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13.0 INTRODUCTION

‘Throughout this text, we have focused primarily on lineay sigoal processing methods,
Tn this chapter, we introduce a class of nonlinear techniques referred to as cepsiriom
analysis and homoniarphic deconvelution. These methods have proven to be effactive
and wseful in a variety of applications. In addition, they further ilustrale the considerabie
Hexihility and sophistication offered by discrete-time signal processing lechnolomies,

In 1963, Boaert, Healy, and Tukey published g paper wilh the unusual litle = The
Ouelrency Analysis ol Time Series [or Cehoes: Cepstrum, Pscudoautocovarianes, Cross-
Cepstrum, and Saphe Cracking”(See Bogert, Healy and Tukey, 1963 They observed
that the logarithm of the power spectrum of a signal containing an echo has an additive
perindic component due o the echo, and thus, the power spectrum of the logarithm of
the power spectium should exhibir a peak at the echo deiay. Vhey called this function
the cepsirm, interchanging letters in the word spectrivn because “in general, we find
ourselves operaling on 1he lrequency side in ways caslomary on the Gime side and vice
versa.” Bogerl o alowent on lo deline an exlensive vocabulary W describe this now sip-
nal processing lechnigue; however, only the lerms cepstrum and quelrency have been
widely used.

Al aboul the same lme, Oppenheim {1964, 1967, 196%:) proposed @ new class
ol swstems called homorrorphic systems. Although nonlinear in the classic sense, these
svstems satisfy a generalization of the principle of superposition; i.e., input signals and
their corresponding responses are superimposed (combined) by an aoperation having
ihe spme alpebraic properiies as addition. The concepl of homomorphic svstems 1s very
aeneril, bul it has been studicd most extensively Tor Lhe combining operations o mul-
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tiplicalion and convolution, because many signal models involve these operations The
transformation of a signal inlo its cepstrum is a homomorphic transformation that maps
convolution into addition. and a refined version of the cepstrum is a fundamental part
of the theory of homomaorphic systems for processing signals that have been combined
by convolution,

Since the introduction of the cepstrum, the concepts of the cepstrum and homo-
morphic systems have proved wselul in signal analysis and have been applicd with sue-
cess in processing specch signals (Oppenheim, 1969h, Oppenheim and Schafer, 1968 and
Schafer and Rabiner, 1970}, scismic signals (Ulryeh, 1971 and Tribolet, 1979}, biomed-
ival signals (Senmoto and Childers, 1972}, old acoustic recordings {Stockham, Cannon
and Ingebretsen, 1975), and sonar signals (Reut, Pace and Heator, 1985). The cepstrum
has also been proposed as the basis for spectrum analysis (Stoica and Moses, 2005), This
chapter provides a detailed treatment of the properties and computational issues associ-
ated with the cepstrum and with deconvolution based on homomeorphic systems. 4 num-
ber of these concepts are illustrated in Section 13.10n the context of speech processing,

13.1 DEFINITION OF THE CEPSTRUM

The original motivation for the cepstrum as defined by Bogert et al. isillustrated by the
following simple example. Consider a sampled signal x[»] that consists of the sum of a
signal v[n] and a shilted and scaled copy (echo) of that signal; 1.e.,
xlnl = vln] + avln = ngl = vln) + Sln} + wbln — nglh {13.1)
Moting that x[n] can be represented as a convolution, it follows that the discrete-time
Fourier transform of such a signal has the form of a product
X {5 = Vie!) 4 ae 90 (13.2)
The magnitude of X (e/*) is
X (ef)] = |V (e ™)[(1 + o + 2u coslang)) 7, (13.3)
a real even function of o The basic observation motivating the cepstrum was that the
logarithm of the product such as in Eq. (13.3) would be a sum of two corresponding
terms, specilically
log | X (/)| = log |Vie/)| + } log(] + «® + 2u cos(wny)). (13.4)
For convenience. we define O, [e/*) = log | X (e'®)|. Also, in anticipation of a discussion
in which we will want to siress the duality between the time- and frequency- domains,
we substitute @ = 2§ 10 obtain
Cole? ™) = log | X (') = log |[Vie'™ )| + % log(l + & + 2acos(2rfng)). (13.5)
There are two components to this real lunction ol normaheed frequency £ The
term log |V (7277 is due solely to the signal v[a], and the sceond term, logil + o +
2 cos( 2w Fug)) is due to the combination (echoing) of the signal with itself. We can
think of €, (27271} as a waveform with comtinuous independent variable £ The part
due to the ccha will be periodic in £ with period 1/n5.' We are used to the notion

1Because lopfl o2 + 2o Con (2 Fag )y is the log-magnitude of o DTFT, it is alse periodic in f with
pectod one (2m inow), as well as 170,
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that a periodic time waveform has a line spectrum, i.e., is spectrun is concentrated at
integer multiples of a commen fundamental frequency, which s the reciprocal of the
fundamental period. Tn this case, we have a “waveform™ that is a real, even function
of f (i.e., frequency). Fourier analysis appropriate for a continuous-variable periodic
function such as Cy(e/*™') would naturally be the inverse DTFT; i.e.,

1 T : ; 152 : it
exlnl = 5— [ Cole?™ e ™ da = f i Celef?m Nyt 20ing g, {13.6)
- i2

In the terminology of Bogert et al., ¢, |n] is referred to as the cepstrum of Co(e/271)
(or equivalently, of x[n] since (/7)) is derived directly from x[a]). Although the
cepsirum defined as in Eq. (13.6) s clearly a function of a discrele-time index », Bogert
el al. introduced the term “quefrency™ to draw a distinetion between the cepstrum time
domain and that of the original signal. Because the term log(1 + & + 2 cos( 27 frg))
in €, (/270 s periodic in f with period 1/, the corresponding component in e, [n]
will be nonzero only at integer multiples of np, the fundamenial quefreney of the term
logi1 + e + 2o cos(2x Fay}). Later in this chapter, we will show ihat for this example
of a simple echo with jo| = 1, the cepstrum has the form

2o k
eslnl = colnl+ Y (=1 :—k{_&{n + kng] + 8ln — kngl), (13.7)
b—1

where ¢, |r] is the inverse DXTFT of log | Vied®y|, (Le., the cepstrom of vinl), and the
discrete impulses involve only the echo parameters o and ny. It was this result thai
led Bogert et al. to observe that the cepstrum of a signal with an echo bad a “peak”
at the echo delay time ny that stands out clearly from ¢, [n]. Thus the cepstrum could
he used as the basis for derecting echoes. As mentioned above, the strange -sounding
terms “cepstrum” and “quefrency”™ and other terms were created to call attention fo a
new way of thinking about Fourier analysis of signals whercin the time and frequency
domains were interchanged, Tn the remainder of this chapter, we will generalize the
concept of cepstrum by using the complex logarithm, and we will show many intercsting
properties of the resulting mathematical definition. Furthermore, we will see that the
complex cepstrum can also serve as the basis for separaing sipnals that are combined
by convolution.

13.2 DEFINITION OF THE COMPLEX CEPSTRUM

As the basis for generalizing the concept of the cepstrum, consider 4 stable sequence
x[n] whose r-transform expressed in polar form is

X(2) = |X(2)led 2X 2, (13.8)
where (X} and /X {z) are the magnitude and angle, respectively, of the complex

function X {z}. Since xfn| is stable, the ROC for X (2) includes the unit circle, and the
DTET of x[n] exists and is equal o X {e/™}). The complex cepstrim associated with x[n]
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is defined 1o be the stable sequence #[n]? whose z-transform is
Xiz) = logl X (2)]. (13.9)

Although any base can be used for the logarithm, the natural logarithm (i.e., base ¢}
is lypically wsed and will be assumed throughout the remainder of the discussion. The
logarithm of a complex quantity X (z) expressed as in Eq. (13.8) is defined as

Togl X ()] = logli X (z)ief SX @ = log {X (2} + j£ X (2}, {13.10)

Since in the polar representation of a complex number the angle is unique only to within
integer multiples of 2z, the imaginary part of Eq. (13,10} is not well delined. We will
address that issue shortly; for now we assame that an appropriate definition 15 possible
and has been used.
The complex cepstrum exists if log[ X {z}] has a convergent power series represen-
tation of the form
e ]
X =loglX(]= ) #ml™ =1, (13.11)

M — 0D

ie, Xiz) = logfX (z)] must have all the properties of the z-transform of a stable se-
quence. Specifically, the ROC for the power series representation of log[ X (1)] must be
of the form

rR < |z| = ro, (13.12)

where {} < rg = 1 = rp, Ifthis is the case, £[x], the sequence of coefficients of the power
series, s what we call the complex cepsrrun of x[n]-

Since we require £[n] to be stable, the ROC of X(z) includes the unit circle, and
the complex cepstrum can be represented using the inverse DTFT as

1 = .
kln] = 5 ToglX (/) ]e ™" dow
T (13.13)

i
g Hog | X (/)] + j2X (e )Ne/ ™ dw.
2 J_ o

The term complex cepstrum distinguishes our more general definition from the
original definition of the cepstrum by Bogert et al. {1963}, which was originally stated in
terms of the power spectrum of continuous-time signals. The use of the word complex
m this context imphes that the complex loganthm 15 used in the definition. Tt does not
imply that the complex cepstrum is necessarily a complex-valued sequence. Indeed, as
we will sec shortly, the definition we choose for the complex logarithm ensures that the
complex cepstrum of a real sequence will also be a real sequence.

The operation of mapping a sequence x[a] into its complex cepstrum £[n] is de-
noted as a discrete-time system operator DL1) e, ¥ = DLx] This operation is depicted
as the block diagram on the left in Figure 13.1. Similarly, since Eq. (13.9) is invertible
with the complex exponential function, we can also define the inverse system D7'[-]

21n a somewhat more general definition of the complex copstrum, x[a] and £ [4] nced not be restricted
to be stable, However, with the restriction of stability the important concepts can be ilustrated with simpler
notation than i the peneral case
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x|l i[n] e yln]  Figure 13.1  Systern notation for the
—] oy P —_— 0] — mapping and inverse mapping betweean
a signal and its complex cepstrum.

which recovers x{z] from £[n). The block diagram representation of D, !} .| is shown on
the right in Figure 13.1, Specifically, D.[1and D2 Y[ ]in Figure 13.1 are defined so that if
¥lu] = 2lx)in Figure 13.1, then y[i] = x[#]. In the context of homomaorphic filtering of
convolved signals to be discussed in Section 13.8, D[] 1 called the characteristte system
for convolulion.

As mtroduced m Section 13.1, the cepstrum o fn] of a signgﬁ 15 defined is the
inverse Founer transform of the logarithm of the magnitude of the Founer transform;
| N~

"
e dn] = ok f log | X (ef™}| e da. (13.14)
r f_q ,
Since the Fourter transform magnitude is real and nonnegative, no special considera-
tions are involved in defining the logarithm in LEq. (13.14). By comparing Eg. {13.14)
and Eq. (13.13), we see that ¢ [n] is the inverse transform of the real part of Xied®y,
Consequently ¢, |n] is equal to the conjugate-symmetric part of ¥|n|; i.e.,
fln]+ ¥ [—n]
5 s

The cepstrum is useful in many applicaiions, and since it does not depend on the phase
of X{e/*}, it is much easier to compute than the complex cepstrum. However, since it
is based on only the Fourier transform magnitude, it is not invertible, i.e., x[»] cannot
in general be recovered from ¢ ln). except in special cases. The complex cepstrum is
somewhat more difficull to compute, but it 15 invertible. Since the complex cepstrum
is @ more general concept than the cepstrum, and sinee the properties of the cepstrum
can be denved from the properties of the complex copstrum using Eq. (13,15), we will
emphasize the complex cepstrum in this chapter.

The additional difficulties encountered in defining and computing the complex
cepstrum are worthwhile for a variely of reasons First, we see from Eq. (13.10) that the
complex logarithm has the effect of creating a new Fourier transform whose real and
inaginary parts are log 1X (¢/“)] and £ X (¢}, respectively. Thus, we can obtain Hilbert
transform relations between these two guantities when the complex copstrum is causal.
We discuss this point further in Section 13.5.2 and see in particular how it refates o
minimum-phase sequences. A second more general motivation, developed in Scetien
13.8, stems from the role that the complex cepstrum plays in defining a class of systems
for separating and filtering signals that are combined by convolution,

(13.15)

cifm] =

13.2 PROPERTIES OF THE COMPLEX LOGARITHM

Since the complex logarithm plays a key role in the definition of the complex cepstrum,
it is important to nnderstand its definition and properties. Ambiguity in the definition

Ao, {m] s also referred Lo as the real cepatraan bo cmphasizne that it corresponds L only the real part of
the complex logarithm,
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of the complex logarithm causes serious computational issues. These will be discussed
in detail in Section 13.6, A sequence has a complex cepstrum if the logarithm of its
z-transform has a power series expansion, as in Eq. (13.11), where we have specified
the ROC to include the unit circle. This means that the Founer transform

X (25 = log | X (279 + §£ X (272 13.16
! i FLXq

st be a continuouws, periodic function of e, and consequently, both log [ X (04| and
£ X (e must be continnous funetions of e, Provided that ¥ (z) does nol have zeros on
the unit citcle, the continuity of log | X (e/™)] is puaranteed, since X {¢/™) i5 assumed to be
analytic on the unit cirele. Hlowever, as previously discussed in Section 5.1.1, £ X (e/*) is
in general ambipnous, since at cach e, any integer multiple of 2 can be added, and con-
tinuity of £ X (e/*} is dependent on how the ambiguity is resolved. Since ARG| X {e/*)]
can be discontinuous, it is generally necessary to specify £ X (/) explicitly in Eq. (13.16)
as the unwrapped (i.e., continuous} phase curve arg[ X (e/*}].
It is important to note that if X{z) = X,{z)X2(z). then

argl X{e’)] = arglX, (e/*)] + arg[Xa(e’™)]. (13.17)
A similar additive property will not hold for ARG[X (¢/*)], i.e.. in general,
ARGIX (/™)) 2 ARGIX (/)] + ARG[X2(e/¥)]. (13.18)

Therefore, in order that X (#f} be analytic {continuous) and have the property that if
ey = X1 (e X2 (™), then

Ktel™y = X(e'™) + Xale™), (13.19%
we must define Ko/ as
X(e') = log | X (2"} + jargl X (¢'™)1. (13.200

With x[r] real, arglX {e/*}] can always be specified so tha; it is an odd periodic function
of w. With arg] X («/® )] an odd function of w and log | X (¢/*')| an even function of w, the
complex cepstrum ¥|n | is guaranteed to be real?

13.4 ALTERNATIVE EXPRESSIONS FOR THE COMPLEX
CEPSTRUM

Sofar we have defined the complex cepstrum as the sequence of coefficients in the power
series representation of Y= logh X (2}, and we have also given an integral formula in
Eq. (13.13) for determining #[n] from X{e/®) = log | X (e/)| < £ X(e/¥), where £ X (&/©)
is the unwrapped phase function arg[X {e/2}]. The logarithmic derivative can be used
to derive ather relations for the complex cepstrum that do not explicitly involve the
camplex logarithm. Assuming that log[X (z)] is analvtic, then

i X'z
; Xz}

he approach sutlined above to the probicms presented by the complex loganithm can be developed
mare formally throngh the concept of the Rizmann surface {Brown and Churehill, 20087,

(13.21)
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where ' denotes differentiation with respect to 2. From property 4 in Table 3.2, = 8'(x)
is the z-transform of —affa], Lo,

e {13.22)
Consequently, from Eq. (13.21),
o z X'(z)
o e L 3.23
nifn) X {13.23)

Beginning with Eq. (13.21 ) we can also derive a difference equation that is satisfied
by x{r] and £[#]. Rearranging Eq. (13.21} and multiplying by =, we obtain
Xy =2X'(2) X(2). (13.24)
Using Eq. (13.22), the inverse z-iransform of this cquation is

)
—nxlnl = ) (—kE[kD)xln — kL {13.25)
=i
Dividing both sides by —n, we oblain
iy
et ERA] I e F i
Mal= 3’ (”)x[k],r[u k., n#0 (13.26)
k=—oc
The value of 7{{}] can be obtained by noting that
A T i
T Y(e'*Vdw. 3.
#(0] = o f _Kee el (13.27}
Since the imaginary part of X (¢/*) is an odd function of w, Eq. {13.27) becomes
1
0] = %f log | X (e/™)|dew. (13.28)
L

Insummary, a signal and its complex cepstrum satisfy a nonlinear difference equa-
tion { Eq. (13.26)). Under certain conditions, this implicit relation between #{r] and x[x]
can be rearranged into a recursion formula that can be used in computation. Formulas
of this type are discussed i Section 13.6.4.

13.5 THE COMPLEX CEPSTRUM FOR EXPONENTIAL,
MINIMUM-PHASE AND MAXIMUM-PHASE
SEQUENCES

13.5.1 Exponential Sequences

If a sequence xfr] consists of a sum of complex exponential sequences, its z-transform
Xizyisarational function of 7. Such sequences are both useful and amenable 1o analysis,
In this section, we consider the complex cepstrum [or stable sequences xin| whose z-
transforms are of the form

M, A,
Az ]—[fl = akz_'J 1—[:'1 — byzh
et e 5 {13.29)

, N
Hf' — ez ) JFIU —dy 7}
k=1

=1
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where |ail, [ , ok, and |dy| are all less than unity, so that factors of the form (1 —agz™")
and (1 — exz™") correspond to the M; zeros and the N; poles inside the unit circle, and
the factors (I — byz) and (1 — ¢lez) correspond 1o the M, zeros and the N, poles outside
the unit circle. Such z-transforms are characteristic of sequences composed of a sum
of stable exponential sequences, In the special case where there are no poles {i.e., the
denominator of Eq. {13.29) is unity). then the corresponding sequence x|n| is a sequence
of finite length (M +1 = M, + M; + 1).
Throughthe properties of the complex logarithim, the product of terms in Eq. {13.29)

is transformed to the sum of logarithmic terms:

M M,
X(z) =logld) + log(z") + ng:l —apr h+ Z logil — bez)
k=1 P

(13,300}

i Na
- Elug{l - c;:;‘l} - z‘lng[l —dp 7).
k=1 k=1

The properties of £[a] depend on the composite propertics of the inverse transforms of
cach term.

For real scquences, A is real, and if A is positive, the hirst term log{A) contributes
only to £[0]. Specifically, {see Problem 13,15},

£[0] =log|Al. {13.31)

If A is negative, it is less straightforward to determine the contribution to the complex
cepstrum due to the term log{A). The term " corresponds only to a delay or advance
of the sequence t|n]. If r = 0, this term vanishes from Eq. {13.30). However, il r = 0,
then the unwrapped phase function arg| X (e/*)] will include a linear term with slope
r. Consequently, with arg| X {#/*}] defined to be odd and periodic in w and continuous
for |ea| = o, this linear-phase term will force a discontinuity in argf X (e#)] at w = o1,
and X {z) will no longer be analytic on the unit circle. Although the cases of A negative
andior r 3= (Fcan be formally accommodated, dning soseems Lo offer no real advantage,
because if two transforms of the form of Eq. (13.29) are multiplied together, we would
not expect Lo be ghle w determine how much of either A or r was contributed by each
component. This is analogous to the situation in ordinary linear filtering where two
signals, each with de levels, have been added. Therefore, this guestion can be avoided in
practice by first determining the algebraic sign of A and the value of r and then altering
the input, so that its z-iransform is of the form

A, Mo
|a1|nil n;,z"]}ﬂﬂ-—b;:}
X{_.] — k—_l k=l

]

(13.32)

"
{1-— f:tz_1) Hfl — dyz)
k=1 k=1
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Correspondingly, Eq. (13.30) becomes

M'. '1'{-4-
Xizv=logla|+ Y log(l —az™) 4 log(l - biz)
k=1 ke (1333)
N Na
- Z log(l — ez~ hy — Zlog[’l — 7).
k=1 k=1

With the exception of the term log | A|, which we have already considered, all the terms
in Eq. (13.33) are of the form log{1 — wz~ 1) and log(1 — Az). Bearing in mind that these
factors represent z-transforms with regions of convergence that include the unit circle,
we can make the power series expansions

LR |
log(l —az 1) = _Z‘:—I: L TRt (13.34)
R=
[ ) II";"I
log(l—pay=—3 —2"  lel<if"| (13.35)
me1

Using these expressions, we see that for signals with rational z-transforms as in
Eqg. (13.32), i[n] has the general form

log [A], n=1I0 {13.36a)
M: Ne n
e e n = 0, (13.36h)
=1 =" ="
M N
L .F_'I' R ¥ d B
B Z i w0, {13.36¢)
n "
k=1 k=l

Mote that tor the special case of a finite-length sequence. the second term would
be missing in cach of Egs (13.36b) and (13.36¢). Equations (13.36a) to {13.36c) suggest
the following peneral properties of the complex copstrum:

Property 1: The complex cepstrum decavs at least as fast as 1/|n|: Specifically,

o
|Efr]| = C—, —00 = B = 0o,
7|

where O is g constant and « cquals the maximum of @y, [l Jo], and |dy |_‘;I
Property 2: in] will have infinite duration, even if x[#] has finite duration.

Property 32 11 x[n] is real, 2[#] is also real.

*In practice, we generally deal with finite-length signals, which are represented by polyaomials in g 1.
ie., the mumerator in Eg. (13.32). In many cases, the sequence may be hundreds or thousands of samgpics long,
For such sequences, as the sequence length increases, 6 is increasingly likely that almost all of the weros of
the polyaomal witl chaster around the unit arcle (Hoghes and Nikeghbali, 20058) This imphies that for long
finitz-lengrh sequences, the decay of the complex cepstrum 15 duc primarily to the facoor 1/a,
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Properties 1 and 2 follow directly from Eqgs. (13.36a) to (13.36¢). We have sugpested
property 3 earlicr on the basis that for x[n] real, log | X {/%)| is even and arg[X (e/¥}] is
odd, so that the inverse transform of

X(ef®) = log X (¢/™)| + jargX (/)]

is real. To see property 3 in the context of this section, we note that if [r] is real, then
the poles and zeros of X (z) are in complex conjugate pairs, Therefare, for every complex
term of the form «" /n in Fgs. {13.36a) to (13.36¢) there will be a complex conjugate
term {x" )"/, 50 that their sum will be real.

13.5.2 Minimum-Phasze and Maximum-Phase Sequences

As discussed in Chapters 5 and 12, 2 mimmum-phase sequence is a real, causal, and
stable sequence with all the poles and zeros of the c-transform inside the unit circle,
Note that Tog[X(z)] has singularities at both the poles and the zeros of X (z). Since we
require that the ROC of log] X (1] include the unit circle so that &[n] is stable, and sinee
causal sequences have an ROC of the form rg = |z], it folfows that ther¢ can be no
singularitics of logl X (2)] an or outside the unit circle if £[r] = Ofor & < (0. Conversely,
if all the singularities of ¥(z) = log] X(z)] are inside the unit circle, then it follows that
#[n} = (i for n < 0. Since the singularities of X(z) are the poles and the zeros of X1(z),
the complex cepstrum of x[n] will be causal (i[a] =0 forr < 0)if and only if the poles
and zeros of X (2} are inside the unit circle, In other words, x[r] is a minimum-phase
sequence if and only if 1ts complex cepstrum is causal.

This is easily seen lor the case of exponcatial or imte-length sequences by con-
sidering Eqs (13.36a)—(13.36¢). Clearly, all terms in Eq. {13.36¢) will be zero if all the
cocflicients & and dp are zeto, Le,, if there are no poles or zeros outside or on the unit
circle. Thus, another property of the complex cepstrum is

Property & The complex cepstrum xjn] = 0 for n < 0 if and only if x[n] is minimum
phase, i.e, X (z) has all its poles and zeros inside the unit circle,

Therefore, causality of the complex cepstrum is equivalent to the minimum phase lag,

minimum group delay, and minimum epergy delay properties that also characterize
minimum-phase sequences

Exampie 12.1 Complex Cepstrum of a Minimum-Phase Echo

System

i The concept of the cepstrum arosc inilially from a consideration of echoes. As we
:.5’! showed in Section 131, 2 signal willl an echo s represented by a convalution
w;é xfm] = wjr] % pir]. where

5 :

F‘u* pla] = 8[r] + wsla ~ ry) b Pz} =1+ "0 (13.37)

= The zeros of Piz) are at locations zp = al/mg/2eibk=1i000n and if |a| < 1, all the
o0 zeros will lie inside the unit circle, in which case pln) is a minimum-phase system. To
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% find the complex cepstrum flr]. we can use the power series expansion of log[ Piz))
a5 in Section [3.5.0 to obtain

o Ll
Pizy=log[l + ez ™] = - E L_-:} = (13.38)
n=I

2 from which it [ollows that

o m
n S N out] E i
plal= 3 (=1} - Bl — mny]. {1339)
m=|
From Eq. (13.39), we see that d|n! =0 form = Ofor ju| < ! as it should be for o
‘s minimum-phasc system. Furthermore, we see thal the nonzero values of the complex
¢ cepstrim for the avnimume-phase echo system oceur at positive iteger mulliples of sy,

Maximum-phase sequences are stable sequences whose poles and zeros are all
oniside theunit circle. Thus, maximum-phase sequences are left-sided, and, by analogous
arguments, it follows that the complex cepstrum of a maximum-phase sequence is also
left-sided. Thus, another property of the complex cepstrum is:

Property 5 The complex cepstrum [r] = U for n = Uif and only if x[#] is maximum
phase; Le, Xz} has all its poles and zeros outside the unit circle.

This property of the complex cepstrum is easily verified for exponential or finite-
length sequences by noting that if all the ¢xs and as are zero {i.e.. no poles or zeros
fnside the unit circle), then Eq. (13.36b) shows that &[u| = (for # = 0.

In Example 13.1, we determined the complex cepstrum of the impulse response
of the echo system when |¢| < 1;1.¢., when the echo s smaller than the direct signal. Tf
j#| = 1, the echo is larger than the direct signal, and the zeros of the system function
Pizy =1+ wz7™ lic outside the unit circle, In this case, the echo system is 4 maximum-
phase syslem.'ﬁ The corresponding complex cepstrum is

i —
flnl = log ju|dn] + Z:(—]]l'"’"’1 “—-G[ri 4+ magl. {13.40)
L
=]
From Eyg. (13.40) we see that flr] = b forn = 0 lor (o] = 1 as it should be lor
i maximum-phase system. In this case, we see that the nonzero values of the complex
cepstrum for the maximum-phase cchosystem oeeur at negative inteper multiples of ry.

13.5.3 Relationship Between the Rea! Cepstrum and the
Complex Cepstrum
As discussed in Sections 13.1 and 132, the Fourier transform of the rea] cepstrom o, [#]
is the real part of the Fourier transform of the complex cepstrum %[»], and equivalently,
e Jnl corresponds to the even part of X[»]. 1.e.,
] E[n)+ x[—n]
eln) = =T

2

E‘F{:} =3z "0 + %0y hay eg potes al ¢ =1, which are ignored in computing x|

(13.41)



Section 13.5 Properties of the Complex Cepstrum

| — |
boasy i . Tnverse s
’{‘“'“lnl,, Fourier | A1) log Slen). Fu:nr'cr ol i
transiorm transfornt
frnin[ﬂ]

Xpleiw) = log [Xiaiw)|

Figure 13.2  Determination of the complex cepstrum for minimum-phase signals,

If ¥[n] is causal, as it is if x[#] is minimum phase, then Eq. (13.41) is reversible,
1.e., t[n] can be recovered from cefn] by applying an appropriate window to o [n].

Specifically,
Eln] = cylnlfmialnl, {1342th
where
Zn=10
fmin[n] =2un] —fn]l=4 1la=0 . (13.42h)
On <0

Equations (13.42a) and (13.42b) indicate how the complex cepstrum can be oh-
tained from the cepstrum and consequently also rom the log magnitude alone if x[a]1s
known tobe minimum phase. Thisis alsoillustrated in block diagram formin Figure 13.2.

[n the following example. we ilustrate Eqgs (13.41) and {'I3.42.!.1} for the minimume-
phase echo svstem of Example 13.1.

Example 13.2 Real Cepstrum of a Minimum-Phase
Echo System

i Comsider the complex cepstrum of the minimum-phase ccho system as givenin Eq. (13.39)
2% in Example 131, From Eq. (13.41) it follows that the real cepstrum for the minimem-

phase echo system is

Lt
]

}

Sep e

{ !}M'H E"IEH - mnp]
|

Nll—--
[V"af.

.2'5 T

i I ..LN'\.
B

L;_-Fnl

.

ﬂl

(Y - Bln g, {13.43)

T
Il

]
“.‘5-1‘_?
+
. [“,E

Since dl-n] = dlal, Eq. (13.43) can be written in the more compact form
cplr] = Zi 1™ 1 {6[!‘! — mup) +dln +mngl) . {13.44)

: Also note that il'rp[ni 15 given by Faq. (13.44) and £,;,{n] 15 given by Eq. (1342}, then
Eat Eminlnleplin] is equal o Bl in Eq. (13.39).
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Figure 13.3 Cascade of three systemns implementing the computation of the
complex cepstrum aperation Oy .

13.6 COMPUTATION OF THE COMPLEX CEPSTRUM

The practical use of the complex cepstrum requires accurate and efficient computational
methods to obtain it from a sampled signal. Implicit in all of the previous discussions
has been the assumplion of unigueness and continuity of the complex logarithm of
the Fourier translorm of the inpul signal, [F the malhematical representations obtained
above are to serve as the basis for computation of the complex cepstrum, or cquivalently,
as the basis for realizations of the system Dy[-], then we must deal with the ssues
associated with computing the Fourier transform and the complex logarithm.

The system £, |-| is represented in terms of the Fourier transform by the equations

(s =)
Xie*y= 3" xlnje /", {13.45a)
n=—r0
Xeel™) = log[X (2], {13.45h)
| L
fin] = f Rie'™)e!"dew, {13.45¢)
P 2 e

These equations correspond to the cascade of three systems as depicted in Figure 13.3.

In computing the complex cepstrum numerically. we are limited to finite-length
input sequences, and we can compute the Fourier transform at only a finite number of
frequencies. That is, instead of using the DTFT, we must use the DFT. Thus, instead of
Egs. (13.45a) to {13.45¢), we have the computational realization

N—1
X[k] = X (e'™) = Z x|n]e” 1R/ Mkn (13.46a)
w={2m; Nk )
X1k] = log|X (/)] . (13.46b)
w={2Zm Nk
1 N—
= (Fmsin l\i‘ﬂ‘. .
Epln] = ; ke & (13.46¢)

These operations are depicted in Figure 13.4{4), and the corresponding operations for
realizing the mverse system are depicted in Figure 13.4(b).

Since in Bq. {13.46b) ¥[k] is a sampled version of Xie/™), it follows from the
discussion in Section 8.4 that #,[#] will be a time-aliased version of £[a], 1.e., that £ ,[a]
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Figure 13.4 Approximate realization using the DFT of (a) L4 [ -] and (b} Oy 1{-].

is related to the desired £{n] by

ket

fplnl= ) Fn+4rN], (1347)

=00

However, we noted in Property 1 in Section 13.5 that #[n] decays [aster than an exponen-
tial sequence, so it 1s to be expected that the approximation would become increasingly
betier as N increases. By appending zeros to an input sequence, it is generally possible
to increase the sampling rate of the complex logarithm of the Fourier transform so that
severe time aliasing does not occur in the compuration of the complex cepsirum

13.6.1 Phase Unwrapping

Samples of X(2/) as given by Eg. (13.46h) require samples of log|X (e/*)| and
arg[ X (¢/*) ). Samples of log| X (¢/*)| ata suitable sampling rate can be computed by com-
puting the DFT of x|n | with zero padding. Samples ARG| X (/%) ], Le., the phase modulo
2m are likewise straightforward to compute from samples of X (7'} by using standard
mverse tangent routines available In most high-ievel computer languages. However, to
obtain the complex cepstrum or its aliased version fp(n}. we require samples of the
unwrapped phase argl X (¢/*)]. Consequently, effective procedures for unmwrapping the
phase, that is, obtaining samples of the unwrapped phase from samples of the phase mod-
ule 27, become an important computational aspect of obtaining the complex cepstrum.
Toillustrate the issues, consider a finite-length causal input sequence whose Fourier

transform is of the form

M
Xiel™) = Z;[ﬂje’_jm
= 13.48
M, M, (a40)
= Ae— oM n[l — ape” 1) 1_[{1 — bee!™,

r=l k=1
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where |ai| and [y are less than unity, M = M, + M, and A is positive, A continuous-
phase curve for a sequence of this form is shown i Figure 13.5(a). The dots indicate
samples al Irequencies ay = (2 /W, Figure 13.5(b} shows the principal value and its
samples ascomputed from the DFT of the input sequence. One approach to unwrapping
the principal-value phase is based on the relation

arg(X[k]) = ARG(X[k]) + 2 rlk], (13.49)

where r[k] denotes an integer that determines the appropriate multiple of 2 to add 1o
the principal value at frequency we = 2 k/ . Figure 13.5(c) shows 2w r[k] required to
obtain Figure 13.5(a) from 13.5(b). This example suggests the following algorithm for
computing r[k] from ARG{X[k]} starting with r[(}] = (&
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L IFARGEX[ED — ARGIXTE - 1) = 2x — s thenr[k] = rfk — 11— |

2. HARGIXE]) — ARGIXTE — 17) = —(2x —ey), then r[k] = [k — 1]+ 1,
3. Otherwise, rlk] = r[k — 1].

d, Repeatsteps 1 —3forl =& <« N/Z.

After rlk] is determined, Eq. (13.49) can be used o compute arg( X k] for 0 = & < N2,
AL this stage, arg{ X14]) will contain a large linear-phase component due to the factor
e f*M: in Bq. (13.48). This can be removed by adding 2z&M,/N to the unwrapped
phase over the interval 0 = £ <= N/2. The values of argtX A for ¥W/2 <k = NV — T can
be obtained by using symmetry. Finally, arg{ X{N 2]} =0,

The above algerithm works well if the samples of ARG{X[k]) are close enough
together so that the discontinuities can be detected reliably, The parameter £; is a toler-
ance reeogmizing that the magnitude of the difference between adjacent samples of the
principal-value phase will always be less than 2. If £1 15 1oo large, a discontinuity will be
indicated where there is none, IT gy 15 oo small, the algorithm will miss a discontinuity
falling between two adjacent samples of a rapidly varying unwrapped phase function
urg[l’{ei"’}]. Obviously, increasing the sampling rate of the DFT by increasing & im-
proves the chances of correctly detecting discontinuitics, and thus, correctly compiting
arg( X |[k[). If arg] X (/)] varies rapidly, then we expeet £[n] to decay less rapidily than
if arg[ X (e/*)] varied more slowly. Therefore, aliasing of £[n] is more of a problem for
rapidly varying phase. Increasing the value of & reduces the aliasing of the complex
cepstrum and also improves the chances of being able to correctly unwrap the phase of
X[k] by the previously described algorithm.

In some cascs, the simple alporithm we just developed may fail because it 15 im-
possible or impractical to use a large enongh value for &. Often, the aliasing for a given
N is acceptable, but principal-value discontinuities cannot be reliably detected, Tribo-
let (1977, 1979) proposed a modification of the alporithmn that wses both the principal
value of the phase and the phase derivative to compute the unwrapped phase. As above,
Eq. (13.49) gives the set of permissible values at frequency ey = {27/ ¥k, and we seck
to determine r[4]. Tt is assumed that we know the phase derivative,

i d .
arg (X[k]) = Eargfxte-"”ﬂ
L w=2rkiN

at all values of k. (A procedure for computing these samples of the phase derivative
will be developed in Section 13.6.2.} To compute arg{X {4 we further assume that
arg( X[k — 1) is known, Then. arg( X [E]}), the estimate of arg( X[ ). is defined as

o A ; ;
TR(X k) = arg(X|k — 1) + —-{arg (X|k]) + arg'(X1k — L]} (13.50)

Equation (13.50) is obtained by applying trapezoidal numerical integration to the sam-
ples of the phase derivative. This estimate is said to be consistent if for some =2 an integer
rlk] exists such that

[aTg( X[k — ARG(X[k]) — 2mr(k]| <& < 7. {(13.51)

Obviously, the estimate improves with decreasing numerical integration step sz A,
Initially, Aw = 2x/N as provided by the DFT If Eq. {13.51) cannot be satisfied by
an integer rlk], then Aw is halved, and a new estimate of argt X[k]) is computed with
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the new step size. Then, Eq. (13.51) 15 evaluated with the new estimate. Increasingly
accurate estimales of arg(X[k|y are computed by numerical integration until Eq. (13.51)
can be satisficd by an integer r[k]. That resulting r[&] is used in Eq. (13.49) to finally
complte argf X [k]). This unwrapped phase is then used to compute arg(X[k + 1]}, and
S0 On.

Another approach to phase unwrapping for a finite-length sequence is based on
the fact that the z-transform of a finite-lenpth sequence is a finite-order polynomial,
and therefore can be viewed as consisting of a product of 1*-order factors For each
such factor, ARG X (e/*}] and arg| X (/*}] are equal, i.e., the phase for a single factor
will never require unwrapping. Furthermore, the unwrapped phase for the product of
the individual factors is the sum of the unwrapped phases of the individual factors.
Consequently, by treating a finite-length sequence of length N as the coefficients in an
N'_order polynomial, and by first factoring that polynomial into its 13'-order factors,
the unwrapped phase can be easily computed. For small values of &, conventional
polynomial-rooting algorithms can be applied. For large values, an effective algorithm
has been developed by Sitton et al. (2003} and has been successtully demonstrated with
polynomials of order in the nullions. However, there are cases in which that algorithm
also fails, particularly in identifving roots that are not close to the unit circle,

In the discussion above, we have briefly described several algorithms for obtaining
the unwrapped phase, Karam and Oppenheim {2007} have also proposed combining
these algorithms to exploit their various advantages.

Other issues in computing the complex cepstrum from a sampled input signal x[s]
relate Lo the linear-phase term in arg[X (¢'"")] and the sign of the overull scale factor
A. In our definition of the complex cepstrum, argl X (/"] 15 required 1o be conlinuous,
add and periodic in w. Therefore, the sign of A must be positive, since if negative, a
phase discontinuity would oceur al e = (. Furthermore, arg[ ¥ (/)] cannol contain a
linear term, since that would impose a discontinuity &t o = . Consider, lor example,
a finite-length causal sequence of length M 4 1. The corresponding z-transform will be
ol the lorm of Eq. {1329} with N,=N=0, and M=M,+M;_ Also, since x{n] =0.n = [,

it follows that r = —M,,. Consequently, the Fouriet transform takes the [orm
M
X = Ex[n]f"“““
A=)

o y (13.52)
= Ag oM I-[H — ape i) nfl — Brei®y,
k=1 k=

with Jag, and |by| less than unity. The sign of A is easily determined, since it will corre-
spond to the sign of X (&/*) at & = 0, which, in turn, is easily computed as the sum of
all the terms m the input sequence.

13.6.2 Computation of the Complex Cepstrum Using the
Logarithmic Derivative

As an alternative to the explicit computation of the complex logarithm, a mathematies|
representation based on the loganithmic denvative can be explonted. For real sequences,
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the derivative of X(e/*) can be represented in the equivalent forms

A dXiel) o ; i :
e = —— = —log | X{e!™)| + j—arg[X (' 13.53a
(/%) = TE " = - log X (/)| 4+ jo—amg[X(e/)]  (13.53)
and
: . X'I{F-‘fmj
X'ie!) = —, 13.53b
") X (eiv) ( )
where ' represents differentiation with respect to w. Since the DTFT of x[a] is
X(e/®y= Y x[nle~4en, (13.54)
n=—o0
ils derivalive with respect to a is
]
X'(e!®) = Z {—jnx|n]e” /=" (13.55)
=0

ie, X'tel®) is the DTFT of —jrx[a]. Likewise, ¥'(e/®) is the Fourier transform of
— jnx[n]. Thus, [r] can be determined for n & () from

_[ Id:rl: x ] {#jm']

_ledmitg, ; 3.
sani | ;r(,gw}f din o {13.56)

¥la] =
The value of 1[{1] can be determined from the log magnitude as

| ;
I = e f_! log | X (/)| dw, (13.57)

Equations (13.54) to {13.57) represent the complex cepstrum in terms of the
DTFTs of x|n] and nx[n] and thus do not explicitly involve the unwrapped phase. For
finite-length sequences, samples of these transforms can be computed using the DFT,
thereby leading lo the corresponding equations

N-1 |
K[A] — EI[HIE—_.HE::;'?'«']I:M . H{Ejfal}: . [131:—’32_.}
A=l an=(2m Wk
MN—1 s .
X'kl =—j 3 nxlnle™ 2N — xiede . {13.58b)
nadl w={2m /N &k
& 1 iy X’ij JiEm ke l <nm=N_-1 {]3 58_}
Egpln] = ——— i ; =n=N-1 SEc
inM T X[k]
|
Sapl = S log | XTKII, (13.58d)
=il

where the subscript of refers to the use of the logarithmic derivative and the subscript
p is a reminder of the inherent periodicity of the D171’ calculations. With the use of
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Egs {13.58a) to {13.58d), we avoid the problems of computing the complex logarithm
at the cost, however, of more severe aliasing, since now

Eqplnl = 3—1 Z in+riNixfn+rN), an£0 (13.5%)

rE=—G

Thus, assuming that the sampled continwous phase corve is accurately computed, we
would expect that for a given value of ¥, ¥aln] in Eq. (13.46c) would be a berter ap-
proximation to §|n] than would &,,|n] in Eq. (13.58c).

12.6.2 Minimum-Phase Realizations for Minimum-Phase
Sequences
In the special case of minimum-phase sequences, the mathematical representation is

simplifted, as indicated in Figure 13.2. A computational realization based on using the
TFT in place of the Fourier transform in Figure 13.2 is given by the equations

=1

X[k =3 xfnle d@mime, (13.601)
n=0
1 Nl .
cxpln] = 5 3 Tog X[k e/ XV, (13.60b)
L=l

In this case, it is the cepstrum that is aliased; ie.,
(S
cplnl = 3 cln+ril {13.61)
F==—o30

To compute the complex cepstrum from c.p[#] based on Figure 13.2, we write:

"-_x,nt-n|. n=1{, N/,
'?l!'f-'l”'-l =14 2egplnl, 1=n= N2, (13.62)
i Nflen=N-1

Clearly, z.5n] # %gln), since it is the even part of 2[r] that is aliased, rather than %[a]
itself. Nevertheless. for large &, &.5(n | can be expected to be areasonable approximation
10 #(r] over the finite interval 0 = n = N /2. Similarly, if r[n] is maximum phase, an
approximation to the complex cepstrum would be obtained from

cypinl. n=10. N/
Teplnl = 9 O, l=n< N2 (13.63)
2egpln], Nj2Z<nm=N-L

13.6.4 Recursive Computation of the Complex Cepstrum
for Minimum- and Maximum-Phase Sequences

For minimum-phase sequences, the difference Eg. {13.26) can be rearranged to provide
a recursion formula for $[a]. Since for minimum-phase sequences both i[n] = 0 and
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xln]=0farn < 0, Eq. (13.26) becomes
H

xinl = Z (:) Pk]x[n — k] no=0,

o
{13.64)

a—1

= ¥|n]x{0] + E (E) Ilk]x[n — &].
=0 s/

which is & vecursion for 3, | for minimum-phase signals. Solving for {n] vields the
recursion formula

0, a =
Aa—Ll .
iln]l = { xln] kY., xln — k] _ (13.65)
v’l_'lﬂl éu [” ) x[k_.—x oy a o=

Assumming x[(0] = (b, the value of £[(}] can be shown to he (zz¢ Probiem 13.15)
2101 = log(|Al} = log(|x [0, (13.66)

‘Therefore. Egs. (13.65) and (13.66) constitute a procedure for computing the complex
cepstrum for minimum-phase signals It also follows [rom Eq. (13.65) that this com-
putation is causal for minimum-phase inputs: ie., the output at time ny is dependent
only on the input for » = ny. where ny is arbitrary (see Problem 13.20). Sitmlarly,
Eqs (13.64) and (13.66) represent the computation of the minimum-phase sequence
from its complex cepstrum.

For maximum-phase signals, x|n| = 0, and x[n| = 0 for n = 0. Thus, in this case
Eq. {13.26) becomes

L} IR

in] = Z [f—JJ Ilk)x[e — k], n o 0,

k--q

= (13.67)
k
— F[n|x|0] + Z (EJ 2klxln — £].
k=nr=1
Solving for £[n], wo have
0 i

x[n] & x[n — k]
; m - z [;;) i[;’.i_'-rlﬂl . M= ﬂ'. .
Xa]= f— {13.68)

Lop(xd |_!I.- n =1
0, n = 0,

Equation {13.68) serves as a procedure for computing the complex cepstrum for a
maximum-phase sequence and Eq. (13.67) is a computational procedure for the inverse
charscteristic system for convolulion,

Thus we see that in Lthe case of minimum-phase or maximum-phase sequences,
we also have the recursion formulas of Egs, {13.64)-{13.68) as possible reahzations of
the characteristic system and its inverse. These equations can be guite vseful when the
input sequenee is very short or when only a few samples of the complex cepstrum are
desired. With these lormulas, of course, there is no aliasing error.



1000

Ghaptar 13 Capstrurn Analysis and Homomarphic Daconvolution

12.6.5 The Use of Exponential Weighting

Exponential weighting of a sequence can be used to avoid or mitigate some of the
problems encountered in computing the complex cepstrum. Bxponential weighting of
a sequence x[r] is defined by

win] = a™x[n]. (13.64)
The corresponding z-transform is
Wiz) = X{a 'z). (13.70)

I the ROC of X(2)isrp = Iz| = rr.then the ROC of Wiz)is |o|lrg = |2] < lalrz, and
the poles and zeros of X(z) are shifted radially by ihe factor |w); i.e., if z; is & pole or
zero of Xz}, then zpw is the corresponding pole or zero of Wiz),

A convenieni property of exponential weighting is that it commutes with convo-
lution. That is, if x[n] = % [n] * x2|n] and win] = &"5[n], then

Wiz = Xia'2) = X (e ' 2) X007 2). (13.71)
so that
wln] = (a"xq{n]} * (@" x2[n]} ;
(13.72)
= wry[n] = wzfn].
Thus, in computing the complex cepstrum, if X (z) = X{z) Xa(z2).
Wiz) = log[W(z)]

. (13.73)

= log[ Wy (z)] + log| Wa(z)].

Exponential weighting can be exploited with cepstrum computation in a variety
of ways. For example. poles or zeros of X(z) on the unit circle require special care
in computing the complex cepstrum. It can be shown (Carslaw, 1952} that a factor
log(1 — &/%==/*) has a Fourier series

Rl
logil — e 10y =~y E_gmion (13.74)

=1 "
and thus, the contribution of such a term to the complex cepstrum is (e/%" fnjuln - 1].
However, the log magnitude is infinite, and the phase is discontinuous with a jump of =
radians at « = ¢. This presents obvious computational difficulties that we would prefer
to avoid. By exponential weighting with 00 = & < 1, ail poles and zeros are moved
radially inward. Therefore, a pole or zero on the unit circle will move inside the unit
circle.

As another example, consider a causal, stable signal x[x] that is nonminimum
phase. The exponentially weighted signal, wln] = ox[n]. can be converted into a
minimum-phase sequence if o is chosen, so that |7,.,0] < 1, where £, 18 the location
of the zerp with the greatest magnitude.
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13.7 COMPUTATION OF THE COMPLEX CEPSTRUM
USING POLYNOMIAL ROOTS

In Section 13.6.1, we discussed the {act that for finite-length sequences, we could exploit
the facl that Lhe z-transform is a fimite-order polvnomial, and that the total unwrapped
phase can be obtained by summing the unwrapped phases for each of the factors 1f the
polynomial is first factored into its 19 -order terms using a polynomial rooting algorithm,
then the unwrapped phase for each faclor is casily specilied analytically. In a similar
mannet the complex cepsirum for the finite-length sequence can be oblained by first
factoring the polynomial, and then summing the complex cepstra for cach of the lactors,

The basic approach is suggested by Section 13.5.1. If the sequence x[n] has finite
length, as is cssentially always the case with signals obtained by sampling, then its z-
transform is a polvnomial in z " of the form

A
Xiz) = Z_ﬂu]z n (13.75)

n=l0

Such an M"-arder polynomial in z~! can be represented as

My M,
X(2y=x[0] [Tt —amz™) [ 1 - 83"z 7, (13.76)
mol me=l

where Lhe gquantitics &, are the {complex) wcros that lie inside the unil circle, and the
guantities b;,;,' are the zeros that are oulside the unit crcle; e, |aq| < 1 and |by] < 1.
We assume that no zeros lie precisely on the unit eircle. [T we factor a term —&7 'z 7! out
of each factor of the product on the right in Eq. (13.76), that equation can be expressed

as
M; &
X(3) = Az~Me l_[“ iy w1y l_i” — bz, {13.77a)
m=1 =1
where
M,
A=xol=10% [w, L (13.77h)

This representation can be computed by using a polynomial rooting algorithm to find
the zeros g and 175, that lie inside and outside the unit circle, respectively, for the
polynomial whose coefficients are the sequence x[n].”

Given the numeric representation of the z-translorm polynomial asin Egs (13.77a)
and (13.77b}), numeric values of the complex cepsirum sequence can be computed from

7 Perbaaps not surprisingly, it is rate that a computed oot of 4 polynomial is precisely on the unit sircle.
In cases where this soours, such roots can be moved by expoacntial weighting, ag described in Section 13.6.5
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Eqgs. (13.36a)—(13.36c) as
[ log | Al n =0,

M,
- ﬂﬂ, n o=,
in]= it (13.78)

R

3 S

If A < 0, this fact can be recorded separately, along with the value of M, the number of
roots that are outside the unit circle. With this information and £, we have all that is
needed to reconstruct the original signal x|, Indeed, in Section 13,82, it will be shown
that, in principle, t[n] can be computed recursively from just M + 1 = M, + M; +1
samples of £r].

This method of computation is particularly useful when M = M, |- M; issmall, but
it is not limited to small M. Steiglitz and Dickinson (1982) first proposed this method
and reported successful rooting of polynomials with degree as high as M = 256, which
was a practical limit imposed by computational resources readily available at that time,
With the polynomial rooting algorithm of Sitton et al. (2003), the complex cepstrum
of extremely long finite-length sequences can be accurately computed. Among the ad-
vantages of this method are the fact that there is no aliasing and there are none of the
uncertainties associaled with phase unwrapping.

13.8 DECONVOLUTION USING THE COMPLEX

CEPSTRUM

The complex cepstrum operator O,[ |, plays a key role in the theory of homomorphic
systems, which is based on a generalization of the principle of superposition (Oppen-
heim, 1964, 1967, 19694, Schafer, 1969 and Oppenheim, Schafer and Stockham, 1968). In
homomorphic filtering of convolved signals, the operator £,[ | is termed the character-
istic system for canvolution since it has the special property of transforming convolution
into addition. To sce this, suppose

xln] = xy[n] * xa|n| (13.74)
s that the corresponding z-transform is
Xigh= Xl - Xz {13.80)

If the complex logarithm is computed as we have prescribed in the definilion of the
complex cepstrum, then

X(z) = lop| X (2)] = loglX ()] 4 log| X2(2)]

= 8,2+ Xai2), (13.81)

which implies that the complex cepstrum is
iinl = Dulxinl = xo[nl] = 1[0l 4 E2[n]- {13.82)
A similar apalvsis shows that f ¥[r] = win] 4+ el then w lfollows that

D:] [#11n] + ¥ (n]] = #i[a] = t2(r]. If the cepsiral components #[n] and £2[n] ocoupy
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Figure 13.6 Canonic form for homomorphic systems whers inputs and corre-
sponding outputs are combined by convolution.

different quefrency ranges, linear filtering can be applied to the complex cepstrum io
remove either xy{n| or xzx]. If this is followed by transformation through the inverse
system 2] 1, the corresponding component will be removed in the output. This proce-
dure for separating convolved signals (deconvolution) is depicted in Figure 13.6, where
the system /. ] is a linear {although nol necessarily time invariant) system. The svm-
bols + and + at the inputs and outputs of the component systems in Figure 13.6 denote
the operations of superposition that hold at each point in the diagram, Figure 13.6is a
general representation of a class of systems that obey a generalized principle of super-
position with convalution as the operation for comhining signals. All members of this
class of systems differ only in the linear part L[ |.

In the remainder of this section, we illustrate how cepstral analysis can be used for
the special deconvolution problems of decomposing a signal into either a convolution
of a mimimum-phase and allpass component or minimum-phase and maximum-phase
component. Tn Section 13.9, we illustrate how cepsiral analysis can be applied 10 de-
convolution of a signal convolved with an impulse train, representing for example, an
idealization of a multipath environment. In Section 13,10, we generalize this example
to illustrate how cepstral analysis has been successfully applicd to speech processing.

13.8.1 Minimum-Phase/Allpass Homomeorphic
Deconvolution

Any sequence x[n] for which the complex cepstrum exists can always be expressed as
the convolution of a minimum-phase and an allpass sequence as in

.T|."'i] = -rmfr.!l-”} * -xuplfﬂ- [:P!RT}

In Ey. (13.83) xpinln] and rypln] denote minimum-phase and allpass components re-
spectivily.

If xn]is not minimum phase, then the system of Figure 13.2 with input x[n] and
L] given by Bq. (13.42b) produces the complex cepstrum of the minimum-phase
sequence that has the same Fourier transform magnitude as x{n}, X £yar[r] = Eniel—n]
is used. the output will be the complex cepstrum of the maximum-phase sequence having
the same Fourier transform magnitude as x[#°,

We can obtain the complex cepstrum £, [n] of the sequence xyminl in Eq. (13.83)
through the operations of Figure 13.2. The complex cepstrum Xzpln| can be obtained
from X[n] by subtracling % [#] from %(n], Le.,

E.-n:phti = -El.”] — -inl.r'n [ﬁi

Tor obtain zup|n| and x,q0|n), we apply the transformation 12, L 40 Zminln] and %10,
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Figure 13.7 Ceconvolution of a sequence into minimum-phase and allpass companznts
using the cepstrum.

Although the approach outlined above to obtain xm,ln] and £,,|n) is theoretically
correct, explicit evaluation of the complex cepsirum &[x] is required in its implementa-
tion, If we are interested only in obtaining tmi, ] and xgp|n ], evaluation of the complex
cepsirum and the associated need for phase unwrappiog can be avoided. The basic strat-
egy is incorporated in the block diagram of Figure 13.7. This system relies on the facl
that

" X{fulml
ern{f'lw}: o o }l - {13-343}
s K uin lef*)
The magnitude of X,,(¢/™) is therefore
s | X (e
Xaple!™N = ————= {13.84b)
: EX in ()]
and
EXaple!®y = LX{7?) ~ d Xpun(e?™). (13.84¢)

Since xgp[n] is obtained as the inverse Fourier transform of /< ¥sr¢™ ((hat is,
|Xl,p:_r:f’-"]- = 1), each of the phase functions in Eq. (13.84¢) need only be inown or
specified to within integer multiples of 2. Therefore, even though as a natural conse-
quence of the procedure outlined in Figure 13.7. £ X pin{e/™) = Tm{Xpinte!)) will be
an unwrapped phase function, £ X (e/#) in Eq. (13.84c) can be computed modulo 2.

13.8.2 Minimum-Phase/Maximum-Phase Homomorphic
Deconvolution

Another representation of a sequence is as the convolution of a minimum-phase se-
quence with a maximum-phase sequence as in

xlnl = zpplnl * Xpalnl, (13.85)
where xpnln] and x.,ln] denote minimum-phase and maximum-phase components,
respectively.” In this case, the corresponding complex cepstrum is

i[n] = Emnlnl = Lol {13.586)

*In peneral the minimumi-phase componenl teale] in Eq. 13.85) will be different from gq[a] in

By (13.83).

I.':luu["!
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Figure 12.8 The use of homomarphic deconvelution to separate a sequence inta
minimum-phase and maximum-phase components.

To extract xmalnf and 2, [n] from x[n], we specify ¥, n] as

Tmnlnl = Epalnlx[n], (13.87a)
where
Emaln] = ulrl]. (13.87h)
Similarly. we specily £, [n] as
Emeln] = Lpelnliing (13.88a)
where
Emy[n} = u[—n —1]. {13.585h)

Xwmnlr]and xq . [R] can be obtained Irom 3, [r] and £, [#], respectively, as the oatpat of
the inverse characteristic system D7 '[.]. The operations required for the decomposition
of Eq. (13.85) are depicted in Figare 13.8. This method of factoring a sequence into its
minimum- and maximum-phase parts has been used by Smith and Barnwell (1986) in
the design of filter banks. Mote thal we have arbitrarily assigned all of ${0] to £,.,(0],
and we have set &, (0] = 0. Obviously, other combinations are possible, since all that
is required is that %, [0] = % [0] = 2.

The recursion formulas of Section 13.6.4 can be combined with the representation
of Eq. (13.83) to yield an interesting result for finite-length sequences. Specifically, in
spite of the infinite extent of the complex cepstrum of a finite-length sequence, we can
show that for an input sequence of length M + 1, we need onlv M 4+ 1 samples of &{n]
to determine x|n]. To see this, consider the z-transform of Eq. (13,85}, i.e,,

Xiz) = Xpn (D) X (2) (13.89a)
where
M;
Xun(2) = AJJ01—auz™), (13.89b)
k=t
(5
Xmrtz) = [](1 - 2, (13,89

k=1
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with |az: < 1 and |k <= 1. Mote that we have neglected the delay of M, samples
that would be needed lor a causal sequence, 50 that xwr] = 0 outside the interval
(= = M and y,,. (7] = O outside the interval —M, = n = {}, Since the sequence x[#x]
is the convolution of x,,0n] and x,. [#1], 1L 15 nonzero in the interval =M, < r =< M,.
Using the previous recursion formulas, we can write

i} n =0,
A =1,
Koa[n] = A=l gy (13.90)
Elnlamn 0] + *-Zu (;) f[klxmeln — &) n o= 0,
and
i ;
Hnl+ Y (—) K[k lmeln — Kk, n =0,
n
Xex[n] = b=n+1 {13.91)
1, =1,
i, m o= A},

Clearly, we require M; 4+ 1 values of ¥[x] to compule xg,[r] and M, values of $[n]
Lo complle 1, [n]. Thus, only M, + M, + 1 values of the infinile sequence %[n] are
reguired to completely recover the minimum-phase and maximum-phase components
of the finite-length sequence x[n].

Az mentioned in Section 13.7, the result that we have just obtained could be used
to implement the inverse characteristic system for convolution when the cepstrum has
been computed by polynomial rooting. We simply need to compute xpq[n] and x,.[n]
by the recursions of Egs. (13.90) and (13.91) and then reconstruct the original sighal by
the convolution x{r] = Xualn] * Te (el

13.9 THE COMPLEX CEPSTRUM FOR A SIMPLE

MULTIPATH MODEL

Ax discussed in Example (3.1, & highly simplilied model of mulapath or reverberation
consists of representing the received signal as the convolution of the transmitted signal
with an impulse train. Specifically, with v[n] denoting a transmitted signal and plr] the
impulse response of a multipath channel or other sysiem generaiing multiple echoes,

xfnj = vln]* pln]. (13.92a)
of, in the z-transform domain,
Xz = ¥z Pz {13.92b)
In our analysis in this sectiom, we choose plw] to be of the form
plnl = d[n] + ol — Nl + B28In - 2Ny, {13.93a)
and its z-transform is then
1 — g3

P2y =14 pz Mo g2 o (13.93b)

1- gz ™M’
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Relz] z-transform X2y = WnFa for the
exampie signal of Figure 13,10,

For example, p(n] might correspond to the impulse response of a multipath channel or
other system that generates multiple echoes at a spacing of ¥y and 24, The component
#[n] will be taken to be the response of a 2% _order system, such that

Vi) = i mﬂ}i“_:rjﬂ“_z ',I.E-";.-.'z--p,- |20 = Ir. (13.942)
In the time domain, v[n| can be expressed as
vln| = dyw(n| + byuwiln — 1], {13.94b)
where
wlrn].= = [cos{fn) — cos[Bn + 2)]jufn], # # 0o {13.%4¢)

=

Figure 13.9 shows the pole—zero plot of the z-transform X (2} = V iz} P(z) for the specific
set of parameters by = 098, 5 = 1, 8 =r = 0.9, & = =/6, and N, = 15. Figure 13.10
shows the signals v{#r], plr], and x|#| for these parameters. As seen in Figure 13,10, the
convolution of the pulse-like signal v[#] with the impulse train p{s| results in a series
of superimposed delayed copies {echoes) of v|n].

This signal model is a simplifizd version of models that are used in the analysis
and processing of signals in a variety of contexts, including communications systems,
speech processing, sonar, and seismic data analysis. In a communications conlext, u[x]
in Egs. (13.923) and (13.92b) might represent a signal transmitted over a multipath
channel, x[#] the received signal, and p{»| the channel impulse response. In speech
processing, v[n] would represent the combined effzcts of the glottal pulse shape and the
resonance effects of the human vocal tract, while pla] would represent the periodicity
of the voeal excitation during voieced speech such as a vowel sound (Flanagan, 1972;
Rabiner and Schafer, 1978; Quaticer, 2002). Equation {13.944) incorporates only one
resonance, while in the penceral speech model, the denominator would generally inelude
at least ten complex poles. In seismic data analysis, vfa] would represent the wavelorm
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of an acoustic pulse propagaling in the earth due to a dynamite explosion or similar
disturbance. The impulsive component pla] would represent reflections al boundarics
between layers having different propagation characteristics. In the practical use of such
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a model, there would be more impulses in pln] than we assumed in Eq. (13.93a), and
they would be unequally spaced. Also, the component Vizh would generally involve
many mote zeros, and ofien no poles are included in the model {Ulrych, 1971: Tribolet,
1974, Robinson and Treitel, 1980}

Although the model discussed above is a highly simplified representation of that
encountered in typical applications, it is analytically convenient and useful to obtain
exact formulas to compare with computed results obtained for sampled signals. Fur-
thermore. we will see that this simple model illustrates all the important properties of
the cepstrum of a signal with a rational z-transform.

In Section 13.9.1, we evaluate analytically the complex cepstrum for the received
signal x[n]. In Section 13.9.2, we illustrate the computation of the complex cepstrum
using the DFT, and in Section 13.9.3 illustrate the technique of homomorphic deconvo-
lution.

13.9.1 Computation of the Complex Cepstrum by
z-Transform Analysis

To determine an equation for x|n], the complex cepstrum of «[#] for the simple model
of Eq. {13.92a). we use the relations

¥[r] = 0[] + pln], {13.95a)
Rizy = Vin) + B(2), (13.95h)
X(z) = loglX ()], (13.96a)
Viz) = log[V(z)l, {13.96b)
amd
Pz =log[ P(2)]. (13.96c)

To determine (n], we can directly apply the results in Section 13.5. Specifically. to
express V(z)in the form of Eq. (13.29), we first note that for the specific signal X (z) in
Figure 13.9, the poles of ¥{z) are inside the unit circle and the zero is outside {r = 0.9
and hy /by = 0,98}, 50 that in accordance with Eq, (13.29), we rewrite Vi) as

bz (1 4+ (ba /by )z)

v Il= — . 1
@) (1 —redz=1Y1 — pe—itz— 1y

gl = |rl. {13.97)

As discussed in Section 13.5, the factor z~! contributes a linear compaonent to the
unwrapped phase that will force a discontinuity at w = b in the Fourier transform of
i, s0 Viz) will not be analytic on the unit circle. To avoid this problem, we can alter
u[n] (and therefore alsa x[n]} with a one-sample time shift so that we evaluate instead
the complex cepstrim of u[# 41} and, consequently, alsa x[n 4 11. T x{n] or vin]is to be
resynthesized afier some processing of the complex cepstrum, we can remember this
time shift and compensate for it at the final output.

With v[n] replaced by vln + 11, and correspondingly Viz) replaced by zV{z), we
now consider V(2 1o have the form

by(l + (bn/Py)z)

Vi) = e
@ (1= reifz=1){1 = re-Ffz-1)

(13.98)
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From Eqs. (13.36a) to (13.36¢), we can write ifn] exactly as

lows by, n =10 {13.903)
T .
G ;[{HJ"E"]" + {re=iym, a =0, (13.99b)
ANl =
1 . o —R
- (b—b") : n =0, (13.99¢)
1

To determine pln), we can evaluate the inverse :-transform of f(z), which, from
Fg. (13.93b), is '

P(z) = logcl — B33 _log(l — gz, (13.100)
where for ourexample § = 0.9, and consequently, |#] = 1. One approach to delermining
the inverse r-transform of Eq. {13100} is o use the p-r.:wcr series expansion of P(z).
Specifically, simee |8] = 1,

P(~j _ a0 b _qhﬁk i lﬁ_ l"l'uII {]jllﬂ-l‘]
r=I k=1 k-
from which it follows that glx] is
) i '53k i e ﬁk .
flnl = —; -—k—&[ﬂ — ANpk] -+ g Tﬁfﬂ: — Npk]. {13.102)

An alternative approach (o oblaining pnl is 1o use the property developed in
Fraoblem 1328,
From Eq. (13.95a), the complex cepstrum of x[a] is
¥fu] = tlal + Hln), (13.103)
where #[n] and fn] are given by Egs. (13.99a) to (13.99c) and (13.102), respectively.
The sequences fi{a], flx], and £[r] are shown in Fgure 1311,
The cepstrum of x[#], ¢, [6], is the even parl of ¥[«], Le.,
eeln) = 3iln] + F—n]) {13.104)
and furthermore
erln] = oyln] + cplal, (13.105)
From Eqs. (13.99a) to (13.%9¢),

= (1) *b ) "

coln) = logibiidln] + 3 {aln — k] + dln + &])

o 2k
- (13.106a)
X eosiik)
+%{'r m;-" (5n — ] + 8 + ).
and from Eqg. (13.142),
colnl = 2t f_‘ ﬁ'afs[n INgk] 4 B[n + INpk])
- — .2 e k H SHNG [H
B (13.106b)
1 K
+ 5 ﬁ—{ﬁln — Nok] + 8[m + Ngkl).

=1
The sequences cylnl, ep[nl, and ¢, [#] for this example are shown in Figure 13,12
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13.9.2 Computation of the Cepstrum Using the DFT

In Figures 13.11 and 13.12, we showed the complex cepstra and the cepstra corre-
sponding to evaluating the analytical expressions obtained in Section 13.9.1. In most
applications, we do not have simple mathematical formulas for the signal values, and
consequently, we cannot analytically determine & [#] or ¢ [#]. However, for finite-length
scguences, we can use either polynomial rooting or the DFT to compute the complex
copstrum. In this section, we illustrate the use of the DFT in the computation of the
complex cepstrum and the cepstrum of x[#] for the cxample of this section.

To compute the complex cepstrum or the cepstrum using the DFL as in Fig-
ure 13.4{a), i is necessary that the input be of finite cxtent Thus, for the signal model
discussed at the beginming of this section, x[r#] must be truncated. lo the examples dis-
cussed in this section, the signal x|(a] in Figure 13.10(¢) was truncated to & = 1024
samples and 1024-point DFTs were used in the system of Figure 13.4{a) to compute the
complex cepstrum and the cepstrum of the signal, Figure 13,13 shows the Fourier trans-
forms that are involved in the computation of the complex cepstrum, Figure 13.13{a}
shows the logarithm of the magnitude of the DFT of 1024 samples of x|#] in Figure 13,14},
with the DFT samples connected in the plot to suggest the appearance of the DTFT
of the finite-length input sequence. Figure 13.13(h) shows the principal value of the
phase. Note the discontinuities as the phase exceeds + and wraps around modulo 27,
Figurc 13.13(c) shows the continuous “unwrapped” phase curve obtained as discussed
in Section 13.6.1. As discussed above, and as is evident by carefully comparing Fig-
ures 13.13(b) and 13.13(c), a lincar-phase component corresponding to a delay of onc
sample has been removed so that the unwrapped phase curve is continuous at O and 7.
Thus, the unwrapped phase of Figure 13.13{c) corresponds o x[r + 1| rather than x[n].

Figures 13.13(a) and 13.13{¢) correspond to the computation of samples of the
real and imaginary parts, respectively, of the U'T'FT of the complex cepstrum. Only the
frequency range 00 = w < 7 is shown, since the function of Figure 13.13{a) is even and
periodic with period 27, and the function of Figure 13.13(c¢) is odd and periodic with
period 27, In examining the plots in Figures 13.13{a) and 13.13{c), we note that they
have the general appearance of a rapidly varying, periodic {in fraquenc}r] component
added to a more slowly varying component. The peuodlcalhf varying component in fact
corresponds to £{e/*) and the mare slowly varying compaonent to V{e/),

In Figure 12.14{a), we show the inverse Fourier transform of the complex log-
arithm of the DFT, ieg., the time-aliased complex cepstrum %p|n). Note the impulses
at integer multiples of Ny = 15 These are contributed by fln] and correspond to the
rapidly varying periodic component observed in the logarithm of the DFT. We sce also
that ﬁigcc the input signal is not minimum phase, the complex cepstrum is nonzero for
n -z b

Since a large number of points were used in computing the DFTs, the time-aliased
complex cepstrum differs very little from the exact values that would be obtained by

¥In using the 13T to abtain the inverse Fourier transform of Hgures 13.13(z) and 13.134c), the values
associated with n < Owould normally appear in the interval &/2 < g = N — 1, Teaditionally, time scquences
ate displayed with » = 0 in the center, so we have repositioned -‘-:ﬂ" | 2ecordingly and have shown only a toral
of 207 points symmetrically shoul 1 = (0.
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evaluating Eqs. {13.9%a) to {13.99¢), (13.102), and {13.103) for the specific values of the
parameters used to generate the mput signal of Figure 13,111,

The time-aliased cepstrum ¢y, |n ] for this example is shown in Figure 13.14(b). As
with the complex cepstrum, impulses at multiples of 15 are evident, corresponding to
the peniodic component of the logarithm of the magnitude of the Fourner transform.

As mentioned at the beginning of this section, convolution of a signal v[»] with
an impulse train such as p[#] is 2 model for a signal containing multiple echoes. Since
x|n] is a convalution of vln] and plx], the echo times are often not easily detected by
examining x|u}. In the cepstral domain, however, the effect of pin] is present as an
additive impulse train, and conseguently, the presence and location of the echoes are
often more evident, As discussed in Section 13.1, it was this observation that motivated
the proposal by Bogert, Healy and Tukey (1963) that the cepstrum be used as a means
for detecting echoes. This same idea was later used by Noll {1967) as a bagis for detecting
vocal pifch in speech signals
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Flgure 13.15 (1) System far homomorphic deconvolution. (b) Time-domain rep-
resentation of frequency-Invariant filtering,

13.9.3 Homomorphic Deconvolution for the Multipath
Model

For the multipath model] that 1s the basis Lor Section 13.9, the slowly varying component
of the complex logarithm, and equivalently the “low-time” (low-quefrency) portion
of the complex cepstrum, were mainly due o v[r]. Correspondingly, the more rapidly
varying compoment of the complex logarithm and the “high-time™ {high-quefrency)
portion of the complex cepstrum were due primarily to pia]. This suggests that the
two convolved components of x[r] can be scparated by applying linear filtening Lo the
logarithm of the Pourier transform {i.«., frequency invarant filtering), or, equivalently
the complex cepstrum components can be separated by windowing or time gating the
complex cepstrum.

Figure 13.15({a} depicts the operations involved in separation of the components
of a convolution by filiering the complex logarithm of the Fourier transform of a sig-
nal. The frequency-invariant linear filter can be implemented by convolution in the
frequency domain or, as indicated in Figure 13.15(b), by multiplication in the time do-
main, Figure 13.16({a) shows the time response of a lowpass frequency-invariant linear
system as required for recovering an approximation to v[x], and Figure 13,16{b} shows
the time response of a highpass frequency-invariant linear system for recovering an
approximation to p[rz].m

Figure 13.17 shows the result of lowpass frequency-invariant fillening. The more
rapidly varying curves in Figures 13.17{a) and 13,17(b) are the complex logarithm of
the Fourier transform of the input signal, i.e., the Fourier transform of the comples cep-
strum, The slowly varying {dashed) curves in Figores 13.17(a) and 13.17(b) arc the real
and imaginary parts, respectively, of the Fourier transform of $[n], when the frequency-
invariant linear system £[r] s of the form ol Figure 13.16{a) with Ny = 14, Ao = 14 and
with the system of Figure 13,15 implemented wsing DFTs of length N = 1024, Figure
13.17{c) shows the corresponding output v[n]. This sequence is the approximation Lo

l:]l-'igurc 13,161 assumes that the systems D[] and Dy l[-] are implemented using the DFT as in
Figore 13.4,
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11 Figure 13.16 Time response of
""" frequency-invariant linear systems for
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i (8} Lowpass system. (b} Highpass
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-~ 3 N 5 N, N-] A the sequence £[n] a5 it would be applied

i in & DFT implementation. The dashed
(b line indicates the periodic extension. )

u[n] obtained by homomorphic deconvolution. To relate this output »[n] to vis|, re-
call that in computing the unwrapped phase, a linear-phase component was removed,
corresponding to a one-sample time shift of v|n). Consequently, ¥|[#] in Figure 13.17(c)
corresponds to an approximation to ¢[n <+ 1| abtained by homomorphic deconvolution.

This type of filtering has been successfully wsed in speech processing to recover
the vocal tract response information {Oppenheim, 1969; Schafer and Rabiner, 1970)
and in seismic signal analysis to recover seismic wavelets (Ulrvch, 1971; Tribolet, 1979).

Figure 13,18 shows the result of highpass frequency-invariant filtering. The rapidly
varying curves in Figures 13,18(a) and (b) are the real and imaginary parts, respectively,
of the Founer wransform of #]x] when the frequency-invariant linear systemn £{n] is of
the form of Figure 13.16(h) with N; = 14 and M> = 512 (i.e., the negative-time parts are
completely removed). Apgain, the sysiem is implemented using a 1024-point DFT. Figure
13.18(¢) shows the corresponding output ¥[al. This sequence is the approximalion 1o
plnl obtained by homomorphic deconvolution. In contrast to the use of the cepstrum Lo
detect echoes or periodicity, this approach seeks to oblain the impulse train that specifies
the location and size of the repeated copies of vin].

13.9.4 Minimum-Phase Decomposition

In Section 13.8.1, we discussed ways that homomorphic deconvolution could be used
to decompose a sequence into minimum-phase and allpazs components or minimum-
phase and maximum-phase components. We will apply these technigues to the signal
model of Section 13.9. Specifically, for the parameters of the example. the z-transform
of the input is

(098 + 2791 4 092715 4 0817737

o=Vl =~ e L m———. 3
Xiz) 2Pz (1 — 0.9¢7776; T)(1 — 0.9¢-F7/6; 1, (13.10T)
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First, we can write X () as the product of a minimum-phase z-transform and an allpass
z-transform; i.e.,

x{«’} = xma’n {ijuﬂ{z]- |:.|3-|-”E}
where
(14098271301 + 092715 + .81z
Xminl2) = m}’-’ﬁz“'m——"ﬂ.ge*ij [ 131109}
and
0,98 4!
X = —_— 13.110
ap(-?-] 1+ {}.932_] { A }

The sequences kuiin] and x..[#| can be found using the partial fraction expan-
sion methods of Chapter 3, and the corresponding complex cepstra friq(n | and 3.0
can be found using the power series technigue of Section 13.5 (see Problem 13.25).
Alternatively, £, [n] and %,,[n] can be oblained exactly from i[n] by the operations
dizgcussed in Section 13.8.] and as depicted in Figure 13.7. It the characteristic sysiems
i Figure 13.7 are implemented using the DFT, then the separation is only approximate
since xg,[n]is infinitely long, but the approximation error can be small over the interval
where xgpn] is large if the DFT length is large enough. Figure 13.19(a) shows the com-
plex cepstrum for x|n] as computed using a 1024-point DFT, again with a one-sample
time delay removed from v(r] so that the phase is continuous at 7. Figure 13.19{ b} shows
the complex cepstrum of the minimum-phase component Ly;,(n], and Figure 13.1%(c)
shows the complex cepstrum of the allpass component ,,[n] as obtained by the oper-
ations of Figure 13.7 with 0.[-] implemented as in Figure 13.4{a).

Using the DFT as in Figure 13.4(b) to implement the svstem £, [ gives the ap-
proximations to the mimimum-phase and allpass components shown in Figures 13.20{a}
and 13.20(b}, respectively, Since all the zeros of P(z) are inside the unit circle, all of £(z)
15 included in the minimume-phase z-transform or, cquival:—: ntly, fifn |15 entirely included
i % [n]. Thus, the mimimume-phase component consists of delayed and scaled replicas
of the minimum-phase component of v[n]. Therefore, the min":mm'n-pi'mse component
of Figure 13.200a) appears very similar to the input shown in Figure 13.10{c). From
Eq. (13,110}, the alipass component can be shown to be

xapln] = 0.983[n] + 0L0396{—0.98)" Laln —11. (13.111)
The result of Figure 13.20(b) is very close to this ideal result for small values of r where
the sequence values are of significant amplitude. This example illustrates a technigue
of decomposition that has been applied by Bauman, Lipshiz and Vanderkooy {1953)
in the apalysis and characterization of the response of electroacoustic transducers. A
similar decomposition technique can be used 10 factor magnitude-squared functions as
required in digital filter design (see Problem 13.27),

As an alternative to the minimum-phase/allpass decomposition, we can express
X{z)asthe product of a minimum-phase ;-transform and a maximum-phase z-transform;
ie.,

X2 = XpalD) Xz (2), {13.112)
where
1 +09:71 408127

-Ym_n :] e —— —_— ,
; {J —{}.9!:’-"7""":'"'}{-' = [Tl_g‘_r"i'ﬂfﬁ'a 5

(13.113)
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and
XNmelz) =098z + 1, {13.114)

The sequences Xpa[n] and xm |2 ] can be found using the partial fraction expansion
methods of Chapter 3, and the corresponding complex cepstra impln] and $4.|#] can be
found using the power series technique of Section 13,5 (see Problem 13.25). Alrerna-
tively, Emp ] and £5:[n] can be oblained exactly from 2[s] by the operations discussed
in Section 13.8.2 and as depicted in Figure 13.8, where

E:u':.'t[ﬂl = “l-".l {1311":}
and
fnelal=uf-n - 1) {13.116)

Thal 15, the minimum-phase sequence is now defined by the positive time part of the
complex cepstrum and the maximum-phase part 15 defined by the negative me part
of the complex cepstrum. 1F the charactenistic systems m Figure 13,8 are implemented
using the DFT, the negative time part of the complex cepstrum is positioned in the
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last hall of the DFT interval. In this case, the separation ol the minimum-phase and
maximum-phase components is only approximate because of time aliasing, buy the
time-aliasing error can be made small by choosing a sufficiently large DF1 lengih.
Figure 13.19%a) shows the complex cepsirum of x[n] as compuied using a 1024-point
DFI. Figure 13.21 shows the two output sequences that are obtained from the complex
cepstrum of Figure 13.1%a) using Eqs. (13.87) and (13.88) as in Fig 138 with the inverse
characteristic system being implemented using Lthe DFT as in Figure 13.4(h). As before,
since pin] is entirely included in %,,[r], the corresponding output x,,[n] consisis of
delayed and scaled replicas of a minimum-phase sequence, thus, it also looks very much
like the input sequence. Ilowever, a careful comparison of Figures 13.20{a) and 13.21(a)
shows that xu.ln] # xmelnl. From Eq. (13.114), the maximum-phase sequence is

Zyey [1] = (LYRE[R + 1] 4 B[n]. (13.117)

Figure 13.21(b) is very close to this ideal result. (Note the shift due 1o the linear phase
removed in the phase unwrapping.) This technigque of minimum-phase/maximom-phase
decomposition was used by Smith and Barnwell { 1984) in the design and implementation
of exact reconstruction filter banks for speech analysis and coding,

i ———— . - i e
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T
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0 20 40 40 50 Figure 13.21  (a) Minimum-phase
Sample number [n] output. (b) Maximum-phase output
i) obtained as depicted 0 Figure 13.8.
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13.9.5 Generalizations

The example in Section 13.9 considered a simple exponential signal that was convolved
with animpulse train to produce a series of delayed and scaled re plicas of the exponential
signal, This model illustrates many of the features of the complex cepstrum and of
homomorphic filtering,

In particular, in more general models associated with speech, communication, and
seismic applications an approprate signal model consists of the convolution of two com-
ponents. One component has the charactenistics of v[n], specifically a Founer transform
that is slowly varying in [requency. The second has the characteristics of pla], e, an
echo pattern or impulse train for which the Fourier transform is more rapidly varying
and quasiperiodic in frequency. Thus, the contributions of the two components would
be separated in the complex cepsirum or the cepstrum, and, furthermore, the complex
cepstrum or the cepstrum would contain impulses at multiples of the echo delays. Thus,
homomorphic filtering can be used Lo separate the convolutional components of the
signal, or the cepstrum can be used to detect echo delays. In the next section, we will
illustrate the use of these general properties of the cepstrum in applications 1o speech
analysis,

13.10 APPLICATIONS TO SPEECH PROCESSING

Cepstrum technigues have been applied successfully to speech analysis in a variety of
ways. As discussed briefly in this section, the previous theoretical discussion and the
extended example of Section 139 apply m a relatively straightforward way to speech
analysis.

13.10.1 The Speech Model

As we briefly described in Seclion 10.4.1, there are three basic classes of speech sounds
corresponding to different forms of excitation of the vocal tract. Specifically:

s Voiced sounds are produced by exciting the vocal tract with quasiperiodic pulses
of airflow caused by the opening and closing of the glottis.

s Fricative sounds are produced by forming  constriction somewhere in the voeal
tract and forcing air through the constriction so that turbulence is created, therehy
producing a noise-like excitation.

o Plosive sounds are produced by completely closing off the vocal tract, building up
pressure behind the closure, and then abruptly releasing the pressure,

In cach case, the speech signal is produced by exciting the vocal tract system (an acous-
tie {ransmission system) with a wideband excitation, The voeal tract shape changes
relatively slowly with time. thus, it can be modeled as a slowly time-varying filter that
imposes its requency-response properties on the spectrum of the excitaton, The vocal
tract is characterized by its natural frequencies {called formants), which correspond to
resonances in its frequency response.
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Figura 13.22 Discretz-time modsl of speech production.

»

If we assume that the excitation sources and the vocal tract shape are independent,
we arrive at the discrete-time model of Figure 13.22 as a representation of the sampled
speech waveform. In this model, samples of the speech signal are assumed to be the
output of a time-varving discrete-time sysiem that models the resonances of the vocal
tract system, The mode of excitation of the system switches between periodic impulses
and random noise, depending on the type of sound being produced.

Since the vocal tract shape changes rather slowly in continuous speech, it is rea-
sonable to assume that the discrete-time system in the model has fixed properties over a
lime interval on the order of 10 ms. Thus, the discrele-time system may be characterized
in each such time interval by an impulse response or a frequency response or a set of
coeflicicnts for an ITR system, Specifically. a moede] for the system function of the vocal
tract takes the form

K
E bye™"
Viz) = f.En (13.118)
Yot
k=0
or, equivalently,

.4} Ka
Arkeu-a [0 - a2
k=1 k=1

i) — k= ; .
Vi) = (13.119)

[Tt — ez — nem 270
k=1

where the quantities e (with |ry| < 1 are the complex natural frequencies of the
vocal tract, which, of course, are dependent on the vocal tract shape and consequently
are timne varying, The zeros of Viz) account for the Anite-duration glottal pulse waveform
and lor the zeros of transmission caused by the constrictions of the vocal tract in the
creation of nasal voiced sounds and fricatives. Such zeros are often not included, because
it is very difficult to estimate their locations from only the speech wavelform. Also, it has
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been shown { Atal and Hanauer, 1971) that the spectral shape of the speech sipnal can be
accurately modeled wsing no zeros, if we include extra poles beyond the number needed
just to account for the vocal tract resonances. The zeros are included in our analysis,
because they are necessary for an accurate representation of the complex cepstrum of
speech, Note that we include the possibility of zeros ouwtside the unit circle.

The vocal tract system 15 exciled by an excitation seguence pir], which s 4 train
of impulses when modeling voiced specech sounds and rr], which is a pseudorandom
noise sequence when modeling unvoiced specch sounds, such as fmicatives and plosives

Many of the fundamental problems of speech processing reduce o the estimation
of the parameters of the mode] of Figure 13.22_ These parameters are as follows:

o Thecoeflicients of Viz)in Eq. (13.118) or the pole and zerolocations in Eq. (13.119)

o The mode of excitation of the vocal tract systenmy; 1e., a peripdic impulse train or
rancdom noise

o 'The amplitude of the excitation signal

The pitch period of the speech excitation for voiced speech.

Homomorphic deconvolution can be applied to the estimation of the parameters if it
is assumed that the model is valid over a short time interval, so that a short segment of
length L samples of the sampled speech signal can be thought of as the convolution

flnl = vln] = pin] for D=n=L 1. (13.120)

where vin] is the impulse response of the vocal tract and pln] is either periodic (for
voiced speech) or random noise (for unvoiced speech). Obviously, Eq. (13,1207} is not
valid at the edges of the interval, because of pulses that occur before the beginning of
the analysis interval and pulses that end after the end of the interval. To mitigate the
effeet of the “discontinuities™ of the model at the ends of the interval, the speech signal
s[n] can be multiplied by a window w[n] that tapers smoothly to zero at both ends. Thus,
the input to the homomorphic deconvolution system is

x[n] = wlnls[r]. (13121}
Let us first consider the case of voiced speech. If win] varies slowly with respect
to the variations of v[n], then the analysis is preatly simplified il we assume that
xln]l = v[nl * pylnl, {13,122}
where
Palnl = win]pn]. (13123}
{Sce Oppenbeim and Schafer, 1968.) A more detailed analysis without this assumption

leads to essentially the same conclusions as below {Verhelst and Steenhaut, 1986), For
voiced speech, pln] is a train of impulses of the form

M—1
pinl=3_ 8ln — kNy] {13.124)
k=il
50 that
M-1
puln] = 3 wlkNglaln — kNg], {13.125)

Ee=Al
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where we have assumed that the pitch period is My and that M periods are spanned by
the window.
The complex cepstra of x[n], v[n], and po[a] are related by
ilnl = tln] + pylnl. {13.128)

To abtain gy,|r ]|, we define a sequence

g JwlkNpl A=01..0 M1, "
wivy [k] = {El. otherwise, (rated)
whose Fourier transform is
_ M- _
P, (ef®™) = Z w [k Ngle 80 = Wy (e/0N0) {13.128)
k=l

Thus, £, (/) and £ (e/®) are both periodic with period 27 /Ny, and the complex cep-
strum of pin]is

The perntodicity of the complex logarithm resulting from the periodicity of the voiced
specch signal is manifestin the complex cepsirum as impulses spaced at inleger multiples
of Ny samples (the pitch period). If the sequence wy, [n] is minimum phase, then fyln]
will be zero for n < 0. Otherwise, fyln] will have impulscs spaced at intervals of Ny
samples for both positive and negative values of k. In either case, the contribution of
Puln] to ¥ln] will be found in the interval |n] = M.

From the power series expansion of the complex logarithm of V(z), it can be shown
that the contribution to the complex cepstrum due 1o vin] is

o

E 'ﬂi—. a < 0,
I
k=1

Sl log | A, n=10, (13.130)
K n i.'rl.-'lp-l Il

-3 Tho Z E cos(En), n > 0.
P H P n

As with the simpler example in Section 13.9.1, the term z™% in Eg. (13.119)
represents a linear-phase factor that would be removed in obtaining the unwrapped
phase and the complex cepstrum. Consequently, #(x] m Eq. (13130} more accurately is
the complex cepstrum of vfr + Kq).

From Eq. {13130}, we sce that the contnbutions of the vocal tract response Lo
the complex cepstrum occupy the full tange —oo < 7 < oo, but they are concentrated
around n = 0. We nole also that since the vocal tract resonances are represented by
poles inside the umi circle, their contribution W the complex cepstrum is sero forn = 0
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13.10.2 Example of Homomorphic Deconvolution of
Speech

For speech sampled at 10,000 samples/s, the pitch period &y will range from about 23
samples for a high-pitched voice up to about 150 samples for a very low-pitched voice,
Since the vocal tract component of the complex cepstrum o[n | decays rapidly, the peaks
of pyl#] stand out from é|x). In other words, in the complex logarithm. the vocal tract
components are slowly varving, and the excitation components are rapidly varying. This

T A

is Hustrated by the following example. Figure 13.23(a) shows a segment of a speech wave

Luput Speech Segment

i|_ T T T T T T F T S 5

B B S — - SR E— SRS SN R PR [
0 5 n 15 X} 25 30 35 40 45 A
Time (m=ec)
(a})

High Quefrzncy Component ol the Input
| e o e S 5 S S e R

)5 1 I I 1 1 1 1 1 1 S
] 5 i} 15 20 25 kY 15 4l 45 S0

Time {msec)
[{s]]

Low Quelrency Component of the Input

Time {maec)

fch

Figure 13.23 Homomorphic deconvolition of speech. (a) Segment of speech weighted by
a Hemming window. (i) Hoh cuefrency companent of the signal in (a}. (o} Low guefrency
componert of the signal in {a}.
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multiplied by 2« Hamming window of lenpth 401 samples (50 ms time duration at a sam-
pling rate of 8000 samples/s). Fipure 13.24 shows the complex logarithm (log magnitude
and unwrapped phase) of the DFT of the signal in Figure 13.23(a).! Note the rapidly
varying, almost pericdic component due to p,[#] and the slowly varying component
due to vls]. These properties are manifest in the complex cepstrum of Fgure 13.25
in the form of impulses at multiples of approximately 13 ms (the period of the input
speech segment} due to g, [r] and in the samples in the region 'a¥ < 5 ms. which we
attribute to #[n]. As in the previous section, frequency-invariant filtering can be used

L1y all the figures of this section. the samples of all sequences wede connected for ease in plotting,
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Complex Cepstrum of Speech Scpment
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1= —10 & 0 3 14 L5 20
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Figure 13.25 Complez cepstrum of the signal in Figum 13.23(a} {inverse DTFY of the
complex logarithm in Figure 13.24).

1o separate the components of the convolutional model of the speech signal. Lowpass
filtering of the complex logarithm can be uscd to recover an approximation to ufn], and
highpass filtering can be used to obtain py [n]. Figore 13.23(c) shows an approximation
10 v[nl obtained by using 4 lowpass fregquency-invarant filier as in Figure 13.16(2) with
My = 30 and N2 = 30, The slowly varying dotted curves in Figure 13,24 show the com-
plex logarithm of the D'UFT of the low quefrency component shown in Figure 13.23(c).
On the other hand, Figure 1323(b}) is an approximation to p.[n] obtained by applying
1o the complex cepstrum a svmmetrical highpass frequency-invariant filier as in Fip-
ure 13.16(b) with & = 95 and &> = 93, In both cases, the inverse characteristic system
was implemented by using 1024-point DFTs, as in Figure 13.4(b).

13.10.2 Estimating the Parameters of the Speech Model

Although homomorphic deconvolution can be successfully applied in separating the
components of a speech waveform, in many speech processing applications we are
interested only in estimating the parameters in a parametric representation of the speech
signal. Since the properties of the speech signal change rather slowly with time, it is
common to estimate the parameters of the model of Figure 13.22 al intervals of about
10 ms (LM} times/s), In this case. the time-dependent Fourier transform discussed in
Chapter 10 serves as the basis for ime-dependent homomorphic analysis, For example,
it may be sufficient to examine segments of speech selected about every 10 ms (100
samples at 10000 Hz sampling rate} 1o determine the mode of excitation of the maodel
{voiced or unvoiced) and, for voiced speech, the pitch period. Or we may wish to track
the variation of the vocal tract resonances (formanis), For such problems, the phase
computation can be avoided by using the cepstrum, which requires only the logarithm
of the magnitude of the Fourier transform. Since the cepstrum is the even part of the
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Figure 13.26 (a) System for cepstrum analysis of speech signals. (h) Analysis for vobce

speech. (o} Analysis for unvolced speech.
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complex cepstrum, our previous discussion suggests that the low-time portion of ¢, [#]
should correspond Lo the slowly varying components of the log magnitude of the Fourier
transform of the speceh segment, and for voiced speech. the cepstrum should contain
impulscs al mulliples of the pitch period. An example is shown in Figure 13.26.

Fgure 13.26(a) shows the operations imvolved in estimating the speech parame-
ters using the cepstrum. Figure 13.260b) shows a typical resull for voiced speech. The
windowed speech signal is labeled A log (X[£]] is labeled C, and the cepsirum ey [#] is
labeled D The peak in the cepstrum at about 8 ms indicates that this segment of speech
is voiced with that period. The smoothed spectrum, or specirum envelope, oblained by
frequency-invariant lowpass liltering with cutoff below 8 ms is labeled E and is super-
imposed on C The situation for unvoiced speech, shown in Figure 13.26{c), 1s similar,
excepl that the random nature of the excitation component of the input speech segment
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causes 4 rapidly varying random component in log | XTE] instead of 4 periodic compo-
nenl. Thus, in the cepstrum the low-tme components correspond as before to the vocal
tract system [unction; however, since the rapid variations in log { X k]| are not periodic,
no strong peak appears in the cepstrum. Therefore, the presence or absence of a peak
in the cepsirum in the normal pitch period range serves as a very good voiced/unvoiced
delector and pitch period estimator. The resull of lowpass [requency-invariant {iltering
in the unvodeed case is similar to that in the voiced case. A simoothed spectrum envefope
estimale 15 obtamed as in L.

In speech analysis applications, the operations of Figure 13.26(a) are applied re-
pratedly to sequential segmenis of the speech waveform. The length of the segments
must be carefully selected. If the segments are too long, the properties of the speech
signal will change too much across the segment. If the sepgments are too short, there
will not be enough of the signal to obtain a strong indication of periodicity. Usually
the segment length is set at about three to four times the average pitch period of the
speech signal. Figure 13.27 shows an example of how the cepstrum can be used for pitch
detection and for estimation of the vocal iract resonance frequencies. Figure 13.27(a)
shows a sequence of cepstra computed for speech waveform segments selected at 20-ms
intervals. The existence of a prominent peak throughout the sequence of speech seg-
ments indicates that the specch was voiced throughoul. The location of the cepstrum
peak indicates the value of the piteh period in each corresponding time interval, Figore
13.27(b) shows the log magnitude with the corresponding smoothed spectra superim-
posed. The lines connect estimates of the vocal tract resonances obtained by a heuristic
peak-picking algorithm. (See Schafer and Rabiner, 1970.)

132.10.4 Applications

As indicated previously, cepstrum analysis methods have found widespread application
in speech processing problems One of the most successful applications is in pitch de-
tection {Noll, 1%67). They also have been used successfully in speech analysis/synthesis
systems for low bit-rate coding of the speech signal (Oppenheim, 1969 Schafer and
Rabiner, 197{).

Cepstrum representations of speech have also been used with considerable suc-
cess in pallern recognition prohlems associated with speech processing such as speaker
identification {Atal, 1976), speaker verificalion {Furui. 1981) and speech recognition
{Davis and Mermelstein, 1980). Although the lechnigue of lincar predictive analysis of
Chapter 11 is the most widely used method of oblaining a representation of the vocal
tract component of the speech model, the lincar predictive model representation is of-
ten transformed to a cepstrum representation for use in pattern recognition problems
(Schroeder, IY81; Juang, Rabiner and Wilpon 1Y87), This transformation is explored in
Froblem 13340,

13.11 SUMMARY

In this chapter, we discussed the technique of cepstrum analysis and homomorphic
deconvolution. We focusced primarily on definitions and properiies of the complex cep-
strum and on the practical probiems in the computation of the complex cepsirum. An
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Figure 13.27 (a) Cepstra and (b) log spectra for sequential sagments of voiced
Spaagh.
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idealized example was discussed to illustrate the use of cepstrum analvsis and homo-
morphic deconvolution for separating components of a convolution. The application
of cepstrum analysis techniques to speech processing problems was discussed in some
detail as an illustration of their use in a real application.

Basic Problems

13.1. {ay Consider a discrete-time svstem that is linear in the conventional sense, I vlz] =

13.2.

133,

i3.4.

Tix[al} is the output when the input is x[a], then the zero sigral Bn] is the signal that
can be added to x|x) such that Fix[ri+ 0nl] = y wl+ T{WMnil = vin], What is the
zer signal lor conventional linear systems?

{b} Consider a discrete-time system vjn] = T{x[«]} that is homomorphic, with con.
volution as the operation for combining signals at both the input and the cutput,
What is the zero signal for such a system: ie, what is the signal 0] such tha:
Tleln] = 0nl} = vlal+ TR} = vlal?

¢y Consider a discrete-1ime syslem v[r] = Tx(z]} thal i hoemomorphic, with con-
volution as the operation for combining signals at both the input ard the outpur
What is the zero signal for such & system; Lo, whal 1% the signal ®n] such that
Tixle] = #nlj = y[al+ T{Hnl} = ¥[»]7

Let oy[r] and xpin] denote two sequences and 13 [a] and Ia[a] their corresponding complex
cepstra. If .y [n) + x2|6] = din ], determine the relationship between 24[q ) and 37[a)

In considerng the implementation of homomaorphic systems for convolution, we restricted
our attention to input signals with rational z-transforms of the form of Eq. {1332} If an
input seguence x(#) has a ralional -lransform but has either 8 negative gain constant or
an wnount of delay not represented by B {13,323, then we can obiain a z-transform of
the torm of Eq. (13.32) by shifting =[] appropriately and multiplying by — 1. The complex
cepstrum may then be computed vsing Eq. (13.33),

Suppose (hat x[x] = dla] — 24[r — 11, and detine v[n] = wx[n = r], where @ = 41

and r is an integer. Find o and ¢ such that ¥ (z) is in the form of Eq. (13.32), and then find
Fll.
I Section 13.5.1, we stated that linear-phase contributions should be removed from the
unwrapped phase curve before computation of the complex cepstrum. This problem is
concerned with the effect of not remaving the linear-phase component due o the factor
<" in Eq. (13.29),

Specifically, assume that the impul (0 the characienstic sysiem for convolution s
xf#] = E[nt + ¢]. Show that formal application of the Fourier transform definition

e £
1 { log[X (4] Jed ™" du (P13.4-1)
0 g
leads 1o
cosimn)
T e L
I} =1l

‘The advantage of removing the linear-phase component of the phase is clear from this
result, singe for large v such & component would dominate the complex cepsirum,
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13.5. Suppose that the z-transform of s(r| is

; (1 -4z -2
et e s e
I:.—;E_]j“—xf.'

Determine the pole locations of the z-transform of nilr|. other than poles at |2) = Dor =,

13.6. Suppose that the complex cepstrum of v[n] 15 #{n] = ffn] + 2&[n]. Determine ¥[n] m terms
of sln].

13.7. Determine the complex cepstrum of x{#] = 28|n] — 2d[n — 1] + 0.53{n — 2, shifting x[»]
or changing its sign, if necessary.

15.8. Suppose that the z-transform of a stable sequence x|a| is given by

3._!

Hizl= =

f

and that a stable sequence v[a] has complex cepstrum ¥#[nl = £[—n], where £[n] 15 the
complex cepstrum of x|} Determine vis].

¥ E

i.-.'

1
1-3
4

13.9%. Eguations {13.65) and {13.68) are recursive relationships that can be used to compute the
comjlex cepstrum ¥[n] when the input sequence x[n] s minimum phase and maximum
phase, respectively.

{ay Use Eq {13.63) to compute recursively the complex cepstrum of the seguence
xfr] = a"un], where |a| < 1.

(b} Use Eq. {13.68) to compute recursively the complex cepsitum of the sequence
xim] = &[nl — ad[n + 1], where |af < 1,

1310, ARG|X{¢/*1} represents the principal value of the phase of X{e/™), and arg|X(e/™1}
represents the comtinwous phase of X {e/*"), Suppose that ARG{X (/" 1} has been sampled
at frequencies wy = 2wk /N to obtain ARG|X[k]} = ARG|X (/27Ny} ag shown in
Figure M13.10. Assuming that largf XT&]] — argf X[k = 1]} = = for all k, determine and plot
the sequence k] as in Eq. (13.49) and arg{X[k}} for 0 = & = 10.

ARGATA]]

L s s

Figure P13.10
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Let 2[#] be the complex cepstrum of a real-valued sequence x|a). Specify whether each
of the following statemends is true or false, Give briel justifications for your answers,

Statement 1 If x;[r] = x[—na] then £ [n] = £[n].
Statement 22 Since x|n] 1s real-valued, the complex cepstrum £ 7] must also be real-valued.

Advanced Problems

1312, Consider the system depicted in Figure P1312, where 5, 8 an LT1 svstem with impulse

13.13.

1Ln14.

response fi1]n] and 57 is a homomaorphic system with convolution as the input and output
operations; i.e., the trensformation 1321{-} satisfes

lunin] = walr]] = Tl In]l + T [walx]l

Suppose that the complex cepstrum of the nput x|»| is ¥[n] = §in] + &n — L}. Find a
chosed-form expression For A [#§ such that the outpul is v[=] = &[]

&[n] hin] wr] J A ¥ln]

2 Figure P13.12

The complex cepstrum of a finite lengrh signal xfe] is compuled asshown in Fipure P13.13-1.
Suppose we know that x| n] is minimum phase (all poles and zeros ateinside the unit cirele)

We uze the systern shown in Figure P13 13-2 (o ind the real cepstram af r[a ) Bxplain how
to construct $fq] from . [8].

xfn] y [}
SiaizuBUPR OO o] Xteim] " Inverse i

DTFT

L

Figure P13.13-1

¥[n] . ]
fo] X e oy > lnverse —l-—'lk

DITFT

:

Figure P13.13-2

Consider the class of seguences thal are real and stable and whose c-transforms are of the
form

M;

o,
[T00—az ) [0 — by

k=l b=l
Hra"l = :‘l'!_ —
2= Al

e )
H{l - cg-:._l‘i l_fli] —dez)
k=1 k=1

wheare ||, W] Yer . o] = 1. Let £[n] denote the complex cepstrum of ).

(a) Letl vin] = x[—n]. Delermineg ¥in]in (erms of £[n],
(b I x[n]is causal, is it also minimum phase? Explain.
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(e) Suppose thal efx] is o finite-duration sequance such that

|w| |HI’.'
Xy = Al [0 —aez ") [TO =Bz,
ke k=1
with Jay| = 1 and |Bg| == 1. The function Xiz) has 7eros mside _aand ouside _U'm it
circle. Suppose that we wish to determine vi#] such that (¥Fie!™) = |X{«!")) and

¥z} has no weros outside the unil cicgle, One approach that achieves fhis nhjl:l_"li\?& is
depicted in Figure P13.14. Determine the required sequence £a)l. A possible applica-
tion of the system in Figure FL3.14 s (o slabilize an unstable syetem by applving the
transformation of Figare P13.14 to the sequence of coefficients of the denominator
of the svstem fonction.

Xiedy ¥iei)
—| logi - F! h? - F I =
£}

Figure P13.14

[t can be shown (see Problecm 3.50) that if x]n] = Ofor s < & then

x[i} = ﬂ_l_:g\.?:(z}.

This resell was called the indil value thearem for vight-vided sequences.

(a) Prove s similar resull for lefe-sided sequences, Lo, for sequences such that xjn| = 0
forr = (L

(k) Uise the initial value theorems o prove that $10] = log{xf07) if x]21 is 2 minimum-
phase sequence.

(e} Lse the imitial value theorems 1o prove that 0] = logix|0]) if xje] s o maximum-
phase sequence,

(d) Use the initial valoe theorems to prove that 2|0] = log A} when Xi:) is given by
Eg. [13.32). Is this resul comsistenl with the resalts of parls (b) and [¢)?

Consider a sequence x[n] with complex cepstrum £[n], such that £|n] = —X[=n]. Deter-
ming the quantity
as
B N £3[nl.
A=—00

Congider o real, stable, even, 1wo-sided sequence hn]. The Fourier transform of k[n] is
positive for all e i.e.,

Hie™: = 0, —T <@ T T,
Assume that the z-transform of Alr | cxists. Do not assume that H{:) 15 ralional,
{a) Show that there exisis o minmmum-phase sipnal gln]. such that
Hi:) = G[z](;f::_'}.

where & z) is the z-transform of a sequence gla |, which hus the property thal gin] = (b
forn = (0 State explicitly the relationship Detween Afx] and §lx], the complex cepstey
of h[a] and gln|, respectively.
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{b} Given astable signal sla |, with rational z-transform
{1-2z"1 1"l — %z"}
(L —4z-1)i1 - 3271y

Sn=
Dling flnl = sinl +5[—r | Find Gz} (as in part {a)} in lerms of Siz),
(e} Consider the system in Figare P13.17, where £[r] is defined as
£l = ufn = 14 (-11"u[n - 1].

Dretermine the meest genergd conditions on x[a] such thatl yln] = x[x] for all 2.

sAn] - Kiem) Inverse
T t:fi:l;l-;:rrm »| log LK el »| Fourier

. transfocm

iIn|
¥[rl Inverse ;
] o ] Comrler || Fouier
transforn ! ?
— Figure P13.17

Consider & maximum-phase signal xix),

{n) Show that the complex cepstrum #[n] of a maximum-phase signal is related to s
cepstrum cx[n] by

i[n] = x| Emax 2]

where 8pgeln] = 2ul al = d[a].
(b} Using the relationships in part (a), show that

; 1 . { g
arg| X (/)] = —'Pf log |X (e/%)] cot ('” . ﬁ)fm.
27 L,

r

(e} Alsoshow Lhat

. m
log | X (e /)| = £[0] - ;. ‘pf
L

| o —
arg[ X (e cot (f,,, ).:m.
i 2
Consider a sequence x[n| with Fourier transform Xiefy and complex cepstrum &fa]. A
new signal y{n] is obtained by homomorphic fillering where

$lnl =Axm) — E|—nluln — 1],

(ab Show thal y|»} 15 a minimum-phase sequence.

{b} What is the phase af ¥{ef9?

{c} Obtain a relationship between arg[ ¥ (/%)) and log | ¥ied ™).
{dy I x(n] is minimum phase, how s y[a] related o x[#]?
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13.24.

1325,
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Equation { 13.65) represents a recursive relationship berween a sequence x[n] and its com-
plex cepsiram &(w ). Show from Eq. (13.65) thal the characteristic system £40-| behaves as
a gausal sysrem for minimum-phase inputs; i.e., show that for minimum-phase tnputs, $x)
s dependent only on x[k] for & = a.

Dieseribe g procedure for computing 4 causal sequence via]. for which

3 (1 = 0.95:71)243
TEZ] = —I" PP Y T I
{1 = oz—177/13

The sequence
hila] = &n] + adln — ngl

15 a simplified model for the impuolse response of a system that introduces an echo,

(a) Determine the complex cepsirum fix] for this sequence. Sketch the result.

(b} Dietcrmine and sketch the cepstrum e ).

(e) Suppose that an approximation (o the complex cepstrum & computed using N -point
DFTs asin Egs. {13.40a) to (13.46¢). Obtain aclosed-form expression tor the approx-
imation ﬁpln 1.0 = n <= N -1, for the case np = N/6. Assume Lhat phasc unwrapping
can be accurately done, What happens if & is nod divisible by ap?

(d) Kepeat part {c) for the cepstrum approximation eyy|al, (b < w = & — 1, as computed
usimg, Eys. (13.60a) and {13.60b).

(e} Hfihe largest impulse in the cepsirum approximation oy (] is to be used to detect the
value of the ccho delay mg, how large must N be to avoid ambiguity? Assume that
accuratle phase unwrapping can be achicved witk this value of &,

Lt x[n] be a finide-fength onnimum-phase sequence with complex cepsttum 5 [x], and
define vir| as

yln] = a"x[n]
wilh comples cepstrum %inl.

(2 M0 = o = 1, how is 3[e] related to ¥(n]?

{b) How should & be chosen so that vf«] is no longer minimum phase?

{e) How should » be chosen so that if lincar-phase terms are removed before computing
the compiex cepstrum, then ¥[n] = 0fora = 07

Conzider a minimum-phase sequence v[x] with z-transform X{z) and complex cepstrum
Zinl. A new complex cepstrum s defined by the relation

$lal = ta" — 1E[nl.

Determine the z-transform F(z]. Is the result also minimum phase?

Section 13.94 contains an example of how the complex cepstrum can be wsed o oblain
two different decompositions invelving convolution of a minimum-phase sequence with
another sequence. In that example,

X(oy = 098+ M1 +09:7 1 + 08177
Tl — 0.9edm67— k(] — 0.9 16—
{a) In ome decomposition, X(z) = Xpnlz)Xeplz) where

098 bl s 0o o8 W
(] = DYedmiB 1y _ (e Fz/6 1y

xmjﬂl:_.?} =
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and .
98 +z7"
Kaplz) = I._|— 0981}
Lise the power series expansion of the logarithmic terms to find the complex cepstra
Eminlnl, £apleel, and 21r]. Plol these scquences and compare vour plots with those in
Figure 13.19,
(h) Inthe second decomposition, X¥iz) = X (2) Xy (2) where
; 27 {140.9:7"% +0.817
xmﬂ f:? = B VK 7 o L, NG S MY i
(1 —09eiei0z=1y] — Q0e— /71
and
Kmelm) = (0982 + 10,
Use the power series expansion of the logarithmic terms to find the complex cepstra
and show that fmpln] # Fpaln| but that #ln] = Zpeln] = fmeln] 85 the same a5 1n
part (a). Note that
{1 (.97~
(1— 0215
Suppose that s[n] = hla] = gln| + pln], whers Afa] is 2 minimum-phase sequence, gln] s a
maximum-phase sequence, and plal is

140975 pog1m ™ =

4
plnl = Z wpdfn — J';nﬂ].
koilk
whers ap and g are not known, Develop a method (o separate &(n] from sir).

Extension Problems

13.27.

13.28.

Let x[n] be a sequence with z-transform X () and complex cepstrum £[n]. The magnitude-
sguared function for X (20 05
Vizy = XizpX" (172"

Since V(e = |J{f¢>1"*"1|2 = 4. the complex cepstrum £|n ] corresponding to Viz) can be

compuled withoul phase urwrapping.

{a} Obtain a relationship between the complex cepstrum 4| and the complex cepstrum
Z[nl.

{b} Expressthe complex cepstrum fi[n] in terms of the cepsirum oy [n].

(e} Dretermine the sequence E]x] such that

Ypinlal = £l ]i[n]
is the complex cepsitum of 3 mimmum-phase sequence X, [n] for which
I-‘trmr'n{f" r.w:'lz = v';l."-”l.w}.

{d) Supposzihat X (zhisasgiven by Eq.(13.32), Use the result of part (o) and Egs, {13.36a),
(13.36b), and (13.36¢) o find the complex cepstrum of the minimum-phase sequence,
and work backward to find X020

The technigue employed in part (d) may be ased in zeneral o obiain a minimum-phase

factorization of 2 magnitude-squared function.

Let £(n) be the complex cepstrum of (x|, Define o sequence x.[#] 1o be
i, otherwise.
Show that the comples cepstrum of x[n] is given by
. l E[nfN], n=04N £2N, .,
i 1, otherwise.
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In speech analvsis, svothesis, and coding, the speech signal Is commonly modeled over a

short time interval as the response of an LTI system excited by an excitation that switches

between a train of equally spaced pulses for voiced sounds and » wideband random noise

source for unvoiced sounds To use homomorphic deconvolution W separate the compo-

nents of the speech medel, the speech signal s|n] = ¢|n] # pin] is multiplied by a window

sequence w(a] to obtain x{n| = s{ejw{s]. To simplify the analysis, x| | is approximated by

xlr]l = (vlnl = plald - win] = vln] + {pln] - wle]y = sn] « puin]

where p ]l = plalwln] asin Eqg. (13.123).

{a) Give an example of pln], o[x], and wie] for which the above assumption may he
poor approximation.

(b} Ome approach to estimating the excitation parameters {voiced/unvoiced decision and
pulse spacing for voiced speech) is to compute the real cepstrum cq[r] of the win-
dowed segment of speech 1|n] as depicted in Figure P13.29-1. For the model of Sec-

tion L3100, express cofn] in terms of the complex cepstrom £[a], How would vou use
cy[n] to estimate the excitation parameters?

xjn] o, inl
—_— F -1 = lop - F p—

Figure P13.29-1

(¢} Suppose that we meplace the log operation in Figure P13.2%-1 with the “sgquaring™
operatiom so that the resulting svatem 15 as depicted in Figurs P13.29-2. Can the new
“cepstrum” gxl] be used 1o estimate the excitation parameters? Explain.

x|n] - g, lml
— :r { % ’]-- _-;r’_"'—] "

w
¥

L J

Figure P13.29-2

Comsider a stable LTT system with impulse response ila ) and all-pole system function

o
H (__—} - .._J_

% -.
I - Z ﬂkE_l
k==l

Such all-pole systems arise 1n linear-predictive analysis It = of interest lo compute (he
complex cepstrum Jirectly from the coefficients of Hiz)

{2} Determine i8]
{h) Show [hat

R _!Ll I
Ala] = ap + L (;) Ak |ag g n=l.
k=1

Wilh the relations in parts (a} and (B), the complea cepstrum can be computed withoul
phase unwrapping and without solving for the roots of the denominator of Hiz),

A somewhat more general model for echo than the system in Problem 13.22 s the system
depicted in Figure P13.31. The impulse response of this system is

] = &lnl+ agln = ngl,

where wgla] is the impulse response of the echo path.
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] : xjre]
L -
| g
i '
| _I !
!
: = dn—ngl » agln] i
. |
| | ‘
_____________________________ A | Figure P13.31
{a) Assuming that
max  |JeGief®)| = 1,
— 3T =l =IT
show that the complex cepstrum &{a] has the form
) oo o
fi[n] = E{— 1yt R-gg.[ﬂ k],
k=1

and determine an expression for gefn] in teems of gl ,

(b} Fowr the conditions of part (al, determine and sketch the complex cepstrnm Afr] when
glw] = &nl.

¢} For the conditions of part {a), determine and sketch the complex cepstrum Aln | when
gln] = a"uln]. What condition must be satisfied by o and o so that the resule of pare
ra) applies?

(dy For the conditions of part {a), delermine and sketch the complex cepstrum Al ] when
glrl = agbla] + ay8[n — 1] What condition must he satisfied by e ay, a;, and ny 30
that the result of part (a) applics?

Aninteresting use of exponential weighting is in computing the complex cepstrwim without
rrhase unwrapping. Assume lthat X{z) has no poles and #eros on the unil circle, Then
it is possible 1o find an exponential weighting factor « in the product win| = «"x(n],
such thal none of the poles or zeros of X{z) are shilled across the umil cirde in fomming
Wizl = X1z

{a) Assuming that no poles or zeros of X {2} move across the unit eircle, show that
ifn] = " ¥[n}. (P13.32-1}

ib) MNowsuppose that instead of the complex cepstrum, we compute ¢ [n] and o [n]. Use
the resuli of part {a) 1o oblain expressions for both cc|#] and o fn] in terms of & a).
(c) Mow show that

. 2iceln] — e rwlnl)
An] = —e= e e

— n . (P1332-2)

— ot

(d) Since eyfin] and ey ln] can be computed from log | X (e} and IGg|WI:'e-"-“'"}|._ respec-
tively, Eq. (P13.32-2) is the basis for computing the complex cepstrum withoul com-
puting the phase of ¥{z/*). Discuss some polential problems that might arise with
this approach.



