Discrete Fourier Transform
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Fourier Analysis

of Signals Using the

10.0 INTRODUCTION

T92

In Chapter 8, we developed the discrete Fourier transtorm (IFT} as a Fourier repre-
sentation of finite-length signals, Becanse the TIFT can be computed efficiently, it plays
a central role in awide variety of sipnal-processing applications, including filiering and
spectrum analysis. In this chapter. we take an introductory look at Fourier analvsis of
sizgnals using the DFT.

In applications and algorithms based on explicit evalwation of the Fourier trans-
lorm. it is tdeally the discrete-time Fourier ransform (IDTET) that is desired, although
itis the TOFT that can aetually be computed. For fimite-length signals, the DFT provides
frequency-domain samples of the DTEL and the impheations ol this sampling muost
be clearly understood and sceeountled lor. For example, as considered in Section 8.7, in
limear Gltering or convolution implemented by maltiplyving DETs rather than DTETS,
a cireular convolulion s mplemented, and special care must be laken 1o ensure thal
thz results will be equivalent to a linear convelution, In addition, in many filtering and
spectrum analysis applications. the signals do not inherently have finite length. As we
will discuss, this inconsistency between the finite-lenpth requirement of the DET and
the reality of indefinitely long signals can be accommaodated exactly or approximately
through the concepts of windowing, Mock processing, and the fime-dependent Fourier
et foarem,
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Figure 10.1 Processing steps in the discrete-time Fourer analysis of a
continuous-time signal,

10.1 FOURIER ANALYSIS OF 5IGNALS USING THE DFT

One of the major applications of the DFL is in analyzing the frequency content of
continuous-time signals. For example, as we describe in Section 10.4.1, in speech analwsis
and processing, frequency analysis is particularly useful in identifying and modeling
the resonances of the vocal cavity. Another example, introduced in Section 10.4.2, is
Doppler radar, in which the velocity of a target is represented by the frequency shift
between the transmitted and received signals.

Tha basic steps in applying the DET to continuous-time signals are indicated in
Figure 10.1, The antialiasing filter is incorporated to eliminale or minimize the effect
of aliasing when the continuous-time signal is converted to a sequence by sampling.
The nead for multiplication of x[n] by w(a], Le.. windowing, is a consequence of the
finite-length requirement of the DFT. In many cases of practical interest, s.(1) and, con-
sequently, «|q] are very long or even indefinitely long signals (such as with speech or
music). Therefore, a intte-duration window w(n |15 applied to ¢[#] prior to computation
of the DFT. Figure 10.2 illustrates the Fourier transforms of the signals in Figure 10.1.
Figure 10.2{a} shows a continuous-time specttum that tapers ofl at high frequencies but
is not bandlimited. 1t also indicates the presence of some narrowband signal energy,
represented by the narrow peaks. The frequency response of an antialiasing flter is 1l
Tustraled im Figure 100200). As indicated in Figare 10.2{c¢). the resulting continuous-lime
Fourier translorm X {7} contains little useful information about S0 Q) for frequen-
cies above the cutoff frequency of the filter, Since Hy, (700 cannot be ideal, the Fourier
components of the inpul in the passband and the transition band also will be modified
by the frequency response of the filter.

The conversion of x.(¢) to the sequence of samples x[#] is represented in the fre-
quency domain by periodic replication, frequency normalization, and amplitude scaling
ie.,

. 2;
eri“a— Z B8 (; +;—1T-’) (10.1)

"Fhis is illustrated in Figure 10.2(d). In i pracncal implementation, the antialiasing filter
cannot have infinite attenvation in the stopband. Therefore, some nonzero overlap of
the terms in Eq. (1011}, i.e., aliasing. can be expected: however, this source of error can
be made negliginly small either with a high-quality continuous-time filler or through the
use of initial oversampling followed by more effective discrete-time lowpass fillering
and decimation, as discussed in Section 4.8.1. If x[n] 15 a digital signal, so that AT
conversion is incorporated in the second system in Figure 1401, then quantization error
1% also imtroduced. As we have scen in Section 4.8.2, this crror can be modeled as a
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Figure 10.2 Wustration of the Fourier transforma of the aystem of Figure 10.1.
(&) Fourier transform of continugus-time input signal. (b) Frequency respanse of
antialiasing fiter. {c) Fourer tr@nsform of output of antialiasing fiter. {d) Fourier
transtorm of samplec signal. {e) Fouriar transtorm of window seguence. (f) Fourier
transform of windowed signal segment and freguency samples obizined using DFT
samples.

794



Section 101 Fourier Analysis of Signals Using the DFT 795

noise sequence added to x[r]. The noise can be made nepligible through the use of
fine-grained quantization.

The sequence x|x] is tvpically multiplied by a finite-duration window wix]. since
the input to the DFT must be of finite duration. This produces the finite-length sequence
vinl = wn]le[x]. The effect in the frequency domain is a periodic convolution, i.e.,

X
Vie) = — f X (e yw e/ @-an. (10.2)
2w | 4
Figure 10.2(e ) illustrates the Fourier transform of a typical window sequence. Note that
the main lobe is assumed to be concentrated around w = ), and, in this illustration, the
side lobes are very small, suggesting that the window tapers at its edges. The propertics
of windows such as the Bartlett, Hamming, Hanning, Blackman, and Kaiser windows
arc discussed in Chapter 7 and in Section 10.2. Al this point, it is sufficient to observe that
convolution of W(e#*) with X (¢/*) will tend to smooth sharp peaks and discontinuities
in X (e*). This is depicted by the continuous curve plotied in Figure 10.2(f).
The final operation in Figure 1001 15 the computation of the DFT, The DFT of the
windowed sequence v[r] = wlnlx[n]is
N1
VIk] = ) vlale™ /550 gk =0,1,.,, N =1, (10.3)
a1
where we assume that the window length L 1s less than or equal to the DFT length V.

Vik],the DFT of the finile-length sequence v|#]. corresponds to equally spaced samples
of the DTFT of u[a]; i.e.,

VIkl = V™) _pepne {10.4)

Figure 10.2(f) also shows V[4] as the samples of V{e/*). Since the spacing hetween
DFT frequencies is 2/ N, and the relationship between the normalized discrete-time
frequency variable and the continnous-time frequency variable 18 w = QT, the DFT
frequencics correspond to the continuous-time frequencies

_ 2k
N
The use of this relalionship between continuous-time frequencies and DFT frequencies
is illustrated by Examples 10.1 and 10.2.

L1

(10.5)

Example 10.1 Fourier Analysis Using the DFT

#% Consider a bandlimited continuous-time signal x-41) such that X (2} =0 for |82 =
ELD 2 (25000, Wi wish 1o use the system of Figure 10,1 to estimate the continuous-time
25 spectrum X (8. Assume that the antialiasing filter My, (fQ)isideal, and the sampling
o rate for the /D converter is 1/ T = 5000 samples/s. If we want the DFT samples k]
1o be equivalent o samples of X078 that are al most 2r(10y radis or 1 Hz apart,
what is the minimum value that we should use for the DFT size &7

From Eg. (10.5}, we see that adjacent samples in the DFT correspond o
##  conlinuows-lime frequencies separated by 2x /AN T). Therefore, we reguire that
im

—{2-.
Ny =0




796

Chaptar 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

g which implies thal

£ N o= 3N
B N =50
.'ﬁg satisfies the condition. If we wish to use a radix-2 FF1 algorithm to compute the DFL

in Figure 10.1, we would choose A = 512 for an cquivalen! continuous-time frequency
spacing of AL = 2a(5000512) = 27 (9.77) vadis.

Example 10.2 Relationship Between DFT Values

gt Consider the problem posed in Example 1001 inwhich 1; T = 5000, % = 512, and (¢}
"% is real-valued and is sufficiently bandlimited 1o avoid aliasing with the given sampling
i+ rate. IF it is determined that V[11] = 200001 — §), what can be said about other values
45 of V& or about X 8
Referring o the symmetry properties of the DFT given in Table 8.2, V4] =
V=Nl £ =0.1... .. N - 1, and consequently, V& — k1 = V*[k]. so it follows
in this casc thal

% VISIZ - 1] = V501 = V*[I1] = 200001 = f).
L Lt . .
Ff-:‘i We also know that the DFT sample & = 11 corresponds 1o the continuous-time fre-

quency £y = Ted LS000) /512 = 2201074}, and simlacly, & — 501 corresponds to
“4 the frequency —2x (115000 /512 = ~2x {107.4). Although windowing smooths the
B spectrum, we can say that

Xt JS210 = Xo(g2m {174y &= T« VLT] = 0441 4 ).

- Note that the factor T is required 1o compensate for the factor 1/ T introduced by
sampling, as in Eq. (10,1} We can again exploil symmetry to conclude that

Xol— 70 ) = Xof— 2x (10740 = T - V¥ 11] = 0441 — ).

Many commercial real-time spectrum analyzers are bascd on the principles em-
bodied in Figures W11 and 10.2. It should be clear from the preceding diseussion, how-
ever, that numerous factors affect the interpretation the DFT of a windowed segment
of the sampled signal in lerms of the continuous-time Fourier transform of the original
input 50t} To accommodate and mitigate the effeets of these factors, care must be taken
i fillering and sampling the input signal. Furthermore. to interpret the results cotrectly,
the elfects of the time-domain windowing and of the [requency-domain samphing m-
herent in the DEFT must be clearly understood. For the remainder of the discussion,
we will assume that the issues of antialiasing filtering and continuous-to-discrete-lime
conversion have been satisfactorily handled and are negligible. In the next section, we
concentrate specifically on the elfects ol windowing and of the frequency-domain sam-
pling imposed by the DIT. We choose sinusoidal signals as the specific class of examples
to discuss, because sinusoids are perfectly bandlimited and they are easily compured.
However. most of the issues raised by the examples apply more generally.
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10.2 DFT ANALYSIS OF SINUSOIDAL SIGNALS

The DTFT of a sinusoidal signal A costexe + ¢) (existing for all a) is a pair of impulses
at beop and - cy (repeating periodically with period 2x ). In analyzing sinusoidal signals
using the DFT, windowing and spectral (frequency-domain) sampling have important
effeets. As we will see in Section 10.2.1, windowing smears ot broadens the impulses of
the Fourier representation, thus the exact requency is less sharply defined. Windowing
also reduces the ability to resolve sinusoidal signals that are close together in frequency.
The spectral sampling inherent in the DFT has the cficet of polentially giving a mis-
leading or inaccurate picture of the true spectrum of the sinusoidal signal. This effect is
discussed in Section 10023,

10.2.1 The Effect of Windowing

Consider a continuous-time signal consisting of the sum of two sinusoidal components;
Li.

5000 = Apcos{Sint + ) + Ay cos(Sht + &) —00 = F 00, (10.6)

Assuming ideal sampling with no aliasing and no quantization error, we obtain the
discrete-lime signal

xhu} = Apcosimpn + &) + A1 cos(ann + Bi), -0 o= O, (10.7y
where oy = 897 and ) = 0T, The windowed sequence v[#] in Figure 1.1 is then
vin| = Agwin] coslwor + i)+ Ajwla]cosior + L {1118}

To obtain the TVTFT of vir), we can expand Eq. (10,8} in lerms of complex exponentials
and use the frequency-shifting property of Eq. (2.1538) in Section 2.9.2. Specifically, we
rewrile v[n] as

A ;
vin| = ATG winje! Messn —;w[njs_"r’“f-_*”'””
(10.9)

A 2 A L
+ lelu]f-’“'e-”“'" + Tlurl_n]e 10 g=fen

from which, with Eq. {2.158), it follows that the Fourier transform of the windowed
sequence is

V{'e-'!‘”:l ) ?e‘j“‘?W{eﬂm m,-.}} 1 %f—jr’m W(fjw"m-'})
. (1L10)
+ ﬂf*ﬂ"] Wied ool 4 ﬂf"'-’”‘ W (el ooty
2

According to Eq. (10.10), the Fourier transform of the windowed signal consists of the
Fourier transform of the window, shifted to the frequencies 2wy and 3oy and scaled
by the complex amplitudes of the individual complex exponentials that make up the
signal.
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Example 10.3 Effect of Windowing on Fourler Analysis of
Sinusoidal Signals

h In this example, we consider the syitem of Figure 101 and, in particular, W(ej“’j
and Vi) for s.(t) of the form of Eq. (10.6), a sampling rate 1/T = 10 kHz and a
: rectanpular window win] of length 64. The signal amplitude and phase parameters are
ai Ap = 1 Ay =075, and fiy = 8 = 1h respectively. To illusirate the essential features,
#. we specifically display only the magnitudes of the Fourier transforms.

| W (e

|
|
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Figure 10.3 flustraticn of Fourier anglysis of windowed cosines with a rectangu-
lar windew. (a) Fourker transtorm of window, {b)—{e} Fourier transform of windowed
cosines as {1y — iy becomes progressively smaller. (b} 2y = (2n/6) = i,
24 = (2r/3) » 104,
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2% 1o Figure 10.3(a). we show We ™) | and n Figures 10030k}, (). (d), and (&), we
' show |V (e/™) for several choices of S and £y in Eg. (106} or, cguivelently, en and
my in Eq. (10.7). In Figure 10.3(b}, 2y = 2=/6) « 10* and 2, = (22/3) = 1P, ar,
a3 equivalently,wp = 27/6 and epy = 2x 73, In Figure 10.3{c)-{c), the frequencies become
il progressively eloser, For the parametess in Figere 103k}, the frequency and amplitude
©oof the individual components are evident. Specifically, Fq. (H.14)) suggests that. with
oo overlap between the replicas of W [_r:-': ™Y at ey and ey, there will be a peak of height
F2Ap aleen and 3247 at e, since Wie!™ ) has a peak height of 64, In Figure 10.3(b), the
. two peaks are al approximately e = 23 /6 and wy = 2x /3, with peak amplitcdes in
i (he correct ratio. In Figure 10,30, there is more overlap between the window replicas
Al ey and g, and while two distinet peaks are present, the amplitude of the specirum
G b = g is affected by the amplitade of the sinusoidal signal at frequency e and vice
versd, This indersction is called leakage: The component al one freguency leaks nlo
the vicinity of another component owing to the spectral smearing introdoced by the
. window. Figure 10.3(d) shows the case where the leakage is cven greater. Notice how

o side lobes adding ol of phase can reduce the heights of the peaks. In Figere 10.30e).
“% the overlap between the spectrum windows at ey and wy i5 50 sipnificant that the rwo
peaks visible in (b)-(d] kave merged inlo one In other words, with this window, the
25w [requencies corresponding 1o Figure 10.3(e) will not be resolved in the spectrim,

10.2.2 Properties of the Windows

Reduced resolution and leakage are the two primary cffects on the spectrum as o result
ol applying a window to the sinusoidal signal. 'The resolution is influenced primarily by
the width of the main lobe of Wied™), whereas the degree of leakage depends on the
relative amplitude of the main lobe to the side lobes of Wie™ ), In Chapter 7, in a filter
design context, we showed that the width of the main lobe and the relative side-labe
amplitude depend primarily on the window length £. and the shape (amount of tapering}
of the window, The rectangular window, which has Founer transform

-1 : y
' - = sin(el /2) .
H"'r!ﬂ"rw] R - et E-_;-:..-.L—lhz_"l_ s 111
) %‘rt it/ 2) [ )

has the parrowest main lobe for a given length (A = 4 /L), but it has the largest side
lobes of all the commonly used windows, Crther windows discussed in Chapter 7 inchade
the Bartlett, Hann, and Hamming windows. The IXTFTs of all these windows have
main-lobc width A&, = 8/ L - 1), which is approximately twice that of the rectangular
window, but they have significantly smaller side-lobe amplitudes. The problem with all
these windows is that there is no possibility of trade-off between main-lobe width and
side-lobe amplitude, since the window length 1s the only variable parameter,
As we saw in Chapler 7. the Kaiser window is defined by

TalBil — [(n —ae)e]®) 12 )
W I_Hl = - Iull:r‘-} = , 0 —=n< L= ]: Iju:l.lz‘]
0. atherwise,

wherec @ = (L — 13/2 and f() is the zero'Meorder modified Bessel function of the first
kind, {MNote that the notation of Eq. {10.12) differs slightly from that of Eq. {7.72) in
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that L denotes rhe length of the window in Eq. (10.12), whereas the length of the filter
design window in Eq. {7.72) is denoted Af + 1.) We have already seen in the context of
the filter design problem that this window has two parameters, g and L, which can he
used to trade between main-Johe width and relative side-lobe amplitude, (Recall that
the Kaiser window reduces to the rectangular window when g = 0.} The main-lobe
width Ay is defined as the symmetric distance between the central zero-crossings. The
relative side-lobe level A, is defined as the ratio in dB of the amplitude of the main lobe
to the amplitude of the largest side lobe. Figure 104, which is a duplicate of Figure 7.32.
shows Fourler transforms of Kaiser windows for dilferent lengths and different values
of 4. In designing a Kaiser window for spectrum analysis, we wanl Lo specify a desired
vitlue of 4, and determine the required value of & Figure Ti.4(c) shows that the relative
gide-lobe amplitude is cssentially independent of the window Tength and thus depends
only on . This was confirmed by Kaiscer and Schafer {1980), who obtained the following
least squares approxXimation to £ as a function ol Ag:

0, Ag = 13.26,
B = 1 0.76609(A, — 13.26)%% — 0.09834(44 — 13.26), 13.26 < Ay <60, (1013}
01243804, 4 6.3), B < Ay = 120,

Using values of # from Eq. {10.13) gives windows with actual side-lobe values that
differ by less than 0.36 from the value of Ay used in Eq. {10.13) for the entire range of
13.26 = Ag = 1201 (Note that the value 13.26 is the relative side-fobe amplitude of the
rectangular window, to which the Kaiser window reduces for 8 = 0.}

Figure 10.4{c} also shows that the main-lobe width is inversely proportional to
the length of the window, The trade-off between main-lobe width, relative side-lobe
amplitude, and window length is displayed by the approximate relationship

= + 1, ML 14
153545 ¢ )

which was also given by Kaiser and Schafer {19300},

Equations (10L12}, (10.13), and {10.14} are the necessary equaticons for determin-
ing a Kaiser window with desired values of main-lobe width and relative side-lobe
amplitude. To design a window for prescribed values of Ay and Ay requires simply
the computation of # from Eq, (10.13}, the computation of L from Eq. (10.14), and the
computation of the window using Eq. (10.12). Many of the remaining examples of this
chapter use the Kaiser window. Other spectrum analysis windows are considercd by
Harris (19745,

10.2.3 The Effect of Spectral Sampling

As mentioned previously, the DFT of the windowed sequence 1 #] p-rcwidi::-: samples of
Viel™) at the N cqually spaced discrete-time frequencies ay, = Zok/N,k =0, 1, ...
N — 1. These are cquivalent to the conlinueous-lme J'ruquuncimi Oy = (2rk)/INT),
fork =0, 1...., ¥/2 (assuming that N is even). The indices k = ¥/2+1,... . N—1
correspond 1o the negative continuous-time frequencies —2m(N — k1 (NT). Spectral
sampling, as imposed by the DT, can sometmes produce misleading results. This effect
is best illustrated by example.
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Example 10.4 [llustration of the Effect of Spectral Sampling
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Consider the same parameters as in Figure 10.3{e) in Example 103, ie, Ag = L,
Al = 0758 = An/ld, ) = 4n /15, and &y = & = 0 in Eq. (108). wla] isa
rectangular window of length &4, Then

e o (dm
vt = | % (H") +0-75c08 (E”)‘ 0.<n <83, (10.15)
{1, otherwise.

Figure 10.5(a) shows the windowed sequence u[n]. Figures 10.5(k), (c}, (d), and {e}
show the corresponding real part, imaginary part, magnitude, and phase, respectively,
of the DFT of length &% = 64, Observe that since xfn] i real, XN — & = X[k and

ir vn|
)
=
=
E
<
{a)
a5 Re[V[k]], Re[Via))
o
E
=
g
=
o 32 " P
{1
Im [IW] ], ImfVie'y)
EX]
E " o T LL
LE» kN2
A r

{c)

Figure 10.5 Cosine sequence and DFT with 2 rectangular window for & = B4,
{a) Windowed signal. (b) Real part of DFT. () Imaginary part of OFT. Note that the
OTFT is superimposaed as the light continuous line.
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Figure 10.5 {continuad) (d) Magnitude of OFT. {e] Phase of DFT.

X{ea'[a""_"“'l X ¥ e, the real parl and the magnitude are even lunctions and

0 he imaginary part and phase are odd fanctions of & and o

In Figures 10.5(h—(2), the horirontal (frequency] axis is labeled in terms of the
DFT index or frequency sample number &. The value & = 32 corresponds o w =

,on, equivalently, £ = 7/7, As s the useal convention in displaving the DFT of a

time sequence, we display the DFT values in the range from & = 0wk = NV -1,

' corresponding to displaying samples of the DTFT in the frequency range 0 to 2.
. Because of the inherent peniodizity of the DTFT, the first half of this range corresponds

to the positive continnous-lime fregquencies, ie, @ between zero and =/7, and the
second half of the range to the negative frequencies, i.e., & between —m/ T and zero
Mote the even periodic symmetry of the real part and the magnilude and the odd

2 periodic symmetry of the imaginary pare and the phase.

Recall that the DIFT Vik] is a sampled version of the DTFT Vie!™). Superim-

] posed on each DFT with & light pray line in Figures 10L5(b)—{(e) is the corresponding

DTFT, i.e.. RelV{e/¥)), Im{V{e/®)}, |Vie!™), and ARGV (e/%)} respectively. The

143 Frequency scale [or these functions is the specially defined normalieed scaie denoted

w2 ie, N oon the DFT index scale corresponds tow = 2 on the conventional
[reguency seale of the DTFT. We also follew this convention of superimposing the

% DTFT in Figures 10.6, 10.7, 10.8, and 10.9.

The magnitude of the DFT in Figure 100.5(d) corresponds to samples of |V (/2
{the light continuous line), which shows the expecled concentration sround ey =

. 2mf7.5 and ey = 2w/14, the Frequencies of the two sinnsoidal components of the

:_': i input. Specifically. the frequency ey = dor /15 = 2w (R533 . }/6d lies between the DET
o samples corresponding 1o & = 8 and & = 9, Likewise, the irequency vy = 27 /14 =

2x(4.5714 . ) /04 lies between the DFT samples corresponding to k = 4and & — 5,

Mote that the frequency locations of the peaks of the gray eurve in Figure 10.5(d)
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A wre between speetrum samples obtained from the DFT. In peneral, the locations of
257 peaks in the DFT values donot necessarily coincide with the exact frequency locations
. of the peaks in the DTFT, since the true spectrum peaks can lie between speclrum
samples. Correspendingly, ss evidenced in Figure 1005(d), the relative amplitudes of
"= peaks in the DFT will not necessarily reflect the relative amplitudes of the spectrum
i peaks of |Vied®)).

Exampie 10.5 Signal Frequencies Matching DFT
Frequencies Exactly

Ea

= Consider the sequence

5: li : - '1 (l_T L 1
f;": i oS (_mn) = .75 cos 3 n). = n =03, (10.16)
i (h, otherwise,

2= asshown in Figure 10.6(a). Again, a rectangular window is used with % = L = 4. This

© A very similar to the previous example, except thal in Lhis case, The frequencies of the

i posines coincide exactly with two of the DFT frequencies. Specifically, the frequency

ay = 2 /8 = 27864 corresponds exactly to the DFT sample & = 8 and the frequency
oy = 2w 16 =2x4 604 Lo the DTT sample & = 4,

The magnitude of the fd4-point BDFT of v[r] for this example is shown in Fig-

ure 10L6({h) and corresponds to samples of |V{e/*)| (which again is superimposed

§n vin]
T4 Y
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l| l“JH 1
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S 40 ¢ IVTE, IViefu}l
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..-\.I E

kN2 T
R =10 : -

o1 I 2 i

oy o)

:; Figura 10.6 Discrete Fourier analysis of the sum of two sinusoids for a case
‘-:ﬁ.j. in which the Fourier transform is zero at all OFT frequencies except those cor-
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with a light line) at a frequency spacing of 2r /64, Although the signal parameters in

i Example 10.4 are very similar, the appearance of the DFT is for this example and strik-
EBE  inply different. In particular, [or this example, the DFT has two strong speetral lines at
LG the samples corresponding o the frequencies of the two sinusoidal components in the

. signal and no frequency content at the other DFT values. [n facs, this clean appear-

i anes of the DFT in Figure 10.60b) is largely an dlesion resulting from the sampling of
2% the spectrum. Comparing Figures 10.6(k) and (¢}, we can ses that the reason for {he

. clean appearance of Figure 10.6{b) is that for this choice of parameters, the Fourier
transfomm is exactly zero at the frequencies that are sampled by the TIFT, except those

w corresponding to k = 4.8, 64 - & and 64 — 4. Although the signal of Figure HL6{a)

has significant comtent at almost all frequencies. as evidenced by the gray cunse in

. Figure 10.6(h), we do not see this in the DFT, because of the sampling of the specirum.
+ Another way of viewing this is to note that the 64-point rectangular window selects

exactly an integer number of periods of the twao sintsoidal components in Eq. (10006},
The fd-point DFT then corresponds to the DFS of this sipnal replicated with period

x_ &4, This replicated sipnal will have only [our nonzero DFS cocfficients corresponding

tor the two sinusoidal compoments on Eg. (100 1&). This is an example of how the inher-

¢ ent assumption of periodicily pives a correct answer to a different problem. We are

interested in the finite-length case and the results are gquite misleading from that point

S oof view

Lo illustrate this point further, we can extend v]« | in Eq. {10.16) by zero-padding

2 o obtain a 128-point sequence, The corresponding 128-point DFT is shown in Fie-
G ure 10.7. With this finer sampling of the spectrum, the presence of sipnificant content
0 ut other [requencics becomes apparent, In this case, the windowed signal is mot natu-
(% rally periodic with period 128

In
examples, we illustrate the effect of different choices [or the window,

40 7 IVIKE, 1V {aie

MY ¥

Amplimde
ra

Fipure 10.7 CFT of tha sigral as in Figure 10.6{a), but with twice the number of
frequency samples used in Figure 10.6{b).

Figures 0.5, 1.6, and 10.7, the windows were rectangular, In the next set of

Example 10.6 DFT Analysis of Sinusoidal Signals Using

al

e

e

Kaiser Window

4 In this example we retarn to the lrequency, ampliitude, and phase parameters of Ex-
ample 114, but now with a Kaiser window applied, so that

b

vfn] = g (] cos (l;;:u) + 0.7 5m g [n] cos (J%HJ ; {117
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where win] s the Kaiser window as given by Eq. (10.12). We will select the Kaiser
i window parameter f 10 be egqual to 548, which, sccording to Eq. (10.13), rosults in a
# - window for which the relative side-lobe amplitude is Ay = 40 dB. Figure 10:8(a} shows
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Figure 10.8 Ciscreta Fourier analysis with Kaiser window. (a) Windowed se-
quence for [ = 84 {8} Magnitude of DFT for L = 84. {c) Windowed sequence for
[ =32 (d) Magnitude of DFT tor | = 32,
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the windowed sequence »fn] for a window length of L = 64, and Figure 10.8(17) shows
0 the magnitude of the cormesponding DFT. From Eq. (14,1 7). we sce that the difference
S between the twe fregquencies is oy —en = 2a/7.5 - 2r /14 = 0389, From By, (10014), 1t
2 follows that the width of the main lobe of the Fourier trenstorm of the Kaiser window
with L = 64 and 8 = 5.48 s Ay = (0.401, Thus, the mein lobes of the two replicas
of W ied™) cemtered at wp and o will just slightly overlap in the frequency interval
& between the two frequencies. This is evident in Figure 10.8(b), where we sec that the
B two frequency compenents are clearly resolved,
o Figure 10.8({c) shows the same signal, multiplizd by a Kaiserwindow with L = 32
'_ and # = 548 Since the window is hall as [ong, we expect the width of the main
# o lobe of the Fourier transform of the window 10 double, and Figure 10.8(d) confirms
:o this Specifically, Eqs. (10.13) and (10.04) confirm that for L = 32 and @ = 5.48,
H:vg the main-loze width is Ay = 0.815. Now, the main lobes of the two copies of the
Fourier (ransform of the window overlap throughout the region between the two
- cosine frequencies, and we do not see two distinet peaks,

el

e

gk g

In all the previous examples cxcept in Figure 10.7, the DFT length & was cqual
1o the window length L. In Figure 1007, zero-padding was applicd to the windowed
sequence before computing the DEFT to obiain the Fourier transform on a more finely
divided set of frequencies. However, we must realize that this zero-padding will not
improve the ability 1o resolve close frequencies, which depends on the length and shape
of the window. This is illustrated by the next example.

Example 10.7 DFT Analysis with 32-point Kaiser Window
and Zero-Padding

In this example, we repeal Example 1006 using the Kaiser window with . = 32 and
o p =545 and with the DFT length varying, Figure 10.9(a) shows the DFT magnitude
for & = L = 32 as in Figure 10.8(d), and Figures [0 b) und (¢) show the DEFT
magnitide again with window length L = 32, but with DFT lengths & = 6d and & =
El-i,:il 128, respectively, Ay with Example 10,5, this sero-padding of the 32-point sequence
resulis in finer spectral sampling of the TTFT. As shown by the light continuous
curve, the underlying envelope of each DFL magnitude in Hgure 109 is the same.
Conseguently, increasing the DFT size by zero-padding does not change the ability (o
. resolve the two stnusoidal frequency components, but it does chanpe the spacing of Lthe
s frequency samples. IE & were increased beyond 128, the dots denoting the DFT sample

10
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T Figure 10.9 lliustrationof effect of DFT length for Kaiser window of length L = 32,
= {a) Magnitude of DFT for & = 32,
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Figure 10.9  {continued) (b Magnitude of DFT for ¥ = 64, () Magnitude of DFT
far N = 128

values would tend 10 merge logether and become indistinet. Consequently, DFT values
are often plotted by connecting consecutive points by straight-iine sepments without
o indicating each individual point, Tor example, in Figures 105 (throwgh 1008, we have
7 shown a lipht continuous line as the IXTFT [V{e/ ™} of the finite-length sequence
= ufn]. In fact, this curve is a plot of the DFT of the sequence after zero-padding to
PN = 20ME, In these cxamples, this sampling of the TDTFT i sufliciently dense so a% to
be indistinguishable from the function of the contintous variable w.

T'or a complele representation of a sequence of length L the L-point DEFT is sul-
ficient, since the original sequence can be recovered exactly from 1t However, as we
saw in the preceding examples, simple examination of the L-point DT can result in
misteading interpretatioms. For this reason, il is common Lo apply zero-padding, so that
the spectrum 15 sufficientdy oversampled and important feateres are thercfore read-
ilv apparent. With a high degree of time-domain zero-padding or frequency-domain
oversampling, simple interpolation (e.g., near interpolation) between the DFT val-
ues provides a reasonably accurate picture of the Fourier spectrum, which can then be
used, for example, to estimate the locations and amplitudes of spectrum peals. "This is
lustrated in the following example.

Example 10.8 Oversampling and Linear Interpolation for
Frequency Estimation
Fizure ML10 shows how a 2048-point DEFT can be used to obtain a finely spaced eval-

-» uation of the Fourier transform of a windowed signal and how increasing the window
owidth improves the abnlity Lo resalve closely spaced sinusoidal components, The signal



810

Chapter 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

al Example 1006 having Trequencies 2 /14 and 47 /15 was windowed with Kaiser win-

¢ dows of lengths L = 32, 42, 54, and &4 with § = 548, First, note that in all cases, the

2048-point DFT gives a smooth result when the points are connected by siraight lines
In Figure 10.1iKa}, where L = 32, the two sinusoidal components are not resolved,

. and, of course, increasing the DFT length will only result in a smoother curve. As the
. window length increases from £ = 3210 L = 42, however, we see improvement in our

abihty 1o distinguish the two frequencies and the approtimata relative amplitudes of
cach sinusoidal component. The dashed lines in all the figures indicate the DFT indices
kp = 146 = 2048714 and &y = 273 = 409/ 15, which correspond 1o the nearest DEFT

# - frequencies (N = 204%) for the cosine compenents. Note that the 2048-point DFT in
+ Figure 10.10(c) would be much more effective for preciscly locating the peak of the
i windowed Fourer transform than the coarsely sampled DFT m Fgure 10.8{h), which
. s also computed with a 64 point Kaiser window. Note also that the amplitudes of the
two peaks in Figure 10010 are very close to being in (he correct ratio of 0.75 10 1,

o
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Figure 16.10 illustration of the eomputation of the OFT for & = L with linear
interpolaticn to create a smooth curve: {a) N = 1024, L = 32. (b) N = 1024,
L =42 (g} ¥ = 1024, L = 64 (The values & = 146 = 2048/14 and
k= 273 = 4096/15 are the cicsest DFT frequencies to wp = 2x/1<£ and
eq = 4 /15 when the DFT length is ¥ = 2048.)
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10.3 THE TIME-DEPENDENT FOURIER TRANSFORM

In Section 10.2, we illustrated the wse of the DFT for obtaining a frequency-domain
representalion of a signal composed of sinusoidal components. In that discussion, we
assumued that the frequencies of the cosines did not change with Lime, so that no mat-
ter how long the window, the signal properties (amplitudes, frequencies, and phases)
would be the same from the beginning to the end of the window. Long windows give
better frequeney resolution, bul in practical applications of sinusoidal signal models,
the signal properties {¢.g., amplitude, frequency} often change with time. For example,
nonstationary signal models of this type ate required to describe radar, sonar, speech,
and data communication signals. This conflicts with the use of long analysis windows.
A sinple DFT estimate is not sufficient to describe such signals, and as a result, we
are led Lo the concept of the time-dependent Fourier transform, also referred 1o as the
short-time Fourier transform.!
We define the time-dependent Fourier transform of a signal x|r| as

X[a, A) = Z xln 4 mjwlm]e™ 4, (10.18)

m==—0

where w(a] 15 a window sequence. In the lime-dependent Fourier representation, 1he
one-dimensional sequence x|r|, a function of a single discrete variable, is converted into
a two-dimensional function of the time variable n, which is discrete, and the frequency
variable &, which is continuous.® Note that the time-dependent Fourier wransform is
periodic in A with period 2| therefore, we need consider only values of A for0) = A = 2n
or any other interval of length 2r.

Equation { 1{L18) can be interpreted as the IYUFT of the shitied signal x[n+m], as
viewed through the window wm]. The window has a stationary origin, and as n changes,
the signal slides past the window, so0 thal al each value of n, a different portion of the
signal is extracted by the window for Fourier analysis. As an illustration, consider the
following example,

Example 10.9 Time-Dependent Fourier Transform of a
Linear Chirp Signal

1 A continpous-time linear chiep signal is defined as

-7 R
i

xelh) = OB = costAnt™), (10.19)

LFppther discussion of the lime-depe ndeal Mourier transform con be [ound ina varely of relerences,
including Allen and Rakiner (1977), Habiner and Schafer (1978], Crochiers and Rakiner (1983 and Chuatien
{207,

“We denote the freguency variable of the time-dependent Fourier ransfomm by 4 to maintain & dis-
tiction from the frequency vanable of the cogventional DTEE, which we always denote by w. We use the
mixed brackel—parenthesis nolation Xie, i) as a reminder that o is 8 discrele vanable, and & & a conbiseous
variable,
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where Ap has units of radiznsfs?, fSuech signals are called chirps bocawse, in (the auditory
frequency range, short pulses sound like bird chirps ) The signal x4} in Eq. (10.19) is
a4 member of the more general class of frequency modulation (FM) sipnals for which
the instantaneuy freguency is deflined as the lime denvative of the cosine argument
a1t). Therefore, in this case, the instantaneous frequency is

d

s
!
ook

o _ A8 _d oy
o Q= — = o (.-'h_,f ) = JAgt. (10.20))

i
Ee which varies in proportion to time: henes, (he designation as a finear chirp signal. I
5 we sample x.(¢), we obtain the discrete-time linear chirp sign al?

xln} = x0T} = cos{AgT n"} = cos{agn’], {10.21)

where g = AyT? has units of radians. The instantaneous frequency of the sampled
- chirp signalis 4 requency-normalized, sampled version of the instantancous frequency
toay  Of the comtinuous-time signal: i.e.,

wiln] = 8 (nT)-T = 244."'1'1;: = Zom, (10.22)

which displays the same proportional increase with sample index s, with cg controlling
the rate of increase. Figure 10,11 shows two 1200 -sample segments of the sampled chirp
signial i Ey. (1021 ) with oy = 157 = 10~8. {The samples are connecled by siraight
lines for plotting. ) Observe that over a short interval, the signal looks sinusaidal, bt
the spacing between peaks becomes smaller and smalber as time progresses, indicating
increasing frequency with time.
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Figure 10.11 Two segments of the linear chirp signal x[0] = c&smunzj for

wp = 157 =1 (-8 with a 400-sampla Hamming window superimposed. {a) X[, 1
i at 7 = 320vwould bethe OTFT ofthe top trace multipfied by the window. (b) X[720, L)
= would Da the DTFT of the bottom frace muitplied by the window.

YWye have scen discrele-time lincar complex cxpomential chirp signals in Chapter 9 in the context of
the chirp transform alpoarithm.
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Figure 10.12 DOTFTs of segments of a linear chirp signal: (@) OTFT of 20,000
samples of the signal x{n] = cnsfnrungj. (b} DTFT of s[5003 4+ m)w{m] where
wlm] is 3 Hamming window of length L = 401; ie, X[5000, 2). () DTFT of
X[15,000 4 m]w[m] where #[m] is 2 Hamming window of length [ = 401: i.e.,
A[15,000, ).

b The relstonship of the shified signal to the window in time-dependent Fourier
“2i analysis s also illustrated in Figure TEEL Typically, wim] in Eg. (1008) has finite
‘ length around m = 0, so that X|n, 2) displays the frequency characteristics of the
signal around fime n, Fleore 1001140 shows 1 [320 + m] as a function of m {or 0 =
m = 1200 together with a Hanuning window wlm] of length L = 401 samples, The
+& nme-dependent transform at time o = 320 is the DTFT of wim o320 + m], Similatly,
: 0 Figure L0L11(b) shows the window and a later segment of the chimp signal beginning at
I osample n = 720,

Figure 10.12 illustrates the importance of the window in discrete-time Fourier
analysis of time-varying signals, Figure 10.12(a) shows the DTET of 200800 samples
22 (with a rectangular window) of the discrete-time chirp. Grver this interval, the normal-

& ized instantancous [requency of the chirp,
filn]l = wilnl /(2w ) = 2ogn 270,
goes from O to U003 (20,0000 /4 27) = 0.3, This variation of the instantaneous fre-
guency forces the DTET representation, which involves only fixed frequencies acting

: over all n, to include all frequencies in that range and beyond as is evident in Fig-
@ ure 10.12(a). Thus. the DTFT of a long segment of the signal shows only that the
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B signal has a wide bandwidth in the convenlional DTFT sense. Ot the other hanid, Tig-
24 wres 10L12(b) and (¢} show IYI'FTs using a401 sample Hamming window for segments
E? of the chirp waveform at 1 = 3000 and 15.000, respectively. Thus, Figures 10.12{b)
o () are plots [as functions of A/(2x 3] of the time-dependent Fourier transform values
JX 5000, &) and [X[15.000. 1)}, respectively. Since the window length L = 401 is such
that the signal does net change frequency very much across the window interval, the
2 fime-dependent Fourler transfora: tracks the frequency variation very well. Note that
Eésﬁ- at samples 5000 and 15,000, we would expect a peak in the time-dependent transform
éfﬁ at Af(2m) = Q00D03= (30000 /(27) = 0,075 and A/(2m) = 0000032150000/ 27) =
3 0).225, respectively. This is confirmed by examination of Figures 1L12{b} and (c).

R

B

Example 10.10 Plotting X[n,1.): The Spectrogram

23 In Figure 10,13, we show a display as a function of both (ime index # and requency
 AJ(2xy of the magnitude of the time-dependent Fourier transform, | F(xa, L)), for the

Tt signal
;*%E {1 n =l
L 2 g
Ei o) cos{one ) 0 = w2 20,000 1023
& =1 cosi.2mm) 20,000 < n < 25,000 (10:23)
cos(lh2orm) +cos()23xr) 25,006 = n.
i Spectrogram for Windoew Leangth L= 401
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Figure 10.13 The magnitude of the time-dependent Fourier transform of ¥{n] in
Eq. (10.23): {a) Using a Harmming window of length [ = 401 (b Using a Hamming
window of length { = 101,
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Mote that the signal y[a] s equal o x{r] in Eg. (1021) in Example 10.9 for
0 = = 20000, and then it abroptly chanpes to cosine componcnls with fixed fre-
quencies fur m = L0000, This signal was designed o make several important points
2 about time-dependent Fourier analysis. First, consider Figure 10.13{a}, which shows
lhe time-dependent Fourder transform of y|a] over the interval [ < 4 = 30,000 with
- a Famming window of length 1 = 401, This display, which shows 20Hog, | Fle, L) as
a function of &2 in the vertical dimension, and the time index # in the horizontal
- dimension is called a spectragran. The value 20logyg | Vi, A0 over s resiricled range
G oof 50 AR is represented by the darkness of the marking at (2, 2), The plots in Fig-
i ures 10.12(b) and () are vertical slices {shown in Figure 10,12 as magnitude} through
5 the image at no= 3000 and 0 = 15,000 respectively al the locations of the dashed
£ lines in Figure 10.13(a). Note the linear propression during the chirp interval. Alsa,
G:7 mote that during the constani-frequency intervals, the dark line remains borizonial.
% The width of the dark features In Figure 10.13{a) is dependent on the width of the
main lobe A of the DTFT of the window. Table 7.2 indicates that for the Hamming
- window, this width s approxmately A = 87/ M whoerein M 1 65 the window length.
- For a 401-point window, Ay, /(270 = 0.01. Thus, the two clozse-in-frequancy cosines
- arc clearly resolved in the interval 25,00 < » < 30,000, because their normalized fre-
Looguency difference is (0,237 — 027 )/(2x) = 0.015, which is signilicantly greater than
the main-lobe width 0.01. Mate that the vertical width of the dark sloping bar for the
i chirp imterval is wider than the horizontal bars representing the constant-freguency
intervals. Thisextra broadening is cansed by the frequency variation across the window
o and 15 a small-scale version of the effect seen in Figure 10012(a). wherein the variation
Fe aeross the 20000-sample window is much greater.
‘The image in Figure 10.13{a) illustrates another important aspect of time-de.
“ap penddent Fourier analysis, The 401-sample window provides good frequency resolu-
-7 tion at almost all points i time, However, note that at v = 20,066} and 23100 the
'+ signal properties change abrupily, so that for an interval of about 401 samples around
S these times, the window conlains samples from both sides of the change. This leads 1o
S the fuzzy area wherein the signal properties are much less clearly represented by the
spectrogram. We can improve the ability to resolve ovents in the time dimension by
+ shortening the window, This is illustrated in Figure 10,13 (b)) wherain the window lenglh
“. is L = 101 'The points of change are much better resolved with this window. How-
ever, the normalized mam-lobe frequency wadth of a 101 -sample Hamming window is
M A2 ) = 04, and the two constant-frequency cosines after n = 25,000 are only
i1 separated by 0015 in normalized frequency, Thus, as is clear from Figure 1013 (h), the
t,\g twa frequencies are not resolved with the Hl-sample window, although the location
' of the abrapt changes in the signal are much more accurately resolved in time.

el

Examples 109 and 10010 illustrate how the principles of discrete-tune Fourier
analysis that were discussed in Sections 10.1 and 1402 can be applied to signals whose
properties vary with time. Time-dependent Fourier analysis is widely used both as an
analysis tool [or displaying signal properties and as 4 representation for signals, In the
latter use, it is important o develop a decper understanding of the two-dimensional
representation in Cqg. (10L18).

10.3.1 Invertibility of X[n,1)

Since X[n, i) is the DTFT of x[r + m]wlm]. the time-dependent Fourier transform is
invertible if the window has at least one nonzero sample. Specifically, from the Tourier
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transform synthesis equation (2,130},

1 2z i ;
xin 4+ m|wlm] = 7 f Xim, dpe’™ ", — S M e 0K, {10.24)
il

¥

or equivalently,
1 am ) B
i+ m] = m fv Xln, Ada {1@23}

it wim] # 0.* Thus with m chosen as any one value for which wim| # 0, x|r] for all
values of v can be recovered from X(n, L) using Eq. (10.25).

While the above discussion shows that the time-dependent Fouricr transtorm is an
invertible transformation, Eq. (10.24) and (1(+23) do not provide a computable inverse,
since evaluating them requires knowing X(a. 2 at all A and also requires evaluating
an integral, However, the inverse transform becomes a DET when X|n, 4) is sampled
in both the time and frequency dimensions We will discuss this matter more fully in
Section 10.3.4.

10.3.2 Filter Bank Interpretation of X[n.1)

A rearrangement of the sum in Eq. (10,18} leuds to another useful interpretation of
the time-dependent Fourier transform. If we make lhe substitution m' = o | m in
Eg. (LL18}, then X[a, &) can be wrilten as

-~
Xin, b)) = Z xIm  wl—(n — m'y]ed*n-m, {1026}

M =—r
Equation {(101,2A) can be interpreted as the convolution
Xrn, &) = x[n] # ha[n]. {10.27a)
where
haln] = w|—nle™, (10.27b)

From Eq. {10274}, we sce thal lhe Gme-dependenl Fourier transform as a function
of n with i tixed can be inlerpreted as the output of an LT filler with impulse response
figfre} or, cquivalently, with frequency response

Hifele)y = (g2, (10.28)

In general, a window that is nonzero for positive time will be called a noneansal
window, since the computation of X|n, A) using Eq. {10.18) requires samples that [ollow
sample » in the sequence. Equivalently, in the linear-filtering interpretation. the impulse
respanse i, [n] = w|—nle™ is noncausal if wr] = 0 for n < 0. That is, a window that
is nonzera for # = 0 gives a noncansal impulse response by (n] in Eq. (10.27b), whereas
if the window is nonzero for n = 0, the linear filter is causal,

Hsince X[n, 1) is perndic in & with peciod 2r, the infegration in Egs (10,241 and {10.23) can be over
any interval of length 7.
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In the definition of Eq. {1{L18), the time origin of the window is held fixed, and
the signal is considered to be shilted past the interval of support of the window. This
elfectvely redefines the time origin for Fourier analysis to be at sample # of the sipnal.
Another possibility s to shift the window as n changes, keeping the time origin for
Fourier analysis fixed at the original time origin of the signal. This leads to a definition
for the time-dependent Fourier translorm of the form

o
Xlmay= 3 xlmlwim —nje™™", (10.29)

m=—0a

The relationship between the definitions of Egs. (10018 and (10.29) s casily shown 1o
be

K[, 2y =e P9%[n, ). {10.30)

The definition of Eqg. {1¢,18) 1s particularly convenient when we consider using
the DFT 1o obtain samples in i of the tme -dependent Fourier transform, sinec, il wfm]
is of finitc length in the range 0 =< m = (£ — 1}, then so s x[a + mhwem]. On the other
hand, the definition of Eq. (10.29) has some advantages for the interpretation of Fourier
analysis in terms of filler banks. Since our primary interest is in applications of the DFT,
we will base most of cur discussions on Eg, (10.18).

10.3.3 The Effect of the Window

The primary purpose of the window in the tima-dependent Fourier transform is to limit
the extent of the sequence to be transformed, so that the spectral characleristics are
approximately constant over the duration of the window, The more rapidly the signal
chiracteristics change, the shorter the window should be. We saw in Section 10.2 that as
the window becomes shorter, frequency resolution decreases. The same effect s true,
of course, Tor Xee. 23, On the other hand, as the window length decrcases, the ability
o resolve changes with time increases. Consequently, the choice of window length
becomes a trade-off between frequency resolution and time resolution. This trade-off
was illustrated in Example 10.10.

The effect of the window on the properties of the time-dependent Fourier trans-
form can be seen by assuming that the signal x[a] has a conventional DTFT X {e/*.
First, let us assume that the window is unity for all s e, assume that there is no window
at all. Then, from Eqg. (10.18),

Xin, 1) = X (ef*)2fm, {10.31)

Of course, a typical window for ume-dependent spectrum analysis lapers Lo zero, so
as to select only a portion of the signal for analysis. On the other hand, as discussed
in Section 10.2, the length and shape of the window are chosen so that the Fourier
transform of the window is narrow in A compared with variations in A of the Fourier
transform of the signal. Thus, the need for good time resolution and good frequency
tesolution often requires compromise. The Fourier transform of a typical window is
illusirated in Figure 10.14(a}.
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Figure 10.14 [3) llMustration of the Fouwrier transferm of a Bartlett window for
time-dependent Fourier analysis. () Equivalent bandpass tilter for fime-dependent
Fourier analysis.

If we consider the time-dependent Fourier transform for fixed #, then it follows
from the properties of DTFTs that

1 r )
Xin, 1) = 5— f eI X (e )W (/M )d; (10.32)
™ Jo

i,c., the Fourier transform of the shifted sipnal s convolved with the Fourier eransform
of the window. This is similar to Eq. { 10.2), excepl that in Eq. (10.2), we assumed that the
signal was not successively shifted relative 1o the window. Here, we compule a Founer
transform for cach value of n. In Section 10.2, we saw that the ability Lo resoive two
narrowband signal components depends on the widih of the main lobe of the Fourier
transform of the window, whercas the degree of leakage of one component into the
vicinity of the other depends on the relative side-lobe amplitude, The case of no window
at all corresponds to win] = 1 for all #. In this case, Wied) = 2ré(w) for —n < w = m,
which gives precise frequency resolution but no time resolution.

Inthe linear-filtering interpretation of Eqs. (10.27a), (10.270), and (1{0L.28), Wie™)
typically has the lowpass characteristics depicted in Figure 10.14(a), and consequently,
H: (¢4} is 2 bandpass filter whose passband is centered at w = &, as depicted in Fig-
ure 10.14(b). Clearly, the width of the passband of this filter is approximately equal to the
width of the main lobe of the Fournier transform of the window, The degrec of rejection
of adjacent frequency components depends on the relative side-lobe amplitude.

The preceding discussion suggests that if we are using the time-dependent Fourier
transform to oblain a time-de pendent estimate of the frequency spectrum of asignal, itis
desirable to taper the window to lower the side lobes and to use as lomg a window as fea-
sible loimprove the frequency resolution. This has alrcady been fllustrated in Examples
1.9 and 10,1, and we will consider other examples in Section 1064, However, before
doing so. we discuss the use of the DFT in explicitly evaluating the time-dependent
Fourier transform.
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10.3.4 Sampling In Time and Frequency

Lxplicit computation of X[n, A} can be done only on a finite set of values of 4, cor-
responding to sampling the time-dependent Fourier transform in the domain of its
frequency variable A, Just as finite-length signals can be exactly represented through
samples of the D'TFT signals of indeterminate length can be represented through sam-
ples of the 1ime-dependent Fourier transform, if the window in Eq. (10.18) has finite
length. As an example, suppose that the window has length L with samples beginning
atm =0 L.e.

wlm| =0 outside the interval 0 <= m < L -1, {10.33}

Il we sample X|n, &) at N equally spaced frequencies A; = 2Zrd /N, with N = L, then we
can recover the original windowed sequence from the sampled time-dependent Fourier
transform. Specifically, if we define X |#, &| to be
L—1
Xin k)= X[n, 2ek/N) =Y " xln+mpw|mle BTN 02 g 2 N1, (10.34)
m=dl
then X[, k] with & fixed i the DFT of the windowed sequence x[a 4 mwm). Using
the inverse DFT, we obtain
p ¥ )
xf[n+mwlm]| = — Z XTn, kel ZriNvm O=m=l—1 (16.35)
N
k=t
Since we assume that the window wlm] &£ Ofor 0 < m < L - 1, the sequence values can
be recovered in the interval from n through (s + £ - 1} using the equation
N-1
Y Xln kjed PR 0w = -1, (10.36)
k=l

xln4m| = Nuw[m]
The important point is that the window has imite length and that we can take at least
as many samples in the A dimension as there are nonzero samples in the window; i.e.,
N = L. While Eq. (100.33} corresponds to a noncausal window, we could have used a
causal window with wim| £ 0for —(L — 1} = m = 0 or a symmeiric window such that
wim] = w|—m| for im| = (L — 1}/2, with L an odd integer. The use of a noncausal
window in Eq. {10.34) is simply more convenient for our analysis, since il leads very
naturally to the interpretation of the sampled time-dependent Fourier transform as the
DFT of the windowed block of samples bepinning with sample ».
Since Eq. (10.34) corresponds to sampling Eq. (10.18} in 2, it also corresponds
to sampling Eqgs. (10.26), (10.27a), and (10.27b) in i. Specifically. Eq. (10.34) can be

rewritten as
Xln. k] = x[n] * hiln], =k =N-1, (10L.37a)
where
hiln] = wl—nled ST/ Nk {(10.37h)

Equations (10.37a) and (10.37b) can be viewed as a bank of N filters, as depicted in
Figure 10.15, with the 4™ filter having frequency response

Hylet®y = W/ 2rkiN)—uly (10.38)
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Figure 10.15  Filter bank
holn] |————=  representation of the time-dependent
X001 Fourier transform.
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Our discussion sugpests that x (v for —oo < n < oo can be reconstructed il Xn, &)
or X[n, k]is sampled in the ume dimension, as well. Specitically, using Eq. (10.38), we
can reconstruct the signal in the interval mp = n = np + L — 1 from X|ng, £, and we
can reconstruct the signal in the interval ny + L = 1 < ng - 24 — 1 from X[y + L, &,
and so on. Thus, x|»n| can be reconstructed exactly from the time-dependent Fourier
transform sampled in both the frequency and the time dimension. In general, for the
region of support of the window as specified in Eq. (10.33), we define this sampled

* time-dependent Fourier transform as

L
XIrR k] = X[rR, 2nk/N) = Z 2[rR + mlwlm]e FEn N (10.39)
=1}
where r and L arc intepers such that - o0 = ¢ = soand = & =< N = 1. To further
simplify oor notation, we define

X k]l= X[rR. k] = X[rR. ) 0 sr=on, O0=k<AN =1 (1040

where Ay = 2rk /N, This notation denotes explicitly that the sampled time-dependent
Fourier transform is simply a scquence of N-point DFTs of the windowed signal seg-
ments

xr[m] = x|r R + mlielm), — ey o =m=L -1, (10.41)

with the window position moving in jumps of K samples in time. Figure 10.16 shows
lines in the [n, A}-plane corresponding to the region of support of X[a, 2) and the grid
of sampling pointsin the [n, A)-plane for the case ¥ = 10 and R = 3. As we have shown,
it is possible to uniquely reconstruct the original signal from such a two-dimensional
discrete representation for appropriate choice of L.

Fquation {1139} involves the following integer parameters; the window length
£.; the number of samples in the frequency dimension, ot the DFT length N: and the
sampling interval in the time dimension, B. Although not all choices of these parame-
ters will permit exact reconstruction of the signal, numerous combinations of %, & and
win] and L can be used. The choice . = & guarantecs that il is possable Lo reconstruct
the windowed segments x {m)] from the block transforms X, [k]. [T § < [, the scgments
overlap, but if B = L, somc of the samples of the signal are notl used and therefore
carnnot be reconstructed rom X, [k]. Thus, as one possibility, if the three sampling pa-
rameters satisfy the relation R = L = N, then we can (in principle) recover R samples
ol x[n] block-by-block for all n from X, [k]. Notice that each block of R samples of the
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Figure 10.16 (&) Region of support for X7 A). (b} Grid of sampling points in
the [m, L)-plane for the sampled time-dependent Fourier transform with % = 10
and § = 3.

signal is represented by N complex numbers in the sampled time-dependent Fourier
representation; or, it the signal is real, only ¥ real numbers are required, due 1o the
svinmetry of the DFT.

As a specilic example, the signal can be reconstrucled exactly from the sampled
time-dependent Fourier transform for the special case B = L = N. In this case, ¥
samples of a real signal are represented by N real numbers, and this is the minimum
that we could expect to achieve for an arbitrarily chosen signal, For R = L = N we can
recover xlm| = xlr B + mjwfmlfor 0 = m = N — | by computing the inverse DI'T
of X, [£]. Therefore, we can express x[n] for rR = 0 = [(r + 1)R — 1] in terms of the
windowed segments x,[m] as

gl = r i

ke TRsns Lir + 1R — 1], (10.42)
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Le., we recover the V-point windowed segments, remove the effect of the window, and
ithen abut the segments together to reconstruct the original sequence.

10.3.5 The Overlap-Add Method of Reconstruction

While the previous discussion verifies the possibility of theoretically exact reconstruc-
tion of the signal from its time- and frequency-sampled time-dependent Fourier trans-
form, the demonstration proof is not a viable reconstruction algorithm when modifica-
tioms are made to the time-dependent Fourier transform as is common, for example, in
applications such as audio coding and noise reduction. In these applications, division by
a tapering window as required in Eq. (10.42) can greatly enhance errors at the edges:
therefore, the signil blocks may nat it ogether smoothly, Tn such applications, it is
helpiul 1o make R smaller than £ and & so that the blocks of samples overlap. Then,
if the window is properly chosen, it will not be necessary to undo the windowing as in
Eq. (1042

Suppuose that £ = L = N. Then we can write

I Nl
xe[m] = x[r R +mlwlm) = = 3" X k]! P g am 2L -1, {10.43)
N L=l
The tecovered scgments arc shaped by the window, and their ime origin s 4t Lhe
beginning ol the window. A dillerent approach to putting the signal back together that
is more rabust to changes n X.[k] s to shift the windowed segments to their original
time locations r & and then simply add them together, Le.,
e
Rnl= Y xeln—rRIL (101.44)
Faz—i

If we can show that &[n] = x[n]foralin,then Egs. (10.43) and (10.44) together comprise
a method for tme-dependent Fourier synthesis having the capability of perfect recon-
struction. Substituting Eq. {10.43} into Eq. {10.44) leads to the following representation
of ilnl:

o
il = 3 x[FR+ - rRlwn —rR]
=xin) ¥ wln-rR) {10.45)
If we define
] = Z wle = rkl, (10.46a)

then the reconstructed signal in Eq. (10.45) can be expressed as

iinl = x|lnht|nl. (10.46b)
It follows from Eq. (10.46b) that the condition for perfect reconstruction is
-
@n] = z wln —rR|=C —20 =n <o, (10.:47)

F o0
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1.e, the shifted-by-® copies of the window must add to a constant reconstruction gain
" for all a.

Mote that the sequence min] 15 a periodic sequence {with period R} comprised of
lime-aliased window sequences. As 4 simple example, consider a rectangular window
e[} of length L samples. If B = L. the windowed segments simply fit together
block-by-block with no overlap. In this case, the condition of Eq. (14.47) is satisfied
with " = |, because the shifted windows fit together with no overlap and no gaps. (A
simple sketeh will confitm this ) If L for the rectangular window is even, and B = L/2
a simple analysis or skelch will again verify that the condition of Eq. {1047) 15 satisfied
with € = 2. Infact,if L = 2". the signal x[»] can be perfectly reconstructed from X, [k]
by the overlap-add method of Eq. {1044y when L = Nand R = L. L/2,.... 1. The
corresponding reconstruction gains would be & =1, 2, . ., L. While this demonstrates
that the overlap—add method can perfectly reconstruct the original signal for some rect-
angular windows, and some window spacings R, the rectangular window is rarely used in
time-dependent Fourier analysis/synthesis because of its poor leakage properties, Other
taperad windows such as the Bartlett, Hann, Hamming, and Kaiser windows are more
commonly used, Fortunately, these windows with their superior spectral isolation prop-
erties, can also produce perfect or near-perfect reconstruction from the time-dependent
Fourier transform,

Twa windows with which perfect reconstruction can he achieved are the Bartlett
and Hann windows which were introduced in Chapter 7 in the context of FIR filter
design. They are defined again here in Fgs (10.48) and (10.49), respectively:

Bartlete (friangular)
niM, == M2,
Whartlit] = §2 - 20/M, M/ =n = M, (10148}
LA otherwise
Hann

0.5 — 05cosiZon /M), O=n =M,

149
0, otherwise ( )

Wl =

As these windows are defined, the window length is L = M + 1 with the two end
samples equal to zero,” With M even and B = M /2, then it is easily shown for the
Bartlett window that the condition of Eq. (10.47) is salished with © = 1. Fagure HL1T7(a)
shows overlapping Bartiett windows of length M 4 1 {first and last samples zero) when
R = M/2 I is clear that these shilted windows add up to the reconstruction gain
comstunt £ = 1. Figure 10017(h) shows the same choice ol L = M + 1 and R = M/ 2 for
the Hann window. Although it is less obvious from this plot, it is also truc that these
shifted windows add up for all & to the constant £ = L. A sirmilar stalement s also trae
for the Hamming window and many other windows.

SWith these definitivus the actual nember of gonzero samples is M — | for both the Bartlett and Haon
windows, bul the inclesion of the zero samples leads wo convement mathematical sunplifications,
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Figure 730 gives a comparison of the DTEFT of the rectangular, Bartlett and Haon
windows. Note that the main-lobe width of the Bartlett and Hann windows is twice that
of the rectangular window of the same length 1., but the side lobes are significantly lower
in amplitude for both the Bartlett and Hann windows, Thus, they and the other windows
in Fipure 7.30 are muoch preferred over the rectangular window for time-dependent
Fourier analysis/synthesis,

While Figure 10.17 is intuitively plausible, it is less obyious that the Bartlent and
Hann windows for M = 2¥ can provide perfect reconstruction for values of
E=M/2. MM, ..., I with corresponding reconstraction gains of M {28} To see this,
it is helpful 1o recall that the envelope sequence @[q] s mherently periodic with period
B, soit can be represented by an mverse DFT as

] R-1
Bla= Y wln—rR|= E W (o @TE/ Yy iRk Rin {10.50)

ras—{n3

where Wied 258 i< the DTFT of w(n] gamplud at frequencies (2nk/R} k = 0.1,
R = 1. From Eqg. (HL50) it is clear that a condition for perfect reconstruction is

wig/ @y =9 k=12, .... R-1, {10.51a)
andif Eq. (10.51a) kolds, then it follows from Eq. (10.50) that the reconstruction gain is
Wie!) 2
= ———, {1051k}
R .

Problem 7.43 of Chapter 7 explores the notion that the commeonly uscd Bartlett,
Hann, Hamming, and Blackman windows can be represented m terms of rectangular
windows for which it is relatively casy to obtam a closed-Torm expression for the D'TFT
of the window. In particular, Problem 7 43 gives the resull that for M even. the Bartlett
window defined as in Eg. (1048} has DTFY

2 ':i.il'l[\ru."rf_.-m:l): — sl 11
rn:l = i e Lt T el ey
Wigare™) = (M’)( smiw/2) ) (hed)

From Eg. (10.52) it follows that the Bartlett window Fourier transform has cqually
spuced zeros al frequencies dok /M. lork = 1,2, ..., M — L. Therefore, if we choose R
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sothal 2ak/8 = 4xk/Mor R = M /2, the condition Eq. (10.51a) issatisfied. Substituting
w = Dinto Eq. {10.52) gives Wayie") = M/2. so it follows that perfect reconstruction
results with ¢ = M/2R) = 1if & = M/2. Choosing R = M/2 aligns the frequencies
2wk B with all the zeros of Wgge (e ). TI M is divisible by 4, we can use £ = & /4 and
the frequencies 2ak /& will still align with zeros of Wy le'™), and the reconstruction
gainwillbe © = M/i2ZR) = 2. If M is a power of two, & can be smaller with concomitant
increase in

The DTFT Wgan (™) also has zeros equally spaced at integer multiples of 47/ M.
80 exact Teconstruction is also possible with the Hann window defined as in Eq. (10.49),
The equally spaced zeros of Wgan(e™) and Wipgqute!™) are evident in the plots in
Figure 7.30(b) and (c). respectively. Figure 7.30(d} shows the Hamming window;, which
is a version of the Hann window that is optimized 1o minimize the side-lobe levels. As
a resull of the adjustment of the coelficients rom 0.5 and 0.5 (o .54 and 0040, the zeros
of Wiamm{e®) are slightly displaced. so it is no longer possible to choose R so that
the [requencies 2 k/ R fall precisely on zeros of Whammie!™). However, as shown in
Table 7.2, the maximum side-lobe level for frequencies above 4z /M 15 -41 dB. Thus, the
condition of Eq. (10.514) 15 satisficd approximately at each of the frequencies 2ak/R.
Equation 1050 shows that1f Eq. (10.51a) is not satislied exactly, @fn]will tend 1o oscillate
around C with pericd B imparting a slight amplitude modulation 1o the reconstructed
siznal,

10.3.6 Signal Processing Based on the Time-Dependent
Fourier Transform

A peneral ramework for signal processing based on the time-dependent Fourier trans-
form is depicted in Figure 10,18, This system is based on the fact that a signal x[»] can
ke reconstructed exactly from its time- and frequency-sampled time-dependent Fourier
transform X, [&1if the window and sampling parameters are appropriately chosen. as
discussed above, If the processing shown in Figure 10,18 is done so that ¥, [4] maintains
its integrity as a time-dependent Fourier transform, then a processed signal y|n] can be
reconstructed by a technique of time-dependent Fourler synthesis, such as the overlap-
add method or a technique involving a bank of bandpass filters. For example, if £[#]
is an audio signal, X [k | can be quantized for signal compression, The time-dependent
Fourier representation provides a natural and convenient framewuork, wherein auditory
masking phenomena can be exploited to “hide” the quantization noise. (See, for exam-
ple, Bost and Goldberg, 2003 and Spanias, Painter and Atti, 2007 Time-dependent
Fourier synthesis is then used to reconstruct a signal v|a) for Hstenming. This is the basis
for MP3 audio coding, for example. Another application is audio noise suppression,

Time Freg r Thame
COUCTY i
«{n| n;pe ndeni Xk} | “poit kL D:La:::.iliut []
QUL Processing - =L
Analysis B Syathesis

Figure 10.18 Sigral processing based on time-dependent Fourier analysis!
synthesis.
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wherein the secoustic noise spectrum 15 estimated and then either subtracted from the
time-dependent Fourier spectrum of the input signal or used as the basis for Wiener
liltering applied 1o the X [k]. (See Quatieri, 20002.) Thesge and many other applications
are preatly facilitated by the FF1 algorithms that are available for efficient computation
of the discrete-time-dependent Fourier transform.

A discussion of applications of this type would take us too far afield; however, these
kinds of block-processing techniques for discrete-time signals were also introduced in
Chapter &, when we discussed the use of the DFT for implementing the convolution of
a finite-length impulse response with an input signal of indefinite length. This method
of implementation of L.T1 systems has a useful interpretation in terms of the definitions
and concepts of time-dependent Fourer analysis and synthesis, as discussed so far,

Specifically, assume that xfu] = 0 for 2 < [}, and suppose that we compute the
time-dependent Founer transform for £ = L and 4 rectangular window. In other words,
the sampled time-dependent Fourier trunsform X, [k] consists of a set of N-point DFTs
of segments of the inpul sequence

xe|m] = x{rL 4 m) D=m=L-1. (10.53)
Since each sample of the signal x[n| is included, and the blocks do not overlap, it follows
Lhat

o0
xln] = Z.x,—{n —rL} (10.54)
redl
MNow, suppose that we deline a new time-dependent Fourier transform
¥kl = HkIX, 1] O=k=N-1, (10.53)

where H[k] is the N -puint DFT of a finite-length unit sample sequence iln| such that
Rfa]l=Mora = Dand fore = P —1. [{ we compute the inverse DFT of ¥, [k], we oblain
L N1 N1
l e AP
pelmi = é Y, [k]ed 2m/Mikm Ex,mhmm - ENwl. (10.56)
That is, ¥, fm]is the & -poinl circilar convolution of f]m] and x.[m]. Since fifm ] haslength
F samples and x.[m] has length L samples, it follows from the discussion of Section 8.7
thatif ¥ = L+ P —1, then v, [m] will be identical to the linear convolution of kfm] with
x[mlin the interval 0 <= m = L + P — 2, and it will be zero, otherwise. Thus, it Tollows

that if we construcl an oulput signal
L]

yln] = Eyrin —rl], (10.57)
r=H
then y|n] is the output of an LT1 system with impulse response &|n|. The procedure just
described corresponds exactly to the overlap—add method of block convolution, The
overlap—tave method discussed in Section 8.7 can also be applied within the framework
of the time-dependent Fourier transform.

10.3.7 Filter Bank Interpretation of the Time-Dependent
Fourier Transform

Another way to see that the time-dependent Fourier transform can be sampled in the
time dimension is to recall that for fixed A {or for fixed & if the analysis frequencies are
hp = 2wk/N) the time-dependent Fourier transform is a one-dimensional sequence in
time that is the output of a bandpass filter with frequency response as in Eq. (10.28).
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Figure 10.19 Filterbank frequency respanse. {a) Rectangular window. (b} Kaiser
window,

This is illustrated in Figure 10.19. Figure 10.1%a) shows the equivalent set of bandpass

the filter bank interpretation, even for the case where L and N are much larger. When
N increases, the filter bands bacome narrower, and the side lobes everlap with adjacent
channels in the same way. Nete that the passbands of the filters corresponding to the
rectangular window overlap significantly, and their frequency selectivity is not good by
any standard. In fact, the side lobes of any one of the bandpass filters overlap completely
with several of the passbands on either side. This suggests that, in peneral, we might
encounter a prohlem with aliasing in the time dimension, since the Fourier transform
of any other fimite-length tapering window will not be an ideal filter response cither.
COur discussion in Section 10.3.5, however, shows that even the rectangular window can
provide perfect reconstruction with overlapping windows, in spite of the poor frequency
selectivity. Although aliasing occurs in the individual bandpass filter outputs, il can be
argued that the aliasing distortion cancels out when all channels are recombined in the
overlap—add synthesis. 'This notion of alias caneellation is one of the important concepls
to result from a detailed investigation of the filter bank inlerpretation.

If a tapering window is used. the side lobes are greatly reduced. Figure 10.19%b)
shows the case for a Kaizser window of the same length as the rectanpular window used



Ghapter 10 Fourier Analysis of Signals Ustng the Discrete Fourler Transfarm

in Figure 10.19{a). ie, . = & = 16, The side lobes are much smaller, but the main
lobe is much wider, so the Glters overlap even mores, Again, the previous argument
based on block processing ideas shows conclusively that we can reconstruct the original
signal almost exactly from {he time- and frequency-sampled time-dependent Fourier
transform if & is small enough. Thus, for a Kaiser window such as in Figure 10,19(D),
the sampling rate of the sequences represeniing each of the bandpass analysis channels
cintld he 27 /R = Ay, where Ay 15 the width of the main lobe of the Fourier frapsform
of the window® In the example of Figure 1L19{k}. the main lobe width is approxi-
mately A, = (Ldr, which imphies that the Uime sampling interval could be £ = 5 {or
ncarly perfect reconstruction of the signal from X[rR, 2} by the overlap-add method.
Maore generally, in the case of the Hamming window of length L = M + 1 samples, for
cxumple, Ay = 8w /M so nominally, the Ume sampling micrval should be B = M4
With this sampling rate in time, our discussion above shows that the signal xfa] could
be reconstructed nearly perfectly from X[r A, 25 using a Hamming window and the
overlap—add method of syathesis with R = Lidand L = &,

When using the overlap—add method of analysis/svnthesis, the parameters gener-
ally satisfy the relation B = L = &, Thisimplies that {taking account ol symmetries) the
effective total number of samples {numbers) per second of the time-dependent Fourier
representation Xirfl, M) is a factor of M/ R greater than the sample rate of x]n] itself,
This may not be an issug in some applications, but it presents a significant problem in
data compression applications, such as audio coding. Forfunately. the filter bank point
of view is the basis for showing that it is possible lo choose these paramelers to sal-
isfy R = N = [ and still achieve nearly perfect reconstruction of the signal from its
time-dependent Fourier transform. An example of such an analysisisynthesis system
was discussed in Section 4.7.6, where R = N = 2, and the lowpass and highpass filters
have impulse respomses of length £, which can be as large as desired to achieve sharp
cutoff filters. The two-channel filter bank can be generalized to a higher number of
channels with £ = N, and, as in the example of Section 4.7.6. polvphase techniques can
be emploved to increase computational efficiency. The advantage of requiring B = N
is that the total number of samples/s remains the same as for the input x[a]. As an
example, Figure 1020 shows the first few bandpass channels of the basic analysis filter
bank specifiad by the MPEG-11 audio coding standard, This filter bank performs time-
dependent Fourier analysis with offser center frequencies Ay = (2k + L /64 using 32
real bandpass filters, Since the real bandpass filters have a pair of passbands centered at
frequencies 1A, this is equivalent 1o 64 complex bandpass filters, In this case, the length
of the impulse responses {equivalent to the window lenath}is [, = 313 with the first and
last samples being equal to zero. The downsampling factor is £ = 32. Observe that the
filters overlap significantly at their band edges, and downsamphng by £ = 32 causes
significant aliasing distoriion, However, a more detailed analysis of the complete anal-
vais/synlhesis syilem shows thal the aliasing distortion due Lo the nonideal requency
responses cancels in the reconstruction process,

ﬁ!".im:\‘, inTour definition, the time-dependent Fourier transform channgi signals, X[, A ), #re bandpass
signals centered on frequency Ag, they can be frequency doweshifted by 3y, so that the result i= & lowpass
gsignal in Lhe band 4 Ay, The resuelting lowpass signals have highest freguency A, /2, 50 the Jowest sampling
rate would he 2n/R = Ay If & = N, the trequency-downshitting ocoanrs automatically as a result of the
downsampling eperation.
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First Four Channels of MPEG Analysis Filter Bank
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Figure 1020 Several bandpass channgls for the MPEG-11 analysis filtler bank,

A full-scale discussion of analysis and synthesis filter banks is bevond our scope
in this chapter. An outline of such a discussion is given as the basis for Problem 10,46,
and detailed discussions can be found in Rabiner and Schafer (1978), Crochicre and
Rabiner (1983) and Vaidvanathan { 1993).

710.4 EXAMPLES OF FOURIER ANALYSIS OF
NONSTATIONARY SIGNALS

In Section HL3.6, we considered a simple example of how the lime-dependent Fourier
transform can be used o implement lincar filtcring. In such applications, we are not
so much interested in spectral resolution as in whether it is possible Lo reconstruct
a modified signal from the modified time-dependent Fourier transform. On the other
hand, the concept of Lhe time-dependent Fourier transform is often used as a framework
for a variety of techniques for obtaining spectrum estimaies for nonstationary discrete-
time signals. and in these apphications spectral resolution, time variation. and other
issues are the most important.

A nonstationary signal is a signal whose properties vary with time, for example, a
sum of sinusoidal components with time-varying amplitudes, frequencies, or phases. As
we will illustrate in Section 10.4.1 for speech signals and in Section 10.4.2 for Doppler
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radar signals, the time-dependent Fourier transform often provides a useful description
of how the signal properties change with time,

When we apply time-dependent Fourier analysis io a sampled signal, the entire
discussion of Section 10.1 holds for each DFT that is computed. 1n other words. for
each segment x.[a| of the signal. the sampled time-dependent Fourier transform X, |&|
would be related to the Fourier transform of the original continuous-time signal by
the processes described in Section 1001, Furthermore, if we were to apply the time-
dependent Fourier transform to sinusoidal signals with constant (i.¢., nontime-varying)
parameters, the discussion of Section 10.2 should also apply to each of the DFTs that we
compute, When the signal frequencies do not change with time, it is tempting to assume
that the time-dependent Fourier transform would vary only in the frequency dimension
in the manner described in Section 10.2, but this would be true only in very special
cases For example, the time-dependent Fourier transform will be constant in the time
dimension if the signal is peniodic with period ¥, and L = iGN, and R = gV, where
£nand rg are inmgc:rﬁ; i.e, the window includes exactly &y periods, and the window is
moved by exactly rp periods between computations of the DFT. In general, even if the
signal is exaclly periodic, the varying phase relationships that would resolt as different
sepments of the wavelorm are shilted into the analysis window would cause the time-
dependent Founer transform 10 vary in the tme dimension. However, for stationary
signals, if we use a window that tapers Lo zeto al its ends, the magnitude | X-[k]] will
vary only slightly from segment to segment, wilh most of the variation of the complex
time-dependent Fourier transform occurring in the phase.

10.4.1 Time-Dependent Fourier Analysis of Speech
Signals

Speech is produced by excitation of an scoustic lube, the veca! fract, which i3 terminated
on one end by the lips and on the other end by the glottis. There are three basic classes
of speech sounds:

o Voired sounds are produced by exciting the vocal tract with quasi-periodic pulses
of airflow caused by the opening and closing of the glottis

e Fricative sounds are produced by forming a constriction somewhere in the vocal
tract and lorcing air through the constriction so that turbulence is created, thereby
producing a noisc-like excitation.

o Plosive sounds are produced by completely closing off the voeal Lract. building up
pressure behind the closure, and then abruptly releasing the pressure.

Detailed discussions of models for the speech signal and applications of the time-
dependent Fourier transform are found in texts such as Flanagan (1972), Rabiner and
Schaler (1973), ('Shaughnessy (1999), Parsons (1986) and Quatieri (2002).

With a constant vocal tract shape, specch can be modeled as the response of an LT1
system (the vocal tract) to a quasiperiodic pulse train for voiced sounds or wideband
noeise for unvoiced sounds. The vocal tract s an acoustic transimssion system character-
ized by its natural frequencies, called formanis, which correspond to resonances in its
frequency responss. In normal speech, the vocal tract changes shape relatively slowly
with time as the tongue and lips perform the gestures of speech, and thus 1t can be
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modeled as a slowly ime-varying filter that imposes its frequency-response properties
on the spectrum of the excitation. A typical speech waveform is shown in Figure 10.21.

From this briel descriplion of the process of specch production and from Fig-
ure 1021, we see that speech is definitely a nonstationary signal. However, as lustrated
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in the figure, the characteristics of the signal can be assumed to remain essentially con-
stant over time intervals on the order of 30 or 40 ms. The frequency content of the speech
signal may range up to 15 kHz or higher, but speech is highly intelligible even when
bandlimited to frequencies below about 3 kHz, Commercial telephone systems, for ex-
ample, typically limit the highest transmitted frequency to about 3 kITz. A standard
sampling rate for digital telephone communication systerns is 8000 samples/s,

Figure 10.21 shows that the waveform consists of a sequence of quasiperiodic
voiced segments interspersed with noise-like nivoiced segments. This fisure sugpests
that if the window length L is not too long, the properties of the signal will not change
apprectably from the beginning of the segment to the end. Thus, the DFT of a windowed
speech segment should display the frequency-domain properties of the signal at the
time corresponding to the window location, For example, if the window length is long
enough so that the fundamental frequency and its harmonics are resolved, the DFT of a
windowed segment of voiced speech should show a series of peaks at integer multiples
of the fundamental frequency of the signalin thatinterval. This would normally require
that the window span several periods of the waveform. If the window is too short, then
the harmomics will not be resolved, but the general spectrum shape will still be evident.
This 1s typical of the trade-off between ITequeney resolution and time resolution that s
required in the analysis of nonstationary signals. We saw this before in Example 104, If
the window is too long, the signal propertics may change too much across the window,
il the window is too short, resolution of narrowband components will be sacrificed. This
trade-off is illustrated in the following example.

Example 10.11 Spectrogram Display of the Time-Dependent
Fourier Transform of Speech

Figurc 10.22(a) shows a spectrogram display of the ime-dependent Fourier transform
L of the speech signal in Figure 10,21 The time waveform s also shown on the same
tume scale, below the spectrogram. More specifically. Figure 10.22(a) is o wideband
specrrogram. A wideband specirogram representation results from a window that is
! orelatively shoet in time and is characterized by poor resofution in the frequency dimen-
sion and good resolution in the time dimension. The frequency axis is labeled in lerms
2 of conlinuwons-time frequency. Since the sampling tate of the signal was 16,000 sam-
plesss, it follows that the frequency A = = corresponds to 8 kHz The specific window
,;.." used in Figure 10.22(a) was a Hamming window of duration 6.7 ms, corresponding to
_'*3'_.: f. = 108 The vatue of & was 16, representing 1-ms time increments,” The broad, dark
: bars that move horizontally across the spectrogram correspond to the resonance fre-
2 guencies of the vogal tract, which, as we see, chunge with time. The vertically striated
20 appearance of the speclrogrant is due Lo the quasiperiodic nature of voiced porlions of
the waveform, as is evident by comparing the variations in the waveform display and
Z the spectropram. Since the length of the analysis window is on the order of the length
- of a period of the wavetorm, as the window slides along in time, it alternately covars
. high-cnergy seements of the waveform and then lower enerey segments in between,
i o therebwy producing the vertical striations in the plod durnng voiced intervals
il I a rearrowband time-dependent Fourier analysis, a longer window is used to
=1 provide higher frequency resolution, with a corresponding decrease in lime resohution,

"In plotling spectTograms, it is common to use relarively small values of & o thar a smoothly varving
display is oblained.
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# Such a nurrowband analysis of speech is ilustrated by the display in Figure 10.22(b)
nx“al In this case, the window was a Hamming window of duration 43 ma. This corresponds
soo 1o L= T2 The value of B was again 16,
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This example only hints at the many reasons that the time-dependent Fourier
transform is so important in speech analysis and processing. Indeed, the concept is
used directly and indirecily as the basis for acoustic-phonetic analysis and for many
fundamental speech-processing applications, such as digital coding, noise and reverber-
ation tcmaoval, speech recognitiom, speaker verthcation, and speaker identification. For
present purposes, our discussion simply serves as an introductory illustration.

10.4.2 Time-Dependent Fourier Analysis of Radar
Signals

Another application area in which the time-dependent Fourier transform plays an im-
portant role is radar signal analysis, The following are clements of a typical radar svstem
based on the Doppler principle:

o Antenmas for transmitting and receiving {often the same).

e A iransmitter that generates an appropriate signal at microwave {reguencies. In
our discussion, we will assume that the signal consists of sinusoidal pulses. While
this is often the case, other signals may be used, depending on the specific radar
objectives and design,

= A receiver that amplifies and detects echoes of the transmitted pulses that have
been reflected from objects illuminated by the antenna,

In such a radar system, the transmitled sinusoidal signal propagates at the speed of
light, reflecis off the object, and returns at the speed of light to the anlenna, therchy
undergoing 4 time delay of the round-trip travel time from the antenna o the object.
[f we assume that the transmitted signal is a sinusoidal pulse of the form cosi &) and
the distance from the antenna to the object is pir}, then the received signal is a pulse of
the form
s(1) = cos[Dale — 2o/l (10.58)
where ¢ 18 the velocity of ight. I¥ the objecl 1s nol moving relative to the anlenna. then
@t = g, where pp is the range. Since the time delay belween the transmitted and
received pulses is 2oq/c, a measwrement of the time delay may be wsed o cstimate
the range. I, however, g is nol constant, the received signal is an ungle-modulated
sinusoid and the phase difference contains information about both the range and the
relative motion of the object with respect to the antenna. Specifically, let us represent
the time-varving range in a laylor's series expansion as
2(t) = o + ot +%,r:w“ E— {10.59)
where op 15 the nominal range, gy is the velocity, @y is the acceleration, and so on,
Assuming that the object moves with constant velocity {i.e. @ = (), and substituting
Eq. (10.59) into Ea. (10.38), we obtain
$(0) = cos[{Qy — 28pofon = 28 pofc]. {10600
In this case, the frequency of the reccived signal differs from the frequency of the
transmiited signal by the Doppler frequency, delined as
24 = -2y /e {10.61}
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Thus, the time delay can still be used to estimate the range, and we can determine the
speed of the object relative to the antenna if we can determine the Doppler frequency,

In a practical setting. the received signal is generally very weak, and thus a noise
term should be added to Eq. (10.60). We will neglect the effects of noise in the simple
analysis of this section. Also, in most radar systems, the signal of Eq. (10.60) would be
frequency shifted to a lower nominal frequency in the detection process, However, the
Doppler shift will still satisfy Eq. (10,61}, even if s(¢) is demodulated to a lower center
frequency,

To apply time-dependent Fourier analysis to such signals, we first bandlimit the
signal Lo a frequency band that includes the expected Doppler [requency shifts and then
sample the resulting signal with an appropriate sampling period T, thereby obtaining a
discrete-time signal of the form

x[n] = cos[{wg = 2y dpdein — Zeopon/ e, (10627
where @y = 2T, Inmany cases, the object’s motion would be more complicated than we
have assumed, tequiring the incorporation of higher order terms from Eg. (10.59) and
thereby producing a more complicated angle modulation in the received signal. Another
way to represent this more comphicated variation of the frequency of the echoes is to
use the ime-dependent Fourier transform with a window that is short enough, 50 that
the assumption of constant Doppler-shifted Irequency is valid across the entire window
interval, but not so short as to sacrifice adequate resolution when two or more moving
objects create Doppler-shifted return signals that are superimposed at the receiver.

Example 10.12 Time-Dependent Fourier Analysis
of Doppler Radar Sighals

i+ An example of time-dependent Fourier analysis of Doppler radar signals is shown in

4 Figure 1023, (See Schaefer, Schaler and Mersereau, 19793 The radar data had been
- preprocessed to remove low-velocity Doppler shifts, leaving the variations displaved in
the figure. The window for the time-dependent Fourier transform was a Kaiser window
with ¥ = L = 6dand 4 = 4. In the ligure, | X [&]] s plotied with time as the vertical di-
mension {increasing upward) and frequency as the horizontal dimension.® In this case.
- the suceessive DFTS are plotted close together, A hidden-Ting elimination algorithm
S s used to create a two-dimensional view of 1he time-dependent Fourier transform. To
.- the left of the center line is a strong peak that moves in a smooth path through the
o time-lrequency plane. This corresponds 1o a4 moving object whose velocily varies in a
repular manner. The other broad peaks in the time-dependent Fourier transform are
due 1o noise and spurtous retumns called clhatter in radar terminology, An example of
motion that might create such g varation of the Doppler frequency is a rocket moving
atconstant velocity bul rotating about its longitudinal axis, A peak moving through the
time-dependent Fourier ransform might correspond o reflections from a fin on the
rocket that is alternately moving toward and then away from the antenna because of
the spinning of the rocket. Figure 10.23(b) shows an estimate of the Doppler frequency
ag 7 funetion of Gme, This estimate was oblgined simply by locating the highest peak
ineach DFT

et
i

3The plot shows the negative frequencies oo the left of the line through the center of the plot and
positive [requencies oo the right. This can be achieved by compoting the DFT of - 292 in ] and noling that
the computation citectively shilts the origin of the DFT index do £ = &/2. Allernatively. the DEFT of x o]
¢an he computed and then reindexed,
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Figure 10.23 [ustration of time-dependent Fourier analysis of Doppler radar signal.
ia) Bequence of Fourier transforms of Deppler radar signal. {b) Doppler frequency estimated
b picking the largest peak in the ime-dependent Fourier transform,

10.5 FOURIER ANALYSIS OF STATIONARY RANDOM

SIGNALS: THE PERIODOGRAM

In previous seelions we diseussed and illustraled Foutier analysis for sinusoidal signals
wilh stationary (nontime-varying) parameters and for nonslationary signals such as
speech and radar. o cases where the signal can be modeled by a sum ol sinusoids or a
Linzar system excited by a periodic pulse train, the Fourier translorms of finite-length
segments of the signal have a convenient and natural interpretation in terms of Fourler
transforms, windowing, and linear system theory. However, more noise-like signals,
such as the example of unvoiced speech in Section 10.4.1. are best modeled as random
signals.

Aswediscussed in Section 2.10 and asshown in Appendix A, random processes are
often used to model signals when the process that generates the signal is too complex
for a reasonable deterministic model. Typically, when the input to an LTI system is
modeled as a stationary random process. many of the essential characteristics of the
input and output are adequately represented by averages, such as the mean value (de
level), variance {average power), autocorrelation function, or power density spectrum.
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Consequently, it is of particular interest to estimate these for a given signal, As discussed
in Appendix A. an estimate of the mean value of a stationary random process from a
finite-length segment of data is the sample mean, defined as

L-1
& 1
iy = Z_tln]. {10.63)
Hi=l
Similarly, an estimate of the variance is the sample variance, defined as
. 18
A O RS {10.64)
LES

The sample mean and the sample variance, which are themselves random variables, are
unbiased and asvemplotically unbiased estimators, respectively; ie., the expected value
of 7ir, is the true mean m, and the expected value of &7 approaches the true variance o}
as L approaches oo, Furthermore, they are both consistent estimators: Le.. they improve
with increasing L, since their variances approach zero as L approaches oo,

In the remainder of this chapter, we study the estimation of the power spectrum”
of a random signal using the DFI. We will see thal thete are two basic approaches
to estimating the power spectrum. One approach. which we develop in this section, is
referred to as periodogram analvsis and is based on direct Pourier transformation of
finite-length segments of the signal. The second approach. developed in Section 10.6, is
tofirst estimate the autocovariance sequence and then compute the Fourier transform of
this estimate. 1n either case, we are typically interested in obtaining unbiased consistent
estimators. Unfortunately, the analysis of such estimators is very difficult, and generally,
only approximate analvses can be accomplished. Even approximate analyses are beyond
the scope of this text, and we refer to the results of such analyses only in a qualitative
way. Detailed discussions are given in Blackman and Tukey (19538}, Hannan (1960,
Jenkins and Watts (1968), Koopmans (1925), Kay and Marple (1981}, Marple (1987},
Kay (1988) and Stoica and Moses (2005},

10.5.1 The Periodogram

Let us consider the problem of estimating the power densaty spectrum P {£2) of a
conlinuous-time signal 5.(¢). Anintuilive approach to the estimation of the power spee-
trum is suggested by Figure 10.1 and the associated discussion in Section 10.1. Based
on that approach, we now assume that the input sipnal s.(t} is a stationary random sig-
nal. The antialiasing lowpass filter creates a new stationary random sipnal whose power
spectrum is bandlimited, so that the signal can be sampled without aliasing. Then. x[x]
is a stationary discrete-time random signal whose power density spectrum P, (] is
proportional to £;,{€) over the bandwidth of the antialiasing filler; i.2.,

1 -~
Pus(@) = = Pu (;i’) ] < 7. (10.65)
where we have assumed that the cutoff frequency of the antialiasing filter issr /¥ and that
T is the sampling period. {See Problem 10.32 for a further consideration of sampling of

e torm peower spectrum is commuonly used interchangeably with the more precise term power densiy
SeCEriees,
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random &ignals_) (_‘.ons.l.:qucnﬂy, a gpood estimate of Py, (w) will provide a useful estimate
of P (2). The window wln] in Figure 10.] selects a fnite-length scpment [ L samples)
of x[a]. which we denote v[r], the Fourier transtorm of which is

-1
Vielty = E wlnle[n]e e (10.66)

n=I

Consider as an estimate of the power spectrum the quantity

| ;
- Jary 2
1) —LUWI[E' e, {10.67)

where the constant £ anticipales a need for normalization o remove bias in the spee-
lrum estimate. When the window win] 1 the rectanpular window sequence, this estima-
tor for the power spectrum is called the perindograst. 1t the window is not rectangular,
Tiew) 1s called the modificd periodogram. Clearly, the periodogram has some of the basic
properties of the power spectrum. It is nonnegative. and for real sipnals, it 15 a real and
even function of frequency. Furthermore, it can be shown (Problem 10.33) that

L-1

| . )
)= Y culmleimm, (10.68)
m=—(IL—-11
where
s
o] = Z x[nlwln]xln + mlwn + m). £10.69)
m=[}

We note that the sequence ryy[m] is the aperiodic correlation sequence for the finite-
length sequence v[n] = w(n]x|n]. Consequently, the periodogram is in fact the Fourier
transform of the aperiodic correlation of the windowed data sequence.

Explicit computation of the periodogram can be carried out only at discrete fre-
guencies. From Eqgs. (10.66) and (10.67), we see that if the DTFT of wla]x|a] is re-
placed by its DFT, we will obtain samples at the DFT frequencies oy = 2k /N for
E=101,.... N — 1. Specilically, samples of the periodogram are given by

1 ;
k] = L) = EI'-"[HI‘- {10.70)

where V0] isthe N-point DFT of wn x| ]. i we want to choose N 1o be greater than the
window length L, appropriate zero-padding would be applied to the sequence w|r|x[n).

If a random signal has a nonzero mean, its power spectrum has an impulse at
zero frequency. If the mean is relatively large, this component will dominate the spec-
trum estimate, causing low-amplitude, low-frequency components to be obscured by
leakage. Therefore, in practice the mean is often estimated using Eq. (10.63), and the
resulting estimate is subtracted from the random signal before computing the power
spectrum estimate. Although the sample mean is only an approximate estimate of the
zero-frequency component, subtracting it from the signal often leads to betéer estimates
at neighboring frequencies.
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10.5.2 Properties of the Periodogram

The nature of the periodogram estimate of the power spectrum can be determined by
recognizing that, for each value of w, [{w) is a random variable, By computing the mean
and variance of [ {w), we can determine whether the estimate is biased and whether it
is consistent.

From Eq. (11L.G8), the expected value of /{w) is

! L-1 _
()] = coolit])e 10.71
E{i{w)) L“M._._E[;_th [n]) (10.71)
The expecied value of ¢y, [m] can be expressed as
£-1
Elvyalm]] = Et’ixlﬂlenIx!u +mjwln + m]}

i) -
11 (10.72)

= E wlntwln + mlE[x[n]x[n + m1).
.l'l=|}
Since we are assuming Lhat x[a] is stationary,

Elxlnlrin + mll = doxlml, {10.73)
and Eq. {10.72) can then be rewrilien as
Elcalmil = cunlmlgpeclml, (10.74)

where ¢, [m] is the aperiodic autocorrelation of the window, ie.,
£
cuwlm] = zw[n]u:[n + mi]. {175
=l
That is, the mean of the apenodic aulocorrelation of the windowed signal is equal 1o the
aperiodic autocorrelauon of the window multiplied by the true autocorrelation function:
Le., in an average sense, the autocorrelation function of the data window appears as a
window an the time autocorrelation function.
From Eq. (10.71), Eq. (10.74), and the modulation—windowing property of Fourier
transforms {Section 2.9.7), it follows that

. | i o s ,
Sillmps h—:ufT Por (B)C e~ dp, (10.76)
where €y (e is the Fourier transform of the aperiodic autocorrelation of the window,
LE.,
Cuowle’™) = |W ()P, (10.77}

According to Eg. (10,76}, both the pericdogram and the modified periodogram
are biased estimates of the power spectrom, sinee £ {7 (@)} is not equal to P, (o). Indecd,
we sce Lhat the bias arises as a result of convolution of the true power spectrum with the
Fourier transform of the aperiodic autocorrelation of the data window. 1f we increase
the window length, we expect thal Wie/®) should become more concentrated around
w = {), and thus Cy..(e’™) should look increasingly like a periodic impuise train. If
the scale factor 1/(L L7 is correctly chosen, then £{f{w)) should approach P, (w) as
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Cuwfe!®y approaches a periodic impulse train. The scale can be adjusted by choosing
the normalizing constant L7 so that

L.—1
1 A 1 2
W el Pdew = — Fo, 10.78
g | W lde = o Y uted (10.78)
or

s
U= 3 Gwln) (10.79)

=i}

For the rectangular window, we should choose U = 1, while other data windows would
require a value of 0 = & < 1 if win| is normalized to a maximum value of 1. Alter-
natively, the normalization can be absorbed into the amplitude of wlr]. Therefore, if
properly normalized, the periodogram and modified periodogram are both asymptoti-
cally unbiased; i.e., the bias approaches zero as the window length increases.

To examine whether the pericdogram is a consistent estimate or becomes a consis-
ient estimate as the window length increases, it is necessary to consider the behavior of
the variance of the periodogram. An expression for the variance of the periodogram is
very difficult toobtain even in the simplest cases. However, il has heen shown (see Jenk-
ins and Watts, 1968) that over a wide range of conditions, as Lhe window length increases,

var[F(w)] 2= P2 (w). (10L.80)

That is, the vanance of the periodogram estimate is approximately the same size as the
square of the power spectrum that we are estimating. Therefore, since the variance does
not asvmplotically approach zero with increasing window lenglh, the periodogram is
not & consislent estimate,

The properties of the periodogram estimate of the power spectrum just discussed
are illustrated in Figure 10024, which shows periodogram estimates of white noise us-
ing rectangular windows of lenglhs L = 16,64, 256, and 1024, The sequence x[n]

i R S
4|
L) -
E 3
&
=
€ 2
'I -
U 1 1
0 i2 256 84 512
Susnple mumber (k)
(a)

Figure 10.24 Peripdegrams of pseudorardom white-noise seguence. (a) Win-
dow fength ! = 16 and OFT length & = 1024,
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was obtained from a pseudorandom-number generator whose outpul was scaled so
that {x|=]| = +'3. A good random-number generator produces a uniform distribution of
amplitudes, and the measured sample-to-sample correlation is small. Thus, the power
spectrum of the output of the random-number generator could be modeled in this case
by Py ) = U'_E == 1 for all w. For each of the four rectangular windows, the periodogram
was computed with normalizing constant I = 1 and at frequencies ey = 2xk/N for
N = 1024 using the DFT. That is,

2
i—-1

1 T O P
HEV = Hmg) = IIViH!* s L wlnlcfn e EmiNER| {10.81)
=il

In Figure 10.24, the DFT values are connected by straight lines for purposes of display.
Recall that [{w) 5 real and an even function of &, 50 we only need 1o plot [[&] for
0=k = N/2 corresponding o {} = w < . Note that the spectrum estimate Auctuates
maore rapidly as the window length L increases. This behavior can be understood by
recalling that, although we view the periodogram method as a direct computation of the
spectrum estimate, we have seen that the underlying correlation estimate of Eq. (10.69)
is. in effect, Fourier transformed to oblain the periodogram. Figure 10025 illustrates a
windowed sequence, x[n|w(r], and a shilted version, xfn + mbwln + m], as required in
Eq. (10.69). Fram this figure, we see that (L —m) signal values are involved in computing
4 particular correlation lag value oy [m ] Thus, when m is close to L, only a few values of
x|n] are involved in the computation, and we expect that the estimate of the correlation
sequence will be considerably more inaccurate for these values of m and consequently
will also show considerable variation between adjacent values of . On the other hand,
when s is small, many more samples are involved, and the variability of o, [m | with m
should not be as great. The variability at large values of m manifests itself in the Fourier
transform as Auctuations at all frequencies, and thus, for large L, the periodogram
estimate tends to vary rapidly with frequency. Indeed, it can be shown (see Jenkins

z|it] wn)

{a)

xfn +m) wmn =+ ]

Figura 10.25 |Hustration of sequences
| involved in Eq. {10.69). {a) A
finite-length seguence. (h) Shifted
sequence for m =~ 0.

L-m-1
(h)
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and Watts, 1968) that if ¥ = L, the pericdogram estimates at the DFT [requencies
2wk/N become uncorrclated. Since, as N increases, the DFT frequencies get closer
together, this behavior is inconsistent with our goal of obtaining a good estimate of
the power spectrum. We would prefer to obtain a smooth spectrum estimate without
random variations resulting from the estimation process. This can be accomplished by
averaging multiple independent periodogram estimates to redoce the Oucluations,

10.5.3 Periodogram Averaging

The averaging of periodogranms in spectrum estimation was first studied extensively by
Bartlett (1953); later, after fast algorithms for computing the DFT were developed,
Welch {1970} combined these computational algorithms with the use of a data window
wfn] to develop the method of averaging modified periodograms. Tn perindogram aver-
aging, a data sequence x[n],0 = n = (-1, is divided into segments of length-I. samples,
with a window of length L applied to each; .., we form the segments

xeln] = xlr B +nlwin), D<n=L-1, {10.82)

If ® = L the sepments overlap, and for # = L the segments are contiguous, Note
that ! denotes the length of the available data. The total number of segments depends
on the values of, and relationship among, R, L, and {. Specifically, there will be X full-
length segments, where K is the largest inteper for which (8 — IR +(L -1} = @ ~ 1,
The periodogram of the r'¥ sepment is

fw) = %Ixr{e-“"ﬁ, (10.83)

where X (e/*) is the DTFT of x,|r]. Each /, (rv} has the properties of a periodogram, as
described previously. Periodogram averaging consists of averaging the & periodogram
estimates /- {w); i.e.. we form the time-averaged periodogram defined as

: | K-1
Hew) = = Er:} I (). (10.84)

To examine the bias and variance of f{w). let vs take L = R, so that the segments do
not overlap, and assume that ¢ [m] is small for m = L, L.e., signal samples more than
L apart are approximnately uncorrelated. If we assume that the periodograms 1, () are
identically distributed inde pendent random variables, then the expected value of [ {w) is

1 K-l
Sl = — ¥ E1L (@), 10.85
) = % gj 1, (o)) (10.85)

ar, since we assume that the periodograms are independent and identically distributed,
ElT () = E[L{w)) for any r, (10.86)
From Eqg. {10.76), it follows that

m
Elliw)) = E1f(w)] = f Py (83C e’ ™ )d8, (10.87)

2wlU J o
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where L is the window Tength, When the window wfe] is the rectangular window, the
method of averaging perodograms is called Bartfett's procedure, and in this case it can
bi shown that

: _ L —=|ml, |mi={L-1) ) !
(Elttliml vy {ﬂ I:lThE‘er.Sf:, R}U.EH‘J
and, therelore,
'sin{mLfE})z :
Conle!™ =] ——— ] . .89
wni{e™) ( simfer/2) ( J

That is, the expected value of the average periodogram spectrum estimate is the convo-
lution of Lhe true power spectrum with the Fournier transtorm of the triangular sequence
(1] Lhat results as the autocorrelation of the rectangular window. Thus, the average
periodogram is also a biased estimale of the power spectrum.

To cxamine the variance, we use the fact that, in general, the variance of the aver
age of K independent identically distributed random variablesis 1 /K times the variance
uf each individual random variable. (Sec Bertsckas and Tsitsiklis, 2008, ) Thercfore, the
variance ol the average periodogram is

o 1
var]{{m1] = Ewﬂ Fodand], {10.90

or, with Eq. (10.80), il follows that
- -
varflia)] = rd o), (10.91)

Consequently, the variance of T{w) is inversely proportional to the number of peri-
odograms averaged, and as X increasces, the vaniance approaches zero,

From Eg. (1), we see that as L, the length of the segmuent x.[u], ncreases,
the main lobe of Cle’™) deereases in width, and consequently, from Eq. (10.87),
£1T{w)} more closely approximates P, {w). However, for fixed total dala length O,
the total number of segments (assuming that L = R) is @/L; therefore, as L increases,
K decreases. Correspondingly, from Eq. {10.91), the variance of 7 (e} will increase. Thus,
as is typical in statistical estimation problems, for a lixed data length there is a trade
off between bias and variance. However, as the data length () increases, both L and X
can be allowed to increase, so that as ( approaches oo, the bias and variance of /{ew)
can approach zero, Consequently, periodogram averaging provides an asympilotically
unhiased, consistent estimate of M (a).

The preceding discussion assumed that nonoverlapping rectangular windows were
used in computing the time-dependent periodograms. Welch (1970) showed that if a
different window shape is used, the variance of the average periodogram still behaves,
as in Eq. (10.91). Welch also considered the case of overlapping windows and showed
that if the overlap 15 one-half the window length, the variance 1s further reduced by
almost a factor of 2, due to the doubling of the number of sections. Greater overlap
does not continue to reduce the vaniance, because the segments become decreasingly
independent as the overlap increases.
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10.5.4 Computation of Average Periodograms Using
the DFT

As with the periodogram, the average periodogram can be explicitly evaluated only
at a discrete set of frequencies. Because of the availability of the FFT algarithms for
computing the DFT, a particularly convenient and widely used choice is the set of
frequencies ey = 2k /N for an appropriate choice of &. From Eq. {10.84). we see that
if the DFT of x,[n] is substituted for the Fourier transform of x,[n] in Eq. (10.83), we
abtain samples of J{w) at the DFT frequencies wp = 2ak/N fork = 0.1,.... N — 1.
Specifically, with X[k} denoting the DFT of x.[x],

1
Bk = I = 71X, [, (10.92a)
~ ) Kol
Tkl = Few) = — fe|k]- 10.92h
[k} = 1(en) Kgu {10.92b})

It s worthwhile to note the relationship between periodogram averaging and
the time-dependent Fourier transiorm as discussed in detail in Section 1003, Equation
{10.92a) shows that. except for the introduction of the normalizing constant 1/(LL7),
each individual periodogram is simply the magnitude-squared of the time-dependent
Fourier transform at time r R and frequency 2ok /N, Thus, for each frequency index &,
the average power spectrum estimafte at frequency corresponding to £ is the time aver-
age of the time-sampled time-dependent Fourier transtorm. This can be visualized by
considering the spectrograms in Figure 10.22. The value 7[k] is simply the average along
a horizontal line at frequency 27 /& (or 2k /(N T) in analog frequency).!” Averaging
the wideband spectrogram implies that the resulting power spectrum estimate will be
smooth when considered as a function of frequency. while the narrowband conditinn
corresponds to longer time windows and thus, less smoothness in frequency. ~

We denate £ (2mwk/ N as the sequence {.[k] and { (2w k/N) as the sequence {[k].
According to Fgs. (10.%2a) apd (100.92h), the average periodogram estimate of the power
spectrum is computed at N equally spaced frequencics by averaging the magnitude of
the DFTs of the windowed data segments with the normalizing factor LT7. This method
of power spectrum estimation provides a very convenient framework within which to
trade ot between resolulion and variance of the spectrum estimate. 11 is particularly
simple and efficient to implement using the FFT algorithms discussed in Chapler Y. An
imporiant advantage of the method over those 1o be discussed in Section 1006 15 that
the spectrum estimate is always nonnegative.

10.5.5 An Example of Periodogram Analysis

Power spectrum analysis is a valuable tool for modeling signals, and it also can be used
to detect signals, particularly when it comes to finding hidden periodicities in sampled

Wnate that she spectrogram is normally computad such that the windowed scgments ovarlap con-
siderably as r vanies, whils in perodogram averaging & 1 normally egual (o the window length or half the
window length.,
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Figure 10.26 Cosine sequence with whits noise, as in £q, (10.93).

signals. As an example of this type of application of the average periodogram method,
consider the sequence

x[n] = Acos(unn + 8) + efn], (10.93)

where # is arandom variable uniformly distributed between 0 and 25, is independent of
elr], and e[n] is a zero-mean white-noise sequence that has a constant power spectrun
ie., Pl = af for all . In signal models of this form, the cosine is generally the
desired component and e[«] is an undesired noise component. Citen, in practical signal
detection problems, we are interested in the case for which the power in the cosine
signal is small compared with the noise power. It can be shown {see Problem 10.40) that
over the base period of frequency || = &, the power spectrum for this signal is
A \ 2 .
Pl = TI&{&; — e} + 8w + ap)] + o, for |w| =< m. (1094}

From Egs. {10.87) and {10.94), it follows that the expecled value of the average peri-
odogram is
3

- A y . / i
E[Ha)} = E":TE'{"'""" (el =o0dy o O (e @realy] a2, (10.95)

Figures 10.26 and 10.27 show the use of the averaging method for a signal of the form
of Eq. (10.93), with 4 = 0.5, ey = Z/21, and random phase 0 = ¢ < 2#. The noise
was uniformly distributed in amplitude such that —/3 = ¢ln] = +/3. Therefore, it is
easily shown that o = 1. The mean of the noise component is zero. Figure 10.26 shows
101 samples of the sequence c[x]. Since the noise component ¢[x] has a maximum
amplitude +/3, the cosine component in the sequence x[#] (having period 21) is not
visually apparent.

Figure 10.27 shows averape penodogram estimates of the power spectrum for
rectangular windows with amplitude 1, so that 7 = 1, and of lengths 1. = 1024, 256, 64,
and 16, with the tolal record length @ = 1024 in all cases. Except {or Figure 10.27(u),
the windows overlap by one-half the window length. Figure 10.27{a) is the perindogram
of the entire record. and Figures 10.27(b), (c). and (d) show the averape periodogram
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{a) Perindogram for windaw length £ = d — 1024 [only one segment]. (i K =7
and [ = 256 {overlap by L2 () K =31 and L = 64
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Figure 10.27 (conffnped) (dy £ =127 and £ = 16

tor K = 7, 31, and 127 segments, respectivelv. In all cases, the average periodogram was
eviluated using 1024-point DFTs at frequencies wy = 2wk /1024, {For window lengths
L = 1024, the windowed sequence was augmented with zero-samples before comput-
ing the DIT)) Therefore, the frequency ay = 2x/21 lies between DFT frequencies
gy = 24871024 and gy = 2749,/1024.

In vsing such estimates of the power spectrum to detect the presence and/or the
frequency of the cosine component, we might search for the highest peaks in the spac-
trum estimate and compare their size with that of the surrounding spectrum values,
From Eqs. (10.89) and {10.95), the expected value of the average periodogram at the
frequency an is

5 AL :
E{Han)} = = 1 oy {10.530}

Thus, if the peak due to the cosine component is to stand out against the variability of the
average periodogram, then in this special case. we must choose L so that A°L/4 = o7,
This 15 illustrated by Figure 10.27{a}, where L is as large as it can be for the record length
(. We see that L = 1024 gives a very narrow main lobe of the Fourier transform of
the autocorrelation of the rectangular window. so it would be possible to resolve very
closely spaced sinusoidal signals. Note that {or the parameters of this example (4 = 0.3,
r:rf = I}and with L. = 1024, the peak amplifude in the periodogram at frequency 2z /21
1% cluse, but not equal, to the expecled value of 65. We also observe additional peaks
in the periodogram with amplitudes greater than 10, Clearly, if the cosine amplitude
A had been smaller by only a factor of 2, it is possible that its peak would have been
confused with the inherent variability of the periodogram.

We have scen that the only sure way to reduce the variance of the spectrum esti-
mate is (o inerease the record length of the signal. This is nol always possible, and even
il it 15 possible, longer records reguire more processing. We can reduce the vanability
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of the estimate while keeping the record length constant if we use shorter windows and
average over more sections. The cost of doing this 1s illustrated by parts (b)), {c), and
(d) of Figure 10.27. Note that as more sections are used. the variance of the spectrum
estimate decreases, but in accordance with Eq. (10.96), so does the amplitude of the
peak as a result of the cosine. Thus, we again face a trade-off. That the shorter windows
reduce variability is clear, especially if we compare the high-frequency regions away
from the peak in parts (), (b) and (¢) of Figure 10.27. Recall that the idealized power
spectrum of the model for the pseudorandom-noise generator is a constant (7> = 1)
for all frequencies. In Figure 10.27(a) there are peaks as high as about 10 when the true
spectrum is 1, In Figure 10.27{h), the variation away from 1 is less than about 3, and in
Figure 10.27{c), the variation around 1 is less than (0.5, However, shorter windows also
reduce the peak amplitude of any narrowband component, and they also degrade our
ability lo resolve closely spaced sinusoids. This reduction in peak amplitude is also clear
from Figure 10.27. Apain, if we were to reduce A by a factor of 2 in Figure 10.27(h),
the peak height would be approximately 4, which is not much different from many of
the other peaks in the high-frequency region. In Figure 10.27{c) a reduction of A by a
factor of 2 would make the peak approximately 1.235, which would he indistinguiﬁhahle
from the other ripples in the estimate. Tn Figure 10.27(d). the window is very short, and
thus the fuctuations of the spectrum estimate are greatly reduced. but the spectrum
peak due to the cosine is very broad and barely above the noise cven for A = 0.5, If
the length were any smaller, spectral leakage from the negative-[requency component
would cause there 1o be no distinel peak in the low-frequency region,

This cxample contictos that the average periodogram provides a straightforward
method of trading off between spectral resolution and reduction of the varianee ol the
spectrum cstimate. Adthough the theme of the example was the detection of a sinusoid
in noise, the average periodogram could also be used in signal modeling. The speetrum
estimates of Figure 1027 clearly sugpest a signal model of the form of Hq. (10.93), and
most of the parameters of the model could be estimated from the average periodogram
power spectrim estimate.

10.6 SPECTRUM ANALYSIS OF RANDOM SIGNALS USING ESTIMATES
OF THE AUTOCORRELATION SEQUENCE

In the previous section, we considered the peripdogram as a direct estimate of the
puwer spectrum of a random signal. The penodogram or the average periodogram is
a direct estimate in the sensc that it 15 obtained directly by Founer Iransformation
of the samples of the random signal. Another approach, based on the act thatl the
puower density spectrum 1s the Fourler transform of the autocorrelation function. s Lo
first oblain an estimate of the autocorrelation function riﬁu[ml for a finile sct of lag
values —M < m = M, and then apply g window w,.[m] before computing the DTFT of
this cstimate. This approach o power specirum cstimation is often referred 1o as the
Blackman-Tikey method. {Sce Blackman and Tukey, 1958.) In this section, we cxplore
some of the important facets of this approach and show how the DFT can be used to
implement it
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Let us assume, as before, that we are given a finite record of a random signal x|#].
This sequence is denoted

xln] ford=mn=0-1,

dll=1 otherwise, @03
Consider an estimate of the autocorrelation sequence as
L 1 i
txm] = ﬁi’m-LmJ. {10.98a)
where, since o |—m] = cpulm].
g1 g im| -1
coulm] = ) vlnfuln 4 m] = E *ielxin + fml) - Iml = @ =10 ¢1,98h)
el 0 otherwise,

corresponding 1o the aperiodic correlation of a rectangllarly windowed segment of x[x]
of length ¢,

To determine the properties of this estimate of the autocorrelation sequence, we
consider the mean and variance of the random variable ¢, ;[m ), From Eqgs. (10.98a) and
{10.98b), it follows that

@ —|m|-1 {d—|m|—1

i i 1 } A
Elrexlm]l = — Z Efxln|x|n + |m|l} = — Z dhexlm], (10.59)
g L 0 ~
[ ey Ay
and since ¢, . |m] does not depend on » for a statonary random process,
0 — |m] :
Eldeclml} = ( 0 ]‘f’”‘fi’ﬂj‘ iml = -1, (10,100)
0 otherwise,

FromEq. (10,1410}, we see that . lm]isabiased estimate of ¢, [m |, since £{gh, m}
is not equal to ¢y, [m], but the bias is small if [m| < @. We see also that an unbiased
estimator of the autocorrelation sequence for jm| = 0 — 11s

Bexm] = (ﬁ) coelml: (10L101)

i.e., the estimator 15 unbiased if we divide by the number of nonzero terms in the sum
of jagged products involved in computing each value of oy, [m |, rather than by the total
number of samples in the data record.

‘Lhe variance of the autocorrelation function estimares is difficult to compute,
even with simplifving assumptions. However, approximaite formuias for the variance of
hoth @y [m] and .. feml can be found in Jenkins and Watts {1%68). For our purposes
here, it is sufficient to observe from Eq. (10.98b) that as |m| approaches Q, fewer and
fewer samples of x|n) are involved in the compuiation of the autocorrelation estimaie;
therefore, the variance of the autocorrelation estimate can be expected to increase
with increasing |m|. In the case of the periodogram, this increased variance affects
the spectrum estimate at all frequencies, because all the autocorrelation lag values
are implicitly involved in the computation of the periodogram. However, by explicitly
computing the autocorrelation estimate, we are free to choose which correlation lag
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values 1o include when estimating the power spectrum. ‘lThus, we define the power
spectrum estimate

M1
Sl = Z el o e =™, (10.102)
m= (M 1]

where w.[m] 15 a symmetric window of length (2M — 1) applied to the estimated auto-
correlation function. We require that the product of the autocorrelation sequence and
the window be an even sequence when x[#] s real, so that the power spectrum estimate
will be a real, even funchion of @ Therefore, the comrelation window must be an even
sequence, By limiting the length of the correlation window so that M < @, we include
only autocorrelation estimates for which the vanance is low,

The mechanism by which windowing the autocorrelation sequence reduces the
varianee of the power spectrum estimate is best understood in the frequency domain.
From Egs (10.68). (10.69), and (10.98b), it follows that, with win] = 1for 0 = n =
(2 — 1y, Le., a rectangular window, the periodogram is the Fourier transform of the
autocorrelation eshimate q?:u [m]; v,

Brelm] = %chm} L, éw{pim}ﬁ = I {w), (10.103)

Therefore, from Eq. (10,102}, the spectrum estimate obtained by windowing of ¢, {m]

i5 the convolution
T

Stw) = ?11 f HgyW. el e s, {10.104)
From Eq. {10.104), we sce that the effect of applying the window w.[m] to the auto-
correlation estimate is to convolve the periodogram with the Fourier transform of the
awtocorrelation window., This will smooth the rapid Muctuations of the periodogram
spectrum estimate. The shorter the correlation window, the smoother the spectrum
cstimate will be, and vice versa.

The power spectrum Py, (@) is a nonnegative function of frequency, and the peri-
adogram and the average periodogram avtomatically have this property by definition.
In contrast, from Eq. (10.104), it is evident that nonnepativity is not guaranteed for
Siew), unless we impose the further condition that

W (e =0 for =7 <o <. (10.105)
This condition is satisfied by the Fourer transform of the tnangolar (Bartlett) win-
dow, but it is not satisfied by the rectangular, Hanning, Hamming, or Kaiser windows.
Therefore, although these laiter windows have smaller side lobes than the triangular
window, spectral leakape may cause negative spectrom estimales in low-level regions
of the spectrum.

The expected value of the smoothed periodogram is
M1
ElSiet= Y. Eldulmlhwcimle "
m=M 1)

M-1 :
- 5 (0w

m=—(M—1)

(10.106)
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If ¢ = M,the term (@ — |m|)/Q in Eg. (10.106) can be neglected,! 5o we obtain

-1 x
sisenz Y %fm!mr-rm|e‘f””':ﬁi?[ Pes @YW (e 0. (10:107)
sz=—(M—1} =

Thus, the windowed autocorrelalion estimate leads to a biased estimate of the power
spectrum. Just as with the average periodogram, it is possible to trade speetral resolution
for reduced variance of the spectrum estimale. 1f the length of the data record is fixed, we
can have lower variance if we are willing 1o accept poorer resolution of closely spaced
narrowband speetral components, or we can have better resolution if we can accept
higher variance. Il we are free o observe the signal for a longer time (i.e., inereasc
the length @ of the data record), then both the resolution and the varance can be
improved, The spectrum estimate S{w) is asymptotically unbiased if the correlation
window is normalized so that

..I. e
— f Wole!™ydem = 1 = w[0]. {1108}
ek i -

With this normalization, as we increase {0 together with the length of the correlation
window, the Fourier transform of the correlation window approaches a periodic impulse
train and the convolution of Eq. (10107} duplicates £, ().

The variance of ${w) has been shown (sce Jenkins and Watts, 1968) to be of the
form

M1
var| S{w)] ~ 2.8 3 wlim]| Bel (10.109)

ma—{M—1}

Comparing Eg. (10.109) with the corresponding result in Eqg. (10.80) for the peri-
odogram leads 1o the conclusion that, to reduce the variance of the spectrum esti-
mate, we should choose M and the window shape, possibly subject to the condition of
Eq. (101.105), so that the factor

1 lll'f'—1
= 3 wlm (1011

m=—1H-1)

is as small as possible. Problem 10,37 deals with the computation of this variance reduc-
tion factor for several commonly used windows,

Estimation of the power spectrum based on the Fourier transform of an estimate
of the autocorrelation function is a clear alternative to the method of averaging peri-
odograms. Tt1snol necessarily better in any general sense; itsimply has different features,
and its implementation would be different. In some situations, it may be desirable to
compute estimates of both the autocorrelation sequence and the power spectrum, in
which case it would be natural to use the method of this section. Problem 10.43 explores
the issue of determining an autocorrelation estimate from the average perindogram.

Undore precisely, we could define an effective correlation window wem] = w.[m(Q — |m:/ 0.
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10.6.1 Computing Correlation and Power Spectrum
Estimates Using the DFT

The autocorrelation estimnate

{—|m|-1

o lm] = = z xlnlx[n + im|] {10.111)
Q w=0
is required for 'm| < M — 1 in the wethod of power spectrum estimation that we are
considering, Since ¢, .| -m) = ¢, [m]. it is necessary to compute Fq. (10.111) only for
nonnegative values of m, Le., for 0 = m = M - | The DFT and its associated fast
computational alparithms can be used to advantage in the computation of ¢, lm ], if we
ahserve that ¢ [m] is the aperiodic discrete convolution of the finite-length sequence
x[a] with k[ —s|. If we compute X[k], the N-point DFT of ¢[a], and multiply by X*[k],
we ohlain | X[£]|2. which corresponds to the cireular convolution of the finite-length
sequence xn] with x{{{—nVin ], 1.0, & circrdar autocarrelation. As our discussion in Sec-
tion 8.7 suggests, and as developed in Problem 100,34, it should be possible to aupment
the sequence x[n] with zero-valued samples and force the circular autocorrelation to
be equal 10 the desired aperiodic autocorrelation over the interval 0 = m = M — 1

To see how 1o choose N for the DFT, consider Figure 1028, Figure 100.28{a) shows
the two sequences x|n| and x[x + m] as functions of » {or a particular positive value of
m. Fipure 10.28( b} shows the sequences x[an] and x[{(n + m)}y] that are involved in the
circular autocorrelation corresponding to | X[k]. Clearly, the circular autocorrelation
will be equal to Qd,, [m] for 0 < m < M — Lif x[{{(n 4+ m)) y] does not wrap around and
overlap xin]| when 0 = m < M — 1. From Figure 10.28({b), it follows that this will be the
case Whenever N — (M — 1} = Qor N =0+ M -1

*[n]
—m L I . *‘-. - n
G-1m -1
ia)

%[n] Af(n +ms)

/

- :HLTJFU = Figure 10.28 Computation of the
I i / M'N i r circular autacosrelation. (a) x[n] and
& —i—m 0-1 " x[ii 4 mi] for a finite-length sequence of

length &, ) xInd and x[((0 + min g as
] in circular correlation.
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Insummiary, we can compule 4;'3_” [mllord = m < M—1 by the following procedure:

1. Form an N-point sequence by augmenting x[n] with (M — 1) zero-samples
2. Compute the N-point DFT,

N-1

X[&]= ) x[ple™/CmM fork=0,1,.... N =1

et

3. Compute
IX[E)P = X[KIX*[k] fork=0,1,....N -1,

4. Compute the inverse DFT of | X[k]]? 1o obtain

|
L : v

tulm] = T Z | XTk][P e/ t2n /W bk form=0,1,..., 5 - 1.
i i.n

5. Divide the resulting sequence by ¢ 10 obtain the autocorrelation estimate
M 1
o] = EE”_.[W:] form=0,1,....M—1.

This is the desited sct of autocorrelation values, which can be extended symmet-
rically for negative values of m.

i M is small, it may be more efficient simply 1o evaluate Eq. (10,111} directly. In
this case, the amount of computation is proportional to € - M. In contrast, if the DFTs
in this procedure are computed wsing one of the FFT algonthms discussed in Chapter 9
with ¥ = 3 + M — |, the amount of computation will be approximately proportional Lo
Nlogy N Jor N a power of 2. Consequently, [or sufliciently large values of M, vse of the
FFT is more efficient than direct evaluation of Eq. (10.111). The exact break-even value
of M will depend on the particular implementation of the DFT computafions; however,
as shown by Stockham (1966), this value would probably be less than M = 100,

To reduce the variance of the estimaie of the autocorrelation sequence or the
power spectrum eslimated from it, we must use large values of the recordlength . This
is not generally a problem with computers having large memories and [ast processors,
However, since M is generally much less than 2. it is possible Lo section the sequence
xfr] in a manner similar to the procedurcs that were discussed in Section 87,3 for
convolution of a finite-length impulse response with an indefinitely long inpul sequence.
Rader (1970} prescnted a particularly efficient and flexible procedure that uses many
of the properties of the DFT of real sequences 1o reduce the amount of computation
requited. The development of this technigue 15 the basis for Problem 10.44,

Once the autocortelation cstimate has been computed, samples of the power
spoclrum estimate §{ow) can be computed at freguencics ay = 2xk/N by forming the
Hnite-length sequence

@A-;-lmle-Lﬂ‘IJ. D=m=M-1,
shm] = < 0, M=Zm=N-M, (10.112)
o AN —mb [N —m], N-M+1l=m=N-1,
where 1w, [m] s the symmeiric correlation window, Then the DFT of s[m] i«

S[k] = SlawMa=dve n. k=0,1,....N~1, (10.113)



Section 10.6

Spectrum Analysis of Random Signals 855

x|#l

Calell + eln

Ooantizer

2

L

Figure 10.29 Procadure for obtaining
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where 5(w) is the Fourier transform of the windowed autocorrelation sequence as de-
fined by Eq. (110102}, Note that & can be chosen as large as is convenient and practical,
therehy providing samples of 5{w) ot closely spaced frequencies. However, as our dis-
cussions in this chapter have consistently shown, the frequency resolution 1s always
determined by the length and shape of the window wy.[m].

10.6.2 Estimating the Power Spectrum of Quantization
Noise

In Chapter 4, we assumed that the error introduced by quantization has the propertiesof
a white-noise random process. The techniques discussed so far in this chapter were used
to compute the power spectrum estimates of Figure 4.6{ that were used to suggest the
validity of this approximation. In this section, we provide additional examples of the use
of estimates of the autocorrelation sequence and power spectrum estimation in studying
the properties of quantizabion noise. The discossion will reinforce our confidence in the
white-noise model, and it will also offer an opportunity to point oul some practical
aspects of power spectrum estimation.

Consider the experiment depicted in Figure 10.29. A lowpass-filtered speech sig-
nal x.(z) was sampled at 2 16-KHz rale, vielding the sequence of samples ofx] that were
plotted in Figure 10.21."7 These samples were quantized with a 10-bit linear quantizer
(B =49, and the corresponding error sequence e[n] = @x[r]] — x[r] was computed.
Fipure 10.30 shows 2000 consecutive samples of the speech signal plotted on the first
and third lines of the graph. The second and lourth lines show the corresponding gquan-
tization error sequence. Visual inspection and comparison of these two plots tends to
strengthen our belief in the previously assumed model; i.e., that the noise appearts to
vary randomly throughout the range —2-18+) = ¢[n] = 2718+l However, such qual-
itative observations can be misleading. The flatness of the quantization noise spectrum
can be verified only by estimating the autocorrelation sequence and power spectrum of
the quantization noise ¢[n}.

Figure 10,31 shows estimates of the autocorrelation and power spectrum of the
quantization noise for a record length of @ = 3000 samples. The autocorrelation se-
quence estimate was calculated over the range of lags |m) = 100 using Egs. (10.98a)
and (10.98b). The resulting estimzle is shown in Figure 1031(a). Over this range,
~1.45 % 1078 = @pm] = 1,39 % 1072 except for $[0] = 3.17 » 1077, The autocorre-
lation estimate suggests that the sample-to-sample correlation of the noise sequence is
quile low. The resulting autocorrelalion estimate was multiplicd by Bartlett windows

1 Althoagh the semphes were originally guantized w12 bits by the A converter, for purposes of tis
experiment, they were scaled 1o 3 maximum value of ¥, and & smalf amount of random noise wis added o the
samples. W assume that these samples are “unquantized.” Le., we consider the 12-hit samples to effectively
be unguantized relative 1o the subsequent guantication thal we are applying in this discussion.
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Figure 10.30 Speech waveform (first and third lines) and the corresponding

quantization error {secand and fourth lines) for 10-bit quantizaticn {magnified 29
times), Each line corresponds to 1000 consecutive samples connected by straight
lines for convenience in plotting.

with M = 100 and M = 50. The windows are shown in Figure 10031 superimposed
0n q%[m'; (with scaling so that they can be plotted on the same axes) and the corre-
sponding spectrum estimates, computed as discussed in Seetion 10.6.1, are shown in
Figure 10.31(h).

As scen in Figure 10,31(b}, the Blackmun~Tukcey spectrum estimale for M = 100
(the thin continuouws line) shows somewhat erratic Nuetuations about the dashed line
plotted at the spectrum level 101ogy(271%/12) = —64.98 dB (the value of the white
power spectrum with o = 2728712 for B = 9). The heavy line shows the power
specirum estimate for M = 50, We see from Figure 10.31{b) that the spectrum esiimate
ix within =2 dB? of the spectrum of the white-noise approximation for 8 + 1 = 10 for
all frequencies. As discussed in Section 1106, the shorter window gives smaller variance
and a smoother spectrum estimate resulting from the lower frequency resolution of the
shorter window. In either case, the specirum estimate seems to support the validity of
1he white-noise model for quantization noise,

Although we have computed quantitative estimates of the autocorrelation and the
power specirum, our interpretation of these measurements has been only qualitative. It
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Figure 10.31 (a) Autocorreiation estmate for 10-bit quantization noise for (m = 104
with record length & = 3, 000. (b} Power spectrom estimates by the Blackman-Tukey
method using Bartlett windows with &7 = 100 and M = 50. (Dashed ling shows level

of 10lngsg2—'8 112

is reasonable now to wonder how small the autocorrelation would be ife[n] were reallv a
white-noise process. To give quantitative answers to such questions, confidence intervals
for our estimates could be computed and statistical decision theory applied. (See Jenkins
and Watls (1968}, for some tests for white noise.} In many cases, however, this additional
statistical treatment is not necessary. In a practical setting, we are often comfortable and
content simply with the observation that the normalized autocorrelation is very small
everywhere, except at m = (1,

Among the many important lusights of this chapter is that the estimate of the au-
tocorrelation and power spectrum of a stationary random process should improve if the
record length is increased. This is illustrated by Figure 10.32, which corresponds 1o Fig-
ure 1131, except that 2 was increased to 30,000 samples. Recall that the variance of the
autocorrelation estimate is proportional to 1/ (2. Thus, increasing ¢ from 3000 to 30,000
should bring about a tenfold reduction in the variance of the estimate. A comparison
of Figures 10.31¢a} and 10.32{a) seems to verify this result. For ¢ = 3000, the estimate
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Figure 10.32 (a) Autocorrelation estimate for 10-bit quantization noise; record length

= 30,000. {B) Power spectrum estimates by the Blackman-Tukey method using Bartlett

windows with M = 100and M = 50.

falls between the Himits —1.45 3 107% < dm] = 1.39 = 107F, while for @ = 30,000, the
limits are —4.5 = 1077 = é{m] < 4.15 » 107 Comparing the range of variation for
& = 3000 with the range for O = 30,000 indicates that the reduction is consistent with
the tenfold reduction in variance that we expected. We note from Eq. (10.110) that
a similar reduction in variance of the spectrum estimate is also expected. This is again
evident in comparing Figure 1031(b) with Figure 10.32(h). (Be sure to note that the
scales are different between the two sets of plots) The vardation about the white-noise
approximate spectrum level is only 0.5 dB in the case of the longer record length.
Note that the spectrim estimates in Fipuee 10.32(b) displav the same trade off between
variance and resolution.

In Chapter 4 we argued that the white-noise model was reasonable, as long as the
yuantization step size was small. When the number of bits is small, this condition does

1*Recall that a reduction in variance by g factor of I0 corresponds to a reduction in amplitude by a
—

factor of -/ 10 == 3,16,
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Flgure 10.33 Speech waveform (first and third fines) and the corresponding

guantizaticn errer (second and fourth tnes) for 4-bit quantization (magnified 2
times). Each lina corresponds to 1000 consecutive samples connectad by straight
linas for convenience in plotting.

not hold. To see the effect on the quantization noise spectrum, the previous experiment
was repeated using only 16 quantization levels, or 4 bits, Fipure 10033 shows the speech
waveform and quantization error for 4-bit quantization. Note that some portions of the
error waveform tend to look very much like the original speech waveform. We would
expect this to be reflected in the estimate of the power spectrum.

Fipure 10.34 shows the autocaorrelation and power spectrum estimates of the error
sequence for 4-bit quantization for a record lenpth of 30,000 samples. In this case, the
autocorrelation shown in Figures 10.34(a) is much less like the ideal autocorrelation for
white noise. This 15 not surprising in view of the obvious correlation between the signal
and noise displayedin Figure 10033, Figure 10.34(b) shows the power spectrum estimates
for Bartlett windows with M = 100 and M = 30, respectively. Cleatly, the spectrum is
not flat, although the general level reflects the average noise power. In fact, as we shall
seg, the guantization noise tends to have the general shape of the speech spectrum.
Thus, the white-noise model for quantization noise can be viewed only as a rather crude
approximation in this case. and it would be less valid for coarser quantization.



Autocorrelation

Power spectrum (i)

Chapter 10 Fourier Analysis of Signals Uising tha Discrate Fousier Transform

§ s i
—10) ] =) —40 20 { 0 £ &l =20 TEHE
Time index

ia)

S TS, AL ke MR M P =
0 HELN] 20N} JIHHE AN L] CHICK ] TOHK) HEXI
Frequency in He

(b}

CAf Bt i L i il — P O

Figere 10,338 (a) Autocorreistion estimate for 4-bit quantization noiss: record length
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The example of this section illustrates how autocorrelation and power spectrum
estimates can be used to support theoretical models. Specifically, we have demonstrated
the validity of some of our basic assumptions in Chapter 4, and we have given an
indication of how these assumptions break down for very crude quantization. This is
only a rather simple, but usclul, example that shows how the lechpiques of the current
chapter can be applicd in practice.

10.6.3 Estimating the Power Spectrum of Speech

We have seen that the time-dependent Fourier transform is particularly well-suited to
the representation of speech signals, since it can track the time-varying nature ol the
speech signal. However, in some cases, it 1s useful (o take a different point of view. In
particular, even though the waveform of speech as in Figure 10,21 shows significant
variability in time, as does its time-dependent Fourier transform in Figure 1022, it is
nevertheless possible to assume that it is a stationary random siznal and apply our
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Figure 10.35 {a) Autocorelation estimate for speach signal of Figure 10.21; record length
0 = 30.000. (b} Powear spectrum estimates by the Bleckman—Tukey method using Bartlett
window (heavy line} and Hamming window {llght line) with A = 50

long-term speetruom analysis technigues. These methods averape over a lime interval
that is much longer than the changing events of speech. This gives a general spectrum
shape thai can be oseful in designing speech coders and in determining the bandwidih
requirements for speech transmission.

Figure 141,35 shows an example of estimating the power specirum of speech us-
ing the Blackman—Tukey method. The autocorrelation sequence estimated from 0 =
30, 000 samyples of the speech signal in Iigure 10.21 15 shown in Figure 10.35(a). together
with Bartlett and Hamming windows of length 2M + 1 = 101, Figure 110.35(b) shows
the corresponding power spectrum estimates. The two estimates are grossly similar but
dramatically different in detail. This is because of the nature of the I¥I'FTs of the win-
dows, Both have the same main-lobe width Adw, = Bx /M, however their side lobes
are very different. The side lobes of the Bartlett window are strictly nonnegative, while
those of the symmetric Hamming window (which are smaller than those of the Bartlett
window} are negative for some frequencies. When convolved with the periodogram
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corresponding o the autocorrelation estimate, this yields the dramatically different
results shown,

The Bartletl window guarantees a positive spectrum estimate for all frequencies,
However, this is not trie for the Hamnming window. The effect of this is particularly
pronounced in regions of rapid vanability of the periodogram, where side lobes due to
adjacent frequencies can cancel or interfere to produce negative spectrum estimates. The
dots in Tigure 10.35(b) show the frequencies where the spectrum estimate was negative,
When plotting in dB, it is necessary to take the absolute value of the negative estimates.
Thus, while the Bartlett window and the Iamming window have the same main-lobe
width, the positive side lobes of the Bartlett window tend to fill in paps between relatively
strong frequencies, while the lower side lobes of the Hamming window lead to less
leakage between frequencies, but the danger of negative spectrum estimates as positive
and nepative side lobes interact.

The Hamming window (o1 other windows such as the Kaiser window) can be
used in spectrum estimation without danger of negative estimates if they are used
in the method of averaging periodograms that are discussed in Section 10.5.3. This
method guarantees positive estimates, because positive periodograms are averaged.
Figure 10.36 shows a comparison of the Blackman-Tukey estimates of Figure 10.35(b}
with an estimate obtained by the Welch method of averaging modified periodograms.
The heavy dashed line is the Welch estimate. Note that it follows the peneral shape of
the other two estimates, but it differs significantly in the high frequency repion, where
the speech spectrum is naturally small, and where the frequency response ol the analog
antigliasing filter causes the spectrum 1o be very small. Because of its superior ability
o deliver consistent resolution for spectra with wide dynamic range, and because it is
easily implemented using the DFT, the method of averaging periodograms is widely
used in many practical applications of spectrum estimation.

All the spectrum estimates in Figure 10.36 show that the speech sipnal is character-
1eed by a peak below SO0 Hz and a Tall-off with increasing [requency by 30 o 400 dB at 6
KHz. Several prominent peaks between 3 KHe and 5 KHz could be due to higher vocal
tract resonances that do not vary with tme. A different speaker or different speech
material would certainly produce a different spectrum estimate, but the general nature
of the spectrum estimates would be similar to those of Figure 10.36.

10.7 SUMMARY

One of the important applications of signal processing is spectrum analysis of signals.
Because of the computational efficiency of the FFI, many of the techniques for spec-
trum analysis of continuous-time or discrete-time signals use the TXFT either directly or
indirectly. In this chapter, we explored and illustrated some of these techniques.
Many of the issues associated with spectrum analysis are best understood in the
comtext of the analysis of sinusoidal signals. Sinece the use of the DFT requires finile-
length signals, windowing must be applied in advance of the analysis. For sinusoidal
signals, the width of the spectral peak observed in the DFT is dependent on the win-
dow length, with an increasing window length resulting in the sharpening of the peak.
Consequently, the ability to resolve closely spaced sinuscids in the spectrum estimate
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Figure 10.36 Power spectrum eslimates by the Blackman—Tuxey method psing Bartlett
window {heawvy ling} and Hamming window (light ling) with & = 50. Tha dashed line shows
ihe power spactrum obtained by averaging overdapping periodogrars using a Hamming
window with Af = &0.

decreases as the window becomes shorter. A second, independent effect inherent in
spectrum analysis using the DFT is the associated spectral sampling, Specifically, since
the spectrum can be computed only at a set of sample frequencies, the observed spec-
trum can be misleading if we are not careful in its interpretation. For example, important
features in the spectrum may not be directly evident in the sampled spectrum. To avoid
this, the spectral sample spacing can be reduced by increasing the DFT size in one of two
ways. One method is to increase the DFT size while keeping the window lengih fixzed
{requiring zero-padding of the windowed sequence). This does not increase resolution,
The second method is to increase both the window length and the DFT size. In this case,
spectral sample spacing is decreased, and the ability to resolve closely spaced sinusoidal
components is increased.

While increased window length and resolution are tvpically beneficial in the spec-
trum analysis of stationary data. for time-varving data, it is generally preferable to keep
the window length sufficiently short, so that over the window duration, the signal char-
acteristics are approximately stationary. This leads to the concept of the time-dependent



Chapter 10 Fouriar Analysis of Signals Using the Discrate Fourier Transtorm

Fourier transform, which, in effect, is a sequence of Fourier transforms obtained as the
signal slides past a finite-duration window. A common and useful interpretation of the
time-dependent Fourier transform is as a bank of filters, with the frequency response
of each filter corresponding to the transform of the winpdow. frequency shifled to one
of the DFT frequencies. The time-dependent Fourier transform has important applica-
tions both as an intermediate step in filtering signals and for analyvzing and interpreting
lime-varyingsignals. such asspeech and radar signals. Spectral analysis of nonstationary
signals tvpically involves a trade-off betweon time and frequency resolution, Specifically.
our ability to track spectral characleristics in (me Incresdses as the length of the apalysis
window decreases. However, a shorter analysis window results in decreased frequency
resolution.

The DFT also plays an important role in the analvsis of stationary random sig-
nals. An intuitive approach Lo estimating the power spectrum of random signals is 1o
compule the squared magnitude of the DFT ol a segment of the signal. The resulting
estimate, called the periodogram, is asymplotcally unbiased. The variance of the pe-
riodogram estimale, however, does not decrease to zero as the length of the segment
inereases: consequently, the periodogram is not a good estimate. However, by dividing
the available signal sequence nto shorter segments and averaging the associaled peri-
odograms, we can obtain a well-behaved estimate. An alternative approach is to first
estimate the autocorrelation function. This can be done either directly or with the DFT.
If a window is then applied to the autocorrelation estimates followed by the DIFL the
result, referred to as the smoothed periodogram, is a good spectrum estimate.

Basic Problems with Answers

10.1. A real continuous-time signal x-(f) is bandlimited to frequencics below 5 kHz; e
X jQy = 0 for |82 = 2w (30KY. The signal x () 15 sampled with o sampling tate of
000 samples per second (10 kHz) to produce a sequence xli] = r-(nd 1 with T = 11~4,
Lt X[&] be the 1E6G-point DFT of x(n].

{a} Towhai continuous-time frequency does the index & = 150 in X|&] correspond?
{b} Tis whal conlinuous-time reguency does the index & = 800 in X[k]| cormespond?

1.2, A continuous-tme signal o 00 isbandiimited to Sk e, X060 = Ofor |82] = 2030007,
xo01) is sampled with period T, producing the sequence c[n] = . (nTF). To examine the
spectral properties of the signal, we compute the ¥-point DFT of a scgment of & samples
of x[n] using & compuler program thal requires N = 2%, where v is un inleger,

Determine the sirdmuen value for N and the range of sampling rates

Finin < = Fmax

such that aliasing is avoided, and the effective spacing hetween IDFT values is less than
3 He; ie., the equivalent continuous-time frequencies al which the Fourier transform is
evaluated are separated by less than 5 e,
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B6S
A continuous-time signal x-(1) = ecos(£3;7) is sampled with period T to produce the se-
quénce x[#] = x.in 1) An N-poant rectangulac window is applied o x[n] for0, 1, ..., N—1,
and X[k], fork =10.1, .., & = 1,is the N-point DFT of the resulting sequence.

(a) Assuming that Sy, & and &y arve fived, how should T be chosen so that X [k;] and
X[N — kgl are nonzero, and X[k| = 0 for all other values of £7

(b) B your answer unigue? Tf not, give another value of 1 that saiisfies the condiiens of
[rart {a).

Let xq01) be a real-valued, bandlimited signal whose Fourier transform X 782 15 zero Tor
[$2) = 2o (300K, The sequence x[#] is obtained by sampling x.(#) at 10 kHz. Assume that
the sequence xfn] s zero forn < Qand o = 999,

Leat X[k] denote the HKKkpoint DFT of x[a]. It is known that X900 = 1 and
X[420] = 5. Determine X (783 for as many values of &2 a5 you can in the region £ =
2 (300,

Consider estimating the spectrum of a diserete-time signal x[n] using the DFT with a Ham-
ming window applied (o (k] A conservative tule of thumb for the frequency resolution
of windowed DFT analysis is that the frequency resolution is equal 1o the width of the
main lobe of Wie/ ™). You wish to be able o resolve sinusoidal signals that are separated
by as little as /100 in w. In addition, your window length L is constrained 10 be a power
of 2. What is the minimum length L = 2¥ that will meet your resolulion requirement?
The following are three different signals x;[a] that are the sum of two sinusoids:

xqlm] = cos{mr/4) + cos (17mwn f64) .

rz[n] = cos{mn /4] + DB cos (2lmrn/6d),

x3kn] = cos{mn/d)+ 0001 cos (21an fod)
We wish lo estimate the spectrum of cach of these sipnals using = 64-point DFT wilh a
Bd-point rectangular window wla]. Indicate which of the signals’ 64-point DFTs you wouid
expect (0 have [wo distinet speciral peaks affer windowing.
Lzt ¢]#] be a 5060-point sequence abtained by sampling a eontinuouns-time signal x. (1) at
T = 50 us, Suppose XTk] is the 8192-point DFT of x{#]. What is the ¢quivalend frequency
spacing in continuous time of adjacent DFT samples?
Assume that v|#] is a 100)-point sequence obtained by sampling 2 continuous-tme signal
aele) at 8 k1z and that X i&82) is sufficiently bandiimited to avoid aliasing, What is the
minimum DFT length & such that adjacent samples of X[k] correspond to a frequency
spacing of 5 Hz or less in the original continuous-time signal?
X, [k] denotes the omue-dependent Fourter transform (TOFT) defined in Exq. (10.411). Bor
this problem, consider the TDFT when both the DFL length & = 36 and the sampling
interval £ = 36, The window wirn | is a reciangular window of lenglh £ = 36 Compute the
TIIFT Xp[k] for —oe = r = coand () = & = N — 1 for the signal

cos(mafGr 0 =k < 35,
xin] = 4 cosiwe/2), 36 =n =TI,
i, otherwisa.

Figure P10.10 shows the spectrogram of o chirp signal of the form
1, 5
x[n} = sin (r,unu i Eln") ,

Mole that Lhe speclrogram is a represenlation of the magnitode of X(x, £, as defined in
Eqg, [1,34), where the dark regions indicate large values of | X [, &1, Based on the figure,
estimarte qy and A
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Figure P10.10

A continuous-time signal 35 sampled al a sampling rate of 0 kHz, anc the DFT of 1024
samples is computed. Determine the continuous-time frequency spacing between spectral
samples. Justify your answer,

Let x[n] e a signal with a single sinusoidal component. The signal x{»] is windowed with
an L-point Hamming window w|n| to obtain v;|a] hefore computing ¥V (/™). The signal
xin] i also windowed with an L-point rectangular window o obtain vy(e), which is used
10 gompile Vz{w'w‘l. Will the rk_'.’:ikb i Vo™ and [V {249 have the same height'.-' s,
Justity your answer. If not, which should have a larger peak?

Il is desited (o cstimate the spectrum of +[n) by applying a 512-point Kaiser window (o

the signal hefore compuring X (e'™1.

{a) The requirements for the frequency Tesolution of the system specify thar the largest
allowable main lobe for the Kaiser window is 7 /100, What is the best side-lobe al-
tenuation expected under these constraines?

(b} Suppuse that you know that x{n] contains two sinusoidal componenis at least 7 /50
apart, and that the amplitude of the stronger eomponet is 1. Based on yoor answer
to part (a}, give a threshoeld on the smallest value of the weaker component you would
gxpect 1o see over the side lobe of the stromger sinsoid.

A speech signal i3 sampled with a sampling rate of 16,000 samples’s (16 kHz) A window
of 20-ms duration is uscd in time-dependent Fourier analysis of the signal, as described
m Section 103, with the window beimg advanced by 40 samples belween compulalions of
the DET. Assume that the length of each DFT is & =27,

{a} How muny samples are there in cach segment of speech selected by the window?
by Whatis the “frame rate™ of the lime-dependent Fourier anabysis; 1.2., how many DEFT
computations are done per second of input signat?
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10.15.

10.16.

10.17.

as7

{ch What is the minimum size N of the DFT such that the original input signal can he
reconstructed from the Hime-dependent Fourier transform?

(dy Whal is Lhe spacing {in Hz) belween the DFT samples [or the minimum & mom
part {c)?

A realvalued continuows-lime segment of a signal . 4f) 15 sampled at a rate of 20,000
sammplests, vielding a 1000-point finite-length discrete-time sequence <[] that © nonzem
im the imterval 0 < a = 999, Tt is known that x:0r) is also bandlimited such that X j52y =0
for 182 = 2l L0 KN e, assume (hal the sampling operation does not introduce any
distortion doe to aliasing.

X[&] denotes the 1000-point DFT of x|n]. X{80] is known to have the value
X[R00] =1 + j.

{u) From the information given, can you determine X [&| at any other valucs of £7 1f so,
state which value(s} of & and what the corresponding value of X[k} s, If not, explain
why not.

{b} From thc information given, state the value(s) of £2 for which X (752 is known and
the corresponding vabue(sh of X (7).

Let x[n] be a discrete-time signal whose spectrum you wish to estimate using a windowed
DFT. You are required 10 obiain a fregquency resolution of al least 7 /25 and are also
required to use a window length ¥ = 256. A safe estimate of the frequency resolution of
a spootral estimate is the main-lobe width of the windew used. Which of the windows in
Tahle 7.2 will satisfy the criteria given for frequency resolution?

Let x[n] be a discrete-time signal obtained by sampling a continwouws-time signal x, (1) with
some sampling period T so that x|a] = a.dnTh Assume .07} s bandlimited o 100 Hz, i.c.
N 82 = Ofor |8 = 2r K. We wish to estimate the continuous-time specerum X0 f82)
by computing a 1024-point DFT of x|a], X[£]. What is the smallest value of T such that
the equivalent frequency spacing between conseculive DFT samples X[k] corresponds 1o
1 Hz or less in continuous-lime frequency?

Figure P10.18 shows the magnitude [V[k|| of the 128-point DFT V|&| for a signal v(n].
The signal vfn]| was oblained by multiplying x[n] by a 128-point rectangular window wa];
Le., v[r] = xlr]w|r]. Note that Figure PLU.1E shows |V [&]] only for the interval O = & =
64, Which ol the following signals could be x[n]? Thal is, which are consisient with the
information shown in the figure?

xzp|n] = cos(n/4) + cos{.26mm),
xa[n] = cos{ze/4) 4 (1 /3 sin(ma 8,
k] = cosime 4} + (1/3) cos(mn/8),
xaqfn] = cosia B+ (1 Deosizafle),
xslr] = (1/3) cosimn,/4) + cos(ra,/8),

xgplr] = cos{rr /) + {1/ cosimn 8 4 7 5}
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A signal x[r] is analyzed using the time-dependent Fourier transtorm X | &), as defined in
Eq. {10.40). Initially, the analysis is performed with an ¥ = 128 DFT using an L = 128-
point Hamming window wln]. The time-domain sampling of adjacent blocks is B = 128
i.2., the windowed segments are offset by 128 samples in time. The frequency resolution
obtained with this analysis 15 not sulficient, amd it is desired 1w improve the resolation.
Several methods of modifying the analysis are sugpested to accomplish this goal. Which
of the [ellowing methods will improve the frequency resolution of the time-dependem
Fourier transborm X-f&§?

METHOD 12 Inerease N (o 256 while maintaining L and £ al the same vafues

METHOD 2z Increase both & and £ to 256, while maintaining R the same.

METHOD }:  Decrease £ 1o 64 while maintaining the same ¥ and L.

METHOD & Decrease Lo 64 while maimtaining the same & and &,

METHOD 5:  Maintain &, & and L the same, but change wln] to be a rectangular

window,

Assume thatl vou wish toestimate the spectrum of x[n] by appliving a Kaiser window to the
signal before computing the DTFT. You require that the side lobe of the window be 30 dB
below the main lobe and that the frequency resolution be 7740, The widlh of the main
lohe of the window is a safe estimate of the frequency resolution. Estimate the minimum
window length L that will meed these roqguirements.

Basic Probliems

10.21.

10,22,

Let xfn] — eosi2xa/5) and v]a] be the sequence obtained by applying a 32-point rectan-
gular window to x |n) before computing Viet™), Sketeh |VieM™) for—7 < w = 7, labeling
the frequencies of all peaks and the first nulls on either side of the peak. In addition, labe]
the amplitudes of the peaks and the strongest side lobe of each peak.

In this problem we are inlerested in estimating the specina of three very long real-valued
datasequences xy [r], £2[r], and x1[n], each consisting of the sum of two sinusoidal compo-
nents. However, we only have a 256-point segment of each sequence available for analvsis.



Chapter 10

Problems

1023,

869

Lit Xyle), £2|n), and Xylaf denote the 256-point segments of xy[n ], vale ), and wsle], Te-
spectively. We have some information about the mature of the spectra of the infimtely
long sequences, as indwcated in Egs. (P10.22-1) through (P10.22-3). Two different spec-
tral analysis procodures are being considercd for use, one using a 256-point reclangular
window snd the other a 236-point [lamming window, These procedures are described
below. In the descriptions, the signal T2y [#] denotes the N -poink rectangular window and
Hplr] denotes the V-point Hamming window, The aperator DFT g} indwates taking
the 2045-point DFT of 1ts argument after rero-padding the ead of the input sequence, Tins
will give a pood interpolation of the DTFET from the frequency samples of the DFT

: 17 bd
K lef™)y = fen + —) + 8 + —
R e o ) i 41

, 1T
8 e — -—;-.1 b Afus — -6‘:; (PHL22-1)
Yaei®) w0 Bt 2y et
] ms ) '+ n—+ —
z Cade 4
T i 1la
oy Y DT B =) (P10.22-2)
4 32
; ERT s
Kayle™p o= 00180 + 154 (ST ij
T 257
i 001 S = PI0.22-3
Efidee 421+ 01 & 1053 £ )

Based on Tgs (P10.22-1) through (PLO22-3 ) indicate which of the speciral analysis proce-
dures described below would allow vou to conclude responsibly whether the anticipated
frequency components were present. A good justification at 4 minimum will include a
guantitative comsideration of hoth resolution and side-lobe behavior of the estimators,
MNote that it is possible that both or neither of the alporithms will work for any given
data sequence. Table 7.2 may be usciul in deciding which algorithmi{s) to use with which
SELUETLE,

Spectral Analysis Algorithms
Algorithm 1: Tlse the entive Jdala segment with o rectangular window,

uin] = Razu[nlxn]
Viel™y = |DFTapg ol

Algorithm 2: Use the emtire data segment with a Hamming window.
v[n] = Hagplnlsn]

o = DFTzpaglvln]} .
=k

Sketch the spectrogram abtained by using a 256-paint rectangular window and 256-point

;v{ﬁ.fﬁ"||
I @

Al] = ccs[? + 1K1 sin (Hzgﬂjl]
for the intcrval 6 = a = 16,000,

124, {a) Considerthe system of Figure PLO24-| withinput zfz) = e 37 /810 Jsamipling peried

T =10"% and
1. D=n=N—-1,
seLe] = [ [, otherwise
What is the smallest nonzero value of & such thal X, (k] is noneero at exactly ane
value of &7
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(b} Suppose now that & = 32, the input signal is x (1} = ¢/**', and the sampling period
T ischosen such that no aliasing oceurs during the sampling process. Figures PLO.24-2
and P1024-3 show the magritude of the sequence Xy[k] for & =0, .., 31 for the
following two different choices of win):

. _J1, O=n<31,
wilpl= {1, otherwise,
n] = 1, f=r=7,
Wl 0, otherwise,

Indicate which figure corresponds to which choice of wir], State your reasoning

clearly.
z[i] xin] x ] T T,k
—] o “bplf_“lF'L SR
. win] Figurs P10.24-1
e K ]
20
I.‘r| 1 —
10 f-
QTTTTI ITTTTT'I'T'I'rt__!__trftrr'rrr'l"r_
4] 5

1} ] iy ] M 33
k

Figure P10.24-2

G*ITI‘ ITHH_H”TTMTTH”T

a 3 1 25 i 5
I

Figura P10.24-3
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(c) Forthe input signal and svstem parameters of part (b}, we would like to estimate the
value of Qy from Figure P10.24-3 when the sampling period is T = 1074, Assuming
that the sequence

1, O=n=31

wln] = 1, olherwse,

and that the sampling period is sufficient to ensure that no aliasing occurs during
sampling, estimate the value of £2;. Is vour estimate cxact? If 1t is not, what is the
maximum possible error of your frequency estimate?

(d) Suppose you were provided with the exact values of the 32-point DFT X, [&] for the
window choices wy (#] and wzlr). Briefly describe a procedure to obtain a precise
gslimate of £y,

Advanced Problems

125, In Figure P10.25, a filter bank is shown for which
hpln] = 3810 + 1] + 28[n] + élrn — 1],
and
holn] = ¢/ W hgln).  forg =1L....N —1.

The filter bank consists of & filters, modulated by a fraction 1/M of the tolal [requency
band. Assume M and & are both greater than the length of fplal.

fylﬂﬂj
- fyln] —)—E—p vyln)
xn|
- = hyln 1 LR |— ¥yln]
; I‘,.y.-,lnl

:
Y

e, ] 1l — vyl

Y

Fip ln]

1R | vy ]

k|

Figure P10.25  Fitter bank

{a} Express vy[n]in terms of the time-dependent Fourier transform X[, &y of x[«], and
sketch and label explicitly the values for the associated window in the ime-dependent
Fourier transform.

For parts (b and (c), assume that M = N, Since vg[n]depends on the two integer variables
g and r, we alternatively write it as the two-dimensional sequence ely. n].

(b) For & = 2, describe s procedure to recover x[a ] for all values of m il vfg. nl s available
for all integer values of g and n.
{e) Will vour procedure in (b) work if # = 57 Clearly explain.
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10:26. The system in Figure P10.26-1 wses a modulated filter bank for spectral analysis. (For
further illustration, Figure P10L26-2 shows how the frequeney responses My (¢!} relate )
The impulse response of the prototype filter fgl#] is sketched in Figure P10.26-3,

N— Aol vl

x|x|

v, [#]
v Blnl  ——

L hy, il#] Ll[nl...

2k

N where k-0,1, ... ¥—-1

fn] = e/wenfyn], oy

Figlrt] = lowpass prototype filter Hylz) = Hefe ™) Figure P10.26-1

m - Hilelt) = HI]{"-"T"-' — el
0 wy

L]

Figure P10.26-2

050
0.9 b=n=M-1
hodnl = 1o otherwise

Figure P10.26-3

An alternative system for spectral analysis is shown in Figure P10.26~4, Dictermine wa|
sothat Gk = v [0, fork=0,1, ..., ¥ —1.
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A B i gln)efidrakn akf= ,._E‘ gln]e~/IZmAA™)
il Figura P10.26-4

10.27. We are interested in obtaining 256 cqually spaced samples of the z-transform of x,[a].

Xy (0] 15 A windowed version of an arbilrary segquence xla| where culn] = z(n]wn] and
wlrl = 1,0 = n =255 and w[n] = 0 otherwise. The z-transtorm of ry|n] is definad as
255
Xyl = Zx[nl: e
il

The samples X, [&] that we wouold like 10 compule are

Xulkl = Xuiz)|

e kF=0,1,...,255.
r=ll0e! 256

We would like to process the signal x[n] with a2 modulated filter bank, as indicated in
Figare P10.27.

Each filer im the fllter bank has an impulse response that is related Lo the prototype
cawsal lowpass filter Jy[a] as follows:

hgln] = hglnle ™1™ k=1,

I

.., 258
Each cutpul of the filier bank 15 sampled once, al tGme & = &, o oblain X, kDL e,
Xoyplk| = vl Mal.

Determine fipgin ], we and A so that

Xu[k] = 'I‘lk[i'\'rj:-l = Xw{ﬂl,_:.;]_w%* E=il1 255,
. holo] valr]
v [l
de] p—| Mp ——
I .
| H1255[1] —-Fﬂ'q[ﬂ]
Figura P10.27
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10.28. (a) InFigure P10.28-1, we show a system for spectral analysis of a signal x(0), where

N—1
I
Gutn = 3 gtk
=i
N=23512, and LR =25

Firr the most general choice of the mulliplier coelficient ap, determine the cheive for
L and R which will result in the smallest number of multiplies per second.

xR x| i Ealn) rplee] Xoln]
f—-_ L8] ) i | = LL :.I-:I > L - LR —['I -
£ =14 i
. Ll ry| e Xylm
1 AT o -':11; '11__ Lk ilwl
¥ opt
|
i sl " Gilal Xln|
s [ * LR f—
L i
:-I
Wy F L] Gy bl Xy hn]
I n- il AL W Aol
Figure P10.28-1

b}

In Figure PIL2E-2, we show another system [or spectral analvsis of a sigonal x.ir).

where
Kn] = (93" 0= n = 155
P fi otherwise

hpln] = hinle 4" f=01,...N=1, and N =512

[isted below are two possible choices for M, Four possible choices for ey, and six
possible choices for the coefficients @ From this set identify all combinations for
which ¥yln] = Xplel Le, for which both svstems will provide the same spectral
analysis, There may be more than ome.

M (a) 256  (b)}512
w: @ OB 0 O
aps {a) (093 =t 1, ., 255 zero otherwise
I =0,1,. .., 511
(ch (093 =0, 1, 511
0,1, .- 258, vero otherwise

zero olherwise
yero otherwise

(e} (D93

!
!
!

[y 09y~ I=
!

iy 093! !
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x At v|n] ¥yl
— e CiD - Fig[n] o M —
T =10
¥
o Al o S
i Yalr|
o ialn] w M f——
Yuoiln
e T L = LM '.‘—I[]l-
Figure P10.28-2

10.29. Thesystem shown in Figure PL02% 15 proposed as aspecirum analyzer, The basic operation
is as follows: The spectrum of the sampled input is frequency-shifted: the lowpass filter
selects the lowpass band of frequencies; the downsampler “spreads™ the selected frequency
hand back over the entite Tange —7 = @ = x; and the IFT samples that frequency band
uniformby at ¥ frequencies,

Assume that the input is bandlimited so that X (i) =0 for |82 = 7/ 7. The LTI
system with frequency response H{e/®) is an ideal Inwpass filter with gain of one and
cutoff frequency /M. Furthermore, assume that 0 < «y < and the data window w{n]
is a rectangular window of length V.

{m) Plot the DTFIs, X {«/™), ¥ (™), Rie)™), and R,ie/™) for the given X {02 and for
w = a2 and M = 4. Give the relationship between the input and output Fourier
transforins for each stage of the process; e, in the fourth plot, you would indicate
Riefey = Higl®yy (ofo),

(b) Using vour resull in part (a), genecalize to determine the band of continuous-time
frequencies in X(j52) that falls within the passhand of the lowpass discrete-time
filter, Your answer will depend on M, @y and T, For the specific case ofog = m/2 and
M = 4 indicate this hand of frequencies on the plol of X {782} given for part {a).

() (i) What continuous-time frequencies in X /82) are associated with the DEF1 values

V[k] for 0 = & = N/27
{if] What continuous-time frequencies in X (2 dothe valuesfor N/2 = k = N -1
correspond to7? In each case, pive a formula for the frequencies £,

2

wm|

rln] ralr v[n]
Hiph) - M
=x{nT} = r| Mn|

Figure P10.29

N-paint Hk]
mnr

rl:ilr.] D’D
{n
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1M, Consider a renl time-limited continuous-time signal .00 whese doration is W ms. As-

sume that this signal hzs a bandlimiled Founer transform such that X.(f32) = 0 for
§52] = 2er (10, 0000 rad/s: i assume that aliasing is neglipible, We want to compute samples
of X, (72 with 5-Hz spacing over the interval 0 = 22 = 2o (10K This can be done with
a H-point DL Specifically, we want to obtain a 400N-point sequence xfa] for which
the 4000-paint DET is related wo X078 by

Xl = aXo(j2n 5.4y,  &=10.1...., 1499,

where o is a known scale fuctor, Three methods are proposed to oblain 4 4000-point
seguence whose DFT gives the desired samples of X.(j12).
METHO L 1ot} 8 sampled with a sampling period T = 25 pe%) e, we compute
Xtk the DFT of the sequence

amTl, o w==01, . 300y

ri[nl = z
1 i1, oiherwise.

Since x-(f ) is time mited to 100 ms, x| #6] isa Gnite-length scquence of length 4000
{100 ms25 ps).

METHOD 2 «-{r) is sampled with a sampling period of T = 50 ys. Since « (1) s
lime limited to 180 ms, the resulting sequence will have only 2000 (100 ms/50 ps)
norzern samples; e,

YeimTrn n=0.1,...,1999,

Lol = g
2in] (}, viherwise.

In other words, the seguence is padded with zero-samples o create a A000-poimt
sequence for which the 40-point DFT X504 is computed.

METHOD ¥ o (1) is sampled wilth @ sampling period of © = 500wy, as in Method 2,
The resulting 2MKI-prin| sequence 15 wsed 0 form the sequence xsfa ] as follows:

xpAnT, 0= p o= 1009,
xalnl = § xof(n - 20000T), 2000 < n < 3999,
1, othorwise,

The 40ipoint DEFT X[k of this sequence is computed.
For each of the three methods, determine how cach 4000-point DFT is related to X172
Indicate this relationship in a sketch for a “typical” Fourier transform ¥ 782), State ox-
plicitly which method{s) provide the desired samples of X (i 2%

A conlinuous-time bnile-duralion dignal -0 1s sampled st A rate of 20,000 samplest,
yielding a HKHk-pomt finite-length sequence x[r] thatis nonzerein the inperval () = o = 9040,
Assume for this problem that the continuous-time signal is also bandlimited such that

X080 = 0 for |82 = Zo(1LO0YL ie. assume that negligible aliasing Jistortion oceurs

ir sampling. Assume zlso that a device or program is available for computing 1000-point

DFTs and inverse TIFTs,

(o) If X[&] denotes the 1000-point DFT of the sequence x[x], how i= X[x] related to
XA 75217 What is Lhe effective combinuons-time [Teguency spacing between DFT sam-
[les?

The following procedure is proposed or obtaining an expanded view of the Fourter {rans-

form X088 in the interval |82 = 2a (M0, starting with the HEO-point DEFT X&)

Step 1. Form the new 10H0H0-point DFT

XIkL 0 <& <250,
Wik = { 0. 251 = k= 749,
Xik], 750 = k= 099,
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Step 2. Computethe inverse (000-point DFT of W(k|, obtainingw(a] forn =0.1, ... 99,
Step 3, Decimate the sequence wln] by a factor of 2 and augment the resalt with 300
conseontive 2eTo samples, obtaining the sequence

mf2n]. O =g =499,
Anl =10, SO0 < n < 999,

Step 4. Compute the 1000-point DET of y[x], oblaining Fl&L
(b} The designer of this procedure asserts that
VI =eX, {2 1ok, k=001, 500

where o is a constant of proportionality. 15 this assertion correct? IF nor explain
why not.

.32, An analog sipnal consisting of a sum of sinusoids was sampled with a sampling rate of
Fo = 10000 samples’s o oblain xinl = x.0a7), Four spectrograms showing the lime-
dependent Fourier transform | X[e, &3] were comgputed using either a recltangular or a
Hamming window. They are plotied in Figure P10.32, (A log amplitude scale is used. and
only the top 25 dB iy shown.)

1
05
-q
H
=
0.4
4] y H =_35 UE
o 1000 2000 3000 ] 1000 2000
misamples) n [samples)

e 04 Bt 4| w1 T o
T AL

a 1000 2000 3000 o 1000 2000
n [samples) {sampies)

Figure P10.32
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(a) Which spectrograms were computed with a rectanpeular window?
{a) (b} {c) (d)
{hy Which pair {or pairs) of spectrograms have approximately the same frequency reso-

lution’?
{adh) {bdd) fodd) faded) {bd&t)
{e) Which spectropram has the shovtest time window? {a) () () {d)

(d) Tothe ncarest 100 samples, estimatc the window length L (in samples) of the window
m specirogram (h). ’

(e} Lise the spectrographic data in Figure 1'10.32 to assist you in wriring an equation (or
equations) for an analog sum of sinusoids x.(r), which when sampled at a sampling
rate of f = 100, would produce the above spectirograms Be as complets a5 you
can in your description of the signal. Indicate any parameters that cannot be obtained
from the spectrogram.

The periodogram { o) of a discrete-time random signal xie] was defined in Eg. (10.67) as
1 ,
Ko e 2
Iy = LU!VG? s,

where Viel®) is the DTFT of the finite-length sequence vir] = wlajxfn], with wx] a
finite-length window sequence of length L, and L s 8 normalizing constant. Assume that
x[n] and w[n] are real.

Show that the pedodogram is also equal to 1/ L L times the Fourier transform of the
aperiodic autocorrelation sequence of ¥[n]; 1.2,

. L1
FHay = II{ Y cuplmlemiom,
m=—(L -1}
where
L—1
Sealm] = Z vinlvin 4+ ml
nzdb

Consider a finite-length sequence x|n] such that x{u) = Horn < Oand s = L. Let X&) be
the N-point DFT of the sequence x[n], where ¥ = L. Defing oz [m] to be the aperiodic
autocorrelation function of x|a]; L.e.,

o

Cpvlm] = Z x[nlxln + m].

A& 0

Define

Fexlm] = LM NEI | X |kl tmiNym 01, N1,
LE]
{@} Determine the minimum value of & that can be used for the DFT if we require that
crxlm] = Eyx[ml, UG=m=L 1
{b} Determine the minimum value of & that can be used for the DIFT il we raquire that
wrefm] = Eml, O=zm=M-1,

whoere M <« [



Chapter 10

Froblams

879

135, The symmetric Barlleti window, which arses in many aspects of power specirium eslima-

T34,

tian, is defined as

1= fmlf M, m) = M1,

il = q-
wglm| {D. otherwise, {P10.35-1)

The Bartlett window is particularly attractive [or obtaining cstimates of the power spec-

trum by windowing an estimated actocorrelation function, as discussed in Section 10.6.

This is because its Fourter transform is nonnegative, which guarantees that the smoothed

specirem estimate will be nonnegative at all frequencies.

(a) Show that the Bartlent window as defined in Eq. (10351} is {1/ M) times the aperi-
odic avtocorrelation of the scquence {uln| — u[n — M},

() From the result of parct (a), show that the Fourier teansform of the Bartlett window is

: ; e
watel) = — | S/
sinfm 2}

PLik 35
o (PLU.35-2)

which 15 clearly nonnegative,
{¢) Describe a procedure for generating other finite-length window sequences that have
noennegative Fourier trans{orms,

Consider a signal

xln] = [s'm {I;}]z re[ni]

whose time-dependent diserete Fourier transform is computed using the analysis window

o A 1, Oh=mn =13,
ST, otherwise.
Let X, k] = X[n, 22k/T) for i = &k = 6, where X[n, A) is defined as in Section 10,3,
{2) Dtormine XL k) for 0 = & = 6,
ib} Crvaluate EE=LF Xn, &l lorQl = n < oo,

Extension Problems

14.37.

In Section 1.6, we showed that a smoothed estimale of the power spectrum can be
obtained by windowinp an estimate of the autocorrelation sequence. Tt was stated (zee
Eq. (10.10%)) that the variance of the smoothed speoirum eslimate is

var[ 8] = FP%,; [eary,

where F, the variance ratic or variance reduction facior, is

y .lil . § i
F=— welm])? = ——— f |Weled®)2de,
Q= Gr-n =0 Jor

As discussed in Section 10,6, ¢4 is the length of the sequence (/] and 20 — 1) is the length
of the symmetric window w,[m] that is applied w the antocorrelation estimate. Thus, if 2
is fixed, the variance of the smoothed spectrum estimate can be reduoced by adjusting the
shape and duration of the window applhicd to the correlation (unction,

In this problem we will show that F decreases as the window length decreases, but
wi also know from the previows discussion of windows in Chapter 7 that the width of
the main lobe of W.ie/*) increases with decreasing window length, so that the ability 1o
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resolve two adjacent freguency eomponents is redueed as the window width decreascs,
Thus, there is a trade-off between variance reduction and resolution, We will study this
trade-off for the following commonly vsed windows:

Rectangredar

kR 1, |m|=M -1,
WRWE= 100 otherwise,

Barrlert {rianpular)

wplml = |¢I:_ ml /M, | = M =1,

otherwize,
Harmng Hamming
;  Jwet FeosimmiM ~ 1) |m o= M1,
Wi Il [*1 ofherwise,

(¢ = 3 = (.5 for the Hanning window, and o = (054 and 4 = 0.46 for the Hamming
window, )

{a) Find the Fourier ieansform of each of the forepoing windows; i, compute Wg {.c.n-""'],
Wgied®) and Wy le/®). Sketch each of these Fourier ransforms as functions of w.

{b} Forench ol the windows, show that the entries in the fellowing table are approximeately
true when M = 1t

Approximnate A PRroXimAe

Window Name Main-fohe Width  Varaoce Rato [(£7)
Rectanpnlar g 2MQ

Hartlett 4z M IMO0
Hanning/Hamming 3wiM Mt + g0

Show that the time-dependent Foerier transform. as defined by Eq. §10.18), has the fol-
lowing properties:

(@) f.imearity:
If xfn] = ax(n] + fxp(n], then Xfn, 3) =aXiln, &) 45X [0 A0

(b) Shifing: 1f y[r] = x[n — ngl.then ¥in. 20 = X[n —ng, A3
() Modufation: I v[n] = /™0 [n], then ¥la, L) = £ X5, L — oy
(d) Conjugare Svmmerry: I xln] is real, then Xn, Ay = X%, —4).

Suppose that x4 ) 15 4 real. continuous-lime stationary random signal with autocormelation
function

@elT) = Elxc e + 11
and puower density spestrum
o !
Pl = f o r)e 4 gy
o

Consider a discrete-time stationary random signal «[#] that is obtained by sampling x.(1)
wilh sampling period T;i.e., x[m) = x.(nThL

{a) Show that ¢fm]. the autocorrelation sequence for 1], is

oflmf = geimi’).
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b} Whatis the refationship between the power density spectrum P, {Q2) for the continuons-
time random signal and the power density spectrum £ (w) for the discrete-time random
signal?

{c} What condition is necessary such that

1 i o :
Plw) = =Pe(5).  lo|<n?

In Section 10.5.5, we comsidered the estimation of the power spectrum of a sinusoid plos
white noise. In this problem, we will determing the true power spectrom of such a signal,
Suppose that

x[m] = A cosiopn 4 A+ eln],

where # is a random variable that is uniformly distributed on the interval from O to 2=
and #[#] is 8 sequence of zero-mean random varables that are independent of cach other
and also independent of @, In other words, the cosine component has a randomly selected
phase, and e[#] represents white noise,
(a) Show that for the preceding assumplions, the autocorrelation function for x[n] is

a

A
Geg[m] = Efxn]x[m +nlj = ER COas ooy e +a§:’§[m],

where af = EE{firrJ}?'}.
(h)} Fromtheresultorpart{a),show that over one periodin frequency, the power spectrum
of x|n] is
2
Asmr
Poxtw) = ——[8w - ag} + 8o+ wp)] | al  |w| =

Consider a diserete-time signal xn] of length N samples that was obtained by sampling &
stakionary, white, zero-mean continuous-time signal. It follows that

Efxinlxlm]| = a78ln - m],
Seln]l =10,

Suppose that we compute the DFT of the finite-length sequence x[n], thereby obtaining

Xklfork =01, ..., N =1

(a) Determine the approXimate varnance of |5 [k]|2 using Eqs. {10800 and (10.81).

(b) Determine the cross-corrclation between walues of the DFT; ic, detormine
ETX[K1X*(r]} as a function of k and r,

A bandlimited continuous-time signal has a bandlimited power spectrum that is zero for
12 = 2m10M) radis. The signal is sampled at a rate of 20,0K) samples's over a time
intervai of 1(ts. The power spectrum of the sipnal is estimated by the method of averaging
periodograms as deseribed in Section 10.5.3.

{a) Whar is the length £ (number of samples) of the data record?

{b) If a rachx-2 FFT program is used to compute the periodograms, whai is the mimmum
length N il we wish tor obtain estimates of the power spectrum at equally spaced
frequencies no more than 10 Hr apart?

{c) Ifthe sepment length L is egual 1o the FFT length & in part (1], bow many segments
K are available if the segments do not overlap?

{d} Suppose that we wish to reduce the variance of the spectrum estimates by a factor of
10 while maintaining the frequency spacing of part {b). Give two methods of doing
this. D these two methods give the same results? It not, explain how they differ.
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10.43. Suppose that an estimate of the power spectrum of a signal is obtained by the method of
averaging periodograms. pg discussed in Section 10.5.3. That is, the spectrum estimate is

. et
Howh = ¥ L T,
r=l
where the K pericdograms [ (re) are computed from L-point segments of the signal using
Eqs [10.82) and [ 10.83). We define an estimate of the autocorrelation function as the
inverse Fouorier transform of § o), Le.,

= | i
dlm) = f Heo)e ™ dey.
2 foo
{a} Show that
s I
E{I’P[J‘ﬂ ]]' = T f'1f.l1:el[’” |¢".I'¥ [me].

where L is the length of lhe segments, L' is a normalizing lfactor given by Eq. (10.79),
and ey [ml, piven by Eq. (10750, s the apenodic aulocomrelation function of the
window that is applicd to the signal segments.
{b) In the application of periodogram averaging, we normally uvse an FET algorithm to
compute {iwh at N equally spaced frequencies; i.e.,
Ikl = F2=k/N), k=01, N-1,
where ¥ = L. Suppose that we compute an estimate of the autocorrelation function
by computing the inverse DFT of I&], as in
| N-1
7 L o 11 (2 N - _
dplml = LI{R]E . om=01.. . . N=1
k=0
Obtain an exprassion for E‘{f;_'-PLm]}.
(e} How should ¥ be chosen so that

Eldplmll = Eldim]). m=01__ L-1!

.44, Consider the computation of the antocorrelalion estimate
{ @im]-1
deilm] = 5 E xlnkeln + |mll. (P10.44-1)
=

where «[n] is a real sequence. Since iy [ -m] = dyy [m], it is necessary only to evaluate

Eg. (P1044-1) for 0 = m = & — 1 1o obtain derimlfor —(M 1) =m = M — 1, a5 is

reguired to estimatle the power densily spectrum wang Fq. {100102),

{a) When O 3 M, itmaynot be leasible to compute g fm) usimg a single FTT computa-
tion. In such cases, it is convenient ta express oy [m] as a sum of corcelation estimates
based on shorter sequences. Show that if O = KM,

: 1 K1
brxlm) = 3 eim.
faal)
where
-1
iz[m] = E o4 eMicfm + i M | m],
=M}

for 0 =m = M—1.
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{k} Show that the correlations ci[m] can be obtained by computing the N -point circelar

(e}

(d}

(&)

correlations
=1
eilml = xilnlyeiln + m)hx).
n=il
where the sequences
sm+iMl, O=n=M-1,
.ﬁ".”]r“{ﬂ} M<n=N-1,

and

wiln] = x[n + i M], D=pn= N1 (PT.44-2)
What is the minimm value of N {in terms of M) soch thal cjlm] = & [mi | for 0 <=m =
M -7
State a procedure for computing fyrim| for 0 = m = M — 1 that involves the com-
putation of 28 N-poimnd DFTs of real sequences and ore N -pomnt mverse THFT, How
many complex multiplications are reguired to compute Gy [mltord < m < M —1it
aradix-2 FFT is used?
What modilications to the procedure developed in parl (¢) would be necessary (o
compute the cross-correlation estimate

@—m|-1
@,v[m]=ﬁ g{l xnlyln + ], —iM -1y =m=M—-1,
where ¢fn] and v|a] are real sequences known for <n = @ - 17
Rader (1970) showed thal, for computing the sutocorrelation estimate $. - [m] for
0 =m = M- |, significant savings of computation can be achieved if & = 28 . Show
that the &-point DFT of a segment y;|#] as defined in Eq. (P10.44-2) can be expressed
a5

Yilkl = X061 4 (1FX k], k=01, N-1

State a procedure for compuling Prelm] for 0 = m < Af — 1 that involves the COmpU-
tation of K N-point DFTs and one M-point inverse DFT, Delermine the Lotal number
of complex multiplications in this case if a radix-2 FET is used.

[ Section 1003 we defined Lthe time-dependent Fourier transiorm of the signal x[#e] so that,
for fixed n, it 1s equivalent to the regular DTFY of the sequence x[n +m|w|m]. where w|m|
15 a window sequence, It s also useful (o define s ime-dependent auiocorrelation funclion
tor the sequence x[n] such that, for fixed n, its regular Fourier transform is the mapnitude
sijuared of the time-dependent Fourier transform. Specifically, the time-dependent auto-
correlation function 15 defined as

w
clu.m] = A |X[n, ) ef g
2 J_x
where X[n, &) is defined by Eq. (10L18).
(a) Show thut if xin| 15 real
o
cfr, m] = z x[n 4 rlwfrlcim +n 4 riw[m 4 r;
F=—00

i.e., for fixed n, o{n. m] is the aperiodic autocorrelation of the sequence x[a + rlw[r],
—00 < 7 o XL
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{b)} 5how that the nme-dependent autocorrelation function is an even function of m for
n fixed, and wse this [zl o obtain the eguivalent expression

o
v, m] = Z xirlzlr — m)bg[n =],
F=-20
where
felr] = wf—rhol —(mt 4 F21L {P10.45-1)

(e) What condition must the window w]r] satisfy so that Eg. (P10.45-1) can be wsed to
compute o, m] for lixed moand —o0 <0< oo by causal operations?
{d)} Suppose that
a’, r=0
wi—r] = {P10.45-2)
0. r=0Q
Find the impulse response bgfr] for computing the mih autocorrelation fag value,
ang find the corresponding system function My (z). From the systemn function, deaw
the block diagram of a causal system for computing the mith autocarrelation lap value
cfwe, ] for —oc <= n < 2o for the window of Eq. (P10.45-2),
(e} Repueatpart {d) for
et or o=
t[—r] =

L}, ro- Al

Time-dependent Fourier analysis is somelimes implemented as a bank of fillers, and ¢ven

when FFI methods are used, the filter bank interpretation may provide useful insight.

This problem examines that interpretation, the basis of which is the fact that when A s

fized, the time-dependent Fourier transform X[n, L), defined by Eq, (10.18), is simply a

sequence that can be viewed as the result of a combination of filtering and modulation

QPUTALICNS,

{a) Show lhat ¥[n, 2)1s the cutput of the system of Fipure PIHF46-111 the impulse response
of the LT system s kgla] = wl—n]. Show also that if 2 is fixed, the overall system in
Figure P10.46-1 bebaves as an LT system, and determine the impulse response 2nd
freguency response of the equivalen) LT system,

x|m| : Falr] :ﬁ: by : Xim A)
t i

e Jn g-;'"'" Fig“rl F’lll,llﬁ-'l

{h) Assuming A fixed in Figure PI046-1, show that, [or lypical window scquences and for
fixed &, the sequence s[n} — X [ri. &} has a lowpass DTFT Show also thal, for typical
window sequenges, the frequency response of the overall system in Figure PLUHL46 s
a handpass filter centered at w = A.

(¢} Fimure P10A6-2 shows 3 hank of M bandpass filier channels, where ¢ach channel
is implemented as in Fgure P1046-1. The center frequencies of the channels ara
A = 2wk /N and hgin] = w|—n]is the impulse response of a lowpass filter. Show that
the individual ouipuls v {n| are samples {in the A-dimension) of the lime-dependent
Fourier transform. Show also that the overall output is v[a] = Aw([0)x[a]: ie, show
that the system of Figure P10.46-2 reconstructs the input exactly { within a scale factor)
frown the sampled tme-dependent Fourier transform,
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E_l.'.h-_ 1R

¥n]

Figura P10.46-2

The system of Figure PIO46-2 converls the single imput sequence x[n] intg A se-
quences, thereby increasing the total number of samples per second by the factor N, As
shown in part (b)), Tor iypical window scrucnces, the channel signals iy [n] have lowpass
Fourier transforms. Thus, it should be possible o reduce the sampling rate of these sig-
nals, as shown in Figure P10.46-3. In particular, if the sampling rate is ieduced by a {zetor
R = &, thetotal number of samples per sécond is the same as [or x (1], Inthis case, the Glter
bank is said to be critically sampled. (See Crochiere and Rabiner, 1983.) Reconstruction
o the original signal from the decimated channel signals reguires interpolation as shown,
Clearly, it is of imterest tor delermtine bow well the origimal inpd [r] can be reconsiructed

by the system.

—{ : —a1 # - B | b w{ 2.[n]]
ralrr] Voln] 1 anln] o]
g e
ho[n} f——1 { & = 'R = xnln]
—_— lnl
¥ |n]
g-ipn
(< hafn | ——s| § & —>| 4 & s piln] ()
‘\r ¥u 1ln] \f/}':ﬁ ifn]
o Ry PYLTTRT

Figure P10 .46-3

vin]
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(d} For the systern of Figure PLGL46-3, show that the regular DTFT of the cutput is given
by the refation

R-14&-1
- T .
-};{Ejr»} - 'EE E : 5_ : GD'I'_E""{"' A“}Hul:!‘j‘m i ..rr{fﬂ}}x{r‘l'[m—znflfﬁ'lw},
£=(t k=l

where A = 2nxk/N. This expression clearly shows the aliasing resulting from the
decimation of the channel signals ¥{n]. From the expression for Fie!™), determne a
relation or set of relations that must be satisfied jointly by Hqte/*) and Gyie/™) such
that the aliasing cancels and ¥[q] = x{«].

(e} Assume that & = N and the frequency response of the lowpass filter is an ideal
lowpass filter with frequency response

1, e = a/N,

Fely —
Hy(e™) 0, afl = |m =

Fur this lrequency response Hy (=%}, determine whether it is possible W find a fre-
quency response of the interpolation filter Ggie/™) such that the condition derived
in part {d) is satisfed, I sa, determine Caled @,

(N Optional: Eaplore the possibility of exact reconstroction when the frequency response
of the lowpass filter H{_;(e»’""'} {the Fourier transform of w{—#])is nonideal and nonzero
in the imterval o) < 2w/ N,

(g) Show that the outpur of the system of Figure P10.46-3 is

o ™
el =N Y sln—rN] Y goln — £RJAQIER + N — al.
= f=—i
From this expression, detcrmine a relation or st of relations that must be satisfied
juintly b hg[n] and gpln] such that vir] = x{al.
{h) Assume that & = N and the impulse response of the lowpass filter is

1, “iN=D=np=0
Sglng= {[I, otherwise,
For this impulse response hgln], determine whether it s possible to find an imprdse
respomnse of the interpolation fifter g« such that the condition derived in part {g) is
satisfied, If 50, determine gqln).
(i) Optional: Explore the possibility of exact reconstruction when the impulse response
of the lowpass filter hpln] = w|—n}is a tapered window with length greater than &.

£

10.47. Consider 2 stable LTT system with a real input x[n], a real impulse response kin], and
output v[a}. Assume that the input 4| is white noisc with zero mean and variance %
The system funclion 15

J“
2 pii
Hizy = k=8

N ?
1 — Z .'zﬂ._*
k=l

where we assume the aps and by s are real for this problem. The input and cutpur satisfy
the following difference equation with constant coefficients:

N M
vinl =¥ @yl — k1 + Y byxin — kI
k=1 k=l
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I all the ags are cero, vianl is called a moving-average (MA) linear random process, 17 all
the fys are zero, except for by, then y[n] is called an gutoregressive (AR) linear random
process. If beth & and & arc nonzero, then via) is an aurercgressive moving-average
{ARMA) linear random process,
(a) Expressihe autocorrelation of y[a]in terms of the impulse response Aln] of the linear
systern,
(b} Use the result of part (&) to express the power density speclrum of vle) in lerms of
the frequency response of the system.
(c) Show that the autocorrelation sequence ¢y [m} of an MA process is nonzera only in
the interval m| < M.
{d) Find a general expression for the autncorrelation sequence for an AR process.
(e} Show that if by = !, the autocorrelation function of an AR process satisfies the
diffetence equation
"
byl = 3 apdyylk + o5
=1

i
gyy[m] = Ea*r,b_}._.\.in: — k], m= ],

k=1
{F) Use the result of part (e) and the symmetry of g [m] to show that
N
qu‘a_...,.[lm—k”:qﬁﬂ-lmi. m=12..N
k=1

It ean be shown that, given dyufm] form =1, 1. .. N, wecan always solve uniquely for
the: values of the ays and o for the random-process model. These values may be used in
the result in part (b to obtain an expression for the power density spectrum of v[a]. This
approach is the basis for a pumber of parametric spectrum estimation techniques. (For
further discussion of these methods, see Gardner, 1988; Ko, 1988; and Mamile, 1987,)
Thisproblem illustrates the basis for an FF1-based procedure for interpolating the samples
(obtained at a rate satisfving the Nyquist theorem) of a periodic continuous-time signal.
let
1 o 1y
.E.:'{E}: ]:I-j E (Ej E'f'h
b=
be a periccic signal that is processed by (he syslem in Figure P10.48.
{a) Sketch the 16-point sequence GEE].
i) Specify how you would change (7[k] into a 32-point sequence @[] 50 that the 32-point
inverse DFT of Qlk] is @ sequence

2
gin] = e, (%r) 0=p =3,

for some nonzero constant o, You need not specity the value of e,

x|rm] i x|r] : EE .__:t.:_-ﬁﬂ?%m (s[k]

= —ig wln] —u|r-16]

Figure P10.48
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10.4%, In many real apphications, pract:cal constraimis do not allow long Gime sequences 1o be

10.50.

processed. However, sipnificant information can be gained from a windowed section of
the scquence, In this problem, you will ook at computing the Fourder transform of an
infinite-duration signal «fx], given only a block of 256 samples in the range 0 = 1 = 2535,
You decide to use a 256-point DFT Lo cstimate the transform by defining the signal

$[n] = xln], 0= n = 235,
A= 10, olherwise,

amdd compuling the 256-point DFT of #a],

{a) Suppose the signal rix| came from sampling a continuous-time signal x {7} with sam-
pling frequency f; = 20 kHz ic.,

xln] = x:(nT, ),
1/Ty = 20 kHz.

Assume that x,.(7) is bandlimited tw 10 kHz T the DFT of #n] is written X [k], & =
0100, 255, whar are the continuous-time frequencies correspording to the DET
indices £ = 32 and & = 2317 Be sure 1o express vour answers in Herta,

{h} Expressthe [YTFT of #{a]in terms of the OTFT of xfn] and the DTTT of a 256-poing
rectanpular window wgin). Use the notation X (+/®} and Wg (/™) to represent the
DTETs of xix] and wglnl, respectively.

{c} Suppose vou try an averaging rechnique to estimate the transforin for £ = 32

X avel32) = o X [31] + X [32) +aX [33).

Averaging in this manner is equivalent to multiplying the signal X[ | by a new window
wapgln] belore computing the DFT. Show thal Wayg (e/™ ) must satis(y

. 1. w=I,
Wangie'™) = {2, w==12r/L,
0, w=2xk/L, fork=23...,L-2

where [ = 256, _

(d) Show that the DTFT of this new window can be written in terms of We i« and two
chifted versions of Welef®),

(e) Derive a simple formula for waygle]. and skelch the window for o = —0.5 and
= p = 255,

It s ofien of interest (o zeom in on a region of 4 DFT of a sipnal to examine it in more
detail. In this problem, vou will explore two algorithms for implementing this process of
obtaining additional samples of X (/%) in a frequency region of interest.

Suppose Xy (k] 15 the N-poinl DFT of a finite-length signal x]a|. Recall that X y[£]
cnnsisis of samples of X (e/%) every 2n /N inm, Given X o [8], we would Like to compute &
samples of X e/ between @ = w, — Aw and o = @ + Aw with spacing 2Aw/ N, where

ke
e =
A N
and
Min = 2mka, ]
N

This is equivalent to zooming in on X (/%) in the region we — Awm < o < oy - Aw. One
system used 1o implement the zoom is shown in Figure P10.50-1, Assume that x;|s) is
zero-padded as necessary before the N-point DFT and Alx] is an ideal lowpass filter with
a cutoff frequency Aw.
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Figure P10.50-1

- o, — A an, e A u Figure P10.50-2

{2} Interms of & and the transform length & what is the larpest { possibly noninteger)
value of M thal can be used il aligsing s (o be svoided in the downsampler?

{h} Consider x[a] with the Fourier transform shown in Figure P1030-2. Using the max-
imum value of M from part (a), sketch the Fouricr transforms of the intermediate
signals x:[n] and x; [#] when @ = /2 and Aw = 7/6. Demonstrate that the syslem
provides the desired frequency samples

Another procedure for obtaining the desired samples can be developed by viewing the

frite-length sequence Xy |8 indexed onk as a discrete-lime data sequence to be processed

as shown in Fipure PLOS0-3. The impulse response of the first system is

=%
plal = 2« dm = rN],
r=-oc
and the filter #[n] has the frequency response
| 1, o =a/M
ey ' | = ! 5
e |ﬁ, otherwise,

The zoomed outpul signal i detined as
X.An| = XymlMk. — Mka +n|. O=n<N-—1,

for appropriate values of &, and ks, Assume that ks is chosen so that M is an integer in

the following parts

(c) Supposc that the weal lowpass Alter k) s approximated by a causal Type T linear-
phase filler of length 513 (nonzero for 0 = = < 312). Indicate which samples of
X asln] provide the desired frequency samples.

(d) Using sketches of a typical spectrum for Xp (k] and X (/) demonstrate that the
systern in Figure P10L.50-3 produces the desired samples,

Exiract cotrect
— plr| — tar | h[n] — | PUTUON O g
X[ e Koulnl HIGUETICE X, |n)

Figure P10.50-3




