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11.0 INTRODUCTION

840

Throughout this text, we have found i1 convenient to usc several dilferent representa-
tioms of sipnals and sysiems. For example, the representation of g discrele-tme signal
gy A sequence of scaled opulses was wsed in Eg. (2,37 of Chapler 2 o develop the
convalution sum for LTT swstems. The represcatation as a linear combination ol sinu-
soidal and complex exponential signals led to the Fourier series, the Fourier wansform,
and the frequency domain characterization ot signals and LTT systems, Althoueh these
representations are particularly useful because of their generality, thev are not always
the most efficient representation for signals with a known stracture.

This chapter introduces another powerful approach to signal representation called
pravarneiric signol modeling. [0 this approach. a signal s represenled by a mathomalical
model that has 8 predefined structure involving g limited number of parameters. A
piven signal s[a] is represented by choosing the specilic sel of parameters that resulis in
the model output £[x| being as close as possible in some prescribed sense to the given
signal. A common examyple is to model the signal as the outpur of a discrete-time linear
system as shown in Figure 11.1. Such models, which are comprised of the input signal
vfw] and the system function Hi:) of the linear system, became useful with the addirion
of constraints that make il possible ta solve for the parameters of H{:) given the signal

—_— 5!’: (3”' = Figure 1.1 Linear system madel far a
signa (7).
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to be represented. For example, if the input vin] is speciticd, and the sysiem function is
asstumed to be a rational function of the form

i
Zbrz_k
Hiz) = & :'Pp— (11.1)

1 — Zﬂk: k
k=1

then the signal is modeled by the values of the a5 and bis or equivalently, by the poles
and zeros of Hiz), along with knowledge of the input. The inpul signal ©[x] is generalky
assumed 1o be a unit impulse §fn] for deterministic signals, or white noise if the signal
5[n]1s viewed as a random signal. When the model s appropriately chosen, it is possible
to represent a larpe number of signal samples by a relatively small set of parameters.

Parametric signal modeling has a wide range of applications, including data com-
pression, spectrim analysis, signal prediction, deconvolution, lter design, svstermn iden-
tification, signal detection, and signal classification. In data compression, for example,
il is the set of model parameters that is transmitted or stored, and the receiver then uses
the mode! with those parameters to regenerate the signal. In filter design, the model pa-
rameters are chosen to best approximate, in some sense, the desired frequency response.
or equivalently, the desired impulse response, and the model with these parameters then
corresponds to the designed filter. The two key elements for success in all of the appli-

cations are an appropriate choice of model and an accurate estimate of the parameters
for the model.

11.1 ALL-POLE MODELING OF SIGNALS

The moddel represented by Hyg. (11.1) in general has both poles and zeros. While there
are a variety of techniques for determining the full set of numerator and denominator
coglficients in Eq. (11.1}, the most successiul and most widely used have concentrated
on restricting ¢ to be zero, in which case, Hiz) in Figure 11.1 has the form

Hiz) = = = i ; (11.2)
B Alz)
1 Zuj,-:_'[c
k=i

where we have replaced the parameter by by the parameter & to emphasize its role
as an overall gain factor. Such models are aptly termed “all-pole” models.! By its very
nature, it would appear that an all-pole model would be appropriate only for modeling
signals of infinite duration. While this may be true in a theoretical sense, this choice
for Lhe system function of the model works well for signals found in many applications,
and as we will show, the parameaters can be computed in a straightforward manner from
finite-duration segments of the given signal,

TDetailed discussion of this casc and the poneral polefzero case are given in Kay (1985), Thicrrien
(1992), Hayes (1996) and Stoica and Moses (2H5).
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The input and outputof the all-pole svstem in Eq. (11.2 ) satisfy the linear constant-
coefficient difference equation

§n) =Y miln — K1+ Gulal, (11.3)
k=1

which indicates that the model output at fime # is comprised of a linear combimation
of past samples plus a scaled input sample. As we will see, this structure suggests that
the all-pole model s equivalent {o the assumption that the signal can be approximated
as a linear combination of (or equivalently. is linearly predictable from) its previous
values. Consequently, this method for modeling a signal is oflen also referred to as
linear predictive analysis ot linear prediction.”

11.1.1 Least-Squares Approximation

The goal in all-pole modeling is to choose the input vfre] and the paramelers &, and
d)....,6p in Bq. (11.3) such that #[n] is a close approximation in some sense to s[n].
the signal to be modeled. It, as is usually the case, v[a] is specified in advance (e.g.,
v|n] = &[n]}, a direct approach to determining the best values for the parameters maght
be tominimize the total energy in the ercorsipnal e..In] = {s{r]—§[n]}, thereby obtaining
a least-squares approximation to s{r ). Specifically, for deterministic signals, the model
parameters might be chosen to minimize the total squared error

-

e oo

p
Y il =it = 3 (jln] 3 ailn ~ k| - Geln :) L (119)
A=——r H=—r kel

In principle. the 4z minimizing this squared error can be found by differentiating the ex-
pressionin Eqg. (114} with respect o each parameter, setting that derivative to zero, and
solving the resulting equations. Howewver, this results in a nonlinear system of equations,
the solution of which is computationally difficult, in general. Although this least-squares
problem is too difficult for most practical apphcations, the basic least-sguares principle
can be applied to slightly different formulations with considerable success.

11.1.2 Least-Squares Inverse Model

A formulatdon based on mverse filtering provides a relatively straightforward and
tractable solution for the parameter values in the all-pole model. 1o any approach
approximation, it is recognized at the outset that the model output will in most cases
not be exactly equal to the signal to be modeled. The inverse filtering approach is based
on the recognition that if the given signal s|n| is in fact the output of the filter #{z) in
the mode! of Figure 11.1 then with s{n] as the input to the inverse of 7{(z}, the output
will be #|x|. Consequently, as depicted in Fipure 11.2 and with #{z) assumed to be an
all-pole system as specified in Eq.(11.2), the inverse filter, whose system function

r
Ay=1=3) "az" (11.5)
k=

IWhen wed in the context of specch processing, hnear predictive analysis s often referred tooas fineor

preedivnive codivgg (LPC), (See Rabner and Schafar, 1978 and Owatieri, 20020
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Aiz) Flgure 11.2  Inverse filter formulation
for ali-pole signal modaling.

is sought so that its output gln| would be equal to the scaled input Gu|a]. In this for-
mulation, then, we choose the parameters of the inverse filter (and therefore implicitly
the parameters of the model system) to minimize the mean-squared error between gln|
and Cruln ). As we will see, this leads to a set of well-behaved linear equations.

From Figure 11.2 and Eq. (11.5) it follows that g|«] and s[«] satisfy the difference
equation

”

glrl = sln] = 3 asln — k). (11.6)
k=1
The modeling error #[n] is now defined as
fol
éln] = glnl— Guln] = 2ln] — Z agxln — k| — Gulal. (11.7)

k=1

I vfe] 1% an impulse, then, for a2 = (), the crror é[a] corresponds to the error between
slre] and the linear prediction of s{#] using the model parameters. Thus, it is convenient
lo alsa express Egq. (11.7) as

Eln| = elr] — Guln|, {11.8)

where e[n] is the prediction error given by
”
eln] = s[n] = Y apsln — k). (11.9)
b1

For a signal that exactly fits the all-pole model of Ea. (11.3}, the modcling error &[u]
will be zero, and the prediction crror e[#) will be the scaled input, i.c..

elr] = Gulnl. {11.103)

This formulation in terms of inverse filtering leads to considerable simplification,
since v|r] is assumed known and e|r] can be computed from s[x] using Eq. (11.9). The
parameter values g are then chosen to minimize

£= (|E’lrz]|2): (11.11)

where the notation { - ) denotes a summing operation for finite cnergy determinis-
tic signals and an ensemble averaging operation for random signals. Minimizing £ in
Eg. (11.11} results in an inverse filter that minimizes the total energy in the modeling
error in the case of deterministic signals or the mean-squared value of the modcling
error in the case of random signals. For convenience, we will often refer to {.) a5 the
averaging operator where its interpretation as a sum or as an ensemble average should
be clear from the context. Again, nate that in solving for the parameters a; specilying
the inverse system of Figure 11.2, the all-pole system is implicitly specified, as well.



834

Chapter 11 Parametric Signal Modeling

To find the optimal parameter values, we substituie Eq. (11.8) intc Eq. (1111} to
obtain

£ = {teln] — Guln)?}. (11.12)
or equivalently,
A (e31n|)+{;3’{v1.r_n1:|—26 (einlelnl} (11.13)

T find the parameters that minimize £, we differentiate Eq. {11.12) with respect
to the it filter coefficient g; and set the derivative equal 1o zero, leading to the set of
equations

aE a 4

P [(e‘[n_;} — 26 {ulnlsln i]}] =0, i=12..5 (11.14)
E}ﬂ_r I'.!aj

where we have assumed that G is independent of a; and, of course, so 15 u[a], and

consequently that

2 [6* ()] =0 (11.15)
thid;

For models that will be of interest to us, vin] will be an impulse if s[r] is a4 causal
finite-energy signal and white noise if sln] is a wide-sense stationary random pro-
cess. With v{n] an impulse and s[r] zero for n < 0, the product vinls[r — i] = O for
i=12... p. With v[n] as white noise,

ittelsln =iy =0, (e e R (11.16}

since for any value of x, the input of a causal system with white-noise input is uncorre-
lated with the output values prior to time n. Thus, for both cases, Eq. (11.14) reduces
L]

A&

da,  da
In other words, choosing the coefficients to minimize the average squared modeling
EIToT l'l?'ﬂfnllﬁ is equivalent Lo minimizing the average squared prediction error {ezin'i::.
Expanding Eq. (11.17) and invoking the linearity of the averaging operator, we obtain
from Eg. (11.17) the equations

(gllng)ﬁﬂ S (11.17)

£
ix[m]sin —i]) — Ea;_. sl = klsle = i1y =0, i=1,....pm ('I 1.18)
k=1
Defining
Posli k) = {sln = i]sin = k), (11.19)
Eqgs. (11.18) can be rewritten more compactly as

P
3 oiboli k| = ¢li, 0, i=1,2,....p. (11.20)
k=1

Equations (11.20) compnse a system of p linear equations in p unknowns. Com-
putation of the parameters of the model can be achieved by solving the set of linear
equalions for the parametlers ap fork = 1,2, ..., p, using known values for ¢, [i, ] for
i=1,2,...,pandk=0,1, ..., porfirst compuling them from sfn].
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11.1.3 Linear Prediction Formulation of All-Pole
Modeling

Assuggesied earlier, an alternative and wseful interpretation of all-pole sipnal modeling
stems from the interpretation of Eq. (11.3) as a linear prediction of the output in terms
of past values, with the prediction error ¢|n] being the scaled input Gulnl, ie.,

7
eln] = xln] — Z aps(n — k| = Gulnl. {11.21)

r=1

Asindicated by Eq. (1117}, minimizng the inverse modeling error £ in Bg. (11,11}
is equivalent to minimizing the averaged prediction error n:ez[u]:l. If the signal s[n] were
produced by the model system, and if v|n] is an impulse, and if s|a ] truly fits the all-pole
model, then the signal at any » > 0 is linearly predictable from past values, i.c., the
prediction error is zero, 1 vla] is white noise, then the prediction error is white,

The interpretation in terms of prediction is depicted in Figure 11.3, where the
transter function of the prediction filter P{z) is

n
Piz} = Zaﬁ;—,-ﬁ. {1122}
k=1

This system is referred to as the p'P-order linear predictor for the signal s[a]. Its output
15

I
=Y awsln — 4], (11.23)
E=1

and as Figure 11.3 shows, the prediction error signal is £[n] = s[n] — #[n]. The sequence
eln] represents the amount by which the linear predictor fails to exactly predict the
signal s[e]. For this reason, ¢fa] is alse sometimes called the prediction error residual or
simply the residual. With this point of view, the coelficients q; are called the prediction
cocfficients. As is ulso shown in Figure 11.3, the prediction error ller is related to the
linear predictor by

r
AD=1-PI=1-3 az™ (11.24)
k=l
1) O R R R M
T T o
I i
' Li =4
| IMLEAT =
| | Predictor L
: Piz) :
e e T | Figure 11.3 Linear prediction

Az} formulation for all-pole signal modeling.
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11.2 DETERMINISTIC AND RANDOM SIGNAL MODELS

To use the oplimum inverse filter or equivalently the optimum linear predictor as a basis
lor parametric signal modeling, it is necessary to be more specific about the assumed
input v[x] and about ithe method of computing the averaging operator {-). Lo this end,
we consider separately the case of deterministic signals and the case of random signals.
[n both cases, we will use averaging operations that assume knowledge of the signal
to be modeled over all time —o¢ = v = oo, In Section 11.3, we discuss some of the
practical considerations when only a finite-length segment of the signal s{n] is available.

11.2.1 Ail-Pole Modeling of Finite-Energy Deterministic
signals

In this section, we assume an all-pole model that is causal and stable and also that both
the input v[r| and the signal s[x] to be modeled are zero for n =< 1), We further assume
that #[r] has finite energy and is known for all r = 0. We choose the operator (-} in
Eqg. (11.11) as the total energy in the modeling error sequence £[n], i.e.,

]
— & 21 _ = 2
e={lemP)= Y feml® (11.25)
AE——G

With this definition of the averaging operator, ¢ [i, £] m Eq. (11,19} is given by

peslick] = ) sl —ils[n — kI, {11.26)
arud equivalently,
Gl k] = Y slnlsln = (i — k)], {11.27)
The coefficients ¢, |f, £] in Eq. (11.20) are now

thes[d, k] = raeli — &1, {11.28)

where for real signals s[#], ry:[m] is the deterministic autocorrelation funclion

ol e

Frslm] = Z gln 4+ mlsin} = Z s|rigln = m]. {11.29)

A=—1730 =—00

Therefore, g, (11.20) takes the form

Fel
Y awrsli—Kl=rglil i=12,...,p. {11.30)
k=]

These equations are called the awtocorrelaifon normal equations and also the Yufe-
Walker equations. They provide a basis for computing the paramelers ay, ..., g, from

the sutecorrelation function of the signal. In Section 11.2.5, we discuss an approach to
choosing the gain factor G,
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wln] LTI ilal
— System — . .
white Hiz) Figure 11.4  Lingar system moedel fora
noise random signal s[n].

11.2.2 Modeling of Random Signals

For all-pole modeling of zero-mean, wide-sense stationary, random signals, we assume
that the input Lo the all-pole model is zero-mean, unit-vanance, while noise as ndicated
in Figure 11,4, The difference cquation for this system 15

L
Slnl =Y aidln — K]+ Guwlnl, (11.31)
k=1

where the input has autocorrelation function E{wr + mlw|n|} = §[m], zero mean
(Elw[n]} = 0), and unit average power (E{(w[n])*} = &0] = 1), with £{.} representing
the expectation or probability average operator.*

The resulting model for analysis is the same as that depicted in Figure 11.2, but
the desired output glr] changes. In the case of random signals, we want to malke g[n] as
much like a white-noise signal as possible, rather than the unit sample sequence that was
desired in the deterministic case. For this reason, the optimal inverse filter for random
signals is often referred to as a whiresing filter,

We also choose the operator (-} in Eq. (11.11) as an appropriate one for random
signals, specifically the mean-squared value or equivalently the average power. Then
Eq. (11.11) becomes

£ = E[{e[n])?). (11.32)

If &[r] is assumed to be a sample function of a stationary random process, then g, [f, k]
in Eq. {11.19) would be the autocorrelation function

duslic k] = Elsln = ilsln = k1) = ry[f = &]. {11.33)
The system coefficients can be found as before from Eq, {11,20). Thus, the system
coefficients satisfy a set of equations of the same form as Eq. (11.30), i.e.,

]

D anrali —kl=rslil, i=12,...p. (11.34)
L=1

Therelore, modeling random signals again results in the Yule—-Walker equations, with
the autoeorrelation function in this case being defined by the probabilistic average

rifm] = E [5[n + mls[r]} = E {s[nls[n — m]}. {11.33)

HCompulation of £{] requires knowledpe of the probability densities In the case of stationary random
signals, only one density is requitsd. In the case of ergodic random processes, a single infinite tme average
could b used, In practical applications, however, such averages must be approximared by estimates obtained
[rovm fmnle Lime averapes.
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11.2.3 Minimum Mean-Squared Error

For modeling of either deterministic signals {Scction 11.2.1) or random signals (Section
11.2.2) the minimum value of the prediction error efn] in Figure 11.3 can be expressed
in terms of the corresponding correlation values in Eg. (10200 to find the optimum
predictor coefhicients. To see this, we write £ as

f p :
E= ﬂ(,ﬂn] - Zﬂks'i_ﬂ - #]) } {11.36)
k] /

As outlined in more detail in Problem 112, if Eq. {11.36) is expanded. and FEq. (11.20)
is substituted into the result, it follows that in general,

£ =y [0.01~ 3 apey [0, K. (11.37)
k=1

Fquation (11.37) is true for any appropriate choice of the averaging operator, In par-
ticular, for averaging definitions for which ¢..[i, £] = r..|i - k1, Eg. {11.37) becomes

B
E=ryl0] = Y aprelkl. (11.38)
k=1

11.2.4 Autocorrelation Matching Property

An important and useful property of the all-pole model resulting from the solution
of Eq. {1130 for deterministic signals and Eqg. (11.34) for random signals is referred
Lo as the autocorrelation matching property (Makhoul, 1973). Equations (11.30) and
(11.34) represent a set of p equations to be solved for the model parameters a, for
k=1.... p. Thecoefficients in these equations on both the left- and right-hand sides
of the equations are comprised of the (p + 1) correlation values r[ml.m = 0.1, ..., p,
where the correlation function is appropriately defined, depending on whether the signal
to be modeled is deterministic or random.

The basis lor verilving the autocorrelation matching property is (o observe thal
the signal §[#] obviously fits the model when the model system Hiz) in Figure 11.1 s
specified as the all-pole system in Eq. {11.2). If we were to consider again applying
all-pole modeling to $[a], we would of course again obtain Egs (11.30) or (11.34), but
this time, with ri;[m] i place of r,[m]. The solution must again be the same parameler
valuesag, k=1.2,.... p. since §{a] lits the model, and this solution will result if

raslml=crizlm] O=m = p, {11.39)

where ¢ is any constant. The fact that the equality in Eq. (11.39} is required follows
from the form of the recursive selution of the Yule-Walker equations as developed in
Section 11.6. In words, the autocorrelation normal equations require that for the lags
m|=10,1, ..., pthe autocorrelation functions of the model output and the signal being
modeled are proportional.
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11.2.5 Determination of the Gain Parameter G

With the approach that we have taken, determination of the optimal cheice for the
voclficients g of the model does not depend on the system gain G. From the perspective
of the mverse fillering formalation in Figure 11.2, one possibihity is to choose 7 5o that
I:ij' [n}}mll = I:Ifs [.-1]}2]!. For linite-cnergy deterministic signals, this corresponds to matching
the total cnergy n the model outpat to the total energy in the signal that s hoing
mexdeled. For random signals, it is the average power that is matched. In both cases, this
correspunds o choosing ¢, so that vy [ = r[0]. With this choice, the proporbonality

[actor ¢ in Bg. {11.39) i unity.

Elﬂmph 1 1 u’l

17-Order System

Figure 11.5 shows two signals, both of which are outputs of a 1¥-order system with
syslem function

Hiz)y = 1-—,. (1140

1—oz™

The signal 541%] = kln] = e"ulr] is the output when the input 15 a unit impulse 4|n ),
while the signal s-[n] is the owiput when the inpul to the svslem 15 8 2610 mean, unil
variance white-noise sequence. Both signals extend over the range —o0 = n < 00, a8
silggested by Farure 115,

i -"'ﬂl"’!

e . R
&‘T‘IE ‘TI'.F* " 3 .
iﬁli : | '!"]I-u .;.‘ ?;T | o .
0 A R SRR, i
‘ *ll Hl' l g 111 1ilill'*'l‘j* 'lalili.*;llll:'h & "

Figure 11.5 Examples of deterministic and rapdom outputs of 2 15'-order all-pale

system,
The autocorrelation function for the signal s{n] is
%) [}
= e ntmon _ ST i
Fegnalml = rgn[m] = gw o (11.41)

the autacorrelaton function of s.[«] is also given by Eg. (11.41) since s [r] is the
response of the system to white noise, for which the autocorrelation function is a unit
npulse,

Since both signals were penerated with a 1¥'-order ali-pole system, a 1®L-order
all-pole mode] will be an exact fir, In the deterministic case, the output of the optimum
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svoamverse [ller will be a unil impulse, and in the random signal case, the output of the
S opimum inverse filter will be a zero-mean white-noise sequence with wnit average
“s power. To show that the oplimum inverse filter will be exact, note that for a 1%%order
maodel, Egs, (11300 or (11.34) reduce o

Frgsg [H]a; = Frgsg [1]. (L142)

L oso from Eg. {11410, it follows that the optimum predictor cocfficicnt for both the
deterministic and the random signal 5

o
: 1] Ty
& ., 1L e & sa (11.43)
be Frgg 01
i | —wd
HEE
:: From Eq. {11.28), the minimuom mean-squared crror is
: ‘f_‘:..._._.’ _u]_.{.'?.__':_...w_:]‘ ;]]_4_.1_}
. | — - l—a?  1—w? )

which is the size of the unit impulse in the deterministic case and the average power
T ofthe white-noise sequence in the random case.

Asmentioned earlier, and as is clear in this example, when the signal is generated
by an all-pole system excited by eilther an impulse or while noise, all-pole modeling can
determine the parameters of the all-pole svstem exactly. This requires prior knowledge
of the model order p and the autocorrelation function. This was possible to obtain
for this example, because a closed-form expression was available for the infinite sum
reqguired 1o compute the autocorrelalion unction. In a practical setting, it is generally
necessary 10 estimate the aulocorrelation function from a limte-length scgment of the
given signal. Problem 11.14 considers the effect of finiie autocorrelation estimates (to
be discussed next) for the deterministic signal s4|n | of this section.

11.3 ESTIMATION OF THE CORRELATION FUNCTIONS

To use the results of Sections 11.1 and 11.2 for modeling of either detenuinistic or ran-
dom signals, we require apricri knowledag of the correlation functions g [i, k] that are
needed to form the system equations satisfied by the coefficients g . or we must estimate
these from the given signal. Furthermore, we may want to apply block processing or
short-time analysis techmigues o represent the time-vandng properties of a nonstation-
ary signal, such as speech. In this section, we will discuss two distinct approaches Lo
the computation of the correlation estimates for practical apphication of the concepls
of paramelnc signal modeling. These two approaches have come 1o be known as the
aiocorrelation method and the covariance methad.

11.3.1 The Autocorrelation Method

Suppose that we have available a set of M + 1 signal sampless[n] ford = = M, and we
wish 1o compule the coefficients [or an all-pole model In the autocorrelation method,
it 15 gssumed thal the sipnal ranges over —oo < /= oo, with the signal sumples taken o
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be zero for all n outside the interval D = n < M, even if they have been extracted from
a longer sequence. This, of course, imposes a lumit to the exactness that can be expected
of the model, since the IR impulse response of an all-pole modeal will be used to maodel
the finite-length sepment of s|n].

Although the prediction error sequence need not be computed explicitly to solve
far the filter coefficients, it is nevertheless informative to consider its computation in
some detail. The impulse response of the prediction error filter is, by the definition of
Alz). in Bg. (11.24),

r
haln]=8In] ) axdln = k|, (11.45)
k=]

It can be seen that since the signal s{n] has finite length M + 1 and & 4(n]. the impulse
response of the prediction filter Alz|, has length @ + 1. the prediction error sequence
eln] = haln} = sin| will always be identically zero outside the interval 0 = n = M + p,
Figure 11.6 shows an example of the prediction error signal for a linear predictor with
p = 5. In the upper plot, fisfr — m| the (time-reversed and shified) impulse response
of the prediction errar filter, is shown as a function of s for three different values of n.
The dark lines with square dots depict A aln — m], and the lighter lines with round dots
show the sequence s|m| for = m = 30, On the left side is h 4|0 — m], which shows that
the first nonzero prediction error sample is e8] — 5| 0]. This, of course, is consistent with
Eq. (11.8). On the extreme right is f 4| M — p — m], which shows that the last nonzero
error sample is e M + p| = —aps[M]. The second plot in Figure 11.6 shows the error
signal eln] forQ = n = M+ p. From the point of view of linear prediction, it follows that
the first ¢ samples (dark lines and dots) are predicted from samples that are assumed
to be zero. Similarly, the samples of the input for n = M + 1 arc assumed 1o be zeto Lo

obtain a finite-length signal, The linear predictor atlempts to predict the zero samples

&[]
.I!I-_||.{|‘-'H!|. . . 3 fIA[J‘I—I'ﬂ] 3 .r;'Al_l'H I F"”E]
fowm .
LI | L ™ ?T¢ .
L ] el tiieg . 1 i o111] tTreny =
E - li : . !
] L LY T [ {
o fe M Mip
L] ] -

efn] = ha[n] = sln] = o] = 3 sl — &)

]
. " L . " __'_'?T._.T_._'J_?T_._-_._l_.._._tg —_
L I * . T 1
r ’ |

i |
i M ek

Figure 11.6 [Hlustretion (far o = &) of computation of prediction grror for the
autocorrelation method. (Square dots denote samples of &,[n - m) and fight round
dots denate samples ol s{w] for the upper plot and gla] for the lower plot.)
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Figure 11.7  lllustration of computation of the autocorrelation function for afinkte-
length sequence. (Square dots denote samples of s[n + m), and light round dots
denote sampies of sfnl.)

in the inferval M +1 = & = M + p from prior samples that are nonzero and part of the
original signal. Indeed. if s[] s O and s[M] # O, then it will be true that both e[{}] = s[{)]
and e[M + p] = —aps[M]| will be nonzero, That 15, the prediction error {total-squared
error £) can never be exactly zero if the signal is defined to be vero outside the interval
) =n = M. Furthermore, the total-squared prediction error for a p™M-order predictor
would be

e Mip
£ =(emP)= 3 etnl’ = Y efnl’, (11.46)
fe=m==00 r=L}

i.e.. the limits of summation can be infinite for convenience, but practically speaking,
they are fimte.

When the signal is assumed 1o be identically zero outside the mterval 0 < n = M,
the correlation function ¢, [i, ] reduces to the antocorrelation function r,, [m] where
the values needed in Eq. {1130} are for m = || — k|. Figure 11.7 shows the shilted
seguences used in computing vy [m] with £[#] denoted by round dots and s[z + m] by
sguare dots Note that for a linite-length signal, the product s[rls(s + m] is nonzero
only over the interval b = n = M — m whenm = (0 Since r; 15 an even {function, i.e.,
Fol—it] = recim] = ro | iml]at follows that the antocorrelation valoes needed for the
Yule- Walker equations can be computed as,

ol A = ||
resllmi]l = E glafxfn + |m|] = Z shrrlsin + |m]. {1147)
s o HES]

For the finite-length sequence s[n], Eq. (11.47) has all the necessary properties of an
autocortelation function and ro, [m] = O for m = M. But of course r.,[m] is not the same
as the autocorrelation function of the infinite length signal from which the segment was
extracted.

Equation {11.47) can be used to compute estimates of the autocorrelation func-
tion for either deterministic or random signals.* Often. the finite-length input signal
is extracted from a longer sequence of samples. This is the case, for example, in ap-
plications to speech processing, where voiced segments {e.g., vowel sounds) of speech
are freated as deterministic and unvoiced segments (fricative sounds) are treated as

A the conrext of randor signals, i wis shown in Section TE6 that Eq. (11.47) is a biased estimate of
the pulocorrelation function. When p <2 8 asis often the case, this statistical bias is generally negligible,
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random signals.® According to the previous discussion, the first p and last p samples of
the prediction ecror can be large due to the attempt to predict nonzero samples from
zero samples and Lo predict zero samples from nonzero samples. Since this can bias the
estimation of the predictor coefficients, a signal-tapering window, such as a Hamming
window is penerally applied to the signal before computation of the autocorrelation
function.

11.3.2 The Covariance Method

An alternative choice for the averaging operator lor the prediction error fora pPorder
prodictor 1s

I

8 =tem) = ¥ (eI, (11.48)

As in the autocorrelation method, the averaging is over a finite interval (p < n = M),
but the difference is that the signal to be modeled is known over the larger interval
0= n = M. The total-squared prediction error only includes values of ¢[n] that can be
compuied from samples within the interval 0 = » = M. Consequently, the averaging
takes place over a shorter interval p < » < M. This 15 significant, since it relieves
the inconsistency between the all-pole model and the finite-length signal.® In this case,
we only seek to match the signal over a finite interval rather than over all » as in the
aulocorrelation method. The upper plot in Figure 11.8 shows the same signal s|m] as

sm]

t., gle =] w halit = m| w q[M - m|
I-.'
Ll ‘_I_T_T; o TaletVetbel
RETAIE: i |1 m
g L
A
f eln| = hyln] *sln = sln] Y agsin - k|
k=]
] " "t sent . Y
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Flgure 11.8 Hlustration (for 5 = 5) of computation of prediction error for the
covanance method. {In upper plot, square dots dencte samples of faln — m), and
light round dots denote samples of sfm].)

31n both cases, the deterministic antocorrelation function in Eq- (11.47) is used as an estimate,
¥ The definitions of total-squared prediction error in Egs, (17.48) and (11.46) are distinctly different,
50 we use the subscripl oo 10 distinguish themn,
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Figure 11.9  [llustration of computation of covariance function for a finite-tength
sequence, (Square dots denote samples of s[m — &1 and light round dots dencte
samples of s[q - 1.
in the upper part of Figure 11,6, but in this case, the prediction error is only computed
over the interval p = n = M asneeded in Eq. (11.48). As shown by the prediction error
filter impulse responses fi4[e — ] in the upper plot, there are no end effects when the
prediction error is compuled in this way, since all the signal samples needed o compuile
the prediction error are available. Because of this, it is possible for the prediction error
to be prevsely zero over the entire interval p = 1 = M| if the signal from which the
finite length sepment was extracted was generated as the output of an all-pole system.
Seen another way, if s[a] 15 the output of an all-pole system with an input that is zero
for n > 0, then as seen from Egs {11.9) and (11.10) the prediction error will be wero for
n =1,
The covariance function inherits the same definition of the averaging operator,
ie.,
M
sl k] = ZJ{M —{]&|ln — k] (11.49)
n=p
The shifted sequences s[# 7] (light lines and round dots) and s|r k] (dark lines and
sqquare dots) are shown in Fgure 11.9. This figore shows that since we need ¢.[i, k| only
fori=0.1,..., pandk =1,2,,. ., p, the segment sin] for 0 = n = M contains all the
samples that are needed to compute ¢, [/, k] in Eqg. (11.49),

11.3.3 Comparison of Methods

The autocorrelation and covariance methods have many similarities, but there are many
important differences in the methods and the resulting all-pole models. In this section,
wie summartze some of the differences that we have already demonstrated and call
atlention 1o some others,

Prediction Error

Both the averaged prediction error {¢?|n]) and averaged modeling error (¢[n]) are
nonnegative and nomncreasing with increasing model order p. In the autocorrelation
method based on estimates obtained from finite-length signals, the averaged modeling
or prediction error will never be zero, because the autocorrelation values will not be ex-
act. Furthermore, the minimum value of the prediction error even with an exact model
is Gw|n] as indicated by Fq. (11.10). In the covariance method, the prediction error for
#n = [l can be exactly zero if the original signal was generated by an all-pole model. This
will be demonstrated in Example 11.2.
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Equations for Predictor Coefficients

In both methods, the predictor coefficients that minimize the averaged prediction error
satisfy a general set of linear equations expressed in matrix form as $a = ¢. The co-
efficients of the all-pole model are obtained by inverting the matrix ®; i.e.a = @ 4.
In the covariance methad, the elements ¢, [i. 4] of the matrix ¢ are computed vsing
Eq. (1149, In the autocorrelation method, the covariance values become autocorrela-
tion values, i.e., ¢y [i, k] = ry[li = &|] and are computed using Fq. (11.47). In hoth cases,
the matrix & is symmetric and positive-definite, but in the autocorrelation method, the
matrix & is also a Toeplitz matrix. This implies numerous special properties of the solu-
tion, and it imphes that the solution of the equations can be done more efficiently than
would be true in general. In Section 1.6, we will explore some of these implications for
the gutoeorrelation method.

Stability of the Model System
The prediction ervor filter has a sysiem function A(z) that is a polynomial in z7*. There-
fore, il can be represenied in terms of its zeTos as

Iu‘

F
Ay =1- az™ = [Tt —zz™). (11.50)
k=1 k=1

In the autocorrelation method, the zeros of the prediction error filter Az) are
suarantead 1o lie strictly within the unit circle of the z plane; i.e., |2z} = 1. This means
that the poles of the causal system function H{z) = ¢/ 4(z) ol the model lic inside the
unit circle, which implies that the mode! system is stable. A simple proof of this assertion
is given by Lang and McClellan (1979) and McClellan (1988). Problem 11.18 develops
a proof that depends on the lattice filter interpretation of the prediction error system
Lo be discussed in Section 11.7.1. In the covanance method as we have formulated i,
no such puarantee can be given,

11.4 MODEL ORDER

An important ssue in parametric signal modeling is the mode! order p, the choice of
which has a major impact on the accuracy of the model. A common approach tochoosing
p is to examine the averaged prediction error {often referred to as the residual) from

the optimum p'™M-order model, Let aim be the parameters for the optimal pPorder

predictor found using Eq. (11.30). The prediction error energy for the p'-order model
using the autocorrelation method is”

oo P 2
g = E (s[nl—Zuﬁ,‘ms[n—H) : {10.51)

n=—nc k=1
For the zero-order predictor, (p = 0), there are no delay terms in Eq. (11.51). 1.2, the
“predictor” is just the identity system s0 efn| = s[n|. Consequently. for p = 0,

b}

£@ = 3 sal=ryl0] (11.52)

nR=—0C

TRecall that .i'ég, deroies Lthe toral-squared predictior. error for the covariance merthod, while we vse
£ with no subsenipt o denote the wtal-soguarsd prediction error for the autocorrelation methaod.
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Plotting the normalized mean-squared prediction error V&) = £49) /69 a5 3 func-
tion of p shows how increasing p changes this error energy. In the autocorrelation
method, we showed that the averaged prediction error can never be precisely zero,
even if the signal s[a] was generated by an all-pole system. and the model order is the
same as the order of the generating system. In the covariance method. however, if the
all-pole model is a perfect model for the signal s[n], £:5) will become identically zero
at the correct chosce of p. since the averaged prediction error only considers values
for p = n = M. Even 1f s[r] is not perfectly modeled by an all-pole system, there is
often a value of p above which increasing p has little or no effect on either V! or
i Ef..:aﬂ.,}l.ffé?.i This threshold is an efficient choice of mode] order for representing
the signal as an all-pole model.

Example 11.2 Model Order Selection

L2gE

2 To dc_:rnunslrula: the effeet of model order, consider a signal #{#] generated by cxeiting
| a 10™-order syslem

Hiz) RS . Y (11.53)

#1220 _ 0407 4 06— — 020" 023~

with an impulse vfn] = é[n]. The samples of s(n] for & < n = 30 are shown as the
o sequence id the upper plots in Figures 11,6 and 11,8, This signal was used as the signal
©to be modeled by an all-pole model with both the autocorrelation method and the
. covariance method, Using the 31 samples of 5[], the appropriate autocorrelation and
2 govanance values were computed and the predicior coefficients compuled by solv-
T8 ing Ega (1130) and (11.34) respectively. The normalized mean-squared prediction
errors are plotted in Figure 1110, Note that in both the awtocorrclation snd covari-
P '5 ance methods the normalized error decreases abrupdly al p = 1 in boih plois then
. decreasing more slowly as p increases. At p = 10, the covariance method gives zero
% error, while the astocorrelation method gives a nonzero averaged error for p = 10,
#: This is consistent with our discussion of the prediction error in Section 11,3,

I

Autacorrclation Method

A = = Covariance Method
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Figure 11.10 Normalized mean-squared pradiction arror VI as a function of
modet arder & in Example 11.2.
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While Example 11.2 is an ideal simulation, the general nature of the dependence
of averaged prediclion error as a function of p is typical of what happens when all-pole
maodeling is applied to sampled signals. The praph of V4 as a function of p tends to
Natten oul at some point, and that value of p is often selecled as the value o be used
in the model. In applications such as speech analysis, it s possible to choose the model
order based on physical models for the production of the signal to be modeled. (See
Rabiner and Schafer, 1978.)

11.5 ALL-POLE SPECTRUM ANALYSIS

All-pole sipnal modeling provides a method of obtaining high-resolution estimates of a
signal's spectrum from truncated or windowed data. The use of parametric signal mod-
eling in spectrum analysis is based on the fact that if the data fits the model, then a finite
segment of the data can be used to determine the model parameters and, conseguently,
also its spectrum. Specifically. in the deterministic case

Ste/ i = |H ™) Ve ) = |H (e (11.54)
since |V(e/®)|* = 1 for a unit impulse excitation to the model system. Likewise, for
random signals the power spectrum of the output of the model is

E_&{f;m} = |H:"E.l"d;||.!' mel:f.f:'cl:] e EH{I"'EU:‘}"E. ‘:I 1‘55}

since Py, {2/ = 1 for the white-noise input. Thus, we can obtain an estimate of the
spectrum of a signal s[n] by computing an all-pole model for the signal and then com-
puting the magnitude-squared of the frequency response of the model system. For both
the deterministic and random cases, the spectrum cstimate takes the form

1
. i (7 o
Spectrum estimate = H{¢/¥}|~ = . (11.56)

II
1— Zakfﬂ"‘*
k=1

To obtain an understanding of the nature of the spectrum estimale in Eq. (11.56)
for the deterministic case, it is useful to recall that the DTFT of the finite-length signal
£[n] 1s

M
Siel®y = Z.& [n]e—Fun (11.57)
r={l
Furthermore, note that

M| 1 T : _
rglml= > sln+mlsla] = ?—f |5(e ™) e/ "™ d g, (11.58)
=0 = Jom
where, due to the finite length of s|n). ryy[m] = O for jm| = M. The values of ry|m|
form = 0. 1,2,..., p are used in the computation of the all-pole model using the
autocorrelation method. Thus, it is reasonable to suppose that there is a relationship
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between the Fouricr spectrum of the signal, | 5(e/#}]%, and the all-pole madel spectrum,
[Siedey? = (H (e
Ome approach to illuminating this relationship is to obtain an expression for the
averaged prediction error in terms of the DXTEFT of the signal s|nf. Recall that the
prediction error is e(n] = halrl| = s|al. where fiq[r] is the impulse response of the
prediction error filter. From Parseval's Theorem. the averaged prediction error is
M=p 1 7 ,
L ‘ ¥ P L WETY <0
E= 3 feln])’ = 5= L |S(e™) | Ate!™) dm, {11.59)

r=l}

where S(e/™) 15 the DTEFT of s[n] as given by Eq. (11.57). Since Hiz) = G/Az)L
Eqg. (11.5Y) can be expressed in terms of H{e/®) as

- ,[-."r-l ® |5-f‘,_._r'-'uH."‘.

=5 |, iH@=mE™ (L
Since the integrand in Fq. {11.60) is positive, and [H(e/*)[* = 0for —71 = w = 7,
it therefore follows froum Eq. (11.60) that minimizing £ is equivalent to minimizing,
the ratio of the epergy spectrum of the signal s[n] to the magnitude-squared of the
frequency response of the linear system in the all-pole model. The implication of this is
that the all-pole model spectrum will attempt to match the energy spectrum of the signal
maore closely at frequencies where the signal spectrum is large, since frequencies where
|5[e-';:”}|3 = ihf{rrj""]ll2 cantribute more to the mean-squared error than frequencies
where the opposite is true. Thus, the all-pole mode] spectrum estimate favors a good
fit around the peaks of the signal spectrum, This will be illostrated by the discussion in
Section 11.5.1, Similar analysis and reasoning also applies to the case in which s[n] is
random.

11.5.1 Ail-Pole Analysis of Speech Signals

All-pole modeling is widely used in speech processing both for speech coding, where the
term linear predictive coding (LPC) is often used, and for spectrum analysis. {See Atal
and Hanauer, 1971, Makhoul, 1975, Kahiner and Schalter, 1978, and Quatieri, 2002.) To
illustrate many of 1he ideas discussed in this chapler, we discuss in some detail the use
ol all-pole modeling for spectrum analysis of speech signals. This method is typically
applied in a time-dependent manner by periodically selecling short segments of the
speech signal for analysis in much the same way as is done in time-dependent Fourier
analvsis as discussed in Section 1003, Since the ime-dependent Fourner ranslorm is
cssentially a sequence of DTETs of finite-length segments, the above discussion of the
relationship between the DTHT and the all-pole spectrum characterizes the relationship
between time-dependent Fourier analysis and time-dependent all-pole model spectrum
analysis, as well.

Figure 11.11 shows a 2(H-point Hamming-windowed segment of a speech signal
sin| in the fop panel and the corresponding autocorrelation function ry, (| below. Dr-
ing this time interval, the speech sipnal is voiced (vocal cords vibrating), as evidenced
by the periodic nature of the signal. This periodicity is reflected in the autocorrelation
Tunction as the peak at aboul 27 samples (2778 = 3375 ms {or B kHe sampling rate) and
integer multiples thereol,
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Figure 11.11  {a) Windowed voiced spesch wavetarm, (b} Correésponding auto-
correlation function {samples conracted by straight linas).

When applying all-pole modeling to voiced speech, it 1s wseful to think of the
signal as being deterministic, but with an excitation function that s a periodic train of
impulses. This accounts {or the periodic nature of the autocorrelation function when
several periods of the signal are incleded in the window as in Fipure 11.11(a).

Fagure 11,12 shows a comparison of the D'TFT of the signal in Figure 11.11{a) with
spectra computed from all-pole modeling with two different mode] orders and using the
autocorrelation function in Figure 11.11{b}. Note that the DTFT of y{n] shows peaks at
muliiples of the fundamental frequency Fn — 8 kIlz/27 = 296 Iz, as well as many other
less prominent peaks and dips that can be attributed to the windowing effects discussed
in Section 10.2.1. If the first 13 samples of ri |m] in Figure 11.11{b} are used to compute
an all-pole model spectrum {p = 12}, the result is the smooth curve shown with the
heavy line in Figure 11.12(a). With the filter order as 12 and the fundamental period of
27 samples, this spectrum estimate in effect ignores the spectral structure owing to the
periodicity of the signal and produces a much smoother spectrum estimate. If 41 values
of rlm] are wsed, however, we obtain the spectrum plotted with the thin line, Since
the period of the signal is 27, a value of p = #) includes the pericdicity peak in the
autocorrelation function and thus, the all-pole spectrum tends to represent much of the
fine detail in the DXTFT spectrum, Note that both cases support our assertion above that
the all-pole model spectrum estimale tends to favar good representation at the peaks
of the DTFT spectrum.
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Figure 11,12 (a) Compariscn of DTFT and all-pole model spectra for voiced
speech segment in Figure 11.11(a). (b} Normalized prediction error as a function
of p.

This example illustrates that the choice of the model order p controls the depree
of smoothing of the IXTFT spectrum. Figure 11.12(b) shows that as p increases, the
mean-squared prediction error decreases quickly and then levels off, as in our previous
example. Recall that in Sections 11.2.4 and 11.2.5, we argued that the all-pole model
with appropriately chosen gain results in a match between the autocorrelation func-
tionms of the signal and the all-pole model up to p correlation lags as in Fg. {11.39).
This implies that as p increases, the all-pole model spectrum will approach the DTET
spectrum, and when p — oo, it follows that rpe[m] = r.[m] for all »r, and therefore,
[H(eT™)* = |S(ei™}|?. However, this does not mean that H(e/™) = 5{e/*) because
Hz)s an IR system, and 5{z) is 1he z-transform of a fiinite-lengih sequence. Also nole
that as p — oo, the averaged prediction ermor does not approach zero, even though
|H[L"””H2 — |.§'{£-f""}|2. As wie have discussed, this occurs because the total error in
Eg. (11.11) is the prediction error #{n] minus Gufn|. Said differently, the linear pre-
dictor must always predict the first nonzero sample from the zero-valued samples that
precede it
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Figure 11.13  (a) Windowed unvoiced spesch waveform, (b) Corresponding au-
tocorrelation funcion {samples connected by straight lines).

The other main class of speech sounds is comprised of the unvoiced sounds such as
fricatives. These sounds are produced by creating random turbulent air flow in the vocal
tract; therefore, they are best modeled in terms of an all-pole system excited by white
noise. Figure 11.13 shows an example of a 201-point Hamming-windowed segment of
unvoiced speech and its corresponding autocorrelation function. Note that the autocor-
relation function shows no indication of periodicity in either the signal wavetform or the
autocorrelation function. A comparison of the DTFT of the signal in Figure 11.13{a}
wilh two all-pole model spectra computed from the aulocorrelation function m Fig-
ure 11.13{b) is shown in Figure 11.14(a). From the poinl of view of spectrum analysis of
random signals, the magnitude-squared of the DTFT is a periodogram. Thus, it contains
a component that is tandomly varving with frequency. Again, by choice of the model
order, the periodogram can be smoothed to any desired degree.

11.5.2 Pole Locations

In speech processing, the poles of the all-pole model have a close relationship to the res-
vnance frequencies of the vocal tract, Lhus, it is often uselul to factor the pulynomial 4(z)
to obtain its zeros for representation as in Eq. (1130} As discussed in Section 11.3.3,
the zeros zp of the prediction error filter are the poles of the all-pole model system
function. It is the poles of the svstem function that are responsible for the peaks in the
spectrum estimates discussed in Section 11.3.1. The closer a pole is to the vnit circle,
the more peaked is the spectrum for frequencies close to the angle of the pole,
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Figurs 11.14  (a) Comparison of OTFT and all-pode model spectra for unvoiced
speech segment in Figure 11.13{a). (b) Mormalized prediction error as a function
af o,

Figurc 11.15 shows the veros of the prediction error systemn function Az} (poles
ol the model system) for the two spectrum cstimates in Figure 11.12(a). For p = 12, the
zeros of A(z) are denoted by the open circles, Five complex conjugate pairs of 2eros are
close to the unit cirele, and their manifestations as poles are clearly evident in heavy
hine curve of Figure 11.12{a). For the casc p = 40, the zeros of A(z) are denoted by
the large filled dots, Observe that most of the zeros are close o the unit circle, and
they are maore or less eveoly distributed around the unit circle. This produces the peaks
in the model spectrum that are spaced approximately at multiples of the normalized
radian frequency corresponding to the fundamental frequency of the speech signal: ie.,
at angles 2 (2% Hz) s kHz.
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11.5.3 All-Pole Modeling of Sinusoidal Signals

As another important example, we consider the use of the poles of an all-pole model w
eslimaie Trequencics of sinusoidal signals. To sec why this is possible, consider the sum
of two sinusoids

sin] = | Az cosl{mnn -+ 0:) 4+ Az cos(azn + )| ufnl. {11.61})
The z-transform of s{n} has the form
by + bzt + bz o bsz?

Kz = . - . - 5
Tl — edmgly{] — e—den =Ty — eding=l){] — =2z}

(11.62)

That is, the sum of two sinusoids can be represented as the impulse response of an IT1
system whose system function has both poles and zeros. The numerator polynomial
would be a somewhat complicated function of the amplitudee-:, frequencies, and phasu
shifts. What is important for our discussion is that the numeralor is a 3. arder poly-
nomial and the denominator is a 4"-order polynomial, the roots of which are all on
the unit circle at angles equal to ey and e, The difference cquation describing this
system with impulse excitation has the form

4 3
sin] =3 asln k] =) bybin ~ k] {(11.63)
k=] k=i

where the coefficients a; would result from multiplying the denominator factors. Note
that

4
sinl = ) aesin =kl =0 forn = 4, (11.64)

k=1
which sujrgests that the signal sfr] can be predicted with noertor by a 4 grder predictor
excepl al the very beginning (0 = n = 3), The cocllicients of the denominator can be
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Figure 11.1&  Spectrum eslimation for a sinusaidal signal,

estimated from the signal by applying the covariance method to a short segment of the

signal selected so as not to include the first four samples. In the ideal case for which

Eq. {11.61) accurately represcents the signal (e.g., high SNE), the roots of the resulting

polynomial provide good estimates of the frequencies of the component sinusoids.
Figure 11.16(a) shows a plot of 101 samples of the signal®

i[n] = 20cos(0.2xn — Lia) -4 22c0s5(0.227n -+ 0L.97). {11.65)

Because the two freguencies are close together, it is necessary to use a large number of
samples Lo resolve the two frequencies by Fourier analysis. However, since the signal fits
the all-pole model perfectly, the covariance method can he used to obtain very accurate
estimates ol the [requencies from very short sepments of the signal. This is illustrated
in Fgure 11.16(b).

The DTEFT of the 101 samples {with rectangolar window) shows no indication that
there are two distinet sinusoid frequencies around @ = (0.2 1x, Recall that the main lobe
width for an (M + 1)-point rectangular window is Aw = 4o /(M + 1), Consequently, a
101 -point rectanguiar window can clearly resolve two [requencies only il thev are no
closer than about .0dmr radfs. Correspondingly, the D'TFT does not show two spectral
peaks.

Similariy, use of the autocorrelation method results in the spectrum estimate
shown by the heavy line. ‘This estimate also contains only one spectral peak. 'The predic-

AThe Lapering of the segment of the sipnal in Figure 11.76{a) 15 not o resoll of windowing, [t s ceused
by Lhe *beating™ of the two cosines of nearly the same frequancy, The period of fhe heat frequency {difference
between 022y and 0.2r) is L0 samples,
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tion error polynomial (in factored form) obtained with the autocorrelation method is

Aglz) = (1 — 09987021 Iy ) 0gRe—Flk2lm .1y
{1 - 0.42627 1)1~ 0.1165z 4 (11.66)

The twareal poles contribute no peaks, and the complex poles are close (o the unit circle,
but at H1.21x, which is halfway between the two frequencies Thus. the windowing
inherent in the autocorrelation method causes the resulting model to lock onto the
average frequency 021,

On the other hand, the factored prediction error polynomial oblained with the
covariance method is (with rounding of the magnitudes and angles) given by

Aclz) = (1 — P2 g1y — o= /03w -1y

=]

!;-'.'l

g I T M (11.67)
In this case, the angles of the zeros are almost exactly equal to the freguencies of the
two sinusoids, Aldso shown in Figure 11.1600) 15 the requency response of the model,
A

v 1 ;
|Hr.;1,|ff"mhf|" - |im. {11.65)

plotted in dB. In this case, the prediction error is very close to rern, which, if used
to estimate the gain of the all-pole model, would Jead to an indeterminant estimate.
Therefore, the gain is arbitrarily set to one, which leads o a plot of Eq. {(11.68) on a
similar scale 1o the other estimates Since the poles are almost exactly on the unit circle.
the magnitude spectrum becomes cxceedingly large at the pole frequencies. Note that
the roats of the prediction error polynomial give an accurate estimate of the frequencies.
This method, of course, does not provide aceurale information about the amplitudes
and phases of the sinusoidal components.

11.6 SOLUTION OF THE AUTOCORRELATION NORMAL
EQUATIONS

In both the autocorrelation and covariance methods of computing the correlation val-
ves, the predictor coetficients that minimize the mean-squared inverse filter error and
equivalently the prediction error satisfy a set of linear equations of the general form:

ﬂb.uLl- ” ‘i:"_t.sllnzl di'_:.;i_l. 3] d’&sl.li PJ o] —‘ ".lf"s:”-ﬂ]

dhesl2, 1) ahes (20 21 s, 3 --- s [2. £ oz g 12, 0]
el 30 11 ghssld 2] hosl3 3 - - @[3 ] a3 ) — 13, 0] ' E]l_.f_-;y}

1 el P, 0]

LR

el 2 1] @ue [P, 2] sl 31 - ol p. pl
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In matrix notation, these linear equations have the representation
ba=1. {11,703

Since a7, k§ = ¢k, (], in hoth the autocorrelation and covariance methods, the matrix
P is symmetric, and. because it arises in a least-squares problem, it is also positive-
definite, which guarantees that it is invertible. In general, this leads to efficient solu-
tion methods, such as the Cholesky decomposition (see Press, et al., 207}, that are
hased on matrix Factorization and applicable when & is symmetric and positive definite,
However, in the specific case ol the autocorrelation method or any method for which
o0t ] = ro i — KL Egs. (11.69) become the avtocorrelation normal equations i#lso
referred to as the Yule-Walker cquations).

r.a..'rl[-l] r.v.\rF] r.'..'ul-zl Ll ?'H[P aral ]-l {di r.wi,l-l

resil] ras [0 sl e rglp =12 az Faxl]

rael2] res[ 1] 291 (1] R ralp — L] { a3 | — rel3] , {]1?1}
Feslp = 1 roelp = 2 roglp =31 -+ el Lﬂp Fezl o]

In this case, in addition to the matrix 4 being symmetric and positive-definite, it isalsoa
Toeplitz matrix, i.e.. all the elements on each subdiagonal are equal. This property leads
to an efficient algorithm, referred to as the Levinson—Durbin recursion, for solving the
equations.

11.46.1 The Levinson-Durbin Recursion

The Levinson—Burhin algorithm for computing the predictor coefficients that minimize
the total-squared prediction error results from the high degree of symmetry in the matrix
& and furthermaore, as Eog. (1171} confirms, the elements of the right-hand side vector
¥ are primarily the same values thal populate the mairix $. Eguations (L-T01) 10
(L~T26) in Fgure 11.17 define the computations. A detivation of these equations is
given in Section 11.6.2, but before developing the details of the derivation, it is helpful
Lo simply cxamine the steps of the algorithm.

(-1} This siep initializes the mean-squared prediction error to be the energy of
the signal. That is, a zero®™-order predictor (no predictor) yields no reduction in
prediction error energy, since the prediction error e|n] is identical to the signal

AR

The next line in Figure 11.17 states that steps (L-13.2) through (L-D.5) are repeated p
times, with cach repetition of those sieps increasing the order of the predictor by one, In
other words, the algorithm compuies a predictor of order ¢ from the predicior of order
i — lstarting withi — 1 =1,

which we refer to as the L-parameters, plays a key role in generating the next set
of predictor coefficients.?

¥For reasons o be discussed in Section 11.7, the k-pararnelers are abso catled PARCOR (for PARDal
CORrelation) cogfficients or also, reflection coefficieni.
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Levinson-Durbin Algoriihm

EM = . 0] (L-D.1)
fori=1,2,..., P

k= | ratit= a8 Ui - 1| 90 (-D2)

J=A

a;_[r:, S (L.-12.3)
ifi =1thenfor j=1,2,.. ..i-1
f =1 i—1
af' =ai ™" —ka ! {L-12.4)

end

EW = {1 —ghHEgv- (I-D.5)
and
ajma jael2,...,p {L-12.6)

Figure 11.17  Equations defining the Levinson--Curbin algorithim.

(L-D.3) This equation states that a}“, the i coclficient of the iM-order predicior, is
equal 1o &;.

(L-D.4) In this equation, k; is used 10 compute the remaining cocfficients of the -
order predictor as a combination of the coefficients of the predictor of order
i/ — 1} with those same cocfficients in reverse order.

(L-1.5) This equation updates the prediction error for the i ™-order predictor.

(L-D.6) This is the final step where the p%-order predictor is defined to be the result
after p iterations of the algorithm,

The Levinson-Durbin algorithm is valuable hecause il is an efficient method of
solution of the autocorrelation normal equations and alsa for the insight that it provides
gbout the propertics of lincar prediction and all-pole models. For example, rom Eqg.
(L-D.5). it can be shown that the averaged prediction error for a p'M-order predictor is
the product of the prediction crrors {or all lower-order predictors, from which it follows
that O < £ < g4-11 = £l gng

Fu I
EW = M T - &7y = e 0] Jed = &) {11.72)
fr=] =1

Since £ = 0, it must be truc that —1 < &k = llori = 1.2, ..., . That is, the
k-parameiers are strictly less than one in magnitude,

11.6.2 Derivation of the Levinson-Durbin Algorithm
From Eq. {11.30}), the optimum prediclor cocflicients satisfy the sel of equations

ralil— Y argli—k1=0 i=12....p {11.73a)
k=1
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and the minimum mean-squared prediction etror is given by

ies
ra 0] = z:ﬂ-'cr.ss“"' £, (11.73b)
k=]
Since Eq. {11.73b) contains the same correlation values as in BEq. {11.73a), it is possible
to take them together and write a new set of p + 1 equations that are satisfied by
the p unknown predictor coefficients and the corresponding unknown mean-squared
prediction error £17, These equations have the matrix form

Pl rall] 72l oo rulpl ][ L }' gte)

rsl1] Fal01 raf11 cos rglp =1 —a;’ 0

?*1.-;1"21 ?’n“] r'.:H)-l s 0 .?‘_.‘-_..”} _"2] _u';l_p] = '} . (1]7‘4)
rssTP'} rs.l.'l.[? 5 1] r.fflf? — 2] rr- J";;|Df _—(I-'Lplj L

Tt is this set of equations that can be solved recursively by the Levinson—Durbin al-
garithm. This is done by successively incorporating a new correlation value at each
iteration and solving for the next higher-order predictor in terms of the new correlation
value and the previously found predictor,

For anv order i, the set of equations in Eq. (11.74) can be represented in matrix
notation as

R(Ffla{[] o c[f”]_ [11 ?5}
We wish to show how the ™ solution can be derived from the (i — 1 1! solution. Tn other

words, given all "‘], the solution o RUY-Hali-1 — gt '1'1_ we wish to denve the solohion
to Rl = plit,

Firsl, write the cqualions RU—Du0-11 — oli=1 ip expanded form as
N ] IO | ) BN ) R e S I
Fyx “ 1 ra'xln’ r.-.'.'r].-l-l Epi .i‘:.‘_.,-“ o ?l _'ﬂ{_ ; ﬂ
rol2l rlll 0 i =3 | a2 0 [ (1176
__'r.\'.{“ — 1Y rgeli = 2] rgeli =31 -+ reel0] ] __u:_‘.‘-._ln ] L 0 i

Then append a @} to the vector a' 1! and multiply by the matrix R'" to ohtain

res [0 Foef L rpl2] - resli] 1T 1__”1 M =11
resll] res 0] roelll <o regli — 1] _a{‘, 0
resk2l  reslll rel®] <o reehi 21 | | —afV 0 .

: : : 2 X =| . [+ {1139
Posli = 1 rogli = 2 rsli = 3] -+ rll] || _gff D 0
Paoli] rali = Urli =21 a0l || G | Ly

where, to satisfy Eq. (11.77},
i-1
YD = rlil - 3 ai Vrali - 1. (11.78)

i=1
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It is in Eq, (11.78) that the new autocorrelation value v {i] 15 introduced. However,
Fq. (11.77) 15 not yet in the desired form R*'a"! = e, The key step in the derivation is
to recognize that due to the special symmetry of the Toeplitz matrix R%}, the equations
can be written in reverse order (first equation last and last equation first, and so on) and
the matrix for the resulting set of equations is still RY; i.e.,

re:[0] res| 11 resf2] - weeli] ] 2_1] _}"[i—“-
ris|1] Fos| U] Fesl1l <o re[f = 1] _ﬂ].__—l 0
rel2] ral1] om0 - rli =21 | | = ﬂ
; ] : : = ol=| . |. aLm
Preli = D regi = 2] rgli = 3] -+ pegl) i1 0
reslil  Fagli = Ll rgeli =21+ pf0] | 1 | £6-11

Now Eq. (11.77) is combined with Eq. (11.79) according to

T 1 7 L I oefi—1)7 L =117
[i—1I} {i—I & ¥
—ﬂ}. 'af'_ 1 | 0 0
| =Y —a' M i 0 0
R . —ky T = i —k; . ; (11.80)
_ _(-.'—I: .:Ir' 1) ﬂ U'
ﬂ'h[ dl] F[;._” E[j_”

Equation (11.80) is now approaching the desired form Ra' = e, All that remains
is to choose 1Y so that the right hand vector has only a single nonzero entry, This
requires that

i=1
rosli] = 3] Ve li — ]
wli—1
W i R | -
e Y= el

which ensures cancelation of the last element of the right hand side vector, and causes
the first element to be

E{:':I — t'.'[al—!} - k‘__yl(.'_h — b—-lf—!'r{l o k?}. (1 l_Hz‘}
With this choice of 4~ it follows that the vector of iM-order prediction coefficients
is
B |_ B 1 7] 0]
al! —ai‘_ o —a:.'qi '
a]ff'] {i—1L1 {i=13
7 —{ -’"I‘II-_Z
- k| (11.83)
—a! —aft _gli-D
14 - 1
L~ L ] L1

From Eq. (11.83), we can write the set of equations for updating the coefficients as

(il =1 i—1 . .
al'=al PV kel =121, (11.84a)
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and

al.m = k;. (11.84b)
Fguations (11.81),(11.84b), (1 1.84a}, and (11.82) arc the key equations of the Levinson—
Durbin algorithm. They correspond to Egs. (L-D.2}, (L-D.3}, {L.-D4), and (I.-D.5) in
Fipure 11,17, which shows how they are used order-recursively to compute the optimum
prediction coefficients as well as the corresponding mean-squared prediction errors and
cocflicients &, for all linear predictors up o order p.

11.7 LATTICE FILTERS

Among the many interesting and useful concepts that emerge from the Levinson—
Durbin algorithm is its interpretation in lerms of the laltice structures introduced in
Section 6.6, There, we showed that any FLR filter with system function of the form

M
Alz)e=1- ayz™ (11.83)
k=l

can be implemented by a lattice structure as depicted in Figure 637, Furthermore, we
showed that the coefficients of the FIR system [unction are related to the k-parameters
ol a correspending lattice fillter by a recursion given in Figure .38, which is repeated
for comvenience in the bottom hall of Figure 1115 By reversing the steps in the k-
to-a algorithm, we obtained an algorithm given in Figure 639 for computing the &-
parameters from the cocfficientsa;, j = 1,2, ..., M. Thus, there is a unique relationship
between the coefficients of the direct form representation and the lattice representation
of an FIR filter.,

In this chapter, we have shown that a p'"-order prediction error lilter is an FIR
lilter with system function

P

AP =1-3 a2,

k=1

whose cocfficicnts can be computed {rom the avtocorrelation functiom of a signal
through a process that we bave called the Levinson-Durbin algorithm. A by-product
of the Levinson—Durbin computation is a set of parameters that we have also denoted
ki and called the k-parameters. A comparison of the two algonithms in Figure 11.18
shows that their steps are identical except for one important detail. In the algorithm
derived in Chapter 6, we started with the lattice filter with known coefficients 4; and
derived the recursion for obtaining the coefficients of the corresponding direct form
FIR filer, In the Levinson—Durbin algorithin, we begin with the autocorrelation func-
tion of a signal and compute the &-parameters recursively as an intermediate result in
computing the coefficients of the FIR prediction error filter, Since both algorithms give
a unique result after p iterations, and since there is a wnique relationship between the
k-parameters and the coefficients of an FIR filter, it follows that if M = pand a; = u;
for f =1,2,..., p,the k-parameters produced by the Levinson-Durbin algorithm must
be the k-parameters of a lattice filter implementation of the FIR prediction error filter
AP ().
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Levinson—Durbin Algorithm

EW = 1, [0]
fori=12,...,p
f=1
ki = | rli] = Y @ Vrgli = j1| /€9 Eq. (11.81)
=l
all = k; Eq. (11.84b)
ifi =1thenfor j=1.2,....i—-1
@' =al ™M gl Fq.(11.84a)
Em:i
EW = (1 —khHEd-h Hq. (11.82)
end
aj =c1_:-?:' =12 ....p

Lattice k-to-o Al;gurilhm

Oiven &y, b, ..., kg
fori=1,2.... M
ol =k Eq. (6.66b)
ifi=1thenfor j=1.2,....i—1
(i (i=1 P—1 .
o =l ™" — gl Eq. (6.66a)
end
end
[ﬂ-f:l s .
@j=a; j=1L2.....M Eqg. (6.68h)

Figure 11.18 Comparison of the Levinson-Curbin algorithm and the algorithm
for convarting frorm &-parameters of a lattice structure to the FIR imputse response

coefficients in Eq. (11.85).

11.7.1 Prediction Error Lattice Network

To explore the lattice filter interpretation further, suppose that we have an i™"-order
prediction error system function
i
Ay =1-3 a7, (11.86)
=1

The z-transform representation of the prediction error'? would be
Ez) = AV 8(2), (11.87)
m'l‘lu: z-trangform equations are used gssuming that the s-transforms of «[q] and sin] exist. Although

this would not be fewe for rasdom sigrals the relotionships between the variables remain in effect for the
gy&tem, The z-Lransform notation facifitates the development of these relalionships,
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and the time-domain difference equation for this FIK filter is
4 i L
e"inl = sln] = Y _atsln — k], (11.88)
k=1

The sequence ¢'n] is given the more specific name forward prediction error
becapse it is the error in predicting s{s] from § previous samples.

The source of the lattice flter imterpretation 1s Egs (11.84a) and (1 1.84b), which,
if substituted into Eq. (11.86), vield the following relation between A%/ z) and A¥ 1)

A = Az — gz PAY DT, (11.89)

This is not a surprising result if we consider the matrix representation of the polynomial
Az 1n Eq. (11.83)." Now, if Eq. (11.89) is substituted for AY)(z) in Eq. (11.87), the
result is

E¥ ) = A" V@82 — kiz AV Mz DS, (11.90)

The first term in Eqg. (11.90) is £y e the prediction error for an (i - 1¥l-order
filter. The second term has a similar interpretation, il we define

E%z) =z A (z7)81z) = B¥i2)S62), {11.91)
where we have defined #Y(z) as
By =z7tA%h {(11.92)
The time-domain interpretation of Eq. {11.91}is
& [n) =.sin—;']—zr:af‘f’_s[n—;+kj_ {11.93)
k=1
The sequence #4n] is called the backward prediction error, since Eq. (11.93) sugpests
that s[n - i] s “prediclted” {using coeflicients a;:_f]jl from the { samples thal follow sample
" E-"n-‘l.-’iﬂ'L these definitions, it follows from Eq. (11.90) that
Eli(z) = EU-Nig) — bz 1By, (11.94)
and hence,
el = V) — k@ e - 11 {11.95)
By substituting Eq. (11.89) into Eq. {1191}, we obtain
FO() = oV FU-Vg) — e BV, (11.96)
which, in the time domain, corresponds 1o

#0n) =& Mn = 1) = ke P n). (11.97)

e algebraic manipulations ta derive this resnlt arc suggested as an 2xercise in Problem 11.21.
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gl n] elilf]

B o Figure 11.19 Signal flow graph of
&-tin] En]  prediction error computation,

The differcnce equations in Eq. {11.95) and Eq. (11.97) express the i"-order
forward and backward prediction errorsin lerms ol & and the (i — 1% -order forward and
backward prediction errors. This pair of difference equations is represented by the flow
praph of Figure 11,19, Therefore, Figure 11.19 represents a pair of difference equations
that embody one iteration of the Levinson-Durbin recursion. As in the Levinson-
Durbin recursion, we start with a zero"-order predictor for which

¥ = #™n] = sin). (11.98)

With &' [#] = s[n] and Er"ﬁ"in] = s as inputs to 4 first stage as depicted in Figure 11.19
with ¥, as cocfficient. we obtain ¢/1'[n] and #1'{n] as outputs. These are the required
inputs for stage 2. We can use p successive stapes of the structure in Figure 11,19 to
build up a system whose output will be the desired pM-order prediction error signal
eln] = £"®n]. Such a system, as depicted in Figure 1120, 15 identical to the latiice
network in Figure 6.37 of Section 6.6.'7 In summary, Figure 11.20 is a signal flow graph
representation of the equations

¢l = &M n| = sln) (11.99a)
el = e Mn = k@ U —11 i=1.2,....p (11.99b)
Al =N =k MM i=1.2,..,p (11.99¢)

e[n] = &'Pfn]. (11.99d)

where. if the coefficients & are determined by the Levinson-Durbin recursion, the
variables ¢'''n] and #%{n} are the forward and backward prediction errors for the ith_
order optimumn predictor,

11.7.2 All-Pole Model Lattice Network

In Section 6.6.2, we showed that the lattice network of Figure 6.42 is an implementation
of the all-pole system function H{z) = 1/A(z). where A(z) is the system function of an
FIR system; ie., H(z) is the exacl inverse of A{z), and in the present context, it 1s the
systemn function of the all-pole model with G = 1. In this section, we review the all-pole
lattice structure in terms of the notation of forward and backward prediction error.,

1*Note that in Figure 6.37 the node variables were denoted a“1n] and b%1[a] instead of e7 (1] und
#i)1n3, respectively



824 Chapter 11 Parametric Sigmal Madealing

8| elP|n] «in)

#[n] 0] #2n] #[n]

Figure 11.20  Signal flow graph ot lattice netwark implementation of o7 -order
prediction error computation.

efn] = e¥[n] L g el : &V n| s|m|

?'-“:"[n] ) ratl -;][n] i #[n] EI-"]E.I'J.]

Flogure 11.21  Afl-pole [attice system.

If we replace the node variable labels o'/ [#] and 5'[n] in Figure 6.42 with the cor-
responding e aland &' [n] we obtain the flow graph ol Figurc 11 .21, which represents
the set of equations

P [n] = e[n] (11,1000}
) = ) 4 k2T -1] i=pop 1., | {11.100b}
i = n — 1 — ke ] i=p.p—1..... 1 (11.100c}
sla) = ¢™[n] = eMn). {11.100d}

As we discussed in Section 6.6.2, any stable all-pale system can be implemented
by a latlice struclure such as Figure 11.21. For such systems, the guarantee of stability
inherent in the condition |&;| < | is particularly imporiant. Even though the lattice
structure requires twice the number of multiplications per output sample as the direct
form, it may be the preferred impiumenlat‘inn when cocfficients must be coursely quan-
tized. The frequency response of the direct form s exceedingly sensitive Lo quanbization
of the coeflictents. Furthermore, we have seen thal high-order direet form TR syslems
can become unstable owing Lo quantization of their coclicients This is not the case for
the lattice network. as long as the condition k] = 1 i maintained for the guantizcd
k-parameters. Furthermore, the frequency response of Lhe lattice network is refatively
insensitive Lo guantization of the f-paramelers
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11.7.3 Direct Computation of the k-Parameters

The structure of the Aow graph in Figure 11.20 s a direet conseyuence of the Levinson—

Dwrbin recursion, and the parameters k.6 = 1,2, ..., p can be obtamed from the
autocorrelation values r[m]. m =01, ..., p through iterations of the alporithm of

Figure 11.17. From our discussion so far, the & parameters have been an ancillary
consequence of computing the predictor parametlers, However, Hakura and Saito { 1968,
1970, showed that the &; parameters can be computed directly from the forward and
backward prediction errors in Figure 11.20. And because of the iterative struclure as a
cascade of the stages in Fipure 11.19, the &; parameters can be computed sequentially
from signals available [rom previous stages ol the lattice. The direct computation of the
parameter & is achieved with the lollowing equation:

Z e M — 1)

r_ n=—050
i = . 1/2°

el e s ;
E (e~ Vaj)? Z A R 1)

=—iC A=—00

(11.101)

Observe that Eq. (11.101) 1s in the form of the energyv-normalized cross-correlation
between the farward and backward prediction errors at the output of the i'™® stape. For
this reason k¥ computed using Ey. {11.101) is called a PARCOR coefficient, or more
precisely £4 Reial CORrelation coefficient. Figure 11.20 has the interpreiation that the
correlation in s|n] represented by the autocorrelation function ry,[m| is removed step-
by-step by the lattice filter. For a2 more detailed discussion of the concept of partial
correlation, see Stoica and Moses (2005} or Markel and Gray {1976).

Equation {11.101) for computing k" is the geometric mean between a value kjr
that minimizes the mean-squared forward prediction error and a value &7 that minimizes
the mean-squared backward prediction error. The derivation of this result is considerad
in Problem 11.28. Note that we have shown the limits on the sums as infinite simply 10
emphasize that 4ll error samples are involved in the sum. To be more specific, all the
sums i Eg. (TLIMH) could start at n = 0 and end at n = M + i, since this is the
range over which the error signal outpul of both the forward and backward i'M-order
prodictors would be nonzero. This 14 the same assumplion that was made insetling up the
autocorrelation method for finile-length sequences. Indeed, Problem 11.29 outlines a
proof that k" computed by Eq. (11.101) gives identically the same result as k; computed
by Bg. (1181 or Eq. (L-1.2} in Figure 11.17. Therefore, Eq. (11.101) can be substituted
for BEq. (L-D.2) in Figure 11.17, and the resulting sel of prediction coefficients will be
identical to those computed [rom the autocorrelation lunclion.

To use Eq. {11.101), it is necessary to actually compute the forward and backward
prediction errors by employving the computations of Figure 1119, In summary, the fol-
lowing steps result in computation of the PARCOR coeflicients &7 fori = 1,2, ..., p:

PARCORMA Initialize with e [n] =&V n] = s[altor 0 = n <= M.
Fori =1, 2,..., p repeat the following steps.
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PARCOR.1 Compute ¢*'[n] and & “1'[#] using Eq. (11.99b) and Eq. (11.99%) respec-
tively for ) == n = M < . Save these two sequences as input for the next stage.

PARCOR.2 Compute £ using Fq. (11.101).

Another approach to computing the coefficients in Figure 11.20 was introduced
by Burg, 1975, who formulated the all-pole modeling problem in terms of the maximum
entropy principle. He proposed to use the structure of Figure 11.20, which embodies the
Levinson-Durbin algorithm, with coefficients £ that minimize the sum of the mean-
squared forward and backward prediction errors at the cutput of each stage, The result
is given by the equation

N
EZP’['_”[H]EIH ~-1][ﬂ =

R __ A=
ki = 7 : (11.102)
Z"Eﬁ.{l—”[ﬂj)z + Z{El:_lllﬂ (i 1]]2
J'I:=i .l'.'=j
The procedure for using this equation to obtain the sequence k¥, i = 1,2, ..., pis the

same as the PARCOR method. Tn statement PARCOR 2, &/ is simply replaced by &
from Eq. (11.102). In this case. the averaping operator is the same as in the covariance
method, which means that very short segments of s[a] can be used, while maintaining
high spectral resolution.

Even though the Burg method uses a covariance-type apalysis, the condition
[&#| = 1 holds, implying that the all-pole model implemented by the lattice filter will be
stable. (See Problem 1 L3 Just as in the case of the PARCOR method, Eq. (11,102}
can be substituted for Eq. (L-D.2) inFigure 11.17 to compute the prediction coefficients.
While the resulting coefficients will differ from those obtained from the autocorrela-
tion function or from Eq. (11.101), the resulting all-pole model will still be stable. The
derivation of Eq. (11.102) is the subject of Problem 11,30,

11.8 SUMMARY

This chapter provides an introduction to parametric signal modeling. We bhave em-
phasized all-pole models, but many of the concepts discussed apply to more general
techniques involving rational system functions. We have shown that the parameters of
an all-pole model can be computed by a two-step process. The first step is the compu-
tation of correlation values from a finite-length signal. The second step is solving a set
of linear equations, where the correlation values comprise the coefficients. We showed
that the solutions obtained depend on how the correlation values are compuled. and
we showed that if the correlation valaes are true autocorrelation values, a particularly
useful algonthm, called the Levinson—[rbin a1g:}rj thm, can be derived for the solo-
tion of the cyuations, Furthermore, the structure of the Levinson-Durbin algorithm
was shown (o llluminate many wselul properties of the all-pole model. The subject of
parametric signal modeling has a rich history, a voluminous literature, and abundant
applications, all of which make it a subject worthy of further advanced study,
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Basic Problems

111, sin| 15 4 finile-cnerey signal known for all n. g 18 ] s defined as
v

dysli, k] = Z sli — 1ls[n - k1.

=0
Show that ¢ 14, &1 can be expressed as a function of |§ = k|,
11.2. In general, the mean-squared prediction error is defined in Eq, {11.36) as
f £ ’
.5_-\ sl Euﬁpr k] ) (P11.2-1}

k=1

(a) Expand Eq. (P11.2-1) and use the fact that {s|n —i]sln — &]) = gy [i &) = @]k i)
1o show that

£z I £
£ = ihgs[0.0] - 2 E apdesf0 KL+ D e zumﬂ-u. k| (P11.2-2)
=1 i=1 k=l
(h) Showthat for the optimum predictor coetficients, which satisfy Eqs (11.20). Eq. (P11.2-
2} becomes
i

£ = sl 0] = Y s 10, k1. (P11.2-3)
k=1

113, lhe impulse response of a causal all-pole model of the form of Figure 11.1 and Eq. (11.3)
with svstem paramelers & and {ag} satisfics the difference cquauon

?
hfr] = E e felrn — k4 Grdn] iP11.3-1)
k=l

{a) The avtocorrelation funciion of the impulse response of the systein s

oo
rppbm] = E hjnlkln 4 m)

dpe e

By substituting By, (P1L3-1) into the equation for rgy [—ee], and using the fact that
rhtl—m] = rpplm] show that

"
E"kﬂrh“m k|| = Fgpln], m=12 ..., I (P11.3-2)
k=1

{b} Ulsing the same approach as in (a), now show that

P
renl0l — Y agranlki = G, (P11.3-3)
k=1
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Consider g signal xfn] = sfn] + wn], where s[n] satisfies the difference equation
s[n] = 0.8s[r — 1]+ v|n).

vln] iz a zero-mean white-noise sequence with variance .:rf,' = (1.4% and win] is 3 Zero-mean

white-noise sequence with variance 512” = 1. The processes vin] and w(na] are uncorrelated.

Determine the autocortelation sequences deg(m | and gy [m).

The inverse filter approach Lo all-pole modeling of a deterministic signal s[r] is discussed

in Section 11.1.2 and depicted in Fig. 11.2. The system function of the inverse filter is given

in Eqg. (11.5).

(a) Basedonthisapproach, determine the coefficients o and @; of the best all-pole maodel
for sln] = dln] +dln — 2] with p = 2.

(b} Apam. based on this approach, delermine the coefficents ay. g and @ of the best
all-pole model for s{n] = 8fn] + dln — 2] with p = 3.

Suppose that you have compuated the parameters G and ag, b = 1,2, .., p ol the all-pole
maodel
(r
Hiz) = - ;
1 — Z apg’ &
k=11

Explain how you might use the DFT to evaluate the all-pole spectrun estimate | J (/)]
al & freguencies e = 2wk /N fork=0,1,.... 8 -1,

Consider a desired causal impulse response A [n] that we wish to approximate by a system
having impulse response Alr| and system function

b
H{z) = s
—

Owir optimality criterion is o minimize the error funclion given by

o]
E="Y (hglnl — hin]?.

r=l}

{2} Suppose ais given, and we wish to determine the unknown parameter & which mini-
mizes £, Assume that 2| = 1. Does this result in 2 nonlinear set of equations? If so,
show whi If not, determing .

(b) Suppose b is given, and we wish to determine the unknown parameter « which mini-
mizes £, Is this 4 nonlinear problem? If so, show why If not, determine e

Assume that v[a] is a finite-length (windowed) sequence that is zero cwnside the interval

0 =n=M-—1 The p¥-order backward linear prediction error sequence for this signal is
defined as

P
Eln] = sin] - E frslm + k]
k=1
That is, s[n] Iz “predicted™ from the p samples that follow sample 7. The mean-squared
backward prediction error is defined as

7
Emi)* = E s[m] - E,ﬁk.i[m bkl

E= (
H=—Cc M=—0c =1
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where the infinite (imits indicate that the sum is over all nonzero values of ré{m]‘.2 asin

the autocorrelation method vsed m Torward predicion,™

{a} The prediction error sequence £(na] is sero outside a finite interval ¥ = 1 = No,
Determine Ny and V5.

{b) Following the approach used in this chapter 1o derive the forward linear predicior,
derive the set of normal equations that are satisfied by the fes that minimize Lhe
mean-squared prediction error £, Give your final answer in a concise, well-defined
form in {erms of aulocorrelation values

{c} Based on the result in pare (b)), describe how the backward predictor coetficients (A}
related 1o the forward predictor coefficients {og )7

Advanced Problems

119, Consider a signal s[#) that we model as the impulse response of an all-pole syslem of

11.10.

order p. Denote the system function of the p'®.order all-pole model as A7) and the
corresponding impulse response as 27 [r]. Denote the inverse of H8'z) as H-LL;L':’[;] =
1/ H'™z). The corresponding impulse response is Fr,[f_:._'lnj. The inverse filter, characlerzed
by i ::fl_n], is chosen to minimize the weal squared error £'°' given by

:-u I

£W = 3 [snl— g'P[nl]
p=—20
where g';""'l']n] is the gutpot of the filier Ffilnf_’l (z1 when the inpuf is s[a}.

(a) Figure P11.9 depicts a signal low eraph of the lattice filer implementation of Hlﬂjﬁz},
Dctermine hir':ji 11, the impulse response atn = L,

(b) Suppose we now wish 1o model the signal £[#] as the impulse response of a 2™ _order
all-pole tilter. Draw a signal flow graph of the Fattice filter implementation of I.l‘iﬁ’gz}.

(¢) Determine the system function H{z}i',a} of the 2" nrder all-pole filter.

s £

Figure P11.9
Consider an i"-order predictor with prediction ertor system fungtion
f i
Wl — 1 L:'j_—_; = s ey =1 i
A¥Nz =1 o) i = [la—27ah (PILIO-1)
J=1 =1
From the Levinson—Durbin recursion, 18 Tollows that ur!".} = k;, Use this fact with

Eg. (P11.10-1) to show that if (& = 1, if musl be true that |sz"§ = 1 for some j. That
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is, show that the condition | = 1 i% a necessary condition for A (2) to have all its zeros

strictly irside the unit circle.

11.11. Consider an LTI system with system function () = hy + Ayz . The signal v[n] is the
oulpul of this system due 1o an input that 5 white noise with zero mean and unil variance.

{a} What is the autocorrelation function ryelm | of the outpus signal s ]?
{h) The 28 _order forward prediction error is defined as
eln] = yln| —apyln — 1] — aa¥le — 2.
Without using the Yule-Walker equations directly. find ¢y and a7, such that the vari-

ance of ¢[n] 15 minimized,

{e) The backward prediction filter for y[n] is defined as
Eln] = yln] — byyln + 1] — b yle + 2]
Find &7 and &7 such that the variance of #aj s minimized. Compare Lhese cogiicients

to those determined in part (b).

1112, {a) The auviocorrelation Tunction, ry,fm] of 2 zero-mean wide-sense stationary random
process yln] is given. In terms of ryp[m], write the Yule-Walker equations that result
from modeling the random process as the response (o 8 while noise sequence of a
a"_grder all-pole model with system function

Hizl =

A
l —az—l —pz 3

() A random process vfs] is the owput of the system shown in Figore P1L12-1, where
£[n] and z|n| arc independent, unit vanance, zero mean, while noise signals, and
hlr] = &[n — 17+ J-_Frri'[.'t - 2]. Find ryy[m], the autocorrelation of v{n].

x{n]
e W e

vn]

z[n] Figure P11.12-1

(¢} Random process vy [a] is the output of the system shown in Figure P11.12-2, where
x[a] and zfx] are independent, unil varisnes, zero-mean, white noise signals, and

fHyfz)l =

i
1—gr 1 — g3

The same o and b as found in part {a) are vsed for all-pole modeling of y;[a]. The
inverse modeling error, wy[a], is the output of the system shown in Figure P11.12.5.
Ts wy|a] white? Is wi|n] zero mean? Explain,

ﬂ!— H;lz]

wl#]

2lnl Figure P11.12-2

yitn] ;
—] 1 —ar "=y

wfe]

{d} What is the variance of w[n]?

Fignre F11.12-3
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Wi huve observed the first six samples of a causal signal s|x] given by 0] = 4. 5|1] = &,
2 = 4, 5[3] = 2,5[4] = 1, and 5[3] = 0.5, For the first paris of this problem, we will
maodel the signal using a stable, causal, minimum-phase, two-pole system having impulse
response 5(n] and system function

G
Hiz)= - ————
1—az 1 -2
The approach is 1o minimize the modeling error £ given by

5
£= min - Galan?,
min_ > iglnl — Gl
' rn—A]
where gfr] is the response of the inverse svslem Lo sfa]. and the inverse system has system
function

Alzy =1 —u;:_1 —agz_z.

(o} Wrile plr] — Gl[n]ford) = n < 5,

(by Based on vour work in part {a), write the linear equations for the desired parameters
ey, 22, and G,

{c) What is &7

(dp For this sle], withoul solving the hnear eguations in parl (b), discuss whether you
expect that the modeling error £ will be zero.

For the rest of this problem, we will model the signal using a different stable, causal,

minimum-phase systeny having impulse response 5ix] and sysiem funclion

byt bz

Halry = i

—ar-
The modebng error to be mimrmized i this case is £ given by
]
' T
£ = min E igle] —rin]”.
i

trg. 1 n=ll

where gln] is the response of the inverse system (o sir], and the inverse system now has
system function

Aly=1—az"\.
Furthermore, rn] is the impulse response of a system with system function

Bl) =by+ bz L

{e) For this model, write gln] —rin] foel = n = §,
(B Calculate the parameter values a, fy, and b that minimize the modeling error.
(g) Calculate the modeling error £ in part ().

In Example 11.1, we considered the sequence sy[n] = o™uln], which is the impulse re-
sponse of a 19-order all-pole system baving system function

1
Hizy= —

R

In this problem we consider the estimation of the parameters of an all-pole model for the
signal s3(n] known only over the interval = = M.
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{a) First. consider the estimation of a 1¥'-order model by the autocorrelation method.
To begin, show that the autocorrelation funciion of the finile-lenglh sequence s[n] =
sglmlula] — wfr — 8 — 11 = o™ (uln] —wln — M - 1]} is

! ] -— UZII'H_E"’:{""‘}

1 —nl

{b) Use the autocorrelation function determiped wn (a) in Ty, (11.34), and solve Tor the
coefficient a; of the 1*-order predictor.

{c) You should find that the result oblained in (b} is nol the exael value (le., @) # «)
as obtainad in Example 111, when the autocorrebation function was computed using
the infinite sequence. Show, however, that gy = o for W - oo,

(d} Uscthe results of {a) and (b} in Eq. (11.38) w dewrmine the minimum mean-squarcd
prediction error for this example. Show that for M — oo the error approaches the
minimum mean-squared error found in Example 11.1 far the exact autocorrelation
function.

(e} Mow, consider the covariance method for estimating the correfation function. Show
that for p =1, d1i. k] in Eq. (11.49) i piven by

M

P
Gl k] = ot *ﬁ 0=k <1 (P11.14-2)

mn e

roglm] = o (P11.14-1)

(F} Usethe result of {e)in Eq. (11.20% 1o solve for the coefficient of the optimum 1% -order
predictor. Compare vour resuli to the result in (b) and to the result in Example 11.1.
(g} Usehe results of (e} and (£)in Eq. (1137} 10 find the minimum mean-squared predic-
tioms error. Compare your result o the resall in (d) and o the resull i Exsmple 111,

s[n] =3 (%j" uln]—4 (_ % )u .

A

Consider the signal

{a) We want to use a causal, 2" .order all-pale model, ie., a model of the form

A
Mg —————— 2
1=zt —agz 4
Lo apumally represent the signal sTal, i the least-square ervor sense, Find ay, ep, and
A
{b) MNow, suppose we wanl (o use g causal, A _orider all-pole model, Le., a model of the

form

B

gl by )

Hinv=

1 by
(o oplimally represent the signal 2], in the keast-sguare error sense, Find, &) b, bs,
and B.

Comgider the signal

a : i'|
sl =2(%] u[n'l-—S(—é) ufn]. (P11.16-1)

s

W wish Lo model this signal using a syt

-order {p = 2) all-pole model on, eguivalenily,
using 2" -arder linear prediction.

For this problem. since we are given an analytical expression for s« | and s[#] is the impulse
response of an all-pole filter, we can obiuim Lhe linear prediciion cocfficients directly from
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the z-transtorm of salr). (You are asked to do this in part (a).) In practical situations, we
are typically given data, L.e., a set of signal values, and not an analytical expression. In this
case, even when the signal 1o be modeled is the impulse response of an all-pole liher, we
nead to parform some computation on the data, using methods sueh as those discussed in
Section 11.3, to delermine the lincar prediction eoefficients.

There are also situations in which an analvtical expression is available for the signal, bui
the signal is not the impulse response of an all-pole filter, and we would like to model i
as such. In this case, we sgain necd 1o carry out computations such as those discussed in
Section 113,

(a)

b}
(ch

(d)
(e}
(f)
(z)
(h)
(i)

()

For sin] as given in By, ['I"'] 1.16-1 }, determime the linear prediction eoefficients ayp, a2
directly from the z-transform of s|a|.

Write the normal cquations for p = 2 toobtain cquations for ;. a3 interms of ry. ).
Determine the values of re 0], rg[1], and r[2} for the signal g[s] given in
Eq. (P11.16-1).

Solve the system of equations from part (a) using the values you found in parl (b) 1o
abtain values for the s

Are the values of oy from part () what you would expect for this signal? Justify your
answer clearly,

Suppose you wish to model the signal now with p = 3. Write the normal equations
for this case.

Find the value of e [3].

Solve for the values of u; when g = 3.

Are the values of oy found in part (h) what you would expect given s|r |7 Justily your
answer clearly.

Would the values of &y, @2 vou found in (h) change if we model the signal with p = 47

1037, xiw] and v[#| are sample sequences of jointly wide-sense stationary, zero-mean random
processes, The following information is known aboul the aulocarrelation (unelion ¢qelm)
and cross correlation Pryg[ml:

EY

(h)

i moodd
doalml =3 1

2,_"|' MEAVEnD

@ocl=11 =2 @l =3  @ulll=8 ¢ (2} =-3
a3 =2 gy (4] = 075

The hincar estimale of ¥ given x s denoted Fo. T0is designed 1o minmmize
E=E(|yln] - falnl? }, (P1L.17-1)
where the . [nis formed by processing afq | with sn FIR filter whose impulbse responsc
fifa] is of length 3 and is given by
hin) = ho¥lal + hdie — 14 hpdln = 20

Determine kg, ky, and iz to minimize £

In this part. ¥r. the linear estimate of v given x, is again designed to minimize £ in
Eq. (PUTI7-1), but with different assumplions on the strucluve of the linear filter.
Here the estimate is formed by processing z[n] with an FIR filter whose impulse
response gl is of length 2 and i given hy

gl_.ft] = _1:13[»1 — lj I _l;zﬁl.l'r - 3].
Petermine the gy and g2 W minimise £,
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{c) The signal, x[n] can be modeled as the oulput from a two-pole filler H iz whose input
is w|na), a wide-sense stationary, zero-mean, unit-variance white-nomse signal.

1
Hizl = 3
l=gyg™ =tz

Datermine ¢y and > based on the least-squares inverse model in Section 11,12

(d) We want {0 implement the svstem shown in Figure P1L1T where the coeflicients a;
are from all-pole modeling in part (¢) and the coefficients k; are the values of the
impulse response of the linear estimator in part (a). Draw an implementation that
minimizes the fotal cost of delays, where the cost of each mdividual delay is weighted
linearly by its clock rate.

1 . k. . X
wre] 2 z[n] o ta ¥ln] ¥sla]
— 1_2%2_* i I - 2

k=1

oL "

Figura F11.17

{e} Let £, be the cost in part (a) and let £ be the cost in part (b), where each £ is defined
as in Eqg. {P11.17-1}. s £, larger than, equal o, or smaller than £, or i there nol
enough information o compare them?

(f) Calculatc £ and £ when ¢ [0 = 88, { Hint: The optimum FIR filters calcuolated in
parts (1) and {b) are such that £ [ (mlivin] — 3000 = 23

1L18. A discrete-time communication channel with impulse response &[n] is to be compensated
for with an LTI system with impulse response fc|n) as indicated in Figure P11.18. The
channel k[n] is known to be 8 one-sample delay, i.e..

hlnj = dlr - 1].

The compensatar A-|al is an &-point causal FIR filter, i.c.

N—1
H.iz)= Z ayz k:
k=0

The compensator b [n] s designad (o mvert (or compensale for) the chanmel. Specilicaly.
h.[n] is designed so that with s[n] = &[n], ¥|«] is as “close” as possible w an impulse; ie.,
k7] is designed so that the error

oG
£= 3 lilal-alal"
M=
is minimized. Find the optimal compensator of length Ve, determine ag, ay, .. 4y 1
Lo mimimize £,
chagiel compensator
sln] — ki * A — ln
L] I v ' eiqure P11.18
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1119 A speech signal was sampled with 2 sampling rate of 8k FL, A 300-sample segment way se-
lected from a vowel sound and multiplied by a Hamming window as shown in Figure P11.19,

From this signal a set of linear predictors

;
(PRI, ot (4
P g b T
k=l

with orders ranging from = 1t i = 11 was computed vsing the autocorrelalion method,

This set of predicrors is shown in Table 11.]1 below in a fonm suggestive of the Levinson-—-

Dhurbin recursion.

Windowed Segment of Vowel Sound

e O R el e M S v o O S PR ST

(2

(LR

]
-1
il -|
Y] T S| [t o e ST e g 2T L) 1 R ol
i (i LI 150 K 5} L]
Sample index n
Figure P11.19

{a) Determine the r-transform A (2] of the 410 order prediction error filter. Draw and
label the flow graph of the direct form implemenlation of this spstem,

(k) Determine the set of k-parameters {k;, ks k1. kg for the 4'"-order prediction error
lattice filler. Draw and label the flow graph of the Jattice implementation of this
system.

{e) The minimum mean-squared predictiom error for the 2ud order predictor is £2F =
(L5803, What is the minimum mean-sguared prediction error for the 3 order nredic-
tor? Wht is the total energy of the signal six]? What is the value of the autocorrelation
function ree1]?

TABLE 11.1  PREDICTION COEFFICIENTS FOR A SET OF LINEAR PREDICTORS
| PR - T i T i T i 0 0 T T =1 i T _"
2 1 O 3 5 1
T[0E%8 . | g B
2007450 | TG0 | -. i ,
3107273 - 00289 | 1786 ] _ |
Ll R YR T S SO PO (RSO DS IS
S10TA23 | 0.0069 | 0.45809 | —0.3550 | —0.0978 |
6l h6aeY | -0.2595 |0.8576 | ~03498 | 04743 [ —0.7505 |
76839 | —0.2563 | 08553 | 03440 03726 074591 00067 | ]
_E[ (L6834 —0.3065 [1.8800 | —0.3685 | 0.5336] —0.7642 0.04211_—_2.[}7'13 L o= T
GT0.7239 | 03330 (13173 | 06676 | 07402| —12624] 02155 | —0.4544 [D.3605
i_iﬂ!lﬂ'.[i493 =0Z7H) | 12888 | —(0L.34007 U_.f]fi?ﬂ - 1;].?3” 0413 | --'(i“ﬂl 34514?5 0.1323 .
’LI_]?_L'J.M‘M _—_QEFF_EI_;_I_EU%T (—0S022 [ 06859 —1.1980 [ 0.0599 —0.4582 | 0.474% | 0.1081 | 0.0371
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(d)

(e}

(f)

(g)
i{h)
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The minimum mean-squared prediction errors for these predictors form a sequence
(e g R BT Tt can be shown that this sequence decreases abruptly
in going from § = 0 to ¢ = | and then decreases slowly for several orders and then
makes a sharp decrease, At what order § would you expect this to occur?

aketch carefully the prediction error sequence &1 n] For the given input sfal in
Figure I"11.19. Show as much derail as possible.

The system function af the 111 nrder all-pole model is

) L] ir

T n T '
I'E“t e nfi T
k=1

=1

Him

The foflowing are five of the roots af the 11t arder prediction error filter A ",

|zl | £% (rad) |
02387 20677
0.9681 1.4402

[ 0.9850 0.2750
(.8647 2.0036
{1.95%H] 24162 |

) e l'-.h-'l-i[‘—l i

State briefly in words where the other six zeras of A/11(;) are located. Be as precise
as possible,

Use information given in the table and in part {¢) of this problem o detenmine the
gain parameter & for the 11 e order all-pole model.

Carefully sketch and label a plot of the frequency response of the 11 -order all-pole
mode] filter for analop frequencies ) = F < 4 kHz

Spectrum analvsis i oflen apphied 1o signals comprised of snosoids, Sinosoidal signals

are particularly interesting, because they share properties with both deterministic and
random signals, On the one hand, we can describe them in terms of a simple equation, On
the other hand, they have infinite energy, so we often characterize them in terms of their
average power, just as with random signals. This problem explores some theoretical issues
in modeling sinusoidal signals from the point of view of random signals,

We can consider sinusoidal signals as stationary random signals by assuming that

the sipnal model is s|a] = Acos{ewgn = &) for —oo =2 a = oo, where both 4 and @ can
b considerad to be random variables, In this model, the signal is considered 1o be an
ensemble of sinusoids described by underlying probability laws for A and 8. For simplicity,
assume that A is a constant, and ¢ is a random variable that is uniformly disiributed over
=8 2.

(a)

(i)
(c)

(d)
(&)

Show that the avtocorrelalion function for such a signal is

-
3

rigii] = E{s[n 4 msfr]l = 42 COR{ e ). {P11.20-1)

Using Eq. (11.34), write the sct of equations that is satisfied by the coefficients of a
21 _geder linear predictor for this signal,

Solve the equations in (b) for the optimam predictor coefficients. Your answer should
be a funetion of wy,

Factor the polynomial A{z) = 1=a;z~ 1 —agz 2 describing the prediction error filter.
Use Eq, £11.37) to delermine an expression for the minimum mesn-squared pre-
diction error. Your answer should confirm why random sinusoidal signals are calfed
“predictable” andfor “daterministic.”
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1121, Using Eys (11.84a) and (11.84b) from the Levinson-Durbin recursion, derive the refation
between the i1 and § — 1% prediction error fillers given in Eg. (11.89),
11.22. In this problem, we consider the construction of lattice filters o mplement the inverse

filter for the signal
13" 137
x[n] :2(1) u[rz|+3(—i—) uln].

{a} Find the values of the &-paramelers £y and &2 for the 2 _order case {ie., p=2)

i} Taraw the signal flow graph of a lattice filter implementation of the inverse filier, ie.,
the fiter that outputs v{n] = A~} (2 scaled impulse) when the input x|n ] = s,

{e} Verify thal the sipnal Bow graph vou drew in part (1) has the correct impulse response
by showing that the z-transferm of this inverse flter is indeed proportional to the
imverse of 300,

{d} Diraw the signal! ow graph for a lattice filier that implements an alk-pobe system such
that when the input s x[n] = a[n], the output is the siznal 5]n] given above.

{e} Derive the system function of the signal Oow graph vou drew in pard (d) and demon-
strate that its impalse response hln] satisfies Aln] = s[a].

1123, Consider the signal
. A £
i[n] = e (g) wln] + fi Ek—_bl u[m]
whete o and £ are constants, We wish Lo lincarly predict sin| from its past p values using
the relationship
ir
§n] = Ea&rf_n - k]
k=1

where the coeflicients ag are comstants, The coeflicients ap are chosen to minimize the
prediction crror

o
£= % dsln]l = sl

=

(m) With ryglm| dencting the antocorrelation function of s[n], write the equations for the
case p = 2 the solution te which will resull in a;, a3,

(hy Determine a pair of values for o and £ such that when p = 2, the solution to the
normal eguations is 4 = 11 4nd a1 = —%. Is yourr answer unique? Explain.

(e} e =Hand £ = =3, determine k-parameter &3, resulting from using the Levinsan
recursion to solve the normal equations for p = 2. Is that different from &3 when
solving for p = 47

11.24. Consider the following Yule—Walker cquations: K a, = Yo where:

ay ¢l1]
Be=1 o= =
ufy #lpl

and
@10y - plp—1]
Tp= "y (a Toeplitz matrix)
¢lp—11--- [0
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The Levinson-Durbin algorithm provides the following recursive solution for the normal
equation T, Bot] =¥ptit

 #lp+1- (}'i’,)r ap

ail . £ Fis = S iy ﬂp-u P
¢ (rp) ap

G = %m 1 Fpomel

pil m=d, P

whera y:,f, 15 the backward version of ¥ y';; = [#[pl.. _ﬂ]”f‘ and aé = %é—} Moe that
for vectors, the model order is shown in the subscsipt: bul for scalars, the model order s
shown in the superscript.

Now consider the lollowing nomal equation: Ty bp = cp, where

!r{’ [ efl]
bp=1| : fp =
b clpl

Show thal the recursive solution for Fop1 Bppr =tppis

clp+ 1= (r8) by

p+1 el P 1 .l _
'ﬁ,r.-+] - T b = by erJ._] 'ap—m+] m=1....p
01— (v,) ap
1 _ el
where {:] =3

{Note: You may find it helpful to note that ey = T : i)

Consider a colored wide-sense stationary random signal s[n ] that we desire to whiten using
the systemn in Figure P11.25-F; In desigming the optimal whiening filler for a given otder p,
we pick the coefficient “j.[_p] & = 1, ... pthat satisfy the autocorrelation normal equations
given by Eq. (11.34), where ry, |m] is the avtocorrelation of s{#).

I
] 1 P aizk = '
L1 % Figure P11.25-1

sin]

Il s known that the optimal 2™ order whilening filter for s(n] s

Hylz} =14 1: -1 . ;r:_""._ {ie, a'{m = l a?} = L), which we implement in the 204

order lattice siructure in Figure P11.25-2. We would also like 1o use a 4" -order system,
with transfer function

4
Hylzy=1- Zﬂﬁz_'.
k=1

We implement this system with the lattice structure in Figure P11.25-3, Determine which,
ifany af Hgiz), &y, k2, k3, kg can be exacily determined from the information given above,
Explain why you cannot delermine the remaining, if any, parameters.
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]

Figure P11.25-2 Lattice structure for 2"-order system

sin] £in]

——

Flgure P11.25-3  Lattice structure for 4'0-order system

Extension Problems

11.26. Consider a stable ali-pobe model with system function

Hiz) = i = b :
¢ Alz)
1- E iz
m=l1

Assume that g is positive,
In this problem, we will show that a set of (p 4-1) samples of the mapnitude-squared
ol Hiz)on the umt circle: e,

C[k] = | Hed™hiey 2 E=01,..., -3

is sufficient to represent the system. Specifically, given Cl&). A = 0,1, ... p. show that the
parameters & and ap, =10, 1, .. .. p can be determined,

(a) Consider the z-transforim

1 AlzAz™h

(z) = — =
= HiznHiz—1 G2

which corresponds to a sequence glq ). Determine the relationship between gn] and
4 [nY, the impulse response of the prediction error filler whose system function is
Afz). Over what ranpe of # will g |r] be nonzero?

(h) Dusign a procedure based on Lhe DEFT for determining g [r] from the given magnitude-
squared samples CTE].

(€) Assuming tha: the sequence g|z| as delermined in (b} is known, state a procedure
for determiming A{z) and .
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11.27. The general IR fattice system in Tigure 1121 5 resincted 1o all-pole systems, However,
both poles and zeros can be implemented by the system of Figure P11.27-1 (Gray and
Markel, 1973, 1975). Each of the sections in Figure P11.27-1 is deseribed by the flow graph
of Figure P11.27-2, Tn other words, Figure 11.21 s embedded in Figure P11.27-1 with the
outpul formed as a linear combination of the backward prediction error sequences.

2fn] = el ™= 1) R 1] el m] L

r—————— . — . ———
Seclion Sectiom Section

@[} Poferoop | BOL [ e ] Lo e

[ ] I 1
e Cp_i Cp_3a oy £y
- re - o= —,—'I

.EIHJ

[ - EEE S

Figure P11.27-1

£ 1Ty]

- -f—-—»—\b—wz_lv-o

*E,[Jl[_,r'l }-:I'i--'-l'l"] Figure P11.27-2

(a) Show thal the system funclion between the input Xizd = EV 2y and E¥) s

E“”Lz;_ 3 111{511‘: 1}

Az = o P11.27-1)
T Alrlygy { '
iby Show that A7)z is an all-pass system. ( This result is nol needed for the rest of the
problem. )
ic) The overall system function from Xizto ¥iz)is
Yizh ez Bl o .
Hi =302 = ;‘! T T T {P11.27-2)
Show that the numerator (=) mm Eqg. (P11.27-2}is a pth -order polynomial of the form
o
Olz1 =Y guz™™ {P11.27-3)
m=Il

whare the coetficients cp in Figure P11.27 are given by the equation

L !
Cm = Gm + Z -:;a}fm m=p.p—1..... 1,0, {P11.27-4)
jezxmr1
{d} Ciive a procedure for computing all the parameters needed to implement a system
function such as Eg. (P11.27-2) using the laltice structure of Figure P11.27.
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(e} Using the procedure described in (c), draw the complete flow graph of the lattice

implementation of the system
143z 1432724273

1— 0921 + 06422 — 057623

1128, In Section 1173, the k-parameters are compuled by Fos, E:H.'H'JI;'I. Llsing the relations
e n] = o) -k @ -1y — uand E{”[HI—E” De — 1) — k2" a), show that

iy .'
r =y &’ {
where k!.f is the value of &; that minimizes the mc;m-s:[ua.r-cd forward prediction error
= 5
£9 = > et

==
and .l:f-" is the value of k; that minimizes the mean-squared backward prediction error

iy 2 - -
= N
H=—0

11.29. Substitute Eqg. (11.88) and Eqg. (11.93) into By, (11.101) to show that
[
Y ANt

Hiz) = (P11.27-5)

P fi=—u% o ;
b= 12
Z (e py? z (EE=1y —ap?
= H=—1C
| T
recdil= Y ¥ " rgfi - 1
1=l
1 T = k.

11.30. As discussed in Section 11.7.3, Euq;r (1975) proposed computing the & parameters so as
1oy minimmize the surm of the forward and backward prediction errors at the i stape of the
lattice filter; i.e.,

M
gl :E[{e“‘-'ln B2+ L@“an?] (P11.30-1)

where the sum is over the fixed interval § =n = M.
(a) Substitute the lattice filter signals ) = oM ) = k& — 1] and #[n] =

gy 1] ket _1"!.?:1 inta {1"11.30-1) and show thatthe value of &; that minimires

B s

L
: Eeil' 1]“'1 hi[.' L}Fﬂ . |'|
ke b : (P11.30-2)
Mo M
Etn'[’_”Ln]12+ E[F”'UIH — 1

=l =y

(b} Prove that —1 < &7 = 1.

M
Hinr: Consider (the cxpression Z(.L‘[n] =+ vin] ¥ = 0 where x{r] and vim] are two
w=f
disfinel sequences,
(e) Given a set of Burg coefficients kr.”, i=12, ., p, howwould you ebtain the coeffi-
cients of the corresponding prediction error filter AV )2



