT 4+ B in Equation 2.17, then
according to Equation 2.18, «y is constant over a temperature range T to T, and Equa-
tion 2.18 leads to the well-known equation,

o= poll + alT — Tl [2.19]

Equation 2.19 is actally only valid when wg is constant over the temperature
range of interest, which requires Equation 2.17 to hold. Over a limited temperatmre
range, this will usually be the case. Although it is not obvions from Equation 2.19,
we should note that «; depends on the reference temperature Ty, by virtue of g
depending on Tj.

The equation p = AT, which we used for pure-metal crystals to find the change
in the resistance with temperamre, is only approximate; nonetheless, for pure metals,

it is useful to recall in the absence of tabulated data. To determine how good the

formula p = AT is, put it in Equation 2.19, which leads to oy = T,_.,‘]. If we take the
reference temperaiure Ty as 273 K (0 °C), then oy, is simply 1,/273 K; stated differently,
Equation 2.19 is then equivalent to p = AT.

Table 2.1 shows that ¢ & T is not a bad approximation for some of the familiar
pure metals used as conductors (Cu, Al, Au, etc.), but it fails badly for others, such as
indium, antimony, and, in particular, the magnetic metals, iron and nickel.

The temperature dependence of the resistivity of various metals is shown in Fig-
ure 2.7, whete it is apparent that except for the magnetic materials, such as iron and
nickel, the linear relationship p o« T seems to be approximately obeyed almost all the
way to the melting temperature for many pure metals. It should also be noted that for
the alloys, such as nichrome (Ni—Cr), the resistivity is essentially dominated by the
residual resistivity, so the resistivity is relatively temperature insensitive, with a very
small TCR.
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Toble 2.1 Resistivity, thermal coefficient of resistivity ey ot 273 K [0 #C) for various metals. The
resistivity index nin g = 7" for some of the metals is alsa shown.

felal oo {nil m) cr.-_.(%) n Comment
1
Alurainarm, Al 250 33 1.20
1
Antimony, Sh 38 s 144
1
Copper, Cu 153 335 1.15
I
Gold, Au 228 o 1.1l
1
[odum, T T80 ToF 1.440
|
Platinum, PL B 5 0,94
1
Silver. Ag 14.6 Taa 1.1l
1
Tantulum, Ta 117 o 0,93
1
Tin, 5n 110 9 111
1
Tuigsten, W a0 :’:ZD 1.20
fron, I'e B4k I—:—,; 120 Magrnetic metul; 273 = T = 1043 K
Mickal, Mi 200y l;_?t 172 Magnetic metal; 273 < " < 827K

| SOURCE- (ot were extracted ond combined from several sources. Typical walues,

Frequently, the resistivity versus temperature behavior of pure metals can be
empirically represented by a power law of the form

T Resistiviiy of
s W[Fﬂ] [2.:20] pure metals

where pp is the resistivity at the reference temperature Ty, and » is a characteristic
index that best fits the data. Table 2.1 lists some typical a values for various pure met-
als above ()°C. It is apparent that for the nonmagnetic metals, » is close to unity,
whereas it 15 closer to 2 than | for the magnetic metals Fe and Ni, In iron, for example,
the conduction electron is not scattered simply by atomic vibrations, as in copper, but
is affected by its magnetic interaction with the Fe ions in the lattice. This leads (o a
complicated temperature dependence.

Although our oversimplified theorenical analysis predicts a linear p = AT + B
behavior for the resistivity down to the lowest temperatures, this is not tue in reality,
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Figure 2.7 The resistivity of various metals as o function of temperature
abova O “C.

Tin melts at 505 K, whareas nickel and iron go threugh o mogneticdo-
nonmagretic [Curie} transfarmation of about 27 K and 1043 K, respectively.
The theoratical behaviar (o~ T) is shown for reference,

| SOURCE: Data selectively extracted from variows scurces, including sactions in Mebols
Handbook, 10th ad., 2 and 3. Metals Pork, Ohio; ASM, 1991,

as depicied for copper in Figure 2.8. As the temperature decreases, typically below
~100 K for many metals, our simple and gross assumption that all the atoms are
vibrating with a constant frequency fails. Indeed, the number of atoms that are vibrat-
ing with sufficient energy (o scatter the conduction electrons starts to decrease rapidly
with decreasing temperature, so the resistivity due to scattering from thermal vibra-
tions becomes more strongly temperature dependent. The mean free time t = 1/5ud,
becomes longer and strongly temperature dependent, leading to a smaller resistivity
than the p o T behavior. A full theoretical analysis, which is beyvond the scope of this
chapter, shows that g o T°. Thus, at the lowest temperature, from Marthiessen’s rule,
the resistivity becomes p = DT + pg, where D is a constant. Since the slope of g ver-
sus T isdp/dT = 5DT*, which tends to zero as T becomes small, we have » curving
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Figure 2.8 The resistivity of copper from lowest to highest temperatures [near
melfing temperature, 1358 K] an a legleg plot,

Above about 100 K, @ o T, whereas af low temperatures, o o« T3, and at the lowast
tem peratures o approaches tha residual resistivity og. The insat shows the g ws. T
behovior below 100 K on a linear plot. |of is too small on this scale)]

toward oy as T decreases toward 0 K. This is borne out by experiments, as shown in
Figure 2.8 for copper. Therefore, at the lowest temperatures of interest, the resistivity
is limited by scattering from impurities and crystal defects.*
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MATTHIESSEN'S RULE  Explain the typical resistivity versus temperature behavior of annealed
and eold-worked (deformed) copper containing various amounts of Ni as shown in Figuns 2.9,

SOLUmMon

When small amounts of nickel are added to copper, the resistivity increases by wirtwe of
Mathicssen’s mule, p = pr + pg + py. where pr is the resistivity due to scattering from ther-
mal vibrations; g, is the residual resistivity of the copper crystal due fo scattering from erystal
defects, dislocations, trace impurities, ete.; and p; is the resistivity arising from Ni addition

4 At sufficiantly low temperaturas [typicolly, belew 10-20 K for many matals and below 135 K for cerain
caromics] cerlgin motericls exhibit supercorductivity in which tha resistivity wanishes [p = 0|, aven in the presence of
mpurities and :ryslnl defecis. Eupercum{ul:li\-i'r:,r and ity guanhim mechanizal arigin will b explained in Chapter B

EXAMPLE 1.7
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Cu-3.32%MNi
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]
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Ann Prysic, 5, 219 (Germany, 1932). Temperature (K)

alone (scattering from Ni impurity regions). Since gy is temperature independent, for small
amounts of Niaddition, o, wall simply shaft up the o versus T curve for copper, by an amount pro-
portional to the Ni content, p, o Ny, where Ny, ia the Ni impurity concentration. This is apparent
in Figure 2.9, where the resistivity of Cu-2.16% Ni is almost twice that of Cu-1.12% Ni. Cold
working (CW) or deforming a metal results in g bgher concentration of dislocations and therefore
ingreases the residual resistivity pp by gew. Thos, cold-worked samples have a resistivity curve
that is shifted up by an additional amount gy that depends on the extent of cold working,

EXAMPLE 2.8

TEMPERATURE COEFFICIENT OF RESISTIVITY o AND RESISTIVITY INDEX n  If oy is the tem-
perature coefficient of resistivity (TCR) at temperature Ty and the resistivity obeys the equation

T L]
p= .ﬂ'u[;n]

n [ T ]4_1
ay= =] =
Tl Ty
What is your conclusion?

Experiments indicate that v = 1.2 for W. What is its o at 20 “C7T Given that, experimen-
tally, mp = 0.00393 for Cu at 20 °C, what isn?

SOLUTICN

show thit

Since the resistivity obeys ¢ = 2o(T/ Th)", we substituee this equation into the definition of TCR,

l[dp] n[l"]"_]
= —|—|=—| —
"7 wldTl T TLT

It is clear that, in general, ag depends on the temperature T, as well as on the reference
temperature 7. The TCR is only independent of T whena = 1.
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AT = Iy, we have

T
il 3 1 ar n=oanly
n
ForW n=12s0atT =T, =293 K, we have auu ¢ = 0.0041, which agrees reasonably
well with ¢y g = 0.0045 , frequently found in data books.
For Cu, ages x = 000393, so that n = 1,15, which agrees with the cxperimental value of 1.

TCR AT DIFFERENT REFEREMCE TEMPERATURES 1If o, is the temperature coefficient of resis- JREIGTIREWR
livity (TCR) at temperature Ty and oy is the TCR at T, show that

oy
@ = ———
Tl a(T = T

SOLUTION
Conzicer the resistivity at ternpetatute T in terms of o and o
a= gl + o’ — 1)) and o= gl +a(f — 1))

These equations are expected to hold at any temperarure T, so the first and second equa-

tions at 1) and Ty, respeetively, give '
M= pall + (T — Tall and g = o[+ @ (Ty = T

These two equations can be readily solved o eliminate m and o, (0 obtain

— )
b+ o (T = Fob

i

TEMPERATURE OF THE FILAMENT OF A LIGHT BULB  ExameLe 2.10

& Consider a 40 W, 120V incandescent light bulb. The tungsten filament is 0.381 m long and
bas a diameter of 33 pom. Its resistivity at room temperature is 5,51 = 10 “# 03 m. Given that
the resistivity of the tungsten filament varies at 71, estimate the lemperature of the bulb
when it is operated at the rated voleage, that is, when it is lit divectly from a power outlet,
#s shown schematically in Figure 2,10, Note that the bulb dissipates 40 Wat 120V,

b, Assume that the electrical power dissipated in the tungsten wire is radiated from the sur-
face of the filament. The radiated electromagnetic power at the absolute temperature T can

Figure 2,10 Power radiated from o light bulb is
W equal 1o the elecirical power dissipated in the

0
N T /4 flament,
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he described by Stefan’s law, as follows:
Prosued = eos AT — T;')

where o5 is Stefan’s constant (5.67 = 0% Wm~? K-*), ¢ is the emissivity of the surface
{035 for tungsten), 4 is the surface area of the tungsten filament, and ¥, is the room
temperature (293 K). For T4 3 T, the equation becomes

Pul'hl.rd = EI.T_;H T4

Assuming that all the electrical power is radiated as electromagnetic waves from the
surface, estimate the temperature of the filament and compare it with your answer in part (a).

SOLUTION

a.  When the bulb is operating at 120V, it is dissipating 40 W, which means that the current is

The resistance of the filament at the operating temperature T must be

Vo120
R=1 =033 =00

Since R = plL/ A, the resistivity of tungsten at the operating temperature T must be

R(=D?/4) 360 Qm(33 x 107% m)?

= =808 % 1077 2m
L 4(01.381 m)

T} =

But, p{T) = pgiT/ Ty %, so that

- (El].ﬁ x 113-*)”"2
S CRTRE T

= 2746 K or 2473°C {melting temperature of W is about 3680, K)

&, Tocaleulate T from the radiation law, we note that ¥ = [ Paiwes SeTs 4154
The surface area is

A=LixD) = (03810r33 » 107% =395 »x 107 m?
Then

2

f T 40 W ™
- [ €Tz A i| = [[0.35}{5.6? % 107" Wm™* K-4)(3.95 x 10~° mz}]
= [5.103 » 10V = 673 K or 2400 °C
The difference between the two methods is less than 3 percent.

2.3.2 SOLID SOLUTIONS AND NORDHEM'S RULE

In an isomorphous alloy of two metals, that is, a binary alloy that forms a solid solution,
we would expect Equation 2.15 to apply, with the temperature-independent impurity
contribution o; increasing with the concentration of solute atoms. This means that as the
alloy concentration increases, the resistivity o increases and becomes less temperature
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Table 2.2 The effect of alloying on tha resistiviky
Resistivity ot 20 "C e al 20 °C
Materiul (nl m) (/K)
Mickel ] 0.005
Chrome 129 0.003
Michromee I 120 (00003
1 j Cu-NMi all
@ u-NMi alloys
1400 = 500
o : 2 400
£ 11004 Liquid phasc 2 ]
g1 g %0
B Ly 2 200
E i w
E L 1 Solid solution E
]{H:I'D |1 T T T T T T T ' D 1 ) 1 b ] ! L] T T
0 20 4} all £ 100 1] 20 40 sl i 1003
1005 Cu Al Mi 100% Ni 100% Cu at. % Ni 100 Wi
ta] Phase diagram of the Cu-Ni alloy system. {b) The resistivity of the Cu-Ni allay os a
Above the liquidus Fine only the liquid phase Function of Mi content (at.%) at reom
exists. In the £ + 5 region, |||:||J|d [L} and temperature.

salid [5) phases cnexlsr whereas below the
solidus line, only the solid phose {a solid

salution) exists.

Figure 2,11 The Cu-Ni alloy system.

| SOURCE. Daba extracied from Meiols Herdbook, 101 ed., 2 and 3, Melals Park, Ohia: ASK, 1991, and M, Hansen and

K. anderke, Constitution of Bingry Alloys, Mew York: McGrowHill, 1958,

dependent as p, overwhelms pr, leading to e < | /273, This is the advantage of alloys
in resistive components. Table 2.2 shows that when 80% nickel is alloyed with 20%
chromium, the resistivity of Ni increases almost 16 times. In fact, the alloy is called
nichrome and is widely used as a heater wire in household appliances and industrial
furnaces.

As 4 further example of the resistivity of a solid solution, consider the copper— nickel
alloy. The phase diagram for this alloy system is shown in Figure 2.11a. It is clear that the
glloy forms & one-phase solid solution for all compositions. Both Cu and Ni have the
same FCC crystal structure, and since the Cu atom is only slightly larger than the Ni atom
by about ~-3 percent (easily checked on the Periodic Table), the Cu-Ni alloy will there-
fore still be FCC, but with Cuo and Ni atoms randomly mixed, resulting in a solid solu-
tion. When Mi is added to copper, the impurity resistivity o; in Equation 2,15 will
increase with the Ni concentration. Experimental results for this alloy system are shown
in Figure 2111, Tt should be apparent that when we reach 100% Ni, we again have a pure
metal whose resistivity must be small. Therefore, o versus Ni concentration must pass
through a# maximum, which for the Cu-Ni alloy seems to be at around ~50% Ni.
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There are other binary solid solutions that reflect similar behavior to that depicted
in Figure 2.11, such as Cu—-Au, Ag—Au, Pt-Pd, Cu-Pd, t0 name a few. Quite often, the
use of an alloy for a particular application is necessitated by the mechanical properties,
rather than the desired electrical resistivity alone. For example, brass, which is 70%
Cu—30% Zn in solid solution, has a higher strength compared to pure copper, as such,
it is a suitable metal for the prongs of an electrical plug.

An important semiempirical equation that can be used to predict the resistivity of
an alloy is Nordheim’s rule which relates the impurity resistivity p; to the atomic
fraction X of solute atoms in a solid solution, as follows:

fr=CX(l - X) [2.21]

where € is the constant termed the Nordheim coefficient, which represents the effec-
tiveness of the solute atom in increasing the resistivity, Nordheim's rule assumes that
the solid solution has the solute atoms randomly distributed in the lattice, and these
random distributions of impurities cause the electrons to become scattered as they
whiz arcund the crystal. For sufficiently small amounts of impurity, experiments show
that the increase in the resistivity o; is nearly always simply proportional to the impu-
rity concentration X, that is, oy o X, which explains the initial approximately equal in-
crements of rise in the resistivity of copper with 1.11% Ni and 2.16% Ni additions as
shown in Figure 2.9, For dilute solutions, Nordheim's rule predicts the same linear be-
havior, that is, p; = CX for X =z 1.

Table 2.3 lists some typical Nordheim coefficients for various additions to copper
and gold. The value of the Nordheim coefficient depends on the type of solute and the
solvent, A solute atom that is drastically different in size to the solvent atom will result
ina bigpger increase in py and will therefore lead to a larger C. An important assumption

Toble 2.3 Mordheim coefficient C ot 20 ‘DC} for dilute u”l:r:.rs obtainad fram
po=CXand X = 1 at%*

Solote in Solvent o Maximum Solubility ai 25 "C
{element in matrix) [mi2 m) (aL%:)
Aaw i O mateix BRI 1R
Mo an Cu matox 20900 24
Mi in Cu matrix 1200 T}
Snin Cu marix 2900 (k.6
Zn in Cu malrix 300 i
Cuin Ay matrix 43 100
Mo in Aw macedx 2410 23
Mi in Aw mutrix Ta0 10
Snin Ay matrix 3361 5
2o Au malcix 050 I3

*MOTE; For many isomarphous olloys © may be different at higher concentrations; that is, it may
depand an the composition of the alloy.

SOUIRCES: D.G, Fink and D. Christiansen, eds., Electronics Engineers’ Handhook, 2nd ed.,

Maw York, McGrawHill, 1982 ). K. Sanley, Electrical and Mognstic Froperties of Metals, Matals
| Park, ©H, American Society for Metals, 1963, Soluhilily dato from M, Hansen ond K. Anderka,

!- Consihutian of Binory Alloys, 2nd ed., Mew York, McGrawHill, 1985
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in Nordheim's rule in Equation 2.21 is that the alloying does not significantly vary the
number of conduction electrons per atom in the alloy. Although this will be true for al-
lovs with the same valency, that is, from the same column in the Periodic Table {e.5.,
Cu—Au, Ag-Au), it will not be true for alloys of different valency, such as Cu and Zn,
In pure copper, there is just one conduction electron per atom, whereas each Zn atom
can donate two conduction electrons. As the Zn content in brass is increased, more con-
duction electrons become available per atom. Consequently, the resistivity predicted by
Equation 2.21 at high Zn contents is greater than the actual value because C refers to
dilute alloys. To get the cormect resistivity from Equation 2.21 we have to lower C,
which is equivalent to using an effective Nordheim coefficient C.g that decreases as
the Zn content increases. In other cases, for example, in Cu-Ni alloys, we have to in-
crease  at high Ni concentrations to account for additional electron scattering mech-
anisms that develop with Ni addition. Nonetheless, the Nordheim rule is still useful for
predicting the resistivities of dilute alloys, particularly in the low-concentration region.
With Nordheim's rule in Equation 2,21, the resistivity of an alloy of compesition

Xis
£ = Pmarix + CX(1 = X) (2.22]

where puae = o7 + 2 15 the resistivity of the matrix due to scattering from thermal
vibrations and from other defects, in the absence of alloying elements. To reiterate, the
value of C depends on the alloying element and the matrix. For example, C for gold in
copper would be different than C for copper in gold, as shown in Table 2.3.

In solid solutions, at some concentrations of certain binary alloys, such as 75%
Cu-25% Au and 50% Cu-50% Au, the annealed solid has an orderly structure; that
is, the Cu and Au atoms are not randomly mixed, but occupy regular sites. In fact,
these compositions can be viewed as pure compound—Ilike the solids CusAu and
CuAn, The resistivities of CusAu and CoAu will therefore be less than the same
composition random alloy that bas been quenched from the melt. As a consequence,
the resistivity o versus composition X curve does not follow the dashed parabolic
curve throughout; rather, it exhibits sharp falls at these special compositions, as illus-
trated in Figure 2,12,

femperature in Cu—Au alloys.

crystal and the scottering sffect is reduced.
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Figure 2.12 Elactrical resistivity vs. eomposition at room

The quenched sample {doshed curve) is cbioined by quanching the
liquid, and the Cu and Au atoms are randamby mixed. The resistivity
cbays the Mordhaim rule. When the quenched samphe is annedled
ar the liquid is slowly cooled {solid curve|, cerfoin compuositions
[Cuzdw and Cudw) result in an ardered crystalline structure in which
the Cu and Au atems are pesitionad in an orderad fashion in the
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NORDHEIM'S RULE  The alloy 90 wt.% Au~10 wt.% Cu is somctimes used in low-voltage dc
electrical contacts, because pure gold is mechanically soft and the addition of copper increases the
hardness of the metal without sacrificing the corrosion resistance. Predict the resistivity of the
alloy and compare it with the experimental value of 108 nSt m.

SOLUTION

We apply Equation 2.22, a{X)} = pa + CX (1 — X} but with 10 wt% Cu converted (o the
atomic fraction for X. If w is the weight fraction of Cu, w = 0.1, and if M., and M, are the
atomic masses of Au and Cu, then the atomic fraction ¥ of Cu is given by (see Example 1.2),

B w/Me, - 0.1/63.55
WiMe, + (1 —w)/ My,  (0.1/63.55) + (0.90/197)
Given that p,, = 22 .8 n&2 mand C = 450 n2 m,
= pay + CX(1 — X1 = {22.8 n2 m} + (450 n2 m){0.256)}(1 — 0.256)
= 1085 nil m

= 0.256

This value is only (L.5% different from the experimental value.

EXAMPLE 2.12

Croneleeciivity
arnd mean free
il

RESISTIVITY DUE TO IMPURITIES Thc mean spred of conduction clectrons in copper is about
1.5 = 10% m s~ Its room temperature resistivity is 17 022 m, and the atomic concentration NV,
in the crystal is 8.5 » 107 cm~*. Suppose that we add 1 at.% Au to form a solid solution, What
is the resistivity of the alloy, the effective mean free path, and the mean free path due to colli-
sions with Au atoms only?!

SOLUTION

According to Table 2.3, the Nordheim coefficient © of Au in Cu is 3500 nQ m. With ¥ = 0.01
{1 at.%), the overall resistivity from Equation 2,22 is

0= B + CE(l = X) = 17 n2 m + (5500 n22 mi{0.01 W1 = 0.01)
=1Tniim+ 544502 m="T145n8 m

Suppose that £ 15 the overall or effective mean free path and ¢ is the effective mean free time be-
tween scattering events (includes both scattering from lattice vibrations and impurities). Since
£ = ur, and the effective drift mobility 11y = er/m,, the expression for the conductivity be-
COMmEs

.
e'nT e'nd
T o=gnpy = = -
m, I 0L

We can now caleulate the effective mean free path £ in the alloy given that copper has a valency
of 7 and the electron concentration n = &,

1 (1.6 x 107385 = 10™ m=7)¢

TI5x 107" Qm (%1 x 10-Mkgh(1.5 » 10° m s~}
which gives £ = 8.8 nm. We can repeat the calculation for purc copper using o =
Vo = 1007 2 107 2 m) to find £¢, = 37 nm, The mean free path is reduced approxi-
matcly by 4 times by adding only 1 at.% Auw. The mean free path £; due to scattering from im-
purities only can be found from Equation 2.13 muoltiplied through by 1/u, or by using
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Marthiessen’s mle in Equation 2.14:

L
£ a8

Substituting £, = 37 nm and £ = 8.8 nm, we find £; = 11.5 nm.

We can lake these calculations one step further, If A, is the impurity conceniration in the
alloy, then N, = ODI AN, = 0.01(8.5 = 107 m~%) = 8.5 = 10°® m~*. The mean separation d;
between the impurities can be estimated roughly from d; = 1/, which gives 4, = 1.0 nm.
It is clear that not all Au atoms can be involved in scaftering the electrons since £; 5 much
longer than , . (Another way to look at it is to say that it takes more than just one collision with
an impurity to randomize the velocity of the electron.)

13%

24 RESISTIVITY OF MIXTURES AND POROUS
MATERIALS

241 HETEROGENEOUS MIXTURES

Nordheim's rule only applies to solid solutions that are single-phase solids. In other
words, it is valid for homogeneous mixtures in which the atoms are mixed at the
atomic level throughout the solid, as in the Cu-Ni alloy. The classic problem of
determining the effective resistivity of a multiphase solid is closely related to the
evaluation of the effective dielectric constant, effective thermal conductivity, effec-
tive elastic modulus, effective Poisson's ratio, etc,, for a variety of mixtures, includ-
ing such composite materials as fiberglass. Indeed, many of the mixture rules are
identical.

Consider a material with two distinct phases « and £, which are stacked in layers
as illustrated in Figure 2,13a. Let us evaluate the effective resistivity for current flow

Continuous phase
ey Dispersid phase
*, [

b fe)

Figure 2.13 The affective resistivity of a material with a layered stucture.
lz] Aleng o direction perpendicular to the layars.
[b] Aleng a ditection parallel to the plane of the layers.

c] Materials with o dispersed phase in a confinuous matrix.
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in the x direction. Since the layers are in series, the effective resistance R.y for the
whole material is
Ln:nﬂﬁl > L.ﬁlﬂﬁ

Rg=—%

2.23
3 A (2.23]

where L, is the total length (thickness) of the o -phase layers, and Lz is the total length
of the B-phase layers, L, + Ly = L is the length of the sample, and A is the cross-
sectional area. Let y, and xp be the volume fractions of the @ and § phases. The
effective resistance is defined by

where ooy is the effective resistivity. Using y, = L./L and 35 = Lg/L in Equa-
tion 2.23, we find

Pelt = KaPo T XaPg [2.24]

which is called the resistivity—mixture rule (or the series rule of mixtures).

If we are interested in the effective resistivity in the y direction, as shown in Fig-
ure 2.13b, obviously the & and £ layers are in parallel, s0 an effective conductivity
could be calculated in the same way as we did for the series case to {ind the parallel
rule of mixtures, that is,

Terf = Hala + XpTp [2.25]

where 7 is the electrical conducetivity of those phases identified by the subscript, No-
tice that the parallel rule uses the conductivity, and the series rule uses the resistivity.
Equation 2.25 is often referred to as the conductiviey—mixture rule,

Although these two rules refer to special cases, in general, for a random mixture
of phase ¢ and phase #, we would not expect either equation to apply rigorously,
When the resistivities of two randomly mixed phases are not markedly different, the
series mixture rule can be applied at least approximately, as we will show in Exam-
ple 2.13.

However, if the resistivity of one phase is appreciably different than the other,
there are two semiempirical rules that are quite useful in materials engineering.” Con-
sider a heterogeneous material that has a dispersed phase (labeled 4), 1n the form of
particles, in a continuous phase (labeled ¢) that acts as 4 matrix, as depicted in Fig-
ure 2,13c, Assume that o, and p, are the resistivities of the continuous and dispersed
phases, and x. and . are their volume fractions. If the dispersed phase is much more
resistive with respect to the matrix, that is, py = 10p., then

(1+ 7x4)

Beff = Pe=T——— {gg = 10p:) [2.24]
(1= xa)

5 Chvar the yaors, tha kask of pradicting the resistivity of a mixture hos challanged mony theorists and
:upzliln-cniu“;l:. indur:ling Lewd Rn}-lefgh '\AI‘I'II.'I, i '[3'?2_, pul:lishzr.i an excellent Eupn:i!il;u‘l on e sibjec in the
Philosophicol Mogozine. An exensive rectment of mixtures con be found in o paper by J. A, Reynolds ond

1. M. Hough published in 1957 (Froceedings of the Physical Society, 70, ro. 749, London), which contains nearly
all the mixhira I'I..||l.'.$ fear the re:.islivih.r.
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On the other hand, if oy < (p./10), then

S
ﬂm=ﬂﬁ%:£% (pg = 0.1p,) [2.27]
We therefore have at least four mixture rules at our disposal, the uses of which de-
pend on the mixture geometry and the resistivities of the various phases. The problem
is identifying which one to use for a given material, which in turn requires a knowl-
edge of the microstructure and properties of the constituents. It should be emphasized
that, at best, Equations 2.24 to 2.27 provide only a reasonable estimate of the effective
resistivity of the mixmure.®
Equations 2.26 and 2.27 are simplified special cases of a more general mixture
rule due to Reynolds and Hough (1957). Consider a mixture that consists of a contin-
wous conducting phase with a conductivity o, that has dispersed spheres of another
phase of conductivity oy and of volume fraction y, similar to Figure 2.13¢c. The effec-
tve conductivity of the mixture is given by

o — a; Oy — O

= [2.28]
o + 2o, :".' oy + 2o,

It is assumed that the spheres are randomly dispersed in the material. It is left as an
exercise to show that if o4 <€ o, then Equation 2.28 reduces to Equation 2.26. A good
application would be the calculation of the effective resistivity of porous carbon elec-
trodes, which can be 50-100 percent hipher than the resistivity of bulk polyerystalline
carbon (graphite). If, on the other hand, a4 3 o, the dispersed phase i3 very conduct-
ing, for example, silver particles mixed into a graphite paste to increase the conductiv-
ity of the paste, then Equation 2.28 reduces to Equation 2.27. The wsefulness of Equa-
tiot 2.28 cannot be underestimated inasmuch as there are many types of materials in
engineering that are mixtures of one type or another,
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Mixtre rule

Reyrefds qned
Hergh ruefe
Jore miixiteere of
dispersed
pheses

THE RESISTIVITY-MIXTURE RULE  Consider a two-phase alloy consisting of phase o and phase
fiorandomily mixed as shown in Figure 2,144, The solid copsists of a random mixture of
two types of resistivities, p, of o and py of #. We can divide the solid into a bundle of & paraliel
fibers of length L and cross-sectional arca A/ &, as shown in Figure 2.14b. In this fiber (infini-
tesimally thin), the @ and # phases are in series, so if 3, = V,/V is the volume fraction of phase
a and 3, is that of 8, then the total length of all & regions present in the fiber is x, L, and the
total length of # regions is x4 L. The two resistances are in series, so the fiber resistance is

o PalXed)  pelgal)
e = TCAJNY T (AN)

But the resistance of the solid is made up of & such lbers in parallel, that is,

Riner _ Pafol + Bl
N A A

Roin =

.

* More occurote mixture rules hove been established for varicus rypes of mixiures with components possessing
widnly differant proparties, which the keen reader con find in F. L. Kossiter, The Efscirical Resistivite of Aedals and
A.IIIII‘.'I}I'S |Cn:|rn|:|r|dE|E Univer:if}- Press, Cnml:ridge. 1987

EXAMPLE 2.13
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I:|:|| & thin fiber cut out from the sclid.

Revistvine
miviure rule

By definition, Ry = perrl /A4, where gy is the effective resistivity of the material, so

Zeitl  PuYol T PoXal
A A A

Thus, tor a two-phase solid, the effective resistivity will be

Peff = Xalblw + Xofa

If the densities of the two phases are not oo different, we can use weight fractions instead of
volume [ractions. The senes mule fals when the resistivities of the phases are vastly different. A
major (and critical) tacit assumption here is that the corrent flow lines are all parallel, 20 that no cur-
rent crosses from one fiber to another. Only then can we say that the effective resistance is Rppe, /.

EXAMPLE 2.14

A COMPONENT WITH DISPERSED AIR PORES What is the effective resistivity of 95/5 (95%
Cu-5% Sn) bronze, which is made from powdered metal containing dispersed pores at 1537%
{volume percent, vol.%). The resistivity of 95/5 bronze is | = 1077 Q m,

SOLUTION

Pores are infinitely more resistive {p; = oc) than the bronze matrix, so we use Equation 2.26,

1+4 1+ Lqo1s
X _ w107 @my 1)

=127 x 1077 R
=i 1—0.15 * o

Dl = P

EXAMPLE 2.15

COMBINED NORDHEIM AND MIXTURE RULES Brass is an alloy composed of Cu and Zn, The
alloy 15 a solid solution for Zn content less than 30 wi.%. Consider a brass component made
from sintering 90 at.% Cu and 10 at-% Zn brass powder, The component contains dispersed air
pores at 15%, (vol.%). The NMordheim coefficient C of Zn in Cu is 300 nf2 m, under very dilute
conditions. Each Zn atom donates two, whereas each Cu atom of the matrix donates one con-
duction electron, so that the Cu—Zn alloy has a higher electron concentration than in the Cu
crystal itself. Predict the effective resistivity of this brass component.

SOLUTION M

We first caleulate the resistivity of the alloy without the pores, which forms the continuous
phase in the powdered material. The simple Nordheim's rule predicts that

i = Pegper +~ CXN — X) =170 m +30000.1(1 — 0.1y =440l m

The experimental value, about 40 nf2 m, is actually less because Zn has a valency of 2, and
when a Zn atom replaces a host Cu atom, it donates two electrons instead of one, We can very
roughly adjust the calculated resistivity by noting that a 10 at% Zn addition increases the
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conduction electron concentration by 10% and hence reduces the resistivity Oupme by 105 10
40 ok m.

The powdered metal has x; = 0.15, which is the volume fraction of the dispersed phase,
that is, the air pores, and g, = Py = 40 nE2 m is the resistivity of the continuouws matrix, The
effective resistivity of the powdered metal is given by

L+ txa

1+ (0.15)
= (A ) ——em .
T T TR T

If we use the simple conductivity mixture rule, g7 is 47.1 nfl m, and it is underestimated.

The effecrive Mordheim coefficient Ceg at the composition ol interest is about 255 nf2 m,
which would give pppws = 2o + CopX (1 — X = 40 nG m. Itis left as an exercise to show that
the effective number of conduction electrons per atom in the alloy is 1 + X so that we must divide
the Ppmss Calculated above by (1 4 X to obtain the comect resistivity of brass if we use the listed
value of C under dilure conditions. (See Question 2.8.)

Paff = R = 50.6n82 m
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242 Two-PHASE ALLOY (Ag-Ni) RESISTIVITY
AND ELECTRICAL CONTACTS

Certain binary alloys, such as Pb—Sn and Cu-Ag, only exhibit a single-phase alloy
structure over very small composition ranges. For most compositions, these alloys
form a two-phase heterogeneous mixture of phases o and 8. A typical phase diagram
for such a eutectic binary alloy system is shown in Figure 2.15a, which could be a

T Figure 2.15 Eutecticfarming
Ta Py £ B alloys, e.g.. Cu-Ag.
w T, i One phase  Ja) The phose diagram for & binary,
;E Tl o \aad Bt B region: §  eutectic-ferming alloy.
2 E Two phase region only |b) The resistivity versus composition
E T @+ for the binury IJ“Q':,".
N S
100%A ;‘1 X (% B)—> 10078
(o]
g | . ., ;
1_-.: {LH Mixiure rule o ‘]IP
B . T Nordhein's mle R
p.l’l. : i
O X, Composition, X (% B) X, 100%B

(b}
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schematic scheme for the Cu—Ag system or the Pb—3n system. The phase diagram
identifies the phases existing in the alloy at a given temperature and composition. If the
overall composition X is less than X, then at T, the alloy will consist of phase « only.
This phase is Cu rich. When the composition X is between X; and X, then the alloy
will consist of the two phases o and £ randomly mixed. The phase « is Cu rich (that is,
it has composition X,) and the phase 8 is Ag rich (composition X;). The relative
amounts of each phase are determined by the well-known lever rule, which means that
we can determine the volume fractions of @ and 8, ¥, and x g, as the alloy composition
is changed from X to X,.

For this alloy system, the dependence of the resistivity on the alloy composition is
shown in Figure 2.15b. Between O and X, (% Ag), the solid is one phase (isomor-
phous); therefore, in this region, p increases with the concentration of Ag by virtue of
Nordheim's rule. At X, the solubility limit of Ag in Cu is reached, and after X, a sec-
ond phase, which is § rich, is formed. Thus, in the composition range X, to X,, we
have a mixture of @ and £ phases, s0 p is given by Equation 2.24 for mixtures and is
therefore less than that for a single-phase alloy of the same composition. Similarly, at
the Agend (X2 = X = 100%), as Cu is added to Ag, between | (% Ag and the solu-
bility limit at X, the resistivity is determined by Nordheim's mle. The expected
behavior of the resistivity of an entectic binary alloy over the whole composition range
is therefore as depicted in Figure 2.15b.

Electrical, thermal, and other physical properties make copper the most widely
used metallic conductor. For many electrical applications, high-conductivity copper,
having extremely low oxygen and other impurity contents, is produced. Although aln-
minum has a conductivity of only about half that of copper, it is also frequently used
as an electrical conductor. On the other hand, silver has a higher conductivity than cop-
per, but its cost prevents its use, except in specialized applications. Switches often
have silver contact specifications, though it is likely that the contact metal is actally a
silver allov. In fact, silver has the highest electrical and thermal conductivity and is
consequently the natral choice for use in electrical contacts. In the form of alloys with
various other metals, it is used extensively in make-and-break switching applications
for currents of up to about 60 A. The precious metals, gold, platioum, and palladinm,
are extremely resistant to corrosion; consequently, in the form of various alloys,
particularly with Ag, they are widely used in electrical contacts. For example, Ag—Ni
alloys are common electrical contact materials for the switches in many household
appliances.

It is frequently necessary to improve the mechanical properties of a metal alloy
without significantly impairing its electrical conductivity. Selid-solution alloying im-
proves mechanical strength, but at the expense of conductivity. A compromise must
often be found between electrical and mechanical properties. Most often, strength is
enhanced by introducing a second phase that does not have such an adverse effect on
the conductivity, For example, Ag-Pd alloys form a solid solution such that the
resistivity increases appreciably due to Mordheim’s rule. The resistivity of Ag—Pd is
maginly controlled by the scattering of electrons from Pd atoms randomly mixed in the
Ag matrix. In contrast, Ag and Ni form a two-phase alloy, a mixture of Ag-rich and
Ni-rich phases. The Ag=Ni alloy is almost as strong as the Ap—Pd alloy, but it has a
lower resistivity because the mixture rule volume averages the two resistivities,
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25 THE HALL EFFECT AND HALL DEVICES

An important phenomenon that we can comfortably explain using the “electron as a
particle” concept is the Hall effect, which is illustrated in Figure 2.16. When we apply
a magnetic field in a perpendicular direction to the applied field (which is driving the
current), we find there is a transverse field in the sample that is perpendicular to the
direction of both the applied field £, and the magnetic field B,, that is, in the y direc-
tion. Putting a voltmeter across the sample, as in Figure 2,16, gives a voltage reading
Vy. The applied field €, drives a current J, in the sample. The electrons move inthe —x
direction, with a drift velocity vg, . Because of the magnetic field, there is aforce (called
the Lorentz force) acting on each electron and given by F, = —ewvy, #,. The direction
of this Lorentz force is the —y direction, which we can show by applying the cork-
screw rule, because, in vector notation, the force F acting on a charge g moving with a
velocity ¥ in a magnetic field B is given through the vector product

F=gvxB [2.29]

All moving charges experience the Lorentz force in Equation 2.29 as shown
schematically in Figure 2.17. In our example of a metal in Figure 2.16, this Lorentz
force is the —y direction, so it pushes the electrons downward, as a result of which
there is a negative charpe accumulation near the bottom of the sample and a positive
charge near the top of the sample, due to exposed metal ions {e.g., Cu™).

®
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Lorentz force

Figure 2.16 llustration of the Holl effect.

The z direction is out of the plone of the paper. The
externally opplied magnetic field is aleng the z direction.
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The accumulation of electrons near the bottom results in an internal electric field
‘Ey in the — v direction. This is called the Hall field and gives rise to a Hall voltage
vy between the top and bottom of the sample. Electron accumulation continues until
the increase in Eg is sufficient to stop the further accumulation of electrons. When
this happens, the magnetic-field force evy, 8, that pushes the electrons down just bal-
ances the force ¢Ey that prevents further accumulation. Therefore, in the steady state,

eLy = evy, B,
However, J, = envy,. Therefore, we can substitute for vy, to obtain ey = J. B, /nor
|
Ey = (—).ﬂ.&‘z [2.30]
e
A useful parameter called the Hall coefficient £y is defined as
Ey
By = [2.31]
AT

The quantity Ry measures the resulting Hall field, along y, per unit transverse
applied current and magnetic field. The larger Ry, the greater £, for a given J, and B,.
Therefore, Ry is & gauge of the magnitude of the Hall effect. A comparizon of Equa-
tons 2.30 and 2.31 shows that for metals,

Ry = - L [2.32]
en
The reason tor the negative sign is that £y = —E,, which means that Ty is in the —¥
direction.

Inasmuch as Ky depends inversely on the fTee electron concentration, its value in
metals is much less than that in semiconductors. In fact, Hall-effect devices (such as
magnetometers) always employ a semiconductor material, simply because the Ry is
larger. Table 2.4 lists the Hall coefficients of various metals. Note that this is negative

Table 2.4 Holl cosfficient and Hall mobiliny [y = | Ryl of selected metals

n Ry (Experimenial} wi = loRgl
-3 A" s [m? V-1 5
Metal («Y0%) (1071 (=107
Ag 585 —i0 57
Al 1 8.1k —3.3 13
Au 5.00 =7.2 k1|
Be 242 +354 9
Cu B35 —3.3 32
Gu 153 6.3 3.6
In 1149 —2.4 29
Mg B.60 —04 X2
Ma 2.56 ~15 53
tAagnatically operalad Holleffect
pesifion sansor as availabla from SOURCES: Data from various scurces, including ©. Mording and J. Ostermaon, Physics Hondboak,

Micre Switch.

Bramley, England: Chortwell-Bratt b, 1982,
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for most metals, although a few metals exhibit a positive Hall coefficient (see Be in
Table 2.4). The reasons for the latter involve the band theory of solids, which we will
discuss in Chapter 4.

Since the Hall voltage depends on the product of two guantities, the current density
J, and the transverse applied magnetic field B,, we see that the effect naturally multi-
plies two independently variable quantities. Therefore, it provides a means of carrying
out a multiplication process. One obvious application is measuring the power dissipated
in a load, where the load current and voltage are multiplied. There are many instances
when it is necessary to measure magnetic fields, and the Hall effect iz ideally suited to
such applications. Commercial Hall-elfect magnetometers can measure magnetic falds
as low az 10 nT, which should be compared to the earth’s magnetic field of ~50 pT.
Depending on the application, manufacturers use different semiconduectors to obtain the
desired sensitivity. Hall-effect semiconductor devices are generally inexpensive, small,
and reliable. Typical commercial, linear Hall-effect sensor devices are capable of pro-
viding a Hall voltage of ~ 10 mV per mT of applied magnetic feld.

The Hall effect is also widely used in magnetically actuated electronic switches.
The apphication of a magnetic field, say from a magnet, results in & Hall voltage that is
amplified (o trigger an electromic switch. The switches invariably use 5i and are read-
ily available from various companies. Hall-effect electronic switches are used as non-
contacting keyvboard and panel switches that last almost forever, as they have no me-
chanical contact assembly. Another advantage is that the electrical contact is “bounce™
free. There are a variety of interesting apphications for Hall-effect switches, ranging
from ignition systems, to speed controls, position detectors, alignment controls, brush-
less do motor commutators, ete,

HALL-EFFECT WATTMETER  The Hall effect can be nsed o implement a wattmeter to measure
clecirical power dissipated in a load. The schematic sketch of the Hall-effect wattmeter is shown
in Figure 1.18, where the Hall-effect sample is typically a semiconductor material (usually Si).
The load current f; passes through two coils, which are called current coils and are shown as ©
in Figurc 2.18. These coils set up a magnetic field B, such that 8, o ;. The Hall-effect sample
is positioned in this field between the coils, The voltage V.. across the load drives a current
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I, = Vi /R through the sample, where R is 4 series resistance that is much larger than the resis-
tance of the sample and that of the load. Normally, the carrent £, is very small and negligible
compared to the load current, If w is the width of the sample, then the measured Hall voltage is

Vo =wEy = wlyl, B{ &L ;IB; o Vil

which is the electrical power dissipated in the load. The voltmeter that measures Vg can now be
calibrated to read directly the power dissipated in the load.

EXAMPLE 2.17

HALL MOBILITY Show that if 8y is the Hall coefficient and & is the conductivity of a metal,
then the drift mobility of the conduction electrons is given by

e = o Ryl [2.33]

The Hall coefficient and conductivity of copper at 300 K have been measured o be
—0.55 = W " m* A" s and 5.9 » 107 27" m~', respectively. Calculate the drift mohility of
electrons in copper.

SOLUTION

Consider the expression for

By = —
£

Since the conductivity is given by & = enp, we can substitute for en to obtain

Ry = R} o Mo = —Ryo
@
which is Equation 2,33, The drift mobility can thus be determined from £y and =,
The product of & and Ry is called the Hall mohility pp . Some values for the Hall mobility

of electrons in various metals are listed in Table 2.4, From the expression in Equaton 2.33, we get
py=—=(=055 = 0" m* A~ s 50 x 107 0 ' m™ =322 107 m VT g!

It should be mentioned that Equation 2.33 is an oversimplification. The actual relationship
involves a numerical factor that multiplies the right term in Equation 2.33. The factor depends
on the charge carrier scattering mechanism that controls the drift mobility.

EXAMPLE 2.18

CONDUCTION ELECTROM COMCEMTRATION FROM THE HALL EFFECT Using the electron
drift mohbility from Hall-effect measurements (Table 2.4), calculate the concentration of con-
duction elecirons in copper, and then determine the average number of electrons contributed to
the free electron gas per copper atom in the solid.

SOLUTION

The mumber of conduction elecirons is given by n = o/epn,. The conductivity of copper is
59 x 107 £27' m™", whereas from Table 2.4, the electron drift mobilityis 3.2 = 10~  m* V=157 5o,

g (3.9x 1072 'm")
T 016 x 107 CH3.2 x 10-T m? V- s-1)]

Since the concentration of copper atoms is 8.5 x 10% m™?, the average number of elec-
trons contributcd per atom is (1.15 % 10% m~),/(8.5 x 10®* m*) = 1.36.

=115 = 10 m™?
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26 THERMAL CONDUCTION

25.1 THERMAL CONDUCTIVITY

Experience tells us that metals are both good electrical and good thermal conductors.
We may therefore surmise that the free conduction electrons in a metal must also play
arole in heat conduction, Our conjecture is correct for metals, but not for other mate-
rials. The transport of heat in a metal is accomplished by the electron gas (conduction
electrons), whereas in nonmetals, the conduction is due to lattice vibrations.

When a metal piece is heated at one end, the amplitude of the atomic vibrations,
and thus the average kinetic energy of the electrons, in this region increases, as de-
picted in Figure 2.19. Electrons gain energy from energetic atomic vibrations when the
two collide. By virtue of their increased random motion, these energetic electrons then
transfer the extra energy to the colder regions by colliding with the atomic vibrations
there. Thus, electrons act as “energy carriers.”

The thermal conductivity of a material, as its name implies, measures the ease
with which heat, that is, thermal energy, can be transported through the medium.
Consider the metal rod shown in Figure 2.20, which is heated at one end. Heat will
flow tftom the hot end to the cold end. Experiments show that the rate of heat flow,
' = dQ/dr, through a thin section of thickness dx is proportional to the temperature
gradient 87 /8x and the cross-sectional area 4, so

8T

0 = —Ar—

.34
o [2.34]

Hat Cold

BARL

14%

Fouriery low
af thermol
conduction

Cold

G
&x

Vibruting Cu” jons

Electron gas

Figure 2.19 Thermal conduction in o metol involves

Trﬁnsfarring anergy from the |'H;rr regign o rhe cald region one end,

Figure 2.20 Heat flow in a metal rod heoted af

by conduetion electrons,

Mare energetic electrons (shown with longer valscity
vactors) fram the hofter regions arfive at cooler regions,
collide with lotice vibrations, ond transter their ENETgY.
lengths of amowed lines on atoms rapresent the
magnitedes of atomic vibrations.

Consider the rate of heat flow, d@ydi, across o
frin section ix of the rod. The rate of heat flow is
proparticnal to the temperature gradient &7 5x
and the crosssectional area A.
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where x is a material-dependent constant of proportionality that we call the thermal
conductivity. The negative sign indicates that the heat flow direction is that of decreasing
ternperature. Equation 2,34 15 often referred to as Fourder’s law of heat conduction and is
a defining equation for x. The driving force for the heat flow is the temperature gradient
4T fix. If we compare Equation 2.34 with Ohm's law for the electric current £, we see that
Oy law af

5V
electrical {f=—Ao— [2.35]
conduction bx
which shows that in this case, the driving force is the potential gradient, that is, the elec-
tric field.” In metals, electrons participate in the processes of charge and heat transport,
which are characterized by o and x, respectively. Therefore, it is not surprising to find
that the two coeflicients are related by the Wiedemann—Franz-Lorenz law,® which is
Wiedemann— "
Frunc—Lavenz — = {wEL [2.38]
faw ol

where Cyp = w2623’ =244 « 1078 W Q K™% iz a constant called the Lorenz
number (or the Wiedemann—Franz—Lorenz coefficient).

Experiments on a wide variety of metals, ranging from pure metals to various
alloys, show that Equation 2.36 is reasonably well obeyed at close 1o room tempera-
ture and above, as illustrated in Figure 2.21. Since the electrical conductivity of pure
metals is inversely proportional Lo the temperature, we can immediately conclude that
the thermal conductivity of these metals must be relatively temperature independent at
room temperature and above,

7 Recall that § = o which s equivalent to Equatian 2,35,

® Historically, Wiedemaonn and Franz noted in 1853 that &/ is the same far all meals at the some  tempenature.
Lorenz in 1861 showed that & /or iz propartionol to the emperature with 0 proporfionality constaent shat is naorky
the same far reary rvedaila. The low staled in Equniiﬂll 234 ﬂv."ﬂ:r:l:. bath chservations, E}l e woy, L-uran;:_, WG Wi
o Dana, should noe be confused with Lerentz, who was Dulch.
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Figura 2.23 Conduction of heat in insulators involves the generation ond propogetion of atemic

vibrations thraugh the bonds that couple the atoms {an infuitive figure),

Figure 2.22 shows the temperature dependence of x for copper and aluminum down to
the lowest temperatures. [t can be seen that for these two metals, above ~ 100 K, the ther-
mal conductivity becomes temperature independent, in agreement with Equation 2,36,
Qualitatively, above ~ 100 K, ¥ is constant, because heat conduction depends essentially
on the rate at which the electron transfers energy from one atomic vibration to another as it
collides with themn (Figure 2.19). This rate of energy transfer depends on the mean speed
of the electron u, which increases only fractionally with the temperature. In fact, the frac-
tionally small increase in & is more than sufficient to carry the energry from one collision to
another and thereby excite more energetic lattice vibrations in the colder regions.

MNonmetals do not have any free conduction electrons inside the crystal to transfer
thermal energy from hot to cold regions of the material. In nonmetals, the energy trans-
fer involves lattice vibrations, that is, atomic vibrations of the crystal. We know that we
can view the atoms and bonds in a crystal as balls connected together through springs
as shown for one chain of atoms in Figure 2.23. As we know from the kinetic molecu-
lar theory, all the atoms would be vibrating and the average vibrational kinetic energy
would be proportional to the temperature. Intuitively, as depicted in Figure 2.23, when
we heat one end of a crystal, we set up large-amplitude atomic vibrations at this hot
end. The springs couple the vibrations to neighboring atoms and thus allow the large-
amplitude vibrations to propagate, as a vibrational wave, to the cooler regions of the
crystal. If we were to grab the left-end atom in Figure 2.23 and vibrate it violently, we

LA AL AL AL AR A AL A ) Equilibrium
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would be sending vibrational waves down the ball-spring-ball chain. The efficiency of
heat transfer depends not only on the efficiency of coupling between the atoms, and
hence on the nature of interatomic bomding, but also on how the vibrational waves
propogate in the erystal and how they are scattered by crystal imperfections and by
their interactions with other vibrational waves; this topic is discussed in Chapter 4. The
stronper the coupling, the greater will be the thermal conductivity, a trend that is intu-
itive but also borme out by experiments. Diamond has an exceptionally strong covalent
bond and also has a very high thermal conductivity; « = 1000 Wm™' K", On the
other hand, polymers have weak secondary bonding between the polymer chains and
their thermal conductivities are very poor & = | Wm™ K1,

The thermal conductivity, in general, depends on the temperature. Different classes
of materials exhibit different ¢ values and also different ¢ versus T behavior. Table 2.5

Table 2.5 Typical thermal conductivities of varicus classes
of materials at 25 °C

Material siWm''KY
Pure metal
Nh 32
Fe Bl
Zn 113
W ITR
Al 25}
Cu 3t
Ag A}
Metal alloys
Stuinless steel 12-1a
55% Cu—45% Ni 149.5
T0%: Ni- 30 Co z
1080 steel 50
Bromze (93% Cu-3% 5n) i
Brass (63% Cu- 37% Znab 125
Dural (95% Al—4% Co-1% Mg) 147
Cerumics and pglasses
Cilass-hornsilicate .75
Silica-fuged (50 L5
B3y i}
Alumina {Al209) 30
Supphire (Al2O5) 37
Beryilium {Be(d] 264)
Driamomd ~ 1000
Polymers
Polypropylene 012
PV 017
Polycarbonare 0.22
Nvlon 6.6 0.24
Teflon 11.25
Polyethylenc, low density 0.3

Pulyethyvlens, igh densiy 0.5
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summarizes & at room temperature for various classes of materials. Notice how ce-
ramics have a very large range of x values.
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THERMAL COMDUCTIVITY A 95/5 (95% Cu-3% Sn) bronze bearing made of powdered metal
contains 15% (vol.%) porosity. Calculate its thermal conductivity at 300 K, given that the
electrical conductivity of 95/3 bronze is 107 7' m™!,

SOLUTION

Recall that in Example 214, we found the electrical resistivicy of the same hronze by using the
mizture rule in Equation 2.26 in Section 2.4. We can use the same mixtre rule again here, but
we need the thermal conductivity of 95/5 bronge. From e /o T = Cwp, . we have

k= aTCwm = (1% 10733000244 x 1005 =732 Wm™ ' K~
Thus, the effective thermal conductivity is

1 1[14‘%“]_ 1 [|+§{ﬁ.|53:|
1= xa M2wmt k)L 1-01s

Kefl LT

50 thiat
k=579 Wm ! K

EXAMPLE 2.19

26,2 THERMAL RESISTANCE

Consider a component of tength L that has a temperature difference AT between its
ends as in Figure 2.24a. The temperature gradient is AT /L. Thus, the rate of heat Mow,
of the heat current, 15

2 AT AT N
g=dr—=-— [2.37]1  Fourier’s law
L.~ (L/kA)
This should be compared with Ohm's law in electric circuits,
AV AV
T [2.38] iy law
R (LioA4)
where AV is the voltage difference across a conductor of resistance R, and 7 is the
electric current.
O = ATi® Figura 2,24 Conduction of heat through o
“— AT —» component in ja) can be medeled as o thermal
Hot - Cold — Al —— resistance 8 shown in |b) where &' = AT/4,

o e =\

d

- —

(o) (b}
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In analogy with electrical resistance, we may define thermal resistance ¢ by

. AT
= — [2.39]
¢ 7]
where, in terms of thermal conductivity,
L
f=— 2.40/
= [2.40]

The rate of heat flow @' and the temperature difference AT correspond to the
electric current [ and potential difference AV, respectively. Thermal resistance is the
thermal analog of electrical resistance and its thermal circuit representation is shown
in Figure 2.24b,

M_‘I'HER.'ML RESISTANCE A brass disk of electrical resistivity 50 n2 m conducts heat from

4 heat source to a heat sink at a rate of 10 W, If its diameter is 20 mm and its thickness is
30 mm, what 15 the lemperature drop across the disk, neglecting the heat losses from the
surface?

SOLUTION

We [irst determine the thermal conductivity:
c=aTCwm = (521072 m) "G00 K)(2.44 x 0 WREK™)
=146 Wm™' K™!
The thermal resistance is

L (30 = 10 m)

=— = = 065K W'
4 mlox 10" mYy4eWm' K"

Therefore, the temperature drop 15
AT =80’ = {0S KW IO Wi = 6.5K or °C

27 ELECTRICAL CONDUCTIVITY OF NONMETALS

All metals are good conductors because they have a very large number of conduction
electrons free inside the metal. We should therefore expect solids that do not have
metallic bonding to be very poor conductors, indeed insulators. Figure 2.23 shows
the range of conductivities exhibited by a variety of solids. Based on typical values
of the conductivity, it is possible to empirically classify various materials into con-
ductors, semiconductors, and insulators as in Figure 2.25. It is apparent that non-
metals are not perfect insulators with zero conductivity. There is no well-defined
sharp boundary between what we call insulators and semiconductors. Conductors
are intimately identified with metals. Tt is more appropriate to view insulators as
high resistivity (or low conductivity) materials. In general terms, current conduc-
tion is due to the drift of mobile charge cartiers through a solid by the application of
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Figure 2.25 Range of conduchivities exhibited by various materials,

an electric field. Each of the drifting species of charge carriers contribotes to the ob-
served corrent. In metals, there are only free electrons, In nonmetals there are other
types of charge carriers that can drift.

27.1 SEMICONDUCTORS

A perfect Si crystal has each 5i atom bonded to four neighbors, and each covalent
bond has two shared electrons as we had shown in Figure 1.59a. We know from clas-
sical physics (the kinetic molecular theory and Boltzmann distribution) that all the
atoms in the crystal are executing vibrations with a distribution of energies. As the
temperature increases, the distribution spreads to higher energies. Statistically some
of the atomic vibrations will be sufficiently energetic to rupture a bond as indicated
in Figure 2.26a. This releases an electron from the bond which is free to wander in-
side the crystal. The free electron can drift in the presence of an applied field; it is
called a conduction electron. As an electron has been removed from a region of the
crystal that is otherwise neutral, the broken-bond region has a net positive charge.
This broken-bond region is called a hole (h 7). An electron in a neighboring bond can
jump and repair this bond and thereby create a hole in its original site as shown in
Figure 2.26b. Effectively, the hole has been displaced in the opposite direction to the
electron jump by this bond switching. Holes can also wander in the crystal by the
repetition of bond switching. When a field is applied, both holes and electrons con-
tribute to electrical conduction as in Figure 2.26¢. For all practical purposes, these
holes behave as if they were free positively charged particles (independent of the
original electrons) inside the crystal. In the presence of an applied field, holes drift
along the field direction and contribute to conduction just as the free electrons
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(al
Figure 2.26

bl i)

[a] Thermal witrations of fhe atems rupture a bond and release o free eleciron into the crystal. A hole is left in the broken
bond, which has an effective positive l:hl::rgﬂ.

[b] An electon in a
haz bean displaced

narghbering bond can jump and repair this bond and thereby create a hale in its ariginal site; tha hole

[g] When o field is applied, both holes ond slecirons confribute to electrical condudicn,

Conductiviiy
o i1 yemi-
conductor

released from the broken bonds drift in the opposite direction and contribute to con-
duction,

It is also possible to create free elecirons or holes by intentionally doping a semi-
conductor crystal, that is substituting impurity atoms for some of the Si atoms. Defects
can also generate free carriers. The simplest example is nonstoichiometric ZnO that is
shown in Figure 1.55b which has excess Zn. The electrons from the excess Zn are free
to wander in the crystal and hence contribute to conduction.

Suppose that n and p are the concentrations of electrons and holes in a semicon-
ductor crystal. If electrons and holes have drift mobilities of u, and py, respectively,
then the overall conductivity of the crystal is given by

o = eplly + enjl, [2.41]

Unless a semiconductor has been heavily doped, the concentrations n and p are
much smaller than the electron concentration in a metal. Even though carrier drift mo-
bilities in most semiconductors are higher than electron drift mobilities in metals,
semiconductors have much lower conductivities due to their lower concentration of
free charge carriers.

EXAMPLE 2.21

HALL EFFECT IN SEMICONDUCTORS The Hall cffect in & sample where there are both nega-
tive and positive charge carriers, for example, electrons and holes in a semiconductor, involves
not only the concentrations of electrons and heles, # and p, respectively, but also the electron
and hole drift mobilities, . and pry. We first have w reinterpret the relationship between the
drift velocity and the electric field &,
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If o1, i5 the drift mebility and v, is the doft velocity of the electrons, then we already know that
1, = e, 'E, This has been derived by considering the net electrostatic force #C acting on a single
electron and the imparted acceleration a = ¢E/m,. The drift is therefore due to the net force
Fu = eEexperienced by a conduction electron. If we were (o keep eF as the ret foree F, acling
on a single electron, then we would have found

By = s Foe [2.42]

Equation 2.42 emphasizes the fact that drift is due to a net force Fo, acting on an clectron. A sim-
ilar expression would also apply to the drift of a hole in a semiconductor.

When both electrons and holes are present in a semiconductor sample, both charge carriers
experience a Lorentz foree in the same direction since they would be drifting in the opposite di-
rections @5 illustrated in Figure 2,27, Thus, both holes and electrons @end to pile near the bottom
surface. The magnitude of the Lorentz force, however, will be different since the drift mobili-
ties and hence drift velocities will be different in general. Once equilibrium is reached, there
should be no current flowing in the ¥ direction as we have an open circuil, Supposs that more
holes have accumulated near the bottom surface so there is a built-in electric field €, along y as
shown in Figure 2.27. Suppose that v,, and v, are the usual electron and hole drift ve-
locities in the —y and +v directions, respectively, as if the electric field E, existed
glone in the + v direction. The net current along ¥ is zero, which means that

o=+ =epwy, +env, =10 [2.43]
From Equation 2.43 we obtain
Pipy = —H1,, [2.44]

We note that either the clectron or the hole doft velocity must be reversed from its usuval di-
rection: lor example, holes difting in the opposite directon to &, The net force acting on the
charge carriers cannot he zero. This is impossible when two types of camiers are involved and
both carrtiers are drifting along v to pgive a net current S, that is zero, This is what Bquation 2.43
reprosents. We therefore conclude that, along y, both the electron and the hole must experience a

Diify velocio
ane net force
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driving force to drift them. The net force experienced by the carriers, as shown in Figure 2.27  is
[2.45]

where vy and vy, are the hole and electron doift velocities, respectively, along x. In peneral, the drift
velocity is determined by the net force acting on a charge carrier; that is, from Equation 2.42

Fiy = ¢E, = ety B, and ~Fyy = ¢E, + 21, B

i

F, = £y G LR el
L] He
s0 that Equation 2,45 becomes,
et £y
L eE, = ewy,, B, and —_— eE, + ev,, B,
Hi He

where vy, and v,, are the hole and electron drift velocities along v, Substituting ey, = 2, 'E, and
Ver = fbo'Ey these become

L4 L.
= = Ey — %L B, und = = Ey + 1E B, [2.46]
Hy |uv

From Equation 2.46 we can substitute for v, and v, in Equation 2.44 to obtain
PiWE, — PULE, B, = —nu,E, —nu’E, B,
or
E (i piy +np,) = B (pui - """’3} [2.47]

We now consider what happens along the x direction. The total curment density is finite and
is given by the usual expression,

J. = epun, +envy = (ppy + npt)eE, [2.48]
We can use Equation 2.48 to substitute for £, in Equation 2.47, to obtain

eEy(nis, + pua)* = B.J, (puy — npl)
The Hall coefficient, by definition, is 8y = €, /), B,, 5o

2 2
pE =
Ry = —Eih e [2.49]
(Pl + Mg
or
— nb*
Ry = p— [2.50)
elp+ nh)?

where b = p, /. Itis clear that the Hall coeftivient depends on both the drift mobility ratio and
the concentrations of holes and electrons. For p = nb?, Ry will be positive and for p = nb?, it
will be negative. We should note that when only one type of carrier is involved, for example,
elecirons only, the J, = 0 reguirerment means that J, = env,, = 0, or v, = 0. The drift veloe-
ity along ¥ can only he zero, if the net driving force F,, along v is zero. This occurs when
e'E, — ¢t B, = 0, that is, when the Lorentz force just balances the force due to the built-in field.

3L Y] HALL COEFFICIENT OF INTRINSIC SILICON At room temperature, a pure silicon crystal {called

intrinsic silicen) has electron and hole concentations v = p=wn; = 1.5 » 10" cm~?, and
electron and hole drift mobilities e, = 1350 em® V°' 57! and g, = 450 em® V™! 57, Caleu-
late the Hall coefficient and compare it with a typical metal,
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SOWUTION

Givenn=p=n=1.5% 10" em™?, pu, = 1350 cm® V' 5%, and p, = 450 cm® V-7 570,
we have

po Mo 1350
g AN T
Then from Equation 2,50,

B (1.5 % 109 m=) — (1.5 = 10" m~%)(3)°
T(L6 0 10 CY[(1.S % 106 m-2y 4 (1.5 x 10Y m-2)(3) ]

=-208m’ A~ 5!

Ry

which is orders of magnitude larger than that for a typical metal, All Hall-effect devices use a
semiconductor rather than a metal sample.

27.2 loNIC CRYSTALS AND (GLASSES

Figure 2.28a shows how crystal defects in an ionic crystal lead to mobile charges that
can contribute to the conduction process. All crystalline solids possess vacancies and
interstitial atoms as a requirement of thermal equilibrium, Many solids have intersti-
tial impurities which are often ionized or charged. These interstitial ions can jump,
i.e., diffuse, from one interstitial site to another and hence drift by diffusion in the
presence of a field. A positive jon at an interstitial site such as that shown in Figure
2,283 always prefers to jump inte a neighboring interstitial site along the direction of
the field because it experiences an effective force in this direction. When an ion with

E - E -
Vacancy aids the diffusion of positive ion
> 0 0%
cROKcIOXIOKC o Si*

olcieyielcIe
0 F0e0® &
SECEOXCIOICKS a
3, OO
@@@@ﬁ@@

|

Anion vacancy

sofe ot & daikor Interstitial cation diffuses

(el (bl

Figure 2.28 Possible contibutions to the conductivity of ceramic and glass insubators.
[¢1) Possible mobila charges in o ceramic,
(B] An Ma” ion in the glass shucture diffuses and therefore diifts in the direction of the field.
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This seda glass rod when heated under a torch becomes eleciically conducling. It passes
4 mA when tha voltege is 50V {2 « 25 ¥); a resistance of 12.5 kil Ordinary seda glass at
[fal=20] ramp-nmh.lrn is on inswator but can be q'ui.ha cnndl.lcring [=1] suﬁi:ianﬂ}' higl‘. 1|=|n|:||=r|:|||.lrr::-.

charge ¢, jumps a distance 4 along the field, its potential energy decreases by
gion'Ed. If il tries to jump in the opposite direction, it has to do work ¢ Fd against
the force of the field.

Deviations from stoichiometry in compound solids often lead to the generation of
mobile electrons (or holes) and point defects such as vacancies. Therefore, there ate
electrons, holes, and various mobile ions available for conduction under an applied
field as depicted in Figure 2.28a. Many glasses and polymers contain a certain con-
centration of mobile ions in the structure. An example of a Na™ ion in silica glass is
shown in Figure 2,.28b. Aided by the field, the Na™ can jump from one interstice to a
neighboring interstice along the field and thereby drift in the glass and contribute to
current conduction. The conduction process is then essentially field-directed diffusion.
Ordinary window glass, in fact, has a high concentration of Na™ ions in the structure
and becomes reasonably conducting above 300300 “C. Some polymers may contain
ions derived from the polymenzation process, [rom the local degradation (dissocia-
tion) of the polymer itselt, or from waler absorption.

Conductivity & of the material depends on all the conduction mechanisms with
each species of charge carrier making a contribution, 5o it is given hy

g = Zq,nuif [2.51]

where #; is the concentration, g; is the charge carried by the charge camer species of
type i {for electrons and holes ¢; = ), and y; is the drift mobility of these carriers. The
dominant conduction mechanism in Equation 2.51 is often guite difficult to uniguely
identify. Further, it may change with temperature, composition, and ambient condi-
tions such as the air pressure as in some oxide ceramics. For many insulators, whether
ceramic, glass, or polymer, it has been found that, in the majority of cases, the conducti-
vity follows an exponential or Arrhenius-type temperature dependence so that  is
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Figure 2.29 Conductivity versus reciprocol femperature for various low-conductivity

solids,
I SOURCE: Dot selectivaly combined fram numercus saurees.

thermally activated,

'EI!T
O = O, BXp ~Ir [2.52]

where E, is the activation energy for conduoetivity.

Figure 2.29 shows examples of the temperature dependence of conductivity for
various high-resistivity solids: oxide ceramics, glasses, and polymers. When Equa-
ton 2.51 is plotted a3 log{e) versus 1,7, the result is a straight line with 2 negative
slope that indicates the activation energy E.. Equation 2.52 is usefu] in predicting
the conductivity at different temperatures and evaluating the temperature stability of
the insulator,

141

Temperature
dependence of
comeuetivity

CONDUCTIVITY OF A SODA-SILICATE GLASS Figure 2.29 shows the temperature dependence  [JHETIH PR

of 129 Na,O-88% Si0y;, soda—silicate glass which has 12 melf% Na; O and 88 mel% Si0;,
Calculate the activation energy of conductivily and compate this with the activation engrgy
for the diffusion of Na™ ions in the soda—silicate glass structure which is in the range (1L.65-

0.75 eV,
SCLUTION

According to Equation 2.32 when In{o ) is plotted against 1T, the slope should be — £, /% If the
conductivity at temperatures T, and T, are o, and o;, respectively, then the slope of the straight
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kine for 12% Na,O-88% 5i0; in Figure 2,29 is

1
SEUFE _} “_____'I:I{:}'zll"ﬁ|:] — —Eﬂ-
(T = 1/T) k
Takingo; = 10°* &2~' m~' andey = 107" @7 m~" in Figure 2.29, wefind /T, = (LO0203
and /T, = 0.00261 . Then, E. ase¥is
In(asfo) k WCI0-5/107%) 1,38 x 102

(T; — Ty e (D.00261 — 0.00205) 1,602 x 10-1°

A similar caleulation for the 24% Nap O-76% 810, gives an activation energy of (LG9 &V,
Both of these activation energies are comparable with the activation energy for the diffu-
sion of Na*t jons in the structure, Thus, Ma© diffusion is responsible for the conductivity.,

=071 eV

s =

EXAMPLE 2.24

DRIFT MOBIUTY DUE TO IONIC CONDUCTION  The sode—silicate glass of composition 20%
Na, O-80% Si0y and density of approximately 2.4 g em™ has a conductivity of 8.25x
10752 m* ar 150 °C. If conduction oceurs by the diffusion of Na* ions, what is their drift
mobility?

SOLUTION

We can calculate the drift mobility g, of the Na™ ions from the conductivity expression
o = q;hip; where g; is the charge of the ion Ma*, so that it is +e. and #; 15 the concentration of
MNa* ions in the stracture, For simplicity we can take the glass to be made of (Na; Ol 20510504
units. The atomic masses of Na, O, and 5i are 23, 16, and 28.1, respectively, The atomic mass
ol (Naz Oy (5102005 15

My = 02[2023} 4 1{16)] 4 0.8[1{28.1) + 2({16)]
= 60.48 g mol " of (Ma:0002(510;7)04
The number of (Ma; 00 7(Si05 )05 units per unit volume can be found from the density o by
ANy (2.4 % 108 kg m™ 3602 x 10% mel™')
M. (10~ kg/g){60.48 g mal ')
= 2.39 = 10 (Nay 00y 2 (5101055 units m™

fl=

The concentration =, of Na* ions is the concentration of Na atoms as each would be ionized,
Then n; can be expressed as n; = ay, = [atomic fraction of Na in (NaaOhyg (8100 4] = ».
= [ 0.2
T Lo224+ D+ 081+ 2)

](2.':‘-9 » 10®* m™ ) = 3.186 » 10 m~?

and

a (B25 = 10752~ tm™Dy
er; (LG0 = 10~ C)(3.186 % 107 m—1)

This 15 an extremely small drift mobility, by orders of magnitde, compared with the typi-
cal electron drift mobility in metals and semiconduciors. The reason is that the doft involves the
Nat ion jumping from one site to another by a diffusion process. This diffusion requires over-
coming 4 potential energy barrer, typically 0.5 to I eV, which limits drastically the rate of dif-
fusion by virtue of the Boltzmann facior,

=162 x 107 ¥ mdv! !

Hy =
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ADDITIONAL TOPICS
28 SKIN EFFECT: HF RESISTANCE OF A CONDUCTOR

Consider the cylindrical conductor shown in Figure 2.30a, which is carrying a current
f into the paper (). The magnetic field B of [ is clockwise. Consider two magnetic
field values B; and R;, which are shown in Figure 2.30a. B is inside the core and B
15 Just outside the conductor.

Assume that the conductor is divided into two conductors. The hypothetical cut is
taken just outside of By. The conductor in Figure 2.30a is now cut into a hollow cylin-
der and a smaller solid cylinder, as shown in Figure 2.30b and ¢, respectively. The
currents {; and 73 in the solid and hollow cylinders sum to f. We can arrange things and
choose B, such that our cut gives [y = I, = %I . Obviously, /| flowing in the inner
conductor is threaded {or linked) by both 5 and 8;. (Remember that £, is just inside
the conductor in Figure 2.30b, so it threads at least 99% of [,.) On the other hand, the
outer conductor is only threaded by 5,, simply because 3 flows in the hollow cylinder
and there is no current in the hollow, which means that £y is not threaded by ..
Clearly, [, threads more magnetic field than /; and thus conductor {c) has a higher in-
ductance than (b). Recall that inductance is defined as the total magnetic flux threaded
per unit current. Consequently, an ac current will prefer paths near the surface where
the inductive impedance is smaller, As the frequency increases, the current is confined
more and more to the surface region,

For a given conductor, we can assume that most of the current flows in a surface
region of depth 4, called the skin depth, as indicated in Figure 2.31. In the central region,

{a) Tatal current .
. : (b} Current in hollaw
"ﬂn PﬂFEr % L mr 'E?Iinder is lfl

8,
2
. < {e] Current in solid
inner cylinder is If2.

Figure 2.30 |lustration of the skin effect.

A hypothetical cut praduces o hollow outer eylinder and @ solid inner cylinder, Cut is

ploced where it would give equal current in each section. The bwo sections are in parallel so
that the currents in {b) and (e} sum o that in {a).

L=
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& = Skin depth iy
Figure 2.31 At high frequencies, the core !
regian exhibits more inductive impednr:n:e
than the surface region, and the current
Acewrs in the surfoce region of o conductor

defined approximately by the skin depth, 5.

the current will be negligibly small. The skin depth will obviously depend on the fre-
quency . To find &, we must solve Maxwell's equations in a conductive medium, a te-
dicus task that, fortunately, bas been done by others, We can therefore simply take the
result that the skin depth 4 is given by

1
= —= [2.53]

T
W AT fe
where o is the angular frequency of the current, « is the conductivity (& is constant
from dc up to ~10" Hz in metals), and . is the magnetic permeability of the medium,
which is the product of the absolute (free space) permeability w, and the relative
permeability g.,.

We can imagine the central conductor as a resistance R in series with an inductance
£.. Intuitively, those factors that enhance the inductive impedance w L, over the resistance
£ will also tend to emphasize the skin effect and will hence tend to decrease the skin
depth. For example, the greater the permeability of the conducting medium, the stronger
the magnetic field inside the conductor, and hence the larger the inductance of the cen-
tral region. The higher the frequency of the current, the greater the inductive impedance
L compared with 8 and the more significant is the skin effect. The greater is the con-
ductivity o, the smaller is R compared with w £ and hence the more important is the skin
effect. All these dependences are accounted for in Equation 2,53,

With the skin depth known, the effective cross-sectional area is given approxi-
mately by

A=ma®— mia— 5" = 2nab

where 8% is neglected (5 <€ a). The ac resistance r,. of the conductor per unit length is
therefore

i

a
Fao = — 7=

2.54
A 2mad B

where p is the ac resistivity at the frequency of interest, which for all practical pur-
poses is equal to the de resistivity of the metal. Equation 2.54 clearly shows that as w
increases, & decreases, by virtue of & oc @~ and, as a result, r,, increases.
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From this discussion, it is obvious that the skin effect arises because the mag-
netic field of the ac current in the conductor restricts the current flow to the surface
region within a depth of & = a. Since the current can only flow in the surface region,
there is an effective increase in the resistance due to a decrease in the cross-sectional
erea for current flow. Taking this effective area for current flow as 2mad leads to
Equation 2.54.

The skin effect plays an important role in electronic engineering because it limits
the use of solid-core conductors in high-frequency applications. As the signal frequen-
cies reach and surpass the gigahertz (10° Hz) range, the transmission of the signal over
& long distance becomes almost impossible through an ordinary, solid-metal conduc-
tor. We must then resort to pipes (or waveguides).

SKIN EFFECT FROM DIMENSIOMAL ANALYSIS  Using dimensional analysis, obtain the gencral [0S S #E]
form of the equation for the skin depth & in terms of the angular frequency of the current i, con-
t ductivity e, and permeability @

FOLUTION

The skin effect depends on the angular frequancy w of the current, the conductiviiy o, and the
magnetic permeability w of the conducting medium. In the most general way, we can group
these effiects as

L8] = [e]" o 1" [ ]

where the indices x, ¥, and z are to be determined, We then substitute the dimensions of each
quantity in this expression. The dimensions of each, in terms of the fundamental units, are as

i follows;
i
Quantity Units Fundumental Units Comment
i m m
i all g1
b gt m ke 'm™? B=¥A ' = hos !
=NmsC* ={kgms ) msC ¥}
e Wha~1m-! kg m " Wh=Tm’ ={NA~' m~ ' m%
= (kg sIHC sm)
Therefore,
[ m) =[s'FIC* s kg ™' m ) [kg m C2FF

Matching the dimensions of both sides, we see that ¥ = z; otherwise C and kg do not
Fcancel.

For m l=-3y+1z
For s l=—x+v¥
For C or kg =2y —12z o 0=—-v+41z
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Clearly, ¥ = y = z = —; is the only possibility. Then, & o [we u]17'/2. Tt should be reem-
phasized that the dimensional analvsis is not a proof of the skin depth expression, but a consis-
lency check thal assures confidence in the sgquation.

Mﬁlﬂﬂ EFFECT IM AN INDUCTOR  What is the change in the dc resistance of a copper wire of ra-
dius | mm [or an ac signal at 10 MHz? What is the change in the dc resistance at 1 GHz? Cop-
per has gg. = 170 = 107% 9 moor oge = 5.9 = 107 7! m™! and a relative permeability near
umity.

SOLUTION

Per unit length, vy = pg./ma’ and at high frequencies, from Equation 2.54, . = py (Zmad,
Therefore, r,. /re = afis.
We need to find 4. From Equation 2,33, at 10 MHz we have

= l%waﬂurl": =[x 2m x 10 % 10° x 5.9 = 10" x 1.257 x 10""‘]_”2
=207 = 107%  m = 20.7 um
Thus
Fac a {1073 )

—_— == =113
ra. 28 (2 207 x 10-%F m)

The resistance has increased by 24 times. At | GHz, the increase is 240 times. Furthermore,
the current is confined o a surface region of abowt ~2 x 107%(20 pmy at 10 MHz and
~2 3 1079 m {2 pm) ac 1 GHz, 50 most of the material is wasted, This is exacrly the reason why
solid conductors would not be used for high-frequency work. As very high frequencies, in the
gigaherz range and above, are reached, the best bet would be to use pipes (waveguides),

One final comment is appropriate, An inductor wound from a copper wite would have a
certain {} {quality factor) value” that depends inversely on its resistance, At high frequencies, G
would drop, becanse the curment would be limited to the surface of the wire. One way to over-
come this problem is 1o use a thick conductor that has 2 surlace couting of higher-conductivity
metal, such as silver. This is what the early radio engineers practiced. In fact, tank circuits of
high-power radio ransmitters often have coils made from copper tubes with a coolant flowing
inside,

29 THIN METAL FILMS

292.1 ConpucTion IN THN METAL FILMS

The resistivity of a material, as listed in materials tables and in our analysis of con-
duction, refers to the resistivity of the material in bulk form; that is, any dimension of
the specimen is much larger than the mean free path for electron scattering. In such
cases resistivity is determined by scattering from lattice vibrations and, if significant,
scattering from various impurities and defects in the crystal. In certain applications,

*The @ value refers o the quality fochar of an inductor, which is defined by &' = w8, whers w, is the resonant
frequency, { is the inductance, and R is the resistance due bo the bassas in e induchar
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notably microelectronics, metal films are widely used to provide electrical comduction
paths to and from the semiconductor devices, Various methods are used to deposit thin
films. In many applications, the metal film is simply deposited onto a subsirate, such
as a semiconductor or an insulator {e.g., Si(k ), by physical vapor deposition (PVD),
that is, by vacuum deposition, which typically involves either evaporation or sputter-
ing. In thermal evaporation, the metal is evaporated from a heated source in 8 vac-
oum chamber as depicted in Figure 1.74. As the metal atoms, evaporated from the
source, impinge and adhere to the semiconductor surface, they form a metal film
which iz often highly polycrystalline. Stated differently, the metal atoms in the vapor
condense 1o form a metal (1lm on a suitably placed substrate, In electron beam depo-
gition, an energetic electron beam is used to melt and evaporate the metal. Sputtering
is a vacuum deposition process that involves bombarding a metal target material with
energetic Ar ions, which dislodges the metal atoms and then condenses them onto a
substrate. The use of sputtering is quite common in microelectronic fabrication. Cop-
per metal intercomnect films used in microelectronics are usually grown by electrode-
position, that is, using electroplating, an electrochemical process, to deposit the metal
film onto the required chip areas. In many applications, especially in microelectronics,
we are interested in the resistivity of @ metal film in which the thickness of the film or
the average size of the grains is comparable to the mean distance between scattering
events £ (the mean free path) in the bulk material. In such cases, the resistivity of the
metal film is greater than the corresponding resistivity of the bulk crystal. A good ex-
ample is the resistivity of interconnects and various metal films used in the “shrinking”™
world of microelectronics, in which more and more transistors are packed into a single
51 crystal, and various device dimensions are scaled down.

292 ResistiviTy oF THIN FiLvms

Polycrystalline Filins and Grain Boundary Scattering In a highly polycrys-
talline sample the conduction electrons are more likely to be scattered by grain bound-
aries than by other processes as depicted in Figore 2.32a. Consider the resistivity due
to scattering from grain boundaries alone as shown in Figure 2.32b. The conduction
glectron is free within a grain, but becomes scattered at the grain boundary. Its mean
free path £4mins 1s therefore roughly equal to the average grain size d. If i = Eopaw 18

Grain 1 Figure 2.32
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|a) Grain boundarias cause scattering of

(bl

the eleciron and therefore add o the
rasistivity by Matthiessen’s rula.

{b) Fer a very grainy solid, the elecron
is soottered from grain baundar'y ta
grain boundary and the mean free path
is appronimately equal fo the mean
groin diamater.
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the mean free path of the conduction electrons in the single crysial (no grain bound-
aries), then

: : + : i + : [2.55]
£ *ﬂcr}'m.] t'::‘5'.r!au'|:|5- 2 d d

The resistivity is inversely proportional to the mean free path which means that the
resistivity of the bulk single crystal poyea ® 174 and the resistivity of the polycrys-

talline sample p o< 1/£. Thus,
A
i)
Forystal d

Polycrystalline metal films with a smaller grain diameter o (i.e., more grainy films)
will have a higher resistivity.

In a more rigorous theory we have to consider a number of effects. It may take
more than one scattering at a grain boundary to totally randomize the velocity, so we
need to calculate the effective mean free path that accounts for how many collisions
are needed to randomize the velocity, There is a possibility that the electron may be to-
tally reflected back at a grain boundary (bounce back). Suppose that the probability of
reflection at a grain boundary is R, If J is the average grain size (diameter), then the
popular Mayadas—Shatkez formula is approximately given by'”

[2.54]

o

m 14 1.338 [2.57al

Perystal

#=3 (%)

*  Eguation 2.57a is in the form of Matthiessen's rule and indicates that the grain bound-
ary scattering contribution gewin. to the overall resistivity is (1338 )perysw. The approxi-
mate sign in Equation 2,57 implies that Matthiessen's rule is “approximately,” though rea-
sonably well, obeved. For copper. typical R values are 0.24 to 0.40, and R is somewhat
smaller for Al. Equation 2.57 for a Cu film with & = 0.3 predicts p/gersw = 1.20 for
d = 3 ora grain size d = 120 nm since the bulk crystal A == 40 nm,

where [2.57h]

Surface Scattering Consider the scattering of electrons from the surfaces of a con-
ducting film as in Figure 2.33. Take the film thickness as D. Assume that the scatter-
ing from the surface is inelastic; that is, the electron loses the gained velocity from the
field. Put differently, the direction of the electron after the scattering process is fnde-
pendent of the direction before the scattering process. This type of scattering is called
nonspecutar. (If the electron is elastically reflected from the surface just like a rubber
ball bouncing off a wall, then there is no increase in the resistiviey.) It is unlikely that
one surface scattering will completely randomize the electron’s velocity, The mean
free path £, of the electron will depend on its direction right after the scatiering

1% This is obinired by exponding the ariginal lang axprassion about £ = | 4o tha first term, Ta two decimal pleces,
the exponsian is 1 + 1,338
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J_ Figure 2.33 Conduction in thin
D films may ba confrolled by
scattering from the surfoces,

+y
Scattering 2 T

i PR Figure 2,34 The mean free
peith of the electran dapands an
¥ the angle & after scoktering.

process as depicted in Figure 2.34, For example, if the angle ¢ after surface scattering
15 zero, (the electron moves transversely o the film length), then £, = 2. In general,
the mean free path £, will be 2 /{cos #) as illustrated in Figure 2.34.

Consider the surface scattering example in Figure 2.34 where the electron is scat-
tered from the bottom surface, If the scattering of the electron were truly random, then
the probability of being scattered in a direction back into the film, that is, in the +y di-
rection, would be 0.5 on average. However, the electron’s direction right after the sur-
face scattering is not totally random because we know that the electron cannot leave
the film; thus & is between —r/2 and +7 /2 and cannot be between —ar and 4. The
electron’s velocity after the first surface scattering must have a ¥ component along +y
and not along — ¥, The electron can only acquire a velocity component along —y again
after the second surface scattering as shown in Figure 2.34. It therefore takes two col-
lisions to randomize the velocity, which means that the effective mean free path must
be twice as long, that is 20/ cos #. To find the overall mean free path £ for calculating
the resistivity we must use Matthiessen’s rule. If A is the mean free path of the con-
duction electrons in the bulk crysral (no surface scatering), then

| I N cos 4
£ A dugg N 2D
We have to average for all possible & values per scattering, that is, & from —x /2
to 4+ /2. Once this is done we can relate £ to A as follows:

[2.58]

A

A
£ D

The resistivity of the bulk crystal is ppy o 1 /A, and the resistivity of the film is
g o0 18, Thus,

1/ M
B 1, —(—) [2.59]
Pl T\D
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ities of same thin Cu and Au flms at room femperature

Fihm Dinm)  &inm) & (€2 m) {Comment
Cu films (Polycrystaltine)
Cu an Tul¥, W, and =250 1Bis 21 Chemical vapor deposition (CW D),
Tiw {1} 45 32 Subsirate ternperature 200 °C, o
depends on d not £ = 250900 nm.
Ce on 500 nm Silg [2] 20.5 a5 Thermal evaporation. Substrate at KT.
17 7
Cuan §i{ WK [3] 32 3K Sputtered Cu films. Annealing ut 150 °C has
LOO 2 na effect, B = 040 and p 2 0.
Cuon glass |4] 40 50 As deposied
40 24 Annealed at 2060 0
40 5 Annealed ar 250 °C
Al thermal evaporated and PC.
An films
S epitaxial film on mica Kl4] a5 Single crystal on mica, p == (L8,
Specular scaltecing.
Ay PC ik on mica 30 34 PC. Sputtered on mica. p ig small.
Au Nibm on gloss a0 T PC, Bvaporated onto glass, pis small,
Nonspecolur scatlening,
A on glass [5] 0 o 92 PC. Sputtered films. & = (0.27-0.33.
40 18 189

MOTE: PC-pofvirysia
A= 3& 38 nm

llina film, RFrcom temperatura, O = film thickness, d = cveroge grain size. At BT for Cu, A = 3644 nm, ond for A,

SCHJRCES: Daota selectively combined from various sources, including [1] 5. Riedal af al., Microwlec, Engin. 33, 163, 1997, [2] H. [, Liv &
al, Thin Solid Films, 34, 151, 2007; [3] 1. W, Lim o¢ al,, Apgl, Surf. 5. 217, 98, 2003, [4] B, Suri & al, ) Appl Phys., 48, 2574, 1975,
[5] B, H. Carmely andd T, &, Ali, J, Appl. Phys,, 4, 2094, 1978,

Surface
Fealering
reststhvine

A more rigorous calculation modifies the numerical factor 1/ and also considers
what fraction p of surface collisions is specular and results in"!

o 3 o]
Az —(l = — = {3 2.60
P ]+EDH Pl > 0 [2.40]
which is valid down to about D == 0.3\ Equation 2.60 is in Matthiessen's rule format,
which means that the second term is the fractional contribution of the surfaces to the
resistivity. It can be seen that for elastic or specular scattering p = 1 and there is no
change in the resistivity. For p = 0, Equation 2.60 predicts g /o &= 1.20 for roughly
b == 1.94 or a thickness D = 75 nm for Cu for which A == 40 nm. The value of p de-
pends on the film preparation method (e.g., sputtering, epitaxial growth) and the sub-
strate on which the film has been deposited.

Equation 2.60 involves scattering from two surfaces, that is, from the two inter-
faces of the film. In general the two interfaces will not be identical and hence will

have different p coefficients; p in Equation 2.60 is some mean p value. Table 2.6

| " This is knenwn as 1he Fuchs=Sendheimer aquation in o simplifiad form.
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Figura 2.35

fo) ohim of Cu pelycrystalline films versus reciprocal mean grain size [diometer) 1,/d. Film thickness

D= 250-900 nm does not affect the resistivite, The straight ling is gim = 178 nR2 m + (595 niim
nm]|1/d).

ib) phim of thin Cu palycrystalling films versus film thickness D In this case, annecling (heat treating| the
films to reduce the pobycrystallinity does not significontly affect the resistivity bacause gy is confrolled
mainly by surface scattering,

| SOURCES: Data axtracted fram (o) 5. Riscel et ol Microsisc. Engin. 33, 143, 1997, and (k) W. Lim & al., Appl.
Swf, Sei, 217, 95, 2003

summarizes the resistivity of thin Cu and Au gold films deposited by various prepa-
ration techniques. Notice the large difference between the Au films deposited on a
noncrystalline glass substrate and on a crystalline mica substrate. Such differences
between films are typically atiributed to different values of p. The p value can also
change {increase) when the film is annealed. Obviously, the polycrystallinity of the
film will also affect the resistivity as discussed previously. Typically, most epitaxial
thin films, unless very thin (D < i), deposited onto heated crystalline substrates ex-
hibit highly specular scattering with p = 0.9-1.

Itis generally very difficult (o separate the effects of surface and grain boundary scat-
tering in thin polycrystalline films; the contribution from grain boundary scattering is
likely to exceed that from the surfaces, In any event, both contributions, by Matthiessen’s
peneral rule, increase the overall resistivity, Figure 2.35a shows an example in which the
resistivity pupn of thin Cu polyerystalhine films is due to grain boundary scatiering, and
thickness has no effect (D was 250-900 nm and much greater than A ). The resistivity g
is plotted against the reciprocal mean grain size 1/d, which then follows the expected lin-
ear behavior in BEquation 2,574, On the other hand, Figure 2.35b shows the resistivity of
Co films as a function of film thickness 2, In this case, annealing (heat treating) the films
to reduce the polverystallimity does not significantly affiect the resistivity because pgy, is
controlled primarily by surface scattering and is given by Equation 2.60.

THIN-FILM RESISTIVITY Consider the data presented in Figure 2.35a. What can you conclude 3811 LR
[ewmm the plot given that the mean free path 2 = 40 am in Cu?
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SOLUTION

Consider the results in Figure 2.35a, It is stated that the film thickness I = 250900 nm does

not affect the resistivity, which implies that pgyy, is controlled only by the grain size d. From
Equation 2.57a and b we expect

= (1+ 1.338) = + 1.33 ( i )}'

il .l'-"l:r;ul! 1 ] == p:;'s".a] - p:q.lsu] 1—R/) 4

This cquation represents the observed line when pg), is plotted againse 1/d as in Figure 2,354,
The pgm — 1/d ling has an intercept given by 17,8 nf2 m and a slope given by 3953 (nf2 m)
{nm). The intzrcept approximately matches the bulk resistivity peryaa of Cu. The slope is

.4
Slope = 1.33 P | —— | A
DPE ,ﬂ_-ﬂ (]—R)

: 1
or S95(nE mpmm) = | 33178 n2 m) (F‘J—I) {40 nm}

Solving this equation yields R == 0.39 for these copper films.

2.10 INTERCONNECTS IN MICROELECTRONICS

An integrated circuit (IC) is a single crystal of Si that contains millions of transistors
that have been fabricated within this one crystal. Interconnects are simply metal con-
ductors that are used to wire the devices together to implement the desired overall op-
eration of the IC,; see the photographs in Figure 2.36. Alominum and Al alloys, or
Al silicides, have been the workhouse of the interconnects, but today's fast chips rely
on copper interconnects, which have three disunct advantages. First, copper has a re-
sistivity that is about 40 percent lower than that of Al In high-transistor-density chips
in which various voltages are switched on and off, what limits the speed of operation
is the RC time constant, that is, the time constant that is involved in charging and dis-
charging the capacitance between the interconnects, and the input capacitance of the
transistor; usually the former dominates. The RC is substantially reduced with Cu re-
placing Al so that the chip speed is faster. The second advantage is that a lower overall
interconnect resistance leads to a lower power consumption, lower I2R.

The third advantage is that copper has superior resistance (o electromigration, a
process in which metal atoms are forced (o migrate by a large corrent density. Such
clectromigration can eventually lead to a fatlure of the interconnect. The current den-
gity in interconnects with a small eross-sectional area can be very high, and hence the
electron drift velocities can also be very high, As these fast electrons collide with the
metal ions there is @ momentum transfer that slowly dofts the metal 1ons. Thus, the
metal ions are forced to slowly migrate as a result of being bombarded by drfling elec-
troms; the migration is in the direction of clectron flow (not current flow). This atomic
migration can deplete or accumulate matenial in certain local regions of the intercon-
neet structure. The result is that electromigration can lead to voids (material depletion)
or hillocks (material accumulation), and eventually there may be a break or a short be-
tween interconnects (an interconnect failure). The electromigration effects are reduced
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Figure 2.36

fa} Matal infarconnects wiring devices on o silicon crystal. Three different metallization levels M1, M2, and M3 are used,
The dielectric behween the interconnects has been etched away fo expose the interconnect structure.

(b} Cross section of a chip with seven levels of metallization, M1 to M7, The imoge is obtained with a sconning electron
microscope |SEM),

| SOURCES: (o) Courtasy of 1B, |b) Courtasy of Mork Bohr, Intel,

in Cu interconnects because the Cu atoms are heavier and cannot be as easily migrated
by an electric current as are Al atoms.

There is a relatively simple expression for estimating the RC time constant of
multilevel interconnects that is useful in comparing vanous interconnect technolo-
gies and the effects of interconnect metal resistance p, the relative permittivity £, of
the interlevel dielectric (insulation) between the interconnects, and the geometry of
the whole interconnect wiring. First consider a simple interconnect line, as in Figure
2.37a, whose thickness is T, width is W, and length is L. Its resistance R is simply
gL/ (TW). In the chip, this interconnect will have other interconnects around it as
shown in a simplified way in Figure 2.37b. It will couple with all these different con-
ductors around it and will have an overall (effective) capacitance C.q. RC.y 15 what
we know as the RC time constant associated with the interconnect line in Figure
2.37h,

Suppose that the interconnect is an Mth-level metallization. It will have a series of
many “horizontal” neighbors along this Mth level. Let X be the nearest edge-to-edge
separation and P be the pitch of these horizontal neighbors at the Mth level. The pitch
P refers to the separation from center to center, or the periodicity of interconnects;
P =W + X. At a height H above the interconnect there will be a line running at the
{M + 1} level, Similarly there will be an interconnect line at a distance H below at the
(M — 1) level, We can identify two sets of capacitances. Cy represents the capacitance
in the vertical direction, between the interconnect and its upper or lower neighbor. Cy
is the lateral capacitance in the horizontal direction, between a neighbor on the right or
left. Both are shown in Figure 2.37¢. The interconnect therefore has two Cy and two
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{a) A single line intarconnect surrounded by dielectric insulation,
{b} Inferconnects crisscross sach other, There are three levels of interconnect: M — 1, M, and M + 1.
lc) An interconnect hos vertical and horizental capacitances Cvand Cy,
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C i, four capacitances in total, and all are in parallel as shown in Figure 2.37¢c. From
the simple parallel plate capacitance formula we can wnte
EqE, TL &6 WL

Cy = and 2
i X 2 H

Usually Cp 15 greater than Cy. From Figure 2.37¢, the effective capacitance
Cog=2(Cy + Cy)

C 2 L( L + B ) [2.61]
et = 2E,8 — e — ;
It aEr ¥ H
which is the effective multilevel interconnect capacitance., We now multiply this
with R = pl/(TW) to obtain the RC time constant,

RC = 2z,¢ (Lz)(T+W) [2.43]
| — r.lr.ﬂ' TW x H =

Equation 2.62 is only an approXimate first-order calculation, but, nonetheless,
it turns out to be quite a useful equation for roughly predicting the RC time constant
and hence the speed of multilevel interconnect based high-transistor-density
chips.'* Most significantly, it highlights the importance of three influencing effects:
the resistivity of the interconnect metal; relative permittivity , of the dielectric in-
sulation between the conductors; and the peometry or “architecture” of the inter-
comnects L, T, W, X, and H. Notice that L appears as L* in Eqguation 2.62 and has

12 & mare fgoreus thecry would consider the interconnect system as having e distribated recistonce and o
distributed capecitonce, similar be a frensmission line: & topical research area. The treatmant hera is moere than
sufficient o obiein opprosimate results and undersiand the fectors that caniral the intercannect delay e,



2. 19 Interconnects in Microglectronics

significant control on the overall £C. Equation 2.62 does not obviously include the
time it takes to tum on and off the individval transistors connected to the intercon-
nects. In a high-transistor-density chip, the latter is smaller than the interconnect
RCtime constant.

The reduction in the interconnect resistivity p by the use of Cu instead of Al has
bezn a commendable achievement, and cuts down RC significantly. Further reduction
in o is limited because Cu already has a very small resistivity; the smallest p is for Ag
which is only about 5 percent lower. Current research efforts for reducing RC further
are concentrated on mainly two factors. First is the reduction of ¢, as much as possible
by using dielectrics such as fluorinared 510y (known as F5G) for which ¢, = 3.6, or,
more importantly, using what are called low-k dielectric materials (& stands for &,.)
such as various polymers or porous dielectrics'® that have a lower &,, typically 2-3,
which is a substantial reduction from 3.6. The second is the development of optimized
interconnect geometries that reduce L* in Equation 2.62. (T, W, X, and H are all of
comparable size, so L? is the most dominant geometric factor.)

The ratio of the thickness T to width W of an interconnect is called the aspect
ratio, 4, = T/ W, This ratio is typically between 1 to 2. Very roughly, in many cases,
X and W are the same, X = W and X = P/2 (see Figure 2.37b). Then Equation 2.62
simplifies further,

RC =~ 2505,;:.51( % 1 %) [2.63]

The signal delays between the transistors on a chip arise from the interconnect RC
time constant. Equations 2.62 and 2.63 are often also used to calculate the multilevel
interconnect delay time. Suppose that we take some typical values, L = 10 mm,
T=lum, P11 pm, p=17 082 m for a Cu intercontiect, and &, = 3.6 for FSG;
then RC == 0.43 ns, not a negligible value in today's speed hungry computing.
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MULTILEVEL INTERCOMNMECT RC TIME CONSTANT In a particular high-transistor-density [C

where copper is used as the interconnect, one level of the multlevel interconnects has the fol-
lowing characteristics: pitch P = 0.45 pm. T = 0.36 pm, dg = 1.6, H = X, and &, = 3.6,
Fipa:l the effective capacitance per millimeter of interconnect length, and the BC delay time per
L as psfmm? (as normally used in industry).

SOLUTION

Sinee Ag =T/W, W=T/Ap =0.36/1.6=0.225 yum. Further, from Figure 2.37h,
P=W<+X,sothat X =P -W=045-0225=0225pum H=X=0225um.
Thus, Equation 2.61 for L = | mm = 10~ m gives

row 036  0.225
= 2o L = + — ) =2(8.85 x 107133 u-3[—— ——]=-7F
Cett £akrd (Jl.’ + H) 2(8.85 » 107 *)3.6)(1 ) 0.225 23 0.225 0.17p

I* The mixdure rules mentioned in this chopter um up egoin in o different but recognizable form for predicting the
overadl relalive parmittvity af parcus dislectrics,
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which is about 0.2 pF per millimeter of interconnect, The RC time constant per L7 is

RC _ (|)(T+WJ_EH(|+1)
I L T s T A

= 2(8.85 » 107 (36017 x 107

1 1
[m.zzﬁ % 10530225 = 10-5) © (0.36 x 10-6)(0.225 = 10-5)

=34%x 1077 sm™ or 34 ps mm ™

2.11 ELECTROMIGRATION AND BLACK’S EQUATION

Interconnects have small cross-sectional dimensions, and consequently the current
densities can be quite large. Figure 2.38a depicts how the continual bombardment of
lattice atoms {metal ions) by many “fast” conduction electrons in high-current-density
regions can transfer enough momentum to a host metal atom to migrate it, that is, dif-
fuse it along a suitable path in the erystal, The bormbarded metal atom has to jump to a
suitable lattice location to migrate, which is usually easiest along grain boundaries or
surfaces where there is sufficient space as depicted in Figure 2.38a and b. Grain bound-
aries that are parallel to the electron fow therefore can migrate atoms more efficiently
than grain boundaries in other directions. Atomic diffusion can also oceur along a sur-
face of the interconnect, that is, along an interface between the interconnect metal and
the neighboring material. The final result of atomic migration is usvally either mater-
ial depletion or accumulation as depicted in Figure 2.38¢c, The depletion of material

Void
and
failure

O O O Grain boundary ¥
OO0
OO0

O

{urmend

Interoomect

Current O

Figure 2.38

{a) Elactrens bombard the metal ions ond force them to slowly migrate.

{b) Formation of woids and hillacks in o polycrystalline metal interconnect by the elechromigration of metal iens along grain
boundaries and interfaces,

{c) Accelerated tests on o 3 pm chemicol vapor deposited Cu line: T= 200 °C and J = & MA cm™2, The photos show void
farmation and fatal failure (break), and hillack fermation.
| SOURCE: Courlesy of L, Arnoud et ol Microelechronics Relichilit, 40, 86, 2000,
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leads to a void and a possible eventual break in the interconnect. The accumulation of
material leads to a hillock and a short between lines. Interconnect failure by electromi-
gration is measured by the mean time to 50 percent failure #,yr¢. There are two factors
that control the rate of electromigration Rgpy. First is the activation energy E 4 involved
in migrating (diffusing) the metal atom, and the second is the rate at which the atoms are
bombarded with electrons, which depends on the current density . Thus,

Rep o 7 r:xp( Eﬂ)
EM G

kT
in which the rate is proportional to F°, instead of just J because it is found
experimentally that n =1. From the electromigration rate we can find the average time
nre it takes for 30 percent failure of interconnects because this time is inversely
proportional to the electromigration rate just given:

tare = Agd ™" (E" [2.64]
MTF = Ag exp kT) -
whete Ay is a constant. Equation 2.64 is known as Black's equation, and it is ex-
tremely useful in extrapolating high-temperature failure tests to notmal operating tem-
peratures. Electromigration-induced interconnect failures are typically examined at
elevated temperatures where the failure times atre over a measurable time scale in the
laboratory (perhaps several hours or a few days). These experiments are called accel-
erated failure tests because they make use of the fact that at high temperatures the
electromigration failure occurs motre quickly. The results are then extrapolated to room
temperature using Black’s equation.

Typically electromipration occurs along grain boundaries or along various inter-
faces that the interconnect has with its surroundings, the serniconductor, dielectric
matetial, ete. The diffusion coefficient has a lower activation energy E4 for these mi-
gration paths than for diffusion within the volume of the erystal. The electromigration
process therefore depends on the microstructure of the interconnect metal, and its in-
terfaces. Usually another metal, called a barrier, is deposited to occupy the interface
space between the interconnect and the semiconductor or the oxide. The bartier pessi-
vates the interface, rendering it relatively inactive in terms of providing an electromi-
gration path. An interconnect can also have a termperature gradient along it (The heat
generated by T2 R may be conducted away faster at the ends of the interconnect, leav-
ing the central region hotter. ) Electromigration would be Faster in the hot region and
very slow (almost stationary) in the cold region since it is a thermally activated
process. Consequently a pileup of electromigrated atoms can occur as atoms are mi-
grated from hot to cold regions along the interconnect, leading to a hillock. "

Pure Al suffers badly from electromigration problems and is usually alloyed with
small amounts of Cu, called A Cu), to reduce electromigration to a tolerable level. But
the resistivity increases, (Why?) In recent Cu interconnects, the most important diffu-
sion path seems to be the interfuce between the Cu surface and the dielectric. Surface
coating of these Cu interconnects provides control over electromigration failures.

| " Somewhal lke o kafie aecident plleup in which speeding cars run inle stalionary ears ohead of tham.
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DEFINING TERMS

Alloy is a metal that contains more than one element.
Brass is a copper-rich Cu-Zn alloy.
Bronze is a copper-rich Cu—Sn alloy.

Drift mobility is the drift velocity per unit applied field,
If ey is the drift mobility, then the defining equalion
is vy = ', where v, is the drift velocity and £ is the
field,

Drift velocity is the average electron velocity, over
all the conduction electrons in the conductor, in the
direction of an applied electrical force (F = — o for
electrons). In the absence of an applied field, all the
electrons move around randomly, and the average
velocity over all the electrons in any direction is zero.
With an applied field ., there is a net velocity per
electron vy,, in the direction opposite to the Geld,
where vy, depends.on £, by virtue of Uy = ug'E;,
where ju, is the drilt mability,

Electrical conductivity (7 )is a property of a material
that quantifies the ease with which charges flow inside
the material along an applied clectric field or a voltape
gradient, The conductivity is the inverse of electrical
resistivity o. Since charge flow is caused by a voltage
gradient, o is the rate of charge flow acruss a unit area
per unit voltage gradient, f = o T.

Electromigration is current density—induced diffusion
of host metal atoms due to their repeated bombardment
by conduction electrons at high current densities: the
metal atoms migrate in the direction of electron How.
Black's equation describes the mean time to failure

of metal film interconnects duc to electromigration
failure.

Fourier’s law statez that the rate of heat flow @
through a sample, due 1o thermal conduction, is pro-
portional to the temperature gradient 4T/dx and the
cross-sectional arca A, that is, ¢ = - w AldT/dx),
where « is the thermal conductivity.

Hall coefficient (#,) is a parameter that gauges
the magnitude of the Hall effect. If E, is the electric
field in the y direction, due to a current density J,
along x and a magnetic field 8. along z, then Ry =
'Ev,l" .f_,- Ba 1

Hall effect is a phenomenon that occurs in a conduc-
lor carrying a current when the conductor is placed in a
magnetic ficld perpendicular 1o the current, The charge
carriers in the conductor are deflected by the magnetic
field, giving rise to an electric field (Hall field) that is
perpendicular to both the current and the magnetic
field. If the current density 4, is along x and the
magnetic ficld 8, is along z, (hen the Hall field is along
cither +y or —y, depending on the pelarity of the
charge carriers in the material,

Heterogeneous mixture is a mixture in which the in-
dividual components remain physically separate and
possess different chemical and physical properties: that
15, & mixture of different phases,

Homogeneous mixture is a mixture of two or more
chemical species in which the chemical Properties
{#.g., composition) and physical properties (¢, g., density,



heat capacity) are uniform throughout. Ahomogeneous
mixture is a solution.

Interconnects are various thin metal conduciors in a
51 inlegrated circwil that conneet various devices Lo im-
plement the required wiring of the devices, In modem
ICs, these interconnects are pomarily electrodeposited
Cu films.

Tomic conduction is the migration of ions in the mater-
ial as a result of Geld-directed diffusion. When a positive
i in an interstitial site jumps t© a neighboring
interstitial site in the direction of the field, it lowers its
potential energy which is a favorable process. If it jurmps
in the opposite direction, then i has to do work against
the force of the field which is undesirable. Thus the dif-
fusion of the positive jon is directed along the field.
Isomorphous phasze dingram is a phase diagram for
an alloy that has unlimited solid solubility,

Joule’s law relates the power dissipated per unit vol-
ume £,y by 2 current-cartying conductor to the applied
field £ and the current density S, such that P, =
JE=aEL

Lorentz force is the force experienced by a moving
charge in 8 magnetic feld, When a charge g is moving
with a velocily v in 8 magnetic field B, the chanee ex-
pericnces a force F that is proportional (o the magni-
tude of its charge g, its velocity v, and the fizld B, such
that F = gv =« B.

Magnetic field, magnetic flox density, or magnetic
induction (B) is a vector field quanticy that describes
the magnitude and direction of the mapgaetic force ex-
erted on a moving charge or a current-carrying con-
ductor, The magnetic force is essentially the Lorentz
force and excludes the electrostatic force g€,
Magnetic permeability {p) or simply permeability is
a property of the medium that characterizes the effec-
tiveness of a medium in generating as much magnetic
field as possible for given external currents. It is the
product of the permeability of free space (vacuum) or
absolute permeability (u, ) and relative permeability of
the mediom (), Le, 0 = papi,.

Magnetometer is an instrument for measuring the
magnitude of a magnetic field.

Matthiessen’s rule gives the overall resistivity of a
metal as the sum of individual resistivities dug o
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scattering from thermal wvibrations, impurities, and
crystal defects. If the resistivity due to scattering from
thermal vibrations is denoted pr and the resistivities
duc to scattering from crystal defects and impurities
can be lumped into a single resistivity term called the
residual resistivity og, then o = or + gr.

Mean free path is (he mean distance traversed by an
electron belween seatleting events, If t is the mean free
time between scattering events and ¢ 15 the mean speed
of the electron, then the mean [Tee path is £ = ur.

Mean free time is the average time it takes to scatter
a conduction electron, If # is the free time between
collisions (between acattering events) for an electron
labeled i, then T = §; averaged over all the electrons,
The drift mobility is related 1o the mean free time by
g = et/m,, The reciprocal of the mean free ume 15
the mean probability per unit time that a conduction
eleciron will be scattered; in other words, the mean
frequency of scallering events,

Nordheim’s rule states that the resistivity of a solid
solution {an isomorphous alloy) due to impurities p; is
proportional to the concentrations of the solute X and
the solvent (1 = X

Phase (in materials science) is a physically homoge-
neous porton of a materials system that has uniform
physical and chemical characteristics.

Relaxation time is an cguivalent lenmn lor the mean
free time between scattering cvents,

Residual resistivity () is the contribution to the
resistivity arising from scattering processes other than
thermal vibrations of the lattice, for example, impuri-
ties, grain boundaries, dislocations, point defects.
Skin effect is an electromagnetic phenomenon that, at
high frequencies, restricts ac carrent flow to near the
surface of a conductor to reduce the energy stored in
the magnetic field.

Solid solution is a crystalline material that is a homo-
geneous mixture of two or more chemical specics, The
mixing occurs at the atomic scale, as in mixing alcohol
and water. Solid solutions can be substitutional (as in
Cu-Ni} or interstitial (for example, C in Fe).

Stefan’s law is a phenomenclogical description of

the cnergy radiated (as elecromagnetic waves) from a
surface per sccond, When a surface is heated w oa
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temperature T, it radiates net energy at a rate given by
FProtioed = €0 A{T* — 77y, where o5 is Stefan’s con-
stant {3.67 = 107* W m™ K=", ¢ is the emissivity of
the surface, A is the surface area, and T, is the ambient
tcmpcrature.

Temperature coefficient of resistivity (TCR) (w,) is
defined as the fractional change in the electrical resis-
tivity of a material per unit increase in the temperature
with respect to some reference temperature T,

Thermal conductivity () is a property of a material
that quantifies the ease with which heat flows along the
matcrial from higher to lower temperature regions.
Since heat flow is due to a temperature gradient, ¢ is
the rate of heat flow across a unit area per unit temper-
aturc gradicnt.

Thermal resistance (#) is a measure of the difficuley
with which heat conduction takes place along a material

ELECTRICAL AND THERMAL CONIHICTION IN SOLIDS

sample, The thermal resistance is defined as the em-
perature «rop per unit heat flow, # = AT/Q", It de-
pends on both the material and its geometry, If the heat
losses from the surfaces are negligible, thend = /x4,
where L is the length of the sample (along heat flow)
and A is the cross-sectional area.

Thermally activated conductivity means thal the
conductivity increases in an exponential fashion with
temperature as in o = o, eapi—E,/&T) where E, is
the activation ehergy.

Thin film is a conductor whose thickness is typically
less than ~1 micron; the thickness is also much less
than the width and length of the conductor. Typically
thin films have a higher resistivity than the corre-
sponding bulk matenal due to the grain boundary and
surface scallering.

QUESTIONS AND PROBLEMS

2.1 Elecirical conduciion Nz is o monovalent metal (BCC) with o density of 09712 g cm™?. Its atomic
muss i5 2299 ¢ mol ! The drift mobility of electrons in Na s 53 cm® %' 5!,

.

d.

Consider the collectinn of conduction electrons m the solid. 1t each Ma atnm donates one electron
fo the electron sea, extimaie the mean separation between the elecirons, (Mote: If & is the coneen-
trution of particles, then the purticles” mean separation d = 1/8'79 )

Estimute the mesn separation between wn electron (¢~ ) and a metal ion (Na'), assuming that maost
of the time the electron prefers to he between twn neighboring Wat ions. What is the appeoxineane
Coulombic interaction energy (in e¥) between an electron aod an Mo~ ion?

How does this electrondmetal-ion interaction enecgy compare with the avergge thermal enecgy per
particle, sreording to the kinetic molecoler theory of matter? Do you expect the kinetic molecular
theory to be applicable to the conduction electrons in Na? If the mean electron/metal-ioan interac-

‘ned eneegy is of the same order of magnitude as the mean EE of the electrons, what is the mewn

speed of electroms in Ma¥ Why should the mean kinetic energy be comparable to the mean
electron/metal-ion interaction enargy?

Calculate the elecrical conductivity of Ma and compare this with the experimental value of
2.0 % 107 27 m~! and comment v the difference,

2.2 Eectrical comduction  The resistivity of aluminum al 25 C has been measired to be 2.72 = 1075 G m,
The thermal coellicient of resistivity of aluminum at 0°C is 4,28 » 107% K~ Aluminum has a valency
of 3, a density of 2.7 E n:.'m"', and an atomic mass of 27,

Caloulate the n:ﬁisti\-'it:.' of aluminum st —4H1 *{7,

Estimuate the mean free time betwesn collisions for the conduction electrons in aluminem at 23 = B

.
& What is the thermal cocfticient of resistivity at —a) 7
C.
and hence estimate their deift mobility,
.

If the mean speed of the conduction electrons is about 2.0 = 109 m s~!, caleulane the mean free
puth and compare this with the interutomic separation in Al (A1 is FOC). What should be the
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thickness of an Al film that is deposited on an [C chip such thal its resistivity is the same as thar
of bulk Al7

e, What 15 the percentuge change in the power loss due to Joule heating of the aluminum wire when
the temperature drops trom 25 “C oo —340 507

23 Conduction ingodld  Gold is in Lhe same group as Cu and Ap. Assuming thae each Au atom donstes ons
conduction electron, calculate the drift mobility of the clectrons in gold at 22 “C. What is the mean frec
path of the conduction electrons if their mean speed is 1.4 « 105 mg=l7 (Use i, and ey in Table 2,1.)

24 Effective pumber of conduction electrons per atom
a  Electron drift mobility in tin (S0 is 3.9 em® ¥~ 571, The room temperature {20 “) resistivity of

8o is about 110 5k m, Atomic mass My aod density of So are 118,69 g mel™ and 7,30 g em ™,
respectively. How muny “free” electruns are donated by esch Sn atom in the crvstul? How does this
compare with the posigon of Snin Group IVB of the Perindic Table?
b Consider the resistivity of few selected metals from Groups 1o TV in the Periodic Table in Table
2.7. Caleulate the number of conduction electrons contributed per atem and compare this with the
locution of the element in the Periodic Tuble, What is vour conclusion?
Toble 2.7 Selection of metols from Groups | to IV in the Periodic Table
Periodic Drensity Hesistvity Muohility
Metal Group Valency igem™) (g m) {em® ¥l
Ma [A 1 097 4240 53
Mg A 2 1.74 445 17
Ag IB 1 [ 13 154 Fh
Za ITB 2 7.14 592 B8
Al B 3 13 26.5 12
5n I¥H 4 7.30 111 39
Pb IVE 4 11.4 206 23

| MOTE: Mekbility from Hall-affect macsuraments.

1.5 TCR and Matthiessen"s rule  Determine the temperature cocfficient of resistivity of pure iron and of
electrotechnical stee] (Fe with 4% C), which are used io various electrical machinery, at two tempera-
tures: 0°C and 500 “C. Comment on the similanties and differeoces in the resistivily vemsus temperi-
ture behavior shown in Figure 2.39 fn_er the baro material s,

L5 Figure 2,39 RKesistivity versus temperature for
- pure iran and 4% C steal.

E B
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1.6 TCR of isomorphous alloys
a.  Show that tor an isnmorphous alloy A%—B% (B% solue in A% solvent), the remperature cogff-
cient of resistivity wag 15 given by

whete pap is the resistivity of the alloy (A8} and p4 and o4 are the resistivity and TCR of pure A.
What are the assumptions behind this equation?

k. Determine the composition of the Co-Ni alloy that will have s TCR of 4 2 10— K1 that §s, 2
TCR that is an arder of magnitude less than that of Cu, Owver the composition range of mteresy, the
resislivily of the Cu—Ni alloy cun be caloulated from goygg = oy + Cor X (1 — X)), where Oy, the
eftective Mordheim coefficient, is ghout 1310 nE2 m,

.7 Resistivity of isomorphous alloys and Nordbeim®s rule  What are the maximum atomic and weight
percentuges of Cu that can be added to Ao withoot exceeding a resistivicy that is twice that of pure gold?
What are the maximum atomic and weight percentages of Auv thet can be added 1w pure Cu without ex-
ceading twice the resistivity of pure copper? (Alloys are normally poepared by mixing the elements in
weighe )

28 Nordheim®s cule und brass  Brass is a Co—Zn alloy. Teble 2.8 shows some typical resistivity values for

varions Cu—£n compnsitions in which the allay is a solid solution (up o 30% Zn),

a. Plot g versus X{1 — X From the slope of the best-fit line find the mean (effective) Nosdheim co-
cftacient £ for Zn dissolved in Cu over thiz compositional rangs.

b Since X is the atomic fraction of Zn in brass, for each atom i e alloy, there are X 2o sloms and
{1 — X Cu atoms. The conduction electrons consist of each Zn donating two electrons and each
copper donating one electron, Thuos, there are 2{X14+ [{] — X1 =1+ X conduction electrons
per atom, Since the conductivily 15 proportional o the electoon concemtration, the combined
Mordheim—Mutthiessens rule must be scaled up by {1 4 X5,

o Pt CRO—E)
hrase = i+ X1

Pl the duta in Table 2.8 as o(1 4 X} versus X {1 = X}. From the best-fit line find C and g, What
is vour conclusion? {Compare the comelation cocfficients of the best-fit lines in your twa phj:s.]s}

Table 2.8 Cu-Zn brass u|||:|3.-'s.

Znat% inCue-Fn (1 0,34 0.5 0453 300 4,65 Bag 154 1955 29,30
Resistivity nik m 17 181 1e.B4 207 26.8 9.5 3.1 490 548 635

| SOURCE: H. AL Fairbonk, Fhys. Bev, 66, 274, 1944,

% Resistivity of solid solution metal alloys: testing Nordheim's rule  Nordheim's mile seeounts for the
increwst in Lthe resistivity resulting from the scattering of electrans from the random distribution of im-
purity {solute} atoms in the host (solvent) ervstal. Tt can nonetheless be quite useful in approximately

15 Miere rigornuslf. Phross = Orrarts + Ceft X |1=X], in which opgey is the resisliviky of lhe Purfecf metlrix. A.Cnmnl!ing
for the extra alecirons, onare == o /[1+X], whare g, is the pure metal malriz resistivity and o s the Mordheim
coefficient of the compesition of infarest, given by Cur = CA1-+X1%2, (It is assumad that tha otomic concantroticn
does nat :hnnge .ugniﬁcn nll;«'.| As dlwn':,r:.. thera are alio alher |'|'|=|;|ri=:.; qul B is more than wH:icimi 'Fnr masd
proctical purposes.
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predicting the resistivity a1l one compasition of a salid salution meal alloy, given the value a1 another
compositon, Tuble 2.9 lists some solid sulution metal allovs snd pives the resistivity o at one composi-
tion X and agks tor a prediction & based on Nordheim’s rule at another composition X', Fill in the table
for o' and compare the predicted values with (he experimental valpes, and comment,

Table 2.9 Resistivities of some solid solution metal alloys

Allny

Ag=An Al=Ag Cu-Pd Ap-rd An-Pd rd-r M- Cu=Ni
X fut. %) BE% Au BT Ag 6.2% Pd 10.1%: Pd BERB P TEO% P 0% Pl L16%Ni
O, (mi m} 16.2 227 17 162 22T 108 1058 17
aat X (ng: m) 44.2 541 L] 598 54.1 | B2 14418 50
Cer
X 15.4% Au 4% Ag 13% Pd 15.2% Pd 17.1% Pd 15.5% Pt 138% Pd  234% M
o at X (nS m)
o al X (nl}m) 6.3 107.2 121.6 538 822 244 (13 - 300
Experimeniul

MOITE: First symbal (2., Ag in Agdu) 1s the mairix (salvent] end the second |Au) is the edded solute. X s in o %, converted from
fradisional waight percantagas repartad with allews. Cup is the effactive Mardhaim cosfficiant in & = o, 4+ X1 - X].

200 TCR and alloy resistivity  Tuble 2.10 shows the resistivity and TCR (oh of Cu—Ni alloys, Plot TCR
versus [/ 0, and obtain the beat-tit line. What 5 your conclusion® Consider the Matthiessen rule. and ex-
Plain why the plot showld be a steaight line, What is the relationshap betwesn opy, ecg, Sousi, and eogy 7 Can
Uis be penerulized?

Table 2.10  Cu-i alloys, resiztivity, and TCR

Wi w5 in Cue-Ni

] 2 & 11 20
Fegistivity (nf2 m) 17 54 100 150 1]
TCR (ppm ro-ly 4270 | 350 350 430 160

| MOTE: ppm-parts per million, e, 1075,

.11 Electrical ond thermal conductivity of In - Electron drifl mobility in indium has been measwred 1o
beficm? ¥ 5! The rom temperature (2720 resistivity of Inis 8.37 = 107" 2m, und its wlomic mass
and density are 114,82 amu or g mol =™ and 731 gem ™, respectively,

#.  Based on the resistivity value, detecmine how many free electrons are donated by each In atom in
the eryztal. How does this comparne with the positon of Lo in the Periodic Table {Group OIRT
B 11 the mean speed of conduction electrons im In is 1.74 = 108 cin s~ what is the mean free path?

¢ Culeulate the thermal conduectivity of In. How does this compare with the experimental value of
BlL6Wm™ KoY

212 Elecirical and thermal conductivity of Ag The electron drift mobility in silver his been measured w
be 56 cm® ¥~! 5! ar 27 “C. The atomic mass and density of Ag are given as 107.87 amu or g mol !
and 10.50 g em™3, respectively.

o Asstming that each Ag atem contributes one comduction electran, caleolate the resistivicy of Ag at
27 *C, Compere this valoe with the measured value of 16 x 107 £2m at the same wemperature and
suggest reasons for the diftcrence.

& Caleulate the thermal conductivity of silver at 27 °C and at 0 °C,
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Mixture rules A 70% Cu=30% Zn brass electrical component has been made of powdered metal and
vonting 15 vol.% porosity, Assume that the pores are dispersed randoroly, Given that the resistivity of
F0% Cu-30% Zn brass is 62 nfl m, caleulate the effective resistivity of the bruss component wsing the
simple conductivity mixiure mole, Equation 2,26, and the Reynolds and Hoogh rule,

Mixture rules

4. Acertain carbon electrode used in electrical arcing applications is 47 percent porous. Civen that the
resistivity of graphite (in polycrystalline forro}) at room temperatore is aboni 9.1 e52m, estimate the
effective resistivity of the corbon elecirode using the sppropriate Reynolds and Hough mule and
the simple conductivity mixture rule. Compare vour estimates with the measured vuloe of 18 @i m
and commens on the differences,

b Silver pamicles are dispersed in a graphite paste to increase the effective conductivity of the paste.
If the volume froction of dispersed silver is 30 percent, what is the effective conductivity of this
pasie?

Ag-Ni alluys (contacl materinks) and the mixtwre roles  Silver allovs, particulady Ag alloys with the
precions metals Pr, Pd, Mi, and Aw, are extensively used as contact materials in varioos switches. Alloy-
ing Ag with mher metals generally increases the hardness, wear resistance, and corrosion resistance ap
the expense of electricul und thermal conductivity. For example, Ap-Ni alloys are widely vsed ag con-
tact majerials in swifches in dnmestic appliances, control and selector switches, circoit breakers, and au-
tomolive switches up fo several hundred amperes of current, Table 2,11 shows the resistivities of four
Ag—Ni alloys used in make-and-break as well s disconnect contacts with corrent cadngs up -~ 100 A
a. Ap-Niis atwo-phase alloy, a mixune of Ag-rich and Ni-nch phases. Using an appropoate mixiure
rule, predict the resistivity of tha alloy and compare with the measured values in Table 211, Ex-
plain the: difference between the predicied and experimental values,
B Compare the resistivity of Ap=10% Ni with that of Ag=10% Pd in Table 2.9. The resistivity of the
Ag—Pd alloy is almost a factor of 5 greater. Ap—Pd 15 an isomorphoos solid soluton, whereses Ag-Ni
i & two-phase mixture, Explain the ditference in the resistivities of Ag—Ni and Ap—Pd.

Toble 2.11  Resistivity of Ag-Mi contact alloys for switches

Ni % in Ag-Ni
] 10 13 20 K!1] 100
pini2 m) 165 209  ia 25 KT 714
dig cm™) 03 103 076 9.4 947 LY
Hardness 0 A0 55 iy (] B0

VHN

MOTE: Cempesitions are in wh%. Ag-10% Mi maans 0% Ag-105% Ni.
Yickers hordress numbsar [VHIM) is o measure of the hordness or sirength of the
ollay, ond o is density, -

A=W allays (contact materials) and the mixture rule  Silver—tungsten alloys are frequently used in
hewvy-duty switching applications {e.g., current-carryving contacts and odl circuin breakers) and in arcing
tips. Ag—W is a two-phase alloy, a mixture of Ag-rich und W-rich phases. The mewsured resastivity awd
density for various Ag—W compositions are summanzed in Table 2.12,

g, Plotthe resistivity and density of the Ag-W alloy against the W concent (we.%)

B, Show that the density of the mixmre, J, is given by

d = wads! + "',d"fEJ

where wy is the weight fraction of phase o, wa is the weight fraction of phase 8, dy i the densily
of phise o, and d is the density of phase §.
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c. Show that the resistivity mixture rale is

- dw, dwg
P = oy ﬂ'ﬂ -+ d_#

where o is the resistivity of the alloy (mixtre}, d i85 the density of the alloy {mixtoee), and suh-
seripte o and & refer 1o phases o and A, respectively,

d. Calculate the density & and the resistivity o of the miziure for various values of W content (in
wi %) and plot the caleulated values in (e sume graph as the experimental values, What 15 your
conclusion?

Table 2.12  Dependence of resistivity in Ag—W alloy on composition as a funclion of wt% W

Wi %)
a0 10 15 0 M 40 63 Ta 78 50 &5 90 104
ploftm) 162 186 197 2049 227 276 335 A3 d i 479 5319 350
digem™*) 105 1075 1095 (13 ]2 1235 F44B5 1502 15325 1618 164 1725 100

| WOTE: = = resistivity and o = density.

217 Thermal conduction Consider brass alloys with an X aomic fracten of Zn, Since Zn additien in-
cresises the number of conduction electrons, we have to scule the fimal alloy resistivity clewlated from
the simple Mathicssen—MNordheim mile in Equation 2.22 down by a factor (1 + X (see Question 2.8) 5o
that the eesistivity of the alloy iz o == [p +CX{1 — X300+ X0 w0 which © = 30008 m and
fo = pru = 1700 m.
g An 80 et % Cu—X at.% Zn bress disk of 40 mm diameter and 5 mm thickness 5 wsed bo conduct
heat from & heat source o a heat sink.
(1} Caleulate the thermal resistance of the brass disk,
(2} If the disk is conducting heat ut u rate of 100 W, calculate the temperatore drop along the disk.

b What should be the composition of brass it the temperature drop scross the disk is (o be halved?

218  Thermal resistonee  Consider 2 thin insulating disk made of mica w electrcally insulate o semicon-
ductar device from a conducting heat sink. Micahasx = (.75 W m™' K=', The disk thickness is 1.1 mm,
and ihe diamerer is 10 mm, What is the thermal resistance of the disk? Whart is the iempersure drop
aoross the disk if the beat current through it is 25 W7

*2.19  Thermal resistance Consider a coaxial cable operating undar sieadyv-state conditions when the cue-
recn Mow through the inner conductor generates Joule heat at a rale £ = 2K, The heat generated per
second by the core condoctor flows through the dielectric; £ = I*R. The inner conducior reaches a
lemperature T;, whereas the outer conductor iz at T, Show that the thermal resistance 6 of the hallow
cylindrical insulation for heat flow in the radial direction is

T
g (T=T) _ lntb/a) ]
o Izwl

where a s the inside {core conductor) radius, b 15 the outside radios (outer conductor), & 15 the thermal
conductivity of the insulation, and L is the cable length, Consider a coaxial cable that has a copper core
comducior and polyethylens (PE) diglectric with the [ollowing properties: Core conductor resistivity
£ = 19 ni2 m, core radivg @ = 4 mm, dielectric thickness & = @ = 3.5 mm, diclectric thermal comdue-
tivity & = 0.3 W m~! K7, The ouside temperature T, is 25 “C. The cable is carrying a current of
S0 AL Whal is the femperature of the iner conductor?

1230 The Hall effect Consider a rectangular sample, a metal 0T 8n n-type semiconductor, with a kength
Lo, widih W, and thickness I, A current T is passed along L, perpendicular 1o the cross-zectional
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area WD, The face W ¢ L is exposed to & magnetic field density 8. A voltmeter is connected weross
the widih, as shown in Figure 2,40, mo read the Hall volrage Vi,

@  Show that the Hall voliage recorded by dhe voltmeter is

v fi: )
e
Hall volrage W=
b Consider a L-micron-ihick strip of gold laver on an insulating subsirate that iz a candidate for a Hall
probe sensor I the current through the [lm s madntained at constaot 100 mA, whal is the magnetic
field that can be recorded per 0V of Hall voltage?

Figure 2.40 Hall effect in a rectangular maoterial o
with length [, width W, and thickness 0.

The voltmater is across the width W, I

2.21 The strain pauge A strain gaoge 1s o tmosducer attoched to n body to measure 1ts fractional elongataon
AL E under an applied lpad {force) F. The gauge is 4 grid of many folded runs of & thin, resistive wire
glued 1o & flexible backing, as depicted in Figure 2.41, The gavge is attached 1o the body under rest such
that the resistive wire length is parulle] to the straio.
a. Assume thut the elongation does not change the resistivity and show that the change i the resis-
tance A R iz related o the srain e = ALSL by
Steain palge

aihiaciin AR = R(l + 2v)e [2.66]
where v is the Pabson ratio, which is defined by
Transverse steain y
Poisson ratic TN bl ool 0 [2.67]

" Longiwdinal sirain &
where £ is the strain along the applied load, thut is, & = ALSL = &, und g s the strain in the
Leansverse direction, that is, &, = ADYD, where 1 is the diameter {thickness) of the wire.

& Explain why a mehrome wire would be a better chadee than copper for the strain gauge (consider
the TCR).

p— Gange length —

E ‘ Solder tab
Figure 2.41 The strain gauge consists af o |Dng, thin wira e

Folded severdl Himes along its lengfh ko form o grid as shown = Adhesive tape
ond embedded in o sslfadhesive faps.

The ends of the wire ore attached ko terminals [sclder pads)
Far e:d&md conneclions, The tape is stuck an the campanent
For which the =train is fo be measured. Grid of metal wires

[
4
y
| B |
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How da temperature changes affect the response of the gauge? Consider the effect of remperature
ot 2. Alse coisider the differential eapansion of the specimen with respect 1o the gavge wire such
thut even if there is no applied load, there is stall struin, which is determined by the differentiol ex-
pansion coefficient, "-spn:im— J‘sw@h where & is the thermal coefficient of lingar expansion:
L = Loll + MT - 51, where Ty is the relerencs etnperatuce,

The gauge facted for o transducer is defined as the feactonal change o the measuced property
ARR per unit input signal (). What is the gaupe factor for a metal-wire strain gange, given that

fioor most metals, v == i

Consider a srrain gauge that consises of a nichrome wire of resistivity 1 pi2 m, a total length of 1 m,
and & diameter of 25 wn. What is AR for a steain of 10777 Assume that v = §.

What will AR be i constantan wice with a resastivity of 500 afl m is vsed?

2212  Thermal coefficlents of exponsion and resistivity

L5

b

Conzider a thin metal wire of lenpth L and diamerer D, Iis resistunce 12 8 = pL/A, where
A= x4, By considering the temperature dependence of L. A, and o individually, show that

1dg _
RdaT— ™

— AL

where ag is the temperature costficient of resistivity (TCR), and Ag is the temperature coefTicient
of linear expansion (thermal expansion coefficient or expansivity), that is.

dL 40
b} =L"(—) or M:D"(—,)
L T Ty P \dr S

Nate: Consider differentiating & = a2/[(7 £%)/4] with respoct to T with each parameter, &, L,
and [}, having a temperature dependence,

Given that typically, for most pure metuls, e = 1/273 K~ and 3y = 2 % 1079 K™Y, con-
firm that the temperature dependence of p controls &, rather than the temperature dependence
of the geometry, T: 1 necessary o modify the given equation for a wire with a nancircular cross
section?

Is it pussible to design o resistor rom o suitable alloy such thut its temperuture dependence 15 al-
most nil ¥ Consider the TCR of an alloy of two metals A and 8 for whichagag ™ a4 04/ 048.

1.8 Temperalure of u light bulb filament

L3

Consider a 10 W, 120 ¥ incundescent bulb (Jamp}. The tungsten filament has a length of 0.579 m
and a diameter of 63.5 pr. [ts resistivity ar room temperature iz 56 ni2 m. Given dhat the resistiv-
ity of the filament can be represented as
T i
o=mlz] [2.68]
o

where T is the temperature in K, g is the resistance of the filamem at Ty K. and m = 1.2, estimare
the temperature of the bulb when it is operated at the rated voltage, that 15, directly from the main
outlet. Mote that the bulb dissipates 10K W at 120 V.

Suppose thai the electrical power dissipated in the tungsten wire is iotally radiated from the surface
of the filament, The radinted power ul the ubsolute temperature T can be deseribed by Stefan’s law

Frafisid = €5A I[T" - i'[f} (2,691

where oy is Stefan's constani (5.07 = 18w m-? T{“‘}, € is the emissivity of the surtace (L35
for tungsten), A iz the surface area of (he wngsten Hlement, and Ty is room tempecatore (253 K.
Obvicusly, for T = T, P = eas AT

Assuming thai all the electrical power is radiated from the surface, estimate the temperature of
the filament and compare it wilh vour answer in part (a),
If the mel_t;ng temperatuce of W is 3407 “C, what is (he voliage that gearaniees that the light bulb
will blow !
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2.24

2.25

2.26

Einstein relntion und ivoic conductivity o the case of ionic condection, jons have to jump [rorm one
intzratice to the neighboring one. This process involves overcoming a potential energy hurter just like
atormic diffusion, and deift and diffusion are related, The dnfi mobility i of ions is proportional fo the
diffusion coelficient £* becanse drift is lirnited by the atomic diffusion process, The Einstein relation
relatey the two by

Dl [2.70)
[
Diffusion coefficient of the Mat jon in sodiom silicate [NaoO-5i0%) glasses at 400 20 is 1.4 x 1077
crn? 577, The density of such glasses is approximately 24 g em ™, Calenlate the ionic conductivity and
resistivity of (175 mol% NaO)E25 mol® 510;) scdium silicate gluss at 400 °C and compare your re-
suli with the experimental valucs of the arder of 1 £2em for the resistivity.

Skin effect

d.  What 15 the skin depth for a copper wire currying o current at 60 Hz? The resistivity of copper ut
27 °C is 17 n2 m. lis relative permeahility g = 1. Is there any sense in using a2 conductor for
power iransrission which has o diameter more than 2 cio?

b What is the skin depth for an oo wire careying a current at 60 Hz? The resistivity of iron a0 27 °C
15 97 0 m. Assume thot its relative permesbility g = 7K. How does this compare with the cop-
per wire? Discuss why copper is preferred ower iton for power transmission even though iron is
neady 100 nmes cheaper than copper,

Thin Flms

a.  Consider a polyerystalline copper film that has £ = (140, What is the approximate mean grain siac
o in tecms of the mean free path & in the bulk thar would lead o the polyerystalline Cu film having
4 resistivity thut 35 1.5 gy, If the mean fres path in the crystal is aboot 40 nm ut room tempecature,
what is a7

f Whatis the thickness I3 of a copper film in frerms of & in which surface scattering increases the film
resistvity 10 1.2 ongy if the specular scawening [raction p is 0.57

c.  Consider the data of Lim e @l (2003} presented in Table 2,13, Show thar the excess resistivity, ie
resistivity above that of bulk Cu. is roughly proportional to the reciprocal film thickness.

Toble 2.13  Resistivity ppi, of o copoer film as o function of thickness D,

I inm) 2.6l 17.2 M4 519 ag 354 [EUAR 120.3 1732 243
A (ME2m) 1214 753 4601 385 320 252 220 2415 1.9 168

MOTE: Film annealed ar 150+C.
SOURCE: Dolo exirocted fram |, W, Lim et ol., Appl. Surf. Sci. 217, 95, 2003,
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Enterconnecis  Consider a high-transistor-density CMOS chip in which ihe interconnects are copper
with a pitch P of 500 nm, interconnect thickness T of 400 nm, aspect ratio 1.4, und & = X, The dielectrc
15 F5G with £, = 3.0, Consider (wo cases, L = Imm and £ = 10 mm, and calculme the overall effec-
tive interconnect capacitunce Cey and the RC delay dme. Suppoess that Al which is normally Al with
ahout 4 wt. % Cu in the microelzctronics industry with a resistivity 31 nf2 m, is used as the interconnecs
What i3 the corresponding RCdelay me?

Thin 50 nm interconnects  Eguation 2,60 is for condduction in a thin flm of thickness £ and assumes
scattering from iwo surfaces, which vields an additional resistivity g2 = M%l_’l,ﬂﬂ"}[l — /. Aninter-
connect hne nan IC is not guate a thin [lm and hes four suclwces (imterfaces), becausze the thickness T
of the conductor is comparable to the width W. If we wssume T = W, we can very roughly take
fa B2 4 o B2 gk %{J.,.i'ﬂ}{! — ) in which 2P = T. {The exact expression is more complicated, but
the lutter will sutfice for this problem.) In addition thers will be o contmbution from grin bowodary
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scattering, {Equation 2.57a). For simplicity assume T = W = X 2 H = 6 nm, L = #l nm, p =15
and £ = 3.6. If the mean grain size 4 is roughly 40 wn and 8 = (0.4, estimate the resistivity of the
mterconnect and hence the BC delay for a 1 mm inlerconnect.

TCR af thin films  Consider Matthiessen™s rule applied to a thin film, Show that, very approximalely,
the: product of the thermal coeflicient of resistivity (TCR} ogym and the: mesistivity gy 15 equivalent b
the prodoct of the bulk TCR and resistivicy:

HfilenSilm ™ Cbulk Mulk

Electromigration  Although clectromigration-induced failure in Cu metallization is less severe than in

Al metallization, it can s6ill lead o interconnect failure depending on corvent densities and the operating

temperature. In a set of experiments carmed out on electroplted Cu metallization lines, fallure of the Cu

interconnects have been examined under accelerated 1e5ts (at elevated iemperatures). The mean lifetima

fa (time for S0 percent of the lines 1o break) have been measured a2 a function of currem density famd

temperature I at a given current density. The results wre summuanized in Table 2.14.,

& P semiloparithmically o versus 1) 7 (T in Kelvins) for the first three interconnects. ANCu) and
Cu (1.3 % 0.7um?) have single activation cnergies £y Calculate £y for these imerconnecis. Cu
(1.3 = 0,7pm?) exhibdis different sctivation energles for the high-and low-temperatuse reglons,
Estimuate tese I 4.

b, Ploton a log-log phot fsp versus Jut 370 *C. Shower thut at low Jon 7 1.1 and at high J & = 1.5,

Toble 2,94 Results of electromigrafion failure experiments an various Al and Cu interconnects

AlC Cu @ T

[F= 23 mAfjm’, [ = 25 majm?, [J= 25 mAfpmI, i(T=370"C)

A=035 % 0.2 (w)®] A =024x028 (em)®] A= L3 w07 (umi*]

F (") fsgthry T (°C) ey () Ti{*C) fsp thr) Jma pm~2 isp (hir}
kLN 11 397 2.87 395 403 354 1315
300 0035 354 12.4 3ed) 196 11.7 252
254 573 ila Tih53 il4 K23 24.8 14.9
233 157 269 LB 285 2005 40,2 478

242 05 741 2.9
[} 069
MOTE: A = widsh » haight in micron®,

SOURCE: Data extrocted from R, Rosenberg et all, [IBM, T. | Watsen Research Cantar, Anaw. fav. Mater. Sci., 30,
229, 2000, Figum,s 7% and 31, ond subjact fo smol| extroclion errors, |

zardon Teal |Laft) and Morgan Sparks fobricoted
the First rawrrjunclicn Ge Iransisiar in
1950-1951 of Bell Lobs. Gordon Teal storled ol
Ball Loks bt loter maovad to Texos Instrumants
where he bead the dev=|r.||'_'-|'n&|‘.1 af the first
commercial 5i mansister; the first 51 mansisior was
made at Bafl Labs by Morris Tananbaum,
| SOURCE: Courtesy of Bell Loboratorias, Lucant
Technologies.
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3 x 10* photons

3.6 « 10% photans 2.8 % 107 photans

These electronic images were made with the rumber of phetons indiceted. The discrate nofure of photons means
that a large number of phatans ore needed te consiitute an image with satisfactarly discernable datils,

SOURCE; A, Rose, “Guantur and roise limitotions of the visual process® § Opt Soc, of Amarico, vol, 43
7153, 1953, [Coartesy of 54|



