CHAPTER

Modern Theory of Solids

One of the great successes of modern physics has been the application of quantum
mechanics or the Schridinger equation to the behavior of molecules and solids. For
example, quantum mechanics explains the natre of the bond between atoms, and its
consequences. How can carbon bond with four other carbon atoms? What determines
the direction and strength of a bond? An intuitively obvious outcome from quantum
mechamics is that the energy of the electron is still quantized in the molecule. In addi-
tion, the application of quantum mechanics to many atoms, as in a solid, leads to en-
ergy bands within which the electron energy levels are almost continuous. The electron
energy falls within possible values in a band of energies. It i3 nearly impossible to
comprehend the principles of operation of modern solid-state electronic devices with-
out a good prasp of the band theory of solids. Since we are dealing with a large num-
ber of electrons in the solid, we must consider a statistical way of describing their
behavior, just as we use the Maxwell distribution of velocities to explain the behavior
of pas atorms, An equally important question, therefore, 18 “What is the probahility that
an electron is in a state with energy E within an energy band'r”

41 HYDROGEN MOLECULE: MOLECULAR ORBITAL
THEORY OF BONDING

Consider what happens when two hydrogen atoms approach each other to form the
hydrogen molecule. This is the H-H (or H;) system. Let us examine the energy levels
of the H-H system as a function of the interatomic distance £. When the atoms are in-
finitely separated, each atom has its own set of energy levels, labeled 1s, 25, 2p, etc.
The electron energy in each atom is —13.6 eV with respect to the “free” state (electron
infinitely separated from the parent nucleus). The energy of the two isolated hydrogen
atoms is twice —13.6 eV. ;

As the atoms approach closer, the electrons interact both with each other and with
the other nuclei. To obtain the wavefunctions and the new energy of the electrons, we
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need to find the new potential energy function PE for the electrons in this new envi-
ronment and then solve the Schriidinger equation with this new PE function. The new
energy 15 actually fower than twice —13.6 eV, which means that the H; formation 1s
energetically favorable. f

The bond formation between (wo H atoms can be easily explained by describing
the behavior of the electron within the molecule. We use a molecular orbital v, which
depends on the interaction of individual atomic wavefunctions and is regarded as an
electron wavefunction within the molecule,

In the H; molecule, we cannot have two sets of identical atomic r, orbitals, for
two reasons. First, this would violate the Pauli exclusion principle, which requires that,
in a given systemn of electrons (those within the H; molecule), we cannot have two sets
of identical quanturmn numbers. When the atoms were separated, we did not have this
problem, because we had two isolated systems.

Second, as the two atoms approach each other, as shown in Figure 4.1, the atomic
i, wavelunctions overlap, This overlap produces two new wavefunctions with differ-
ent energies and hence different quantum numbers. When the two atomic wavefunctions
interfere, they can overlap either in phase (both positive or both negative) or out of phase

£ e”
Hi & + H
Tw hydrogen atoms
approgching sach other,
w rI:r-J-IL Wy (T

Bonding molecular orbital

| x:-r’r)a = wlsfrﬁ} + E"I"hlrrﬂj

= 7

Tl =t (1) =1 (rg)
Antibonding molecular orbital

Figure 4.1 Formation of melecular orbitals, bending, and antibending (1, and
1 ] when rwo H atoms approach each other,

The hwo electrons poir their spins and occupy the bonding orbital 4, .
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{one positive and the other negative), as a result of which two molecolar orbitals are
formed. These are conventionally labeled v, and .~ as illustrated in Figure 4.1. Thus,
two of the molecolar orbitals in the H-H system are .

try = Yriglra) + drislrad [4.1]
W = Wy, (ra) — yrlrg) [4.21

where the two hydrogen atoms are labeled A and B, and r, and ry are the respective
distances of the electrons from their parent nuclews. In generating two separate molec-
ular orbitals ¢, and . from a linear combination of two identical atomic orbitals v,
we have used the linear combination of atomic orbitals (LCAQO) method.

" The first molecular orbital v, is symmetric and has considerable magnitude be-
tween the nuclei, whereas the second i, is anfisymmeiric and has & node berween the
nuclei. The resulting electron probability distributions |dr, |2 and |4,.|* are shown in
Figure 4.2

In an analogy to hydrogenic wavefunctions, since .. has & node, we would
expect it to have a higher energy than the ., orbital and therefore a different energy
quantum number, which means that the Pauli exclusion principle is no longer violated.
We can also expect that because |y, |* has an appreciable electron concentration be-
tween the two nuclei, the electrostatic PE, and hence the total energy for the wave-
function v, will be lower than that for ., as well as those for the individual atomic
wavefunctions. :

Of course, the true wavefunctions of the electrons in the H; system must be deter-
mined by solving the Schridinger eguation, but an intelligent guess is that these must
look like . and .. We can therefore use v, and .. in the Schridinger equation,
with the correct form of the PE term V', to evaluate the energies £, and E,. of i, and
e, respectively, as a function of R. The PE function V in the H-H system has
positive PE contributions arising from electron—electron repulsions and proton—proton

H H H H

i Lo |2
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I
I
1

{h) Lines representing contours of constant probability {darker lines represent
grecter relalive probability),

Figure 4.2
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repulsions, but negative PE contributions arising from the attractions of the two elec-
trons to the two protons.

The two energies, £, and £,., are widely different, with £, below £, and £,.
above £y, as shown schematically in Figure 4.3a. As # decreases and the two H atoms
get closer, the energy of the ¢, orbital state passes through a minimum at £ = «. Each
orbital state can hold two electrons with spins paired, and within the two hydrogen
atoms, we have two electrons. If these enter the v, orbital and pair their spins, then
this new configuration is energetically mote favorable than two isolated H atoms. It
corresponds to the hydrogen molecule Ha. The energy difference between that of the
two isolated I atoms and the £, minimum energy at B = a is the bonding energy, as
illostrated In Figure 4.3a. When the two electrons in the Ha molecule occupy the 1,
orbital, their probability distribution (and hence, the negative charge distribution) is
such that the nepaiive PE, arising from the attractions of these two electrons w the two
protons, is stronger in magnitode than the positive PE, arising from electron—electron
repulsions and proton—proton repulsions and the kinetic energy of the two electrons.
Therefore, the H: molecule is energetically stable.

The wavelonction i, corresponding to the lowest electron energy is called the
bonding orbital, and 1. is the antihonding orbital. When two atoms are brought to-
gether, the two identical atomic wavefunctions combine in two ways (o generate wo
different molecular orbitals, each with a different energy. Effectively, then, an atomic
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energy level, such as E,,, splits into two, E, and £,.. The splitting is due to the inter-
action (or overlap) between the atomic orbitals. Figure 4.3b schematically illustrates
the changes in the electron energy levels as two isolated I atoms are brought together
to forin the Ha molecule.

The splitting of a one-atom energy level when a molecule is formed is analogous
to the splitting of the resonant frequency in an RLC circnit when two such circuits are
brought together and coupled. Consider the RLC circuit shown in Figure 4.4a. The cir-
cuit is excited by an ac voltage source. The current peaks at the resonant frequency awy,
as indicated in Fipure 4.4a. When two such identical RLC circuits are coupled together
and driven by an ac voltage source, the current develops two peaks, at frequencies
ey and =, below and above g, as illustrated in Figure 4.4b. The two peaks at ) and
ey are due o the mutual inductance that couples the two circuits, allowing them to
interacl. From this analogy, we can intuitively accept the enerpy splitting observed in
Figure 4.3a.

Consider what happens when two He atoms come together. Recall that the 1s
orbital has paired electrons and is full. The 1s atomic energy level will again split into
lwo levels, E, and E ., associated with the molecular orbitals o, and ., as illus-
trated in Figure 4.5. However, in the He—He system, there are four electrons, so two
oceupy the v, orbital state and two go to the .. orbital state. Consequently, the
system energy is not lowered by bringing the two He atoms closer. Furthermore, guan-
tum mechanical caleulations show that the antibonding energy level E,. shifts higher
than the honding level E, shifts lower. By the same token, although we could put an
addinional electron at E,. in Hz to make H, , we could not make Hi_ by placing two
electroms at £ ..

From the He—He example, we can conclude that, as a general rule, the overlap of
full atomic orbital states does not lead Lo bonding. In fact, full orbitals repel each other,
because any overlap results in an imerease in the system energy. To form a bond
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between two atoms, we essentially need an overlap of hall-occupied orbitals, as in the
H, molecule.

Half-full w,,

HYDROGEM HALIDE MOLECULE (HF} We alrcady know that H has a half-occupied 15 orbital,
which can take pant in bonding. Since the F atom has the clectronic structure 15520° p*, two of
the p orbitals are full and one p orhital, p, | is hall full, This means that only (he p, orbital can
participate in bonding. Figure 4.6 shows the electron orbitals in both H and F. When the H atom
and the F atom approach each other 1o form an HF molecule, the i, orbital of H overlaps the
g2, orhital of B There are two possibilities for the overlap. First, y, and g, can overlap in phase
(both positive or both negative), to give a i, orbital that does not have a node between H and E,
as shown in Figure 4.6, Sccond, they can overlup out of phase (one positive and the other neg-
ative}, so that the overlap orbital v, - has a node (similar 00 4« in Figure 4,13, We know from
hydrogen atomic wavefunetions in Chapter 3 that orbitals with more nodes have higher ener-
gies. The molecular orbital ¥, therefore corresponds to g bonding orbital with a lower energy
than the .« orbital. The two electrons, one from gy, and the ather from p, . enter the 1, orbital
with spins puircd. thercby forming a bond between H and F

Full p
iy .

Bonding orbilal, w_

Hall-[ull p_

H r H-F

Figure 4.6 H has one halkemgty 1, orbital.

F has one half-empty g, orbitol but full p, ond g, orbitals. The overlap berween 1, and p. produces o
bending orbital ond an antibonding orhital. The e electrans fill the bonding erbital and thereby form o
cowvalent bond beteeen H and F.




4.2 Bann THEORY OF SOLIDS

42 BAND THEORY OF SOLIDS
42,1 ENERGY BAND FORMATION

When we bring three hydrogen atoms {(labeled A, B, and C) together, we venerale
three separate molecular orbital states, 1%, ¥, and ., Trom three ¥, alomic states.
Again, this occurs in three different ways, as illusirated in Figure 4.7a As in the
case of the H: molecule, cach molecular orbital must be cither sypmnetrie or anti-
symmetric with respect Lo cenler atom 8.1 The orbitals thal satisly even and odd
FEQUIRSITIENLS e

1||!:"r1 = l."fn'[ﬂ]' F 1:!"“(5} 4 i,tl"h{f} [4.3q]
1;'!"J= = 'n'-l"'ll.‘.-"q"b T tjr-rl.\{c} [4.3b]
Yo = ¥, (A) — ¥, (B) + ¢, (C) [9.3c]

where iy AL W (8L and 1 (O are the |y atemic wavelunctions cenlered around
the wlomis A, B, and C, respectively, as shown in Figure 4,74 For example, the wave-
function i, (A} represents 190040, which is cenlered around A and has the form
expl—rafa, ), where ps s the distanee from the noclens of A, and o, is the Bohr rudios.
Motiee that 1f, (8 15 missing in BEquation 4.3b, so ok s antisymmetric.

The energies £, Ey, and Eo ool by, b, and . can be caleulated from the
Schrivdinger cquation by using the PE function of this system (the PE also includes
prowon proton repulsions),. i clear that sinee b, by, and b are different, their
energies £, £, and £ are also dilferent. Consegoently, the 1s energy level splits into
three separate levels, corresponding to the energics of b, 4y, and b, as depicted by
Figure 4.7h. By analogy with the electron wavelfunctions in the hydrosen alom, we cin
argne that i the molecular waveluncetion has mere nodes, s energy is higher Thus, 4
has the lowest cnergy E,, i has the next higher encrezy Fy, and 4 has the highesi
encrey B, a8 shown in Figure 4.7b, There are three electrons in the three-hydrogen
system, The first two pair their sping and enter orbital ¥, al enerzy £, and the third
enters orbital yfr, at energy £, Comparing Figures 4.7 and 4.3, we notice that although
Ha and H; both have two electrons in the lowest energy level, H; also has an extra elec-
trom it the hicher enerpy level (£, which tends to increase the net energy of the atom,
Thus, the Hy molecule is much less stuble than the Ha molecule.?

Mowe consider the formation of a solid, Take & Li {hithium) atoms from infinity
and bring them together to form the Li metal. Lithium has the electronic configuration
15%25", which is somewhat like the hydrogen atom, since the K shell is closed and the
third electron is alone in the 2x orbital,

Based on our previous discussions, we assume that the atomic energy levels will
split into & separate energy levels, Since the 15 subshell is full and is close to the nucleus,
it will net be affectad much by the interatomic interactions: consequently, the energy of

'The reason is that the molecule A-B-C, when &, B, and C ore identical clams, is symmelnic with respect 1o B, Thus

sach wovafunchion must kove odd or evan parity |Chopter 3],

“5ee G. Fimentel and R. Sprafley, Undersionding Chemistry, Sen Froncisco. HoldenDay, Inc., 1572, pp. 6B2-687
| For an excallant discussion
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Figure 8.8 The formation of a 25 energy band fram the 25 orhitals when N L atoms
come fegether to form the Li solid.
There are M 25 electrons, but 2 stales in the band. The 25 band is thersfore only half full.,

The ataric 15 erbital is close to the Li nucleus and rermains undisturbed in the solid. Thus,
each Li atom has a closed K shell [full 15 erbital).
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this state will experience only negligible splitting, if any. Since the 1» electrons will stay
close o their parent nuclei, we will not consider them during formation of the solid

In the system of & isolated Li atoms, we have & electrons in &V s, orbitals at the
energy Eq,, as illustrated in Pigure 4.8 (at infinite interatomic separation). Let us
assume that & is large (typically, ~10%). As & atoms are brought together to form the
solid, the energy level at £24, splits into & finely separated energy levels. The maximum
width of the energy splitting depends on the closest interatomic distance e in the solid,
as apparent in Figure 4.3a. The atoms separated by o distance greater than # = a give
rise oo a lesser amount of energy splitting. The interatomic interactions between 1y,
orbitals thus spread the & energy levels between the bottom and top levels, £y and £y,
respectively, which are determined by the closest interatomic distance o, Put differently,
£y and Ey are determined by the distance between nearest neighbors, It is obvious that
with & very large. the energy separation between two consecutive energy levels is very
small; indeed, it is almost infinitesimal and not as exaggerated as in Figore 4.8,

Remember that cach energy level £; inthe Li metal of Figure 4.8 is the energy of
an electron wavelunction (@) in the solid, where 0000 is one particular combi-
nation of the & atomic wavefunctions ey, . ‘There are N different ways to combine &
atomic wavelunclions v, since each can be added in phase or out of phase, as is ap-
parent io Lguations 4 3a to ¢ (see also Figure 4.7a and b). Forexample, when all & 1,
are swinmned in phase, the resulting wavelunction e (1 is like o, in Equation 4.3a,
and il has the lowest enerey. On the other hand, when N e, are summed with
allernating phases, + — + - -+, the resulting wavefunction g, () s like ., and it
hus the hizhest encrey. Other combinations of ¥, give rise o different energy values
between £y and £

The single 2s energy level o, therelore splits into N (~— 10" linely separated
energy levels, [orming an energy band, as illustraed in Figure 4.8, Conseguently,
there are & separale enerey levels, cach of which can tuke two clectrons with opposite
spins. The & clectrons (711 all the levels up w and including the level at N /2. There-
fore, the band is hall full. We do not mean literally that the bund s Tull o the hall-
energy poinl. The levels are not spread equally over the band from £4 o £y, which
mesms that the band cannot be full to the haliteneney point, Hall [illed simply means
half the states in the band are Filled from the bottom up.

We have generated a halt-filled band from a hall-Aled solated 25 cnergy level.
The energy band resulting from the splitting ol the atomic 25 energy level is looscly
termed the 2¢ hand. By the same token, the atomic 15 levels are full, soany Ly band that
forms from these 1 states will also be full. We can get an dea ol the separadion ol en-
ergy levels in the 2x band by noting that the maximum separation, £y — Fp, hetween
the top and bottom of the hand is on the order af 10} eV, but there are some 107 atoms,
giving rise to 107" energy levels between 5 and Fr. Thus, the energy levels are finely
separated, forming. for all practical purposes, a continuum of energy levels.

The 2 enerpy level, as well as the higher levels at 3s and so on, also split into
finely separated energy levels, as shown in Figure 4.9 In fact, some of these cnergy
levels overlap the 2y band; hence, they provide further energy levels and “extend” the
2y band into higher energy levels, as indicated in Figure 4. 10, which shows how on-
erey bands in metals are often represented. The vertical axis is the electron encrgy. The
top of the 2» band, which is half full, overlaps the bottom of the 2 p band, which itself
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15 overlapped near the top by the 35 band, We therefore have o band of encrries that
siretches from the bottom of the 25 band all the way to the vacuum level, as depicted
in Figure 4.1 1. The reader may wonder what happened to the 34, 45, ele., bands. In the
silicl, the energies of these bands (including the top porlion of the 35 band) are above
the vacuum level, and the electron is free and far foom the solid belore it can sequire
those energics.

At a temperature of absolute zero, or nearly so, the thermal energy is insufficient to
excite the electrons to higher energy levels, so all the eleetrons pair their spins and Al
each energy level from Ep up to an energoy level Fry that we call the Fermi level at 0 K,
as shown in Figure 4, 11, The energy value for the Fermi level depends on where we take
the reference energy. For example, if we take the vacuum level as the zero reference, then
tor the Li metal, £ rgis at —=2.5 eV, The Fermi level is normally measured with respect to
the bottom of the band, in which case, it is simply termed the Ferm energzy and denoted
£ rp. For the L1 metal, £rp is 4.7 eV, which is with respect to the hottom of the band. The
Fermi level has considerable significance, #s we will discover later in this chapter,
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Al absolute zero, all the energy levels up to the Fermi level are full. The energy
required to excite an electron from the Fermi level to the vacuum level, that is, to
liberate the electron from the metal, is called the work function & of the metal. As the
temperature increases, some of the electrons get excited to higher energy levels. To de-
termine the probability of finding an electron at an energy level £, we must consider
what iz called “particle statistics,” a topic that is key to understanding the behavior of
electronic devices. Clearly, the probability of finding an electron at 0 K at some energy
E = Vpgis unity, and at & = Egg, the probability is zero. Table 4.1 summarizes the
Fermi energy and work function of a few selected metals,

The electrons in the energy band of a metal are loosely bound valence electrons
which become free in the crystal and thereby form a kind of electron gas. It is this elec-
tron gas that holds the metal ions together in the crystal structure and constitutes the
metallic bond. This intvitive interpretation is shown in Figure 4.9. When solid Li is
forimed from & atoms, the & electrons fill all the lower energy levels up to & /2. The
energy of the system of & Li atoms, according to Figure 4.9, is therefore much less
than that of N isolated Li atoms by virtue of the & electrons taking up lower energy
levels. It must be emphasized that the electrous within a band do not belong to any
specific atom but to the whole solid. We cannot identify a given electron in the band
with a certain Li atom. All the 2y electrons essentially form an electron gas and have
energies that fall within the energy band. These electrons are constantly moving
around in the metal which in terms of quantum mechanics means that their wave-
functions must be of the traveling wave type and not the type that localizes the electron
around a given atom (e.g., ¥, ¢, i0 the hydrogen atom). We can represent each elec-
tron with a wavevector & so that its momentum p is &k,

Table 4.1 Fermi enargy and wark function of selected matals

Muetal

Ag Al Au L Lo Li Mg Ma

P eV 4.5 4.28 5.0 214 4.65 23 iT 275
Erp (e¥) i 1.7 35 1.56 T4 4.7 7.1 32
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4.2.2 PROPERTIES OF ELECTRONS IN A BAND

Since the electrons inside the metal erystal are considered to be “free,” their encrgy is
KE. These clectrons oceupy all the cnergy levels up to E g as shown in the band dia-
gram of Figure 4.12a. The energy E of an electron in a metal increases with its mo-
mentumn poas po /2o, Figure 4.12b shows the energy versus momentum behavior of
the electrons in a hypothetical one-dimensional crystal. The energy increases with mao-
menturn whether the clectron is moving toward the left or dght. Electrons take on all
available momentum values until their cnergy reaches Epg. For every electron that is
moving right {such as a), there is another {such as &) with the same energy bul moving
lelt with the same magnitude of momentum. Thus, the average momenlum is zero and
there is no net currend

Consider what happens when an clecirie [ield %, is applied in the —x direction.
The clectron a al the Fermm level and moving along in the 4+x direction experiences a
force e, along the sume dircetion. 1L therelore accelerales and gains momentum and
hence has the energy as shown in Figure 4.12¢. (The actual energy gained from the
lield is very small comparcd with Epg, so Figure 4.12¢ is highly exaggerated.) The
electron a al F g can move o higher cnergy levels because these adjacent higher ley-
els are emply. The momentum stale vacated by a is lilled by the clectron immediately
below which now pains energy and moves up, and so on. An clectron thal is moving in
the —x dircelion, however, 15 decelerated (s momentium deereases) and henee Toses
cnergy a4y indicated by b moving 1o 5" in Figure 4.12c. The electrons thal are moving
in the +x direction gain cncrgy, and those thal sre moving in the —x direction, lose en-
crgy. The whole electron momentum distribution therelore shills in the +x direction as
in Figure 4.12¢. Eventually the electron a, now at a’, is scatlered by a lallice vibration,

lEJ. .‘
E E
L
] { Lattice
Fmpty states s 5 s e 9,.,,-&
B y s / lhE
Flectrons
{] Py = —p,
—X
{a)
Figure 4,12

er] Energy band diagram of o mesal

[b] I the absence of a field, there ore as mony elecions moving right os there cre moving lef. The motions of fwo elecirens

ot ench energy cancel soch other as for o and b

[] In the presence of o field in the —x diraction, the alechon o occelerates ond goins energy o o where it is scofered fo an
empty state near Erq but moving in the —x direction. The average of all momerta walues is along the +x direction and resulis
ir e net elechic curent,
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Typically lattice vibrations have small energies but substantial momentum. The scat-
tered clectron must find an wieccyied momentum state with rowghly the same energy,
and it st change its momentum substamially, The electron at »” is therefore scatiered
Wy an cmpty state around E o but with @ momentum in the opposile diccetion. IS mo-
mentum is fipped as shown in Figure 4, 12¢, The average momentum of the electrons
i mo longer zero but finiwe in the +x direction. Consequently there is g current {Tow
in the —x direction, along the field, as determined hy this average momentum g,
Mutice thal o meoves up to o' and b Tulls down o 5. Under steady-stute conduction. fal-
tice scattering simply replenishes the electrons at & from «°. MNotice that for energies
below &, [or every electron moving right there 15 another moving left with the same
momeantum magnitnde thiat cancels it Thus, electrons helow the £ encrey level do ror
contribute to conduction and are excluded from further consideration. Notice that elec-
trons above the B level are ooly moving rightl and their momenla are nol canceled.
Thus, the conductivity is determined by the electrons in the energy range A £ from &
w a' whoul the Fermi level as shown in Figore 4,12 Further, a8 the encrgy chunge
from e oo’ is orders of magnimude smaller than Fen, we can summarize that conduc-
lion oweurs by the driftof electrons at the Fenmi level (I we were o calculate A E for
a typical metal for typical currents, it would be ~ 10 * eV whereas & is 1 [0eV. The
shilt in the distribution in Figure 4,12¢ is very smiall indeed, o and &', for all practical
purposes, are at the Fenmi lewvel)

Cenduction cun be explained very simply and intuitively in terms of o bund dia-
grum as shown in Figure 4.13. Notice that the application ol the electne Oeld bends the
energy band. because the electrostatic £ of the electron is —eVix) where Vix) is the

voltuge at posilion x. However, Vix) changes lnearly Trom O o V, by virlee ol

dViuly = —£, Since £ = —e V(1) adds to the energy of the electron, the energy hand
st bend W account Lor the additionud electrostatic energy, Since only the electrons
near 7y contribute to electrical condoction, we can represent this by drifting the elec-
oms al £ down the potential hill. Although these electrons possess a very high iean
velocity (~10% ms '), as determined by the Fermi energy, they drilt very slowly
(0= 107" sy with a velocity that is drift mobility = field,

When a metal is illominated, provided the wavelength of the radialion is cormect,
it will cause emission of electrons from the metal as in the photoelectric effect. Since
& is the “minimum energy™ required w excite an clectron inwe the vacuum level (oul
from the metal). the longest wavelengrth radiation required is fe /) = &,

Addilion ol heat W o metal can excite some of the elecirons in the band 1o higher
energy levels, Thus hear cam also he absorbed by the conduction electrons of 2 metal.
We also koow that the addition of heat increases the amplitude of atomic vibrations,
We can therefore guess that the heat capacity of i metal has two erms which are doe
o energy absorpiion by the lattice vibrations and energy absorption by conduction
electrons. TE turms oul that at room emperature the energy absorption by latlice vibra-
tions dominates the heat capacity whereas at the lowest temperamires the electronic
contribution is important.

Fin some books |inrh|nir¢3 thre First reitinn ot this wttsonk) it is skaned that the elecirons ol B con goin enegy from
the feld ond contribate to conduction but rat thasa deep in the band |Balow &) This is @ simplified statemant of fin
fock #ict el bevel below Cee shere is one electron moving clong in the +x direction and goinirg energy and
anciher ane of the: same enegy bl mewing aleog in the —x direclion and lesing energy o thol an ovesage elecron
at this level does net gain cnergy
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Figure 4,13 Conduction in o mefal is
due to the drift of elechons around the Farmi
leval.

When a voltoge is applied, the energy band
is bent to be lower af the positive termingl so
that the eleciren’s patential enargy
decreases as it moves toward the positive
termingl

I Em_ eV

-.":'B 14

Muolecular hydrogen and
helium

Liguid mectadlic hydrogen {with
hehurmm

Possible rocky cone

Figure 4.18 The intericr of Jupiter is
beliaved to contmin liquid hydregen,
which is metallic,

SOURCE: Drenwing adapted from 1. Hey and Clowd vops (the simospheric layer is
F. ‘Wolers, The Guortum Univarse

Cambridge, MA: Ceanbridge Universiy Press comparatively thin compared with Jupiter's
I9EA, p. 94, figuee 7.1, S1EC)

m METALLIC UQUID HYDROGEN IN JUPITER AND ITS MAGHNETIC FIELD  The surface of Jupiter,
as visuulized schematically in Figure 4. 14, mainly consists of a mixture of molecular hydrogen
and He gases, Deep in the planel, however, the pressure 1s so tremendows that the bydrogren mo-
lecular bond breaks, leaving a dense ocean of hydrogen atoms. Hydrogen has only one electron
in the 15 energy level. When atoms are densely packed. the Is cnergy level forms an cnergy
band, which 1s then omly hall fillec, This is just ke the Li moetal, which means we can treat lig-
uid hydrogen as a liquid metal, with electrical properties renuniscent of liquid mercury. Liguid
hydrogen can sustain cleetric currents, which in tum can give rise to the magnetic fields oo
Jupiter. The origin of the electnc currents are nel known with ceriainiy, We do Knos, however,
that the core of the planet is hot and emanates heat. which causes convection currents. Termper-
ature differences can readily give fse to clectic curments, by virtue of thermocleotric effects, as
discussed in Section 4.8.2,




4.3 SEMICONDUCTORS

WHAT MAKES A METAL? The Be atom has an electronic structure of 57252, Although the Be
atom bas a full 25 energy level, sold He is a metal. Why?

SOUUMON

We will neglect the & shell (15 state), which is full and very close to the nuclews, and consider
only thi higher enerey stales. In the solid, the 25 encrey level sphis inlo & levels, forming o 2e
band. With 28 electrong, each level is occupied by spin-paired electrons, The 2y band is there-
fore full. However, the emypty 2 ¢ band, from the empty 2p energy levels, overlaps the 25 band,
therehy providing empty energy levels o these 24 clectrons, Thus, the conduection electrons ane
inan energy band that s only pamially Glled; they con gain energy fronm the field o contribue
to electrical conduction. Solid Be is therefore a metal.

FERMI SPEED OF CONDUCTION ELECTROMS IM A METAL In copper, the Fermi energy
of conduction electrons s 7.0 e, What is the speed of the conduction electrons around this
energy?

SOLUTIONM

Since the conduction electrons are not bound o any one atom, their PE must be zere within the
solid Chut large outsade), soall their enerney s kinetic, For conduction electrons arcund the Fermm
enerty o with a speed 2, we have

I
2 .
S = Fen

sy hat

[2Fq .'r_?f L6 s 10710 JeV)iT.0eV)

o g e o = 6= " ms "
1I,II ", 1I||I (9.1 = 10 Mk .

Ty —

Adthough the Fermi cnergy depends on the propertics of the encrgy band, to a good ap
proximation it is only weakly temperature dependent, so vp will be relatively temperature in-
sensiive, o5 we will show Tnler in Sectiom 4.7,
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The Si atom has 14 electrons, which distribute themsclves in the various alimic energy
levels as shown in Fipure 4,15, The inner shells (r = 1 and o = 2} are (ol and there-
fore “closed.” Sinee these shells are near the nucleus, when 581 atoms come ogether Lo
form the solid, they are not much affected and they stay around the parent $1 atoms,
They can therefore be excluded from further discussion. The 35 and 3 p subshells are
farther away from the nucleus, When two 51 atoms approsach, these electrons strongly
interact with each other, Therefore, in studying the formation of bands in the 5i solid,
we will only consider the 3x and 3 levels,

The first task is to examipe why 5i actually bonds with four neighbors, since the
3y arbiral is full and there are only two electrons in the 3 p orbitals, The full 35 orbit)
should not overlap a neighbor and become involved in bonding. Since only two 3 p or-
bitals are half full, bonds should be formed with two neighboring 51 atoms, In reality,
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(N EIEIE
LIES

[Hite[th] 2
25

]«

Flectron cnergy

Figure 8.15 The elecronc structure of 5i

(a} lschated Si {b) Si just before bonding

Figure 4.16

lal 51 is in Group IV in the Periedic Table. An isolated 31 atem has bwo electrons in the 3
and twe elecfrens in the 3p orbinals.

[b} When 5i is about to bond, the one 3= orbital and the three 3 orbitals become
perturbed and mixed o Form Four hybridized orbitals, ynu, colled sp? orbitals, which are
directed toword the cornars of o fetrchedron. Tha g, orbital has o large major lobe and o
small bock lobe. Each dipy orbital tekes one of the four valence electrons.

the 3s and 35 energy levels are quite close, and when five Si atoms approach each
other, the interaction results in the four orbitals {353 W {3 p b G, and (3 p.)
mixing together to form four new hybrid orbitals, which are directed in tetrahedral
directions; that is, each one is aimed as far away from the others as possible, as illus-
trated in Figore 4,16, We call this process sp” hybridization, since one s orbital and
three p orbitals are mixed. (The superscript 3 on g has nothing to do with the number
of electrons; it refers to the number of p orbitals used in the hybridization.)

The four sp* hybrid orbitals, Wiy, €ach have one electron, so they are half accu-
pied. This means that four Si atoms can have their orbitals ¥, overlap to form bonds
with one 5i atom, which is what actally happens: thus, one 51 atom bonds with four
other Si atoms in tetrahedral directions,
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In the same way, one Si atom bonds with four H atoms to form the important gas
SiH,, known as silane, which is widely used in the sermiconductor technology o fabri-
cate 51 devices. In 51H,, four hybridized orbitals of the 8i atom overlap with the L
orbitals of four H atoms. In exactly the same way, one carbon atom bonds with four
hydrogen atoms to form methane, CHy.

There are two ways in which the hybrid orbital ¥n.,, can overlap with that of the
netghboring 5i atom to form two molecular orhitals, They can add in phase (both pos-
itivee or both negative) or out of phase (one positive and the other negative) to produce
a bonding or an antibonding molecular orbital iz and v, , respectively, with energies
Ep and E,. BEach 5i-5i bond thus coresponds to two paired electrons in a bonding
malecular orbital 1. In the solid, there are N(~5 x 102 em ™) 8i atoms, and there
are nearly as many such g bonds. The interactions between the g orbitals (i.e., the
5i-5i bonds) lead to the splitting of the Eg energy level to & levels, thereby forming
an energy band labeled the valence band (VB) by virtue of the valence electrons it
contains. Since the energy level Eg is full, so is the valence band. Figure 4.17 illus-
trates the formation of the VB from Eg.

In the solid, the interactions between the ¥ number of 4 orbitals result in the
splitting of the energy level £, to N levels and the formation of an energy band that is

(ol (bl fc) (d

Conduction band

o

TET T TN

Figure 4.17 |o] Formation of enargy bands in the 5i erystal first invohees hybridizafion
of 35 and Jp ocbitals to four identical Wy arkitals, which are at 10%.57 to each other os
shown in [b]. c) g, orbitols on wo neighboring Si atoms con overlop o form g or
The first is bonding erbital (full] and the secend is an antibonding orbital [smpty). In the
crystal, g overop to give the valence bond (full) and ., overlop 1o give the conduction

band [empty) (d]. 5i crystal

Energy gap, £,
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completely empty and separated from the full valence band by a definite energy gap E,.
In this energy region, there are no states; therefore, the electron cannot have energy
with a value within E,. The energy band formed from N, orbitals is a conduection
band (CB), as also indicated in Figure 4.17.

The electronic states in the VB (and also in the CB) extend throughout the whole
solid, because they result from Mg orbitals interfering and overlapping each other.
As before Vg, orbitals can overlap in & different ways to produce N distinet wave-
functions i, that extend throughout the solid. We cannot relate a particular electron to
a particular bond or site because the wavefunctions v, corresponding to the VB ener-
gies are not concentrated at a single location. The electrical properties of solids are
based on the fact that in solids, such as semiconductors and insulators, there are certain
bands of allowed energies for the electrons, and these bands are separated by energy
caps, that is, bandgaps. The valence and conduction bands for the ideal 5i crystal
shown in Figure 4.17 are separated by an energy gap, or a bandgap, E,, in which
there are no allowed electron energy levels,

Al temperatures above absolute xero, the atoms in a solid vibrate due to their
thermal energy. Some of the atoms can acquire a sufficiently high energy from thermal
fluctuations to strain and mpture their bonds. Physically, there is a possibility that the
atomic vibration will impart sufficient energy to the electron for it to surmount the
bonding energy and leave the bond. The electron must then enter a higher cnergy state,
In the case of §i, this means entering a state in the CRB, as shown in Figure 4.18. If there
is an applied electric field £, in the +x direction, then the excited electron will be
acted on by a force —e'E, and it will try o move in the —x direction, For it to do so,
there must be empty higher energy levels, so that as the electron accelerates and gains
energy, 1L moves up in the band. When an eleciron collides with a lattice vibration, it
loses the energy acquired from the field and drops down within the CB. Again, it
should be emphasized that states in an energy band are extended; that is, the electron
1% not localized to any one atom,

Note also that the thermal generation of an electron from the VB to the CB leaves
behind a VB state with a missing electrom. This unoccupied electron state has an
apparent positive charge, because this crystal region was neutral prior to the removal
of the electron. The VB state with the missing electron is called a hole and 15 denoted
k7. The hole can “move” in the direction of the field by exchanging places with a

Figure 4.18 Ensrgy band diegram of a
semiconductor,

B is the conducficn band ond WB is the
valeree band, A8 O K, the VB is full with all the

valence elecrons.

o

CB

Electron energy

Thermal

1
ol =

excilation
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neighboring valence electron hence it contributes to conduction, as will be discussed
in Chapter 5.

303

CUTCFF WAYELENGTH OF A 5i PHOTODETECTOR  Whart wavelengths of light can be absorbed

by a Si photodetector given £, = 1.1 e¥? Can such a photodetector be used in fiher-optic com-
munications at light wavelengths of 1.31 gm and 1.55 pem?
SOLUTION

The energy bandgap E, of Siis 1.1 eV. A photon must have at least this much energy to excite
an electron from the VB to the CB, where the electron can drift. Excitation corresponds to the
breaking of a 5i-51 bond. A photon of less energy does not get absorbed, becanse its energy will
put the electron in the bandgap where there are no states. Thus, he/d = E, gives

he (6.6 x 107 15)(3 x 10" ms™h)

A o= =
E, (1.1e¥){l.6 x 10" Jie¥)

=1.13 = 10~%m or 1.1 e

Since optical communications networks use wavelengths of 1.3 and 1.55 pm, these light waves
will not he absorbed by 5i and thus cannat be detected by a Si photodetector,

EXAMPLE 4.5

44 ELECTRON EFFECTIVE MASS

When an electric field £, is applied to a metal, an electron near the Fermi level can gain
energy from the field and move to higher energy levels, as shown in Figure 4.12. The
external force F., = €T, is in the x direction, and it drives the electron along x. The
acceleration of the electron is still given by @ = Fu/ ™., where m, is the mass of the
electron in vacuum.

The law Fu, = m.a cannot strictly be valid for the electron inside a solid, because
the electron interacts with the host ions and experiences intemal forces Fiy, as it moves
around, as depicted in Figure 4.19. The electron therefore has a PE that varies with dis-
tance. Recall that we interpret mass as inertial resistance against acceleration per unit

- £ B €
S B, @
_lem _ Yom
G—F.-—r' = s
€
ext
Wacuurm (—:i-) Crystal @
2> 1 = ¥
fal An external force F_ applied o an [b] An external force Fﬁh' applied to an elec-
elechron in @ vacuem results in en acceler- tron in o crystal results in an acceleration
afion g, = F4/m,. S =F_, fmgt

Figure 4.19
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applied force. When an external force F,, 15 applied to an electron in the vacuum level,
as in Figure 4.19, the electron will accelerate by an amount

-FFKT

L

Sz = [4.4]
as determined by 1ts mass s, 1D yacuum,

When the same force F.y, is applied to the electron inside a crystal, the accelera-
tion of the electron will be different, because it will also experience internal forces, as
shown in Figure 4.19b. Its acceleration in the crystal will be

O, .o [4.5]

M,

where Fiy, is the sum of all the internal forces acting on the electron, which is quite dif-
ferent than Equation 4.4. To the outside agent applying the force F., the electron will
appear to be exhibiting a different inertial mass, since its acceleration will be different,
It would be most useful for the external agent if the effect of the internal forces in Fiy
could be accounted for in a simple way, and if the acceleration could be calculated from
the external force F. alone, through something like Equation 4.4, This is indeed
possible,

In a crystalline solid, the atoms are arranged periodically, and the variation of Fy,
and hence the PE, or V(x), of the electron with distance along x, is also periodic. In
principle, then, the effect on the electron motion can be predicted and accounted for,
When we solve the Schridinger equation with the periodic PE, or V(x), we essenbtially
obtain the effect of these internal forces on the electron motion. It has been found that
when the electron is in a band that is not full, we can still use Equation 4.4, but instead
of the mass in vacuum m,, we must use the effective mass m of the electron in that
particular crystal. The effective mass is a quantum mechanical quantity that behaves in
the same way as the inertial mass in classical mechanics, The acceleration of the elec-
tron in the crystal is then simply

FI:KL

L]
ml’!’

Horys = [4.6]

The effects of all internal forces are incorporated into m . It should be emphasized
that m?. is obtained theoretically from the solution of the Schridinger equation for the
eleciron in a particular crystal, a task that is by no means trivial. However, the effec-
tive mass can be readily measured. For some of the familiar metals, m is very close
to m.. For example, in copper, m; = m, for all practical purposes, whereas in lithium

m; = L28m,, as shown in Tahl; 4.2. On the other hand, m; for many metals and

Tabla 4.2 Effective mass m? of electrons in some metals

Metal Ag Au Bi Cu K Li HMa M1 Pt Zn
—: 1,949 1, L (.47 1. 112 1.28 1.2 28 13 0.5
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semiconductors is appreciably different than the electron mass in vacoum and can even
be negative. {(m? depends on the properties of the band that contains the electron. This
i% further discussed in Section 5.11.)

4.5 DENSITY OF STATES IN AN ENERGY BAND

Although we know there are many energy levels (perhaps ~10*) in a given band, we
have not yet comgidered how many states (or electron wavefunctions) there are per unit
energy per unit volume in that band. Consider the following imtuitive argument. The
crystal will have N atoms and there will be N electron wavefunctions vy, ¥, ..., try
that represent the electron within the whole crystal. These wavefunctions are con-
structed from N different combinations of atomic wavefunctions, ¥, We. e, ... 88
schematically illustrated in Figure 4,20a,* starting with

Y =wa+ e+ e+ dn+--

all the way to altemnating signs

Yy=Va—Vst¥c—Ypt+ -

Energy band
el b le)

Figure 4.20

&) In the solid there are M atoms and M extended electron wavefunctions from 1 all the way o
. There are many wovelunctions, stotes, that hove energias that Fall in the central regions of the
energy band,

(k) The diskibution of states in the energy bond; darker regions hove a higher numbar of states.
(<] Schemalic representation of the density of states g|E) versus energy £,

A This inhuitive orgumen, os schematicolly depicted in Figure 4.20a, s obwicushy highly simplified becouss the sclid is
1hmediman5iah§ |3-D} and wa should combine the otomic wovefunctions not on o linear choin but on g 3:0 laHioe,
in the 3-0 cosa thare ore lorge nembars of wovehunclions with energies that fall in the eenteal regions of the band,
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and there are ¥ (~10%") combinations. The lowest-energy wavefunction will be 4, con-
structed by addimg all atomic wavefunctions (all in phase), and the highest-energy
wavefunction will be iy from alternating the signs of the atomic wavefunctions, which
will have the highest number of nodes. Between these two extremes, especially around
M2, there will be many combinations that will have comparable energies and fall near
the middle of the band, (By analogy, if we arrange ¥ = 10 coins by heads and tails,
there will be many combinations of coins in which there are 5 heads and 5 tails, and
only one combination in which there are 10 heads or 10 tails.) We therefore expect the
number of energy levels, each corresponding to an electron wavefunction in the cryvstal,
in the central regions of the band to be very large as depicted in Figure 4.20b and c.

Figure 4.20¢ illustrates schematically how the energy and volume density of elec-
tronic states change across an energy band. We define the density of states gi ') such
that g E) 4E is the number of states (i.e., wavefunctions) in the energy interval £ to
(E + dE) per unit volume of the sample. Thus, the number of states per unit volume
up to some energy E' is

.
SAEN = f g E)dE [4.7]
]

which is called the total number of states per unit volume with energies less than E'.
This is denoted §,(E').

To determine the density of states function g £, we must first determine the num-
ber of states with energies less than £’ in a given band. This is tantamount to calculat-
ing 5.{£") in Equation 4.7. Instead, we will improvise and use the energy levels for an
electron in a three-dimensional potential well. Recall that the energy of an electron in
a cubic PE well of size L is given by

>

h- .
E=——— n? + ng + nl [4.8]
PWE ( I 2 3]
where ny, na, and ny are integers 1,2, 3, ... . The spatial dimension L of the well now

refers to the size of the entire solid, as the electron is confined to be somewhere inside
that solid. Thus, L is very large compared to atomic dimensions, which means that the
separation between the energy levels is very small. We will use Equation 4.8 to de-
scribe the energies of free electrons inside the solid (as in a metal).

Each combination of ny, na, and n4 is one electron orbital state. For example,
Yo nwy = W12 18 One possible orbital state. Suppose that in Equation 4.8 E is given
as E'. We need to determine how many combinations of iy, na, n3 (Le., how many )
have energies less than E', as given by Equation 4.8. Assume that (n? + n3 + a3 = n”%.
The object is to enumerate all possible choices of integers for ny, n2, and n; that sat-
isfy ny +n3+ni=n"

The two-dimensional case is easy to solve. Consider n] + n3 < n'? and the two-
dimensional s-space where the axes are ny and n1, a5 shown in Figure 4.21, The two-
dimensional space is divided by lines drawn atny; = 1,2, 3, ... andna = 1,2,3, ...
into infinitely many boxes (squares), each of which has a umt area and represents a
possible state ., .,. For example, the state ny = 1, 7, = 3 is shaded, as is that for
Ry = 2, Ha = 2.
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Figure 4.21 Each shate, or electron wavefunction in Figure 8.22 in three dimensions, the volume defined
the crystal, can be represented by o box ot ny, ng. by a sphere of radius n’ and the positive axes my, ng,

ond na, contains all the possible combinations of positive
riy, iz, and ny values that salisy @3 + 03 + nd = a?,

Clearly, the area contained by n,, n, and the circle defined by n'* = n? + n3 (just like

r* = x? 4+ y?) is the number of states that satisfy n? + n} < n'%. This area is L(zn').

In the three-dimensional case, n? + n3 + n} = n'? is required, as indicated in Fig-

ure 4.22_ This is the volume contained by the positive ny, n2, and n; axes and the sur-

face of a sphere of radius ", Each state has a unit volume, and within the sphere,

nt+n3 + n3 = n'? is satisfied. Therefore, the number of orbital states §,4,(n") within
this volume 15 given by

4
Son(n') = %(iﬂﬂ’ﬁ) = %:rr;r:"1

Each orbital state can take two electrons with opposite spins, which means that the
number of states, including spin, is given by

Sin'y =28 40"y = %JTJ"E'I}

We need this expression in terms of energy. Substituting #'* = 8m,L?E "/ 1 from
Equation 4.8 in 5{n’), we get
L (Bm E?

R ETE

Since L7 is the physical volume of the solid, the number of states per unit volume
S, E7) with energies £ = E' s

w(Bm E"AE

SEY =
( kDS

4.9
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Furthermore, from Equation 4.7, 45, /dE = g{E). By differentiating Equation 4.9

with respect to enetgy, we get
1z [ Me - 12
GE} = (8x2 )(h—z) E [4.10]

Equation 4.10 shows that the density of states g{ £} increases with energy as £/
from the bottom of the band. As we approach the top of the band, according to our
understanding in Figure 4.20d, gi£) should decrease with energy as (Eyp — E A
where £,y is the top of the band, so that as £ — Ey,, g{E) — 0. The electron mass
m, in Equation 4.10 should be the effective mass m? as in Equation 4.6. Further, Equa-
tion 4.10 strictly applies only to free electrons in a crystal. However, we will frequently
use it to approximate the true g{ E} versus E behavior near the band edpes for both
metals and semiconductors.

Having found the distribution of the electron energy states, Equation 4. 10, we now
wish to determine the number of states that actually contain electrons; that is, the prob-
ahility of finding an electron at an energy level E. This is piven by the Fermi-Dirac
statistics.

As an example, one convenient way of calculating the population of a city is to
find the density of houses in that city (f.e., the number of houses per unit area), multi-
ply that by the probability of finding a human in a house, and finally, integrate the
result over the area of the city. The problemn is working out the chances of actually
finding someone at home, using a mathematical formula. For those who like analogies,
if g{A) is the density of houses and f({4) is the probability that a house 15 occupied,
then the population of the city is

n =f FrAMgiA) da
City

where the integration is done over the entire area of the city. This equation can be used
to find the number of electrons per unit volume within a band. If £ is the electron en-
ergy and f(£) is the probability that a state with energy £ is occupied, then

n= FIEVKE) dE
Band

where the integration is done over all the energies of the band.

EXAMPLE 4.6

X-RAY EMISSION AND THE DEMSITY OF STATES IN A METAL Consider what happens when a
metal such as Al is bombarded with high-energy electrons. The inner atomic energy levels are
not disturbed in the solid, so these inner levels remain a5 distinet single levels, each one local-
ized to the parent atom, When an enerpetic electron hits an electron in one of the inner atomic
energy levels, it knocks out this electron from the metal leaving behind a vacancy in the inner
core as depicted in Figure 4,234, An electron in the energy band of the solid can then (all down
to accupy this empry state and emit a photon in the process, The energy difference between the
energies in the band and the inner atomic level is in the X-ray range, so the emitted photon is an
X-ruy photon. Sinee electrons oceupy the band from the bottom Eg to the Fermi level Er, the
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Figure 4.23

(a} High-energy electron bombardment knocks eut an electron fram the closed inner L shell leaving
an emply stata. An electron fram the energy band of the metal drops into the L shell 1o il the
vocancy and emits @ soft Xray phaton in the process,

[} The spectrum {intensity versus photon energy] of soft Xray emission from a metal invalves o
range of energies corresponding to fransitions from the bottom of the band and from the Ferrni
level to the L shell. The intensity increases with energy until around Er where it draps sharply.

|c] and |d) contrast the emission spectra from o solid ond vapor [isclated gas arems).

emitted X-ray photons have a range of energics comesponding to transitions from £ and £5 to
the inner atomic level as shown in Figure 4,23b, These encrgies are in the soft X-ray spectrum.
We assumed that the levels above E are almost empty, though, undoubtedly, there is no shamp
transition from full to empty levels at £, Further, since the density of states increases from £y
toward E g, thers are more and more electrons that can fall down to the atomic level as we move
from Eg toward E . Therefore the intensity of the emitled X-ray radiation increases with en-
ergy until the energy reaches the Fermi level bevond which there are only a small number of
electrons availuble for the cransit. Figure 4.23¢ and d contrasts the emission spectra {tom an alu-
minum crystal (solid) and its vapor. The line spectra from 4 vapor become an emission band in
the spectrum of the solid,

The X-ray intensity emitted from Al in Figure 4.23 starts to rise at around 60 eV and then
sharply falls around 72 &V, Thus the energy range is 12 eV, which represents approximately the
Fermi energy with respect (o the bottom of the band, that is, Ex = 72 — 60 = 12 ¢V with re-
spectto Ep.
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DENSITY OF STATES IN A BAND  Given that the width of an energy band is typically ~10 €V,

calculate the following, in per cm® and per eV units:

The densily of states at the center of the band,

The number of states per unit volume within a small energy range £T about the center,
The density of states at 4T above the bottom of the band.

The number of stales per unit volume within 4 small energy range of kT to 2T from the
hottom of the band.

=08

SOLUTION

The density of states, or the number of states per unit energy range per unit volume 8 E), is
given by

A2
@

o ] 4 1
. GlEY = (E_vri'.""}(ﬁ—:) E?

which gives the number of states per cubic meter per Joule of enerpy, Substimuting £ = 5 eV, we

have
g5 IU_M 142 .
= (82! [_ ] 5% 16% 10792 =950 % 10% ]!
= J— ( ) (6.626 » 10-3)2 ! : )

Converting to cm™ and eV, we get
Geomer = (250 % 10% m=* 710 m  em=)(1.6 = 107 Jev ™)
= 152 %10 cm™ eV

If £ is u small energy range (such as &£T). then, by definition, (E) $£ is the number
ol states per unit volume in 6E, To find the number of states per unit volume within kT at the
center of the band, we multiply G by &7 or (1.52 » 10% em ™7 eV )(0.026 V) 1o get
3.9 x 10" cm . This is not a small number!

AL KT above the bottom of the band, at 300 K (k1" = 0,026 V), we have

9,1 = 10~M

32
m} (0.026 = 1.6 x 1071472
3 b =

G e = (8 2”1)[

=684 » 10¥m 31!
Converting to cm ™" and eV—? we get
Dugar = (684 = 10w I7UI0 % ml em 3016 = 107 Tev ™Y
=1.10 % 10 e~ eV ™
Within £T , the volume density of states 15
(1,10 = 10 em eV ™ 10026 eV) = 2.8 x 10" em—?

This iz very close to the bottom of the band and is still very large.
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TOTAL NUMBER OF STATES IN A BAND EXAMPLE 4.8

a. Based on the overlap of atomic orbitals to form the electron wavefunction in the crystal,
how mmany states should there be in a band?

£, Consider the density of states function

e
1 * L2
GUE) = (872 j(ﬁ.) E

By integrating g £}, estimate the total number of states in 2 band per unit volume, and com-
pare this with the atomic concentraton for silver. For silver, we have Eqy = 5.5 ¢V and
D = 4.5 eV (Note that “state™ means a distinet wavefunction, including spin.)

SOLUTION

a.  We know that when N atoms come together to form a solid, ¥ atomic orbitals can overlap
N different ways to produce N orbitals or 24 states in the crystal, since each orbital has two
states, spin up and spin down, These states form the band.

b, For silver, Epyp = 5.5 eV and ¢ = 4.5 eV, 50 the width of the energy band is 10 eV. To

estimate the total volume density of states, we assume that the density of states g(E)
reaches its maximum at the center of the band E = Epe = 5 ¢V. Integrating g(E) from
the bottom of the band, £ = 0, to the center, £ = E_., yields the number of states per
unit volume up to the center of the band. This is half the (otal number of states in the whole
band, that is, %.i'm"d. where 5.4 is the number of states per unit volume in the band and is

determined by
: e 16727 (' m )""" 2
- = F) dF = iz f ol
25mm "; giE) 3 (h:' e
or
1 1672120 0.1 x 107 kg ]‘” i .
il T SeV x 1.6 x 10717 IfeV)*?
g e 3 [(ﬁ.ﬁzﬁx e | eV xlex =Y
=508 = 10¥m™? = 508 » 102 em™?
Thus

Sty = 10,16 % 102 states em ™

We must now calculate the number of atoms per unit volume in silver. Given the
density d = 10.5 g em™ and the atomic mass M, = 107.9 g mal™" of silver, the atomic
coneentration is

_dN,

i‘tﬁg-- 2

= 5.85 x 10% atoms em™

As expected, the density of states is almost twice the atomic concentration, even
though we used a crude approximation to estimate the density of states.
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CHAPTER & + MNOoDERN THEORY OF SOLIDS

4,6 STATISTICS: COLLECTIONS OF PARTICLES

4.6.1 BoLTZMANN CLASSICAL STATISTICS

Given a collection of particles in random motion and colliding with each other,” we
need to determine the concentration of particles in the energy range E o (F + 4E),
Consider the process shown in Figure 4.24, in which two electrons with energies £,
and E; interact and then move off in different directions, with energies E; and Ej. Let
the probability of an electron having an energy E be P(E), where P{E) is the fraction
of electrons with an energy E. Assume there are no restrictions to the electron energies,
that is, we can ignore the Pauli exclusion principle. The probability of this event is then
P{E\)P(E3). The probability of the reverse process, in which electrons with energies
E; and E, interact, is P(F;) P(E4). Since we have thermal equilibrium, that is, the
systern is in equilibrium, the forward process must be just as likely as the reverse
PrOCEsS, SO

PE)PIE;) = P(E3)PLEY) [4.11]
Furthermore, the energy in this collision must be conserved, so we also need
E\+ E;:=E:+Ey [4.12]

We therefore need to find the £ (E) that satisfies both Equations 4.11 and 4.12.
Based on our experience with the distribution of energies among gas molecules, we
can guess that the solution for Equations 4.11 and 4.12 would be

E
P{E}—Acxp( kT) [4.13]
where k is the Boltzmann constant, T is the temperature, and A is a constant. We
can show that Equation 4.13 is a solution to Equations 4.11 and 4.12 by a simple
substitution. Equation 4,13 is the Boltzmann probability function and is shown in
Figure 4.25. The probability of finding a particle at an energy £ therefore decreases
exponentially with energy. We assume, of course, that any number of particles may
have a given energy E. In other words, there is no restriction such as permitting
only one particle per state at an energy E, as in the Pauli exclusion principle. The
term kT appears in Equation 4.13 because the average energy as calculated
by using P{E) then agrees with experiments. (There is no k7 in Equations 4.11
and 4.12.)

Suppose that we have N, particles at energy level E; and N; particles at a higher
energy E;. Then, by Equation 4.13, we have

Me E:— E,|
i = EXP(—T) [4.14]

* From Chapter 1, we con asscciala his with the kinetic theory of gases. The enargies of the gas molacules, which
ora moving orourd rordomby, are distributed cccording to the Moxwall-Baltzmann statistics
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E
o
= exp(—E/kT)
E, |---
W
v Interaction ‘ E4
E, L
-
. ' ' = MNE)
E, ﬁl E, 0 N, N,
Figure 4.24 Two electrons with initial Figure 4,25 The Baltzmann
waovefunctions v and y; of E| and E; interoct energy diskibution deseribes the
and end up at different energies £ and E.. shafisties of porfides, such as elecirons,
Their correspending wavefunctions are 13 when there are many maore available
and . states than the number of partiches.

If £; — E; 3 kT, then &, can be orders of magnitude smaller than N;. As the
temperature increases, Na/N; also increases. Therefore, increasing the temperature
populates the higher energy levels.

Classical particles obey the Boltzmann statistics. Whenever there are many
more states (by orders of magnitude) than the number of particles, the likelihood of
two particles having the same set of guantum numbers is negligible and we do not
have to worry about the Pauli exclusion principle. In these cases, we can use the
Boltzmann statistics. An important example is the statistics of electrons in the con-
duction band of a semiconductor whete, in general, there are many more states than
electrons.

462 FrErMI-DIRAC STATISTICS

Now consider the interaction for which no two electrons can be in the same gquanturn
state, which is essentially obedience to the Pauli exclusion principle, as shown in Fig-
ure 4,24, We assume that we can have only one electron in a particular quantum state
¢ {including spin) associated with the energy value E. We therefore need those states
that have energies E; and £4 to be not occupied. Let f(E) be the probability that an
glectron is in such a state, with energy £ in this new interaction environment. The prob-
ability of the forward event in Figure 4.24 is

FEDNFIED = FED = F(E4)]

The square brackets represent the probability that the states with energies E; and E,
are empty. In thermal equilibrium, the reverse process, the electrons with E; and E,
interacting to transfer to E| and E;. has just as equal a likelihood as the forwarnd process,

33
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Paul Adrien Maourice Diros [1902-1984] recrived the 1933
Mokl prize for physies with Erwin Schrodingar, His fivst
degree was in elecirical anginasring from Bristol Universiry.
He abtained his PhD in 1924 from Cembridge University
under Relph Fawler.

| SOURCE: Courtesy of AP Emilio Segré Yisual Archives,

Thus, f(E) must satisty the equation
FEDSENN = FIEDINT = fIED] = f(EDFED = FEDIT = flEz)] [425]
In addition, for energy conservation, we must have

Ey+ E;=FE:+ E4 [4.18]

By an “intelligent guess,” the solution to Equations 4.15 and 4.16 is

1
FlE)= 5 [4.171
14+ 4 exp(ﬁ)

where A is a comstant. You can check that this is a solution by substituting Equation 4.17
into 4.15 and uvsing Equation 4.16. The reason for the term &7 in Equation 4.17 is not
obvious from Equations 4.15 and 4,16, It appeuars in Equation 4.17 50 that the mean
properties of this system calculated by using f(E) agree with experiments, Letting
A = exp(—Ef/kT), we can write Equation 4,17 as

1
Fermi- Divac - JiEY= [4.18]

o E-Eg
staristics 1+ exp( )
kT

where Er is a constant called the Fermi energy. The probability of finding an electron
in a state with energy E is given by Equation 4.18, which is called the Fermi—Dirac
function.

The behavior of the Fermi-Dirac function is showitig Figure 4.26. Note the effect
of termperature. As T increases, f(E) extends to higher engrgies. At energies of a few
ET (0.026eV) gbove Ep, f(E) behaves almost like the Boltzmann function

(£ = Er}}

E—Er)y kT [4.19]
T { F)

FiE)= exp[—
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Figure 4.26
The Fermi-Direc function f{E] describes the stafistics of elecirens in
0 1 ! 3 fE) 4 solid, The sleckons intercct with sach other and the environment,
2 DbEr:.-'ing the Pavli exclusion prinn:ip|a.

Above absolute zero, at £ = Er, f(Ef) = { We define the Fermi energy as that
energy for which the probability of occupancy f(EF) equals % The approximation to
F{E) in Equation 4,19 at high energies is often referred to as the Boltzmann tail to the
Fermi-Dirac function.

47 QUANTUM THEORY OF METALS

47.1 FreE ELECTRON MODEL®

We know that the number of states g{ £) for an electron, per unit energy per onit vol-
ume, increases with energy as gt £) oo E'?, We have also calculated that the probabil-
ity of an electron being in a state with an energy £ is the Fermi—Dirac function f{E).
Consider the energy band diagram for a metal and the density of states g(E) for that
band, as shown in Figure 4.27a and b, respectively.

At absolute zero, all the energy levels up to Ep are full. At 0K, f{E) has the step
form at E (Figure 4.26). This clarifies why Ep in f(E) is termed the Fermi energy.
MOK, filEy=1forE < Ep,and f(E)=0for E = Ep,soat0 K, Ep separates the
empty and full energy levels. This explains why we restricted ourselves to 0 K or
thereabouts when we introduced E ¢ in the band theory of metals.

At some finite temperature, f{E) is not zero beyond E ., as indicated in Fig-
ure 4.27c, This means that some of the electrons are excited to, and thereby oceupy,
energy levels above E g If we multiply g(F). by f(E), we obtain the number of elec-
lrons per unit energy per unit volume, denoted ng. The dissibution of electrons in the
energy levels is described by np = glE) f(E). o

Since f{E} =1 for E <« E, the states near the bottom of the band are all oceu-
pied; thus, nz o EY? initially. As E passes through Ep, f(E) staris decreasing

| *The free electron madel of metals is olsa known as the Sommerfeld moded,
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Figure 4.27

(o) Abave D K, dua o tharmel| excitation, some of the elecirons are at energies above E;.
{b) The density of states, gE| versus E in the band.
ich The prebobilihy of cocupancy of o siate ot an energy £ is fE}.

{d) The preduct g[E]RE) is the number of electrens per unit energy per unit volume, or the eleckon
concentration per unit energy. The area under the curve an the energy cxis is the concentration of
electrans in the band.

sharply. As aresult, ng takes a turn and begins to decrease sharply as well, as depicted
in Figure 4.27d.

In the small energy range E to (E + dE), there are ng dF electrons per unit
volume. When we sum all ny dE from the bottomn to the top of the band (F =0 to
E = Er 4+ &), we get the total number of valence electrons per unit volume, n, in the
metal, as follows;

Top of hond Top of band
"= f negdE = f g[E]f{E}dE‘ [4.20]
n L

Since f(E) falls very sharply when E = Ep, we can carry the integration to
E = oo, rather than to { £ + &), because f — O when £ % E . Pulting in the func-
tional forms of g(F) and f(E) (e.g., from Equations 4,10 and 4.18), we obtain

an_zi."zmzﬂ f{‘ﬁ EI."IdE 5 2”
n= .
- h? b (E = E;.-)
TSR T

If we could mntegrate this, we would obtain an expression relating n and Er. Al
O K, however, Er = Epg and the integrand exists only for E < Egqg. If we integrate at
0 K, Equation 4.21 yields

Fermi enersy I 3n
al T=0K Lro = o) & [4.22]
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It may be thought that £ is temperature independent, since it was sketched that
way in Figure 4.26. However, in our derivation of the Fermi-Dirac statistics, there was
no restriction that demanded this. Indeed, since the number of electrons in a band is
fixed, Ep at a temperature T is impheitly determined by Equation 4.21, which can be
solved to express Ep in terms of # and T, It tums out that at () K, Ef is given by Equa-
tion 4,22, and it changes very little with temperature. In fact, by utilizing various math-
ematical approximations, it is not too difficult to integrate Equation 4.21 to obtain the
Fermi energy at a temperature T, as follows:

xd ET N\
EFET;:EF&[ITE(E_W) ] [4.23]

which shows that £ (T is only weakly temperature dependent, since Epy 32 kT.
The Fermi energy has an important significance 1o terms of the average energy E,,

of the conduction electrons in a metal. In the energy mmnge E to (E + dE), there are

ng dE electrons with energy E. The average energy of an electron will therefore be

_'Ir En I dE
Eyp=—F7—— [4.24]
f ngdE
If we substitute g(E) f(E) for ngp and integrate, the result at 0 K is
3
Ea\'({}] = E Em [4.25]

Above absolute zero, the average energy is approximately

E(T) = “F 14;u5'T1(H)2 14.26]
L A 12 \Es '

Since Epg ® kT, the second term in the square brackets is much smaller than
unity, and E_.(T) shows only a very weak temperature dependence. Furthermore, in
our model of the metal, the electrons are free to move around within the metal, where
their potential encrey PE is zero, whereas outside the metal, it is £¢ + & (Figure 4.11).
Therefore, their energy is purely kinetic. Thus, Equation 4.26 gives the average KE of
the electrons in a metal

1 3
\‘x.__j’"e”: =En=zEp

where v, is the roof mean square (rms) speed of the electrons, which is simply called
the effective speed. The effective speed v, depends on the Fermi energy Erp and is
relatively insensitive to temperature. Compare this with the behavior of molecules in
an ideal gas. In that case, the average KE = 34T, so ;mv’ = %k]". Clearly, the aver-
age speed of molecules in a gas increases with temperatore.

The relationship %m uf = %Em is an important conclusion that comes from the
application of quantum mechanical concepts, ideas that lead to 2 E) and f(E) and so
on. It cannot be proved without invoking quantum mechanics. The fact that the aver-
age electronic speed is nearly constant is the only way to explain the observation that
the resistivity of a metal is proportional to T (and not T7%?), as we saw in Chapter 2.
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4.7.2 CoNDUCTION IN METALS

We know from our energy band discussions that in metals only those electrons in a
small range A £ around the Fermi energy £ contribute to electrical conduction as
shown in Figure 4,12¢. The concentration ny of these electrons is approximately
giEF) AE inasmuch as AE Is very small. The electron o moves to «', as shown in
Figure 4.12b and ¢, and then it is scattered to an empty state above &'. In steady
conduction, all the electrons in the energy range A £ that are moving to the right are
not canceled by any moving to the left and hence contribute to the current. An elec-
tron af the bottom of the A E range gains energy A E to move @' in a time interval At
that corresponds to the scattering time t. It gains a momentum Ap,. Since Ap, /At =
external force = ¢E;, we have Ap, = veE,. The electron o has an energy
E = p2/(2m?) which we can differentiate to obtain AEZ when the momentum
changes by Ap,.

i MIUE
. {—"-ﬂ{reflj = evpT'E,
-

&E = '_ﬂpx =
me :

The current f, is due to all the electrons io the range A £ which are moving oward
the right in Figure 4.1 2¢,

Jo=enpup =e[HEr) AE vy = e[g{EplevpTE, Jup = e%irg{ﬁ;)fk
The conductivity is therefore
o =e Vit glEr)
However, the numerical factor is wrong because Figure 4.12¢ considers only a hy-

pothetical one-dimensional crystal. In a three-dimensional crystal, the conductivity is
one-third of the conductivity value just determined:

1
o = Ee'-'u;rgwf-j [4.27]

This conductivity expression is in sharp contrast with the classical expression in
which all the electrons contribute to conduction. According to BEquation 427, what 15
important is the density of states at the Fermi energy gl E¢). For example, Cu and Mg
are metals with valencies I and II. Classically, Cu and Mg atoms each contribute one
and two conduction electrons, respectively, into the crystal. Thus, we would expect Mg
to have higher conductivity. However, the Fermi level in Mg is where the top tail of the
35 band overlaps the bottom tail of the 3p band where the density of states 15 small. In
Cu, on the other hand, E¢ is nearly in the middle of the 45 band where the density of
states is high. Thus, Mg has a lower conductivity than Cu.

The scattering time 7 in Equation 4.27 assumes that the scattered electrons at Ep
remain in the same energy band. In certain metals, there are two different energy
bands that overlap at Er. For example, in Ni (see Figure 4.61), 3d and 45 bands over-
lap at Ex. An electron can be scattered from the 45 to the 3d band, and vice versa.
Electrons in the 34 band have very low drift mobilities and effectively do not
contribute to conduction, so only g{Ef) of the 45 band operates in Equation 4.27.
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Since 45 to 3d band scattering is an additional scattering mechanism, by virtue of
Matthiessen's rule, the scattering time t for the 45 band electrons is shortened. Thus,
Ni has poorer conductivity than Cu,

In deriving Equation 4.27 we did not assume a particular density of states
model. If we now apply the free electron model for glE ) as in Equation 4.10, and
also relate Er to the total number of conduction electrons per unit volume 7 as in
Equation 4.22, we would find that the conductivity is the same as the Drode model,
that is,

E?iﬂ T

g =— |4.28]
m,

e

Drude moded
and free
electrms

MEAN SPEED OF COMDUCTION ELECTRONS IN A METAL Calculate the Fermi energy Eqqn at
0 K for copper and estimate the average speed of the conduction electrons in Cu. The density of
Cuis 8,96 g om’ 4 and the relative atomic mass (alomic weight) is 63.5.

FOLUTION

Assuming each Cu atom donates ane tree electron, we can find the concentration of elecirons,
from the densily 4, atomic mass M,,, and Avogadro's number &, as follows:

dN, B.96 x 6.02 x 107
My 631.5

=8ix10%em™? o 85x10%m?

fl=

The Fermi energy at 0 K is given by Equation 4.22:

R In 203
Ery = ( )(_')
Bm, o

Substituting # = 8.5 x 10® m? aad thie values for & and m,, we obtain
Eip=11%210""] or Tev

To estimate the mean speed of the electrons, we calculate the rms speed v, from

Imoal = ;_%E”_,. The mean speed will be ¢lose to the rms speed. Thus, v, = (8E ro /Sem 00,

Substituting for £ pp and mi,, we find v, = 1.2 x 10° ms~".

CONDUCTION IN SILYER Consider silver whose density of states g(E) was calculated in
Example 4.8, assuming a free electron model for gi£) as in Equation 4.10. For silver,
E, = 5.5eV, so from Equation 4,10, the density of states at Ex 18 g(E¢) = 160 x 10%® m™?
eV~'. The velocity of Fermi electrons, vp = (2Ep/m, """ = 1.39 x« 10* m s~". The conduc-
tivity o of Ag at room temperature is 62.5 » 10° 27" m~". Substituting for o, g(EF), and v
in Equation 4,27,

160 = 101“)
1.6 x 1019

we find r = 3.7% x 10" 5. The mean free path £ = vpr =353 nm. The drift mobility of Ef
electrons is 1 = er/m, = 67 cm® V7! 57,

1 1
g=62.5x=10%= EEJL'E 19 ) = ;(1.6 x 107 ™1 (130 = 105 (

EXAMPLE 4.10
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From Example 4.8, since Az has a valency of I, the concentration of conduction electrons
i87 = nay = 585 x 10% m™>. Substituting for » and = in Equation 4,28 gives
ent _{l6x 10" (5.85 = 10™)7
m, - (9.1 x 1073

we find © = 3.79 = 10~" 5 as expected becanse we have used the free electron model.

o =62.5x 10" =

4.8 FERMIENERGY SIGNIFICANCE

4.8.1 Merar—-MeTan ConTacTs: ConTtacT POTENTIAL

Suppose that two metals, platinum (Pt) with a work function 5.36 €V and molybdanum
(Mo) with a work function 4.20 eV, are brought together, as shown in Figure 4.28a. We
know that in metals, all the energy levels up to the Fermi level are full. Since the Fermi
level is higher in Mo (due to a smaller &), the electrons in Mo are more energetic.
They therefore immediately go over to the Pt surface (by tunneling), where there are
empty states at lower energies, which they can occupy. This electron transfer from Mo
to the Pt surface reduces the total energy of the electrons in the Pt—-Mo system, but at
the same time, the Pt surface becomes negatively charged with respect to the Mo sur-
face. Consequently, a contact voltage (or a potential difference) develops at the junc-
tion between Pt and Mo, with the Mo side being positive.

The electron transfer from Mo to Pt continues until the contact potential is large
enough to prevent further electron transfer: the system reaches equilibrium. It should
be apparent that the transfer of energetic electrons from Mo to Pt continues until the
two Fermi levels are lined up, that is, until the Fermi level is uniform and the same in
both metals, so that no part of the system has more (or less) energetic electrons, as

F(P1) - (Mo} = 1.16eV = AV

Vacuum r
Pt Mo = Wi

Yacuum VAGURIT ﬁ - v
- : o :
o o & Vacuum
) t & v
o L - I
ol Fermi level 1l E ln: g
| . = i 1
! = | L Fermi level | ~F
£ | o =
= Fermi level 4 -
) Electrons -

Electrons =+
[a] Electrons are more energehic in Mo, so |k} Equifibrivm is reeched when the Fermi
they tunnel ta the surface of Pr, levels are lined up.

Figure 4.28 ‘When two metals are brought together, there is o contact potential A Y,
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Figure 4,9 There is no current when o closed circuit is formed
by two diferert metals, sven though there is o contoct petential ot
each contage.

LIV The contact potenticls oppose each other,

illustrated in Figure 4.28b, Otherwise, the energetic electrons in one part of the system
will flow toward a region with lower energy states. Under these conditions, the Pt-Mo
system is in eguilibrium. The contact voltage AV is determined by the difference in
the work functions, that 1s,

e AV = @(Pt) — d(Mo) = 5.36eV —4.20eV = .16V

We should note that away from the junction on the Mo side, we must still provide
an energy of & = 4.20eV to free an electron, whereas away from the junction on the
Pt side, we must provide & = 5.36 eV Lo [ree an electron. This means that the vacuum
energy level poing from Mo to Pt has a step Ad at the junction. Since we must do
work equivalent to Ad to gel 4 free electron (e.g., on the metal surface) from the Mo
surface to the Pt surface, this represents a voltage of Ad e or 116V,

From the second law of thermodynamics,’ this contact voltage cannot do work;
that 18, it cannot drive current 1t an external circuit. To see this, we can close the
Pt metal-Mo metal circuit to form a ring, as depicted in Figure 4.29. As soon as we
close the circuit, we create another junction with a contact voltage that is equal and op-
posite to that of the first junction. Consequently, going around the circuit, the net volt-
age 15 zero and the current 15 therefore zero.

There 15 a deep significance to the Fermi energy E ¢, which should at least be men-
tioned. For & given metal the Fermm energy represents the free energy per electron
called the electrochemical potential (¢, In other words, the Fermi energy is 2 measure
of the potential of an electron to do electrical work (¢ = V) or nonmechanical work,
through chemical or physical processes.” In general, when two metals are brought into
contact, the Fermi level (with respect to & vacuum) in each will be different. This
difference means a difference in the chemical potential Ay, which in turn means that
the system will do external work, which is obviously not possible. Instead, electrons
are immediately transferred from one metal to the other, until the free energy per elec-
tron 4 for the whole system is minimized and is uniform across the two metals, so that

s mm—

7 By the way, the secand law of thermodynaries simply saps that you connel extract beat fram o system in thermal
equilibrivm and do wark |i.e., charge x valtege|.

Y& change in amy rype of PE can, in principle, be used to do work, that is, A|PE] = work done. Chemical PE (s tha
patential o do nenmechonical work (e.g., electrical work| by virtue of physical or chemicol processes, The chemicol
FE per eleciron is E,- um:' ALr = -ludriml wark Pt eleciran,
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Ape = 0. We can guess that if the Fermi level in one metal could be maintained at a
higher level than the other, by using an external enargy source (e.g., light or heat), for
example, then the difference could be used to do electrical work.

4.8.2 THE SEERECKE EFFECT AND THE THERMOCOUPLE

Consider a conductor such as an aluminum rod that 1s heated at one end and cooled at
the other end as depicied in Figure 4.30. The electrons in the hot region are more en-
ergetic and therefore have greater velocities than those in the cold region.”

Consequently there is a net diffusion of electrons from the hot end toward the cold
end which leaves behind exposed positive metal ions in the hot region and accumu-
lates electrons in the cold region. This situation prevails until the electric field devel-
oped between the positive ions in the hot region and the excess electrons in the cold re-
gion prevents further electron motion from the hot to the cold end. A voltage therefore
deyelops between the hot and cold ends, with the hot end at positive potential. The
potential difference AV across a piece of metal due to a temperature difference AT 13
called the Seebeck effect.’! To gauge the magnitude of this effect we introduce a
special coefficient which 15 defined as the potential difference developed per unit tem-
perature difference, or

d¥
_S‘_

= — [4.29]
aT

By convention, the sign of § represents the potential of the cold side with respect
to the hot side. If electrons diffuse from the hot end to the cold end as in Figure 4.30,
then the cold side is negative with respect to the hot side and the Seebeck coefficient is
regative (a5 for aluminum).

In some metals, such as copper, this intuitive explanation fails to explain why elec-
trong actually diffuse from the cold to the hot region, giving rise to positive Seebeck
coefficients; the polarity of the voltage in Figure 4.30 is actually reversed for copper.
The reason is that the net diffusion process depends on how the mean free path £ and
the mean free time (due to scattering from lattice vibrations) change with the electron
energy, which can be quite complicated. Typical Seebeck coefficients for various se-
lected metals are listed in Table 4.3,

Consider two neighboring regions H (hot) and C {cold) with widths corresponding
to the mean free paths £ and £’ in H and C as depicted in Figure 4.31a. Half the electrons
in H would be moving in the +x direction and the other half in the —x direction. Half of
the electroms in H therefore cross into C, and half in C cross into H. Suppose that, very
roughly, the electron concentration » in H and C is about the same. The number of elec-
trons crossing from H to C is 1n¢, and the number crossing from C to H is 1n£'. Then,

Net diffusion from H to C oc n(€ — £) [4.30]

¥ The eonduction elactrons around the Fermi enargy hove a mean speed that has enly a small lemperatura
dependenca. This small change in the meon speed with temparciurs is, nonetheless, infuithely si?nl"ﬁcuni in
oppreciafing the thermoeleskic effect, The cchol sffect, howewesr, dep-cn-:l!. an the mean free path as disenssed laber.,
1% Thamas Seebeck chsarved the tharmaalactric effect in 1821 using twa different metols os in the thermocoupls,
w}l;ich isdH'ls;F:nl}r wiy ta observe the pheancmanan, Ibwos William Thamsan [Lord Kelvin) who exploined the
observed etecl
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Figura 4.30 The Ssebeck affect.
A temperature Emdienr n|ang o conductor gives rise fo o pmanﬁu| differenca.

Suppose that the scattering of electrons is such that £ increases strongly with the
glectron energy. Then electrons in H, which are more energetic, have a longer mean
free path, that is, £ = £’ as shown in Figure 4.31a. This means that the net migration is
from H to C and § is negative, as in aluminum. In those metals such as copper in which
£ decreases strongly with the energy, electrons in the cold region have a longer mean
free path, £ > £ as shown in Figore 4.31b. The net electron migration is then from C
to H and § is positive. Even this qualitative explanation is not quite correct because n is
not the same in H and C (diffusion changes #) and, further, we neglected the change in
the mean scattering time with the electron energy.

The coefficient § is widely referred to as the thermoelectric power even though
this term is misleading, as it refers to a voltage difference rather than power, A more ap-
propriate recent term is the Seebeck coefficient. 5 is a material property that depends
on tempetature, § = 5(T), and is tabulated for many materials as a function of

Toble 4.3  Seebeck coefficients of selected metals [from various sources)

Sat0*C Sat27°C

Metal MY K" vV K1 Ep{eV) x
Al —-1.6 —-1.3 1.6 178
An +1.7% 4 1.9 3.5 —1.48
Cu +1,70 +1.84 Tk —1.7%
K —12.3 20 3R
Li +14 4.7 -7
Mg —1.3 7.1 138
Na -5 3.1 21
Bd —4.(HD .0

Pt —4.43 —5.2K
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Figure 4.31 Consider hwo neighboring regions H (het) and € [cold) with widths carresponding fo
tha mean free paths £ and £ in H and €.

Half the alectrans in H would be maving in the 4.1 direction and the sther half in the —x direction.
Half af the elecirons in H therafors cross inte C, and half in C cross info H.

x

X

temperature. Given the Seebeck coefficient 5(¥") for a material, Equation 4.29 yields
the voltage difference between two points where temperatures are T, and T as follows;

T
ﬂV:f SdaT [4.31]
T

1]

A proper explanation of the Seebeck effect has to consider how electrons around
the Fermi energy £y, which contribute to electrical conduction, are scattered by lattice
vibrations, impurities, and crystal defects. This scattering process controls the mean
free path and hence the Seebeck coefficient (Figure 4.31). The scattered electrons need
empty states, which in turn requires that we consider how the density of states changes
with the energy as well. Moreover, in certain metals such as Ni, there are overlapping
partially filled bands and the Fermi electron can be scattered from one electronic band
to another, for example from the 45 band to the 34 band, which must also be consid-
ered (see Question 4.25). The Seebeck coefficient for many metals is given by the
Mott and Jones equation,

wiiT

a2z — 4.32]
3eErn * [

where x is 2 numerical constant that takes into account how various charge transport
parameters (such as £) depend on the electron energy. A few examples for x are given
in Table 4.3, The reason for the kT / Egy factor in Equation 4.32 is that only those
electrons about a £ T around the Fermi level Egy, are involved in the transport and scat-
tering processes. Equation 4.32 does not apply directly to transition metals (N1, Pd, Pt}
that have overlapping bands. These metals have a negative Seebeck coefficient that is
proportional to temperature as in Equation 4.32, but the exact expression depends on
the band structure.
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fal
Figure 4.32
fa) IF &l wires are vsed bo measure the Seebeck voltage across the Al rod, then the net emf
is zero.

[l:l} The Al and Mi hove different Seebeck coefficients. Thare is therefore a net emf in the
Al-Mi circuit betwean the hot and cold ends that con be measured,

Suppose that we try to measure the voltage difference AV across the aluminum
rod by using aluminum connecting wites to a voltmeter as indicated in Figure 4.32a,
The same temperature difference now also exists across the aluminum connecting
wires; therefore an identical voltage also develops across the connecting wires, oppos-
ing that across the aluminum rod. Consequently no net voltage will be registered by the
voltmeter. It is, however, possible to read a net voltage difference, if the connecting
wires are of different material, that is, have a different Seebeck coefficient from that of
aluminum. Then the thermoelectric voltage across this material 15 different than that
across the aluminum rod, as in Figure 4.32h.

The Seebeck effect is fruatfully utilized in the thermocouple (TC), shown in Fig-
ure 4.32b, which uses two different metals with one junction maintained at a reference
temperature T, and the other used to sense the temperature T. The voltage across each
metal element depends on its Seebeck coefficient. The potential difference between the
two wires will depend on §4 — Sp. By virtue of Equation 4.31, the electromaotive force
(emf) between the two wires, Vig = AV, — AVy, is then given by

T T
V.qa’:f (54— Sy dT =f SapdT [4.33]
T. T
where 8,5 = 54 — Sp is defined as the thermoelectric power for the thermocouple pair
A-B. For the chromel-alumel (K-type) TC, for example, Sap &= 40 2V K™ at 300 K.

The output voltage from a TC pair obviously depends on the two metals used. In-
stead of tabulating the emf from all possible pairs of materials in the world, which
would be a challenging task, engineers have tabulated the emfs available when a given
material is used with a reference metal which is chosen to be platinum. The reference
junction is kept at 00 °C (27316 K) which commesponds to a mixture of ice and water.
Some typical materials and their emfs are listed in Table 4.4,

Using the expression for the Seebeck coefficient, Equation 4.32, in Equation 4.33,
and then integrating, leads to the familiar thermocouple equation,

Vie=a AT + B(ATY [4.34]

Ji5

Thermao-
couple emf
between
mefals A
g 3

Thermo-
couple
EqUation
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Toble 4.4 Thermoeleciric emf for metals at 100 and 200 °C with
respect fo P and the reference junction af O °C

emf (m¥)

Material AL10) °C At 204 *C
Copper, Cu 076 1.43
Alwmimg, Al 042 1.06
Mickel, Ni =148 310
Pulladiom, Pd —{1.57 —1.23
Platinumn, [t a 0
Silver, A 074 1.77
Alumel —1.2% =217
Chroanel 2.8] 50a
Constuntun =351 —7.45
Irom, Fe .1 ElT ]
Q0 P L0 Bh 0.643 144

{platinum-rhodium)

where a and b are the thermocouple coefficients and AT = T — T, is the temperature
with respect to the reference temperature 7, (273.16 K. The inference from Equa-
tion 4.34 is that the emf output from the thermocouple wires does not depend linsarly
on the temperature difference AT, Figure 4.33 shows the emf ocutput versus tempera-
ture for various thermocouples. It should be immediately obvious that the voltages
are small, typically a few tens of a microvolt per degree temperature difference. At

Figure .33 Chuiput emf varsus emf (mV)
temperature [*C) far various 80 1
thermosouples between-0 1o 1000 °C, i

70 -

60

50

Temperature { °C)
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0°C, by definition, the TC emf is zero. The K-type thermocouple, the chromel-alumel
pair, is a widely employed general-purposs thennocouple sensor up to about 1200 °C,

iy

THE THERMOCOUPLE EMF  Consider a thenmocouple pair from Al and Cu which have Fermi
energies and x as in Table 4.3, Estimate the emf available from this thesmocouple if one junc-
tion is held at 0 “C and the other at 100 °C.

SOLUTION

We essentially have the amangement shown in Figure 4.32b but with Cu replacing Ni and Cu
having the cold end positive (5 is positive). For each metal there will be a voltage actoss i,
given by integrating the Seebeck coefficient from T, (at the low temperature end) to T. From the
Mott and Jones equation,

r T oxrl?T xmik? 1 1
AV=[ 54T =| - dT = — (r* =11
T T. leEpn beEpg
The available eml (V4p) 1s the difference in AV for the two metals (4 and B), s0

a

ikt [ Xa Ag j|
Vig = AV, — AVp = — - T —T?
AR A B % LBrss Broo { )
where in this example T =3T3 Kand T, = 273 K.
For Al (A}, Epan = 11.6 eV, x4 = 2.78, and for copper (8), Eppe = 7.0 eV, x5 = —1.79.
Thus,

Vap = —189 pV — (+201 pV) = —390 pv

Thermocouple emf calculations that closely represent experimental observations require
thermocouple voltages for various metals listed against some reference metal. The reference is
wsually Pt with the reference junction at 0 *C. From Table 4.4 we can read Al-Pt and Cu-Ft
emifs as Voo = 0,42 mV and Voo = 0.76 mY at 100 *C with the expenimental error being
around =001 mV, so that for the Al-Cu pair,

V,u_n;:,; = i"?m_pr == Vg'_.;_p: =042 mV — 0.76 mV = —0.34 m¥
There is a reasonable agreement with the caleulation using the Mot and Jones equation,

EXAMPLE 4.11

THE THERMOCOUPLE EQUATIOM We know that we can only measure differences between
thermoelectric powers of materials. When two different metals A and B are connecled 1o make
a thermocouple, as in Figure 4.32h, then the net emf is the voltage difference between the two
elements. From Example 4.11,

T T
AVig=aV, —AVy = f~’i,1—3u}d?"=f Jan dT
T Ta
Tkt
=_"r [ ERL o ]{I.z,_ If:}
Ge | Eran Ergp

c(r*=T17)

where C1s a constant that iz independent of T but dependent on the material properties (x, Egy
for the metals),

EXAMPLE 4.112
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We can now expand Vg about T, by using Taylor's expansion
F(T)y== F(T,)+ AT (dF /dT), + H(ATY(d*F/dTh),

where the function F = Vug and AT = T — T, and the denvatives are evaluated at 7,. The
result is the thermocouple equation:

Var(T) = alAT)+ BIAT)

where the cocfficients a and b are 2C7T, and C, respectively.

It is clear that the magnitude of the emf produced depends on Cor & — S5, which we can
label as §,,. The greater the thermoeleciric power difference 8,y for the TC, the larger the emf
produced. For the copper constantan TC, 54, is about 43 'V K1,

49 THERMIONIC EMISSION AND VACUUM
TUBE DEVICES

491 Tuermionic Emission: RicHARDSON-DusHMAN EQuaTION

Even though most of us view vacuum tubes as electrical antiques, their basic principle of
operation (electrons emitted from a heated cathode) still finds application in cathode ray
and X-ray tubes and vanous RF microwave vacuum tubes, such as triodes, tetrodes,
klystrons, magnetrons, and traveling wave tubes and amplifiers. Therefore, itis usefulto
examine how electrons are emitted when a metal is heated.

When a metal is heated, the electrons become more energetic as the Fermi-Dirac
function extends to higher temperatures. Some of the electrons have sufficiently large
energies to leave the metal and become free. This situation is self-limiting because as
the electrons accumulate outside the metal, they prevent more electrons from leaving
the metal. (Put differently, emitted electrons leave a net positive charge behind, which
pulls the electrons in.) Consequently, we need to replenish the “lost” electrons and col-
lect the emitted ones, which is done most conveniently using the vacuum tube arrange-
ment in a closed circuit, as shown in Figure 4.34a. The cathode, heated by a filament,
emits electrons. A battery connected between the cathode and the anode replenishes

[ - Plate or anade » Sawration current

Cathode
Filament v

'1|'

{a) Thermioniz electron ibl Current-voltoge chorocteristics of
emission in a vocuem ube. o vocuum diode,

Figure 4.34
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the cathode electrons and provides a positive bias to the anode to collect the thermally
emitted electrons from the cathode. The vacuum inside the tube ensores that the elec-
trons do not collide with the air molecules and become dispersed, with some even
being returned to the cathode by collisions. Therefore, the vacuum is essential. The
current due to the flow of emitted electrons from the cathode to the anode depends on
the anode voltage as indicated in Figure 4.34b. The current increases with the anode
voltage until, at sufficiently high voltages, all the emitted electrons are collected by the
anode and the current saturates. The saturation eurrent of the vacuum diode depends
on the rate of thermionic emission of electrons which we will derive below. The vac-
uum tube in Figure 4.34a acts as a rectifier becanse there is no current flow when the
anode voltage becomes negative; the anode then repels the electrons.

We know that only those electrons with energies greater than Er + @ (Fermi
energy + work function) which are moving toward the surface can leave the metal.
Their humber depends on the temperature, by virtue of the Fermi-Dirac statistics. Fig-
ure 4.35 shows how the concentration of conduction electrons with energies above
Ep + @ increases with temperature. We know that conduction electrons behave as if
they are free within the metal. We can therefore take the PE to be zero within the metal,
but E¢ + @ outside the metal. The energy £ of the electron within the metal is then
purely kinetic, or

1 1 1
E = -E-mfuf + Em,u;’: 4 Em,pj [4.351

Suppose that the surface of the metal is perpendicular to the direction of emission,
say along x. For an electron to be emitted from the surface, its KE = %mvf along x
must be greater than the potential energy barrier Ex + &, that is,

1
Emui = Eg 4+ [4.36]

Figure 4.35 Fermi-Dirac functian
T AE] and the energy density of
electrons n|E] {elecirons per unit
energy and per unit volume) of three
differant lemperatures.

e L]
1

Free electron

The eleckon concentration exhends
more and mere o higher enargies as
the termperature increases, Electrons
with energles in sxeass of £ + @
con leove the metol (fhermionic
emizsion),

» M E e
1.0 E 0 mE)= NEWE)

Probability Electron concentration
per unit energy
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Left te right: Owen Willioms Richardson, Baber
dndrews Millikan, ond Arthur Holly Compien of on
inkernakano] i;ﬂnFurunul on nucledr Flh SBCE, Rul‘nc_,
1931. Richardson wen the phiysics Mobel prize in 1928
for tharmionic emission
SOURCE: Amaldi Archives, Dipartimento di Fisica,
Uniwarsita Lo Sopienzo, Rome; courtasy of AIP Emilio
Fmgré Wisiiol Arehives.

Let dniv,) be the number of electrons moving along x with velocities in the range
v, to (v, + dovy), with v, satisfving emission in Equation 4.36. These electrons will
be emitted when they reach the surface. Their number d# (v, } can be determined from
the density of states and the Fermi-Dirac statistics, since energy and velocity are
related through Equation 4.35. Close to £f + @, the Fermi-Dirac function will ap-
proximate the Boltzmann distribution, f{E) = exp[—{E — Ef}/kT]. The number
dnv.) is therefore at least proportional to this exponential energy factor.
The emission of dr(v,) electrons will give a thermionic current density
dJ, = ev dn(v,). This must be integrated {summed) for all velocities satisfying
Equation 4.36 to obtain the total current density J,, or simply J. Since dn(v,) includes
an exponential energy function, the integration also leads to an exponential. The final
Richardson— result is
Dusliman o
thermionic J = B, T exp (—-—) 14.37]
£IESON kT
efeition where B, = 4mem. k*/h°. Equation 4.37 is called the Richardson—-Dushman equation,
and B, is the Richardson—Dushman constant, whose valug 15 1.20 = 10 Am™ 2 K2 We
see from Equation 4.37 that the emitted current from a heated cathode vanes exponen-
tially with temperature and is sensitive to the work function & of the cathode matenal.
Both factors are apparent in Equation 4.37.
The wave nature of electrons means that when an electron approaches the surface,
there is a probability that it may be reflected back into the metal, instead of being emitted
over the potential barrier. As the potential energy barrier becomes very large, ¢ — oo,
the electrons are totally reflected and there is no emission. Taking mto account that waves
can be reflected, the thermionic emission equation is appropnately moditied to

Thermionic i &
Emission S = H1 EK[J(-H) [4.38]
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where B, = (1 — 88, 15 the emission constant and R is the reflection coefficient,
The value of £ will depend on the material and the surface conditions. For most met-
als, B, is about half of B,, whereas for some oxide coatings on Ni cathodes used in
thermionic tubes, B, can be as low as | x 108 Am™2 K2,

Equation 4.37 was derived by neglecting the effect of the applied field on the emis-
sion process. Since the anode is positively biased with respect to the cathode, the field
will not only collect the emitted electrons (by drifting them to the anode), but will also
enhance the process of thermal emission by lowering the potential energy barrier 4.

There are many thermionic emission—based vacuum wbes that find applications in
which it is not possible or practical to use semiconductor devices, especially at high-
power and high-frequency operation at the same time, such as in radio and TV broad-
casting, radars, microwave commutications; for example, a tetrode vacuum tbe in
radio broadcasting equipment has to handle hundreds of kilowatts of power. X-ray mbes
operate on the thermionic emission principle in which electrons are thermally emitted,
and then accelerated and impacted on a metal target to penerate X-ray photons.

amn

VACUUM TUBES [t is clear from the Richardson-Dushman equation that to obtain an efficient
thermionic cathede, we need high temperatures and low work funcdons, Metals such as tungsien
(W} and tantalum (Ta) have high melting temperatures but high work functions. For example, for
W, the melting temperatre T, is 3680 °C and its work function is about 4.5 ¢V. Some metals
have low work functions, but also low melting emperatures, a typical example being Cs with
d = 1.8eVand T, = 28.5 “C. If we use athin film coating of & low & material, such as ThOor
Ba(, oo a high-melting-temperature base metal such as W, we can maintain the high melting
properties and obtain a lower &. For example, Th on W has a & = 2.6 ¢V and T, = 1845 °C,
Most vacuum tubes use indirecily heated cathodes that consisi of the oxides of B, Sr, and Ca on
a hase metal of Ni. The operating temperatures for these cathodes are typically B0 *C.

A certain transmitter-type vacuum tube has a cylindrical Th-coated W (thorated tung-
sten) cathode, which is 4 om long and 2 mm in diameter. Estimate the saturation cutrent if the
tube is operated at a temperature of |60 *C, given that the emission constant is 8, = 3.0 x 1%
Am *K ?forThonW.

SCLUTION

We apply the Richardson-Dushman equation with @ = 2.6V, T = (1600 4+ 273) K = 1873 K,
and 8, = 3.0 = 10° A m~? K2, to find the maximum current density that can be obtained from
the cathode at 1873 K, as follows:

{2.6 % 1.6 x 107'%) ]

J
(L.38 = 10-2 x 1873)

(3.0 ¢ 10" A m™® K=%)(1873 K7 cxp[

=108 x 10* Am™*
The emission surface arca 15
A = m{diameter){length) = m(2 » 10744 » 107%) = 2.5 » 107" m?

s0 the saturation current, which is the maximum corrent obtainable (ie., the thermionic cur-
rent), is

F=JfA=(108= 10" Am™ 25« 107" mY ) =274

EXAMPLE 4.13
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Image PE Applied PE Net PE
1 Ep+d -
Ep+® 7%
X x
Figure 4.36
[a] PE of the alectran near the surface of a conductor.
(bl Electren PE due to an applied field, that is,
batween cothede aond ancde.
[€] The cverall PE is the sum. la} (b} e

492 ScHOTTKY EFFECT AND FIELD EMISSION

When a positive voltage is applied to the anode with respect to the cathode, the elec-
tric field at the cathode helps the thermionic emission process by lowering the PE bar-
rier €. This is called the Schottky effect. Consider the PE of the electron just outside
the surface of the metal. The electron is pulled in by the effective positive charge left
in the metal. To represent this attractive PE we use the theorem of image charges in
electrostatics,!’ which says that an electron at a distance x from the surface of a con-
ductor possesses a potential energy that is

&2

4.9
16y am

Pﬁimctx] =S

where &, is the absolute permittivity.

This equation is valid for x much greater than the atomic separation a; otherwise,
we must consider the interaction of the electron with the individual 1ons. Further,
Equation 4.39 has a reference level of zero PE at infinity (x = oo), but we defined
PE = 0 1o be inside the metal. We must therefore modify Equation 4,39 to conform to
our definition of zero PE as a reference. Figure 4.36a shows how this “image PE™
varies with x in this system. In the region x < x,, we artificially bring PEipag (%) to
zero at x = 0, so our definition PE = 0 within the metal is maintained, Far away from
the surface, the PE is expected to be ( Ef 4+ &) (and not zero, as in Equation 4.39), so
we modify Equation 4.39 to read

2
[4.40]

PEimge(x) = (Ep + &) — e
The present model, which takes PEjque.(x) from O to (£F + ¢) along Equation 4.40,
is in agreement with the thermionic emission analysis, since the electron must still
overcome a PE barmier of Erp 4+ & 10 escape.

" An slectron ot a distance x from the surfoce of o conductor axpariencas o Force os if thera wara o positive chorga
of +5 ot o distonce 2x from it. The Force is &[4 2,]24)%] or /[ 14w, 2%]. The result is called the imoge chorge
thecrem. Inhegrating the force gves the potentiol energy in Equation 4.3%.
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From the definition of potential, which is potential energy per unit charge, when a
voltage difference is applied between the anode and cathode, there 1s a PE gradient just
outside the surface of the metal, given by eV ix), or

PEymlied(x) = —exE [4.41]
where E is the applied field and is assumed, for all practical purposes, to be uniform. The
variation of £E ps. (x) with x is depicted in Figure 4.36b. The total PE(x) of the electron
outside the metal is the sum of Equations 4.40 and 4.41, as sketched in Figure 4.36¢,

PE{x) (Ep+ @) ex'E [4.42]

l6me,x

Note that the PE(x) outside the metal no lenger goes up to (Er + &), and the PE
barrier against thermal emission is effectively reduced to (Ep + @), where & is a
new effective work function that takes into account the effect of the applied field. The
new barrier (s + ®uy) can be found by locating the maximum of PE(x), that is, by
differentiating Equation 4.42 and setting it to zero. The effective work funetion in the
presence of an applied field is therefore

E
By D LE ) [4.43]
4me,

This lowering of the work function by the applied field, as predicted by Equa-
tion 4.43, is the Schottky effect. The current density is given by the Richardson—
Dushman equation, but with &,y instead of @,

5 (d — el
J =BT exp [—L] [4.44]
kT
where 85 = [¢’/d4me,]"? is the Schottky coefficient, whose value is 3.79 x 1073

(eV/vVm ),

When the field becomes very large, for example, £ = 107 V cm™', the PE(x) out-
side the metal surface may bend sufficiently steeply to give rise to a narrow PE barrier.
In this case, there is a distinct probability that an electron at an energy £z will tunnel
Lthrough the barrier and escape into vacuum, as depicted in Figure 4.37. The likelihood
of tunneling depends on the effective height ¢4 of the PE barrier above Eg, as well
as the width x g of the barrier at energy level Er. Since tunneling is temperature inde-
pendent, the emission process is termed field emission. The tunneling probability P
was calculated in Chapter 3, and depends on ¢ and xf through the equation'?

—2{2m,¢m]'-’2x,r:|
il

B F=E1|J|:

We can easily find xy by noting that when x = xg, PE(xg) is level with Ex, as
shown in Figure 4.37. From Equation 4.42, when the field is very strong, then around

"*In Choprer 3 we showed that the transmission probability T= T, sxp|—-2wa) whare ¢ = 2m [V, - E|/t? and a s
tha karrier width. The preexponential constant T, can be foken to ba - 1. Clearly ¥, — E = 4o since alactrons with
E = E¢ ore trnneding and a = xr,
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Figure 4,37
[a] Field emission is the tunneling of an electron af an energy Ex through the narrew PE barrier induced

by a large applied fisld.
[b] Far simplicity, we take the barrier to be rectangular.

[£] A sharg point cathode has the maximum field at the tip where the field emission of eledrons cocurs.

x %= xp the second term is negligible compared to the third, so putting x = x; and
FPE(zp) = Ef in Equation 442 yields @ = ¢Txp, Substituting xr = ®/¢T in Equa-
tion 4.45, we can obtain the tunneling probability P
[ Z(Emfdl,f]’-’ztt']
P=expl ——
ehE

[4.45)

Equation 4,43 represents the probability P that an electron in the metal at E r will tun-
nel out from the metal, as in Figure 4.37a and b, and become ficld-emitted, In a more
rigorous analysis we have to consider that electrons not just at Ex but at energies
below E¢ can also tunnel out {though with lower probability) and we have to abandon
the rough rectangular PE(x) approximation in Figure 4.37h,

To calculate the current density J/ we have t0 consider how many electrons are
moving toward the surface per second and per unit area, the electron flux, and then
multiply this flow by the probability that they will tunnel out. The final result of the
calculations is the Fowler—Nordheim equation, which still has the exponential field
dependence in Equation 4.45,

E
-rl'iell.l-!mixwinn = CEI EKP(_ Ec) [4.450]

in which C and £, are temperature-independent constants

e’ _ Bm(2m,®7)'"

= d o
15 an E. ok [4.45k]
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Figure 4.38

{o} Spindttype cathade and the bosic structure of ona of the pixels in the FED.
|6} Emission [enede) current versus gote voltogs.

{c] Fowler—Mardheim plot that confirms field emission.

that depend on the work function & of the metal. Equation 4.46a can also be used for
field emission of electrons from a metal into an insulating material by using the elec-
trom PE barrier &5 from metal’s Ep into the insulator’s conduction band (where the
electron is free) instead of @,

Notice that the field E in Equation 4.46a has taken over the role of temperature in
thermionic emission in Equation 4.38. Since field-assisted emission depends exponen-
tially on the field via Equation 4.46a, it can be enhanced by shaping the cathode into a
cone with a sharp point where the field is maximum and the electron emission occurs
from the tip as depicted in Figure 4.37c. The field € in Equation 4.46a is the gffecrive
field at the tip of the cathode that emits the electrons.

A popular field-emission tip design is based on the Spindt tip cathode, named
after its originator. As shown in Figure 4.38a, the emission cathode is an iceberg-type
sharp cone and there is a positively biased gate above it with a hole to extract the emit-
ted electrons. A positively biased anode draws and accelerates the electrons passing
through the gate toward it, which impinge on a phosphor screen to generate light by
cathodoluminescence, a process in which light is emitted from a maternial when 1t 15
bombarded with electrons. Arrays of such electron field-emitters are used in field
emission displays (FEDs) to generate bright imapes with vivid colors. Color is ob-
tained by using red, green, and blue phosphors. The field at the tip is controlled by the
potential difference between the gate and the cathode, the pate voltage Vi, which
therefore controls field emission. Since ‘E oc V. Equation 4.46a can be written to ob-
tain the emission current or the anode current f4 as

5 b
Iy=aVg exp| —— [4.47]

Ve
where g and b are constants that depend on the particular field-emitting structure and
cathode material. Figure 4.38b shows the dependence of f4 on Vg, There is a very
sharp increase with the voltage once the threshold voltages (around ~45 V in Figure
4.38b) are reached to start the electron emission. Once the emission is fully operating,
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Figure 4.39
|a) A carban nonotube [CNT) is o whiskerdika, vary thin and long carbon molecule with rounded ends, almast the
perfect shope to be an electron field-emitier.

{b) Multiple CTHTs 03 electron emitters,

le) A single CMT as an emitter.
| SOURCE: Courtesy of Profecsor W | Milne, University of Cambridge; G. Firie et ol Menatechaalogy, 13, 1, 200Z.

{4 versus Ve follows the Fowler—Nordheim emission, A plot of In{f,/ 'L’é] Versus
1/ ¥V is a straight line as shown in Figure 4.38¢.

Field emission has a number of distingt advantages, It is much more power effi-
cient than thermionic emission which requires heating the cathode to high tempera-
ures. In principle, field emission can be operated at high frequencies (fast switching
times) by reducing various capacitances in the emission device or controlling the elec-
tron flow with a grid. Field emission has a number of important realized and potential
applications: field emission microscopy, microwave amplifiers (high power and wide
bandwidth), parallel electron beam microscopy, nanolithography, portable X-ray gen-
erators, and FEDs. For example, FEDs are thin flat displays (~2 mm thick}, that have
a low power consumption, quick start, and most significantly, a wide viewing angle of
about 170°. Monochrome FEDs are already on the market, and color FEDs are ex-
pected to be commercialized soon, probably before the fourth edition of this text,

Typically molybdenum, mngsten, and hafnium have been used as the field-emission
tip tnaterials. Micromachining (microfabrication) has lead to the use of 5i emission
tips as well. Good electron emission characteristics have been also reported for
diamond-like carbon films. Recently there has been a particular interest in using car-
bon nanotubes as emitiers. A carbon nanotube (CNT) is a very thin filament-like car-
bon molecule whose diameter is in the nanometer range but whose length can be quite
long, e.g., 10100 microns, depending on how it is grown or prepared. A CNT is made
by rolling a graphite sheet into a ube and then capping the ends with hemispherical
buckminsterfullerene molecules {(a half Buckyball) as shown in Figure 4.3%a. De-
pending on how the graphite sheet is rolled up, the CNT may be a metal or a serm-
conductor'?. The high aspect ratio (length/diameter) of the CNT makes it an efficient

12 Carbon nanohubes con be singlewolled or muliwalled fwhen the grophite sheets ore wiapped meee than ance)
ond con have quite complicated struchures. There is no doubt thet ey posses some remarkable properties, o it is
likzhy that CRTs will eventyally be used in various enginesring opplications. See, for ecaomple, M, Baxendole,

I Mater, Sei.: Moter Electron, 14, 657, 2003,
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electron emitter. If one were to wonder what is the best shape for an efficient field
emission tip, one might guess that it should be a sharp cone with some suilable apex
angle. However, it turns out that the best emitter is actually a whisker-type thin [ila-
ment with a rounded tip, much like a CNT. It is as if the CNT has been designed by na-
ture to be the best field emitter. Figure 4.39b and ¢ shows SEM photographs of two
CNT Spindt-type emitters. Figure 4.39b has several CNTs, and Figure 4.3% just one
CNT for electron emission. (Which is more efficient?)

FIELD EMISSION  Ficld emission displays operate on the principle that electrons can be readily
emitied from a microscopic sharp point source (cathode) that is biased negatively with respect

to a neighboring electrode (gare or grid) as depicted in Figure 4.382, Emited electrons impinge

on colored phosphors on a screen and cause light emission by cathodoluminescence. There are

millions of these microscopic {ield emitiers (o constitute the image. A particular field emission

cathode in a field-emission-rype flat panel display gives a current of 61.0 pA when the voltage

between the cathode and the grid is 50 V. The current is 279 pA when the voltage is 58.2 V. What

15 the current when the voltage 15 56.2 V7

SOLUTION
Equation 4.47 related Ty to Vi,

b
I, = aVzexp(——)
4 G Ve

where a and b are constants that can be determined from the two sets of data given. Thus,
6l.0 pa 0 e ( 2 ) and 279 pA 58.2% ex ( . )
: = Apl = — = aif. -
RN T B4 P\ 7582

Dividing the first by the second gives

61.0 an? [ ( [ 1 )]
— -exp| —b| — = ——
i TR s 582

which can be salved to obtain & = 431.75 V and hence & = 137.25 pA/VZ AtV = 582 W,

431,75
56.2

The experimental value for this device was 202 pA, which happens to be the device in Figure
4.37h (close).

F=(137.25)(56.2)° mp(— ) = 200 pA

4,10 PHONONS

4.10.1 HaArMONIC OSCILLATOR AND LATTICE WAVES

Quantum Harmonic Oscillator 1n the classical picture of a solid, the constituent
atoms are held together by bonds which can be represented by sprnngs. According to
the kinetic molecular theory. the atoms in a solid are constantly vibrating about their
equilibrium positions by stretching and compressing their springs. The oscillations are
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{a) Harmenic vibrations of an atom ahout its equilibrium posifion ossuming its neighbors are fixed,
{b) The PE curve Vx| versus displacement from equilibrivm, x.
|c) The energy is quantized.

assumed 1o be simple harmonic g0 that the average kinetic and polential energies are
the same. Figure 4.40a shows a one-dimensional independent simple harmonic oscil-
lator that represents an atom of mass M attached by springs to fixed neighbors. The
potential energy Vix) is a function of displacement x from equilibrium, For small
displacements, ¥ (x) is parabolic in x, as indicated in Figure 4.40b, that is,

Vix) = %_ﬂxz [4.48]

where £ is a spring constant. The instantaneous energy, in principle, can be of any
value. Equation 4.48 neglects the cubic term and is therefore symmetric about the
equilibrium position at x = 0. It is called a harmonic approximation to the PE
curve.

In modern physics, the energy of such a harmonic oscillator must be caleulated
using the PE in Equation 4.48 in the Schriddinger equation so that

& 2 (E - lﬁxz)ﬁr =0 [4.49]
fx? #? 2

The solution of Equation 4 49 shows that the energy E,, of such a harmonic oscil-

lator is quantized,
I
E, = (n -+ E) ) [4.50]

where w is the angular frequency of the vibrations'* and » is a quantum number
0,152,300 The oscillation frequency is determined by the spring constant £ and the
mass M through w = (8/M)'/2. Figure 4.40c shows the allowed energies of the quan-
turm mechanical harmonic oscillator.

| '* Hancefarth frequency will imphy o



a4.10 PHONONS

LIS VNG D Y R VYV GV I WY @ VS @ VIV

No vibrations
—r=, ra

S I | T—-Ii' A
0 a 2a ra (N-1Ia

@ @ ©® B ® 0 6 @ @ Lwe

@ @ ® GI ® 9 _— @) Ty

Figure 4.41
|a) A chain of M atoms through a erysial in the absence of vibrations.

{b) Cowpled atomic vibrations generate o roveling lengitudingl |L} wave along x. Atemic displocements [u,) are

parallel o x.

lc) A transverse (T| wave taveling along x. Atomic displocements () are perpendicular fo the x axis. (b} and

{c) are snopshoats at one instant.

It is apparent that the minimum energy of the oscillator can never be zero but must
be a finite value that is Ep = ilhm. This energy is called the zero-point energy. As the
temperature approaches 0 K, the harmonic oscillator would have an energy of E; and
not zero. The energy levels are equally spaced by an amount Aer, which represents the
amount of energy absorbed or emitted by the oscillator when it 15 excited and de-
excited to a neighboring energy level. The vibrational energies of a molecule due to its
atoms vibrating relative to each other, e g., the vibrations of the Cl; molecule in which
the C1-C1 bond is stretched and compressed, can also be described by Equation 4.5().

Phonons Atoms in a solid are coupled to each other by bonds. Atomic vibrations are
therefore also coupled, These coupled vibrations lead to waves that involve coopera-
tive vibrations of many atomns and cannot be represented by independent vibrations of
individual atoms. Figure 4.4 14 shows 4 chain of atoms in a erystal. As an atom vibrates
1t transfers its energy to neighboring vibrating atoms and the coupled vibrations pro-
duce traveling wave-trains in the crystal.'” (Consider grabbing and strongly vibrating
the first atom in the atomic chain in Figure 4.414. Your vibrations will be coupled and
transferred by the springs to neighboring atoms in the chain along x.} Two examples
are shown in Figure 4.41b and c. In the first, the atomic vibrations are parallel Lo the
direction of propagation x and the wave is a longitudinal wave. In the second, the
vibrations are transverse to the direction of propagation and the corresponding wave is
a transverse wave, Suppose that x, is the position of the rth atom in the absence of
vibrations, that is, x, = ra, where r is an integer from 0 to N, the number of atoms in
the chain, as indicated in Figure 4.4 1a. By wniting the mechanical equations (Newton's

| (L™ 'Il'u: presence of n:hupling, ||"||: individuul alams de ned sxecule si||'||:||e harmonie motion.
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second law) for the coupled atoms in Figure 4.41a, we can show that the displacement
i, from equilibrium at a location «, is given by a traveling-wave-like behavior,1*

e = Adexp[j(Kx —er)] [4.51]

where A is the amplitude, K is a wavevector, and w is the angular frequency. Notice
that the & x, term is very much like the usval kx phase term of a traveling wave prop-
agating in a continuous medium; the only difference is that X x, exists at discrete x,
locations. The wave-irain described by Equation 4.51 in the crystal is called a lattice
wave. Along the x direction it has a wavelength A = 2x /& over which the longitudi-
nal {or transverse) displacement u, repeats itself. The displacement « . repeats itself at
one location over a time period 27 /w. A wave traveling in the opposite direction to
Equation 4.51 is of course also possible. Indeed, two oppositely traveling waves of the
same frequency can interfere to set up a stationary wave which is also a lattice wave.

The lattice wave described by Equation 4.51 is a Aarmonic oscillation with a fre-
quency « that itself has no coupling to another lattice wave. The energy possessed by
this lattice vibration is gquantized in much the same way as the enerpy of the quantized
harmonic oscillator in Equation 4.50. The energy of a laitice vibration therefore can
only be multiples of hw above the zero-point energy, lzﬁw. The quantum of energy fiw
is therefore the smallest unit of lattice vibrational energy that can be added or sub-
tracted from a lattice wave. The quantum of lattice vibration hew is called a phonon in
analogy with the quantum of electromagnetic radiation, the photon. Whenever a lattice
vibration interacts with another lattice vibration, an electron or a photon, in the crystal,
it does so as if it had possessed a momentum of kK. Thus,

Epﬂulm = ﬁﬂl = hv [4.52]
Ppbonon = ALK [4.53]

The frequency of vibrations « and the wavevector K of a lattice wave are related,
If we were to use Equation 4.51 in the mech_f,lﬂcal equations that describe the coupled
atomic vibrations, we would find that -
1
sin ( 5 K a)

K g 12
“"2(1?)

which relates « and X and is called the dispersion relation, Figure 4.42 shows how
the frequency e of the lattice waves increases with increasing wavevector K, or de-
creasing wavelength A. From Equation 4.54, there can be no frequencies higher than
@mx = 208/ M2, which is the lattice cut-off frequency, Both longitudinal and
transverse waves exhibit this type of dispersion relationship shown in Figure 4.42a
though their exact K curves would be different depending on the nature of
interatomic bonding and the crystal structure. The dispersion relation in Equation 4.54
is pefodic in K with a period 2 /a. Only values of K in the range =m/a < K < n/a
are physically meaningful. A point A with & 4 is the same as a point B with K p because
we can shift K by the peniod, 27 /a2 as shown in Figure 4 42a,

[4.54]

'® The expanential nobalion for @ wove is comvenient, but wa hove to cansider anfy the real part ke cchually
represent the wave in the physioal werld.
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Figure 4.42
(] Frequency o versus wavewactor K relationship for loftice woves,
(B] Group velociry v, versus wavevector K,

The velocity at which traveling waves carry energy is called the group velocity v,
of the wave.!” It depends on the slope dw/dK of the w—K dispersion curve, so for

lattice waves,
d i 1
vy = d—% = (%) acos(iﬁa) [4.551]

which is shown in Figure 4.42b. Points A and B in Figure 4 42a have the same group
velocity and are equivalent.

The number of distinct or independent lattice waves, with different wavevectors,
in a crystal is not infinite but depends on the number of atoms V. Consider a linear
crystal as in Figure 4.43 with many atoms. We will take N to be large and ignore the
difference between N and N — 2, The lattice waves in this crystal would be standing
waves represented by two oppositely traveling waves, The crystal length L. = Na can
support multiples of the half-wavelength ;-A as indicated in Figure 4.43,

A
:,:E=L2Na g=10E 80 [4.56a)
gr _ gm
K=—=— =l oo 4.56b
ar o o g [ ]

where g is an integer. Each particular K value K, represents one distinct lattice
wave with a particular frequency as determined by the dispersion relation. Four ex-
amples are shown in Figure 4.43, Each of these K, values defines a mode or state of
lattice vibration. Each mode iz an independent lattice vibration. Its energy can be
increased or decreased only by a quantum amount of e, Since K, values outside the
range —xw/a < K < m /o are the same as those in that range (A and B are the same

| 7 For those readers wl'bu are nod familior with the group vulnr,il}l m:ln&upl, this is discusied in Eh.aplet 9 weitheat
prerequisite material.
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in Figure 4.42a), it is apparent that the maxirmum value of g is & and thus the num-
ber of modes is also N, Notice that as ¢ increases, A decreases. The smallest A oc-
curs when alternating atoms in the crystal are moving in opposite directions which
corresponds to 1 sh =a, that is, g = N, as"shown in Figure 4.43. In terms of the
waveveetor, K = 2a/A = m/a. Smaller wavelengths or longer wavevectors . are
meaningless and correspond to shifting K by 2 multiple of 2x/a. Since & is large,
the w versus K curve in Figure 4.42a consists of very finely separated distinct
points, each corresponding to a particular g, analogous to the energy levels in an en-
ergy band.

The above ideas for the linear chain of atoms can be readily extended to a three-
dimensional crystal, If L, L., and L, are the sides of the solid along the x, v, and z
axes, with N, N, and N, number of atoms, respectively, then the wavevector compo-
nents along x, v, and 7 are

DT _ BT g7

= .= 4.
i y="7 K= [4.571

K=
¥
where the integers g, ¢,. and ¢, run from 1 to N,, ¥,, and N, respectively. The total
number of permitted modes is N, N, N; or N, the total number of atoms in the solid.
Vibrations however can be set up independently along the x, v, and z directions so that
the actual rumber of independent modes is AN,

4102 DepYE HEAT CAPACITY

The heat capacity of a solid represents the increase in the internal energy of the crystal
per unit increase in the temperature, The increase in the internal energy is due to an
increase in the energy of lattice vibrations. This is generally true for all the solids ex-
cept metals at very low temperatures where the heat capacity is due to the electrons
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near the Fermi level becoming excited to higher energies. For most practical tempera-
ture ranges of interest, the heat capacity of solids is determined by the excitation of lat-
tice vibrations. The molar heat capacity C,, is the increase in the internal energy U,,
of a crystal of &4 atoms per unit increase in the temperature at constant volume,'? that
i5, Cpy = dlip fdT.

The simplest approach to calculating the average energy is first to assume that all
the lattice vibrational modes have the same frequency . (We will account for differ-
ent modes having different frequencies later.) If £, is the energy of a harmonic oscil-
lator such as a lattice vibration, then the average energy, by definition, is given by

[~z

E,P(E;)

E=" 14.58]

Ma|®

_ PLED)

w=0

whete P(E,) is the probability that the vibration has the energy E, which is pro-
portional to the Boltemann factor, Thus we can use P{E.) oc exp{—F,/kT) and
E, = (n + 1)hw in Equation 4.58. We can drop the zero-point energy as this does not
affect the heat capacity (which deals with energy changes). The substitution and cal-
culation of Equation 4.58 yields the vibrational mean energy at a frequency w,

B

ex (l‘i_m] — 1
P\ aT

’

E{fr}.} = [4'59]

This energy increases with temperature. Each phonon has an energy of fim. Thus,
the phonon concentration in the crystal increases with temperature; increasing the
lemperature creates more phonons. 1{

To find the internal energy due to aff the lattice vibrations we must also consider
how many modes there are at various frequencies, that is, the distribution of the modes
over the possible frequencies, the spectrum of the vibrations. Suppose that gie) is the
number of modes per unit frequency, that is, gle)) is the density of vibrational states
or modes. Then glo) dw is the number of states in the range dew. The internal energy
U, of all lattice vibrations for 1 mole of solid is

T
Uy = j E{w)glm) de [4.40]
|

1]
The integration is up to a certain allowed maximum frequency wp., (Figure 4.42a).

The density of states giw) for the lattice vibrations can be found in a similar fashion to
the density of states for electrons in an energy band, and we will simply quote the result,

oy = AV w?
) T ———

[4.61]
2g? 3

"% Cansant volume in the definition means thol the heat added to the system incraoses the insernal enengy without
deing machanical wark by changing the valume.
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Figure 4,84 Density of stotes for phonons in copper,

The solid curve is deduced from experiments on neutron
scattaring. The broaken curve is the three-dimensional Debye
opproximation, scoled so that the oreas under the fwio curves

are the same.
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where v is the mean velocity of longitudinal and transverse waves in the solid and Vis
the volume of the crystal. Figure 4.44 shows the spectrum giw) for a real crystal such
as Cu and the expression in Equation 4.61. The maximum frequency 15 e, and is de-
termined by the fact that the total number of modes up 10wy, must be 38 4. 1tis called
the Debye frequency. Thus, integrating gia) up (0 @y, we find,

wWmax 5= V(6N VY [4.62]

This maximum frequency ain,, corresponds to an energy R and to a tempera-
ture Tp defined by,
Bréma l.-f"

To = [4.63]

and is called the Debye temperature. Qualitatively, it represents the temperature
above which all vibrational frequencies are executed by the lattice waves.

Thus, by using Equations 4.59 to 4.63 in Equation 4.60 we can evaluate &/, and
hence differentiate L7, with respect to temperature 1o obtain the molar heat capacity at

constant volume,
T E‘fﬁ*“ xtet dx
Cw =9R( — — 4.64
" (Tp) o (e* —1)? G

which is the Debye heat capacity expression.

Figure 4.45 represents the constant-volume molar heat capacity C,, of nearly
all crystals, Equation 4.64, as a function of temperature, normalized with respect
to the Debye temperature. The Dulong—Petit rule of C,, = 3R is only obeyed
when T = Tp. Notice that Cp, at T =0.5Tp is (.825(3R) whereas at T = Tp it
is D.952(3R). For most practical purposes, Cn, is to within & percent of 3R when
the temperature is at (.97, For example, for copper Tp = 315 K and above
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Figure 4.45 Debye constantvelume malar heat capacity curve,

The dependence of the malar heat capacity Cn on temperature with respect 1o the
Debve temperature: O, versus T/ Tp. For 31, Tn= 6235 K, so al rcom lemperature
300 K), T/Tp = 0.48 and Cpy is anly 0.81 (3R).

ghout (.97 5, that is, above 283 K (or 10°C), Cp, = 3R, as bomne out by e.‘atrllfrrin'u:rnt.';.";|
Table 4.5 provides typical values for Tp, and heat capacities for a few selected ele-
ments. It is left as an exercise to check the accuracy of Equation 4.64 for predicting the
heat capacity given the Tp values. At the lowest temperatures when T <« Tp, Equation
4,64 predicts that C,, o T, and this is indeed observed in low-temperature heat ca-
pacity experiments on a variety of crystals.”

It 15 useful to provide a physical picture of the Debye model inherent in Equa-
tion 4.64. As the temperature increases from near zero, the increase in the crystal's
vibrational energy is due to move phonons being created and higher frequencies being
excited. The phonon concentration increases as T*, and the mean phonon energy
increases as T'. Thus, the internal energy increases as T*. At temperatures above T,
increasing the temperature creates more phonons but does not increase the mean
phonon energy and does not excite higher frequencies. All frequencies up to wy,y have
now been excited. The internal energy increases only due to more phonons being cre-
ated. The phonon concentration and hence the internal energy increase as T'; the heat
capacity is constant as expected from Equation 4.64.

¥ S omalimes it is shated that the Debye femperature is a charocteristics semperature for each matarial at which ofl
tha aloms are able b possEss wibsrational kinetic energies in aogordance with the Moxwell squipartitian of enErgy
principle; that is, the overcge vibrafionol kinetic energy will be 3 kT per atom and overoge potential enengy will
alse ba 3 kT, This means thot the overage enargy per otom is EET. ond hence the heat capacity is JEM,, or IR per
mecle which is the Dufnl?g -Pahi rinle.

®'\Wallknown axcepfions ara glosses, noncryskalline salids, whase heat capocity is proportional bo o T+ aal?,
where &) and o gre consbanks.
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Table 4.5 Debye temperatures To, heat capacities, and thermal conductivities of selected elements

Crysial
Ag Be Cu Diamoid Ce Hg Si W
Tol(KY 215 1000 315 LB Jal 100 625 30
CuI K- mol=h" 256 1646 24.5 L 2338 27.64 19.74 24.45
T gy 0,237 1,825 3835 05340 R (138 0,703 0133
wiWm 'Ky 41 1583 385 1000 al £.05 145 173

* T Is abloined by fiting the Debye curve to the expedmental molar heat copacity deta ol the peint O, =£- [3Ry.
T, &, ond x cre at 25 7,

SOURCE: To daba frem ). De Lavray, Solid State Physics, wal. 2, F Seitz and [, Turnbull, eds., Academic Pross,
Flew York, 1958

It is apparent that, above the Debye temperature, the increase in temperature leads
to the creation of more phonons, In'€hapters 1 and 2, using classical concepls only, we
had mentioned that increasing the temperature increases the magnitude of atorme wi-
brations. This simple and intuitive classical concept in terms of modern physics corre-
sponds to creating more phonons with temperature. We can wse the photon analogy
from Chapter 3. When we increase the intensity of light of a given frequency, classi-
cally we simply increase the electric field (magnitude of the vibrations), but in modemn
physics we have to increase the number of photons flowing per unit area.

EXAMPLE 4.15

SPECIFIC HEAT CAPACITY OF 5i  Find the specific heat capacity ¢y of a silicon crystal ai room
temperature given T = 625 K for §i.

SOLUTION
At room temperature, T = 300 K, (T/Tg) = 0.48, and, from Figurc 4.45, the molar heat
capacity 1s
Cn=081(3R) =202 K" mot™'
The specific heat capacity ¢, from the Debye curve is
Cn ,_ (081 x 25 TK ™" mol™")
My, (28.09 g mol ')

O =

=0721K g

The experimental value of 0.70 ] K~ g=" is very close to the Debye value.

SPECIFIC HEAT CAPACITY OF GaAs Example 4,15 applied Equation 4,64, the Debye molar
heat capacity Ty, , to the silicon crystal in which all atoms are of the same type. It was relatively
simple to calculate the specific heat capacity ¢, (what is really used in engineering) [rom the
moelar heat capacity O, by using ¢, = C, /M, where M, is the alomic mass of the type of atom
{only one) in the crystal. When the crystal has two types of atoms, we must modify the specific
heat capacity derivation. We can still keep the symbol Oy to represent the Debye molar heal
capacity given in Equation 4.64, Consider a GaAs crystal that has N, unils of GaAs, that is,
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1 mole of GaAs. There will ba 1 mole (&, atoms) of Ga and 1 mole of As atoma. To a reason-

able approximation we can assume that each mole of Ga and As contributes a C,, amount of heat

capacity so that the total heat capacity of 1 mole GaAs will be C,, + C,. or 20, , a maximum of

50 1 K~" mol~'. The total mass of this 1 mole of GaAs is Mg, + M. Thus, the specific heat

capacity of GaAs is

Specific kel
= = 'I'.‘E-IPHL'I-I}' U_]r-
ww Man + Mas Moy + My Gads

which can alternatively be written as

Clioml Com + 20,
M

o=

Specifte heat

= Cm _Cn capacity of a
oM Ma + M) M polvatomic

where M = (Mg, + M, }/2 15 the average atomic mass of the constituent atoms. Although we erystal

derived e, for GaAs, it can also be applied to other compounds by suitably calculating an aver-
age atomic mass M. GaAs has a Debye temperature Ty, = 344 K| 5o that ata room temperature
of 3 K, T/ Ty = 0.87, and from Figure 4.45, T, /{3R)} = 0.94. Therefore,

i (094325 JK " mol™")
M 16972 gmol™' + 74.92 gmal ™)
At —40 °C, T/Tp = 0.68, and Ci/(3R) = 0.90, so the new ¢, = (0.90/0.94)(0.325) =
0311 JE" g ', which iz not a large change in ¢,
The heat capacity per unit volume C, can be found from €, = ¢, p, where ¢ is the density.
Thus, at 300 K, €, = (0325 T K- g"3532 gem ™) = 1.73 T K-! em~*. The calculated «,
match the reported experimental values very closely.

i —03251K " g

LATTICE WAYES AND SOUND VELOCITY  Consider longitndingl waves in a linear crystal anm
three atoms atr — 1, ¢, and r + 1 as in Figure 4. 46 The displacement of each atom from equi-

librism in the +x direction is #._, 4,. and u.. |, respectively. Conzider the rth atom. Its bond

with the left neighbor stretches by (u, — ). Its bond with the right neighbor sireiches by

oy = u,), The left spring exerts a force B{u, — w,), and the right spring exernts a force

B,y — u,). The net force on the rth atom is mass » acceleration,

du,
Net force = flu, o —we) — Blu, —w, ) = Ma‘_rf
du, Wave
50 M T Bliargs — 20, + up1) [4.65] equarion

This is the wave equation that describes (he coupled longitudinal vibrations of the atoms
in the crystal, A similar expression can also be derived for transverse vibrations. We can substi-
tute Equation 4.51 in Equation 4.65 to show that Equation 4.51 is indeed a solution of the wave

i t, L Figure 4.46 Aloms axeculing
—n e e tongitudinal vibrations parallel fo x.
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equation, [t is assumed that the crystal tesponse is linear, that is, the net foree is proportional to
net displacement.

The group velocity of latice waves is given by Equation 4.55. For sufficiently small £, or
long wavelengths, such that ; Ka <« |,

142 1z

1
U = (%) aws(iﬂ'a) = (%) a
which is a constant, It is the slope of the straight-line region of & versus & curve for small &
values in Figure 4,42, Furthermore, the elastic modulus ¥ depends on the slope of the net force
versus displacement curve as derived in Example 1.5. From Equation 4.48 Fy = dV /dx = fix

and hence ¥ = f#/a. Moreover, each atom occupies a volume of a*, so the density p is M /a®.
Substituting both of these results in Equation 4.66 yields

¥ 12
W —
y ( p )
The relationship has o be modified for an actual crystal incorporating a small numerical
factor multiplying ¥. Aluminum has a density of 2.7 g ¢m™ and ¥ = 70 GPa. so the long-

wavelength longitudinal velocity from Equation 4.67 is 3092 m 5! The sound velocity in Al is
S5100ms!, wipehris very close,

[4.66]

[4.47]

Thermal
conductivity
due to
Phonons

4.10.3 THERMAL CONDUCTIVITY OF NONMETALS

In nonmetals the heal transfer involves latiice vibrations, that is, phonons, The heat ab-
sorbed in the hot region increases the amplitudes of the lattice vibrations, which is the
same as generating more phonons. These new phonons travel toward the cold regions
and thereby transport the lattice energy from the hot to cold end. The thermal
conductivity « measures the rate al which heat can be transported through a medium
per umil area per umit temperature gradient. It is proportional to the rate at which a
mediurn can absorb energy; that is, « is proportional to the heat capacity, & is also pro-
portional (o the rate at which phonons are transported which is determined by their
mean velocity . In addition, of course, « is proportional (o the mean free path £, that
a phonon has to travel before losing its momentum just as the electrical conductivity is
proportional to the electron’s mean free path. A rigorous classical treatment gives & as

K = $C,upnbo [4.68)

where ., is the heat capacity per unit volume. The mean free path £, depends on var-
ious processes that can scatter the phonons and hinder their propagation along the di-
rection of heai flow. Phonons collide with other phonons, crystal defects, impurities,
and crysial surfaces.

The mean phonon velocily vy, is constant and approximately independent of tem-
perature. Al temperatures above the Debye temperature, C, is constant and, thuos,
k o £y, The mean free path of phonons at these lemperatures is determined by
phonon—phonon collisions, that is, phonons interacting with other phonons as depicted
in Figure 4.47. Since the phonon concentration i, increases with temperatre, ny, o« T,
the mean free path decreases as £, oo 1/ T. Thus, « decreases with increasing tempera-
ture as observed for most crystals at sufficiently high lemperatures.
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The phonon—phonon collisions that are responsible for limiting the thermal con-
ductivity, that is, scattering the phonon momentum in the opposite direction to the heat
flow, are due to the anharmonicity (asymmetry) of the interatomic potential energy
curve. Stated differently, the net force F acting on an atom is not simply £« but also has
an x? term it is nonlinear. The greater the asymmetry or nonlinearity, the larger is the
effect of such momentom flipping collisions. The same asymmetry that is responsible
for thermal expansion of solids is also responsible for determining the thermal conduc-
tvity. When two phonons 1 and 2 interact in a crystal region as in Figure 4.47, the non-
finear behavior and the periodicity of the lattice cause a new phonon 3 to be generated.
This new phonon 3 has the same energy as.the sum of 1 and 2, but it is traveling in the
wrong direction! {The frequency of 3 is the sum of the frequencies of 1 and 2.)

Al low Llemperatures there are two factors. The phonon concentration is too low for
phonon—phonon collisions to be significant. Instead, the mean free path £y, is deter-
mined by phonon collisions with crystal imperfections, most significantly, crystal
surfaces and prain boundaries. Thus, £4, depends on the sample geometry and crys-
tallimity, Further, as we expect from the Debye model, C, depends on T2, 50 « has the
same temperature dependence as C,, that is, & oo T3. Between the two temperature
regimes « exhibits a peak as shown in Figure 4.48 for sapphire (erystalline AlaOs} and
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Mg() crystals. Even though there are no conduction electrons In these two example
crystals, they nonetheless exhibit substantial thermal conductivity.

EXAMPLE 4.18

PHOMONMS IN GaAs  Estimate the phonon mean free path in GaAs at room emperamre 300 K
and at 20 K from its x, ', and vy, using Equation 4.68. At room temperature, semiconductor
data handbouks list the following for Gads; v = 45 Wm ' K, elastic modulus ¥ = §5 GPa,
density p =532 g cm?, and specific heat capacity ¢, = 0325 TK ' g~!, At 20 K, x =
4000 Wm ' K "ande, = 0.,0052 JK~' 27", ¥ and p and hence v do not change significantly
with temperature compared with the changes in ¢ and C, with lemperature,

SOLUTION
The phonon velocity vy from Equation 4.67 is approximately
¥ II," 85 x 10°N m-2

TR Y (S il b

TV e T V52 x 10 kgm?

Heal capacity per unit volume C, = ¢,0 = (325 K kg 1(5320 ke m ™ = 1.73 » 10" ) K!

m~*. From Equation 4,68, x = $C, v,

Fio * (345 Wm'K ")

T Cov (LT3 x 10° K- m?) (4000 ms—)

We can easily repeat the calculation at 20 K, given x = 4000 Wm™' K~ and e, = 5.2 TK™!
kg L so O =cp = (52TK T kg T NS320 kg m™) =277 = W0 JK'm™®. ¥ and o and
hence vy, (= 4000 m s~ '), do nut change significantly with temperature compared with x and C,.
Thus,

= 4000 m s~

=2.0x 10"%m ar 20 nm

. (34 % 100 Wm™ K="
Covyy (277 = 1P TK-'m*)(dd0ms—)

For small specimens, the above phonon mean free path will be comparable o the sample size,
which means that £, will actually be limited by the sample size. Consequently & will depend
on the sample dimensions, being smaller for smaller samples, similar to the dependence of the
electrical conductivity of thin films on the film thickness.

£on = =1.1x10"*m or 0.011 cm

4,104 ELECTRICAL CONDUCTIVITY

Except at low temperatures, the elecirical conductivity of metals is primarily con-
trolled by scattering of electrons around E, by lattice vibrations, that is, phonons.
These electrons have a speed vp = (2Ep fm % and a momentum of magnitude
m v . We know that the electrical conductivity ¢ is proportional to the mean collision
time t of the clectrons, that is, o o 1. This scatiering time assumes that each scatter-
ing process is 100 percent efficient in randomizing the cleetron’s momentum, that is,
destroying the momentum gained from the field, which may not be the case. If it takes
on average N collizsions to randomize the clectron’s momentum, and t is the mean
time between the scattering events, then the effective scattering time is simply Nt and
o oo M. (17N indicates the efficiency of each scattering process in randomizing the
velocity.)
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Figure 4.49 shows an example in which an electron with an initial momentum p;
collides with a lattice vibration of momentum 2K, The result of the interaction is that
the electron’s momentum is deflected through a small angle 8 to p, which still has a
component along the original direction x. This is called a low-angle scattering process.
It will take many such collisions to reverse the eleciron’s momentum which corre-
sponds to flipping the momentum along the +-x direction to the —x direction. Recall
that the momentum gained from the field is actually very small compared with the mo-
mentum of the electron which is m,ve. A scattered electron must have an encrgy close
to Er because lower energy states are filled. Thus, p; and py have approximately the
same magnitude p; = py = m,vr as shown in Figure 449,
Al temperatures sbove the Debye temperature, we can assume that most of the
phonons are vibrating with the Debye frequency ., and the phonon concentration
o increases as 7. These phonons have sufficient energies and momenta to fully scat-
ter the electron on impact. Thus, / "
| 1 Flectrical
F o T O — X — [4.6%a]  conductivity
ren T T To
When T < Tp, the phonon concentration follows ng, = 77, and the mean phonon
ETIETEY Eph o T, because, as the temperature is raised, higher fr:.quenues are excited.
However, these phonons have low energy and small moments, thus they only cause
small-angle scattering processes as in Figure 4,49, The average phonon momentum
hK s also proportional to the temperature (recall that at low frequencies Figure 4.42a
shows that Aw o AK'), Tt will take many such collisions, say N, to flip the electron’s
momentumn by 2m,ur tfrom +m,up to —m.up. During each collision, a phonon of
momentumn 2K is absorbed as shown in Figure 4.49, Thus, if all phonons deflected the
electron in the same angular direction, the collisions would sequentially add to 8 in
Figure 4.49, and we will need (2m.vr)/(RK ) number of steps to flip the electron’s mo-
mentum, The actual collisions add ¢'s randomly and the process is similar to particle
diffusion, random walk, in Example 1.12 (L? = Na®, where I = displaced distance
after A jumps and @ = jump step). Thus,

(Zmoe)t 1
=_— —
{:ﬁ-K _]2 T'l
The conductivity is therefore given by Elecirical
N 1 comductivity
ogx Neox — o — [4.69b] . 7,
J‘Eph Tj SR
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which is indeed observed for Cu in Figure 2.8 when 7' = Tp over the range where
impurity scattering is negligible.

ADDITIONAL TOPICS
411 BAND THEORY OF METALS: ELECTRON
DIFFRACTION IN CRYSTALS

A rigorous treatment of the band theory of solids involves extensive quantum mechan-
ical analysis and is beyond the scope of this book. However, we can attain a satisfac-
tory understanding through a semiquantitative treatment.

We know that the wavefunction of the electron moving freely along x in space is
a traveling wave of the spatial form y(x) = exp(ikx), where & is the wavevector
k = 2 /2 of the electron and &k is its momenturn. Here, ¥ {x) represents a traveling
wave because it must be multiplied by exp(— jwt), where w = E /A, to pet the total
wavefunction W (x, 1) = exp[i(kx — wt)].

We will assume that an electron moving freely within the crystal and within a
given energy band should also have a traveling wave type of wavefunction,

velx) = Aexp(jkx) [4.70]

where k is the electron wavevector in the crystal and A is the amplitude, This is a rea-
sonable expectation, since, to a first order, we can take the PE of the electron inside a
solid as zero, V = 0. Yet, the PE must be large outside, so the electron is contained
within the crystal. When the PE is zero, Equatiq:vn 4.70 is a solution to the Schridinger
equation. The momentum of the electron described by the traveling wave Equation 4.70
is then &k and its energy is

(k)

E, = [4.71]
: 2m,

The electron, as a traveling wave, will freely propagate through the crystal. How-
ever, not all traveling waves, can propagate in the lattice. The electron cannot have any
k value in Equation 4.70 and still move through the crystal, Waves can be reflected and
diffracted, whether they are electron waves, X-rays, or visible light, Diffraction occurs
when reflecied waves interfere constructively. Certain k values will cause the electron
wave 10 be diffracted, preventing the wave from propagating,

The simplest illusiration that certain k values will result in the electron wave being
diffracted is shown in Figure 4.50 for a hypothetical linear lattice in which diffraction
is simply a reflection (what we call diffraction becomes Bragp reflection). The electron
is assumed Lo be propagating in the forward direction along x with a traveling wave
function of the type in Equation 4.70, Al each alom, some of this wave will be re-
flected, At A, the reflected wave is A" and has @ magnitude A’ If the reflected waves
A’ B, and C" will reinforce each other, a full reflected wave will be created, traveling
in the backward direction. The reftected waves A', BY, C°, . . . will reinforce cach other
if the path difference between A', B', ', .. is nh, where i is the wavelength and
n=1,23, ... isan integer, When wave B’ reaches A’, it has traveled an additional
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distance of 2a. The path difference between A’ and B’ is therefore 2a. For A’ and B' to
reinforce each other, we need

da = nh =123
Substituting A = 27 /&, we obtain the condition in terms of &

k=" =123, [4.72]
I
Thus, whenever & is such that it satisfies the condition in Equation 4.72, all the re-
flected waves reinforce each other and produce a backward-traveling, reflected wave
of the following form (with a negative k value):

Woplx) = A exp{a—jkxj[\ [4.73]

This wave will also probably suffer a reflection, since its & satisfies Equation 4,72,
and the reflections will continue. The crystal will then contain waves traveling in the
forward and backward directions. These waves will interfere to give standing waves
inside the crystal. Hence, whenever the & value satisfies Equation 4.72, traveling
waves cannot propagate through the lattice. Instead, there can only be standing waves.
For & satisfying Equation 4.72, the electron wavefunction consists of waves . and
yr_; interfering in two possible ways to give two possible standing waves:

Uolx) = Aexpijkx) + Aexpl(—jkx) = A, ms(n—zi) [4.74]

aTX
Yelx) = Aexplfhx) — Aexp(—jhkz) = A; sin(-—ﬂ—-) [4.75]

The probability density distributions |¥.(x)|> and |, (x)* for the two standing
waves are shown in Figure 4.51. The first standing wave v.(x) is at a maximum on the
ion cores, and the other +, (x) is at 4 maximum between the ion cores. Note also that
both the standing waves r.(x) and ,(x) are solutions to the Schridinger equation.

The closer the electron is to a positive nucleus, the lower is its electrostatic PE, by
virtue of —e{!’ii::sur. The PE of the electron distribution in .(x) is lower than that in
¥r.(x), becanse the maxima for .{x) are nearer the positive ions. Therefore, the en-
ergy of the electron in ¥_(x) is lower than that of the electron in o, (), or E. = E|.
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k=tm/a

[y -
Figure 8.51 Forward and bockward ‘ . e . @ .. Energy = E.:-

waves in the crystal with k = £ 7 /a give
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It is not difficull o evaluate the energies E,. and E,. The kinetic energy of the elec-
tron is the same in both . (x) and v, {x), because these wavefunctions have the same
k value and KE is given by (Ak)*/2m,. However, there is an electrostatic PE anising
from the interaction of the electron with the ion cores, and this PE s different for
the two wavefunctions. Suppose thal V(x) is the electrostalic PE of the electron at
position x, We then must find the average, using the probability density distribution.
Ghven that |y (x)|? dx i the probability of finding the electron at x in dx, the potential
energy V. of the electron is simply Vix) averaged over the entire linear length L of the
erystal. Thus, the potential energy V. for ¢ (x) is

L

V.= i’lf Vi) (x) dx = -V, [4.76]
Ly

where V, is the numerical result of the integration, which depends on & = nx /a ot n,

by virtue of Equation 4.74. The integration in Equation 4.76 is a negative number that

depends on #. We do not need to evaloate the integral, as we only need its final nu-

merical result.

Using |1,|!.r,|:x}|21 we can also find V., the PE gssociated with o, (x). The result is
that ¥, is a positive guantity given by +V,,, where V, is again the numerical result of
the integration in Equation 4.76, which depends on n. The energies of the wave-
functions v, and v, whenever k¥ = n/fa are

{hk)? "
= — Ve k=— 4.
.. 2m, a 4771
(hk)? I
E; = P + V,., k= ? [4.78]

Clearly, whenever & has the critical values nsr /a, there are only two possible val-
ues for the energies E, and E; as determined by Equations 4.77 and 4.78; no other
energies are allowed in between. These two energies are separated by 2V,.

Away from the critical & values determined by & = nm/a, the electron simply
propagates as a traveling wave; the wave does not get reflected. The energy is then
given by the free-running wave solution to the Schridinger equation, that is, Equation
4.71,

(hk)*

2m.

=

nw
Away from & = — [4.79]
a
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Figure 4.52 The energy of the eleciron as a function of ity wovevector k inside o one-dimenzional
crystal,

There are disconfinuities in the energy ot k = +nx/a, where the woves suffer Bragg reflections in the
erystal. For example, there can be no energy value for the electran between £ and £, Therskors, E, - E;
is an enargy gop of k= /o, Away from the critical & values, the E=k behovior is like fhat of a free
aleciron, with £ increasing with kas E= -[f:kfj_.-'?m,. Irv  solid, these energies fall within an energy band,

It seems that the energy of the electron increases parabolically with & along Equa-
tion 4,79 and then suddenly, at & = nm/a, it suffers.a sharp discontinuity and increases
parabolically again. Although the discontinuities al the critical points & = nx/a are
expected, by virtue of the Bragg reflection of waves, reflection effects will still be
present to a certain extent, even within a small region around & = nx/a. The indivi-
dual reflections shown in Figure 4.50 do not oecur exactly at the origing of the atoms
al x = a, 2a, 3u, .. .. Rather, they occur over some distance, since the wave must
interact with the electrons in the ion cores to be reflected. We therefore expect E—4
behavior to deviate from Equation 4.79 in the neighborhood of the critical points, even
if & is not exactly nx /a. Figure 4,52 shows the E-t behavior we expect, based on
these arguments,

In Figure 4.52, we notice that there are cerlain energy ranges occurring at
k = £i{nm/a) in which there are no allowed energies for the electron. As we saw pre-
viously, the electron cannot possess an energy between E. and E, at k = x/a. These
energy ranges form energy gaps at the cntical points k¥ = £i(nm/a).

The range of & values from zero to the first energy gap at k = £(r/a) defines a
zone of & values called the first Brillouin zone, The zone between the first and second
energy gap defines the second Brillowin zone, and so on. The Brillouin zone bound-
aries therefore identify where the energy discontinuities, or gaps, oceur along the £ axis.
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Figure 4.53 Diffraciion of the elecfron in o
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Electron motion in the three-dimensional crystal can be readily understood based
on the concepts described here. For simplicity, we consider an electron propagating in
a two-dimensional crystal, which is analogous, for example, to propagation in the ry
plane of a crystal, as depicted in Figure 4.53. For certain & values and in certain direc-
tions, the eleciron will suffer diffraction and will be unable to propagate in the crystal.

Suppose that the electron’s & vector along x is k. Whenever &) = +nmn fa, the
electron will be diffracted by the planes perpendicular to x, that is, the (10) planes.*!
Similarly, it will be diffracted by the {01) planes whenever iis k& vector along y is
ks = =nx /a. The electron can also be diffracted by the (11) planes, whose separation
is a,-'«.ﬁ. If the component of & perpendicular to the (11) plane is ks, then whenever
ks = :I:mr{vﬁfa}, the electron will experience diffraction. These diffraction condi-
tions can all be expressed through the Bragg diffraction condition 2d sin # = »ni,, or

ksing = o [4.80)
1 = d al

where d is the interplanar separation and n is an integer; d = a for {10} planes, and
d = afﬁfur{ﬂ]lplancs.

When we plot the enerpy of the electron as a function of k, we must consider the
direction of k, since the diffraction behavior in Equation 4.80 depends on sin 8. Along
x, al 8 =0, the energy gap occurs at k& = £(nw/a). Along & = 45°, it is at
k = +nm( v@fa}, which is farther away. The E—k behavior for the electron in the two-
dimensional lattice is shown in Figure 4.54 for the [10] and [11] directions. The figure
shows that the first energy gap along x, in the [10] direction, is at k = = /a. Along the
[11] direction, which is at 437 to the x axis, the first gap is atk = :rﬁ,.-’a.

21 g use Miller indices in two dimansicns by dropping the third digit but keaping the some interpresation. The
direction okang x is [10] ard tha plane perpendicular to = is |10].
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When we consider the overlap of the energy bands along [10] and [11], in the case
of a metal, there is no apparent energy gap. The electron can always find any energy
simply by changing its direction.

The effects of overlap between energy bands and of energy gaps in dilferent di-
rections are illustrated in Figure 4.55. In the case of a semiconductor, the energy gap
along [10¥] overlaps that along [11], so there is an overall energy gap. The electron in
the semiconductor cannot have an energy that falls into this energy gap.

The first and second Brillovin zones for the two-dimensional lattice of Figure 4.53
are shown in Figure 4.56. The zone boundaries mark the occurrences of energy paps in
k space (space defined by £ axes along the x and v directions). When we look at the
E—k behavior, we must consider the crysial directions. This is most conveniently done
by plotting energy contours in & space, as in Figure 4.57. Each contour connects al
those values of & that possess the same energy. A point such as P on an energy contour
gives the value of & for that energy along the direction OF. Initially, the energy con-
tours are circles, as the enerey follows (h k) f2m, behavior, whatever the direction of &,
Howewver, near the critical values, that is, near the Brillowin zone boundanes, £ in-
creases more slowly than the parabolic relationship, as is apparent in Figure 4.52,
Therefore, the circles begin to bulge as critical & values are approached. In Figure 457,
the high-energy contours are concentrated in the comers of the zone, simply because
the critical value is reached last along [11]. The energy contours do not continue
smoothly across the zone boundary, because of the energy discontinuity in the £ -k re-
lationship at the boundary. Indeed, Figure 4.54 shows that the lowest energy in the sec-
ond Brillovin zone may be lower than the highest energy in the first Brillouin zone,

There are two cases of interest, In the first, there is no apparent energy gap, as in
Figure 4.57a, which corresponds to Figure 4.55a The electron can have any energy

AT

Figure 4.54 The E-k behaviar for the eleckon
along different directions in the hvo-dimensional

The energy gap alang [10] is at /o wherens it
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a] For the electron in a metal, thers is no apparent energy gop becouse the second BZ (Brillovin zone) along [10]
averiops the first BZ along [11]. Bonds overlap the energy gops. Thus, the elechion can abways find any anecgy by
changing its direction.

[6) For the electren in o semiconductar, these is an energy gap arising from the overlap of the energy gaps alang the [10]
and [} 1] directions. The electron con never hove on energy within this energy gap £,

Second Brlloun kl [o1] ;

Z00e
/ k, [11]

Firat Brillouin b
zZone i

/ N
> k, [10]

[
E |
=1
Bl;q

Figure &.56 The Brillouin zanas in ko dimensions for
the cubic latice.

The Brillowin zones identify the boundaries where there
are discontinuities in the energy |energy gaps)

value. In the second case, there is a range of energies that are not allowed, as shown in
Figure 4.57b, which corresponds to Figure 4.55b,

In thtee dimensions, the £—k energy contour in Figure 4.57 becomes a surface in
three-dimensional & space. To understand the use of such E-k contours or surfaces,
consider that an £—k contour (or a surface) is made of many finely separated indi-
vidual points, each representing a possible eleciron wavefunction v, with a possible
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Figure 8.5F Energy confours in k spoce {spoce defined by k,, k.
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Eoch contour represents the some energy value, Any point P on the contour gives the values of k, and k, for thot energy in

that direction from O. Far point P, E= 3 eV and OF alang [11] is &

[a] Ino metal, the lowwest energy in the second zone [5 a¥} is lower than the highesl energy |& eV¥) in the first zone. There

is an averlep of energies between the Brillouin zanes,

[b) In @ semicanductor or an insulatar, there is an energy gap between the highest energy contour [6 V] in the first zone

ond the lowest energy contour {10 &%) in the second zone. /

energy E. At absolute zero, all the energies up to the Fermi energy are taken by the
valence electrons. In & space, the energy surface, corresponding to the Fermi energy is
termed the Fermi surface. The shape of this Fermi surface provides 4 means of inter-
preting the electrical and magnetic properties of solids.

For example, Na has one 3s eleciron per atom. In the solid, the 35 band is half full,
The electrons take energies up to £, which corresponds to a spherical Fermi surface
within the first Brillouin zone, as indicated in Figure 4.58a. We can then say that all the
valence electrons (or nearly all) in this alkali solid exhibit an £ = (Rk)*/2m, type of
behavior, as if they were free. When an external force is applied, such as an eleciric or
magnetic field, we can treat the electron behavior as it it were free inside the metal with
a constant mass. This is 4 desirable simplification for studying such metals. We can il-
lustrate this desirability with an example. The Hall coefficient Ry derived in Chapter 2
was based on treating the electron as if it were a free particle inside the metal, or

1
Ry =—-—— [4.81]

en
For Na, the experimental value of Ry is —2.50 x 10-'® m® C-!, Using the density
(0.97 g cm™") and atomic mass (23) of Na and one valence electron per atom, we can
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Figure 8.58 Schematic skeiches of Fermi surfaces in bwa dimensions, representing various materials qualitatively,
[a] Menavalent group 1A metals.

[b] Growp B matals.

[€] Be [Group 4], Zn, and Cd (Greup 1IB).

[d] A semiconductar.

caleulate n = 2.54 = 10% m™ and Ry = —2.46 x 107" m* C~', which is very close
to the experimental value.

In the case of Cu, Ag, and Au (the 1B metals in the Periodic Table), the Fermi sur-
face is inside the first Brillouin zone, but it is not spherical as depicted in Figtire 4.58b.
Also, it touches the centers of the zone boundaries. Some of those elecwrdns near the
zome boundary behave quite differently than £ = (hk)*/2m,, although the majority of
the electrons in the sphere do exhibit this type of behavior. To an extent, we can expect
the free electron derivations to hold, The experimental value of Ry for Cu is
—0.55 x 107" m* C7', whereas the expected value, based on Equation 4.81 with one
electron per atom, is —0.73 x 107" m* C™', which iz noticeably greater than the ex-
perimental value.

The divalent metals Be, Mg, and Ca have closed outer s subshells and should have
a full s band in the solid. Recall that electrons in a full band cannot respond 1o an ap-
plied field and drift. We also know that there should be an overlap between the s and
p bands. forming one partially filled continuous energy band, so these metals are in-
deed conductors. In terms of Brillouin zones, their structure is based on Figure 4.55a,
which has the second zone overlapping the first Brillouin zone. The Fermi surface ex-
tends into the second zone and the corners of the first zone are empty, as depicted in
Figure 4.58c. Since there are empty energy levels next to the Fermi surface, the elec-
trons can gain energy and drift in response to an applied field. But the surface is not
spherical; indeed, near the comers of the first zone, it even has the wrong curvature.
Therefore, it is no longer possible to describe these electrons on the Fermi surface as
obeying £ = (hk)*/2m,. When a magnetic field is applied to a drifting electron to
bend its trajectory, its total behavior is different than that expected when it is acting as
a free particle. The external force changes the momentum A% and the corresponding
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change in the energy depends on the Fermi surface and can be quite complicated. To
finish the example on the Hall coefficient, we note that based on two valence electrons
per atom (Group IIA), the Hall coefficient for Be should be —0.25 % 1071 m* C!,
but the measured value is a positive coefficient of +2.44 x 107'% m* C~'. Equa-
tion 4.81 is therefore vseless. It seems that the electrons moving at the Fermi surface
of Be are equivalent to the motion of positive charges (like holes), so the Hall effect
registers a positive coefficient.

The Fermi surface of a semiconductor is simply the boundary of the first Brillouin
zone, because there is an energy gap between the first and the second Brillouin zones,
as depicted in Figure 4.55b. In a semiconductor, all the energy levels up to the energy
gap are taken up by the valence electrons. The first Brillouin zone forms the valence
band and the second forms the conduction band.

412 GRUNEISEN’S MODEL OF THERMAL EXPANSION

We considered thermal expansion in Section 1.4.2 where the principle is illustrated
in Figure 1.18, which shows the potential energy curve U7 (r) for two atoms sepa-
rated by a distance r in a crystal. At temperature T; we know that the atoms will be
vibrating about their equilibrium positions between positions B and C, compress-
ing (#) and stretching () the bond between them. The line BC corresponds to the
total energy £ of the pair of atoms. The average separation at T is at A, halfway be-
tween B and C. We also know that the PE curve U/ (r) is asymmetric, and it is this
asymmetry that leads to the phenomenon of thermal expansion. When the tempera-
ture increases from I, to T, the atoms vibrate between B and € and the a'n.-craéc
separation between the atoms also increases, from A to A', which we identified as
thermal expansion. If the PE curve wete symmetric, then there would be no ther-
mal expansion.

Since the linear expansion coefficient A is related to the shape of the PE curve,
7(r), it is also related to the elastic bulk modolus K that measures how difficaltitis to
stretch or compress the bonds. X depends on [F{r) in the same way that the elastic
modulus ¥ depends on I7(r) as explained in Example 1.5.2 Further, ) also depends on
the amount of increase from BC to B'C’ per degree of increase in the temperature.
must therefore also depend on the heat capacity, When the temperature increases by a
small amount T, the energy per atom increases by (C, 4T )/ N where C,, is the heat ca-
pacity per unit volume and & is the number of atoms per unit volume. If C,, 8T i3 large,
then the line B'C’ in Figure 1.18 will be higher up on the energy curve and the average
separation A” will therefore be larger. Thus, the larger is the heat capacity, the greater
is the interatomic separation, which means i o C,. Further, the average separation,
point 4, depends on how much the bonds are stretched and compressed. For large

K is @ meosure of tha elostic chonge in the valume of o body in response o an applied pressure; karge K means
a small chonge in valume far o given pressure. ¥ is a measure of the eloske change in the length of the body in
reafdcnsa 1z an applied stress; large ¥ means a small changa in length. Both invobaa sratching or comprassing

| bards,

3s1
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amounts of displacement from equilibrium, the average A will be greater as more
asymmetry of the PE curve is used. Thus, the smaller is the elastic modulus X, the
greater is A; we see that A o C, /K.

If we were to expand U () about its minimum value Uy, at # = r,, we would ob-
tain the Taylor expansion,

U(r) = Upin + aalr — ) +aslr —r,¥ + -

where ¢; and o5 are coefficients related to the second and third derivatives of L7 at r,.
The term {r — r,) is missing because we are expanding a series about Upy where
dUjdr = 0. The Uy, and the a:(r — r,)* term give a parabola about U/, which is a
symumetric curve around », and therefore does not lead to thermal expansion. It is the
as term that gives the expansion because it leads to asymmetry, Thus the amount of ex-
pansion A also depends on the amount of asymmetry with respect to symmetry, that is
ag_.-"ﬂg. Thus,

1‘13 Cg_l
¥ ] K

Ao

The ratio of ¢ and &; depends on the nature of the bond, A simplified analytical
treatment (beyond the scope of this book) gives L as

Aome 3y — [4.82]

where y is a “constant” called the Grifneisen parameter. The Grilneisen constant y is
approximately —(r,a3)/{2a2) where r, is the equilibrium atomic separation, and thus
y represents the asymmetry of the energy curve. The approximate equality simply em-
phasizes the number of assumptions that are typically made in deriving'Equation 4.82.
The Griineisen parameter p is of the order of unity for many materials; experdmentally,
¥ = 0.1 — 1. We can also write the Griineisen law in terms of the molar heat capacity
C, (heat capacity per mole) or the specific heat capacity o, (heat capacity per unit
mass). If p is the density, and M, is the atomic mass of the constituent atoms of the
crystal, then
PCm P

gy P 4.83]
.k YK [

A=3y

We can calculate the Griineisen parameter ¥ for materials that possess different
types of interatomic bonding and thereby obtain tvpical values for y. This would also
expose the extent of unharmonicity in the bonding. Given the experimental values for
b, K, p and c,, the Griineisen parameters have been calculated from Equation 4.83 and
are listed in Table 4.6. An interesting feature of the results is that the experimental
values, within a factor of 2-3, are about the same, at least to an order of magnitnde.
Equation 4.83 also indicates that the A versus I behavior should resemble the C, ver-
sus T dependence, which is approximately the case if one compares Figure 1.20 with
Figure 4.43. (X does not change much with temperature.) There is one notable differ-
ence. Af very low temperatures A can change sign and become negative for certain
crystals, whereas O, cannot.
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Table 4.6 The Griineisen parameter for some selected materials with different types of

intergtomic bonding

Malterial plgem™) Lkt K K(GPw e dke TK D) ¥

Iron Cretallic, BT T 12.1 170 444 024
Copper (metallic, FCC) 8.0 17 140 380 023
Crermaniom {covalent ) 532 i 77 322 0.09
Fass (cavalent-ionic) 145 B 0 HO 0.10
MalCl fonde) 2.16 305 28 &R0 014
Tellurium (mixed) .24 18.2 40 02 0,19
Polystyrene (van der Waals} 1.05 100 3 1200 (.08
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Average energy E,, of an electron in a metal is deter-
mincd by the Fermi—Dirac statistics and the density of
states. It increases with the Fermi energy and also with
the temperalure,

Boltzmann statistics deseribes the bhehavior of a
collection of particles (e.g., 288 atoms) in terms of
their energy distribution. It specifies the number of
particles N{E) with given energy, through N{E) o
exp(—£/kT), where &k is the BoltZmann constant,
The description is nonguantum mechanical in that
there is no restriction on the number of particles that
can have the same state (the same wavefunction) with
an energy E. Also, it upplies when there are only a
few particles compared to the number of possible
states, 30 the likelihood of two particles having the
same state becomes negligible, This is generally the
case for thermally excited electrons in the conduction
band of a semiconductor, where there are many maore
states than electrons. The kinetic energy distribution

of gas molecules in a tank obeys the Boltzmann
statistics,

Cathode is nglgul.iv& electrode, It emits electrons or
attracts positive charges. that is, cations,

Debye Frequency is the maximum frequency of lat-
tice vibrations that can exist in a particular crystal. Tt is
the cut-off freguency for lattice vibrations.

Debye temperature iz a characteristic temperature
of a particular crystal above which nearly all the
atoms are vibrating in sceordance with the kinetic
molecular theory, that is, each stom has an average
energy (potential + kinetic) of 34T due 1o atomic vi-
brations, and the heat capacity is determined by the
Dulong—Petit rule.

Density of states g(£) is the number of electron states
|e.g-, wavefunctions,  (#, £, m,, m;)] per unit energy
per unit volume, Thus, g{ &) dE is the number of states
in the energy range £ to (£ + dE) per unit volume.
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Density of vibrational states is the number of lattice
vibrational modes per unit angular frequency range.

Dispersion relation relates the angular [Tequency o
and the wavevector & of a wave. In a4 erystal lattice,
the ¢coupling of atomic oscillatons leads (o a particular
relationship between w and K which determines the
allowed lattice waves and their group velovities, The
dispersion relation is specific w0 the crystal structure,
that 15, it depends on the lattice, basis, and bonding.

Effective electron mass m; represents the incrtial re-
sistunee of an electron inside a crystal against an aceel-
eration impesed by an extemal force, such as the ap-
plied electric field. If £, = ¢£; is the external
applied force due o the applied ficld E£,, then the
effective mass m] determines the acceleration @ of the
electron by ¢£; = mta. This takes into account the
effect of the internal ficlds on the motion of the elec-
tron. In vacuum where there are no internal fields, m)
15 the Mass In vacuum .

Fermi-Dirac statistics determines the probability of
an electron ccocupying 4 state at an energy level E. This
takes into account that a collection of electrons must
obey the Pauli exclusion principle. The Fermi-Dirac
function quantifies this probability via f(E) =1/{1 +
expl( £ — EF)/kT]}, where Ef is the Fermi energy.

Fermi energy is the maximum energy of the electrons
in a metal at 0 K.

Field emission is the tunneling of an electron from the
surface of & metal into vacuum, due to the application
of a strong electric field (typically € = 10°V m ).

Group velocity is the velocity at which traveling
waves carry energy. If w is the angular frequency and
K is the wavevector of a wave, then the group velocity
vy = dewidK .

Harmonic oscillator is an oscillating system, for ex-
ample, two masses joined by a spring, that can be de-
seribed by simple hermonic motion, In quantum me-
chanics, the energy of 8 hamonie  oscillator 1s
quantized and can only increase or decrease by a dis-
crete amount Ao, The minimum energy of a hammonic
oscillator is not zero bul 2he (see zero-point energy).

Lattice wave is a wave in a crystal due 1o coupled os-
cillations of the atoms, Lattice waves may be traveling
of S[AtONATY Waves,

Monern THEORY OF SOLIDS

Linear combination of atomic orbitals (LCAQ) is a
method (or obtaiming the electron wavelunction in the
miolecule from a linear combination of individual
atomic wavelunctions, For cxample, when two H atoms
A and £ come together, the electiron wavefunctions,
based on LCAQ, are

Vo = W1,(A) + ¥1,(B)
1#.': = 1|Er|‘{.-"1} - "?E"H{Bj

where ¥, (A4) and ¢, (8) are atomic wavefunctions
centered around the H atoms A and B, respectively. The
W, and o represent molecular orbital wavefunctions
for the electron; they reflect the behavior of the elec-
trom, or its probability distribution, in the molecule.

Mode or state of lattice vibration is a distinct, inde-
pendent way in which a crystal lattice can vibrate with its
own particular frequency w and wavevector K. There are
only a finite number of vibrational modes in a crysal.

Molecular orbital wavefunction, or simply molecu-
lar orbital, is a wavefunction for an electron within a
syatem of two or more nucled {e.g., molecule). A mo-
lecular orbital determines the probability distribution
of the electron within the molecule, just as the atotmic
orhital determines the electron’™s probability distribu-
tion within the atom. A molecular orbital can take two
electrons with opposite spins.

Orbital is a region of space in an atom or molecule
where an electron with a given encigy may be found.
An orbit, which is a well-defined path for an-electron,
cannot be used to describe the whereabouts of the elec-
tron in an atom of molecule because the clectron has a
probability dismibution. Orbitals are gencrally repre-
sented by a surface within which the total probability is
high, for example, 90 percent.

Orhital wavefunction, ot simply orbital, describes
the spatial dependence of the electron. The orhital is
Prir, @ &), which depends on n, £, and m, and the spin
dependence m,; is excluded.

Phonon is 4 quantuim of latice vibrational cnergy of
magnitude fiw, where @ is (he vibrational angular fre-
quency. A phonon has a momentum # & where £ is the
wavevertor of the lattice wave,

Seeheck effect is the development of & buili-in poten-
tigl diflerence across a material as 8 result of & temper-
ature gradient. II @V is the bult-in potential across a



temperature difference dT, then the Seebeck coeffi-
cient § is defined as § = 4V /4T, The coefficient
gauges the magnimde of the Seeheck effect. Only the
net Seebeck voltage difference between different met-
als can be measured. The principle of the thermocouple
is based om the Seebeck effect.

State is a possible wavefunction for the electron
that defines its spatial (orbital} and spin properties,
for example, yin. £, m,, m,) is a state of the elec-
tron. From the Schrédinger equation, each state cor-
responds to a certain electron energy E. We thus
speak of a state with energy £, state of energy E, or
even an encrgy state, Generally there may be more
than one state 4 with the same energy E.

QUESTIONS AND PROBLEMS

4.1 Phase of an atomic orbital

QuesTIONS AND PROBLEMS 365

Thermionic emission is the cmission of electrons
from the surface of a heated metal.

Work function is the minimum energy needed (o free
an electron from the metal at a temperature of absolute
zere, It is the energy separation of the Fermi level [rom
the vacuum level,

Zero-point energy is the minimum energy of a har-
monic oscillator 1he, Even at 0 K, an oscillator in
quantum mechanics will have a finite amount of cn-
ergy which is its zero-point energy. Heisenberg's un-
certainty principle does not allow a harmonic oscillator
to have zero enetgy because that would mean noe un-
certainty in the momentum and consequently an infi-
nite uncertainty in space (Ap, Ax = &),

a. What is the functonal form of a s wevefuncton ¢ (r)? Sketch schematically the atomic wave-
funciion g, (#) as a function of distance from the nucleos,

B What is the togal wavefunction Wygir, 1}7

¢ What is meant by two wavefurctions Wy (A) and % B) that are cut of phase?
., Skeich schematically the two wavefunctions Wi {A) and ¥, (F) at one instant.

4.2 Maolecnlar orbitals and atomic ochitals  Consider a linear chain of four identical atoms representing
a hypothetical molecule. Suppose that each atomic wavefunction is a 1y wavefuncrion, This system of
identical atoms has o center of symmetry © with respect to the center of the molecule (midway between
the secnnd and the third atom), and all molecular wavefuncrions must be either symmetric or antisym-

metric about O,

e, Using the LCAQ principle, sketch the possible molecular orbitals,

B Skeich the probability distributions | |5,

¢ Ifmeore nodes in the wavefonction lead w gresier enerpies, order the energies of the molecular orbifals,
Mote: The electron wavefunctions, and the related peobability disteibuiions, in a simple potential energy
well Lhat are shown in Fipure 3.15 can be used as 3 rouph pride toward finding the approprate mehetie-
lar wavefunctions in the four-atom symmetric molecule. For examiple, if we were 1o smooth the electron
polential energy in the fouc-aiom molecule inle o constenl potential enserpy, that 15, generate a potential
energy well, we should be able to modify or distort, withowt flipping, the molecular ocbatals o somewhat
resemble ) o iy sketched in Figure 3.15. Consider also that the number of nodes increases from none

for ¥y o three for 1y o Figure 3,15,

4.3 Diamond and tin  Germanium, silicon, and diamond have the same crystal struciure, thae of diamond.
Bonding in each case invelves sp? hybridization, The bonding energy decreases as we go from C o 51

to Cee, a5 noted in Table 4.7,

4. What would you expect tor the bandpap of diamond? How does it compare with the experimental

value of 3.3 c¥?

k. Tin has a tetragonal crystal structose, which makes it different than its group members, diamond,

silicon, and germaninm.
. Is it a metal o a semiconductor?

2, What experiments do vou think would expose its semiconductor properties?
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Table 4.7

Property Diamaond Nilicon {rermanium Tin

Melting temperature, = E3 1] 1417 37 232

Covalent radivs, nm .07 L) 0122 0. 146
Bond enecey, ¥ 360 .84 LT 12

First ionization energy, eV 11.26 K15 T.HH T3
Bandgap, ¥ 7 112 .47 7

4.4 Compound ILI-Y Semdconducters  Indium as an element is & metal. It has a valency of 1. Sbas an

4.5

4.4

4.7

4.8

4.9

element is a metal and has & valency of V. InSb is a semiconductos, with each atom bonding to four
nefrhbocs, just like i silicon. Explan bow this is pessible und why InSb is 2 semiconducior and no a
meial alloy. (Consider the electronic structure and sp* hy bridization for each atom. )

Compoond [I-¥1 semiconductors CdTe is a semicnnductos, with each atom bonding to four neigh-
burs, just like in silicon. In terms of covalent bonding and the pesitions of Cd and Te in the Periodic
Table, expluin how this is possible. Would you expect the bonding an Cd'Te to have more ionic character
tham that in ITT-¥ semiconductors?

Density of states for a (wo-dimensional ¢lectron gas  Consider a two-dirmensional electron gas in
which the electrons ure restricted to move freely within o square area 2% 10 the x¥ plune. Following the
procedure in Section 4.5, show that the density of states o E is eonstant {independent of enerey).

Fermi energy of Cu  The Ferm energy of electrons in copper at coom temperatuce 15 7.0 eV The ebec-

tron drift mobility in copper, from Hall effect measurements, is 33 et vl 1

a.  What is the speed vp of conduction electrons with energiss around £ in copper? By how many
tienes is this larger than the average thermal speed Ugema of electrons, if they behaved like an ideal
pas [Maxwell-Boltzmuann statistios )T Why s ve muoch luger than iy e T

b What 15 the De Broglie wavelength of these ebectrons? Will the elecirons get diffracted by the lat-
tice planes in copper, given that interplanar separation in Cu = 2.04 A? (Solution goide: Daffrac-
tion of waves occurs when 2d sind = &, which is the Bragg condition. Find the relatignship be-
tween A and o that results insind = | aod henee no diffraction.)

o, Caleulate the mean free puth of electrons wl £y and comment,

Free electron model, Fermi energy, and density of states ™2 and A both are valency | metals; that
18, each atom donates one elecieon 1o the sea of conduction electrens, Caleulate the Fecnm energy (meV)
of each at 300 K and O K. Calculute the mean speed of all the conduction electrons and also the speed of
electrons ar £ for cach metal. Caleulate the density of stares as states per oV cm~ at the Formi CRCTRY
aod also an the center of the band, 10 be taken at (Ex 4 4152, (See Table 4.1 for @)

Fermi energy und electron concentrativn  Consider the metals in Table 4.8 from Groops L 1L and 11
in the Perindic Table. Caleulate the Fermi energies at absolute zero, and compare the values with the ex-
perimental values. What is your conglusionT

Table 4.8

Metal

Ep{eV¥) EpleV)
Group Mu Density (g cm—) [Calculated] [Experiment]

Cu

Al

I 63,55 8.9 — a.5
It 6534 7.14 — L1
1T 7 T = 115




QUESTIONS AND PROBLEMS

410  Temperolure depeadence of ihe Fermi energy
a.  Given that the Fermi energy for Cu is 7.0 e¥ at absolute zemo, caleulute the Ep at 300 K. What is
the percentage change in Ep and what is yoor conclusion?
B (Given the Fermi energy for Cu at absolute zern, calculate the average energy and mean speed per
cotduction electron at absolute 2ere and 300 K, and comment.

411  X-ray emission spectrom fram sodium  Structure of the Ma atom is [Me]3s!. Figore 4,59 shows the
formation of the 35 and 3p energy bands in Na s a fuoction of inlemuclear separation. Figure 4,590
shows the X-ruy emission spectrum (called the L -band) from crystalline sodivm in the soft X-ray range
as explained in Example 4.6.

. From Figure 4.5%a, estimate the nearest neighbor equilibrivm separation between Ma atoms in the
crvstal if some electrons i (e Is baid spdll over e the stales 10 the 3p bamd,

& Explain the otigin of (e X-ray enission band m Figore 4,596 and the reason for calling: it the
L-band.

c.  ‘What is the Fermmi energy of the electrons in Ma from Figore 4.5907

d. Taking the valency of MNa to he [, what is the cxpected Fermi encrgy and how dioes it compare with
that in part (¢1?

g
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Internuclear distance (mim} Photon cnergy (eV)
(o) il

Figure 4.59
[2] Energy band formation in sodium,

(b} L-emission band of ¥rays fram sodium,
| SOURCE: (b| Data exdractad from W. M. Cadtand D. H. Tomboulion, Phys. Rev, 59, 1941, p. 381,

4,12 Conductivity of metsls in the free dectron medel  Consider the peneral expression for the conduc-
tivity of neetals in terms of the density of states g{F ) at B given by

&= %ﬁzl'%fgl:E,r':l
Show that within the free electron theory. this reduces to & = e2nr/m,., the Drode expression.

Mean free path of conduction electrons in a metal  Show chat within the free electron theory, the
meean free path £ and conductivity o are related by

.2
# 2 —3 g 5
mi‘ﬂ B 107N
Calcunlate £ for Cu and Au, given each mecal’s resistivicy of 17 nfd m and 22 n&2 m, respecavely, and that
exch has a valency of I, We are used to seeing o o2 n, Can you explain why o oo a7
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=414 Low-temperature heal capacity of muotals  The heat capacity of conduction checirons u a metal is
proportionisl o the (@MpErE. The owverail heat capacity of u metal is determined by the lattive heat ci-
pacity, excepl at the Lowest [Emperarires, 1f 8E, is the increase in the toal encrgy of the conduction elec-
trois (per unit volume) and 57 i& the increase in the tempetature of the metal as & result of heat addition,
E, has been caleulated as follows:

e

21 n(kTY
fﬁg{E}.f:E}dﬂ a{ua+[})M

Een

where E, {[0)is the totul energy per unit volume at 0K, ot s the concentration of conduction electrons, and
Erp is the Fermi energy at ) K. Qhow that the heut capacity per unit volume duc to comduction electrons
in the free electron model of metals i3

Hear capeciny of <1 ¢kt
condiction 5 (?—) T ¥T [4.84]
vlectroms £o

where p = (2 2)(nk? Epg). Caloulate . for Cu, and then wsing the Debye equation for the latlice
heut capacity, find Cy for Co at 10 K. Compare the twa values and comment. What is the eomparizon sl
coom temperature? (N ote: Contume = Canolart 2/ Man). where o is the density in g em ™, Cunlyme 18 i
TE-! g3, and My, is the atomic mass in g moi™".)

415 Secondary emission and photomultiplier tubes When an enefgetic (high velocity) projectile eloc-
won collides with o material with a low ok fumction. it can cause electron emission from the surface.
This phenomenan is called secondary emisston. It is fruitfully ueilized in plrotomultiplier tubes as il-
Justzated in Eigure 4,60, The tube is evacuated and hos o photocathode for receiving photons as asignal.
An incoming photon causes phutoemission of an electron from the photocuthode manerial. The eleciran
is then accelerated by a positive voltage applied to an electride called a dynode which has a work func-
tiem that casily allows secondary emission. When the acoslerated electron strikes dymode L, it can
relense several electrons, All these lectrons, the original and the secondary clecisons, are then acceler-
ated] by the mare positive voltage applied 10 dynode D7, On impuct with [, further electrons are -
leased by secondary erpizgion, The secondary emission process continues at each dynode stage until the
final electrode, called the anode, is reached whereupon all the electrons ure collected which results in 2
signal. Typical applications for photomultiplier whes are in X-ray and nuclear medical instruments

Photon
Photocathode

Photemutiiplier fubes.

| SOURCE: Courlesy of Hamomatsy i gl
D, — o,
Wacuum .—] R +
<
Signal

Figure .60 The phatomultiplier ubs. = H|
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QUESTIONS AND PROBLEMS

{(X-ray CT scanner, positron CT scanner, gamma camera, cte,), radiation measuring instruments {e.g.,
radon counter), X-ray dillractometers, and radiation measurement in high-energy phvsics research,

A particulur photomultiplier tube has the following properties. The photecathode §5 made of a
semiconductor-type material with E, == | eV, an electron affinity ¢ of (1.4 2V, and a quantum efficiency
of 20 percent wl 400 om. Crantum efficicrey 1% deflined as the number of photoermined elecirons per
abrorbed photon. The diemeter of the photocathode 35 18 mm. There are 10 dynode electrodes and an ap-
plied voltage of 1250 ¥ between the photocathode and ancde. Assume that this voltage is equally dis-
ributed among all the elecirodes,

. What 15 the longest threshold wavelength for the phdotube?

b Whan is the moaimum kinetic energy of the ematied electron if the photocathode i3 illuminated with
4K nm radiation?

What 15 the cmission curment from the photocathode at 400 nm illumination?

4. What is the KE of the clectron as it strikes the first dynode electrode?

e. It has been found that the tube has a gain of 107 electrons per incident photon. What is the average
nwmber of secondary elecrrons released at each dynode?

n

Thermoeleciric effects and E;  Consider 2 thermocouple pair that consists of pold and gluminum.
One junction is at 100 °C and the other i3 at 0 °C, A voltmeter Cwith a very large input resistance) is in-
serted into the aluminum wire, Use the properties of Au and Al in Table 4.3 (o estimuate the emi regis-
tered by the voltmeter and identify the positive end.

The thermocouple equation  Althoegh inpultiog the measured emf for ¥ in the thermocouple egua-
ton ¥ =aAT + s(AT leads to a quadratic equation, which in principle can be solved for AT, in
general AT §s related 1o the measured emf via

AT =t:|]'|-"+|215-"= +¢'r_1,'|.-’3'+...

with the coefficients aj, @;. ete., determined for each paic of TCs. By cirmving out a Tavlor's expansion
of the TC equation, find the first two coefficients a) and a3 Using an emf table for the K-type thermo-
cotiple or Figure 4,33, evaluane @) and a2,

Therminnic emission A vacoum tube is required to hawe a cathode operating at #3060 “C and providing
an emission (saturation) cucrent of 10 A, What should be (e surface area of the cathode for the two ma-
terials in Table 4.9 What should be the operating temperature for the Th on W cathode, i[ it is 10 have
the same surtace area as the oxide-coated cathode?

Toble 4.9
B.iAm K% P {eV)
Thon'W T [ 26
Oxide coating 100 1

Field-assisivd emission in MOS devices  Metal-oxide-semiconductor (MOS) ransistors in micre-
electironics have a matal gate on an 5ild; insolating layer on the surface of' a doped 51 crystal. Consider
this as a paralle] pluie capacitor. Suppose the zaie 13 an Al electrode of area 30 gom = 30 pom and has a
voltage of 10V with respect to the 5i crystal. Consider twe thicknesses for the 510z, (@) 100 A and (k)
a0 A, where (1 & = 107" m}, The work function of Al is 4.2 €V, hut this refers oo clectron emission into
vacuurn, whereas in this case, the eleciron is emiited into the oxide, The potential energy barrier g be-
tween Al and 510k is ubout 3.1 &V, and the field-emission curment density 1s given by Eqoation 4.4 6 and
k. Calculate the field-cmission current for the owo cases, For simplicity, take s, to be the clectron mass
io free spuce, What is your conclusion?

359
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4.20

4.2

CNTs and lield emission  The electnic field at the tip of a shurp emitter i much greater than the “applied
field,” . The applicd field is simply defined as Viz /d where d is the distance from the cathode dp to the
gate or the grid; it represents the average mearly uniform feld that would exist if the Up were repluced by a
flat surface so that the cathode and the gate would almest constitute a parallel plate capacitor. The tip ox-
periences an effective field ' that is much greater than €, which is expressed by a Feld enhancement fac-
tor & that depends on the geometry of the cathode-gate emitter, and the shape of the eminer; £ = JE..
Further, we can fake ﬂl?l,i?ﬁi == 3 in Equation 4.46. The finul expression for the feld-cmission current

density then becomes
LEx I0F , 4 104 6.4 w 107 2
- £ “F'(?,uz ) ‘“P(—TJ [4.85]

L
where & is in eV, For a paricular CNT emitter, & = 4.9 ¢V, Estimate the applied Geld reguired 1o
achieve a feld-emission current density of 100 ma& em?® in the absence of field enhancement (4 = 1)
and with a field enhancement of § = K00 {typical value for a CNT emitter).

2

4 i

Nordheim=Fowler leld emission in an FED  Table 4,10 shows the results of [-V measurements ona
Motorola FED microemitter. By a suitable plot show that the [-V follows the Nordheim—Fowler emis-
sion characteristics, Can you estimare $F

Table 4.10  Tests on a Moterala FED micro field emitter

Vg

40,0 42 a4 44 48 J0 52 338 6.2 58.2 a4

femizsion Q.40 114 940 M4 340 6l 935 1425 202 i a7

4.22

4.23

4.24

Lattice waves and heat capacity

a, Consider an aluminum sample, The nearest separation 28 (2 = atomic radiug) between the Al-Al
aloms in the crystal 1z 0285 nm. Taking @ to be 28, and piven the sound velocity in Al as
5100 m s, calculate the force constant A in Equation 4.66. Use the group velocity v, from the
acrual dispersion relation, Fguation 4.55, e caleulate the “sound velocity™ ar wavelengths of
A= lmm, | yum, and | nm. What is your conclusion?

b Aluminum has 2 Debve temperstore of 394 K. Calculate it specific hest at 30 °C (Darwin,
Auwstralia) and at —31 2 {January, Resolute Munavat, Canada),

c.  Calculate the specific heat capacity of a germanium erystal ac 23 *C and compare it with the cx-
perimental value in Table 2.5,

Specific beal capacity of (GaAs and InSh

a.  'The Dehye temperatore Tp of (aAs is 344 K. Calculate its specific heat capacity at 300 K and a
fILIE 0

#,  ForInSh, Te = 203 K, Calculate the romm temperature specific heat capacity of InShand compare
it with the value expected from the Dulong—Petit rule (I = Tp).

Thermal conductivity

o Given that sillcon bas o Young's modulus of about 110 GPa and a density of 2.3 g em™, caleulate
the meun free path of phonons in Si at coom temperature.

b Diumond has the same crystal strocture as Si but has a very larpe thermal conductivity, about
EOO0 Wom~! K7 ar room temperature, Civen that diamond has a specific heat capacity o of
0501 KL gl Young's modulus ¥ of B30 GPa, and density o of 0,35 g em™3, caleulate the mean
[ree path of phonons in diumond.

e, CuAs has a thermal conductivity of 2000W m™" K= at 100 K and 30 W m~' K7 a0 200 K, Cal-
culate its thermal conductivity at 25 “C and compare with the experimental value of 44 W m~!
K=" (Hint: Take x o T~ in the femperature region of interest; see Figure 4,48.)
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{JUESTIONS ANT PROBLEMS

Overlapping bands  Consider Cua and Ni with their density of states ag schematically sketched in Fig-
ure 4.61, Boh have overlapping 3o wd 45 baods, but the 34 band 35 very nactow compared 10 the ds
hand. [n the case of Cu the band is full, whereas in Ni, it is only purtaally filled,

. In Cu, do the electroms in the 34 band contmibute to electrical conduction? Explain.
b, In Mi, do electrons in both bands contribute to conduction Explain.
¢, Do elactrons have the same etfective mass in the two bands? Explain.

d.  Can an electron in the 41 hand with erergy around £ 5 become scattered into the Ad band a5 a re-
sull of a scattering processT Copgider both metals,

¢ Scuttering of electrons from the dy band to the 2d band and vice versa can be viewed as an additional
svattering provess, How would you eapect the reststivity of N w compure with that of Cu, even
though Mi has two valence electrons and nearly the same density as Cu? In which case would you ex-
pect a stronger lemperature dependence for the resistivity?

9(E) 3

I Ni

\_m “‘\l“i\\\ \m//d; | %

E

Figure 4.61 Dansity of stofes and electron filling in Cu and Mi.

*4.36
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Overlapping bands sl Kp and higher resistivity  Figure 4.61 shows the density of staes for Cu (os
Agdand Ni {or Pd), The d band in Cu is filled, and only electrons at Ep in the £ band make a contribu-
ticn te the conductvity, In Ni, on the other hand, there are electrons at F g both in the 5 and & bands. The
d band is narrow compared with the 5 band, snd the electron’s effective muss in this o bamd is larpe; for
simplicicy, we will assume el is “infinite” in this band, Consequently, the <-hand clectrons cannot he
acceleruted by the field (infinite m} ) have 2 negligible drift mwbility, aod make oo contribution 1o the
conductivity. Electrons in the £ hand can become scattered by phonons into the o bund, and hence be-
comee relatively immobile until they are scattered back into the £ band when they can drift again, Con-
sider Ni and one particulur conduction electron at £ ¢ starting in the s band, Skeich schematically the
magnitude of the velocity pained (v, — u,| trom the field £ as o function of time for L0 scattering
events, vy and &, are the instantaneons and inital velocities, and |v, — &, | increases linearly with time,
as the electron accelerstes in the 5 bund and then drops to zero upen scuttering, If 7o is the mean time
for 1 to £-hand scattering, T,y is for 1-band to d-band scattering. t;, is for d-band to s-band scattering,

asswme the following sequence of 10 events in your sketchi i, Trr Trdy Tdr, Tory Tody Tdre Treo Trdo Tofs-

What would a similur sketch look like for Cu? Suppose that we wish 1o apply Equation 4,27, What does
i Ex) and £ represent? What is the most important factor that makes Mi more resistive than Cu? Con-
sider Muatthiessen's rule, (Mote: There ace also elecieon span related effects on the resistivigy of Ni, but
for simplicity these huve been neglected )

Geinelsen’s law Al and Cu both have metallic bonding and the sanve civslal strpctuce, Assoming that
the Griineisen™s parameter ¥ for Al is the same as that for Cu, p = 0.23, estimate the linear expansion
coefficient & of Al, given that its bulk modulus & = 75 GPa, o, = 49K ] K-t kg", and g = T £cm a
Comnpare vour estimuote with the sxperimental value of 23.5 = 1079 K-1,
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First paintconiact Iransister invenbed at Bell Labs.
I SOURCE: Courtesy of Bell Lobs,

The thrae immentoes of the transistor; Williom Shockley {seated), lohn Bardeen [leff, and WWalter Bratain
[right] an 1948; the thrae inventars sharad the Mebel prize in 1956,

| SOURCE: Courbesy af Bell Labs



