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2.0 INTRODUCTION

The term sigral s zenerally applicd (o something that conveys inlormation. Signals
may, for cxample. convey inlormation about the state or behavior ol a physical system.
A gnother class of examples, stenals are synihesized lor the purpose of communicatling
information between humans or between humans and machines, Although signals can
be represented in many ways, in all cases, the inlormation is contained in some pattern
of variations. Signals are representied mathematically as functions of one or more in-
dependent variables. For example, a speech signal is represented mathematically as a
function of time, and a photographic image is represented as a brightness function of
two spatial variables. A common convention—and one that usually will be followed in
this book—is to refer to the independent variable of the mathematical representation
of a sipnal as time. although in specific examples. the independent variable may nat in
fact correspond to time,

The independent variable in the mathematical representation of a signal may be
either continuous or discrete. Cortinucus-time sigrnals are defined along a continuum of
time and arc thus represented by a continuous independent variable. Continuous-time
sigmals are often referred Lo as analog sighals. Discrete-tine sigrals are defincd at diserete
times. and thus, the independent variable has discrele values; thatis, diserete-lime signals
are represenled as scquences of numbers, Signals such as specch or images may have
cither a conlinuous- or a discrete-variable representation, and if certain conditions hold,
these representations are enbirely cquivalent. Besides the independent variables being
cither continuous or discrete, the signal amplitude may be cither continuows or diserele.
Digiraf signals are those for which both time and amplitede are diserete,
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Sipnal-processing systems may be classificd along the same lines as signals. That
15, conlinuous-time systems are systems lor which both the mput and the output are
continuous-time signals, and diserele-lime systems are those for which hoth the input
and the output are discrele-time signals. Similarly, a digital system is 4 system for which
both the input and the output are digital signals. Digital signal processing, then, deals
with the transformation of signals that are discrete in both amplitude and time. The
principal focus of this book is on discrete-time- rather than digital--signals and svstems.
However, the theory of discrete-lime signzls and systems 15 also exceedingly usetul for
digital signals and systems, particularly if the signal amplitudes are finely guantized. The
ellects of signal amphitude quantization are considered in Sections 4.8, 60.8-6.10, and 4.7,

In this chapler, we prosent the basic definitions, cstablish nolaton, and develop
and review the basic concepls associatled with discrele-time signals and sysiems, The pre-
sendation of this materis] assumes that the reader has had previous exposure to some of
Lhis materal, perhaps with a different emphasis and notation. Thus, this chapter is pri-
marily intended to provide a common foundation for matenal covered in later chapters,

In Section 2.1, we discuss the representation of discrele-time signals as sequences
and describe the basic sequences such as the unit unpulse, the unit step, and complex
exponential, which play a central role in characterizing discrele-lime systems and form
building blocks for more peneral sequences. In Section 2.2, the representation, basic
properties, and simple examples of discrete-time systems are presented. Sections 2.3 and
24 focus on the important class of linear time-invariant (LTT) systems and their time-
domain representation through the convolution sum, with Section 2.5 considering the
specific class of LTI systems represented by linear, constant—coefficient difference equa-
tions, Section 2.6 develops the frequency domain representation of discrete-time sys-
tems through the concept of complex cxponentials as eigenfunctions, and Sections 2.7,
2.8, and 2.9 develop and explore the Fouricr transform representation of discrete-time
sipnals s a inear combination ol complex cxponentials. Section 2,10 provides a bref
introduction Lo discrete-time random signals.

2.1 DISCRETE-TIME SIGNALS

Discrete-time signals are represenied mathematically as sequences of numbers. A se-
guence of numbers x, in which the 2" number in the sequence is denoted x[n}' is
tormally written as.

z = [xlnl}, I B (2.1

where n is an integer. In a practical setting, such sequences can often arise from periodic
sampling of an analog (i.e., continuouws-time) siznal x,{¢). In that case, the numeric value
of the »™ number in the sequence is equal to the value of the analog signal, x.(1), at
time 1 Le.,

xlrl = xafn? ), —oc < n <20, (22)

The quantity T is the smmpling period, and its reciprocal is the sampling freguency, Al-
though sequences do not always arisc from sampling analog waveformes, it is convenient
I
TMote that we use | ] 1o enclose the independant vaniable of discrete-variable fumctions, and we wse ()
to cnclase the independent vatiable of contimuonus-variabic functions)

r
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i reler to xln] as the “n'™ sample™ of the sequence. Also, although, strictly speaking,
x|n| denotes the it number in the sequence, the notation of Eq. (2.1) is ofien unnec-
essarily cumbersome, and it is convenient and unambiguous to refer o “the sequence
xln]” when we mean the entire sequence, just as we referred to “the analog signal x, (1).”
We depict discrete-time signals (i.e., sequences) graphically, as shown in Figure 2.1, Al-
though the abscissa is drawn as 4 continuous line, it is important to recognize that x[r|
is defined only for integer values of n. 1t is not correct to think of sln] as being zero
when n is not an integer, x|n] is simply undefined for noninteger values of n,
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Asan example of a sequence obtained by sampling, Fipure 2.2{a) shows a sepment
of a speech signal corresponding to acoustic pressure variation as a function of time,
and Figure 2.2(b) presents a sequence of samples of the speech signal. Although the
orgmal speech signal is defined at all values of time £, the sequence contains information
ahout the signal only at discrete instants, The sampling theorem, discussed in Chapter 4,
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Figure 2.2 (a) Segment of 2 continuogus-time speech signal ;{1 ». (b) Sequence of samples
¥[1] = xp(nTy abtained from the signal in part (a} with T = 125 ps,
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guarantces that the original signal can be reconstructed as accurately as desired from a
corresponding sequence of samples if the samples are taken frequently enough.

In discussing the theory of discrete-time signals and systems, several basic se-
quences are of particular imporlance. These sequences are shown in Figure 2.3 and will
be discussed next.

The unit sample yeguence (Figure 2.3a) is detined as the sequence

U n =1,

&= n=1.

(2.3)

The unit sample scquence plays the same role dor diserete-time signals and systems that
the unit impulse function {Dirac delta function) does for continuous-lime signals and
systems. For convenience, we often reler (o the unit sample sequence as a discrete-time
impulse or simply as an impulse. Lt is important to nole that a discrete-time impulsc
does not suffer from the mathematic cumphcatmns :}f the continuous-time impulsc; its
definition in Eq. (2.3) is simple and precise.

Llait sample
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l 1 Figure 2.3 Some basic sequences.
The szquences shown play important

roles in the analysis and representation
of discrete-time signals and systems.
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4 2 0134568 «+ Figure 2.4 Example of a sequence to
be represented as a sum of scaled,
2 : delayed impulses,

One of the imporiant aspeets of the impulse sequence is that an arbitrary sequence
can be represented as a sum ol scaled, delayed impulses. For example, the sequence pla|
in Figure 2.4 can be expressed as

pinl = a_abfr + 3]+ ai8fn — 1] + a28|n — 2] + az8ln — 7. (Z.4)
More generally, any sequence can be expressed as
[
xnl= > x[klgln — &l (2.5)
[ 4 |

We will make specific use of Eq. (2.5} in discussing the represcntation of discrete-time
linear systems
The unit step sequence {Figure 2.3b) is delined as

11 n=0 e
ilr] = iﬂ' n <D (2.6)
The unit step is related to the unit impulse by
L
uln| = Z dlk]: (2.7)
b=—nc

that is, the value of the unit step scquence at (ime) index g is equal to the accumulated
sum of the value at index n and all previous values of the impulse sequence. An alterna-
tive represenlation of the unit step in terms of the impulse [s obtained by interpreting
the unit step in Figure 2.3{b} in terms of a sum of delaved impulses, as in Eq. (2.5} In
this case, the nonzero values are all unity, so

uln] =dln] + bl — 1)+ &n =2+ --- {2.%a}

0r '
uln] = 8n — kl. (2.8b)
k=0

As vet another alternative, the impulse sequence can be expressed as the first backward
difference of the unil slep sequence, i.c.,

&r] = ulrl — ulr - 11. {2.9)

Exponential sequences are another important class of basic signals. The general
form of an exponential sequence 15

x[n] = Aea”. {2.110)

If A and & arc real numbers, then the sequence is real. 0 = @ < 1 and A is positive,
then the sequence values are positive and decrease with inercasing s, as in Figure 2.3(c).
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For —1 = o = i), the sequence values allernate in sign but again decrease in magnitude
with increasing n, It || = 1, then the sequence grows in magnilude as r increases.

The exponential sequence A o with o complex has real and imaginary parts that
are exponentially weighted sinusoids. Specifically, if & = |o /" and A = |A |e/?, the
sequence &« can be expressed in any of the following wavs:

i [ﬂl =A U"ﬂ . |:1 |£._|'-‘.'.li-“ |.rre_r.-r.l.:|.-|

= |4 | fe|" e o TR (2.11)

|H

= |A | e|” cos{aogn + ) 1 Al e]” sintwgn 4 ).

The sequence oscillates with an exponentially growing envelope if J¢| = 1 or with an
exponeniially decaying envelope if |e| < 1. (As a simple example, consider the case
g = 1)

When jo¢| = 1, the sequence has the form

xin] = |A |ef = — 4 | cos{agn + @) + J|A | sinjapn + @) (2.12)

that is, the real and imaginary parts of &9 vary sinuscidally with n. By analogy with the
continuous-time case, the quantity wy is called the frequenicy of the complex sinusoid
or complex exponential, and ¢ is called the phase. However, since n is a dimensionless
integer. the dimension of wy is radians, If we wish to maintain a closer analogy with the
continuous-time case, we can specify the units of wy to be radians per sample and the
units of » to be samples,

The fact that n is always an integer in Eg. (2.12) leads to some important differ-
ences between the properties of discrete-time and continuous-time complex exponential
sequences and sinusoidal sequences. Consider, for example, a frequency (wg 4 2 ). In
this case,

0 FLLCTS 2t 1)
A= " (2.13)
= A el iinn o g apogn
Generally, complex exponcntial sequences with frequencies (wy + 2rr), where r s
an integer, are indistinguishable from one another, An identical statement holds for
sinusoidal sequences. Specifically, it is casily venified that

x[n] = A cos[{wgy + 2rein + @] 2.12)

= A coslwyn + ¢).
The implications of this property for sequences obtained by sampling sinusoids and
other signals will be discussed in Chapler 4. For now, we conclude that, when discussing,
complex exponential signals of the form x[n] = A e/%0" or real sinusoidal signals of the
torm x{n] = A cos{wgn + ¢}, we need only consuder frequencies in an interval of Tength
2. Typically, we will choose cither —7 = wy = 7 orll = wy = 2.

Another important difference between continuous-time and discrete-time com-
plex exponentials and sinusoids concerns their periodicity in #. In the continuous-lime
case. 4 sinusoidal sagnal and a complex exponential signal are both periodic in time with
the period equal to 27 divided by the frequency. In the discrete-time case, a periodic
sequence is a sequence for which

xln] = xfn - M1, for all u, {2.15)
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where the period # is necessarily an integer. 1f this condition for periodicity is tested
for the discrete-time sinusoid, then

A coslewpr = @ o= A costergn b oagh - @, (2.1G)
which requires that
N = 2rk, (217

whore & s an integer. A similar statecment holds [or the complex exponential sequence
Cel™", that is, periodicity with period & reguires that

e MIBFNY o gl (2.18)

which is true only for wy N = 27k, as in Eq. (2,17). Consequently, complex exponential
and sinusoidal sequences are not necessarily periodic in « with period {27 /frwg) and.
depending on the value of wqy, may not be periodic at all,

Example 2.1 Periodic and Aperiodic Discrete-Time Sinusoids

Consider the signal xq1#] = coséra /4. This signal has a period of ¥ = B To show this
5, ok that vw 48] = cosirin =814 = costan 4+ 2 = cosimin /4) = xin), satisfying
the definition of a diserete-time perodic signal. Contrary to continuous- time sinusoids,
increasing the value of wy for a discrete-time sinusoid does nol necessarily decrease
the period of the signal. Consider the disceete-time sinusoid oa]a] = cosi3aa /8, which
4 has a higher frequency than aplr]. However, oa|r] is not periodic with period 8, since
xaln 4+ B} = vos3xin + B)/8) = cus(3mns8 4 In) = —xafn]. Using an argument
analogous 1o the one for oy [n]. we can show that x;[r] has a period of ¥ = 16. Thus
increasing the value of oy = 2w /8 tow = 3a/8 also increases the period of the signal.
This occors because discrele-time signaks are defined only for inteper indices 5.

The integer restriclion on g results in some sinusoidal sipnals not being periodic
at all. For example, there 15 no integer N such that the signal x3lie] = cos(n) satisfies
the condition x3[n + N | = xz3lr] for all n. These and other properties of discrete-time
sinvsoids that run counter o their continuous-time counterparts are caused by the
limitation of the rime index a to integers for discrete-time signals and systems

When we combine the condition of Eq. (2.17) with our previous observation that
arg and {wp + 2 are indistinguishable frequencies, it becomes clear that there are
N distinguishable frequencies for which the corresponding sequences are periodic with
period &. Ome set of frequencies iswg = 2wk /N £ =01, _, & — 1, These properties
of complex exponential and sinusoidal sequences are basic to both the theory and the
design of computational algarithms for discrete-time Fourier analysis, and they will be
discussed in more detail in Chapters 8 and 9,

Related to the preceding discussion is the fact that the interpretation of high
and tow frequencies is somewhat different for continuous-time and discrete-time sinu-
soidal and complex exponential signals, For a continuous-lime simusaidal signal xvif) =
A cos(Sips -+ bl as 82 increascs, xid) oscillates progressively more rapidly. For the
discrete-ume sinusoidal signal x[n] = A cosfaga + gr), 88 arg inereases from wg = 0 1o-
ward rapg = &, v[a] oscillates progrossively more rapidly. However, as rog increascs from
mr = T to oy = 27, the oscillations become slower, This is illustrated in Figure 2.5, In
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fact, because of the periodicity in o of sinusoidal and complex exponential sequences,
ay = 2 s indistinguishable from wy = 0, and, more generally, frequencies around
ey = 2 are indistinguishable from frequencies around wg = 0L As a consequence, for
sinusoidal and complex cxponential signals, values of wy in the vicinity of wy = 2ak
for any integer value of k are typically referred 1o as low lrequencies (relatively slow
oscillations), whereas valucs of wy in the vicinily of mp = (7 + 2xk) lor any mleger
value of k are typically referred 10 as high frequencies (relatively rapid oscillations).

2.2 DISCRETE-TIME SYSTEMS

A discrete-lime system is defined mathematically as a transformation or operator that
maps an input sequence with values ¥[n] into an oulput scquence with values vir] This
can be denoted as

¥in] = Tixlsl} (2.19)

and is indicated pictorially in Figure 2.6, Equation (2.19) represents a rule or formula
for computing the outpul sequence values from the inpul sequence values. It should
be emphasized that the value of the output sequence at cach value of the index n may
depend on input samples x|n] for all valves of n, ie.. v at time »n can depend on all or
part of the entire sequence x. The following examples iliustrate some simple and useful
systerns.

Figure 2.6 Represzntation of a
discreie-fims system. .6, 4
transforrnatiomn that maps an input
—| F|s] p——  seguence x[7] into a unigue output
x[x| ¥[n]  sequence y[a).

Example 2.2 The ideal Delay System
- The ideal delay system is defined by the equation
ylnl = xln — ngl. —o0 T T 0, (2.2()

where ry s a fised positive inleper representiog the delay of the svstern. In other words,
- the ideal delay system shitts the input sequence to the right by » g samples to form the
output, 11, in Eg. (2200, ny is 8 Gxed negative integer, then the system would shill the

o input fo the left by ng) samples, corresponding to a time advance.

In the svstem of Example 2.2, only one sample of the input sequence is involved
in determining a certain output sample. In the following example, this is not the case,
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Example 2.3 Moving Average

. The general moving-average system is defined by the equation

L M
.F["] = m t=_EHJI[n — k]
1
= Wﬁ;ﬁ {.r[n ~Ml+xln+ My 1]+ -4 x[n] (2213

Hxln = 1]+ - +xln — Mo}

This system compuies the nth sample of the oulpul sequence as the average ol (M +

0 M3 +1)samples of the inpal segience around the pih sample. Figure 2.7 shows animput
i sequence plotted as a function of o dummy index k and the samples (solid dows) involved
in the compulation of the oulput sample yipjlors = 7,8 = 0,and M5 = 5. The out-
Coput sample v[7] i equal to one-siih ol the sum of all the samples belween the vertical
dotted lines, To compute ¥|8], both dotted lines would move one sample to the right.

x[k]

"3 IIT

|

Figure 2.7 Sequencevaluesinvolved in computinga mevingaverage with &4 — 0
and My = 5.

—
]

Classes of systems are defined by placing constraints on the properties of the
transformation 7 {-]. Doing so often leads to very general mathematical representations,
as we will see. Of particular importance are the system constraints and properties,
discussed in Sections 2.2.1-2.2.5.

2.2.1 Memoryless Systems
A system s referred to as memorvless if the output ¥[nf at every value of n depends
only on the input x[n] at the same value of 1.
Example 2.4 A Memoryless System
A example of 2 memoryless system is a system for which c[n] and y[a] are related by

ylnl = (c[nD)”, for each valus of a. {222}
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The system in Example 2.2 is not memoryless unless ng = 0; in particular, thai
svstem is referred 1o as having “memory™ whelther sy is positive (a time delav) or

-

negative (a time advance ). The moving average syslem in Example 2.3 15 not memaoryless
unless M; = M1 = (L

2.2.2 Linear Systems

The class of linear systems is defined by the principle of superposition. If v ;[a] and y3[a]
are the responscs of a system when x{n] and xfn] are the respective inputs, then the
system is linear if and only if

Flagel + x2[nll = Tixginl} + Tlazin]l = y[n] 4+ y2[n] {2.23a)
and
Tlax|n]} = aT[x|n|} = avin], {2.23b)

where ¢ is an arbitrary constant. The first property is the additivicy property, and the
second the Aomogeneity or scaling properiv, These two properties together comprise
the principle of superposition, stated as

Tlaxilnl + bualn]] = a¥ xilal]) + 6T{xz(n]] {2.24)

for arbitrary constants @ and b, This equatiom can he generalized o the superposition
of many inputs. Specifically, if

x[n] = E ciixg |l {2.25a)
then the output of a linear system will be
¥ln] = Z ey lnl. {2,250
i

where yvi[n] is the system response to the input s n ).

By using the definition of the principle of superposition. it is easily shown that the
svstems of Examples 2.2 and 2.3 are linear systems, {See Problem 2,39} An example of
a nonlinear system is the system in Example 2.4,

Exampie 2.5 The Accumulator System
The svsiem delined by the input—oulpul equation

i

vlnt] = L Ik (2.26)

k=30

is called the acoumumlator system, since the owtput al time r s the accumulation o
sum of the present and all previous input samples. The accumulator system is a lincar
7 system. Smee this may nol be infuitively obvious, it is a useful exercise o go through
 the steps of more formally showing this. We begin by defining two arbitrary inputs
xyla] and xala} and their corresponding outputs
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slal = 3 xlkl. (2.27)
b= —ey
[
valnl = 3 xalk). (2.28)
b=—ra

When the input is x3fn] = ax[r] + bxp[n], the superposition principle reguires the
L output ysfm] = ay[#] + byola) for all possible chowees of 2 and &, We can show this
T by starting from Fy. (2.26):

&

iy "

i wlrl= 3 xlkl, (2.29)
_;r k=—oc

[ n

=y = 3" far[k] + bralk]). {2.30)
: K — 00

e " "

i =a ¥ mlkl+b ¥ xalkl. (2.31)
.4-: =i f=—m

i =ayy[a] + byylal. {232)

s:.r Thus, the accumulator system of Eqg. (2.26) salisfies the superposition prineiple for all

2% inputs and is therefore linear.

Exampie 2.6 A Nonlinear System

4 Consider the system defined by

T wln] = logyy (elal. {233

If* - This system is nol linear, To prove this, we only need 1o find one counterexample—

I; that is, one set of inputs and cutputs which demonstrates that the system violares
;. the superposition principle, Eq. (2.24), The inputs xgfa] = 1 and x2(s] = [0 ane a
{f countersxample. However, the outpyt for xy[r] + xofal = 11 is

2

= log)p(l + 10) = logpi11) # log (1) + log (10 = 1.

H

5 Also, the outpat for the firsi signal is wy [n] = 0. whereas for the second, wy|s] = 1. The
scaling property of linear systems requires that, since x3[a] = 10x[n], if the system is
linear, it must be true that wylx] = 10w |#]. Since this is not so for Eq. (2.33) for this
= gel of inputs and outpuis, the syslem is mof linear.,

oo

|

i

2.2.3 Time-Invariant Systems

A time-invariant system (often referred to ecquivalently as a shift-invariant system’) is
a systemn for which a time shift or delay of the input seguence eauses a corresponding
shift in the output sequence. Specifically, suppose thal a system transforms the input
sequence with values x[x] into the output sequence with values y[rl Then, the system
is said to be time invariant if, for all ny. the input sequence with values xy[r] = x[n —ng)
produees the output sequence with values vy[n] = vin —npl.

Asinthe case of linearity, proving that a system is time invariant requires a general
proof making no specific assumptions about the input signals. On the other hand, proving
non-time invariance only requires a counier example to time invariance. All of the
systems in Examples 2.2-2.6 are time invariant. The style of proof for time invariance
is illustrated in Examples 2.7 and 2.8.
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Example 2.7 The Accumulator as a Time-Invariant System

ug

Consder the accumulater [rom Example 2.5, We define x)|n| = xln — ngl. To show
time invariance, we solve for both y[e gl and v [n] and commpare them tosee whether
“y they are egual. First,

f—hy)

i vin - gl = % xikl. (2.34)
..':; k=—0c
0 Next, we find
‘:—‘ "
' yilnl= 3" xlkl (2.35)
k=—ac
Ly
= ¥ xlk—nyl (2.36)
4 .

Substiluting the change of vanables &} = & — kg Into the summation gives

ﬂ—ﬂ'[_l

¥ilnl= ¥ kgl (237)

-

- Since the index & in Eg. (2.34) and the index & in Eq. (2.37) are dummy indices of
A summation. and can bave any label, Eos (2.34) and (2.37) arc equal and therefore
1 ¥q[n] = vlr = gl The sccumnulator is @ ime-invariant system,

The following example 1llustrates a system that is ool (me invariant.

Example 2.8 The Compressor System
The svstem defined by the relation
J y[n] = cfMr], - = T =D B0, (2.38)

‘ with M a positive integer, is called a compressor. Specifically, it discards (A — 1)
samples out of M; Le., it creates the output sequence by selecting every M™ sample.
This sysiem (s nol tithe invariant. We can show that inis not by considering the response
& yyln] tothe inpru't xyfa| = x[a = npl. For the system to be time invariant, the output of
. the system when the input s 39 e must be cqual to v|n — ap). The outpot v |ai that
- oresults from the mput o [a]can be directly computed from By, (2.35) to he

,»"" wilml = a:[Mn] = x| Mn — npl. (2.39)
: Delaying the outpul vl by ng samples vields
vin —ny] = x[Min - mgil. (2.4i1)

Comparing these two oulputs, we see that yln — #p] is not equal to ¥ g(#] for all M and
oo, and therefore, the systam s nol tme invarian.

% It is also pessible to prove that a system is not time invariant by finding a single
" countercxample that violates the time-invariance property. For instance, a counterax-
ample tor the compressor is the case when M = 2, x|n] = d[n], and xq[n] = &[n - 1].
i+ For this choice of inputs and M, y[e] = &[] but vfr] = 0; thus, it is clear that
¢ wi|m] # v|r — 1] for this system.
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2.2.4 Causality

A system is causal it for every choice of np, the output sequence valuc at theindex n = ny
depends only on the input sequence values for # = ny. This implies that il x;fn] = x2in]
lorn = ny, then yiln] = yalnl for n = ng. That is the system is roranticipaive. The
system of Example 2.2 is causal for ny = (and 1s noncausal for my < 0. The system ol
Example 2.3 is causal if — M = Dand M2 =k otherwise it is noncausal. The svstem of
Example 2.4 is cavsal, as is the accumulator of Example 2.5 and the nonlinear system
in Example 2.6. However, the system of Example 2.5 is noncausal if M = 1, since
v[1] = xlM |. Another noncausal system is piven in the following example,

Example 2.9 The Forward and Backward Difference Systems

iy The system defined by the relationship

y[n] = xln + 1] = x[a] . {241}

0 s referred to as the forward difference sysiem. This system is not causal, since the
surrent value of the sutput depends on a future value of the input. The vielation of
i+ causalily can he demuonstrated by considering the two inpots ) [n] = 4w — 1] and
S5 xaln) = 0 and their corresponding outputs yqla] = dla] — 8 — 1] and ¥afn] = 10
st for all n, Note that xy[n] = x20k] for 1 = 0, s the definition of cavsality requires
that vyln] = voin] for m = 0, which is clearly not the case tor 1 = {0 Thus, by this
counlerexample, we have shown that the system is not causal,
The backwurd difference sverem, defined as

¥lr] = x[n] = x[n — 1], (2.42)

has un cutput that depends only on the present and past values of the input. Because
¥lag) depends only on a kgl and x[mg — 15, the svstem is causal by definition.

2.2.5 Stability

A number of somewhat different definitions are commonly used forstability of a system,
Throughout this fext, we specifically use bounded-input bounded-output stability.

A syslem is stable in the bounded-inpul, bounded-output (BIBO) sensc if and
only it every bounded input sequence produces a bounded outpul sequence. The input
x[r}is bounded if there exists a fixed positive linite value B, such that

[x[n]| = By < o, for all n. {2.43)

Stability requires that, for every bounded input, there exists a fixed positive finite value
B, such that

|¥[n}] = &, = oo, for all n. (2.44)

It is important 1o emphasize that the properlics we have delined n this seclion arc
propertics of systems, not of the inputs to a system. That is, we may be able to find
inputs for which the properties hold, but the existence of the property for some inputs
does nol mean that the system has Lhe property. For the system W have the property, it
must hold for aff inpuis, For example, an unstable system may have some bounded inputs
for which the output is beunded, but for the system to have the property of stability, it
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must be true that for off bounded inputs, the output is bounded. If we can find just one
input for which the system property does not hold, then we have shown that the svstem
does not have that property. The following example illustrates the testing of stability
[or several of the systems that we have defined,

Example 2.10 Testing for Stability or Instability

o The system of Cxample 2.4 95 stable, To see this, assume that the input x[n] s bounded
such that |t[n]] = 8, for all n. Then |y¥[n]] = x[#x] 2 < B%_ Thus, we can choose
e By BE and prove that y[n] is bounded.

Likewise, we can see that the svstem defined in Example 2.6 is unstable, since
¥l = logpiixin]l) = —= for any values of the time index ke at which x[n] =0}, even
though the output will be bounded for any input samples that are aot equal to zera

The avcumulator, s defined in Example 2.5 by Eq. (2.26), is also not stable, Bor

© example, consider the case when x[n] = afn], which is clearly bounded by By = 1. Tor
o this input, the outpul of the accumulator is

M
del= Y ulkl {2.45)

=gl =]

{4, n = (b

- 28 tn+11 n=A. {246}

- There is no fnite choice for By such that (n 4 1) = B, = oo for all #; thus, the system
is unsiablc.

1 Llsing similar arguments, il can be shown that (he systems in Examples 2.2, 2.3,
© 2.4, and 2.9 are all stable.

L

2.3 LTI SYSTEMS

Asin conlinuous ime, a particularly important class of discrete-time svstems consists of
those that are both linear and time invariant. These two properties in combination lead
1o especially convenient representations for such systems, Most important, this class
of systems has significant signal-processing applications. The class of linear systems is
defined by the prinaple of superposition in Eqg. (2.24). 1f the lincarity properly is com-
bined with the representation of a general scquence as a lincar combination of delayed
impulses as in Eqg. (2.5}, it follows that a linear system can be completely characterized
by its impulse response. Specifically, et fig{n] be the response of the system to the input
8l — k], an impulse occurring at 1 = k. Then, using Eq. {2.5) 1o represeat the input, it
follows that

vin]=T { 5" xlk18n — kl} y (2.47)
F=—nt
and the principle of superposition in Eq. (2.24), we can write
aa e )
vlnl= 3 xlk|Tiln—klb= Y xlkilnl. {2.48)

k=—ra Fe=—pnn
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According to Eq. (2.48), the system response Lo any inpul can be expressed in terms
of the responses of the system to the sequences Sfr — k. I only hnearity is imposed,
then Ai|n] will depend on both 7 and &) o which case the computational aselulness
of Eq. (2.48) 15 somewhat Bmiled. We oblain a motre wselul result if we impose the
additional constraint of time nvanance.

The property of time invariance implies that if A]a] is the response 1o dja], then
the responsc to 8[n — ks k[n — k]. With this additional constraint, Eq. (2.48) becomes

a0
¥inl = E xlkThn — &1, For all i, (2.4
b= oo p
Asaconsequence of Eq. {2.49), an LT system is completely characierized by its impulse
response fifn| in the sonse that, given the sequences xla| and hlal for all . it is possible
lo use Eqg. (2.49) to compuie each sample of the output sequence vin|.
Equation (2.49) is referred 1o as the comvoltion sum, and we represent ihis by
the operator notation

¥[n] = xnT = it[n]. (2.5

The operation of discrete-time convolution takes two sequences x[n] and k|r ] and pro-
duces a third sequence y|n]. Equation (2.49) expresses each sample of the output se-
guence in terms of all of the samples of the input and impulse response sequences.

The notation of Eq. {2.50) for the operation of convelution as shorthand for
Eq. (2.49) is convenient and compact but needs to be used with caution. The basic
definition of the convolution of tweo sequences is crmbodicd in Eq. (2.49) and any use
of the shorthand form in Eq. (2.50) should always be referred back to Eq. {2.49). For
example, consider v[n — npl. Prom Eqg. (2.49) we see that

A
yin—npl= 3 xiklhln —my — k| (2.51)
Ree-au
or m short hand nolaiion
vla —npl = xin | = hln — ng) (2.32)

Subslituting ¢n — np) for min Eq. (2.49) leads Lo the correct result and conclusion, but
blindly trying the same substitution in Eq. (2.50) docs not. In fact, cln —ag] = kla —npl
resulls vl — 2rgl.

The derivation ol Eq. (2.49) suggests the interpretation that the mpul sample at
n = k, tepresented as xfk|8]r — k1. is transformed by the system into an output scquence
xlklhln — k| tor —ao < n = 2o, and that, for each k, these sequences are superimposed
{summed) to form the overall output sequence, This interpretation is illustrated in Fig-
are 2.8, which shows an impulse response, a simple input sequence having three nonzero
samples, the individual outputs due to cach sample, and the composite outpur due to all



¥ a[n] =x[-2)d[n + 2] ¥ oafr] = e[=2hn + 3]

—_— =3 . —.—l—!—l—l—n
xglan} = x[0]é]n] l l ¥ulrt] = x[0]k[r]
—_— 5 - ——— = —— 0 'lE—l—I - 5
xaln| = x| 3] - 3] vsln] = x| 3phin - 3]
-/ - L L ] [ 3 e — 3 :l
- - --4—-'!;-— - 1 -H—!—EI-- [-F
] =y g[w] + ryln] + xfw] viu] = v oln]+ gpln] + pala]

Figure 2.8 Representation of the output of an LTI system as the superposition
of respanses to individual samples of the input.

25
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the samples in the input sequence. Specifically, x|r] can be decomposed as the sum of the
three sequences x[ =218k 4+ 2], x[(Na[x], and x| 3] [n — 3] representing Lthe three nonzero
values in Lhe sequence xlal. The sequences x[-210{n + 2], x[(Ni[r]. and x[34[a - 3]
are lhe system responses o x[—2180r + 21, x[N8[x], and x[318[1 — 3], respectiviely, The
response to xfa] is then the sum of these three individual FESpUTISES.

Although the convolulion-sum e xpression is analopgons to the convolulion integral
of continuous-time linear system theory, Lhe convolution sum should not be thought of
as an approximalion to the convolation integral. The convolution integral i mainly a
Lool of mathematical analysis in continuous-time linear system theory; we will see that
Lhe convolulion sum, in addition tos analytical imporiance, often serves as an caplicit
realivation of a discrete-time linear system. Thus, it is important to pain some insight
into the properties of the convolution sum in actual caleulations.

The preceding interpretation of Eq. (2.4%) emphasizes that the convolution sum
is a direct result of linearity and time invariance. However, a slightly differemt way of
locking at Eg. (2.4%) leads to a particularly useful computational interpretation. When
viewed as a formula for computing a single value of the output sequence, Eq. (2.49)
dictates that y|n| (i.e.. the n™ value of the output) is obtained by multiplying the input
sequence {expressed as a function of k) by the sequence whose values are hln — &),

oo = & = oo for any fixed value of a, and then summing all the values of the products
[k ]h[n— &l with k a counting index in the summation process. Therefore, the operalion
of convolving two sequences involves doing the computation specified by Eq. (2.49) for
each value of u, thus generating the complele outpul sequence vinl, —oo = n = oo. The
key to carrving oul the compulations of Eq. (2,49 Lo oblain y[r] s understanding how
Lo form the sequence ffa — &), —oo = k = oc, For all values of i that are of interest. To
this cid, it is uselul bo note that

Bl — k] = h{—(k — m)]. (2.53)

To illustrate the interpretation of Eq. (2.53), suppose k&) 15 the sequence shown in
Figure 2.9(a) and we wish to find iln — &] = #|—(k — #)]. Define kjk] to be Al—K|.
which is shown in Figure 2.9(b). Next, define fi7|&] to be fiy[£], delayed, by r samples
on the k axis, 1.e., ia[k] = [k - »]. Figure 2.9(c) shows the sequence that results from
delaving the sequence in Figure 2.9(b} by n samples, Using the relationship between
fpf&] angd ALE) we can show that fpfk] = Ak - r| = [ =k - n) = kla - k], and thus,
the bottom figure 15 the desired signal. To summarize, lo compule Al - k] from k&,
we firsl reverse A[&] in time aboul & = (1 and then delay the time-reversed signal by n
samples,

To implement discrete-lime convolution, the bwo sequences fk] and ila — k] are
multiphed together sumple by sample for —oc = & -2 oo, and the products are summed
Lo compute Lhe output sample v[n]. To obtain anolher output sample, the origin of the
sequence i —k| is shifted Lo the new sample position. and the process is repeated. This
computational procedure applies whether the computations are carried out numerically
on sampled data or analytically with sequences for which the sample values have simple
formulas. 'The following cxample illustrates discrete-time convolution for the latter case.
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(k]
==,-T1]H_IIT;==JL

foyfkc ] = h[—k] = h[0 - k]

4._._._,_._7_T_L[ M.

n-b il e i3 k
ek

Flgure 2.9 Forming the sequence o — §). (a) The sequence R[#] as & function
af & (b} The sequence H[— &) as a function of &, (¢) The saquence &7 — %] =
il — ik — m] as afunction of ¥ for n = 4.

Example 2.11 Analytical Evaluation of the Convolution Sum

& Consider a system with impulse response

,,- - Fla] — wfn] —ufn = N}

I e o R
10, otherwise,

& The input is

L or cguivalently,
xin] = a"uin].

Io find the output at a particular index », we must form the sums over all & of the
product xf&k(e — &, In this case, we can find formulas o y(a] for different ses
of values of n. To do this, it is helpful to sketch the sequences x|k and hlr - &] as
= functions of & for different representative values of #. For example. Figure 2.10(a)

= shows the sequences x[k] and Al — k], plotied [or noa negative inteper. Clearly, all
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&*' negative values of # give a similar picture; iLe., the nonzero portions of the sequences
;ﬁf x[k] and fifn — k] do nol overlap, so

o 0 S R

] ;

B

sy Figure 2.10{b} illustrates the two seyuences when 0 < rand s — & 41 = 0. These two

& conditions can be combined into the single condition 0 < n = ¥ — 1. By considering
X Figure 2.10b), we see that since

oy

o 3

i ks — &) =a®,  TorD<k=n

B
B owhenD<n= N -1
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it follows that

(13
vim=3Y4a*, for0smsN-1 (2.54)
k=0

e The Emils oo the sum can be seen directly from Figueee 2, 1000]). Bguation (2.34) shows
ci: that yin] is the sum of n + 1 terms of a geometric series in which the ratio of terms is
o a, This sum can be expressed in closed form wsing the general formula

Mg Ny _ L N+l
: 3 ake % Ny = Ny (2.55)
i AT i

Applying this formula 1o Eq. (2.54), we abtain

:'::.. 1—a" r1
is =2 .  Dza<N-1 (2.56)
: 1-a
Finally, Fipure 2,100 c) shows the two sequences when{l =n - N +lor &V — 1 < n, As
. before,
x[Elhln —kl=a*, n-N+l=<k<n,
’r but now the livwer limit on the sum s v — N 4 1, as seenin Figare 2.100c). Thus,
:F."::f. )
iz dinl= ¥ & o N-len (2.57)
bmm—N+1

i+ Using Eq. (2.55), we abtain

E: un—.'J- 1_ arr+']
vin] = -
piy il 1-a
St oor
N 1 —a
'.’;:: ;l,-[n:] = ;_;" A+l ( 1 i ) : {ISH}
2 i
' Thus, because of the piecewize-exponential nature of both the input and the unit
,, sample response, we have been able to oblain the fellowing closed-form expression

== for y[n] as a function of the index =

‘ 1 a =Ll

;a.:_ l—ﬂn; I . .

yinl={ T4 OsngN-1 (2.59)
i N

= altN+l (w—-—Jl a ) . N—-1l=a

T l—=a

. This segpuence s shown in Figure 2.100d).

Example 2.11 tllusirates how the convolution sum can be computed analytically
when the inpul and the impulse response are given by simple formulas In such cases,
the sums may have a compact form that may be derived wsing the formula for the sum of
a geometric serics or other “closed-form™ formulas.? When no simple form is available,

25uch resulte are discussed, for example, in Grossman (2992} and Joltey {2004},
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the convolution sum can still be evaluated numerically using the technigque illustrated
in Example 2.11 whenever the sums are finite, which will be the case if cither the input
sequence or the impulse response is of finile lenpth., i.e., has a finite number of nonzero
samples.

2.4 PROPERTIES OF LINEAR TIME-INVARIANT SYSTEMS

Since all LTT systems are described by the conveolution sum of Eq. (2.49). the proper-
ties of this class of systems are delined by the properties of discrete-time convolution.
Therefore, the impulse response is a complete characterization of the properties of a
specific LTI system, '

some general properties of the class of LTI systems can be found by considering
properties of the convolution operation.? For example, the convolution operation is
eommutative:

x[n] # hin| = it[n] £ x[n]. {2.60)

This can be shown by applying a substitution of variables to the summation index in
Eq. (249, Specifically, withm =n -k,

¥in] = z x[r = mlkm] = Z Hlmlx[n = m] = hir] = x[n]. {2.61)

50 the roles of x[a] and Afn] in the summation are interchanged. That is, the order of
the sequences 102 convolution operalor 1§ unimportant; hence, the system outlpot s
the same if the roles of the input and impulse response are reversed. Accordingly, an
LTE systemn with inpul x[n] and impulse response k(n] will have the same oulput as an
LT system with inpul Afn| and impulse response x{n]. The convolution operation also
distributes over addition; i.e.,

x{nl=ihi[n] + he[nD = x[n] % hylnl 4+ x[n] # hzin]. {262}
This follows in a straightforward way from Eq. (2.49) and is a direct result of the lin-
earity and commutalivity of convolution. Equation [2.62) is represented pictorially in
Figure 2,11, where Figure 2.1 1{a) represents the right-hand side of Eg. (2.62) and Fig-
ure 2.11{ k) the lefi-hand side.

The convolulion operation also satisfies the associative property, 1.,

vinl = (x[n] = by [n]) = ho[n] = x|w] = (Byla] = kaln]). (2.63)
Also since the convolution operation is commulative, Bg. (2.63) s equivalent Lo
v[r] = x[an] = (fez[n] = bq[n]y = (x[n] + ha|u]) = hi]n]. (2.64)

These equivalences are represented pictornially in Fjgajre 212, Also, Eqgs. (2.63) and
(2.64) clearly imply that if two LTT systems with impulse responses figln] and Aa[x] are
cascaded in either order, the equivalent overall impulse response h[n] is

Rln] = kiln] = hafn] = khanf = klnl. (2.65)

*1n our discussion helow and throuphout the text, we e the shorthand notation of Eq. (2.530) for
the operation of coovolation, but agun emphasize that the propeties of comvolmion are decived froom the
definition of Eg. {249
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h]|"|
xm| i ¥n
+

L i

1 iy [n]
{a}
—el 1 [02] = Fig | et
xlal ¥lnl Figurg 2.11  {a) Paralicl combination of
thy LTI systems. {b) An equivalent sysem.
! [0 iy =
T 1[4 2] s
{a)
= = f1y |7 .
x|r] talal 1l v|#|
(b
—— fyfu]rhgn] —= Figure 2.12 (a) Cascads combination
x[n] ¥[n] of twa LT systems. {b} Equivalant
() cascade. (o) Single equivalent system.

In a paralle] combination, the systems have the same input, and their outputs
are summed to produce an overall output. Tt follows from the distributive property of
convolution that the connection of two LTT systems in parallel is equivalent to a single
system whose impulse response is the sum of the individual impulse responses; i.e.,

faln] = hy[n] + kz[n]. {2.66)

The constraints of linearity and time invatiance defing a class of systems with very
special properties. Stability and causality represent additional properties, and it is often
important to know whether an TTT system is stable and whelher it is causal, Recall [rom
Section 2.2.5 that a stable system is a system for which every bounded inpul produccs a
bounded output, LT systems arc stable if and only if the impulse responsc is absolutely
summable, i.c 1l

b,
Br= ) [RIk] = o0, (2.67)
k=—rc

This can be shown as follows. From Eg. (2261,

o oo
lrlell =| > fr|,k,|_x|n—kj‘-_=: > IALk xln  K]- {2.68)
k=—ox k=—nma

If x[#] is bounded, so that
[x[m]| = H.,
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then substituting #, for |xjn — k]| can only strengthen the inequality. Hence,

_1'|-"1|| = .H.r-ﬁ".l.l- (2.69:‘
Thus, v[#] is bounded if Eq. (2.67) holds; in other words, Fq. (2.67) is a sufficient con-
dition for stability. To show that it is also a necessary condition, we must show that if

By, = oo, then a bounded input can be found that will cause an unbounded output. Such
an input is the sequence with valucs

¥ =nr|
2T ka0,

il d Bar (2.70)
{3 hln] =0,

where #*{r] is the complex conjugale of Aln]. The sequence xfa] is clearly bounded by
unity. However, the value of the output atw = 0 is
o a0

G
A0l = 3 ad-ki = 3 L~ @.11)

h=— h=—00
Therclore, if By = oo 1L s possible for a bounded input sequence to produce an un-
bounded oulpul sequence.
The class of causal systems was defined in Section 2.2 .4 as comprising those syslems
for which the output ¥frg] depends only on the input samples x[n], fora = ag. 1 lollows
from Eq. {2.49) or Eg. (2,61 Lhat this definition implics the condition

film] = 1. n o A, (272}

for causality of LT1 systems. {See Problem 2.69.) For Lhis reason, 16 18 somelimes conve-
nient to refer (o a sequence that is zero for n < O as a consel seguence, meaning that it
could be the impulse response of a causal svstemn.

To illustrate how the properties of L'l svstems are reflected in the impulse re-
sponse, let us consider again some of the systems defined in Examples 2.2-2.9, First,
note that only the systems of Examples 2.2, 2.3, 2.5, and 2.9 are linear and time in-
variant. Although the impulse response of nonlinear or time-varying systems can be
found by simply using an impulse inpat, it is generally of limited interest, since the
convolution-sum formula and Egs (2.67) and (2.72), expressing stability and causality,
do not apply to such systems.

First, lel us determine the impulse responses of the systems in Examples 2.2, 2.3,
2.5, and 2.9, We can du this by simply computing the response of each svstem Lo §[n],
using the defining rclationship for the system. The resulling impulse responses are as
Follomws:

fdeal Delay ( Example 2.2}

hin| = dln — nzl. rig & positive fixed integer. (2.73)

Moving Averuge (Exarmple 2.3)

1 My
hin} = Y Y SR ,_=;H il — k]
. ' (2.74)

— . —My<n=<M;
= M+ M2+ 1 | =% =2
i, olherwise,
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Accumulator {Example 2.5)

K]
oy 'I n = [L
hiln] = 2 8k = {”' p s i w(n]. (2.75)
P ' T

Forward Differcnce { Example 2.9)

bl = &n + 1] — &]n]. {2.76)
Backward Difference (Example 2.9

kin] = d[r] — &[n — 1]. (277

Given the impulse responses of these hasic systems [Eqs. (2.73)-(2.77)], we can
test the stability of each one by computing the sum

fr

Bi= ) inll.

M=

For the ideal delay, moving-average, forward dilference, and backward difference ex-
amples, 1015 clear that 8 = o0, since the impulse response has only a fimite number of
nonzero samples. In general, a system with a finite-duration impulse response (hence-
forth referred to as an FIR system) will always be stable, aslong as each ol the impulse
response values is finite in magnitude. The aceumulator, however, is unsiable because

e

y Eu[n] = =
n=(l

In Section 2.2.5. we also demonstrated the instability of the accumulator by giving an
example of a bounded input (the unit step) for which the output is unhounded,

The impulse response of the accumulator has infinile duration. This is an example
ol the class of systems relerred Lo as infinite-duration impudse response (TR systems.
An example of an IR system that is stable s a system whose impulse response is
in] = a"u[n] with ja| = ].'r In this case,

=G
g | vy
By=) lal" (2.78)
n=l}
Il |a| = 1, the formula for the sum of the terms of an inlinite geometric series gives
1

By = -
T e ]

(2.79)

It on the other hand, ja| = 1, then the sum is inlinite and the system is unstable.

"To test causality of the LT'T systems in Examples 2.2, 2.3, 2.5, and 2.9, we can check
o see whether A[n] =i forn < 0. Ax discussed in Scction 2.2.4, the ideal delay [ng = 0
in Bq. (2.20)] is causal. If ny < 4, then the system is noncausal. For the moving average,
cavsality requiresthat — M| = Uand M > = 0. 'The accumulator and backward ditference
systems are causal, and the forward ditference sysiem is noncausal.
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Forward _ | One-zample
xir] difference delay ]
(al
One-sample Forward
+n] ! delay differcnoe vlr]
i)
e e
x[n] TELEMCE | oy [n] Figure 2.13  Equivalent systems found
_ by uaing the commutative property of
ie) convolution.

The concept of convolution as an operation between two sequences leads to the
simplification ol many problems involving systems. A particularly usetul resull can be
stated for the ideal delay system, Since the output of the delay system is v[a] = x[a —nyl,
and since the delay svstern has impulse response ksl = &[n — ny], it follows that

xln]=6n —ng| = dln —ng]l = x|n] = xln — ngl (2.8

That is, the convolution of a shifted impulse sequence with anv signal x|n| is easily
evaluated by simply shifting x|n] by the displacement of the impulse.

Since delay is a fundamental operation in the implementation of linear systems,
the preceding result s often useful in the analvsis and simplification of interconnections
of LTT syslems. As an example, consider Lthe system of Figure 2.13(a), which consists
of a forward difference sysiem cascaded with an ideal delay of one sample, According
to the commutalive properly of convolution, the order in which systems arc cascaded
does not matler, as long as they are linear and time invariant, Therelore, we obtain
the sume resull when we compute the forward difference ol a sequence and delay the
result (Figure 2.13a) as when we delav the sequence first and then compute the lorward
difference (Figure 2.13b). Also, as indicated in Eq. (2.65) and in Figure 2.12, the overall
impulse response of cach cascade system is the convoelution of the individual impulse
responses. Consequently,

Al = (8[n + 17 = sl =50 = 1]
= K[ — 1] = (8[a -+ 1] — &[n]} (2.81)
= &fn] — A — 11

Thus, Alr] is identical to the impulse response of the backward difference system; that
is, the cascaded systems of Figures 2.13(a) and 2.13(b) can be replaced by a backward
difference system, as shown in Figure 2.13(c).

Note that the noncausal forward difference svstems in Flgures 2.13a) and {b)
hawve been converted to causal systems by cascading them with a delay. In general. any
noncausal FIR system can be made causal by cascading it with a sufficiently long delay,
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Figure 2,14  An accumulztor in
cascade with a backward diffarence.
) Since the backward difference is the
Asviimnulator T inverse system far the accumulatar, the
T syste Wl T ;1 Cascade combination is equivalent to
xx] vinl | sstem | x[n] :
the identity system.

Another example of cascaded systems introduces the concepl of an fnverse s yadewe.
Consider the cascade of systems in Pigure 2,14, The impulse response of the cascade
system is

fln] = wnln] * {dfn] —dfn — 1]}
=uln] —uln — 1] (2.82)
= d|m].

That is. the cascade combination of an accumulator followed by a backward differ-
ence {or vice versa) yields a system whose overall impulse response is the impulse.
Thus, the cutput of the cascade combination will always be equal to the input, since
x|n|+é&ln] = x[n]. In this case, the backward difterence system compensates exactly for
{or inverts) the effect of the accumulator; that is, the backward difference system is the
intverse system for the accumulator. From the commutative property of convolution, the
accumulator is likewise the inverse system for the backward difference system. Note
that this example provides a system interpretation of Eqs. (2.7} and (2.9). In general. if
an LTT system has impulse response #|n|, then its inverse system, if it exists, has impulse
response f;[#] defined by the relation

hln] + hi[n] = hiln] = h[n] = d[n]. (2.83)

Inverse systems are useful in many situations where it is necessary to compensate
for the effects of a system. Tn general, it is difficult to solve Eq. (2.83) directly for
hilrl, given fi[n]. However, in Chapter 3, we will sge thatl the s-transform provides a
straightforward method of finding the inverse of an ITT system.

']

2.5 LINEAR CONSTANT-COEFFICIENT DIFFERENCE
EQUATIONS

An important class of LTI systems consists of those systems for which the inpul x[#]
and the output yjn| satisfy an N _grder linear constant-coefficient difference equation
of the form

N M
Zﬂk.\'fﬂ — k= Z bwx[n — m). (2.54)
k=il m=l}

The properties discussed in Seclion 2.4 and some of the analysis techniques introduced
there can be used to find difference equation representations for some of the LT systemns
thit we have defined.
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Exampie 2.12 Difference Equation Representation of the
Accumulator

2% The accumulator system is defined by

It
e yinl= Y x[k] (2.53)
-. e
e
i72 Toshowlhal the inpul and outpul salisfy a dilference equation of the form of Eq. (2.84),
“5 we rewrite Eq, (285} as
°~‘ ; A
L vinl=xlol+ 3 skl (2.86)
‘ E=—na
= Also, from Eq. {2.85)
-1
¥im 1= 3 zxfkl (2.87)
koo

Substituting Eq. (2.87) into Eq. (2.86) yiclds

¥[n] = x|ui+ v[n =1}, 12.88)

'E:_ and eguivalently,

i ¥lrl = ¥[n =11 = xfx], (2.59)

o Thus, in addition to satisfying the defining relationship of Eq. (2.85), the inpat
_r und outpuel of an accumulstor satisfy a lingar constant-coeflicient difference eguation
0 ofthe form BEq (284, with N = T ag =1,y = <1, M = O, and by = 1.

The difference equation in the form of Eqg. {2.88) suggests a sumple implementation
of the accumulator system. According to Eq. (2.88), for each value of n, we add the
current input value x|n| to the previously accumulated sum ¥[n — 1} This interpretation
of the accumulator is represented in block diagram form in Figure 2,15,

Equation {2.88) and the Mock diagram in Figure 2.15 are referred to as a recursive
representation of the system, since each value is computed using previously computed
values, This general notion will be explored in mare detail later in this section.

e
t[n] ¥lx]

{mc-sample
delay

Figure 2.15 Block diagram of a
vln—1] recursive difference equaftion
regresenting an accurmslator.
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Example 2.13 Difference Equation Representation of the
Moving-Average System

;. Consider the moving-average system of Example 2.3, with M = 0 so that the system
is causal, Tn thes case, from By, (2.74), the impulse response is

hinj = M—_Ih(um] uln — My — 1), {2.90)
. from which it follows that
i M
¥[al = TR %%xm =¥, {2.91)

which isaspecial case of Eq. (2.84), with N =D,ag= LM = My and b, = 1/1M241)
ford < k= Mq.
Also, the impulse response can be expressesd as

1
Alr] = M1 {&lm] — &[0 — Mo — 11) = ulnl, {2.92)

© which suggests that 1he causal moving-average system can be represented as the cas-
 cade system of Figure 2,16, We can obtain a difference eguation For this block diagram
by noting first that

xlal = { ] — xfre - Mz - i” {2.93)

( 'tf +1
i From Eq. (2.82) of Example 2.12, the output of the accumulator satisfies the difference
eyuation

¥lal=3ln 11=x[n]
o w0 that

1
¥lnl = ¥l ~ ] = M, Ulﬂ = xln = Mz =11 {2.84)

Again, we have a difference equation in the form of Eq, (2.84), but this time ¥ = 1.
ag=loa) =-1.M=Mz+landky=—by. ) = /(M7= 11 and by = Dotherwise.

Altenuatar
- 1

o (_'_) AI’.‘{.;LIJ'.EII:I'JEJ.I.UL'
xfn] | (My+ 1) = nkel L | v

x[n

Y+

(M= 1)
Sample
delay

T

I

s Figure 2.16 Block diagram of the recursive form of 2 moving-average systam.

In Example 2.13, we showed two different difference-cquation representations
of the moving-average svstem, In Chapter 6, we will see that many distinct difference
equations can be used to represent a given LTT input—output relation.
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Just as in the case of hnear constant-coctticient differential equations for contin-
wnus-time systems, without additional constraints or otherinformation, a lincar constant-
cocllicient dilference equation for discrele-time sysiems does not provide & unique
specification of the output for a given inpul. Specifically, suppose thai, for a given input
xp[n]. we have determined by some means one outpul sequence vpfal, 50 thal an cgua-
tion of the form of Eq. {2.84) is satisticd. Then, the same cquation with the same inpul
15 satisficd by any output of the form

virl = yplnl + wln]. (2.95)
where vl is any solution to Eq. (2.84) with x[n] — 0, 1.e.. a solution to the equation

N

Z aiviln — k] =0, {2.96)

k=l

Equation (2.96) is called the homaogencows difference equation and vy |#| the homoge-
neous solution, The seguence vy |#| is in fact a member of a family of solutions of the
form
N
ylal= ) Amzl, {2.97)
m=1
where the coefficients A , can be chosen to satisfy a set of auxihary conditions on ¥[x].
Substituting Eq. (2.97 }inlo Eq. (2.96) shows that the complex numbers o, must be roots
of the polynomial
N
A) =) aiz™". (2.98)
L=l
ie, Az} = 0form = 1,2,.,.. N. Equation (297} assumes that all & roots of the
polynomial in Eq. (2.98) are distinct. The form of terms associated with multiple roots
is slightly different, but there are always & undetermined coefficients. An example of
the homogeneous selution with multiple roots is considered in Problem 2.50,

Since vplx] has N undetermined coefficients, a set of N auxiliary conditions is
required for the unique specification of yln] for a given & |#]. These auxiliary conditions
might consist of specifying fixed values of v[a] at specific values of ., such as v[ 1],
¥l 21 ..., ¥[ - | and then solving a set of M linear equations for the ¥ undetermined
coefficients.

Alternatively, if the auxiliary conditions are a set of auxiliary values ol v[n], the
other values of ¥[#] can be generated by rewriting Fy. (2.84) as a recurrence formula,
i.e., in the form

N a M b
_'.-[nJ——Za}ln—i]+zaxln—u. (2.99)
k=1 &=l
I the input x [a] for all a, topether with a sct of suxiliary values, say, v[—11], »[-2]. ...,
w[—N 1,15 specilied, then ¥[)] can be determined from Eg. (2.99). With [0, v[=11, ...,
¥[— N+ 1] now available, ¥ 1] can then be caleulated, and s0 on. When this procedure is
used, vl is said to be computed recursively; L., the oulput computation involves nol
only the input sequence, but also previous values of the output sequence.
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To penerate values of y[a] for n = —N (apain assuming that the values y[—1],

¥[=2], ..., vi—N ] are given as auxiliary conditions], we can rearrange Eq. (2.84) in the
form
N-1 Fris }’f B
M= NT=— 3 Safn o K+ Y kAl (2.100)
PR =i * ¥
from which v[—& — 1], »[—& — 2], ... can be computed recursively in the backward
dircction.

Qur principal interest in this text is in systems that are linear and time invariant,
in which case the auxiliary conditions must be consistent with these additional require-
ments. [n Chapter 3, when we discuss the solution of difference equations using the
z-transtorm, we implicitly incorporate conditions of linearity and time invariance. As
we will see in that discussion, even with the additional cosstraints of linearity and time
invariance. the solution to the difference equation, and therefore the system, is noi
uniquely specified. In particular, there are, in general, both causal and noncausal LT
systems consistent with a given difference equation.

If asvsiem ischaracterized by a linear constant-coefficient difference equation and
is further specified to be linear, time invariant, and causal, then the solution is unique.
In this case, the auxiliary conditions are often stated as nitial-rest conditions, In other
words, the auxiliary information is that if the input x{n | is zero for n less than some time
iy, then the output y[r] is constrained to he zero for n less than ap. This then provides
sufficient initial conditions to ohtain y|x| for # = np recursively using Eqg, (2.99).

Tosummarize, for a svstem tor which the input and output satisfy a inear constant-
coclficient difference equaliomn:

s The output for a piven input is not uniquely specified. Auxiliary information or
conditions are required.

s [f the avxiliary information is in the form of & sequential vahies of the output,
later values can be obtained by rearranging the difference equatian as a recursive
relation running forward in a2, and prior values can be obtained by rearranging the
difference equation as a recursive relation running backward in s,

= Lincanty, ime mvanance, and causality of the system will depend on the auxliary
conditions. Il an additional condition is that the system is initially at rest, then the
syslem will be lincar., lime invariant, and causal.

The preceding discussion assumed that ¥ = 1 in Eq. {2.84), If, instead, &% = 0,
no recursion is required to use the difference equation to compute the output. and
therefore, no auxiliary conditions are required. That is,

M

ylnl = z (%) xfn — k| {2.101)

k=
Equation (2,101 is in the form of a convolution, and by setting x{n] = 4[], we see that
the correspanding impulse response 13
M

hln] = Z (%) iln — K,

k=0
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or

(b—") (b= n = M,
hln] = e (2102}

. otherwise,

The impulse response is obviously finite in duration. Indeed, the ontput of anv FIR
system can be computed nonrecursively where the coefficients are the values of the
impulse response sequence. The moving-average system of Example 2,13 with M =1
i= an example of a causal FIR system. An inleresting feature of that system was that we
also found a recursive equation for the outpul. In Chapler f we will show that there are
many possible ways of implementing a desired signal transformation. Advantages of one
method over another depend on practical considerations, such as numerical aceurucy,
data storage, and Lthe number of multiplications and additions required Lo compute each
sample of the oulput.

2.6 FREQUENCY-DOMAIN REPRESENTATION OF
DISCRETE-TIME SIGNALS AND SYSTEMS

In the previous sections, we summarized some of the fundamental concepts of the theory
of discrete-time signals and swstems. For LT systems, we saw that a representation of the
input sequence as a weighted sum of delayed impulses leads to a representation of the
cutput as a weighted sum of delayed impulse responses. As with continuous-time signals,
discrete-time signals may be represented in a number of different ways. For example,
sinusoidal and complex exponential sequences play a particularly important role in
representing discrete-time signals. This is because complex exponential sequences are
eigenfunctions of LTI systems, and the response to a sinusoidal input is sinusoidal with
the same frequency as the input and with amplitude and phase determined by the system,
These fundamental properties of LTI systems make representations of signals in terms
of sinusnids or complex exponentials (e, Fourier representations) very useful in linear
system thoory.

2.6.1 Eigenfunctions for Linear Time-Invariant Systems

The cigenfunction propertly ol complex exponentials lor discrete-time systems [ollows
directly (rom substitution into Eg. (2,61}, Specifically, with input x[n] = &/ for —oo =
B = oo, the corresponding output of an LT system with impulse response h[r] is casily
showmn to be

vlr] = H{ef™)ei™, {2.103)
where
fu a
Hiel™) = Z ke = (2.104)
k=

Consequently, «/“" is an eigenfunction of the system. and the associared eigen-
vilue is H{e'™). From Eq. (2,103}, we see that H{«'*) describes the change in complex
amplitude of a complex exponential input signal as a function of the frequency w. The



Saction 2.6 Fraquency-Comain Aepresentation of Discrete-Timo Signals and Systems 41

eigenvalue H (&™) is the frequency response of the system. Tn general, H (ef®yis camplex
and can be expressed in terms of its real and imaginary parts as

H{el™) = Hpl(e!) + jHite!™) (2.105)

or in terms of magnitude and phase as

H{e/®) = |H(ai“)lef " 1™, (2.106)

Example 2.14 Frequency Response of the Ideal Delay
System

As asimple and important example, consider the ideal delay syseem defined by
¥lal=aln —nugl, {2.107)
where ng is 2 lixed integer, With input v[s| = /" from Eq. (2107}, we have
vin] = eimlnmmd _ = fona jon
The frequency response of the ideal delay is therefore
HrtP) = gm0, {2.108)

As an alternative method of obtaining the frequency response, recall that the
. impulse response for the ideal delay system is br] = d8ln — rg). Using Eq. (2104}, we
ablain
= . -
Fied™ = Z Sln — e/ = T ML

A =30

+ The teal and imaginary parls of the fregquency response arc

Hpled ™y = costmn g, (2109

Hpied™) = —sinfang!. (21000}
The magnitude and phase are

|Hed®)) =1, (2.110a)
FHEE ™) = —amy. (2.1 10h)

In Sectuon 2.7, we will show that a broad class of signals can be represented as a
lineur combination of complex exponentials in the form

A[n] =5 ope, (2.111)
&

From the principle of superposition and Eq. {2.103}, the corresponding output of an
LTT system is
yinl =) wHielow el (2.112)
&

Thus, il we can find a representation o x[a] as a superposition of complex exponential
sequences, asin Eq. (2.111), we can then find the output using Eqg. (2.112) it we know the
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frequency response of the system at all frequencies ey, The fobllowing simple example
illusirates this fundamental properiy of LT1 systems,

Example 2.15 Sinusoidal Response of LTI Systems

Let us consider a sinusoidal input

i

i s A
x[n] = A COie ;= %p-ﬁf".ﬂf{”ﬂ” + E‘u__ﬂ'f"‘,' el [‘2”1}

TFrom Eq. (2.103), the response 10 1 [n] = (A /2)e/ el @07 5

A o
yiln] = H (/0= o8 denn, (2.114a)
The response to xa|u] = (A /2)e Fib - Jetur gy

43 T mp—
Ty vafr] = Hie ‘”""J?f J®g=jagn {2.114h)
J:j I'hus, the total response is
5;-.: A oy Pt e — Jodg s =i — Fogn
i _'|'|'n]=-2—|H[f' T £ 1 - T WEg, (2. 115)

5 I hfn] is real, it can be shown (see Problem 2.78) that H(e=/94) = H*(ed®1), Conse-
G quently,

¥lnl = A |Hie!™0) costewonn + ¢ + 8), (2.116)
T where d = £ H (2490} is the phase of the system function at frequency wg.

For the simple cxample of the ideal delay, |H ") = 1 and § = —erpitg. 85 we
determined in Example 214, Therelore,

¥ln] = A cosiaopn + ¢ —awpitg)
(2.117)
= A cosfwn(n — gl + @,
which 15 identical 1o what we would oblain directly wsing the definition of the wdeal
2o delay system.

The concept of the frequency response of LTI systems is essentially the same [or
continuous-time and discrete-time systems. However, an important distinction arises
because the frequency response of discrete-time LTI svstems is always a periodic func-
tion of the frequency variable w with period 27, To show this. we substitute w + 27 into
Eq. {2.104) to obtain

]
Hiel®¥imy o 3 hlpjesetinn, (2.118)

R=—030

Using the fact that 270 — 1 for n an integer, we have

f'_f':-f!?<13'1ﬂ — g, Bt o S o



Section 2.6

Frequency-Domain Representation of Discrete-Time Signals and Systems 43

Therefore,
Hie ™ = Hefy forallm, (2.119)
and, more penerally,
Hie/lerinry _ pripiny for r an inleger. f2.120)

That 15, H e/} 15 periodic with period 2x . Note that this is obviously true lor the ideal
delay system, since ¢ /@ T2TIG — 2= when ny is an integer.

The reason for this periodicity is related directly to our earlier observation that
the sequence

{{r)-.-_-_;n ]'. o LI e
Is indistinpuishable from the sequence
[E_rl,:n.lﬂ-L!Trlt'Fl — = R P,

Because Lhese two sequences have identical values for all a, the system must respond
identically Lo both input sequences. This condition requires that Eq. (2.119) hold.

Since K {e/") 15 periodic with period 27 and since the frequencies o and w-27 are
indistinguishable, it follows that we need only specify Hie'™) over an interval of length
dm,epg.l 2w = 2w or —xr < @ = 7. The inherent periodicity defines the Irequency
response cverywhere owlside the chosen interval. For simplicity and [or consistency with
the continwous-time case, il 1s generally convenient Lo specily Hie/™) over the interval
—m = @ = m. With respeet o this interval, the “low frequencies” are frequencies
close to zero, whereas the “high frequencies™ are frequencies elose to =7, Recalling
that frequencies differing by an integer multiple of 2x are indistinguishable, we might
generalize the preceding statement as follows: The “low frequencies™ are those that are
close to an even multiple of 7, while the “high frequencies” are those that are close to
an odd multiple of =, consistent with our earlier discussion in Section 2.1,

An important class of LTT svstems includes those systems for which the frequency
response is unity over a certain range of frequencies and is zero at the remaining fre-
quencies, corresponding to ideal frequency-selective filters. The frequency response of
an ideal lowpass filter is shown in Figure 2.17(a). Because of the inherent periodicity of
the discrete-time frequency response, it has the appearance of a multiband filter, since
frequencies around e = 27 are indistinguishable from frequencies around @ = 0, In
effect, however, the frequency response passes only low frequencies and rejects high
frequencies. Since the frequency response is completely specified by its behavior over
the interval —mr < @ = r, the ideal lowpass filter frequency response is more typically
shown only in the interval —7 = @ = 7, ax in Figure 2.17(b). It is understond that
the frequency response repeats perindically with period 27 outside the plotted interval.
With this implicit assumplion, the frequency responses for ideal highpass, bandstop, and
bandpass filters are as shown in Figures 2.18(a), (h), and {c). respectively.
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Figure 2.18

|deal lowpass filter showing {a) periodicity of the frequency response

Ideal frequency-selective

filters, {a) Highpass filter, {b) Bandstop
filter. {c) Bandpass filter. In each case,
the frequancy response is periodic with
period 2= . 0nly ore period is shown
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Example 2.16 Frequency Response of the Moving-Average

System

#t+ The impulse response of the moving-average system of Example 2.3 s
=9 1

e e =M =0 = M3,

:_-L thJZ MI"‘.M:,‘ +1

i, otherwise.

29 Therefore, the frequency response is

i

M
; 1 - i
LT TERT  — o 2121
Lol M+ Mot IH_E : { )
=-M,
For the causal moving average system, M) = 0 and Eq. {2121} can be exprossed as
A
Hie!") = ¥ i, 2122
)= gy D oe (2.122)
na
Using Eq. (2.55}. Eq. {2.122) becomes
) — p—fmiMatl)
Hieloy = 1 1-¢ :
. ME | ]_ 1 — gt
b (el oMy 1N 2 o jolMy D)2~ jwldy 21,2
i Mo 4+ 1 edotd g Feellyy - jaid
osinfw{Ma 1 /2] juaen
» er (2123
M; -+ 1 sin w2 ? g 4

If the moving-average fitter is symmetoie, Le., if M) — Mo, then Eq. (2.123) is
replaced by

1 sinfai 285 | 1)/2]

Hiel®) = 2124
i e 2M; 1+ 1 sin{e 2} { )
|| e
| | i i
i T 2w iw o 2w w
5 5
& Hie )
dais
N ow AN o B NN
2—\ \ ™ " \ ~N Y 2 "\ =
—4mfs |-

Figure 2.19 {a) Magnituce and (b} phase of the frequency response of the
moving-average system for the case My = 0and My =4
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Note that in both cases H (o™ is periodic, as is required of the frequency re-
sponse of a discrete-time system. Note alsa that | H (e /)| falls off at “high frequencies”
and £ Hiel™), je., the phiase of Hied*s varics lincarky with e, This aticnustion of the
high frequencies suggests that the system will smooth out rapid variaoions in the in-
put sequence; in other words, the system is a rough approximation to a lowpass filter.
This 15 consistent with what we would intuitively expect about the behavior of the
i moving-average system.

2.6.2 Suddenly Applied Complex Exponential Inputs

Wi have seen that complex exponential inputs of the form ™ for —os¢ = n < o
produce outputs of the form H{e/™e!" for LTl systems. Models of this kind are im-
portant in the mathematical representation of a wide range of signals, even those that
exist only over a finite domain. We can also gain additional insight into LTT systems by
considering inputs of the form

i) = e uln], {2.125)
i.e., complex exponentials that are suddenly applied at an arbitrary time, which for

convenience here we choose as & = 0, Using the convelution sum in Bq. (2.61), the
corresponding output of a cavsal LTY svstem with impulse response h[n] is

0, R | B
L
¥ln] = (z:h[;:lﬂ—_.'m) H_,I'mnr n > 0.
k=1}
H we consider the output for n = 0, we can write
o . n
vin] = (ank]rl‘"“) glom Z hikje™duk § pdon (2.126)
o) knt]
i . mir .
= He™e™ — | 3" nlkle /™ | e, (2.127)
k=nil

From Eg. (2.127), we see that the output consists ol the sum of two terms, 1.e, ¥[n] =
ysln] + v ln] The first term,
vln] = H (e ™ )ed™,

is the steady-stale response. 1t is identical to the response of the system when the input
is ¢/ for all #. In a sense, the second term,

o
wln] =~ 3 hlkjei*eln,
ke=nd|
is the amount by which the output differs from the eigenfunction result, This part corre-
sponds to the transient response, because it is clear that in some cases it may approach
zeto. To see the conditions for which this is true, let us consider the size of the second
term. Its magnitude is bounded as follows:

oL |

el = | 3 hlkle /el < 57 (Al (2.128)

k=n-+1 e=n—]
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From Eq. (2.128), it sheuld be clear that if the impulse response has finite length, so that
hln] = Oexcept for ) = n = M, then the term win] =Dfora+1 = M, orn = M — 1.
In this case,

y[a] = vafn| = Hiel e forn = M — 1.

When the impulse response has infinite duration, the transient response does not disap-
pear abruptly. but if the samples of the impulse response approach rero with increasing
#, then v [#] will approach zero. Note that Eq. (2.128) can be wrilten

bl =] > h[kjr-"‘”ﬁeﬁ*“|f Z |hk]|-:Z|#:1kj| (2.120)

keen41 k=md

That i5, the transient response is bounded by the sum of the absolule values of alf of the
impulse response samples. I the right-hand side of Eq. (2.129) is bounded, i.e., if

> Al = o,

k=[)

then the svstem is stable. From Eq. (2.129), it follows that, for stable systams, the tran-
sient response must become increasingly smaller ass  » o0, Thus, a sufficient condition
for the transient response to decay asymptotically is that the system be stable.

Figure 2.20 shows the real part of a complex exponential signal with frequency
w = 2r /10, The solid dots indicate the samples x[&] of the suddenly appliad complex

[F‘“’ el

e
P—

M 1 “
el ettt L ol
Ll“é T I Ln 1 k

Figure 2.28  Wlustraticn of a real part of suddenly applied complex exporential
input with {2} FIR and (k) IIR.
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exponantial, while the open circles indicate the samples of the complex exponential that
are “missing.” i.e., that would be nonzero if the input were of the form /" for all . The
shaded dots indicale the samples of the impulse response k[n — k] as a function of £ for
st = 8. In the finile-length case shown in Figure 2.200a), it is clear that the oulput would
consist only of the steady-stale component for nn = 8, whereas in the infinite-length case,
it is clear that the “missing” samples have less and less effect as n increases, owing to
the decaying nature of the impulse responsc.

The condition for stability is alse a sufficient condition for the existence of the
frequency response function. To see this, note that, in general,

(He) = | 3 mlkle™* = 3 (hlkle /= Y Ihlkl,
b= N =T f==na
s the general condilion
e
3" (WK = 00
k=—0

ensures that # (¢/*) exists. It is no surprise that the condition for existence of the fre-
quency response is the same as the condition for dominance of the steady-state solution.
Indeed, a complex exponential that exists for all » can be thought of as one that is ap-
plied at n = —oo. The eigenfunction property of complex exponentials depends on
stability of the system, since at finite #, the transient response must have become zero,
so that we only see the steady-state response H (ed™yeie" for all finite n.

2.7 REPRESENTATION OF SEQUENCES BY FOURIER

TRANSFORMS

One of the advantages of the frequency-response representation of an LTT system is
that interpretations of system behavior such as the one we made i Example 2.16 often
follow casily, We will elaborate on this point in considerably more detail in Chapter 5.
At this point. however, let us return to the gquestion of how we may find representations
of the form of Eq. (2.111) for an arbitrary inpul seguence.

Many sequences can be represented by a Founer inlegral of the form

Eop
x[in] = ,.L X (21209 de, (2.130)
) SN S
where
o
X (ef™) = E rln]e fon (2.131)
L X,

FEquations (2,130 and (2.131) together form a Fourier representation for the scquence.
Equation {2.1300), the inverse Fourier transform, 18 a synthesis formuola. That is, it repre-
scnis x[n] as a superposition of infinitesimally smull complex sinusoids of the form
1 i
— X (/e "™ e,
o d

i
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wilh e ranging over an interval of length 27 and with X (e4*) determining the relative
amount of cach complex sinwsoidal component. Although, in writing Eq. (21300, we
have chosen the range of values [or o between —r and 4. any interval of length 2x
can be used. Equation {2.131). the Fourier iransform,”* is an expression for computing
X (&/*y [rom the sequence x(a), 1.e., for analveing the sequence x[n] to determine how
much ol each lrequency component is required to synthesize xn] using Eq. {2.130).

In general, the Fourier transform is a complex-valued function of w. As with the
frequency response, we may either express X (¢/*) in rectangular form as

X (%) = Xple™y + j X (e’ (2.132a)
or in polar form as

X (ef9) = | X (efery|od & X ie™ (2.132b)

With | X [ed®) representing lthe magnilude and £ X (/") the phasc.

The phase ZX (£ s nol unigquely specified by Eg. (2.132b), since any inleger
mulliple of 2z may be added w £X (#/*) al any value of & without affecting the resull
of the complex exponcntiation. When we specilically want to refer 1o the principal value,
e, £X (e restricted to the range of values beiween —r and 4+, we denote this as
ARGLX (23], If we want Lo refer o a phase function that is a continuous function of
i for Q) = @ o, e, not evaluated modulo 2, we use the notation arg| X 1_fa'"’"||.

As s clear from comparng Egs (2.104) and (2.131), the frequency response of
an L'UT system is the Fourier transtorm of the impulse response. The impulse response
can be obtained from the frequency response by applving the inverse Fourier transform
integral: i.c.,

] a1
hinl = o [ Hel™)ed™" o, (2.133)
T L

As discussed previously, the frequency tesponse is a periodic funcltion of . Like-
wise, the Fourier transform is periodic in w with period 2;r. A Fourier series iscommonly
used to represent periodic signals, and it is worth noting thalindced, Eqg. (2.131) s of the
form of a Fourier series for the periodic function X (e7), Eq. (2.130). which cxpresscs
the sequence values x[n]in tetms of the periodic function X {e4*), is of the form of the
integral that would be uscd o obtain the coclficicnis in the Fourier series. Our use of
Eqgs (2,130 and (2.131) focuses on the representation of the sequence x[n]. Meverthe-
less, it is usclul 1o be aware ol the equivalence between the Fourder series representalion
ol continuous-varigble periodic [unclions and the Fourier transform representation of
discrete-time stgnals, since all the familiar properties of Fourier series can be applied,
wilh appropriate interpretation of variables, to the Fourier transform representation of
a sequence. (Oppenheim and Willsky (1997), McClellan, Schafer and Yoder {2003).)

Determining the class of signals that can be represented by Eq. (2.130) is equiv-
alent to considering the convergence of the infinite sum in Eq. (2.131). That is, we
are concerned with the conditions that must be satisfied by the terms in the sum in
Eq.{2.131) such that

IX (&™) « oo forall w,

4Eu. (2.131) is sometimes more explicitly referred to as the discrete-time Fooriar transform, or DTFT,
particularly when it 1s important o distingmsh o rom the continueus-lime Founer transform,
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where X (/™) is the limit as M — oo of the finite sum

M
Xule/®y= Y xinje ", (2.134)
n=—M
A sufficient condition for convergence can be found as follows:
Tl
X (") = | D xlnle"
A=—500
b= 1]
<= 37 lxlnlileon)
=
a0
= Z [xfr]] = oo
A=—0

Thus, if £[r] 15 absolutely summabie, then X {ed®y exisls. Furthermore, in this case, the
series can be shown Lo converge uniformly Lo a continuous funclion of e (Korner (1988),
Kammiler (2000}). Since a stable scquence is, by definition, absolutely summable, all sta-
ble sequences have Fourier transforms. 1t also [ollows, then, that any stable systern, ie.,
one having an absolutely summahle impulse response, will have a linite and continuous
frequency response,

Absolule summability is a suflicient condition for the existence of a Fourier trans-
form representation. In Examples 2.14 and 2.16. we computed the Fourier transforms
of the impulse response of the delay system and the moving average system. The im-
pulse responses are absolutely summable, since they are finite in length. Clearly, any
finite-length sequence is absolulely summable and thus will have a Fourier transform
representation, In the context of LTI systems, any FIR system will be stable and there-
fore will have a finite, continuous frequency response. However, when a sequence has
infinite length. we must be concerned about convergence of the infinite sum. The fol-
lowing example illustrates this case.

Example 2.17 Absolute Summability for a Suddenly-Applied
Exponential

== Consider x|a] = a"u[n]. The Fourier transform of this sequence is

= ¥ [E'JI‘IJJ = E: e L . E{ae—_,lﬂr]rl

o n=li n=ll

1 ] ins

7 = — iflae™™| <1 or |a <1
L—qemi™

* Clearly, the condition |« = 115 the condition for the shsolute summability of x1#); L.c..

) 1
ke 3 et = =oa ifle] = L {2.135)
i 1 —|al '

si=lk

Absolute summability is 8 sufficient condition for the exisienee of a Founer (rans-
form representation, and it also guaranices uniform convergence. Some sequences are
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not absolutely summable, bul are square summable, 1.e.,
.51
) ' i
D Ixnll® < {2.136)
= =000
Such sequences can be represented by a Fourier transform if we are willing to relax the
condition of uniform convergence of the infinite sum defining X (¢/™). Specifically, in
this case, we have mean-sgquare convergence: Lhat is, with

(e &
X(ely= ) xnJe/o" (2.137a)
M=~ 0l
and
M _
Xu(e!)= 3 slnle™™, (2.137h)
n=m—
it follows that
lim f |X (&™) — X ppie!™Pdew = 0. (2.138)
Mo —m

In wther words, the error | X {c-"‘”j —X (e ™) may not approach zero at cach value of
aras M — oo, but the total “energy™ in the error docs. Example 2 18 illustrates this case.

Example 2.18 Square-Summability for the Ideal Lowpass
Filter

In this example we determine the impulse response of the ideal lowpass filter discussed
in Scction 2.6, The frequency Tesponse is
Lo Jew| = e,

213w
(), g = || =, { '

H |]-,1£""Im_] = l

with periodicity 27 also understood. The impulse response Hypin] can be found using
the Fourier tramsform: synthesis equation (2.13)):

i 1 ity j
hiplnl = = f et ey
5 =T £,
. [t ] = U punt _ o o (2.140)
Irin N S
SITH ey
= ¢ —o = W 0.
oh

We note that, since h]p{n] is nomrera for a < (0, the ideal lowpass flier % noncausal.

Alsa, hypln] is not absolutely summable. The sequence values approach zeroase —» o0,

but anly as 1/x. This is because H| e £y s discontinuous at w = .. Since hh.,[n'l i%
" not absolutely summable, the infinitc sum

o .
E SN agn {,—ja.w
wn
A=—rxl

does not converge uniformly for all values of «. ‘Lo obtain an intuitive feeling tor this,
o let ws consider Aag (™) as the sum of a linile number of (erms:

M 4
1 ST oy Fl
Hytel = Y T—”‘ Eapln (2.141)
e — M !
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The function Hasfe’®) is cvatuaied in Figure 2.21 for several values of M. Note that
as M incresses, the oscillatory behavior al w = o {eften referred to as the Gibbs
phenomenon) is more rapid, but the size of the ripples does not decrease. In fact,
~ it can be shown (hal as M — 20, the maximum amplilude of the oscillations does
not approach 2eno, bul the oscllabons converge in location toward the poinls w =
1w, Thus, the infinite sum does not converge uniformly to the discontinuous function
Hip ief) of Ey. (2.139), However, Riplnl, as given in Eq, (2.140), is square summable,
and correspondingly, Hy %) con verges in the mean-square scnse 1o Hyp fefey: e,

n
i ey — Hygted P dm = 10,
o | Ve B e
Although the error between Hyg(e/™) and Hyp (/™) a5 M — oo mighl scem unimpor-
tant becavse the two functions differ only al e = e, we will see in Chapler 7 that the
1 behavior of finite sums such as Eq, (2.141) has important implications in the design of

. discrete-time systems for fillering,

Hyle -"“’}x M=1 ”.uft"r",'l. M=3
N
L
~ i -~
—1r \Em =T v--q ] g SN ow
() {b}
Hyfe™), M7 Hiyglei®), M = 19
h o o A
A ]
: —F ": . J:l ----- faE, T

(ch

Figure 2.21 Convergence of the Fourier transform. The oscillatory behavior at
o = ey i5 often called the Giobs phenomenon.

It is sometimes useful to have a Fourier transform representation for certain se-
quences that are neither absolutely summable nor square summable. We illustrate sev-
eral of these in the following examples.

Example 2.19 Fourier Transform of a Constant

Comsider the sequence x[a] = | for all e, This sequence s neither absolutely summable
nor square summable, and Egq. (2.131) does not converpe in either the umfore o




Sectinn 2.7

Representation of Sequences by Fourier Transforms 53

4 mean-square sense [or this case, However, it is possible and wsclul to define the Fourier
S transform of the sequence x[a] 1o be the perodic impaulse train

e
Xtefoy = E 2udim+ 27r), (2.142)

r=—oc

The impulses in this case gre functions of a continuous variable and therefore are of

- “infinite height, zero width, and unit area,” consistent with the fact that Eq. (2.131 ) does
', & Tt CONVETEE in any r&glﬂar sense, [See Op]’ic[]h girn and Willsky {1997 ) for a discussion
w5 of the definition and properties of the impulse funetion.) The use of Eq. {2.142) as a
= Fourier representation of the sequence x[n] = 115 justificd principally because {ormal
¢ gubatitution of BEg. (2,142 inte Eq. {21307 leads to the correct result. Example 2.20
¢ represents a pencralization of this example.

Example 2.20 Fourier Transform of Complex Exponential
sSequences

Consider a sequence x (o] whose Fourier transform 1s the periodic impulse 1rain

o0
A =Y Zrb{w—wg+2rr), (2.143)

r=—a

We show in this example that x[n] is the complex exponential sequence /™" with
—" <wp =

: We can determine x[n] by substituting X (¢/®} into the inverse Fourier trans-
¥, form integral of Eq. {2.130). Becausce the integration of X (el extends only over one

period, from —x < o< 7, we need include only the r = 0 term from B, (2.143),
‘f Conseguently, we can write
H 1 T ¢
rln] = _——f 2mdia —wple! ™ dew, {2.144)
b P

From the definition of the impulse function, it follows that

2ln] = ed@en for any n.

For ey = 1, this reduces 10 the sequence considered in Bxample 2,19,

Clearly, x [n] m Example 2,200 not absolutely summable, nor is it square summable,
amd | X Lf*’""“'}li 15 nod fimite for all e, Thus, the mathematical statement
o Le )
Y elvsteion = N anbiw —my + 2mr) (2.145)
H=-—2C Pr=—00
must be interpreted in the context of generalized functions (Lighthill, 1958), Using that
theory, the concept of a Fourier transform representation can be extended 1o the class
of sequences that can be expressed as a sum of discrete frequency components, such as

xin] = Zm-ﬁ"""‘", —a0 == 8O, {2.146)
E
From the resull of Example 220, it follows that
b ]
X(e") = Y 3 Iwarblw - g+ 27r) (2.147)
r=—i k&

is a consistent Fourier transform representation of «[#] in Eq. {2.140).
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Another sequence that is neither absolutely summable nor square summable is
the unit step sequence uln|. Although it is not completely steaightforward to show, Lthis
sequence can be represented by the following Fourier transform:

o 3 wdlew+2mr), (2.148)

= == 0

[(e!®) =

2.8 SYMMETRY PROPERTIES OF THE FOURIER
TRANSFORM

In vsing Fourier transforms, it is useful to have a detailed knowledge of the way that
properties of the sequence manifest themselves in the Fourier transform and vice versa.
[n this section and Section 2.9, we discuss and summarize o number of such properties.

Symmetry properties of the Fourier transform are often very useful for simplifying
the solution of problems, The following discussion presents these properties, The proofs
are considered in Problems 2,79 and 2,80, Before presenting the properties, however,
we begin with some delinitions,

A conjugate-symmetric sequence xp[n] is defined as a sequence for which
Xelr] = x2[ -nl, and & confugate-angisymemerric sequeice 1,(n) is defined as a sequence
for which x,[rn] = —x2[-n], where * denotes complex conjugation. Any sequence x|aj
can be expressed as a sum of a conjugate-symmetric and conjugate-antisymmetric se-
quence, Specifically,

xfn] = x[n] + x.(n], (21494}
where
x.fn] = %{.r[n]-i—:c"l—n'l] = x;[—i] {2.149h)
and
Xoln] = %{xln] — x*|—nl} = —z;[-nl. {2.149¢)

Adding Eqgs. {2.149%) and (2.14%) confirms that Eq. (2. 14%a) holds. A real sequence that
is conjugate symmetric such that x.[#] = t.[—nlis referred to as an even sequence, and
a real sequence that is conjugate antisymmetric such that x,[n]| = —1.[—nr] is referred
0 as an odd sequence,

A Fourier transform X {e/“) can be decomposed into asum of conjugate-symmetric
and conjugate-antisymmetric functions as

X (7 = X .(e7%) + X ,(e/%), (2.150a)
where
X ey = HX (/) + X" (277 (2.150h)
and
Xoled®) = X (&™) = X* (&™), (2.150¢)

By substiluting —ew for @ m Egs. (2.150b) and (2.150c), it follows that X ,.(e/™) is conju-
gale symmelric and X ,{e’™) is conjupate anlisymmeltric; i.c.,

X e/} = X2 (e i) (2.151a)
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and
X o(ef®y = Xty (2.151b)
1T a real function of a continuows variable 1s conjugate symmelric, it is referred (o as an
even function, and a real conjugate-antisymmetric function of a continuous variable is
referred Lo as an odd function.
The symmetry properties of the Fourier transform are summarized in Table 2.1.

The first six propertics apply for a general complex sequence x[n] with Fourier trans-

form X (/). Properties 1 and 2 are considered in Problem 2,79, Property 3 follows from
propertics 1 and 2, wgether with the fact that the Fourier transform of the sum of two
sequences is the sum of their Fourier transtorms, Specifically, the Fourier transform of
Relxlnl} = L(xlnl+x*[a]) is the conjugate-symmetric part of X (¢}, or X (e/*). $im-
ilarly, jTmix[anl} = E'{x[ul x%|n iy, or equivalently, jTm{x[i|} has a Fourier transform
that is the conjupate-antisymmetric component X ,(e!™) corresponding Lo property 4.
By considering the Fourier transform of x.[n] and x,[n]. the conjugate-symmetrc and
comjugale-antisymmelric components, respeetively, of x[n]., it can be shown thal prop-
erties 5 and 6 follow
If x[r]is a real sequence, these symmetry properlies become particularly straight-
forward and vseful. Specifically, for a real sequence, the Fourier transform is conjugate
symmetric;i.e., X (e/%) = X*(e™ ") (property 7). Expressing X (/) in terms of its real
and imaginary parts as
X ey = X gle/™) + jX te!™), {2.152)

» Any real xfn]
Ay repl xa]
. Ay real xfu]

. Any reah s[x]

Sequence Fourter Transform

xln] X (e-f“”J
e X4 e Iy o
e Xt iedwy
Rexlat] X ool {conjopate-symmetnc part of X (o))
FEmiclnl} Xole!™y  (conjugate antisymmetric part of X (/%))
- teln] (conjugate-symmetric part of r[n]) Kl — R X (e
toln] (comjugate-antisymmetric pamt of (=1} JX (/) = iTm| X {edrny

The follawing properties apply ealy when tinj i reall
¥ ™y = X*(e— ) (Fouricr transform is conjigate symmetric)
Xpie!®p = Xgpie™™)  (rcel part is even)
Xp(ed™ = —Xyie M) {imaginary part is odd)

(X (el = |X ()] (magnitude is even)

. Any real x[#] SXjedvy = —SX e (phase 1 odd)
. xeln]  [even parlof xla]) X piefony
. xoln]  (odd part of ki) JX pledany
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we can derive properties ¥ and 9—specifically,
Xgle!™) = Xg(e™™) {2.15%a)
and
Xp(el™) = —X (™" {2.153b)
In other words, the real part of the Fourier transform is an even lunction, and the imag-

inary part is an odd funclion, if the sequence is real. In a similar manner, by expressing
X {e/™} in polar form as

X (e49) = | X (ed@)|of EX ) (2.154)

we can show that, for a real sequence x[n]. the magnitude of the Fourier transform,
|X {ef)|, is an even function of »; and the phase. / X (™), can be chosen to be an odd
lunction of « (properties 10 and 11). Also, for a real sequence, the even part of x|n]
transforms to X e/, and the odd part of x[«] transforms to § X (/) (properties 12
and 13},

Exampie 2.21 Nlustration of Symmetry Properties

Lol us return g0 the sequence of Example 217, where we showed that the Fourier
transform of the real sequence x[n] = " ulr] is

X (eF) = ) if Jee| = 1. (2.155)
1—gei=
- Then, from the properies of complex numbers, it follows that
i ) i .
i B T jo { arly Th.
A Xie'™y g ¥ e i (proparly 7)
& ' 1 — @ cosam
5 Xpiedy = ————n = K pfeTM iproperty 8,
; 1 +a? —ldacosa o
i : —d ST .
X = — ==X (e opcry 9),
! | el —Zacose ! ) (propesty.3)
; 1 :
X efy = = |X (e ¥y iproperly 140,

(1 = a2 — 2acos et

—asime et .
Pl it J_- X e™y (property 1)

£X (ef™y = tan™? (

L —acoswm
These functions are plotted in Figure 222 tora = 0, specifically, o = 1L75 {solid curve)
and g = 0.5 {dashed curve). In Problem 2.32, we consider the comespomding plols for
a = )
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cuirva). by Imaginary part. o} Magnitude. 2 = & & = 0.75 (sold curve) and
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2.9 FOURIER TRANSFORM THEOREMS

In addition 1o the symmelry properties, & variety of theorems (presented i Sections
2.9.1=2.97) relate operations on the sequence 1o operations on the Fourier transform.
We will see that these theorems are guite similar in most cases 1o corresponding theo-
rems for continuous-time signals and their Fourier transforms. To facilitate the statement
of the theoreins, we introduce the following operalor notation:

Xie*) = Flxinl),

] = FUX (e,

A s Xy,

Thatlis, F denotes the operation of “laking the Fourier transform of x[r]. and F~Vis the
inverse ol that operation. Most of the theorermns will be stated without proof, The proofs,
which are left as exerases (Problem 2.81), generally involve only simple manipulations
of variables of summaton ot integration. The theorems in this section are summarized
in Table 2.2.

TABLE 2.2 FOURIER TRANSFORM THEOREMS

Seguence Fourier Transform
alnd ¥ (o)
#lnd Fie!¥}
1. acln] + byin] aX (el 4 By ey
2oxlr—ny] (my an miseer) = Jomnd x peiany
3, F-I:r'-"”ﬂ.l'iﬂ_l ¥ [Il?-';'.": = '-""-":']
4. x[ wi X (e
E¥(ef=y il xfereal.
X fed)
5. kx| ek
In] P
& xlnl = vin] ¥ [ed =¥ (i)
i g7 : &
7. x[n]v|n] — [ Xty (ito-Dap
= g

Purscval’s theorem:

- - B Rl
B Y bl =g | Xt

= -

a0
o Y o
g, E x|ulptin] = = f X el Y e Y
o

FLE-—
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2.9.1 Linearity of the Fourier Transform
If
= _
x1n] = Xy (e’")
and
2] < Xofel™,

then it follows by substitution into the definition of the DTET that

axiln] + braln] < aXy (@) + bXa(e®), (2.156)

2.9.2 Time Shifting and Frequency Shifting Theorem
i
¥ ;o
x[n] ~— X (!,

then. for the time-shitied sequence x|n — ng|, a simple transformation of the index of
summation in the D'TTT yields

XIR = nig] < a~Jemd o duy, {2157}

Direct substitution proves the following result for the frequency-shifted Fourfer trans-
form:

P 0] s X (e sinhy, (2.158)

2.9.3 Time Reversal Theorem
Li

x[n] s X (),
then if the sequence is time reversed,
2l—n] <> X (eI, (2.159)
If x[n] is real, this theorem becomes

x[—n] < X0, (2.160)

2.9.4 Differentiation in Frequency Theorem
if
- _
xln] ~— X (e’™,

then, by differentiating the DTFT, it is scen that

e (2.161)

b
nx|r] — j
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2.9.5 Parsevals Theorem

If
v':l.‘
xln] —— X ('™,
then
o 1 fi .
E= }: el = o X e P, (2.162)
o=—D L

The function | X (e/*1}7 is called the erergy denséty spectrum, since it delermines how the

enecrgy is distributed in the frequency domain. MNecessarily, the energy density specirum
iz defined only for finite-energy signals, A more general form of Parseval's theorem is
shown in Problem 2.584,

2.9.6 The Convolution Theorem

If
x[n] - {e!™)
and
hln] <2 H (€1},
and if
o0
yin] = L x[klhln — k1 = x[n] * hin]. (2.163)
k===
then
¥ (/¥ = X (e H (e, (2.164)

Thus, convolution of sequences implies multiplication of the corresponding Fourier
transforms, Note that the time-shifting property is a special case of the convolution
property, since
Bin —ng] «s o d0ms (2.165)
and if Aln] = dr — ny], then y[n] = x[n] % d{n — ny| = x[n — ny]. Therefore,
Hie!®y =/ apd ¥ (/)= ¢ /oM x (/¥),

A formal derivation of the convolution theorem is easily achieved by applying the
definition of the Fourier transform to »|n] as expressed in Eq. (2.163). This theorem can
also e interpreted as a direct consequence of the eigenfunction propeity of complex
exponentials for TT1 systems. Recall that H e/} is the frequency response of the LT1
system whose impulse response is filn]. Alsa, if

xlm) = ",
then

vlnl = H {ef™ygfon
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That is, complex exponentials are eigenfunctions of LTI systems, where H{e/*), the
Fourier transform of #ln]. is the cigenvalue. From the definition of integration, the
Fourier transform synthesis eguation corresponds to the representation of a sequence
x[n] as a superposition of complex exponentials of infinitesimal size; that is,

4

i - i . -
x[n] = -— X ('™ g = him X [f."r;‘-‘f'“']ﬁj'r‘ﬂ‘f’mﬂnur.
[ 2o J— Al 20T Z

By the eigenfunction property of linear systems and by the principle of superposition,
the corresponding output will he

T

1 2 ; ; 1 . ;
fnl = lim — %" H(e" )X (@482 M0m Ay = — | H{eI")X (/)6 den.
vn] P 40 . (e 1X {e e o =5 i (&)X (/%) )l

Thus, we conclude that
Yie'™) = Hied™)X (&',
as in Eg. (2.164).

2.9.7 The Modulation or Windowing Theorem

if
xin] T X (19
and
win] i:- W (e,
and if
¥[a] = x{nlw(a], {2.166)
then
Y (o) = H; X (/)W el )dp, (2.167)

-

Eguation {2.167) is a periodic convolution, i.e., a convolution of two periodic functions
with the limiis of integration extending over only one period. The duality inherent in
most Fourier transform theorems is evident when we compare the convolution and
modulation theorems. However, in contrast to the continucus-time case, where this du-
ality is complate. in the discrete-time case fundamental differences anse because the
Fourier transform is a sum, whercas the inverse Lransform is an integral with a pe-
riodic integrand. Although for continuous time, we can stale that convolution in the
time domain is represented by multiplicalion in the frequency domain and viee versa,
in diserete tme, this statement must be modified somewhat. Specifically, discrete-lime
convoelution of sequences (the convolution sum) is equivalent o muliplication of cor-
responding periodic Fourier transforms, and muiliplication of seguences is equivalent
to periodic convolution of corresponding Fourier transforms

The theorems of this section and a number of [undamental Fourier transform pairs
are summarized in Tables 2.2 and 2.3, respectively. Cne of the ways that knowledge of
TFourier transform theorems and properties is useful is in determining Fourier transforms
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TABLE2.3 FOURIER TRANSFORM PAIRS

Seguence Fourier Transom
1. 3n} 1
2. Hn — gl P L]
e
3.1 [—rc = 0w o) E 2w di + 20k
ke —o0

4, aufn] {lal <= 1}

1—ge—Juo
-I g
3, wlnld T 1 Z adle+ 2okl
k=i
1
B, r 4+ Da™ulnl (o] =1
' . keles) (1 — gei2d
M i in 4+ 1) 1
T ——E——ulad (=T T —,
S0 g 1 2roosaped# 4 pepmio
. sinen X el = i 1, e = ooue )
mn i, o o< | =T
f==m= M siftle M + 10/2] 1 g0
9, i v o JuMy/
xlnd= ID otherwise sl
(s =]
10, e/™um Z 2l — a4 k)
il H .
L. eostogn + ) E [Irr"'*ﬁ[m gyt 2wkl e 'Jdﬁfw.. wrgy + 27KV

=

or inverse transforms. Often, by using the theorems and known transform pairs, it is
possible 1o represent a sequence in terms of operations on other sequences for which
the ransform is konown, thereby simplifying an otherwise difficult or tedious problem.
Examples 2.22-2.25 illustrate this approach.

Exampie 2.22 Determining a Fourier Transform Using
Tables 2.2 and 2.3

.-f - Suppose we wish to find the Pourier transform of the sequence a|n} = o w|a - 5]. This
transform can be computed by expleiting Theorems 1 and 2 of Table 2.2 and transform
¢ pair 4 of Table 2.3 Let xq[a] = a®ufn]. We start with this signal becanpse it is the most
i similar signal to x|#] in Table 2.3, The lable states that
I

I —ge—iw’

To obtain zfx] from =x[n], we ﬁml delay xy[n] by five samples ie,
i X2 {#t] = xql#t — 3]. Theorem 2 of Table 2.2 gives the corresponding frequency-domain
0 relationship, Xp(ef™) = o750 (2@ wn

%;", i o 45
£ Xaf(e!™) = - _— {2.15%)

it | —ge—t@

X (el = {2,158}
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“% To get from xala] to the desired x[n |, we need only multiply by the constant a°, 1.,
¢ x[n] = n:ﬁxg fer]. The lineanly property of the Fovner transform, Theorem 1 of Table 2.2,
then yields the desired Fourier transtorm,

5o iSw

X ey = (21700

T af—jm'

Example 2.23 Determining an Inverse Fourier Transform
Using Tables 2.2 and 2.3

Hi Suppose that

1

X fody = . ey
(1 — gt — he— o)

(2.171)

% Dircct substitution of X (¢/*) inte Eq. (2.130) leads to an integral that is difficult to
i evaluale by ordinary real mtegration lechnigues. Flowever, wsing the lechnigue of
! partial fraction expunsion, which we discuss in detail in Chapler 3, we can expand
X (ef*) into the form

ata—bt) _ bfla—b)

X (/%) = - —, 2172

£ 1 — ge=f | — pe—Ju { !
. From Theorem 1 of Table 2.2 and transform pair 4 of Table 2.3, it follows that

e . P

e, s ( . )a"uinj = (—) B ], {2.173)

s a—h a—b !

b

Example 2.24 Determining the Impulse Response from the
Frequency Response

The frequency respanse of a highpass filler with linear phase is

— iy - =
du “!! Mg = |ﬂ'.|| = I, ‘2_:-?_'_':'

Hiel®y =1 ¢ :
{l. url = wip.

where a period of 2 is understend. This frequency response can be expressed as

. H{é-':a"] S L H}F{e"&u}] =& - Jutbly [,--_.'IrJ.F-'_,JHIP{r_.'mL

% where Hyp ie/™} is periedic with period 2 and

I, e =,

-j-r.‘u_
HEI-‘"F ) [L’]. e = | T,

Using the resull of Example 2,18 1o obtain the inverse transform of ||:,{af'-"“"’}~ together
with properties | and 2 of Table 2,2, we have

hla] = &ln —fygl—h |P|n — i)

= §|A =fiy] = —————
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Example 2.25 Determining the Impulse Response for a
Difference Equation

In this example, we determing the impulse response for a stable LTT system for which
the input x{# | and owtput v o fsatisly the inear constant-coe Qicient dillerence equalion
el = 3xlw — 1] = xln] — §aln —11. (2.175)

In Chapler 3, we will see thal the z-transform s more wseful than the Fourier (ransform
for dealing with difference egquations. However, this example offers a hint of the utility
of transform methods in the analysis of inear systems, To nd (he impulse response,
we sel o] = 8[al; with f[n] denoting the impulse response, Eq. (2.175) becomes

hlnl — $ifn — 1] = 8[n] — Ldln — 1], (2.176)

- Applying the Fourier transform to both sides of Eq. (2.176) and using propearties | and
. 2of Table 2.2. we obtain

Hiel"y — e S H el = | — Jem 7, (2.477)
ar
. s IF—J'.'nj
Hiefoy— - _ 4% " (2.175)

1— Ye—jw

' Toobtain fs ], we want to determine the inverse Fourier transtorm of H (o), Toward

this cnd, we rewrile Eg. (2078 as

: I 11, — Fus
Hefy = e s oy (2.179)
1 — %[\,—_frr.l 1— ]}-f—_rn.l

- From transform 4 of Table 2.3,

(1) uts =

1 iil_ jios B

Combining this transform with property 2 of Table 2.2, we oblain

| =
pqyre—1 F e !
— (1)) am—11 45 - l—j%ﬂ_r_m_ (2.180)
Based on property 1 of Table 2.2, then,
J'il_rrj—{%}ﬂu[n:] : (ﬂ{']_lu[n 1. (2.181)

2.10 DISCRETE-TIME RANDOM SIGMNALS

The preceding sections have focused on mathematical representations of discrete-time
signals and systems and the insights that derive from such mathematical representations.,
Driscrete-time signals and systems have both a time-domain and a frequency-domain
representation, each with an important place in the theory and design of discrete-time
signal-processing systems. Until now, we have assumed that the signals are deterministic,
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i.e., that each value of a sequence is uniquely determined by a mathematical expression,
a table of data, or a rule of some type.

In many situations, the processes thal generate signals are so complex as to make
precise description of a signal extremely difficult or undesirable, if nol impossible.
In such cases, modeling the signal as a random process 15 analytically useful.” As an
example, we will see in Chapler & thal many of the effects encountercd in implementing
dhipital signal-processing algorthms with finite register lenglh can be represented by
additive notse, 1.6.. a tandom sequence. Many mechanical syslems pencrale acoustic or
vibratory signals thal can be processed to diagnose potential [ailure; agzin, signals of
Lthis type are oflen best modeled in terms of random signals. Specch signals 1o be pro-
cessed [or gutomatic recognition or bandwidth compresston and music W be processed
lor quality enhancemenl are two more of many examples.

A random signal is considered 1o be a member of an ensemble of discrete-lime
signals that is characterized by a set of probability density functions. More specifically,
for a particular signal at a particular time, ithe amplitude of the signal sample at that
time is assumed to have been determuined by an underlying scheme of probabilities,
That is, cach individual sample x[r] of a particular signal is assumed 10 be an outcome
of some underlying random variable x,. The eotire signal is represented by a collection
of such random variables, one for each sample time, —o0 < o < oo, This collection of
random variables is referred wo as a random process, and we assume that a particular
sequence of samples x|r| for —=0 < n = oo has been generated by the random process
that underlies the signal. To completely describe the random process, we need to specify
the individual and joint probability distributions of all the random variables,

The key to obtaining useful results from such models of signals lies in their de-
soription in teyms of averages thal can be computed from assumed probability laws or
estimated from specific signals. While random signals are nol absolulely summable or
stjuare summable and, consequently, do not directly have Fourier ransforms, many (but
nal all) of the properties of such signals can be summarized i Llerms of averages such as
the autocorrelation or autccovariance scquence, for which the Fourier trunsform often
cxists. As we will discuss in this scetion, the Fourier transform of the autocorrelation
seguence has a useful interpretation in terms of the frequency distribution of the power
in the signal. The wse of the autocorrelation sequence and ils transform has another
important advantage: The cffect of processing random signals with a discreie-time lin-
gar system can be conveniently described in terms of the effect of the sysiem on the
auiocorrelation sequence.

In the following discussion, we asswme that the reader is familiar with the basic
conce pts of random processes, such as averages, correlation and covariance functions,
and the power spectrum. A bricf review and summary of notation and concepts is
provided in Appendix A. A more detailed presentation of the theory of random signals
can ke found in a variety of excellent texts, such as Davenport (1970}, and Papoulis
(2002}, Gray and Davidson (2004}, Kav (2006) and Bertsekas and Tsitsiklis {2008).

Chir primary objective in this section is 1o present a specific set of results that
will be useful in subsequent chaplers Therefore, we focus on wide-sense stationary
random signals and their representation in the context of processing with LTT systems

1L is commen in the stgmal processing literatore w use the terms “random™ and “stochastic” inter-
chrangeahly. In this text, we primarily rofer to this class of signals as random signals or rendom processcs.
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Although, for simplicity, we assume that x|n] and hx] are real valued, the results can
be generalized to the complex case.

Consider a stable LT1 system with real impulse response fi|n ], Let x[#] be a real-
valued sequence that is a sample sequence of a wide-sense stationary discrete-time
random process. Then, the output of the linear system is also a sample sequence of a
discrete-time random process related to the input process by the linear transformation

o b

¥inl= Y hin—kix[kl= ) hiklxln —&I.

k= —mo kwi—ga

As we have shown, since the system is stable, ylr| will be bounded if x[#] is bounded,
We will see shortly that if the input is stationary,” then so is the output. The input signal
may be characterized by its mean m, and its autocorrelation function g, [}, or we may
also have additional information about 1%- or even 2™ _order probabilily distributions.
In characterizing the outpul random process ¥[a] we desire similar information. For
many applications, it is sufficient to characterize both the input and output in terms of
simple averages, such as the mean, varance, and sutocorrelation. Therefore, we will
derive inpul-putput relationships for these quantities.
The means of the input and oulpul processes are, respectively,

my, =[x}, my, = E{ynl (2.182)

where £1{-] denotes the expected value of a random variable. In most of our discussion,
it will not be necessary to carefully distinguish between the random variables x, and
vy, and their specific values x(#] and v[«]. This will simplify the mathematical notation
significantly. For example, Eqs, (2.182) will alternatively be written

i} = Elxinll, m,[n] = E{y[nl}. (2.183)

[l x[r]isstationary, then s, [n] is independent of 2 and will be written as s, with similar
netation for mfa] if y[a] is stationary.
The mean of the oulput process s
i
pynl = Exlnlt = Y BIKIE{xIn — KI),
k=" o

where we have used the fact that the expected value of a sum is the sum of the expectad
values, Since the input is stationary, m-(n — k| = my. and consequently,

e

myln] =my ¥ hlk]. (2.184)

E=—r
From Eq. {2.184), wc sec that the mean of the output s also constant, An equivalent
expression to Eg. (2.184) in terms of the frequency response is
Hy = Hie'Mm,. (2. 185)

B1n the remamcer of the el we will wse the lerm stagiorary 1o mean “wide-sense siationary” 1., thal
Flxingleinal] forall sy, ao depends omly on the difference {1y — #g ). Equivalently, the autocorrclation is
only a looetion of the time difference inyp — wezl,
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Agsuming temporarily thal the output is nonstationary, the autocorrelation func-
tion of the outpul process for a real input is

dylrt, n + m| = Elv(n]y[n + m]}

o ™
=E Z Z h[kl’li[r“[”—kh[n-}m_r]}

e R
(2] ]
= 3 Rkl Y AIrIE{xln — Klx[n + m — rl}.
k=g =D
Since x[n] is assumed to be stationary. £{x|n — klx[n +m — r]} depends only on the time
difference m + & — r. Therefore,

o oG
prln tml= 3" kKT D Rlrldeclm 4k = rl= dyylml. (2.186)
=i Pe=—r

That is, the output autocorretation sequence also depends only on the tme difference
m. Thus, for an LTT system having a wide-sense stationary input, the output s also
wide-sense stationary.

By making the substitution £ = r — k, we can express Hg. (2.186) as

Bolml = Y duclm — ] D hlkJALE + k]

f=—0c k=—0

- (2.187)
= Y dulm — Elepnltls
F=—0
where we have defined
{ m 4
cin[€] = Z RIkTRLE + k). {2.188)

J =

The sequence cpa|£] is referred to as the determinisiic atocorrelution sequence or,
simply, the aurocorrelaiion sequence of Alnl. It should be emphasized that cy,l£] is the
autocorrelation of an aperiodic—i.e.. finite-energy—sequence and should not he con-
fused with the autocorrelation of an infinite-energy random sequence. Indeed, it can be
seen that g | £] is simply the discrete convolution of kfx] with fi[—n]. Equation (2.187),
then,can be interpreted to mean that the autocorrelation of the output of a linear system
is the convolution of the autocorrelation of the inputwith the aperiodic autocorrelation
of the system impulse response.

Equation {2.187) suggests that Founer transforms may be useful in characteriz-
ing the response of an LTT system to a random input. Assume, for convenience, that
i, = (ki.e., the autocorrelation and autocovariance sequences are identical. Then, with
D Loy, d&_.,.}.{f-'""‘], and Cpy, (oo denoting the Fourier transforms of ¢y m], ¢y Im],
and cap[€], respectively, from Eqg. (2.187),

(1) = Cou (/) B, (/). (2.189)
Also, from Eq. (2.188),
!:-M?(ﬁjm.] i H{E‘jm}h‘ 'F{e“r'rl.:‘]

= [H{/)?,
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Dy (™) = {H{e/ 1 @y (1), (2.190)

Equation (2.190) provides the motivation for the term power density specerum,
Specifically,

: S o
E1R T = o, n:—[ Dyyle’™) da
il =dplfl = | ®5ie’)dw (2.191)

= tolal average power in ountput.

Substituting Eq. (2.190) into Eq. {2,191 ), we have

ENInll = ¢,,00] = f |H ('3 b, (/™) deo. (2.192)

2w f_n

Suppose that # (e#) is an ideal bandpass filter, as shown in Figure 2.18(c). Since g, [m |
is a real, even sequence, its Fourier transform is also real and even, i.c.,

G () = B e,

Likewise, |H (e**)1% is an even function of «. Therefore, we can write

;[0 = average power in cutput
1 o _ 1 [ _ {2.193)
e Py e e + — f o e di.
= w ity 2;‘1 —Ll

Thus, the area under ¢, (e/*} for w, < |w| < w; can be taken to represent the mean-
square value of the input in that Frequency band. We observe thar the outpul power
musl Temain nonnegative, so

lim  ¢,.[0] = 0.
, B

ty — g, )=

This result, iogether with Eq. (2.193) and the fact that the band w, < w = @y can be
arbitrarily small, implies thal

b olelV) = 0 tor all a, (2.194)

Henee, we note thal the power density funclion of a real signal is real, even, and non-
negative,
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Example 2.26 White Noise
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The concepl of white nuise is exceedingly useful in a wide variely of contexts in the
design and analvsis of signal processing and communications systems, & white-noise
signal is a signal for which ¢, [m] = af*ﬁ"_mj. We assume in this example that the signal
has zero mean, The power spectrum of a white-noise signal is a constant, i.c.,

Dy fed™) = n_? for all .
The averape power of a white-noise sigaal is therefore

“*

1 X : 1 T
dee[0] = T j: p By tef M dw = i -[-fr axz oy — T2,

The concept of white noise is also use ful in the representation of random signals
whose power spectra are not constant with frequency. For example, a random signal
¥|»] with power spectrum @y (e/™) can be assumed to be the output of an LTT system
with 3 white-noise input. That b5, we use Eq. (2.190) w0 define a system with [reguency
response H{e/™) to satisfy the equation

By o) = H (") ]

- where o is the average power of the assumed white-noise input signal. We adjust

E% the averape power of this inpul signal 1o give the correet average power for (. For

¢ example, suppose that filn] = a"ufw]. Then,

; 1
Jay i
Hi=) T

and we can represent all random signals whose power spectra are of the [orm
2 )

] 1 = a - o

& -1.:{"‘“"'] e ——— | T == — cEt GO

" T—ge—do| 1 La? Zacosw

Apnother important result concerns the cross-correlation between the input and
output of an LTT system:

tyy[m] = Elxlnlyln + m]}

E|r|_rt| Y hlklxln A m — k) (2.195)

E=—0E

> hlklgeslm — A,

k=05

In this case, we note that the cross-correlation between input and output is the convo-
lutian of the impulse response with the input autocorrelation sequence,
The Fourier transform of Eq. (2.195) is

Py lef”) = Hied ") Doy (6!, (2.196)

This result has a useful application when the input is white nolse, Le, when
Gy lm] = crfﬁjm.]. Substituting into Cq. (2.193), we note thal

by lm) = oA [m]. (2.197)
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Thal is, for a cero-mean white-noise input, the cross-correlation between input and
oulpul of a incarsystem is proportional to the impulse response of the system. Similarly,
the power spectrum of a white-noise input is

O, (/) = 0], TEw< {2.198)
Thus, from Eg. (2.196),

‘1’_;-_r{-"-f“'_‘l = ol H(e!¥), (2.199)

In other words, the cross power spectrum i in thiscase proportional to the frequency re-
sponse of the system. BEquations (2.197) and (2. 199) may serve as the basis for estimating
the impulse response or frequency response of an LT system if it is possible to observe
the oulput of the system in response to a white-noise input. An example application is
in the measurement of the acoustic impulse response of a room or concart hall.

2.11 SUMMARY

In this chapter, we have reviewed and discussed a number of basic definitions relating
to discrete-time signals and systems. We considered the definition of a set of basic
sequences, the definition and representation of LTT systems in ferms of the convolution
sum, and some implications of stability and causalilty. The class of systems for which
the input and outpul satisly a linear conslant-cocfficient difference equation with initial
rest conditions was shown to be an important subelass of LT systems. The recursive
solution of such difference equations was discussed and the classes of FIR and IR
svstems defimed.

Animporiant means for the analysis and representation ol LT systems lics in their
frequency-domain representation. The response of a system to s complex exponential
inpul was considered, leading to the definition of the [requeney response. The relation
between impulse tesponse and [requency response was Lhen interpreted as a Pourier
transform pair.

We called attention to many properties of Fourier transform representations and
discussed a variety of useful Fourier transform paits, Tables 2.1 and 2.2 summarize the
properties and theotrems, and Table 2.3 contains some useful Fourier transform pairs,

The chapter concluded with an introduction to discrete-time random signals, These
basic ideas and results will be developed further and used in later chapters,

Basic Problems with Answers

2.1. For each of the following systems, determine whether the system is (1) stable, {2} causal,
(30 Imear, (4) me invariand, and (5) memony|ess;
(a) Tix[nl; = glnixfn] with g[a] given
(b) Tixlnh=Yi_, 1kl n#0
o= |l'|';'H|] =
xlkl

(e} Tixlnly =250
(d) Tix|a]) =xln—ay)
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(e} Tixlnl) = e"inl

(1Y Tix[n]) = axinl+4

{g) Tixlal) = xz[-n]

{hy Tix(n]) = x|n] + IJuln + 1].

{a} The impulse response Alr] of an LTT system is known to be zero, exeept in the interval
Np=m= Nqj.The input x[a] s nown to be zero, except in the interval Ny =n = &4
Asaresult, the output is constrained to be zero, except in some interval Ny < a1 = Ns.
Determine &g and &< in terms of N, Ay, o, and &,

(b} 1fx|n]iszero, except for ¥ consecutive points, and #|n]iszero, exceptior 4 consecutive
points, what is the maximum oomber of conscculive points for which y[a] can be
nonero?

By direct evaluation of the convolulion sum. determine the unil step response (x]w] = mr])
of an LTT system whose impulse response is

hinl=a Mul-nl. 0=ag=l
Consider the linear constant-coetficient difference equation
vinl ~ §yln ~ 11+ gyln — 2] = 2xln — 11,

Determing v(r] for p = Owhen x|n] = d[r] and vlnl =08 = 1.,
A causal LT system is described by the difference eguation

¥la] — Sv[n — 11+ 6% — 2] = Zzfan —1].

{a) Determine the homogeneous response of the system, i, the possible outputs if
x[n] = far all x,

{b) Determine the impulse response of the system.

(¢} Determine the step response of the system,

{a) Determine the frequency response H(e/%) of the LTT system whese input and outpul
satisfy the diffcrence equation

vin] = d¥fn - 1l =x[n]+2xln 1] 4 x|n - 2].
(b} Wrile a diflerence eguation that characterizes a syslem whose frequency response s

1 — dp—dw 4 o—f3e
el = o A

T & L.? Jor Ee“ﬂ“’-

Dretermine whether ¢ach of the following signals is periodic, IT the signal is periodic, slate
its period.

[‘a) xl “l = FJ'-E:'I'HI.'{:.}

“'I) xln] = EJ.JIHaq-_:I

(e} xin| = [sin{mn/5))/(7n)

(d) xr] = efT02,

An LTT system has impulse response Alx] = 31—1/2)"k(a]. Use the Fourier transform (o
find the output of this system when the input is xfr] = (1/3"u|r].
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Consider the difference equation
.[ S ] ! Hy A — ! 3 1'
¥ ir]—g}'[.‘t— H_E}M_”l §.1|_n— i

(a) What are the impulse response, frequency response, and step response for the causal
LTI syslem satisfymg this dillerence eguation?

(b) What is the general form of the homogeneous solution of the difference equation?

(¢) Consider adifferent svstem satisfying the difference equation that is neither caosal nor
LTL, bat that has v[(1] = v[1] = [ Find the response of ths sysiem o xle] — §x].

Determing the outpul of an LTT system if the impulse response &a | and the imput x| n] are
as Tollows:

(a) x|n] = wuin] and A[r] —a™u|—n — 1|, with a = 1,

(h) x[n]l =u[n = 4 and k[n] = 2u]—=n = 1]

(e} xln| = uln] and ffr] = (.32 w[—rn ).

(d} Aln| = 2"u|—n — 1] and x[#] = wlrl — uln — 10].

Use vour knowledge of inearity and time invariance to minimize the work in parts (by-(d).
Consider an LTT syslem with frequency response

: -7
1—gmd=m
H{#l™") = s - = T
I+ Je it

L

Determine the output v[n] Lor all »if the mpuet xi#] for all & s

. (WH
x[m] = HIH(T).
Consider a system with inpul x5} and cutput v[#] that satisfy the difference cqualion
vig] = nvln — 1]+ x[nl.
The system is causal and satisfies initial-rest conditions; e if x[r] = 0 for n < ng, then
¥lnl =0 forn < Ky,
(a) Ifx[r] = &[n|. determine v[n] for all .

(k) 1s the system linear? Justify your answer.
{c) Is the system lime invatiant? Justify vour answer,

[ndicate which of the following discrete-time signals are eigenfunctions of stable, LTI
discrete-lime svslems:

(a) pldmntd

(b) 2"

(c) 2"ul-n 1]

() cosuge)

(e} (14"

(f) (14 uln] + 4"ul—n —1].

A single inprl-outpul relationship is given for each of the following three sysiems:

{a) Svslem A xin] = (13, ¥lr] = 20137,

{b) System B: x[r] = (/2. v[r] = {147,

{e) System Creln| = (23 ulnl.  vlel = 4273 uin] — 2172 ulr).

Based on this information, pick the stronpest possible conelusion that you can make about
each system from the following list of statements:

(1) The system cammion possibly be LT1.
(i} The system must be LTL
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(i3} Tlhe system can be LT, and there is only one LTT systern that satisfies this inpul-oulput
constTaint.

{iv} The system can be LT, but cannod be uniquely determined from the information in
this input-output constraint.

1t you chose option {Jii} from this list, specily either the impulse response dln] or the

Tiare

frequency response A (e™) for the LT system.

Comsider the system illustrated in Figore 215, The output of an LTT system with animpulse
response fta] = {L} 4 a[n+14] is multiplied by a unitstep function u[x] to yield the output of
the overall systeme. Answir ¢ach of the following questions, and briefly justify your answers:

v[n] : il L
_________ | Figure P2.15

(a) Isthe overall systern LTI
(b) Is the overall system cousal?
(e) Is the overall system stable in the BIBO sense?

Consader the following difference eouation:

x[m] = E}l[n - 1T= ¥l — 2] = 3xfn].

rid

(1) Determine the general form of the homogeneous solution o this difference cguation,

(k) Both a causal and an anticansal LT system arve characterized by this difference equa-
tion. Find the impulse respooses of the two systems,

{€) Show that the causal LT1 system is stable and the anticausal 1T system is unstable.

{d) Find a particular solution wo the difference equation when afa] = (1;2)"a[n].

(a) Determine the Fourler transform of the sequence

P L, G=n=5.
T |0, otherwise.

(k) Consider the sequence

] "2mn s
wiml =12 |:| - CL\R( 7 )] , D=pe M,

i, otherwise,

Sketeh w(n] and cxpress Wiei®y, the Fourier transform of wlel. in terms of & e/,
the Fourier transform of v (a [, { Hing: First express wig | in terms of r|# | and the complex
pxponentialy of2FNME g - JEFRIMY

{e} Sketch the magnitude of 8 (e/® and W {27 for the case when M = 4.
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218. For each of the following impulse responses of TTT systems, indicate whether or not the

19,

L.

SysLem 15 causal;

(a) Afnl =il/2"elr]

(b)Y ala] = (1/2Vulr — 1]

(e} hln] = 172y

(d) hln] = uln + 21— aln — 2]

(e} Aln] = (1/3"ulr] +3u[—n = 1].

For each of the following impulse responses of LTI systems, indicate whether or not the
system is stable:

(n) kln] = 4"uln]

(b} fln] = uin] — wln — 1]

(e} hlnl =3"u[-n ~1]

(d) kin] = =sin(mra/3uin]

(e} f[n] = :_'3;4}'"’ coiimnfd + = /4)
(EY Aln] = 2uln + 5] — aln] — wlr — 5]

Consider the difference equation representing a causal LTT aystem

wln] + (faivin — 11 = x|n — 1].

{a) Find the impulse response of the system, #(n|, as a function of the constant g
(h) For what range of values of @ will the system be siable?

Basic Problems

221,

L2

A discrete-time signul x |7 | is shown in Figure P2.21.

A

-1l 234 Figure P2.21

xln]

|

T

Sketch and label carefully each of the following signals:

(a) xln—2]
(b} x[4 —n|
(e} x|2n]

(d} alnleld —ni
(e} x[n —1]4[n— 3]

Comsider & diserete-time LTT systemn with impulse response Alw]. If the input x|a] is a
perioadic sequence with period M (e, if x[n] = x[n 4 N 1), show that the output v[n] s also
a pericdic sequence with period NV,
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For cach of the following systems, detenmine whether the system is (1) stable, (2) causal,
{3} incar, and {4) ime imvariand.

{ay Tix[n]) = {cosamix[n)

(b} T(x|n]) = «[n’]

(e =]
{e} Tixlnl) =x[n] Y sln— k]

m:J|r=t'l
W) Tx[nl = 3 xlkl,
=n—1

Consider an arbitrary linear sysiem with input x{n] and output v[r . Show that if x(n) =0
for all e, then y[a] must also be zero for all 2.

. Consider asystem lor which the input x4 and the output ¥ |#] satisfy the following relation.

Bvln] + 2yl — 1] = 3y = 2| = x|n] (P2.25.1)
{a} For x[n] = &[n]. show that a paricielar sequence satisfying the difference equation is

volnl = 4 {—%Z]” ulnl + 35 (%)ﬂ .

{b} Determine the homogenecus solution{s) o the difference equation specified in
Eq. (P2.25-1).

{c} Determing y[af for =2 = = 2 when xinl s equal 1o &alm BEg. (P2.25-17 and the
iritiaf rest condition is assumed in salving the difference equation. Note that the initial
rest condition implies the system deseribed by Eq. (F2.25-1] is causal.

For each of the systems in Figure P2.26, pick the strongest valid conclusion that you can
make about each system from the following list of statements:
{i} The system musl be LTT and is uniguely specified by the information given.
{ii} The system must be LTT, but cannot be uniguely determined from the information
giveTh,
(i) The system coubd be LTT and if it is, the information given uniquely specifies the system.
{iv) The system could be L1T, but cannot be uniquely determined from the information
given,
{vi The system could not possibly be LTL
For cach system [or which you choose option {1} or (i), give the impulsc response ffr] for
the uniquely specified LT system. One example of an input and s corresponding output
are shown for each system.

System A; 14" 15"
(;) —] Sysiem A p—= (E)
Syslem B: = i
Cog (‘5,;) —| SyslemB — I sin (%u)
Swstem

1/18" § ; ;
5 ufn] —=f System O p—a =1

}Hu[—n -1]= ﬁ(%jnu[n]

Al

Figure P2 26
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2.27. For each of the svstems in Figure P2.27, pick the strongest valid conclusion that you can
mmake about cach system from the [ollowing list of statemenis:
(i) The system must be LTT and is uniquely specificd by the information given,
{ii) The system rmust be LT but cannot be uniguely determined [rom the information

Elven,

{iii] The system could be LI, and if it is, the information given uniguely specifics the
system.

(iv} The system could be LTI, but cannotl be uniguely determined from the information
given.

{v] The system could nol possibly be LTT.

3[!:] 2 Tu‘[rz]

———| SyslemA [

('] ulh] 5[]

—+ Syslem B p————

z[r] 4 wvln] Tlxlr])+ aT{x#])

—_— System(C p——

For all choices of x|x|. ¥|n|, and the constan| o

m

cos (In) 3cos {En) + sin(3n+ I
— SwtemD p——

In] ylin] = 02¥n + 1] + x[n]

——{ SystemE [——

Figure P2.27

2.28. Tour input-oulpul pairs of 2 particular system § are specified in Figure P2.28-1:

el
111 1 L1
(1}
1k ~5F 111
01z [T T
(2) 1 1 1 2l !
i e -5 b 1 1
012 D123 45
{3} 11 1T 1 11
L -5 B
1 2 -1 2 F-4.7%
{41 1 | e |
| I
o 1 23435  Figure P2.26-1
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{a) Can svstem 5 be time-invariant? Explain.

(b} Can system § be linear? Explain.

{€) Suppuse (2) and (3) arc inpul-oulput pairs of a particular system $;, #nd the system
is kitown to be LTL What is 2[r]. the impulse response of the system’!

{d) Supposc {1} is the input-output pair of an LTT system 55, What is the output of this
system for the input in Figure P2.28-2;

Figure P2.28-2

A LTI system has impulse response defined by

] e

I n=101,273
o W Y

1] =3

Determine and plot the output y|n| when the input x(a] is:
(a) uln]

(b} w[n—4]

(e wfnl —wlp — 45

Consider the cascade connection of two LT systems in Figure P2.30:

LT] 11T
—_—] Bysten | - System ] p————
x|i] iy [1] wia| fater] ¥lnl
fr i‘-"-‘ | J?JT"' |
19 1
e — | e
£l 3 H -3 1l fl

Figurs P2.30

{a) Determine and sketch win] if x1a) = (—11%uwlx]. Also, determine the overall output
¥in].

iby Determine and sketch the overall impulse response of the cascade system; Le., plot the
wulpul ¥lx| = f[n] when xln] = dfn),

(¢} Nowconsider the input x[n] = 28[n] + 48[n - 4] - 2d{n — 2] Sketch w(n].

(d} For the input of part {c}, write an expression for the output ¥|z| in terms of the overall
impulse response Aln] a5 defined in part (b). Make a carefully labeled sketch of your
ANSWET.
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If the input and output of a causal LTI system satisty the difference equation
yla] — avin — 1] +x|nl.
then the impulse response of the svstem muost be #[n] = a"ula).

(a) Forr what values of ¢ is this system stable?
(h) Consider a causal LTI system for which the mput and output are related by the differ-
enoco cqualion

¥lnl =y 1] 4 xfn] u'\;.u[rt N,
where & 5 8 positive integer, Determime and sketch the impulse response of this system,
Hinr: Use linearity and time-invarance to simplity the solution.
(e} [Is the systemin part (B) an FIR or an IR system? Explain,
(d} For what values of o = the system in parl (b) stable? Eiplamn.

For X (/™) = 1AL —ae™ ™, wilth —1 = g < @, determine and sketch the Tollowine as a
funciicm of o

{2} RelXie"]

(b} Ten|X fefey)

(c) 1X (ei™

(d) £Xiel™),

Consider an LTT system defned by the difference equation
wr] = —2xln] +4x[A - 1] - 2xln — 2]
{a} Determine the impulse response of this system.
tb}y Dwtermine the frequency response of this system. Express vour answer in the form
Hie/"y = Ajeloye—lena

where A2/ 15 a real function of . Expheitly specily Ale/"y and the delay ng of this

system. ;
{c) Sketch a plot of the magnitude |H (e} and a plot of the phase JH{e/™"),
{d} Suppose that the input 1o the system s

zp(n] = 1 + £f037n — oo oo

Use the frequency response function to determine the corresponding output vy [aj.

(e} MNow suppose thal the input (o the system =
waln] = €1+ &/ PIT — oG < A< oo

Lse the defining difference equation or discrete convelution to determine the corre-
sponding culpat ¥ (a for —oe = # ~ oo, Compare vi[n] and y2i#). They should be
ecqual For cerlain values of r, Over what range of values of » are (hey equal?

An LTT systermn has the frequency response

1— 1254w , 0456/

- O0Berfe 1 -(He Jo

(a) Specily the difference equation that is satisfied by the inpul «lx| and the cutputl v

(k) LUse one of the above forms of the frequency response to determine the impulse re-
sponse filn].

(¢} Show that |J-11'{e-”-'*}|2 = (7=, where {7 is a consiani. Petermine the constant €. {This is
an example of an alfpass filter to be discussed in detail in Chapler 5.)

(d) Tf the input 1o the above system is x[al = cosdd 2ra, the ouipul should be of the form
yin] = Acos((2zn + 3. What are A and 47

Hiel®) =
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235, An LTI system has impulse response given by the following plot:

} hn]
19
.1
of 1 2 I 4 r
1

Figure P2.35-1
The inpul Lo the system, x[n], 13 plotted below as a function of a.

xfn]

J

{a) Use discrele convelution Lo determine the output of the system ylni = x|a ]+ kix] for
the above inpul. Chive your answer as a carefully labeled sketch of vin] over a range
sufficient to define it completely.

{h} The determinislic aulocorrelaizon of A signal x[n] is delined in Eq. (2.188) as cpein] =
x[n]* x[-n]. The system defined by Figure P2.35-1 is a matched [iler for the input in
Figure P2.55-2, Noting that k[n] = x| —ir — 41, cxpress the output in part {a)in terms
af ey g[n],

{c} Detenmine the output of the system whose impulse response is k[n] when the input is
x[n] = ufn + 21, Sketch your answer,

—
—_—
109 by
S

Figure P2.35-2

23, An LTI discrete-time system has frequency response given by

(1= je~ I + je=i®) 14120 1 o fle

Lt | — 08— I—0.8e—i" 1—02—1"  1—08—»

(@} Usec one of the above forms of the frequency response to obtain an equation for the
impulse response Aln] of the system.
(b} From the frequency response, determine the difference equation that is satisfied by
the inpul x|#) and the output ¥(x | of the system.
{cy 1M the input o this system is
xzln] =44 2ecosiagn)  for — so < n < oo,
for what value of oy will the output be of the form

[l = A = constant

for —oo < n = o0 What is the constant A7
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Consider the cascade of LTT discrele-time systems shown in Figure P27,

ik wl LTI _
L, System 1 win] System 2 —"l"']'
ki|nl, Hile!) han]. Haled=)
Figure P2.37

The first system is described by the frequency response

e 1O i =025
.f.l; £_|'|'.|\.| g _rtl.l e

e I 0257 = ol =7
and the second system is described by

Eiﬂ.ﬁﬂ' m)
wn

haln] =2

{a) Determine an equation that defies the Tequency response, H{E-"‘-':J, of the overall
system over the range —~a = w < &,

(b) Sketch the magnitude, |Hied™ )|, and the phase, £ H (e, of the overall [requency
response over the range -1 <o = 7.

{¢) Use any convenient means to determine the impulse response 4[n] of the overall cos-
cadde syslem,

Consider the cascade of two LT systems shown in Figare P'2.38.

VN— - —

LI

o ; :
‘l”]  System1 | win] . system? ¥#]
T[] ! hafn]

Figure P2.38

The impulse responses of the (wo syslems s

. 10=n=4
fiplaf = uln — 3] and haln] = I” Ehy
(a) Makeasketch showing both A Tk] and B[ —&] (for some arbitrary 7 < 03 as functions
of k.
thy Drelermine fle| = hyln]=halr]. the impulse response of the overal] syslem, Give your
answer as an equation (or ser of equations) that define Afa] for —s0 = <= scorasa
carefully labelled plot of ks over a range sutficient to define it completely.

Using the definition of linearity (Egs. (2.232)-{2.2303}, show that the jdeal delay system
(Example 2.2) and the moving-average system (Example 2.3) are both linear svstems.
Determing which of the following signals is periodic. IT g signal 15 periodic, determine its
period.

(#) x|n] = pd (2Tl
(h) x[n] =sin(za/19)
(€} xln| = ned™

{d) z[n]=el"
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241, Consider an TTTsystem with |Fi{e/™)| = |, and lel arg| H (e} be a8 shown in Figure P241.
If the input is

rjm|=« {?r—."! E),

determine the output ¥[x].

arg[Hie™)|
———————— Saify
Slope =— 18 | m2
m i it

Figure P2.41

242, The sequences s[#], x[n], und win| are sample sequences oF wide-sense stationary random
processes where

#lnl = x[nllr].

The sequences x(a] and wlnf are zero-mesn and statistically independent. The aviocorme-
lation function of wm)] is

Eiwlrlwln +ml)l = a%ﬁlm],
and the varance of t[a] s :rf-.

Show that s[r] is white, with variance cf-‘r;_f..

Advanced Problems

243, The operator T represents un LTT system. As shown in the following figures, if the input
to the system T is {é}"u[rz . the outpuat of the system is gla]. If the input is k]a ], the output
15 vl

runl—s T b g[n]

xfn] — T | ¥[4]

Figure P2.43

Express v|n] in terms of gle] and x|a].
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244, Xie!%) denoies the Fourier transform of the complex-valued signal x[a], where the real
and imapinary parts of x(n] are given in Figure 244, (Nore: The sequence is zeto cutside
the interval shown,)

3
T {

=1 -2 -1 1)

1

I
— —

]

=R

N

.n-l_'_'
B
s —T
——— 1
-
-

..__....I
T

—4
-3 Figure P2 .44

Perform the following caleulations without explicitly evaluating X (e,

(2) Evaluate X{e/®) g

(b} Evaluate meiﬂﬁ ——

(€} Ewaluate Jl‘_.. ey dw,

{d) Determine and skeich the signal (in Lthe bime dnmam} whose Fourer transiorm is
Xie ,ra.:'}

(e} Determinge and sketch the signal (in the time domain) whose Founier (ransform s
Jimix (/e

245, Consider the cascade of LTT discrete-ume systems shown in Fipure F2.45,

[Tl LTi
—_— Sustem 1 e SYSIEN D f—
*{m] ], i () w[n] hals]. Hyle ™) #lr]
Figure P2.45

System 1 is descobed by the difference equation
wlr] = x[n] — xlan —1].
and System 2 is described h}f

The input x|n] is
x[n] == cos((ldxn) | sin{.fzn) 4 380k = 2] 4 2uin].
Determine the overall outpul viel.

{With carefud thought, you will be able to wse the properies of LTI svstems o write down the
answer by fnspection.)
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83
The IXTTFT pair
1
@uln) = ————— lal =1 (P2.46-1)
1 — ge™d%

is given.
{a} Using Eq. (P2.46-1}, determine the DTFT, X (ef™y, of the SECUETEE
xlr] = —b"u|—n —1] = {TN : TE:EII

Whal resiriclion on b s necessary for the DTET of xfn] Lo exist?
{h} Determine the sequence v[n] whose DTFT is

. qf—_f.u.-
Yol = —
14 2e fu

Clonsider a “windowed cosine signal™

r[n] = wln]cosiaynal.

(a) Determine an expression for X{e) in terms of W(ed™),
(b} Suppose thal (he sequence wnn] s (he finile-length sequence

T o 1 —-L=n=<lL
W= otherwise,

Delermine the DTFT Wie ™), Hine: Use Tables 2.2 and 2.3 1o obiain a “closed form™
sobution. You should find that Wie'} is a real fonction of w.

{c) Sketchthe DTFT ¥ (e [or the windowin (b). Fora given ag. how shoubd L be chosen
s that vour skelch shows lwo dislinet peaks?

Thez system T in Figore P2 48 is known to be rime invariant. When the inputs to the system
are xy [w]. vz |re ) and xq|# ), the responses of the system are v [#], ¥2[#], and ¥ 1|2}, a5 shown,

AN i winl

x=[r]
I-z — T
b1 "
Kyln|

Figure F2.448
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(3} Determine whether the syslem T oonld e lincar.

(b} If the inpuat x[a] to the svstem T is §[al, what is the system response yle]”

(¢} What are all possible inputs x{#1 for which the response of the system T can be deter-
mined from the given information alone?

2.4%. The system L in Figure F2.4% is known o be Ureer, Shown are three output signals y; [a],
vafn). amd wvg[r] in response to the input signals xy[r], x2[#], and x;|n]. respectively.

¥l

ay|n]

— L —a—
-2
-3
x3]#] 3 ¥slnl
Il Il [ 1
— L — T 2 + &
0 1 n -k 1 2 "
-3
Figure P2.49

{a) Delermane wheiber the system L ¢ould be ime mvanant
{b) Ifthe input x|n] to the system L is 5[], what is the system response y[n]?

250, [n Section 2.5, we stated that the solution to the homogeneouos difference equation

N
S apyuln — k) =10
=0

is of the (rrm

»
yulnl= ¥ Amzh, (P2.50.1)
m=1
with the A 5" arbitrary and the o.'s the ¥ rools of the polvnoemial
M
Atz) = ) az ™ (P2.50-2)
k={1
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N
A[E}=Eﬂh ]_[(1 _uan=_ LB
k=0

m=1

{a) Determing the peneral form of the homopencous solution to the difference equation
¥l 3yl — 11+ fyln — 20 = Zeln — 11,

(h) Determine the coclfivients 4 , in the homogencous solution il =1 = 1and »[0] = 0.
{¢) Now consider the difference eguation

¥[a]— vin — 11 + %_v[n -2 =2zx[n—-1]. (PL30-1)

[ the homogeneous solulion contains only terms of the form of Eq. (P2.50-1), show
that the initial conditions ¥[—17 = 1 and »[(0] = ( tannol be satisficd.

(d) If Eq. (P2.50-2) has two roots that are identical. then, in place of Eq. (P2.50-1), yula]
will take the form

ol
valnl = E AmIn +aBzt, {P2.50-4)
m=1

where we have assumed that the double ool is zq. Using Eg. (F2.50-4), determine
the general form of vy [n] for Eq. (P2.50-3). Verify explicitly that your answer satisfies
Eqg. (F2.50-3) with x[»] = 0

(e} Determine the coefficients 4 | and 8 | inthe homogeneous solubion ohlained in part {d)
if _'_b'|_—].] =1 and _'!-|_|.:|] =1

2.51. Consider a system with input x[=] and output +[x]. The mpul—oulpt relation for the syslem

2,52

2.53.

is defined by the following iwo properties:

1 ylnl - ayln — 1] = «[al,
2w =1.

{a) Determine whelher the system is time invariant.

(b) Derermine whether the system is linear.

{¢) Assumc that the difference equation {property 1) remains the same, but the value »[(]
15 specified o be gero. Does (his changs vour answer fo cilther part (a) or part (b)?

Consider the LTT system with impulse response

filn) = (%) ulnl. where j = \,f"—_l_

Determine the steady-state response, i.e., the response for large n, 10 the excitation
vlm] = cos(mai|nl.
An LTT system has frequency résponse

— Fen

e |f:i'|

] el

)

Hlf‘j“'l:l —

i

0
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The input to the system is a periodic enit-impulse train with pericd & = 16 e,

xlwl= ) dln+ 16k],

k=—n
Determine the output of the system,
Clonsider the system in Figure 1°2.54,
SIS AT T S WA S SRR P S
| |
: |
I »f + fia[n] = a"u[n] —~—=
x[n] | AL
|
|
|
| iyln] =8 8ln - 1] I
| |
' ]
hn| Figure P2.54

{a} Determine the impulse response hin| of the overall svsiem.

(b} Determine the frequency response of the overall system.

{c} Specily a difference eguation that relates the oulput vla] o the input x(n].
(d} Is this system causal? Under what condition would the system be siable?

Let X (279 denote the Fourier transform of the signal cfr] shawn in Figure P2.33, Perform
the following calculations without explicitly evaluating X {9

2 2 2 1
xfn]
1 1
T
o ] A il il —
1 2 3 4 5 & B
1

n

Figura P2.55

(3) Evaluate X («/*

5 _lr_l=:|'

{b) Evaluate X (e/“)|u=r.

(c) Find £X (e/™),

id) Ewvaluate |7_ X (/).

(&) Determine and sketeh the signal whose Fourier iransform is X {f'"-"”‘,'g.
(f) Determine and sketeh the sipnal whose Fourier transform is Ref X (25991

For the system in Figure P2.56, determine the owtput yire] when the input xfr] is §n] and
Hie!™) iz an ideal lowpass filter as indicated, Le.,

i Lo |ed = /2
N a u iy
BETITNG wrs el <5,
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a7
(11" [n]
; wlr}
—{ Hyeiy
x|n] ¥ln]
|H:-rf""l
1§
R ‘__'l_i [
i L _ I !
A - _ = W I e o
2 2 Figure P2.56
2.57. A seguence has the DTFT
T
X (ef™) = Lot al = 1.

258,

2.59.

{a)
(b}

fl el a0l — arJ"*-'}

Find the sequence x|n].
Caleulate 1 /2 _,r‘rn K ied™) consfon palon.

An LTI system is described by the input—output relation

iz}
{h)
{c)

(d}
(e)

[l =xln] =+ 2xln 1]+ a[n =21

Determine k[n], the impulse response of the systerm,

Ts this a stable system?

Dietermine H (e/*). the frequency response of the system. Use trigonometric identitics
to obtain a simple expression for H (e/™),

Plot the magnitnde and phase of the frequency response.

Now consider a new system whose frequency response is Hq(e/) = H(eitwd=ly,
Determine kg [a], the impulse response of the new system,

Let the real discrete-time signal x|a] with Fourier transtorm X (¢} be the input to s system
with the cutput defined by

(a)
(h)

(c)

d)

i rin]. il #iseven,
yixl 0. otherwise,

Skerch the discrete-time signal s[n] = 1 — cos(ra) and its {generalized) Fourier trans-
form S(ef), _
Express ¥ {£/%, the Fourer transform of the oulpat, as a function of X (/% and
Frede),

Supposc that it is of interest to approximate x|#| by the interpolated signal wix| =
vinl=(1/2yIn + 11+ v[n— 170 Determine the Fourier transform W{EJ*‘}I as & function
of ¥ (e,

Sketch X {-:-'“'} ¥ (e, and Wie!™) for the case when x[n) = sin{ra /el /(T /a) and
e = 1, Under what conditions is the pmpoe.ed mterpolated mglml wle]a good approx-
imation for the original x(a)?
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Consider a discrete-time LT system with frequency response H(e/®) and corresponding
impulse response kin).
{a} We ate first given the following threz clues about the system:
(i) The system is causal.
(i) Hiel®) = 8@ o),
(i) The DTFT of the sequence fi[a + 1) is real,
Lising these three clues, show that the system has an impulse response of finite duration.

(b} In addilion to the preceding three clues, we ate now given Two mon: cloes:
(iv) 2—; _'T H(e Yo = 2.
(v Hfﬂ*”’lj =1
Is there enough information Lo identify the system uniquely? 10 so, determine the
impulze response f[n]. 15 nol, specify as much as vou can about the sequence hln).
Comsider the three sequences
vinl = uin] — uln — 6j.
winl = Eln] + 28[n — 2] 4-8[n — 47,
gln| = wln] = wnj.

(a} Find and sketch the sequence gin].

a—1
(b} Find and sketch the sequence #[a] such thate(n] + voln| = Z qlk].
b=—ra
() Ts g[—n] = v[—n] = w[—n]? fuslify Four answer.
Consider an LTT system with freguency response
H{éul'rui i {__J-[l:lr_l.,f3| - f.‘!'_,"4_|_1|l e ,._.- n.
Determine v[rj, the output of this system, if the input is
inl . (15mn :r)
xfal =] —— — —
¥ ( 13,

for akl n.

. Consider a system § with input x[n] and output vir] related according to the block diagram

in Figure P2.63-1.

LTI svstem

fijr]

x[n] — ¥[n]

erHep Figure P2.63-1

The input x[n] is multiplicd by ¢~/ and the product is passed through a stable LTI

system with impualse response fifaj.

{a) Is the system 8 linear? Jusiily vour answer.

th) ls the system § time invariant? Justify vour answer.

{c) Is the system 8 stable? Justify your answer.

{d} Specily a systern © such that the block diagram in Figure PLAS-2 represents an al-
terpative way of expressing the input-output relationship of the syslem 5, (Nowe: The
syslem O does nol have Lo be an UTT syslem.)
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xin| = Bh[n]e!mn * [ —— ¥[sn|

Figure P2.63-2

2.64. Consider an ideal lowpass filter with impulse response &jp[n] and frequency response

Hiiel™ = II|= |m| < 1.2,

P b, 0Zr < |w] =,

(a) A new filler is defined by the eguation 7 [#] = f—]'l".hh.,[rr] = f-'i”"‘.mp[rrj. Determine
an equation for the frequency response of H (/%) and plot the equation for e < 2.
What kind of filtcr is this?

{h) A second filier is delined by the equation ke[n] = :’leplnl cosit 3z ey Deennine the
equation for the frequeney response Hafe/™ ), and plo the egquation [or ol < 1. What
kind of filter is this?

{c) A third filler is defined by the cquation

sini(.lxn
hln) = R—-}‘-mr,[n].

Determine the equation tor the frequency response H4(e/™). and plot the cquation
for |o < 7, What kind of filter 15 this?
2658, The LI'T system
—f, D=,
T moe = Al
is referred 1o as 4 907 phase shiflter and is vsed o generate what is referred 1o as an analytic
signal win] as shown ig Fipure P2A5-1. Specifically, the analytic signal sofn] is o complex-

Higley =

valued signal for which
Relwln]] = x[n],
Im|wln]] = v[n].
= Belwln
il il

| ey e Ty [wn1]]

yin| Figure P2.65-1

If #2e| X (e /)] is as shown in Figure P2.65-2 and Tm[X ie™)} = 0, determing and
shetch Wie/™), the Fowrier transform of the anaiytic signal win] = el 5 jvln].

e [ X (e |

T TR o T Figure P2.65-2



Chapter 2 [iscrate-Time Slgnals and Systams

2.66. The aurncorrelation sequence of a signal x[n] is defined as

i
Relnl= ¥ x*lklaln +£].

krz—no

(a8} Show that foran appropridate chodee of the sipnal glk], & (0] = x[n]*gn], and identify
the proper choice for glal. .
(b} Show that the Fourier transform of By [#] is equal lo | & (/™))%

267, The signals x{#] and y[a] shown in Figure P2.67-1 are the input and corresponding ougpul
tor an LTT system.

1 x[n] 1 #ln]

-1 1 Figure P2.67-1

(a} Find the response of the system to the sequence a3 in Figure P267-2,

.] wln]
3
i - L il - —
0

n

1 Figure P2.67-2

(h) Find the impubse response afe] for ts TTT system.

268, Clonsider a syslem for which the input o[a] and owput via] satisTy the difference equation

1
¥lal - 5 yla = 1] = x[n]

and for which y[- 1] is constrained to be zero for every input. Determine whether or not
the system is stable, If you conclude that the system is stable, show vour reasoning [f you
conclude that the system is not stable, give an example of a bounded input that resules m
an unbounded output.

Extension Problems

269, The causality of a system was defined in Section 2.2.4, From this definition, show that, for an
LT system, cousality implies that the impulse response Afnd g zern forn < (0 One approach
i# to show that if &[r] is not zero for n < 0, then the system cannet be causal. Show alsa
that if the impulse response is cero fora < 0, then the system wili necessanly be catsal,

2.7 Consider a discrete-time system with input «[n] and output v[a]. When the input is

TR
JL.FLJ:(E) ufnl.
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.71

N

the colput =
'I i n
y[n} = (EJ fir all .
Dretermine which of the following statements is correct:
& The system musi be LTT,
+ The system could be [T1
s The system canneot be LTL

I your answer is that the system must or conld be LT, give a possible impulse response. 17
your answer is that the system could not be ET1, explain clearly why not.

Consider an LTT system whose frequency response is
Higd™y = o=f2 ) oo
Determine wheiher or not the system is cawsal, Show vour reasoning,.
In Figure I"2.72, two sequences £11r] and xa[a] are shown. Both sequences are zero tor all

n outside the regions shown, The Fourier transforms of these stquences are X (/™) and
xg{ﬁ'-iw:l, which. in general, can be &xpemed {0 e complex and can be written in the form

X e = A qiane/n®h
X 2{e'%) = A gle)e’ 2,

where A (len), Ay ee), A 2fe), and #o0w) are all real functions chosen so that both A jie)
and A 7{w) arc nonnegative at o = 0, but oltherwise can take on both positive and negative
yalues, Determing appropriate choices for & (w) and #z(e, and skereh these two phase
fonections in the range (0 < @ = 27,

2 xq|n]

I
o
L
|
l
|
I
—
=
Pt
ulig
1
X
—
L
-—
-3
|
%]
—
=1
=

Figure P2.72

2.7 Consider the cascade of discrete-time systems in Figure P2.73, The time-reversal systems

are defined by the equations flal = ef—al and ¥[n] = g[—nl. Assume throughout the
problem that x[a] and Ay fr] are real sequences.
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i
|
LTt % LTI = :
st ime- : imi-
B s:':;:.:in [ ]:_ reversul T ]" SEHT,ET [ ]:— reversal —t—['-]
x|m LT, eln ! L] TE. ] ' yim
: Hyte™) sVSEtem 1, (o) & syElEm t ¥
|
| i i e e s ko i . S P ——
Figure P2.73

{a} Express £ el ™), Filed®), G e, and ¥ {ef®) in terms of X (¢/) and Hl{ef:"”).

bk The resudt from part (s} should convince you that the overall system 7 LTT Find the
frequency response f{«/") of the overall system.

(¢} Determine an expression for the impulse response &[] of the overall sysiem in terms

of fry [l

L74. The overall system in the dottled box in Figure P2.74 can be shown to be linear and time

invariant.

(a) Determine an expression for Hief™) the frequency response of the overall system
[Tom the inpul x[n) o the outpadd ¥[n], in ferms of B (e, the frequency response of
the internal LT system. HRemember that (- 1)" = pimn

(b} Plot Hie!) for the case when the freque ney response of the internal LTI system is

H (e} = [

L,

o - o

|
|
i
xn] | \f/ un)
]
g

—

Cuusaf LTI
sysiem

fyn]

fee} < e,

L T [T H

-———

i

xin]

Figure P2.74

.75, Figure P275-1 shows the input-cutput relationships of Systems A and B, while Figure
P2.75-2 containg 1wo possible coscade combinations of these systems,

xy[n] —=

%] =

xyfm] —»

T[]

Swatem A f—a ¥uln] = x,[-n]
System B = yylrr] = xgin + 2]
Sstem A *  System B
Syslem B e Syslem A

Figure P2.75-1

= w[n]

= wln]

Figure P2.75-2
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Txy[n] = xalnl, wilk wyle) and walrn] necessarily be equal? I your answer 15 yey, cleatly and
concisely explain why and demonstrate with an example. If vour answer is ned gecessarily,
demonstrate with a counterexample.

2.7, Consider the system in Figure P2.76, where the subsystems $3 and 57 are LTL

¥
e

¥ln]

x[n]

LS SO a1 Figure F2.76

(a) Is the overall system enclosed by the dashed box, with input x[#] and cutput vi#] cqual
b the product of yq|#] and v z[a . guarantecd (o be an L1 system? 1 so. explain vour
reasoning. 1T not, provide a counterexampple, ) _

(b) Suppose 5| and ¥ have frequency responses H (0™} and A2 (e that are known to
b zero over cortam regions, Lot

0, [ewr| == 020,

Hylel) = 2
L | unspecified, U2w = jwl =,

Hyle/?) = {E‘“"F‘E‘-'"“fds It = Mg,

Odm < ol < m.
Suppose also that the input x 7] is known to be bandlimited to 0.3, e,

X (/%) = [ unspecified, || = 0.3z, _
2 03m = |w =

Orvver what region of —r =< @ = mis Fled™), the DTET of yla], guaranieed to be zenn?
2.77. A commonly used numerical operation called the first backward difference is defined as
w¥in| = ¥ix[nl) = x[x] — x[n — 1},

where x[n] is the input and v{n] is the cutput of the first-backward-difference system.

(8} Show that this system is linear and time invariant.

(by Find the impulse response of the syslem.

(e} Find and sketch the frequency response (magnitude and phase).
id) Show thatif

i[n] = ffn] = glnl.
then
Vixla]) = Vi flnl) »gln] = fln] = Vigln]).

() Find the mpulse response of g systern (hat could be cascaded with the frst-difference
system to recover the input; Le., find b;|n ], where

il = Vix[m]) = x[n].
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Let Hied™) denote the frequency responge of an LT1 syslem with impulse response kinf,

where k[n] is, in general, complex.

{a)} Using Eq. (2.104), show that B #e— 04 s the frequency response of a system with
impulse response & [n].

(b} Show that il Alaf is real, the frequency response is conjugate symmelrie, ic.
Fie=I®) = H*(pdon),

Let X (/) denote the Fouricr transform of «[n ], Using the Fourier (ransform synlhesis or
analyiis eguations (Eqs, (28300 and {2.131)), show that

{a} lhe Fourier transform of x*in]is X° [f_f.‘”J‘

{b) the Fourier fransform of x%[—n] s X5/}

Show that for x|#] real, property 7 in Table 2.1 follows from property 1 and thal propertics

811 follow from property 7.

In Section 2.9, we stated a number of Fourier transform theorems without proof. Using the

Fourier synthesis or analysis equations (Eqgs {2.1300 and (2,131, demonstrate the validity

of Theorems 1-5 in Table 2.2.

In Section 2.%.6, it was argued intuitively that

¥ (el ™) = H el X el (P2.82-1)
when ¥ {e-f”“]_ Hiefon, and X (/™) are, respectively, the Founer transforms of The output
¥ln]. impulse response Aln|, and input x[n] of an LT1 system: ie.,
o0
winl= % xlklhle — kL. (P2.82-2)
ke

Verify Eq. (P2.82-1) by applying the Fourer t{ransform (o the convolution sum given in

Eq. (P2.52-2).

Bvapplying the Fourier synthesis equation {Eqg. {2.1300) w Eq. (2.167) and using Theorem 3

in Table 2.2, demonstrate the validity of the modulation theorem (Theorem 7, Table 2.2),

Let xfn] and vix] denote complex sequences and X (e and ¥ (el®) their resprective

Fourier transforms.

(a) By using the convolution theorem (Theorem 6 in Table 2.2) and appropriate properlies
from Table 2.2, dclennin{e, in terms of x[n] and yln]. the sequence whose Fourier
Iransform is X (/™ Fie/™),

() Using the result in part {a), show that

.l 1 = : .
Z x[n]*n] = - j X '™V * "™ idew. {P254-1)
2r J_
R= =0
Equation (PZ.84-1) is a more general form of Parsevals theorem, as @iven in Sec-

tion 2.9.5,
{e) Using Eq. (P2.84-1), determine the numerical value of the sum

i sinirrn /) sindma M0}

2mwn S
Fl=—

Let xfn] and X (¢/*) represent a sequence and its Fourier transform, respectively. Deter-
ming, in lerms of X (ef™), the transforms of vy (], y4lnl, and y.In] as defined below. In cach
case, sketch the corresponding output Fourier transform ¥; (e/%), ¥y (/%) and ¥, (73,
respectively for X {ef) as shown in Figure P2.85,
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a5

@ Figure P2.85

{a) Sampler:

o - | xln]l. neven,
Fsnl = i, n add,

Mot that v [n] = %{-’tlr‘il + (=1 xn)) and —1 = &7,
(b Compressor;
wg[n] = x[2n].
(¢} Cxpander:

elnf2]. neven,
.Vr[?!lm {'}. ! iy

The two-frequency correlation function @y [V, w) is often used in radar and sonar to evalu-
ate the fregquency and travel-lime resolution of a signal, For discrete-time signals, we define

[= &)
P (N, o = E a4+ Nx"n— .-'v']ﬁ_l'.“'".
A=
(ay Show that
Pyl ~ N, —e} = (N, wh
(b} If
xfn] = Aa"uln], e 1,
find €y (N, o). {Assume that ¥ = {1)
(e} The lunclhion &N, wh has a frequency domaan dual. Show (hat

1 57 - i o .
By (N, e = o [ X [ff[‘+{*"3“]J}X*QrJ{‘ 'r""znzlx.'-"'h'l"dv.

T Jfx

Let x|2| and y[a] be stationary, uncorrelated random signals. Show that il
wilm] = xn] = ¥[rl.
then

1 3
My =me+my and -.‘Ti =a;+ay

. Let eln] denote & white-noise sequence, and let sin] denotle a sequence that ws uncorrelated

with e[m]. Show that the seguence
¥lnl = s[nleln|
is white, 1.2., that
Elv[alyln + mi]] = A &[m],

where A 18 a constant.
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Cimsider a ranclom signal x[n] = s[a] + eln], where both r[n] and e[r] are independent
zerc-mean stationary random signals with autocorrelation functions gk |m] and g fm |,
respectvely,

(a) Detlermine expressions for g, fm]and &, [ef'""}.

(b) Determine expressions for gy [m] and &, (/).

(¢) Determine expressions for gy m ] and @)

Consider an LT] system with impulse response &[] = a”wln] with |a] = 1.

(a) Compute the deterministic autocorrelation function sy, [ ] for this impulse response.
4 5 = 3 ; +

(k) Determine the magnitude-squarcd Munction (M e 3= for the system.

(¢) LUse Parseval’s theorem to evaluate the integral

1 I

0
— |H (e ™= dee
= J—n

far the system.

The inpul to the first-back ward-difference system {Example 2.9} 8 2 2ero-mean white-noise

signal whose aulocorrelation function is &, . dm] = rJf-h'[m B

{a} Derermine and plot the auvlocorrelation funclion and the power spectrum of the cor-
responding oulput of the system,

tk} What is the averape power of the ontput of the svstem?

(e} Whal does this problem el vou about the first backward difference of a noisy signal?

Lot xfa] be s real, stationary, while-noise process, with zero mean and variance rrz Lt via|
be the corresponding output when x[a]is the input w an LT system with impualse response
Aln]. Show that

(@) Elx|n]¥ln]] = Ri0jo?,
(b} al =a2¥% _ #2n].

Y,

Let x[n] be areal stationary while-noise sequence, with zero mean and variance o2, Let x[n}
be the input to the cascade of two causal LTT discrete-time systems, asshown in Figure P2.93.

L]

w{ fra[n]
xin| ¥lm]

L

winl  Figure P2.93

(a) Isal =af 5%, kK17

(b) lsal =al =5 RETk]!

(e} Letbyle] = a"uln] and kg (w] = &% uln]. Determine the impulse response of the overall
swslem in Figure P2.493, and, from this, delermineg fr;f Are your answers 10 parts (I
and () consistent?

Sometimes we are interasted in the statistical behavior of an LTI system when the input is
a suddenly applicd random signal. Such a sitvation is depicted in Figure F2.94,

_.)(,n | ki .

wln] || el

{awitch closed abn =10) Figure P2,94
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Let x|n) be a stationary white-noise process. The input to the system, wia], given by

x[#], n=0,

WAl =" e

is a nonstationary process, as is the outpuot v[a].

(2} Denve an expression for the mean of the output in terms of the mesn of the input.

(b} Derive an expression for the autocorrelation sequence gy [ny, nz] of the output.

(e} Show that, for latge ». the formulas derived in parts (a) and (b) approach the results
for stationary inputs,

(d) Assume that k[#] = a"u[#]. Find the mean and mean-square values of the output in
terms of the mean and mean-sguare values of the inpul. Sketeh these parameters as a
function of a.

Let x(n] and yin] respectively denote the input and output of a system. The input—output
relation of a system sometimes used for the purpose of nose reduction in images ix given

by
il = T2 ) o o) 4 el
oflal
where
1 a+l
ol =3 3 (xlk]—ms(n)),
bem—|
i nt+1
meln] = 3 k;j x[kl,

2

cr;[.'!] - U|E|1 D'El"] = Mp-

2 =
WL 0. otherwise,
and a}% is a known constant proportional to the noise power.
(a) Is the system hnear?
(b) Iz the system shift invariant?
(¢) Is the system stable?
(d) Is the system caosal?
(e) For a fixed x|n]. determine y|r] when af, is very large {large noise power) and when
aE. is very small (small noise power). Does y[n] make sense for these extreme cases?
Consider a4 random process x[a] that s the response of the LTI system shown in Fig-
ure P2.96. In the ﬁg,ul'e, wn] represents a real zero-mean stationary white-noise process
with E{uw[s]} = 2.

1

—e] Hi'q'lu}=—. [l
wln] 1-05g™ _'L'Inl

Figure F2.96

(a) Express £{x*[n]} in terms of ¢y [n] or @y (e/™).
(h) Determine @y, (e, the power density spectrum of x(r).
{c) Determineg g, , [al, the correlation function of x[x].
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2.97. Consider an LTT system whose impulse response is real and is given by Alr], Suppose the
responses of the system to the two inputs xle| and v|a| are, Tespectively, y|a] and z[n}, as
shown in Figure P2.97,

—_—
x|n|

hln]

—]

vin]

A ln]

¥inl

S——

z[ml  Figure P2.97

The inputs cle] and v[a] in the fgure represent real zero-mean slalionary rapdom processes
with avtocorrelation functions gy cla ] and gy, cross-correlation function gyolr |, power
spectra B, (e and ., (/™ 3, and cross power speclrum &6 /™),

(a) Givendyylnl gyl dyuln], @ pfe/®y Dy (2% and Dy, (e4©), determine G, (oY),
the cross power spectrumn of ¥[n] and zfr], where nI:_,,_,{.a_J'f“} is defined by

Byalnl < @yu(ef),

with ¢u:|n] = E[vlklzl& — nl]. )
ib) Tz the cross power specirum Py (o) always nonnegative; 1.e,, 05 @ (e'™) = 0 for all

2T Justily vour answer.

298, Consider the ET1sestem shown in Fipure P2.98. The inpul o 1his system, e[q], is a station-
ary zero-mean white-noise sipnal with average power r.r;:*. The first system is a backward-
difference system as defined by fin] = ¢ln! —eln —1]. The second system is an ideal lowpass
filter with frequency response

(a)

(h)
{ch

(d)

Hsiel®) =

LTT system

1, || = we,
0 oo = o] =

L

e|w]

e

LTI svetem
2

fee

i8] Figure P2.98

Determine an expression for O gy (el™), the power spectrum aof fln], and plot (his
expression lor =27 = w < 2,
Determine an expression for $eefm], the autocorrelation lungtion of fa),

Deterimine an expression for ¢"gx{e_‘jm}: the power spectrum of gr], and plot this
expression for —2x < w < 2,
Detenmine an expression {or ‘TL%‘ the average power of the outpul



