CHAPTER

3

Elementary Quantum Physics

The triumph of modern physics is the triumph of quantum mechanics. Even the sim-
plest experimental observation that the resistivity of a metal depends linearly on the
temperature can only be explained by quantum physics, sitmply because we must take
the mean speed of the conduction electrons o be nearly independent of termperature.
The modern definitions of voltage and ohm, adopted in January 1990 and now part of
the IEEE standards, are based on Josephson and quantum Hall effects, both of which
are quantum mechanical phenomena,

One of the most important discoveries in physics has been the wave—particle
duality of nature. The electron, which we have so far considered to be a particle and
hence (o be obeying Newton’s second law (F = ma), can also exhibit wave-like prop-
erties quite contrary to our intuition. An electron beam can give rise to diffraction
patterns and interference fringes, just like a light wave, Interference and diffraction
phenomena displayed by light can only be explained by treating light as an electro-
magnetic wave. But light can also exhibit particle-like properties in which it behaves
as if it were a stream of discrete entities (*photons™), each carrying a linear momen-
tum and each interacting discretely with electrons in matter (just like a particle collid-
ing with another particle).

3.1 PHOTONS

3.1.1 LIGHT AS A WavE

In introductory physics courses, light is considered to be a wave. Indeed, such phe-
nomena as interference, diffraction, refraction, and reflection can all be explained
by the theory of waves. In all these phenomena, a ray of light is considered to be an
electromagnetic (EM) wave with a given frequency, as depicted in Figure 3.1. The
clectric and magnetic fields, £, and B, of this wave are perpendicular to each other and
to the direction of propagation x. The electric field T, at position x at time 7 may be
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Figure 3.1 The classicol view of light as on elecromognetic wave.

An eleciromagnetic wave is a traveling wave with imewvarying eleciric and magnefic fields that
are perpendicular to each other and 1o the direction of propagation,

described by
Eplx, 1) = E,sin(kx — wt) [a.11

where & is the wavenumber (propagation constant) related to the wavelength 5 by
k = 2m /i, and w is the angular frequency of the wave (or 2mv, where v is the fre-
quency). A similar equation describes the variation of the magnetic field B, (directed
along z) with x at any time . Equation 3.1 represents a traveling wave in the x direc-
tion, which, in the present example, 1% a sinugoidally varying function (Figure 3.1). The
velocity of the wave (strictly the phase velocity) is

&
0= — = Vi
k
where v is the frequency. The intensity T, that is, the energy flowing per unit area per
second, of the wave represented by Equation 3.1 is given by

1
A Eff:,,iﬁ [3.21

where g, is the absolute permittivity.

Understanding the wave nature of light is fundamental to understanding interfer-
ence and diffraction, two phenomena that we experience with sound waves almost on
a daily basis. Figure 3.2 illustrates how the interference of secondary waves from the
two slits §) and 5; gives rise to the dark and bright fringes {called Young’s fringes)
on a screen placed at some distance from the slits, At point P on the screen, the waves
emanating from 5, and 5; interfere constructively, if they are in phase. This is the
case if the path difference between the two rays is an integer multiple of the wave-
length A, or

S:|P—52P = HA

where n is an integer. If the two waves are out of phase by a path difference of A/2, or

1
S|P = 5P= (i‘:l-l—i)}..
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Figure 3,2 Schematic illusiration of Young's double slit experiment.
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Figure 3.3 Diffraction potterns obtained by possing X-rays through crystals can enly be explained by using ideas basad
on the interference of waves.

fa) Difraction of X+ays from o single crystal gives a diffraction potiern of bright spots on a phatographic film.

{b} Diffraction of X-reys from o powdersd crystalline material or o polyerystalline material gives o difffaction pattern of
bright rings on o photegraphic film,

le) ¥eray diffroction inwolves the constructive intarference of waves being “reflectsd™ by various alomic planes in the crysial.

then the waves interfere destructively and the intensity at point P vanishes. Thus, in the
¥ direction, the observer sees a pattern of bright and dark fringes.

When X-rays are incident on a crystalline material, they give rise to typical dif-
fraction patterns on a photographic plate, as shown in Figure 3.3a and b, which can
only be explained by using wave concepts, For simplicity, consider two waves, ! and
2, im an X-tay beam. The waves are nitially in phase, as shown in Figore 3.3¢c. Sup-
pose that wave ! is “reflected”™ from the first plane of atoms in the crystal, whereas
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wave 2 is “reflected” from the second plane.! After reflection, wave 2 has traveled an
additional distance equivalent to 24 sin & before reaching wave f. The path difference
between the two waves is 2d sin @, where ¢ is the separation of the atomic planes. For
constructive interference, this must be ni, where n is an integer. Otherwise, waves [
and 2 will interfere destructively and will cancel each other. Waves reflected from ad-
Jjacent atomic planes interfere constructively to constitate a diffracted beam onfy when
the path difference between the waves is an integer multiple of the wavelength, and
this will only be the case for certain directions. Therefore the condition for the
existence of a diffracted beam is

2d sind = na n=1223... [3.3]

The condition expressed in Equation 3.3, for observing a diffracted beam, forms
the whole basis for identifving and studying various crystal structures (the science of
crystallography). The equation is referred to as Bragg's law, and arises from the con-
structive interference of waves.

Aside from exhibiting wave-like properties, light can behave like a stream of “par-
ticles™ of zero rest-mass. As it turns out, the only way to explain a vast number of
experiments is to view light as a stream of discrete entities or energy packets called
photoens, each carrying a quantum of energy Av, and momentum f /A, where k is a uni-
versal constant that can be determined experimentally, and v is the frequency of light,
This photonic view of light is drastically different than the simple wave picture and
must be examined closely to understand its origin.

3.1.2 THE PHOTOELECTRIC EFFECT

Consider a quartz glass vacuum tube with two metal electrodes, a photocathode and an
anode, which ate connected externally to a voltage supply V (variable and reversible)
via an ammeter, as schematically illustrated in Figure 3.4, When the cathode is illumi-
nated with light, if the frequency v of the light 15 greater than a certain critica) value vy,
the ammeter registers a current £, even when the anode voltage is zero (i.e., the supply
is bypassed). When light strikes the cathode, electrons are emitted with sufficient ki-
netic energy to reach the opposite electrode. Applying a positive voltage to the anode
helps to collect more of the electrons and thus increases the current, until it saturates
because all the photoemitted electrons have been collected, The current, then, is lim-
ited by the rate of supply of photoemitted electrons, If, on the other hand, we apply a
negative vollage to the anode, we can “push” back the photoemitted electrons and
hence reduce the current /. Figure 3.5a shows the dependence of the photocurrent on
the anode voltage, for one particular frequency of light.

Recall that when an electron traverses a voltage difference V, its potential energy
changes by ¢V (potential difference is defined as work done per unit charge). When a
negative voltage is applied to the anode, the electron has to do work to get to this elec-
trode, and this work comes from its kinetic energy just after photoemission, When the
negative anode voltage V is equal to ¥y, which just “extinguishes” the current 7, we

! Sericy, one must consider the scanering of wavas from tha alactrons in individual otoms [e.g.. ctoms A and & in
Figure 3. 3c) ond examine the constructive interference of these scotered woves, which lands 1o the sama condition
as that derived in Equation 3.3,
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Figure 3.4 The photoslectric effect,
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light intensity.

Figure 3.5 Results from the photoelacttic axpariment.
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know that the potential energy “gained” by the electron is just the kinetic energy lost

by the eleciron, or

1 2
eVy = Em,._v' = KE,

where v is the velocity and KE,, is the kinetic energy of the electron just after photo-
emission. Therefore, we can conveniently measure the maximum kinetic energy KE,,

of the émitted electrons,

For a given frequency of light, increasing the intensity of light I requires the same
voltage Vy to extinguish the corrent; that is, the KE,, of ermitted electrons is indepern-
dent of the light intensity I. This is quite surprising. However, increasing the intensity
does increase the saturation current, Both of these effects are noted in the [~V resulty

shown in Figure 3.5a.
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Since the magnitude of the saturation photocurrent depends on the light intensity
I, whereas the KE of the emilted electron is independent of I, we are forced to con-
clude that only the number of electrons ejected depends on the light intensity, Further-
more, if we plot KE,, (from the V), value) against the light frequency v for different
electrode metals for the cathode, we find the typical behavior shown in Figure 3.6.
This shows that the KE of the emitted electron depends on the frequency of light. The
experimental results shown in Figure 3.6 can be summarnized by a statement that relates
the KE,, of the electron to the frequency of light and the electrode metal, as follows:

.F:Em = hv — .h!.'” [5\1‘-]

where h is the slope of the straight line and 15 independent of the type of metal, whereas
vy depends on the electrode material for the photocathode {e.g., vy, vz, etc.). Equa-
tion 3.4 is essentially a succinct statement of the experimental observations of the photo-
electric effect as exhibited in Figure 3.6. The constant # is called Planck's constant,
which, from the slope of the straight hines i Figure 3.6, can be shown to be about
6.6 x 107* J 5. This was beautifully demonstrated by Millikan in 1915, in an excellent
series of photoelectnc experiments using different photocathode materials,

The successful interpretation of the photoelectric effect was first given in 1905
by Einsteimn, who proposed that light consists of "energy packets,” each of which has
the magnitude fu, We can call these energy quanta photons, When one photon strikes
an electron, its energy 15 transferred to the electron. The whole photon becomes ab-
sorbed by the electron. Yet, an electron in a metal is in a lower state of potential energy
(PE) than in vacuum, by an amount &, which we call the work function of the metal,
as illustrated in Figure 3.7, The lower PE is what keeps the electron in the metal;
otherwise, it would “drop out.”
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This lower PE is a result of the Coulombic attraction interaction between the elec-
tron and the positive metal ions. Some of the photon energy kv therefore goes toward
overcoming this PE barrier. The energy that is left (hv — @) gives the electron its KE.
The work function & changes from one metal to another. Photoemission only occurs
when kv is greater than &, This is clearly bome out by experiment, since a critical fre-
quency vy is needed to register a photocurrent. When v is less than wg, even if we use
an extremely intense light, no current exists becavse no photoemission occurs, as
demonstrated by the experimental results in Figure 3.6, Inasmuch as € depends on the
metal, 50 does v, Therefore, in Einstein's interpretation sy, = @, In fact, the mea-
surement of vy constitutes one method of determining the work function of the metal.

This explanation for the photoelectric effect is further supported by the fact that the
work function ¢ from Ay is in good agreement with that from thermionic emission ex-
periments. There iz an apparent similarity between the I~V characteristics of the photo-
tube and that of the vacuum tube used in early radios. The only differenice is that in the
vacuum tube, the emission of electrons from the cathode is achieved by heating the cath-
ode. Thermal energy ejects some electrons over the PE barrier @ The measurement of
& by this thermionic emission process agrees with that from photoernission experiments.

In the photonic interpretation of light, we sall have to resolve the meaning of the
intensity of light, because the classical intensity in Equation 3.2

! 2
I= E{'E;..’.:Eﬂ

is obviously not acceptable. Increasing the intensity of illumination in the photoelec-
tric experiment increases the saturation current, which means that more electrons are

Classical
light intensity



198

Figure 3.8 Intuitive visualization of
|ighr consisting af Q stregm QF phqh:nn.s

CHAPTER 3 » ELEMENTARY QUANTUM PHYSICS

{not 1o be taken too literally),

| SOURCE: R. Serway, C. J. Mosas, and

| . A Moyer, Modem Physics, Saunders e
1 {:Qllzgu Publizhing, 198%, p, 54,

[ fegura 2. 160k,

Light
Itensity

Plirton T

emitted per unit time. We therefore infer that the cathode must be receiving more pho-
tons per unit time at higher intensities. By definition, “intensity ™ refers to the amount
of energy flowing through a unit area per unit time, If the number of photons crossing
a unit arca per unit time is the photon tlux, denoted by 'y, then the flow of energy
through a unit area per unit time, the light intensity, is the product of this photon flux
and the energy per photon, that is,

I=Tphv [3.5]
where

= 3.4

rh AAT [3.4]

in which A Ny, is the net number of photons crossing an area A in time A, With the
energy of a photon given as kv and the intensity of light defined as v, the ex-
planation for the photoelectric effect becomes self-consistent. The interpretation of
light as a stream of photons can perhaps be intuitively imagined as depicted in
Figure 3.8.

EXAMPLE 3.1

EMERGY OF A BLUE PHOTOMN What is the encrgy of a blue photon that has a wavelength of
450} nm?

SOLUTION
The energy of the photon is given by

P g he (6.6 x 1071833 = 10" ms™")
== — =
P 3. 450 % 10~*m

Generally, with such small energy values, we prefer electron—volts (eV), so the encrgy of
the photon is

=44 x 10777

4.4 3 10-"]

I T T e
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THE PHOTOELECTRIC EXPERIMENT  In the photnelectric experiment, green light, with a wave- [0 TR

lenpth of 522 nm, is the longest-wavelength radiation that can canse the photoemission of elec-
troms from a ¢lean sodium surface,

a.  What is the work function of sodium, in electron-volts?

b 1LY (uliraviolet) radiation of wavelength 230 nm 15 invident o the sodium surface, what
will be the kinetic energy of the photoemitted electrons, in electron—volts?

¢.  Supposc that the UV light of wavelength 250 nm has an intensity of 20 mW cm ™2 If the
eritled electrons are collected by applying a positive bias to the opposite electrode, what
will he the photoelectric current densicy?

SOLUTRON

a. At threshold, the photon energy just causes photoemissions; that is, the electron just over-
comes the potential barmier @, Thus, e /Ay = e, where @ i3 the work function in eV,
and &, is the longest wavelength,

he (6626 x 107 15)(3 x 10°ms~7)

i =238eV
ehy (1.6 x 10-" 1/eV){522 x 10—’ m) "

. The energy of the incoming photon £ s (he /i), so the excess energy over e goes to the
kinetic energy of the electron. Thus,
he (6626 % 107 J5)(3 x 108 ms™!)

KE=——1T=
en (1.6 » 10-"™ Jiev)(250 = 10~ m)

- 238 eV = 258 eV

. The light intensity (defined as energy flux) is given by I = I lhesA), where I'y, is the
number of photons artiving per unit area per unit time; that is, photon Qux and (he /) s
the energy per photon. Thus, if each photon releases one elecrron, the electron flux will be
cqual to the photon flux, and the current density, which is the charge flux, will be

elh (L6 x 107 C)20 x 107" x 10°Ts™ m™*)(250 x 10~" m)

j = - ]_| e
el R (6,626 x 10-3J5)(3 x 108 ms"')

=403 Am2 or 4.0 mA cm™?

313 CoMPTON SCATTERING

When an X-ray strikes an electron, it is deflected, or “scattered.”” In addition, the eleg-
tron moves away after the interaction, as depicted in Figure 3.9. The wavelength of the
incoming and scattered X-rays can readily be measured. The frequency v' of the scat-
tered X-ray is less than the frequency v of the incoming X-ray. When the KFE of the
electron is determined, we find that

KE = hv — v

Simee the electron now also has a momentum g, then from the conservation of linear mo-
mentum law, we are forced to accept that the X-ray also has a momentum. The Compton
effect experiments showed that the momentum of the photon is related to its wavelength by

=i 3.
p=7 13.7]

Mermentum of
e phualian
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We see that a pholon not only has an energy hv, but also a momentum p, and it
interacts as if it were a discrete entity like a particle, Therefore, when discussing the
properties of a photon, we must consider its energy and momentum as if it were a
particle,

We should mention that the description of the Compton effect shown in Figure 3.9
is, in fact, the inference from a more practical experiment involving the scattering of
X-rays from a metal target. A collimated monochromatic beam of X-rays of wave-
length Ay strikes a conducting target, such as graphite, as illustrated in Figure 3,104,
A conducting target contains a large number of nearly “free™ electrons {conduction
electrons), which can scatter the X-rays. The scattered X-rays are detected at various
angles & with respect to the original direction, and their wavelength o' is measured,
The result of the experiment is therefore the scattered wavelength A measured at var-
ious scatiering angles £, as shown in Figure 3.10b. It tums out that the A’ versus &
results agree with the conservation of linear momentum law apphed to an X-ray pho-
ton colliding with an electron with the momentum of the photon given precisely by
Equation 3.7.

The photoelectric experiment and the Compton effect are just two convincing
expeniments in modemn physics that force us to accept that light can have particle-hke
properties. We already know that it can also exhibit wave-like properties, in such
experiments as Young's interference fringes. We are then faced with what is known as
the wave—particle dilemma. How do we know whether light is going to behave like a
wave or a particle? The properties exhibited by light depend very much on the nature
of the experiment. Some experiments will require the wave model, whereas others may
use the particulate interpretation of light. We should perhaps view the two interpreta-
tions as two complementary ways of modeling the behavior of light when it interacts
with matter, accepting the fact that light has a dual nature. Both models are needed for
a full description of the behavior of light,

The expressions for the energy and momentum of the photon, £ = kv and
p = h/k, can also be written in terms of the angular frequency w(= 27 v) and the
wave number &, defined as & = 27 /A, If we define & = 4 /2, then

h

E =hv=hw and p=—-="hk [3.8]
A
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Figure 3.10 The Compton experiment and its results,

X-RAY PHOTOM EMERGY AMD MOMENTUM X-rays are photons with very shorl wave-
lengths that can penetrate or pass through objects, hence their use in medical imaging, security
scans at airports, and many other applications including X-ray diffraction studies of crystal
siructures. Typical X-rays used in mammography (medical imaging of breasts) have a wave-
length of about 0.6 angstrom (1 A = 107" m). Calculate the energy and momentum of an
X-ray photon with this wavelength, and the velocity of a corresponding elecron that has the
SAME MOTRentwm,

SOLUTION

The: photon energy E,, is given by

he (6.6 % 107 T513 x 108 ms~) ey 17!
Ep=h=—= *
A 06 = 10-"m 1.6 x 10~

=206 = 10° eV or 2006 ke
The momentum p of this X-ray photon is

k6.6 x 10 Mg
L 06x10-0

r= =11 =10 kgms!

EXAMPLE 3.3
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A corresponding electron with the same momentum, M, toems = g, Would have a velocity

1

p_ Llx 1P kgms'

= = =12x 10" ms™
ey 9.1 % 10-% kg * ms

Veleeron =

This is much greater than the average speed of conduction (free) electrons whizzing around in-
side a metal, which is ~ 10% m s~!,

Hut budy

Figure 3,11

3.1.4 BLack Bopy RADIATION

Experiments indicate that all objects emit and absorb energy in the form of radiation,
and the intensity of this radiation depends on the radiation wavelength and temperature
of the object. This radiation is frequently termed thermal radiation, When the object
is in thermal equilibrium with its surroundings, that is, at the same temperature, the
object absorbs as much radiation energy as it emits, On the other hand, when the tem-
perature of the object is above the temperature of its surroundings, there is a net emis-
sion of radiation energy. The maximum amount of radiation energy that can be emitted
by an object is called the black body radiation. Although, in general, the intensity of
the radiated energy depends on the material's surface, the radiation emitted from a cav-
ity with a small aperture is independent of the material of the cavity and corresponds
very closely to black body radiation,

The intensity of the emitted radiation has the spectrum (ie., intensity vs, wave-
length characteristic), and the temperature dependence illustrated in Figure 3.11. It is
useful to define a spectral irradiance I, as the emitted radiation intensity (power per
unit area) per unit wavelength, so that I, §4 is the intensity in a small range of wave-
lengths §&. Figure 3.11 shows the typical I, versus A behavior of black body radiatjon
at two temperatures, We assume that the characteristics of the radiation emerging from
the aperture represent those of the radiation within the cavity.

ELULERS

Classical theory

Escaping black body
radiation

==

T

Spectral imadiance

Small hole acts as a black body

0

Schematic illustration of black body rodiation and its chorocharisties.

Spectral irradicnce versus wovelength ot two femperatures [3000 K is obaut the femperature of the incandescent
tungsten filarment in a light bulb),
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Classical physics predicts that the acceleration and deceleration of the charges
due to various thermal vibrations, oscillations, or motions of the atoms in the surface
region of the cavity material result in electromagnetic waves of the emissions. These
waves then interfere with each other, giving rise to many types of standing electro-
magnetic waves with different wavelengths in the cavity, Each wave contributes an
energy £T to the emitted intensity. If we calculate the number of standing waves within
asmall range of wavelength, the classical prediction leads to the Rayleigh—Jeans law
in which I, o 1/2* and I, o T, which are not in agreement with the experiment,
especially in the short-wavelength range (see Figure 3.11).

Max Planck (12000 was able to show that the experimental results can be
explained if we assume that the radiation within the cavity involves the emission and
absorption of discrete amounts of light energy by the oscillation of the molecules of
the cavity material. He assumed that oscillating molecules emit and absorb a quan-
tity of energy that is an integer multiple of a discrete energy quantum that is deter-
mined by the frequency v of the radiation and given by Av. This is what we now call
a photon, He then considered the energy distribution (the statistics) in the molecular
oscillations and took the probability of an oscillator possessing an energy nhv
(where n is an integer) to be proportional to the Boltzmann factor, exp(—ahv /5T,
He eventually derived the mathematical form of the black body radiation character-
istics in Figure 3.11. Planck's black body radiation formula for I, is generally ex-
pressed as

I he?
_-I.r;k = —; —g [3.9]

(%) -1}

Pk

where  is the Boltzmann constant. Planck’s radiation law based on the emission and
absorption.of photons is in excellent agreement with all observed black body radiation
characteristics as depicted in Figure 3.11.

Planck’s radiation law is undoubtedly one of the major successes of modern
physics. We can take Equation 3.9 one step further and derive Stefun s black body ra-
diation law that was used in Chapter 2 to caleulate the rate of radiation energy emitted
from the hot filament of a light bulb. If we integrate T, over all wavelengths,? we will
obtain the total radiative power Py emitted by a black body per unit surface area at a
temperaturs T,

T
L

7 2kt
P = L I dn= (15&.&-‘)14 = a7 [3.10]
2
whers gy = ﬁ = 5670 x 10 Wm2 K™ (@111
i |

The intagration of Equation 3.9 can be dene by looking up definile integrol sables in math hondbaoks—we only
need tha rasult of the mathematics, which is Equation 3. 13, The Pz in Equation 3.10 is somefimes colled the rodiant
emitonce, Stefan’s low is alse known os the Stefan-Bohzmann law,
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Equation 3.10 in which Py = s T4 is Stefan’s law for black body radiation, and the oy
in Equation 3.1l is the Stefan constant with a value of approximately 5.67 =
1078 W m~* K~°. Stefan’s law was known before Planck used quanturn physics to derive
his black body radiation law embedded in f,. A complete explanation of Stefan’s law
and the value for &g however had to wait for Planck’s law. The A in Equation 3,10 or
3.11 1s a clear pointer that the origin of Stefan’s law lies in quantum physics.

STEFAN'S LAW AND THE LIGHT BULB  Stefan's law as stated in Equation 3.10 applies to a per-
[ect black body that 13 emifting radiation info ils environment which 1z at absolute zero, If the
etvironment of the surroundings of the black body is at a finite temperature T, than the aur-
roundings would also be emitting radiation. The same black body will then also absorb radia-
tion from its environment. By definition, a black body is not only a perfect emitter of radiation
but also a perfect absorber of radiation. The rate of radiation absorbed from the environment
per unit surface is again given by Equation 3.10 but with T, instead of T since it is the surround-
ings that are emitting the radiation. Thus, o7} is the absorbed radiation rate from the sur-
roundings, so

Met rate of radiative power cmission per unit surface = a7 — a7,

Further, not all surfaces are perfect black bodies. Black body emission is the maximum possi-
ble emission from a surface at a given temperature, A real surface emits less than a black body,
Emissivity & of a surface measures the efficiency of a surface in terms of a black body emitter;
it is the ratio of the emitted radiation from a real surface to that emitted from a black body at a
given temperature and over the same wavelength range. The fofal net rate of radiative power
emission becomes

Fr-:l]i.alm = SEL’J’E{T4 = T;) [3.12]
where § is the surface area that is emitting the radiation. Consider the tungsten filament of a
100 W light bulb in a lamp. When we switch the lamp on. the current through the filament gen-
erales heal which gquickly heats up the filament (0 an operating temperature T, . Al this tempera-
ture, the electric energy that is input into the bulb is radiated away from the filament as radiation
energy. A typical 100 W bulb filament has 2 length of 57.9 cm and a diameter of 63.5 pm. Its
surface arca is then

§=m(63.5 % W0 m)0.57 m) = 1.155 x 107" m?

The emissivity & of mngsten is about (.35, Assuming that under steady-state operation all the
electric power that is input into the bulb’s filament is radiated away,

100 W = Pojaioa = SE”.‘.'{T; = T:]
= (1.155 = 107 m*)(0.35)(5.67 = 107" Wm™? K""‘J{T; — 300%)
Solving we find,
Ty =250 K ar 2297 *C

which is well below the melting temperature of tungsten which is 3422 “C, The second tenm that
has Tj has very litle effect on the caleulation as radiation absorption from the environment is
practically nil compared with the emitted radiation at Ty .

The shift in the speciral intensity emitted from a black body with temperature is of partic-

ular interest 1o many photoinstrumention engineers, The peak spectral intensity in Figare 3.11
occurs at a wavelength A, , which, by vimue of BEquation 3.9, depends on the temperature of
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the black body. By substituting a new variable r = fe/(kTX) into Equation 3.9 and differenti.
aing it, or plotting it against &, we can show that the peak occurs when

A T 55 2,80 2 107 m K
which is known as Wien’s displacement Law. The peak emission shifts to lower wavelengths as
the temperature increases. We can calculate the wavelength ., cormesponding to the peak in the

spesital distribution of emitted mdiation from our 100 W lamp: Ay = (2.89 = 107 m K)/
(25370 K} = 1.13 pm {in the infrared},

Wien's dis-
placement
faw
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3.2.1 DE BrRoOGLIE RELATIONSHIP

It is apparent from the photeelectric and Compton effects that light, which we thought
was a wave, can behave as if it were a stream of particulate-like entities called photons.
Can electrons exhibit wave-like properties? Again, this depends on the experiment and
on the energy of the electrons.

When the interference and diffraction experiments in Figures 3.2 and 3.3 are
repeated with an electron beam, very similar results are found to those obtainable with
light and X-rays. When we use an electron beam in Young's double-slit experiment,
we observe high- and low-intensity regions (i.e., Young's fringes), as illustrated in
Figure 3.12. The interference pattern is viewed on a fluorescent TV screen. When an
energetic eleciron beam hits an Al polycrystalline sample, it produces diffraction
rings on a floorescent screen (Figure 3.13), just like X-rays do on a photographic

Fluorescent screen
50 kY !
Two slits

Y acuum

Electron diffraction fringes on
the screen

Figure 3.12 Young's dovbleslit experiment with electrons invehees on eleciron
gun and twa slits in o cathode ray wbe (CRT] thence, in vocuum],
Electrons fram the filament are cccelercted by a 50 kY onode voliege to produce a
beam that is made to pass freugh the slits. The elecrons then produce a visible
pattern when they strike o Aucrescent screen ja.g., o TV screan], and the resulfing
visual patern is photographed,
SOURCE: Pasern from C_ Jonsson, D. Brandr, and 5. Hirschi, Am. ). Physics, 42, 1974, p. %9,
figure 8. Used with parmissicn,
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Sereen

|- Diffraction pattern

Cathode rays:
electrons

[a) Thamson diffracted electrons by using a thin gald
foil end preduced o diffrocfion paltern on the screen of
his apparatus in (b, The foil was polyerystalline, so
the diffraction pattern was circular rings.

[c] Electron diffraction
pottern obtained h]r G P

Thomson using a geld foil
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Photographic plate

(retractable)
ﬂn/ 1
E

= Pump

Capillary tube
{0.23 mm dia.)
- =

25 cm

—=

Fnil Cathode

= Gy

Fluorescent viewing screen

{b} In Thomson's electron diffraction apparatus a beam of
electrons is generated in lwbe A, passed through collimaling
tube B, and made to impinge on a thin gold feil C. The
transmitted electrans impinge on the fluorescent screen E,
oro phnlngruphic p||:|1'e B, which could be lowered into

the path. The enfire apparatus was evacuated during

the experiment,

targedt. [d] Composite phategroph showing diffrackion
patiems produced with on aluminum feil by
¥-rays and electrans of similar wavelength.
Left; X-rays of & = 0LO71 nm. Right: Elechons

of enorgy 400 eV,

(¢} Diffraction pattern produced by
40 ke¥ electrons passing hrough zine
oxide powder, The distortion of the
patiern waos produced by o small
magnet ploced between the somple
and the photographic plate, An X-ray
diffraction pattern would not be
affected by o magnetic field.

Figura 3.13 The diffroction of electrans by crystals gives typical diffraction pottemns that would be expected if woves

were being diffracted, as in Xray diffroction with crystals.

SOURCE: (b} fram G. B Thomson, Proceadings of the Royal Soclety A117, no. 600, 192B; () and [d] from A. B Franch and
F. Taylor, An Introducfion fo Quantem Mechanics, Marton, Maw York, 1978, p. #5; (8) from R. B, Leighton, Principlas of Modam

Physics, Mew York: MeGroweHill, 1959, p. 84,
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plate. The diffraction pattern obtained with an electron beam (Figure 3.13) means that
the electrons are obeying the Bragg diffraction condition 2d sin @ = ni just as much as
the X-ray waves,

Since we know the interatomic spacing  and we can measure the angle of diffrac-
tion 2¢#, we can readily evaluate the wavelength A associated with the wave-like behav-
ior of the electrons. Furthermore, from the accelerating voltage V in the electron tube,
we can also determine the momentum of the electrons, because the kinetic energy
gained by the electrons, ( p®/2m.), is equal to eV. Simply by adjusting the accelerating
voltage V, we can therefore study how the wavelength of the electron depends on the
momentum.

As a result of such studies and other similar experiments, it has been found that an
electron traveling with a momentum g behaves like a wave of wavelength i given by

A=— [3.13]
r

This is just the reverse of the equation for the momentum of a photon given its
wavelength. The same equation therefore relates wave-like and particle-like properties
to and from each other. Thus,

:i.=— oar = —
P =3

is an equation that exposes the wave—particle duality of nature. It was first hypothe-
sized by De Broglie in 1924. As an example, we can calculate the wavelengths of a
number of particle-like objects:

@ A S50 gram golf ball traveling at a velocity of 20 m 5™,
The wavelength is
_ h _ 6.63 x 107315
T omv (50 x 107 ke)(20ms-1)

=6.63 x 107 ¥m

The wavelength is so small that this golf ball will not exhibit any wave effects.
Firing a stream of golf balls at a wall will not result in “diffraction rings " of golf balls.

b, Aproton traveling at 2200 m s,

Using m, = 1.67 x 107" kg, we have & = (h/mv) = 0.18 nm. This is only
slightly smaller than the interatomic distance in crystals, so firing protons at a
crystal can result in diffraction. (Recall that to pet a diffraction peak, we must sat-
isfy the Bragg condition, 24 sin # = ra.} Protons, however, are charped, so they
can penetrate only a small distance into the crystal. Hence, they are not used in
crystal diffraction studies.

¢,  Blectron accelerated by 100V,
This voltage accelerates the electron to a KE equal to V. From KE =
pYi2m, =eV, we can calculate p and hence A =Ah/p. The result is
& = 0,123 nm. Since this is comparable to typical interatomic distances in solids,
we would see g diffraction pattern when an electron beamn strikes a crystal. The
actual pattem is determined by the Bragg diffraction condition,

07

Waw?fer:g{h o
the electron

De Broglie
relations
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3.2.2 TiME-INDEPENDENT SCHRODINGER EQUATION

The expenments in which elecirons exhibit interference and diffraction phenomena
show guite clearly that, under ceriain conditions, the electron can behave as a wave; in
other words, it can exhibit wave-like properties. There is a general equation that
describes this wave-like behavior and, with the appropriate potential energy and
boundary conditions, will predict the results of the experiments. The equation is called
the Schridinger equation and it forms the foundations of quantum theory. Its funda-
mental nature is analogous to the classical physics assertion of Newton's second law,
F = ma, which of course cannot be proved. As a fundamental equation, Schridinger's
has been found to successtully predict every observable physical phenomenon at the
atormic scale, Without this equation, we will not be able to understand the properties of
electromic materials and the principles of operation of many semiconductor devices,
We introduce the equation through an analogy.

A traveling electromagnetic wave resulting from sinusoidal current oscillations, or
the traveling voltage wave on a long ransmission line, can generally be described by
a traveling-wave equation of the form

Elx, iy =E,exp jlkx — wf) = E(x) expl— jowr) [3.14]

where £(x) = Egexp(jkx) represents the spatial dependence, which is separate from
the time variation. We assume that no transients exist to upset this perfect sinusoidal
propagation. We note that the time dependence is harmonic and therefore predictable,
For this reason, in ac circuits we put aside the exp(— jext) term until we need the
instantansous magnitude of the voltage.

The average intensity I, = jce,E; depends on the square of the amplitude. In
Young's double-slit experiment, the intensity varies along the y direction, which means
that ‘EZ for the resultant wave depends on y. In the electron version of this experiment
in Figure 3.12, what changes in the y direction is the probability of observing elec-
trons; that is, there are peaks and troughs in the probability of finding electrons along
¥, just like the €2 variation along y. We should therefore attach some probability inter-
pretation to the wave description of the electron.

In 1926, Max Born suggested a probability wave interpretation for the wave-like
behavior of the electron.

Eix, 1) = E;sin(kx — et

is & plane traveling wavefunction for an electric hield; experimentally, we measure and
interpret the intensity of a wave, namely |E{x, ¢} |2, There may be a similar wave func-
tion for the electron, which we can represent by a function ¥ (x, 7). According to Born,
the significance of W(x. ) is that its amplitude squared represents the probability of
finding the electron per unit distance. Thus, in three dimensions, if ¥ (x, ¥, z. 1) repre-
sents the wave property of the electron, it must have one of the following interpretations:

|¥(x, ¥, z,1)|* is the probability of finding the electron per unit volume at
x, ¥, zattime .

|¥(x, ¥y, z,£)|* dx dy dz is the probability of finding the electron in a small
elemental volume dx dy dz atx. y. 7 at time 1.
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If we are just considering one dimension, then the wavefunction is Wix, ¢}, and
| (x, £)|* dx is the probability of finding the electron between x and (x + #x) at time 1.

We should note that since only |¥ |2 has meaning, not ¥, the latter function need
not be real; it can be a complex function with real and imaginary parts. For this reason,
we tend to use W™ ¥, where ¥* is the complex conjugate of ¥, instead of |¥|?, to rep-
resent the probability per unit volume.

To obtain the wavefunction ¥z, ) for the electron, we need to know how the
electron interacts with its environment. This is embodied in its potential energy func-
tion ¥ = V(x, 1), because the net force the electron experiences is given by

F=—dV/jdx.

For example, if the electron is attracted by a positive charge (e.g., the proton in a
hydrogen atom), then it clearly has an electrostatic potential energy given by

-
£

Vir) = —
¢ dre,r
where r = /x* + ¥* + 77 is the distance between the electron and the proton,
If the PE of the electron is time independent, which means that V = V(x) in one
dimension, then the spatial and time dependences of ¥ (x, 7} can be separated, just as
in Equation 3.14, and the total wavefunction ¥ (x, r) of the electron can be written as

h

where i x) is the electron wavefunction that describes only the spatial behavior, and £

is the energy of the eleciron. The temporal behavior is simply harmonic, by virtue of

exp(—fEt/h), which corresponds to exp(— jewt) with an angular frequency @ = E fh.

The fundamental equation that describes the electron’s behavior by determining ¥ (x) is

called the time-independent Schrodinger equation. Itis given by the famous equation
dy  2m

E- o + =
dx? he

Wix, 1) = y(x) emp(—ﬁ) [3.15]

(E—Vig =0 [3.16a]

where m 15 the mass of the electron.

This is a second-order differential equation. It should be reemphasized that the
potential energy V in Equation 3. [6a depends only on x. If the potential energy of the
glectron depends on time as well, that is, if ¥V = V{x, 1), then in general ¥ (x, {) can-
not be written as 4 (x)exp(—jEr/h), Instead, we must use the full version of the
Schridinger equation, which is discussed in more advanced textbooks.

In three dimensions, there will be derivatives of ¢ with respectto x, ¥, and z. We
use the calculus notation (44 /d.x), differentiating  (x, y. z) with respect to x but
keeping v and z constant. Similar notations 8 /3y and 8+ /8r are used for derivatives
with respect to ¥ alone and with respect to z alone, respectively. In three dimensions,
Equation 3. 16a becomes

% Aty 8% 2m
ol + ay? + 322 + e (E—-Vnr=0 [3.16b]

where V = Vix, v, 2) and ¢ = ¢ {x, v, 2).

09

Stecel-state
total wave
function

Schridingery
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for one
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Equation 3.16b is a fundamental equation, called the time-independent Schridinger
equation, the solution of which gives the steady-state behavior of the electron in a
time-independent potential energy environment described by V = Vix, y.z). By
solving Equation 3.16b, we will know the probability distribution and the energy of the
electron. Once 4 (x. v. 2) has been determined, the total wavefunction for the electron
is given by Equation 3.15 so that

Wi, vz, 0017 = |ix, y, 2

which means that the steady-state probability distribution of the electron is simply
W ix, y.2) .

The time-independent Schridinger equation can be viewed as a “mathematical
crank.” We input the potential energy of the electron and the boundary conditions, turn
the crank, and get the probability distribution and the energy of the electron under
steady-state conditions.

Two important boundary conditions are often used to solve the Schridinger equa-
tion. First, as an analogy, when we stretch a string between two fixed points and put it
into a steady-state vibration, there are no discontinuities or kinks along the string. We
can therefore intelligently guess that because {x) represents wave-like behavior, it
must be a smooth function without any discontinuities.

The first boundary condition is that ¥* must be continuous, and the second is that
dW /ddx must be continuous. In the steady state, these two conditions translate directly
to o and dv/dx being continucus. Since the probability of finding the electron is
represented by [ %, this function must be single-valued and smooth, without any
discontinuities, as illustrated in Figure 3.14. The enforcement of these boundary
conditions results in strict requirements on the wavefunction v (x), as a result of
which only certain wavefunctions are acceptable. These wavefunctions are called the
cigenfunctions (characteristic functions) of the system, and they determine the be-
havior and energy of the electron under steady-state conditions. The eigenfunctions
¥ (x) are also called stationary states, inasmuch as we are only considering steady-
state behavior.

It is important to note that the Schrisdinger equation is generally applicable to all
matter, not just the electron. For example, the equation can also be used to deseribe
the behavior of a proton, if the appropriate potential energy Vix, y, z) and mass
(M peuen ) are used. Wavefunctions associated with particles are frequently called
matter waves.

wix) (X} not continuous wix) %fnm continuous Wix)  yix) not single-valued

i

== 1 > x

Figure 3.14 Unaccephable forms of 7 [x].
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THE FREE ELECTRON Solve the Schriodinger equation for a free electron whose energy is £. RO IKR
What is the uncertainty in the position of the electron and the uncertainty in the momentum of
the electron?

SOLUTION

Since the electron 1s free, its potential energy is zero, V = 0. In the Schrédinger equation, this
leads to

d*y . 2m Ev =
dx? h? -
We can write this as
d* ,
— k2 =
dx? Y

where we defined k? = (2m /A*) E. Solving the differential equation, we get
v(x) = Aexp(jkx) or B exp(—jkx)

The total wavefunction is obtained by multiplying v (x) by exp(—Jj Et/h). We can define
a fictitious frequency for the electron by w = E /A and multiply ¥ (x) by exp(—jwt):

W(x,t) = Aexp jlkx — wt) or B exp j(—kx — wt)

Each of these is a traveling wave. The first solution is a traveling wave 1n the 4+x direction,
and the second one is in the —x direction. Thus, the free electron has a traveling wave solution

with a wavenumber k£ = 2z /A, that can have any value. The energy E of the electron 1s simply
KE, so

(hk)?

2m

KE = E =

When we compare this with the classical physics expression KE = (p*/2m), we see that
the momentum 1s given by

= hk = —
p or P=7
This is the de Broglie relationship. The latter therefore results naturally from the

Schrodinger equation for a free electron.
The probability distribution for the electron is

be(x)l2 = |A exp j(kx)\2 — AZ

which is constant over the entire space. Thus, the electron can be anywhere between x = —o0
and x = +00. The uncertainty Ax in its position is infinite. Since the electron has a well-
defined wavenumber %, its momentum p is also well-defined by virtue of p = hk. The uncer-
tainty Ap 1n its momentum is thus zero.

WAVELENGTH OF AN ELECTRON BEAM Electrons are accelerated through a 100 V potential E3G:U1 SN
difference to strike a polycrystalline aluminum sample. The diffraction pattern obtained indi-

Er cates that the highest intensity and smallest angle diffraction, corresponding to diffraction from
the (111) planes, has a diffraction angle of 30.4°. From X-ray studies, the separation of the (111)
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planes 1s 0.234 nm. What is the wavelength of the electron and how does it compare with that
from the de Broglie relationship?

SOLUTION

Since we know the angle of diffraction 26 (= 30.4°) and the interplanar separationd (= 0.234 nm),

we can readily calculate the wavelength of the electron from the Bragg condition for diffraction,
2d sinf = ni. Withn = 1,

A=2dsmn8 = 2(0.234 nm) sin(15.2°) = 0.1227 nm

This is the wavelength of the electron.

When an electron is accelerated through a voltage V, it gains KE equal to eV, so p*/2m =
eV and p = (2meV)!/2. This is the momentum imparted by the potential difference V. From the
de Broglie relationship, the wavelength should be

h h

p (2meV)1/?

h2 1/2
= (30ev )
2meV

A ==

or

The experiment uses 100 V, so the de Broglie wavelength i1s

1.226 nm 1.226 nm
vi/2 1001/2

which is in excellent agreement with that determined from the Bragg condition.

3.3

INFINITE POTENTIAL WELL:
A CONFINED ELECTRON

Consider the behavior of the electron when it 1s confined to a certain region,
0 <x <a. Its PE 1s zero inside that region and infinite outside, as shown 1n
Figure 3.15. The electron cannot escape, because it would need an infinite PE. Clearly
the probability | |* of finding the electron per unit volume is zero outside 0 < x < a.
Thus, v = 0 whenx < 0 and x > a, and y 1s determined by the Schrodinger equation
In0 < x < a with V = 0. Theretfore, inthe region0 < x < a

This 1s a second-order linear ditferential equation. As a general solution, we can take

Y(x) = Aexp(jkx) + Bexp(—jkx)
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vix) Electron

@ -
\

%
)

%
\/

V=0

0 0

Energy levels in the well  y/(x) e« sin(nzx/a) ~ Probability density o |y (x)|?

Energy of electron

a

Figure 3.15 Electron in a one-dimensional infinite PE well.

The energy of the electron is quantized. Possible wavefunctions and the probability distributions for the electron
are shown.

where k 1s some constant (to be determined) and substitute this in Equation 3.17 to
find k. We first note that ¢ (0) = O; therefore, B = — A, so that

v (x) = Alexp(jkx) — exp(—jkx)] = 2Aj sin kx [3.18]

We now substitute this into the Schrodinger Equation 3.17 to relate the energy E
| to k. Thus, Equation 3.17 becomes

2
—2Ajk(sin kx) + (-;1"2-3) EQ2Aj sinkx) = 0

which can be rearranged to obtain the energy of the electron:

h2kZ
E = 0 [3.19]
m
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Since the electron has no PE within the well, its total energy E is kinetic energy KE,
and we can write

2
E =KE = 2=

2m
where p, 1s its momentum. Comparing this with Equation 3.19, we see that the momen-
tum of the electron must be

px = Lhk [3.20]

The momentum p, may be in the +x direction or the —x direction (which is the
reason for %), so the average momentum i1s actually zero, p,, = 0.

We have already seen this relationship, when we defined k as 27 /A (wavenumber)
for a free traveling wave. So the constant £ here 1s a wavenumber-type quantity even
though there is no distinct traveling wave. Its value is determined by the boundary
condition at x = a where ¥ = 0, or

Vv(a) =2Ajsinka =0

The solution to sin ka = 0 1s simply ka = nm,wheren = 1, 2, 3, ... 1s an integer.
We exclude n = 0 because it will result in ¥ = 0 everywhere (no electron at all).

We notice immediately that £, and therefore the energy of the electron, can only
have certain values; they are quantized by virtue of n being an integer. Here, n 1s
called a quantum number. For each n, there 1s a special wavefunction

Ua(x) = 24Aj sin(m) [3.21]

a

which is called an eigenfunction.” All ¥, forn = 1, 2, 3 ... constitute the eigenfunc-
tions of the system. Each eigenfunction identifies a possible state for the electron. For
each n, there is one special k value, k, = nn/a, and hence a special energy value E,,
SINCE

hk?

2m

E, =

that 1s,
- h?(7n)? B h%n?

E, -
2ma? 8ma?

[3.22]

The energies E, defined by Equation 3.22 withn = 1, 2, 3. .. are called eigenenergies
of the system.

We still have not completely solved the problem, because A has yet to be deter-
mined. To find A, we use what is called the normalization condition. The total prob-
ability of finding the electron in the whole region 0 < x < a 1s unity, because we know
the electron is somewhere in this region. Thus, |y |* dx summed between x = 0 and

| 3 From the German meaning “characteristic function.”
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X = a must be unity, or

x=a x=a 2
[ ¥ ()2 dx = [ QA sin(m)
x=0 x=0 a

Carrying out the simple integration, we find

1\ 1/2
4= (5)
2a

The resulting wavefunction for the electron is thus

2\ /2 niTx
VUn(x) = j(—-) sin(-——-—) [3.23]
a

Normalization

dx =1 .
condition

da

We can now summarize the behavior of an electron in a one-dimensional PE well.
Its wavefunction and energy, shown in Figure 3.15, are given by Equations 3.23 and
3.22, respectively. Both depend on the quantum number n. The energy of the electron
increases with n#, so the minimum energy of the electron corresponds to n = 1. This is
called the ground state, and the energy of the ground state is the lowest energy the
electron can possess. Note also that the energy of the electron in this potential well
cannot be zero, even though the PE 1s zero. Thus, the electron always has KE, even
when 1t 1s 1n the ground state.

The node of a wavefunction is defined as the point where ¢ = 0 inside the well.
It 1s apparent from Figure 3.15 that the ground wavefunction ¥; with the lowest energy
has no nodes, ¥, has one node, 3 has two nodes, and so on. Thus, the energy increases
as the number of nodes increases 1n a wavefunction.

It may seem surprising that the energy of the electron is quantized; that is, that it
can only have finite values, given by Equation 3.22. The electron cannot be made to
take on any value of energy, as in the classical case. If the electron behaved like a par-
ticle, then an applied force F' could impart any value of energy to it, because
F = dp/dt (Newton’s second law), or p = [ Fdt. By applying a force F for a time ¢,
we can give the electron a KE of

2= ()l ]

However, Equation 3.22 tells us that, in the microscopic world, the energy can only
have quantized values. The two conflicting views can be reconciled if we consider the

energy difference between two consecutive energy levels, as follows: Energy

h*(2n + 1) separation
Rma? in infinite
PE well

AE:E?I'I‘I_EII:

As a increases to macroscopic dimensions, a — 00, the electron i1s completely
freeand AE — 0. Since AE = 0, the energy of a completely free electron (@ = o0) is
continuous. The energy of a confined electron, however, is quantized, and A E depends
on the dimension (or size) of the potential well confining the electron.

In general, an electron will be “contained’ 1n a spatial region of three dimensions,
within which the PE will be lower (hence the confinement). We must then solve the
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Schrodinger equation in three dimensions. The result 1s three quantum numbers that
characterize the behavior of the electron.

Examination of the wavefunctions ¢, in Figure 3.15 shows that these are either
symmetric or antisymmetric with respect to the center of the well at x = %a. The sym-
metry of a wavefunction is called its parity. Whenever the potential energy function

1

V(x) exhibits symmetry about a certain point C, for example, about x = ja

Figure 3.15, then the wavefunctions have either even parity (such as ¢, ¥s, ... that
are symmetric) or have odd parity (such as ¥, ¥4, ... that are antisymmetric).

ELECTRON CONFINED WITHIN ATOMIC DIMENSIONS Consider an electron in an infinite po-

tential well of size 0.1 nm (typical size of an atom). What 1s the ground energy of the electron?
What is the energy required to put the electron at the third energy level? How can this energy be
provided?

SOLUTION
The electron is confined in an infinite potential well, so its energy is given by
h’n?
E, =
8ma?

We use n = 1 for the ground level and a = 0.1 nm. Therefore,

(6.6 x 107°% J s)?(1)?

WAV B ~18
= 80.1 x 10-7 k) (0.1 x 10-5 m)? = 6.025 x 10 J or 37.6 eV

E,

The frequency of the electron associated with this energy is

w=—= =571 x 10" rad s or v = 9.002 x 107 s
h 1.055 x 10734 J s

The third energy level E; is
E; = E;n* = (37.6eV)(3)° = 338.4 eV

The energy required to take the electron from 37.6 eV to 338.4 eV 1s 300.8 eV. This can be pro-
vided by a photon of exactly that energy; no less, and no more. Since the photon energy 1is

E =hv = hc/A,oOr
\ he (6.6 x 10734 Js)(3 x 108 m s~ 1)
~ E  300.8eV x 1.6 x 10-19C

= 4.12 nm

which is an X-ray photon.

ENERGY OF AN APPLE IN A CRATE Consider a macroscopic object of mass 100 grams (say,
an apple) confined to move between two rigid walls separated by 1 m (say, a typical size of a
large apple crate). What is the minimum speed of the object? What should the quantum number
n be if the object is moving with a speed 1 m s™'? What is the separation of the energy levels of
the object moving with that speed?

,z
:
:

e ey T — T T
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SOLUTION
Since the object 1s within rigid walls, we take the PE outside the walls as infinite and use
h°n*
"~ 8ma?

to find the ground-level energy. Withn = 1,a = 1 m, m = 0.1 kg, we have

(6.6 x 10734 J 5)?(1)?

=545 x 107 J =34 x 1079 eV
8(0.1 kg)(1 m)?2

E;

Since this is kinetic energy, ;mv} = E;, so the minimum speed is

2F 2(5.45 x 10797 ]
no=yf ot o RO X0 331078 ms!
m 0.1 kg

This speed cannot be measured by any instrument; therefore, for all practical purposes, the
apple 1s at rest in the crate (a relief for the fruit grocer). The time required for the object to

move a distance of 1 mm is 3 x 10* s or 10%! years, which is more than the present age of the
universe!
1

When the object 1s moving with a speed 1 ms™,

r, 1 — 152
KE = —2-mv — -2-(0.1 kg)(Ims )" =0.05]

This must be equal to E,, = h*n?/8ma? for some value of n

(SmazEn ) eb [8(0.1 kg)(1 m)2(0.05 J)
n = —_ | —_——
h? (6.6 x 10=34 J 5)2

1/2
] = 3.03 x 10°?

which 1s an enormous number. The separation between two energy levels corresponds to a
change in n from 3.03 x 10°* to 3.03 x 10°* + 1. This is such a negligibly small change in n
that for all practical purposes, the energy levels form a continuum. Thus,

h’(2n + 1)

8ma?

- [(6.6 x 107 J5)*(2 x 3.03 x 10°% + 1)]
B [8(0.1 kg)(1 m)?]

= 3.30 x 107* ] or 2.06 x 1071 eV

AE=E,1 — E, =

This energy separation is not detectable by any instrument. So for all practical purposes, the en-
ergy of the object changes continuously:. }

We see from this example that in the limit of large quantum numbers, quantum predictions
agree with the classical results. This is the essence of Bohr’s correspondence principle.

34 HEISENBERG’S UNCERTAINTY PRINCIPLE

The wavetunction of a free electron corresponds to a traveling wave with a single
wavelength A, as shown in Example 3.5. The traveling wave extends over all space,
along all x, with the same amplitude, so the probability distribution function is uniform
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ecturing an quorum

‘throughout the whole of space. The uncertainty Ax in the position of the electron is

therefore infinite. Yet, the uncertainty Ap; in the momentumn of the electron is zero,
because A 1s well-defined, which means that we know p, exactly from the de Broglie
relationship, pe = oA,

For an electron trapped in a one-dimensional infinite PE well, the wavefunction
extends from x = 0 to x = a, 50 the uncertaintly in the position of the electron is a. We
know that the electron is within the well, but we cannot pinpoint with certainty exactly
where it is. The momentum of the electron is cither p, = hk in the +x direction or —hi
in the —x direction, The uncertainty Ap, in the momentum is therefore 2hk; that is,
Ap, = Zhk. For the ground-state wavelunction, which corresponds ton = 1, we have
ka = . Thus, Ap, = 2hx/a. Taking the product of the uncertainties in x and p, we get

2R
(Ax}Ap:) = [ﬂ}(T) =h

In other words, the product of the position and momentum uncertainties is sim-
ply A. This relationship is fundamental; and it constitutes a limit to our knowledge of
the behavior of a system. We cannot exactly and simultaneously know both the position
and wmomentum of a particle along a given coordinate. In general, if Ax and Ap, are
the respective uncertainties in the simuliancous measurement of the position and
momentum of & particle along a particolar coordinate {(such as «), the Heisenberg
uncertainty principle states that?

Ax Ap, = H [3.24]

We are therefore forced to conclude that as previously stated, becanse of the wave
nature of quantum mechanics, we are unable to determine exactly and simultaneously
the position and momentum of a particle along a given coordinate. There will be an
uncertainty Ax in the position and an uncertainty Ap, in the momentum of the particle

4 Tha Heisenbarg uncarkainty principle is narmally writhen in terms of & rather than h. Further, in soma physics baxts,
1 in Eyuetion 3.24 hoa o h:ror:"; multiplying ir.
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and these uncertainties will be related by Heisenberg’s uncertainty relationship in
Equation 3.24.

These uncertainties are not in any way a consequence of the accuracy of a mea-
surement or the precision of an instrument. Rather, they are the theoretical limits to
what we can determine about a system. They are part of the quantum nature of the uni-
verse. In other words, even if we build the most perfectly engineered instrument to
measure the position and momentum of a particle at one instant, we will still be faced
with position and momentum uncertainties Ax and Ap, such that Ax Ap, > *.

There 1s a similar uncertainty relationship between the uncertainty A E 1n the
energy E (or angular frequency w) of the particle and the time duration At during
which it possesses the energy (or during which its energy is measured). We know that
the kx part of the wave leads to the uncertainty relation Ax Ap, > h or Ax Ak > 1.
By analogy we should expect a similar relationship for the wt part, or Aw At > 1. This
hypothesis is true, and since £ = hw, we have the uncertainty relation for the particle
energy and time:

AE At = h [3.25]

Note that the uncertainty relationships in Equations 3.24 and 3.25 have been
written in terms of 7, rather than A, as implied by the electron 1n an infinite potential
energy well (Ax Ap, > h). In general there is also a numerical factor of 3 multiplying
h in Equations 3.24 and 3.25 which comes about when we consider a Gaussian spread
for all possible position and momentum values. The proof is not presented here, but
can be found in advanced quantum mechanics books.

It is important to note that the uncertainty relationship applies only when the
position and momentum are measured in the same direction (such as the x direction).
On the other hand, the exact momentum, along, say, the y direction and the exact
position, along, say, the x direction can be determined exactly, since Ax Ap, need not

satisfy the Heisenberg uncertainty relationship (in other words, Ax Ap, can be zero).

THE MEASUREMENT TIME AND THE FREQUENCY OF WAVES: AN ANALOGY WITH AE At>#

Consider the measurement of the frequency of a sinusoidal wave of frequency 1000 Hz (or
cycles/s). Suppose we can only measure the number of cycles to an accuracy of 1 cycle, because
we need to receive a whole cycle to record it as one complete cycle. Then, in a time interval of
At = 1 s, we will register 1000 £ 1 cycles. The uncertainty A f in the frequency 1s 1 cycle/1 s
or 1 Hz. If At is 2 s, we will measure 2000 £ 1 cycles, and the uncertainty A f will be 1 cycle/
2sor 5 cycle/s or 5 Hz. Thus, Af decreases with Az.
Suppose that in a time interval Az, we measure N £ 1 cycles. Since the uncertainty 1s
1 cycle in a time interval At, the uncertainty 1n f will be
(1 cycle) 1

— Hz

A
/ At At

Since w = 2 f, we have

Aw At = 27

In quantum mechanics, under steady-state conditions, an object has a time-oscillating
wavefunction with a frequency w which is related to its energy E by w = E/h (see Equation 3.15).
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Substituting this into the previous relationship gives
AE At = h

The uncertainty in the energy of a quantum object is therefore related, in a fundamental
way, to the time duration during which the energy 1s observed. Notice that we again have A, as

for Ax Ap, = h, though the quantum mechanical uncertainty relationship in Equation 3.25
has 7.

20V I ROE THE UNCERTAINTY PRINCIPLE ON THE ATOMIC SCALE Consider an electron confined to a

region of size 0.1 nm, which is the typical dimension of an atom. What will be the uncertainty
in 1its momentum and hence its kinetic energy?

SOLUTION

We apply the Heisenberg uncertainty relationship, Ax Ap, = h, or

R 1.055 x 10°* J s

A X N —— =
¥ Ax 0.1 x 10~ °m

= 1.055 x 10”* kg m s~

The uncertainty in the velocity is therefore

We can take this uncertainty to represent the order of magnitude of the actual speed. The
kinetic energy associated with this momentum 1s

E — Ap?  (1.055 x 107> kgms™')’
C 2m,  2(9.1 x 10731 kg)

= 6.11 x 1071° 7] or 3.82 eV

FOV I RRAN THE UNCERTAINTY PRINCIPLE WITH MACROSCOPIC OBJECTS Estimate the minimum velocity
of an apple of mass 100 g confined to a crate of size 1 m.

SOLUTION

Taking the uncertainty in the position of the apple as 1 m, the apple 1s somewhere 1n the crate,

R 105 x 107 7Js

Ap, " — =
£ AX l m

= 1.05 x 107" kgms™!

So the minimum uncertainty in the velocity 1s

The quantum nature of the universe implies that the apple in the crate 1s moving with a ve-

locity on the order of 107°* m s~!. This cannot be measured by any instrument; indeed, it would
take the apple ~10'" years to move an atomic distance of 0.1 nm.
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3.5 TUNNELING PHENOMENON: QUANTUM LEAK

To understand the tunneling phenomenon, let us examine the thrilling events experi-
enced by the roller coaster shown in Figure 3.16a. Consider what the roller coaster can
do when released from rest at a height A. The conservation of energy means that the
carriage can reach B and at most C, but certainly not beyond C and definitely not D and
E. Classically, there is no possible way the carriage will reach E at the other side of the
potential barrier D. An extra energy corresponding to the height difference, D — A, is
needed. Anyone standing at E will be quite safe. Ignoring frictional losses, the roller
coaster will go back and forth between A and C.

Now, consider an analogous event on an atomic scale. An electron moves with an
energy E in aregion x < 0 where the potential energy PE is zero; therefore, E 1s solely
kinetic energy. The electron then encounters a potential barrier of “height” V,,, which

Start here from rest

(a)
(b)
Transmitted
xr=0 xX=a —>»X
Figure 3.16

[a) The roller coaster released from A can at most make it to C, but not to E. lts PE at A is
less than the PE at D. When the car is at the bottom, its energy is totally KE. CD is the
energy barrier that prevents the car from making it to E. In quantum theory, on the other
hand, there is a chance that the car could tunnel {leak) through the potential energy barrier
between C and E and emerge on the other side of the hill at E.

(b) The wavefunction for the electron incident on a potential energy barrier (V,). The
incident and reflected waves interfere to give v(x). There is no reflected wave in region ll.
In region ll, the wavefunction decays with x because E < V..
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1s greater than £ at x = 0. The extent (width) of the potential barrier is a. On the other
side of the potential barrier, x > a, the PE is again zero. What will the electron do?
Classically, just like the roller coaster, the electron should bounce back and thus be
confined to the region x < 0, because its total energy F is less than V,. In the quantum
world, however, there i1s a distinct possibility that the electron will “tunnel” through
the potential barrier and appear on the other side; it will leak through.

To show this, we need to solve the Schrodinger equation for the present choice of
V (x). Remember that the only way the Schrodinger equation will have the solution
¥ (x) = 0 1s if the PE 1s infinite, that is, V = oo. Therefore, within any zero or finite
PE region, there will always be a solution v (x) and there always will be some proba-
bility of finding the electron.

We can divide the electron’s space into three regions, I, II, and III, as indicated in
Figure 3.16b. We can then solve the Schrodinger equation for each region, to obtain
three wavetunctions ¥1(x), ¥n(x), and Y(x). In regions I and III, ¥ (x) must be trav-
eling waves, as there 1s no PE (the electron is free and moving with a Kinetic en-
ergy £). In zone II, however, E — V, 1s negative, so the general solution of the
Schrodinger equation is the sum of an exponentially decaying function and an expo-
nentially increasing function. In other words,

Ui(x) = Arexp(Jkx) + Arexp(—jkx) [3.26d]
Yu(x) = Byexp(ax) + Byexp(—ax) [3.26b]
Ym(x) = Crexp(jkx) + Coexp(—jkx) [3.26¢]

are the waveftunctions in which

, 2mkE
K< = 2 [3.27]
and
2 VO - E
UL oo

Both k* and «?, and hence k and «, in Equations 3.26a to ¢ are positive numbers.
This means that exp(jkx) and exp(— jkx) represent traveling waves in opposite di-
rections, and exp(—ax) and exp(ax) represent an exponential decay and rise, respec-
tively. We see that 1in region I, ¥;(x) consists of the incident wave A; exp(jkx) in the
+x direction, and a reflected wave A, exp(—jkx), in the —x direction. Furthermore,
because the electron 1s traveling toward the right in region III, there is no reflected
wave, so C, = 0.

We must now apply the boundary conditions and the normalization condition to
determine the various constants A, A,, B, B>, and C,. In other words, we must match
the three wavetorms 1n Equations 3.26a to ¢ at their boundaries (x = 0 and x = a) so
that they form a continuous single-valued wavetfunction. With the boundary conditions
enforced onto the wavefunctions ¥;(x), ¥u(x), and ¥ (x), all the constants can be
determined 1n terms of the amplitude A of the incoming wave. The relative probability
that the electron will tunnel from region I through to III is defined as the transmission
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coefficient T, and this depends very strongly on both the relative PE barrier height
(V, — E) and the width a of the barrier. The final result that comes out from a tedious
application of the boundary conditions is

2 C? 1
r— _WYm®F" _c 001 3.29)

where

D~ —°2 [3.30]
4E(V, — E)

and « 1s the rate of decay of Y¥yj(x) as expressed in Equation 3.28. For a wide or high
barrier, using c¢a > 1 in Equation 3.29 and sinh(aa) = -é— exp(aa), we can deduce

T =T,exp(—2aa) [3.31]
where
16E(V, - E
= IoEV, — 5) [3.32]
V2

By contrast, the relative probability of reflection is determined by the ratio of the
square of the amplitude of the retlected wave to that of the incident wave. This quan-
tity 1s the reflection coefficient R, which is given by

g A2
_A2
1

=1-T [3.33]

We can now summarize the entire tunneling affair as follows. When an electron
encounters a potential energy barrier of height V, greater than its energy E, there 1s a
finite probability that it will leak through that barrier. This probability depends sensi-
tively on the energy and width of the barrier. For a wide potential barrier, the proba-
bility of tunneling is proportional to exp(—2aa), as in Equation 3.31. The wider or
higher the potential barrier, the smaller the chance of the electron tunneling.

One of the most remarkable technological uses of the tunneling effect is in the

scanning tunneling microscope (STM), which elegantly maps out the surfaces of

solids. A conducting probe is brought so close to the surface of a solid that electrons
can tunnel from the surface of the solid to the probe, as illustrated in Figure 3.17. When
the probe is far removed, the wavefunction of an electron decays exponentially outside
the material, by virtue of the potential energy barrier being finite (the work function is
~10 V). When the probe 1s brought very close to the surtace, the wavetunction pen-
etrates into the probe and, as a result, the electron can tunnel from the matenal into the
probe. Without an applied voltage, there will be as many electrons tunneling from
the material to the probe as there are going in the opposite direction from the probe to
the material, so the net current will be zero.

On the other hand, if a positive bias i1s applied to the probe with respect to the ma-
terial, as shown in Figure 3.17, an electron tunneling from the material to the probe
will see a lower potential barrier than one tunneling from the probe to the material.
Consequently, there will be a net current from the probe to the maternal and this current
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Metal ¥ p— Metal

Second metal

V(x) - V(x)

X

(a) The wavefunction decays exponenticllly.as we move  (b) If we bring a second metal close to the first metal, then
away from the surface because the PE outside the metal  the wavefunction can penetrate into the second metal. The

is V, and the energy of the electron, E< V. electron can tunnel from the first metal to the second.

tunnel
Probe m
4
Material
surface
I tunnel

9:& Image of surface
.6-'\ (schematic sketch)

(c) The principle of the scanning tunneling microscope. The tunneling current
depends on exp(-2aa) where a is the distance of the probe from the surface
of the specimen and «a is a constant.

Figure 3.17

will depend very sensitively on the separation a of the probe tfrom the surtace, by
virtue of Equation 3.31.

Because the tunneling current is extremely sensitive to the width ot the potential
barrier, the tunneling current is essentially dominated by electrons tunneling to the
probe atom nearest to the surface. Thus, the probe tip has an atomic dimension. By
scanning the surface of the material with the probe and recording the tunneling current
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change (alternate) from one atomic site to a neighboring site within the hexagonal
rings. STM was invented by Gerd Binning and Heinrich Rohrer at the IBM Research
Laboratory in Zurich, for which they were awarded the 1986 Nobel prize.’

EXAMPLE 3.12

TUNNELING CONDUCTION THROUGH METAL-TO-METAL CONTACTS Consider two copper

wires separated only by their surface oxide layer (CuQO). Classically, since the oxide layer is an
insulator, no current should be possible through the two copper wires. Suppose that for the con-
duction (“free’’) electrons in copper, the surtace oxide layer looks like a square potential energy
barrier of height 10 eV. Consider an oxide layer thickness of 5 nm and evaluate the transmission
coefficient for conduction electrons in copper, which have a kinetic energy of about 7 eV. What
will be the transmission coefficient if the oxide barrier i1s 1 nm?

SOLUTION

We can calculate o from
[Zm(Vo - E)]“2
=T
[2(9.1 x 10731 kg)(10eV — 7eV)(1.6 x 10™1° J/ev):l“2
(1.05 x 10=%47Js)?

.

=89 x 10°m™!
sO that -
aa = (8.9 x 10°m™1)(5 x 107" m) = 44.50

Since this 1s greater than unity, we use the wide-barrier transmission coefticient in Equa-

tion 3.31.
Now,
_ 16E(V, - E) _ 16(7eV)(10eV —TeV)
’ V2 (10eV)?
Thus,

I' =T, exp(—2xa)
= 3.36 exp[—2(8.9 x 10°m~1)(5 x 107" m)] = 3.36 exp(—89)
~ 7.4 x 107

an incredibly small number.
Witha = 1 nm,

T = 3.36 exp[—2(8.9 x 10°m™ (1 x 107° m)]
= 3.36 exp(—17.8) ® 6.2 x 107°

Notice that reducing the layer thickness by five times increases the transmission probability by
10°!! Small changes in the barrier width lead to enormous changes in the transmission

> The IBM Research Laboratory in Zurich, Switzerland, received both the 1986 and the 1987 Nobel prizes. The first

was for the scanning tunneling microscope by Gerd Binning and Heinrich Rohrer. The second was awarded to Georg
Bednorz and Alex Miller for the discovery of high-temperature superconductors which we will examine in Chapter 8.
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probability. We should note that when a voltage 1s applied across the two wires, the potential en-
ergy height 1s altered (PE = charge x voltage), which results in a large increase in the trans-
mission probability and hence results in a current.

SIGNIFICANCE OF A SMALL h Estimate the probability that a roller coaster carriage that 3§V IJUKRK!
weighs 100 kg released from point A 1in Figure 3.16a from a height at 10 m can reach point E
over a hump that 1s 15 m high and 10 m wide. What will this probability be in a universe where

h~ 10 kJ s?

SOLUTION

The total energy of the carriage at height A 1s
E = PE = mg(height) = (100 kg)(10 ms™%)(10 m) = 10*]J

Suppose that as a first approximation, we can approximate the hump as a square hill of
height 15 m and width 10 m. The PE required to reach the peak would be

V, = mg(height) = (100 kg)(10ms~?)(15m) = 1.5 x 10*J
Applying this, we have
, 2m(V, — E)

-----------
A% AR AL .y
; ':j-‘ft*“:fﬂﬂ'i‘l’i ------------
IR AR M AN
&M L o TR S I e

---------

......

A ‘{il f &

“Just like the %ood old ghost of the middle ages.” In a
world where h is of the order of unity, one can expect
tunneling surprises.

SOURCE: George Gamow, Mr. Tompkins in
Paperback, Cambridge, England, University Press,
1965, p. 96. Used with permission.
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and so
¢ =9.52 x 10*°m™!
Witha = 10 m, we have @a > 1, so we can use the wide-barrier tunneling equation,
I' =T, exp(—2aa)
where

16[{E(V, — E
TO — —-—l':—-—g——————)—]- —_ 3.56
V‘_,,2
Thus,
T = 3.56 exp[—2(9.52 x 10 m~')(10m)] = 3.56 exp(—1.9 x 10%)

which 1s a fantastically small number, indicating that it is impossible for the carriage to tunnel
through the hump.
Suppose that 2 =~ 10 kJ s. Then

, 2m(V,—E) 2(100kg)(1.5 x 10°J — 10%J) 3
0= =~ = 0.0lm
h? (104 5)2

so that e = 0.1 m~". Clearly, @a = 1, so we must use

T = [1 + D sinh*(aa)]™"

where
V2
- — % =1.125
[4E(V, — E)]
Thus,

T =[1+ 1.125sinh*(1)]"' = 0.39

Thus, after three goes, the carriage would tunnel to the other side (giving the person standing at
E the shock of his life).

3.6 POTENTIAL BOX: THREE QUANTUM NUMBERS

To examine the properties of a particle confined to a region of space, we take a three-
dimensional space with a volume marked by a, b, ¢ along the x, y, z axes. The PE
1s zero (V = 0) inside the space and is infinite on the outside, as illustrated in
Figure 3.19. This i1s a three-dimensional potential energy well. The electron essen-
tially lives in the “box.”” What will the behavior of the electron be in this box? In
this case we need to solve the three-dimensional version of the Schrédinger equa-
tion,® which is
%y 'y %y

—+—+—=+FE-V)¥y=0 3.34]
ox2 T 5y +az2+h( )Y [

® The term ay/dx simply means differentiating ¥{x, y, z) with respect to x while keeping y and z constant, just like
dy¥/dx in one dimension.



3.6 PortenmiaL Box: THREE QuanTiiM NUMBERS

Z
* V=02
i
T, Figure 3.19 Electron confined in three
Ve = dimansicns by a three-dimensional infinite PE
= oo ¥ !
V= 0 /h. > Everywhere insida the box, ¥ = 0, but ourside,
¥ = 50, The electron connot escape from the
el V=oo bos.

withV =0in0 <y <a,0<v<h andl < z = ¢, and Vinfinite outside. We can
try to solve this by separating the variables via ¢ (x, ¥, z) = Vo (x) ¥, (¥} . (2).
Substituting this back into Equation 3.34, we can obtain three ordinary differential
equations, each just hke the one for the one-dimensional potential well. Having
found ¥, (x), ¥y(y), and v.(z) we know that the total wavefunction is simply the

product,
Wix, ¥, 2) = Asin(kyx) sin{k, ¥ sin(k,z) [3.35]

where k,, k., k., and A are constants to be determined. We can then apply the bound-
ary conditions at x = a, y = b, and z = ¢ to determine the constanis k. &, and &; in
the same way we found & for the one-dimensional potential well. If ¥r(x, y,z) = 0 at
z = a, then &, will be quantized via

kgt = ngm

where n; is a guantumn number, 7y = 1,2, 3, ..., Similarly, if r{x, y, z) = Qaty = b
and z = ¢, then &, and &, will be quantized, so that, overall, we will have

T Hall i
P R B e [3.36)
o ‘ b c

where ny, n7, and a3 are quantum numbers, each of which can be any integer except
2810,

We notice immediately that in three dimensions, we have three quantum numbers
ny, n3, and n3 associated with . (x), ¥,(y}, and y;(z). The eigenfunctions of the elec-
tron, denoted by the quantum numbers 1y, #z, and #3, are now given by

RITX Hamt _ fRamz
Worinana (X ¥, 2) = A_sin(u]r) sin( Eh }I) :-'.m( 2 ) [2.37]
5

Notice that these consist of the products of infinite one-dimensional PE well-type
wavefunctions, one for each dimension, and each has its own quantum number ». Each
possible eigenfunction can be labeled a state for the electron. Thus, ¢, and 3, are
two possible states,

To find the constant A in Equation 3.37, we need to use the normalization con-
dition that |4y nm, (. ¥, z)|* integrated over the volume of the box must be unity,

Flectron
wervefienciion
in infinite PE
well
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since the electron is somewhere in the box. The result for a square box is
A= (2/a)M.

We can find the energy of the electrom by substituting the wavefunction in Equa-
tion 3,35 into the Schrivdinger Equation 3,34, The energy as a function of k., k., &, is
then found to be

R
E = Elke. by k) = o (K + k) + &)

which is quantized by virtue of &, &, and k, being quantized. We can write this energy
in terms of n?, n3, and n? by using Equartion 3.36, as follows:

W fnd n2 nd

Ennn = (o + P+ 3
Bm\a b c

For a sguare box for which a = b = ¢, the energy is

R*(n +nl+n3)  KAN?

= 3.38
Bma? Bma? B3

Eﬂ.ngm -

where ¥ = (ni + n3 + n}), which can only have certain integer values. It is apparent
that the energy now depends on three quantum numbers. Qur conclusion is that in three
dimensions, we have three quantum numbers, each one arising from boundary condi-
tions along one of the coordinates. They quantize the energy of the electron via Equa-
tion 3.38 and its momentum in a particular direction, such as, p, = thk, =
x(hn,/2a), though the average momentum is zéro.

The lowest energy for the electron 15 obviously equal to Eqyy, not zero, The next
energy level commesponds to Eg;), which 15 the same a5 Ey; and Ey 3, 5o there are three
states (e, 1y, Wz, ¥r2) for this energy, The number of states that have the same
energy is termed the degeneracy of that energy level. The second energy level Eqy is
thus three-fold degenerate.

MNUMBER OF STATES WITH THE SAME ENERGY  How many states (eigenfunctions) are there at

energy level Euy, for a square potential energy box?

SOLUTHON
This energy level corresponds tory = 4, 1z = 4, and ny = 3, but the energy depends on
Ni=pldmin,=4"+4 13 =4

via Equation 3.38. As long as §* = 41 for any choice of (n,, 1z, #3), not just{4, 4, 3), the energy
will be the same.

The value ¥ = 41 can be obtained from (4, 4, 3}, (4, 3, 4), and (3, 4, 4} as well as (£, 2, 1),
(6, 1,20, (2,6, 1) (2,1, 6), (1, 6, 2), and (1, 2, 6). There are thus three stales from (4, 4, 3)
combinations and six from (6, 2, 1) combinations, giving nine possible states, each with a
distinct wavefunction, v, ..., However, all these v, , ., for the electron have the same
ENErgy £ .
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3.7 HYDROGENIC ATOM

37.1 ELECTRON WAVEFUNCTIONS

Consider the behavior of the electron in 4 hydrogenic (hydrogen-like) atom, which has
a nuelear charge of + Ze, as depicted in Figure 3.20. For the hydrogen atom, Z = 1,
whereas for an ionized helium atom Het, Z = 2. For a doubly ionized lithium atom
Li*". Z =3, and so on. The electron is attracted by a positive nuclear charge and
therefore has a Coulombic PE,

~-Zet
Vir) = —— [3.39]
dre,r
Since force F = —4V/dr, BEquation 3.39 is simply a statement of Coulomb’s force

between the positive charge +Ze of the nucleus and the negative charge —e of the
clectron. The task of finding ¥ (x, ¥, z) and the energy E of the electron now involves
putting V (r) from Equation 3.39 into the Schriddinger equation withr = /x? 4 y2 + 22
and solving it.

Fortunately, the problem has a spherical symmetry, and we can solve the
Schridinger equation by transforming it into the r, 8, ¢ coordinates shown in Fig-
ure 3.20, Even then, obtaining a solution is not easy. We must then ensure that the solu-
tiom for ¥ (r, &, ¢) satisfies all the boundary conditions, as well as being single-valued
and continucus with a continuous derivative. For example, when we go 27 around
the ¢ coordinate, 4 (#, 8, ¢} should come back to its original value, or W (r. 0, ¢) =
yrir, &, ¢ + 2m), as is apparent from an examination of Figure 3.20. Along the radial

e
Fa

Figure 3.20 The electron in the hydrogenic atom is
atiracted by o central force that is alwoys directed
Pir, E'_f} toward the positive nucleus,
’ Spherical coordinates centered af the nucleus are used 1o
describe the position of the eleciran. The PE of the

alectran depends enly an r.

1
|
I
¥
i
i
)
I
X fa e
-\\':
¥ir)
_ A . r
W(r) = —
g dme r

[

®

+4¢

n

Electron PE
in hydrogenic
crtenm
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coordinate, we need v (r, #, ¢) — 0 as r — o0; otherwise, the total probability will
diverge when |y (r, 8, ¢)|% is integrated over all space. In an analogy with the three-
dimensional potential well, there should be three quantum numbers to characterize the
wavefunction, energy, and momentum of the electron. The three quantum numbers are
called the principal, orbital angular momentum, and magnetic quantum numbers
and are respectively denoted by », £, and m;. Unlike the three-dimensional potential
well, however, not all the quantum numbers run as independent positive integers.

The solution to the Schridinger equation ¥ (r, #, ¢) depends on three variables,
r, &, ¢. The wavefunction  (r, &, ¢) can be written as the product of two functions

wir.d,¢)=R(r)Yid, ¢)

where Rir) is a radial function depending only on r, and Y(#, ¢) 15 called the
spherical harmonic, which expresses the angular dependence of the wavefunction.
These functions are characterized by the quantum numbers n, £, m,. The radial part
E(r) depends on n and £, whereas the sphenical harmonic depends on £ and me, so0

‘g,r(r, H,' 'i'j = 't;'rn.t,m; [:f', &, d’} i Rn.l’.{r} Yt'.m.- ':'Sll fi’} [3.40]

By solving the Schridinger equation, these funclions have already been evaluated. [t
turns out that we can only assign certain values to the quanium numbers v, £, and m;
to obtain acceptable solutions, that is, v, o, (r, 8, @) that are well behaved: single-
valued and with ¢ and the gradient of ¥ continuous. We can summarize the allowed
values of n, £, m, as follows:

Principal quantum number =123,
Crbital angular wumenium quantum nomber =002 ..., e =1} = n
Mignetic guantum number mp=—f €10 0 (= 1) Lor jme| = £

The ¢ values carry a special notation inherited from spectroscopic terms. The first
four £ values are designated by the first letters of the terms sharp, principal, diffise,
and fundamenial, whereas the higher £ values follow from f onwards, as g, &, i, etc.
For example, any state 4, ¢ ., that has £ = 0 is called an s state, whereas that which
has £ = 1 is termed a p state. We can also use # as a prefix to £ to identify n. Thus
Wuem, With n = 2 and £ = 0 corresponds to the 25 state. The notation for identifving
the £ value and labeling a state is summarized in Table 3.1.

Table 3.1  Labeling of varicus mi possibilities

£
n L[] 1 2 3 4
1 1s
2 2 2F
3 35 ip 4
4 35 4 dd 4f
5 hT Jp A 5 dg
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Table 3.2 The radial and spherical harmenic parts of the wavelunction in the hydragen atem [, = 0.0529 nm)
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Table 3.2 summanzes the functional forms of R, ((r) and ¥, (8, ¢). For £ =0
(the 5 states), the angular dependence of ¥yolf, ¢) 15 constant, which means that
frir. @, ¢) is spherically symmetrical about the nucleus. For the { = 1 and higher
states, there is a strong directionality to the wavefunctions with respect to each other.
The radial part B, :(r) is sketched in Figure 3.21a for two choices of n and £, Notice
that B, ¢(r} is largest at r = 0, when { = 0. However, this does not mean that the elec-
tron will be mainly at r = 0, because the probability of finding the electron at a dis-
tance r actually depends on r*| R, ¢(r}|*, which vanishes as r — 0.

Let us examine the probability of finding the electron at a distance r within a thin
spherical shell of radius r and thickness ér (assumed to be very small). The directional
dependence of the probability will be determined by the function Ye ., (¥, ¢). We can
average this over all directions (all angles # and ¢) to obtain ¥ ., (7, &), which turns
out to be simply 1/4x . The volume of the spherical shell is §V = 4mr28r. The proba-
bility of finding the electron in this shell is then

(¥ (8, @)H R e (P ? % (dr2dr)

If 5 P(r) represents the probability that the electron is in this spherical shell of thick-
ness &r, then

SP(r) = |Ruelr)*risr [3.41]

The radial probability density P, ;{r) is defined as the probability per unit radial
distance, that is, &P /dr which from Equation 3.41 is |R, .(r)|*r’. The latter vanishes
at the nucleus and peaks at certain locations, as shown in Figure 3.21b. This behavior
implies that the probability of finding the electron within a thin spherical shell close to
the nucleus also disappears. Forn = 1, and £ = (), for example, the maximum proba-
bility is at r = a, = 0.052% nm, which is called the Bohr radius. Therefore, if the
electron is in the 1s state, it spends most of its time at a distance a,. Notice that the
probability distribution does not depend on s, but only on r and £,
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{a) Radial wavefunctions of the electron in a hydrogenic atom for various n and ¢ values.
{b) 2 |Eﬁlg| gives the radial probobiliby density. Verficol axis scales are linear in arhitrary units,

Table 3.2 summarizes the nature of the functions R, #(r) and Yg ., (¢, ¢) for vari-
ous n, £, mg values. Each possible wavefunction . ¢ ., (r. &, ¢) with a particular
choice of n, £, m; consttutes a quantum state for the electron. The function
Yo fm b F &, b} basically describes the behavior of the electron in the atom in proba-
bilistic terms, as distinct from a well-defined line orbit for the electron, as one might
expect from classical mechanics. For this reason, v, ¢ .., (r, 8, ¢} is often referred to as
an orbital, in contrast to the classical theory, which assigns an orbit to the electron.

Figure 3.22a shows the polar plots of ¥; .., (¢, ¢) for 5 and p orbitals. The radial
distance from the origin in the polar plot represents the magnitude of ¥y, (8, ¢,
which depends on the angles # and . The polar plots of the probability distribution
[ ¥ m, (6, ) |* are shown in Figure 3.22b. Although for the s states, ¥, o(8, ¢) is spher-
ically symmetric, resulting in a spherically synunetrical probability distribution
around the nucleus, this is not so for £ = 1 and higher states.

For example, each of the p states has a distinctly directional character, as illus-
traied in the polar plots in Figure 3.22. The angular dependence of |y olr, 8, ¢}, for
which m, = 0, is such that most of the probability is oriented along the z axis. This
wavelunction is referred to as the 2p, orbital. The two wavefunctions for m; = £1 are
often represented by yra, (r, 8, ¢) and v, (r, 8, @), Or more simply, 2p, and 2p, or-
bitals, which do not possess a specific m; individually, but together represent the two
my = 1 wavefunctions. The angular dependence of 2p. and 2p, are essentially
along the x and v directions. Thus, the three orbitals for m, = 0, £1 are all ﬂrleuted
perpendicular to each other, as depicted in Figure 3.22.
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¥ for a 15 orbital
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It should be noted that the probability distributions in Figures 3.21b and 3.22b
do not depend on time. As previously mentioned, under steady-state conditions, the
magnitude of the total wavefunction is

JEt

| {r. 8, .1} = y!rl.’r,ﬁ.mexp(—?)‘ = |{(r. &, ¢

which is independent of time.

PROBABILITY DENSITY FUNCTION  The quantity | R, (r}{*r* in Equation 3.41 is called the ra-
dial probability density function and is simply written as P, ¢ (r). Thus, dP(r) = P, ((r} dr is
the probability of finding the electron between v and » + Jr. We can use P, ;(r) to conveniently
calculate the probability of finding the ¢lectron within a certain region of the atom, or o find the
mean distance of the electron from the nucleus, and so on. For example, the electron in the 1s or-
hital has the wavefunction shown for s = 1, £ = 00 in Table 3.2, which decays exponentially,

Roclr) =2a; " exp (—i)
Oy

The fored probability of finding the electron inside the Bohr radius 4, can be found by summing
{integrating) P, dr fromr = 0 tor = a,,

Praa {r < a,) = f“u Peclr)dre = f% IRH.I (,.Hzrz i
b 0

dg .2,
= f 4a” exp (——r).l‘I dr =032 o  32%
b

[

The integration is not trivial but can nonetheless be done as indicated by the result (0,32 above,
Thirty-two percent of the time the electron is therefore closer to the nucleus than the Bohr radius,
The mean distance ¥ of the electron, from the definition of the mean, becomes

g H* [3 fiE + 1}]

Averoge
disteree of i f =

F= FP el dr = —
electron frimm i n £
nuclens

2 n?

where we have simply inserted the result of the integration for various orbitals, (Again we take
the mathematics as granted.) For the 15 orbital, in the hydrogen atom, Z = 1, rn = 1, and £ = 0,
S0 T = %u,,, further than the Bohr radius. Notice that the mean distance 7 of the clectron in-
creases as n’.

[3.42]

3.7.2 QuanTizéD ELECTRON ENERGY

Oince the wavefinetions . o . (¢ 8 &) bave been found they can be snbstined ioe
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or
Z2°E Z13.6 eV
R R b [3.43b]
n n
where
mat b
E;,= —— =218 = 10 I ar 13.6 eV [3.43]
Eaghz

This corresponds o the energy required to remove the electron in the hydrogen
atom (£ = 1) from the lowest energy level E, (at » = 1) to infinity; hence, it rep-
resents the ionization energy. The energy E, in Equation 3.43b is negative with
respect to that for the electron completely isolated from the nucleus {af r = 2o,
therefore ¥V = 0). Thus, when the electron is in the vicinity of the nucleus, +Ze, it
has a lower energy, which is a favorable sitmation (hence, formation of the hydro-
penic atom is energetically favorable). In general, the energy required to remove an
electron from the nth shell to n = oo (where the electron is free) is called the jon-
jzation energy for the sth shell, which from Equation 4.43b is simply |E,| or
(13.6eV)Z%/nt.

Since the energy is gquantized, the lowest energy of the electron corresponds o
n=l,whichis —13.6 e¥. The next higher energy value it can have is E; = —3.40 eV
when n = 2, and so on, as sketched in Figure 3.23. Normally, the electron will take up
a state comesponding to p = 1, becawse this has the lowest energy, called the ground
energy. [ts wavefunction corresponds to Yo, @, $), which has a probability peak at
¥ = u, and no angular dependence, as indicated in Figures 3.21 and 3.22.

The electron can only become excited 10 the next energy level if it is supplied by
the right amount of energy E2 — Ey. Aphoton of energy kv = E2 — F; can readily sup-
ply this energy when it stnkes the electron. The electron then gets excited to the state
with n = 2 by absorbing the photon, and its wavefunction changes to aa(r, 8, @),
which has the maximum probability at ¥ = 4a,, The electron thus spends most of its
time in this excited state, at r = 4a,. It can retum from the excited state at E- to the
ground state at Ey by emitting a photon of energy hv = F; — Ey.

By virtue of the quantization of energy, we see that the emission of light from
excited atoms can only have certain wavelengths: those comesponding to transitions
from higher quantum-number states to lower ones. In fact, in speciroscopic analysis,
these wavelengths can be vsed to identify the elements, since each element has its
unique set of emission and absorption wavelengths arising from a unique set of energy
levels. Figure 3.24 illustrates the origin of the emission and absorption spectra of
atoms, which are a direct consequence of the quantization of the energy.

The electrons in atoms can also be excited by other means, for example, by colli-
sions with other atoms as a result of heating a gas. Figure 3.25 depicts how collisions
with other atoms can excite an electron to higher energies. If an impinging atom has
sufficient kinetic energy, it can impart just the nght energy to excite the electron to a
higher energy level. Since the total energy must be conserved, the incoming atom will
lose some of its kinetic energy in the process, The excited electron can later return to

lonization

energy af
Rwdrogen
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1

|a) Befare collision (b} Just after collision [¢} Photon emission

Figure 3.25 An atom can become excited by a collision with ancther atom.
When it returns to ity ground energy state, the atom emits @ phaton,

its ground state by emitting a photon. Excitation by atomic collisions is the process by
which we obtain light from an electrical discharge in gases, a quantum phenomenon
we experience every day as we read a neon sign. Indeed, this is exactly how the Ne
aloms in the common laboratory HeNe laser are excited, via atomic collisions betwesn
Ne and He atoms,

Since the principal quantum number determines the energy of the electron and
also the position of maximum probability, as we noticed in Figure 3.21, various n val-
tes define electron shells, within which we can most Likely find the electron. These
shells are customarily labeled X, L. M, N, ... correspondingtor = 1,23, .... For
each n value, there are¢ a number of £ values that determine the spatial distribution of
the electron. For a given n, each £ value constitutes a subshell. For example, we often
talk about 3s, 3p, 3d subshells within the M shell, From the radial dependence of the
electron’s wavefunction ., ;. (r, 8, @), shown in Figure 3.21, we see that for higher
values of n, which correspond to more energetic states, the mean distance of the elec-
tron from the nucleus increases. In fact, we observe from Figure 3.21 that an orbital
with £ = n — 1 {e.g., 15, 2p) exhibits a single maximum in its radial probability distri-
bution, and this maximum rapidly moves farther away from the nucleus as n increases,
By examining the electron wavefunctions, we can show that the location of the
maxima for these £ = n — 1 states are at

nta,

Fonan, = 7 for £=n-1 [3.44]

where a, is the radius of the ground state (0.0529 nm). The maximum probability
radius ropy in Equation 3.44 is the Bohr radius. Note that rog, in Equation 3.44 is for
£ =n — 1 states only. For other ¢ values, there are multiple maxima, and we must
think in terms of the average position of the electron from the nucleus. When we
evaluate the average position from ¥, ¢ m,(r. €, @), we see that it depends on both n
and £; strongly on n and weakly on £,

Maximum
probabifiry
forf=un—1
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EXAMPLE 3.14

THE IONIZATION ENERGY OF He™  What is the energy required to further ionize He™ ions to
He''?

SOLUMOMN

He™ is a hydrogenic atom with one clectron attracted by a nucleus with a +2¢ charge. Thus
Z = 2. The energy of the electron in a hydrogenic atom (in V) is given by

Zr 134

E,(e¥) =~

Since £ = 2, the enerzy required to ionize He™ further is
|EL| = | —{2%)13.6] = 54.4eV

EXAMPLE 3.17

ICHIZATION EMERGY AMND EFFECTIVE Z The Li atom has a nucleus with a +3¢ positive
charge, which is surrounded by a full s orbital with two electrons, and a single valence elec-
tron in the outer 25 orbital as shown in Figure 3.26a. Intuitively we expect the valence electron
W see the nuclear +3¢ charge shiclded by the two 1y electrons, that is, a net charge of +1e. It
seems that we should be able to predict the ionization energy of the 25 electron by using the hy-
drogenic atom moedel and by taking Z = 1| and # = 2 as indicated in Figure 3.26b. However,
according to gquantum mechanics, the 25 electron has a probability distribution that has two
peaks as shown in Figure 3.21; a major peak oulside the 15 orbital, and a small peak around the
1s orhital. Thus, although the 25 electron spends a substantial time outside the 15 orbital, it does
nonctheless penetrate the 15 shell and get close to the nucleus. Instead of experiencing a net
=+ 1& of nuclear charge, it now experiences an effective nuclear charge that is greater than + e,
which we can represent as +Z yjeavee, Where we have used an gffective Z, Thus, the ionization
energy from Equation 3.43 is

fonization
i 2L 13.6eV
and effective i il e PO : eV) (3.45]
nuclear n?
sluarge The experimental ionization energy of Li is 5.39 eV which corresponds to creating a Lit ion and
an isolated electron. Calculate the effective nuclear charge scen by the 2r clectron.
DNuclens Closed K shell
charge ;.._.'1.; with 2 electrons Charge = +1.26¢
= m=1 zd'ltmlvu =126
Valence electron
in 2s orbical
n=12
12]
Figure 3.26
fo) The Li atom hos a nucleus with charge +3e; two alechrans in the K shell, which iz closed; ond one eleciron
in the 25 orbinl,

Ik} A simple view of (o) would be one eleciron in the 25 orbital that sees o single positive charge, Z = 1,
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SOLUTION

The most outer electron in the Li atom 1s in the 25 orbital, which 1s the clectron that 15 remaoved
in the ionization process, For this 2s electron, 1 = 2, and hence from Equation 3,45

Z2 (13,6 6V)

A9 eV =
B @7

Solving, we find Z.pcpe = 1.26. If we simply use £ = 1 in Equation 3.45, we would find
Eyn = 14 eV, too small compared with the eaperimental value because, according to its prob-
ghility distribution, the electron spends some rime ¢lose to the nucleus, and hence increases is
binding energy (stronger attraction). Variables Z and Z .. should not be confused. Z is the
integer number of protons in the miclews of the simple hydrogenic atom that are attracting the
electron, as in H, He™, or Li' ", Z s 15 8 convenient way of describing what the outer elec-
trom experiences in an abom because we would like to continue to use the simple expression for
£y n, Equation 3.45, which was originally derived for a hydrogenic atom,
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3.7.3 ORBITAL ANGULAR MOMENTUM AND SPACE QUANTIZATION

The electron in the atom has an orbital angular momentum L. The electron is atiracted
to the nucleus by a central force, just like the Earth 15 attracted by the central gravitational
force of the sun and thus possesses an orbital angular momentum. It 15 well known that
in classical mechanics, under the action of a central force, both the total energy
(KE 4+ PE) and the orbital angular momentum (L) of an orbiting object are conserved.
In quantum mechanics, the orbital angular momentum of the electron, like its energy,
is also quantized, but by the quantum number £, The magnitude of L is given by

L=nhlE+ D)7 [3.46]

where £ =0, 1,2, ... < n, Thus, for an electron in the ground state, n = 1 and £ = 0,
the angular momentum is zero, which is surprising since we always think of the
electron as orbiting the nuclews. In the ground state, the spherical harmonic is a
constant, independent of the angles 8 and ¢. so the electron has a spherically symmet-
rical probability distribution that depends only on r,

The quantum numbers n and £ quantize the energy and the magnitude of the
orbital angular momentum. What is the significance of m,? In the presence of an
external magnetic field B,, taken arbitrarily in the z direction, the component of the an-
gular momentum along the g axis, L, is also quantzed and is given by

Ly, =mgh 13.47]

Therefore, the quantum number m; quantizes the component of the angular
momentum along the direction of an external magnetic field B, which for reference
purposes is taken along z, as illustrated in Figure 3.27. Therefore, m;, is appropriately
called the magnetic quantum number. For any given £, quantum mechanics requires
that m, must have values in the range —¢, —({ — 13,.... =L 0,1, ..., (£ = 1), £. We
see that |me| = £. Moreover, m; can be negative, since L, can be negative or positive,
depending on the orientation of the angular momentum vector L. Since |my| = £, L
can never align with the magnetic field along z; instead, it makes an angle with 8., an

Orhital
angilar
RRE T

{hrhital
angiilar
TR
along B.
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Figure 3.27

Orhiting electron
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Hm:ma! A

; y Z
exlermal "
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[a] The eleckon has an orbital angular momentem, which has o quanfized component [ along an esternal mognetic field

B'em:lernul-

&) The arbital angular mamentum vector L rofates cbout the z axis, s componant L is quantized; therefore, the
L crisntation, which is the angle 4, is also quantized. L fraces out a cone,

{c) According to quantur mechanizs, onby certain orientations [ for Lare ollowed, os determined by £ and s,

Selection
ruley for £
raclicef ot

angle that is determined by £ and m,. We say that L is space quantized. Space quan-
tization is illustrated in Figure 3.27 for £ = 2.

Since the energy of the electron does not depend on either £ or m; we can havea
number of possible states for a given energy. For example, when the energy is £3, then
n = 2, which means that £ = 0orl.Foré = 1, we havem; = —1,10, 1, sothere are a
total of three different orbitals for the electron.

Since the electron has a quantized orbital angular momentum, when an electron
interacts with a photon, the electron must obey the law of the conservation of angular
momentum, much as an ice skater does sudden fast spins by pulling in her arms. All
experiments indicate that the photon has an intrinsic angular momenum with a con-
stant magnitude given by &, Therefore, when a photon of energy v = E; — B s
absorbed, the angular momentum of the electron must change. This means that fol-
lowing photon absorption or emission, both the principal guantum number # and the
orbital angular momentum quantum number £ must change.

The rules that govern which transitions are allowed from one state to another as a
consequence of photon absorption or emission are called selection rules. As a resuli of
photon absorption or emission, we must have

Af = %1 and Ame =0, +1 [3.48]

Asg an example, congider the excitation of the electron in the hydrogen atom from
the ground energy E; to a higher energy level E.. The photon energy Av must be
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Ener A
£ £=0 £=1 f=2 £=3
0 > {
f
5
4
3
2 :
2s Photon
Figure 3.28 An illusiration of the allowed
o phdﬂn Bmission processes.
1362Y _I 1 |5 Photon emission involves AF =+1,

exactly £7 — £, The wavefunction of the 1s ground state is 4y g o, whereas there are
four wavefunctions at E;; one 2r state, o g o; and three 2p states, ¢y ), ¥ | 5. a0d
¥3,1.1. The excited electron cannot jump into the 25 state, because Af most be +1,
so 1t enters a 2p state corresponding to one of the orbitals vra gy, W2 0. OF Yra ) .
Yarious allowed transitions for photon emission in the hydrogen atom are indicated in
Figure 3.28,

EXCITATION BY ELECTROMN-ATOM COLLISIONS IN A GAS DISCHARGE TUBE A projectile
electron with a velocity 2.1 » 10% m 57" collides with a hydrogen atom in a gas discharge wbe,
Find the nth energy level w which the electron in the hydrogen atom gets excited. Calculate the
possible wavelengths of radiation that will be emitted from the excited H atom as the electron
returns to its ground state.

SOLUTION
The energy of the electron in the hydrogen atom is given by E, (e¥) = —13.6/n°. The electron
must be excited from its ground state E; = —13.6 eV o aquanized energy level —(13.6/7 ey

The change in the energy is AE = (—13.6/n%) — (= 13.6) eV. This must he supplied by the
incoming projectile electron, which has an energy of

1 1
E= Emuj = E{'.ir.l x 107 kg)(2.1 = 10 ms~ ')

=201 = 107%] or 12.5e¥

EXAMPLE 3.18
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Therefore,
12.5eV = 13.66V - ['”3':5_;’"”]
Solving this for n, we find
2 13.6 i

T e —12.5)

g0 = 3.51. But n can only be an integer; thus, the electron gets excited to the level n = 3
where its encrgy is £; = —13.6/3 = —1.51 c¥.
The energy of the incoming electron after the collision 15 less by

(Ex = E) =136 — 1.51 = 12.09 eV

Since the initial energy of the incoming electron was 12.5 eV, it leaves the collision with a
kinetic energy of 12.5 — 12.0%9 = 0.41 V. From the £ level, the electron can undergo a transi-
tion froma = 3ton =1,

AF; = —151eV — (—13.6eV) = 12.09eV
The ermtled radiation will have a wavelength A given by he /A = AE 5o that

_he (6626 % 107MTIs5)(3x 108 msh)
AEy 12,08 5 1.6 % 10~ ]

=1.026 x 107" m or 102.6 nm {in the ultraviolet region)
Another possibility is the transition from a = 3 to s = 2, for which
AFp =—151eV - (—340eV) =] 80V

This will give a2 wavelength

which is in the red region of the visible spectrum, For the transition fromn = 2tor = 1,
Ay = =3 4d0eV — (—13.68V) = 10.2eV

which results in the emission of a photon of wavelength 45 = Ae/A E5; = 121.5 nmu Note that
each transition obevs A€ = £1.

EXAMPLE 3.19

THE FRAUMHOFER LIMES IN THE SUN'S SPECTRUM  The light from the sun includes extremely
sharp “dark lines™ at certain wavelengths, superimposed on a bright continuum at all other
wavelengths, as discovered by Josef von Fraunhofer in 1829. One of these dark lines occurs in
the orange range and another in the blue, Fraunhofer measured their wavelengths o be 6563 A
and 4861 A, respectively, With the aid of Figure 3.23, show that these are spectral lines from the
hydrogen atom spectrum. {They are called the H, and H; Fraunhofer lines. Such lines provided
us with the first clues to the chemical composition of the sun.)

SOLUTION
The energy of the electron in a hydrogenic atom is

Z'E;
T

E,=
R
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where E; = m&‘j(&sﬁhl}. Photon emission resulting from a transiton from quantum number
2 t0 my has an energy

2 L1
AE = E, = Epy = -ZEf| = - =

: M
From Av = he/A = AE, we have Emitred
wavelengths
1 E A 1 1 1 1
'._=(_'I) Z‘(—-;——i)=ﬁ.,¢zz(_z_._;) _fvl:-‘?' N .
FS he LFE Ry R transitions in
where B, = E;/ ke = 1.0974 x 107 m~'. The equation for 4 is called the Balmer-Rydberg 2;";’:5“”'?

formula, and R, is called the Rydberg constant. We apply the Balmer-Rydberg formula with
#y = 2and m; = 3 to obtain
Elf = (1.0874 x 18 m")(]j‘_l(% - %) = 1.524 x 10°m"~"

to get & = 6561 A, We can also apply the Balmer-Rydberg formula with n, = 2 and n; = 4 to
get i = 4860 A,

GIANT ATOMS IN SPACE Radiotelescopic studies by B. Haglund and P. G. Mezger (Science
val, 130, p. 339, 1965} detected a 5009 MHz electromagnetic radiation in space. Show that this

radiation comes from excited hydrogen atoms as they undergo transitions from e = |10 0 109,

What is the size of such an excited hydrogen atom?

JOLUTION

Since the energy of the electron is £, = —(Z7 E;/n"), the energy of the emitted photon in the
transition from m; ton s

hy = Ep — E, = Z°E (07 — 0]
Withr: = 110,57, = 102, and £ = |, the frequency is
_ Z*Ey{ni* — i)
h

L6 x 107" s 13.6)][(1097F — 1107%)]

(6.626 x 10-M)
=5w 10%s7? or 5000 MHz=
The size of the atom from Equation 3.44 is on the order of

Trone = 20, = 2{110%(52.018 x 0" my =128 = 10 %m  or 1.28 pum

A giant atom!

374 ELECTRON SPIN AND INTRINSIC ANGULAR MOMENTUM S

One aspect of electron behavior does not come from the simple Schriidinger equation,
That is the spin of the electron about its own axis, which is analogous to the 24-hour
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Electron spin

Spin along
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S, (along B) Spin up

Figure 3.29 Spin angular
momentum exhibits spoce quantizafion.
lt= magnifude along = is quantized,

30 the angle of 5 to the z axis is also
quantized.

spin of Earth around its axis.” Earth has an orbital angular momentum due to its motion
around the sun, and an intrinsic or spin angular momentumn due to its rotation about its
own axis. Similarly, the electron has a spim or intrinsic angular momentum, denoted
by 8. In classical mechanics, in the absence of external torques, spin angular momen-
tumn 1s conserved. In quantum mechanics, this spin angular momentum is quantized, in
a manner similar to that of orbital angular momentum. The magnitude of the spin has
been tound to be constant, with a quantized component §, in the z direction along a
magnetic figld;

S=#lss+1)"? 5= [3.49]

.'5': = m,?t R, = :i:% [3.50]
where, in an analogy with £ and m;, we use the quantum numbers 5 and m,, which are
called the spin and spin magnetic quantum numbers. Contrary to our past experi-
ence with quantum numbers, 5 and m; are not integers, but are % and + -':,: respectively.
The existence of electron spin was put forward by Goudsmit and Uhlenbeck in 1925
and derived by Dirac from relativistic quantum theory, which is beyond the scope of
this book. Figure 3.29 illustrates the spin angular momentum of the electron and the two

possibilities for §,. When §; = +%H, using classical orbital motion as an analogy, we

? Da nat take the meaning of *spin® tao literalky, o in closicol mechonics. Remember that the electean is assumed 1o
hewve wavellke properties, which can have no elassieal spin.
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Toble 3.3 The four quantem numbers for the hydrogenic afom

" Principal quantum number n=1,213,.. Quantizes the electran energy

£ Urhital angular momentom E=in1.2 ... {u=1] Quantizes the magnitude of
quantim number orbatal angular momenstum L

mg Magneric guantem auwmber mp =0, 1,22, &£ Quantizes the orbial angular

momenium component along o
! magnatic field B;

i, 3pin magnetic quantum m; ==k 3 (uamtjzes the spin angular
number T AL COmIPonel

wlong a magnetic fizld 5.

can label the spin of the electron as being in the clockwise direction, so §; = — %ﬁ can
be labeled as a counterclockwise spin. However, no such true clockwise or munter-
clockwise spinning of the electron can in rf:aht:,f"i be identified. When 3; = +3 h we
could just as easily label the electron spin as “vp,” and call it “down” when §; = — —iﬁ
This terminology is used henceforth in this book.

Since the magnitude of the electron spin is constant, which is a remarkable fact, and
is determined by s = 3, we need not mention it further. It can simply be regarded as a fun-
damental property of tha electron, in much Ihe mme way as its mass and charge. We do,
however, need to specify whether m, = +?_ or — 2. since each of these selections gives
the electron a different behavior. We therefore need four quantum numbers to specify
what the electron is doing. Each state of the electron needs the spin magnetic quantum
number m,, in addition to 1, £, and m ;. For each orbital ¥r, 4 u, (. &, ¢), we therefore have
two possibilities: m, = + ‘1 The quantum numbers #, £, and m; determine the spatial ex-
tent of the electron by specifying the form of v, ¢, (r. 8. &), Wwhereas m, determines the
“direction” of the electron’s spin. A full description of the behavior of the electron must
therefore include all four quantum numbers n, £, my, and m..

An electronic state iz a wavefunction that defines both the spatial (v, ¢ - ) and
spin (m,) properties of an electron, Frequently, an electronic state is simply denoted
Wa.t.m,, m, » Which adds the spin quantum number to the orbital wavefunction.

The quantum numbers are extremely important, because they quantize the various
properties of the electron: its total energy, orbital angular momentum, and the orbital
and spin angular momenta along a magnetic field. Their significance is summarized in
Tahle 3.3,

The spin angular momentum §, like the orbital angular momentum, is space
guantized. 5, = :I:{%h} is smaller than § = #+/3/2, which means that 5 can never
line up with z, or a magnetic field, and the angle # between 8 and the z axis can only
have two values comesponding to m, = +% and —zl, which means that cosd =
5,/8 = +£1/+/3. Classically, §, of a spinning object, or the orientation of § to the
g-axis, can be any value inasmuch as classical spin has no space guantization.

| EThe explanakian in terins of spin and ifs bwe pessible arienlational direchans [*elockwise” and “eounterelockwise"|
serve as manhal aids in viswvalizing a quarivm mechanical phenomenon. One questicn, however, is, “if tha elactron
is 0 wave, what is spinning$”

47
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3.7.5 MAGNETIC DIrOLE MOMENT OF THE ELECTRON

Consider the electron orbiting the nocleus with an angular frequency e as illustrated in
Figure 3.30a. The orbiting electron is equivalent (o a current loop. The equivalent cur-
rent [ due to the orbital motion of the electron is given by the charge flowing per unit
time, I = charge/period = —e{w /2mw). The negative sign indicates that current /
flows in the opposite direction to the electron motion. The magnetic field around the
current loop is similar to that of a permanent magnet as depicted in Figure 3.30a. The
magnetic moment is defined as p = A, the product of the current and the area en-
closed by the current loop. It is a vector normal to the surface A in a direction deter-
mined by the corkscrew rule applied to the circulation of the current I, If 15 the radius
of the orbit (current loop), then the magnetic moment ix

E&J!‘?’

2

"I'wbcilal

&
7

b B

{a) The orbiling electron is equivalent to a current loap that behaves like a bar magnet.
5

Spin direction
]
Equivalent current N J

p:pin Magnetic moment

{b} The spinning electron can be imagined o be equivalent to a current loop
as shown. This current qup- behaves like a bar magnet, just as in the orbital
case.

Figure 3.30
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Consider now the orbital angular momentum £, which is the linear momentum p
multiplied by the radius , or

L= pr=maur = mar

Using this, we can substitute for wr® in ¢ = —ewr?/2 to obtain

i

In vector notation, using the subscript "orbital” to identify the origin of the mag-
netic moment,

4
Bobical = _Eﬂ:l‘ [3.51]
This means that the orbital magnetic moment g, 15 in the opposite direction to that
of the orbital angular momentum L and is related to it by a constant (e /2m.).
Similarly, the spin angular momentum of the electron § leads to a spin magnetic
moment p._ .., which is in the opposite direction to 8 and given by

[

Pogin = mES [3.52]
which is shown in Figure 3.30b. Notice that there is no factor of 2 in the denominator.
We see that, as a consequence of the orbital motion and also of spin, the electron has
two distinct magnetic moments. These moments act on each other, just like two mag-
nets interact with each other, The result is a coupling of the orbital and the spin angular
momenta L and 8§ and their precession about the mtal angular momentum J =L 4+ 8,
which is discussed in Section 3.7.6.

Since both L and 8 are quantized, so are the orhital and spin magnetic moments
Moty N . In the presence of an external magnetic field B, the electron has an
sdditional energy term that arises from the interaction of these magnetic moments with
B. We know from electromagnetism that a magnetic dipole (equivalent to a magnet)
placed in a magnetic field B will have a potential energy PE. (A freec magnet will ro-
tate to align with the magnetic field, as in a compass, and thereby reduce the PE ) The
potential energy E g due k0 foppig and B interacting is given by

Ep. = —fbawim 8 cos 6

where & is the angle between (o4 and B. The potential energy £ is minimum when
Jogtiva (the magnet) and 8 are parallel, # = 0. We know that, by definition, the 7 axis
is always along an external field B, and L is the component of L along z (along 8,
and is quantized, so that L, = L cos & = mf. We can substitute for 4 o to find

_ £ & eh
E-BL=_( )LBCUSH'—:—(—H—)LEB= —(——)mgﬂ
2m, 2m, 2,

which depends on my, and it is minimum for the largest m,. Since m, = —£, ..
0,...,+£, negative and positive valoes through zero, the electron's energy splits mtn}
a number of levels determined by m,. Sirmilarly, the spin magnetic moment p ;. and
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B interact to give the electron a potential energy Ey; ,

eh
Eg = —(—)m,ﬂ
imne

which depends on m . Smcc m, = :l:2 Eg; has only two values, positive (m, = —-j
and negative (m, = +5 ] which add and subtract from the electron’s energy dgpf:nd
ing on whether the spm is down or up. Thus, in an external magnetic field, the elec-
tron’s spin splits the energy level into two levels. The separation A Egy of the split
levels is (eh/m.} B, which is 0.12 meV T, very small compared with the energy E,
in the absence of the field. It should also be apparent that a single wavelength emission
A, corresponding to & particular transgition from E,. to E; will now be split into & nums-
ber of closely spaced wavelengths around . Although the separation A Egp 15 small,
it is still more than sufficient even at moderate fields to be easily detected and used in
various applications. As it turns out, spin splitting of the energy in a field can be fruit-
fully nsed to study the electronic structures of not only atoms and molecules, but also
various defects in semiconductors in what is called electron spin resonance,

STERM-GERLACH EXPERIMENT AND SPIN The Stern—Gerlach cxperiment is quite famous
for demonstrating the spin of the electron and its space quantization. A neutral silver atom
has one outer valence electron in a 45 orbital and looks much like the hydrogenic atom. ('We
can simply ighote the inner [illed subshells in the Ag atom.). The 45 ¢lectron has no orbial
angular momentum, Because of the spin of this one outer 45 electron, the whole Ag atom has
a spin magnetic moment ;.. When Otto Stern and Walther Gerlach (1521-1922) passed a
beam of Ag atoms through a nonuniform magnetic field, they found that the narmow beam
split into two distinet beams as depicted in Figure 3,318, The inlerpretation of the experi-
ment was that the Ag atom’s magnetic moment along the field direction can have only (wo
values, hence the split beam, This observation agrees with the quantum mechanical fact that
in a field aleng 2, tyin.. = —le/mmf where m, = +1 or —; that is, the electron’s spin
can have only two values parallel to the field, or in other words, the electron spin is spece
g tized.

In the Stern—Gerlach experiment, the noouniform magnetic field s generated by using a
hig magnet with shaped poles as in Figure 3.31a. The N-pole is sharp and the S-pole is wide, so
the magnetc field lines get closer toward the MN-pole and hence the magnetic field increases to-
wards the N-pole. (This is much like a sharp point having a large electric field.) Whenever a
magnetic moment, which we {ake to be a simple bar magnet, is in a nonuniform field, its poles
experience different forces, say Fi.p, and F.p, and hence the magnet, overall, experiences a net
force, The direction of the net force depends on the onientation of the magnet with respect to the
z axis as illustrated in Figore 3.31h for owo differently oriented magnets representing magnetic
moments labeled as 1 and 2. The 3-pole of magnet 1 is in the high field region and experiences
a bigger pull (Fy,, ) from the big magnet’s N-pole than the small force (F, . b pulling the
N-pole of 1 to the big magnet’s S-pole. Hence magnet 1 is pulled tosward the N-pole and is de-
flected up. The overall force on a magnetic moment is the difference between Furpe and Fogy,
and its direction here is determined by the force o whichever pole is in the high leld region,
Magnet 2 on the other hand has its N-pole in the high field region, and hence is pushed away
from the big magnet’s N-pole and is deflected down. If the magnet is at right angles to the z axis
(8 = & /2), it would expenience no net force as both of its poles would be in the same field. This
magnetic moment would pass through undeflected.
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Figure 3.31

] Schematic illustration of the Stem—Gerdach experiment, A stream of Ag atoms passing through a nonuniform magnetic field
splits inko two.

|b] Explanation of the Stern—-Gerlach experimant.

|c] Actual exparimental result recorded on o photographic plate by Stern and Gerlach (0. Stern and W, Gerloch, Zaitschr,

fur, Physik, 9, 349, 1922 ) When the field is turned off, there is anly o single line on the photographic plate. Their exparimant
is somewhat different than the simple sketches in [a] and [b) as shown in [d].

d] Stern-Gerlach memorial plague at the University of Frankfurt. The drowing shows the original Sterm—Gerlach experiment in
which the Ag atom beam is passed along the longlength of the external magnet o increase the rime spent in the nonuniform
field, and hence increase the splitting.

e} The phato on the lower right is Otto Stern |1888-194%9), standing and enjoying a cigar while carrying out an experiment,
Otta Stern won the Nobel prize in 1943 for development of the molecular beam technique,

SOURCES: [d| Courlesy of Harst SchmidiBacking from B. Friadrich and 0. Herschbach, *5tarn and Gerach: How a Bod Cigar Halped
| Rearient Atomic Physics,” Physics Todoy, Dacembar 2003, pp. 53-59. [a} AIP Emilic Segré Visual Archives, Segré Collacfion,
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When we pass a stream of classical magnetic moments through a nonuniform field, there will
be all possible orientations of (he magnetic moment, friom —r to +7, with the field becanse there
is no space quantization. Classically, the Ag atoms passing through a nonuniform field would be
deflected through a distribution of angles and would not split into two distinct beams. The actual
result of Stern and Gerlach’s experiment is shown in Figure 3.31c, which is their photographic
recording of a flat line-beam of Ag atoms passing through a long nonuniform field, [n the absence
of the field, the image is a simple horizontal line, the cross section of the beam. With the field
turned on, the line splits into two, The edges of the line do not experience splitting because the
field is very weak in the edge region. In the actual experiment, as shown in Figure 3 31c, an Ag
atomic beam is passed along the long-length of the external magnet to increase the time spent in
the nonuniform field, and hence increase the splitting, The physics remains the same.

Total angutar
FrOITE AT

3.7.6 TotaL ANGULAR MOMENTUM J

The orbital angular momentum L and the spin angular momentum 8§ add to give the
electron a total angular momentum J = L + 8, as illustrated in Figure 3.32. There are
a number of possibilities for the total angular momentum J, based on the relative
orientations of L and 8. For example, for a given L, we can add 8 either in parallel or
antiparallel, as depicted in Figure 3.32a and b, respectively.

Since in classical physics the total angular momentum of a body (not experiencing
an external torque) must be conserved, we can expect J (the magniude of J) to be
quantized. This turns out to be true. The magnitude of J and its z component along an
external magnetic field are quantized via

J=hli(j + D)2 [3.53]
J.o=m;h [3.54]
]= I".‘ + %
L fed=g
S
J
L L
J
—
T
S m,=—3
ta} Parallel (b} Antiparallel

Figure 3,32 Orbital angular momentum vector L and spin angular momentum vechor §
can odd sither in porallel os in |a) or antiparallel, as in {b).

The total angular momentsm vector J =L+ 5, has a mogniteda ! =/ [j[j + 1]}, where in
lal j=&+% and in (b j=£—-F.
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Figurs 3.32

{a) The angular mementsm vectors L and § precess
araund their resultant total angular momentum vector J,
{b} The total angular momenturm vector is space
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guantized. Vectar ] precesses about the z axis, along

[a) il which its component must be mli't.

where both j and m; are quantum numbers® like £ and m, but j and m; can have frac-
tonal values. A rigorous theory of quantum mechanics shows that when £ = ¢, the
guantum numbers for the total angular momentum are givenby j =£ + s and £ — 5
andm; = £7, £(j — 1). For example, for an electron in a p orbital, where £ = 1, we
have j = % and %, and m; = % % —%. and —3. However, when £ = 0 {as for all s or-
bitals), we have j =5 = % andm; =m, = I:‘l_. which are the only possibilities, We
note from Equations 3.53 and 3.54 that | f;| = J and both are quantized, which means
that J is space guantized; its orientation (or angle) with respect to the 7 axis is deter-
mined by j and ;.

The spinning electron actually experiences a magnetic field By due to its or-
bital motion around the nucleus, If we were sitting on the electron, then in our ref-
erence frame, the positively charged nucleus would be orbiting around us, which
would be equivalent to a current loop. At the center of this current loop, there would
be an “intermal” magnetic field By, which would act on the magnetic moment of
the spinning electron to produce a torque. Since L and § add to give J, and since the
latter quantity is space quantized (or conserved}, then as a result of the internal
torque on the electron, we must have L and 8 synchronously precessing about I, as
illustrated in Figure 3.33a. If there is an external magnetic field B taken to be along
Z, this torque will act on the net magnetic moment due to J to cause this quantity to
precess about B, as depicted in Figure 3.33b. Remember that the component along
the 7 axis must be quantized and equal to mh, so the torque can only cause preces-
sion. To understand the precession of the electron’s angular momentum about the
magnetic field B, think of a spinning top that precesses about the gravitational field
of Earth.

| *The quantum number j os used here should net ba corfused with { for 1.
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3.8 THE HELIUM ATOM AND THE PERIODIC TABLE

3.8.1 He AToM AND PAULI EXCLUSION PRINCIPLE

In the He atom, there are two electrons in the presence of a nucleus of charge +2e, as
depicted in Figure 3.34. (Obviously, in higher-atomic-number elements, there will be Z
electrons around a nucleus of charge +Z¢.) The PE of an electron in the He atom con-
sists of two interactions. The first is due to the Coulombic attraction between itself and
the positive nucleus; the second is due to the mutual repulsion between the two
electrons. The PE function V of any one of the electrons, for example, that labeled as 1,
therefore depends on both its distance from the nucleus #, and the separation of the
two electrons riz. The PE of electton | thus depends on the locations of both the
glectrons, or
2¢° &t

Viry, ra) = — + [3.55
(s 1) dme,r dme.rz ]

When we use this PE in the Schrisdinger equation for a single electron, we find the
wavefunction and energy of one of the electrons in the He atom. We thus obtain the
one-glectron wavefunction and the energy of one electron within a many-electron
alom,

One immediate and obvious result is that the energy of an electron now depends
not only on n but also on £, because the electron—electron potential energy term (the
second term in Equation 3.55, which contains ri2) depends on the relative orientations
of the electron orbitals, which change ry;. We therefore denote the electron energy by
E,.e. The dependence on £ is weaker than on r, as shown in Figure 3.35, As n and £
increase, Epp also increases. Motice, however, that the energy of a 4s state 15 lower
than that of a 3d state, and the same pattern also occurs at 45 and 5s.

One of the most important theorems in quantum physics is the Pauli exclusion
principle, which is based on experimental observations. This principle states that ne
mwo electrons within a given system (e.g., an atom) may have all four identical guan-
i menbers, n, £, me, and m;. Each set of values for n, £, m;, and m, represents a pos-
sible electronic state, that is, a wavefunction denoted by vy ¢ m,.m,. that the electron
may (or may not) acquire, For example, an electron with the quantum numbers given
by 2, 1.1, é will have a definite wavefunction ¥, s m, m, = Wo.1.1,1,2, and it is said to be

Figuru 3.34 A helivrdike atom. —E

The nucleus has a charge of +Z8, where Z=12 for He. If one Electron 1
electron is removed, we have the He™ ion, which is ;
agquivalent ko the hydrogenic atom with 2= 2.

Mucleus
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Figure 3.35 Energy of various oneslecton states. Figure 3.38 Paired spins in an orbital,

The erergy depands on both nond £

in the state 2p, m,; = 1 and spin up. Its energy will be Ez,. The Pauli exclusion prin-
ciple requires that no other electron be in this same state,

The orbital motion of an electron is determined by »n, £, and m;, whereas m, de-
termines the spin direction (up or down). Suppose two electrons are in the same orbital
state, with identical u, £, m;. By the Pauli exclusion principle, they would have to spin
in opposite directions, as shown in Figure 3.36. One would have to spin “up™ and the
other “down.” In this case we say that the electrons are spin paired. Two electrons can
thus have the same orbitals (occupy the same region of space) if they pair their spins,
However, the Pauli exclusion principle prevents a third electron from entering this or1-
bital, since m, can only have two values.

Using the Pauli exclusion principle, we can determine the electronic structure of
many-electron atoms. For simplicity, we will use a box to represent an orbital state
defined by a set of n, £, m; values. Each box can take two electrons at most, with
their spins paired. When we put an electron into a box, we are essentially assigning a
wavefunction to that eleciron; that is, we are defining its orbital 1, £, m,. We use an
arrow 0 show whether the electron is spinning up or down. As depicted in Figure
3.37, we arrange all the boxes to correspond to the electronic subshells. As an exam-
ple, consider boron, which has five electrons. The first electron enters the 1s orbital
at the lowest energy. The second also enters this orbital by spinning in the opposite
direction. The third goes into the n = 2 orbital. The lowest energy there is in the = or-
bitals corresponding to € = 0 and m; = 0. The fourth electron can also enter the 25
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(n=2)

K
{n=1)

} N K

: b ty K N

Figure 3.37 Electronic configurations for the first five elements.
Each bow represents an arbital  [n, £, my].

orbital, provided that it spins in the opposite direction, Similarly, the fifth must go
into another orbital, and the next nearest low-energy orbitals are those having £ = 1
(p states) and my = —1, 0, +1. The final electronic structure of the B atom is shown
in Figure 3.37,

We see that because the electron energy depends on n and £, there are a number of
states for a given energy E, ;. Each of these states corresponds to different sets of m,
and m,. For example, the energy £, (or Ez,) coresponding to # = 2, £ = 1 has six
possible states, arising from m; = —1,0, 1 and m; = +1, —1. Each m, state can have
an electron spinning up or down, m, = +% or M, = —,—E respectively.

EXAMPLE 3.22

THE MUMBER OF STATES AT AM EMERGY LEVEL Enumerate and identify the smates corre-
sponding to the enerpy level £y 0t =3, € = 2,

SOLUTION

Whenw = 3 and £ = 2, m and m, can have these following values: m, = —2.—1,0,1. 2, and
My = +%. —-’ . This means there are 10 combinations, The possible wavefunctions (electron
states) are

* Yaazzaen Yazogse Wazoazs Waz-veat Waz-zagze dll of which have spins up

(m; = +13)
*oabaggeel Wz ool Waaa—ipal Waa oy ped ¥s s o, all of which have spins
down (m, = — 1)

-

3.8.2 Hunp’s RULE

[n the many-electron atom, the electrons take up the lowest-energy orbitals and obey
the Pauh exclusion principle. However, the Pauli exclusion principle does not deter-
mine how any two electrons distribute themselves among the many states of a given n
and £. For example, there are six 2p states corresponding tom, = —1, 0, +1, with each
me havingm, = :I:l2 . The two electrons could pair their spins and enter a given m, state,
or they could align their spins (same m ) and enter different m; states. An experimental
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fact deducted from spectroscopic studies shows that elecrrons in the same n, £ orbifals
prefer their sping to be parallef (same m, ). This is known as Hand’s rule.

The origin of Hund's rule can be readily understood. If electrons enter the same m
state by pairing their spins (different w1, ), their quantum numbers n, £, sy will be the
same and they will both occupy the same region of space (same v, ; ., orbital). They
will then experience a large Coulombic repulsion and will have a large Coulombic
potential energy. On the other hand, if they parallel their spins (same m,}, they will
each have a different m, and will therefore occupy different regions of space (different
Yry ., OrDItals), thereby reducing their Coulombic repulsion.

The oxygen atom has eight elecirons and its electronic structure is shown in
Figure 3.38. The first two electrons enter the 15 box (orbital). The next two enter the 2
box. But p states can accommodate six electrons, so the remaining four electrons have
a choice. Hund's rule forces three of the four electrons to enter the boxes correspond-
ing tomg = —1, 0, +1, all with their spins parallel. The last electron can go into any of
the 2p boxes, but it has no choice for spin. It must pair its spin with the electron already
in the box. Thus, the oxygen atom has two unpaired electrons in half-occupied orbitals,
as indicated in Figure 3.38. Since these two unpaired electrons spin in the same direc-
tion, they give the O atom a net angular momentum. An angular momentum due
to charge rotation (f.e., spin) gives rise to a magneiic moment p. If there is an exiernal
magnetic field present, then p experiences a force given by p - dB/dx. Oxygen
atoms will therefore be deflected by a nonuniform magnetic field, as experimentally
observed.

Following the Pauli exclusion principle and Hund's rule, it is not difficult to
build the electronic structure of varions elements in the Periodic Table. There are
only a few instances of unusual behavior in the energy levels of the electronic states.
The 4+ state happens to be energetically lower than the 3d states, so the 4y state {ills
up first. Similarly, the 55 state is at a lower energy than the 44 states. These features
are summarized in the energy diagram of Figure 3.35. There 15 a neat shorthand way
of writing the electronic structure of any atom. To each né€ state, we attach a super-
seript o represent the number of electrons in those né states. For example, for oxygen,
we write 157272p*, or simply [He)2s22p*, since 157 is a full (closed) shell corre-
sponding o He,

C N 0 F

MNe
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Figure 3.38 Electronic configurations for C, M, O, F, and Me atoms.

Ay

Ay

Motice that in C, M, and O, Hund's rule forces elecirons to align their spins. For the Ne atem, all the K and L arbitals

are full.
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HUMD'S RULE  The Fe atom has the electronic structure [Ar]3d%4s%, Show that the Fe atom has
four unpaired electrons and therefore a net angular momentum and a magnetic moment due to
spin.

SOLUTION

In a closed subshell, for example, 2p subshell with six states given by m, = —1,0, +1 and
m, ==+ EI. ,all mg and m, values have been taken up by electrons, so each m; orbital is occu-
pied and has paired electrons. Each positive m, (or m,) value assigned to an electron is
canecled by the negative m, (or m, b valoe assigned (o another electron in the subshell. There-
fore, there (s ne nel angular moementum fron g closed subshell, Only unfilled subshells con-
tribute to the overall angular momentum. Thus, only the six electrons in the 34 subshell need
be considered.

There are five d orbitals, corresponding to m, = =2, —1,0, |, 2. Five of the six electrons
obey Hund's mle and align their spins, with each taking one of the s, values.

my = —2 -1 L] | 2
1 T T T T
4

The sixth must take the same m; as another electron, This is only possible if they pair their
spins. Consequently, there are four electrons with unpaired spins in the Fe atom, which gives the
Fe atom a net angular momentum. The Fe atom therefore possesses a magnetic moment as a re-
sult of four electrons having their charges spinning in the same direction,

Many isolated atoms possess unpaired spins and hence also possess a magnetic moment.
For example, the isolated Ag atom has one outer 55 electron with an unpaired spin and hence it
is magnetic; it can be deflected in a magnetc field. The silver erystal, however, is nonmagnetic,
In the crystal, the 55 electrons become detached to form the electron pas (metallic bonding)
where they pair their spins, and the silver crystal has no net magnetic moment. The iron crystal
is magnetic because the constituent Fe atoms retain at least two of the unpaired electron sping
which then all align in the same direction to give the crystal an overall magnetic moment; iron
is a magnetic metal '

3.9 STIMULATED EMISSION AND LASERS

3.9.1 STMULATED EMISSION AND PHOTON AMPLIFICATION

An electron can be excited from an energy level £ to a higher energy level £ by the
absorption of a photon of energy fiv = £, — £y, as show in Figore 3.3%. When an
electron at a higher energy level transits down in energy to an unoccupied energy level,

| " This qualitotive explanaticn is discussed in Chapler &,
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|a) Absorphion {b) Spontanecus emission (¢} Stimulated emission

Figure 3.39 Absodplion, spontanecus emission, and siimulated emission.

it emits a photon, There are essentially two possibilities for the emission process. The
electron can spontanecusly undergo the downward transition by itself, or it can be
induced to do so by another photon.

In spontaneous emission, the electron falls in energy from level E; to E; and
emits a photon of energy kv = E; — Fy, as indicated in Figure 3.39b. The transition is
only spontaneous if the state with energy E; is not already occupied by another elec-
tron. In classical physics, when a charge accelerates and decelerates, as in an oscilla-
tory motion, with a frequency v, it emits an electromagnetic radiation also of
frequency v, The emission process during the transition of the electron from E; to E,
appears as if the electron is oscillating with a frequency v.

In stimulated emission, an incoming photon of energy hv = E; — E) stimulates
the emission process by inducing the electron at E; to transit down to £}, The emitted
photon is in phase with the incoming photon, it is going in the same direction, and
it has the same frequency, since it must also have the energy E; — E,, as shown in
Figure 3.3%¢. To get a feel for what is happening during stimulated emission, imagine
the electric field of the incoming photon coupling to the electron and thereby driving
it with the same frequency as the photon, The forced oscillation of the electron at a fre-
quency v = (E; — £}/ h causes the electron to emit electromagnetic radiation, for
which the electric field is totally in phase with that of the stimulating photon. When the
incoming photon leaves the site, the electron can return to £, becavse it has emitted a
photon of energy iv = E; — £,

Stimulated emission is the basis for photon amplification, since one incoming
photon results in two outgoing photons, which are in phase. It is possible to achieve
a practical light amplifying device based on this phenomenon. From Figure 3.3%9c,
we see that to obtain stimulated emission, the incoming photon should not be ab-
sorbed by another electron at £,. When we are considering using a collection of
atoms to amplify light, we must therefore require that the majority of the atoms be at
the energy level E.. If this were not the case, the incoming photons would be ab-
sorbed by the atoms at £,. When there are more atoms at £, than at £, we have
what is called a population inversion. It should be apparent that with two energy
levels, we can never achieve a population at £, greater than that at £, because, in
the steady state, the incoming photon flux will cause as many upward excitations as
downward stimulated emissions.

259
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Figura 3.40 The pr]l'lciple of the LASEER.
[a] Atoms in the gmund stale are pump-ad up
1o energy bevel £; by incoming phatons of
anargy h’l-‘:a =E - E.

[b| Atoms ot £ ropidly decay to the
metastable state of energy level B by

efmiting photons o emiling lattice vibrations:

gy = E3 — 3.

[e] Since the states ot £3 are mefastable, they
quickly became populated, and there is o
poepulation inversion betwean B and £

(e} A randem photan of enargy g =

Fa — Ey con initiote stimulated emission.
Photons from this stimuloted emission can
themsebvas further stimulate emissions,
leading to an avalanche of siimulated

emissions and coherent phatons being
emitted.
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Let us consider the three-energy-level system shown in Figure 3.40. Suppose
an external excitation causes the atomns'' in this system to become excited to energy
level E,. This is called the pump energy level, and the process of exciting the atoms
to £5 1% called pumping. In the present case, optical pumping is used, although this
is not the only means of taking the atoms to £y, Suppose further that the atoms in E5
decay rapidly to energy level E;, which happens to correspond to a state that does not
rapidly and spontaneously decay to a lower energy state. In other words, the state at E»
is a long-lived state.'* Quite often, the long-lived states are referred to as metastable
states. Since the atoms cannot decay rapidly from £» to £, they accumulate at this en-
ergy level, causing a population inversion between £: and £, as pumping takes more
and more atoms to £ and hence 1o £,

' An atem s in an excited sate whan ane [ar mora) of its alecians is excited Fom he gr\:-urld anangy o a higl'-er

energy lewel. The ground srate of an otom has all the elecirons in their lowest energy siatas consistent with the Padi
exclusion principle and Hund's rybe,
12 e will not examine what cavsas carmin skates 1o be long lived; wa will mphy accept thet these stotes do nat
decay ropidly and spontonecusly bo kewer snergy states.
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Arthur L, Schowdaw in 1961 with o rulry kaser built by his
Stanferd group. The solid stala laser was o dark by
crystal containing ©r* fons. Losing is obtained by sfimulated
mmission from the Cr3* jans, Arther Schowlow won the Mobel
prize in Phoysics In 1981 for his eonbibution o the
davelopment of laser spectrascopy,
SOURCE: Stanfard University, couwrhasy of AIP Emilio Segré
Wisual Archives,

When one atom at E; decays spontaneously, it emits a photon, which can go on to
a neighboring atom and cause that to execute stitnulated emission. The photons from
the latter can then go on o the next atom at £ and cause that atom to emil by stimu-
lated emission, and so on, The resolt 15 an avalanche effect of stimulated emission
processes with all the photons in phase, so the light output is a large collection of
coherent photons, This is the principle of the ruby laser in which the energy levels
E,, E;, and E; are those of the Crt? ion in the Al:0; crystal. At the end of the
avalanche of stimulated emission processes, the atoms al £; will have returned o E,
and can be pumped again to repeat the stimulated emission cyele again. The emission
from E; to E; is called the lasing emission.

The systern we have just described for photon amplification is 2 LASER, an
acronym for light amplification by stimulated emission of radiation. In the ruby laser,
pumping is achieved by using a xenon flashlight. The lasing atoms are chromium jons
{Cr'7) in a crystal of alumina Al,O, (sapphire). The ends of the ruby crystal are sil-
vered to reflect the stimulated radiation back and forth so that its intensity builds up, in
much the same way we build up voltage oscillations in an eleciric oscillator circuit,
One of the mirrors is partially silvered to allow some of this radiation to be tapped oul.
What comes out is a highly coherent radiation with a high intensity, The coherency and
the well-defined wavelength of this radiation are what make it distinctly ditferent from
a random stream of different-wavelength photons emitted from a tungsten bulh,

3192 HeLiuM-NEON LASER

With the helium-—neon (HeMe) laser, the actual operation is not simple, since we need
to know such things as the energy states of the whole atom. We will therefore only con-
sider the lasing emission at 632.8 nm, which gives the well-known red color to the
laser light. The actual stimulated emission occurs from the MNe atoms; He atoms are
used to excite the Ne atoms by atomic collisions.
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Ali Javan and his assacioies William Bennetl Jr, ard Danald
Herric# af Bell Labs wera first fo succasshully demonstrate a
continuous wove [ow| belium-neon losar cperotion 15960

| SOURCE: Courtesy of Ball Labs, Licant Technaologies.
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Figure 3.41 Schematic illustration of the Hetle laser, | SOURCE: Courbesy of Melles Grial.

Ne is an inert gas with a ground state (1522572 p%), which is represented as (2p%)
when the inner closed 15 and 25 subshells are ignored. If one of the electrons from the
2 p orbital is excited to a 55 orbital, the excited configuration (2p°5s') is a state of the
Ne atom that has higher energy. Similarly, He is an inert gas with the ground-state
configuration of (15*). The state of He when one electron is excited to a 25 orbital can
be represented as (15'2s"), which has higher energy.

The HeNe laser consists of a gaseous mixture of He and Ne atoms in a gas dis-
charge tube, as shown schematically in Figure 3.41. The ends of the tube are mimrored
to reflect the stimulated radiation and to build up the intensity within the cavity. If suf-
ficient dc high voltage is used, electrical discharge is obtained within the tube, causing
the He atoms to become excited by collisions with the drifting electrons. Thus,

He4+ e~ = He" + ¢~

where He” is an excited He atom.
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Figure 3.842 The principle of operation of the Hefe loser. Important Hele laser
energy levels [for 632.8 nm emission].

The excitation of the He atom by an electron collision puts the second electron in
He into a 25 state, so the excited He atom, He", has the configuration (15'25'), This
atom s metastable (long lasting) with respect to the (15%) state, as shown schemati-
cally in Figure 3.42. He" cannot spontanecusly emit a photon and decay down to the
(15%) ground state because A£ must be £1. Thus, a large number of He* atoms build
up during the electrical discharge.

When an excited He atom collides with a Ne atom, it transfers its energy to the Ne
atom by resonance energy exchange. This happens because, by good fortune, Ne has
an empty energy level, corresponding to the (2p°5s!) configuration, which matches
that of (1s'2s') of He*. The collision process excites the Ne atom and de-excites He™
down to its ground energy, that is,

He* 4+ Ne — He + Ne"

With many He*-Ne collisions in the gaseous discharge, we end up with a large
mumber of Ne* atoms and a population inversion between the (2p°55') and (2p°3p')
states of the Ne atom, as indicated in Figure 3.42. The spontaneous emission of a photon
from one Ne* atom falling from 5s to 3p gives rise to an avalanche of stimulated emission
processes, which leads to a lasing emission with a wavelength of 632.8 nm, in the red.

There are a few interesting facts about the HeNe laser, some of which are quite subtle.
First, the (2p°55') and (2p°3 p') electronic configurations of the Ne atom actually have
a spread of energies. For example for Ne(2 p*Ss'), there are four closely spaced energy
levels. Similarly, for Ne(2p3p'), there are 10 closely separated energies. We can
therefore achieve population inversion with respect to a number of energy levels. As a
result, the lasing emissions from the HeNe laser contain a variety of wavelengths. The two
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lasing emissions in the visible spectrum, at 632.8 nm and 543 nim, can be used to build a
red or green HeNe laser. Further, we should note that the energy of the Ne(2p*4p') state
{not shown) is above that of Ne(2p*3p') but below that of Ne(2p®5s"). Consequently,
there will also be stmulated transitions from Ne(2p®55') to Ne(2p*4p'), and hence a
lasing emission at 3 wavelength of ~3.39 pm infrared. To suppress lasing emissions at the
unwanted wavelengths (e.g.. the infrared) and to obtain lasing only at the wavelength of
interest, we can make the reflecting mirmors wavelength selective. This way the optical
cavity builds up optical oscillations at the selected wavelength.

From (2p*3p') energy levels, the Ne atoms decay rapidly to the (2p°3s') energy
levels by spontaneous emission, Most of the Ne atoms with the (2p°3s') configuration,
however, cannot simply return to the ground state 2 p®, because the return of the electron
in 3s requires that its spin be flipped to close the 2p subshell. An electromagnetic
radiation cannot change the electron spin. Thus, the Ne(2p3s') energy levels are
metastable, The only possible means of returning to the ground state (and for the next
repumping act) is collisions with the walls of the laser tube. Therefore, we cannot
increase the power obtainable from a HeNe laser simply by increasing the laser tube
diameter, because that will accumulate more Ne atoms at the metastable (2p®3s') states.

A typical HeNe laser, illustrated in Figure 3.4 1, consists of a narrow glass tube that
contains the He and Ne gas mixture (typically, the He to Ne ratio is 10:1). The lasing
emission intensity increases with tube length, since more Ne atoms are then used in
stimulated emission. The intensity decreases with increasing tube diameter, since Ne
atoms in the (2p°3s') states can only return to the ground state by collisions with the
walls of the tube. The ends of the tube are generally sealed with a flat mimror
(99.9 percent reflecting) at one end and, for easy alignment, a concave mirror (983
percent reflecting) at the other end, to obtain an optical cavity within the tube, The
outer surface of the concave mirror is ground to behave ke a convergent lens,
compensate for the divergence in the beam arising from reflections from the concave
mirror. The output radiation from the tube is typically a beam of diameter 0.5<2 mm
and a divergence of 1 milliradians at a power of a few milliwatts. In high-power HeNe
lasers, the mirrors are external to the tube. In addition, Brewster windows are fused at
the ends of the laser tube, to allow only polarized light to be transmitted and amplified
within the cavity, so that the output radiation is polarized (that is, has electnc field
oscillations in one plane).

EXAMPLE 3.24

EFFICIENCY OF THE HeMe LASER A typical low-power 2.5 mW HeNe |aser tube operates at 4
de voltage of 2 kY and carries a current of 5 mA. What is the efficiency of the laser?

SOLUTION
From the definition of efficiancy,
Cutput pow:
Efficiency = JUEU power
Input power
(2.5 % 1077 W)

= — - = 000025 or 0.025%
(5 % 107 A)(2000 V)
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3.9 STIMULATED EMISSION AND LASERS

3.9.3 LaAsErR OUTPUT SPECTRUM

The cutput radiation from a laser is not actually at one single well-defined wavelength
corresponding to the lasing transition. Instead, the output covers a spectrum of
wavelengths with a central peak. This is not a simple consequence of the Heisenberg
uncertainty principle (which does broaden the output). Predominantly, it is a result of the
broadening of the emitted spectrum by the Doppler effect. We recall from the kinetic
molecular theory that gas atoms are in random motion, with an average translational
kinetic energy of k7. Suppose that these gas atoms emit radiation of frequency
which we label as the source frequency. Then, due to the Doppler effect, when a gas
atom moves toward an observer, the latter detects a higher frequency va, given by

= Uu(l + Li)
-

where v, is the relative velocity of the atom with respect to the observer and ¢ is the
speed of light. When the atom moves away, the observer detects a smaller frequency,

which corresponds to
" = 'I-||'_|(|. s E)
C

Since the atoms are in random motion, the observer will detect a range of
frequencies, due to this Doppler effect. As a result, the frequency or wavelength of the
output radiation from a gas laser will have a “linewidth” of Av = vz — vy, called a
Doppler-broadened linewidth of a lagser radiation. Other mechanismns also broaden the
output spectrum, but we will ignore these at present.

The reflections from the laser end mirrors give rise to traveling waves in opposite
directions within the cavity, Since the waves are in phase, they interfere constructively,
to set up a standing wave—in other words, stationary oscillations, Some of the energy
in this wave is tapped by the 99 percent reflecting mirror to get an output, in much the
same way that we tap the energy from an oscillating field in an LC circuit by attaching
an antenna Lo it

Only standing waves with certain wavelengths can be maintained within the
optical cavity, just as only certain acoustic wavelengths can be obtained from musical
instrurnents. Any standing wave in the cavity must have a half-wavelength * /2 that fits
into the cavity length L, or

A
H ( 2) =7 [3.58]

where # 15 an integer called the mode number of the standing wave. Each possible
standing wave within the laser tube (cavity) satisfying Equation 3.56 is called a
cavity mode, The laser output thus has a broad spectrum with peaks at certain
wavelengths corresponding to vanows cavity modes existing within the Doppler-
broadened emission curve, Figure 3.43 shows the expected output from a typical gas
laser. At wavelengths satistying Equation 3.56, that is, representing certain cavity
modes, we have intensity spikes in the output. The net envelope of the output
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Figure .43

{o) Doppler-broodened emission versus wovelength characteristics of the lasing medium.
{b) Allowed ascillations and their wavelengths within the optical cavity,
{c) The owtput spectrum is determined by satishving (o) and {b] simubanecushy.

radiation is a Gauvssian distribution, which is essentially due to the Doppler-
broadened linewidth.

Even though we can try to get as parallel a beam as possible by lining the mirrors up
perfectly, we will sill be faced with diffraction effects at the output. When the output
laser beam hits the end of the laser tube, it becomes diffracted, so the emerging beam is
necessarily divergent. Simple diffraction theory can readily predict the divergence angle.

EXAMPLE 3.25

Deppler-
brnadened
frﬁq‘“f.'“{'_}'
widlth

DOPPLER-BROADEMED LINEWIDTH Calculate the Doppler-broadened linewidths Av and AA
fon the HeMe laser transition A = 632.8 nm, if the gas discharge temperature is about 127 °C,
The atomic mass of Ne is 20.2 g mol~'.

SOLUTION

Duc to the Doppler effect, the laser radiation from gas lasers is broadened around a central
frequency v, which corresponds (o the source [tequency, Higher frequencies detected will be
due to radiations emicted from atoms moving toward the observer, and lower frequencies
detected will be the result of emissions from atoms moving away from the observer. Therefore,
the width of the observed frequencies will be approximately

i 2
Ay = |-',,_,(1 +£)~— Uu(] —Ti) i
< f." C

From ) = ¢/, we obtain the following by differentiation:

d c P

A
dv - ¥l v ¢
We need to know v, which is given by Kinetic theory as v? = kT/m. For the HeNe laser,
the Ne atoms lase, so
20.2 x 107" kg mol ™!

= =335 x 10
"= 6023 x 107 mol~ * kg

Thus

[(1.33 * BT E %127 + 273 K)
vy =

12
] = 406 m 5!
{3.35 » 1072 kg



3.10 Orrical FIBER AMPLIFIERS

The central frequency is

3w 0¥ ms!
i e T BB gt
%,  6328x%10°m

The frequency linewidth is

C(2uy,) 2474 x 0™ s~y (406 ms™")
T 3= 108 ms!

To ger Ad, weuse difdv = =3 /v, 50 that

Av = 1.283 GHz

: A
ﬁl:ﬂ:-’|— thiis

Va

(1283 x 10° Hz)(632.8 % 10" m)
e 4,74 % 10 57

=171 %1072 m ot 0.0017 nm
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ADDITIONAL TOPICS
3.10 OPTICAL FIBER AMPLIFIERS

A light signal that is traveling along an optical fiber communications link over a long
distance suffers marked attenuation. 1t becomes necessary to regenerate the light signal
at certain intervals for long-hanl communications over several thousand kilometers.
Instead of regenerating the optical signal by photodelection, conversion to an electrical
signal, amplification, and then conversion back from electrical to light energy by a
laser diode, it becomes practical to amplify the signal directly by using an optical
amplifier, The photons in an optical signal have a wavelength of 1550 nm, and optical
amplifiers have to amplify signal photons at this wavelength.

One practical optical amplifier is based on the erblum (E** ion) doped fiber
amplifier (EDFA),"? The core region of an optical fiber is doped with Er'* ions. The
host fiber core material is a glass based on 5105-GeQ); and perhaps some other glass-
forming oxides such as Al;O5. It is easily fused to a long-distance optical fiber by a
technique called splicing,

When the Er'™ ion is implanted in the host glass matenial, it has the energy levels
indicated in Figure 3,44 where E; comesponds to the lowest energy possible consistent
with the Pauli exclusion principle and Hund's rule. One of the convenient energy levels
for optically pumping the Er** ion is at Es, approximately 1.27 eV above the ground
energy level. The Er' ions are optically pumped, usually from a laser diode, to excite
them to E;. The wavelength for this pumping is about 980 nm. The Er'™ ions decay
rapidly from £; to a long-lived energy level at F; which has a long lifetime of ~10 ms
{very long on the atomic scale). The decay E; to E; involves energy losses by
radiationless transitions {generation of crystal vibrations) and are very rapid. Thus, more
and more Er** ions accumulate at £; which is 0.80 eV above the ground energy. The
accumulation of Er’* ions at E; leads to a population inversion between E; and E;.
Signal photons at 1550 nm have an energy of 0.80 eV, or £; — E|, and give nse o
stimulated transitions of EP™ ions from £; to Ey. Any Er' ions left at £, however, will

] 12 EDF& wes fieat repocted in 1987 by E. Dasurvire, J. . Simpson, and P. C. Backer and, within a shart pericd,
AT&T bagan deploying EDFA rapeaters in lkanghoul fiber communications in 1594



268

Figure 3.44 Energy diagram far the EF' ion in the ="N\N-
gloss fiber medium ond light amplification by stimulated
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Energy of the Er?* ion
in the glass fiber

A

1.27eV - Ey

B
-

™~ . Nonmadiative decay
-

'ﬁ"-.

Y80 | Pump .50 e m— E,

1550 nm 1550 nm

emission from £; to £ %I-.’ WUUI Out
n

Dashed arrews indicote radiationless transifions {energy

amission by lafice vibrations), 0 E,

E-*_doped
fiber {10-20 m)
Wavelength-selective

Signal in cQples Splice ¥ Splice Signal out
A = 1550 nm A = 1550 nm

By

Pump laser diode
A =980 nm

Figure 3.45 A simplified schematic illustration of an EDFA [optical amplifier),

The erbium-ion doped fiber is pumped by feeding the light from a laser pump diode, through a coupler, into the erbium-
ion doped fiber.

@ CD Selected Topics and Solved Problems

absorb the incoming 1550 nm photons to reach E;. To achieve light amplification we
must therefore have stimuolated emission exceeding absorption. This is only possible if
there are more Er'** ions at the £, level than at the E, level, that is, if we have population
inversion. With sufficient optical pumping, population inversion is readily achieved,

In practice the erbium-doped fiber is inserted into the fiber communications line
by splicing as shown in the simplified schematic diagram in Figure 3.45 and it is
pumped from a laser diode through a coupling fiber arrangement which allows only
the pumping wavelength to be coupled.

e -—

Selected Topics : L Solved Problems

Cormnpton Scallering Modern Physics: Photoelectric Experimment, lonization
Stimulated Emission and Laser Principles Energy

Stimulated Emission and Optical Amplifiers He-Ne Luser Problem

Time-Dependent Schridinger Equation
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DEFINING TERMS

Angular momentum L about a point @ is defined as
L = p x r, where p is the linear momentum and r is
the position vector of the body from €. For a circular
orbit atound O, the angular momentum is orbital and
L = pr=mur.

Bragg diffraction law describes the diffraction of an
X-ray beam by a crystal in which the interplanar sepa-
ration « of a given set of atomic planes causing the X-
ray diffraction is related to the diffraction angle 28 and
the wavelength ) of the X-rays throngh 24 sinf = nk
where n is an integer, usually unity,

Complementarity principle suggests that the wave
model and the particle model are complementary
models in that one mode]l alone cannot be used (o
explain all the observations in nature. For example, the
electron diffraction phenomenon is best explained by
the wave model, whereas in the Complon experiment,
the electron is treated as a particle; that 1s, it is
deflected by an impinging photon that imparts an
additional momentum to the clectron.

Compton effect is the scattering of a high-energy
photon by & “free” electron. The effect 1s experimen-
tally observed when an X-ray beam is scattered from a
target that contains many conduction {“free™) elec-
trons, such as a metal or graphite.

De Broglie reladonship relates the wave-like proper-
tes (e.g., wavelength i) of matter to its particle-like
properties (£.g., momentum p) viak = h/p.
Diffraction is the hending of waves as a result of the
interaction of the waves with an object of size compa-
rable o the wavelength, If the object has a regular pat-
tetn, periodicity, an incident beam of waves can be
bent (diffracted) in certain well-defined directions that
depend on the periodicity, which is used in the X-ray
diffraction study of ¢rystals.

Doppler effect is the change in the measured fre-
guency of a wave due 10 the motion of the source
relative to the observer, In the case of electromagnetic
radiation, if v 18 the relative velocity of the source
object oward the observer and v, 1s the source fre-
quency, then the measured elecromagnetic wave
frequency 15 v = v[1 + (v /)] for{v/o) < 1.

Energy density op is the amount of energy per unit
volume. In a region where the electric field is €, the
energy stored per unit volume is %s.;.'.&".

Flux is a term wsed to describe the rate of flow
through a unit area. If AN is the number of particles
fMowing through an area A in time A7, then parchicle
flux ' 15 defined as I = AN/ (A A, IF an amount of
energy AE flows through an area 4 in time Az, energy
flux is Mg = AE/({AAr). which defines the intensity
(I} of an clectromagnetic wave,

Flux in radiometry is the flow of radiation {electro-
magnetic wave) energy per unit time in watts. It is sim-
ply the radiation power that is flowing. In contrast, the
photon or particle flux refers to the number of photons
or particles flowing per unit time per unit area. Radi-
ant flox emitted by a source refers to the radiation
power in watts that is emitted. Flux in radiometry nor-
mally has either radignt or luminoys as an adjective,
&g radiant flux, luminows flux.

Ground state iz the state of the electron with the
lowest energy.

Heisenberg’s uncertainty principle states that the
uncertainty Ax in the position of a particle and the
uncertainty Ap, in its momentum in the x direction
obey (AxHaAp:) = &, This is a conseguence of the
wive nature of matter and has nothing to do with the
precision of measurernent, If A £ s the uncertainty in
the energy of a particle during a time A+, then
according to the uncertainty principle, (A £)(A) 2= H.
To measure the energy of a particle without any
uncertainty means that we would need an infinitely
long time A — oo,

Hundsrule states that electrons ina given subshell nf
try to cocupy separate orbitals (different m ) and keep
their spins pacallel (same m, ), In doing 5o, they achieve
a lower energy than pairing thelr spins (different m,)
and oecupying the same orbital (same me. ).

Intensity (I} is the flow of energy per unit area per
unit time. It is equal to an energy flux.

LASER (light amplification by stimulated emission
of radiation) 15 a device within which photon
multiplication by stimulated cmission produces an
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output radiation that is nearly monochromatic and
coherent (vis-B-vis an incoherent stream of photons
from a tungsten light bulb). Furthermore, the output
beamn has very little divergence.

Luminous flux or power ¢ is o measure of flow of
“visual energy” per unit time thal takes into account
the wavelength dependence of the efficiency of the
human eve, that is, whether the energy that 15 [lowing
is perceptible to the human eye. It is a measure of
“brighiness." One lumen of luminous flux 1s obtained
from a 158 mW light source emitting a single wave-
length of 555 nm (green).

Magnetic quantum number m specifies the compo-
fient of the orbital angular momentum L, in the
direction of a magnetic ficld along z so that L, = thm,,
where m, can be a negative or positive integer from
—f 0 +¢ including 0, that 15, —&, —(£—1).....
0., (£ — 1), £ The orbital ¥ of the electron depends
on e, as well as on n and £, The me,, however, zenerally
determines the angular vanation of i,

Orbital is a region of space in an atom or molecule
where an electron with a given energy may be found.
Two electrons with opposite spins can oceupy the same
orbital. An orhit 15 8 well-defined path for an electron,
but it cannot be used o deseribe the whereabouts of the
electron in an atom or molecule, because the electron
has a probability distdbution. The wavelunction
Woeme (# B, 0) 15 often referred to as an orbital that
represents the spatial distribution of the electron, since
|Wotmelr, 8, @)|* is the probability of finding the
electron per unit volume at (r, &, ¢},

Orbital {angular momentum} quantum nwmber
specifies the magnitude of the orbital angular
momentum of the electron via L = A[EE + 1],
where £ is the orbital quantum number with values
0,1.2, 3 ...,n — 1. The £ values 0, 1, 2, 3 arc labeled
the 5, p. d, [ states.

Orbital wavelunction describes the spatial depen-
dence of the electron, not its spin. IU is Wi 8, ¢,
which depends on ». £, and my, with the spin depen-
dence m, exeluded. Generally, wir, &, ¢) 15 simply
called an orbital,

Pauli exclusion principle requires thal no two eleg-
trons in a piven system may have the same set of
quantum numbers, #, £, m;, m,, In other words, no two

clectrons can oCcupy 4 given state o (n, £, my, @),
Equivalently, up to two electrons with opposite spins
can occupy a given orbital o (n, £, my).

Photoelectric effect is the emission of electrons from
a metal vpon llumination with a frequency of light
above a critical value which depends on the material.
The kinetic energy of the emitted electron is inde-
pendent of the light intensity and dependent on the
light frequency w, via KE=hv — ¢ where h is
Planck’s constant and ¢ is 2 material-related constant
called the work function.

Photon isa guantum of energy Ao (where f is Planck’s
copstant and v 15 the feguency) associated with
electromagnetic radiation. A photon has a zero rest mass
and a momentem p given by the de Broglie relationship
p = A/, where A the wavelength, A photon does have
a “moving mass” of hu/e, so it expericnces
gravitational attraction from other masses. For example,
light from a star gets deflected as it passes by the sun,
Population inversion is the phenomenon of having
more atoms occupy an excited energy level Ea. higher
than a lower energy Ievel, &), which means that the
normal equilibrivm distrbution 15 reversed; that is,
N(E;) = N(E,). Population inversion occurs tem-
poradly as a result of the excitation of a medium
(pumping). If left on its own, the medivm will even-
tually return to its equilibrivum population distribution,
with more atoms al £, than at £-. For gas atoms,
this means N{E:)/N(E)) =exp[—(E; — E1)/kT].
Principal guantum number n is an integer quantum
nember with values 1,2, 3, ... that characterizes the
total energy of an eleciron in an atom. The energy
increases with w. With the other quantum numbers £
and m;, n determines the orbital of the eleciron in an
atomm, OF Worm, (r 9, @), The values n = 1,2,3. 4, ..,
are labeled the K, L, M, N, ... shells, within each of
which there may be subshells based on £ =
0,1,2,...0n = 1) and corresponding w the s, p.
d, ... slales,

Pumping means exciting atoms from their ground
states (o higher energy states,

Radiant is a common adjective used to imply the in-
volvement of radiation, that is, elecmomagnetic waves,
in the noun that it qualifies; e.g., radiant energy is the
energy transmitted by radiation,



Radiant power is radiation energy flowing, or emitied
from a source, per unit tme, which is also known as
optical power even il the wavelength 15 not within the
visible spectrum. Radiant flux signifies radiant power
flow in radiometry, measurad in watts.

Radiation normally signifies a traveling electromag-
netic wave that is carryving energy. Due to the particle-
like behavior of waves, radiation can also mean a
stream of photons,

Schriidinger equation is a fundamental equation in
natura, the solution of which describes the wave-like
behavior of a particle. The equation cannot be derived
from a more fundamental law, [ts validity is based on
its ahility to predict any known physical phenomena
The solution requires as input the potential energy
function ¥Vix, v, z,1) of the particle and the boundary
and initial conditions. The PE fonction Vix, ¥, z, 1)
describes the interaction of the particle with its
environment. The time-independent Schridinger
equation describes the wave hehavior of a particle
under steady-state conditions, that is, when the PE is
time-independent Vix, ¥, z). If E is the total energy
and ¥* = (8%/0x% + 82 /ay® + 8% /3:%), then

Vi + (i—T) [E=Vix,y,2)lr =0

The solution of the dme-independent Schridinger
equation gives the wavefunction Wwix. y,z) of the
electron and its energy E. The interpretation of the
wavefunction  (x, v, £) iz that [ (x, v, 23|% is the prob-
ability of finding the electron per unit volume at point
X, Y. T.

Selection rules determine what values of £ and m, are
allowed for an electron transition involving the
emission and absorption of electromagnetic radiation,
that 15, a photon, In surmmary, A£ = £ and Am, =
0, £1. The spin number m, of the electron remains
unchanged. Within an atom, the transition of the
clectron from one state win, £, me, my) 0 another
win' &, mi,ml), due o collisions with other atoms
of clectrons, does not necessarily obey the selection
rules,

Spin of an electron § is its inrinsic angular mo-
mentum {analogpous to the spin of Earth around its own
axis), which is space guantized to have two possi-
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bilities. The magnitude of the clectron’s spin is @
constant, h+'3/2, but its component along a magnetic
field in the : direction is m,#, where m, is the spin
magnetic quantum number, which is +; or — 1.
Spontancons emission is the phenomenon in which a
photon is emined when an electron in a high energy
state ir(n, £, me, m,} with energy £; spontanecusly
falls down to a lower, unoccupied cnergy state
yr(n' &, m;, m,) withenergy E,.The photon energy is
hv = (E;— Ey). Since the emitted photon has an
angular momentum, the orbital quantem number £ of
the electron must change, that is Af = £ - £ = £1.
State is a possible wavefunction for the electron that
defines its spatial (orbital) and spin properties. For
cxample, @in, £,my, m,) is a state of the electron,
From the Schrisdinger equation, gach state corresponds
1o a certain electron energy £ . We use the terns state of
cnergy £, or energy state. There is generally more than
one state ¢ with the same enerzy £,

Stimulated emission is the phenomenon in which an
incoming photon of energy kv = E; — E| interacts
with an electron in a high-energy state 1 (1, £, mp, 0,0
at E., and induces that electron to oscillate down to a
lower, unoccupied energy state, - (n', &', m;, m ) at £.
The photon emitted by stimulation has the same energy
and phase as the incoming photon, and it moves in
the same direction, Consequently, stimulated emission
resulls in two coherent photons, with the same energy,
iraveling in the same direction. The stimuolated
emission process must obey the selection rule
Af = £ — § = L1, just as spontaneous emission must.

Tunneling is the penetration of an ¢lectron through a
potential encrgy barmier by virtue of the electron’s
wave-like behavior. In classical mechanics, if the
energy E of the clectron is less than the PE barmier ¥,
the electron cannot cross the bamier. In guantum
mechanics, there is a distinet probability that the
electron will “runnel” through the barrier to appear on
the other side. The probability of tunneling depends
very strongly on the height and width of the PE
barrier.

Wave is a periodically occurring disturbance, such as
the displacement of atoms from their eguilibium

. positions in a solid carmying sound waves, or a periodic

variation in & measurable quantity, such as the electric
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field E(x. 1) in a medivm or space. In a raveling wave,
energy 1% (ransterred from one location to another
by the oscillaions. For example, E,.(x.7f) = E,
sindkxy — o) 15 & (raveling wave n the x direction,
where & = 2a/4 and w = 2 v, The electric field in the
¥ direction varies periodically along x. with a period A
called the wavelength, The field also varies with time,
with a period 17w, where v is the frequency. The wave
propagates along the x direction with a velocity of
propagation ¢, Electromagnetic waves arc ITANSvErse
waves in which the clectric and magnetic ficlds
E,(x,¢) and B, (x,r) arc at right angles 1o cach other,
as well as to the dircetion of propagation x. A traveling
wave in the clectric field must be accompanied by a
similar traveling wave in the associaled magnetic
field B.(x.r) = B, sinikx — awr), Typical wave-like
propertics are interference and diffraction.

Wave equation is a general partial differential equation
in classical physics, of the form

At Iy

_”2

the solution of which describes the space and rime
dependence of the displacement wix, ¢} from equi-
librium or zero, given the boundary conditions. The
parameter v in the wave equation is the propagation
velocity of the wave. In the case of electromagnetic
waves in a vacuum, the wave equation describes the
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varation of the elecinic (or magnetic) field Tix, 1y with
space and tme, (c28°E/8x%) — (42E/5¢%) = 0, where
¢ 18 the speed of light.

Wavefunction $(x, ¥, z,r) is a probability-based
function wsed to describe the wave-like properties of a
particle. It is obtained by solving the Schridinger
equation, which in tumn requires a knowledge of the PE
of the particle and the boundary and initial conditions.
The term | (x.y,z,t)* is the probability per umit
volume of finding the clectron at (x, v, 1) at ame 1. In
other words, W (x, v.z, ()|  dx dy dz is the probability
of finding the electron in the small volume & dy 47 at
{x, ¥ z} at time r. Under steady-state conditions, the
wavefunction can be scparated into a space-dependent
component and a time-dependent component, Le.,
Wi, vz 0 =fr{x, y. 2 exp(— jEffh), where E 1
the energy of the particle and & = k /2, The spatial
component 4 (x, ¥, z) satisfies the time-independent
Schridinger equation.

Wavenumber (or wavevector) k is the number of
waves per 2n of length, that is, £ = 2r /2.

Work function is the minimum energy required to
remove an electron from inside a metal to vacuum.

X-rays are electromagnetic waves of wavelength typi-
cally in the range 10 pm<1 nm, which is shorter than
ultraviodet light wavelengths. X-rays can bhe diffracted
by crystals due to their wave-like properties.

QUESTIONS AND PROBLEMS

31 Phintons and photon flux

. Consider a 1 kW AM radio transmitter at 700 kHz. Caleplate the namber of photons emitted from

the antenna per second.

b, The averape imensity of sunlight on Earth's sorface is about 1 KW m™ 2, The maximum iniensity is
at a wavelength around BIK) nm. Assuming that all the photons have an 800 nm wavelength, caleu-
late the number of phatons arriving on Barth’s surface per unit time per unit area, What is the mag-
nitude of the electnic fiekd in the sunlipbt?

¢ Suppose thet a solar cell device can convert each sunlight photon o an electron, which cun then
give rise to an external current. What is the maximum current that can be supplied per unit area

(i’ ef this golar cell devige?

3.2 Yellow, cvan, magenta, and white Three primary colors, red, green, and blue (RGB), can be added
together in various proporions o generate any color on various displays and light emiting devices in
what is known as the addifive theory af color. For example, vellow can be penerated from adding red
and green, cvan from blue and green, and magenta trom red and bloe.
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(QJUESTIONS AND PROBLEMS

a. A device engineer wants to wse three light emitting diodes (LEDs) W penerate various colors in an
LED-based color display that is siill in the research stage. His three LEDs have wavelengths of
660 am for red, 563 nm for green, and 430 om for bloe, He simply wishes to generate the vellow and
cyun hy mixing equal optical powers from these LEDs; optical power, or radienr pover, 15 defined
as the radiation energy emirted per unit time. What are the numbers of red and blue photons needed
{1 the nearest inteper) 10 penerate yellow and cyan, respectively, for every LN green photons?

b Anegui-energy white lahit is penerated by mixiong red, preen, and blue light in equal optical powers,
Suppose that the wavelengths are 70 om tor red, 546 nm for green, und 436 oo for blue (which is
ane set of possible standard primary colors), Supposc that the optical power in cach primary color is
0.1 W, Caleulute the fora! photon fwe (ploiens per second) needed from each peimary color,

¢, There ure bright white LED= on the mocket that generate the white Llight by mixing vellow (a com-
hination of red and green) with blue emissions. The inexpensive types use & single blue LED 1o
generate & sirong blee radiation, some of which is absarbed by a phasphor in front of the LED which
then emits vellow lipht. The yellow and the blue pussing theough tie phosphor mux and moake up
the whitz light. In ane type of white LED, the hlue and yellow wavelengths are 450 nm and 564 nm,
respectively. White light can be generated by setting the optical (radiative) power ratio of vellow to
blue light emerging from the LED tw be about 1.74, What is the mate of the number of bue 1o vel-
low phons needed? (Snmetimes the mix is not perfect and the white LED light tends to have a no-
ticeable slight blue tint.) IF the total optical power outpui from the white LED is 1 mW, calculate
the blue and yellow total photon fluxes (pholons per second).

Rrighiness of laser pointers  The brightness of a light source depends not only on the rediation {op-
tcaky poswer emitted by the source but also an ifs wavelength becavse the human eyve perceives each
wavelength with a different efficiency. The visual “brightness” of a source as observed by an sverage
daylight-adapted eve is proportional to the radiation power emitted, called the radiant flux ., and the
efficiency of the eve 1o detect the spectrum of the emitted radiation. While the eve can see a red color
source, it canmot sec an infrared source and the brightness of the infrured source would be zero. The
Tuminous flox 4, is 3 measure of brightness, in lumens (Im), and is defined by

=, w0 (633 MW o Ry [3.57]

where @, is the radiant flux or the radiation power cmitted (in watts) and Ry = Qeye(A) is the relarive
tumingus efficiency (or the relative sensitivity) of an average light-adapted eye which depends on the
wavelength; Ry is 8 Gaussian Iooking function with a peak of unity at 5355 nm. (See Fipure 3.46 for
fHeve W5, A} One Jumen of luminous flux, or brightoess, is obtained from a 1.5% mW light source emit-
ilng an & single wavelengih of 555 nm {green), A typical 60 W incandescent lamp provides roughly
Q0K Im. When we buy a light bulb, we ere buying lumens. Consider one 5 mW red 650 nm Laser pointer,
and another weaker 2 mW green 532 Am 185617 Heye (65 nm) = (.11 and §p (332 nm) = (L46. Find the
luminous Oux (brightness) of ewch laser pointer. Which is brighter? Calculaie the number of photons
emitted per unit time. the total phaton fux, by each laser.

Human eve  Photons passing through the popil are focused by the lens onto the reting of the eye and
are detected by two types of photosensitive cells, called reds and cowcs, as visualized in Figore 3.46.
Hods are highly sensitive photoreceptors with a peak pesponse at o wavelength of about 507 wm
(green-cyan}. They do not register eolor and are responsible for our vision under dimmed light condi-
tions, termed scotopde vislon. Cones are responsible for our color perception and daytime vision,
called photopic vision. Theses three types of cone photoreceptors are sensitive to blue, preen, and red
at wavelengths, respectively, of 430 nm, 535 nm, and 575 nrm. All three cones have an overall peak ce-
sponse al 555 nm (preen), which represents the peak response of an average daylight-adapted eve or in
our photopic vision.
a. Caleulate the photon energy (in V) for the peak responsivity for each of the photoreceptors in the
eve (one ead and thiee cones),
B Varions experiments (the most well known being by Hecht et 81, £ Opr Soc. America, 38, 196,
19425 have tested the threshold sensitivity of the dark-adapted eve and have estimated cthar visual
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Figure 3,456
[a) The reting in the eye hos photoreceptars that can sense the incident pholons on them and hence provide necessary
visual pereaption signsls. [t has been esfimated that for minimum visual perception there must be reughly 20 phatons
falling on the cornea of the eye.
[b) The wovelength dependance of the relative efficiency 1.4 of the eye is different for daylight vizion, ar photopic
vision [invabres mainly cones), and for vision under dimmed light, or scotopic vision, which represents the dork-odapted
eye, and involves rods.
{) SEM photo of reds and cones in the reting.

SCURCE: Dr, Fronk Werblin, Univarsity af Cofitornia, Ezrke‘lq,r.

perception requires a minimurn of roughly 90 photons o be incident onte the comea in frant of the
eye’s pupil and within 1710 second. Tuking $F incident photons every 100 ms us the threshold sen-
sitivity, caloulate the tatal phaton flux (phaotons per secnnd), wtal energy in eV {within 100 ms}, and
the aptical power that 15 needed for threshold visual perception.

. Mot all photoos incident on the eye make it (e the actoal photoreceptars in the retina, It has been
estimated that only 1 in 10 photons wriving at the eve's comes setually make it to rod phidons-
ceptors, due to various retlections and ahsarptions in the eve and other loss mechanizims. Thus,
only nine photons make it 1o phowrecepors on the reting, ™ It is estimated thar the nine test pho-
toms fall randomly onto a circular area of about 00025 mm®. What is the estimuted threshold in-
tensity for visual perception? TF fhere are 150,000 rods mm == in thiz arca of the eye, estimate the
oumbeer of rods in this wst spor I there are a large number of cods, more than 100 in this spot,
then it is likely that no single rod receives more than one photon sinee the nine photoos wrrive run-
domly, Thus, a rod must be able 10 yerse A gingle phaton, but it takes nine excited rods, somehow
sumeoed up by the visual system. o generate the visual sensation. Do vou agree with the later
conclusion'?

d It is estimated that at least 20,0 photons per second most be incideot on the eye 1o peoerate a
calor sensation by exciting the cones. Assaming that this occurs at e peak sensitivity at 335 nm,

1 Somedimes one comes across a statoment that tha eye con delect o single pholon. While o rad phaforecepter can
indeed sense o single photan (ar, pid differently, a photan can acfivate & single rod), fe overall human viswal
perceplion needs roughly nine photons ot arcund 307 nm e consciously registar a viseal sensation.
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atd that as in patt {b) aoly about 10 percent of the photons make it 0o the reting, estimate the tresh-
old optical power stimulating the cones in the retina.

3.5 X-ray photons  In chest radiology, a patlent's chest is exposed o X-rays, and the X-rays passing
through the patient are recorded on a photographic film to generate an X-ray image of the chest for med-
ical diagnosis. The average wavelength of X-rays in chest radiology is about 0.2 A (0.02 nm). Numer-
ol messurements indicate that the patlent, on wverage, Is exposed 1o o 1otal adiation eoecgy per unit
ares of roughly 4.1 i em * for one chest X-ray image. Find the photon energy used in chest radiology,
and the average number of photans incident on the patient per unit area {per em™),

3.6 X-rays, exposure, and roentgens  X-rays ere widely used in many applications such as medicsl imag-
ing, security scans, X-ray diffeaction studies of erystals, and for examining defects sweh as cracks in ob-
jects nod structures, X-ruvs are highly enerpetic photons that cun easily penetrate and pass though vard-
ous objects. Different materials attenvate X-rays differendly, so when X-rays are passed through an
abject, the emerging X-rays can be recorded on a photographic film, or be captured by a modern flac
panel X-ruy imape detector, 10 penerate an X-ray image of the interor of the object; this is culled radi-
agraphy. X-rays also cause ionization in a medium and hence are known as ionization radiation. The
amount of exposure (denoted by X)) 1w X-eays, rondzing radiotion, is measured in erms of the onizing
wffects of the X-ruy photons, One roentgen (1 B) is defined as an X-ray exposure thet jonizes 1 em® of
air to generate (.33 nlC of ¢charge in this volume at standard temperature and pressure (STP). When a
body iz exposed 1o K-ravs, it will recedve a certain amount of radiaton energy per vl area, called
energy fluence # ¢, that is. s0 many joules per cm?, that depends on the exposure X . 1f X in reentens
is the exposure, then the energy fluence iz given by

7 18 , ,
Wy =[?’. B —-_]x Tem2 (a5g) Tuencennd
rr.lm!gﬂr.r

ﬂ‘-:n.a.ir.'ri:'a.ir

¥-ray Image of an Americon enecenl coin caphired usln

an %roy o-58 HARF camera. Tha first image of the top la

iz abkainad under extremely low exposure, and the
subsequent images are abtained with increasing exposure
of approximataly one order of magnilude batwean aach
image. Tha slight abenuoticon of the Xrop photans by Lincaln
Frmi:‘c_s e il'nuat. The imoage sedjience clzﬂrl:( shows the
discrete nature of Krays, ond hence their description in
terms of photons.

SOURCE: Courtasy of Crvlan Hunt and John Rowdands,
Sunnybrook Hospital, University of Terorio
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1.8

a9

where Wg i5inJ cm ™=, and py g/ guir 15 Uhe mass energy absorpiian coefficiens of airin g cm=? at the

phaton encrgy Eqp of interest; the plen air/fair values are listed in radiological ables. For example, for

I B of exposuee, X = L. Epy, = 20 keW, and pae, o/ oo = 0539 cm? g7t Equetion 3.54 mives Wy =

1.62 = 107% 1 cm™? incident on the ohject.

a.  In mammography {X-ray imaging of the breasts for breast cancer), the average photon energy is
about 20 keV, and the X-ray mean exposure is 12 mR. A1 By =20 keV. penarfair =
0,539 ¢m? g, Find the mean energy incident per unit area in ) em™ 2, wod the mean number of
H-ray photons incident per onit area (photons cm ), called phaton fluence <.

. In chest mdiography, the average photon energy is about 60 ke, and the X-ray mean exposure is
300 wR. At Fon = 60 KeV. pog gie/ i = 00304 cm® g=1, Find the mean energy incident per unit
area in pl em ™2, and the mean number of X-ray photons incident per unit wres,

. Amodern flat panel X-ray imape defector 15 u laree ares image sensor that has numerows arravs of
tiny pixels (millions} all tiled together to make one large continuous image sensor. Each pixel is an
independent X-ray detector and convents the X-rays it receives 1o an electrical signal, Each uny de-
tector 15 responsible for cupturiog a small pixel of the whole image. (Typicully, the image resolu-
tion is determined by the detector pixel size.) Each pixel in a particular experimental chest radiod-
ogy XK-ray sensor is 150 pm = 150 pm. If the mean exposure is 300 pR, what is the oumber of
photons recerved by each pixel detector? If exch pinel is required to have st lesst 10 photons for an
acceptable signal-to-noise ratio, what is the minimum exposure required in pRY

Photoelectric effect A photoelecinc eaperiment indicutes that violet light of wavelength 4200 nm is the

longest wavelength radiation that can cause the photoemission of electrons from a particalar multi-alkali

phatocathode surface,

a,  What is the work funcuon of the photocathode sucface, in eVT

B Ifa UV radiation of wavelength 300 nm is incident wpon the photocathode sucface, what will be the
muximum kinetic energy of the photoemitted electrons, in %7

c.  Civen that the UV light of wavelength 300 am has an intensity of 20 mW cm 2, if the emitted elec-
trong are codlected by applying a positive bias o the opposite electrode, what will he the photao-
electric current densily o mA con™ 7

Phatoelectric effect and guantom efficiency Cesium metal is 10 be used as the photocathode mater-

1al in a photoemissive electron twbe because elecirons wre relatively susily removed from a cesivm sur-

fuce. The work function of a clean cesium sortace is 1.9 eV,

g, ‘What is the longest wavelength of radiation which can result in photoemission?

& If bloe radistion of wavelength 450 nm is incident onto the Cs phodocathode, what will be the
kinetic energy of the phowemitted electrons in e%'7 What should be the voltage required on the op-
posite elecirode e eatinguish the external photocurrent?

e, Quantum efficiency ((£) of » photocuthode 15 defined by,

Number of photoemitied electrons
Mumber of incident photons

Quanium efficiency = [3.59]
QF is 100 percent if each incident photon epects one electron, Suppose that Blue light of wavelength 450
om with an intensity of 30 mW em™? is incident on a Cs photocathode that is a cireolar disk of diame-
ter G mm. If the emitted electrons are collected by applying a positive bias voltage w the anode, and the
phwatecathode bas a QF of 25 percent, what will be the photoelecinic cumren?

Photoeleciric effect A mulii-alkali meral alloy is 1o be used as the photocathode macerial in a photoe-

missive electron wbe, The work lunction of the metal i 1.6 &V, and the phowcathode ares is 0.5 cm?,

Suppose that blue light of wavelength 42{F nm with an intensity of 50 mW em ™ is incident on the pho-

tocathode,

a.  [fthe photoemited electrons are collected by applying a positive bias to the anode, what will be the
photoelecine current density pssuming that the quuntem efficiency 7 is 15 pereent? Quanium efficiency
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s @ percertage is the number of photoemitted electrons per 1K) ahsorbed photons and is defined in
Eqguation 3.60. What is the kinetic energy of a photoemitied electron al 420 nn?

b What should be the voltage and its polarity o extinguish the curment?

c. What should be the intensity of an incident red light beam of wavelength 600 om that would give
the same photocurrent if the guantum efficiency 35 5 percent at this wavelength? (Normally the
quantum efficiency depends on the wavelength.)

Tlanck’s low nnd pheton energy distribution of radiation  Planck's law, stated in Equation 3.9, pro-
vides the spectral distribution of the black body radiation intensity in terms of wavelength through 1 .
imtensity per unit wavelength, Suppose that we wish o find the disimbotion in terms of frequency v or
phoon energy Av, Freguency v = ¢ /A und the wavelength range A o & + o & corresponds o 3 frequency
range © 60 v 4 v (dh and dv have opposite signs sinee v increases as A decreases.) The intensity I J3
in A to = A must be the same s the inteosity in v o v 4 dv, which we can write as I, dv where T,
15 (he radiation iotensity per wnit frequency. Thus,

The megnitude sign is needed because & = ofv results in a negative ofd fefu, and T, must be positive by
definition. We can simply substitne & = ¢fv for d in I wnd obtain I; as a function of v, and then find
ld L] o find I, from the preceding expression.

o, Show that

s 2mikup
T eI RMenpl=hw kT) = 1]

[3.40]

Equution 3.60 is written to highlight that it is a function of the photon energy e, which is in joules
in Equution 3.6{ but can be converted to eV by dividing by 1.6 = 107" Jev -7,

b, If we integrate I, over all photon energies (numerically on a calculator or a compater from (0 o say
G eV, we would obfain the wotal intensity at a tempecature T. Find the toral intensity Ty emitted ag
T = 2600 K (o typicul incaodescent hight bulb filaoment wemperature) und st 6000 K (roughly
representing the sun's spectum). Plot ¥ = I,/ T versus the photwn energy in e¥. What are the
phaton energies for the peaks in the distributions? Calcolate the corresponding wavelengil for
each using A = ¢fv and then compure these wavelengths with those predicted by Wien's law,
M T 25 289 3 107 m KL

Wien's law  The maximum in the intensity distribution of hlack body radiation depends on the tem-
peratiere, Substitae & = he /(AT in Planck's law and plor I versus x and fiod Ames which corre-
sponds 1o the peok of the disoibution, and hence derive Wien's law. Find the peak intensity wavelength
Amae for 240 W light balb given thac its filament operates at roaghly 2400 “C.

Diffraction by X-rays and an electron beam  Diffraction soodies on a polyerystalline Al sample using
Merays pives the smollest diffraction angle (28 of 29.5% corresponding w diffraction from the (111)
planes. The lattice parameter a of AL{FCC), is (.405 nm. If we wish to obtain the same diffraction pat-
tern {same angle] using an electron beam, what should be the voltage needed o accelerate the electron
benm? Mote that the iotecplanac sepacation d for planss ¢h, &, €} and the lowics purarmeter @ for cubic
crystals are related by f = ajiht k4 e

Heisenherg's uncertainty principle  Show that it the uncertaingy in the position of a particle is on the
arder of its de Broglie wavelength, then e uncertainty in its momentum is about the same as the M-
renturn value msell

Helsenberg's uncertainty principle Ao eacited electron in ao Na wtom emits rudiotion ul a8 wave-
length 589 nm and returns to the ground state. It the mean time for the transition is ahout 20 ns, calcu-
late the inherent width in the emission line, Whar is the length of the photon emitted?

L
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Tunneling

a4 Consider the phenomenon of tunneling through & potential energy barrier of height ¥, and width o,
as shown in Figure 3,16, What is the probability that the electron will be reflected? Given the
transmission coefficient T, can you Gnd the rellection coelficient 87 What happens w R as g or V,
or both become very large?

H. For o wide barrier {oa = 1), show that T, can at most be 4 and thet T, = 4 when £ = -lrl»" 5

Electron impact excitation

o, A projectile election of kinetis energy 122 eV collides with o hydrogen atom o a gas dischoarge
tube. Find the nth enerey level to which the electron in the hydropen atom gets excited.

5. Calculate the possible wavelengths of radiation (in nm) that will be emitted from the excited H
atom in part (a) as the electron retums ta its ground state. Which one of ihese wavelengths will be
in the visible spectrum?

o Inneon street lightiog tubes, gaseous dischioge in the Ne tubse involves electrons acceleruted by the
electric field impacting Me stoms and exciting some of them to the 2p*3p states, as shown in Fig-
ure 3.42, What is the wavelength of emission? Can the Ne atwom fall from the 2573p! siate 1o the
ground state by spontaneous emssion?

Line spectra of hydrogenic atoms  Spectra of hydrogen-like atoms are classified in tzrms of electron

[EANSIIONS [0 & commaon lower energy level,

. Allransitiens from energy levelsn = 2,3, ., tar = | (the K shell) are labeled & lines and con-
stitutie the Lyman series. The speciral line cormesponding to the smallest enerpy difference (n = 2
ton = 1) s lubeled the &, line, next is 1abeled K, and so on. The transition froma = soton = 1
has the largest energy difference and defipes the greatest photon energy (shomest wavelengih) in
the K series; hence it is culled the absorption edge K .. What is the range of wavelengths for the
K lines? What is K7 Where are thege lines with respect ta the visible spectrum?

k. All rangitions from energy levelsn = 3,4, ... to s = 2 (L shell} arc labeled L lines and constiture
the Balmer series. What is the range of wavelengths for the L lines (fe, Ly and Ly )7 Are these
in the visible runge”

¢ All transitions trom energy levelsn = 4,5, . ton = 3 {M shell} are labeled M lines and consti-
tute the Paschen serfes. What is the range of wavelengths for the M linesT Are these in the visible
range?

d. How would you expect the spectral lines o depend on the stomic number 27

lonization energy and effective Z

@ Consider the singly jonized Li jon, Li*, which hes Inst its 25 electron. If the energy required to jon-
ize one of the 1y electrons in LiT is 18,9 ¥, caleulate the effective nuclear charge seen by a 15 elec-
tron, that is, Zeqegive 0 e hydrogenic atom jomzation enerey eapression in Equwbion 3.45;
Ern= ':Zr:l'l'eul.i.vz.-'ln}zuﬂ-h eVl

b, The B atom has a total of five electrons, teo in the 1r arbital, teeo in the 25, and one in the 2p. The
expenimental istization energy of B is 8.30 eV, Calculate £, feceme

¢, The eaperimental ionization energy of Na is 3.49 eV, Calcolate the effective nuclear charge seen by
the 35 valence electron.

d.  The chemical tables tvpically list the firsy, second, and third ionization enerpies £, E;, £, me-
spectvely, and s0 on. Consider Al Ej represents the energy required o remove the first electron
from neutral Al Ez, the second electron from AlY; E3, the third eleciron from A 1o generate
AP, For Al expedmentally, E| = 6.0 eV, £; = 18.8 eV, and E3 = 28.4 V. For each case find
the Fopecime Seen by the electeon that is removed.

Atomic and lonic radli  The maxicom in the radial probability distribution of an electron in a hydrogen-
like atom is riven by Equation 3,38, that is, rye = (nfay /2, for £ = r — 1. The average dstunce 7 of
an electran from the nuclezos can be calenlated by wsing the definition of an average and the prohability



3,20

QUESTIONS AND PROBLEMS

distribution funcrion Py ¢ (), that is,

5 = aght2| 3 &£+ 1)
r_L iy dr = _— |:E =y i|

in which the right-hand side represents the result of the integration (which has been done by physicisis).
Calcnlate rogs and F for the 2 p valeoce election in the B atom, Which value is closer t0 the radius of the
B wwom, 0.0%5 nm, grven o the Perniod Table? Consider only the owtermost electrons, and caloulate
Paverage Tor L, Li*, Be?*, and B, and compare with the experimental values of the atomic or jonic sizes:

0,15 nm for Li, 0070 nm for Lit, 0,035 om for Be?™, and 0,083 am for B,

Xerays and the Moseley relation  X-rwys wre photons with wavelengths in the runge 0.01-10nm, with
typical encrgies in the range 108 eV fo 100 ke, When an electron teansition occars in an atomn from the
L o the K shell, the ernited cadintion i3 penerally in the X-ray spectrum. For all stoms with atomic
number £ == 2, the K shell is full. Suppose that one of the electrons in the & shell has heen knocked out
by an energetic projectile electron impacting the atom (the projectile electron would have been aceeler-
ated by a large voltage difference). The resulting vecancy in the K shell cun tbhen be Glled by an elecieon
in the L shell rangiting down and emitting & photon. The emission resulting from the L to K shell tran-
sition is labeled the K line. The table shows the K, line data obtained for varions materials,

Material

Mg Al 8 Ca Cr Fe Cu Kb W

L

12 13 16 20 24 26 0 37 4

Ky line (nmy 0967 0834 0537 0.333 L (124 0154 0083 0,021

——

@ If v is the tfrequency of emission, plot v1/2 against the stomic number Z of the element.

b H. G, Moseley, while still a graduate student of E. Rutherford in 1913, found the empirical rela-
tionship

Wi RZ -0

where B and £ arc constants. What are 8 and € from the plot? Can you give a simple explanation
as o why K, absorprion should follow this relationship?

MF Emilia Segre Yisuol Archivas

e

Average distance
af alectron from
nrcleus

Moseley relasion

Henry . 1. Moseley [18B7-1915|, eround 1914, carrying
out expariments at Sallicl-Trinity bobarotary of Ciuford,
| | SOURCE: University of Catford Mausewm of Science, courtesy



280 CHAPTER 3 + ELEMENTARY QQUANTUM PHYSICS

Bl |
.22
3.23
*3.24

Spin aragreric

HiHIERT

Electron spin in

& magnetic field
.25

The He atom  Suppose that for the He atom, zoro energy is taken to be the two clectrons stationary at
infinity (und infindtely apam) from the aucleus (He'' ), Estimate the enesgy {in &V of the elecwrons in
the He atom by neglecting the electron—electron repulsion. that is, neglecting the potential energy due 1o
the mutual Coalombic repulsion between the electrons. How does this compare with the experimental
value of —T9 eVT How strong is the election—electron repulsion energy?

Excitation energy of He In the HeMe laser, an energetic electran iz accelerated by the applied field
impacts und excites the He from its ground stare, 152, 1 an excited state He*, 15°25', which has one of
the electrons in the 25 orbital. The ground energy of the He atom is —79 eV with respect to both elec-
trong isolated st infinity, which defines the zero energy. Consider the 15'2:! state. 1f we neglect the
electron—electron interactions, we cun culculate the energy of the Iy and 25 elecirons wsing the enecgy
for a hydrogenic atom, £, = —(Z2/n™3{13.6 V). We can then add the clectron—electron interaction
energy by assuming that the |5 and 25 electrons are effectively separated by 3a,, which is the difference,
A1y = 1, between the 15 and 25 Bolr radii, Calculute the overall energy of He™ and hence the excita-
tion energy from He to He*. The cxperimental valoe is about 216 eV,

Electrom affinity  The floarine atom has the electronic eonfiguration lHC]l'r:ps. The F atom can acto-
ally caplure an electron o become a F~ ion, and felease energy, which is listed as s electron affinity
128 k) mol~' . We will sssume that the two 15 electrons in the closed £ shell (very close w the nucleos)
and the two elecirons in the 2t orhitals will shield four pnrs:it'm: charges and therchy cxpose
+9¢ — d¢ = +5¢ for the 2p orbital. Suppose that we iy 1o caleulate the esergy of the F~ ion by simgly
assuming that the additional electron s attracted by an effective positive charge. +e(5 = Z5,) or
+¢ Zefipcive, Where Zap is the averall shielding effect of the five clectrons in the 2jr arhital, so that the
tenth electron we have added sees an effective charge of +2 Zatfantive. Caloulate Z:p and Zefecrne. The F
atom does not enjoy losing an electron. The ionization enerpy of the F atom s 1681 kJ mol ™', What is
the Zeffeciive that is experienced hy a 2p electron? (Mote: 1k mol~" = 001036 &V /atom. )

Electron spln resonance (ESR) It is cusiomary to write the spin magnetic moment of an electron as

e
Hapin = _RS
where 5 is the spin angular momentueom, and g is 3 aumerical factor, called the g factor, which is 2 fora
free electron. Consider the interacton of an electron's spin with un external magneuy feld, Show Lthat
the additional potential energy Egs 15 given by

Eps = —fon, B

where § = eh /2, is called the Bohr mapneton. Frequently electron spin resonance is used 10 exam-
ing various defocts and impuritics in scmiconductors. A defect such as & dangling bond, for example.
will have a single uapaired electron in an orbital and thos will possess a spin magnetic noment. A strong
magnetic field is applied to the specimen to split the eperpy level £ of the unpaited =pino to two levels
F1 — Egs and Ey + Eps, separated by A Fgs. The electron occopies the lower level E) — Egy. Elec-
trornagnetic waves (usually o the mictowave range) of koown frequency v, and hence of known pho-
ton energy #v, are passed through the specimen. The magnetic field # is vuried until the EM waves ane
absorbed by the specimen, which corresponds to the excitation of the electron at cach defect from
Ey = Egsto E) + Egy. that 15, bv = AEge it o cettain feld B, This maxitoum absorption condition is
called electron spin resonance, as the clectron's spin is made to resonate with the EM vave. T & =2 T,
calculate the frequency of the EM waves needed for ESR, taking g = 2. Note: For many molecules, and
impurities and defects in crystuls, gis ool exsctly 2, becuwse the electron 15 ia o diffecedil enviroament in
each case. The cxperimentally measured velue of gcan be used o charscterize molecules, impurities,
and defects,

Spin—orbit coupling  An electron in an atom will experience an internal magnetic ficld Sy because,
from the electron’s reflerence frame. it is the positive nuelens that is orbiting the electron, The electron
will “see™ the nucleos, take as charge 4+, circling around it. which is equivelent to o curment £ = +gf
wheee [ is (he elecuon’s frequency of rodation around the nuclews. The current F generates the: intemal
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magnetic field By at the eleciron, From electromapnensm iexts, 8y is given by

Mol

By = r

where ¢ is the radins of the eleciron’s achit and y, is the absolute permeabilicy, Show thay

Hot

By = ——
S |

Consider the hydrogen atom with Z = 1, 2p orhital, n = 2, £ = 1, and take r = nlu,, Caleulate i

The electron's spin magnetic moment pg, will couple with this internol feld, which means tit
the electron will now possess a magnetic potential energy Egp that is doe to the coupling of the spin with
the eriintt motion, called spin-orbit coupling. g will be either pegative o positive, with only (wo
vilues, depending on whether the electron’s spin megnetic moment is along or opposite By, Take 3
along By 50 that Egy = — Big ftapin, 2, WHETE [2apin, 18 fepin AlONg 2, and then show that the energy E,
af the 2 orbital splics indo fwo closely separated levels whose separation is

 fen
AEgy = (;n—) &,
e

Caleulate A Eg in eV and compare it with F2(n = 2)and the separation AE = E: — E,, {The exact
caleulation of Eyp 15 much more complicated, but the calculated value here 15 sofficiently close to be
useful. ) What is the eftect of Egp an the ohserved emission spectrum from the H-atom transition from 2p
1o 1x 7 What is the separation of the two wavelengths? The observation is called Ane strocture splitting.

Hund’s rule  For cach of the following atoms and ions, sketch the electronic structurs, using a hox for
an orbital wavefunction, and an areow {up or down for the spin) for an eleciron.

a  Alaminum, [Nelasts! £ Tuaniom, [Ar3d24s2

b Silicon, [Nelas'p! Vanadiure, [Ar]Id*4s2

. Phosphors, [Ne]isp® Mangunese, [Ar]3d5452
. Sulfur, [NeJas'p® i Cobalt, [Ac]3d 452

e.  Chlorine, [NeJasts? i CuPt [A3d4s"

a

Hund's rule  The carhon atom has the electronic structure 2522 07 In it groand state, The ground state
wikd warions possible excited states of C ere shown in Figure 3.47. The following energies sre kooen foc
the states @ to ¢ in Figure 3.47, not in any particular order: 0, 7.3 &V, 4.1 eV, 7.9 eV, and 1.2 ¥, Uzing
reasonable argaments maich these energies w the states & 10 ¢, Use Hand's rule 1o establish the ground
state with O e¥. 1T you bave o (ip w spin to go from the pround to soother confipuration, that would cost
energy. If you have to mowve an clectron from a lower & to p or from p to & higher &, that would cose a
lot of energy. Two electrons in the same orbital (obviously with paired electrons) would have substantial
Coulombic repulsion enerpy.
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Imternal
maghetic feld at
an electron in
e arone

Sprin—rrriit

conpling
potential energy

-1 0 1 Figure .47
Some passible states of the

I 1 W B

) I I Y I 3 R

a h < d &

The HeNe luser A purticular HeNe laser operating ac 6328 nm bas o tube that is 40 cm long. The op-
erating gas temperamre is about 130 °C.
a  Caleulate the Doppler-broadened linewidth &4 in the cotput spectrum,

carbon alom, not in any
‘T particular arder.
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1

b What are the n values that satisfy the resonant cavity condition? How many modes are therefore al-
lowed?

¢.  Calculate the frequency seperation and the waveleogth separation of the laser modes, How do these
change as the tube warms up during operation? Taking the linear expansion coefficient o be e
K ', estimate (he change in the mode frequency sepacation,

Er**-doped fiber amplifier  When the Ef'~ ion in the Er't -doped fiber amplifer (EDFA) is pumped
with 980 nm of radiation, ihe B~ ions absorb energy from the pump signal and become excited to Fy
{Figure 3.44). Luter the EC jons ot £ are stirulated to add enecey ooherent photons) to the sigoal
at 1550 nm. What is the wasted energy (in V) from the pump to the signal at cach photon amplifica-
tion step? (This energy is lost as heat in the plass medium. ) An Er-doped fiber amplifier is 10 m long,
and the cross section of the core is 5 pm. The Er concentration in the core is 10'8 cm™, The oominu
power gain of the amplifier is 100 {or 200dB), The pump wavelength is 980 nm, and the signal wavelength
is L350 om. If the oulpul power froan the amplifier 15 100 mW and assuming the signal and pump ane
confined to the core, what is the minimuen intensity of the pump signal? How much power is wasted io
this EDFAY{The pomp must provide enough photons to pump the Er* ions needed o generate the ad-
ditional output phodons over that of inpul photons, The concantration of Be*t jons in the fiber is glven
tor information only.)

Woltgan Fauli {1900 1958} won the Mokel prize in 1945 for his Arthur Hn|!',,' Complen (1B92-19432) woa the Mobel priza in
ceatribullons ta quantum mechanlcs. His exclusion principle was pheesics in 1927 Far his discowery of the Compeon effact with
announced in 19235, 1 den’t mind your thinking slowdy; | mird your C TR Wilsan in 1923,

1o Pauli by H. Coblaus. From A. L. Mackay, A Dicionary of Scisnrific
Cluatations, Bristel: ¥OF Pubdishing, 1991, p. 191

Argeane Mafienal Laoboralery, courtesy AP Emilic Segré

publishing fnster than yau think.” (Translation fram German, Abribubed | SCQURCE; King Faatures Syndicate, Inc., ! York ared

Visual Archives.

| SOURCE: AIP Emilic Segré Visual Archives, Goudsmit Collaction.
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Macdore Horold Maiman was born in 1927 in Los Angeles. son of an alecrical
engineer. He sudied enginaaring physics at Colerada Liniversiry, while repoiring
elactrical appliances ko pay for college, and then abtoined o Ph.D. frem Slenfoed,
Thacdore Maiman construcsed this first laser in 1960 while working at Hughes
Research lehoralorias, There is 0 vertical chromium ion-doped ruby rod in the
center af & hellcal xenan Bash tube. The rul'_'r,- red has mirrared en£ The xenon
Fash provides eptical pumping of the chromium ions in the raby red. The owiput is o
pu|:':|: of red |oser light,

| SOURCE: Courtesy of HRL Laboratories, WE, Malibu, California.
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£l The potent for the invantion of the losar by Charlas H. Townes and

; Arthur L, Schowlow in 1960 [Couresy of Bell Labarataries|, The koser

patent was later biterly disputed for almest three decodes in “the

patent wars' by Gordon Gould, an Americon physicist, ond his

designated ogents, Gorden Gould eventyally recaived the 11,5, potent

for eplical pemping of the loser in 1977 since the original loser

patent did not datail such a pumping procedure, In 1987 he cho

received a patent far the gas discharge loyser, Hﬁ:rab;r winning his

,IBEIII wear palent wor. His ariginal noteback even eontalned the werd
sar.




taterola’s prototypa Aot panal display based on the Fowlar-MNordheim field amission |:}rin|:i|:||a. Tha
diaph;:y is 14 om in dingonal and 3.5 mm thick with o viaw‘ing nngl: 140°. Each _ni:lcl: [325 m 1|'|id;|
uvzes field emisslon of electons fram microwcopic shorp point scurees [icebergs). Emitted elecirons
impinge on colored phesphars on a soreen ond couse light emission by cothodaoluminescance. There
ore millions of these microscopic field emiters to constitvie the imoge.

| STHIRCE: Courtesy of Dr. Babu Chalomala, Flar Panel Display Division, Motorcla,

Lefi; A scnning eleciron microscope imoge af an array af elechen field emiters l:ir;l.-l:u:rg:}. Cenher:
Chie icaberg. Right: A cross section of o field emitter. Each icebang is a source of electron emiszion
arising fram Fowler-Mordheim Fiald emission; for lurber information see B, Chalomaola, e al., IEEE
Spectrum, April 1998, pp. 42-51,

I SCURCE: Courtesy of Dr. Bobu Chalomala, Flar Penal Display Division, Maotoralo,



