CHAPTER

5

Semiconductors

In this chapter we develop a basic understanding of the properties of intrinsic and
extrinsic semiconductors. Although most of our discussions and examples will be
based on Si, the ideas are applicable to Ge and to the compound semiconductors such
as GaAs, InP, and others. By intrinsic 5i we mean an ideal perfect crystal of 51 that has
no impurities or crystal defects such as dislocations and grain boundaries. The crystal
thus consists of 5i atoms perfectly bonded to each other in the diamond structure. At
temperatures above absolute zero, we know that the Si atoms in the crystal lattice will
be vibrating with a distribution of energies. Even though the average energy of the vi-
brations is at most 3kT and incapable of breaking the 5i—5i bond, a few of the lattice
vibrations in certain erystal regions may nonetheless be sufficiently energetic to “rup-
ture™ a Si-5i bond. When a 8i-5i bond is broken, a “free” electron is created that can

wander around the crystal and also contribute to electrical conduction in the presence

of an applied field. The broken bond has a missing electron that causes this region to
be positively charged. The vacancy left behind by the missing electron in the bonding
orbital is called a hole. An electron in a neighboring bond can readily tunnel into this
broken bond and fill it, thereby effectively causing the hole to be displaced to the orig-
inal position of the tunneling electron. By electron tunneling from a neighboring bond,
holes are therefore also free to wander around the crystal and also contribute to elec-
trical conduction in the presence of an applied field. In an intrinsic semiconductor, the
number of thermally generated electrons is equal to the number of holes (broken
bonds). In an extrinsic semiconductor, impunties are added to the semiconductor that
can contribute either excess electrons or excess holes. For example, when an impurity
such as arsenic is added to Si, each As atom acts as a donor and contributes a free elec-
tron to the crystal. Since these electrons do not come from broken bonds, the numbers
of electrons and holes are not equal in an extrinsic semiconductor, and the As-doped Si
in this example will have excess electrons. It will be an #-type Si since electrical con-
duction will be mainly due to the motion of electrons. It is also possible to obtain &
p-type 5icrystal in which hole concentration is in excess of the electron concentration
due to, tor example, boron doping.

373



374

CHAPTER 5 + SEMICONDUCTORS

5.1 INTRINSIC SEMICONDUCTORS

51.1 SILICON CRYSTAL AND ENERGY BAND IMAGRAM

The electronic configuration of an isolated 31 atom is [Ne]3s? pi. However, in the
vicinity of other atoms, the 3s and 3p energy levels are so close that the interactions
result in the four orbitals ¥ (3s), w (3p.), ¥ (3p,). and (3 p,) mixing together to form
Jour new hybrid orbitals (called yry,) that are symmetrically directed as far away from
each other as possible (toward the corners of a tetrahedron). In two dimensions, we can
simply view the orbitals pictorially as in Figure 5.1a. The four hybrid orbitals, yne.
each have one electron so that they are half-occupied. Therefore, a vy, orbital of one
51 atom can overlap 4 Wy, orbital of & neighboring Si atom to form a covalent bond
with two spin-paired electrons. In this manner one Si atom bonds with four other Si
atoms by . overlapping the half-occupied iy orbitals, as illustrated in Figure 5.1b.
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Figure 5.1
ai] A simplified twodimensional illustration of a Si atom with four hybrid arbitals 4. Each orbital

has cne eleciren.
|b) A simplified two-dimensional view of a region of the Si crystal showing cavalent bonds.
) The energy band diagram at absclute zero of temperahure.
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Figure 5.2 A twodimensional pictorial view of the Si
crystal showing covolent bonds as twe lines where sach
line is @ volence alectron.

Each 5i-8i bond corresponds (o a bonding orbital, ¥, obtained by overlapping two
neighboring yh,.., orbitals. Each bonding orbital (yrz) has two spin-paired electrons and
is therefore fii, Neighboring Si atoms can also form covalent bonds with other Si
atoms, thus forming a three-dimensional network of 51 atoms. The resulting structure
is the Si crvstal in which each Si atom bonds with four Si atoms in a tetrahedral
ammangement. The crystal structure is that of a diagmond, which was described in
Chapter 1. We can imagine the 5i crystal in two dimensions as depicted in Figure 5.1b.
The electrons in the covalent bonds are the valence electrons.

The energy band diagram of the silicon crystal is shown in Figure 5.1c.! The
vertical axis is the electron energy in the crystal. The valence band (VB) contains
those electronic states that correspond to the overlap of bonding orbitals (i)
Since all the bonding orbitals (yrg) are full with valence electrons in the crystal,
the VB is also full with these valence electrons at a temperature of absolute zero.
The condoction band (CB) contains electronic states that are at higher energies,
those corresponding to the overlap of antibonding orbitals. The CB is separated
from the VB by an energy gap E,, called the bandgap. The energy level E, marks
the top of the VB and E. marks the bottom of the CB. The energy distance from E,
to the vacoum level, the width of the CB, is called the eleciron affinity . The gen-
eral energy band diagram in Figure 5.1c applies to all crystalline semiconductors
with appropriate changes in the energies.

The electrons shown in the VB in Figure 5.1c are those in the covalent bonds be-
twean the Si atoms in Figure 5.1b. An electron in the ¥B, however, is not localized 1o
an atomic site but extends throughout the whole solid. Although the electrons appear
localized in Figure 5.1b, at the bonding orbitals between the Si atoms this is not, in fact,
true. In the crystal, the eleetrons can tunnel from one bond to another and exchange
places. If we were to work out the wavelunction of a valence electron in the 51 crystal,
we would find that it extends throughout the whole solid. This means that the electrons
in the covalent bonds are indistinguishable. We cannot label an electron firom the start
and say that the electron is in the covalent bond between these two atoms.

We can crudely represent the silicon crystal in two dimensions as shown in
Figure 5.2. Each covalent bond berween Si atoms is represented by two lines corre-
sponding to two spin-paired electrons. Each line represents a valence electron.

| ! The farmation of energy bones in the silicen erysiel was described in deeil in Chepler 4.
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5.1.2 ELECTRONS AND HOLES

The only emply electronic states in the silicon crystal are in the CB (Figure 5.1¢). An
electron placed in the CB is free to move around the crystal and also respond to an
applied electric field because there are plenty of neighboring empty energy levels. An
electron in the CB can easily gain energy from the field and move to higher energy lev-
els because these states are empty. Generally we can treat an electron in the CB as if it
were free within the crystal with certain modifications to its mass, as explained later in
Section 5.1.3.

Since the only empty states are in the CB, the excitation of an electron from the
VB requires a minimum energy of £,. Figure 5.3a shows what happens when a pho-
ton of energy Av = E, is incident on an electron in the VB. This electron absorbs the
incident photon and gains sufficient energy to surmount the energy gap £, and reach
the CB. Consequently, & free electron and a “hele,” cormresponding to a missing elec-
tron in the VB, are created. In some semiconductors such as Si and Ge, the photon ab-
sotption process also involves lattice vibrations (vibrations of the 5i atoms), which we
have not shown in Figure 5.3b.

Although in this specific example a photon of energy kv > E, creates an electron-
hole pair, this is not necessary. In fact, in the absence of radiation, there is an electron—
hole generation process going on in the sample as a result of thermal generation. Due
to thermal energy, the atoms in the crystal are constantly vibrating, which corresponds
to the bonds between the Si atoms being periodically deformed. In a certain region, the
atoms, at some instant, may be moving in such a way that a bond becomes over-
stretched, as pictorially dapicted in Figure 5.4. This will result in the overstretched
bond rupturing and hence releasing an electron into the CB (the electron effectively

Electron energy

o) 1]

Figure 5.3
la} A photon with an energy greater than E; can excite an ebectron from the Y8 o the CB.

(b} When a photen breaks a 5i-5i bond, a fres electron and a hole in the 5i-5i bond

are created.
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Figura 5.4 Thermal vibrations of atoms can break
bionds and thereby create electron-hole pairs.

becomes “free™). The empty electronic state of the missing electron in the bond is what
we call a hole in the valence band. The free electron, which is in the CB, can wander
around the crystal and contribute to the electrical conduction when an electric field is
applied. The region remaining around the hole in the VB is positively charged because
a charge of —e has been removed from an otherwise neutral region of the crystal. This
hole, denoted as A*, can also wander around the crystal as if it were free. This is be-
cause an electron in a neighboring bond can “jump,” that is, tunnel, into the hole to fill
the vacant electronic state at this site and thereby create a hole at its original position.
This is effectively equivalent to the hole being displaced in the opposite direction, as
illustrated in Figure 5.5a. This single step can reoccur, causing the hole to be further
displaced. As a result, the hole moves around the crystal as if it were a free positively
charged entity, as pictured in Figure 5.5a to d. Its motion is quite independent from that
of the original eleciron. When an electric field is applied, the hole will drift in the di-
rection of the field and hence contribute to electrical conduction. It is now apparent
that there are essentially two tyvpes of charge carriers in semiconductors: electrons and
holes. A hole 1s effectively an empty electronic state in the VB that behaves as if it were
a positively charged “particle” free to respond to an applied electric field.

When a wandering electron in the CB meets a hole in the VB, the eleciron has
found an empiy state of lower energy and therefore occupies the hole. The electron
falls from the CB to the VB (o fill the hole, as depicted in Figure 5.5¢ and f. This is
called recombination and results in the annihilation of an electron in the CB and a
hole in the VB. The excess energy of the electron falling from CB to VB in certain
sermiconductors such as GaAs and InP is emitted as a photon, In 8i and Ge the excess
energy 1% lost as lattice vibrations (heat).

It must be emphasized that the illustrations in Figure 5.5 are pedagogical pictorial
visualizations of hole motion based on classical notions and cannot be taken too
sefously, as discussed in more advanced texts (see also Section 5.11). We should
remember that the electron has a wavefunction in the crystal that is extended and not
localized, as the pictures in Figure 5.5 imply. Further, the hole is a concept that corre-
sponds to an emply valence band wavefunction that normally has an electron. Apgain,
we cannot localize the hole to a particular site, as the pictures in Figure 5.5 imply.
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Figure 5.5 A pictorial illustration of o hole in the valence band wandering around the crystal due bo the unneling
of elactrons from neighboring bonds.

5.1.3 CoNDUCTION IN SEMICONDUCTORS

When an electric field is applied across a semiconductor as shown in Figure 5.6, the
energy bands bend. The total elecron energy E is KE 4+ PE, but now there is an addi-
tional electrostatic PE contribution that is not constant in an applied electric field. A
uniform electric field £, implies a linearly decreasing potential V(x}, by virtue of
(dV/dx) = —E,, that is, ¥V = —Ax + B. This means that the PE, —eV (x), of the
electron is now eAx — 8, which increases linearly across the sample. All the energy
levels and hence the energy bands must therefore tilt up in the x direction, as shown in
Figure 5.6, in the presence of an applied field.

Under the action of £,, the electron in the CB mowves to the left and immediately
starts gaining energy from the field. When the electron collides with a thermal vibta-
tion of a 81 atom, it loses some of this energy and thus “falls” down in enerpy in the
CB. After the collision, the electron starts to accelerate again, until the next collision,
and so on. We recognize this process as the drift of the electron in an applied field, as
illustrated in Figure 5.6. The drift velocity va. of the electron is . E. where p, is the
drift mobility of the electron. In a simnilar fashion, the holes in the VB also drift in an
applied field, but here the drift is along the field. Notice that when a hole gains energy,
it moves “down” in the VB because the potential energy of the hole is of opposite sign
to that of the electron,
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Since both electrons and holes contribute to electrical conduction, we may write
the current density J, from its definition, as

J = enug. + epugy [5.1]

where n is the electron concentration in the CB, p is the hole concentration in the VB,
and vy, and vy are the drift velocities of elecirons and holes in response to an applied

electric field ., Thus,
Flectron amd

Vg = . Ey and vy, = URE, [5.2]  ferle ddrift

where jt, and gy are the electron and hole drift mobilities. In Chapter 2 we derived the Veldciey

drift mobility pe. of the electrons in a conductor as
£T,
e = — [5.3]
m!
where 7. is the mean free time between scattering events and m, is the electronic mass.
The ideas on electron motion in metals can also be applied Lo the electron motion in the
CB of a semiconductor to rederive Equation 5.3. We must, however, use an effective
mass m’ for the electron in the erystal rather than the mass m, in free space, A “free”
electron in a crystal is not entirely free because as it moves it interacts with the potential
energy (PE) of the ions in the solid and therefore experiences various internal forces.
The effective mass m} accounts for these internal forces in such a way that we can relate
the acceleration a of the electron in the CB to an external force F.., (e.p.. —eE.) by
Fou = m}a just as we do for the electron in vacuum by F.,, = m.a. In applying the
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Fen = ma type of description to the motion of the electron, we are assuming, of course,
that the effective mass of the electron can be calculated or measured experimentally. It
is imporiant o remark that the true behavior is governed by the solution of the
Schridinger equation in a periodic lattice (crystal) from which it can be shown that we
can indeed describe the inertial resistance of the electron o acceleration in terms of an
effective mass m}. The effective mass depends on the interaction of the electron with its
environment within the crystal.

We can now spectlate on whether the hole can also have a mass. As long as we
view mass as resistance to acceleration, that is, inertia, there 1s no reason why the hole
should not have a mass. Accelerating the hole means accelerating electrons unneling
from bond to bond in the opposite direction. Therefore it is apparent that the hole will
have a nonzero finite inertial mass becanse otherwise the smallest external force will
impart an infinite acceleration toit. If we represent the effective mass of the hole in the
WEB by mg, then the hole drift mobility will be

1)
Hy =
]

* [5.4]
&
where 1 is the mean free time between scatiering events for holes.

Taking Equation 3.1 for the current density further, we can write the conductivity
of a semiconductor as

O = Enpt, + epiiy [5.5]

where n and p are the electron and hole concentrations in the CB and VB, respectively.
This 15 a general equation valid for all semiconductors,

5.14 EiLecTrRON AND HOLE CONCENTRATIONS

The general equation for the conductivity of a semiconductor, Equation 5.5, depends
on #, the electron concentration, and p, the hole concentration. How do we determine
these quantities? We follow the procedure schematically shown in Figure 5.7a to d in
which the density of states is multiplied by the probability of a state being occupied
and integrated over the entire CB for n and over the entire VB for p.

We define gu(E) as the density of states in the CB, that is, the number of states
per unit energy per unit volume, The probability of finding an electron in a state with
energy £ is given by the Fermi-Dirac function f{E), which is discussed in Chapter 4.
Then gs(E (L) is the actual number of electrons per unit energy per unit volume
gl E) in the CB. Thus,

ng dE = gu(E) f(E) dE

is the number of electrons in the energy range E to £ + 4E. Integrating this from the
bottom (£, ) to the top (£, + x) of the CB gives the electron concentration n, humber
of electrons per unit volume, in the CB. In other words,

E.+x Eo+x
= [ newrae= [ gue sy s
K E

r -
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Figure 5.7

[ah Erergy band diagram,

[b} Density of states (number of stobes per unit energy per wnit volume).

[} Fermi-Dlirac probability function (prebability of cccupancy of a shatel.

[d) The product of glE] and f[E] is the energy density of electrons in the CB [number of elecirons
pet unil energy per unit valume). The area under ng{E) versus £ is the electron concentration,

We will assume that (E. — E¢) 3 AT (i.e., Episatleastafew kT below E,) so that
flE} = exp|—(L£ — Ep)/kT]

We are thus replacing Fermi—Dirac statistics by Boltzmann statistics and thereby in-
herently assuming that the number of electrons in the CB is far less than the number of
states in this band.

Further, we will take the upper limit to be E = oo rather than E, + x since f{£)
decays rapidly with energy so that g, (E) f{E) — 0 near the top of the band. Further-
more, since g, {(E) f{E) is significant only close to E,, we can use
(w8 Dymy*

P
for an electron in a three-dimensional PE well without having to consider the exact
form of g,,.(E) across the whole band. Thus

(B 2)m*H 8 [ (E—E;J] .
HHT‘,;[E—EC} exp| — T dE

GulE) = (E — E)\*

L
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which leads 1o
n=N, exp[—%] [5.5]
where
N.= z(g”’;’ﬁ)m [5.7)

The result of the integration in Equation 5.6 seems to be simple, but it is an
approximation as it assumes that (£, — Eg) 3 kT. N is a temperature-dependent
constant, called the effective density of states at the CB edge. Equation 5.6 can be
interpreted as follows. If we take all the states in the conduction band and replace
them with an effective concentration &, (number of states per unit volume) at E
and then multiply this simply by the Boltzmann probability function, f(E.) =
exp[=(E. — EF}/kT], we obtain the concentration of electrons at E., that is, in the
conduction band. N, is thus an effective density of states at the CB band edge.

We can carry out a similar analysis for the concentration of holes in the VB, Mul-
tiplying the density of states g, (E) in the VB with the probability of occupancy by a
hole [1 — f(E)], that is, the probability that an electron is absent, gives pg, the hole
concentration per umt energry. Integrating this over the VB gives the hole concentration

Ew Ex
p= f pedE = G EN(1 — FIE}EE
] 0

With the assumption that Er is a few kT above £, the integration simplifies to

Ep—E,
;J=Nuexp[ L3 ]] [5.8]
where &, is the effective density of states at the VB edge and iz given by
2mikT 2
Ny=12 — [5.9]

We can now see the virtues of studying the density of states g E) as a function of
encrgy E and the Fermi—Dirac function f(E). Both were central factors in deriving the
expressions for o and p. There are no specific assumptions in our derivations, except
for E5 being a few kT away from the band edges, which means that Equations 5.6 and
5.8 are generally valid.

The general equations that determine the free electron and hole concentrations are
thus given by Equations 5.6 and 5.8 It 1s interesting to consider the produet np,

i Er - E,—E
np = N, exp[—ﬂ] N,_.exp[ M] = NN, ex [ (Ee v}}
or
E
np= NN, exp(—ﬁ) [5.101
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where E, = E, — E, is the bandgap energy. First, we note that this is a general ex-
pression in which the right-hand side, NN, exp(—E_/kT), is a constant that depends
on the terperature and the material properties, for example, E,, and not on the posi-
tion of the Fermi level. In the special case of an intninsic semiconductor, # = p, which
we can denote as n,, the intrinsic concentration, so that NN, exp(—E, /tT) must be
ni. From Equation 5.10 we therefore have

=nl = N.N, ex (—E) [5.11]
ap =i, = NN, exp T 2

This is a general equation that is valid as long as we have thermal equilibrivm.
External excitation, such as photogeneration, is excluded. It states that the product np
is a temperature-dependent constant. If we somehow increase the electron concentra-
tion, then we inevitably reduce the hole concentration. The constant n; has a special
significance because it represents the free electron and hole concentrations in the in-
trinsic material.

An intrinsic semiconduactor is a pure semiconductor crystal in which the electron
and hole concentrations are equal. By pure we mean virtually no impurities in the
crystal, We should also exclude crystal defects that may capture carriers of one sign
and thus result in unequal electron and hole concentrations. Clearly in a pure semicon-
ductor, electrons and holes are generated in pairs by thermal excitation across the
bandgap. It must be emphasized that Equation 5.11 is generally valid and therefore
applies to both intrinsic and nonintrinsic (n s p) semiconductors.

When an electron and hole meet in the crystal, they “recombine.” The electron
falls in energy and occupies the empty electronic state that the hole represents. Con-
sequently, the broken bond is “repaired,” but we lose two free charge carriers.
Recombination of an electron and hole results in their annihilation. In a semiconduc-
tor we therefore have thermal generation of electron—hole pairs by thermal excitation
from the VB to the CB, and we also have recombination of electron—hole pairs that re-
moves them from their conduction and valence bands, respectively. The rate of re-
combination R will be proportional to the number of electrons and also to the number
of holes. Thus

Reocnp

The rate of generation G will depend on how many electrons are available for ex-
citation at E,, that 15, Ny how many empty states are available at E,, that 15, N,; and
the probability that the electrom will make the transition, that is, exp(— E, / kT ), s0 that

G ot NoN ( Ey |
o N M, expl —
P er

Since in thermal equilibrium we have no continuous increase in n or p, we must
have the rate of generation equal to the rate of recombination, that is, G = R. This is
equivalent to Equation 5.11.

In sketching the diagrams in Figure 5.7a to d to illustrate the derivation of the ex-
pressions for o and p (in Equations 5.6 and 5.8), we assumed that the Fermi level Ex
is somewhere around the middle of the energy bandgap. This was not an assumption in
the mathematical derivations but only in the sketches. From Equations 5.6 and 5.8 we

Masy action
e
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also note that the position of Fermi level is important in determining the electron and
hole concentrations. It serves as a “mathematical crank™ to determine # and p.

We first consider an intrinsic semiconductor, n = p = n;, Setting p = n; in Equa-
tion 5.8, we can solve for the Fermi energy in the intrinsic semiconductor, £ g, that is,

-{EFII = -El.'j /2 ( .E )
Ny enp[ BT . :| (N Ny)“ exp ST

which leads to

1 Nﬂ)
En —_— Eu + _EER sz ln(hrll [5.12]

Furthermore, substituting the proper expressions for ¥, and &, we get
3 =
T AL —kT]n(m’) [5.13]
2 4 my
It is apparent from these equations that if N. = N, or m] = m}, then
1
Erg=E. + EE;

that is, £ g is right in the middle of the energy gap. Normally, however, the effective
masses will not be equal and the Fermi level will be slightly shifted down from midgap
by an amount %kT Inim? /m3), which is quite small compared with %EE. For Si and
Ge, the hole effective mass (for density of states) is slightly smaller than the electron
effective mass, s0 Ep; is slightly below the midgap.

The condition np = n? means that if we can somehow increase the electron concen-
tration in the CB over the intrinsic value—for example, by adding impurities into the Si
crystal that donate additional electrons to the CB—we will then have n > p. The semi-
conductor is then called n-type. The Fermi level must be cloger to E,. than £, so that

.Et- = .E_,:-' < .EF e E,_.

and Equations 5.6 and 5.8 yield n > p. The np product always yields n? in thermal
equilibrium in the absence of external excitation, for example, illumination.

It is also possible to have an excess of holes in the VB over electrons in the CB,
for example, by adding impurities that remove electrons from the VB and thereby gen-
erate holes. In that case £ is closer to E, than to E_. A semiconductor in which p > n
is called a p-type semiconduoector. The general band diagrams with the appropriate
Fermi levels for intrinsic, n-type, and p-type semiconductors (e.g., i-5i, n-5i, and p-5i,
respectively) are illustrated in Figure 5.8ato c.

Itis apparent that if we know where E g is, then we have effectively determined 1 and
p by virtue of Equations 5.6 and 5.8, We can view Ep as a material property that is related
to the concentration of charge carriers that contribute to electrical conduction. lis signifi-
cance, however, goes beyond 7 and p. It also determines the energy needed to remove an
electron from the semiconductor, The energy difference between the vacuum level (where
the electron is free) and £ is the work fanction & of the semiconductor, the encrgy re-
guired to remove an electron even though there are no electrons at Ep in a semiconductor,
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| {b} ic) In all cases, np = At

The Fermi level can also be interpreted i terms of the potential energy per electron
for electrical work similar to the interpretation of electrostatic PE. Just as e AV is the elec-
trical work involved i taking a charge ¢ across a potential difference AV, any difference
in Er in going from one end of a material (or system) to another is available to do an
amount A E p of external work, A corollary to this is that if electrical work is done on the
matental, for example, by passing 4 current through it, then the Fermi level is not vniform
in the matenal. A Ep then represents the work done per electron. For a matenial in thermal
equilibrium and not subject to any external excitation such as illumination or connections
to 4 voltage supply, the Fermi level in the matenal must therefore be uniform, A Ep = 0.

What is the average energy of an electron in the conduction band of a semiconduc-
tor? Also, what is the mean speed of an electron in the conduction band? We note that the
concentration of electrons with energies £ 0 E 4+ dE isng(£) dF or g, (EV1f{E) dE.
Thus the average energy of electrons in the CB, by definition of the mean, is

= 1
Ecp=~ | EQu(E)f(E)dE
ft fen

where the integration must be over the CB. Substituting the proper expressions for
gyl E) and f(E} in the integrand and carrying out the integration from E, to the top
of the band, we find the very simple result that

— 3
Emg=F 4+ EM" [5.14]

Thus, an electron in the conduction band has an average energy of %H‘ above E_.
Since we know that an electron at £, is “free” in the crystal, %kT must be its average
kinetic energy.

This is just like the average kinetic energy of gas atoms (such as He atoms) in a tank
assuming that the atoms (or the “particles™) do not interact, that is, they are independent.
We know from the kinetic theory that the statistics of a collection of independent gas
atoms obeys the classical Maxwell-Boltzmann description with an average energy given
by %k]‘". We should also recall that the description of electron statistics in a metal involves
the Fermi—Dirac Munction, which is based on the Pauli exclusion principle. In 2 metal the
average energy of the conduction electron is gE ¢ and, for all practical purposes, temper-
ature independent. We see that the collective electron behavior is completely different in
the two solids. We can explain the difference by noting that the conduction band in a

Average
electron
energy i C8
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Table 5.1 5elected typical properiies of Ge, 3i, ond Gahs ot 300 K

- - =1 -

Eg x b My H; FLm 1R
€¥) [e¥Vp  fem™H {om™ fem™ e Vs (e V'Y milim,  mime e
Ge D.Gﬁ- 4.1% t.lﬁ = 10 60 = 10" 2%« 1% 3900 1900 0.12a 023z 16
(.56 (.40
5i Lo 40 28 = 10" 1.2 = 10" 14 = 1009 1350 450 0. 260 d%Hs 119
1OER 0,60
Gadw 142 407 4T= 107 7w 0 20w e 210 400 L67ed Ol 13
0.50&
R P e e e S . n H i - oy BT W e e ek T2 T e L ] et

MOTE : Effective moss

reloted o coaductivity labeled of is differert than that for density af shates [fabelod B, In numeraus textbooks, n; is

token as 1.45 = 10'® em=3 and s therafare the most widely used velie of a, for S, thaugh the carmect vobue bs schiadly 1.0 x 101 0m 3,
[M. A Green, J, Aggl, Phys, &F, 2544, 1590

semiconducter is only scarcely populated by electrons, which means that there are many
more electronic states than electrons and thus the likelihood of two electrons trying to oc-
cupy the same electronic state is practically nil. We can then neglect the Pauli exclusion
principle and use the Boltzmann statistics. This is not the case for metals where the num-
ber of conduction electrons and the number of states are comparable in magnitude.

Table 5.1 is a comparative table of some of the properties of the important semi-
conductors, Ge, 5i, and GaAs.

INTRINSIC COMCENTRATION AND COMDUCTIVITY OF 5i Given that the density of states
related cffective masses of elecirons and holes in Si are approximately 1.08m, and 0.60wm,,
respectively, and the electron and hole drift mobilities ar room temperature are 1350 and
450 cm® ¥—! 51, respectively, calculate the intrinsic concentration and intrinsic resistivity of $i,

SOLUTION

We simply caleulate the effective density of states ¥, and &, by

" 3.!'2 4kr 3."2-
W E(M) and N, =g(21":u_)

] K
Thus
N z[l:r{l.mi x 9.1 % 10~ kg)(1.38 x 10-2 JK™') (300 K}]m
¢ (6.63 x 10~ Ig)?
=28l x 10¥m* o 28 x 10%em™?
and

2

i 2[2::(0.&] % 9.1 x 107* kg)(1.38 » 102 T K~")(300 1{1]
T = (6.63 = 10-3 Ig5)2

= 1.16 % 10 m™ or 116 % 10" em ™2
The inlonsic concentration is

' E
= (W, N (——‘ )
A= 1 exp T
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50 that

ap = [(2.81 x 10" em™3)(1.16 » 10" m_g}]!ﬂ&np[-

= 1.0 x 10%em ™

{1.10 eV} ]
2(300 K)(8.62 x 10-3eVK™)

The conductivity is
O = enp, +epy = el ity + fp)
that is,
o = (1.6 x 107" C)(1.0 x 10" em~)(1350 + 450 c® V™' 57
=29x10° @ 'em™!
The resistivity is
1 s
p===35=x 10 8 cm
o
Although we calculated n; = 1.0 % 10" cm™?, the most widely used n; valoe in the literature
has been 1.45 = 10" ¢m~*. The difference arises from a number of factors but, most impor-

tantly, from what exact value of the effective hole mass should be used in calculating N,.
Henceforth we will simply use? r; = 1.0 2 10" ¢m—?, which seems to be the “rrue” value,

MEAN SPEED OF ELECTRONS IN THE CB  Estimate the mean speed of electrons in the con-
duction band of Si at 300 K. If « is the magnitnde of lattice vibrations, then the kinetic theory

predicts a® o T'; or stated differently, the mean energy associated with lattice vibrations (pro-

portional to a®) increases with kT. Given the temperature dependence of the mean speed of

electrons in the CB, what should be the temperalure dependence of the drift mobility? The

effective mass of an electron in the conduction band is (L26sm,.

SOUTON

L3

that the effective mean speed v, must be

(M;T)”’ [(3 % 1.38 % 1072 x 300)
v, = —— =

‘ {0.26 x 9.1 % 1077}
The effective mean speed v, 15 called the thermal vebocity vy, of the eleciron,

The mean free time v of the electron between scattering events due to thermal vibrations of

the atoms is inversely proportional to both the mean speed v, of the electron and the scattering
cross section of the thermal vibrations, that 1s,

The fact that the average KE, 1m! v7, of an electron in the CB of a semiconductor is %kT means

11
] =23%10° mg™'

L
ml.'

1
® ve(ma®)
where o is the amplitude of the atomic thermal vibrations. But, v, o T'/* and (ra®) o kT, so
that T = T~ and consequently u, oo 7732,
Experimentally . is not exactly proportional to T~ but to T-24, a higher power index.
The effective mass used in the density of states calculations is actually different than that used
in transport caleulations such as the mean speed, drifl mobilily, and so on.

? The carrect vohee appeard e be 1.0 = 10" em™ ¥ o discussed by M. A Graan [ Appl. Phys., 87, 2944, 1990)
and A. B. Sproul and M. A, Green U, Appl Phys., 70, Bda, 1991].
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52 EXTRINSIC SEMICONDUCTORS

By introducing small amounts of impurities into an otherwise pure Si crystal, it is possi-
ble to obtain a semiconductor in which the concentration of carriers of one polarity is
much in excess of the other type. Such semiconductors are referred to as extrinsic semi-
conductors vis-i-vis the intrinsic case of a pure and perfect crystal. For example, by
adding pentavalent impurities, such as arsenic, which have a valency of more than four,
we can obtain a semiconductor in which the electron concentration is much larger than
the hole concentration. In this case we will bave an n-type semiconductor. If we add
trivalent impurities, such as boron, which have a valency of less than four, then we find
that we have an excess of holes over electrons. We now have a p-type semiconductor.,
How do impurities change the concentrations of holes and electrons in a semiconductor?

5.2.1 n-TYPE DOPING

Consider what happens when small amounts of a pentavalent (valency of 5) element
from Group V in the Periodic Table, such as As, F, 8b, are introduced into a pure Si
crystal. We only add small amounts (e.g., one impurity atom for every million host
atoms) because we wish to surround each impurity atom by millions of Si atoms,
thereby forcing the impurity atoms to bond with 5i atoms in the same diamond erystal
structura, Arsenic has five valence electrons, whereas 5i has four. Thus when an As
atom bonds with four $i atoms, it has one electron left unbonded. It cannot find a bond
to go into, so it is left orbiting around the As atom, as illustrated in Figure 5.9. The Ag*
ionic center with an electron ¢~ orbiting it is just like a hydrogen atom in a silicon en-
vironment. We can easily calculate how much energy is required to free this electron
away from the As site, thereby ionizing the As impurity. Had this been a hydrogen
atom in free space, the energy required to remove the electron from its ground state
{at # = 1) to far away from the positive center would have been given by —E, with
n = 1. The binding energy of the electron in the H atom is thus

et

8e2p?

o

= 13.6eV

Epy=—-E =

Figure 5.9 Arsenic-doped 5i crystol.

The four valence electrons of A allow it to bond just
like 53, but the Ffth electran is left arbiting the As sire,
The energy raquired to relecse the free fifth slechron
into the CB is very small,
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If we wish to apply this to the electron around an Ast core in the Si crystal envi-
ronment, we must use &.¢, instead of £,, where £, is the relative permittivity of silicon,
and also the effective mass of the electron m} in the silicon crystal. Thus, the binding

1 f the electron to the As™ site in the 51 crystal is
CUETEY O ¢ g4 Electron
[ )

s me : m 1 binding
Ey = Sp2odfhd “3'6":"’}(_‘!)(3_.5) [5.15] ENETEY i &

X re . L donor
Withs, = 11.9 andm? = lsm, for silicon, we find E§' = 0.032 eV, which is com-

parable with the averape thermal energy of atomic vibrations at room temperature,
~3kT (~0.07 eV). Thus, the fifth valence electron can be readily freed by thermal
vibrations of the 51 lattice. The electron will then be “free” in the semiconductor, or, in
other words, it will be in the CB, The energy required to excite the electron to the CB
is therefore 0.032 eV, The addition of As atoms introduces localized electronic states
at the As sites becanse the fifth electrom has a localized wavefunction, of the hydro-
genic type, around As™. The cnergy E, of these siates is (0,032 eV below E, because
this 1s how much energy is required to take the electron away into the CB. Thermal ex-
citation by the lattice vibrations at voom temperature is sufficient to ionize the As atom,
that is, excite the electron from E, into the CB. This process creates free electrons but
immobile As™ ions, as shown in the energy band diagram of an n-type semiconductor
in Figure 5.10. Because the As atom donates an electron into the CB, it is called a
donor atom, E,; is the electron energy around the donor atom. Ey is close to E,, so the
spare fifth electron from the dopant can be readily donated to the CB. If Nyis the donor
atom concentration in the crystal, then provided that Ny 3 »;, 4t room temperature the
electron concentration in the CB will be nearly equal to Ny, that is n = N,;. The hole
concentration will be p = n?/N,, which is less than the intrinsic concentration be-
cause a few of the large number of electrons in the CB recombine with holes in the VB
80 as to maintain #p = nf. The conductivity will then be

2
”y H-Lype
o =eNgu, +e (E) fop 7= eNgpe, 5.18] conduetiviry

At low temperamres, however, not all the donors will be ionized and we need to
know the probability, denoted as f;(E4), of finding an electron in a state with energy

Figure 5.10 Enargy band diagram for an

g 4 niype Si doped with 1 ppm As,

= There are donor energy levels just balow E.
= around AsT sites.
£z
43|

EE

~0.03 eV
g}
E, = r Distance into
T T f ? crystal

As atom sites every 108 Si atoms
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E, at a donor. This probability function is similar to the Fermi-Dirac function f{E,)
except that it has a factor of l: multiplying the exponential term,

!
Eg) =
falEq) 1+lmp[[Ed—Epj]
2 kT

[5.17]

The factor %1 is due to the fact that the electron state at the donor can take an elec-
tron with spin either up or down but not both? {once the donor has been occupied, a
second electron cennot enter this site). Thus, the pumber of ionized donors at a tem-

perature T is given by
N ; = Ny x (probability of not finding an electron at E, )
= Nyl — falEg)]
Ny

5.18
(Er — Ed}] L
kT

1+2=xp|:

522 p-Tyre DoPNG

We saw that introducing a pentavalent atom into a 5i crystal results in #-type doping be-
cause the fifth electron cannot go into a bond and escapes from the donor into the CB by
thermal excitation. By similar arguments, we should anticipate that doping a 8i crystal
with a trivalent atom (valency of 3) such as B, Al, Ga, or In will result in a p-type 51 crys-
tal. We consider doping 51 with small amounts of B as shown in Figure 5.11a. Because
B has only three valence electrons, when it shares them with four neighboring Si atoms,
one of the bonds has a missing electron, which of course is a hole, A nearby electron can
tunnel into this hole and displace the hole further away from the boron atorm, As the hole
moves away, it gets attracted by the negative charge left behind on the boron atom and
therefore takes an orbit around the B~ iom, as shown in Figure 5.11b. The binding energy
of this hole to the B~ ion can be calculated using the hydrogenic atom analogy as in the
n-type Si case. This binding energy s out to be very small, ~0.05 eV, 50 at room
ternperature the thermal vibrations of the lattice can frec the hole away from the B~ site,
A free hole, we recall, exists in the VB. The escape of the hole from the B~ site involves
the B atom accepting an electron from a neighboring 5i-8i bond (from the VB), which
effectively results in the hole being displaced away and its eventual escape to freedom in
the VB: The B atom introduced into the Si crystal therefore acts as an electron acceptor
and, because of this, it is called an acceptor impurity, The electron accepted by the
B atom comes from a nearby bond, On the energy band diagram, an electron leaves the
VB and gets accepted by a B atom, which becomes negatively charged. This process
leaves a hole in the VB that is free to wander away, as illustrated in Figure 5,12,

It is apparent Lhat doping a silicon crystal with a trivalent impunity results in a
p-type material. We have many more holes than electrons for electrical conduction

| 2 The proof con ke found in advanced solidshaie physics hexts.
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) | (b

Figure 5.11 Boron-doped 5i crysial.

B has only three vaolence elecirons. When it substiutes for a Si atom, one of its bonds
has an electron missing and therefore a hole, as shown in [a}. The hole orbits around
the B~ site by the tunneling cf alactrons from neighboring bonds, as shown in (b}
Eventually, thermally vibrating Si atoms provide encugh enargy to free the hole from
the B~ site into tha VB, as shawn,

Electron energy
i B atom sites every 10° Si atoms

E = x Distance
into crystal

Figure 5.12 Energy band
B- & B- B diagram for a ptype Si doped with

B
E t-- wrsars Eeies e s 1 ppm B.
Ayt ! ! lﬁ-ﬂ.ﬂﬁ eV There are acceptor energy levels £,
P

E 0 000 000 000 90 just above E, around B~ sites. These
0000000000000 0000 acceptor levels accept elecirons from
000000000000 0000 the VB and therefore create holes in
o000 00D DOOOOOOOO® the VB.

since the negatively charged B atoms are immobile and hence cannot contribute Lo the
conductivity. If the concentration of acceptor impurities N, in the crystal is much
greater than the intrinsic concentration n;, then at room temperature all the acceptors
would have been ionized and thus p & N,. The electron concentration is then deter-
mined by the mass action law, n = nf,f N, which is much smaller than p, and conse-
guently the conductivity is simply given by ¢ = e N, .

Typical ionization energies for donor and acceptor atoms in the silicon crystal are
summarized in Table 5.2.

391
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Table 5.2 Examples of donor and acceptor ionizaficn energies |e¥] in 5i

Donurs Acceptors
P As Sh B Al Ga
04045 (0G4 0.039 045 0.057 0072

5.2.3 COMPENSATION DOPING

What happens when a semiconductor contains both donors and acceptors? Com-
pensation doping is a term used to describe the doping of a semiconductor with both
donors and acceptors to control the properties. For example, a p-type semiconductor
doped with &, acceptors can be converted to an n-type semicondoctor by simply
adding donors until the concentration N; exceeds &, . The effect of donors compen-
sates for the effect of acceptors and vice versa. The electron concentration is then
given by Ny — N, provided the latter is larger than m;., When both acceptors and
donors are present, what essentially happens is that electrons from donors recombine
with the holes from the acceptors so that the mass action law np = n? is obeyed. Re-
member that we cannot simultaneously increase the electron and hole concentrations
because that leads to an increase in the recombination rate that returns the electron
and hole concentrations to satisfy np = n?. When an acceptor atom accepts a valence
hand electron, a hole is created in the VB, This hole then recombines with an elec-
tron from the CB, Suppose that we have more donors than acceptors. If we take the
initial electron conceniration as n = Ny, then the recombination between the elec-
trons from the donors and N, holes generated by N, acceptors resulis in the electron
comcentration reduced by N, o n = Ny — N, By a similar argument, if we have
more acceplors than donors, the hole concentration becomes p = N, — Ny, with
electrons from Ny donors recombining with holes from N, acceptors. Thus there are
two compensation effects: '

1. More donors:  No— N, % n=(Ng— Ny} and p=

2 M tors: N, — N, ; =(N,— N d n=—!
Ote ACCEPLors 4= n P =N, ) and m Mo No)
These argurments assume that the temperature is sufficiently high for donors and

acceptors to have been ionized. This will be the case at room temperature. At low tem-

peratures, we have to consider donor and acceptor statistics and the charge neutrality

of the whole crystal, as in Example 5.8,

EXAMPLE 5.3

RESISTIVITY OF INTRINSKC AND DOPED 5 Find the resistance of a 1 cm’ pure silicon crystal.
What is the resistance when the crystal is doped with arsenic if the doping is 1 in 10°, that is,
1 part per billion (ppb) (note that this doping comresponds to one foreigner living in China)?
Given data: Atonic concentration in silicon is 5x 10% em™, m = 1.0x 10" cm™?,
o= 1350 cm® ¥~! 57!, and gy = 450 om? V-1 571,
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SOLUTION
For the intrinsic case, we apply
¢ =enpt, + eppy = en(p, + )
S0 o= (1.6 x 107" C)(1.0 x 10" cm~")(1350 + 450 cm’ V™" s~}
=288 x107°Q 'em™!
Since L = 1 cmand A = 1 em?, the resistance is
L 1

R=—===347x10°Q or 347k
agA o
When the crystal is doped with | in 107, then
Nx 5 x 10%
Na S - _5%10%cm™

100 100
Al room temperature all the donors are ionized, so
n=~N;=5x10"cm™?
The hole concentranon is
iz 1]
p= -;% = %=2.ﬂx 10%em™? <« n;

Therefore,

g =enu, = (1.6 x 1072 C)5 x 10% em™*)(1350 cm® V™ 1571

=1.08x107°Q 'em™!

Further, R = i = rlr = 92 6482
adA o

Notice the drastic fall in the resistance when the crystal i1s doped with only 1 in 10° atoms.
Doping the silicon ¢rystal with boron instead of arsenic, but still in amounts of 1 in 10°,
means that N, = 5 x 10" ¢cm~*, which results in a conductivity of

o =epup=(1.6x 107" CH5 x 10% cm ™) (450 cm?® V~1s7!)
=36x107°Q " cm™!

Therefore, R=—=—=2780

The reason for a higher resistance with p-type doping compared with the same amount of r-type
doping is that s < g,.

393

COMPENSATION DOPING  An n-type Si semiconductor containing 10'® phosphorus (donor) EESILUSN

atoms cm > has been doped with 10" boron (acceptor) atoms cm~>. Calculate the electron and
hole concentrations in this semiconductor,

SOLUTION

This semiconductor has been compensation doped with excess acceptors over donors, so
N — Ny = 10" — 10" =9 x 10" em™?
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This is much larger than the intrinsic concentration n; = 1.0 x 10'® cm™ at room tempera-
ture, so
p=N,=N;=9x10%cm™?
The electron concentration _
(1.0 x 10! ecm—?)?

i

2 ;

= — = =1.1x10
" P (9 x 10 em=3) x s

Clearly, the electron concentration and hence its contribution to electrical conduction is

completely negligible compared with the hole concentration. Thus, by excessive boron doping,

the n-type semiconductor has been converted to a p-type semiconductor.

EXAMPLE 5.5

THE FERMI LEVEL IN n- AND p-TYPE §i An n-type Si wafer has been doped uniformly with
10" antimony (Sb) atoms cm~>3. Calculate the position of the Fermi energy with respect to the
Fermi energy Eg; in intrinsic Si. The above n-type Si sample is further doped with 2 x 10"
boron atoms cm™?. Calculate the position of the Fermi energy with respect to the Fermi energy
Ey; in intrinsic Si. {Assume that T = 300 K, and kT = 0.0259 eV.)

SOLUTION

Sb gives n-type doping with Ny = 10'® cm™3, and since N, > n; (= 1.0 x 10" cm™?), we have
n=N;=10"cm>?

For intrinsic Si,
(Et' —E ]
np = Nﬂ- ﬁxp[— Tm]

whereas for doped Si,
':Er — EFI'I}]

=N —_ =N
n £ ::x]][ kT d

where Er; and E, are the Fermi energies in the intrinsic and n-type 5i. Dividing the two ex-
pressions,

Na [(Em — Eﬁ]]
exp| ————

n; kT
so that
Ny 10
Epn — Ep; = kT m(;) = (0.0259 eV}ln(m—) = 0.36eV

‘When the wafer is further doped with boron, the acceptor concentration is
No=2x10"em™? > Ny = 10" em™
The semiconductor is compensation doped and compensation converts the semiconductor to
p-type §i. Thus
p=N,—N; =2 »x 10" -10") = 1.9 x 107 em™
For intrinsic 5i,
{(Epi — Ey)
= “"?[‘T]

whereas for doped Si,

(EFp = Eu:'

=N,—N
kT ] 4

p=2N, ﬂxp[—
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where E; and E g, are the Fermi energies in the intrinsic and p-type Si, respectively. Dividing

the two expressions,
P {Epy — EH‘}}
p[ kT

80 that
1.9 x m”)

p
Erp— Ep = —kTIn| = ) = —(0.0259 ¢V) In
Bp “() [ }(mxmlﬂ

Fy

= —0.43 eV

ENERGY BAND DIAGRAM OF AN n-TYPE SEMICONDUCTOR CONNECTED TO A VOLTAGE J3¢.V HIEN.
SUPPLY Consider the energy band diagram for an #-type semiconductor that is connected to a

voltage supply of V and is carrying a current. The applied voltage drops uniformly along the
semiconductor, so the electrons in the semiconductor now also have an imposed electrostatic
potential energy that decreases toward the positive terminal, as depicted in Figure 5.13. The
whole band structure, the CB and the VB, therefore tilts. When an electron drifts from A toward

Figure 5.13 Energy band diagram of an
rype semiconductor connected o a voltage

supply of V volis.

The whole energy diagram filts because the
electran now alse has an electrostatic potential
energy.

Electron cnergy

n-type semiconductor

e

"

Vv
|
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B, its PE decreases because it is approaching the positive terminal. The Fermi level Ef is ahove
that for the intrinsic case, Eq.

We should remember that an important property of the Fermi level is that a change in £
within a system is available externally to do electrical work. As a corollary we note that when
electrical work 15 done on the system, for example, when a battery 1s connected to & semicon-
ductor, then Ep is not uniform throughout the whole system. A change in £, within a system
A Er is equivalent to electrical work per electron or e V. Ep therefore follows the electrostatic
PE behavior, and the change in E¢ from one end Lo the other, Ep(A) — EF(B), is just eV, the
energy expended in taking an electron through the semiconductor, as shown in Figore 513,
Electron concentration in the semiconductor is uniform, so £, — Ex must be constant from one
end to the other, Thus the CB, VB, and £ all bend by the same amount.

53 TEMPERATURE DEPENDENCE OF CONDUCTIVITY

So far we have been calculating conductivities and resistivities of doped semicondue-
tors at room temperatare by simply assoming that v =2 N, for n-type and p = N, for
p-type doping, with the proviso that the concentration of dopants is much greater than
the intringic concentration »; . To obtain the conductivity at other temperatures we have
to consider two factors: the temperature dependence of the carmier concentration and
the drift mobility.

5.3.1 CarrieR CONCENTRATION TEMPERATURE DEPENDENCE

Consider an »-type semiconductor doped with Ny donors per unit volume where
Ny == ny. We take the semiconductor down to very low temperatures until its con-
ductivity 15 practically nil. At this temperature, the donors will not be ionized be-
cause the thermal vibrational energy is insufficiently small. As the temperature is
increased, some of the donors become ionized and donate their electrons to the CB,
as shown in Figure 3.14a. The 5i-5i bond breaking, thart is, thermal excitation from
E, to E,, 15 unlikely because it takes too much energy. Since the donor ionization
energy AFE = £, - E; is very small (« k), thermal generation involves exciting
electrons from £, to £.. The electron concentration at low temperatures is given by

the expression
1 e AE
= =N.N i :
R (2 ,L. #) exp( sz) [5.19]

similar to the intrinsic case, that 1s,

n= (NN }1-ﬂcxp(—i) (5.20]
C & Ek

Equation 5.20 is valid when thermal peneration occurs across the bandgap E,
from E, to E.. Equation 5.19 is the counterpart of Equation 5.20 taking into account
that at low temperatures the excitation is from Ez to E_ {(across AE) and that instead

of &.. we have N, as the number of available electrons. The numerical factor ;— in
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FaTal,

W T=T, bl T=T, g T=T,

Figure 5.14
la} Perboiar T the deciran canconmotion is conirallad b',.- e ionization of the donors,

| Batwean T, ard T, Fve slecron concenralion iz equal ko the concenfration of donors
sinca ey wold all bove ianized

(e} A high remperalures, thenrelly geraraied electans from the VB excesd the romber
of elecvons from ionized donars and the semiconducior behaves as if infrinsic.

Equation 5.19 arises becsuse donor oceupation satistices is differcnt hy this factor from
the usual Fermi- Dhrac function, as mentioned carlier.

Ay the temperature is increased further, eventually all the donors bacome jon-
ized and the elecuron concenmiration is equal w the donor concentration, that s,
n= My, a8 depiceed in Figure 3. 14h. This stare of affairs remains unchangad unil
very high temperatures are reached, when thermal generution seross the bandgap be-
gins tn dominace. At very high semperatures, thermal vibrations of the atoms will be
80 slromg that many 5i-5i bonds will be broken and thermal generation soruss £,
will dnminate. The electron concentration in the CR will then he mainly due to ther-
mal excitation from the VB 1o the CB, as tlustrated in Figure 5. 14¢. But this process
glsn generates an cqual concentration of holes in the VB, Accordingly, the semicon-
ductor befiaves as il il were mntrinsic. The electron concentraton at these termpera-
mres will theretore be equal 1o the intrinsic concenfration a;, which is given by
Equatsom 3,20,

The dependence of the elecwron ¢oncentration on remperature thws has thees
e ons:

1. Low-temperature range {T < T;}. The increase in temperature at these low
temperatures innizes mors and more donoms. The donor onization continoes wnidl we
reach a temperateee T, called the satoration temperatore, when all donoes have been
wnized und we have saturaton in the concentration of mized donors. The eleciron
concenivation is given by Equatian 5. [9. This temperature range 15 often referred to as
the )aizalion range.

2. Medium-temperatore vange (T, = T < Tyl Since nearly all the donory
have been jomized in this range. n = &;. This condition remaios wochanged until
T =T, when a;, which is temperature dependent, hecomes equal to My It 1= this

agr
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temperature range 7, < T < T; that wtilizes the n-type doping properties of the semi-
conductor in pn junction device applications. This temperature range is ofien referred
to as the extrinsic range.

3. High-temperature range (I = T;). The concentration of electrons gener-
ated by thermal excilation across the bandgap #; is now much larger than N, so the
electron concentration n = n;(T). Furthermore, as excitation occurs from the VB o
the CB. the hole concentration p = n. This temperature range is referred to as the
intrinsic range.

Figure 5.15 shows the behavior of the electron concentration with temperature in
an n-type semiconductor. By convention we plot In(r) versus the reciprocal tempera-
ture T~'. At low temperatures, In(n)} versus T~ is almost a straight line with a slope
—(AE/2k), since the temperature dependence of N/ (o T7%) is negligible com-
pared with the exp(— AE /2kT) part in Equation 5.19, In the high-temperature range,
however, the slope is quite steep and almost —E,/2k since Equation 5.2(} implies
that

B
732 (_ g )
n EXp T

and the exponential part again dominates over the T%2 part. In the intermediate range,
n is equal to Ny and practically independent of the temperature,

In{n)

L

Inirinsic

S]Dpe = —ESIZII:

1

Intrinsic concentration {cm™)

l?“iza-ﬁm}!‘ﬁ'a’lk
() - TpRmT

LI I S B B B

;’.{n 1 1.5 2 2.5 3 35 4
= /T 1000/T (1/K)

Figure 5.15 The temperalure dependence of the electron ~ Figure 5.18 The temperoture dependence of the infrinsic
concenfrotion in an nlype semiconductor. concentration.



5.3 TEMPERATURE DEPENDENCE OF CONDUCTIVITY

Figure 5.16 displays the temperature dependence of the intrinsic concentration in
Ge, Si, and GaAs as log(n;) versus 1/ T where the slope of the lines is, of course, a
measure of the bandgap energy E,. The log(n;) versus 1/T graphs can be used to find,
for example, whether the dopant concentration at a given temperature is more than the
intrinsic concentration. As we will find out in Chapter 6, the reverse saturation current
in a pn junction diode depends on n?, so Figure 5.16 also indicates how this saturation
current varies with temperature,
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SATURATION AND INTRINSIC TEMPERATURES An n-type Si sample has been doped with 104
phosphorus atoms cm ~*, The donor energy level for P in Si is 0.045 eV below the conduction
band edge energy.

a. [Estimate the temperature above which the sample behaves as if intrinsic.

b. Estimate the lowest temperature above which most of the donors are ionized.

SOLUTION

Remember that r; (T) is highly temperature dependent, as shown in Figure 5.16 so that as T
increases, eveniually at 7 = T;, n; becomes comparable to Ny Beyond T;, n,(T = T;) 3 N,.
Thus we need to solve

ni{T;) = Ny = 10" em™

From the log(n;) versus 107 /T graph for Si in Figure 5.16, when n, = 10" em ™3, (10°/7;) =~
1.85, giving T; == 541 K or 268 “C.

We will assume that most of the donors are ionized, say at T = 7,, where the extrinsic and
the extrapolated ionization lines intersect in Figure 5.15;

| 2 AE
‘n=[(=-N.N e, |
? (2 “) “P( 2;:1",) /

This is the temperature at which the ionization behavior intersects the extrinsic region. In the
above equation, Ny = 108 em ™3, AE = 0.045eV, and N, o« T%/2, that is,

3k
N.(T,) = N.(300 Kl(ﬁ)

Clearly, then, the equation can only be solved numerically. Similar equations occur in a wide
range of physical problems wherg one term has the strongest temperature dependence. Here,
exp(—AE/kT,) has the strongest temperawire dependence. First assume N, is that at 300 K,
N. =28 x 10 cm™?, and evalvate T;,

!

T = AE 0.045 eV 547K
§= N,y 28 x 10%em—> |
kln( — ) 8.62 x 10~ eV K~! in[ ' ' ]
N, R Y M e 105 en )

AT = 547K,

54.7%%?
N.(54.7K) = N.(300 K}(E) =2.18 x 10" em™

EXAMPLE 5.7
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With this new N, at a lower temperature, the improved T is 74.6 K. Since we only need an
estimate of T, the extrinsic range of this semiconductor is therefore from about 75 to 541 K or
—198 to about 268 °C.

TEMPERATURE DEPENDENCE OF THE ELECTRON CONCENTRATION By considering the mass
action law, charge neutrality within the crystal, and occupation statistics of electronic states, we
can show that at the lowest temperatures the electron concentration in an a-type semiconductor

Electron © 18 given by

f‘ﬂlifﬂ”‘ﬂ_{!ﬂﬂ,; ( 1 _ )1;2 ( AE )
n=|- exp| ———
s g g e T
Rz em _
region ~ where AE = E, — E,. Furthermore, at the lowest temperatures, the Fermi energy is midway

between E, and E..
There are only a few physical principles that must be considered to arrive at the etfect of
doping on the electron and hole concentrations. For an n-type semiconductor, these are

1. Charge carrier statistics,

n= N.exp [v'(-E—cf';il} (1)
2. Mass action law.
np = n} 2
3. Electrical neutrality of the crystal. We must have the same number of positive and neg-
ative charges:
p+N;=n (3)

where N, is the concentration of ionized donors.
4. Statistics of ionization of the dopants.

N7 = Nyx (probability of not finding an electron at E4) = Ny[1 — fa(E )]

- Al] ‘)

1+ ZExp[—————(Erk} E‘):]

Solving Equations 1 to 4 for n will give the dependence of n on T and N,. For example,
from the mass action law, Equation 2, and the charge neutrality condition, Equation 3, we get

2

.

~—‘—-+-N;=n
n

This is a quadratic equation in n. Solving this equation gives

1 1 72
n= E(N;) + I:Z{N;)E + nf]

Clearly, this equation should give the behavior of » as a function of T and N, when we also
consider the statistics in Equation 4. In the low-temperature region (T < T}), nf is negligible in
the expression for 7 and we have

Ng

1 4+ 2exp [: —(Efk; Ed)]

+ 1
n=N; = miﬁﬂexp —

(Er — Ed)]
kT
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But the statistical description in Equation 1 is generally valid, so multiplying the low-
temperature region equation by Equation 1 and taking the square root eliminates E  from the

expression, giving
n— (ENcNd) expli_(_"’__.fl

2kT
" To find the location of the Fermi energy, consider the general expression
kT

which must now correspond to n at low temperatures. Equating the two and rearranging to obtain

Er we find
E .+ E; 1 ( Ny )
Er = -
F 3 +2len 2N

which puts the Fermi energy near the middle of AE = E. — E, at low temperatures.
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5.3.2 DrIFT MOBILITY: TEMPERATURE AND IMPURITY DEPENDENCE

The temperature dependence of the drift mobility follows two distinctly different tem-
perature variations. In the high-temperature region, it is observed that the drift mobility
is limited by scattering from lattice vibrations. As the magnitude of atomic vibrations
increases with temperature, the drift mobility decreases in the fashion g o T732,
However, at low temperatures the lattice vibrations are not sufficiently strong to be the
major limitation to the mobility of the electrons. It is observed that at low temperatures
the scattering of electrons by ionized impurities is the major mobility limiting mecha-
nism and u & T°/2, as we will show below.

We recall from Chapter 2 that the electron drift mobility 1 depends on the mean
free time T between scattering events via

et
p=— [5.21]
mE
in which
1 [5.22]
T = ;
SUﬂ,N,

where § is the cross-sectional area of the scatterer; vy, is the mean speed of the elec-
trons, called the thermal velocity; and N; is the number of scatterers per unit volume.
If a is the amplitude ofthe atomic vibrations about the equilibrium, then § = 7a®. As
the temperature increases, so does the amplitude a of the lattice vibrations following
a® o« T behavior, as shown in Chapter 2. An electron in the CB is free to wander
around and therefore has only KE. We also know that the mean kinetic energy per elec-
tron in the CB is 2k T, just as if the kinetic molecular theory could be applied to all
those electrons in the CB. Therefore,
E gow 3

Emeum = EkT
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KE < IPE
Figure 5.17 Scaltering of electrons by an ionized
imgurity,

so that vy, & T'/2, Thus the mean time t; between scatiering events from lattice vibra-
tions is
| g 1
Ty =
LT mahuaN,  (T)TP)

which leads to a lattice vibration scattering limited mobhility, denoted as u 1, of the form
wp oc T2 [5.23]

At low temperatures, scattering of electrons by thermal vibrations of the lattice
will not be as strong as the electron scattering brought about by ionized donor impuri-
ties. As an electron passes by an ionized donor As*', it is attracted and thus deflected
from its straight path, as schematically shown in Figure 5.17. This type of scattering of
an electron is what limits the drift mobility at low temperatures.

The PE of an electron at a distance r from an As™ ion is due to the Coulombic
attraction, and its magnitude is given by

o T—3,|’2

EZ

AmE € T

|PE| =

If the K'E of the electron approaching an As™ ion is larger than its PE at distance r
from As*, then the electron will essentially continue without feeling the PE and therefore
without being deflected, and we can say that it has not been scattered. Effectively, due
to its high KE, the electron does not feel the Coulombic pull of the donor. On the other
hand, if the KE of the electron is less than its PE at r from As™, then the PE of the
Coulombic interaction will be so strong that the electron will be strongly deflected, This
is illustrated in Figure 5.17. The critical radius r. corresponds to the case when the elec-
tron is just scaltered, whichis when KF = |PE(r.)|. Butaverage KE = %kT, soatr = r,

1 3 2
~kT = |PE = —
5 |PE(r.)] TieEd,
from which r, = €%/(6xe,5,kT). As the temperature increases, the scattering radius
decreases. The scattering cross section § = xr? is thus given by

Tet

§=— 2% gt
G e e kTR
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Incorporating vyg, o T2 as well, the temperature dependence of the mean scattering
time r; between impurities, from Equation 5,22, must be
1 1 T
T SN THTHN N
where N; is the concentration of ionized impurities (all ionized impurities including

donors and acceptors). Consequently, the ionized impurity scattering limited mobility
from Equation 5.21 is

Ty

731
0; —
e Ne

Note also that p; decreases with increasing ionized dopant concentration Ny,

which itself may be temperature dependent. Indeed, at the lowest temperatures, below

the saturation temperature T, N; will be strongly temperature dependent because not

all the donors would have been fully ionized.

The overall temperature dependence of the drift mobility is then, sitnply, the recip-

rocal additions of the g, and ;. by virtue of Matthiessen’s rule, that is,

1 1 1

fie M e
so the scartering process having the lowest mobility determines the overall (effective)
drift mobility.

The experimental temperature dependence of the electron drift mobility in both
Ge and Si is shown in Figure 5.18 as a log—log plot for various donor concentrations.
The slope on this plot corresponds to the index n in g, o T™. The simple theoretical
sketches in the insets show how ut; and 2y from Equations 5.23 and 5.24 depend on
the temperature. For Ge, at low doping concentrations (e.g., Ns = 10" cm™?), the
experiments indicate a pt, o< T~ type of behavior, which is in agreement with g,
determined by pi;, in Equation 5.23. Curves for Si at low-level doping (u¢; negligible)

[5.24]

[5.25]

lonized
inpurity
Feotlering
fimited
miobility

Effective
mebility

SOO00 73— - — = Figure 5.18 Log-log plot of drift mobility versus
-~ e B L temperature for idype Ga and ntype S5i samples.
.;“ 1;“ - Ge : Varicus denor concentrations for $i are shown. My are in
> L0000 3 Ny=lU e em~=, The upper right inset is the simple theory for laffice
iz B N o=1016 Ty, =1043 limited mability, whereas the lower left inset is the simple
= . o S o theory for impurity scattering limited mobility.
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at high temperatures, however, exhibit a z, o 77> type of behavior rather than 7!,
which can be accounted for in a more rigorous theory. As the donor concenlration
increases, the drift mobility decreases by virtue of u; getting smaller. At the highest
doping concentrations and at low temperatures, the electron drift mobility in Si
exhibits almost a g, oc T2 type of behavior, Similar arguments can be cxtended 1o the
temperature dependence of the hole drift mobility.

The dependences of the room temperature electron and hole drift mobilities on the
dopant concentration for Si are shown in Figure 5.19 where, as expected, past a certain
armnount of impurity addition, the drift mobility is overwhelmingly controlled by p; in
Equation 5.25.

53.3 ConpucTIvITY TEMPERATURE DEPENDENCE

The conductivity of an extrinsic semiconductor doped with donors depends on the
electron concentration and the drift mobility, both of which have been determined
above. At the lowest temperatures in the lonization range, the electron concentration
depends exponentially on the temperature by virtue of

1 M (E. — Ey)
n= (EN,:N..;) exp T ]

which then also dominates the temperature dependence of the conductivity. In the
intrinsic range at the highest temperaturcs, the conductivity is dominated by the
temperature dependence of #; since

g = eni(ft. + tn)
&

and #, is an exponential function of temperature in contrast to gt o« 7 ~>/%, In the extrinsic

mperature range, # = N, and is constant, 50 the conductivity follows the temperature
dependence of the drift mobility. Figure 5,20 shows schematically the semilogarithmic
plot of the conductivity against the reciprocal lemperature where through the extrinsic
range o exhibits a broad “S” due to the temperature dependence of the drift mokility.
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COMPENSATION-DOPED Si

a. A Sisample has been doped with 10'7 arsenic atoms cm™. Calculate the conductivity of
the sample at 27 °C (300 K) and at 127 °C (400 K).

b. The above n-type Si sample is further doped with 9 x 10'® boron atoms cm ™2, Calculate
the conductivity of the sample at 27 °C and 127 °C.

SCLUTION

@ The arsenic dopant concentration, N; = 10'" em™?, is much larger than the intrinsic con-

centration »;, which means that n = N, and p = (n*/N,) <« n and can be neglected. Thus
n = 107 cm™? and the electron drift mobility at N; = 10" cm™? is 800 cm? V™! s~! from
the drift mobility versus dopant concentration graph in Figure 5.19, so

O = enjt, +epuy = eNall,

= (1.6 x 10779 010" em™ (B0 em* V'sH=1280" em™!
AtT =127 °C = 400 K,

e == 420 cm?®V-!s!
(from the w, versus T graph in Figure 5.18). Thus

og=eN;u, =672 0-'em™!
b, With further doping we have N, = 9 x 10 ¢em ™3, so from the compensation effect
Ng— Ny =1x10"7 —9x 10" = 10" em™?
Since Ny — N, » ; ., we have an #-type material withn = N; — N, = 10'% em . But the
drift mobility now is~about ~ 600 cm® V=! 57! because, even though N; — N, is now

10" em~—? and not 10" em =, all the donors and acceptors are still ionized and hence still
scatter the charge carriers. The recombination of electrons from the donors and holes from

the acceptors dees not alter the fact that at room temperature all the dopants will be ionized.
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‘Effectively, the compensation effcct is as if all electrons from the donors were being
accepted by the acceptors, Although with compensation doping the net electron concentra-
ton is # = Ny — N, the drift mobility scattering is determined by {(¥; + N}, which in
this case is 107 + 9 % 10 em™ = 1.9 = 10" cm™?, which gives an electron drift mo-
bility of ~600 em? ¥t 57! at 300 K and ~400 cm® V! 5~! at 400 K. Then, neglecting the
hole concentration p = n}f{.ﬂu’ — &), we have

ALK, o =e(My = N = (1.6 x 1071° O)(10" e ™) (600 em® V=1 s71)

=090 cm!
At 400 K, o= elNg =N, = (16 x 1071 C) 10 em— (400 cm? V' 5~1)
= 0.64 2~ em~!

534 DEGENERATE AND NONDEGENERATE SEMICONDUCTORS

The general exponential expression for the concentration of electron in the CB,

(B - EF}}
&T

1s based on replacing Fermi—Dirac statistics with Boltzmann statistics, which is only
valid when E, is several kT above Eg. In other words, we assumed that the number of
states In the CB far exceeds the number of electrons there, s0 the likelibood of two
electrons trying to cccupy the same state is almost nil. This means that the Pauli
exclusion principle can be neglected and the electron statistics can be described by the
Boltzmann statistics. N. is a measure of the density of states in the CB. The Boltzmann
expression for a is valid only when n < N,. Those semiconductors for whichn < N,
and p < N, are termed nondegenerate semiconductors. They essentially follow all
the discussions above and exhibit all the normal semiconductor properties outlined
above,

When the semiconductor has been excessively doped with donors, then n may be so
large, typically 10'"-10* cm~, that it may be comparable to or greater than N.. In that
case the Pauli exclusion principle becomes important in the electron statistics and we
have to use the Fermi—Diirac statistics. Equation 5.26 for n is then no longer valid. Such
a semiconductor exhibits properties that are more metal-like than semiconductor-like;
for example, the resistivity follows p oo T. Semiconductors that have n > N, or
p = N, are called degenerate semiconductors.

The large carrier concentration in a degenerate semiconductor is due to ils
heavy doping. For example, as the donor concentration in an n-lype semiconductor
is increased, at sufficiently high doping levels, the donor atoms become so close to
each other that theirotbilals overlap to form a narrow energy band that overlaps and
becomes part of the conduction band. E, is therefore slightly shifted down and E,
hecomes slightly narrower. The valence electrons from the donors fill the band
from E.. This situation is reminiscent of the valence electrons filling overlapping
energy bands in a metal. In a depenerate n-type semiconductor, the Fermi level is
therefore within the CB, or above E, just like Ef is within the band in a metal. The

n = N, exp[- 15.24]
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{a) Degenerate nype semiconductor. Large number of deners form a band that overaps

the CB.
[b] Degenerate ptype semiconductor.

majority of the states between E, and Er are full of electrons as indicated in Figure
5.21. In the case of a p-type degenerate semiconductor, the Fermi level lies in the
VB below E,. It should be emphasized that one cannot simply assume thatn = Ny
or p = N, in a degenerate semiconductor because the dopant concentration is so
large that they interact with each other. Not all dopants are able to become ionized,
and the carrier concentration eventually reaches a saturation typically around
~10%" cm ™. Furthermore, the mass action law np = n? is not valid for degenerate
semiconductors.

Degenerate semiconductors have many important uses. For example, they are used
1n laser diodes, zener diodes, and ohmic contacts in ICs, and as metal gates in many
microelectronic MOS devices.

54 RECOMBINATION AND MINORITY
CARRIER INJECTION

54.1 DireEcT AND INDIRECT RECOMBINATION

Above absolute zero of temperature, the thermal excitation of electrons from the VB
1o the CB continuously generates free electron-hole pairs. It should be apparent that
in equilibrium there should be some annihilation mechanism that returns the electron
from the CB down to an empty state (a hole)} in the VB. When a free electron, wan-
dering around in the CB of a crystdl, “meets” a hole, it falls into this low-energy
empty electronic state and fills it. This process is called recombination. Intuitively,
recombination corresponds to the free electron finding an incomplete bond with a
missing electron, The electron then enters and completes this bond. The free electron
in the CB and the free hole in the VB are consequently annihilated. On the energy
band diagram, the recombination process is represented by returning the electron
from the CB (where it is free) into a hole in the VB (where it is in a bond). Figure 5.22

407
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Figure 5.22 Direct recombinafion in GoAs.
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shows a direct recombination mechanism, for example, as it occurs in GaAs, in which
a free electron recombines with a free hole when they meet at one location in the crys-
tal. The excess energy of the electron is lost as a photon of energy Av = E,. In fact, it
is this type of recombination that results in the emitted light from light emitting
diodes (LEDs).

The recombination process between an electron and a hole, like every other
process in nature, must obey the momentum conservation law, The wavefunction of an
electron in the CB, ywi{ks), will have a certain momentum k& associated with the
wiavevector k., and, similarly, the electron wavefunction 4.y (k) in the VB will have
a momentum hk,p, associated with the wavevector k.. Conservation of linear mo-
mentum during recombination requires that when the electron drops from the CB to
the VB, its wavevector should remain the same, k., = k.. For the elemental semicon-
ductors, 31 and Ge, the electronic states yryp{ky) with kv, = ke are right in the middle
of the VB and are therefore fully occupied. Consequently, there are no empty states in
the VB that can satisfy &, = k. and so direct recombination in 5i and Ge is next to
impossible. For some compound semiconductors, such as GaAs and InSb, for exam-
ple, the states with &4, = k. are right at the top of the valence band, so they are essen-
tially empty {contain holes). Consequently, an electron in the CB of GaAs can drop
down to an empty electronic state at the top of the VB and maintain &, = kg Thus
direct recombination is highly probable in GeAs, and it is this very reason that makes
Gads an LED material.

In elemental semiconductor crysials, for example, in 5i and Ge, electrons and
holes wsually recombine through recombination centers. A recombination center
increases th bability of recombination because it can “take up™ any momentum
difference between a hole and electron. The process essentially involves a third body,
which may be an impurity atom or a crystal defect. The electron is capred by the
recombination center and thus becomes localized at this site. It is “held™ at the center
until some hole arrives and recombines with it. In the energy band diagram picture
shown in Figure 5.23a, the recombination center provides a localized electronic state
below E. in the bandgap, which is at a certain location in the crystal. When an electron
approaches the center, it is captured. The electron is then localized and bound to this
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E that has o localized energy leval ot E; in the bendgap,
\i"ﬁ H usually neor the middle.

ib) Tropping and detropping of elecirons by trapping

centers. A trapping center has a localized energy

{b) Trapping leval in the bondgop.

center and *waits” there for a hole with which it can recombine. In this recombination
process, the energy of the electron is usually lost to lattice vibrations {as *sound"”) via
the “recoiling” of the third body. Emitted lattice vibrations are called phonons. A
phonon iz a quantum of energy associated with atomic vibrations in the crystal analo-
gous to the photon.

Typical recombination centers, besides the donor and acceptor impurities, might
be metallic impurities and crystal defects such as dislocations, vacancies, or intersti-
tials. Each has its own peculiar behaviot in aiding recombination, which will not be
described here.

It i5 instructive o mention briefly the phenomenon of charge carrier trapping
since in many devices this can be the main limiting factor on the performance. An
glectrom in the conduction band can be captured by a tocalized state, just like a recom-
bination center, located in the bandgap, as shown in Figure 5.23b, The electron falls
into the rapping center at E, and becomes temporarily removed from the CB. At a
later time, due to an incident energetic lattice vibration, it becomes excited back into
the CB and is available for conduction again. Thus trapping involves the iemporary re-
moval of the electron from the CB, whereas in the case of recombination, the electron
is permanently removed from the CB since the capture is followed by recombination
with a hole. We can view a trap as essentially being a flaw in the crystal that results in
the creation of a localized electronic state, around the flaw site, with an energy in the
bandgap. A charge cartier passing by the flaw can be captured and lose 1ts freedom. The
flaw can be an impurity or a crystal imperfection in the same way as a recombination
center. The only difference is that when a charge carrier is captured at a recombination
site, it has no possibility of escaping again because the center aids recombination,
Although Figure 5.23b illustrates an electron trap, similar arguments also apply to
hole traps, which are normally closer to E,. In general, flaws and defects that give lo-
calized states near the middle of the bandgap tend to act as recombination centers.
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542 MiNORITY CARRIER LIFETIME
Consider what happens when an n-type semiconductor, doped with 5 x 10'® cm™3
donors, is uniformly illuminated with appropriate wavelength light to photogenerate
electron-hole pairs (EHPs), as shown in Figure 5.24. We will now define thermal equi-
librium majority and minority carrier concentrations in an extrinsic semiconductor. In
general, the subscript 7 or p is used to denote the type of semiconductor, and o to refer
to thermal equilibrium in the dark.
In an n-type semiconductor, electrons are the majority carriers and holes are the
MIiNoTty CArTiers
iy 15 defined as the majority carrier concentration (electron concentration
in an n-type semiconductor} in thermal equilibrium in the dark. These electrons,
constituting the majority carriers, are thermally ionized from the donors.
P 18 termed the minority carrier concentration (hole concentration in an
n-type semiconductor) in thermal equilibrium in the dark. These holes that
constitute the minority carriers are thermally generated across the bandgap.

In both cases the subscript no refers to an n-type semiconductor and thermal equi-
librivm conditions, respectively. Thermal equilibrium means that the mass action law
is obeved and 1, P, = 17,

When we illuminate the semiconductor, we create excess EHPs by photogen-
eration. Suppose that the electron and hole concentrations at any instant are denoted by
n, and p,, which are defined as the instantanecus majority (electron) and minonty
fhole} concentrations, respectively. At any instant and at any location in the semi-
conductor, we define the departure from the equilibrium by excess concentrations as
follows:

An, is the excess electron (majority carrier) concentration: Ah, = fp = fiy,
Apy is the excess hole (minority carrier) concentration: &, = Py — Pua

Under illumination, at any instant, therefore

Ry = R+ Ay and Pe = Paa+ Apy

I i a ool 3 ]
T 0 i T

Figure 5.24 Low-level pholoinjection info an ntype ™

semiconductor in which An, = fgg. CB
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Photoexcitation creates EHPs or an equal number of electrons and holes, as shown
in Figure 5.24, which means that

Apy = An,
and obviously the mass action law is not obeyed: n, g, £ r!. It is worth remember-
ing that
dr dA d dhp,
dny _danm, L dpa _ dAp,
dt dr dt dt

since m,, and p,, depend only on temperature.
Letus assume that we have “weak’ ' lllumination, which causes, say, only a 10 percent
change in ., that is,

An, = 0.1n,, = 0.5 x 10" cm >
Then
Ap, = An, =05 = 108 em-?

Figure 5.25 shows a single-axis plot of the majonty (r,) and minority (p,) concentra-
tions in the dark and in light. The scale is logarithmic to allow large orders of magni-
tude changes to be recorded. Under illumination, the minority carrier concentration is

Pe=Prot App =20 10° +0.5 % 109 = 0.5 x 10" = Ap,

That is, pn = Ap,, which shows that although n, changes by only 10 percent, p,
changes drastically, that is, by a factor of ~1072,

Figure 5.26 shows a pictorial view of what is happening inside an n-type semi-
conductor when light is switched on at a certain time and then later switched off again,
Obviously when the light is switched off, the condition p, = Ap, (state B in Fig-
ure 5.28) must eventually revert back to the dark case (state A) where p, = . In
other words, the excess minority carriers Ap, and excess majority carriers &s, must

& A \ Figure 5.25 Llow-lavel injection in an

E 55 5 1 ey = My, + AR, nHype semiconducter does not sl'gnli{iu:mnr’rg,I
= Swl® o I—— affect n, but drastically afects the minority
1= 0.5 3 1M y Po =B, + Ap, carrier concentration oy,

:

g Ap, = 0.5« 10"

E [HIPHT S 4 Rl i

Eﬂ

200 Prn S N

|a) In the dark: np = n? {b) In light: ap = o2

4an



412

Excess

HIRG LY
Carrier
CONCENTration

CHARTER 5 + SEMICONDUCTORS

HIumination

P %8 %

o+ R i

1
|
| ¥
i
+
]
1

+
+

it !

illumination with kv In dark ofter
uminaion vith b = &y illumination. Excess
holes are disappearing

n-type semiconductor in
the dark. p, =p, ;<< n,, creates excess holes:

Pn = Poa + 8P = &0, by recombination.

Figure 5.26 lllumination of an miype semiconduchor results in excess
electron and hole concentrations.

After the illumination, the recombination process restores equilibrium; the
excess elechrons and holes simply recombine,

be removed. This removal occurs by recombination. Excess holes recombine with the
electrons available and disappear. This, however, takes time because the electrons and
holes have o find each other. In order to describe the rate of recombination, we intro-
duce a temporal guantity, denoted by 1, and called the minority carrier lifetime
(mean recombination time), which is defined as follows: t, is the average time a hole
exists in the VB from its generation to its recombination, that is, the mean time the hole
is free before recombining with an electron, An alternative and equivalent definition is
that 1 /1, is the average probability per unit time that a hole will recombine with an
electron. We muost remember that the recombination process occurs through recombi-
nalion centers, 5o the recombination time t, will depend on the concentration of these
centers and their effectiveness in capuring the minority carriers. Once a minority
carrier has been captured by a recombination center, there are many majority carriers
available to recombine with it, 50 7y, in an indirect process is independent of the ma-
jority carrier concentration. This is the reason for defining the recombination time as a
minarity carrier lifetime.

If the minority cartier recombination time is, say, 10 s, and if there are some 1000
excess holes, then it is clear that these excess holes will be disappearing at a rate of
1000/ 10 5 = 10 per second. The rate of recombination of excess minority carriers is
simply Apy/T5. At any instant, therefore,

— Rate of recombination
of excess holes

Rate of
photogeneration

Rate of increase in excess =
hole concentration

If Gy is the rate of photogeneration, then clearly the net rate of change of Ap, is

dhp, Apg
= GI-"JL —
it Th

[5.27]
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This is a general expression that describes the time evolution of the excess minor-
ity carner concentration given the photogeneration rate G, the minority carrier life-
time r,, and the initial condition at + = 0. The only assumption is weak injection
(AP < Rpa).

We should note that the recombination time 1, depends on the semiconductor
material, impurities, crystal defects, temperature, and so forth, and there is no typical
value to quote. It can be anywhere from nanoseconds to seconds. Later it will be shown
that certain applications require a short 7, as in fast switching of pn junctions,
whereas others require a long 75, for example, persistent luminescence.
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PHOTORESPOMNSE TIME  Sketch the hole concentration when a step illumination is applied 1o
an n-1ype semiconductor at time ¢ = 0 and switched off at time ¢ = (% ).

SOLUTION

We use Equation 5.27 with Gy, = constant in 0 = ¢ = tu. Since Equation 5.27 is a first-order
differential equation, integrating it we simply find

Ap, '
II'.I.|:GP|| —( If )]=_r_h+Cl

where C, is the integration constant, At ¢ =0, Ap, = 0, 50 Oy = lIn Gy, Therelore the solu-
tion is

t
Ap, (1) = r;,(}'ph[l — exp(——)] 0 =1 < rqr [5.28]
Ty

We see that as soon as the ilumination is tumned on, the minority camer concentration
rises exponentially toward its steady-state value Ap, () = 1, . This is reached after a time
1> Th.

Al the instant the illumination is switched off, we assume that £, 3 1, $0 that from Equa-
tion 5.28,

Apyitg) = Gy
We can define +° to be the time measured from ¢ = tg, that is, ¢+ = f = f. Then
Ap, (i’ =0) = 0, Gpy
Solving Equation 527 with &, = 0 int = 5 or2' = 0, we get
. ¢
Ap, ity = Ap, () l:x]:r(—r—)
L]

where Ap.{0) is actually an integration constant that is equivalent to the boundary condition on
Ap, att’ = 0. Putting +* = O and Ap, = 130 gives

I..l
Apa (') = Gy fmp(——) [5.29]
T
We see that the excess minority carrier concentration decays exponentially from the
instant the light is swilched off with a time constant equal to the minority camier recom-
bination time. The time evolution of the minority carrier concentration is sketched in
Figure 5.27.
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G and p (1)
T ph Light
THurmination

I
Pra+ A () (- - i— ---z Ap (1) = A () expl=r'iTy) 2
|

L W
Pt ----
" L = Time, ¢ * fa
0 far ,
—_— r

Figure 5.27 lllumination is switched on ot fime t= O and then off at Figure 5,28 A semiconduchor
f=bu slab of length £, width W, and depth
The excess minarity carriar concenkiation Ap rises exponantially fo its D is illumincted "“i”" light of
shendy-state value with a time constant =, From &, the excess minority wavelength Al is the steody-siate
corfier concentration decays exponenticlly to its equilibrium value, phatocurrent.

FLLERRE PHOTOCONDUCTIVITY  Suppose that a direct bandgap semiconductor with no traps is illu-
minated with light of intensity IA) and wavelength A that will cause photogeneration as shown
in Figure 5.28. The area of illumination is A = (L = W), and the thickness {depth) of the
semiconductor is [ If 5 is the quantum efficiency (number of free EHPs penerated per ab-
sorbed photon) and  is the recombination lifetime of the photogenerated camers, show that the
steady-state photoconductivity, defined as

Ag = alin light) — a(in dark)
is given by
Sready-srate
photo- Ag = TR ok Bk [5.30]
conductivity fed)

A photoconductive cell has a CdS erystal 1 mm long, | mm wide, and 0.1 mrmn thick with
electrical contacts at the end, so the receiving area of radiation is 1 mm?®, whereas the area of
each contact is 0.1 mm?®, The cell is illuminated with a blue radiation of wavelength 450 nm and
intensity 1 mWiem?, For unity quantum efficiency and an electron recornbination time of 1 ms,
calculate

&  The number of EHPs generated per sccond
#.  The photoconductivity of the sample
¢.  The photocurrent produced if 50 'Y is applied to the sample

Mote that a CdS photoconductor is & direct bandgap semiconducter with an energy gap
.’E‘i = 2.6V, electron mobility p, = 0.034 m* ¥~ 5", and hole mobility uy = 0.0018
m Vsl

SOLUTION

If Ty, is the number of photons arriving per unit area per unit second (the photon flux}, then
T = I/ kv where T is the light intensity (energy flowing per unit area per second) and hv
is the energy per photon. The quantum efficicncy 7 15 defined as the number of free EHPs
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generated per absorbed photon. Thus, the number of EHPs generated per unit voltme per
second, the photogeneration rate per unit volume G 4, is given by

I
nATw (H} pIk
G = = =

AD T D heD
In the steady state,
din An
G i
di i T
50k
T Ia
An=1l,y =

"7 heD

But, by definition,
AT = ep, An + ey Ap = e Anfu, + )

since elecirons and holes are generated in pairs, An = Ap. Thus, substituting for An in the Ao
exprassion, we get Equation 5,30k

enThtipm, 4 uyd

e
2 heD

g The photogeneration rate per unit time is not G, which is per unit time per unit volume.
We define EHPy, as the total number of EHPs photogenerated per unit ime in the whole
volumea { A D). Thus

EHP,,, = Total photogeneration rate

SR MD}.-:IJ. _ ApIx
= R = heD ke

=[1077 % 107 m® 1107 % 107 127 m¥)y450 = 107" m)]
= [(6.63 = 107 Fs)(3 » 10" ms~")]
=226 x 1M EHP 5™
b.  From Equation 5.30,

ENIAT (b, + fy)

& =
o heD

That iz

(1.6 x 1072 Cyn107% » 10° 757" m 21430 = 107 m)(1 = 1077 )(0.0358 m* V™' 57)

(6,63 » 102103 = 10 ms— (0.1 = 10-Fm)

1309 'm™!

¢. Photocurrent density will be
AJ=FEAr ={1.3027"'m " W50¥/10"m) =650 » 10* Am~*

415
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Thus the photocurrent
Al =AAT =107 % 0.1 x 107" m*)(6.50 = 10* Am™)
=65x 1077 A or 65mA
We assumed that all the incident radiation is absorbed,

Defintticm af
perticle flux

Definition
af current
density

5.5 DIFFUSION AND CONDUCTION EQUATIONS,
AND RANDOM MOTION

It is well known that, by virtue of their random motion, gas particles diffuse from high-
concentration regions to low-concentration regions, When a perfume bottle 1s opened
at one end of a room, the molecules diffuse out from the bottle and, after a while, can
be smelled at the other end of the room. Whenever there is a concentration gradient of
particles, there 1s a net diffusional motion of particles in the direction of decreasing
concentration, The origin of diffusion lies in the random motion of particles. To quan-
tify particle flow, we define the particle Flux ' just like current, as the number of par-
ticles (not charges) erossing unit area per unit time. Thus if AN particles cross an area
A in time At, then, by definition, the particle flux is

AN
A Ar
Clearly if the particles are charged with a charge @ (—e« for electrons and +e for

holes), then the electric current density J, which is basically a charge flux, is related to
the particle flux T by

15311

J=0r (5.32]

Suppose that the electron concentration at some time 7 in & semiconductor de-
creases in the x direction and has the profile n(x, 1) shown in Figure 5.2%. This may
have been achieved, for example, by photogeneration at one end of a semiconductor.
We will assume that the electron concentration changes only in the x direction so that
the diftusion of electrons can be simplified to a one-dimensional problem as depicted
in Figure 5.29a. We know that in the absence of an electric field, the electron motion is
random and involves scattering from lattice vibrations and impurities. Suppose that £
is the mean free path in the x direction and r is the mean free time between the scat-
tering events. The electron moves a mean distance £ in the 4+x or —x direction and then
it is scattered and changes direction. Its mean speed along x is v, = £/7, Let us evalu-
ate the flow of electrons in the 4x and —x directions through the plane at 1, and hence
find the net flow in the 4 direction.

We can divide the x axis into hypothetical segments of length £ so that each segment
corresponds to a mean free path. Going across a segment, the electron experiences one
scattering process. Consider what happens during one mean free time, the time it takes
for the electrons to move across a segment toward the left or right. Half of the elecirons
in {x, — £) would be moving toward x, and the other half away from x,, and io time t
half of them will reach x, and cross as shown in Figure 5.29b. If n, is the concentra-
tion of electrons at x, — I‘,E, then the number of electrons moving toward the right to
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—’. et eleotron diffusion flu

fix, [)

Figure 5.29

[a) Arbitrary electran concentration nlx, #] profile in o semiconductor. There is o net diffusion
[fux) of alectrons from higher to lower concentrations,

[b) Expandad view of two adjocent sactions ot x,. There are mare elactrans crossing x,. coming

from the left [x, — £} thar coming from the rght (x, + £].

Cross x, is Sn; A€ where A is the cross-sectional area and hence A is the volume of the
segment. Similarly half of the electrons in (x, + £) would be moving toward the left
and in time © would reach x,. Their number is %nzﬂf where ng 15 the concentration at
Xa+ —;E. The net number of electrons crossing x,, per umit time per unit area in the +x
direction is the electron flux T,
%ﬂp‘lﬁ - %ﬂg.‘if
=4+ —— 2 -
At
that is,

£
e = — T{r‘iz — ) [5.33]

2

As far as calculus of variations is concerned, the mean free path £ is small, 50 we
can calculate ny — ) from the concentration gradient using

Mg — iy (d—n)d.r = (d—n)f
dx dx

We can now write the flux in Equation 5.33 in terms of the concentration gradient as
£2 (dn
()
2r \dx

dn
N=-oD,— [5.34]
dx

Fick’s firsi
dew

My
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where the quantity (£2/21) has been defined as the diffusion coefficient of electrons
and denoted by D,. Thus, the net electron flux T, at a position x is proportional to the
concentration gradient and the diffusion coefficient. The steeper this gradient, the
larger the flux T, In fact, we can view the concentration gradient dn /dx as the drving
force for the diffusion flux, just like the electric field —(dV /dx) is the driving force
for the electric current. J = £ = —o(dV/dx).

Equation 5.34 is called Fick’s first law and represents the relationship between
the net particle flux and the driving force, which is the concentration gradient. It is the
counterpart of Ohm’s law for diffusion, D, has the dimensions of m? s~ and is a mea-
sure of how readily the particles (in this case, electrons) diffuse in the medium. Note
that Equation 5.34 gives the electron flux T, at a position x where the electron con-
centration gradient is dn/dx. Since from Figure 5.29, the slope dn/dx is a negative
number, ', in Equation 5.34 comes out positive, which indicates that the flux is in the
positive x direction, The electric current (conventional current) due to the diffusion of
electrons to the right will be in the negative direction by virtue of Equation 5.32. Rep-
resenting this electric current density due to diffusion as Jp . we can write

d
Jﬂlf = _er,p = Eng_n [5135]
dx

in the case of a hole concentration gradient, as shown in Figure 5.30, the hole flux
[y(x) is given by

dp

Ty = =D —

b v
where [);, iz the hole diffusion coefficient. Putting in a negative number for the slope
dp/dzx, as shown in Figure 5.30, results in a positive hole flux (in the positive x direc-
tion), which in turn implies a diffusion current density toward the right. The current

density due to hole diffusion is given by
dp

JDJ, = E‘]-‘;, = —eﬂk— 15.34]
dx

Figure 5.30 Arbitrary hole concentration plx, 1) profile 1 : o

in a semiconduchar. F d pl:x'. : * '&Erhelcmmmn e
There is a net diffusion {ux| of holes from higher to lower . Bheniic Syt
concentrations. There are more holes crossing x, coming .

from the left (x, — £] than coming from the right {x, + ).
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Semitransparent electrode
" n-type semiconductor

E e

+ = .

T

rlrcllr.ln dilt u.-;:m
= +

+ + ‘-h Elecwron drifi = b= x
* Hole diffusion
+_ E R # HI:IH:_Iil'I.l'L -
I
[

Figure 5.31 ‘When thera is an eleciric
field and also o concentration gradient,
charge cariers move both by diffusion and
drift.

Suppose that there is also a positive electric field £, acting along +x in Figures 5.2%
and 5.30. A practical example is shown in Figure 5.31 in which a semiconductor is
sandwiched between two electrodes, the left one semitransparent. By connecting a bat-
tery to the electrodes, an applied field of Z, is set up in the semiconductor along +x.
The left electrode is continuously illuminated, so excess EHPs are generated at this
surface that give rise to concentration gradients in n and p. The applied field imposes
an electrical force on the charpes, which then try to drift. Holes drift toward the right
and electrons toward the left. Charge motion then involves both drift and diffusion.
The total current density due to the electrons drifting, driven by £, and also diffusing,
driven by dn/dx, is then given by adding Equation 5.35 to the usual electron drift
current density,

J.=enE, + eﬂgd—n [5.37]
dx

We note that as £, is along x, so is the drift cumrent (first term), but the diffusion
current (second term) is actually in the opposite direction by virtue of a negative dn /dx.

Similarly, the hole current due to holes drifting and diffusing, Equation 5.36, is
given by

dp

Jy=epu,T, —eDy—

5.38]
dx l

In this case the drift and diffusion currents are in the same direction.

We mentioned that the diffusion coefficient is a measure of the ease with which the
diffusing charge carriers move in the mediom. But drift mobility is also a measure of
the ease with which the charge carriers move in the medivm. The two quantities are
related through the Einstein relation,

D, kT oy, kT

and —_— —
M Z L e

[5.39]

In other words, the diffusion coefficient is proportional to the temperature and
mobility. This is a reasonable expectation since increasing the temperature will
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increase the mean speed and thus accelerate diffusion, The randomizing effect against
diffusion in one particular direction is introduced by the scattering of the carriers from
lattice vibrations, impunties, and so forth, so that the longer the mean free path
between scattering events, the larger the diffusion coefficient. This is examined in
Example 5.12.

We equated the diffusion coefficient D to £2 /21 in Equation 5.34, Our analysis, as
represented in Figure 5.29, 15 oversimplified because we simply assumed that all elec-
trons move a distance £ before scattering and all are free for a time ©. We essentially as-
sumed that all those at a distance £ from x, and moving toward x, cross the plane exactly
in time . This assumption is not entirely true because scattering is a stochastic process
and consequently not all electrons moving toward x, will eross it even in the segment
of thickness £. A rigorous statistical analysis shows that the diffusion coefficient is
given by

D=— [5.40]

EXAMPLE 512

THE EINSTEIN RELATIOMN  Using the relation between the drift mobility and the mean free time
T berween scattering events and the expression for the diffusion coefficient D = £2 /¢, derive
the Einstein relation for electrons.

SOLUTION

In one dimensien, for example, along x, the diffusion cocfficient for elecirons is given by
D, = £/t where { is the mean free path along .z and 7 is the mean free time between scatter-
ing events for electrons. The mean free path £ = v, ¢, where v, is the mean (or effective) speed
of the electrons along x. Thus,

ueec i
D=t

In the conduction band and in one dimension, the mean KE of electrons is 1kT, so 14T =

smu} where m} is the effective mass of the electron in the CB. This gives

p B
ﬂ;-——_‘
",

Substituting for v, in the D, equation, we got,

pym EIE L AT (1)
my € L

e 14
Further, we know from Chapter 2 that the electron drft mobility pe, 15 related to the mean
free time « via u, = et/m, 50 we can substitute for ¢ to obtain

kT
L= —.
&

which is the Einstein relation, We assumed that Boltzmann statistics, that is, 1::‘: =kTim}
1z applicable, which, of course, is true for the conduction band electrons in a semiconductor
but not for the conduction electrons in a metal. Thus, the Eimnstein relation is only valid for
electrons and holes in a nondegenerate semiconductor and certainly not valid for electrons in
4 metal.
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DIFFUSION COEFFICIENT OF ELECTROMS IN §i  Calculate the diffusion coefficient of elecirons
al 27 °C in n-type 5i doped with 10" As atoms cm ™.

SOLUTION

Fram the w, versus dopant concentration graph, the electron drift mebility g, with 103 ¢m™?
of dopants is about 1300 cm® V='5~!, 50

kT
g
[ -]

= {1300 em® V7! a7 10,0259 V) = 33.7 cm® 57!

BUILT-IN POTENTIAL DUE TO DOPING VARIATION Suppose that due to a variation in the
amount of donor doping in 2 semiconductor, the electron concentration is nonuniform across the
semiconductor, that is, r = n{x). What will be the potential difference between two points in
the semiconductors where the eleciron concentrations are ) and #;? If the donor profile in an
a-type semiconductor 15 Nix) = M, exp(—x/b), where b is a characteristic of the exponential
doping profile, evaluate the built-in field £, . What is your conclusion?

SOLUTICN

Consider a nonuniformly doped n-type semiconductor in which immediately after doping the
donur concentration, and hence the electron concentration, decreases toward the right. Ini-
tially, the sample 15 neutral everywhere. The electrons will immediately diffuse from higher- to
lower-concentration regions. But this diffusion accumulates excess electrons in the right re-
gion and exposes the positively charged donors in the left region, as depicted in Figure 5.32.
The: electric field between the accumulated negative charges and the exposed donors prevents
further accumulation. Equilibrium is reached when the diffusion toward the right is just bal-
anced by the drift of electrons toward the left. The total current in the sample must be zero (it
1 an open circuit),

an
Jo=enpE, +eD.— =10
dx
But the field iz related to the potential difference by £, = —(dV /dx), s0
dn

E”{+ D ]
—enp,— + e, — =
i ax dx

Figl.lﬂ 5.32 MNonuniform dupirrg prnfikl results in

P—V— alectron diffusion toward the less concentroted
£ - regions,

. . I & This exposes positively charged donors and sefs up a
- - [ e builtin field £, In the staady state, the diffusion of

B , * electrans toward the right is bolanced by their drift

© 1" *1  roward the left,

. . o ® .

. Dliffusion flux

e Tirift

Met current =0

421



422

Burle-in
porentiol gned
CONTCERErtion

Butie-in field!

CHAPTER 5 * SEMICONDUCTORS

We can now usc the Einstein relation £, /i, = &7 /e to eliminate £, and 12, and then can-
cel dx and integrate the equation,
¥z RT " dn
f dv = — —
¥y

£ Jay, M
Integrating, we obtain the potential difference between points | and 2,

o T B |n(53) (5.41]
(-4 L]
To find the built-in field, we will assume that (and this is a reasonable assumption) the dif-
fusion of electrons toward the right has not drastically upset the original rix} = Ny(x) varia-
tion becavse the field builds up quickly to establish equilibrium. Thus

alx) = Ny(x) = N,;,exp(-—%)

Substituting into the equation for J, = 0, and again using the Einstein relation, we obtain E, as

kT
vE_

L= 5,42
be [ I

Mote: As a result of the fabrication process, the base region of a bipolar transistor has
nonuniform doping, which can be approximated by an exponential &, (x ). The resulting electric
field £; in Equation 5.42 acts to dnft minority carriers faster and therefore speeds up the tran-
sisbor operation as discussed in Chapter 6.

56 CONTINUITY EQUATION*

5.6.1 TmME-DEPENDENT CONTINUITY EQUATION

Many semiconductor devices operate on the principle that excess charge carriers are
injected into a semiconductor by external means such as illumination or an applied
voltage. The injection of carriers upsets the equilibrium concentration. To determine
the carrier concentration at any point at any instant we need to solve the continuity
equation, which is based on accounting for the total charge at that location in the semi-
conductor, Consider an n-type semiconductor slab as shown in Figure 5.33 in which
the hole concentration has been upset along the x axis from its equilibrium value p,,
by some external means.

Consider an infinitesimally thin elemental volume A Sx as in Figure 5.33 in which
the hole concentration is p.(x, r). The current density at x due to holes flowing into the
volume is J, and that due to holes flowing out at x + 8x is Jy + 8Jy. There is a change
in the hole current density Jy; that is, Jy(x, r) is not uniform along x. (Recall that the
total current wil] also have a component due to electrons.) We assume that Jy, (x, ) and
Palx, 1} do not change across the cross section along the y or ¢ directions. If 5.7, is

| 4 This secfion moy be skipped withaut loss of centinuity, (Mo pun intended |
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o)
L -
SPTE R
P
= : Semiconductor
1 [}
a8 i A
0 H 1 !
Jhﬁﬁ—iaq 4-—9: =1y + 8J), y
i 'bi ,a’?f? Figure 5.33 Consider an
H e i elemental valume A & in which the
X X+dx hale concentration is pix, 1)

negative, then the current leaving the volume is less than that entering the volume,
which leads to an increase in the hole concentration in A §x. Thas,

| (=AW . - :
- ( * ) = Rate of increase in hole concentration [5.43]
x £ due to the change in J,

The negative sign ensures that negative &7, leads to an increase in p,. Recombination
taking place in A Sx removes holes from this volume. In addition, there may also be
photogeneration at x at ime ¢ Thus,

The net rate of increase in the hole concentration p, in A 5x
= Rate of increase due to decrease in J; — Rate of recombination + Rate of

photogeneration
'a m I HJ n T
;’: = _E(a_:) = % + Gy [5.44]

where 1, is the hole recombination time (lifetime), Gy, is the photogeneration rate at x
at time 7, and we used 4 Jg /dx for 4 J, /8x since J; depends on x and r.

Equation 5.44 is called the continuity equation for holes. The current density Jy is
given by diffusion and drift components in Equations 5.37 and 5.38. There is a similar
expression for elecirons as well, but the negative sign multiplying #J,/3.x is changed to
positive (the charge e is negative for electrons).

The solutions of the continuity equation depend on the initial and boundary condi-
tions. Many device scientists and engineers have solved Equation 5.44 for various
semiconductor problems to characterize the behavior of devices. In most cases numer-
ical solutions are necessary as analytical solutions are not mathematically tractable. As
asimple example, consider uniform illumination of the surface of a semiconductor with
snitable electrodes at its end as in Figure 5.28. Photogeneration and current density do
not vary with distance along the sample length, so dJ,/dx = 0. If Ap, is the excess
concentration, Ap, = p, — Pu., then the time derivative of p, in Equation 5.44 is the
same as Ap,. Thus, the continuity equation becomes

Ap,

o Apy
——ii G 15.45]
ar Th T P

which is identical to the semiguantitatively derived Equation 5.27 from which photo-
conductivity was calculated in Examnple 5.11.
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STEADY-STATE CONTINUITY EQUATION

For certain problems, the continuity equation can be further simplified. Consider, for ex-
ample, the continuous illumination of one end of an #-type semiconductor slab by light
that is absorbed in a very small thickness x, at the surface as depicted in Figure 3.34a,
There is no bulk photogeneration, so Gy, = 0. Suppose we are interested m the steady-

Sleqcy-state
coRtinuity
equetion for
holes

l(ﬂ)__f’n
e\ ax )

state behavior, then the time derivative would be zero in Equation 3.44 to give,
— Pro

[5.46]
Ty

The hole current density Jfy would bave diffusion and drift components. If we

assume that the eleciric field is very small, we can use Equation 5.38 with € = 0 in
Equation 5.46. Further, since the excess concentration Ap,{x) = p.(x) — P, WE

Steacy-sinte obtain,
coninuiy d*Apy _ Apy [5.47]
et wilh T Li i
=10 i . s
where, by definition, L, = /Dy, and is called the diffusion length of holes. Equa-
tion 5.47 describes the steady-state behavior of minority carmier concentration in a
semiconductor under time-invariant excitation. When the appropriate boundary condi-
tions are also included, its solution gives the spatial dependence of the excess minor-
ity carrier concentration Ap, (X)),
In Figure 5.34a, both excess electrons and holes are photogenerated at the surface,
but the percentage increase in the concentration of holes is much more dramatic since
_;rn‘_ R-type semiconductor
-+ - =
. +7 + - =
Light +- + * - - - Currents (mA)
CAY: T i
Excess concentration
ap (0
An (0) 7
—4 T IE_'E_ T T el
0 20 40 60 8 {pm)
b
Figurs 5.34

|a)] Steady-state excess carrier concentration profiles in an rtype semiconductor that is continuously illuminated at

ane end.

{b) Majarity and minatity corret current components in open circuit, Total current is zera.
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Pro <& M. We will assume weak injection, that is, Ap, < n,,. Suppose that illumi-
nation is such that it causes the exeess hole concentration atl x = 0 to be Ap,(0). As
holes diffuse toward the right, they meet electrons and recombine as a result of which
the hole concentration p,(x) decays with distance into the semiconductor. If the bar is
very long, then far away from the injection end we would expect p, to be equal to the
thermal equilibrium concentration p,,. The solution of Equation 5.47 with these
boundary conditions shows that Ap,{x} decays exponentially as

Ape(x) = Apa(0) exp(—Li) [5.48]

h

This decay in the hole concentration results in a hole diffusion current /5 5, (£} that
has the same spatial dependence. Thus, if A is the cross-sectional area, the hole current is

dpg(x) Ae Dy X
— Ap (0 -
ey i Pl ]HP( I )

B
We find Ap,(0) as follows. Under steady state, the holes penerated per unit time
in x, must be removed by the hole current (at x = 0) at the same tate. Thus,

Iy = Ipy = —AeD [5.49]

1 AD
AxoGon = ~Ipp(0) = L—"'mm}
I\]

or
Th

152

[5.50]
Dy

Similarly, electrons photogenerated in x, diffuse toward the bulk, but their diffu-
sion coefficient D, and length £, are larger than those for holes. The excess electron
concentration An, decays as

x
An,(x) = An, (0 cxp(—-L—) [5.51]
where L, = /D, 1, and An (x) decays more slowly than Ap,(x)as L, = L,. (Note
that 7, = .} The electron diffusion current Fp , 18

AeD

dn,(x) , ( X )
= - An, (0 il
dx Ll e

The field at the surface is zero. Under steady state, the electrons generated per unit
time in x,, must be removed by the electron current al the same rate. Thus, similarly to
Equation 3,50,

Ip. = AeD, [5.52]

Th e
£,
50 that
Aps(0) _ (&)uz [5.54]
A, (00 Dy, ;

which is greater than unity for Si.
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Toble 5.3 Currents in an infinite slab illuminated at one end for weok injection near the surfoce

Minuority Mujurity
I¥iffusion Minority Drift Iiffuzion Majority Drift Field i
Currents al IngimA) Licann (DA} T (A Fiwin,e (MA) Vom0
r=0 194 0 194 0 ¥]
=1L, 0,70 0.00z2 —1.43 075 0,035

It is apparent that the hole and electron diffusion currents are in opposite direc-
tions. At the surface, the electron and hole diffusion currents are equal and opposite, so
the total current is zero. As apparent from Equations 5.49 and 5.52, the hole diffusion
current decays more rapidly than the electron diffusion current, so there must be some
electron drift to keep the total current zero. The electrons are majority carmers which
means that even a small field can cause a marked majority carmier dnft current. If Lysq
is the electron drift current, then in an open circuit the total current I = Ty + Fp, +
lil1E'ri1'l.|l= e D! 50

Tirre = =fpy = Ip. [5.55]

The electron drift current increases with distance, so the total current [ at every
location is zero. It must be emphasized that there must be some field ‘£ in the sample,
however small, to provide the necessary drift to balance the currents to zero. The field
can be found from fyip . = Aen 0 E, iInasmuch as n,, does not change significanily
(weak injection),

_ﬂ 5
A L [5.56]
Aennrﬁ:’[‘e
The hole drift current due to this field is
Larin,pe = A€ty po (X YE [5.57]

and it will be negligibly small as p, < nq,.

We can use actual values to gauge magnitudes. Suppose that A = 1 mm?* and
Ny = 10" em™ so that n,, = Ny = 10" em™ and p,, = n?/Ny = 1 x 10% em™,
The light intensity is adjusted to yield Ap,(0) = 0.05n,, = 5 % 10" em™: weak
injection. Typical values at 300 K for the material properties in this N -doped n-type
Siwouldber, = 480ns, p, = 1350enm® V' s, D, = 349cm® s L, = 0.01 cm =
41 ym, jp = 450em® V-l sl Dy = 116 em? 57!, Ly = 0.0024 cm = 24 pm. We
can now caleulate each current term using the Equations 5.49, 5,52, 5.55 and 5.57
above as shown in Figure 5.34b. The actual values at two locations, x = 0 and
x = L, =41 pm, are shown in Table 5.3.°

* The readar may have ohserved that the cwrrents in Table & 3 do not add exocily ke zere. The analysis hars is only
appraximata and, further, it was besed on neglecting the hole drilt current and saking the fiold ox nearby zero 1o use
Equafion 5.47 in dariving the carrier cancentation profiles. Mote that hole drift current is much emaller than the

ather current componants.
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47

INFIMITELY LONG SEMICONDUCTOR ILLUMINATED AT OME END  Find the minority carrier
concentration profile g (4) in an infinite p-type semiconductor that is illuminated continuously
at one end as in Figure 5.34. Assume that photogeneration occurs near the surface. Show that
the mean distance diffused by the minority carriers before recombination is Ly,

SOLUTION

Continuous illumination means that we have steady-state conditions and thus Equation 5.47 can
be used. The general selution of this second-order differential equation is

Apglx)= A axp(—:—ﬁ) + 8 mp(i) [5.58]

where A and B are constanis that have (o be found from the boundary conditions, For an infinite
har, atx = o0, Apy(oc) =D gives B =0 Aty =0, Apy = App () 50 A = Ap,(0), Thus, the
excess (photoinjected) hole concentration at position x is

AP (x) = Ap, () cxp(—Li) [5.59]

L]

which is showwmn in Figure 5.34a. To find the mean position of the photoinjected holes, we use the
definition of the “mean,” that 1s,

jnx xAplx)dx
fo Apa(x)dx
Substituting for Ap, (x} from Equation 5,59 and carrying out the integration gives T = Ls,
We conclude thai the diffusion length L, is the average distance diffused by the minority car-

riers before recombination. As a corollary, we should infer chat 1/ L, is the mean probability per
unit distance that the hole recombines with an electron.

I=

EXAMPLE 5.15

3.7 OPTICAL ABSORPTION

We have already seen that a photon of energy iiv greater than E, can be absorbed in
a semiconductor, resulting in the excitation of an electron from the valence band to
the conduction band, as illustrated in Figure 5.35. The average energy of electrons
in the conduction band is %M‘ above E. {average kinetic energy is %kT], which
means that the electrons are very close to E.. If the photon energy is much larger
than the bandgap energy E,, then the excited electron is not near E. and has to lose
the extra energy Aiv — E, to reach thermal equilibrium, The excess energy v — E,
is lost to lattice vibrations as heat as the electron is scattered from one atomic vi-
bration to another. This process is called thermalization. If, on the other hand, the
photon energy A is less than the bandgap energy, the photon will not be absorbed
and we can say that the semiconductor 1s transparent to wavelengths longer than
he/ E, provided that there are no energy states in the bandgap. There, of course, will
be reflections occurring at the air/semiconductor surface due to the change in the
refractive index.
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Suppose that T, is the intensity of a beam of photons incident on a semiconductor
material. Thus, T, is the energy incident per unit area per unit time. If T, is the photon
flux, then

I, = .FI'IJ']._'I.h

When the photon energy is greater than £, photons from the incident radiation will be
absorbed by the semiconductor. The absorption of photons requires the excitation of
valence band electrons, and there are only so many of them with the right energy per
unit velume. Consequently, absorption depends on the thickness of the semiconductor.
Suppose that I(x) is the light intensity at x and 5T is the change in the light intensity
in the small elemental volume of thickness Sx at x due to photon absorption, as illus-
trated in Figure 536, Then 4 I will depend on the number of photons arriving at this
volume I{x) and the thickness 8x. Thus

AT =—oTédx

where o is a proportionality constant that depends on the photon energy and hence
wavelength, that is, & = (i), The negative sign ensures that 5T is a reduction. The
constant ¢« as defined by this equation is called the absorption coefficient of the semi-
conductor. It is therefore defined by
6T
=-—— [5.60
# ITdx :
which has the dimensions of length™! (m~!).
When we integrate Equation 5.60 for illumination with constant wavelength light,
we get the Beer—Lambert law, the transmitted intensity decreases exponentially with
the thickness,

I{x) = I,exp(—ax) [5.61]
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Density of stales increnses from bond edges and usually exhikits peoks and froughs. Generally o increoses with the phaten
enargy greaher than E; becouse mare energetic photans con excite electians from populated regions of the VB o numerous

avoilable states deep in the CB.

As apparent ltom Equation 3.61, over a distance x = 1 /o, the light intensity falls
toa value (.37 I,; that is, it decreases by 63 percent. This distance over which 67 per-
cent of the photons are absorbed is called the penetration depth, denoted by
§=1/a.

The absorption coefficient depends on the photon absorption processes occurring
in the semiconductor. In the case of band-to-band (interband} absorption, o
increases rapidly with the photon energy iv above E, as shown for S$i (E, = 1.1 eV)
and GaAs (E, = 1.42 eV) in Figure 5.37. Notice that « is plotted on a logarithmic
scale. The general trend of the @ versus Av behavior can be intuitively understood from
the density of states diagram also shown in the same figure.

Density of states g{ E') represents the number of states per unit energy per unit vol-
ume. We assume that the VB states are filled and the CB states are empty since the
number of electrons in the CB is much smaller than the number of states in this band
{n < N.). The photon absorption process increases when there are more VB states
available as more electrons can be excited. We alsc need available CB states into
which the electrons can be excited, otherwise the electrons cannot find empty states to
fill. The probability of photon absorption depends on both the density of VB states and
the density of CB states. For photons of energy vy = E,, the absorption can only
occur from £, to E, where the VB and CB densities of states are low and thus the
absorption coefficient is small, which is illustrated as A in Figure 5.37. For photon
energies hvg, which can take electrons from very roughly the middle region of the VB
to the middle of the CB, the densities of states are large and o is also large as indicated
by B in Figure 5.37. Furthermore, there are more choices of excitation for the hvg
photon as illustrated by the three arrows in the figure, At even higher photon energies,
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photon absorption can of course excite electrons from the VB into vacuum. In reality,
the density of states g(E) of a real crystalline semiconductor is much more compli-
cated with various sharp pedks and troughs on the density of states function, shown as
dashed curves in g{ E} in Figure 5.37, particularly away from the band edges. In addi-
tion, the absorption process has to satisfy the conservation of momentum and quantum
mechanical transition rules which means that certain transitions from the CB to the VB
will be more favorable than others. For example, GaAs is a direct bandgap semicon-
ductor, s0 photon absorption can lead directly to the excitation of an electron from the
CB to the VB for photon energies just above E,; just as direct recombination of an elec-
tron and hole results in photon emission. 3i is an indirect bandgap semiconductor.
Just as direct electron and hole recombination is not possible in silicon, the electron
excitation from states near £, to states near £. must be accompanied by the emission
or absorption of lattice vibrations, and hence the absorption is less efficient; o versus
fv for GaAs rises more sharply than that for Si above E, as apparent in Figure 5.37.
At sufficiently high photon energies, it is possible to excite electrons direcily from the
¥B to the CB in 51 and this gives the sharp rise in « versus fiv before 8 in Figure 5.37.
{(Band-to-band absorption is further discussed in Chapter 9.)

EXAMPLE 5.16

PHOTOCONDUCTIVITY OF A THIN SLAB  Modify the photoconductivity expression

_oendirip, + pp)
B heD

Ao

derived for a direct bandgap semiconductor in Figure 3.2% to take into account that some of the
light intensity is transmitted through the material.

SOLUTION

If we assume that all the photons are absorbed (thers is no transmitted light intensity). then the
photoconductivity expression is

g = 'EFTIJJ'J{.I'-L: + F’u’r}
- heD
But, in reality, T, expi(—o £} is the transmitted intensity through the specimen with thickness I,
s0 absorplion is defermined by (he inensity lost in the material I,[] — exp(—e D)), which
means that Ao must be accordingly scaled down to
_ e[l —exp{—a A, + ite)
B he D

Ao

EXAMPLE 5.17

PHOTOGEMNERATION IN GaAs AND THERMALIZATION Suppose that a GaAs sample is illu-
minated with a 50 mW HeNe laser beam (wavelength 632.8 nm} on its surface. Calculate how
much power is dissipated as heat in the sample during thermalization, Give your answer as mw.
The energy bandgap £, of GaAs is 1 42 eV

SOLUTION

Suppose P, is the power in the laser beam; then P, = TA, where T is the intensity of the
beam and A is the area of incidence. The photon flux, photons arriving per unit area per unit
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time, is
I Fy
T = —=— ==
BTy Ak

sa the number of EHPs generated per unit time is
N _ . _ P
dr BT T h
These camers thermalize—lose their excess energy as lattce vibrations (heat) via colli-
sions with the lattice—so eventually their average kinetic energy becomes 2k T above E, as de-
picted in Figure 5.35. Remember that we assume that electrons in the CB are nearly free, so they

must obey the kinetic theory and hence have an average kinetic energy of 247, The average en-
ergy of the electron is then E, + 15T = 1.46 eV. The excess energy

3
AE = hy — (EE + EkT)

15 lost to the lattice as heat, that is, lattice vibrations. Since each electron loses an amount of
energy A E as heat, the heat power generated is

_(aN (P
e (8= () am

The incoming photon has an energy Av = kefd = 1.96 eV 50

_ (50mW)(1.96eV — L4beV)
- 1.96eV

Py = 12.76 mW

Motice that 1n this example, and also in Figure 5.35, we have assigned the excess energy
AE = hv — E, — 2kT tothe electron rather than share it between the electron and the hole that
is photogenerated. This assumption depends on the ratio of the electron and hole effective
masses, and hence depends on the semiconductor material. [ is approximately true in GaAs be-
cause the electron is much lighter than the hole, almost 10 times, and consequently the absorbed
photon is able to “impart™ a much higher kinetic energy to the electron than to the hole, ke — E,
15 used in the photogeneration, and the remainder goes to impart kinetic energy to the photo-
generated electron hole pair.
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When a mechanical stress is applied to a semiconductor sample, as shown in Figure
5.38a, it is found that the resistivity of the semiconductor changes by an amount that
depends on the stress.® Piezoresistivity is the change in the resistivity of a semicon-
ductor {indeed, any material}, due to an applied stress. Elastoresistivity refers to the
change In the resistivity due to an induced strain in the substance. Since the applica-
tion of stress invariably leads to strain, piezoresistivity and elastoresistivity refer to

O pachenical shess is defined as tha nppliﬁd fares pet enit ared, oo = EFA, and e rusulh'u.g sliain &y is the
fractional changs in the length of o sample caused by on; em = 80T, whera Lis tha sampla length. The two are
ralowed through the elostic modulus ¥; 0, = Ye,. Subscript mis used o distinguish the strass o, and stroin 2. from
the mndul:lh'il‘}- & and parimiltivily &,
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Figure 5,38 Piezoresistivity and its applicafions.
[o] Stress o, along the current [longidinal) direction chonges the resistivity by 3a,
(b} Siresses o, and o; couse o resistivity change,

[z} A force opplied to o cantilever bends it. A piezoresistor at the support end [where the
stress is large} measures the strass, which is proporticonal 1o the farce.

[dl A pressure senser has four piezoresistors By, Ry, By, Ry embedded in a dioghragm. The
pressure bends the dinphrugm, which generafes siresses that are sensed b}l the four
piezoresisiors,

the same phenomenon. Piezoresistivity is fruitfully utilized in a variety of useful
sensor applications such as force, pressure and strain gauges, accelerometers, and
microphones.

The change in the resistivity may be due to a change in the concentration of
carriers or due to a change in the drift mobility of the carriers, both of which can be
modified by a strain in the crystal. Typically, in an extrinsic or doped semiconductor,
the concentration of carriers does not change as significantly as the drift mobility; the
piezoresistivity is then associated with the change in the mobility. For example, in an
n-type Si, the change in the electron mobility ji, with mechanical strain e, du, /dey,
is of the order of 10° cm® V=! s7', so that a strain of 0.015 percent will result in a
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change in the mobility that is about 1 percent, and a similar change in the resistivity,
which is readily measurable. In this case, the change in the mobility g, is due to the
induced strain changing the effective mass m} which then modifies p.. (Recall that
fe = et/m’, where r is the mean scattering time.)

The change in the resistivity 3o has been shown to be proportional o the induced
strain in the crystal and hence proportional to the applied stress ,,. The fractional
change 8p/p can be written as

dp

— =T [5.62]
o

where 7 is a constant called the piezoresistive coefficient; = has the units of l/stress,
e.g., m* /N or 1/Pa. The piezoresistive coefficient = depends on the type of doping,
p-or n-type, the dopant concentration; the temperature; and the crystallographic direc-
tion. A stress along a certain direction in a crystal, for example, along the length of a
semiconductor crystal, will change the resistivity not only in the same direction but also
in transverse directions. We know from elementary mechanics that a strain in one di-
rection is accompanied by a transverse strain, as implied by the Poisson ratio, soit is not
onexpected that a stress in one direction will also modify the resistivity in a transverse
direction. Thus, the change in the resistivity of a semiconductor in a “longitudinal™
direction, taken as the direction of current flow, is due to stresses in the longitodinal and
transverse directions. If o, is the stress along a longimdinal direction, the direction of
current flow, and o is the stress along a ransverse direction, as in Figure 5.38b, then,
generally, the fractional change in the resistivity along the current flow direction (lon-
gitudinal direction) is given by

&
-.:_ =aqioL + T7Ty [5.63]

where r,, is the piezoresistive coefficient along a longitudinal direction (different for
p-and n-type 5i), and xy is the piezoresistive coefficient in the ransverse direction.

The piezoresistive effect is actually more complicated than what we have implied.
In reality, we have to consider six (ypes of stresses, three uniaxial stresses along the x,
¥, and z directions (e g., rying to pull the crystal along in three independent directions)
and three shear stresses (e.g., rving to shear the crystal in three independent ways). In
very simple terms, a change in the resistivity (5o /p); along a particular direction ¢ (an
arbitrary direction) can be induced by a stress @; along another direction j (which may
or may not be identical o i). The two, (fp/p); and a;, are then related through a
piezoresistivity coefficient denoted by ;. Consequently, the full description of piezore-
sistivity involves tensors, and the piezoresistivity coefficients m; form the elements of
this tensor; a treatment beyond the scope of this book. Nonetheless, it is useful to be
able 1o calculate wp and my from various tabulated piezoresistivity coelficients i,
without having to learn tensors. It turns out that itis sufficient to identify three princy-
pal piezoresivtive coefficients 1o describe the pieroresistive effect in cubic crystals,
which are denoted as myy, my2, and w4, From the laiter set we can easily caleulate i,
and wy for a crystallographic direction of interest; the relevant equations can be found
in advanced textbools.

Fieznresis-
ity
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fivity
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Advances in silicon fabrication technologies and micromachining (ability to fab-
ticate micromechanical structures) have now enabled various piezoresistive silicon
microsensors to be developed that have a wide range of useful applications. Figure
5.38c shows a very simple Si microcantilever in which an applied force F to the free
end bends the camtilever; the tip of the cantilever is deflected by a distance h.
According to elementary mechanics, this deflection induces a maximum stress oy, that
is at the surface, at the support end, of the cantilever. A properly placed piezoresistor at
this end can be wsed to measure this stress g, and hence the deflection or the force.
The piezoresistor is implanted by selectively diffusing dopants into the Si cantilever at
the support end. Obviously, we need to relate the deflection 4 of the cantilever tip
to the stress oy, which is well described in mechanics. In addition, A is proportional to
the applied force F through a factor that depends on the elastic modulus and the geom-
etry of the cantilever. Thus, we can measure both the displacement (4) and force (F).

Another useful application is in pressure sensors, which are commercially available.
Again, the structure is fabricated from Si. A very thin elastic membrane, called a di-
aphragm, has four piezoresistors embedded, by appropriate dopant diffusion, on its sur-
face as shown in Figure 5.38d. Under pressure, the 51 diaphragm deforms elastically, and
the stresses that are generated by this deformation cause the resistance of the piezoresistors
to change. There are four piezoresistors because the four are connected in 2 Wheatstone
bridge ammangement for better signal detection. The diaphragm area is typically 1 mm »
| mm, and the thickness is 20 pm, There is no doubt that recent advances in microma-
chining have made piezoresistivity an important topic for a variety of sensor applications.

EXAMPLE 5.18

Semii-
cemeluctor
stron gange

PIEZORESISTIVE STRAIN GAUGE Suppose that we apply a stress o, along the length, taken
alomg the [110] direction, of a p-type silicon erystal sample. We will measure the resistivity
along this direction by passing a currend along the length and measuring the voliage drop be-
tween two fixed points as in Figure 5.38a. The stress o, along the length will result in a strain
gp flong the same length given by &; = o /¥, where ¥ is the elastic modulus. From Equation
5.63 the change in the resistivity is

2 3
—_— =gy + Aoy =m Vg
2

where we have ignored the presence of any transverse stresses; o7 = 0. These transverse
stresses depend on how the piczoresistor is used, that is, whether it is allowed to contract later-
ally. If the resisior cannol contract, it must be experiencing a iransverse siress, In any event, for
the particular direction of interest, [110], the Poisson ratio is very small (less than 0.1), and we
can simply neglect any or. Clearly, we can find the strain £, from the measurement of Agfe,
which is the principle of the strain gavuge, The gaonge factor G of a strain gavge measures the
sensitivity of the gauge in terms of the fractional change in the resistance pet unit strain,

EimG
R L
( .|':'|..l'_| ) Er

L
where we have assumed (hat & R is dominated by Ap, since the effects from geometric changes
in the sample shape can be ignored compared with the piezoresistive effect in semiconductors,

= = ¥,
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Using typical values fora p-type 5i piezoresistor which has a length along [110], ¥ =170 GPa,
aoR T2 107 Pa7Y, we [imd G = 122, This iz much greaster than © = 1.7 for metal
resistor—based strain gauges. [n most metals, the fractional change in the resistance AR/ R is
due to the geometric effect, the sample becoming elongated and narrower, whereas in semicon-
ductors it is due w the piezoresistive effect,
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5.9 SCHOTTKY JUNCTION

59.1 ScuorTky DioDE

We consider what happens when a metal and an r-type semiconductor are brought into
contact. In practice, this process is frequently carried out by the evaporation of a metal
onto the surface of a semiconductor cryvstal in vacuum,

The energy band diagrams lor the metal and the semiconductor are shown in
Figure 5.3%. The work fonction, denoted as &, is the energy difference between the
vacuum level and the Fermi level. The vacuum level defines the energy where Lhe elec-
tron is free from that particular solid and where the electron has zero KE.

For the metal, the work function &, is the minimum energy required to remove an
glectron from the solid. In the metal there are electrons at the Ferini level Eg,, butin the

dafect {Chapter 1).

John Bordeen, Waller Sehattky, and VWaller Bratioin. Waiter H.

Schaitky |13B4-1%74} obagined his FhD from the University of Barlin
in 1912, He mode many distinct contributions to physicol elechronics,
Ha irvanted the screen grid vocuem lube in 19135, and the lereds
veeuwm lube in 1919 whila ot Siamens. The Schoitkoy junction theary
was formulated in 1938, He obie made disfinct conlibutions 4o
tharmal and shod naise in devices, His book Thenﬂnd'yammr‘k WL
published in 192% and included an explenation of the Schoftky

| SOURCE: AP Emilia Segre Visual Archives, Bramain Collection.
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Figure 5.39 Formation of a Schotrtky junction behwean o mefol and an rype semiconductor when &, = &,

semicondoctor there are none at £ g,. Nonetheless, the semiconductor work function &,
still represents the energy required to remove an electron from the semiconductor. It
may be thought that the minimum energy required to remove an electron from the semi-
conductor is simply the electron affinity y, but this is not so. Thermal equilibrium re-
quires that only a certain fraction of all the electrons in the semiconductor should be in
the CB at a given emperature, When an electron is removed from the conduction band,
then thermal equilibrivm can be maintained only if an electron is excited from the VB
to CB, which involves absorbing heat (energy) from the environment; thus it takes more
energy than simply . We will not derive the effective thermal energy required to re-
move an electron but state that, as for a metal, this is equal to &, even though there are
no electrons al £ g, In fact, the thermionic emission of electrons from a heated semi-
conductor is also described by the Richardson—-Dushman expression in Equation 4.37
but with @ representing the work function of the semiconductor, €, in the present
n-lype case. {In contrast, the minimum photon energy required o remove an electron
from a semiconductor above absolute zero would be the electron affinity.)

We assume that &, = &, the work function of the metal is greater than that of the
semiconductor. When the two solids come into contact, the more energetic electrons in
the CB of the semiconductor can readily tunnel into the metal in search of lower empty
energy levels (just above Ep) and accumulale near the surface of the metal, as illus-
trated in Figure 5.39. Electrons mnneling from the semiconductor leave behind an
electron-depleted region of width W in which there are exposed positively charged
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donors, in other words, net positive space charge. The contact potential, called the
built-in potential V,, therefore develops between the metal and the semiconductor.
There is obviously also a built-in electric field £, from the positive charges to the neg-
ative charges on the metal surface. Eventvally this built-in potential reaches a value
that prevents further accumulation of electrons at the metal surface and an equilibriom
is reached. The value ofithe built-in voltage ¥, is the same as that in the metal-metal
junction case in Chapter 4, namely, (&, — &,)/e. The depletion region has been de-
pleted of free carriers (electrons) and hence contains the exposed positive donors, This
region thus constitutes a space charge layer (SCL) in which there is a nonuniform
internal field directed from the semiconductor to the metal sorface. The maximum
value of this built-in field is denoted as £, and occurs right at the metal-semiconductor
junction (this is where there are a maximom number of field lines from positive to neg-
ative charges).

The Fermi level thronghout the whole solid, the metal and semiconductor in con-
tact, must be uniform in equilibrinm. Otherwise, a change in the Fermi level A £ going
from one end to the other end will be available to do external (electrical) work. Thus,
Egn and E gy line up. The W region, however, has been depleted of electrons, so in this
region E, — Ep, must increase so that rn decreases. The bands must bend to increase
E. — Ep, toward the junction, as depicted in Figure 5.39. Far away from the junction,
we, of course, still have an n-type semiconductor. The bending is just encugh for the
vacuum level to be continuous and changing by @, — ¢, from the semiconductor to
the metal, as this much energy is needed to take an electron across from the semicon-
ductor to the metal. The PE barrier for electrons moving from the metal to the semicon-
ductor is called the Schottky barrier height & 5, which is given by

¢"B = mm — K= fll“'rn-+ ':-Et = EFH} [5.64]

which is greater than eV ,,.

Under open circuit conditions, there is no net current flowing through the
metal-semiconductor junction. The number of electrons thermally emirtted over the PE
barrier &4 from the metal to the semiconductor is equal to the number of electrons
thermally emitted over eV, from the semiconductor to the metal. Emission probability
depends on the PE barrier for emission through the Boltzmann factor. There are two
current components due to electrons flowing through the junction. The current due to
electrons being thermally emitted from the metal to the CB of the semiconductor is

e}
g =C4 l.‘:.t[.'l(— ﬁ) [5.65]

where C) is some constant, whereas the current due tw electrons being thermally
emitted from the CB of the semiconductor to the metal is

v
by = Cy uxp( _ ‘1;) [5.66]

where o 18 some constant different than .
In equilibrium, that is, open circuit conditions in the dark, the currents are equal
but in the reverse directions:

Ilillzlpo:'n druil = JI e J‘I_ = ﬂ

Sohotthy
barrier
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Under forward bias conditions, the semiconductor side is connected to the nega-
tive terminal, as depicted schematically in Figure 5.40a. Since the depletion region W
has a much larger resistance than the neutral n-region (outside W) and the metal side,
nearly all the voltage drop is across the depletion region. The applied bias is in the
opposite direction to the built-in voltage V,. Thus V, is reduced to V, — V. & 5 remains
unchanged. The semiconductor band diagram outside the depletion region has been
effectively shifted up with respect to the metal side by an amount ¢V because

v

PE = Charge = Voltage

Mewl n-type semiconductor

fV,— V)

gy i

[a] Forward-biosed Schottky
junction. Electrons in the CB of the
semicanductor can eosily overcome
the small PE barrier to enter the
metal.

10 pA—

02V

Figure 5.40 The Schotky junction,

[b] Reverse-hinsed Schotthy junction.
Electrons in the metal cannot easily
overcome the PE barrier drg o enter the
semiconductor,

[c} I-¥ characteristics of a
Schottky junction exhibits
rectifying properties (negative
current axis is in microamps).
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The charge is negative but 5o is the voltage eonnected Lo the semiconduclor, as shown
in Figure 5.40a.

The PE barrier for thermal emission of electrons from the semiconductor to the
metal is now e{V, — V). The electrons in the CB can now readily overcome the PE
bartier 1o the metal.

The current er“- due to the electron emission from the semiconductor to the metal,
15 oW

3.67
T [3.67]

Since ®p is the same, Jy remains unchanged. The net current is then

o e(V, — V) eV,
F=df— g =Ciexp| ——2—= | - Cyexp| -—

V, -V
J;“ = {4 ¢xp[mu__l}

kT kT

eV, eV
J=0C; exp(— kT) I:exp(ﬁ) = 1:'
eV
=1, [EEP(E) — I] [5.68]

where ., is a constant that depends on the material and surface properties of the
two solids. In fact, examination of the above steps shows that J, is also J; in Equa-
tion 5.65.

When the Schotiky junction is reverse biased, then the positive terminal is con-
nected 1o the semiconductor, as illustrated in Figure 5.40b. The applied voltage V.
drops across the depletion region since this region has very lew carriers and is highly
resistive. The built-in voltage V, thus increases to V, + V. Effectively, the semicon-
ductor band diagram is shifted down with respect to the metal side because the charge
is negative but the voltage 13 positive and PE = Charge x Voltage . The PE barrier for
thermal emission of electrons {tom the CB to the metal becomes e(V, + V), which
means that the corresponding current component becomes

e(V, + ‘-".-]Ij|
—— |
kT

or

giving

Jr;:_e" =0 cxp[— [5.691

Since generally V, is typically a fraction of a volt and the reverse bias is more than
a few volts, JJ7 <« Jy and the reverse bias current is essentially limited by J; only and
is very small. Thus, under reverse bias conditions, the current is primarily due to the
thermal emission of electrons over the barrier &5 from the metal to the CB of the
semiconductor as determined by Equation 3.65. Figure 5.40¢ illustrates the /~V char-
acteristics of a typical Schottky junction. The 7-V characteristics exhibit rectifying
properties, and the device is called a Schottky diode.

Equation 5.63, which is derived for forward bias conditions, is also valid under
reverse bias by making V negative, that is, V = =V, Furthermore, it turns out to be

Schouky

JuRcEion ’
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applicable not only to Schottky-lype metal-semiconductor junctions but also to junc-
tions between a p-lype and an s-type semiconductor, pa junctions, as we will show in
Chapter 6. Under a forward bias Vy, which is greater than 25 mV at room temperature,
the forward current is simply

p=nep(L) v (5701
¢ = J, exp T I}e 5.

It should be mentioned that it is also possible to obtain a Schottky junction
between a metal and a p-type semiconductor, This arises when @, < &, where @, is
the work function for the p-type semiconductor,

59.2 ScHOYTKY JuncTiON SoLar CELL

The built-in field in the depletion region of the Schottky junction allows this type of
device to function as a photovoltaic device and also as a photodetector. We consider a
Schottky device that has a thin metal film (usually Au) deposited onlo an n-type semi-
conductor, The energy band diagram is shown in Figure 5.41, The metal is sufficiently
thin {~ 1) nm) to allow light to reach the semiconductaor,

For photon energies greater than E,, EHPs are generated in the depletion region in
the semiconductor, as indicated in Figure 541, The field in this region separates the
EHPs and drifts the electrons toward the semiconductor and holes toward the metal,
When an electron reaches the neutral n-region, there is now one extra electron there and
therefore an additional negative charge. This end therefore becomes more negative with
respect to the situation in the dark or the equilibrium situation. When a hole reaches the
metal, it recombines with an electron and reduces the effective charge there by one elec-
tron, thus making it more positive relative to its dark state. Under open circuit condi-
tions, therefore, 4 voltage develops across the Schottky junction device with the metal
end positive and semiconductor end negative.

: Meuteal n-type
Metul D‘:I_E;;:m semiconductos
ol region

hu}j‘.‘z
o

Fr

External load

Figure 5.41 The principle of the Schottky junclion solar cell,
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The photovoltaic explanation in terms of the energy band diagram is simple. At the
point of photogeneration, the electron finds itself at a PE slope as E. is decreasing
toward the semiconductor, as shown in Figure 5.41. It has no option but to roll down
the slope just as a ball that is let go on a slope would roll down the slope to decrease its
gravitational PE. Recall that therg are many more emply states in the CB than elec-
trons, so there is nothing to prevent the electron from rolling down the CB in search ol
lower energy. When the electron reaches the neutral region (flat E,. region), it upsets
the equilibrium there, There is now an additional electron in the CB and thix side ac-
guires a negative charge, If we remember that hole energy increases downward on the
energy band diagram, then similar arguments also apply to the photogenerated hole in
the VB, which rolls down its own PE slope to reach the surface of the metal and re-
combine with #n electron there.

If the device is connected to an external load, then the extra electron in the neutral
n-region is conducted through the external leads, through the load, toward the metal
side, where it replenishes the lost electron in the metal. As long as photons are gener-
ating EHPs, the flow of electrons around the external circuit will continue and there
will be photon energy to electrical energy conversion. Sometimes it is useful to think
of the neutral p-type semiconductor region as a “conductor,” an extension of the
external wire (except that the r-type semiconductor has a higher resistivity). As soon
as the photogenerated electron crosses the depletion region, it reaches a conductor and
is conducted around the extemnal circuit to the metal side to replenish the lost electron
there.

For photon energies less than E,, the device can still respond, providing that the
hv can excite an electron from £z, in the metal over the PE barrier @ into the CB,
from where the electron will roll down toward the neutral n-region. In this case, hv
must only be greater than ¢ 5.

If the Schottky junction diode is reverse-biased, as shown in Figure 5.42, then
the reverse bias V. increases the buili-in potential v, to ¥, 4 V, (V, = V). The in-
ternal field increases to substantially high values. This has the advantage of increas-
ing the drift velocity of the EHPs (vy = p4E) in the depletion region and therefore

Figuru 5.42 Revarse-biased

Schotiky photedicdes are
fraquently used as fasl
photadatectors.
|
‘phmn
n-5i
Sampling

rosistor, K
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shortening the transit time required to cross the depletion width. The device re-
sponds faster and is useful as a fast photodetector. The photocurrent igpg, in the ex-
ternal circuoit is due to the drift of photogenerated carriers in the depletion region and
can be readily measured.

SIS NER THE SCHOTTKY DIODE The reverse saturation current f, in the Schorky junction, as ex-

Reverse

Ecituration -

CuHrrent in
Schotriy
Junction

pressed in Bguation 5,68, is the same cumrent that is given by the Richardson—Dushman
equation for theemionic emission over a potential barrier (= &,) derived in Chapter 4. J, is
given by

Li ]
I, =BT" exp(- ﬁ)

where B, is the effective Richardson constant that depends on the characteristics of the
metal-semiconductor junction. B, for metal-semiconducror junctions, among other factors, de-
pends on the density of states related effective mass of the thermally emitted carriers in the
semiconductor. For example, for a metal to n-5i junction, B, is about 110 A em™? K2, and for
a metal to p-58i junction, which invelves holes, B, is about 30 A cm—2 K2,

o. Consider a Schottky junction diode between W (lungsten) and a-5i, doped with I
donors cm™?. The cross-sectional area is 1 mm?. Given that the electron affinity x of $i is
4.01 eV and the work function of W is 4.55 eV, what is the theoretical barrier height @5
from the metal to the semiconductor?

b, What is the built-in voltage ¥V, with no applied bias?

Given that the experimental barrier height €5 is about 0.66 eV, what is the reverse satura-
tion current and the current when there is a forward bias of 0.2 V across the diode?

SOLUTION
a.  From Figure 5,39, it is clear that the bamer height $5 s
Bg =, — xy =455V —4.01 eV =0.54 ¥

The experimental value is around (.66 eV, which is greater than the theoretical value due to
various cffects at the metal-semiconductor interface arising from dangling bonds, defects,
and so forth, For example, dangling bonds give rise to what are called surface states within
the bandgap of the semiconductor that can captire electrons and modify the Schottky energy
band diagram. (The energy band disgram in Figure 5.39 represents an ideal junction with no
surface states.) Further, in some cases, such as Pt on #-5i, the experimenial value can be
lower than the theoretical value.

b, We can find £, — Ep, in Figure 5.19 from

n= Ny = Neexp(-fi-k:-r—ﬁlt)

E E.— E
10" em™? = (2.8 % 10 em™? (——')
o Rt Rt ey
which gives AE = E, — Ep, = 0.206 ¢V, Thus, the built-in potential ¥, can be found
from
i bp E.—E

V,=— 25 “F 054V 0206V =033V
£ [



£.10 OHMIC CONTACTS AND THERMOELECTRIC COOLERS

e If A is the cross-sectional area, .01 em?, taking B, tobe 110 A K™% em™?, and using the
experimental value for the barrier height @5, the samration cutrent is

0.66 eV )
0026 eV

=936x 107" A or .94 pA
When the applied voltage is Vy, the forward current {; is

¥ ;
fy= Jn[mp(ﬁ) - I:| = {U.‘Mph)[&xp(uiiﬁ) - ]] = 2.0 mA

I, = AB,T? E:xp( : f—;) = (0.01)(110){300%) enp(—

510 OHMIC CONTACTS AND
THERMOELECTRIC COOLERS

An ohmic contact iz a junction between a metal and a semiconductor that does not
limit the current flow. The current is essentially limited by the resistance of the semi-
conductor outside the contact region rather than the thermal emission rate of carriers
across a potential barrier at the contact. In the Schottky diode, the /-V characteristics
were determined by the thermal emission rate of carmiers across the contact, It should
be mentioned that, contrary to intuition, when we talk about an ohmic contact, we do
not generally infer a tinear =V characteristic for the ohmic contact itself, We only
imply that the contact does not limit the current flow,

Figure 5.43 shows the formation of an ohmic contact between a metal and an
r-type semiconductor. The work function of the metal ®,, is smaller than the work
function @,, of the semiconductor. There are more energetic electrons in the metal than

Accumulation region Bulk semiconductor

ohmic contact -
CE
E
EF.'H 'E'Fm LTy ol

n-Lype semiconductor Metal  p-type semiconductor
Before contact Alter contact
Figura 5.43 ‘Whan o matal with o smaller work function than an aype semiconductor is put into contoct

with the rtype semiconductar, the resuling junction is an ohmic cantact in the sense that it doas not limit the
current Raw.
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in the CB, which means that the electrons (around £ py) tunnel into the semiconductor
in search of lower energy levels, which they find around E., as indicated in Fig-
ure 5.43, Consequently, many electrons pile in the CB of the semiconductor near the
junction. Equilibriumn is reached when the accumulated electrons in the CB of the
semiconductor prevent further electrons tunneling from the metal, Put more rigor-
ously, equilibrium is reached when the Fermi level is uniform across the whole systemn
from one end to the other,

The semiconductor region near the junction in which there are excess electrons is
called the accumulation region, To show the increase in n, we draw the semiconduc-
tor energy bands bending downward to decrease E; — Ef,. which increases n. Going
from the far end of the metal to the far end of the semiconductor, there are always con-
duction electrons. In sharp contrast, the depletion region of the Schottky junction
separates the conduction electrons in the metal from those in the semiconductor, It can
be seen from the contact in Figure 3.43 that the conduction electrons immediately on
either side of the junction (at Eg, and E.) have about the same energy and therefore
there is no barrier involved when they cross the junction in either direction under the
influence of an applied field.

It 1s clear that the excess electrons in the accumulation region increase the
conductivity of the semiconductor in this region, When a voltage is applied to the
structure, the voltage drops across the higher resistance region, which is the bulk semi-
conductor region. Both the metal and the accumulation region have comparatively
high concentrations of electrons compared with the bulk of the semiconductor, The
current is therefore determined by the resistance of the bulk region. The current den-
sity is then simply J = o€ where o is the conductivity of the semiconductor in the
bulk and E is the applied field in this region.

One of the interesting and important applications of sermiconductors is in thermo-
electric, or Peltier, devices, which enable small volumes to be cooled by direct
currents, Whenever a de current flows through a contact between two dissimilar materi-
als, heat is either released or absorbed in the contact region, depending on the direction
of the current. Suppose that there is a de current flowing from an n-type semiconduc-
tor to a metal through an ohmic contact, as depicted in Figure 5,444, Then electrons are
flowing from the metal to the CB of the semiconductor. We only consider the contact
region where the Peltier effect occurs. Current is carried by electrons near the Fermi
level Eg, in the metal, These electrons then cross over into the CB of the semicon-
ductor and when they reach the end of the contact region, their energy is E, plus aver-
age KE (which is %k Ty, There is therefore an increase in the average energy
(PE + KE) per electron in the contact region. The electron must therefore absorb heat
from the environment {lattice vibrations) to gain this energy as it drifts through the
junction. Thus, the passage of an electron from the metal to the CB of an a-type semi-
conductor involves the absorption of heat at the junction.

When the current direction is from the metal to the #-type semiconductor, the elec-
trons flow from the CB of the semiconductor to the Fermi level of the metal as they
pass through the contact. Since Eg, is lower than £, the passing electron has to lose
energy, which it does to lattice vibrations as heat. Thus, the passage of a CB electron
from the n-type semiconductor to the metal involves the release of heat at the junction,
as indicated in Figure 5.44b.
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Ohmic contact | Ohmic contact
; ! :
| region L region

Metal ! n-type semiconductor Metal ' n-type semiconductor
fal ]

Figure 5.44

[a] Current from on atype semiconductor fo the metal resulis in heat absorplion af
the junction,

[b] Current from the metal 1o an sype semiconductor results in heot release ot the
juncticn.

It is apparent that depending on the direction of the current flow through a junc-
tion between a metal and an n-type semiconductor, heat is either absorbed or released
at the junction, Although we considered current flow between a metal and an n-type
semiconductor through an ohmic contact, this thermoelectric effect is a general phe-
nomenen that oceurs at a junction between any two dissimilar materials. [tis called the
Peltier effect after its discoverer, In the case of metal-p-type semiconductor junctions,
heat 15 absorbed for current flowing from the metal to the p-type semiconductor and
heat is released in the other direction. Thermoelectric effects occurting at metal—
semiconductor junctions are summarized in Figure 5,45, It 15 important not to confuse
the Peltier effect with the Joule heating of the semiconductor and the metal. Joule heat-
ing, which we simply call /*R (or J*) heating, arises from the finite resistivity of the
material. It is due to the conduction electrons losing their energy gained from the field
to lattice vibrations when they become scattered by such vibrations, as discussed in
Chapter 2.

It 15 self-evident that when a current flows through a semiconductor sample with
metal contacts at its ends, as depicted in Figure 5.45, one of the contacts will always
absorb heat and the other will always release heat. The contact where heat 1s absorbed
will be cooled and is called the cold junction, whereas the other contact, where heat 15
released, will warm up and is called the hot junction. One can use the cold junction to
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e ———— Metal

IT i--I‘—Q cold junction Jl ﬁ‘— @ cold junction

£ ? kT
! + i

r-type semiconductor i :
supply —r ? i p-type semiconductor

IEY A
Metal Metal

Figure 5.45 When o dc cument is possed through o semiconductor to which metal contacts have been
made, cne junction absorbs heat ond cools {the cold junction] and the ather releases heal and warms [the
hat junetion).

Body to be cooled
(heat source)

Electrical insulation
(zood heat conductor)

- 3 ? PR l :"Meta.]

F— p-type semiconductor

I , Metal

-

Heat sink
+ I 7=
|

DC supply

Figure 5.46 Cross section of a typical thermoelectric cocler.

cool another body, providing that the heat generated at the hot junction can be removed
from the semiconductor sufficiently quickly to reduce its conduction through the semi-
conductor to the cold junction. Furthermore, there will always be the Joule heating
({2R) of the whole semiconductor sample since the bulk will always have a finite
resistance,

A simplified schematic diagram of a practical single-element thermoelectric
cooling device is shown in Figure 5.46. It uses two semiconductors, one #-type and
the other p-type. each with ohmic contacts. The current direction therefore has oppo-
site thermoelectric effects. On one side, the semiconductors share the same metal
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Heat absarbed (cold side)

Electrical insulator {(ceramic)

f-type semiconductor { Positive (+)

Megative (—)
Heat rejected (hot side)

Figure 5.4F Typical struchire of o commercial thermealectric cooler.

electrode. Effectively, the structure is an n-type and a p-type semiconductor con-
nected in series through a commeon metal electrode. Typically, either BiaTes, BiaSes,
or Sb;Te; is used as the semiconductor material with copper usually as the metal
electrode.

The current flowing through the #-type semiconductor to the common metal elec-
trode causes heat absorption, which cools this junction and hence the metal. The same
current then enters the p-type semiconductor and causes heat absorption at this junc-
tion, which cools the same metal electrode. Thus the common metal electrode is
cooled at both ends. The other ends of the semiconductors are hot junctions. They are
connected to a large heat sink to remove the heat and thus prevent heat conduction
through the semiconductors toward the cold junctions. The other face of the common
metal electrode is in contact, through a thin ceramic plate {electrical insulator but ther-
mal conductor), with the body to be cooled. In commercial Peltier devices, many of
these elements are connecied in series, as illustrated in Figure 5.47, o increase the
cooling efficiency.
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THE PELTIER COEFFICIENT Consider the motion of electrons across an ohmic contact between
ametal and an r-type semiconductor and hence show that the rate of heat generation ' at the
contact is approximately

0 = £T17
where IT, called the Peltier coefMicient betwesn the two materials, is given by

| 3
n=- [cEc - Era) + —H]
& z

EXAMPLE 5.20
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where E. — Er, is the energy separation of £, from the Fermi level in the #-type semiconduc-
tor. The sign depends on the convention used for heat liberation or absorplion.

SCLUTION

We consider Figure 5.44a, which shows only the ohmic contact region between a metal and an
n-lype semiconductor when a current is passing through it. The majority of the applied voltage
drops acrass the bulk of the semiconductor because the contact region, or the accumulation re-
gion, has an accumulation of electrons in the CB. The cwrrent is limited by the bulk resistance
of the semiconductor, Thus, in the contact region we can take the Fermi level to be almost undis-
turbed and hence uniform, Ep, = Ep,. In the bulk of the metal, a conduction electron is al
around £ g, {(same as Ep, ), whereas juse at the end of the contact region in the semiconductor
itis at £, plus an average KE of 2kT. The energy difference is the heat absorbed per electron
going through the contact region. Since /e 15 the rate al which ¢lectrons are flowing through
the contact,

k) !
Rate of energy absorption = [(E. + EkT) = Er«r] (—)
K

or

(Ec — Eps) + 3T
Q':[.—~—.—-—.—-£—.———=.....~:|f=ﬂf

-4

s the Peltier coefficient is approximately given by the term in the square brackets, A more tig-
orous analysis gives [1 as

1
n= ;l{E._» — Epn) + 2kT]

ADDITIONAL TOPICS
5.11 DIRECT AND INDIRECT BANDGAP
SEMICONDUCTORS

E-k Diagrams We know from quantum mechanics that when the electron is within
a potential well of size L, its energy is quantized and given by
hk,)?
5 _ Ok
2m,

where the wavevector &, 15 essentially a quantum number determined by

nm
L

o

where n = |, 2,3, ... The energy increases pargbolically with the wavevector k.
We also know that the electron momenturn is given by Ak,. This description can be
used to represent the behavior of electrons in a metal within which their average
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potential energy can be taken to be roughly zero. In other words, we take Vix) =0
within the metal crystal and V (x) to be large [e.g., V(x) = V,] outside so that the elec-
tron is contained within the metal. This is the nearly free electron model of a metal
that has been quite successful in interpreting many of the properties. Indeed, we were
able to calculate the density of states g{E) based on the three-dimensional potential
well problem. It is quite obvious that this model is too simple since it does not take into
account the actual variation of the electron potential energy in the crystal.

The potential energy of the electron depends on its location within the erystal and
is perindic due to the regular arrangement of the atoms. How does a periodic potential

rg}r affect the relationship between E and k7 It will no longer simply be E, =
(Aka)%/2m

To fmd the energy of the electron in a crystal, we need to solve the Schridinger
equation for a periodic potential energy function in three dimensions. We first con-
sider the hypothetical one-dimensional crystal shown in Figure 5.48. The electron
potential energy functions for each atom add to give an overall potential energy
function ¥ (x), which is clearly periodic in x with the periodicity of the crystal o

Thus, Periodic

Vixb=Vix+a)=Vix+2a)=-.. is.71]  potential
ERErgy

PE(r)

PE of the electron around an isclated
r atom.

When M atoms are arranged to form the
crystal then there is an overlap of individual
electron PE flunctions.

— g —r— ] —=

TR FE of the electron, Vx), inside the
-\/\/\(’\ /- cryshal is periodic with o peried o,

1
x= l:l ] Zﬂ Ia x-L

Surface g Crystal . jﬂurﬁhct

Figure 5,48 The electron potential energy (PE}, Wix, inside the crystal is periodic with the same periedicity a as
that of tha crystal. Far away cutside the erystal, by chaice, V=0 |the electron is frea and PE= 0.
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and so on. Our task is therefore to solve the Schridinger equation

dy + i [E — Viz)r =0 [5.72]
dII hz 3 - g

subject to the condition that the potential energy V(x) 18 periodic in g, that is,
Vix) = Vix +ma) m=1,273,... [5.73]

The solution of Equation 5.72 will give the electron wavelunction in the crystal
and hence the electron energy, Since V(x) 15 periodic, we should expect, by intuition
at least, the solution ¥(x) to be periodic. It turns out that the solutions to Equa-
tion 5.72, which are called Bloch wavefunctions, are of the form

Yrelx) = Uilx) expl jkx) [5.74]

where Up(x) is a periodic function that depends on V(x) and has the same periodicity
a a8 Vix). The term exp( jkx), of course, represents a traveling wave. We should
remember that we have to multiply this by exp(—j E1 /R, where E is the energy, to get
the overall wavefunction ¥ (x, t). Thus the electron wavefunction in the erystal is a
traveling wave that is modulated by Uy (x).

There are many such Bloch wavefunction solutions to the one-dimensional crys-
tal, each identified with a particular k value, say k,, which acts as a kind of quantum
number. Each 4, (x) solution corresponds to a particular k, and represents a state with
an energy E;. The dependence of the energy £, on the wavevector & is what we call
the E—% diagram. Figure 5.49 shows a typical E-& diagram for the hypothetical one-
dimensional solid for k values in the range —m /a to +r/a. Just as Ak is the momen-
tum of a free electron, &k for the Bloch electron is the momentum involved in its
interaction with external fields, for example, those involved in the photon absorption
process. Indeed, the rate of change of &k is the externally applied force Foy on the
electron such as that due to an electric field (F.,, = ¢E). Thus, for the electron within

Figure 5.49 The E-k diagram of a direct The £k diagram The energy band
diagram

handgap semiconductor such as Gafs. E

The E-k curve cansists of many discrete
paints, each coresponding to a possible
siote, waveluncion yri(x, that is allowed ko
axish in the c.nl,rsrq|. Ths paints ore so 1:|r:rs.e
thett wea normally drew the E<k ralationship
as a continuaus curve. In tha energy range
E, to E,, there are no points [y«

solutions)].
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the crystal,

dihk)
dr - el

and consequently we call &k the erystal momentum of the electron.’

Inasmuch as the momentum of the electron in the x direction in the crystal is given
by Rk, the E-k diagram is an energy versus crystal momentum plot. The states
th{x) in the lower E—k curve constitute the wavefunctions for the valence electrons
and thus correspond to the states in the VB. Those in the upper £—& curve, on the other
hand, correspond to the states in the conduction band (CB) since they have higher en-
ergies. All the valence electrons at absolute zero of temperature therefore fill the states,
particular k, values, in the lower £-& diagram.

It should be emphasized that an £—& curve consists of many discrete points, each
comesponding to a possible state, wavefunction i (x), that is allowed to exist in the
crystal. The points are so close that we draw the E—& relationship as a continuous
curve, It 15 clear from the £—k diagram that there is a range of energies, from £, to E.,
for which there are no solutions to the Schrédinger equation and hence there are no
W (x) with energies in £, to £,. Furthermore, we also note that the £—4 behavior 15 not
a simple parabolic relationship except near the bottom of the CB and the top of the VB,

Above absolute zero of temperature, due to thermal excitation, however, some of
the electrons {from the top of the valence band will be excited to the bottom of the con-
duction band. According to the E—% diagram in Figure 5.49, when an electron and hole
recombing, the electron simply drops from the bottom of the CB to the top of the VB
without any change in its & value, so this transition is quite acceptable in terms of
momentum conservation. We should recall that the momentum of the emitted photon
is negligible compared with the momentum of the electron, The £ diagram in Fig-
ure 5.49 is therefore for a direct bandgap semiconductor.

The simple £k diagram sketched in Figure 549 is for the hypothetical one-
dimensional crystal in which each atom simply bonds with two neighbors. In real
crystals, we have a three-dimensional arrangement of atoms with V (x, », z) showing
periodicity in more than one direction. The £k curves are then not as simple as that in
Figure 5.49 and often show unusual features. The £—k diagram for GaAs, which is shown
in Figure 5.504a, as it turns out, has main features that are quite similar to that sketched in
Figure 5.49. GaAs is therefore a direct bandgap semiconductor in which electron—hole
pairs can recombine directly and emit a photon. It is quite apparent that light emitting
devices use direct bandgap semiconductors to make use of direct recombination.

I Tl'ue wehuol mamentam QF tha nl-.-.cl'rnnl henwmver, is m:ﬂ?!‘c l:n:m:lu:vn

it

_iFu I +an o
& smal il

where Fuemd 1+ Fremd ore all foroes oching on the glectron. The frue mamentum Pa sealisFims

d
2B Futmnat + Fitem

it

Howmvar, as we are inferested in intoroctions with external farces such os on opplied feld, we freot fik as if it were
the meementem af the elecron in the crysiol and vse the name erystal momentum.

431



452

CHAPTER 5 =+ SEMICONDUCTORS

-

Direct bamalpap &
.3

Figure 5.50

[a] In Gaks the minimum of the CB i
directly cbove the maximum of the WB.
Gahs is therefore o direct bﬂndgup
semiconductar,

[E] In Si, the minimum of the CB is
disploced from the maximum of the VB and
Siis an indirect bﬂndgup samicanductor,

<] Recambination of an electron and a
hale in Si involves a recombination center. (e} Si with a recombinalion centar

In the case of 51, the diamond crystal structure leads to an £—% diagram that has the
essential features depicted in Figure 3.50b. We notice that the minimum of the CB is
not directly above the maximurm of the VB. An electron at the bottom of the CB there-
fore cannot recombine directly with a hole at the top of the VB because, for the electron
to fall down to the top of the VB, its momentum must change from kg, 1o &y, Which is
not allowed by the law of conservation of momentum, Thus direct electron—hole
recombination does not take place in Si and Ge. The recombination process in these
elemental semiconductors occurs via a recombination center at an energy level E,.
The electron is captured by the defect at £,, from where it can fall down into the wop of
the ¥VB. The indirect recombination process is illustrated in Figure 5.50c. The energy
of the electron is lost by the emission of phonons, that is, lattice vibrations. The E—k
diagram in Figuare 5.50b for 8i is an example of an indirect bandgap semiconducior.

In some indirect bandgap semiconductors such as GaP, the recombination of the
electron with a hole at certain recombination centers results in photon emission. The
E—f diagram is similar to that shown in Figure 5.50c except that the recombination
centers at £, are generated by the purposeful addition of nitrogen impurities to GaP.
The electron transition from E, to £, involves photon emission.

Electron Motion and Drift We can understand the response of a conduction band
electron to an applied external force, for example, an applied field, by examining the
E—f diagram. Again, for simphcity, we consider the one-dimensional crystal. The
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ia) In the obsence of o field, over o long lime, the average of all k values is zero; there is no net
mamenturn in cny one particular direction,

k) In the: presence of o field in the —x direction, the eleciron accelerates in the +x direction increasing
its k volue along x unfil it is scottered to o random k value, Ower o long fime, the average of all k values
is along the +x direction. Thus the eleciron drifts along +x.

electron is wandering around the crystal quite randomly due to scattering from lattice
vibrations. Thus the electron moves with a certain £ value in the +-x direction, say k4.,
as illustrated in the E—& diagram of Figure 5.51a. When 1t is scattered by a lathce
vibration, its & value changes, perhaps to k_, which is also shown in Figure 5.51a. This
process of &k changing randomly from one scattering to another scattering process con-
tinues all the time, so over a long time the average value of k is zero; that is, average
k, is the same as average k_,

When an electric field is applied, say in the —x direction, then the electron gains
momentum in the +x direction from the force of the field ¢E,. With time, while the
electron 18 not scattered, it moves up in the E—& diagram from k4 to k24 to &34 and so
on until a lattice vibration randomly scatters the electron to say &j— (or to some other
random £ value) as shown in Figure 5.51b. Over a long time, the average of all ky is no
longer equal to the average of all k_ and there is a net momentum in the +x direction,
which is tantamount to a drift in the same direction.

Effective Mass The usual definition of inertial mass of a particle in classical
physics is based on
Force = Mass x Acceleration
F = ma

When we treat the electron as a wave within the semiconductor crystal, we have to
determine whether we can still, in some way, use the convenient classical F = ma
relation to describe the motion of an electron under an applied force such as ¢, and,
if $0, what the apparent mass of the electron in the crystal should be,
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We will evaluate the velocity and acceleration of the electron in the CB in
response to an electric field T, along —x that imposes an external force F, = ¢E, in
the +x direction, as shown in Figure 5.51h. Ouwr treatment will make use of the quan-
tum mechanical F-k diagram.

Since we are treating the electron as a wave, we have lo evaluate the group veloc-
ity v, which, by definition, is v, = de/dk. We know that the time dependence of the
wavefunction is expl(— j £r/h) where the energy E = hw (o 18 an “angular frequency™
associated with the wave motion of the electron). Both E and w depend on . Thus, the
group velocity 1s

| dE
Vg =
hodk

Thus the group velocity is determined by the gradient of the £-% curve. In the
presence of an electric field, the electron experiences a force Fy, = ¢, from which it
gains energy and moves up in the £—k diagram until, later on, it collides with a lattice

vibration, as shown in Figure 5.51b. During a small time interval 8¢ between colli-
sions, the electron moves a distance v, & and hence gains energy 8 £, which is

BE = Fuyty 8t 15.76]

To find the acceleration of the eleciton and the effective mass, we somehow have
to put this equation into a form that looks like F.,, = m.a, where a is the acceleration.
From Equation 5,76, the relationship between the external force and energy is

= | 4E - dk

T dt T de

where we used Equation 5.75 for v, in Equation 5.76. Equation 5.77 is the reason for
interpreting Ak as the crystal momentum inasmuch as the rate of change of Ak is the

externally applied force.
The acceleration a is defined as dv, /dr. We can use Equation 5.75,

[5.75]

[5.77]

4]

dv, h dk 1 d*E dk

= £ = == — [5.78]
dr dt R dk* dr

From Equation 5.78, we can substitute for £k /ot in Equation 5.77, which is then
a relatiomship between Fo, and a of the form

hz
.l""m[ O — [5,?9!

%]
dk?
We know that the response of a free electron to the external force is Fiy = ma,

where m, 18 its mass in vacuum. Therefore it is quite clear from Equation 5.79 that the
effective mass of the electron in the erystal 15

[a2ET
H‘I: = h* [F] [5.“]]
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Thus, the electron responds to an external force and moves as if its mass were given
by Equation 5.80. The effective mass obviously depends on the E—& relationship, which in
tumn depends on the crystal symmetry and the nature of bonding between the atoms. Tts
value is different for electrons in the CB and for those in the VB, and moreover, it depends
on the energy of the electron since it is relared to the curvature of the E—k behavior
(d* E fdk*). Further, it is clear from Equation 5.80 that the effective mass is a quantum
mechanical quantity inasmuch as the E—& behavior is a direct consequence of the applica-
tion of guantum mechanics (the Schridinger equation) to the electron in the crystal,

It is interesting that, according to Equation 3.50, when the E—& curve is a down-
ward concave as at the top of a band {e.g., Figure 5.49), the effective mass of an elec-
iron at these energies in a band is then negative. What does a negative effective mass
mean? When the electron moves up on the £—k curve by gaining energy from the field,
it actually decelerates, that is, moves more slowly. Its acceleration is therefore in the
opposite direction to an electron at the bottom of the band. Electrons in the CB are at
the bottom of a band, so their effective masses are positive quantities. At the top of a
valence band, however, we have plenty of elecirons. These elecirons have negative
effective masses and under the action of a field, they decelerate. Put differently, they
accelerate in the opposite direction to the applied external force F.y. It ums out that
we can describe the collective motion of these electrons near the top of a band by con-
sidering the motion of a few holes with positive masses.

It should be mentioned that Equation 5.80 defines the meaning of the effective
mass in quantum mechanical terms. Iis usefulness as a concept lies in the fact that we
can measure it experimentally, for example, by cyclotron resonance experiments, and
have actual values for it. This means we can simply replace m, by m] in equations that
describe the effect of an external force on electron transport in semiconductors.

Holes Tounderstand the concept of a hole, we consider the E—k curve corresponding
to energies in the VB, as shown in Figure 5.52a. If all the states are filled, then there
are no emply states for the electrons lo move into and consequently an electron cannot
gain energy from the field. For each electron moving in the positive x direction with a
momentum fk.,, there is a corresponding eleciron with an equal and opposite momen-
tum Ak _, 50 there is no net motion. For example, the electron at b is moving toward the

Figurs 5.52

o) Ino full valence band, there is no net contribution o the
cwrrent, There are equal numbers of electrons (e.g., ot b

and B with apposite momente.

|b) If there |s an empty stete (hols] at b at the top of the band,
then the alectron ot b coniributes fo the currant.

|
o

L

L ]

P
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CURRENT DUE TO A MISSING ELECTROMN INTHEVB  First, let us consider a completely full va-
lence band that contains, say, N electrons. A /2 of these are moving with momentum in the 4-x,
and N /2 in the —x direction. Suppose that the crystal is unit volume, An eléectron with charge —e
moving with a group velocity v, contributes to the current by an amount —ev,, . We can deter-
mine the current density Jy due to the motion of all the electrons (N of them) in the band,

N
i=I

I is zero because for each value of v, , there is a corresponding velocity equal in magni-
tude but opposite in direcdon (& and & in Figure 5.52a}. Our conclusion from this is that the
contribution to the current density from a full valence band is nil, as we expect.

Suppose now that the jth electron is missing (& in Figure 3.52h). The net current density is
due to N — 1 electrons in the band, so

W
J.‘\'—I = —€ Z ¥ui IS.BI]

i=Lig)

where the summation is fori = 1 toNand: 2 f { fth electron iz missing). We can write the sum
as summation to N including the jth electron and minus the missing jth electron contribution,

J_?-'—] = —¢ E Yo — l;._ﬂ"l;_l'}
i=l

that is,
Juo1 = 4evy; 15.82]

where we used Jy = 0. We see that when there is a missing electron, there is a net current due
to that empty state ( jth). The current appears as the motion of a charge +e with a velocity v,
where v, is the group velocity of the missing electron_ In ather words, the current is due to the
motion of a positive charge +¢ at the site of the missing electron at &, which is what we call a
hole. One should note that Equation 5.81 describes the current by considering the motiens of alf
the & — 1 electrons, whereas Equation 5.82 describes the same current by simply considering
the missing electron as if it were a positively charged particle (4-¢) moving with a velocity equal
to that of the missing electron. Equation 3.82 is the convenient description universally adopted
for a valence band containing missing electrons,

EXAMPLE 5.2

5.12 INDIRECT RECOMBINATION

We consider the recombination of minority carriers in an exirinsic indirect bandgap
semiconductor such as 5i or Ge. As an example, we consider the recombination of
electrons in a p-type semiconductor. In an indirect bandgap semiconductor, the recom-
bination mechanism involves a recombination center, a third body that may be a crys-
tal defect or an impurity, in the recombination process to satisfy the requirements of
conservation of momentum. We can view the recombination process as follows, Re-
combination occurs when an electron is capiured by the recombination center at the
encrgy level E.. As soon as the eleciron is captured, it will recombine with a hole
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because holes are abundant in a p-type semiconductor. In other words, since there are
many majority carriers, the limitation on the rate of recombination is the actual capture
of the minority carrier by the center. Thus, if . is the electron recombination time,
since the electrons will have to be captured by the centers, 1. is given by

1

5.83
S,— Novg l ]

where §, is the capture {or recombination) cross section of the center, N, is the con-
centration of centers, and vy, is the mean speed of the electron that you may take as its
effective thermal velocity.

Equation 5.83 is valid under small injection conditions, that is, p,, = n,. Thereis
a more general treatment of indirect recombination called the Shockley—Read statistics
of indirect recombination and generation, which is treated in more advanced semicon-
ductor physics textbooks. That theory eventually arrives at Equation 5.83 for low-level
injection conditions. We derived Equation 5.83 from a purely physical reasoning,

Gold is frequently added to silicon to aid recombination. It is found that the
minority carrier recombination time is inversely proportional to the gold concentra-
tion, following Equation 5.83,

513 AMORPHOUS SEMICONDUCTORS

Up to now we have been dealing with crystalline semiconductors, those crystals that
have perfect periodicity and are practically flawless unless purposefully doped for use
m device applications. They are used in numerous solid-state devices including large-
area solar cells, Today’s microprocessor uses a single crystal of silicon that contains
millions of transistors; indeed, we are heading for the 1-billion-transistor chip, There
are, however, various applications in elecironics that require inexpensive large-area
devices to be fabricated and hence require a semiconductor material that can be pre-
pared in a large area. In other applications, the semiconductor material is required to
be deposited as a film on a flexible substrate for use as a sensor, Best known examples
of large-area devices are flat panel displays based on thin-film transistors (TFTs), in-
expensive solar cells, photoconductor drums (for printing and photocopying), image
sensors, and newly developed X-ray image detectors. Many of these applications typ-
ically use hydrogenated amorphous silicon, a-5i:H,

A distinctive property of an electron in a crystalline solid 15 that its wavelunction
is a traveling wave, a Bloch wave, vy, as in Equation 5.74. The Bloch wavefunction
is a consequence of the periodicity of an electron’s potential energy PE, Vix), within
the crystal. One can view the electron’s motion as tunneling through the penodic po-
tential energy hills, The wavefunctions ¥ form extended states because they extend
throughout the whole crystal, The electron belongs to the whole crystal, and there 15 an
equal probability of finding an electron in any unit cell. The wavevector k in this trav-
eling wave vy acts as a quantum number. There are many discrete k, values, which
form a pearly continuous set of & values (see Figure 5.49), We can describe the inter-
action of the electron with an external force, or with photons and phonons, by assign-
ing a momentum & to the electron, which is called the electron's crystal momentum,
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The electron’s wavetunction i, is frequently scattered by lattice vibrations (or by de-
fects or impurities) from one k-value to another, e.g., from ¥, to . The scattering of
the wavefunction imposes a mean free path £ on the electron’s motion, that is, a mean
distance over which 4 wave can travel without being scattering. Over the distance £,
the wavetunction is coherent, that is, well defined and predictable as a traveling Blach
wave; £ is also known as the coherence length of the wavefunction. The mobility is de-
tetmined by the mean free path ¢, which at room temperature is typically of the order
of several hundreds of mean interatomic separations. The crystal periodicity and the
unit cell atomic structure control the types of Bloch wave solutions one can obtain to
the Schrédinger equation. The solutions allow the electron energy E to be examined as
a function of & {or momentum R&) and these E— k diagrams categorize crystalline
semiconductors into two classes: direct bandgap (GaAs type) and indirect bandgap (Si
type) semiconductors.

Hydrogenated amorphous silicon {a-51:H) is the noncrystalline form of silicon
in which the structure has no long-range order but only short-range order; that is, we
can only identify the nearest neighbors of a given atom. Each 5i atom has four neigh-
bors as in the crystal, but there is no periodicity or long-range order as illustrated in
Figure 1.59. Without the hydrogen, pure a-5i would have dangling bonds. In such a
structure sometimes a 8i atom would not be able o find a fourth neighboring Si atom
to bond with and will be left with a dangling bond as in Figure 1.59b. The hydrogen in
the structure (~10 percent) passivales (i, neutralizes) the unsatisfied (“dangling™)
bonds inherent in a noncrystalline struciure and so reduces the density of dangling bonds
or defects. a-8i:H belongs to a class of solids called amorphous semiconductors that
do not follow typical crystalline concepts such as Bloch wavefunctions. First, due to
the lack of periodicity, we canmot describe the electron as a Bloch wave. Conseguently,
we cannot use a wavevector &, and hence ik, to deseribe the electron’s motion. These
semiconductors however do have a short-range order and also possess an energy
bandgap that separates a conduction band and a valence band. A window glass has a
noncrystalline structure but also has a bandgap, which makes it transparent. Photons
with energies less than the bandgap energy can pass through the window glass.

The examination of the structure of a-8i:H in Figure 1.5%c should make it appar-
ent that the potential energy Vix) of the electron in this noncrystalling structure fluc-
tuates randomly from site to site. In some cases, the local changes in Vix) can be
quite strong, forming effective local PE wells (obviously finite wells), Such fluctua-
tions in the PE within the solid can capture or trap electrons, that is, localize elec-
trons at certain spatial locations. A localized electron will have a wavefunction that
resembles the wavefunction in the hydrogen atom, so the probability of finding the
glectron is localized to the site. Such locations that can trap electrons, give them
localized wavefunctions, are called localized states, The amorphous structure also
has electrons that possess extended wavefunctions; that is, they belong to the whole
solid. These extended wavefunctions are distinctly different than those in the crystal
because they have very short coherence lengths due to the random potential fluctua-
tions; the electron is scattered from site to site and hence the mean free path is of the
order of a few atomic spacings. The extended wavefunction has random phase fluc-
tuations. Figure 5.53 compares localized and extended wavefunctions in an amor-
phous semiconductor.
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qiE)

Figure 5.53 Schematic representation of the density of states giF] versus energy E for an amarphous
semiconductor and the associated eleciran wavefunctions for an elactron in the exiended and localized states,

Electronic properties of all amorphous semiconductors can be explained in terms
of the energy distribution of their dengity of states {DOS) function, g{E). The DOS
function has well-defined energies E, and E, that separate extended states from local-
1zed states as in Figure 5.53. There is a distribution of localized states, called tail states
below E, and above E,. The usnal bandgap E.— E, is called the mobility gap. The
reason is that there is a change in the character of charge transport, and hence in the
carrier mobility, in going from extended states above E, to localized states below £

Electron transport above E. in the conduction band is dominated by scattering
from random potential fluctuations arising from the disordered nature of the structure.
The electrons are scattered so frequently that their effective mobility is much less than
what it is in crystalline Si: ji, in a-5i:H is typically 5-10 cm® V7! 57! whereas it 13
1400 cm?® V™! 57! in a single crystal Si. Electron transport below £, on the other hand,
requires an electron to jump. or hop, from one localized state to another, aided by
thermal vibrations of the lattice, in an analogous way to the diffusion of an interstitial
impurity in a crystal. We know from Chapter | that the jump or diffusion of the impu-
rity is a thermally activated process because it relies on the thermal vibrations of all the
crystal atoms to occasionally give the impurity enough energy to make that jump. The
electron’s mobility associated with this tvpe of hopping motion among localized states
is thermally activated, and its value is small. Thus, there is a change in the electron
mobility across £, which is called the conduction band mobility edge.

The localized states (frequently simply called traps) between £, and £, have a pro-
found effect on the overall electronic properties. The tail localized states are a direct
result of the structural disorder that is inherent in noncrystalline solids, variations in the
bond angles and length. Various prominent peaks and features in the DOS within the
mobility gap have been associated with possible structural defects, such as under- and
overcoordinated atoms in the structure, dangling bonds, and dopants. Electrons that
drift in the conduction band can fall into localized states and become immobilized
{trapped) for a while. Thus, electron transport in a-5i:H occurs by multiple trapping in
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shallow localized states. The effective electron dnft mobility in a-5i:H s therefore re-
duced to ~1 cm? V7! 571, Low drift mobilities obviously prevent the use of amaorphous
semiconductor materials in high-speed or high-gain electrome applications. Nonetheless,
low-speed electronics is just as important as high-speed electronics in the electronics
market in such applications as flat panel displays, solar cells, and image sensors. A low-
speed flat panel display made from hydrogenated amorphous silicon {a-5i:H) TFTs costs
very roughly the same as a high-speed crystalline Si microchip that runs the CPU,
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Acceptor atoms  are dopants that have one less valency
than the host atom. They therefore accept electrons
fecan the WB and thereby create holes in the VB, which
leads to a p > n and hence to a p-type semiconductor.

Averageenergy of an electron in the CBis %H‘ as ifthe
electrons were obeying Maxwell-Boltzmann statistics.
This is only trae for a nondegenerate semiconductor.

Rloch wave refers to an electron wavefunction of the
formm i, = Llx) expljkx), which is a traveling wave
that is modulated by a function ©,(x) that has the peri-
odicity of the crystal, The Bloch wavefuncrion is a
cotsequence of the periodicity of an electron’s poten-
tial energy within the crystal.

Compensated semicondoctor contains hoth donors
and acceptors in the same crystal region that compen-
sate for each other's effects, For example, if there are
more donors than acceptors, Ny = ¥., then some of
the electrons released by donors are caplured by accep-
tors and the net effect is that &y — N, number of elec-
Irons pet uhit volume are leftin the CB.

Conduction band (CB) is a band of energies for the
electron in a semiconductor where it can gain energy

from an applied field and drift and thereby contribute to
electrical conduction. The electron in the CB behaves
as if it were a “free” particle with an effective mass m?,
Degenerate semiconductor has so many dopants that
the electron concentration in the CB, or hole concentra-
tion in the VB, is comparable with the density of statcs
in the band. Consequently, the Pauli exclusion princi-
ple is significant and Fermi-Dirac statistics must be
used. The Fermi level is either in the CB for a n™-type
degenerate or in the VB for a p*-type degenerate semi-
conductor. The superscript + indicates a heavily doped
semiconductor.

Diffusion is arandom process by which particles move
from high-concentration regions to low-concentration
regions.

Donor atoms are dopants that have a valency one more
than the host atom. They therefore donate electrons to
the CB and thereby create electrons in the CB, which
leads to n > p and hence to an x-type semiconductor.
Effective density of states (N.) at the CB edpe is a

quantity that represents all the states in the CB per unit
volume as if they were all at E,. Similarly, &, at the
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VB edge is quantity that represents all the states in the
VB per unit volume as if they were all at £,.

Effective mass (m)} of an electron is & guantum me-
chanical gquantity that behaves like the inertial mass in
classical mechanics, F = ma, in that it measures the
object's incrtial resistance to acceleration, It relates the
acceleration a of an electron in a crystal to the applied
external force Fp by Fo = m) a, The external [oree
is most commonly the force of an electric field ¢ and
excludes all internal forces within the crystal,

Einstein relation relates the diffusion coefficient D
and the drift mobility g of a given species of charge
carriers through (0/p) = (kT [e).

Electron affinity () is the energy required to remove
an electron from E. to the vacuum level.

Energy of the electron in the crystal, whether in the
CB or VB, depends on its momentum Ak through the
E— behavior determined by the Schridinger equation,
E—k behavior is most conveniently represented graphi-
cally through E—& diagrams. For example, for an elec-
tron at the bottom of the CB, £ increases as (k)2 /m?
where hk is the momentum and m? is the effective mass
of the electron, which is determined from the E—&
behavior,

Excess carrier concentration is the excess concen-
tration above the thermal equilibrivm value. Excess
caeriers are generated by an external excitation such as
photogensration.

Extended state refers to an electron wavefunction i,
whose magnitude does not decay with distance; that is,
it is extended in the crystal. An extended wavefunction
of an electron in a crysral is a Bloch wave, that is,
Yy = Lo {x)expl fkx), which is a traveling wave that is
modulated by a funcrion Lg{x) that has the periodiciry
af the crysmal. There is an equal probabilicy of finding
an electron in any unit cell of the crystal. Scattering of
an electron in the crystal by lattice vibrations or impu-
rities, etc,, cotresponds to the electron being scattered
from one 3y to another -, L& a change in the
wavevector from k to k'. Valence and conduction
bands in a crystal have extended states.

Extrinsic semiconductor is 3 semiconductor that has
been doped so that the concentration of one type of
charge carrier far exceeds that of the other. Adding
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donor impurities releases electrons into the CB and n
far exceeds p; thus, the semiconductor becomes n-lype.

Fermi energy or level ( £} may be defined in several
equivalent ways. The Fermi level is the energy level cor-
responding to the energy required to remove an electron
from the semiconductor; there need not be any actual
electrons at this encrgy level. The energy needed o re-
move an electron defines the work functon . We can
define the Fermi level to be & below the vacuum level
E: can also be defined as that energy value below
which all states are full and above which all states are
empty ar absolute zero of temperature. £- can also be
defined through a difference. A difference in the Fermi
energy A Er in a system is the external electrical work
done per electron either on the system or by the system
such as electrical work done when a charge ¢ moves
through an electrostatic PE difference is eA V. It can be
viewed as a fundamental material property.

Intrinsic carrier concentration (n;) is the electron
concentraon in the CB of an intrinsic semiconductor,
The hole concentration in the VB is equal to the electron
cOncentraticn.

Intringic semiconductor has an equal number of
elecrons and holes due to thermal generation across
the bandgap E,. [t corresponds to a pure semiconduc-
tor crystal in which there are no impurities or crystal
defects.

Ionization energy is the energy required to ionize an
atom, for example, to remove an electron.

Ionized impurity scattering limited mobility is the
mobility of the electrons when their motion is limited
by scattering from the ionized impurities in the semi-
conductor {e.g., donors and acceptors).

k is the wavevector of the electron’s wavefunction. Ina.
crystal the electron wavefunction, v, (%) is a modilated ﬁ‘%.l
traveling wave of the form

Yo (x} = Uy lx) expd jlox)

where & is the wavevector and U, (1) 15 a periodic fung-
tion that depends on the PE of interaction between the
electron and the lattice atoms, & wentifies all possible
states o, (x) that are allowed to exist in the crystal. Ak
15 called the crvstal momentum of the electron as s
rate of change is the externally applied lorce to the
electron, & (RE)/dt = Foyeonal-



Lattice-scattering-limited mobility is the mobility of
the electrons when their motion is limited by scattering
from thermal vibrarons of the lattice atoms.

Localized state refers 1o an electron wavefunction
Wiocatized  Whose magnitude, or the envelope al the
wavefunction, decays with distance, which localizes
the electron o a spatial region in the semiconductor.
For example, a ls-type wavefunction of the form
Wiceatizea @ cAp{—arr}, where r is the distance measured
feortt some center al v = 0, and e 15 a positive constant,
would represent a localized state centered at v = 0,

Majority carriers are electrons in an n-type and holes
in & p-type semiconductor.

Mass action law in semiconductor science refers to
the law np = w7, which is valid under thermal equilib-
fium conditions and in the absence of external biases
and illumination.

Minority earrier diffusion length (L) is the mean
distance a minority carmier diffuses before recombina-
tion, L = D1, where D is the diffusion coefficient
and r is the minority carrier lifetime.

Minority carrier lifetime (t) is the mean time for a
minarity carrier 10 disappear by recombination, 1/7 is
the mean probability per unil time that & minority cartier
recombines with & majority carmier,

Minority carriers are electrons in a p-type and holes
in an n-type semiconductor.

Nondegenerate semiconductor has electrons in the
CB and holes in the VB that obey Boltzmuann statistics.
Put dillerently, the electron concentration # in the CB
is much less thun the effective density of states N, and
similarly p <& N, . It refers to a semiconductor that has
not been heavily doped so that these conditions are
maintained; typically, doping concentrations are less
than 10" cm™

Ohmic contact is a contact that can supply charge car-
fiers tora semiconductor at a rate determined by charge
transport through the semiconductor and not by the
contact properties itself. Thus the current is limited by
the conductivity of the semiconductor and not by the
contact,

Peltier effect is the phenomenon of heat absorption or
liberation at the contact between two dissimilar mate-
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oals as a result of a dc cumrent passing through the
junction. The rate of heat generation (' is proportional
to the de current J passing through the contact so that
' = +0/{, where 1 is called the Peltier coefficient
and the sign depends on whether heat is absorbed or
released.

Phonon is a quantum of energy associated with the
vibrations of the atoms in the crystal, analogous to
the photon, A phonon has an energy flee where @ is the
frequency of the lattice vibration.

Photeconduetivity is the change in the conductivity
from dark to light, @ig — Tk

Photogeneration is the excitation of an electron into
the CB by the absorption of 4 photon. If the photon is
absorbed by an electron in the VB, then its excitation to
the CB will generate an EHP.

Photoinjection isthe photogeneration of carmiers in the
semiconductor by illumination. Photogeneration may
be VB to CB excitation, in which case electrons and
holes are generated in pairs.

Piezoresistivity is the change in the resistivity of a
semiconductor due to an applied mechanical stress o,
Elastoresistivity refers o the change in the resistivity
due to an induced strain in the substance. Application of
stress normally leads (o strain, so pieroresistivity and
elastoresistivity refer (o the same phenomenon, In sim-
ple ferms, the change in the resistivity may be due o a
change in the concentration of carriers of due to a
change in the drift mobility of the canders. The fractional
change in the resistivity Sofe is proportional to the ap-
plied stress o, and the proportiionality constant is calied
the piezoresistive coefTicient = (1/Pa unitsh, which is a
tensor quantity becavse a stress in one diregton in a
crystal can alter the resistivity in anothaer direction.

Recombination of an electron=hele pair involves an
glectron in the CB falling down in energy into an
empty state (hole) in the VB to occopy it. The result is
the annihilation of an EHP. Recombination is direct
when the electron falls directly down into an empty
state in the VB as in GaAs. Recombination is indirect
if the electron is first captured locally by a defect or an
impurity, called a recombination center, and from there
it falls down into an empty state (hole) in the VB as in
5i and Ge.
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Schottky junction is a contact between a metal and a
semiconductor that has rectifying properties. For a
metalfn-rype semiconductor junction, electrons on the
metal side have to overcome a potential energy barrier
¢ o enter the conduction band of the semiconductor,
whereas the conduction electrons in the semiconductor
have toovercome a smaller harrier ¢ V, toenter the metal.
Forward bias decreases e V, and thereby greatly encour-
ages electron emissions over the barrier e(V,— V).
LInder reverse hias, electrons have to overcome @y and
the current is very small,

Thermal equilibrivm carrier concentrations are
those clectron and hole concentrations that are solely
determuned by the statistics of the carmiers and the den-
sity of states in the band, Thermal equilibrivm concen-
trations obey the mass acton law, np = rf,:.

Thermal velocity (vy,) of an electron in the CB is its
mesn {or cffective) speed in the semiconductor as il
moves around in the crystal. For a nondegenerate semi-
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conductor, it can be obtained simply from fmivg =

kT

Vacuum level is the energy level where the PE of the
electron and the K£ of the electron are both zero, 1L
defines the cnergy level where the electron is just free
from the solid.

Valence band (¥B) is 4 band of encriies for the clec-
trons in bonds in a semiconductor, The valence band is
made of all those states (wavefunctions) that constitute
the bending berween the atoms in the crystal. At ab-
solute zero of temperature, the VB is full of all the bond-
ing electrons of the atoms. When an electron s excited
to the CB, this leaves behind an empty state, which is
called a hole, It carries a positive charge and behaves a5
il it were a “free” positively charged entity with an ef-
fective mass of my ., IL moves arcund the VB by having a
neighboring electron wnnel into the unoccupied state,

Work fonction (9} is the energy required (o remove
an electron from the solid (o the vacuam level.

QUESTIONS AND PROBLEMS

3.1 Bandgap and photodetection

a.  Determine the maximam value of the energy gap that a semiconductor, used as a photoconductor,
cam hwve iF it is 1o be sensitive to vellow light (600 nm).

b A photodetector whose area is 5 » 1072 em? is iradiated with vellow light whose intensity is
2 mW cm~", Assuming that each phaton generates one electron—hole pair, calculate the nember of

pairs generated per second,

¢ From the known energy gap of the semiconductor GaAs (Eg = 1.42 eV}, caleulate the primary
wavelength of photons emitted from this crvstal us a result of electron-hole recombinaticn,

d. s the above wavelenpth visible?

e, Will a silicon photodetector be sensitive o the redintion from o Gass lasec? Why?

5.2 Intrinsic Ge  Using the values of the density of states effective masses m? and my in Tahle 3.1, cal-
colate the intrinsic concentration in Ge. What is #; if you use N and &, (rom Tuble T.l? Calculale the

intringic resistivity of Ge at 300 K,

53 Fermi level in intringic semicondoctors  Using the values of the density of states effective masses m;
arvd mry in Table 5.1, find the position of the Fermi energy in intringic 5i, Ge, and GaAs with respect to
the middle of the bandpgup (£02).

54  Extrinshc SI A Sicrystal has been doped with B The donor concentration is 111 em~2. Find the con-
ductivity and resistivity of the crystal.

55  Extrinsic 5i
1 £2 cm.

Find the concentration of acceptors required for an #-5i crystal to have a resistivity of

56 Minbiuoin conductivity

a. Consider the conductivily of o sermacoiducton, & = e, + eprpen, Wil doping always increase the
conductivity?
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3.1

QUESTIONS AND PROBLEMS

b, Show that the mianimum conductivity for Si is obrained when it is p-type doped such that the hole
COnCeniraLion 1%

Pe = Hj |'E

¥ ok

and the corresponding minimum condwsctivity (maximum resistivity) 1s

Troin = 260 e flie

e Caleolate my, and gy for 8i and compars with intrinsic values.

Extrinsic p-5i A 5i crystul is to be doped p-type with B acceptors. The hole doft mobility gy depeods
an the todal concentration of ionized dopants Miapay. in this casc accepiors only, as

417

- e V—'l 5 §
T+3.748 % 10-®Npgem '~ ©

oy == 5408 4

where Nycpan 5 in em™*, Find the required concentration of B doping far the resistivity to be 1.1 £2 cm.

Thermal velocity and mean free path in GaAds  Given thet the electron effective muss m? for the
(GaAs is D.06Tm,, calcalate the thermal velocity of the conduction band (CB) electrons. The clectron
deift mobility w, depends on the mean [ree lme 7, belween electron scaltenng events (helween elec-
trons and lattice vibrations). Given w, = et,/m}, and p, = 8500 em® %! 57! for GuAs, caleulats T,
and hepce the mean free path £ of CB electrans, How many unit ¢ells is £ if the latice constant @ of
GCaAs is 0,505 nm? Calcolate Uie deilt velosty vy = . T of the CB electrons i an applied feld T of
10* % m~ . What is your conclusion?

Compensution doping in Si
@ A Si wafer has been doped s-type with 1057 A% stoms cm ™
1. Calcolate the conductivity of the sample at 27 “C.
2. Where is the Fermi level in this sample st 27 °C with respect 1o the Fermi level (&) in
intrinsic 5i7
3. Calculate the conductivity of the sample ar 127 *C.
t.  The above n-type 5i sample is further doped with 9 < 10" boron atoms | p-type dopant) per cen-
timeter cubed.
1. Culeulate the conductivity of e sample at 27 “C.
2. ‘Where is the Fermi level in this sumple with respect o the Feomi level in the sample inoer) ol
27 *C? Is this an r-type or p-type Si?

Temperature dependence of conductivity  Aner-type 51 sample bas been doped with 10 phosphorus

atoms o™, The donar energy level for Pin 5i is (S5 eV below the conduection band edge energy.

. Caleulate the room temperamre conductivity of the sample.

k. Esiimate the remperature above which the sample behaves as if intrinsic,

¢ Estimate i within 20 percent the lowest iemperatare above which all the donors arc ionized.

d  Sketch schematically the dependence of the electron concentration in the conduction band on the
temiperuture as Log(r) versus 1T, und madk the various inportant regions and critical iemperatures,
For each region drew an encrgy band dizgram that clearly shows from where the electrons are
excited i the conductivn band., :

—
& Sketch schematically the dependence of the conductivity on the temperature as log(e) versus 1,/T
und mark the varous critica] temperatures and other relevaot information.

Tonization at low temperatures in doped semiconductors Consider an #-type semiconductor. The
probability thut a dunor level Ey is vccopied by wn elecicon is

Jim ] (5.84]

1 Es—Er
I “"( T )
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where & 13 the Boltzmann constant, T i35 the temperature, Ep is the Fermi energy, and g is & constant
called the degensmucy factor; in 81, g = 2 for dunoes, und for the occupation statistics of acceplors
§ = 4. Show that

J-|l Y
b . e R T [5.85]

AE AE
L] PR

where 1 is the electrion concenatration in the conduction band, &, is the etfective density of states at the
conduction band edge, Ny is the donor concentration, and AE = E. — Ey isthe ipmzation energy of the
domors. Shuow that Equation 5.85 at low temperatures is eguivalent to Equation 519, Consider a p-type
Si sample that has been doped with 107 gallium (Ga) stoms em ~*, The zcceptor energy level for Gain
5i 1= 0063 eV above the valence band edge energy. £y, Estumate the lowest temperature (*C) above
which 9 percent of the scceptors ure jonized by wssuming that the acceptor degeneracy factor g = 4.

Compensation doping in r=type Si An r-wppe Si sample has been doped with | = 1047 phospharus (P)
utoms com . The drift mobilities of holes and electrons in 51 st 300 K depend on the total concentration
of dopants Vappan (0m™ *1 as follows:
1232 e R |
;:?FGEE'F J+E|.984¥10"H.""'dupw cm” ¥ 5
and
407

1 L5 I |
VT s
T4+ 3745 % 10 P gy

wy = Ma 4+

o Caleulate the coom temperature conductivity of the sample,
#r. Culenlate the necessary acceptor doping (Le., &, ) that is required to make this sample p-type with
approximately the same conductivity,

GGahs  (7a has a valency of 11 end As has ¥. When Ga and As atoms are broupght together to torm the
Gafs crysial, as depicied in Figure 5,54, the three valence elecwrons in ezch Ga and the five valence
electrons in cach As ure all shared to form four covelent bonds per atomn, In e GaAs crystul wilh some
10% or so equal numbers of Gz and As atoms, we have an average of foor valence electrons per atom,
whether Ga or As, 50 we would expect the boading 10 be similar to that in the Si erystal: four bonds per
stom. The crystul structure, however, @5 oot that of divmomd but rather that of zine bleods (Chapter 1)

a. What is the sveryre number of valence electrons per atom for a peir of Ga and As atoms ad i the
GaAs crystal?
b What will happen if 3¢ ar Te, from Group V1, are substituted for an As atom in the GaAs crystal?
- What will happen if Zn or Cd, from Groap T1, are substituted for a (Ga atom in the GaAs crystal?
. What will happen if Si, from Group IV, is substituced for an As atom in the GaAs crystal?
¢ What will happen if 5i, from Group TV, is substituged for a Ga atom in the (GaAg crystal? What do
yuu think amphoteric dopant mewns?

f Bused on the discussion of GaAs, what do you think the crystal structures of the T1-Y composumd
semiconductors AlAs, GaP, InAs, InP, and Inkb wAill be

Cia atom (Valency TIT) As aom {Valency V)
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OQUESTIONS AND PROBLEMS

Duped Gads  Consider the GuAs crystal at 300 K.

& Culewlnte the intrinsic conductivity und resistivity.

b Inasumnple containing only 10" em™? jonized donors, whese is the Fermi level? What is the cun-
ductivity of the sample?

. Inasample containing 10" cm ™Y jonized donors and 9 x 10'* em— ionized acceptors, what is the
free hole concenieation?

Yarshni equation and the change in the bandgap with temperature The Varshni equation de-
soribes Lhe change in the energy bandgap £, of o semiconductor with temperature T in terms of

) AT?
Ee=En- 517

where £, is the bandgap at ' = 0 K, and A and & are material-specific constants, For expmple, for
Gahs, Ego = 1.519eV, A =5405 x 10~ VK-, B=2M K, sothatat T = 300 K, E, = .42 cV.
Show that '

dﬂ__AT{T'l'EEJ _{E::-"'-E:} r+18
ar =~ (BT T T8

What is JE, /dT for Gass? The Yarshni equation cao be used wo caleulate the shift in the peak emission
wavelength of a light emitting diode {LED) with temperature or the cutoff wavelength of & detector. If
the emitted phaton energy from an clectron and hole recombination is v 2= B, 4+ kT, find the shift in
the ertied wavelength from 27 *C down o =30 °C [rom a GaAs LED.

Degenerate semiconductor  Consider the general exponential expression for the concentration of
electrons in the CB,

(Ee— E;-:-]

m= N c:x]:l[ T

and the mass wetion law, kp = .rzr.l. Whaut happens when the doping level is such thet n approaches &, aod
exceads 7T Can vou sill use the above expressions for mand p?

Coosicer an n-type Si that hus been hewvily doped and the eleciron concentration in the CB is
140%™ em~?. Where is the Fermi level? Can you use np = n} tov tind the hole concentration” What is its
resistivity? How does this compare with a typical metal? What use is such a semiconductar?

Photoconductvity and speed  Consider two p-type 51 samyples both doped with 100 B atoms em—. Bosh

have identical dimensions of length £ (1 mm), width W (1 mm), snd depth (thdckness) £ (0, 1 mom b One sam-

ple, labeled A, has an eleceron lifetime of 1 ji5 wheress the other, labeled &, has an electron lifetime of 5 A5

4 Attime r = 0, a laser light of wavelength 751 nm is switched on to illuminate the surfuce (L= W)
of both the samples, The incident laser light intensity on both samples is 10 mW ein™2, At time
1 = 50 us, the laser is switched off. Sketch the time evolution of the minonity curmier concentration
for boah samples on the same axes.

B, What is the photocurrent (current due fo ilumination alone) if each sample is connecied to a 1V
ballery?

Hall effect in semiconductors  The Hall eflfect in a semmconductor sample iovalves oot ooly the elsc-
tron and hole concentrations n and p, respectively, but also the clectron und hole drift mobilities g, and
2. The Hall coefficient of a semicondwctor is (see Chapter 23

p-FI'II.'I‘z

ey [5.88]

; R
|

where b = fe /i, '\\

@ Given the mass action law np = uf, find n for maximum | &y | (negative and positive & 5. Assume
thint the drift mobilites remain relatively unaffected as m changes (due (o dopang). Given the electron
and hole drif mohilities iz, = 1350 em?® ¥=' 5 and gy, = 450 em® ¥~ 57! forsilicon, determine
n for maxinum | Ryl i terms of x,
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b, Taking b = 3, plot Byr as a function of elecron concentration #/n; from (001 w10,
v Show that, when # 3% r;, By = — 1 fen and when o <5 n;. Bg = +1/ep.

Hall cffect in semiconductors  Most Hall-=ffect high-sensitivity sensors typically use HI-% sermicon-
ductars, such as GaAs, TnAs, TnSh, Hall-eftect integrated circuits with integrated amplifiers, on the other
hand, vse Si. Consider oeurly intrinsic samples in which n = p = ny, and caleolate By for each using
the datn in Table 5.4. What is your conclusion? Which sensor would exhibit the worst temperature drift?
(Consider the bandgap, and drift in #,.)

Table 5.4  Hall effect in selected semiconductors

E ieY) milem 7y pfem? ¥V 's™N 0 pplem®Vo'sT B Buim®a~'s™Y

5

GuAs 142 2w 108 8,500 400
InAg
InSk

*5.20

5.2

] | = 1M 1,350 450 —312
b
(.36 | 10" 53,000 460 a

017 2 pte 78,000 &30

B ]

il

Compound sembconducior devices Silicon and permanium crystalline semiconductars are what

are czlled elemental Groop 1V semiconductors. It is possible to have compound sermconductons

from atoms in Groups KT and ¥, For exampie, (Gads is a compound scmicondoctor that has Ga from

Group I and Az frem Group ¥, 30 in the coystalline struciure we have an “effective” or “mean™ va-

lency of 1% per atom and the solid behaves like a semiconductor, Similurly GuSb (gulliom soti-

manidel would be a TH-V 1ype semiconductor. Provided we have a stoichiometric compaund, the
semiconductor will be idewlly intmnsic. If, however, there 15 an excess of Sb atoms 0 the sohid

GiaSh, then we will have nonstaichiometry and the semiconductor will be extrinsic. In this case, ex-

cess Sb atoms will act as donors in the GaSh strociure. There are many vseful compownd semieon-

ductors, the most importent of which is GuAs, Some can be doped both n- and p-rype, bul many are
one type only. For cxample, Zn0 is a H-¥I compound semiconductor with a direct bandgap of

3.2 eV, but unforunately, due to the presence of excess Zn, it is naturally n-type and cannog he

doped t p-type.

a.  {FaSh (galliom snimonide) is an interesting direct bandpep semiconductor with an energy bandgag
£y = L67 e¥, almost cqual to that of germanium. It can be used as an light emitting diode (LED)}
or laser diode materiol, What would be the wavelength of emission from a GaSh LED7T Will this he
visihle?

b Calculate the intrinsic conductivity of GaSb st 300 K taking &, =23 = W08 e, A, =
A1 s 0¥ e, e = 35000em? ¥Vlel and g = 1000 om® V=150 Compare with the
intrinsic condoctivity of Ge.

c.  Exeess Sboatoms will muke gollivm anticnooide ovnstoichiometsic, that is, GaShj g, which will
result in an cxtrinsic semicondecton. Given that the demsity of GuSb is 5.4 gem™, caloulate
& (excess 5h) thar will result in GaSh having & condoctivity of 100 52" cm~'_ Will this be an »-
ur p-type semiconductor? You may assume thut the drift mobilities are relanvely unaffected by the
doping.

Excess minority carrier concentration  Consider an n-ty pe semiconducios and weak injection condi-
tions. Assume that the minarity camier recombination time 2, s constant {independent of injection—
hence the weak injection assumption), The rate of change of the instantanecus hole concentration
#pg /04 due to recombination is given by

B _ _ P [5.87]

at Tie
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QUESTIONS ANB PROELEMS

The net rate of increase (change) in g, is the som of the total generation rate & oand the rate of
change due 1o recombination, that 15,
i _g tn [5.88]
d'r T

By scparating the gencration term (7 into thermal generation G, and phatogeneration {fy, and con-
sidering the dark condition as one possible salution, show that

A, s _ _ﬂ'fﬂ

228 = G - =L [5.89]

Howr does your derivation compare with Bquation 5277 What are the assumptions inherent in
Equation 5,897

Mreci recomblpation and GaAs  Consider recombination in a direct bandgap p-iype semonducior,
2., GaAs doped with un acceptor concentrution &, . The recombinution involves o direct meeting of an
electron—haole pair as depicted in Figure 3.22. Suppose that excess clectrans and holes have been injected
(e, by phatoexcitanon), and at Anp i8 the excess electron concentration and Spp is the excess hole
concentrution. Assume Ang is controlled by recombination and thermal genertion ooly; thet is, recombi-
mation is the equilibrium storing mechanizm. The rccombination rate will be proporional o mp o, and the
thermal generation rate will be proportional (o ap. @ge. In the dark, i equilibiom, thermal generation rate
is equal w the recombination rate. The latter is proportional (o R ., By, The ree of change of Ay 15

aﬁ-"ip
ae

[5.90]

= —B[nppp — MaaPpal

wheee B is a propomtiooality constant, called the direct recombination capture coefficlent, The
recombination lifetime 1, is defined by

i [5.91]
i T
@, Show that for fow-level infeclion, mpn < Anp & ppe, T 15 constant avd given by
1 I
P I m— 5.92
"= Bppa BN, [5.92]
b, Show that under high-tevel infection, Ang B ppge,
i
~52 = —BApy Anp = ~BtAn,)’ [5.93]
5o that the recombination lifctime 1. is now given by
1 1
T [5.94]

'~ Bap, Ban,

that ig, the lifetime = is inversely proportional to the injected carrier concentration.
¢ Congider what happens in the presence of photogenerstion at & rate fy, (clectron—hole pairs per

unil volume per unit tme), Steady state will be reached when the photogeneration rate and recom-
bination rate become equal. That s,

dAn
Gep = ( I")

o a recombination
A phatocondactive film of #-type Gads doped with 10" em=? donors is 2 mm long (L}, 1 mm
wide (W), and 5 pim thick (D), The sample bas electrodes antached to its ends (electrade area is
therefore 1 mm » 5 pm} which are connected to o 1 ¥ supply through an ammeter, The Gahs
phumcnﬁduc,uil;ﬁ';uni.fgnnly illuminated ower the surfece area 2 mm * 1 mm with 2 | mW luser

= BlApfp — Apafpal
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radiation of wavelength A = B40 nm (infrared). The recombination cocfficlem & for CaAs is
721 = 1071 i 5=) A A = B40 nim, the absocption coellicient s about 3 = 10% em™ !, Calculare
the photocurrent £, and the electrical power dissipated as Joule heating in the sample. What will
he the power dissipated a3 heat in the sample in an apen cirenit, where § =007

Piezoresistivity application to deflection and force messurement  Consider the cantilever in Figure
5.38c. Suppose we apply a force F to the free end, which results in a deflection b of the tip of the can-
tilever from it honzental equilibrivm position, The maximum siress oy, is induced at the suppon end
of the cantilever, at ils surface where the piczoresistor is embedded o measure the stress. When the
cantilever is bent, there is a tensile or longitudinal stress oy, on the surtzee bocause the top surface is
extended and the boftom surface is comracted. If L, W, and D are respectively the length, width, and
thickness of the cuntilever, then the relationships between the force £ und deflection &, and the migai-
MU Siress Fp ane

A¥Dk _ WDy

]
212 453

g {max) =

where ¥ is the elastic (Young's) modulus, A particular Si cantilever has a length (L) of 500 pm, width
(W of 100 pm, and thickness (£ of 10 pm, Given ¥ = |70 GPa, and that the piezomesisior embedded
in the cantilever is along the [ 110 direction with p == 72 = 107" Pa~'_ find the percentsge change in
the resistance, AR/ R, of the pieroresistor when the deflection is 0.1 pm, What is the force that would
wive this deflection? (Meglect the trumsverse slresses on the plezomesistor,) How does the design chons:
for the length £ of the cantilever depend on whether one is interested in measuring the deflection & or
the force F? (Note: oy depends on the distapce x fraom the support end,; it decreases with x_ Assume thac
the lenpth of the prezoresistor s very shor compared with L so thal o¢ dees bl change sigaificontly
along its length.)

Schutiky junclion

a.  Cumsider a Schottky junction diede between Au and n-5i, deped with 104 donons em . The cross-
sectional ares is 1 mm®. (Given the work function of Au as 5.1 eV, what is the theoretical barmier
heaght P from the metal 1o the semiconductor?

b, Given that the experimental barvier height @ g is about 0.8 eV, what is the reverse saturation cue-
rent und the current when there 35 2 forward bies of 0.3 Y scross the diode? (Use Bquetion 4.37.)

Schottky junction Consider a Schouky junction dicde between Al and #-5i, doped with § =« |0/
donors em . The cross-sectional ared is 1 mm®. Given that the electron affinity x of i is 4.01 eV ind
the work function of Al is 4.28 ¥, what is the theoretical barricr height @ from the metal to the semi-
conduwctor? What i the built-in voltage? If the experimental basrier beight @ is about 0.6 eW, what is
the reverse spturation current and the current when there s a forward bias of 0.2 V across the diode?
Take B, = 110 A cm~* K2,

Schottky and ohmic contacts  Consider un #-type Si sample doped with 10" donors e, The length
L s 100k jom;, the eross-sectional area A is 10 pm x 10 pm, The two ends of the sample arc labeled as B
and O Thee electron affimiy ¢ x 0 of Siis 4.01 eV and the work functions © of four potential metals for con-
tacts at & and C are listed in Table 5.5.

Toble 5.5 Wwork functions in &V

Cs Li Al An

1.8 L5 425 50

a.  Bdeally, which metals will result in o Scholtky contace?
b I:i::.aﬂlg.r,kwhjc/h metals will result in un ohmic contuct?
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{QUESTIONS AKD PROBLEMS

& Sketch the -V characteristics when both 8 and C are ohmic contects, What is the relationship be-
rweeen £ and V7

a, Sketch the [~V characieristics when & 15 ohmic and © is a Schottky junction, Whart is the relation-
ship between f und ¥

2. Skewch the [~V charucteristics when both 8 and © une Schottky contects, What is the relationship
between Fand 17

Peltier effect and electrical comlacts  Consider the Schottky junction and the olumic contact shown in
Figures 5.3% and 5.43 between & metal gnd r-type semiconductor.

a. s the Peltier effect similar in both contacts?
I Isthe signin ' = + 011 the same for both contaces?

o Which junction woanld you choose for a thermoelectric cooler? Give reasons.

Peltier conlers and figure of merit (FOM)  Consider the thermoelecteic effect shown in Figure 5.45
in which a semicondwector has two contacts at its ends and is conducting an electric current [ We ussome
that the cold junction s at a tempecature T, and the hat juaction is at Ty, and that there is a temperature
difference of AT = ¥, — T between the two ends of the semiconductor. The current ! flowing through
the cold junction absorhs Peltier heat at a rate 0, given hy

Q=11 [5.95]

where [1 is the Peltier coefficient for the junction between the metal und semiconductor. The current [
flowing through the semiconductor generates heat doc to the Joule heating of the semiconductor. The
rate of Joule heat generated theongh the bulk of the semiconducior is

: LYo
2 = (;‘-”i]! [5.98]

We assume that kalf of this heat Qows we the cold junction.
In addition there is heat flow from the hot to the cold junction through the semiconductor, piven by
the thermal conduction equation

A
O = () aT [5.97)
The net rate of heat absorption (cooling rate) at the cold junction is chen
Lo
Qhvcca = Cp — EQ'J — Qe [5.98]

By substituging froon Equations 5,93 e 597 into Equation 5,98, obtain the net cooling rate in terms
af the current £, Then by differeotiating Q7 with respect o current, shav that makiroum cooling is

& commercial thermoalactric coolar {by Melcor); an axample of the Pelier affect, The
device aren iz 5.5cm = 5.5 cm [upclru:l:imul‘el}- 2.2 inches = 2.2 i.r\-t:h'ta.].—ﬂ:. rcdirnum
curreent is 14 A; moximem heat pemp abilie 13 67 W mostimem tamperature diffarence
berwean the hat and cold swbacas is &7 “C.
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Table 5.6
Muterial I1({¥) &8 m) c{Wm 1KY FOM
n-Bix Tey 601 s 107+ - 1.0
o-Biz Tey 0= 1072 (R 145
Cu 55 = 107 1.7 = 1078 300
W 13 = 1k? 55 % 10" 167
obtained when the curent is
A
I = (I)Ha [5.99]
and the maximum cooling ratc is
i ATT o
Qlllulml - E En g —k AT [i'lm]

“5.29

Under sceady-state operating eonditions, the temperature difference AT reaches a sieady-state value
and e net cooling rate ot the junetion 15 then zero (AT i constant), From Equation 3,100 show that the
mximum tempersture difference achicvable is

_]ﬂj'-:r

AT = [5.101]
2 x

The guantity ['chr,."r is defined as the fgure of merit (FOM) for the semicondoctor as it deter-
mibes the maximum AT achigvable. The same expression also applies to metals, though we will not de-
nive it here.

Lse Table 5.6 to determine the FOM for various materials listed therein and discuss the significance
of your calculations, Would vou recommend a thermeelectric cooler based on a metal-to-metal junction?

seeheck cnefficient of semiconductors and thermal driftin semicondoctor devices  Consider an m-type
sestaconductor that las a temipecatiue gesdient across i The right end is hot and the left ead is cold, as de-
picted in Figure 5.55. There are moce enereetic electrons o the bot repion than o the cold repion, Conse-
quently, clectron diffusion oceurs fram had to cold regions, which immediately exposes negatrvely charged
dotwrs i e hot fegron and therefore budlds up an intermal field asd a buili-in voltage, as shown o Figar
5.55. Eventeally an equilibrium is reached when the diffusion of electrons 15 balunced by their drift driven by
the Buili-in field. The net cument must be zera. The Sceheck coefficient (or thermoelectric power) § measunes

Figure 5.55 |n the presence af o
tempetature gradient, there is an internal Reld
and a voltage difference.

The Seebeck coefficient is defined as dV,/dT,

+ Electron diffusion
- Flectron drift

[ T Il.i’

'ﬁ.
{f; '% .

L]
the potential difference per unit temperature Cold ® o * * .' . » Hot
differenca. "--II.'-$- .ﬂ::h
L] e ® v Lo v G.a.\‘ .
¢ #———  Exposed
dV | As™ donor
g !
i\ .
) b
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QuEsTIONS AND PROBLEMS

this effect in termis of the voltage developad as a result of an applicd temperatre gradient as

av
§=— 5.102
i [ 1
a.  How is the Seebeck effect in a p-type semiconducior different than thar for an n-tvpe semicondue-
tor when both are placed in the sume tempereture gradient in Figure 5.557 Recull that the sizn of
the Seebeck coefficicnt is the polarity of the voltage at the cold end with respect o the hot end (see
Bection 4.8.2)

b, Given that for un s-1ype semiconductor,

k [E. —EF)

Sum e[“ = [5.103]
what are typical magnitudes for 3, in 81 doped with 10 and 10" donors e What is the sig-
nilicance of &, at e semeeonducion device level 't

o Consider o pe junction Si device that has the p-side doped with 10" acceprors em™ and the a-side
daped with 10" donors cm ™. Suppose thet this per junction forms the input stage of an op wmp
with a large gain, say 100, What will be the output signal if a small thermal fuctuation gives rise to
a 1 °C temnperature difference aceoss e pr junction?

Photogeneration and carrier kinetic energies  Figure 533 shaws what happens when a phaton with
energy v = Eg 15 absorbed in GaAs (o photogenerate an electron and a hobe, The figore shows that the
electron has s hipher kinetic enerey {KE), which is the excess enerpy above E,., than the hole, soce the
hole i5 almost ag £y, The reason is that the electron effective mass in GaAs is almost 10 imes less than
the hole effective mass, so the phoogenecated eleciron has 4 moch higher KE. When an electron and
hole are photogenerated in a direct bandgap semiconductor, they bave the sume K vector. Eoergy con-
servation reguires that the photan energy v divides accanding to

ik (hky?
=F
BB b g

where k is the wavevector of the electron and hole and m? and my are the cffective masses of the ¢lec-
tron and hole. respectively.

a. What is the ratio of the electron to hole KF's rght after photogeneration?

& If the incoming photon hus an cnergy of 2.0 e¥, and £, = 1.42 eV for GuAs, culeulute the KEs of
the electron and the hole in eV, and caleulate to which energy levels they have been excited with re-
spect 10 their band edges.

r.  Explain why the electron and hole wovevector & should be approximately the same cight afier pho-
togeneration. Consider &g,y for the photon, end the momentem conservation,

axtreme righf is ], T. lost,

figure 1& [Courtesy of IEEE.}
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William Shockley and his group calebrate Shockley's Mobel
prize in 1954, First ||:-!:I|. siing, is 5. E. Moore |L‘|‘lﬂi:|‘hnn
armerilus of intel], standing fourth from right is £. M. Meyce,
inventor of tha integratad circuit, ond sonding ot the

SOURCE: P K, Bondyopadhyoy, “W = Shockley, the
Tronsisior Pianeer—Poriran qu an lnvenhve Ge:'uu!.."'
Proceedings [EEE, val. 86, na. 1, lonuary 1998, p. 202,



Thee first monedithic ime%mred circult, aboudt the size of o fingerip, wos decumentad and developed af Texas nstrements by Jock Killy in
19:58; ha wan the 2000 Mobel prize in physics for his confribution o the devalopmeant of the first Integrated circuil. The IC wos a chip of o
=|:g|;*3-= cryshal containing ane fransistor, one copocitor, and one resistor, Left: Jock Kilby holding his ¥ [photo, 1998}, Right. The photo of
the chip.

| SOURCE: Eau:l‘es:( of Temas Instruments.

Rabert MNayce and ean Hoerni

| Swiss ﬁaicislﬁ wara

responsible for the invention of

the first planar B2 ol Fairchild LeH feo righr: Andrew Growe, Robers Moyce [1927-1990, and

|1241). Tha planar fabricoticn Gerdon Moore, who faunded Infel In 1988, Andraw Grove's

process was the key to the book Physics and Technology of Semiconducior Devices [Wilay,

success of their IC. Tha 1967] wos ane af the chassic inxfs on devices in the sidies and

E]humgmph is that of the first sevenlios. “Moore's Jow” thar started as @ rough rule in 19435
gic chip at Fairchild statas thot the number of fransistors in o chip will doubla evary

| SOURCE: Courtesy of Fairchild 18 manths; Moore updated it in 1995 10 evary couple of yeors,
Semiconduciar, | S0URCE: Courtesy of Innel.
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