CHAPTER

9

Optical Properties of Materials

The way electromagnetic (EM) radiation interacts with matter depends very much on
the wavelength of the EM wave. Many familiar types of EM radiation have wave-
lengths that range over many orders of magnimde. Although radio waves and X-rays
are both EM waves, the two interact in a distinctly different way with matter. We tend
to think of “light™ as the electromagnetic radiation that we can see, that is, wavelengths
in the visible range, typically 400 to 700 nm. However, in many applications, light is
also used to describe EM waves that can have somewhat shorter or longer wavelengths
such as ultraviolet (UV) and infrared (1R light. For many practical purposes, it is use-
ful to (arbitrarily)} define light as EM waves that have wavelengths shorter than very
roughly 100 pm but longer than long-wavelength X-rays, roughly 10 nm. Today's
light wave communications use EM waves with wavelengths of 1300 and 15350 nm; in
the infrared. Oprical properties of materials are those characteristic properties that
determine the interaction of light with matter; the best example being the refractive
index n that determines the speed of light in a medium through v = ¢/n, where vis the
speed of light in the medium and ¢ is the speed of light in free space. The present chap-
ter examines the key optical properties of matter and how these depend on the mate-
rial and on the characteristics of the EM wave. The refractive index n, for example,
depends on the dielectric polarization mechanisms as well as the wavelength A. The
material’s n—a behavior 18 called the dispersion relation and is one of the most im-
portant characteristics in many optical device applications.

We know from Chapter 3 thal, depending on the experiment, we can treat light
either as an EM wave, exhibiting typical wiave-like properties, or as photons, exhibit-
ing particle-like behavior, In this chapter we will primarily use the wave nature of
light, though for absorption of light, the photon interpretation is more appropriate as
the photons intersct with electrons in the material.
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9.1 LIGHT WAVES IN A HOMOGENEOUS MEDIUM

We know from well-established experiments ‘that light exhibits tvpical wave-like
properties such as interference and diffraction. We can treat light as an EM wave with
time-varying electric and magnetic fields E, and B,, respectively, which propagate
through space in such a way that they are always perpendicular to each other and the
direction of propagation z is as depicted in Figure 9.1, The simplest traveling wave is
| sim:suid:ﬂ wave, which, for propagation along z, has the general mathematical
form.,

E, = E cos(mr — kz + ¢,) [9.1]

where E, is the electric field at position z at time £; & 15 the propagation constant, or
wavenumber, given by 2x /A, where A is the wavelength; w is the angular frequency;
£, is the amplitude of the wave; and ¢, is a phase constant which accounts for the fact
that at t = 0 and z = (}, E, may or may not necessarily be zero depending on the choice
of origin. The argument (wr — kz + ¢.,) is called the phase of the wave and denoted
by ¢. Equation 9.1 describes a monochromatic plane wave of infinite extent travel-
ing in the positive z direction as depicted in Figure 9.2, In any plane perpendicular to
the direction of propapgation (along z), the phase of the wave, according o Equa-
tion 9.1, is constant which means that the field in this plane is also constant, A surface
over which the phase of a wave is constant 1s referred to as a wavefront. A wavelront
of a plane wave is obviously a plane perpendicular to the direction of propagation as
shown in Figure 9.2, )

We know from clectromagnetism that time-varying magnetic fields result in
time-varying electric fields (Faraday’s law) and vice versa. A time-varying electric
field would set up a ime-varying magnetic field with the same frequency. Accord-
ing to electromagnetic principles,” a traveling electric field E; as represented by
Equation 9.1 would always be accompanied by a traveling magnetic field B, with
the same wave frequency and propagation constant (o and &) but the directions of
the two fields would be orthogonal as in Figure 9.1, Thus, there is a similar traveling
wave equation for the magnetic field component B,. We generally describe the in-
teraction of a ght wave with a nonconducting matter (conductivity, @ = () through
the electnic field component E, rather than B, because it is the electric field thar dis-
places the electrons in molecules or ions in the crystal and thereby gives rise to the
polarization of matter. However, the two fields are linked, as in Figure 9.1, and
there is an intimate relationship between the two fields, The optical field refers 1o
the electric field E,.

We can also represent a traveling wave using the exponential notation since
cos ¢ = Relexp(j¢)] where Re refers to the real part. We then need to take the real

! This chopter uses E for the eleciric fleld which wos reserved for energy In previou chapters. There should be no
confusion with £, that represents the energy bondgep. In oddition, nis l.lsadp(lo reprasent the rafracive index rather
than the electran concentratian.

? Mamwell’s equations formulate electromogretic phanl:-rn-arlu and provide relationships between the alactric and
mognetic fields and their spoce ond fime derivatives. We ooly need b use o bew selected results rom Moowell's
equations withoul dalving inte their derivations. The mognetic field & is also called the magnatic induction or
magnatic fux density,
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Direction of propagation =——_-

Figure 9.1 An electromagnetic wove is o froveling wave that has time-varying electric and magnefic
fialds that are perpendiculor to each other and the direction of propogation z.

E and B have constant phase
in this xy plane; a wavefront

Propagation

E =E_sin(wi— kz)

=
N\

Figura 9.2 A plone EM wave traveling clong 2, has the same E; (or B, ot ony point in o
given xy plane.

All eleciric field vectors in o given xy plane are therefore in phase. The xy planes are of infinite
extent in the x and y directions.

part of any complex result at the end of calculations. Thus, we can write Equation 9.1 as

E(z, 1) = Rel £, exp{jd,) exp jlat — kz]]

; Traveling
E.(z,t) = Re[E exp jlwi — kz)] [9.2] wirve alomg 2
where E. = E, exp(j¢,) is a complex number that represents the amplitude of the wave

and includes the constant phase information ¢,
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¥ Dircetion of propagation
£

Figure 9.3 A traveling plans EM wave clong o
diraction k. 0

We indicate the direction of propagation with a vector k, called the wavevector,
whose magnitode is the propagation constant £ = 2 /A, It is clear that k is perpendic-
vlar to constant phase planes as indicated in Figore 2.2, When the EM wave is propa-
gating along some arbitrary direction K, as indicated in Figure 9.3, then the electric
field E{r, ) at a point r on a plane perpendicular to k is

Eir,t) = E, cos{wt — k- -r+¢,) [9.3]

because the dot product k - r is along the direction of propagation similar to £z, The
dot product is the product of k and the projection of r onto k which 1s r' in Figure 9.3,
so k- r = kr'. Indeed, if propagation is along z, k - r becomes k2. In general, if k has
components k., k,, and k; along the x, y, and z directions, then from the definition of the
dotproduct, k - r=kx + b,y + k2.

The time and space evolution of a given phase ¢, for example, the phase corre-
sponding to a maximum field, according to Equation 9.1 is described by

¢ = @i = kz 4 ¢, = constant

During a time interval &¢, this constant phase (and hence the maximum field)
moves a distance §z. The phase velocity of this wave is therefore 5z /8¢. Thus the
phase velocity v is

V=

=wvi Il‘”

&

i
k
where v is the frequency (o = 2mv).

We are frequently interested in the phase difference Ag¢ at a given time between
two points on a wave (Figure 9.1) that are separated by a certain distance. If the wave
15 traveling along z with a wavevector k, as in Equation 9.1, then the phase difference
between two points separated by Az is simply & Az since ¢ is the same for each point.
If this phase difference is 0 or multiples of 2=, then the two points are in phase. Thus,
the phase difference A¢ can be expressed as £ Az or 2w Az /A,
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9.2 REFRACTIVE INDEX

When an EM wave is traveling in a dielectric medium, the oscillating electric field po-
larizes the molecules of the medium at the frequency of the wave. Intuitively, the EM
wave propagation can be considered to be the propagation of this polarization in the
medium. The field and the induced molecular dipoles become coupled. The net effect
is that the polarization mechanism delays the propagation of the EM wave. The
stronger the interaction between the field and the dipoles, the slower is the propagation
of the wave. The relative permittivity £, measures the ease with which the medium
becomes polarized, and hence it indicates the extent of interaction between the field
and the induced dipoles. For an EM wave traveling in a nonmagnetic dielectric
mediom of relative permittivity ., the phase velocity vis given by

1

V= Teen [9.5]
If the frequency vis in the optical frequency range, then £, will be due to electronic po-
larization as ionic polanization will be too sluggish to respond to the field. However, at
the infrared frequencies or below, the relative permittivity also includes a significant
contribution from iomic polarization and the phase velocity is slower. For an EM wave
traveling in free space, £, = | and Vigpum = 1/ /Fojte = c =3 x 108 ms™', the ve-
locity of light in a vacuum. The ratio of the speed of Tight in free space to its speed in
a medium is called the refractive index n of the medium,

el JE 19.61

Suppose that in frec space &, is the wavevector (&, = Zm/4,) and A, is the wave-
length, then the wavevector & in the medium will be nk, and the wavelength A will be
Ao/n. Indeed, we can also define the refractive index in terms of the wavevector k in
the medium with respect to that in a vacuum &,

n=— .71

Equation 9.6 is in agreement with our intuition that light propagates more slowly
in a denser mediom which has a higher refractive index. We should note that the fre-
quency v remains the same. The refractive index of a medium is not necessarily the
same in all directions. In nonerystalline materials such as glasses and liquids, the ma-
terial struciure is the same in all directions and n does not depend on the direction.
The refractive index 15 then isotropic. In crystals, however, the atomic arrangements
and interatomic bonding are different along different directions. Crystals, in general,
have nonisotropic, or anisotropic, properties, Depending on the crystal structure, the
relative permittivity £, is different along different crystal directions. This means that,
in general, the refractive index n seen by a propagating EM wave in a crystal will
depend on the value of £, along the direction of the oscillating electnic field (that is,
along the direction of polarization). For example, suppose that the wave in Figure 9.1
is traveling along the z direction in a particular crystal with its electnic field oscillating

v
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along the x direction. If the relative permittivity along this x direction is £, then
ny = /&. The wave therefore propagates with a phase velocity that is ¢/n,. The
vanation of # with direction of propagation and the direction of the electric field de-
pends on the particular crystal structure. With the exception of cubic crystals (such as
diamond) all crystals exhibit a degree of optical anisotropy which leads to a nurnber
of important applications. Typically noncrystalline solids, such as glasses and liquids,
and cubic erystals are optically isotropic; they possess only one refractive index for
all directions,

EXAMPLE 9.1

RELATIVE PERMITTIVITY AND REFRACTIVE INDEX Relative permittivily £, or the dielectric
constant, of materials is frequency dependent and further it depends on crystallographic direc-
tion sinee it is casicr to polarize the medium along certain directions in the crystal. Glass has no
crystal structure, 1t is amorphous. The relative permittivity is therefore isotropic but nonetheless
frequency dependent.

The relationship n = /&, between the refractive index # and £, must be applied at the
same frequency for both e and &, . The relative permittivity for many materials can be vastly dif-
ferent at high and low frequencies becanse different polarization mechanisms operate af these
frequencies. At low frequencies all polarization mechanisms present can contribuee to e,
whereas at optical frequencies only the electronic polarization can respond to the oscillating
field. Tahle 9.1 lists the relative permittivity £, (LF) at low frequencies (e.p., 60 Hz or 1 kHz as
would be measured for example using a capacitance bridge in the laboratory) for various mate-
rials, It then compares + 2(LF) with .

For diamond and silicon there is an excellent agreement between /&, (LF} and n. Both are
covalent solids in which electronic polarization (electronic bond polarization)) is the only polar-
ization mechanism at low and high frequencies. Electronic polarization invelves the displace-
ment of light electrons with respect (o positive ions of the crystal. This process can readily
respond to the field oscillations up to optical or even ultraviolet frequencies.

For AgCl and 810y, + £ (LF) is larger than # because at low frequencics both of these solids
possess a degree of ionic polanzation. The bonding has a substantial degree of ionic character
which contributes to polarization at frequencies below far-infrared wavelengths. (The AgCl crys-
tal has almost all ionic bonding.) In the case of water, the &, (LF) is dominated by orientational or

Table #.1  Lowfrequency |LF) relative permittivity 2 |LF} and refractive index n

Material £, {LF} Epl r {oplical) Comments

Diamnmd 5.7 2349 241 (at 590 nmi) Electronic hond polarization
up to UT% light

51 119 KEE 345 (ot 2,15 pm) Electronse bomd polacization up
to optical frequencies

Ap(] 11.14 3.33 200 {at 1-2 pm) lomic polarization contributes
o &, (LF)

Biths ARd 2.0 146 (at G0 nm) lonic polarization contributes
to & (LF)

Waner 80 5.8 1.33 (o SO0 teim} Dripolar polatzation sonieibues

to &, (LI, which 15 lurge
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dipolar polatization which is far too sluggish to respond to high-frequency oscillations of the
field at optical frequencies,

It iz instructive to consider what factors affect n. The simplest (and approximate) ex pression
for the relative permittivity is

[9.8]

where N is the number of molecules per unit volume and ¢ is the polarizability per molecule,
Both atomic concentration, or density, and polarizability therefore increase n, For example,
glasses of given type but with greater density tend to have higher n.

Relative
permittivity
and
polarizability

9.3 DISPERSION: REFRACTIVE
INDEX-WAVELENGTH BEHAVIOR

The refractive index of materials in general depends on the frequency, or the wave-
length. This wavelength dependence follows directly from the frequency dependence of
the relative permittivity £,. Figure 9.4 shows what happens to an atom in the presence
of an oscillating electnc field £ which is due to a light wave passing through this loca-
tion; it may also be due 1o an applied external field.

In the absence of an electric field and in equilibrium, the center of mass C of the
orbita]l motions of the electrons coincides with the positively charged nuclews at & and
the net electric dipele moment is zero as indicated in Figure 9.4a. Suppose that the
atom has Z number of electrons orbiting the nuclevs and all the electrons are contained

E = E,el

Z electrons in shell

Atomic _.-
nuclens

Center of negative

charge ‘{}
S C)
Pinduced
[a] A neutral alem in E= 4. {b) Induced dipole moment in a field.

Figure 9.4 Elactronic polorizotion of an atom. In the presence of o field in the 4x direction, the
electrans are disploced in the —x direction (fram &4, and the restoring foree is in the +x direction,
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within a given shell. In the presence of the electric field E, however, the light electrons
become displaced in the opposite direction to the field, so their center of mass C is
shifted by some distance x with respect to the nucleus @ which we take to be the origin
as shown in Figure 9.4b. As the electrons are “pushed” away by the applied field, the
Coulombic attraction between the electrons and nuclear charge “pulls in'™ the electrons.
The force on the electrons, due to E, trying to separate them away from the nuclear
charge is Ze E, The restoring force Fy, which is the Coulombic attractive force between
the electrons and the nucleus, can be taken to be proportional to the displacement x pro-
vided that the latter is small, The reason is that F, = F.(x} can be expanded in powers
of x, and for small x only the linear term matters. The restoring force F, is obviously
zero when C coincides with @ (x = 0}, We can write F, = —fx where £ is a constant
and the negative sign indicates that F, is always directed toward the nucleus &

First consider applying a dc field. In equilibrium, the #et force on the negative
charge is zero or Z¢ E = fx from which x is known, Therefore the magnitude of the
induced electronic dipole moment is given by

Z%e?

Pindueed = (Ze)x = E [7.91

As expected Pinducen 18 proportional to the applied field. The electronic dipole mo-
ment in Equation 9.9 1z valid under static conditions, i.e., when the electric field is a
de field. Suppose that we suddenly remove the applied electric field polarizing the
atomn. There is then only the restoring force — fBx, which always acts to pull the elec-
trons toward the nucleus & The equation of motion of the negative charge center is
then (force = mass x acceleration)

dx
di?

By solving this differential equation we can show that the displacement at any
time is a simple harmonic motion, that is,

—fx =Zm,

x(f) = x, cos{ead)

where the angular frequency of oscillation w, 1s

12
&, = (Zﬂ ) [9.10]
m,

In essence, this is the oscillation frequency of the center of mass of the electron
cloud about the nucleus and x, is the displacement before the removal of the field.
After the removal of the field, the electronic charge clond executes simple harmonic
maotion about the nucleus with a natural frequency «w, determined by Equation %.10;
ty 15 also called the resonance frequency. The oscillations, of course, die out with
time because there is an inevitable loss of energy from an oscillating charge cloud. An
oscillating electron is like an oscillating current and loses energy by radiating EM
waves; all accelerating charges emit radiation.

Consider now the presence of an oscillating electric field due to an EM wave pass-
ing through the location of this atom as in Figure 2.4b. The applied field oscillates
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harmonically in the 4+x and —x directions, that is, E = E_ exp{jwt). This field will
drive and oscillate the electrons about the nucleus. There 15 again a restoring force F,
acting on the displaced electrons trying to bring back the electron shell to its equilib-
rium placement around the nuclens. For simplicity we will again neglect energy losses,
Newton's second law for Ze electrons with mass Zm, driven by E 15 given by

d*x : :
Zm,-&-lr-z- = —ZFeL expljai) — Bx a1l

The solution of this equation gives the instantaneous displacement x (1) of the center

of mass of electrons from the nucleus (C from ),
eE, exp( jar
r=zx()= —#

) {WE = W";l

The induced electronic dipole moment is then simply given by Pinguced = —(Ze)x.
The negative sign is needed because normally x is measured from negative to positive
charge whereas in Figure 9.4b it 1s measured from the nuclens. By definition, the elec-
ronic polarizability &, is the induced dipole moment per unit electric field,

_ Pinduced Ze?
T E mf{&}i T wl}

Thus, the displacement x and hence electronic polarizability o, increase as w in-
creases. Both become very large when « approaches the natural frequency ;. In prac-
tice, charge separation x and hence polarizability «, do not become infinite at ¢ = w,
because two factors impose a limit. First, at large x, the system is no longer linear and
this analysis is not valid. Secondly, there is always some energy loss.

Given that the polarizability is frequency dependent as in Equation 9.12, the effect
on the refractive index # is easy to predict. The simplest (and a very rough) relation-
ship between the relative permittivity £, and polarizability o, is

=1+ ﬁac
En

[9.121

where N is the number of atoms per onit volume. Given that the refractive index n» is
related to e, by n® = g,, it is clear that n must be frequency dependent, i.e.,

NZe* 1
n3=1+( F)——— [9.13]

2
EﬂmF I$I!J” = wi

We can also express this in terms of the wavelength 2. If &, = 2m¢/w, is the reso-
nance wavelength, then Equation 9.13 is equivalent to

nt=1+ (NZei)( . )2 i [9.14]
- EoM, J\2mc) A% =32 ;

This type of relationship between n and the frequency w, or wavelength &, is called
the dispersion relation. Although the above treatment is prossly simplified, it does
nonetheless emphasize that n will always be wavelength dependent and will exhibit a
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Table 7.2  Sallmeiar and Cuucf\}r coefficients

Sellmeler

M 2 A3
Ay A Ay {pm} [juemy {pem)
Si (fused silica)  (LGSG749 (LA0R2IR LE203 15 0, 0090660 (L115662 QLO0055Y
3% Si0z-13.5%  (0.711040 451343 7040648 00642700 (1120408 Q425478

Gelz
Cela 0.BD6EeG42  O.7IEISE4E 085416831 Q068972606 (LI15306605 11841931
Supphine 1023708 058264 5.280792 00614482 [N R0 1792656
Driumond (1.3306 43356 — 01750 [N —
{’auchy

Range of hv (¥} -z (e¥h) fa ma (e¥ Y P
DHarmund 005-5.47 —1.07 = 1079 2378 R.00 10 F 14K 5 1074
Silicon 0,002 10 —2.04 x 10°# 14180 4.15 x 1072 125 » 1072
Cermanium (.002—0.75 —1.0 = 10-1 4003 2.2 10! 1410

SOURCE: Sallmeiar cosMicients comblned from warious sovrces. Cawchy ceafficlants fram D Y. Smith ef o, /. Phys.
CM 13, 3883, 2001,

substantial increase as the frequency increases toward a natural frequency of the po-
larization mechanism. In the above example, we considered the electronic polarization
of an isolated atom with a well-defined natural frequency w,. In the crystal, however,
the atoms interact, and further we also have to considar the valence electrons in the
bonds. The overall result is that a is a complicated function of the frequency or the
wavelength. One possibility is to assume a number of resonant frequencies, that is, not

Just A, but a series of resonant frequencies, A, Az, . .. , and then sum the contributions
arising from each with some weighing factor A;, A3, etc.,
Aat Aart Azhl

nt=1+ + -+ [9.15]

o +...
A=l ol a2l

where A, As, Ay and Ay, As, and 5, are constants, called Sellmeier coefficients.” Equa-
tion 9,15 wrns out to be quite a useful semiempirical expression for caleulating n at var-
ious wavelengths if the Sellmeier coefficients are known. Higher terms involving A4 and
higher A coefficients can generally be neglected in representing r versus A behavior over
typical wavelengths of interest. For example, for diamond, we only need the A; and 4.
terms. The Sellmeier cocfficients are listed in varions optical data handbooks.

There is another well-known useful n—i dispersion relation due originally o
Cauchy (1836), which has the short form given by

B C
H=A+F+}L_4 [?'lﬁl

| 7 This is olso known as the Sellmaier—Harzberger formula.
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where A, B, and C are material specific constants. Typically, the Cauchy equation is
used in the visible spectrum for various optical glasses. A more general Cauchy dis-

i : Cauchy
' 4 L
persion relation is of the form i
"= n_g{ﬁ:u}_1+nu + nalhv) + malhr)? 9171  eguation in
hiert
where hv is the photon energy, and ng, n_z, n2, and ny are constants; values for dia- ‘LM,;:

mond, 3i, and Ge are listed in Table 9.2. The general Cauchy equation is usually ap-
plicable over a wide photon energy range.

GaAs DISPERSION RELATIOM For GaAs, from A = 0,89 to 4.1 pm, the refractive index is  FEOTL TR
given by the following dispersion relation,

Cad
s 3,784 S
r* = T7.10 + o176 [9.18]  dispersion
A —Beind relation

where A iz in microns (pm). What is the refractive index of GaAs for light with a photon energy
of 1 eW7

SOLUTION
ALhv = | eV,
o |F!_f. . (6.62 = 10~ 53 x 1P ms~1) - 124 i
fru (leV s 1.6 x 10-" eV~
Thus,
1 7104 3782 Tt 3.78(1.24)° -
ﬂ" = v T ——————— . ———————s T a
il — 0.2767 {1.24)? — 0.2767

50 that n =342

Mote that the n versus 2 expression for GaAs is actually a Sellmeier-type formula becanse
when 32 = A1, then 4, can be simply lumped with | to give 1 + 4, = 7.10.

SELLMEIER EQYUATION AMD DIAMOND  The relevant Sellmeier coefficients for diamond are  [J380 11305
given in Table 9.2, Calculate its refractive index at 550 nm (green light) to three decimal places.

SOLUTION

The Sellmeier dispersion relation for diamond is

- 0330617 4.3356x
nt =
A= (175 am)? AT — (106 nm)t
0.3306 (550 nm)? 4.3356 (550 nm)*
g WY AWy ONam”  _ ¢ 707

(550 nm)? — (175 nm)® (550 nmy? — (106 nm)*
So that n=2423
which is about (.1 percent different than the experimental value of 2426,

I 40 Y, Smith et al, [ Pl Chd 13, 3883, 2001,
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EXAMPLE 9.4

CAUCHY EQUATION AND DIAMOND  Using the Cauchy coefficients for diamaond in Table 9.2,
caloulate the refractive index at 550 om.,

SOLUTION
Al i = 530 nm, the pholon enerzy is

pp < 16 _ (662 x 107353 x 109 ms™h) !
s 550 % 10~ m 1.6 % 101" Jay ™!

= 1.254 eV

Using the Cauchy dispersion relation for diamond with coefficients from Table 9.2,
m=n_y(h)"0 4 g + naChed® + mg(hed?
= {(—1.07 x 107*N2.254) " + 2.378 4 (R.01 3 1077)(2.254)7 + (1.04 x 107 )(2.254)°
= 2.421

The difference in n from the value in Example 9.3 is (L0O8 percent, and is doe to the Cauchy co-
clficients quoted in Table 9.2 being applicable over a wider wavelenpth range at the expense of
SOTNE ACCUACY.

Crroup
velocity

Figure 9.5 Two sfightly different wavelength
weoves froveling in the some direction result in
a wave packet thot has an amplitude variation
theit travels at the growp velocity.

94 GROUPVELOCITY AND GROUP INDEX

Since there are no perfect monochromatic waves in practice, we have to consider the
way in which a group of waves differing slightly in wavelength will travel along the z
direction as depicted in Figure 9.5. When two perfectly harmonic waves of frequencies
& — dew and @ + S and wavevectors &k — &k and k + &k interfere, as shown in Fig-
ure 9.5, they generate a wavepacket which contains an oscillating field at the mean
frequency e« that is amplitude modulated by a slowly varying field of frequency e,
The maximum amplitude moves with a wavevector 8% and thus with a group veloeity
that is given by dw /8k, that is,

diw
= ax

[5.19]
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The group velocity therefore defines the speed with which enerpy or information
is propagated since it defines the speed of the envelope of the amplitude variation. The
maximum electric field in Figure 9.5 advances with a velocity v, whereas the phase
variations in the electric field are propagating at the phase velocity v

Inasmuchas e = vk and the phase velocity v = ¢/ n, the group velocity in a medium
can be readily evaluated from Equation 9.19. In a vacuum, obviously vis simply ¢ and
independent of the wavelength or k. Thus for waves traveling in a vacuum, w = ¢k and
the group velocity is

da
Vglvacuum) = FTi ¢ = Phase velocity [9.20]

On the other hand, suppose that v depends on the wavelength or & by virtue of n
being a function of the wavelength as in the case for glasses. Then,

|: c j|(2.rr)
w = vk = rere [’9.11]
i) A

where n = n(A) 1s a function of the wavelength. The group velocity vy in a medium,
from differentiating Equation 9.21 in Equation 9.19, is approximately given by

i o ey e
Vplmedium) = — =

i
dk e dn
di
This can be written as
i fie
Vy(medium ) = — [9.22]
Ng
where
dn
Nog=nh—A— [9.23]
4 d

is defined as the group index of the medium, Equation 9.23 defines the group refractive
index Njof 4 medium and determines the effect of the medium on the group velocity via
Equation 9.22.

In general, for many materials the refractive index » and hence the group index A
depend on the wavelength of light by virtue of the relative permittivity £, being fre-
quency dependent. Then both the phase velocity vand the group velocity v depend on
the wavelength and the medium is called a dispersive medivm. The refractive index
and the group index Ng of pure 8i0; (silica) glass are important paramelers in optical
fiber design in optical communications. Both of these parameters depend on the wave-
length of light as shown in Figure 9.6. Around 1300 nm, N is at a minimum which
means that for wavelengths close to 1300 nm, Ny is wavelength independent. Thus,
light waves with wavelengths around 1300 nm travel with the same group velocity and
do not experience dispersion. This phenomenon iz significant in the propagation of
light in glass fibers used in optical communications.

7as
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EXAMPLE 9.5

Crrnup
veldencity

GROUP VELOCITY  Consider two sinusordal waves which are close in frequeney, thal 1s, waves of
frequencies w — fw and w + Bw as in Figare 9.5, Their wavevectors will be & — &k and & + Sk
The resultant wave will be

Eiz, 1) = E, cosl{w — dm ) = (k = dk)z] + Ep cosl{e + Swhr — (& + 8k)z]

By using the trigonometric identity cos 4 + cos B = 2cos[1{A — 8)]cos[ 14 + B)] we

arrive at
Edz, 1y = 2E, cos[(fw)r — (8k)1z] cos[or — k2]

As depicted in Figure 9.5, this represents a sinusoidal wave of frequency & which is am-
plitude modulated by a very slowly varying sinuseidal of frequency Sew. The system of waves,
that is, the modulaiion. travels along z af 8 speed determined by the modulatng term
cos[(fe)t = (5E)z]. The maximum in the field occurs when [(fw)t = (5% )] = 2mr = constant
(m is an integer), which travels with a velocity

dz  dw v o cu
—=— u =—
dt &k Tk

This is the group velocity of the waves, as stated in Equation 9.19, since it determines the
speed of propagation of the maximum eleciric field along z.

EXAMPLE 9.4

GROUP AND PHASE VELOCMES Consider a light wave traveling in a pure 5i0: (silica) glass
medium. If the wavelength of light is 1300 nm and the refractive index at this wavelength is
1447, what is the phase velocity, gronp indes (W), and group velocity (vg)?

SOLUTION
The phase velocity is given by
¢ 3Ix108ms!

- = =2.073 x 10°ms™!
n 1.447

V=



2.5 MAGNETIC FIELD: IRRADIANCE AND POYNTING VECTOR

From Figure 9.6, at A = 1300 nm, M, = 1.462, so

- 3 x 108 ms!
vpm — =2~ % 2057 % 105 me
Ny 1 462

The group velocity is ~0.7 percent smaller than the phase velocity.

a7

9.5 MAGNETIC FIELD: IRRADIANCE
AND POYNTING YECTOR

Although we have considered the electric field component E, of the EM wave, we
should recall that the magnetic field (magnetic induction) component B, always
accompanies E. in an EM wave propagation. In fact, if vis the phase velocity of an EM
wave in an isotropic dielectric medium and » is the refractive index, then according to
electromagnetism, at all times and anywhere in an EM wave,’

[
E,=VvB, = -8, 19.24]

where v = (g,&.4,)"""* and » = /.. Thus, the two fields are simply and intimately
related for an EM wave propagating in an isotropic medium. Any process that alters E,
also mumately changes B, in accordance with Equation 9.24,

As the EM wave propagates in the direction of the wavevector k as shown in
Figure 9.7, there is an energy flow in this direction. The wave brings with it electto-
magnetic energy. A small region of space where the electric field is £, has an energy
density, that is, energy per unit volume, given by lta,,e,Ef. Similarly, a region of
space where the magnetic field is #, has an energy density ;—Ef [ito. Since the two
fields are related by Equation 9.24, the energy densities in the E, and B, fields are the
SAIME,

1 .
Ea”a,Er = s B}, [9.25]

The total energy density in the wave is therefore £, E2. Suppose that an ideal
“energy meter” is placed in the path of the EM wave so that the receiving area A of this
meter is perpendicular o the direction of propagation. In a time interval Ar, a portion
of the wave of spatial length v Ar crosses A as shown in Figure 9.7. Thus, a volume
Av Ar of the EM wave crosses A in time A¢. The energy in this volume consequently
becomes recetved. IF 5 is the EM power Now per unit area,

5 = Energy flow per unit time per unit area
giving,
(Av Ar) (e,6,E2)

5= = vee B} = Vg6, E.B, [9.24]
A At £ " :

| 5T|'|i.'| s ne;huu":f a shedemant u‘ Furudu}-": ||;|.w fer EbA wioves, Inowechar naledion it is n!hzn caprz:md as el = k2 E,

Fields in an
M winve

Energy
densities in
ar EM wave
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L Area A

— k

Propagation direction

Figure 9.7 A plone EM wove traveling olang k crosses an areo A af right
angles to the direction of propogation. In time Al the energy in the cylindrical
valurne Av Al (shown dashed) lows through A.

In an isotropic medium, the energy flow is in the direction of wave propagation, If
we nse the vectors E and B to represent the electric and magnetic fields in the EM
wave, then the wave propagates in a direction E = B, because this direction is perpen-
dicular to both E and B. The EM power flow per unit area in Equation 9,26 can be
written as

8= ve,5E xB (927

where 8, called the Poynting vector, represents the energy flow per unit time per unit
area in a direction determined by E x B (direction of propagation). Its magnitude,
power flow per unit area, is called the irradiance.”

The field E; at the receiver location (say, z = 2;) varies sinusoidally which means
that the energy fMow also varies sinusoidally, The irradiance in Equation 9.26 is the
instantaneous irradiance, If we write the field as £, = E, sin{w) and then calculate
the average irradiance by averaging § over one period, we would find the average
irradiance,

1
I = Suenige = Ev.e&erﬁ [9.28]

Since v= c/n and &, = n” we can write Equation 9.28 as
1
. 2
I = Sg_vgmsg = ELEdnEe

= (1.33 x 107 )nE2 [9.29]

The instantanecus irradiance can only be measured if the power meter can re-
spond more quickly than the oscillations of the electric field, and since this is in the

* The term infansity is widaly usad and interpreted by many angineers as powar flaw per unit area even thaugh the
sirictly corract berm is irrmdiance, Mony optoelacionic data books simply use intensity bo mean iradiance.
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optical frequencies range, all practical measurements invariably yield the average ir-
radiance because all detectors have a response rate much slower than the frequency of
the wave.

9.6 SNELL'S LAW AND TOTAL INTERNAL
REFLECTION (TIR)

We consider a traveling plane EM wave in a medium (1) of refractive index »n) propa-
gating toward a medium {2) with a refractive index n;. Constant phase fronts are joined
with broken lines, and the wavevector k; is perpendicular to the wave fronts as shown
in Figure 2.8. When the wave reaches the plane boundary between the two media, a
transmitted wave in medium 2 and a reflected wave in medium 1 appear. The transmit-
ted wave is called the refracted light. The angles, &, &, &, define the directions of the
incident, transmitted, and reflected wawves, respectively, with respect to the normal to
the boundary plane as shown in Figure 9.8. The wavevectors of the reflected and trans-
mitted waves are denoted as k. and k,, respectively. Since both the incident and re-
flected waves are in the same medium, the magnitmdes of k, and k; are the same, k. = ;.

Incident light Reflected light

Figura 9.8 A light wave troveling in o medium with o greater refroctive index
[y = ng] suffers reflection and refraction a the boundary,

7BE
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Simple arguments based on constructive interference can be used to show that there
can only be one reflected wave that occurs at an angle equal to the incidence angle. The
two waves along A; and B; are in phase. When these waves are reflected to become
waves A, and 8,, then they must still be in phase, otherwise they will interfere destruc-
tively and destroy each other. The only way the two waves can stay in phase is if
&, = 6. All other angles lead to the waves A, and B, being out of phase and interfering
destructively,

The refracted waves A, and 8, are propagating in a medium of refracted index
#2{= rn) that is different than »;. Hence the waves A, and £, have different velocines
than A; and 8; We consider what happens to a wavefront such as A B, corresponding
perhaps to the maximum field, as it propagates from medium 1 to 2. We recall that the
points A and B on this front are always in phase. During the time it takes for the phase
B on wave B; 1o reach B', phase A on wave A, has progressed to A'. The wavefront AB
thus becomes the front A'B’ in medium 2. Unless the two waves at A" and B’ still have
the same phage, there will be no transmitied wave. A" and B points on the front are
only in phase for one particular transmitted angle &,

[fit takes time t for the phase at B on wave B;toreach B', then BB’ = vt = ct/n,
During this time ¢, the phase A has progressed to A" where AA" = vt = crfn,, A’ and
B' belong to the same front just like A and B, so A B 1s perpendicular to k; 1n mediom
1 and A'B’' is perpendicular to Kk, in mediom 2. From geometrical considerations,
AB' = BB'/sin®; and AB' = AA'/siné,, so

l, Vit Vaf

sin @ sin &;

== (%.30]

This is Snell’s law’ which relates the angles of incidence and refraction to the re-
fractive indices of the media.

If we consider the reflected wave, the wave front AB becomes A" B’ in the reflected
wave. In time ¢, phase B moves to B and A moves to A". Since they must still be in
phase (o constitute the reflected wave, BB’ must be equal to 4 A". Suppose it takes
time ¢ for the wavefront B to move to B’ (or A to A”). Then, since BB' = AA" = wr,
from geometrical considerations,

Wit LT

AR = — = —
sin & sin &,
so that & = 6. The angles of incidence and reflection are the same.
When #; = np, then obviously the transmitted angle iz greater than the incidence
angle as apparent in Figure 9.8, When the refraction angle &, reaches 90°, the incidence

sk

" Willabrord van Roijen Snell |158 1-14624), a Dutch physicist and mathematician, wos bomn in Leiden ond
evontunlly become o professor o Leidan Univarsity, He obinined his refroction low in 1421 which waos published
hr RB&ne Descgites in Franes In 1&3?; it is nal known whether Caseearhes knew of Snall’s law ar Farmuloted i
indepandenthy.
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Transmitted
(reMracted) ikt

[

<

>

Incident Reflected 8

Tlight light
ia) {lod fe}

Figure 9.9 Light wave froveling in o mare dense medium strikes o less dense medium.

Depending on the incidence angle with respect 1o ¢, determined by the ratio of the refractive indices,
the weve may be fransmitted (refracted) or reflected.

|U] oo e,
[b] & = 4.
(c] & = th; and toial internal reflection (TIR).

angle is called the critical angle 8, which is given by Critical angle
ai Sor total
sind, = — [9.31]  internal
g reflection

When the incidence angle &; exceeds 8., then there is no transmitted wave but only (778
a reflected wave. The latter phenomenon is called total internal reflection (TIR). The
effect of increasing the incidence angle is shown in Figure 9.9. It is the TIR phenome-
non that leads to the propagation of waves in a dielectric medium surrounded by a
medium of smaller refractive index as in optical waveguides (e.g., optical fibers).

OPTICAL FIBERS IN COMMUMNICATIONS  Figure 9,10 shows a simplified view of a modern op-
tical communications system. Information is converted into a digital signal (e.g., current pulses)
which drives a light emitter such as a semiconductor laser. The light pulses from the emitter are
coupled into an optical fiber, which acts as a light guide. The optical fiber is a very thin glass
fiber |[made of silica (Si0 )|, almost as thin as your hair, that is able to optically guide the light
pulses to their destination. The photodelector at the destination converts the light pulses into an
electric signal, which is then decoded into the original information.

The core of the optical fiber has a higher refractive index than the surrounding region,
which is called the cladding as shown in Figure 9.10. Optical fibers for short-distance applica-
tions (e.g., communications in local area nerworks within a large building) usually have a core
region that has a diameter of about 100 pm, and the whole fiber would be about 150-200 pm
in diameter. The core and cladding refractive indices, n, and n;, respectively, are normally only
1-3 percent different. The light propagates along the fiber core because light rays experience
iotal internal reflections at the core-cladding interface as shown in Figure 9.10. Only those light
rays that can exercise TIR travel along the fiber length and can reach the destination. Consider
a fiber with n (core) = 1.455, and nz(cladding) = 1440, The critical angle for a ray traveling
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Optical fiber

Digital signal

Emitter Photodetector

Information — . + I[nformation
L - T+

Input Output

Figure 9.10 An aptical fiber link for transmiting digital infarmation in communications.

The fiber core has o higher refractive index, so the light fravels along the fiber inside the fiber core
by tofal infernal reflection at the core—cladding interfoce.

Lasar
pointer

Water jet
. . . g guiding
A small hole is mada in a plastic botla Full of watar o ganerote a woter ;

jmk. When tho hole is illuminated with a lasar beam |:Fn1m o graen loser
pointer), the light is guided by total internal reflactions alang the jei bo the
troy. Light guiding by o water jet was demaonstroed by John Tyndall in
1654 to tha Royal Institutian, [Water with air bubbles woe usad ho
increase the visihilite of light, since air bubbles seatier light.|

light

in the core is

. ] . l.m)
@ = ures =) = ares = 81.8°
) aresin (m) Hmbm(l.atﬁ 81.8

Those light rays that have angles & » #_ satisfy TIR and can propagate along the fiber”
Motice that the ray angles with respect to the fiber axis are less than 8,27,

5 Tl'u: ligght prapa clici in an o|:||'5¢|;|| fiber s much mare l:n-mF:|i|:|;|h=|:| than the 5ir|1plc- zigz g'lng of |ig|'rl rays with
TIRs ot ﬁue core—cladding intesface. The waves in the cone have b sotisfy net anly TIR but alse hove 10 ovola
destructive interference so thot they are not destroyed as they troved aloag the guide; ses for example, 5. O, Kosop,

Clptoelecironics and Phofanics: Principles and Procfices, Upper Saddls River: Prentice Hall, 2001, chap. 2
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97 FRESNEL’S EQUATIONS

27.1 AnrLITUDE REFLECTION AND TRANSMISSION COEFFICIENTS

Although the ray picture with constant phase wave fronts is useful in understanding
refraction and reflection, to obtain the magnitude of the reflected and refracted
waves and their relative phases, we need to consider the electric field in the light
wave, The electric field in the wave must be perpendicular to the direction of propa-
gation as shown in Figure 9.11. We can resolve the field E; of the incident wave into
two components, one in the plane of incidence £ and the other perpendicular to
the plane of incidence E; . The plane of incidence is defined as the plane contain-
ing the incident and the reflected rays which in Figure 9.11 corresponds to the plane
of the paper.” Similarly for both the reflected and transmitted waves, we will have
field components parallel and perpendicular to the plane of incidence, Le., E, j, E, |
and Er,lls ErIJ_.

As apparent from Figure 9.11, the incident, transmitted, and reflected waves all
have a wavevector commponent along the z direction; that is, they have an effective
velocity along z. The fields £, ,, £, |, and E, | are all perpendicular to the z direc-
tion. These waves are called transverse electric field (TE) waves. On the other
hand, waves with E; |, E, |, and £, | only have their magnetic field components per-
pendicular to the z direction and these are called transverse magnetie field (TM}
waves,

We will describe the incident, reflected, and refracted waves by the exponential
representation of a traveling wave, Le.,

Ey = Ejexp jlet — k- 1) [%.321
Fr = E exp jlwt —k, - 1) [9.33]
E, = E, exp jloxt — k, - 1} [9.34]

where r is the position vector; the wavevectors k;, k., and k, describe, respectively,
the directions of the incident, reflected, and transmitted waves; and E;,,, E.., and E,,
are the respective amplitudes. Any phase changes such as ¢, and ¢, in the reflected
and transmitted waves with respect to the phase of the incident wave are incorporated
into the complex amplitudes £, and E,,. Our objective is to find E,, and E,, with re-
spectio E;,.

We should note that similar equations can be stated for the magnetic field compo-
nents in the incident, reflected, and transmitted waves, but these will be perpendicular
to the corresponding electric fields. The electric and magnetic fields anywhere on the
wave must be perpendicular to each other as a requirement of electromagnetic wave
theory. This means that with £ in the EM wave we have a magnetic field B, associated

. *The definitions of the field companents follow tose of 5. &, lipson et of,, Optical Physics, 3rd ed,, Combridga,
MA, Combridge Un iversity Press, 1995, and Grant Fewles, Inraduction fo Mederm Optics, 2nd ed., New Yok,
Dover Publicotions, Inc., 1975, whose clacr Ireatments of this subjec are highly recemmendad. The majarity of tha
outhors wsa o diffarant convendion which keads to different signs loter in the equaotions; Fresnal’s aquations are
related e the ;.p:u:i{ic aleciric field direclians Ernm wehich 1|'-:':,r ore d:rivpd.
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[a] IF #; < &, then some of the wave is (bl IF th; = @, then the incident wave suffers
transmitted inte the less dense medium. total inlernal reflection. There is a decaying
Some of the wave is reflected. cvanescent wave into medium 2.
Figure 9.11 Light wave Iraveling in o more dense madium stikas o less densa madium,

The plane of incidence is the plane of the paper and is perpandicular to the ot interface betwean the two media.
The electric field is normal to the direction of propagation. It can be resclved into perpendicular | L) and parallel (]

Components.

Boundary
condition

Broundary
crmtdition

with it such that B, = (n/c)E). Similarly £, will have a magnetic field By associated
with it such that By = (n/c)E].

There are two useful fundamental rules in electromagnetism that govern the be-
havior of the electric and magnetic fields at a boundary between two dielectric media
which we can arbitrarily label as 1 and 2. These rules are called boundary conditions.
The first states that the electric field that is tangential to the boundary surface Eqngential
must be continuous across the boundary from mediom 1 to 2, ie., at the boundary
¥ =0 in Figure 2.11,

E‘lang;::lmal[:” — Elungenl:al':z} [%.35]

The second rule is that the tangential component of the magnetic field Bupgenga to
the boundary must be likewise continuous {rom medium | to 2 provided that the two
media are nonmagnetic (relative permeability j, = 1),

Branpenial{1) = Bungenqul2) [9.36]

Using these boundary conditions for the fields at ¥ = 0, and the relationship be-
tween the electric and magnetic fields, we can find the reflected and transmitted waves
in terms of the incident wave. The boundary conditions can only be satisfied if the
reflection and incidence angles are equal, 8, = #,, and the angles for the transmitted
and incident waves obey Snell’s law, 1y sin &; = na sin 8,

Applying the boundary conditions to the EM wave going from medium 1 to 2, the
amplitudes of the reflected and transmitted waves can be readily obtained in terms of
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ny, na, and the incidence angle #; alone.'” These relationships are called Fresnel’s
equations. If we define n = n3/n), as the relative refractive index of medium 2 to that
of 1, then the reflection and transmission coefficients for £, are

E.q. cosB — (n® —sin® 8l
I = — =

= = - [9.37]
Ew, cos® + (n? —sin®@)1?

and

_ Ew L _ 2cos&;

- 19.38]
Eni  cos# + (n? —sin®g,)12

ty

There are corresponding coefficients for the E; fields with corresponding reflection
and transmission coefTicients rj and #:

Eqg (n* —sin8)"? —n?cosh,
= = — - [%.39]
Einy  (n? —sin“ 8,112 + n?cos 6,
E 2ncosé;
,n = rﬂ,| — = ] . {?-AD]
Eig nicosd; + (n? —sin* )42
Further, the reflection and transmission coefficients are related by
fi4+ny=1 and fL+1=4H [#.41]

The significance of these equations is that they allow the amplitudes and phases of
the reflected and transmitted waves to be determined from the coefficients r , 7y, ), and
t,. For convenience we take £, to be a real number so that the phase angles of ry and
t) correspond to the phase changes measured with respect to the incident wave. For
example, if r| is a complex quantity, then we can write this as ry = |ry|exp(= )
where |ry| and ¢ represent the relative amplitude and phase of the reflected wave
with respect to the incident wave for the field perpendicular to the plane of incidence.
Of course, when r) is a real quantity, then a positive number represents no phase shift
and a negative number is a phase shift of 180° (or ). As with all waves, a negative sign
corresponds to a 180° phase shift. Complex coefficients can only be obtained from
Fresnel's equations if the terms under the square roots become negative, and this can
only happen when n < 1 {or my > ), and also when #, = #,, the critical angle. Thus,
phase changes other than () or 180° occur only when there is total internal reflection,

Figure 9.12a shows how the magnitudes of the reflection coefficients |r) | and ||
vary with the incidence angle & for a light wave traveling from a more dense medium,
m = .44, to a less dense medium, nz = 1.00, as predicted by Fresnel’s equations. Fig-
ure 9.12b shows the changes in the phase of the reflected wave, ¢, and ¢y, with &, The
critical angle 8. as determined from sin 8. = na /) in this case is 44°, It is clear that for
incidence close to normal (small &;), there is no phase change in the reflected wave. For

0 Thpsa equalians arg rgudih{ ervrilohle in any elechomognetism textbook, Their derivetion frem the bwo boundr.nry
condiians imealves exensive olgebraic manipulation whlci we will nat carry our hara. The alsctric and magnatic
fiedd components on both sides of the beundary are reschved tangentiolly to the hwndurx surface ond the

boundary condifions are then opplied, Y then use such relafions as cos f=[1 — sin &} and sin 6 s determined
by Sreell's low, efc.
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Magnitude of reflection coefficients Phase changes in degrees
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Figure 9,12 Internal reflectian,

[a} Magnitude of the reflection coefficients i, and ry versus the angle of incidence & for ny = 1.44 and
iz = 1.00. The crilical angle is 44°.

(b} The correspanding phase changes ¢y and 4+, wersus incidence angle.

example, putting normal incidence (&; = 0) into Fresnel’s equations, we find

Ry —

[9.42]

Uatis Hy+u;

This is a positive quantity for m; > nz which means that the reflected wave suffers
no phase change. This is confirmed by ¢ and ¢ in Figure 9.12b. As the incidence
angle increases, eventually f becomes zero at an angle of about 35°, We can find this
special incidence angle, labeled as 8, by solving the Fresnel equation, Equation 9.39,
for ry = (0. The field in the reflected wave is then always perpendicular to the plane of
incidence and hence well-defined. This special angle is called the polarization angle
or Brewster’s angle and from Equation 9.39 is given by

tan 9, = 19.43]
iy

The reflected wave 1s then said to be linearly polarized because it contains efectric
field oscillations that are contained within a well-defined plane which is perpendicular
to the plane of incidence and also to the direction of propagation. Electric field oscilla-
tions in unpolarized light, on the other hand, can be in any one of an infinite number
of directions that are perpendicular o the direction of propagation. In linearly polar-
ized light, however, the field oscillations are contained within a well-defined plane.
Light emitted from many light sources such as a tungsten light bulb or an LED diode 15
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unpoelarized and the field is randomly oriented in a direction that is perpendicular to the
direction of propagation.

For incidence angles greater than &, but smaller than &, Fresnel's equation, Equa-
tion 9.39, gives a negative number for f which indicates a phase shift of 180° as shown
in ¢ in Figure 9.12b, The magnitudes of both r| and r| increase with &, as apparent in
Figure 9.12a. At the critical angle and beyond {past 44" in Figure 9,12}, f.e., when &, = &,
the magnmitudes of both | and r) go to unity, so the reflected wave has the same amplitude
as the incident wave, The incident wave has suffered total internal reflection (TIR).
When &; = 8., in the presence of TIR, the Equations 2.37 to 9.40 are complex quantities
because then sin &; = n and the terms under the square roots become negative. The
reflection coefficients become complex quantities of the type r. =1 - exp{—j¢, ) and
F=1-exp{—j¢y) with the phase angles ¢, and ¢ being other than 0 or 180°. The re-
flected wave therefore suffers phase changes ¢, and ¢ in the components E, and E. These
phase changes depend on the incidence angle, as apparentin Figure 9.12b, and on 1, and k.,

Examination of Equation 9.37 for r, shows that for #; = 8., we have |r.| = 1, but
the phase change ¢, 1s given by

L sin~&;  nhle
- ——in .44
! ( 2 1;'5'1_) cos 8, ]

For the £ component, the phase change ¢ is given by

1 1 sin’ @ — nH)' 2
tan[—it#. 4+ \ ( ]

9.45
2 ntcos &, ol

We can summarize that, in internal reflection {(m; > n), the amplitude of the re-
flected wave from TIR is equal to the amplitude of the incident wave but its phase has
shifted by an amount determined by Equations 9.44 and 9.45.!! The fact that ¢, has an
additional = shift which makes ¢, negative for #; > &, is due to the choice for the di-
rection of the reflected optical field £, | in Figure 9.11. (This = shift can be ignored if
we simply invert £, .}

The reflection coefficients in Figure 9.12 considered the case in which ny = na.
When light approaches the boundary from the higher index side, that is, ny = ns, the
reflection is said to be internal reflection and at normal incidence there is no phase
change. On the other hand, if light approaches the boundary from the lower index side,
that is, ny < n3, then it is called external reflectlon. Thus in external reflection light be-
comes reflected by the surface of an optically denser (higher refractive index) medium,
There is an important difference between the two. Figure 9.13 shows how the reflection
coefficients r, and rj depend on the incidence angle £; for external reflection (n; = 1 and
n: = 144}, At normal incidence, both coefficients are negative, which means that in
external reflection at normal incidence there is a phase shift of 180°. Further, f goes
through zero at the Brewster angle &, given by Equation 9.43. At this angle of incidence,
the reflected wave is polarized in the E | component only. Transmitted light in both inter-
nal reflection (when &; < &) and external reflection does not experience a phase shift,

U nowa e apparent et the concepls and the resulting equatians apphy ta o well-defined linearly polori zed
light weave.

or

Pliase change
in TIR

Bhase change
in TiR
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‘What happens to the transmitted wave when &; = 8,7 According to the boundary
conditions, there must still be an electric field in medium 2; otherwise, the boundary
conditions cannot be satisfied. When 8, = 8., the field in medinm 2 is a wave that trav-
els near the surface of the boundary along the z direction as depicted in Figure 9.14,
The wave is called an evanescent wave and advances along ; with its field decreasing
as we move into medium 2, f.e.,

Evanescent

E, iy, z.0) ex e exp flowt — ks 0,44

— nLl¥ 2.8) p flew i2Z) [9.48]
where k;, = &; sin &, is the wavevector of the incident wave along the 7 axis, and w2 is

WA an attenuation coefficient for the electric ficld penetrating into medium 2,

af evanescent 2anz|{n 3 in?o UL
. oy = T ;; sin“ & — 1 [9.47]
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where A is the free-space wavelength. According to Equation 9,46, the evanescent
wave travels along z and has an amplitude that decays exponentially as we move from
the boundary into medium 2 (along ¥) as shown in Figure 9.11b. The field of the
evanescent wave is ! in medium 2 when y = 1/&; = & which is called the penetra-
tion depth. It is not difficult to show that the evanescent wave is correctly predicted
by Snell's law when # = &, The evanescent wave propagates along the boundary
(along z) with the same speed as the z component velocity of the incident and re-
flected waves. In Eguations 9.32 to 934 we had assumed that the incident and
reflected waves were plane waves, that is, of infinite extent, If we were to extend the
plane wavelfronts on the reflected wave, these would cut the boundary as shown in
Figure 9.14. The evanescent wave traveling along z can be thought of as arising from
these plane wavefronts at the boundary as in Figure 9.14. (The evanescent wave is
important in light propagation in optical waveguides such as in optical fibers.) If the
incident wave is a narrow beam of light (e.g.. from a laser pointer), then the reflected
beam would have the same cross section. There would still be an evanescent wave at
the boundary, but it would exist only within the cross-sectional area of the reflected
beam at the boundary.

9.7.2 INTENSITY, REFLECTANCE, AND TRANSMITTANCE

It is frequently necessary to calculate the intensity or irradiance of the reflected and
transmitted waves when light traveling in a medium of index #; is incident at a bound-
ary where the refractive index changes to ny. In some cases we are simply interested in
normal incidence where #; = 0°. For example, in laser diodes light is reflected from the
ends of an optical cavity where there is a change in the refractive index.

Reflectance A measures the intensity of the reflected light with respect to that of
the incident light and can be defined separately for electric field components parallel
and perpendicular to the plane of incidence. The reflectances A, and A} are defined by

|Ero J.!z 1 | Eps |||z 2
= = = |r and A= — = || [9.48]
YT B P Il L Bl Il
From Equations 2.37 to 9.40 with normal incidence, these are simply given by
2
R=R =A = ("’ "2) [9.49]
Hy+ i

Since a glass medium has a refractive index of around 1.5, this means that typically
4 percent of the incident radiation on an air—glass surface will be reflected back.
Transmittance T relates the intensity of the transmitted wave to that of the inci-
dent wave in a similar fashion to the reflectance. We mmst, however, consider that the
transmitted wave is in a different medium and further its direction with respect to the
boundary is also different by virtue of refraction. For normal incidence, the incident
and transmitted beams are normal and the transmittances are defined and given by

na| K, C n nal &, z fla
--'2 = (—z)mﬁ and Ty = T2l (-—')|a‘.l|2 [9.50]
nilEig, .| mny nylE, ) "

Reflectance
af normal
incidence

7o



800

Transmil-
teatee il
ferrnwid

IR LenRce

LHAPRTER 9 +» OprricaL PROPERTIES OF MATERIALS

or
o dmng
C{m+m)?

Further, the fraction of light reflected and fraction transmitted must add to unity. Thus
B+ T=1.

T= TJ_ = Ti [9.51]

EXAMPLE 9.3

REFLECTIOM OF LIGHT FROM A LESS DEMSE MEDIUM [INTERNAL REFLECTION) A ray of light
which is traveling in a glass medium of refractive index m = 1.460 becomes incident on a less
dense glass medium of refractive index n; = 1440, Suppose that the free-space wavelength ()
of the light ray is 1300 nm.

@ What should be the minimem incidence angle for TIR?
b.  What is the phase change in the reflected wave when 8; = £7° and when &; = 90?7
c.  What is the penetration depth of the cvanescent wave into medivm 2 when 8 = 80 and

when £, = 90°7
SOLUTION

@, The crtical angle & for TIR 15 given by sin 8. = ma/m = 1440/ 1,460, 50 &, = 80.51°.
h.  Since the incidence angle & = &, there is a phase shift in the reflected wave. The phase
change in E_ is given by ¢, With m = 1.460, n; = 1.440, and &, = 877,

L 1/2

[_ X (Im)]

i ) sin{§7°) = | ———
(| ) (sin’ & — n?)'12 1.460

tanl =g, | = =

2 cos & cos{&7°)

= 2.989 = tan[1(143.0%]

50 the phase change is 143°, For the E,; component, the phase change is

1 | (sin? g, — n?)l? I 1
on(300+37) = T = e (5e)

ntcos n

3= (2) () - (49) ]
t:«n::(2¢=u+2rr)—-(lez wn{ == =1 135) = 2I[I.‘j-

which gives

gy = 143.95° — 180" = —36.05°

We can repeat the calculation with & = 907 to find ¢, = 180 and ¢y = 0",
MNote that as long as #; = &, the magnitude of the reflection coefficients are unity. Cnly
the phase changes.

¢, The amplitude of the evanescent wave as it penetrates into mediam 2 is
E, (y 0= E, | expl—oay)

We ignore the z dependence, exp flesr — k;z), as this only gives a propagating property
along z, The field strength drops to &' when y = 1/e; = 8, which is called the penetration
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depth. The attenuation constant «; is

m

2 hs2
e B [(ﬂ) sin? 8 —1}
A ] I

2 (1.440 1.460%° g
i {1amﬂx m-: m}[(erIJ) ' (87°) - 1} = 1104 x 10°m™

so the penetration depthis 8 = /oy = 1/(1.104 x 10° m) = 9.06 = 10~7 m, or 0906 pm.
For 20°, repeating the calculation we find oy = 1,164 x 10°m~',508 = 1/o; = 0.859 pm.
We see thal the penetration 15 grealer for smaller incidence angles. The values for the
refractive indices and wavelength are typical of those values found in optical fiber commu-
nications.

REFLECTION AT NORMAL INCIDENCE, INTERNAL AND EXTERMNAL REFLECTEON  Consider the EM.MP'[E 2.9

reflection of light at normal incidence on 2 boundary between a glass medium of refractive
index 1.5 and air of refractive index 1,

a.  If light is traveling from air bo glass, what is the reflection coefficicnt and the intensity of
the reflected light with respect o thae of the incident light?

b If light is traveling from glass to air, what is the reflection coefficient and the intensity of
the reflected light with respect to that of the incident light?

¢, Whalt is the polanzation angle in the external reflection in pad (a)? How would you make
a polaroid device that polarizes light based on the polarization angle?

SOLLMOM

. The light travels in air and becomes partially reflected at the surface of the glass which cor-
responds to external reflection, Thes np = | and ny = 1.5, Then,
f — "z | = |.!i

|"1=rj_= = = )2
LI | 4+ 1.5

This is negative which means that there is a 180° phase shift. The reflectance (),
which gives the fractional reflected power, is
A=ri=00 o 4%
B The light travels in glass and becomes partially reflected at the glass—air interface which
corresponds to internal reflection. Thus ry = 1.5 and n; = 1. Then,
" — MKz i 1.5—1 oo

= =0.2
J’!|_+H‘-g 1.5+1

flsz_=

There is no phase shift, The reflectance is again 004 or 4 percent. In both cases (a) and
(b}, the amount of reflected light is the same.
o Light is traveling in air and is incident on the glass surface at the polarization angle. Here
mr=1,m =13 and tan f; = {nz/m) = 1.5, 50 f, = 56.3°,

If we were to reflect light from a glass plate keeping the angle of incidence at 56.37, then
the reflected light will be polarized with an electric field component perpendicular to the plane
of incidence. The transmitted light will have the field greater in the plane of incidence; that is,
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it will he partially polarized. By using a stack of glass plates one can increase the polarization
of the transmitted light. (This type of pile-of-plates palarizer was invented by Dominigue F., J,
Aragoin 1812

EXAMPLE 9.10

ANTIREFLECTION COATINGS ON SOLAR CELLS When light is incident on the surface of a
semiconductor, it becomes partially reflected. Partial reflection is an important consideration in
solar cells where transmitted light energy into the semiconductor device is converted (o eleciric
energy. The refractive index of 81 is about 3.5 at wavelengths around T00-800 nm. Thus the re-
flectance with nlair) = | and mp(5i) =~ 3.51s

mo—my (13547
= (m +J'I-g) a (1 + 3.5) 0.0

This means that 30 percent of the light is reflected and is not available for conversion to
electric energy, a considerable reduction in the efficiency of the solar cell.

However, we can coat the surface of the semiconductor device with a thin layer of a
diclectric material such as 513Ny (silicon nitride) that has an intermediate refractive index,
Figure 9.15 illustrates how the thin diclectric coating reduces the reflected light intensity. In
this case m{air) = 1, na(coating) = 1.9, and pa(5i) = 3.5, Light is [irst incident on the air-
coating surface, and some of it becomes reflected; this reflected wave is shown as A in Figure
9,15, Wave A has experienced a 180° phase change on reflection as this is an external reflec-
tion. The wave that enters and travels in the coating then becomes rellected at the coating—
semiconductor surface. This wave, which is shown as 8, also suffers a 1807 phase change since
3 = By When wave B reaches A, it has suffered a total delay of traversing the thickness J of
the coating twice, The phase difference is equivalemt to k{2d) where &, = 2m/i. is the
wavevector in the coating and is given by 2Zm /A, where A, is the wavelength in the coating.
Sinee Ay = A/na, where A is the free-space wavelength, the phase difference Ag between A and
B is {Zmrz /3 )(2d), To reduce the reflected Light, A and B must interfere destructively, and this
requires the phase difference to be m or ndd multiples of =, ma where m = 1,35, ... is an odd

integer. Thus
2 3
(—Ti-{l-?)ld=m:r or d=m(4iﬂ:)

Thus, the thickness of the coating must be multiples of the quarter wavelength in the coating and
depends on the wavelength,

Figure 2.15 lllustration of how an -—f —
antirefection coating reduces the H pr =
reflected light infensity, 1 2 3
B -=—
/ |

1} [
SxHaey Antiretlection Semiconductor of

coating photovoltaic device
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To obtain a good degree of destructive interference between waves A and B, the two am-
plimdes must be comparable, It tums oot that we need ny = /myns. When #; = /nna, then
the reflection coefficient between the air and coating is equal to that between the coating and the
semiconductor. In this case we would need +'3.5 or 1.87. Thus, SisM, is a good choice as an
antireflection coating material on 51 solar cells,

Taking the wavelength to be 700 nm, & = (700 am) /[401.9)] = 92.1 nm or odd muoltiples of o

DIELECTRIC MIRRORS A dielectric mirrer consists of a stack of dielectric layers of alternating
refractive indices as schematically illustrated in Figure 9,16 where n; is smaller than na. The
thickness of each laver is a quarter wavelength o Ayyec/4, Where L. is the wavelength of light
in that layer, or A, n, where 2, is the free-space wavelength at which the mirror is required to
reflect the incident Kzht and # is the refractive index of the layer. Reflected waves from the in-
terfaces interfere constructively and give rise to a substantial reflected light. If there are a sulfi-
cient number of layers, the reflectance can approach unity at the wavelength 4. Figure 9.16 also
shows schematically a typical reflectance versus wavelength behavior of a dielectric mimror with
many layers.

The reflection coefficient fz for light in layer 1 being reflected at the 1-2 houndary is
Fiz = (B — Ha)/ (s + B2) and §5 a negative number indicating a & phase change. The
reflection coefficient for light in layer 2 being reflected at the 2-1 boundary is By = (w2 — np)f
{n; + nz) which is —r; {positive) indicating no phase change. Thus the reflection coefficient
alternates in sign through the mirror, Consider two arbitrary waves A and B which are reflected
at two consecutive interfaces, The two waves are therefore already oul of phase by & due Lo re-
flections at the different boundaries. Further, wave 8 travels an additional distance which is
twice (A4} before reaching wave A and therefore experiences a phase change equivalent to
23/ 4) or 2p/2, that is, &, The phase difference between A and B is then & + 7 or 2. Thus
waves 4 and & are in phase and interfere conserucrively. We can similarly show that waves 8
and C also interfere constructively and so on, so all reflected waves from the consecutive
boundaties interfere constructively, After several lavers (depending on a1 and sz), the trans-
mitted intensity will be very small and the reflected light intensity will be close to unity. Di-
clectric mirrors are widely used in modemn vertical cavity surface emitting semiconductor
lasers.
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2.8 COMPLEX REFRACTIVE INDEX
AND LIGHT ABSORPTION

Generally when light propagates through a material, it becomes atfenuated in the di-
rection of propagation as illustrated in Figure 9.17. We distinguish between absorption
and scattering both of which give rise to a loss of intensity in the regular direction of
propagation. In absorption, the loss in the power in the propagating EM wave is due
to the conversion of light energy to other forms of energy, e.g., lattice vibrations (heat)
during the polarization of the molecules of the medium, local vibrations of impunty
ions, and excitation of electrons from the valence band to the conduction band. On the
other hand, scattering is a process by which the energy from a propagating EM wave
is redirected as secondary EM waves in various directions away from the original di-
rection of propagation; this is discussed in Section 9.11.

Itis instructive to consider what happens when a monochromatic light wave such as

E = E exp flwr — k1) (9.52]

is propagating in a dielectric medivm. The electric field E in Equation 9,52 1s either
parallel to x or ¥ since propagation is along z. As the wave travels through the mediurm,
the molecules become polarized. This polarization effect is represented by the relative
permittivity £, of the medium. If there were no losses in the polarization process, then
the relative permittivity &, would be a real number and the corresponding refractive
index n = /&, would also be a real number. However, we know that there are always
some losses in all polarization processes. For example, when the ions of an ionie crys-
tal are displaced from their equilibrivm positions by an alternating electric field and
made to oscillate, some of the energy from the electric field is coupled and converted (o
lattice vibrations (intuitively, “sound” and heat). These losses are generally accounted
for by describing the whole medium in terms of a complex relative permittivity
{or dielectric constant} ., that is,

go=&. — fj& 19.53]

where the real part £, determines the polarization of the medium with losses ignored
and the imaginary part ¢ describes the losses in the medium. For a lossless medium,
obviously &, = £;. The loss ¢ depends on the frequency of the wave and usually
peaks at certain natural (resonant) frequencies. If the medium has a finite conductivity

Figure .17  Anenualion of light in the direction of
propogation.
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(e.g., due to & small number of conduction electrons), then there will be a Joule loss
due to the electric field in the wave driving these conduction electrons, This type of
light attenvation is called free carrier absorption. In such cases, & and o are
related by
? [9.54]
Eplut

where £, is the absolute permittivity and o is the conductivity at the frequency of the
EM wave. Since £, is a complex quantity, we should also expect to have a complex
refractive index.

An EM wave that is traveling in a medium and experiencing attenuation due to

absorplion can be penerally described by a complex propagation constant &, that is,
k=4k— jk" [9.55]

where &’ and £" are the real and imaginary parts. If we put Equation 9.55 into Equa-

tion 9.52, we will find the following,
E = E exp(—k"z)exp jlwt — k'z) 19.56]

The amplitude decays exponentially while the wave propagates along z. The real
k' part of the complex propagation constant (wavevector) describes the propapation
characteristics, .g., phase velocity v = w/k'. The imaginary &' part describes the rate
of altenvation along z. The intensity T at any point along 7 is
I |E|? o exp(—2k"2)

so the rate of change in the intensity with distance is

ar

dz

—2k"1 [2.57]
where the negative sign represents attenuation,

Suppose that &, is the propagation constant in a vacuum. This is a real quantity as
a plane wave suffers no loss in free space. The complex refractive index N with real
part # and imaginary part K is defined as the ratio of the complex propagation constant
in a medium to propagation constant in free space,

k 1
N=n—-jKk=—=|—|[& - j&" %.58al
LT (fca)l I e
-
o L
—_—— d K= — [9.58b]
H L an .

The real part n is simply and generally called the refractive index and X is called
the extinction coefficient. In the absence of attenuation,
E=k

=0 and
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We know that in the absence of loss, the relationship between the refractive index n
and the relative permittivity £, 18 1 = /g, This relationship is also valid in the presence
of loss except that we must use complex refractive index and complex relative permit-
tivity, that is,

N=n— jK = & = & — j&" [9.59]
By squaring both sides we can relate n and K directly to ] and ;. The final result is
nt-Ki=¢g and 2nkK =¢! [7.60]

Optical properties of materials are typically reported either by showing the fre-
quency dependences of nand K or £/ and £”. Clearly we can use Equation 9.60 to ob-
tain one set of properties from the other. Figure 9.18 shows the real (n) and imaginary
(K parts of the complex refractive index of amorphous silicon (noncrystalling form of
31) as a function of photon energy (k). For photon energies below the bandgap energy,
K is negligible and n is close 1o 3.5, Both n and K change strongly as the photon energy
increases far beyond the bandgap energy.

If we know the frequency dependence of the real part £ of the relative permittivity
of a material, we can also determine the frequency dependence of the imaginary part £”,
and vice versa. This may seem remarkable, but it is true provided that we know the fre-
quency dependence of either the real or imaginary part over as wide a range of frequen-
cies as possible (ideally from dc to infinity) and the material is linear, i.e., it has a relative
permittivity that is independent of the applied field; the polarization response must be lin-
early proportional to the applied field.'? The relationships that relate the real and imagi-
nary parts of the relative permittivity are called Kramers-Kronig relations. If ¢ («) and
g, (e} represent the frequency dependences of the real and imaginary parts, respectively,
then one can be determined from the other as depicted schematically in Figure 9.19,

The optical properties # and K can be determined by measuring the reflectance
from the surface of a material as a function of polarization and the angle of incidence
{based on Fresnel's equations).

| "2n addifion the moterlal system should be passive—contain no sources of energy.
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It is instructive to mention that the reflection and transmission coefficients that we
derived in Section 9.7 were based on using a real refractive index, that is, neglecting
losses. We can still use the reflection and transmission coefficients if we simply use the
complex refractive index N instead of n. For example, consider a light wave traveling
in free space incident on a material at normal incidence (8; = 90°). The reflection co-
efficient is now

N-1_n-jKk-1

L _ 61
N+ 1 n—jK+1 el
The reflectance is then
n—jK =1 m-1+K?
A= = X
n—jKk +1 (n+ 1)+ K? 9821

which reduce to the usual forms when the extinction coefficient X = 0.

Reflection
coefficient

Reffecrance

COMPLEX REFRACTIVE INDEX  Spectroscopic ellipsometry measurements on a silicon crystal m

at a wavelength of 826.6 nm show that the real and imaginary parts of the complex relative per-
mittivity are 13,488 and 0,038, respectively, Find the complex refractive index, the reflectance
and the absorption coefficient & at this wavelength, and the phase velocity.

SOLUTION
We know that &, = 13 488 and &7 = {1.038. Thus, from Equation 9.60, we have
n'— K*=13488 and 20K =0.038
We can take X from the second equation and substitute for it in the first equation,

. {00384
nt— (——) = 13.488
n

This is a quadratic equation in #* that can be easily solved on a calculator o find # = 3.67. Once
we know i, we can {ind & = (L038/2n = 0.00517, If we simply take the square root of the real
patt of &, , we would still find » = 3.67, because the extinction coefficient X is small. The re-
flectance of the 8i crystal is

(n—1F+ K (3.67—1)* 4000517

= = = 0.327
n+ 14+ KT (367 + 1) 4 0005172
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which is the same as simply using (n — 1 fim + 1 = 0,327, because X is small.
The absorption coefficient e describes the loss in the light intensity I via T = T, exp{—wz).
By virtue of Equation 957,

2m
826.6 = 10—
Almost all of this absorption is due to band-to-band absorption (photogeneration of electron-
hole pairs).
The phase velocity is given by
3% 10fFms!

B AR I o)
S 37 =8.17x 10" ms

o=20"=2.K= 2( ){IJ.IIFSITJ =79x 10°m™"

¥=

EXAMPLE 9.13

COMPLEX REFRACTIVE INDEX OF InP  An InP crystal has a refractive index (real part) n of
3.549 at a wavelength of 620 nm (photon energy of 2 V). The reflectance of the air-InP crys-
tal surface at this wavelength is 0.317. Calculate the extinction coelficient X and the absorption
coefTicient o of InP at this wavelength,

SOLUTION
The reflectance A is given by
n—1P+ K2 (3.540 — 1* + &*
“rrnrre F W=k

which on solving gives & = 0,302,
The absorption coefficient is

in

cap g eals SN
o (ﬁm < 10-9

)m.mz} =61x 10" m™!

EXAMPLE 9.14

fmerginary
relafive
penmittiviey
eanad
conduelivity

FREE CARRIER ABSORPTIOM COEFFICIENT AND CONDUCTIVITY Consider a semiconductor

sample with a conductivity o, and a refractive index #. Show that the absorption coefficient due
tor free carrier absorption (due to conductivity) is given by

I o
w=|—1]—
CEL S N

An n-type Ge has a resistivity of about 5 = 1077 2 m, Calculate the imaginary part £ of the rel-
ative permittivity at a wavelength of 10 wm where the refractive index is 4. Find the attenuation
coefficient ¢ due to fTee carrier absorption.

SOLUTION

The relationship between the conductivity and the absorption coefficient is given by

o

£ [9.43]

"
" e

The relationship between the imaginary part &7 of the relative permittivity and the extinction
coefficient K is

nk =¢
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where n is the refractive index (the real part of M), Since the absorption coefficient from Exam-
ple 9.13 is

o EH ""‘f
Ll el Z(T) (ﬂ) Absorption
i and
wh e ; .
then o= (—)—" [%.6d4]  imaginary
G relative

where o 15 the angular frequency of the EM radiation, w = 2re /i, Substituti ng for o interms  permittivity
of £ gives

e Absorption
- (_) e 9.65] and
CEus I conuCivity

The frequency w is

w =

dme [znm w 10fms~!)

= 1,88 % 10" rad s~
X 10 % 10-5 m ] < el i

The relationship between the conductivity and £ is given by
. a [ (5» 1077 my! :|

£ =
E it (B.85 % 102 Fm "¥1.88 = 10" rads~")
ie., £ = 0.120
The absorption coefficient due to free carriers is given by
- | -
u=(_.l._)i=[———_-—__ L : ](sxm B ey x 10t et
CEs ) R (3% 108 me1)(B.85 » 10-2Fm™"y 4

COMPLEX REFRACTIVE INDEX AND RESONANCE ABSORPTION  Equation 9.12 is a simple ex- M
pression for the electronic polarizability ¢, due to an oscillating field. It is based on the Loventz
model in which there is a restoring force acting against poladzation of the atom or the molecule.
ey I8 B resonant frequency, or g natural frequency, associated with this type of electronic polar-
ization. The same type of expression will also apply to jonic polarization, except that the reso-
nant frequency o, will be lower, and the mass m, has to be changed to an effective mass of the
ions. In practice there will be surme loss mechanism that absorbs energy from the oscillating
field and dissipates it. For example, in ionic polarization, this would involve energy transfer from
light 1o lattce vibrations, In mechanics it is well known that the loss forces (frictional forces)
are always proportional to the velocity dx/dr. If we include the energy loss in ac poladzation,
Equation 9.11 would have an additional term =3 dx/dr on the right-hand side. If we then fol-
low the same steps to obtain w,, we would find

Ze? Flectrnnic
o, = 3 1'31 = [.66]  pelarizatdlin
Wally —ar-t with loxs

which is a complex number with real and imaginary parts (o, = a. — jol)

13 Both electronic and ienic polorizobilities hove similor expressions. Tha ionic pelarizability in on oscillating fald
wiay derived in Chapler 7, and looks almest :xncﬂ}' like Equation 9,64,
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Since «, iz a complex quantity, so is £, and hence the refractive index. Consider the sim-
plest relationship between the relative permittivity & and polavizability e,

g =14 —uo, [%.67]
“a
where & is the number of atoms per unit volume {or ion pairs per unit volume for ionic polar-
ization). Thus, the relative permittivity is a complex guantiny thatis &, = £, — &, . We van sub-
stitute from Equation 966 into 9,67, and also use the fact that when e = 00, &, = £.4., to obiain
a simple expression for &,

Erge — 1
]
O
itk wl

The relationship between the complex refractive index N and the complex relative permit-
Lviky &, 1%

g =14 [9.68]

N=n—jK =& = (&l — jei)'? [9.69]

Suppose for simplicity we consider ionic polarization, and we set £y, = 9 and y = 0. 1w,
(reasonable values for ionic polarization). We can caleuolate £, from Equation 9.68 for any
choice of wfiw, (or for e by taking w, = 1), and then calculate N, that is » and K. (Our calcu-
lator or the math program must be able to handle complex numbers.) Figure 9.20a shows the
dependence of # and £ on the frequency w /o, for the simple Lorentz oscillator model in Equa-
tion 9,68, Notice how n and the extinction coclficient & peak close to o = w,,

The reflectance from Equation 9,62 is plotted in Figure 9,20k as A versus w /o, It is appar-
ent that A reaches its maximum value at a frequency slightly above & = w,., and then remains
high until & reachies nearly 3, ; the reflectance is substaniial while absorption is strong, It may

fal
i .-'rr.up
1 Reflectance
0.5
fb) 0 T T T = m”{mp
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seem strange that the crystal is both highly reflecting and highly absorbing, The light that is in-
cident is strongly reflected, and the light that iz inside the crystal becomes strongly absorbed.
This phenomeneon is known as infrared reflectance, and oceurs over a band of frequencies.
called the Reststrahlen band; in the present case (rom w, 1o roughly 3w,

9.9 LATTICE ABSORPTION

In optical absorption, some of the energy from the propagating EM wave is converted
to other forms of energy, for example, to heat by the generation of lattice vibrations.
There are a number of absorption processes that dissipate the energy from the wave.
One important mechanism is called lattice absorption (Reststrahlen absorption)
and involves the vibrations of the lattice atoms as illustrated in Figure 9.21. The crys-
tal in this example consists of ions, and as an EM wave propagates it displaces the
oppositely charged ions in opposite directions and forces them to vibrate at the fre-
quency of the wave. In other words, the medium experiences ionic polarization. It is
the displacements of these ions that give rise to ionic polarization and its contribution
to the relative permittivity £, As the ions and hence the lattice is made to vibrate by
the passing EM wave, as shown in Figure 9.21, some energy is coupled into the nat-
ural lattice vibrations of the solid. This energy peaks when the frequency of the wave
is close to the natural lattice vibration frequencies, Typically these frequencies are in
the infrared region. Most of the energy is then absorbed from the EM wave and con-
verted to lattice vibrational energy (heat). We associate this absorption with the reso-
nance peak or relaxation peak of ionic polarization loss (imaginary part of the relative
permittivity £)).

Figure 9.22 shows the infrared resonance absorption peaks in the extinction co-
efficient & versus wavelength characteristics of GaAs and CdTe; both crystals have
substantial ionic bonding. These absorption peaks in Fipure 9.22 are wsually called
Reststrahlen bands because absorption occurs over a band of frequencies (even
though the band may be narrow), and in some cases may even have identifiable fea-
tures. Indeed, if we were to plot the reflectance (R ) versus wavelength, it would be
similar to that shown in Figure 9.20b, and the band would be identified with the high
reflectance regiomn.

Tons at equilibriem positions in the erystal Figure 9.21 laftice absorption through o

crystal. The field in the EM wave oscillates
@ @ @ @ @ @ @ @ @ @ @ @ @ @ the ions which mns&quanﬂ}r generabe
“mechanical” waves in the crystal; energy
Forced oscillations by the EM wave is thareby transferred from the wave o
@ lattice vibrations,

@ e BeEL ERA 0
mk :i":;l:‘:ﬁ“:'““ A
T ks
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Although Figure 9.21 depicts an ionic solid to visualize absorption due to lattice
waves, energy from a passing EM wave can also be absorbed by various ionic im-
purities in 4 medium as these charges can couple to the electric field and oscillute.
Bonding between an oscillating ion and the neighboring atoms causes the mechanical
oscillations of the ion to be coupled to neighboring atoms. This leads to a generation
of lattice waves which takes away energy from the EM wave,

EXAMPLE 9.18

RESTSTRAHLEN ABSORPTIOM Figure 9.22 shows the infrared extinction coefficient X of
GaAs and CdTe. Consider CdTe. Calculate the absorption coefficient o and the reflectance A of
CdTe at the Resistrahlen peak, and also at 50 pm and at 100 pm. Whal 18 your conclusion?

SOLUTION

Al the resonant peak, & = 72 pm, K = 6, and n = 3, so the corresponding free-space wavevec-
tor is

Im 2w
A T2x10%m
The absorption coefficient o, by definition, is 2&" in BEquation 9,57, 50
v=2k" =2, K =28Tx 10*m™ )6 = 1.0 % 10°m™"'
which corresponds to an afsorption depth 1 /o of about | wm. The reflectance is
=1+ K (51 +6
T+ DK (5+1)2+6

Repeating the above calculations at 4 = 50 po, we gete = 3.3 < 100 m™ L, and R =011
or 11 percent. There is a sharp increase in the reflectance from 11 to 72 percent as we approach
the resonant peak. At 4 = 100 pm, & = 6.3 x 10° m~! and A = 0.31 or 31 pervent, which is
again smaller than the peak reflectance. A is maximom around the Reststrahlen peak,

=87 % 10*m™'

o =

=072 or T21%




9.10 BaND-TO-BAND ABSORFTION

9.10 BAND-TO-BAND ABSORPTION

The photon absorption process for photogeneration, that is, the creation of electron-hole
pairs (EHPs), requires the photon energy to be at least equal to the bandgap energy E, of
the semiconductor material to excite an electron from the valence band (VB) to the
conduction band (CB). The upper cut-off wavelength (or the threshold wavelength) A,
for photogenerative absorption is therefore determined by the bandgap energy E, of the
sermiconductor, so k(c/i;) = Egor

1.24
E.(eV)

For example, for 31, E; = 1.12 eV and A, is 1.11 um whereas for Ge, E; = 0.66 eV
and the comresponding A, = 1.87 m. It is clear that Si photodiodes cannot be used
for optical communications at 1.3 and 1.55 wm, whereas Ge photodiodes are com-
mercially available for use at these wavelengths. Table 9.3 lists some typical bandgap
energies and the comesponding cut-off wavelengths of various photodiode semicon-
ductor materials.

Incident photons with wavelengths shorter than A, become absorbed as they travel
in the semiconductor, and the light intensity, which is proportional to the oumber of
photons, decays exponentially with distance into the semiconductor. The light inten-
sity I at a distance x from the semiconductor surface is given by

do(pm) = 19.70

Tix) = I expl—wx) [%.71]

where I, is the intensity of the incident radiation and « is the absorption coefficient
that depends on the photon energy or wavelength A. The absorption coefficient o is a
material property. Most of the photon absorption (63%) occurs over a distance 1 /e,
and 1 /e is called the penetration depth 8. Figure 9.23 shows the o versus A charac-
teristics of various semiconductors where it is apparent that the behavior of o with the
wavelength A depends on the semiconductor material.

Absorption in semiconductors can be understood in terms of the behavior of the
electron energy (£) with the electron momentum (fk) in the crystal, called the crystal

Toble .3 Bandgap enargy Egot 300K, cut-off wavelength E ond type of
bondgap (D = direct and | = indirect] for some phatedatector moteriols

Semiconductor £ (e¥) Ay (pum) Type
[nP 1.33 0.9 (1]
GaAsy anShbn 2 .15 1.0& (]
k] 112 1.11 1
TGy 3 A% saFo a (.59 .4 2]
II'.I||_5=,GH.||,.1.'_|.|"'|.S 0.75 1.65% (]
Ge 166 187 1
Tns 0,35 35 0
InSh (.18 7 D
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Figure 9.23 Absorption coefficient « versus %1477 7771
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Figure 9.24 Electron energy £ versus crystal momentum hk and photon absarption.
(g} Photon absarption in a direct bandgap semicandudtor.
{b) Photon abscrpficn in an indirect bandgop semiconductar (VB = valence band; CB = conduction band).

momentum. If & is the wavevector of the electron’s wavefunction in the crystal, then
the momentum of the electron within the crystal is Ak. E versus ik behaviors for
electrons in the conduction and valence bands of direct and indirect bandgap semi-
conductors are shown in Figure 9.24a and b, respectively. In direct bandgap semi-
conductors such as ITI-V semiconductors (e. g., GaAs, InAs, InP, GaP) and in many of
their alloys (e.g.. InGaAs, GaAsSb) the photon absorption process is a direct process
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which requires no assistance from lattice vibrations. The photon is absorbed and the
electron is excited direcily from the valence band to the conduction band without a
change in its k-vector, or its crystal momentum %k, inasmuch as the photon momen-
tum is very small. The change in the electron momentum from the valence to the con-
duction band is

hkep — fthkyp = Photon momentum ==

This process corresponds to a vertical transition on the electron energy (E) versus
electron momentum (&%) diagram as shown in Figure 9.24a. The absorption coefficient
of these semiconductors rises sharply with decreasing wavelength from A, as apparcnt
for GaAs and InP in Figure 9.23.

In indirect bandgap semiconductors such as 8i and Ge, the photon absurptmn for
photon energies near E, requires the absorption and emission of lattice vibrations, that
is, phonons,'* during the absorption process as shown in Figure 9.24. If K is the
wavevector of a lattice wave (lattice vibrations travel in the ceystal), then AK represents
the momentum associated with such a lattice vibration; that is, #K is a phonon
momentum. When an electron in the valence band is excited to the conduction band,
there is a change in its momentum in the crystal, and this change in the momentum can-
not be supplied by the momentum of the incident photon which is very small. Thus, the
momentom difference must be balanced by a phonon momentum,

Rkey — hkyy = Phonon momentum = K

The absorption process is said to be indirect as it depends on lattice vibrations
which in turn depend on the temperature. Since the interaction of a photon with a va-
lence electron needs a third body, a lattice vibration, the probability of photon absorp-
tion is not as high as in a direct transition. Furthermore, the cut-off wavelength is not
as sharp as for direct bandgap semiconductors. During the absorption process, a
phonon may be absorbed or emitted. If & is the frequency of the lattice vibrations, then
the phonon energy is k¢, The photon energy is hv where v is the photon frequency,
Conservation of energy requires that

he = E; & hid

Thus, the onset of absorption does not exactly coincide with E,, but typically it is
very close to E, inasmuch as A2 is small (< 0.1 eV). The absorption coefficient ini-
tially rises slowly with decreasing wavelength from about A, as apparent in Fipure 9.23
for 5i and Ge.

815

FUNDAMENI'M ABSORPTION A GaAs infrared LED emits st sboul 860 nm. A Sl p-hudude-
tector is to he used to detect this radiation. What should be the thickness of the 51 crvstal that
absorbs most of this radiation?

4 As much o an elechomognedic rodiclion is quantized in terms of photons, |otice vibrotions in the crysiol are
quanlized in kerms of phonons. A phanon s & quantum of lottice vibrotion. § K is the wovevecter of a vibrotional
wava in a crystal lotice and e is its anguler frequency, then the momentum of the wove is AK and i1s energy is ke,

EXAMPLE 9.17
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SOLUTION

According to Figure 9.23, at 4 = (.8 pm, 5i has o = 6 x 10* m™!, so the absorption depth
| l s
E=E=m=l.?xln I ar ]TM.I‘I‘]

If the crystal thickness is &, then 63 percent of the radiation will be absorbed, IF the thick-
ness is 24, then the fraction of abhsorbed radiation, from Equation 9,71, will be

Fraction of absorbed radiation = 1 — exp[—a(26)] = 0.36 or B6%

9.11 LIGHT SCATTERING IN MATERIALS

Scattering of an EM wave implies that a portion of the energy in a light beam is di-
rected away from the original direction of propagation as illustrated for a small dielec-
tric particle scattering a light beam in Figure 9.25. There are various types of scattering
PrOCEssEs.

Consider what happens when a propagating wave encounters a molecule, or a small
dielectric particle {or region), which is smaller than the wavelength. The electric field in
the wave polarizes the particle by displacing the lighter electrons with respect to the
heavier positive nuclei. The electrons in the molecule couple and oscillate with the elec-
tric field in the wave {ac electronic polarization). The oscillation of charge “up™ and
“down,” or the oscillation of the induced dipole, radiates EM waves all around the
molecule as depicted in Figure 9.25. We should remember that an oscillating charge is
like an alternating current which always radiates EM waves (like an antenna). The net
effect is that the incident wave becomes partially reradiated in different directions and
hence loses intensity in its original direction of propagation. We may think of the process
as the particle absorbing some of the energy via electronic polarization and reradiating
it in different directions. It may be thought that the scattered waves constitute a spheri-
cal wave emanating from the scattering molecule, but this is not generally the case as the
reemitted radiation depends on the shape and polarizability of the molecule in different
directions. We assumed a small particle so that at any time the field has no spatial varia-
tion through the particle, whose polarization then oscillates with the electrie field oscil-
lation. Whenever the size of the scattering region, whether an inhomogeneity or a small

Figure 9.25 Rayeigh scaltering involves A dielectric particle smaller than the wavelength

the polarization of a small diglectric

porficle ar a regien that is much smaller
than the light wavelength,
The field forces dipole oscillations in the ITiLJch:nl wave

particle |by polorizing if], which leods o
the emission of EM waves in “mamy”

direcfions 3o that o pertion of the light
energy is directed away from the incident V Vj

bECI m.

*+  Through wave

VF

Scattered waves
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particle or a molecule, is much smaller than the wavelength A of the incident wave, the
scattering process is generally termed Rayleigh scattering. In this type of scattering,
typically the particle size is smaller than one-tenth of the wavelength.

Rayleigh scattering of waves in a medium arises whenever there are small inho-
mogeneous regions in which the refractive index 15 different than the medium (which
has some average refractive index). This means a local change in the relative permit-
tivity and polarizability. The result is that the small inhomogeneous region acts ke a
small dielectric particle and scatters the propagating wave in different directions, In the
case of optical fibers, dielectric inhomogeneities arise from fluctuations n the relative
permittivity that is part of the intrinsic glass structure. As the fiber is drawn by freez-
ing a liquid-like flow, random thermodypamic fluctuations in the composition and
structure that occur in the liquid state become frozen into the solid structore, Conse-
quently, the glass fiber has small fluctuations io the relative permittivity which leads to
Rayleigh scattering. Nothing can be done to eliminate Rayleigh scattering in glasses as
it js part of their intrinsic structure,

It is apparent that the scattering process involves electronic polarization of the mol-
ecule or the dielectric particle. We know that this process couples most of the energy at
ultraviolet frequencies where the dielectric loss due to electronic polarization is maxi-
mum and the loss is due to EM wave radiation. Therefore, as the frequency of light in-
creases, the scattering becomes more severe. In other words, scattering decreases with
increasing wavelength. For example, blue light which has a shorter wavelength than red
light is scattered more strongly by air molecules. When we look at the sun directly, it ap-
pears yellow because the blue light has been scattered in the direct light more than the
red light. When we look at the sky in any direction but the sun, our eves receive scat-
tered light which appears blue; hence the sky is blue. At sunrise and sunset, the rays
from the sun have to traverse the longest distance through the atmosphere and have the
most blue light scattered which gives the sun its red color at these times.

9.12 ATTENUATION IN OPTICAL FIBERS

As light propapates through an optical fiber, it becomes attenuated by a oumber of
processes that depend on the wavelength of light. Figure 9.26 shows the attenuation
coefficient, as dB per km, of a typical silica-glass-based optical fiber as a function of
wavelength. The sharp increase in the attenuation at wavelengths beyond 1.6 pm in the
infrared region is due to energy absorption by “lattice vibrations” of the constituent
ions of the glass material. Fundamentally, energy absorption in this region corresponds
to the stretching of the Si-0 bonds in iome polarization induced by the EM wave.
Absorption increases with wavelength as we approach the resonance wavelength of
the Si-O bond which is around 9 pm, In the case of Ge-O glasses, this is further away,
around 11 wm. There is another intrinsic material absorption in the region below
5(4) nm, not shown in Figure 9.26, which is due to photons exeiting electrons from the
valence band (o the conduction band of the glass.

There is & marked attenuation peak centered at 1.4 pm, and a barely discernible
mingr peak at about 1.24 wm, These attenuation regions arise from the presence of
hydroxyl ions as impurities in the glass structure inasmuch as it is difficult to remove all

a7
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traces of hydroxyl (water) products during fiber production. Further, hydrogen atoms
can easily diffuse into the glass structure at high terperatures during production which
leads to the formation of hydrogen bonds in the silica structure and OH ions. Energy is
ahsorbed mainly by the stretching vibrations of the OH bonds within the silica structure
which has a fundamental resonance in the infrared region (bevond 2.7 wm) but over-
tones or harmonics at lower wavelengths (or higher frequencies). The first overtone at
around 1.4 i is the most significant as can be seen in Figure 9.26. The second over-
tone 18 arpund 1 wm, and in high-quality fibers this is negligible. A combination of the
first overtone of the OH vibration and the fundamental vibrational frequency of 8i0;
pives rise Lo a minor loss peak at around 1.24 pm. There are two important windows in
the attenuation versus wavelength behavior where the attenuation exhibits minima. The
window at around 1.3 pm is the region between two neighboring OH™ absorption
peaks. This window is widely used in optical communications at 1310 nm. The window
atarpund 1,35 pm is between the first harmonic absorption of OH™ and the infrared lat-
tice absorption tail and represents the lowest attenuation. Current technological drive is
to use this window for long-haul communications. It can be seen that it is important to
keep the hydroxyl content in the fiber within tolerable levels.

There is a background attenuation process that decreases with wavelength and is
due to the Rayleigh scattering of light by the local variations in the refractive index.
Glass has a noncrystalline or an amorphous structure which means that there is no
long-range order to the arrangement of the atoms but only a short-range order, typi-
cally a few bond lengths, The glass structure is as if the structure of the melt has been
suddenly frozen. We can only define the number of bonds a given atom in the structure
will have, Random variations in the bond angle from atom to avom lead to a disordered
structure. There is therefore a random local variation in the density over a few bond
lengths which leads to fluctuations in the refractive index over few atomic lengths.
These random fluctuations in the refractive index give rise to light scattering and hence
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light antenuation along the fiber. It should be apparent that since a degree of structural
randomness is an intrinsic property of the glass structore, this scattering process is un-
avoidable and represents the lowest attenuation possible through a glass medium. As
Dne may surmise, attenuation by scattering in a medium is minimum for light propa-
gating through a “perfect” crystal. In this case the only scattering mechanisms will be
due to thermodynamic defects (vacancies) and the random thermal vibrations of the
lattice atoms.

As mentioned above, the Rayleigh scattering process decreases with wavelength
and, according to Lord Rayleigh, it is inversely proportional to A% The expression for
the attenuation «y in a single component glass due to Rayleigh scattering is approxi-
mately given by

~ 3y

g ~= ﬁ(i‘l == } ﬁT F [7.721
where 2 is the free-space wavelength, n is the refractive index at the wavelength of
interest, fir is the isothermal compressibility (at Ty of the glass, & is the Boltzmann
constant, and Tyis a quantity called the fictive temperature (roughly the sofiening tem-
perature of glass) where the liquid structure during the cooling of the fiber is frozen to
become the plass structure. Fiber is drawn at high temperatures, and as the fiber cools
eventually the temperature drops sulficiently for the atomic motions to be so sluggish
that the structure becomes essentially “frozen-in™ and remaing like this even at room
temperature, Thus Tymarks the temperature below which the liquid structure is frozen,
and hence the density fluctuations are also frozen into the glass structure. It is appar-
ent that Rayleigh scattering represents the lowest attenuation one can achieve using a
glass structure, By proper design, the attenuation window at 1.5 pm may be lowered
to approach the Rayleigh scattering limit,

B19

Ravieigh
seuttering
i silica

RAYLEIGH SCATTERING LIMIT  What is the attenuation due to Rayleigh scartering at around the
A = 1.55 pm window given that pure silica (3i0;) has the following properties: Ty = 1730 °C
{softening temperature), fr =7 = 107" m® N~ {at high temperatures), # = L4446 at 1.5 pm?

SOLUTION

We simply caleulate the Rayleigh scattering attennation using
3

I
o (1~ BTy

g ==

a0
R-'-T'l
e —_—
3(1.55 = 10-%)4
=327 = 10%m?!  or 327 % 107%km™!
Attenuation in dB per km is then
g =4 Mog = (43327 x 102 km~") = 0.142 dB km™!

This represents the lowest possible attenuation for a silica glass fiber at 1.55 pom.,

g (14448 — 1707 x 10790138 = 1072 W 1730 + 273)

EXAMPLE 9.18
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9.13 LUMINESCENCE, PHOSPHORS, AND WHITE LEDS

We know from our general experience that certain substances, known as phosphors, can
absorb light and then reemit light even after the excitation light source has been turned
off; this is an example of luminescence. In general, luminescence is the emission of
light by a material, called a phosphor, due to the absorption and conversion of energy
into electromagnetic radiation as illustrated in Figure 9.27a and b. The luminescent ra-
diation emitted by the phosphor material is considered to be quite separate from the
thermal radiation emitted by virtue of its temperature. Luminescence is light emitted by
a nonthermal source when it is excited, in contrast to the emission of radiation from a
heated object such as the tungsten filament of a light bulb; the latter is called incandes-
cence. Typically the emission of light occurs from certain dopants, impurities, or even
defects, called luminescent or luminescence centers, purposefully introduced into a
host matirix, which may be a crystal or glass as shown in Figure 9.27c. The luminescent
center is also called an activator. There are many examples of phosphors, For example,
in ruby, the Cr'* ions are the luminescent centers in the sapphire (ALOy) crystal host,
Cr’* ions can absorb UV or violet light and then emit red light. This phosphor system is
written as Al Oy :Cr+ . The excitation and emission involves only the Cr** ion, In other
cases, the activator excitation may also involve the host as discussed later,
Luminescence is normally categorized according o the source of excitabon
energy. Photoluminescence involves excitation by photons (light) as m Figure 9,274,
X-ray luminescence involves incident X-rays exciting a phosphor to emit light,
Cathodoluminescenece, as shown in Figure 3.27h, 15 light emission when the excita-
tion 15 the bombardment of the phosphor with energetic electrons as in TV cathode ray
tubes. Electroluminescence is light emission due to the passage of an electric current.
Electroluminescence in semiconductive materials appears as a result of an excited
electron transiting down to the ground energy level, which would correspond to the re-
combanation of an electron and & hole; the excited electron is the conduction band
(CB), and its ground state corresponds to a hole in the valence band (VB). The direct
electron-hole recomhbination mechanism generally oceurs very quickly, For example,
typical minonty carmer hifetimes are in the range of nanoseconds, so light emission
from a semiconductor stops within nanoseconds after the removal of the excitation.
Such quick luminescence processes occwming over a nanosecond time scale or shorter
are normally identified as fluorescence. The emission of light from a fluorescent tube

Emitted light Emitted light
Phosphor Phosphor Phosphor
. Activators or
y luminescent centers
VAV it " (e.g.. Cr®)

Incident CI‘ S )
Fight elcctrons = ; 2

Heat Heat ost matrix (e.g., AlO4}

[o) Photoluminescence (b Cothodoluminescence Il A typical phesphor = host + aclivakors

Figure 9.27 Photoluminescence, cathodoluminascancs, and a typical phasphar.
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r_'nnlinunusl:,' for 200 hours and con preject an inlanse
spot ever 30 f. White LEDs usa a phasphor ro

eneroie valkow [ight from the blee light emitted fram
ic lED's semiconduchor chip. Tl'-e mixhure of Blue and
yellow light appears o white.

is actually a fluorescence process. The tube contains a gas mixture of argon and mer-
cury. The Ar and Hg gas atoms become excited by the electrical discharge process and
emit light mainly in the ultraviolet region. This UV light is absorbed by the fluorescent
coating on the inside of the tube. The excited activators in the phosphor coating then
emit radiation in the visible region. A number of phosphors are used to obtain “white”
light from the tube.

There are also phosphors from which light emission may continue for millisec-
onds to hours after the cessation of excitation. These slow luminescence processes are
normally referred to as phosphorescence (also known as afterglow).

Many phosphors are based on activators doped into a host matrix; for example,
Eu*t {europium ion) in a Y;0; (ytiriom oxide) matrix is a widely used modern phos-
phot. When excited by UV radiation, it provides an efficient luminescence emission in
the red (around 613 nm). It is used as the red-emitting phosphor in color TV tubes and
in modern tricolor fluorescent lamps. In very general terms, we can represent the energy
of an activator in a host matrix by the highly simplified energy diagram in Figure 2.28.

Energy of luminescent center in host Figure .28 Photoluminescence; light absorption,

T. excitation, nonradiative decay and light emission, and

return to the ground state E;,

: The energy levels have been displaced herizantally for
. i .~ /J\-’ clarity.

~ E”]:’“ racdialive decay

£
2
kv,
Luwminescent emission, hv
Excitation | T I

- 1 OERTREE L ORI
. Fomradiative decay

E—L 1 prbal AbEs pufee, PR
pe bl sl W i Bn . |
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The ground state of the activator is E,. Upon excitation by an incident radiation of
suitable energy Av., the activator becomes excited to E;. From this energy level, it de-
cays, or refaxes, down relatively quickly (on a time scale of the order of picoseconds)
to an energy level E} by emitting phonons or lattice vibrations. This type of decay is
called radiationless or nonradiative decay. From Ej, the activator decays down to E;
by emilling a photon (spontaneous emission), which is the emitted luminescent radi-
ation. The emitted photon energy is kv, , which is less than the excitation photon energy
Rve,. The return from E; to the ground state £, involves phonon emissions. Further,
for some activators, E; is either very close to £, oritis £;.The energy levels such as
E;, Ei, Ej, etc., are not well-defined single levels but involve finely spaced multi-
levels. The higher levels may form multilevel narrow energy “bands.” In this exam-
ple. the activator absorbed the incident radiation and was directly excited, which is
known as activator excitation. The Cr’* ions in AL Os:Cr'* can be excited directly
by blue light and would then emit in the red. There are many phosphors in which the
excitation involves the host. In host excitation, the host matrix absorbs the incident
radiation and transfers the energy to the activator, which then becomes excited to £
in Figure 9.28, and so on. In X-ray phosphors, for example, the X-rays are absorbed
by the host, which subsequently transfers the energy to the activators. It is apparent
from Figure 9.28 that the emitted radiation (fv.,) has a longer wavelength than the
exciting radiation (hvy}, that is, hve, < v, The downshift in the light frequency
from absorbed to emitted radiation is called the Stoke’s shift. It should be empha-
sized that the energy levels of the activator {as shown in Figure 9.28) also depend on
the host, because the internal electric fields within the host crystal act on the activator
and shift these levels up and down. The emission characteristics depend firstly on the
activator, and secondly on the host.

There are a number of host excitation mechanisms. In one possible process, which
involves a semiconductor host, as depicted in Figure 9.29, an incident photon initially ex-
cites a valence band (VB) electron to the conduction band (CB). The electron then ther-
malizes, ie., loses the excess energy as it collides with lantice vibrations, and falls close
to £, and wanders around in the crystal. In one process, a in Figure 9.29, the electron can
be captured into an excited state D of a luminescent center or an activator. The electron
then falls down in energy to the ground state A of the activator releasing a photon, which
is the luminescent emission. The electron at the ground state then recombines with a hole
in the ¥VB. Thus the activator acts as a radiative recombination center. In some cases D
and A may be separate centers representing donor and acceptor-like centers, hence the la-
bels D and A. In other cases, the radiative recombination center may simply be a single
energy level in the bandgap, which is shown as R in Fipure 9.29. The electron can emit a
photon as it is captured into R, shown as process # in Figure 9.29, or emit the photon afier
it is captured by R, as it recombines with a hole, shown as process ¢ in Figure 9.29,
Processes o and b occur in various ZnS-based phosphors. For example, in ZnS:Cu™
phosphors, the activator is Cut, which has an energy level at A in Figure 9.29. The lumi-
nescent emission is enhanced by using a coactivator, such as Al in ZnS:Cut. Al acts as a
shallow donor I, and the luminescence is due to process a in Figure 9.29.

There may also be traps in the semiconductor because of various crystal defects, or
there may be added impurities. The electron can become captured by a trap at a local-
ized energy level E, in the bandgap, but close to E.. These electron traps temporarily
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Thermalizntion CB

Figure 9.29 Oplical absorption generates an EHF.

Both carriers thermalize. There are a number of recombination processes via a dagant that can result
in a luminescent emission,

capture an electron from the conduction band and thereby immobilize it. The time the
electron spends trapped at E, depends on the energy depth of the trap from the con-
duction band, £, — E,. After a while a strong lattice vibration returns the electron back
into the conduction band (by thermal excitation). The time interval between photogen-
eration and recombination can be relatively long if the electron remains captured at E,
for a considerable length of time. In fact, the electron may become trapped and de-
trapped many times before it finally recombines, so the emission of light can persist for
a relatively long time after the cessation of excitation (e. g., milliseconds or longer) as
indicated by process  in Figure 9.29,

It is also possible to excite electrons into the CB by bombarding the material with
a high-energy electron beam, which leads to cathodoluminescence. Color CRT dis-
plays are typically coated uniformly with three sets of phosphor dots which exhibit
cathodoluminescence in the blue, red, and green wavelengths. In electroluminescence,
an electric current, either ac or dc, is used to inject electrons into the CB which then re-
combine with holes and emit light. For example, passing a current through certain
semiconducting phosphors such as ZnS doped with Mn causes light emission by elec-
troluminescence. The emission of light from a light emitting diode (LED) is an example
of injection electroluminescence in which the applied voltage causes charge carrier
injection and recombination in a device (diode) that has a junction between a p-type
and an n-type semiconductor,

Zinec sulfide with various activators has been one of the traditional phosphors. The
ZnS:Ag" in which Ag™ is the activator, is still used as a blue emitting phosphor, though
in some cases Cd is substituted for some of the Zn. ZnS:Cu™* emits in the green, which
is also a useful phosphor. Most modern phosphors, on the other hand, have been based
on using rare earth activators in various hosts. For example, Y:04:Euv** absorbs UV
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Table #.4 Selected phosphor examples

Dseful Ezample
Phosphar Activator Emission Excitation Cumment or Application
Yo Eul+ Eu't Red v Fluarescent |amp, color TV
BaMgAlip07:Bu?™ Eu?t Blug LV Fluarescent larmp
CeMgaly O T Th+ Cireen LY Fluarescent lamp
VaAlsQyg:Ce™ Ceit Yellow Blue, violet White 1.ED
Sr2 50y Bui+ Eu+ Yellow Viclat White L.ED {experimental )
ZnS:Ag™ Apt Blue Electron beam Colar TV hlue phasphar
ZopeeCipan S:Apt Apt Green Electron beam Color TV preen phosphor
ZnS:Cut Cu* Green Eleciron beam Color TV gresn phosphos

1.0
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vellow emission

¥ Bluc
chip

}\( SIMission
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350 450 550 650 750
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Figure 9.30

{a) A typical “white" LED struchure.

{b) The spectral distribution of light emithed by o white LED. Blue luminescence is emitted by the Galn chip and
"y'e"c:rw" Pl‘bDEFI'I\DI‘ESEEI‘ICE ar luminescence is pruducad l:n,r a ph{:sphc:r. The cambined spachiuim laaks “white.”

radiation and emits in the red. Y1 Al;0y5:Ce* absorbs blue light and emits yellow light
Some of the most popular activators are Eu™t for red, Eu®* for blue, and Th™ for green.
Table 9.4 summarizes a number of phosphors commonly used in various applications.

Recent inexpensive white LEDs that have appeared on the market seem to emit
white light by emitting a mixture of blue and yellow light which are registered visnally
by the eye as appearing white. (Yellow consists of red and green mixed together, so
mixing blue and yellow generates “white.””) The production of white LEDs became
possible due to development of bright blue-emitting LEDs based on gallium-indium-
nitride {GalnMN}, The white LED uses a semiconductor chip emitting at a short wave-
length (blue, viclet, or ultraviolet) and a phosphor to convert some of the blue light to
yellow light as depicted in Figure 9.30a. The phosphor absorbs light from the diode
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and vundergoes luminescent emission at a longer wavelength. Obviously, the quality
and spectral characteristics of the combined emission vary with different designs; Fig-
ure 9.30b shows example spectra involved in the blue and yellow emissions and the
overall *white” emission from a white LED. Typical phosphors have been based on
yttrinm-aluminum- (Y1 AlsOy2) garnets (YAGs) as the host material. This host is doped
with one of the rare earth elements for the activator. Cerium is a common dopant ele-
ment in YAG phosphors; that is, the phosphor is Y1 AlsO)2 'Ce?t, which is able to effi-
ciently absorb the blue and emit the yellow. White LEDs are soon expected to challenge
the existing incandescent sources for general lighting.

9.14 POLARIZATION

A propagating EM wave has its electric and magnetic fields at right angles to the
direction of propagation. If we place a 7 axis along the ditection of propagation, then
the electric field can be in any direction in the plane perpendicular to the 7 axis. The
term polarization of an EM wave describes the behavior of the electric field vector in
the EM wave as it propagates through a medium, If the oscillations of the electric field
at all times are contained within a well-defined ling, then the EM wave is said to be
linearly polarized as shown in Figure 9.31a. The field vibrations and the direction of
propagation (z) define a plane of polarization (plane of vibration), so linear polariza-
tion implies a wave that is plane-polarized. By contrast, if a beam of light has waves
with the E field in each in a random direction but perpendicular to z, then this light
beam is wunpolarized. A light beam can be linearly polarized by passing the beam

Plane of polarization

g\

[a) (bl

Figure 9.21

[a] A linearly polarized wawe has its elecric field oscillations defined alang a line perpendicular to the direction of

propogation z. The field vector E and =z define o plane of polarization,
[b) Tha Efield ascillations are cantained in the plane of polarization.

) A linearly polorized light ot any instant can be represented by the superpasition of twa fields £, and E, with the

right magnitude and phase.
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through a polarizer, such as a polaroid sheet, a device that only passes electric field os-
cillations lying on a well-defined plane parallel to its transmission axis.

Suppose that we arbitrarily place the x and y axes and describe the electric field in
terms of its components £, and £, along x and y (we are justified to do this because E,
and E, are perpendicular to z). To find the electric field in the wave at any space and
time location, we add E. and E, vectorially. Both E, and E, can individually be de-
scribed by a wave equation which must have the same angular frequency « and
wavenumber & However, we must include a phase difference ¢ between the two:

E, = E, cos(wt — kz) [9.73]
and
E, = E,,cos{wt — kz + ¢) [9.74]

where ¢ is the phase difference between E, and E;; ¢ can anse if one of the compe-
nents 15 delayed (retarded).

The hinearly polarized wave in Figure 9.31a has the E oscillations at —45° to the
x axis as shown in Figure 9.31h. We can generate this field by choosing £, = E,,
and ¢ = £180° (£x) in Equations 9.73 and 9.74, Put differently, E; and E, have the
same magnitude, but they are out of phase by 180°. If u, and u, are the unit vectors
alomg x and v, using ¢ = x in Equation 9.74, the field in the wave is

E=uE +u,E, =uE,cos(wt — kz} —u, E,, cosl{wt — kz)
or
E=E,cos{wr — kz) [9.75]
where
E=uwE,—u,Ey [9.74]
Equations 9,75 and 9.76 state that the vector E, is at —45° to the x axis and propagates
along the z direction.

There are many choices for the behavior of the electric field besides the simple
linear polarization in Figure 9.31. For example, if the magnitude of the field vector E
remains constant but its tip at a given location on z traces out a circle by rotating in &
clockwise sense with time, as observed by the receiver of the wave, then the wave is said
to be right circularly polarized'® as in Figure 9.32. If the rotation of the tip of E is coun-
terclockwise, the wave is said to be left circularly polarized. From Equations 9.73

and 9.74, it should be apparent that a right circularly polarized wave has E,, = Ey; = A
{an amplitude) and ¢ = /2. This means that,

E,=Acos(wt — k) [9.77]
and

E, = —Asin(wt — k2) [9.78)

'3 There Is o diFferance in this definition in oplies and angineering. The dafiniticn hara follows that in cptics which is
more pravalant in optoslactronics.
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E E

fal k) propagoted.

It is relatively straightforward to show that Equations .77 and 2,78 represent a
circle that is

E:+ El=4? [9.79]

as shown in Figure 9.32.
When the phase difference ¢ is other than 0, 7, or £ /2, the resultant wave is
elliptically polarized and the tip of the vector in Figure 2.32 traces out an ellipse.

9.15 OPTICAL ANISOTROPY

An important characteristic of crystals is that many of their properties depend on the
crystal direction; that is, crystals are generally anisotropic. The dielectric constant ¢,
depends on electronic polarization which involves the displacement of electrons with
respect to positive atomic nuclei. Electronic polarization depends on the crystal direc-
tion inasmuch as it is easier to displace electrons along certain crystal directions. This
means thar the refractive index n of a crysial depends on the direction of the eleciric
[field in the propagating light beam. Consequently, the velocity of light in a crystal
depends on the direction of propagation and on the state of its polarization, i.e., the di-
rection of the electric field. Most noncrystalline materials, such as glasses and liquids,
and all cubic crystals are optically isotropic, that is, the refractive index is the same in
all directions. For all classes of crystals excluding cubic structures, the refractive index
depends on the propagation direction and the state of polarization. The result of opti-
cal anisotropy is that, except along certain special directions, any unpolarized light ray
entering such a crystal breaks into two different rays with different polarizations and
phase velocities. When we view an image through a calcite crysial, an optically
anisotropic crystal, we see two images, each constituted by light of different polariza-
tion passing through the crystal, whereas there is only one image through an optically
isotropic crystal as depicted in Figure 9.33, Optically anisotropic crystals are called
birefringent because an incident light beam may be doubly refracted.

Experiments and theories on “most anisotropic crystals,” i.e., those with the high-
est degree of anisotropy, show that we can describe light propagation in terms of three
refractive indices, called principal refractive indices n;, ns, and n3, along three mu-
mally orthogonal directions in the crystal, say x, v, and 7, called principal axes. These

[b] An elliptically polarized light.

B27

¥

d
Figure .32

E {a) A right circularly polarized light the is

traveling alorg z [out of paper|. The feld

b > E, E,  vectar E is always at right angles to z, rotates
clockwise around z with lime, ond traces out
a full circle aver one wavelength of diskance
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Figure 9.33 A line viewed through R S
a cubic sedium chlaride (halite) crystal -
{npﬁcn"y isafrapic) and a calcite o g
erystal joptically anisolropic),

indices correspond to the polarization state of the EM wave along these axes. In addi-
tion, anisotropic crystals may possess one of two optic axes. An optic axis is a special
direction in the crystal along which the velocity of propagation does not depend on the
state of polarization. The propagation velocity along the optic axis is the same what-
ever the polarization of the EM wave.

Crystals that have three distinct principal indices also have fweo opiic axes and are
called biaxial crystals. On the other hand, uniaxial crystals have two of their princi-
pal indices the same {rn; = n») and have only one optic axis. Table 9.5 summarizes
crystal classifications according to optical anisotropy. Uniaxial crystals, such as
quartz, that have ny = n,, are called positive, and those such as calcite that have
ny == n; are called negative uniaxial crystals.

Table .5 FPrincipal refractive indices of some optically isciropic
ond anisotropic crystals {near 589 nm, yellow Na-D lins|

Oprically Isoiropic =y
Giluss (crown) 1.510
Diiamond 2417
Fluarite (CaFz) 1.434
Uniaxiat—Positive F i,
lee 1.300 1.3103
Quartz 1.5442 1.5533
Rutile (TiCk:) 2616 2903
Uttlaxinb—Yegative Hs n,
Calcite {CalO;) 1.658 1.486
Tourmaline 1664 1.638
Lithium piobate 2.29 2,20
(LiNBOy)
Rigxial "y ny LE)
Mica (muoscoviie) 1.5601 13934 13977
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angles to each other.

orthegonal palarizations.

2.15.1 Unaxial Crystars AND FRESNEL'S OPTICAL INDICATRIX

For our discussions of optical anisotropy, we will consider uniaxial crystals such as
calcite and quartz. All experiments and theories lead to the following basic principles.'®

Any EM wave entering an anisotropic crystal splits into two orthogonal linearly
polarized waves that travel with ditferent phase velocities; that is, they experience
different refractive indices. These two orthogonally polanized waves in uniaxial crys-
tals are called ordinary (o) and extraordinary (¢) waves, The o-wave has the same
phase velocity in all directions and behaves like an ordinary wave in which the field is
perpendicular to the phase propagation direction. The e-wave has a phase velocity that
depends on its direction of propagation and its state of polarization, and further the
electric field in the e-wave is not necessarily perpendicular to the phase propagation
direction. These two waves propagate with the same velocity only along a special
direction called the optic axis. The o-wave is always perpendicularly polanzed to the
optic axis and obeys the usual Snell's law.

The two images observed through the calcite crystal in Figure 9.33 are due to
o-waves and e-waves being refracted differently, so when they emerge from the crys-
tal they have been separated. Each ray constitutes an image, but the field directions are
orthogonal. The fact that this is s0 is easily demonstrated by using two polaroid ana-
lyzers with their transmission axes at right angles as in Figure 9.34. If we were to view
an object along the optic axis of the crystal, we would not see two images because the
two rays would experience the same refractive index.

As mentioned, we can represent the optical properties of a crystal in terms of
three refractive indices along three orthogonal axes, the principal axes of the crystal,
shown as x, ¥, and z in Figure 9.35a. These are special axes along which the polariza-
tion vector and the electric field are parallel. (Put differently, the electric displace-
ment'” D and the electric field E vectors are parallel.) The refractive indices along
these x, v, and z axes are the principal indices #;, nz, and ns, respectively, for electric

14 Thase statamants can be proved by solving Mawwell’s equations in an anisctropic madium,

"7 Ebechric displocement D af any paint is defined by I = £ + P where E is the eleciric fiald and P is the
polarizatlen at that polal.

The ordinary ray, undeflacted, gaes through the lsft
polarizer, whereas the extraordinary wave, deflected, goes
thraugh the right polarizer. Tha twe waves therefore hove

¥

Figure 9.34 Two polaroid analyzers are placed with
their kansmission axes, along the long edges, of rght
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[a) Fresnel's ellipsoid [for ny = ny < ny; (bl An EM wave propogating along OF a
quartz} an angle 17 o optic oxis,
Figure 9.15

field oscillations along these directions (not to be confused with the wave propagation
direction). For example, for a wave with a polarization parallel to the x axes, the re-
fractive index is n;.

The refractive index associated with a particular EM wave in a crystal can be
determined by using Fresnel's refractive index ellipsoid, called the optical indica-
trix,'® which is a refractive index surface placed in the center of the principal axes,
as shown in Figure 9.35a, where the x, v, and 7 axis intercepls are Ay, oo, and ny. I all
three indices were the same, m; = a3 = ny = n,, we would have a spherical surface
and all electric field polarization directions would experience the same refractive index
M. Such a spherical surface would represent an optically isotropic crystal. For posi-
tive uniaxial crystals such as quartz, ny = n; < n3, which is the ellipsoid example
shown in Figure 9.35a.

Suppose that we wish to find the refractive indices experienced by a wave travel-
ing with an arbitrary wavevector k, which represents the direction of phase propaga-
tion. This phase propagation direction is shown as QP in Figure 9.35b and is at an
angle £ to the z axis. We place a plane perpendicular to GP and passing through the
center O of the indicatrix. This plane intersects the ellipsoid surface in a curve ABA'E’
which is an ellipse. The major (BOB') and minor (AGA’) axes of this ellipse determine
the field oscillation directions and the refractive indices associated with this wave. Put
differently, the original wave is now represented by two orthogonally polarized EM
waves.,

The line AOA’, the minor axis, corresponds to the polarization of the ordinary
wave, and its semiaxis AA' is the refractive index n, = n» of this p-wave. The alectric
displacement and the electric field are in the same direction and parallel to AGA", If

1% There are variows nomes in the literatura with various sublla nuances: the Fresnal allipsoid, optical indicatrix,
index ellipseld, reciprocal allipscid, Painset ellipsoid, ellipaeid of wove normals. 3
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n0 ) =n,=u
¥ o= ol

n AP =n,

- I = optic axis

(¥} z=optic axis | —= 7 =oplic axis

(el b}

F'gum 9.36 E.=Euma and e = Epmma:
[a} Wove propogation 4;:||:|ng the optic axis.
(b} Wove propogation normal to the optic axis,

we were Lo change the direction of OF, we would always find the same minor axis,
f.e., 1, is either ny or na whatever the orientation of GF (try orientating OF to be along
v and along x). This means that the o-wave always experiences the same refractive
index in all directions. (The o-wave behaves just like an ordinary wave, hence the
name.)

The line BOR' in Figure 9.35b, the major axis, corresponds o the electric dis-
placement field (I} oscillations in the extraordinary wave, and ils semiaxis OF is the
refractive index n.(#} of this e-wave. This refractive index is smaller than rs but greater
than na {=n,). The e-wave therefore travels more slowly than the o-wave in this
particular direction and in this crystal. If we change the direction of OF, we find
that the length of the major axis changes with the OF direction. Thus, n(#) depends on
the wave direction & As apparent, n. = n,, when (3P is along the 7 axis, that is, when the
wave is traveling along z as in Figure 9.36a. This direction 1s the optic axis, and all
waves traveling along the optic axis have the same phase velocity whatever their po-
larization. When the e=wave is traveling along the y axis, or along the x axis, nJ8) =
ny = n, and the e-wave has its slowest phase velocity as shown in Figure 9.36b. Along
any OP direction that is at an angle 2 to the optic axis, the e-wave has a refractive index
n () given by

1 cos’# sin® @
n(8)2 n? n?

Clearly, for § = 0°, 1 (0%} = n, and for § = ¥, 090 = n,.

The major axis BOB in Figure 9.35b determines the e-wave polarization by defin-
ing the direction of the displacement vector I) and not E. Although I» is perpendicular
to k, this is not true for E. The electric field E. ... of the s-wave is orthogonal to that
of the o-wave, and it is in the plane determined by k and the optic axizs. E, ga.. is
orthogonal to K only when the e-wave propagates along one of the principal axes. In
birefringent crystals it is usoal to take the rav direction as the direction of energy flow,

[9.80]

Refrictive
inelex of the
a-wiive
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that is the direction of the Poynting vector (8). The E, 4., is then orthogonal to the ray
direction. For the o-wave, the wavefront propagation direction k is the same as the
energy flow direction S. For the e-wave, however, the wavefront propagation direction
k is not the same as the energy flow direction 8.

2.15.2 BIREFRINGENCE OF CALCITE

Consider a calcite crystal (CaCO1) which is a negative uniaxial crystal and also well
known for its double refraction. When the surfaces of a calcite crystal have been
cleaved, that is, cut along certain crystal planes, the crystal attains a shape that is called
a cfeaved form and the crystal faces are rhombohedrons (parallelogram with 78.08°
and 101.92"). A cleaved form of the crystal is called a calcite rhomb. A plane of the cal-
cite rhomb that contains the optical axis and is normal to a pair of opposite crystal sur-
faces is called a principal section.

Consider what happens when an unpolarized or natural light enters a calcite crystal
at normeal incidence and thus also normal to a principal section to this surface, but at an
angle to the optic axis as shown in Figure 9.37. The ray breaks into ordinary () and
extraordinary (¢) waves with mutually orthogonal polarizations. The waves propagate
in the plane of the principal section as this plane also contains the incident light. The
o-wave has its field oscillations perpendicular to the optic axis. It obeys Snell’s law
which means that it enters the crystal undeflected. Thus the direction of E-field
oscillations must come out of the paper so that it is normal to the optic axis and alsa to
the direction of propagation. The field £, in the o-ray 18 shown as dots, oscillating into
and out of the paper.

The e-wave has a polarization orthogonal to the o-wave and in the principal sec-
tion. The e-wave polarization 1s in the plane of the paper, indicated as E, in Figure
0.37. It travels with a different velocity and diverges from the o-wave, Clearly, the

Dpu':, ax18

Principal section

Principal section iy F____I,_._———-——'—"" i
,l\~ e Ex —1—1—) e-wave

[]

i ____.-—-—-—'_-'_'—-_L\\

e-ray $ } .
1 1 > o+ o-Wave
Bl
o-Tay Incident wave y

A calcite rhomb Optic axis

{in plane of paper)

Figure 9.37 An EM wave that is off the optic axis of o calcite crystal splits inta twa wavas called erdinary and

extracrdinary waves.

These waves have orthogonal pdurl:uhuns and frovel with different velocities, The oawove has o polarization thot | is,
always perpendicular o the apfical axis.

o,

."
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e-wave does not obey the usnal Snell’s law inasmuch as the angle of refraction is not
zero. We can determine the e-ray direction by nating that the e-wave propagates side-
ways as in Figure 9.37b at right anples to E ;.

2.15.3 DICHROISM

In addition to the vaniation in the refractive index, some amisotropic erystals also exhibit
dichroism, a phenomenon in which the optical absorption in a substance depends on
the direction of propagation and the state of polarization of the light beam. A dichroic
crystal s an optically anisotropic crystal in which either the e-wave or the o-wave i3
heavily attenuated (absorbed). This means that a light wave of arbitrary polarization en-
tering a dichroic crystal emerges with a well-defined polanzation because the other or-
thogonal pelarization would have been attenuated. Generally dichroism depends on the
wavelength of light, For example, in a tourmaline {aluminum borosilicate) crystal, the
o-wave is much more heavily absorbed with respect to the e-wave,

?.16 BIREFRINGENT RETARDING PLATES

Consider a positive uniaxial crystal such as a quartz (n, > n;) plate that has the optic
axis (taken along z) parallel to the plate faces as in Figure 9.38. Suppose that a linearly
polarized wave is normally incident on a plate face. If the field E is parallel to the optic
axis (shown as £}, then this wave will travel through the crystal as an e-wave with a
velocity ¢/, slower than the o-wave since n, = m,.. Thus, the optic axis is the “slow axis”
for waves polarized parallel to it. If E is at right angles to the optic axis (shown as E ),
then this wave will travel with a velocity ¢ /n,, which will be the fastest velocity in the
crystal. Thus the axis perpendicular to the optic axis (say x) will be the “fast axis” for
polanization along this direction. When a light ray enters a crystal at normal incidence
to the optic axis and plate surface, then the o- and e-waves travel along the same
direction as shown in Figure 9.28. We can of course resolve a linear polarization at an
angle ¢ to z inte £, and E). The o-wave corresponds to the propagation of £ and
the e-wave to the propagation of E; in the crystal. When the light comes out at the

7 = Slow axis Figure 9.38 A refurder plate.
A Optic axis The opfic axis is parallel fo the plote face. The
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opposite face, these two components £, and E, would have been phase shifted by ¢.
Depending on the initial angle @ of E and the length of the crystal, which determines
the total phase shift ¢ through the plate, the emerging beam can have its initial linear
polanization rotated, or changed into an elliptically or circularly polarized light as sum-
marized in Figure 9.39.

If L is the thickness of the plate, then the o-wave experiences a phase change given
by Kowave L through the plate where k. wove 1s the wavevector of the o-wave, kogae =
(27 /x)n,. where A is the free-space wavelength. Similarly, the e-wave experiences a
phase change (2x/A)n L through the plate. Thus, the phase difference ¢ between the
orthogenal components £, and £ of the emerging beam is

2
= T{nf — )L [2.81]

The phase difference ¢ expressed in terms of full wavelengths is called the retardation
of the plate. For example, a phase difference ¢ of 180° is a half-wavelength retardation.

The polarization of the exiting-beam depends on the crystal-tvpe, (n, — n,), and
the plate thickness L. We know that depending on the phase difference ¢ between the
orthogonal components of the field, the EM wave can be linearly, circularly, or ellipti-
cally polarized.

A half-wave plate retarder has a thickness L such that the phase difference ¢ is
7 or 180°, corresponding to a half wavelength (4 /2) of retardation. The result is that
£} is delayed by 180" with respect to £, If we add the emerging E | and E;, with this
phase shift ¢, E would be at an angle —e to the optic axis and still linearly polarized.
E has been rotated counterclockwise through 2.
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A quarter-wave plate retarder has a thickness L such that the phase difference ¢
is /2 or 90°, corresponding to a quarter wavelength %J... If we add the emerging E |
and E) with this phase shift ¢, the emerging light will be elliptically polarized if
0 = & = 45° and circularly polarized if @ = 45°.

QUARTZ HALF-WAVE PLATE What should be the thickness of a half-wave quartz plate for a
wavelength A = 707 nm given the extraordinary and ordinary refractive indices are n, = 1.541
and f, = 1.54%7

SOLUTION

Half-wavelength retardation is a phase difference of 7, so from Equation 9.81
27
$="im, —m)L=x
A

giving

e 70w
m. —n,l (1.549 — 1.541)
This is roughly the thickness of a shect of paper.

Foas 44.2 pm
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EXAMFLE 9.19

917 OPTICAL ACTIVITY AND CIRCULAR
BIREFRINGENCE

When a linearly polarized light wave is passed through a quartz crystal along its optic
axis, it is observed that the emerging wave has its E-vector (plane of polarization)
rotated. which is illustrated in Figure 9.440), This rotation increases continuously with
the distance traveled through the crystal (about 21.7° per mm of quartz). The rotation of
the plane of polarization by a substance is called optical activity. In very simple intuitive
terms, optical activity occurs in materials in which the electron motions induced by the
external electromagnetic field follows spiraling or helical paths (orbits)." Electrons
flowing in helical paths resemble a curtent flowing in a coil and thus possess a magnetic
moment. The optical field in light therefore induces oscillating magnetic moments which
can be either parallel or antiparallel to the induced oscillating electric dipoles. Wavelets
emitted from these oscillating induced magnetic and electric dipeles interfere to consti-
tute a forward wave that has its optical field rotated either clockwise or counterclockwise,

If ¢ is the angle of rotation, then # is proportional to the distance L propagated in
the optically active medivm as depicted in Figure 9.40. For an observer receiving the
wave through quartz, the rotation of the plane of polarization may be clockwise (to the
right) or counterclockwise (to the left) which are called dextrorotatory and levorotatory
forms of optical activity. The structure of quartz is such that atomic arrangements spi-
ral around the optic axis either in clockwise or counterclockwise sense. Quartz thus
occurs in two distinet crystalline forms, right-handed and left-handed, which exhibit

¥ The explanction of aptical activity Inveheas examining both induced mognstic and electric dipols momants which
will not be described here in defil.
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dextrorotatory and levorotatory types of optical activity, respectively, Although we
vsed quartz as an example, there are many substances that are optically active, includ-
ing various biological substances and even some liquid solutions (e.g., corn syrup) that
contain various organic molecules with a rotatory power.

The specific rotatory power (¢ /L) is defined as the extent of rotation per unit
distance traveled in the optically active substance. Specific rotatory power depends on
the wavelength. For example, for quartz this is 49 per mm at 400 nm but 17" per mm
at 650 nm.

Optical activity can be understood in terms of left and right circularly polarized
waves traveling at different velocities in the crystal, i.e., experiencing different refrac-
tive indices. Due to the helical twisting of the molecular or atomic arrangements in the
crystal, the velocity of a circularly polarized wave depends on whether the optical field
rotates clockwise or counterclockwise. A vertically polarized light with a field E at the
input can be thought of as two right- and lefi-handed circularly polarized waves Eg and
E; that are symmeirical with respect to the y axis, f.e., at any instant o« = f#, as shown
in Figure 9.41. If they travel at the same velocity through the crystal, then they remain
symmetrical with respect to the vertical (e = f remains the same) and the resultant is
still a vertically polarized light. If, however, these travel at different velocities through
a medium, then at the output E; and E} are no longer symmetrical with respect to the
vertical, &’ # £, and their resultant is a vector E' at an angle & to the v axis,

Suppose that ng and ny are the refractive indices experienced by the right- and left-
handed circularly polarized light, respectively. After traversing the crystal length L, the
phase difference between the two optical fields E), and E; at the output leads to g new
optical field E' that is K rotated by &, given by

B ;E{n;_ — R [9.82]

where A is the free-space wavelength. For a left-handed guartz crystal, and for 589 nm
light propagation along the optic axis, ng = 1.54427 and n; = 1.54420, which means
g is about 21.4° per mm of crystal.

In a eircularly birefringent medium, the right- and left-handed ecircularly polar-
ized waves propagate with different velocities and experience different refractive
indices ng and . Since optically active materials naturally rotate the optical field, it is
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Figure 9.41 Verfically polarized wave at the input can be thought of as rwa right and left
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not unreasonable to expect that a circularly polarized light with its optical field rotat-
ing in the same sense as the optical activity will find it easier to travel through the
medium. Thus, an optically active medium possesses different refractive indices for
right- and lefi-handed circularly polarized light and exhibits circular birefringence. It
should be mentioned that if the direction of the light wave is reversed in Figure 9.40),
the ray simply retraces itself and E' becomes E.

ADDITIONAL TOPICS
9.18 ELECTRO-OPTIC EFFECTS?*

Electro-optic effects refer to changes in the refractive index of a material induced by
the application of an external electric field, which therefore “modulates™ the optical
properties, We can apply such an external field by placing electrodes on opposite Faces
of & crystal and connecting these electrodes to a battery. The presence of such a field
distorts the electron motions in the atoms or molecules of the substance or distorts the
crystal structure resulting in changes in the optical properties. For example, an applied
external field can cause an optically isotropic crystal such as GaAs to become birefrin-
gent. In this case, the field induces principal axes and an optic axis. Typically changes
in the refractive index are small. The frequency of the applied field has to be such that

l ¢ An axtensive discussion ond applicotion: of the slectro-oplic affects moy be found in 5. O, Kasap,
Olptoslectronics ond Photonics: Principles and Prectices, Prenfice Hall, 2001, Upper Saddle River, Nl ch 7.
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the field appears static over the time scale it takes for the medium to change its prop-
erties, that is, respond, as well as for any light Lo cross the substance. The electro-optic
effects are classified aceording to first- and second-order effects.

If we were to take the refractive index n to be a function of the applied electric
field E, that is, n = n(E), we can of course expand this as a Taylor series in E. The new
refractive index n' i3

n=nt+aE+aE 4+ ... [9.83]

where the coefficients ay and az are called the linear electro-optic effect and second-
order electro-optic effect coefficients, Although we would expect even higher terms in
the expansion in Equation 9.83, these are generally very small and their effects neghi-
gible within the highest practical fields. The change in r due to the first £ term is called
the Pockels effect. The change in n due to the second E® term is called the Kerr
effect,”! and the coefficient a3 is generally written as K where K is called the Kerr
coefficient. Thus, the two effects are

An =m E [2.84]
and
An=a:E% = (AK)E? [9.85]

All materials exhibit the Kerr effect. It may be thought that we will always find
some (nonzero) value for o) for all materials, but this is not true and only certain
crystalling materials exhibit the Pockels effect. If we apply a fiéld E in one direction
and then reverse the field and apply —E, then according to Equation 9.84, An should
change sign, If the refractive index increases for B, it must decrease for —E. Revers-
ing the field should not lead to an identical effect (the same An). The sttucture hag to
respond differently to E and —E, There must therefore be some asymmetry in the struc-
ture to distinguish between E and —E. In a noncrystatline material, An for E would be
the same as An for —E as all directions are equivalent in terms of dieleetric properties.
Thus a; = 0 for all nonerystalline materials (such as glasses and liquids). Similarly, if
the crystal structure has a center of symmetry, then reversing the field direction has an
identical effect and a; is again zero, Only crystals that are nencentrosymmetric™
exhibit the Pockels effect. For example, a NaCl erystal {centrosymmetric) exhibits no
Pockels effect, but a GaAs crystal {(noncentrosymmetric) does,

The Pockels effect expressed in Equation 9.84 is an oversimplification because inre-
ality we have to consider the effect of an applied field along a particular crystal direction
om the refractive index for light with a given propagation direction and polarization. For
example, suppose that x, v, and z are the principal axes of a crystal with refractive indices
Ay, #z, and #3 along these directions. For an optically isotropic crystal, these would be the
same whereas for a uniaxial crystal such as LiNbO; n; = n; # m, as depicted in the xy
cross section in Figure 9.42a. Suppose that we suitably apply a voltage across a erystal
and thereby apply an external dc field F,. In the Pockels effect, the field will modify the

' John Karr |1 824-1907) wos o Scotiish physicist whoe was a faculty member of Free Church Training College far
Teachers, Glosgow {1857-1901] where he sof up on aptics Iohoratory and demanstroted the Kere ebtect [1275).
¥ A cryotal fo o center of symmetry ohout o point G if any atom |or poirt with o positicn vector r from O also
appears when we invest r, that is, taka —r,
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optical indicatrix. The exact effect depends on the crystal structure. For example, a crys-
tal like GaAs, optically isotropic with a spherical indicatrix, becomes birefringent with
two different refractive indices. In the case of LiNbO; (lithium niobate), which is an op-
toelectronically important uniaxial crystal, a field E; along the y direction changes the
principal refractive indices n; and n; (both equal to i) to #| and »} as illustrated in Fig-
ure 9.42h. Moreover, in some crystals such as KDP (KH;POy, potassium dihydrogen
phosphate), the field £, along 7 rotates the principal axes by 45" about £ and changes the
principal indices. Rotation of principal axes in LiNbO; is small and can be neglectad.
As an example consider a wave propagating along the z direction (optic axis) in a
LiNbO; crystal. This wave will experience the same refractive index {#; = #2 = n,)
whatever the polarization as in Figure 9.42a. However, in the presence of an applied
field E, parallel to the principal y axis as in Figure 9.42b, the light propagates as two
orthogonally polarized waves (parallel to x and y) experiencing different refractive
indices #| and #5. The applied field thus induces a birefringence for light traveling
along the z axis. (The field induced rotation of the principal axes in this case, though
present, is small and can be neglected.) Before the field E, is applied, the refractive in-
dices n; and #; are both equal to #,. The Pockels effect then gives the new refractive
indices n| and »; in the presence of E; as
¢ 1 4 i 1 4
nyo=ar 4+ EﬂjrggEa and 1, 7= Ry — Enlrggﬁg [3.868]
where ry: is a constant, called a Pockels coefficient, that depends on the crystal strue-
ture and the material. The reason for the seemingly unusual subscript notation is that
there are more than one constant and these are elements of a tensor that represents the
optical response of the crystal to an applied field along a particular direction with
respect to the principal axes (the exact theory is more mathematical than intuitive). We
therefore have to use the correct Pockels coefficients for the refractive index changes
for a given crystal and a given field direction.? If the field were along z, the Pockels
coefficient in Equation 2.86 would be r3. Table 9.6 shows some typical values for
Pockels coefficients of various crystals.

1 The reader should not be loo concerned with the subseripts but simply interprel hem as identifying the right
Packals coeficient valua for tha particular electrooptic problam of hun-:[T

FPockels effect
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Table 9.6 Pockals () and Kaerr [K) coefficients in various materials

Pockels Coefficients
Maierial Crystal Indices x 1072 m/v Comment
LiMbd}y Liniaxial n,=212T2 Fis= 862 rg =308 A == 500 nm
m, = L1387 rus= 34 rq =28
KL Uniaxial n, = 1512 ryg = 8.8, ryg = 105 L =2 546 nm
o= 1470
Cafs Tsotropic n; =30 rin= 1.3 L == 546 mm
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It is clear that the control of the refractive index by an external applied field {and
hence a voltage) is a distinct advantage that enables the phase change through a Pockels
crystal to be controlled or modulated; such a phase modulator is called a Pockels cell.
In the longitudingl Pockels cell phase modulator the applied field is in the direction of
light propagation, whereas in the fransverse phase modulator the applied field is trans-
verse to the direction of light propagation.

Consider the transverse phase modulator in Figure 9.43, In this example, the applied
elecric field £, = V/d is applied parallel to the v direction, normal to the direction of
light propagation along z. Suppose that the incident beam is linearly polarized {shown
as £} say at 457 to the v axes. We can represent the incident light in terms of polariza-
tions (E, and E,) along the x and y axes. These components E, and E, experience re-
fractive indices n| and n}, respectively. Thus, when E, traverses the distance L, its phase

changes by ¢,
1 = il L= E(ﬂaﬂ- iri}rnE)
b A 2774
When the component E, traverses the distance L, its phase chanpes by ¢, given

by a similar expression except that res changes sign. Thus the phase change Ag
between the two field components is

2 4 L
A =g — it = }—n;}rzzz v [¢.87]
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The applied voltage thus inserts an adjustable phase difference Ag between the two
field components. The polarization state of the output wave can therefore be econtrolled by
the applied voltage and the Pockels cell is & polarization modulator. We can change the
medium from a guarter-wave to a half-wave plate by simply adjusting V. The voltage V =
Vi 2 the half-wave voltage, comesponds to Ag = m and generates a half-wave plate.

“ CD Selected Topics and Solved Problems

Selected Topics N
Beal and Imaginary Diclectric Constant

Sulved Problems

Fresnel's Byuations

Optical Dispersion and Absorption Complex Relractive Index and Light Absorption .
Lk ; b Dispersion: Refractive Index versus Wavelength i'; I
-y E'iﬂ— : f.["- Echavior 4
DEFINING TERMS

Absorption is the 1083 in the power of electromagnetic
radiation that is traveling in a medium. The loss is due
to the conversion of Tight energy to other forms of
energy, such as lattice vibrations (heat) during the
polarization of the molecules of the medium, local
vibrations of impurity ions, excitation of electrons from
the valence band to the conduction band, and so on,

Activator iz a luminescent ¢center in a host crystal or
glass in which it 1s excited, by some extemal excitation
such as UV light; following excitation, the activator
emits radiation o return to its ground state, or become
de-gacited,

Anisotropy (optical) refers (o the fact that the refrac-
tive index m of a crystal depends on the direction of
propagation of light and on the state of its polarization,
that is, the direction of the clectric field.
Antireflection coating is a thin dielectric layer
coated on an optical device or component o reduce
the reflection of light sand increase the transmitted
light intensity.

Attenuation is the decrease in the optical power (or
irradiance) of a traveling wave in the direction of prop-
agation due 1o absorption and scattering.

Altenuation coefficient o represents the spatial rate
of attenuation of an EM wave along the direction of

propagation. If P, is the optical power at some location
€2, and if it is P at a distance L from O along the direc-
tion of propagation, then P = P, exp(—aL).
Birefringent crystals such as calcite are opiically
anisotropic which leads to an incident light beamn be-
coming separated into ondinary and extrmordinary waves
with onthogonal pelanzations: incident light becomes
doubly refracted because these (wo waves eaperience
different refractive indices n, and m,.

EBrewster’s angle or polarization angle (8,) is the
angle of incidence that resulis in the reflected wave
having no electric field in the plane of incidence (plane
defined by the incident ray and the normal to the sur-
face), The electric field oscillations in the reflected
wave are in the plang perpendicular to the plane of
incidenge,

Circolarly birefringent medium is a medium in
which right and left circularly polarized waves propa-
gate with different velocities and experience different
refractive indices ng and ny,

Circolarly polarized light is light where the magni-
tude of the field vector E remains constant but its Gp at
a given location on the direction of propagation traces
out a circle by rotating either in a clockwise sense, right
circlarly polarized, with time, as observed by the
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receiver of the wave, or n a counlerclockwise sense,
left clrewlarly pedarized,

Complex propagation constant (&' — j&") describes
the propagation characteristics of an electromagnetic
wave that is experiencing attenuation as it travels in a
lossy mediom. If & = &' <= jk" is the complex propaga-
tion constant, then the electric field component of & plane
wave traveling in a lossy medium can be described by

E =E, exp(—k"z) exp flws — k'2)

The amplitnde decays exponentially while the wave
propapates along 2 The real &' part of the complex
propagation constant (wavevector) describes the prop-
agation characteristics, that is, the phase wvelocity
v=uw/k'. The imaginary " part describes the rate of
attenuation along 2.

Complex refractive index N with real part # and ima-
ginary part & is defined as the ratio of the complex prop-
agation vonstant & in a medium to propagation constant
k, in free space,
N (T
B T T

The real part # is simply called the refractive index,
and K is called the extinction coefficient.

Critival aogle (¢} is the angle of incidence that
results in a refracted wave at 90¢ when the incident
wave is baveling in a medium of lower refractive
index and is incident at a boundary with a material with
a higher refractive index.

Dielectric mirror is made from alternating high and
low refructive index quarter-wave-thick multilayers
such that constructive interference of partially reflected
waves pives rise to a high degree of wavelength-
selective reflectance.

Dispersion relation 1z a relationship between the
refractive index s and the wavelength A of the EM wave,
n=n{A); the wavelength vsoally refers to the free-
space wavelength, The relationship between the angular
frequency o and the propagation constant &, the o—#
curve, 15 also called the dispersion relation.

Dispersive medivm has a2 refractive index a that
depends on the wavelength; that is, r 15 not a constant.
Electra-optic effects refer to changes in the refractive
index of a material induced by the application of an

external electric field, which therefore “modulates” the
oplical properties; the applied field is not the electric
field of any light wave, but a separate external field.
Extinction coefficient is the imaginary part of the
complex refractive index .

Flunrescence is luminescence that occurs over very
short time scales, usually less than 10-% seconds (or
10 ns). In fluorescence, the onset and decay of lumi-
nescent emission, due to the onset and cessation of ex-
citation of the phosphor, is very short, appearing o be
almost instantaneous.

Fresnel's equations describe the amplitude and phase
relationships between the incident, reflected, and
transmitted waves at a dielectric~diclectric interface in
terms of the refractive indices of the two media and the
angle of incidence.

Group index (N;) represents the factor by which the
group velocity of a group of waves in a dieleciric
medium 15 reduced with respect (o propagation in [tfee
space, Ny = /vy where vy is the group velocity,
Grouap velocity (v} is the velocity at which energy,
or information, is ransported by a group of waves; v,
is determined by diw/dk whereas phase velocity is
determined by w k.

Instantaneous irradiance is the instantaneous flow
of energy per unit time per unit area and is given by the
instantancous value of the Poynting vector 8.

Irradiance (average} is the average flow ol coergy
PET umil (ime per unit area where averaging is typically
carried out by the light detector (over many oscillation
periods), Average irmadiance can also be defined math-
ematically by the average value of the Poynting vector
8. The instantaneous irradiance can only be measured
il the power meter can respond more guickly than the
oscillations of the electne field. and since ths 15 in the
opiical frequencies range, all practical measurements
Invariably yicld the average iradiance.

Kerr effect is a second-order effect in which the
change in the refractive index a depends on the square
of the electric field, that is, An = e £E, where u; is a
material dependent constant.

Kramers-Kronig relations relate the real and imagi-

nary parts of the relative permittivity. If we know the
complete frequency dependence of the real part e {w),



using the Kramer—Kronig relation, we can find the fre-
quency dependence of the imaginary part & ().

Luminescence is the emission of light by a material,
called a phosphor, due to the absorption and conversion
of cnergy into clectromagnetic radiation. Typically the
cmission of light occurs from certain dopant impurities
or even defects, called luminescent or Juminescence
centers or activators purposcfully introduced into a
host matrix, which may be a crystal or glass, which can
accept the activators. Photoluminescence involves cx-
citation by photons (light). Cathodoluminescence is
light emission when the excitation is the bombardment
of the phosphor with energetic electrons as in TV cath-
ode ray tubes. Electroluminescence is light emission
due to the passage of an electric current as in the LED.
Oplicaxis 1s an axas in the orystal situcture along which
there is no dJouble refraction for light propagation along
this axis.

Omptical activity is the rotation of the plane of polar-
ization of plane polarized light by a substance such as
quartz,

Optical indicatrix (Fresnel's ellipsoid) is a refractive
index surface placed in the center of the principal axcs
x, v, and 7 of a crystal; the axis intercepts are i, #1z, and
#3. We can represent the optical properties of a crystal
in terms of three refractive indices along three orthog-
onal axes, the principal aces of the crystal, x, ¥, and z.

Phase of a traveling wave is the guantity (Ex — o)
which determines the amplitude of the wave al posi-
tion x and at time ¢ given the propagation constant
ki{= 2x/3) and angular frequency w. In three dimen-
sions it Is the guantity (k.r —or) where K ois the
wavevector and ris the position vector.

Phase velocity is the rate at which a given phase on a
raveling wave advances. It represents the velocity of a
given phase rather than the velocity at which informa-
tion is carried by the wave, Two conseculive peaks of a
wive are separated by a wavelength &, and il takes
d time period 1,/v for one peak 1o reach the next {or the
ime separation of lwo consecutive peaks at one loca-
tivith; then the phase velocily is defined as v= v,

Phasphor is a substance made of an activator and a

host matrix {crystal or glass) that exhibits lumines-
cence upon suitable excitation,
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Phosphorescence is a slow luminescence process in
which luminescent emission occurs well after the ces-
sation of excitation, even after minutes or hours.

Pockels effect is a linear change in the refractive
index s of a crystal due to an application of an external
electric field £, other than the field of the light wave,
that is, An = a £, where g, is a constant that depends
on the crystal structure.

Polarization of an EM wave descnbes the behavior of
the eleciric field vector in the EM wave as it propagates
through a medium. If the oscillations of the elecinc
field at all imes are contained within a well-defined
line, then the EM wave 1s said to be lnearly polar-
ized. The field vibrations and the direction of propa-
gation, ¢ g., ¢ direction, define a plare of polarization
{plane of vibration), so lincar polanzation implies a
wave that is plane-polanized.

Poynting vector (S) represents the energy flow per
unit time per unil area in a direction determined by
E = B (direction of propagation), 8 = v?ce, E = B
lis magnilude, power low per unit area, is called the
irradiance,

Principal axes of the crystal, normally labeled, x, y,
and z, are special axes along which the polarization
vector and the elecrric field are parallel. Put differently,
the electric displacement £ and the electric field £
vectors are parallel. The refractive indices along these
%, ¥, and z axes are the principal indices #, #z, and n,,
respectively, for electric field oscillations along these
directions {not to he confused with the wave propaga-
tion direction).

Reflectance is the fraction of power in the reflected
electromagnetic wave with respect to the incident
power.

Reflection coefficient is the mano of the amplimde of
the reflected EM wave o that of the incident wave, It
can be positive, negative, or a comples number which
then represents a phase change.

Refraction is a change in the direction of a wave
when il enlers a medium with a different refractive
index, A wave that is incident at a boundary between
two media with different refractive indices experiences
refraction and changes direction in passing from one to
the other medium,
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Refractive index » of an optical medium is the ratio
ol the velocity of light in 8 vacuum to its velocity in the
medium /v = /v,

Retarding plates are optical devices that change the
state of polarization of an incident light beam. For
example, when a linearly polarized light enters a
guarter-wave plare, I emerges from the device cither
as circularly or elliptically polarized light, depending
on the angle of the incident electric ficld with respect
to the optic axis of the retarder plate,

Scattering is a process by which the encrgy from a
propagating EM wave is redirected as sccondary EM
wives in various directions away from the original
direction of propagation. There are a number of scat-
tering processes, In Rayleigh scattering, fluctuations in
the refractive index, inhomogencities, etc., lead to the
scattering of light that decrecases with the wavelength
as A%,

Soell’s law is a law that relates the angles of incidence
and refraction when an EM wave traveling in one
medium becomes refracted as it enters an adjacent
medium. If light is traveling in 2 medium with index »,
is incident on a medium of index #,, and if the angles
of incidence and refraction (transmission) are &; and &,
then according to Snell’s law,

Ein Bj Mz

sin f, n

Specific rotatory power is defined as the amount
of rotation of the optical field in a linearly polanized
light per unil distance traveled in the oplically active
substance,
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Stoke's shift in lumincscence is the shift down in the
frequency of the emitted radiation with respect to that
of the exciting radiation.

Total internal reflection (TIR) is the toral reflection
of a wave traveling in a medivm when it is incident at
a boundary with another medivm of lower reltactive
index, The angle of incidence must be greater than the
critical angle &, which depends on the refractive
indices sin &, = nz/my.

Transmission coefficient s the ratio of the amplitude of
the wansmitted wave to that of the incident wave when
the incident wave traveling in a2 medium meets a bound-
ary with a different mediom (different refractive index).

Transmittance is the fraction of transmitted intensiiy
when a wave raveling in a medim 13 incident at &
boundary with a dilferent mediom (different relractve
index),

Wavefront is a surface where all the points have the
same phase. A wavefront on a plane wave is an infinite
planc perpendicular to the direction of propagation.

Wavenumber or propagation constant is defined as
2w /2 where 4 15 the wavelength, [ is the phase shift in
the wave over a distance of unit length,

Wavepacket isa group of waves with slightly different
frequencies mraveling together and forming a “group.”
This wavepacket travels with a group velocity v, that
depends on the slope of w versus k characteristics of the
wavepacket, Le., vy = dw/dk.

Wavevector is a veclor denoted as K thal desceribes the
direction of propagation of 2 wave and has the magni-
tude of the wavenumber, £ = 2z /A,

QUESTIONS AND PROBLEMS

2.1 Refractive index and relative permittivity Using n = /5, calculate the refractive index # of the
materials in the table given their low-frequency relative peemittivities 2. (LF), What is vour conclugion?

Material
-5 Ge NaCl MO
& (LF) 6.4 16.2 5400 983
# = 1-5 pm} 245 4.0 1.54 1.71
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QuesTIONS AND PROELEMS

Refractive index amd bondgap THamond, silicon, and germanium all have the same diamond unit
cell. All three are covalently bonded solids, Their refractive indices {n) and energy bandgaps (E,) are
shawn in the table. {a) Plat x versus £, and () plot n* versus 1 /E,. What i your conelusion? According
o Moss's eule, very roughly,

mihi, = K = Constant
YWhat is the value of K7
Material
Diamond Silicon Germanimm
Bandgap, £ {2V} 5 1.1 0.66
n 14 340 4.0

Temperature cocfficicnt of relractive index  Suppose that we conld write the relationship betwesn
the refraciive index » (at frequencics much less than uliravielet light) and the bundgup £, of & semicon-
ductor as supgested by Hervé and Vandamme,

1t 3
LEEE i
where £, is incV, 4 = 13.6eV, and B = 3.4 ¢ V. (H depends on the incident photon energy. b Temperatun:
dependence i n results from & £, dT and J8/d T, Show that the temperature encificient of refractive
index {'CRI) is given by, **
1 dn (n? — 1)*2 [dF, ;
TRl = — = | —= I
n &7 13,607 [dT : ]

where B isd B /dT. Giventhat B = 2.5 x 10 % e¥ K7, culoulate TCRI fur two semconductors: 31 with
e A8 and dE JdT 2 —3 5 1074 eV K1, and AlAs with n %= 3.2 and JE Jd T 5 —4 5 W4 eV KL

Sellmeier dispersion equation  Using the Sellmeier equation and the cosfeients in Table 9.2, calculate
the refractive index of fuscd silica (8i0:) and germania ((rez) at 1550 nm. Which is larger, and why?

IMspersion (7 versus L) in GaAs By using the dispersion relation for GaAs, calculate the relractive
incdest v and the group index Ny of GaAs at a wavelength of 1304 nm.

Canchy dispersion equation  Using the Cauchy coefficients and the general Cauchy equation, caleu-
bt the refractive index of a silicon crystal at 200 pm and at 2 um, over two orders of magnitude wave-
Iength chunge. What is your conclusion? Would you expect a significan chnge in a forho = £,7

Cauchy dispersion relation for zine selenide  ZaSe is a II-VI semiconductor and a very usciul opdi-

cal material used in various applications such s opticul windows Cespecially high-power laser win-

dows), lenses, prisms, etc. Tt transmits over 0.5 t0 19 pm. » in the 1-11 wm range described by a

Cauchy expression of the foem

10485 00061
Tk
A A

-

i=24365 + — (N33

in which L is in um. What is Zn5e's refractive index r and group index &, at 5 pm?

Dispersion (r versus L) Consider an alorn in e piesence of an ascillating electric field as in Figure 4.
The applied ficld oscillames harmonically in the 4o and -x directions and 15 given by £ = E, exp{ for).
The energy losses can be represented by a frictional force whose magnitwde 15 proportional to the velocity

I P j L Herva and L. K. J. Yondomme, J. Appl. Phys., 77, 5476, 1995 and references therein,
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Flectronie
polarizability

Conmprlax
ffractive index

Dispersion in
digmiond
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2.9

.10

2.1

.12

2.13

drjdr, Iy i3 the propomionality constant per electron and per unit electron mass, then Newton's secomd
law for £ electrons in the polanzed atom is

)
EM,F.T = —TFeFycxpl fur) — Zm,mﬁr — Emgy

dx
di

where o, = (f#/Zm,)""? is the natural frequency of the system composed of Z electrons and a +Ze no-
clens and § is a force constant for the restoring Coulombic force between the electrons and the nuclens,
Show that the electronic polarizability o, is

L D
e E m,(mZ = w® + jrw)

What does 4 complex polarizability represent”? Since o, is a complex guantity, so is £- and hence
the refractive index, By writing the complex refractive index N = /2, where £ is related to o, by the
Clausius-Mossott equation, show that

NE—1 N Ze?
z = YR
Ni+2  dsumlo? —o? + jrw)

where M 15 the number of atums per unit volume, What are vour conelusions?

Dispersion and dismond Consider applying the simple elecoronic polarizability und Clawsins—
Muossntti equations to diamand, Meglecting Losses,

I
T m [w — w?)
anid
g1 NZ&
B 42 Beam, [k — wf)

For diamond we can take £ =4 (valence clectrons only as these are the most responsive), ¥ =18 =
10% aroms ™3, & (DO = 5.7 Find oo, and then find the refractive index ac & = 0.5 pm and 5 pm.

Eleetric and mapgnetic Gelds in light  The iotensity (rradiance) of the red laser beam from a He-Ne

laser in air has heen measured to be abont | m% cm™ 2. What are the magnitudes of the electric and mag-

netic fields® What are the magnimudes if this | mW em~2 beam were in a glass medium with a refractive

index n = 1.45 and stall bhud the same inteosity T

Reflection of light from u less dense medium (internal reBection) A ruy of light which is troveling

in a glass medium of refractive index ny = 1,430 becomes incident on a less dense glass medium of re-

fractive index mz = 1,430, Suppose that the free-space wavelength (M) of the light ray is | pm.

o, Whar should be the minimum incdence angle for TIR?

b, What is the phase change in the reflected wave when 8 = 85° and when & = 9077

e, What 15 the penetration depth of the evanescent wave into medivin 2 when 8 = 35%aml when
g = 97

Internal and external reflection at normal incidence  Consider the reflection of light at rarmal incidence

o a boundary between a Gads crvstal medium of refeactive index 3.6 and adr of refrsctive index 1,

a.  If light is caveling from aic w Gads, what @5 the reflection coefficient aod the intensiy of the ce-
flzcted light in terms of the incident Llight?

B If light is traveling from (GaAs to air, what is the reflection cocfficient and the intensity of the re-
flecred light in terms of the incident light?

Antireflection coating

w.  Consider three dielectric media with at and paralle] boundaries with refractive indices ny, na, and
n3. Show that for oommald neidence the reflection cosfficient betwesn layers 1 and 2 is the same us
that hetweecn lavers 2 and 3 it 5y = s, What is the significance of this?
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b Consider o 81 photodiede that is designed for operation at 900 nm. Given a choice of two possible
antireflection coatings, 3i(): with a refractive index of 1.5 and Ti(x with a refractive index of 2.3,
which would you use and what would be the thickness of the antireflection coatiog you chose? The
releactive mdex of 5112 3.5,

Optical Abers in coommunications  Optical fibers for long-haul applications uswally have a core re-
#ion that has o diacoeter of about 10 pom. and the whole fiber would be about 125 pm in dismeter, The
core and cladding refractive indices, sy and nz, respectively, are nommally only 0.3-0.5 percent differ-
ent. Congider a fiber with ) (core) = L4510, and sxicladding) = 1,4477, bach at 1350 nm, What is the
maxicoum angle that o light ray can make with the fiber axis if it s still o propagate along e Gber?

Orptical fibers in communleations  Consider a short-haul opiical fiber that has sy{core) = 1455 and
malcladding) = 1,440 ai 370 nm. Assume the core-cladding interfuce behaves like the fat interface be-
tween two infinite media a8 in Figure 9.11. Consider a ray that is propagating that has an angle of inci-
dence 35° ar the core~cladding interface, Can this ray exercize total internal reflection? What would be
its penelration depth into the cladding?

Complex refractive index  Spectroscopic ellipsomeatry measurements on a silicon crvstal at a wave-
length of 620 nen show that the real and imugrinary parts of the complex relative permittivity are 15,2254
and (.172, respectively. Find the complex refractive index. What is the reflectance and absorption coef-
ficient at this wavelength? What is the phase velocity?

Complex refractive index Spectroscopic cllipsometry measurements on a germanium crystal at a
photan eneegy of 1.5 ¢V show that the real and imaginasy parts of the complex pelative peemittivity
are 21.56 und 2.7T2. respectively, Find the complex refractive index. What s the reflectunce and ab-
sOMptinn coefficient at this wavelength? How do your calculations match with the experimental values
of n =d4.653 and K = 0.298, A=041%and @ = 4,53 = [0°Pm~17

An n-type germanium sample has a conductivity of abouwt 300 2-'m=1. Calculate the imaginary part .v;"
of the relative permittvity at a wavelengib of 20 ym. Fiod the attenuation coefficient o due o fmee car-
rier absurption. The refroctive index of rermaniom at the specified wevelength isn = 4.

Reststrahlen absorption in CdTe Figere 9.22 shows the infraced eatunction coefMicient £ of CdTe,
Calculate the absorption coetficient o and the reflectance A of CdTe at 60 pm and 80 pm.

Reststrahlen abszorption in GaAs Figure 922 shows the infrared extinction coefflicient K of
GuAs as o function of wevelength, Optical measurements show that £ peaks at A = 37.1 pm whers
K == 1.6 and n == 6.6, Calculate the absorption coefficient o and the reflectance A ar this wavelength,

Fundamentsl absorpiion Consider the semiconductors in Figure 923, and those semiconductons

listed in Tahle 9.3,

. Which semicondociors can be candidates for a photodetector thar can detect light in optical com-
municutions ar 1550 nom?T

b For amorphous S (u-51), one defimtion of un eprical gap 15 the photon energy thut resulls in an op-
ticul ahsorption coefficient & of 10% cm™'. What is the optical gap of 2-%i in Figure $.23¢

e.  Consider o solar cell from crysealline 55 What is the absorption depth of lighe at 1000 nm, and at
00 nm*

(uartz half-wave plate What arc the possible thicknesses of 2 half-wave quarte plate for 8 wave-
lengih & == 101 pm given the extraordinacy and ordinary refractive indices are .= 1.53d and 7, =
1543, respeciively?

Pockels cell modulator  What should be the aspect ratio /L for the transverse LiMNiO; phase modula-
tor in Figure 9.43 that will operate at o ree-space wavelength of 1.3 prm and will provide o phase shift
A of 71 (half wavelength) hetween the owo field components propagating through the erystal for en ap-
plied voltage of 20 ¥7 The Packels coefficient ryp is 3.2 = 107" myV and n = 2.2,
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