12.0 INTRODUCTION

042

[n general, the specification of the Fourier translorm of g scquenee requires complele
knowiedge of both the real and imaginary parts or of the mmagmtude and phase at
all frequencies in the rapge —x <= w =< 7. However, we have seen that under cer-
tain conditions, there are constraints on the Fourier transform, For example, in Sec-
tion 2.8, we saw that if ¢|»] is real, then its Fourler transform is conjugate svmmetric,
e, X(e) = X"(e #*). From this, it follows that for real sequences, specification of
Xiefy for 0 = = m also specifies it for —x = o = (0 Similarly. we saw in Sectiom 5.4
that under the constrainl of minimum phase, the Fourier Iranslomm magnitade and
phase are not independent; Lo, specilication of magnitude delermines the phase and
specification of phase determines the magnitude 10 within a scale factor, [ Section 8.3,
we saw that for sequences of finite length N, specification of X (e/®) at N equally spaced
frequencies determines X (e at all frequencies

Tn this chapter, we will see that the constraint of causality of a sequence implies
unique relationships betwaeen the real and imaginary patts of the Fourer transform.
Relationships of this lype between the real und imaginary parls of complex [unctions
arise in many fclds besides sipnal processing, and they are commonly known as Hilbert
transform relationships. o addition o developing these relatonships for the Fourier
transform of cavsal sequences, we will develop related results for the DITD and for
sequences with one-sided Fourier transforms. Also, in Section 12.3 we wil! indicate how
the relationship berween magnitude and phase for min‘mum-phase sequences can be
interpreted in terms of the Hilbert transform.
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Although we will take an intuitive approach in this chapter (see Gold. Oppenheim
and Rader, 1971)) il is impartant to be aware that the Hilbert transform relationships fol-
low formally from the properties of analytic lunctions, {Sce Problem 12.21.) Specifically,
the complex funclions that arise in the mathemalical representation of discrete-time sig-
nals and syslems are generally very well-behaved functions. With few exceptions, the
z-transtorms that have concerned us have had well-defined regions in which the pawer
series 15 absolutely comvergent, Simce a power serics represents an analylic function
within its ROC, i1 follows thal z-transtorms are analytic {unetions mside their ROCs
By the definition of an analytic function, this means that the z-transform has a well-
defined derivative at every point inside the ROC, Furthermore, for analytic functions
the z-transform and all its derivatives are continuous functions within the ROC,

The properties of analytic functions imply some rather powerful constraints on
the behavior of the z-transform within its ROC. Since the Fourier transform is the z-
transform evaluated on the unit circle, these constraints also restrict the behavior of
the Fourier transform. One such constraint is that the real and imaginary parts sat-
isfy the Cauchy-Riemann conditions, which relate the partinl derivatives of the real
and imaginary parts of ap analytic function. {See, for example, Churchill and Brown,
1990} Another constraint is the Cauchy integral theorem, through which the value of
a complex function is specified everywhere inside a region of analylicity in lerms ol the
values of the function on the houndary of the region. On the basis of these relations
[or analytic functions, il is possible, under cerlain conditions, to derive explicit inlegral
relationships between the real and imaginary parts of a z-translorm on a closed contour
within the ROC, In the mathematics literature, these relations are often referred Lo
as Poisson’s formulas. Tn the context of system theory, they are known as the Hifbert
transform relations.

Rather than following the mathematical approach just discussed, we will develop
the Hilbert transform relations by exploiting the fact that the real and imaginary parts
of the Fourier transform of a causal sequence are the transforms of the even and odd
components, respectively, of the sequence (properties 5 and 6, Table 2.1). As we will
show, a causal sequence is completely specified by its even part, implying that the Fourier
transform of the original sequence is completely specified by its real part. In addition
lo applying this argument to specifving the Fourier transform of a particular causal
sequence in terms of its real part, we can also apply if, under certain conditions, to
specify the Fourier transform of a sequence in terms of its magnitude,

The notion af an analylic signal is an important concepl in continuous-time signal
processing, An analytic signal is a complex time function (which is analylic) having a
Fourier transform that vanishes for negative frequencies A complex sequence cannot
be considered m oany formal sense to be analylic. since it s a function of an integer
variable. However, in a style similar (o that described in the previous paragraph, it 1s
possible Lo relate the real and imaginary parts of a complex sequence whose spectrum is
zera on the unit circle for —r < @ = (. A similar approach can also be taken in relaling
the real and imaginary parts of the DFT for a periodic or, equivalently, a linite-lenpth
sequence. Tn this case, the “causality” condition is that the periodic sequence be zero in
the second hall of cach perod.
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Thus, in this chapler, 4 notion of causality will be apphed to relate the even and odd
components of a function or, equivalently, the real and imaginary parts of its transform.
We will apply this approach in four situations. First, we relate the real and imaginary
parts of the Fourier transform X (&} of 4 sequence x[r] that is zero fora < 0 In the
second situation, we obtain a relationship between the real and imaginary parts of the
DFT lor perindic sequences or, equivilently, for a finite-length sequence considered to
be of length N, but with the last {M/2) — 1 points restricted to zero. In the third case,
we relate the real and imaginary parits of the logarithm ol the Fourier transform under
the condition that the inverse transform of the logarithm of the transform is zero for
n = 0. Relating the real and imaginary parts of the loganithm of the Fourier transform
corresponds to relating the log magnitude and phase of X (e/*). Finally, we relate the
real and imnaginary parts of a complex sequence whose Fourier transform, considered
as a periodic function of w, is zero in the second half of each period.

12.1 REAL- AND IMAGINARY-PART SUFFICIENCY OF THE

FOURIER TRANSFORM FOR CAUSAL SEQUENCES

Any sequence can be expressed as the sum of an even sequence and an odd sequence,
Specifically. with x,|r) and x,[» | denoting the even and odd parts, respectively, of x|z },!
we have

xin] = x ln] + xaln], (12.1)
where

o) = 2L (122)
and B

xalr] = m (123)

Equations (12.1) o (12.3) apply o an arbitrary sequence, whether or not it is causal
and whether or not 1018 real. However, i x[n] 15 causal, e, Wxn} = 0on < 0, then it
is possible to recover x[n] [rom x,[r] or to recover x[n] for n # U from x,[n]. Consider,
for example, the causal sequence xn] and its even and odd components, as shown in
Figure 12.1. Because xin] is causal, x|n] = 0forn < O and x[—-n] = 0forn = 00
Therefore, the noneero portions of x|a] and x[—a] do not overlap except al n = 1. For
this reasom, it follows from Egs. (12.2) and (12.3) that

x|n] = 2xelnlulr] — x[08]n] {12.4)
and

xln] = 2xg|nluln] + z[0)6]]. {12.5)
The validity of these relationships is easily seen in Fipure 12.1. Note that x[»] s com-
pletely determined by x.[n]. On the other hand, x,[0] = 0, so we can recover x[n] from
xaln| only for s # 0,

LIt £a] is real, then x| 4] and t.[n] in Egs (12.2) and {12.3) arc the even and odd parts, respectively,
of x[n| as considered in Chaprer 2. 3 «[r] is complex, for the purposes of this discussion we sill define x.[n)
and xgln] o5 0 Egs. (12.2) and (122}, which do md correspond 1o the conjugale-symmetrie and conjupaie-
antisymmetre parts of & complex sequence 2s considered in Chapler 2.
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Figure 12.1 Even and odd parts of a real causal sequence.
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MNow, if x[n] 1s also stable, 1.e., absolulely summable, then its Fourer transform

cxists. We denote the Fourier transform of x[n] as

X[E"Ilm} o XR{EJH.':I + jx-{[e_ru.l}.

2.6)

where X g{ef®1 is the real part and X tef“'j is the imaginary part of X (/™). Recall that
if x[n] is a real sequence, then X g{e/*) is the Fourier transform of x.[x] and jX; (/™)
15 the Fourier transform of x,[n]. Therefore, for a cansal, stable, real sequence, X gie!™)
completely determines X {e/*), since, if we are given X g(e/™), we can tind X{e/) by

the following process:

L. Find x.[n] as the inverse Fourier transform of X g{e/™.
2. Find x[n] using Eq. (12.4).
X Find X {e'™)} as the Fourier transform of x[a].
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This also implies, of course, that X, (#/") can be determined from X p{e/®). In
Example 12.1, we illustrate how this procedure can be applied to obtain X (¢/*) and
X p{ed™) from X gle/™).

Example 12.1 Finite-Length Sequence

=
15

Y Consider areal, causal sequence xn] for which X g{ef), the real par of the DTFT, 15

g X pled™) = 1 4 cos 2e. (12.7)
R

i -t' . . L ¥ i G
‘f;g We would like to determine the original sequence xin), its Fourier transform X (&),
i\:j‘, and the imaginary par? of the Fourier ransform, Xpied/™ ) A8 o first slep, we rewnte
g Eq. (12.7) expressing the cosine as a sum of complex exponentials:

kg P 3 P i

§ Xpfed® =1 1o—i2w 1,2 {128
e ki =14+ i!:' + Et' - i2.8)
i _

g;gé We know that X g{e/™) is the Fourier transform of r,[n], the even part of x[n] as
L7 definedin Eq. (12.2), Comparing Eq. {12.8) with the definition of the Fourier transform,
S Eg. (21310, we can match lerms to obtain

e

Eil 1 1

.f‘? Telr] = dln] =+ Sdln — 2] + S8 + 21

= 2 2

: -';.’__' Mow that we have obltained the even parl, we can use the relation in Eqg. (12.4] to
= gbtain

e i

T xlu) = d|m] +&fn — 2. {12.9)
‘E: From x[n], we get

;.-fa?; Kiel®) =1 | £ it

& =1 +cos2e — j sin 2. (12.10)
L !

J# From Eg. (12.10), we can both confirm that X g(e/®) is as specified in Eq. (12.7) and
B2 also obtain

a Xpte/®) = —sin 2w, (12.41)
:;:..,__ As an alternative path to obtaining ¥, (e/®), we can first use Eq. (12.3) to get x4[n]
i from x|n). Substituting Eq. (12.9) into Eg. (12,3} then vields

- 1 1

E?: Aaln) = i—é[n -2} - Eﬁ[n + 2]

Sﬁ: The Fouricr transform of xoln] is j X 1e/ ), so we find

St

& : Y .

bR ; fay _ Cailw  Z [

;gﬁ FX 2™ = 38 1?

e = - jsin Za.

o)

L wn that

i ;

" X;{e*”"j = — il i,

R

which is consistent with Eqg. (12.11).

Kass
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Example 12.2 Exponential Sequence
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Let
: | = COs e
Yple' s —8 o=, {12.12
R | — 2o o5 oo e )
or equivalently,
s s Ty _|;I'J|' o -—_Illrjl=
yptey o d—(aSHeT +a ) 1., (12.13)

| —afef® 4-g=iop L g2°

with & real. We first determine a.|n] and then x[n] using qu. {12.4).

Toobiain x.[n], the inverse Fourier ranslorm of X gle/™). it is convenient to first
obtain X yiz), the ztransform of x:[a}. This follows directly from Eq. (1213), given
that

XR{E-J:m*.] = Kg(z} |:==.jr.|-
Consequently, by replacing /* by z in Eq. {12.13). we oblain

1= fa/2iz 47D

1 —efz 4+ 271} + 02

Xpio=

(12.14)

1 —;—{zv:_l]

ST i i {12.15)
(1—erz= 1)l —az)

Since we hepan with the Fourier transform X gie/) and obtained X gizi by
extending Xpied™) into the z-plane, the ROC of X gz} must, of course, include the
unit cirgle and is then bounded on the inside by the pole at z = & and on the outside
by the pole at 2 = 1 /e.

From Eq. {12.15), we now want to obtain xg [« ]. the inverse o-transform of X g (z).
We do this by expanding Eqg. {12.13) in partial fractions, vielding

1T 1 1
Xpiz) = ] +i _az], (12.16)

with the ROC specified to include the umit cirche, The inverse o-transform of Eg. (12,16}
can then be applied separately to each term to obtain

1
xg[n]} = ju-.".'i{n] | iaf Tu[—n]. {12.17)
Comsequently, from Fyg. [12.4),

x[n] = auln] + o Mu[—n]uln] — din]

= a"uln].

X(ed™) is then given by
1
F ey = i 12.
L) T (12.18)

and X (] 1s given by

i) —— Iz| = J=|. {12.19)

1 —ad



Chapter 12 Discrete Hitbert Transforms

The constructive procedure illustrated in Example 12,1 can be inlerpreted analyt-
cally to obtain a general relationship that expresses X (e directly in terms of Xg(e!™),
From Eg. {12.4). the complex convolution theorem, and the fact that »[(] = x[0], it
follows that

: I: B , o
X(af*) = = [ Xg[e-rHJL'{E"I[m_H e — x| 0], {-1220}
N —
where U/ {e/) is the Fourier transform of the unit step sequence. As stated in Section 2.7,
although the unit step 15 neither absolutely summable nor square summable, it can be
represented by the Fourier transform

L

i 1
Uiy = 3 xblw—2mk) + 37—, (12.21)
b=
or, since the term 1/{1 ¢ /) can be rewritten as
[ | ¢ ey
P e o (12.22)
Eq. (12.21) hecomes
= 1 i ter
el = Z wdim —2mk) + 7~ 54:01‘. (E} . (12.23)
=
Using Eq. {12.23), we can express Eq. (1220} as
X(e'™) = Xpie'™) + jX (')
; 1 7= ;
= Nple) + ﬁf Xple! 1d {12.24)

L Fa o ‘”_'fq) o _
zrfnﬂig[& )cot( 5 ) o — 0L,

Equating real and imaginary parts in Eq. (12.24) and noting that

T
[ = lf Xrie'yda, {12.25)
o Y e
we oblain the relationship
: | = ; —8
Xre!) = o~ f Xriel®) cot (cu_ -)ri'l!?. {12.28)
L, 2

A similar procedure can be followed to obtain x|« | and X (e/*) from X, {e/*) and x{0]
using Fq. (12.5). This process results in the following equation for X g{e/®) in terms of
Xi{e)

‘I T v §
Xe(et™) =z 0]+ — f Xr(e!ycot (u f})dﬁf. (12.27
L, SO 2

Equations (12.26) and (12.27), which are called discrete Hilbert rransform rela-
rionships, hold for the real and imaginary parts of the Fourier transform of a causal,
stable, real sequence. They are improper integrals, since the integrand is singular at
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Figure 12.2  Interpretation of the
Hilbart tramsform as a pariodic
convolution.

e — 1 = {1 Such integrals musi be evaluated carefully wo obiain a consistent finile result.
This can be done formally by interpreting the integrals as Cauchy principal values, That
is, Eq. (12.26) becomes

Xpief™y = —ql Pf" Xpietcot (Q’T_H) A, (12.28a)
ek = 4
and Eq. {12.27) becomes
1.7 s -
X gled™) = ¢]0] 4 Q—‘I’j Xie®ycot (w 3 i ) do, {12.28b)
T ™

where P denotes the Cauchy principal value of the integral that follows. The meaning
ol the Cauchy principal value in Eq. (12.28a), for example, is

1 z —an
Xple™y = —— lim f Xpie!icot L) da
Ik R faieg 2

-k ; _p
+ f Xg ['(J.IH:}U.’}[ (CU a jdf?} .

(12.29)

—m 2

Equation {12.29) shows that X;{e/“) is obtained by the periodic convolution of
~ cot{m/2) with X g(ef¥}, with special care being taken in the vicinity of the singulanty
at® = ¢ Inasimilar manner. Eq. (12.28b) involves the periodic convolution of col{w /2}
with X, (af®).

The two functions involved in the convolution integral of Fyy. (12.28a) or, equiva-
lently, Eq. (12.29) are illusirated in Figure 12.2. The limit in Eq. {12.29) exisls because
the function cot[{w ~ 43/2] is antisymmetric at the singular point # = ¢« and the limit 1
taken symmelrically about the sinpgularity.

12.2 SUFFICIENCY THEOREMS FOR FINITE-LENGTH
SEQUENCES

In Section 12.1, we showed that causality or onesidedness of a real sequence implics
some strong constraints on the Fourier transform of the sequence. The resalts of the
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previous section apply, of course, to finite-length causal sequences, but since the finite-
lenipth property is more restrictive, it is perhaps reasonable to expect the Fourier trans-
form of a finite-length sequence to be more constrained. We will see that this is indeed
the case.

One way to take advantage of the finite-length property is to recall that finite-
lenpth sequences can be represented by the DFT. Since the DFT involves sums rather
than integrals, the problems associated with improper integrals disappear.

Since the DFT is, in reality. a representation of a periodic sequence, any results
we obtain must be based on corresponding results for periodic sequences. Indeed, it
is important to keep the inherent periodicity of the DFT firmly in mind in deriving
the desired Hilber! transform relation for finite-length sequences. Therefore, we will
consider the periodic case first and then discuss the application to the finite-length case.

Consider a periodic sequence i[#| with period N that is related to a finite-length
sequence x[n| of length ¥ by

Elnl = x[({nN]. (12.30)

As in Section 12.1, E[n] can be represented as the sum of an even and odd periedic
SEQUENCE,

n] = i:n) + ¥aln], =01 (¥N=1) (12.31)
where

inl= ﬂ|i;ﬂ n=01..,(¥%-1), (1232a)
and

oy 2:‘—[ M =0 VD). (12.32b)
A periodic sequence cannot, of course, be causal in the sense used in Section 12.1.
We can. however, define a “periodically causal” sequence to be a periodic sequence for
which E[n] = 0t for N/2 = n = &, That is, #{n] is identically zero over the last half of
the period, We assume henceforth that N is even; the case of N odd is considered in
Problem 12.25, Note that because of the periodicity of &[x], it is also true that [n] =0
for - N/2 = n = 0. For finite-length sequences, this restriction means that although the
sequence is considered to be of length ¥, the last (A/2) — 1 points are in fact zero, In
Figure 12.3, we show an example of a periodically causal sequence and its even and odd
parts with & = 8, Because ¥[n] is zerc in the second half of each period, X[ -#] is zeroin
the first half of each period, and, consequently, except for n = Dand n = N /2, there is
no averlap between the nonzero portions of ¥[#] and [—n]. Therefore, for periodically
causal periodic sequences,

2i,rl. n=1.2... .. (N2 -1,

Xl = § Kelnl, n=U0 N2, {12.33)
aq, n={N/2+1,....N =1,
and
. 2%,[n], =1,2,....(N2)y -1, .
i) = ax [n] w=d, I.-’T,I-{-ll:---:jN—L {12.34)
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Figure 2.3  Evenand odd parts of a periodically causal, real, periodic sequence
of pETiUd N=8

_le,r.I

where £[n] cannot be recovered from %,[n] because £,[10] = I,[W /2] = 0. I we definc
the periodic sequence

I, n=0, N2,
iyrl=12, n=12....(N/2) -1, {12.35)
0, n=(N/2)+1,....] N —1,

then it follows that, for N even, we can express ¥[n] as
®|n) = ¥, [n]idn]n] (12.36)
and
xln] = Eolndinln] + 2(015[n) + ¥[N/218[n — (N/2)] (12.37)

where §[n] is a periodic unit-impulse sequence with period &, Thus, the sequence Z[n|
can be completely recovered from I.|n]. On the other hand, ¥, |r] will always be zero at
n=0andn = ¥/2, and consequently, ¥{n] can be recovered from %,[n| only forn # 0
and r £ N/2 . _

If X[n] is a real periodic sequence of period N with DFS X{k], then X p[&]. the real
part of X [k), is the DFS of ¥.[n] and jX;|k]is the DFS of ¥.0n). Hence, Eqgs, (12.36) and
(12.37) imply that. for a periodic sequence of period N, which is periodically causal in
the sense defined earlier, X [4] can be recovered from its real part or (almost) from its
imaginary part. Equivalently, X ;[k] can he obtained from X g[k], and X g[k] can (almost)
be obiained from X [&].
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Specifically, suppose that we are given X glk]. Then, we can oblain X [k]and X ;{k]
by the following procedure:

1. Compute ¥.[r] using the DFS synthesis equation
N1
ffn] = % Y Xplkled @ik, (12.38)
T k=t
2. Compute ¥la}using Eq. (12.36).
3, Compute X1k] using the DFS analvsis equation

J'LI i
X[kl =3 £in)e iV = ¥ olk] + X 1k), (12.39)
re=l}
In contrast to the geperal causal case discussed in Section 121, the procedure just

outlined can be implemented on a computer, since Egs. (12.38) and (12.39) can be
evaluated accurately and efficiently using an FFT algorithm.

To obtgin an explicit relation between X g[k], and Xy[4], we can carry oul the
procedure analytically. From Eg. (12.36) and Eq. (8.34), it follows that

Xlk) = X gik] + j X 1k]

g N1 ) (1240
== > XglmlUytk — m];
Fi ]
ie., X[k]isthe periodic convolution of X gl k], the DFS of .[n], with ' y[k] the DFS of
i [n]. The DFS of & y[#] can be shown to be (see Problem 12.24)

x. Jﬁil| k _— E:'.
Uwlkl= 3 —j2cotimk/N), kodd, f12.41)
0, k even,
If we define
- _ | —j2cotirk/N), kodd,
Vulk] = [01 PR (12.42)
then Eg. (12.400) can be expressed as
” ; g "
X1k} = X glk] + Y X almlV nlk — ml. (12.43)
m=i
Therefore,
, s [ 2
JX k)= o Z;]Xeini!‘a’,v[k —ml, (12.44)
M-

which is the desired relation between the real and imaginary paris of the DFS of a
periodically causal, real, and periodic sequence, Similarly, beginning with Eq. (12.37)
we can show that
N—1
Xplkl= = 3 FXmIV ulk — m] + 01 + (—1)*F[N/2). (12.45)

m={l
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Eguations (12.44) and (12.45) relate the real and imaginary parts of the DFS rep-
resentation of the periodic sequence ¥ n]. If ¥[#] is thought of as the periodic repetition
of a linite-length sequence x|n) as in Eqg. (12.30), then

Finl, D=n=N-1,

hphe ! 0, otherwise. (1246)

It x[n] has the “perodic causality”™ property with respect to a period N (ie, x[n] = U
[orm < Dand forw = N /2), then all of the preceding discussion applies to the DEFT of
x[n]. In other words, we can remove the tildes from Eqgs. {12.44) and {12.45). thereby
obtaining the DFT relations

MN-1
] -
X1k = Fzﬂxg[mjvmk—ml. O<k=<N-1, (12.47)
0, ' otherwise,
and
Bt )
Xalk] = EZ;XMNWH—M+HW+PUMNELﬂikﬂﬁ—hﬂlﬂ}

0, olherwise.

Mote that the sequence Vg [k —m] given by Eq. (12.42) 1s periodic with period &, so we
do not need to worry about computing ((k — m))y in Eqs. (12.47) and (12.48), which
are the desired relations between the real and imaginary parts of the N -point DFT of a
real sequence whose actual length is less than or equal to (N /2y 1 (for N even). These
equations are circular convolutions. and, for example, Eq. (12.47) can be evaluated
efficienily by the following procedure:

1. Compute the inverse DFT of X g4} to obtain the sequence

xla] 4+ al{{=niin]
2 ;

2. Compute the periodic odd part of x[n] by

D=neN -1 (12.49)

xcp[ﬂj =

wepln),  O<n < N2,
xopln] = —xepln). N2 =n=N-1, {12.50)
0, otherwise.

3. Compute the DFT of x;p[n] to obtain jX[k].

Note that if, instead of computing the odd part of x[#] in step 2, we compute

J:.:]-,“ﬂ. n =1,
Lxpp[n], 0=n=NM2
xfp[.-".’,“ll__ n=N/2,

0, otherwise,

(12.51)

x[r]l =

then the DFT of the resulting sequence would be X k], the complete DFT of x[»].
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Example 12.3 Periodic Sequence

_';;f:, Consider a sequence that is periodically cawsal with period ¥ = 4 and that has
= & k=0,
i 13 k=1L
i Tplimiy yaz
% 3 k=3

We can find the imaginary part of the DFT in one of two ways, The first way is to use
i Eq.(12.47).For N =4,

2j, k=—1+4m,
Vilkl= 4 —2j, k=1+4m,
},  otherwise,

where m is an integer. Implementing the convolution in Eq. (12.47) yields

3
: i :
Xk = i E Xplrr|¥alk — ml, D=k=3

m=all
i k=1,
=1 =j k=73
{0, otherwisc,

Allernalively, we can follow the three-step procedure that includes Egs. (12.4%)
and {12.50), Computing the inverse DFT X g[&] vields

1 : 1 _ .
Xeln = 4 3 XpIKIWZ™ = 2[24 307" +4(-D" #3(- )]
k=0

2
I
pr———
|
Bl
= - |
L |
[ R
L

\ Note that although this sequence 15 not itsell even symmetric, a periodic repbication of
Y xg[n]is even symmetric. Thus, the DFT X g[k] of x|a] is purely real. Equation {12.50)
allows us to find the periodically odd part xgpla]; specifically,

—;1;. n=1,
Yoplal = % n=23,

0, othocrwise.

s

Finally, we obtain jX [&] from the DFT of Toplnl:

o
JXiTkl =3 xoplnIWj* =
n=d]

iok=1,
=+=ji k=3

1
2

: ﬁ.

1
Wi+ 5 Wk

Lk

o

0, othcrwise,

which is, of course, the same a8 was cbtained from Eq. (12.47).
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12.3 RELATIONSHIPS BETWEEN MAGNITUDE
AND PHASE

Sofar. we have focused on the relationships between the real and imaginary parts of the
Fouricr transform of a sequence. Ofien, we arc inlerested in relationships betwecn the
magnitude and phase of the Fourier transform. In this section, we consider the conditions
under which these functions might be uniquely related. Although it might appear on
the surface that a relationship between real and imaginary parts implics a relationship
between magnitude and phase, that is not the case. This s clearly demonsirated by
Example 3.2 in Section 3.4, The two system functions A (z) and A 2{z) in that example
were assumed to correspond to cavusal, stable systems. Therefore, the real and imaginary
parts of H(e/*) are related through the Hilbert transform relations of Egs (12.28a)
and (12.28b). as are the real and imaginary parts of Ha(e/™), However, £ H 1{e/*) could
not he obtained from ' H (&), since H (/™) and Hi(e/*) have the same magnitude
hut a different phase,

The Hilbert transform relationship between the real and imaginary parts of the
Fourier transform of a sequence xfn| was hased on the causality of x[n|. We can obtain
a Hilbert transform relationship between magnitude and phase by imposing causality
on a sequence ¥|n| derived from x|n| for which the Fourier transform X (el=y i the
logarithm of the Fourier transform of x|r]. Specifically, we define #{r] so that

Xl s Xied®) = | X (o) e PR (12.52a)
i < Xy, (12.52b)

where
X(e/”) = logIX (¢/*)] = log | X (/)| + jarg[X (e/*)] (12.53)

and, as defined in Section 5.1, argl X (¢/*)] denotes the continuous phase of X{e/), The
sequence £[n] is commonly referred to as the complex cepatrim of x|n], the properties
and applications of which are discussed in detail in Chapter 13.2

If we now reguire that ${n] be causal, then the real and imaginary parts of _i'ff-"""J,
corresponding 1o log [ X (™) and arg[ X (e/™}], respectively, will be related through
Fqge (12.28a) and (12.28b); i.c.,

argl X (e/)) = : P F log | X (/%) cot ool $7 (12.54)
gX (! )] =5~ = g | X (el¥) =5 %
and
Hm ” 1 - i 1l 1] _'H e
log | X (e™)| = £[0] + _—Pf argl X (e’ ¥ cot di, {12.53a)
2 S . 2
where, in Eq. (12.55a), £#[0] is
i
R0 = — f log 1 X (/) |dew. (12.55h)
L S e

E'A]Iimugh ¥[m] 18 referced to as the cosiples cepatrum o 15 real valued since xlel™y is defined in
Eq. (12.53) 18 conjugate symmetnc.
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Although it is not at all abvious at this point, in Problem 12.35 and in Chapler 13
we develop the fact that the minimum-phase condition defined in Section 5.6, namely,
that X{z) have all its poles and zeros inside the unil circle, guarantees causality of the
complex cepstrum. Thus, the minimum-phase condition in Section 3.6 and the condition
of causality of the complex cepsirum turn out to be the same constraint developed
from different perspectives. Note that when t[n] is causal, arg| X (&) is completely
determined through Eq. {12.54) by log |X (¢/*}|: however, the complete delermimation
of log | X (¢/)| by Eq. (12.55a) requires both argl X (¢/*)] and the quantity 2[00 IT £[0)]
15 nol known, then lnglk’grf“'jl is determined only 1o within an additive constant, or
equivalently, | X (/™) is determined only to within a moluplicative {gain) constant.

Mimmum phase and causality of the complex copstrum are not the only constraints
that provide a unique relationship between the magnitude and phase of the DTEFT
As one cxample of another type of constraint, it has been shown {Iayes, Lim and
Crppenheim, 1980) that if a sequence is of finite length and if its z-transform has no
zeros in conjugate reciprocal pairs, then. to within a scale factor. the sequence {and
consequently, also the magnitude of the DTFT) is uniquely determined by the phase of
the Fourier transform.

12.4 HILBERT TRANSFORM RELATIONS FOR COMPLEX

SEQUENCES

Thus far, we have considered Hilbert lransform relations for the Fourer transform
of causal sequences and the DFT of periodic sequences that are “periodically causal”
in the sense that they are zero in the second half of cach period. In this section, we
consider complex sequences for which the real and imaginary components can be related
through a discrete convolution similar to the Hilbert transform relations derived in
the previous sections These relations are particolarly useful in representing bandpass
signals as complex signals in a manner completely analogous to the analytic signals of
contlinuous-lime signal theory (Papoulis, 1977},

As mentioned previously, it is possible to base the derivation of the Hilbert trans-
form relations on a notion of causality or one-sidedness. Since we are interested in
relating the real and imaginary parts of a complex sequence, one-sidedness will be ap-
plied to the DTFT of the sequence. We cannot, of course, require that the DTET be
zero for w = 0, since it must be periodic. Instead, we consider sequences for which
the Fourier transform is zero in the second half of cach period; i.e. the -transform is
zero on the bottom half (—-» <= @ = ) of the unit circle. Thus, with «|#| denoting the
sequence and X («/*) its Fourier transform, we require that

Xie ™ =), S T | B {12.56)

{We could just as well assume that X (e} is zero for 0 < w < 7.) The sequence x[a]

corresponding Lo X (¢/*) must be complex, since, if x[a] were real, X(e/*) would be
conjugale symmetric, .., X (¢/*) = X*{e™ /). Therefore, we express x|a] as

x[n] = 2 [n] 4 jxi[n], {12,537}

where x,[n] and x[a] are real sequences. In continuous-time signgl theory, the ¢om-

parable signal is an analvtic function and thus is called an analyeic signal. Although

analyticily has no formal meaning for sequences, we will nevertheless apply the same
terminology 1o complex sequences whose Fourier transforms are one-sided.
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If X, {2/} and X;{e/*) denote the Fourier transforms of the real sequences 1, |n|
and x;[n], respectively, then

X(e/®) = X (e™) ) jxi(ef), (12.58a)
and it Lollows Lhat
X (el™) = %lxre“’) + X*(e7), (12.58b)
and
JXilel™y = %lxu«f’”} — X*(e™ ™). {12.58¢)

Note that Eq. (12.58c) gives an expression for jX;(e/*), which is the Fourier
transform of the imaginary signal jx;[n]. Note also that X, (¢! ) and X;{e/*, the Fourier
transtforms of the real and imaginary parts, respectively, of x[n] are both comples-
valued functions. In general, the complex ransforms X, (e’*) and j X;(ef™) plav a rols
sitnilas to that played in the previous sections by the even and odd parts, respectively, of
causal sequences. However. X, (¢/™) is conjugate symmetric, i.e., X, fed®) = X:i'.—:‘f"“].
Similarly, j X;(e/™) is conjugate antisymmetric, ie., j X (e/¥) = —j X e™/").

Figure 12.4 depicts an example of a complex one-sided Fourier transform of a
complex sequence x[n} = x ln] + jx;[n], and the corresponding two-sided transforms
of the real sequences x.[n] and x;|n}. This figure shows pictorially the cancellation
implied by Egs. {12.38).

If X(ef®) is zero for —7 = w = 0. then there is no overlap between the nonzero
portions of X (e) and X* (e~ /%) exceptatew =0, Thus, X e} can be recovered except
at w = 0 from either X, (/) or X; (). Since X (¢ is assumed to be zero ates = 471,
X(e/"yis totally recoverable excapt at w = 0 from ; X; {e/*), This is in contrast to the
situation in Section 12.2, in which the causal sequence could be recovered from its odd
part, except at the endpoints,

In particular,

2X ety ) o m oo T

oy
A(e'™y = | 0, S, (12.59)
and
] z-x'fﬂ'in"}, V= m=m
oo J.ag i "
X{E j N {n' 1T E [ [l! {1."-{]"]'}
Alternatively, we can relate X, (¢/*) and X;(e/) directly by
P T _.J'-X.l":_f"‘r.m_'-'- O = w =, -
A {jxr{ewn. —r=w <0, (12.61)
or
Xi(el®) = H(e/) X, (e/™), (12.62a)
where
Fas - = {} = e = m, o e
Hie }_I-"- e e {12.62b)
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| X{e'-'."’“']

(d}

Figura 12.4 lliustration of decemposition of a cne-sided Fouriertransform. (Seolid
curves are real parts ard dashed curves are imaginary parts.)

Equations {12.62) are illustrated by comparing Figures 12.4(c)} and 12.4{d). X;ic/%)
is the Fourier transform of x;|» |, the imaginary part of x[n|, and X el is the Fourier
transform of x.[n], the real part of x|n]. Thus, according to Eqs. (12.62), x;[n] can be
obtained by processing x,[n] with an LTT discrete-time system with frequency response
H (e/#), as given by Eq. (12.62b). This frequency response has unity magnitude, a phase
angle of = /2for ) = w < m,and a phase angle of +/2for ~7 = w = 0. Such a svstem
is called an ideal H-degree phase shifter or a Hitherr rransformer, From Eqs. (12.62), it
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= 2
3w A Figure 12.5 |mpulss response of an
2 icleal Hilbert transformer or 90-degree
T phase shifter.
foallovws that
Juy Jary Jeary g o far -
Xoie'™) Hiel®) Xire™ Hig"™ X&) {12.63)

‘Thus, —x, |n] can also be obtained from x;[n] with a 90-degree phase shifter.
The impulse response hin] of a 90-degree phase shifter, corresponding to the
frequency response H(e/™) given in Eq. (12.62b}, is

H ha
hin] = L jel* o — 2 f Jel e,
ir | 2w Jo

or

sin’ (7t /2) 0
e (12.64)
n=0

i
4

hin] =
Ll

The impulse response is plotted in Figure 12.5. Using Egs. (12.62) and (12.63), we obtain
the expressions

xifal= > hlr ~ mlx|m] {12.65a)
and
lal= - Z hin —m)x;lm]. (12.65b)

Equations (12.65) are the desired Hilbert transform relations between the real
and imaginary parts of a discrete-time analytic signal. Figure 12.6 shows how a discrete-
time Hilbert transformer system can be used to form a complex analytic signal, which
is simply a pair of real signals,



a60

Chapter 12 Disgrate Hilbert Transforms

Il i
R £:4n £ l
L “vamar Figure 12.6 Block diagram
Hilkert i x|n] representation of the creation of a

complex sequence whose Fourier
) transform is one-sided.

| iamsformer 5lnl

12.4.1 Design of Hilbert Transformers

The impulse response of the Hilbert iransformer, asgiven in Eqg. (12.64), is not absolutely
summable. Consequently,

H(e/®y= Y hinje 1o (12.66)

fr=—02

converges to Bq. (12.62b) only in the mean-square sense, Thus, the ideal Hilbert trans-
former or M-degree phase shifter takes its place alongside the ideal lowpass filter and
ideal bandlimited differentiator as a valuable theoretical concept that corresponds to a
noncausal system and for which the svstem function exists only in a resiricted sense.

Approximations to the ideal Hilbert transformer can, of course, be obtained. FIR
approximations with constant group delay can be designed using either the window
method or the equiripple approximation method. In such approximations, the #-degree
phase shift is realized exactly, with an additional lincar phase component required for a
causal FTR system, The properties of these approximations are illustrated by examples
of Hilbert transformers designed with Kaiser windows.

Example 12.4 Kaiser Window Design of Hilbert
Transformers

#5% The Kaiser window approximation for an FIR discrete Hilbert transformer of order

4

BT M (lenpth A < 1) would be of the form

i

et )
‘% Lo (A1 = [in — ”d}-'r”rﬂzj'”z} E giﬂa[,—;m —nylfd N=n=M
i klA] = I (5} 4 " R ! e Ll
=3 otherwise,
i (12.67)
P""'.f where ng = M2 TT M 15 even, the system is a ype [T FIR peneralized linear-phase
".ﬁ system. as discussed in Section 5.7.3.

Figure 12.7(a) shows the impulse response, and Figure 12.7{b) shows the magni-
tude of the frequency response, for M = 18 and A = 2.629, Because Afn] satisfies the
symmeny condition k[r] = —h[M —a]for0 = r <= & the phase is exactly ¥ degrees
plus & hinearphase compenent corresponding to a delay of #y = 18/2 = 9 samples;
ie,

L

.r-?

i

£ H (el = _2_“‘ -9, Dew=m {12.68)

From Figure 12.7(b). we see rhat, as reguired for a tvpe 1 system, the frequency
responseis zeroat - = land 3 = —1 {o = Oand o = 7). Thus, the magnitude response
i cannot approximate anity very well, except in some middle band wp = || < @y
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= Dg—= & * » . - . I bt w4
T
<
-5
-1.0
0 5 10 15 20
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Radian frequency (o)

(b}

Figure 12.7 (&) lmpulse response and (1) magnitude respanse of an FIR Hilbert
trangformer designed using the Kaiser window. (M =18 and 4 = 2,620}

If M is an odd integer, we obtain a type IV system, as shown in Fizure 12.8,

- where M = 17 and # = 2.4, For type IV systems, the frequency response is forced

to be zero only at z = 1 {w = ). Therefore, a better approximation to a constant-
magnitude response is obtained for frequencies around & = . The phase response is
exactly W0 deprees at all frequencies, plus a linear-phase component commesponding Lo
iy = 1772 = 8.5 sumples delay; i.e,

LH{®) = =5 ~ 85w, O=w<m (12.69)

? From a compatison of Figures 12.7(a} and 12.8{a}, we see that type III FIR Hilbert

transformers have g significant computational advantage over type I'V systems when
it is not necessary to approximate constant magnitude at e = s This is because, for

g4 type Il systems, the even-indexed samples of the impulse response are all exactly zero,
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ZE: Thus, taking advantlage of the antisymmelry in both cases, the syslem with M = 17
" would require eight multiplications to compuie each output sample, while the system

Eﬁ with M = 18 would require only five muliiplications per output sample,
:?‘f 10
iw
' 0.5
: [ cag
a
£ o _"'"‘411 ?Tf'l'! X
-5
—1.0r | | i
a & 1] 15 X0
Sample pumber (a}
{a)
L2
g
=
B,
E
o

| | L
[ 0.2+ 0.4 0.6 0,8 &
Radian [requency (o)

(b

Figure 12.8 (2} Impalse response and {b) magnitude response of an FIR Hilbert
transtormer designed using the Kaiser window, (M =17 and g = 2.44.)

Typellland [V FIR linear-phase Hilbert transformer approximations with equirip-
ple magnitude approximation and exactly %0-degree phase can be desipned using the
Parks-McClellan algorithm as described in Sections 7.7 and 7.8, with the expected im-
provements in magnitede approximation error over window-designed filters of the same
length (see Rabiner and Schafer, 1974},

The exactness of the phase of tvpe [I1 and TV FIR systems is a compelling motiva-
tion for their use in approximating Hilbert transformers. ITR systems must have some
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1
—| Myln] p— |

¥eltl | complex  Figure 12,9 Block diagram

—_— signal representation of the allpass phase
x[n] xla] splitter method for the creation of a
= h:ln] . complex sequence whose Fourier
¥ilnl transform is ore-sided,

phase response error as well as magnitude response error in approximating a Hilbert
transformer. The most successful approach to designing [IR Hilbert transformers is to
desien a “phase splitter,” which consists of two allpass systems whose phase responses
differ by approximately 90 degrees over some portion of the band 0 < |} = x. Such
systems can be designed by using the bilinear transformation to transform a continuous-
time phase-splitting svstem to a discrete-time system. (For an example of such a system,
see Gold, Oppenheim and Rader, 1970.)

Figure 12.% depicts a 9{-degree phase-splitting system. If r, |n] denotes a real input
signal and x; [« ] its Hilbert transform, then the complex sequence x[n] = x {n] + jxiln]
has a Fourier transform that is identically zero for —7 = w = (% ie, Xiz) is zero on
the bottom half of the unit circle of the z-plane. In the system of Figure 12.6, a Hilbert
transformer was used to form the signal x|«] from x.fn). In Figure 12.9, we process
tr[n] through two systems; Hi(e!™) and Haie/®), Now, if Hi(e/®) and Ha(e/*) are
allpass systems whose phase responses differ by %) degrees, then the complex signal
¥In] = ¥ [nl + jyi[n] has a Fourier transform that also vanishes for —7 < w = (),
Furthermore, |Fied™)} = | X (e/*)|. since the phase-s plitting systems are allpass systems,
The phases of ¥ (e’ and X (e/*) will differ by the phase component common (o H e/}
and Hzle'™),

12.4.2 Representation of Bandpass Signals

Many of the applications of analytic signals concern narrowband communication. 1n
such applications, il is sometimes convenient 1o represent a bandpass signal in terms of
a lowpass signal. To see how this may be done, consider the complex lowpass signal

x[n]l = x (n] + jxiln],
where x;[n] is the Hilkert transform of &, [n] and
Xy =1, - = w =

The Fourier transforms X,{e/®) and jX(e/®) are depicted in Figures 12.10(a) and
12.10(b), respectively, and the resulting transform Xie/™) = X, (e/) + jX;(e/") i3
shown in Figure 12.10¢c). (Solid curves are real parts and dashed curves are imaginary
parts) Now, consider the sequence

I Jc[H]ejm‘“" = g.{n] + js;lnl, {12.70)
where v, [n] and 5;[a] are real sequences. The corresponding Fourter translorm is

S(ef™) = K (gl (12.71)
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Figure 12.10 Fourier transtorms for representation of bandpass signals. {Solid
curves are real parts and dashed curves are imaginary parts.) (Note that in parts {b)

and {f) the functions {;(e™) and j§;(2*) are plotted, where X; (') and 5 (%)
are the Fouriar transtorms of x;[n) and &[0, respectivelby.)

which it depicted in Fipure 12.100d). Applving Eqs. (12.58) 1o Ste/™) leads to the
equations

Sr(e!?) = J[S(ef®) + $*e~ /), (12.72a)

J8ief™y = 3[8(ed™) — §™ e )], (12.72h)
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For the example of Figure 1210, 8, (e and j §;(e/*) are illustrated in Figures 12.10{¢)
and 12.10(0). respectively. It is straightforward 1o show that if X, (™) = 0 for
Aw = || = r,and il o, + Aw < x, then () will be a one-sided bandpass signal such
that S{e’*) = U exceptin the interval w, < @ < w,+ Aw. As the example of Figure 12,10
illustrates, and as can be shown using Egs. (12.37)and {12.58), 5;(e/™) = Hie!™) 5. (e},
Le., &[] s the Hilbert transtorm ol s [#].

An allernative representation of a complex signal is in terms ol magnitude and
phase; i.e, x[n] can be expressed as

x[n] = A[n]e/®ln (12.73a)
where
Alnl = (2] + £Fante {12.731)
and
#[n] = arctan ( Yile ) | (12.73¢)
x.[n]
Therefore, from Eqs. {12.70) and (12.73), we can express s[n] as
slrl = (xeln] + foila]el™" (12.74a)
= Aln]edteentilnl) {12.74b)
from which we obtain the expressions
s-[n] = x [n]cos mn — x[n] sina.n, {12.75a)
or
srln] = Aln]cosi{w.n + @[], (12.750)
and
5i[n] = x [m] sittemen 4+ x; (1] COS arp, {12.76a)
Or
siln] = Aln]smiw.n + $[n]). (12.76b)

Equations {12.75a) and (12.76a) are depicted in Figures 12.11{a) and 12.11(b},
respectively. These diagramsillustrate how a complex bandpass {single-sideband) signal
can be formed from a real lowpass signal.

Taken together, Egs. (12.75) and (12.76) are the desired time-domain represenla-
tions ol a general complex bandpass signal s[a] in terms of the real and imaginary parls
ol a complex lowpass signal x[#]. Generally, this complex represcentation is a convenient
mechanism for representing a real bandpass signal. For example, Eq. (12.75a) provides
a time-domain representation ol the real bandpass signal in terms of an “in-phase” com-
ponent x[#] and a “gquadrature” (¥-degree phasc-shilled) component y;[a). Indeed, as
illustrated in Figure 12.10(¢), Eq. {12.75a4) permits the representation of real bandpass
signals {or filter impulse responses) whose Fourier transforms are nol conjupale syim-
metric aboul the center of the passband (as would be the case for signals of the form
xfn]cosm.n).
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Figure 12.11 Block diagram represantation of Eqs (12.75a) and (12.76a) for
obtain‘ng a single-sideband signal.

It is clear from the form of Egs (12.75) and (12.76) and from Figure 12.11 thay
a general bandpass signal has the form of a sinvsoid that is both amplitude and phase
modulated, The sequence Alnf is called the envelope and ¢[n] the phase. This narrow-
band signal representation can be used to represent a variety of amplitude and phase
modulation systems. The example of Figure 12.10 is an illustration of single-sideband
medulation. If we consider the real signal s-[r] as resulting from single-sideband mod-
ulation with the lowpass real signal =[] as the input, then Figure 12.11{a} represents a
scheme for implementing the single-sideband modulation system. Single-sideband mod-
ulation systems are useful in frequency-division multiplexing, since they can represent
a real handpass signal with minimum bandwidth.

12.4.3 Bandpass Sampling

Another important use of analyiic signals is in the sampling of bandpass signals. In
Chapler 4, we saw that, in general, il a continuous-time signal has a bandlimited Fourier
transform such that §,.(j8) = 0 [or |2] = Qu, then the signal s cxactly represented
by ils samples if the sampling rate satisfies the inequality 2x /7 = 20, The kev o
the prool of this result 15 o avold overlapping the replicas of 5.0 that form the
DTFT of the sequence of samples. A bandpass continuous-time signal has a Fourier
transform such that 5.0j@2) = O for 0 = |Q] = @, and for |2 = Q. + AQ. Thus, its
bandwidth, or region of support, is really only 2AQ rather than 2080, + AL, and with
a proper sampling strategy, the region —£2. = 2 = £, can be filled with images of
the nonzero part of 5.( 7§ without overlapping. This is greatly facilitated by using a
complex representation of the bandpass signal.

As an illustration, consider the system of Figure 12.12 and the signal shown in
Figure 12.13(a). The highest frequency of the input signal is Q. + AQ. If this signal
is sampled at exactly the Nvquist rate, 2x/T = 2{8. 4+ ALl), then the resulting se-
quence of samples. 5.|n] = s.{nT), has the Fourier transform §.{e/*) plotted in Fig-
ure 12.13(b). Using a discrete-time Hilbert transformer, we can form the complex
sequence s[n] = s.[n]+ j5;[n] whose Fourier transform is $(e/*) in Figure 12.13(c). The
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Figure 12.12 System for reduced-rate sampling of a real bandpass signat by
decimation of the equivalent complex bandpass signal.

width of the nonzero region of §{¢/®) is Aw = (AL2)T. Defining M as the largest integer
less than or equal to 27/ Aw, we see that M copies of §(e/*) would fit into the interval
& = w = 7. (In the example of Figure 12.13(c), 27/ Ae = 5.) Thus, the sampling rate
of 5|n ] can be reduced by decimation as shown in Figure 12.12, vielding the reduced-rate
complex sequence sg|n] = sigln] + fsigln] = s[Mn] whose Fourier transform is

M1
E o s
Sy Py mirs ¥ S(elleraatiing, (12.77)

k=1

Figure 12.13(d) shows 5;{e/*}with M = 5inEq. (12.77). 5{e/*) and twoof the frequency-
scaled and translated copies of 5(e/*) are indicated explicitly in Figure 12.13{d). It is
clear that aliasing has been avoided and that all the information necessary to reconstruct
the original sampled real handpass signal now resides inthe discrete-time frequency in-
terval —r = @ = x, A complex filter applied to s;|n] can transform this information
in useful ways, such as by further bandlimiting, amplitude or phase compensation, etc.,
or the complex signal can be coded for transmission or digital storage. This processing
takes place at the low sampling rate, and this is, of course, the motivation for reducing
the sampling rate.

The uriginalrea] bandpass signal 5.[#] can be reconstructed ideally by the following
procedure: :

1. Expand the complex sequence by a factor M; i.e., obtain

sdln/ M+ fsaln/M], n=0,£M, £2M, ...,
u,

slal= otherwise.

(12.78)

2, Filter the signal v || using an ideal complex bandpass filter with impulse response
hi;|n] and frequency response

_ 0, —m o<,
Hie! 1 =4 M, o <m < m:+ Ao, [12.749)
0, w4 Ao oo T
{In vur example, @, + Aw = T.)
3. Obtain 5.|n] = Rels:|n] = k;ilnl).

A useful exercise is to plot the Fourier transform 5, (/) for the example of
Figure 12.13 and verify that the filter of Eq. (12.79) does indeed recover s|nl.
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Flgure 12.13 Example of reduced-rate sampling of a bandpass signal using the
systern of Figure 12.12. (2) Fourier transform of continuous-time bandpass signal.
(b Fourier transform of sampled signal. {¢) Fourier transform of complex bandpass
discrete-time sipnal derived from the signal of part (a). (d} Fourier transform of
decimated complex bandpass of part {¢). (Sohd eerves are real parts and dashed

CUFVES are imaginary parts.)
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Another usetul exercise is (o consider a complex continuous-time signal with a
one-sided Fourier transform equal 1o 50752 for £ = (0. It can be shown that such a
signal can be sampled with sampling rate 2x/T = A, directly vielding the complex
sequence xg(nl.

12.5 SUMMARY

In this chapter. we have discussed a variety of relations between the real and imaginary
parts of Fourier transforms and the real and imaginary parts of complex sequences.
These relationships are collectively referred to as Hifhert trunsform relationships, Our
approach o deriving all the Hilbert transform relations was to apply a basic causality
principle that allows a sequence or function to be recovercd from its even part, We
showed that, for a causal sequence, the real and imaginary paris of the Fourier fransform
are related throuwsh a convolution-type intcgral. Also, for the special case when the
complex cepstrum of a sequence 1w causal or, cquivalently, both the poles and zeros of
its retransform lie inside the unit circle (the minimume-phase condition), the logarithm
of the magnitude and the phase ol the Fourier transform are a Hilbert transform pair
ol cach other.

Hilbert transform relations were denived lor periodic sequences that satisfy a
modified causality constirainl and for complex sequences whose Founer transforms
vanish on the bottom hall of ihe unit circle. Applications ol complex analytic signals to
the representation and ethicient sampling of bandpass signals were also discussed.

Basic Problems

131, Consider aseguence x[n | with DTFT X {1#4). The seguences xin | is real valued and causal,
and

RefX (/)] =2 — 2q cosw.
Delermine Tm{X e},
LY Uonsider a sequence x[n] and its IXTFT Yfr{'-‘f""}. The following is known:
x[r] is real and cansal,
Re[X{e!™)} = § — cosa,
Delermine a sequence x| consistenl with the given information,
123, Consider a sequence x[n] and its DTFT ¥ (ef5) The following is known:
xln] is real,
x0} =1,
sl =0
X (el = ] - cosa.

Determing two distinet sequences xq|#) and x2{n | consistent with the given information,
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12.4.

12.5.

12.6.

1.7,
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Consider a eomplex sequence x[n] = x¢[n] + jx;[n], where x.[n] and x;|n| are the real
parl and imaginary parl, respectively, The z-transform X{z) of the sequence x[#] is zero
o the bottom half of the unit circle; ie, X (e = 0for 7 < w = 2. The real part of x[n]
15

112, n=I
xe[m]l = 1 =14, n=42
0}, atherwise.

Determine the real and imaginary parts of X (e/®).

Find the Hilbert transforms xla) = Hix-n ]} of the following sequences:

(a} x-ln] = coseyn

(b} x [n] = sinwyn

(e} by = o)
R

The imagmnary part of X {ed®y for a causal, real seguence xal s
X(e!™ = 2sinee — Fsin de.

Additionally, it is known that X [er';"""bh._,__g = 6. Find xfr].

{8) x[n_is areal, causal sequence with the imaginary part of its DTFT X {&/%) given by
Im{X(e/*1} = sinw + 2 sin i,

Determine a chaice fur x[n].
{b) Is vour answer to part {a) unigue? If so, explain why If not, determine a second,
distinct choice for x[#] satisfving the relationship given in part (a).
Consider a real, causal sequence x[n] with DTFT Xiefe = X pref™y + jXpiel™), The
imaginary part of the DTTT is
X (ed®) = 3sin(2m),

Which of the real parts X g, ief®y listed below are consistent with this information:

; 3
Xpilef®) = 3 cosi2m),

Xgaled™) = —3eosiZe) — 1,
X pale™ = — 3cosiZm),
X paled™) = 2eosi3um).

; 3
Xpstel™) = 3 st 2er) + 1,
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12.9.

12.14.

12.11.

12.1%

1213

12.14.

an

The following information is koown abouwd a real, causal sequence xin] and ils DTFT

X {E_jr.-:}:

T X (%)} = Fsinfw) + sin(3w),

Xig!")p=m = 3.

Determine a sequence x[x] consistend wilh this mformation, [s the sequence enague?
Consider &fn], the rea_l-va]uad impulse response of a stable, causal LTT system willy fre-
guency response A (e ) The following is known:
(1) The system has a stable, causal inverse,
i DO, L 1 = 08 o
{1y |Hief*| = ;
i S+ dcosw
Determine f[x] in as much detail as possible,

Let xin] = x[n] 4+ jx;ir] be a complex-valped sequence such that X{.c_-f‘-'“j = ) for
= = w «< (). The imaginary part is

mr=73

xiln] = [1 0

Specity the real and imaginary parts of X (/2.
Ain] is a causal, real-valued sequence with A{0] nonzero and positive. The magnitude
sguarcd of the frequency response of s} is given by

et o | 2
His'" = 1_,:] =i cosie),

{a} Determinc a choice for Afr].
ib} Is your answer to parl (b} unigue? If so, explain why. If not, determine 2 second,
distinet choice for ha] satisfying the given comditions.

Let x[r] denote a causal, complex-valued sequence with Fourier transform
Xiel®y = Xpied®) + jX (/™)
If X pled™) = | + cos{e) + siilw) — sin{2e), determine X p(e!™).
Consider a real, anticausal sequence x[r] with DTFT X (e, The real part of x[f-f"”; is
1 II-.
X (el = E(l.rz:."‘ cos(ku).
k=¥

fau

Find Xp{ef™), the imaginary part of X (e
amticousal il xin] =0 for n = (k)

1. {Remember thal 2 sequence is said (o be
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IL15, x[n]is a real, causal sequence with DTFT X e®). The imaginary part of X (e/2) is
Ton X (/) = sin om,

and it is also known that

(=

Z xinl =13,

=
Determine xin].

12.16. Consider a real, causal sequence x|n]| with DTFL X el where the following twao facts
are given aboul X (ed ™)

X pled™ =2 — 4 coni3al,
Xie!"|yam = 7.
Are these facts consistent? That is, can a sequence x[#| satisfy both? If so, give one choice
for x[n]. I not, explain why not,

12.17. Consider a rcal, causal, finite-lenpth signal £{n| with length & = 2 and with a 2-poimt
DFT Xlk] = Xglkl + jXflk) for & = 0, LI X g &) = 28[k] — 44[& — 1), 15 it possible to
determine c[r| unigquely’? 1fso, give xlnl. 1T not, give several choices for x[n] satisfying the
stated condition on X glk].

1218, Letxin]bearcal-valoed, causal, finite-length sequence withlenglth ¥ = 3. Find twochoiees
for x[a] such that the real part of the DFT X g[&] matches that shown in Fipure PI21E.

Mote that only one of vour sequences is “periodically causal” according {o the definition
in Section 102, where x[n] =Gfor W/2 =m = & — 1.

c xylk]

f [+

b1 2k Figue P12.18

12319, Lot xla| beareal, causal, Dmile-length sequence with length ¥ = 4 that 15 also periodical by
catsal. The real part of the 4-point DFT X g[£] for this sequence is shown in Figure P12.14,
Determine the imuginary parl of the DFT jX71&]

4 Kplk]

Y
—
T f—
=

k  Figure P12.19

12,20 Clonsider asequence x[n] that is real, causal, and of finite length with & = 6. The imaginary
part of the G-point DFT of this sequence is
—j2IN3, k=1,
JXfI] =y j23, k=4,
0, otherwisc.
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Audditionally, it is known that

‘i 5
: 3 Xpkl=1.
k=01

Which of the sequences shown in Figure P12.20 are consistent with the information given?

203 ifn] 1 an Ll
.
01 2 3 4 1 "
-3
f xylnl
Id
- 2 -
a1 & % -5 b

i 73
[ ]
- - -- -8 = —_
0 1 j l 4 5 g E 2 3 4 5 t
-3 273
L L Figure P12.20

12.21. Let xjx] be a real causal sequence for which [x[#]| = 2¢. The z-transform of x|# | is

b

Xizgy= Zx[nlz_"=

r=I}

which is a Tavlor's series in the variable 7 ! and therefore converges to an analytic function
everywhere outside soms circular dise centered at z = (0 {The ROC includes the point
z = e, and, in fact, X (o) = 2[00} The statement that X {7) is analvtic {inits ROC) implies
strong constraints on the function X {z). {See Churchill and Brown. 1990, ) Specifically, its
real and imaginary parts each satisfv Laplace’s equation, and the real and imaginary parts
are related by the Cauchy—Riemann equations. We will use these properties to deterinine
X (z) from its real part when £[r] is a real, finite-valued, causal sequence.
Lat the s-transform of such a sequence be

Xiz) =Xl + fXilz).
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where Xgiz)and Xy(z) are real-valued functions of 7. Suppose that X giz)is
R i
7 ;

Xp (,r:nf-’l""’} = er real,
for z = pe™, Then find ¥ (z) {as an explicit function of z), assuming that X (z) is analvlic
everywhere except at 3 = (. Do this using koth of the following methods
{a} Method §, Frequency Domain. Use the fact that the real and imaginary pans of X {2
must satisfy the Cauchy-Ricmann equations everywhere that Xz} is analyiic The
Cavchy—Riemann equations are the following:
1. In Cartesian coordinates,

auv  av dv alf

ax 9y’ Gx av’
where : = x 4 jyand Xix = jvd = Oz v} 4+ i Vie, vl
2. In polar coordinates,
ol 1av gV 14l

=

ap  p e G0 p oo
where 7 = pt-i:“‘ and X (ped®) = Uip, w) + JVig, w)
Since we know that 7 = ¥ g, we can integrate these equations to find V = X; and
hence X. (Be careful to treat the constant of integration properfy.)

(b) Metizad 2, Time Domain. The sequence x[n) can be represented as x[al = x.|n|—x,n),
where rp[a] 5 real and even with Fourier transform Kpie!™)pand the sequence x.n)
is real and odd with Fourier transform jX;(e!), Find x.|n] and, using causality, find
xoln] and hence x[n] and Xiz).

r[n]is a causal, real-valued sequence with Fourier traosform XGe/*) s Known that
Re[X (/™) = 1 4 Je08ar 4 o08 Ja

Dretermine a choize for x(»] consistent with this information, and specify whether or not
your choice is unigue,
z[n] is a real-valued, causal sequence with DTHET Xief®y. Determine a choice for [n] if
the imaginary part of X (e} is given by:

In{X (e/®)} = 2sing2w) — 2sin(3w).

Show that the sequence of TIFS coeflicients Tor the sequence

L. n=0 - NS2,
tynl=92 n=123 ... N/I-1,
0, n=N2+1.....N-1,
is
. N, k=1,
Liglk] = & —j2ootimk/Ny, kodd,
0, keven, k #0,

fing: Find the z-transform of the sequence
apdn| = 2ufn] = 2uln — N /2] = 3ln] + §ln — N /2,

and sampie it to obtain k1.
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Advanced Problems

1225,

1L.26.

12.27,

12.28,

Congider a real-valued finde-duration sequence xlal of length M. Specifically, x[a] =

fore < (and i = M - 1. Let X[&] denote the N-point DFT of x[z] wih N = M and N

odd, The real part of X[#4} is denoted X g|&].

(2] Determine, o terms of M, the smallest value of ¥ that will permit X[k] to be uniguely
determined from X g |&].

{b} With ¥ satislving the condition determined in part (a), X[#] can be expressed as the
circular convolution of X gk with a sequence Iy (4] Determine 0y k).

vrfn]is a real-vilued sequence with DTEFT ¥/}, The sequences ye[a]and viln]in Figure
P12.26 are interpreted as the real and imaginary parts of a complex sequence vin), ie.,
v[rl = vefnl = fvi[n]. Determine a choice lor H{ed in Figure P12.26 50 that ¥ (/") i3
¥y ied™) for negative frequencies and zero for positive frequencies between -7 and 7, ie.,
yielvy — IFF{FML —r=w<0

(1. [l = ¢a = 17

yen] v[n]
¥in|=wln] + ivdn|

H[fjm} —— __L"[.H]

L}

Figure P12.26  Systerm for abtaining yln] trom g [2].

Consider a complex sequence hln] = h[n] + jhi[n], where h; [n] and k;[«] are both real
sequences, and let H e/} = Hp{e!™) = jH;(e!™) denote the Fourier transform of fin),
where Hg(e! ™) and Hp(e™) are the real and imaginary parts, respectively, of Hie/ ™).

Let Hppie!®) and Hg (¢/%) denote the even and odd parts, respectively, of Hg(e/®),
and lel Hppie/™), and Hgpie/™) denole the even and udd parts, respectively, of Hy(ed®),
Furthermaore, let Hq (o) and Hge'™) denote the real and imaginary parts of the Fourier
transform of #-|# ]|, and let He(ef*) and Hpie™) denote the real and imaginaty parls
of the Fourier transform of h;[n]. Express Ha(e!™), Hpie/™), Hetel™), and Hple/®) in
terms of Hpp (e/™), Hopie'™), Hpy(e/®), and Heptef®).

The wleal Hilbert transformer (90-degree phase shifler) has [requency response {over one
periodd )
i | =d =),
He!*) = 7. o -z ).
Figure P12,28-1 shows (/) and Figure P12.28-2 shows the [requency response of an
ideal lowpass filter H) {efey with cutoff frequency wp = m1/2. These frequency responses
are ¢learly sirmlar, Cﬂﬁﬁ'l. having discontinuities separated by .

Hiehv)

J r——

=f

Figure P12.28-1
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Hlp{'*'le

2w - -
=

2 Figure P12.28-2

{a) Obtain a relationship that expresses H (2%} in terms of H]F-ff*’.ﬂ’:l. Solve this equation
for Hjﬂ{er-"*’-"] in terms of H (e},

(b} Use the retationships in part (a) o obtain expressions for hla] in terms of -’rl}.,fnl amd
fioar Frlp[r:] in terms of ka).

The relatichships obtained in parts (a) and (1) were based on definitions of ideal
systems with zero phase. However, similar relationships hold for nonideal systems
with generalized lincar phase.

(ep Use the results of part (b} o oblain a relationship bebween the impulse response
of a causal FIR approximation 1o the Hilbert transtormer and the impulse response
of & cansdl FIR approximation o the lowpass filler, Both of which ane designed by
(1} incorporating an appropriaie linear phase, (2) determining the corresponding
ideal impulse response, and (3} multiplving by the same window of length (M 4 1)
samaples, Le., by the window method discussed in Chapler 7, (11 necessary, consider
the cases of M even and M odd separatelyv.)

(d} Tor the Hilbert transformer approximations of Example 12.4, sketch the mapnitude
of the frequency responses of the corresponding lowpass filters,

In Section 12.4.3, we discussed an efficient scheme for sumpling a bandpass continuous-
tine signal with Fourer ransform such that

Sty =10 for (§2 = %, and 8| = 2. + AL

In that discussion, it was assumed that the signal was initially sampled with sampling fre-

guency 2o /T = 28, + AR The bandpass sampling scheme is depicted in Figere 12,12,

After we form a complex bandpass discrele-tume signal +Jn] with one-sided Fourier trans-

form &ief), the complex signal is decimated by a factor M. which is assumed 1o be the

largest integer loss than or equal o 2o AT

{a} By carrying through an example such as the one depicted in Figure 12,13, show that if
the gquantily 2 /(AT s nol an integer for the initial sampling rale chosen, then the
resulting decimated signal sy [n] will have regions of nenzero length where its Fouriar
transform 5, (i) is identically zero.

i{b) How should the initial sampling frequency 2/ T be chosen 5o that a decimation faclor
M can be found such that the decimated sequence syfr ] in the system of Figare 12,12
will have a Fourier transform &g (e/™) thal s not aliased yet has no regions where it
s zeto over an mierval of nonzero length’

Consider an LT1 system wilh frequency response.

1, D=w=m

Je
Bl 1, o o= L

The input x{#] to the system is restricted o be real valued and to have a Fourier transform
{i.e, xln] is absolulely summable). Determine whether or nol it is possible (o always
unigualy recover the system input from the system output. If it is possible, deseribe how,
[f it 15 not possibic, cxplain why not,
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Extension Problems

1231,

1232

Derive an integral expression for B{z) owside the unit cirele in terms of Re| Fied®yl when
Mln]is 4 real, stable, and causal sequence, ie., Aln| = 0fora = 0.

Let H{-] denote the {idealy operation of Hilbert transformation; that s,

e

Hix[all = 3 x[kla(n — ¥,
=i
where s ] is
2sint{wn/2)
k[n] = T' i Hif'ﬂ.
0, n=10

Frowe the following properties of the ideal Hilbert transform operator,
(a) H{Hx[n]}) = —xin]

0
{h) Z r[a|H{z[n]} =0 [Hine: Use Parseval's theorem.]

===
(€) Hiz[nlsy[n]l = Hlx|r]}*yIn] = xln]+H{¥[r]]. where x|n]and y|s | are any sequences

An ideal Hilbert transformer with impulse response

Zsin (a2 ,
— . n#o

0, n=1i.

hinl =

has inpul xin] and owtput xianl = x.(n] = &lnl, where 0] is a discrete-time randeom
signal.

{a} Find an expression for the autocorrelation sequence @y, [} in terms of k] and
e (]

(b) Find an expression for the cross-correlation sequence gy, fm].Show that in this case,
dry,x, [m)] is an odd function of m.

{) Find an expression for the autocorrelation funclion of the complex analviic signal
xlnl = xp[n] + jx;{n].

(d) Dretermine the power spectrum #e (o) [or the complex signal in part {c),
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1234, In Section 1243, we discussed an efficient scheme for sampling a bandpass continuous-

time signal with Fourier transform such that
S =0 for |fl-=0. and I =2, +AD.

The bandpass sampling scheme is depicted in Figure 12,12, AL the end of the section,
a scheme for reconstructing the original sampled signal se[n] was given. The original
continuous-time signal s-{r) in Figure 12,12 can, of course, be reconstructed from s fr]
by ideal bandlimiled interpolation (;deal D/C comversion). Figure P12.34-1 shows a block
diagram of the system for reconstructing a real continuous-time bandpass signal from a
decimated complex signal. The complex bandpass fGlter Hflﬁﬂ-"""'j in the figure has a fre-
quency response given by Bq. {12.79).

1' Ideal
- M - - e
Vedln) Fealni] | COBPIEE |y f] | erter| Fo)
handpass
filter 1'
—_— p Hile™) | T
Y] ¥ielm| vilnl Figure P12.33-1

(a) Using the example depicted in Figure [2.13. show thal the system of Figure F12.34-1
will recomstruct the original real bandpass signal (e, 3.0t} = se080) o the inputs 1o
the reconstruction system arc yglrl = s;gle] and vigin] = s;4ln1.

(b) Determine the impulse response fpinl = hyla] = jlgiln] of the complex bandpass
filter in Figure 1!12.34-1.

{c) Draw a more detailed block disgram of the system of Figure P12.34-1 in which only
real operations are shown, Ehmamate any parts of the disgram that are not necessary
to compute the final output.

(d) Mow consider placing a complex LTT system between the svsiem of Figure 12,12 and
the syseemof Figure 1 2.34-1. This isdepicted in Figure P12.34-2, where the frequency
response of the system is denoted Hiet™), Determine how Hie!) should be chosen
if 1 is desired that

Yol iS2) = Hop (2151752},
where

I, @ =R =+ a0/2,

Heg (75 = ![}. atherwise.

Complea ;
o] 1 ¥aaln]
SYRLET
Hie™
alr] ¥ul"l  Figure P12.34-2



Chaprar 12

Proglems

ars

1235, In Section 123, we defined a sequence ifn] referred to as the complex cepstrum of a

sequence x[n], and indicated that a causal complex cepstrum ¥[#] is cquivalent to the
mimmum-phase condition of Section 5.4 on x[#]. The sequenee x[a]is the inverse Fourier
transform of X(e/™) as defined in Eq. (12.53). Note that because X(e4®) and X (e4™) are
defined, the ROC of both X (z} and X () must include the unit circle,
fa) Justify the statement that the singularities (poles) of X(z) will ocour wherever X(z)
has either poles or zeros. Llse this fact to prove that if ¥[»] is causal, x[«] is minimum
phase.
(B} Justify the statement that if x[r] is minimum phase the constraints of the ROC require
#{n) 1o be causal,
Wecan examine this property for the case when x[a] can be wrilten as a superposition
of complex exponentials. Specifically, consider a sequence cfn] whose z-transform is

l"fl. Ml‘.‘l
r[u a;ca_]}nﬂ bz}
k=1 k=1

X@ =4

i

) M, :
[T - a0 -4

k=1 k=1

where A = 0 and ag, &y, o and gy all have mapnitude less than one.

(c) Wrile an cxpression for .i’fr.‘] = log X{z}.

(d} Solve for x[n] by taking the inverse z-transform of your answer in part fe).

(¢} Bascd on part (d) and the cxpression for X (z), arguc thal for scquences x(n) of this
form, a causal complex copstrum is cquivalent to having minimum phage.



