3.0 INTRODUCTION

In this chapter, we develop the z-transform representation of a sequence and study
how the properties of a sequence are related to the properties of its z-transform. The
z-transform for discrete-time signals is the counterpart of the Laplace transform for
continuous-time signals, and they each have a similar relationship Lo the corresponding
Fourier transform. One maotivation for introducing this generalization is that the Fourier
transtorm does not converge for all sequences, and it useful to have a generalization of
the Fourier transform that encompasses a broader class of signals. A second advantage
is that in analytical problems, the z-transform notation is often more convenient than
the Fourier transform notation.

3.1 z-TRANSFORM

The Fourier transiorm of & scquence x[n] was defined in Chapter 2 as

=)

Xy = 3 xlnleron, (3.1)

R=—a0
The z-transform of a sequence x[r] is defined as

L &)

X = Z x[r)z7" (3.2)

A=—0D0
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This equation is, in peneral, an infinite sum or infinite power series, with z considered to
be a complex variable. Sometimes it is useful to consider Eg. (3.2) as an operatar that
transforms a scquence into afunction, That is, the z-transform operator 21, defingd as
_".KF-
Zixfall = Y xlel " =X, (3.3)
=—72x

transforms the sequence x|n| into the function X z), where z is a continucus complex
variable. The unique correspondence between a sequence and its z-lransform will be
indicated by the notation

x[n] <= X(z). (3.4)

The z-transform, as we have defined it m Eq. (3.2), is olten referred to as the
twor-sided or bilateral z-trans foem, in contrast to the one-sided or unélaieral z-rransform,
which is defined as

el
Xy =3 slnjz™". (3.5)
reeal)
Clearly, the bilatcral and unilateral transforms are identlical if x[n] =0 for e = 0, but
they differ otherwise, We shall give abricliniroduction to the properties of the unifalcral
z-transform in Section 3.6,

It is evident from a comparison of Egs. (3.1) and (3.2) that there is a close rela-
tionship between the Founer transform and the z-transform. In particular, if we replace
the complex variable z in Eq. (3.2} with the complex quantity ¢/, then the z-transform
reduces Lo Lhe Fourier translorm. This is the motivation for the notation X (e for the
Fouricr transform. When it exists, the Fournier transform s simply X (73 withz = /. This
corresponds 1o reslncting 7 1o have unity magnitude; L., for |z] = 1, the z-translorm cor-
responds wo the Fourier translorm. More generally, we can cxpress the complex variable
z in polar form as

2 =re'®,

With 7 expressed in this form. Eq. (3.2) becomes

o=
XNire!™) = Z xlalref™) ",
M=—"00
ar
x
X(re/®y= 3" (x[nlr e 4, (3.6)
A==

Eqguation {3.6) can be inlerpreted as the Fourier transform ol the product of the original
sequence x[a] and the exponential sequence »~". For r = 1, Eq. (3.6) reduces to the
Fourier transiorm of x[n].

Since the z-transform is a function of a complex variable, it is convenient to de-
scribe and interpret it using the complex z-plane. In the z-plane, the contour corre-
sponding to |z| = 1 is a circle of unit radius, as illustrated in Figure 3.1. This contour,
referred to asthe wnit circle, is the set of points - = i forQ = w < 2. The z-transform
evaluated on the unit circle corresponds to the Fourier transform. Note that w is the
angle between the vector from the origin to a point z on the unit circle and the real axis
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Figuré 3.1 The unit circle in the
comnplex Z-plame.

of the complex z-plane. If we evaluate X(z) al points on the unil circle in the z-plane
beginmngat 7 = 1 (e, =0} throughr = [ e, =7/2) oz = =1 {ic, m = ), we
oblain the Fourer transform lor ) = o = 7. Continwing around Lhe unit circle would
correspond to examining the Fourler transform [rom a = 7 tow = 2x or, equivalently,
from o = —7 to w = . In Chapter 2, the Fourier transform was displayed on a linear
[requency axis. Interpreting the Fourier lransform as the z-transform on the unit cirele
in the z-plane corresponds conceptually to wrapping the linear frequency axis around
the unit circle withw —Uat; = 1 and @ = 7 al z = —1. With this interpretation, the
inherent periodicity in frequency of the Fourier transform is captured naturally, since
a change of angle of 2 radians in the z-plane corresponds to traversing the unit circle
once and returning 1o exactly the same point.

As we discussed in Chapter 2, the power series representing the Fourier transform
does not converge for all sequences: i.e, the infinite sum may not always be finite.
Similarly, the z-transform dees not converge for all sequences or for all values of z.
For any given sequence, the set of values of 7 for which the z-transform power series
convergas is called the region of convergence (ROC), of the z-transform. As we stated
in Section 2.7, if the sequence is absolutely summable, the Fourier transform converges
to i continuous function of w. Applying this criterion to Eq, (3.6) leads to the condition

[ 5}
Xirel) = Y |xlnlr 7| = 0o (3.7)

=

for convergence of the z-transform. From Eq. (3.7} it follows that, because of the mul-
tiplication of the sequence by the real exponential r =", it is possible for the z-transform
to converge even if the Fourier transform (r = 1) does not. For example, the sequence
xfa] = ufn] is not absolutely summable, and therefore, the Fourier transform power
series does not converge absolutely. However, r~"u([n] 15 absolutely summable il r = 1.
This means that the z-transform for the unit step exists withan ROC r =zl = 1.

Convergence of the power series of Eg. (3.2} for a given sequence depends only
on =), since | X{2)| = ocif

Y bl = s, (3.8)

n=—00

Lo, the ROC of the power series in Eg. (3.2} consists of all values of z such that the
inequality in Eq. (3.8) holds, Thus, if some value of 7, say, z = z¢, is in the ROC,
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T I-planc

Figure 3.2 The AOC as a ring in the
Z-plane. For specific cases, the inper
boundary can extend inward to the
arigin, and the ROC becomes a disc. For
ather cases, the outer boundary can
extend outward to infinity,

then all values of ¢ on the circle defined by 2| = |z;] will alko be in the ROC, As
one consequence of Lhis. the ROC will consist of a ring in the z-planc centered about
the origin. Tts outer boundary will be a cirele (or the ROC may extend owtward lo
infinity}, and its inner boundary will bz a circle {or it may extend inward Lo include the
origin}. This is illustraled in Figare 320 I the ROC imcludes the uml circle, then this of
course implics convergence of the z-transform for 7] = 1, or equivalently, the Fourier
transform of the sequence converges. Conversely, if the ROC does nol include the unit
circle, the Fourier transform does nol converge absolutely.

A power series of the form of Eq. (3.2) is a Laurent series. Therefore, a number
ol clegant and powerlul theorems from the theory of funcions of a complex variable
van be employed in the study of the z-transform. (See Brown and Chorchill (2007).)
For example, a Laurent series, and therefore the z-transform, represents an analylic
function at every point inside the ROC; hence, the z-transform and all its derivatives
must be continuous functions of z within the ROC, This implies that if the ROC includes
the unit circle, then the Fourier transform and all its derivatives with respect to e« must
be continuous functions of w. Also, from the discussion in Section 2.7, the sequence
must be absolutely summable, i.e.. a stable sequence.

Uniform convergence of the z-transform requires absolute summability of the
exponentially weighted sequence, as stated in Eq. (3.7). Neither of the sequences

FARERTI
xiln] = it '—", —00 < 0 oS0, (3.9
TH
and
i2ln] = cosagn, —o = R O, (3.1

is absolutely summable. Furthermore, neither of these sequences mulliplied by "
woyld be absolutely summable for any value of r. Thos, neither of these sequences has a
z-transform that converges absolutely for any 7. However, we showed in Section 2,7 that
even thougha sequence such as x) [»]in Eq. (3.9} is not absolutely summable, it does have
finite energy (ie., it is square-summable), and the Fourier transform converges in the
mean-sguare sense to a disconlinuous periodic function. Similarly, the sequence xz(n)
in Eq. {3.10} is neither absolutely nor square summable, bul a useful Fourier transform
for x2[n] can be defined using impulse functions (i.e., generalized functions or Dirac
delta functions). In both cases the Fourier transforms are not continuous, infimtely
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differentiable functions, so they cannot result from evaluating a z-transform on the unit
circle, Thus, in such cases il is not strictly correct to think of the Fourier transform as
being the z-transtorm cvaluated on the unit circle, although we nevertheless continue
to use the notation X (e/*) always to denote the discrete-time Fourier transform.

The z-transform is most useful when the infinite sum can be expressed in closed
form, i.e., when it can be “summed"” and expressed as a simple mathematical formula,
Among the most important and useful z-transforms are those for which X (z) is equal
to a rational function inside the ROC. ie,,

Fiz)
A 311
Qi) @31

where Piz) and Q(z) arc polynomialsin z. In general, the values of 7 Tor which X1 =0
are the zeros of X(z), and the values of £ Tor which X (z) s infinite are the poles of X{z).
In the case of a rational lunction as in Eq. (3.11), the zeros are the roots of the numer-
ator polynomial and the poles (for finite values of z) are the roots of the denominator
polynomial. For rational z-transforms, a number of important relationships exist be-
tween (he locations of poles of X{z) and the ROC of the z-transform. YWe discuss these
more specifically in Section 3.2, However, we first illustrate the z-transform with several
examples,

Xizy=

Example 3.1 Right-Sided Exponential Sequence

Consider the signal x[#] — a"uln], where o denotes ateal or complex number. Because
g b is nomzero anly for = 0, this s an example of the class of right-yaded sequences,
i which are sequences that begin at some time N; and have nonzero values onlyv for

= N =n = oo i, they occupy Lhe right side of 8 plot of Lhe sequence, From Ey. (3.2},

L 8

i
r:.: Xiz) = z a®uinlz " = Efﬂz'1}".

. H=—00 n—ik
- For convergence of Xiz), we require that
3 oo
.. y |uz__] " < o
‘ r=0

This, the ROC s the tange of values of 7 for which laz—!

Inside the HOHC, the intinite series converges to

< lorcyuivalenlly, 2| = |al.

TR

o
gy” Xzl = Z{uz_l = : . 2 lz| = el (3.12)
:_-'_': o 1 —{12_1 F—d

it Tooobiain (his closed-form expression. we have wsed the familiar formula for the sum
< of terms of a geometric series (gee Jolley, 1961). The z-transtorm of the sequence
i xlm| = ¢"uln] has an ROC for any finite value of |o|. For e = 1, x[r] 15 the unil slep
© sequence with z-transform

B
s 1 3
IE?_:L Xf:} = I._ ;;‘,-—"El-’ |E = 1. (3]-’}
5 If x| < 1, the Fourier transform of x[n] = a®sin] converzes o
[
- 1

i X(pd™) = ——— (314

L3 1—ae i@
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Howewver, if e = 1. the Fourier transtorm of the right-sided exponential sequence does
ot CORVETEES,

o

Z-plana

-Limac circle

by L

kel Figure 3.3 Pole—zero plot and ROG for Example 3.1.

ot

In Example 3.1, the infinite sum is cgual 10 a rational funclion of z inside the ROC.
For most purposes, this rational function is a much more convenicnl representation
than the infinite sum. We will see that any sequence that can be represenied as a sum
of cxponentials can equivalently be represented by a rational z-transtorm. Suoch a z-
trunsform is determined o within 4 constant multplier by its zeros and its poles. For
this example, there is one zero, at z = 0, and one pole, at z = w. The pole—zero plot
and the ROC for Example 3.1 are shown in Figure 3.3 where the symbol “o” denotes
the zero and the symbol * =™ the pole. For |af = 1, the ROC does not include the unit
circle, consistent with the fact that, for these values of «, the Fourier transform of the
exponentially growing sequence a”n|n] does not converge,

Example 3.2 Left-Sided Exponential Sequence

Mow let

—-a® po= -1

zfn] = =a"u[=n=1] = { i ol 3

Since the scquence is nonzero ondy for n = —1, this is & fefi-sided sequence. The
. r-transform in this case is

- oo -1
- "
; X¥(g) = — z: a’ul-n—1:7" = — L Fr A
e n=—nc K= (3.15)
o b =
e = — Zu"":" =]—- Z{u_j:'ln.

=3 =1 =il
If |a 'l.zl < 1 or, equivalently, [2] < |al. the last sumin Eq. (3.15) converges, and using
& agaim the Tormula for the sum of Terms in 8 geomelric serics,
; | 1 z -
- — . |z| = (el 3.16)

maly 1 =ar-l -4

Xizp=1-
z) 1

The pole—zern plot and ROC for this example are shown in Figure 3.4,
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_ Mote that for |ef = 1, the sequence —au[—n— 1] grows exponentially asre — — oo, and

thus, the Fourer transform does not cxist. However, if [« = 1 the Founer transform
i

PO P — (3.17)

which is idencical in form to Eq. {3.14). At first glance. this would appear to violate the

+ pnigueness of the Fourier transform, However, this ambiguiey is resolved if we recall

that Eq. (314} is Lhe Fourier transforme of a%ufn] if a| = 1, while Eq. (3.17) s the

* Pourier transform of —o¢"w[ -5 - 1] when ja| = 1.

m z-planz

Unit circle

Figure 3.4  Pole-zero plot and ROC for Example 3.2,

Comparing Eqs. (3.12) and (3.16) and Figures 3.3 and 3.4, we see that the sequences
and, therefore, the infinite sums are different; however, the algebraic expressions for
X(z) and the corresponding pole—zero plots are identical in Examples 3.1 and 3.2. The
z-transforms differ only in the ROC, This emphasizes the need for specifying both the
algebraic expression and the ROC for the bilateral z-transform of a given sequence.
Also,in both examples, the sequences were exponentials and the resulting z-transforms
wore rational. In faet, as is further supgested by the next example, X {z7) will be rational
whenever x[n] 15 a linear combination of real or complex cxponentials.

Example 2.2 Sum of Two Exponential Sequences

{ Consider 4 signal that s the sum of two real exponentiols

n

i (3.18)

15" Sl
xlnl— (-2) alt] + [—;‘}

‘.]R whr |+ (— %)ﬂ :rlni} i
= Zu: (%)nn[n]:_"+ f (—%)Hu[rﬂz'"‘ 3.14)

H=—00 H=—0

* The z-transtorm is

I3 =

23]
Y[:‘{}T E {(

a=—00
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s D

u For convergence of X (z], both sums in Eq. (3.1%) must converge, which requires that
*J both %z“|| < 1 and (— %J = o1 couivalently, |z| = % and |z| = 'j Thus. the
f_‘ ¢ ROCistheregion of overlap, |z] = % The pole-zero plot and RO tor the 2 -transform
5 ofeach of the mdividual lerms and for The combined signal are shown in Figure 3.5,

i (©

Figure 3.5 Pole-rero plotand ROC for the individual terms and the sum of terms
i in Examples 3.3 and 3.4. (a) 1701 — 3271, |2/ = 12 (b 1701 + Ez—‘}__ 12| = %
= (ch1/41 — %3‘1 T+ 141+ %z“}, |z] = %
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In each of the preceding examples, we started with the definition of the sequence
and manipulated cach of the inlinite sums into a form whose sum could be recognized.
When the sequence 18 recognized as a sum of exponential sequences of the form of
Examples 3.1 and 3.2, the o-transform can be obtained much more simply using the
fact that the o-transform operalor is hinear. Specifically, from the definition of the z-
transform in Eq. (3.2), if x[n] is the sum of two terms, then X {7) will be the sum of the
corresponding z-transforms of the individual terms. The ROC will be the intersection of
the individual ROCs, 1., the values of z {or which both individual sums converge. We
have already demonstrated the linearity property in obtaining Eq. (3.1Y) in Example
3.3. Example 3.4 shows how the z-transform in Example 3.3 can be obtained in a much
more straightforward manner by expressing x[n] as the sum of two sequences.

Example 3.4 Sum of Two Exponentials [Again)
&% Apain, let x{n| be given by Eq. (3.18). Then using the general result of Example 3.1

i, witha = é and a = .I{ . the z-transtorms of the two individual terms are easilv seen
to be

it 1)"' A | i 1
( 7 ) el €5 o— = x5, (3.21)
1y 2 1 I
i -z  — Tl = 32
( 3) g AR L
i and, consequently,
1" 1}" z 1 1 ] :
[i) u[n]+(— E) wfp| +—= g + S T iz = 3 {3.23)
L B

\ . — 3d

as determined in Example 3.3, The pole-zero plot and ROC for the z-transform of

All the major points of Examples 3.1-3.4 are summarized in Example 3.5.

Example 3.5 Two-Sided Exponential Sequence

Consider the sequence

.:".--, x[nl = (— %) ufm] — (%) wf—m—1]. (3.24)

. Mote that this sequence grows exponentially as » — —oo, Using the general resull of

i¢ Example 3.1 witha = —%,wc obtain
(=3) wm <> — ol > 3
o) —< | wn — ——, [z} = %
-3 1+ 3 3
z and using the result of Example 3.2 witha = ;i; viclds

14" z 1 1

5 (;) wf—n = 1] d=n 1 T ]
2 -1z 2
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Thus, by the linearity of the z-transform,

I[E:I:_-b-i.:‘l*l—i:" 5% ol andd [z} - ;
2(] % Jlf.z_l] - 2z {:r— 11,5} (3.25)

R e [ R P TP

In this case, the ROC is the annular region % = fz] = JI. . Mote that the rational function
in this cxample is identicad 1o the ratonal function in Example 3.4, but the ROC is
different in this caze. The pole—zero plot and the ROC for this example are shown in
Figure 3.6.

r Sinee the ROC does not contain the onit circle, the sequence in Eq, (3.24) does
i 0ot have a Fourier transform.

Im z-plane

iy

o Figure 3.6 Pole—zera plot and ROC for Example 3.5,

In each of the preceding examples, we expressed the :-transform both as a ratio
of polynamials in z and as a ratio of palynomials in z—1, From the form of the definition
of the z-transform as given in Eq. (3.2}, we see that, for sequences that are zero for
i< D), Xiz) involves only negative powers of @ Thus, for this class of signals, il is
particularly convement for X () o be expressed in lerms of polynomials in 2 ! rather
than 77 however, even when x[n] is nonzero for o < 0. X{7) can still be expressed in
terms of factors of the form (1 — a;'_"]}. It should be remembercd that such s factor
introduces both a pole and a zero, as illustrated by the algebraic expressions in the
preceding examples,

These examples show that infinitely long exponential sequences have z-transforms
that can be expressed as rational functions of either 7 or 7. The case where the se-
guence has finite length also has a rather simple Lorm. If the sequence is nonzero only
in the mterval A7) = »n < Mo, the z-transtorm

L

Xizb= " x[nlz™" (3.26)

n=4
has no problems of convergence, as long as each of the terms |[x[q]:7", is fnite. In
peneral, 1t may nol be possible Lo express the sum of a finite sel of lerms i a closed
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Fotm. but in such cases it may be unnecessary, For example, if «[n] = §[n]+8[n —5], then
Xizi=1+ z_s: which is finile for (2] = (. An example of 8 case where a finile number
of terms can be summed Lo produce a more compact represenlalion of the z-lransform
is given in Example 3.6,

Example 3.6 Finite-Length Truncated Exponential Sequence

-

2 Consider the signal

A" b=r=N-1,
Al 1, otherwise.

i Then
: V-1 K=l 1M N N
_ i 1 — (az" ') ¥ &g
i w_— i B S M R D E
Xlel = Z[] TR = ZI;V“- b ar=1 " Nl wed (3.20)
W= =

s

where we have used the general fommula in Eqg. (2,55) to oblain a dosed-lorm expres-
sion Tor the sum of the finite series. The ROC is determinad by the set of values of ¢
for which

Since there are only a fnite number of nonzero terms, the sum will be finite as long
as oz~ is finite, which in turn requires only [hat ja| < oo and 2 # 0, Thus, asswming
that ja| is finite, the RO includes the entire z-plane, with the exception of Lhe origin

£ = U} The pole—zero plot for this example. with & = 16 and 4 real and between zero

2o and umity, isshown in Figure 3.7 Specifically, the N roots of the sumearator palynomial

are at : plane locations

TR AL N S (1 N v (3.28)
{Note thut these values salisfy the equation 2™ = o™, urd whena — 1, these complex
values are the ¥ roots of unity.) The zero corresponding to & = 0 cancels the pole at

o= a. Conseguendly, there are no poles other than the & — 1 poles at the orgin, The
- Temaining zeros are at z-plane locations

iy =aedTEEINY o N L {3.29)

Tt r-planc

15th-order pule A Einit ciicle

Figwre 3.7 Pole-zero plob for Example 3.6 with N = 16 and 3 real such that
i < & = 1. The ROG in this exampla consists of all vaiues of 7 ecept 2z = .
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RO

All z except 0 {ifm = Dyornc (il m < ()

Segquence Ti':in:{t'urlﬁ
1. &n) 1 Adl =
1
2. uln gl =1
[n] T izl
1 .
3 —uf-n -1 e 2t =1
& fln —m] g "
|
5w win! i 5] la]
LR T PR | 1z i
1
6. —a"u[—n —1] e Iz] < tal
1—az-!
7. na"uln] b 2l > lal
. na"uln —_ z| = lal
(1 —az—l)* |
az=1
8 —ma"uj—n-—-1 —‘—_, z| = lui
E J (1—az 1) @
1—cos 2
9. cosiexmluln] - (@o): lz] = 1
1 —2cos{wy)z~t +
; sinfey)z !
1L simcenye i [ Il =1
(wnmuln] 1 —2coslwg)z~! 4+ 772 i
1 — rcos{ep)z™!
11, F" cosdmpriuln e —— |z| = r
{apmulnl 1 — Zreos(aniz—! +riz—2 i
. r sin{an)z ™!
12, ¢ simfawpnun — ———eeee 2] ¥
i _WTJJ j 1 "'Z-I"L'v{'.'t‘i[ﬂh'ﬂz_' +T?'Z_?' | |
n <= N 1—ag¥—"W
T L a2 2] = 0
.,  otherwise | —az—!

3.2 PROPERTIES OF THE ROC FOR THE z-TRANSFORM

The transform pairs corresponding to some of the preceding examples, aswell asa
number of other commonly encountered z-transform pairs, are summarized in Table 3.1.
We will see that these basic transform pairs are very useful in finding :-transforms given
a sequence or, conversaly, In finding the sequence corresponding toa given :-transform.

The examples of the previous section suggest that the properties of the ROC depend
on the nature of the signal. These properties are summarized in this section with some
discussion and intuitive justification. We assume specifically that the algebraic expres-
sion for the z-iransform is a rational function and that x{r] has finite amplitude, except
possibly atn = oo orm = —oo,
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Prorerry 1) The ROC will either be of the form 0 = rg = 2] 07 |z] < rp = =0, 01,
in general the annulus, ie 0 < rg = 2| = L = 20,

Proverry 2: The Fourier transform of +[n] converges absolutely if and only if the
ROC of the c-transform of 1[x] includes the unit circle,

Prorerry 3: The ROC cannot contain any poles.

Proverry 4: I x[n) is a findie-duration sequence, 1.2, a saquence thal is zero excep!
ina finite interval —-oc < N} < r = A < o0, then the ROC s the entire z-plane,
exeepl possibly s =0 orz = o0,

Propewry 51 W x[n] 15 a right-sided sequence, e, a seguence thal is vero for
n o= Ny = oo, the ROC extends outward from the owtermess (1., largest mag-
nitude ) finite pole in X (7) o {and possibly including) 7 = 2o,

Property & I xfn] is a fefi-sided sequence, i, a sequence that is zero f[or
n = N = —oo, the ROC extends inward from the innermosi (smallest magni-
tude) nonzero pole in X{z) w {and possibly including) - =0,

PrOPERTY T A twa-sided sequence 15 an infinite-duration seguence that is neither
right sided nor left sided. If x{n] is a two-sided sequence, the ROC will consist
of a ring in the z-plane. bounded on the interior and exterior by a pole and,
consistent with Property 3, not containing anv poles.

Prorerty & The ROC must be a connected region,

Property 1 surunarizes the general shape of the ROC. As discussed in Section 3.1,
itresults from the fact that the condition for convergence of Eq. (3.2) isgiven by Eq. (3.7)
repeated here as

o0

Y lxlellr ™ <oa (3.30)

A=—00

where v = |7[. BEquation (3.30) shows that for a given x[xl, convergence s dependent
only on r = |z| (i.e., nod on the angle of z). Note thatf the z-transform converges lor
lz| = ry, then we may decrease v until the z-transform docs not converge. This is the
value |z| = rg such that [x[nllr~" grows too fast (or decays too slowly) as n — oo,
50 that the series is not absolutely summable. This defines rg. The z-transform cannot
comverge for r < rp since v~ will grow even faster. Similarly, the outer boundary ry,
can be found by increasing r from ry and considering what happens whenn — -og,

Property 2 15 a consequence of the fact that Eq. (3.2) reduces to the Fourier
transform when |z| = 1. Property 3 follows from the recognition that X {z) is infinite at
a pole and therefore, by definition, does not converge.

Property 4 follows from the fact that the z-transform of a finite-length sequence
is a finite sum of finite powers of z, i.e.,

N,
Xiz) = Z x[n]z ™.

L

Therefore, [ X (23| = oo for all z excepl £ = 0when M = Oandfor 2 = oo when &y = (L
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Properties 5 and 6 arc special cases of Properly 1. To interprel Property 5 for
rationul z-translorms, note that a sequence of the form
N
xinl =) A} ufn] (3.31)
f=1

is an example of a right-sided sequence composed of exponential sequences with am-
plitudes A; and exponential factors o While this is not Lhe most general right-sided
sequence, 1t will sulfice to jllustrate Property 5, More general right-sided sequences
can be formed by adding finite-length sequences or shilting the exponential sequences
by finite amounts; however, such modifications to Eqg, (3.31) would nol change our
eonclusions. Invoking the hinearity property, the :-transform of «[a] in Eqg. (3.31} is

i

Xz = ——— {3.32)

|z| = |ﬂr,:c

Maote that for values of ; that lic in all of the individual ROCs, (2| = \dy|, the terms can
be combined into one rational function with common denominataor

I_l(] ez 1
-

i.e., the poles of X{:} are located at 7 = dy,.. ., dv. Assume for convenience that the
poles are ordered so that o has the smallest magnitude, corresponding to the innermost
pole, and dy has the largest magnitude, corresponding 1o the outermost pole. The least
rapidly increasing of these exponentials, as # increases. is the one corresponding ko the
innermost pole, 1.2, J;. and the most slowly decaying (or most rapidly growing} is the
one corresponding 1o the outermast pole, i.c., dyw. Not surprisingly, fy determines the
inner boundary of the ROWC which 1s the intersection of the regions [z = lely|. That is.
the ROC of the o-transform of a right-sided sum of exponential sequences is

2] = ldn| = max |de| = ra. (3.33)
i.e., the ROC is outside the outermost pole, extending to infinity. If a right-sided se-

quence beginsat v = N < (), then the ROC will not include |7 = o,
Another way of arriving al Properly 5 is to apply Eq. (3.30) to Eq. (3.31) obtaining

o o | N o
Y3 Aaom et =Y (Em;r:") < o0, (3.34)
n==} lk-] kel TRk}

which shows that convergence is guaranteed if all the sequences oy /r|" are absolutely
summable, Again, since x| is the largest pole magnitude, we choose ldy/rl < 1, or
ro= ldwl.

For Property &, which is concerned with left-sided sequences, an exactly parallel
argument can be carried out for a sum of left-sided exponential sequences (o show
that the ROC will be defined by the pole with the smallest magnitude. With the same
assumption on the ordering of the poles, the ROC will be

Izl = |di| = min |di| = rp. (3.35)
£
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i.e.. the ROC is inside the innermost pole. If the lefi-sided sequence has nonzero values
for positive values of i, then the ROC will not include the origin, z = 0. Since x[n] now
extends o —oc along the negative n-axis, r must be restricted so that for cach o;. the
exponential sequence (dyr 11" decays to zero as i decreases toward —a0.

For right-sided sequences, the ROC ig dictated by the exponential weighting r
required to have all exponential terms decay to zero for increasing n, for left-sided
sequences, the exponential weighting must be such that all exponential terms decay to
zero for decreasing n, Property 7 follows [rom the fact that for iwo-sided sequences, the
exponential weighting needs to be balanced, since if it decavs too fast for increasing n,
i may grow too quickly for decreasing » and vice versa, More specifically, for two-sided
sequences, some of the peles contribute only for n = 1 and the rest only for n < (1 The
RO is bounded on the inside by the pole with the largest magnitude that contributes
for n = (tand on the outside by the pole with the smallest magnitude that contributes
forr = (b

Property f is intuitively sugeested by our discussion of Properties 4 through 7.
Any infinite two-sided sequence can be represented as a sum ol a right-sided part (say,
for n = (1) and a left-sided part that includes everything not included in the right-sided
part. The right-sided part will have an ROC given by Eq. (3.33). while the ROC of the
left-sided part will be given by Eg. (3.35) The ROC of the entire two-sided sequence
must be the mtersection of these two regions Thuos, il such an interscetion cxists, it will
always be a simply connected annular region of the form

R o< |zl = Fr.

There is a possibility ol no overlap between the ROCs of the right- and left-sided

parts; i.c., rg < rg. Insuch cases, the z-transform of the sequence simply does not exist,

Example 2.7 Non-Overlapping Regions of Convergence

T

An example is the sequence

:.-L 1 7] IR
*\‘ xln]= (’:’) uln| - ( 1} w[—n —1].

Applying the corresponding entries from Table 3.1 separately to ezch part leads to

by 1 1

| S . S—

2 1 if-: LI %z""

.'\. "— _':.p"_-'-'-"
af w ol 1
|h o z !"-- - 3

Since there is no overlap between 2| = 3 and |z| = 1, we eonclude that xfr] has no
z-transform {nor Fourier transform representaticd:.

As we indicated in comparing Examples 3.1 and 3.2, the algebraie expression or
pole—zero pattern does not completely specify the z-transform of a sequence; i.e. the
RO must also be specified. The propertics considered in this section limit the possible
ROMCs that can be associated with a wiven pole-—zerao pattern. To illustrate, consider the
pole—zero pattern shown in Figure 3.8(a). From Properties 1. 3, and 8, there are only
four possible choices for the ROC. These arc indicated in Figures 3.8(b), (c), (d), and {¢},
cach being associated with a diflerent sequence., Specifically, Figure 3.8(b) corresponds
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1 5m z-planc

Linit cirtle

| Lrri 7-plane

i) Lol

|j_m zeplane Tiee 2oplane

{d) (el

Figure 3.8 Examples of four stransforms with the same pole—zera locations,
illustrating the different possibiiities for the ROC. each of which comresponds to
a differant sequence: {h} 1o a right-sided sequence, {c} to & left-sided sequence,
{d) to a two-sided sequence, and (&) 1o a wo-sided sequence.
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to a right-sided sequence, Figure 3.8(c) to 4 left-sided sequence, and Figures 3.8(d) and
3.80e) to two diflerent two-sided sequences, 1 we assume, as indicated in Figure 3.8(a),
that the unit circle falls between the pole at z = & and the pole at z = ¢, then the
only one of the four cases for which the Fourier transform would converge is that in
Figure 3.8(e).

[n representing a sequence through its z-transform, it is sometlimes convenient
to specify the ROC implicitly through an appropriate time-domain property of the
sequence. This is illustrated in Example 3.8

Exampie 3.8 Stability, Causality, and the ROC

Consider an LT system with impulse response fi]a]. As we will discuss in more detail
it Seclicn 3.5, the o-transform of Ajx| s called the svsrern funciion of the LT1 system.
o Buppose that H{z) has the pole—rero plot shown in Fipure 3.9, There are three possible
ROCs consistent with Properties 1- 8 that can be associated with this pole-zero plot;
i e, |z = % % = 2| = 2, and |z) == 2. However, if we state in addition that the sysiem
. isstable {or cyuivalenthy, that Ala | is absolutely summable and therefore has a Foourier
- Aransform), then the BOC must inchode the unil circle, Thus, stability of the swstem
:sf?; and Propertics 1-8 imply that the ROC is the region % = |z| = 2. Mote that as a
o consequence, fi[n] 15 twio sided; therefore, the system s not causal,
T

Im seplane

L TUlnit circle

Figure 3.9 Pole-zero plot for the system function in Example 3.8

B I we state instead that the system is causal, and therefore that kfe] is vight sided,

= Property 5 would require that the ROC be the region |2/ = 2. Under this condition,

“ho the syslem would nol be stable; 1.e., for this specific pole—eero plot, there is no ROC
that would imply that the system is both stable and causal.

3.3 THE INVERSE z-TRANSFORM

In using the z-transform lor analysis of discrele-time signals and systems, we must be
able to move back and forth between time-domain and r-domainreprescatations Often,
this analysis involves inding the s-transform of sequences and, after some manipulation



M6

Chapter 3 The z-Transform

of the alpebraic expressions, finding the inverse z-transform. The inverse z-transform is
the following complex contour integral:

x[n] = ?—l—-_ % X{:)z"_l.rf I. (3.30)
L

where C represents a closed contour within the ROC of the z-transform, This integral
expression can be derived using the Cavehy integral theorem from the theory of complex
variables. {See Brown and Churchill, 2007 for a discussion of Lhe topics of Laurent seties
and complex integration Lheorems, all of which are relevant Lo an in-depth study of fun-
damental mathemaltical foundations of the z-transform. ) However, Tor the typical kinds
of sequences and z-transforms thatl we will cocounter in the analysis of diserete ITT sys-
tems, less formal procedures are sufficient and preferable to techmigues based on evalu-
ation of Eq. (3.36). In Sections 3.3.1-3.3.3, we consider some of these procedures, specil-
ically the wspection method, partial fraction expansion, and power series cxpansion.

3.3.71 Inspection Method

The inspection method consists simply of becoming familiar with, or recognizing “by
inspection,” certain transform pairs. For example, in Section 3.1, we evaluated the z-
transform for sequences of the form rfn] = a®u[r]. where @ can be either real or com-
plex. Sequences of this [omm arise quile frequently, and consequently, it is patticularly
useful to make direct use of the transform pair

]

z
a"uln] = ———q,
| —azr~

lz| = lal. (3.37)

If we need Lo find the inverse z-transform of

1
Xizy= = |zt =
j—g;"]

and we recall the z-transform pair of Eq. (3.37), we would recognize “by inspection” the
associated sequence as x[n] = ( }) w[n]. If the ROC associated with Xiz) in Eq. (3.38)

; (3.38)

T | b=

had been 7| = ; . we can recall transform pair 6 in Table 3.1 to find by inspection that

. ]
x[a) = ~(4) wl-n 1.

Tables of 7-transforms, such as Table 3.1, are invaluable in applying the inspection
method. If the table is extensive, it may be possible Lo express a piven z-transform as
a sum of terms, each of whose inverse 15 given in the table. If so, the inverse transform
(i.e., the corresponding sequence ) can be written from Lhe table.

3.3.2 Partial Fraction Expansion

Asgalready described, inverse z-transforms can be tound by inspection it the z-transform
expression is recognized or labulated. Sometimes, X(z) may not be given expliatly
in an available table, but it may be possible to obtain an alternative expression lor
Xz} as a sum of simpler terms, each of which is tabulated. This is the case for any
rational function, since we can obtain a partial fraction expansion and easily identify
the sequences corresponding to the individual terms.
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Tor see how Lo abtain a partial fraction cxpansion, let us assume that X{z) is ex-
pressed as a ratio of polynomials in i,

Such z-transforms arise frequently in the study of LTT systems. An equivalent expression
is

iy
N Z byzM—*
N =0 (3.40)

N
M Zm:."'?_k
S

Equation (3.40} explicitly shows that for such functions, there will be M zeros and N
poles at nonzera locations in the finite z-plane assuming ag, by, ay, and by are nonzero.
In addition. there will be etther M — N polesalz =0l M =~ Nor N — M zerosalz =0
N = M. In other words. z-translorms of the form of Eq. (3.39) abways have the same
number of poles and zeros in the finite z-plane, and there are no poles or zeros al 7 = oo
To oblain the partial fraclion expansion of X{z) in Eq. (3.39), it 18 most convenicnl 1o
note that X (1) could be expressed in the lorm

(3.41)

where Lhe cps are the nomzero zeros of X (z) and the dps are the nonzero poles of X{z).
If M = N and the poles are all 15'-order, lthen X (z) can be cxpressed as

N %
k. 1 R

Obviously. the commaon denominator of the fractions in Eq. (3.42) is the same as the
denominator in Eq. (3.41). Multiplying both sides of Eq. (3.42) by (1 - &,z ") and
evaluating for z = 4, shows that the coefficients, A;, can be found from

Ay = (1 —dyr Mxin] (3.43)

lz=ely ™
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Exampie 3.9 2"-Order z-Transform

Consider a sequence x[n! with z-transform
1

)

Xz} = (3.44)

ry
b
| =

The pole-zero plot for Xiz) is shown in Fipure 3.10. From the ROC and Property

5. Seclion 3.2, we see that x(u] is a right-sided sequence. Since the poles are both
I*-prder, X () ean be expressed in the form of Fg. (3.42); 1.6,

A

)
e — e —

__ A Az
(-3 - 4)

iz =

- From Eg. {3.43),

1471
Ap = (:I - .1,:"}.1’{:_& = —”‘:: I~ B | _| =1
4 4 |2=|.__-'4 EI' d'z-.k}“ - ﬂ: :Il"=].-'4
1_.—1 |
1 _l {1 i, [ 1
Az:(l—a: )Xf:'}. = T | ' =g
B E:':'=|'._-T. (- i: 1::“3:] 5 iz . I‘I :=1,|"2

b {Observe that the common factors betweaen the numerator and denominator must be
¢ canceled before evaluating the above exprossions for 4| and A;.) Therefore,

o )
Kigh= —m

(5 (-5

i §' Since x[n] is right sided, the ROC [or each term extends outward (rom the outermost
24 pobe. From Table 3.1 and the lincarity of the z-transform, 1t then follows that

|. n n
xin]=2 [:E) uirl — (;) wjn] .

| Tam z-plane

Figure 3.30 Pola=zaro plot and ROC for Example 3.9,
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Clearly, the numerator that would result from adding the termsin Eq. (3.42) would
be at most of degree (N — 1) in the variable z=! If M > N, then a polynomial must
be added to the right-hand side of Eq. (3.42), the order of which is (M — N)}. Thus, for
M = N, the complete partial fn::tiuu expansi-}n woild have the form

Xiz) = L Bz "+ LJ = dﬁ (3.45)

r=I[}

If we are given a rational function of the form of Eq, (3.39), with M = N, the #s can
be obtained by long division of the numerator by the denominator, with the division
process terminaling when the remainder is of lower degree than the denominator, The
Ags can still be obtained with Eq. (3.43),

If X(z) has multiple-order poles and M = N, Fq. (3.45) must be further modified.

In particular, il X {z) has a pole of order 5 at 2 = o and all the other poles are 15 prder,
then Ecp (3.45) becomes
hE e N A C
Xiz Bz + —_— 3.46
© Z:r_l ' k 1E=e d*‘ g (1= diz=lym -

The coefficients A; and B, are obtained as before. The coefficients ¢, are obtained
from the equation

_ 1 . dr ™ T g
Co = = d [dw‘—‘” o ”L_ at’ ()

Equation (3.46) pives the most general form for the partial fraction expansion of a
rational z-transform expressed as a function of z ~ for the case M > N and for d; a pole
of order 5. If there are several multiple-order poles, then there will be a term like the
thirdsumin T'q. (3.46) for each multiple-order pale. If there are no multipie-order poles,
Eg. (3.46) reduces 1o Eq. (3.43). I the order of the numerator is less than the order of
the denominator (M = N}, then the polynomial term disappears from Egs. (3.43) and
{3.40) lcading to Eqg. (3.42).

It should be noted that we could have achieved the same results by assuming that
the rational z-transform was expressed as a function of z instead of z !, That is. instead
of factors of the form (1 — az~"), we could have considered factors of the form (z — a).
This would lead to a set of equations similar in form to Eqs. (3.411—(3.47) that would be
convenient for use with a table of ;-transforms expressed in terms of . Since we find
it most convenient to express Table 3.1 in terms of 7!, the development we pursued is
more useful.

To see how to find the sequence corresponding to a given rational z-transform,
let us suppose that X (z) has only 1*-order poles, so that Eq. (3.45) is the most general
form of the partial fraction expansion. To find x[n], we first note that the z-transform
operation is linear, so that the inverse transform of individual tetms can be found and
then added together to form xin].

The terms K,z correspond to shifted and scaled impulse sequences. i.e., terms
of the form K.4[n = r]. The fractional terms correspond to exponential sequences, To
decide whether a term

Ak
1 —dyr}
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corresponds 1o {di )" wln] or —{dp ) u|—n — 11, we must use the properties of the ROC
that were discussed in Section 3.2. From that discussion, it follows that if X () has only
simple poles and the ROC is of the form rg = |z] = rp, then a piven pole dp will
correspond 1o a right-sided exponential (e )" u|n] if |di] < rg, and it will correspond Lo
aleft-sided exponential if |d; | = rp. Thuos, the ROC can be used tosort the poles, with all
poles inside the inner boundary rg corresponding to right-sided sequences and all the
poles outside the outer boundary corresponding to lefi-sided sequences. Multiple-order
poles also are divided into left-sided and right-sided contributions in the same way. The
vse of the ROC in finding inverse z-transforms from the partial fraction expansion is
illustrared by the following examples.

Example 3.10 Inverse by Partial Fractions

“: Toillustrate the case in which the partial fraction expansion has the form of Eq. {3.43),
consider a sequence x[n] with z-teanslorm

ol 142:=0 o2 14 2-1y2
E Yir) = }fm_ | - _ (1 A : |_._| -1, {1'\13]
L -3t 4322 (1L Y-l

: The pole—zero plot for X (z) is shown in Figure 3,11, From the ROC and Property 5,
H00 Spetion 3.2, it is clear {hat x{n]is a right-sided sequence. Since M = M = 2 and the
L4t poles are all 1¥'-order, X {z) can be represented as

i) Xizdb=Hy+ ] - l_l
.:.": - 52_1 1=z
&
“ The constant By can be tound by long division:
o
4 .
F 2 - ey
12— dal g bt 2l
e e
Szt

2 1

s Since the remainder afler one step of ong division s of degnee ©in the vanabte 27
‘L. it is not necessary to continue to divide. ‘Thus, X () can be expressed as

]

“ 5 —1
i Xiz) =2+ - L ; {3.44)
i I."l - %:‘1\“1 —z=h
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z-plane

Figure 3.11 Pole—zerc plot for the z-transtorm in Exampie 3.10.

Mow the coefficienis A and A5 can be found by applying Bq. { 3.43) 10 Eg. (3.48)
o, equivalently, Eq. (3.4Y). Using Eq. (349, we obtain

o [/ 5.—1 2 .
i A1=|[2+- !l'+”' (1—%;.:'1) = -9,
| - a—n U2

— +5:-1
As = P4+ il—z L =8,

(i = %;-'}:'l — b L

Therelore,

A ; (3.50)

Xiz)=2— T

| WD

1 —5z-

¥

s

:':;':: From Table 3.1, we see that since the ROC is |z] = 1,

g

&y 2«25 280,
1 e
oy e (3)
£ | =
n R o wlnl,
_—g

\ Thus, trom the linearity of the -transform,

al

a“

[l
eln] = 2ifn] - 4 ( ,];) ufn] 4 Hu[a].

In Section 3.4, we will discuss and illustrate a number of properties of the z-
transform that, in combination with the partial fraclion expansion, provide a means
for determining the inverse ¢-transform from a given rational algebraic expression amd
associgted ROC, even when X (2) is not exactly in the form of Eq. (3.41), The examples
of this section were simple enough so that the computation of the partial fraction ex-
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pansion was not difficult. However, when X(z) is a rational function with hgh-depree
polynomials in aumerator and denominator, the computations to factor the denomina-
tor and compute the coefficients become much more difficult. In such cases, software
tools such as MATLAB can implement the computations with ease.

3.3.3 Power Series Expansion

The defining expression [or the z-transform is & Laurent serics where the seguence
values x[r] are the coeflicients of ;7" Thus, il the z-transform is FIVED 45 4 POWET SCTIES
in the form

X

Xizd= xlnlz™
b= (3.51)

[ =1

o x[~212% 4 al=1]z 4 x[0] 4 A1)~V 4 x[2)7 4,

we can determine any particular value of the sequence by finding the coefficient of the
appropriate power of z !, We have already used this approach in finding the inverse
transform of the polynomial part of the partial fraction expansion when M = N. This
approach is also very useful for finite-length sequences where X {z) mav have no simpler
form than a polynomial in 2!,

Exampie 3.11 Finite-Length Sequence

Suppose X (2) is given in the form

2 1 = -1 iz
¥zl == (1 - -zz )EIJ.-:_ Wl —z""h (332)
£ Although Xizhis obwiously a rational function of 2, it is really not a rational function
1 in the form of BEg. (3.3%). 15 only poles are at 7 = i), s0 a partial fraction expansion
! according to the technigue of Section 3.3.2 is nol appropriate. However, by multiplying
the factors of Fq. (3.32), we can express Xiz) as

1 1
et 1

Xizi=1 —

B Therefore, by inspection, £fx] is seen 1o be
2 TR T
%'-:f —-%. n=-1
e knl=¢ -1, n=0
i :.Il., n=1,

i D, utherwise,

- Equivalently.

Tl = 8ln + 2 - 2"5[“- 1] — &fnl+ 1&1_.'1—1].
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In finding z-transforms of a sequence, we generally seek to sum the power series
of Eq. (3.51} to obtain a simpler mathematical expression, e.g.. a rational function, If
we wish to use the power series to find the sequence comresponding to a given Xiz)
expressed in closed form, we must expand X (z) back into a power series. Many power
senes have been tabulated for transcendental functions such as log, sin, sink, etc. In
some cases, such power series can have a uselul interpretation as g-transforms, as we
tllustrate in Example 3.12. For rational z-iransforms, a power series expansion can be
obtained by long division, as illustrated in Example 313,

Exampie 3.12 Inverse Transform by Power Series Expansion
- Consuder the z-transliorm

3 X(z)=lop(l +az7'y, 2| = Jal (3.53)
v_ Lising the Tavlor series expansion for log(1 4+ x) with x| < 1, we oblain

o (—1ytlgaya

Hiz)= - —
= "
H :_-.: Therefore,
N
PESL i
an = ST w2, (3.54)
0, n =1

When X (21 1 the ratio of polynomials, it s sometimes uselol o oblain a power
serics by long division of the polynomials,

Example 3.12 Power Series Expansion by Long Division
&% Comsider the z-transform
I
Xiy= ——. z| = fal. {3.55)
| = gz-!
Since the RO is the exterior ol a circle, the sequence is a right-sided one. Furthermore,
since X {z) appreaches a finite constant as ; approaches infinity, the sequence is causal.

Thus, we divide, 5o s tooblain a senesn ]:m\».w..-.,:r:;-::ul'z__t -Carrying out the long division,
we obtain

-
Par Lpa?s 2an,
1 —az? |‘]
1-az!
az™ ]
7
gz~ —pz 2
‘122—2
4 or
= = 1rar et
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By dividing the highest power of : *! in the denominator into the highest power of
the numerator in Example 3.13, we obtained a series in 2|, An alternative is to express
the rational function as a tatio of polynomials in £ and then divide. This leads to g power
series in ¢ from which the corresponding lelt-sided sequence can be determined,

3.4 z-TRANSFORM PROPERTIES

Many ol the mathematical properties of the z-transform are particularly useful in study-
ing discrele-lime signals and systems. For example, these properties are often used in
conjunction with the inverse z-transform techniques discussed in Section 3.3 to obtain
the inverse z-transform of more complicated expressions. In Section 3.5 and Chapter 5
we will see that the properties also form the basis for transforming linear constant-
coefficient difference equations to algebraic equations in ferms of the transform vari-
able z. the solution to which can then be obtained vsing the inverse z-transform. In
this section, we consider some of the most lrequently used properties. In the following
discussion, Xiz) denotes the s-transform of x[a], and the ROC of X () 15 indicated by
Roie,

o] torXiz),  ROC=Ry

As we have seen, R, represents a set of values of z such that rp < |z| < #p. For
properties that involve two sequences and associated z-transforms, Lhe transform pairs
will be denoted as

alrl <2o X1z, ROC = Ry,

2 ’
x2[nl «— Xz}, ROC = R,,.

2.4.1 Linearity

The hinearily property slates that

axyn] + bxsin| i aX(zy+E6Xalz) ROC contains R, 11 R,,.

and follows directly from the z-transform definition, Bq. (3.2); 1.e.,

=73

= o
Z fexyln] 4+ bralniz™ =w Z olrjz™" +b E x2niz™".

n=—r A=—rE R=—i

|2} € R, 2| € Ry

Asindicated. tosplit the z-transform of a sum into the sum of corresponding z-transforms,
z must be in both ROCCs. Therefore, the ROC is at least the intersection of the individ-
val ROCs, For sequences with rational z-transforms. if the poles of aX iz} + bXa(z]
conzist of all the poles of Xy(z) and Xa(z) (1e.. if there is po pole—zero cancellation),
then the ROC will be exactly equal to the overlap of the individual ROCs, If the linear
combination is such that some zeros are introduced that cancel poles, then the RO
may be larger. A simple example of this occurs when xy(#] and azir| are of infinite
duration, but the linear combination is of finite duration. Tn this case the ROC of the
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linear combination is the entire z-plane, with the possible exception of z = U ar z = e,
An example was given in Example 3.6, where xjn] can be expressed as

xln) = a" (u[n} — uin — N = auln] — a"uln - N].

Both a"u[r] and a"wjn — N arc infipite-cxtent right-sided sequences, and their gz-
transforms have a pole at 7 = a, Thercfore, their individual ROCs would both be
7] = jal. However, as shown in Example 3.6, the pole al 7 = a 18 canceled by a zeto
at 7 = a. and therefore, the ROC extends to the enlire z-plane, with the exception of
=10

We have already cxploiied the hnearily property in our previouws discussion of the
use of the partial fraction expansion for cvaluating the inverse g-lransform. With Lhat
procedure, X(7) 1s expanded inlo a sum of simpler terms, and through hnearity, the
inverse o-lransform is the sum of the inverse transforms of cach of these terms,

3.4.2 Time Shifting

The time-shifting property is,

tln—ng] <2 2MX(z),  ROC = Ry(except for the
possible addition or
deletion of £ = 0 or z = o).

The quantily ag is an integer. [ ag is posilive, the origmal sequence x[a] is shifted right,
and il mp s negative, x[r] s shifted left. As in the case of lincarity, the ROC can he
changed, since the factor 7™ can alter the number of poles at z =0 or z = o0,

The derivation of this property follows direetly [rom the z-transform expression
in Eq. (3.2}, Specifically, if v[n] = x[n — ngl. the corresponding z-transform is

o]

¥z} = Z xfn —nplz 7"

M= 20

With the substitution of variableswe =1 Ay,

g
¥{z) = Z x|z
M=
s ]
gy Z xtmiz ™",
T

Or
Yiz)=z""Xiz).

The time-shifling property s often wselul, in conjunction with other propertics
and procedures, for obtaining the inverse r-transform. We illustrate with an cxample.
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Example 3.14 Shifted Exponential Sequence

“"-3-1 Comnsider the z-trans{orm

i 1

3 R@E=e—n g

s ST

éi; From the ROC, we identify this as corresponding to a right-sided sequence. We can
&x;r first rewrite X(z) in the form

‘:** fal 1

i Xy= ———, 2= 7 {356)
g ] —31--1 4

e i<

4 This c-transform is of the form of Eg. (341 walh M = & =1, and ils expansion in the
form of Eq. (3.43) is

4 e
e e P _ (3.57)
1 47
TFrom Eq. (3.57), it follows that x[»] can be expressed as
Ly"
¥ln] = —43]n] +4(i) wlnl. (3.58)
::' An expression for xfx] can be obtained more directly by applving the time-shifting
g«*" property, First, ¥z} can be written as
i _ il § 1
i Xz =1z ‘( — ) lz] = = (3.54)
e 1 1,-1 4
il 4
|_“ From the time-shifting property, we recopnire the factor = 1 in Fq. (3.39) as being
5 el
"5" associated with a time shitt of one sample to the right of the sequence H) ulanl e,
T
B

e

ke : n—|
2 #[n] = [%) uln — 1. (3.60)
; It is easily venfied that Egs. (3.58) and {3.60) are the same for all values of #; Le., they
57 represent the same sequence.

32.4.3 Muitiplication by an Exponential Sequence

The exponential multiplication property is

Beln) <Z» X(z/z).  ROC= |zl R

The notation ROC = |z;| B, signifies that the ROC s R, scaled by the number jzg); Le.,
il B, is the set of values of 7 sach that rg < 2] = rp, then |zo| R, is the set of values of z
such that |zplre < |z| < lmlre.

This property is easily shown simply by substituting zjix[n| into Eq. (3.2). As a
conseguence of the exponcntial mulliplication property, all the pole—zero locations are
scaled by a factor zy, since. if X{z) has a pole (or zero) at = 7y, then X (z/z) will
have a pole {or zero) at z = zpzy. I zp is a positive real number, the scaling can be
interpreted as a shrinking or expanding of the z-plane; i.e., the pole and zero locations
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change along radial lines in the z-plane, If z; is complex with unity magnitude, so that
zi; = ", the scaling corresponds to a rotation in the z-plane by an angle of ay; L.e., the
pole and zero locations change in position along circles centered at the origin, This in
turn can be interpreted as a frequency shift or translation of the discrete-time Fourier
transform, which is associated with the modulation in the time domain by the complex
exponential sequence #/*", That is, if the Fourier transform exists, this property has
the form

40 x1n ) i X (e maly

Example 3.15 Exponential Multiplication

<% Rrarting with the transform pair

g

; 1
e uln] 4£r — T3 z| = L. (3.01)

A 1—z-1

i wu can use the exponential multiplication property to determine the z-transform of

v[nl=r" cos{apni(n], ro= A 1352)

"T; First, a|n] is expressed as
1 1 ;
ge tfr] = Efrf-"""]":.rln] L5 :?-I{re-_-""”J"‘u[n}

~ Then, using Eq. (3.61} and the exponential multiplication property, we sec that

1
Z

g e

%{rﬂj""’u Fufn} i&

1

2 |z] = &

i
_— il
ire =% yln] — S
1 —re—d¥n;

P ] ek

From the linearity property. it follows that

' )
Xiz) = .

1—pefong=l © 1 pp—fumnz—l’
¥

lzg| = ¢
{B.ﬁij

1 — roosfoyhzs ™
= 7 2] = r.

5 1 - 2reosugiz 1 +r7z2

3.4.4 Differentiation of X(2)
The differentiation property states thal

: X(z
nxln] < _;da‘,[. ]

This property is verified by differentiating the z-transform expression of Eq. (3.2); ie.
tor

i ROC = &,.

.=

X@zh= Y xlnl™,

d=—0C
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we obtain

d'X: ?-‘-:-, _ -
—7 i = L {—m)xln)z !

dz e
o
= E nxlnlz ™™ = Elnxinll
A=—00

We illustrate the use of the differentiation property with Lwo examples,

Example 3.16 Inverse of Non-Rational zTransform

Z5 In this example, we use the differentiation properly together with the time-shifting
o property to determine the inverse s-transform eomsidersd in Example 312, With

Yioi=logil + rz:_lﬁ. z = |al,

we first differentiate to oblain a rational expresson:

2
-

dX¥iz)  —az
-I'.I!Z - ]_-i—.:tz 1
. From the dilTercnialion properiy,
i s dXiz) az~!
e nxn] + -z = el = . 3
: 4=t ey 2] > la (3.64)

7 The inverse transform of Eq. (2.64} can be obained by the combined nse of the z-
= transform pair of BExample 3.1, the linearity property, and the time-shifting property.
Spectfically, we can eXpress axs] as

nxfn] = al—a)" lufn —1).

Therciore,

"
x[r:]=i—1f’|||u—ﬂ[n—1| *ilt"gfl +HE_]J~ 2] = Jal.
i

The result of Example 3.16 will be uscful in our discussion of the cepstrum in
Chapter 13,

Example 3.17 2"-Order Pole

' As another example of the use of the differentiation properly, kel us determine the
o z-lransform of the sequence

. rla] = ra"wln] = nia®uln]}.

f From the :-transform pair of Example 3.1 and the differentiation property, it foliows

that
_ d I
Xigh = —z— — |. Iz| = ||

= kl=lal
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ixi Thereiore,

[zl
12!

5
Z az

na”ufn] T—]—]._r lz| = |e].

e fE—az™ "

o

2.4.5 Conjugation of a Complex Sequence

The conjugation property is expressed as
-
Ma] — X' ROC =R,.

This property follows in a straightforward manner from the definition of the z-transform,
the details of which are left as an exercise (Problem 3.54).

2.4.6 Time Reversal
The time-reversal property is given by
x*l-n] <Z» x*(1fz*), ROC= ;} .

r

The notation ROU=1/&, implies that R, is mverted; i.e., i R, s the set of values of ¢
such that rg = |z] = rp. then the ROC Jor X*017:7) 1s the set ol values of 7 such that
Lire < |2l = 1/rg. Thus, if zg is 10 the ROC for x[r]. then 1/z; 1 in the ROC for the
=transform of x*[—n]. I the sequence x[n] is real or we do ndd conjugate o complex
sequence, the result becames
z ) 1
xl—n| — X{1/2), ROC = —.

As with the conjugation property, the time-reversal property follows casily [rom the
detmition of the z-transtorm, and the details are lell as an exercse {Problem 3.54).

MNote thatif zyis apole (or zero ol Xiz), then 1 fzg will bea pole {orzero)of X(1/z).
The magnitude of 1/zy is simply the reciprocal of the magnitude of zy,. However. the
angle of 1/zp is the negative of the angle of zp. When the poles and zeros of Xiz) are
all real or in complex conjugate pairs, as they must be when x[n} is real, this complex
comjupnie pairing 1§ mainlained.

Example 3.18 Time-Reversed Exponential Sequence

e As an example of the nse of the property of time reversal, consider the sequence

xln) = a "uj-nl.

a1

1 —uaz = 1 —g=lz~-1'

Xiz) = |z} < Ja~ L),

t Note thal the z-iransform of ar[n] has a pole at 2 = a. while Xiz) has apole at 1/a.
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3.4.7 Convolution of Sequences

According to the convolution property,

xiln] * xaln] PLIN X0 Xalz), ROC contains R, M R.,.

To derive this property formally, we consider

o

¥ln] = ;;"‘ Akl — &,
s0 that
¥ix)= _i y[rlz™
= i _i xy[K]xz{m — H}: i

If we interchange the order of summation {which is allowed for £ in the ROC),

]

Yioy= ) xmikl 3 xaln~klz™

ki H=—0u

Changing the index of summation in the second sum from n tom = n — &, we obitain

¥y = Z _r][.l'.]| E .Tz[.'n]:'._mlz_i

Frasng n=—00

o] e
= % xklXaz)r = xlklz™* | X202)
> wlkl X, (‘:Z il ) 2(z)

#:—aq: |:L_ER_r:|_ =0

Thus, lor values of ; inside the ROCs of both X (7) and X30z), we can write
Vi) = XXz,

where the ROC includes the intersection of the ROCs of X (z) and X2{z). If a pole that
borders on the ROC of one of the z-transforms is canceled by a zero of the other, then
the ROC of ¥ (z) may be larger.

The use of the z-transform for evaluating convolutions is illustrated by the follow-
ing example.
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Example 3.19 Convolution of Finite-Length Sequences

2 Suppose that

ST

M\
for A
e

4
&

xilnl = &1 + 28in — 1] + &ln — 2]

i5 a finite-length sequence to be convolved wilh the sequence xaal = dln] — d[m = 1],
The corresponding z-transforms are

i sy

Pt

£

X2y =142 4772
and X¢izy=1- ¢~ I The convolution ¥ln] = x1|#] % x2|n] has z-transiorm
Yiz) = Xp(aX2(n = (1427 475 -7l
=1+ t—z2-73,
'.:": : Since the sequences are hoth of finite length, the ROCs are both 7| = (and therefore

- 50 is the RO of ¥(z). From ¥z}, we conclude by inspection of the coefficients of the
polynomizl that

vln] == &[] + dlm — 11— dfn — 2] — 8[n — 3]

' The important point of this example is that convolution of finite-length sequences is
equivalent to polynomial multiplhication, Conversely, the coeflicients af the product of
two polynomials are obtained by discrete convelution of the polynomial coefficients,

The convolution property plays a particularly important role in the analysis of
LTI swstems as we will discuss in more detail in Section 3.5 and Chapter 5. An example
of the use of the z-transform for computing the convolution of two infinite.duration
seguences Is given in Section 3.5,

3.4.8 Summary of Some z-Transform Properties

We have presented and discussed a number of the theorems and properties of z-
teansforms, many of which are useful in manipulating z-transforms in the analysis of
discrete-time systerns, These propertics and a number of others are summarized for
convenient reference in Table 3.2,

3.5 =~TRANSFORMS AND LTI SYSTEMS

The properties discussed in Section 3.4 make the z-transform a very useful tool for
discrete-time systemn analysis Since we shall rely on the z-transform extensively in
Chapter 5 and later chaplers, it is worthwhile now to illustrate how the z-transform
can be used in the representation and analysis of LT] systems.

Recall [rom Section 2.3 that an LT system can be represented as the convolution
¥ln] = x[n] = hln] of the input x[n] with kx|, where hln] is the response of the system
to the unit impulse sequence 5[n]. From the convolution property of Section 3.4.7. it
follows that the z-transform of yfn] is

¥z = H{DX () {3.65)
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TABLE 3.2 SOME z-TRANSFORM PROPERTIES
Property  Section
Mumber Reference Sequence Transform ROC .
xlnl Xz} Ry
xy[n] Xq(z) Ry,
xz[n] Xalz) R
1 X wxplan] + bxaln]  aXylzy+ bX2i Contains 8, 1 Ry,
2 3.4.2 xln — npl R €y £y, except lor the possible
addition or deletion of
the origin or oo
3 343 zpxin] X{z/zn) lzn| R
FX {20
4 344 nxin) —z - R,
5 345 £|nl) }L’"Ezgﬁ Ry
. 1 .
fi Relxln]} E[XEEJ + X*(z*v Contaios £,
1
7 Tmix|n|] Tlﬂﬂ — X*{z"y] Contaihs &,
)
8 Xl x*—n] X®:(1t2%) 1/R,
4 3479 xiin] = xaln| Xy X-(z) Conlains RH MRy

where Hiz) and X () are the z-transforms of bu] and x|« ] respectively, In this context,
the c-transform H(:) is called the system function of the LTT system whose impulse

Tesponse is ftfr].

The computation of Lhe output of an LTT system using the z-transform is illustrated
by the following example.

Example 3.20 Convolution of Infinite-Length Sequences

o

Lathfr] = «"uln}and £ in] — Axln]. Touse the z-transionm to evaluate the convolution
¥l = x[n] * &[], we bepin by finding Lhe commesponding o-1ransforms as

o 1
Aizi=)Y a'i7 "= —— Izl = lal.
: Fi=) i | > la]
E. nmi}
o
A
iz = A = i 2] = L
Z i —E_I
=0
= The z-transform of the convalution y{a} = x[n] * kfa] is therefore

A

.-sz

¥Yizl =

A ezl -z1) G—alz—1})

fzi = 1,



Section 35

Z-Transforms and LTI Systems 133

13 where we assume that a7 < 1 so that the overlap of the ROCs s {z] = L

The poles and zeros of ¥iz) are plotted in Figure 3,02, and the ROC i3 seen 1o
i be the overlap region. The sequence ylr | can be obtained by determining the inverse
& r-transform, The partial fraction expansion of ¥iz) is

A 4 1 a
Y{z) = —— l - -.,_..._._._) |z] = L.
i—at1—! 1 gz
ifh . Therefore, aking the inverse s-transtform of each term vields

vln] = s L — g Dyl
1—a

Im

z-planc

Re

g - Repion of
COMYETECTCE

Figure 3.12 Pole—zere plat for the z-lransform of the convolution of the se-
quences u]#] and 2% u]n] {assuming |2 < 1),

The z-transform is particularly uselul in the analysis of LTI systems described by
difference equations. Recall that in Section 2.5, we showed that differcnce equations of
the Torm

¥[nl = ZI(-—JHH A|+z( )x[n—i-]‘ (3.66)

kil

behave as causal LTT systems when the input is zero prior to # = 0 and initial rest
conditions are imposed pricr o the time when the input becomes nonzero; i..,

Y[=NLy[-N+ 11, ... ¥[-1]

are all assumed 1o be zero. The difference equation with assumed initial rest conditions
defines the LTl system, but it is also of interest to koow the system function. I we
apply the linearitv property {(Section 3.4.1) and the time-shift property {Section 3.4.2}
to Eq. (3.668), we obtain

M.,-

o - g e,
(un) *ftzHZ( )L*xm. (3.67)

k=1
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Solving for ¥ (z) io terms of X (z) and the parameters of the difference equation yields

M
$ b
Vi = | 50— | X0, (3.68)

Eu.&z_l'

k=1l

and from a comparison of Eqgs. (3.65) and (3.68) it follows that for the LTT systemn
described by Eq. (3.66), the system function is

Hiz) = "f“— {(3.69)
> ™
k=0

Since the system defined by the difference equation of Eq. (3.68) 15 a causal systermn,
our discussion in Section 3.2 leads to the conclusion that Hiz} in Eq. {3.69) must have
an ROC of the form |z| = rg. and since the ROC can contain no poles, rp must be
cqual 1o the magnitude of pole of () that is farthest from the origin. Furthermore,
the discussion in Section 3.2 also confirms that if rp < 1, 1.2, all poles are inside the unit
circle, then the system is stable and the frequency response of the system is obtained by
setting z = e/ in Eq. (3.69).
Note that if Eq. (3.60) is expressed in the equivalent form

o !d
Zﬂk}'{” — k] = z.f};-x[ﬂ — k] (3700
k=l k=0

then Eg. {3.69), which gives the system funclion {and frequency response for stable
systems) as 4 Talio of polynomials in the variable 7!, can be wrilten down directly hy
observing that the numerator s the z-transform representation of the coeflicient and
delay terms involving the input, whereas the denominator represents the coeflicients
and delays of the terms involving the outpul. Similarly, given the system function as
a ratio of polynomials in z7' as in Eq. (3.69), it is straightforward 1o write down the
difference equation in the form of Eq. (3.70) and then write itin the form of Eg. (3.668)
for recursive implementation.

Example 3.21 1"-Order System

:*’"f Supposa that a causal LT system is described by the difference equation

i vyl =avin — 1]+ xinl. (3.71)
= Byinspection. it follows that the sysiem function for this svstem is
..;l‘ 1 3

._:.r-c Hizh = e :3’.-’2}

2 with ROC ;| = [a). from which it follows trom entry 3 of lable 3.1 that the impulse
24 response of the system is
hin| = a™uln] (3.73)
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HoR Finaily, it x[nj is a sequence with a rational o-transform such as x[nl = Aulni we
} can find the output of the system in three distinet ways, (1) We can ilerate the difference
A equation i Fq. (3.71). In general. this approach could be used with any mpad and wouid
generally be used tooimplement the systen, bat it would not lead directly to a closed-
form solution valid for all » even if such expression exists, {2) We could evaluate the
“ﬁ convolution of xjel and &) cxplicithy using the techoigues lustrated in Section 2.3,
"n {3} Since the z-rransforms of both x|xn) and Afr] are rational functions of 7, we can use
’;!-‘ the partial fraction method of Section 3.3.2 to find a closed-form expression [or the
#5 output valid for all o In fact, this was done in Example 3.20.

We shall have much more use Tor the z-transform in Chapter 5 and subscguent
chapters. For example, in Scetion 5.2.3, we shall obtain general expressions for the
impulse response of an LTI system with rational system function, and we shall show
how the frequency response of the system is related to the locations of the poles and
zeros of &z

3.6 THE UNILATERAL z-TRANSFORM

The z-transform, as defined by Eq. (3.2), and as considered so far in this chapter, s
mate explicitly referred to as the bilateral z-transform or the two-sided z-transform. In
contrast, the unilateral or ane-sided z-transform 15 delined as

e
AXfz) = ) ximlzT (3.74)

rfl

The umilateral z-transform dilfers from the bilateral z-transform in that the lower limit
of the sum 15 always fixed al 2ero, regardless of the values of x[n] fore < O W] =0
[or i = 1), the umlateral and bilateral z-transforms are identical, whereas, if x|n] is not
zero for all n - @), they will be different. A simple example illustrates this

Example 3.22 Unilateral Transform of an Impuise

4 Suppose that xy[r] = &[a]. Then it is clear from By, (3.74) that 30z) = 1, which
is identical to the bilateral z-transform of the impulse. However, consider wvoin] =
dln + 1} = xy[n + 1], This time vsing Cg. (3.74) we find that A5(z) = 0, whersas the
% pilateral z-transform would be Xyiz) = 2 X {z) = 1.

Because the umilateral transform in effect ignores any lefi-sided part, the proper-
ties of the ROC of the unilateral z-transform will be the same as those of the bilateral
transform of a right-sided sequence obtained by assuming that the sequence values are
zeto for 1= 0. That 15, the ROC for all unilateral z-transforms will be of the form
[z! = rg, and for rational unilateral z-transforms, the boundary of the ROC will be
defined by the pole that is farthest from the origin of the z-plane,

In digital siznal processing applications, difference equations of the form of
Eq. (3.60) are generally empioved with initial rest condilions. However, in some situa-
tions, noninitial rest conditions may occur. In such cases, the linearity and time-shifting
properties of the unilateral z-transform are particularly useful tools. The linearity prop-
erly is identical to that of the bilateral z-transform (Property 1 in Table 3.2). The time-
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shilting property is different in the vnilateral case because the lower limit in the uni-
lateral transform definition is fixed at zero. To illustrate how to develop this property,
copsider asequence x| n] withunilateral z-transform A'(z) and let v|n} = x[n—1]. Then,
by definition

[+ ]
Vi)=Y xln— L™
moal}
With the substitution of summation indexm — n — 1, we can write }(z) as

Y@= Y abmle ™ < x4+ 27 Y xlmls,
m=dl

m=-1

so that
Viz) = 1=+ 27 X(z). (3.75)

Thus, to determine the unilateral z-transform of a delayed sequence, we must provide
sequence values that are ignored in computing X'(z). By a similar analysis, it can bhe
shown that if v[n] = x[» — k], where & == (), then

V(D) = s[—kl+xl—k+ 107" . 4217 7R

[

L
Yo xlm =k =107 4 2R, (3.76)

i e

I

The use of the unilateral z-transfomm to solve for the outpui of a difference equa-
tion with nonzero initial conditions is illustrated by the following example.

Exampie 3.23 Effect of Nonzero Initial Conditions

* Consider a system deseribed by (he linear constani-coelficient differcnce cgualion

v[n] — ax[n — L] = x[n], 377
which is the same as the system in Examyples 3200 and 3.21, Assume thal x[n] = O for
#t - { and the iniral condition at # = —1 is denoted ¥]—1). Applying the unilateral

<5 opransform o Cq. (3.77) and wsing the hncarity property ad well ag the bme-shafl
- property in Eq. (3.75), we have

Mizy—avi—1]—na1 Iy = A'(z).
Solving lor ¥z we obtain

: avl-1] 1
ey = == o = X(2). IR
1-—-az L —az

| Mote thatif v[- 1] = Othe first term disappears. and we are leftwith Jz) = i) A0,
where

|z| = |ai

Hizl =
h 1

;
az~l

2 is the system function of the LI'l system corresponding to the difference equation
- in Eq. (3.77) when ilerated with indtial rest conditions, This confirms that initial rest
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# conditions are necessary [or the iteruted difference equation (o behave as an LT1
L system. Furthermore, note that if x{a] = { for all &, the output will be equal (o

yn] = vj—11a""? n=—1

This steows that of ¥[—1] 2 [} the system does not behave linearly because the scaling
property for linear svstems [Eq. (2.230)] reguires that when the input is zero for all #,
the oulput must hkewise be zero for all »,

To be more specific. suppose that x[n] = Awlr] as in Example 3.2(), We can
v determine an equation for y[sf for 4 = —1 by noling that the unilateral =-transform
a of x[n] = Awn] i

A
Al = . jz] = 1
| R
50 that Eg. (3.78) becomes
avi—11 A

()= e : 3.79)
i l—az!  (l—ar -1 (3:79)
Applving the partial fraction expansion techoique o Bg. {(3.79) gives
A ad

o =1l T—g ;o T1-—g
i Mzl = RS [ T e
. from which it follows that the complete solution is

.-"'l-_ i] n=—1

o ynl =1 g+t + (1 _ﬂ.rr+1) ey (3.80)
e —e— 1 —a
ZIR IR

= Equation (3.80) shows that the system response s compeosed of two parts. 'The zero
~inpul response (Z1R ) s the response when the inpat is zero (in this case when 4 = O),
The zero nitial conditions response (Z1CR) is the part that is directly proportional
. to the input {as required for linearitv). This part remains when y[—1] = (1 In Prob-
lem 349, this decomposition into IR and ZICH components is shown 10 hold for any
e difference equation of the form of Eq. {3.66).

2.7 SUMMARY

In this chapter, we have defined the z-transform of a sequence and shown thal it s a
generalization of the Fourier translorm. The discussion [ocused on the properties of the
z-transform and techniques for obtaining the z-transform of a sequence and vice versa.
Specifically, we showed that the defining power series of the z-translorm may converge
when the Fourier transform does not. We exploredin detail the dependence of the shape
of the ROC on the properties of the sequence. A full understanding of the propertics
of the ROC is essential for successful use of the z-transform. This iz particularly true in
developing techniques for finding the sequence that corresponds to a given z-transform,
Le., finding inverse z-transforms. Much of the discussion focused on z-transforms that
are rational functions in their region of convergence. For such functions, we described a
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technique of inverse transformation based on the partial fraction expansion of X{z). We
also discussed other techniques for inverse transformation, such as the use of tabulated
power series expansions and long division.

An important part of the chapter was a discussion of some of the many properties
of the z-transform thal make it useful in analyzing discrere-time signals and systems A
variety of examples demonstrated how these properties can be used to find direct and
inverse z-transformes.

Basic Problems with Answers

3.1 Determine the z-transform, including the ROC, for each of the following sequances:
(a) () ulnl
1 fl
() —(4) ui=n—11
(c) (.LJ u[—n]

d) &jn]
(el dfn—17
(F) dim | 1]

(g) (2') fulnl — wln — 10]).
3.2, Determine the z-transform of the sequence

W, OD=p<N-—1,
xln] = N, N<n

33 Determine the z-transtorm of each of the following sequences, Inchule with vour answer
the RO inthe z-plane and a sketch of the pole-zero plot. Express all sums in closed form;

e czn be complex.

{2} xufn] = e, 0=l =1,
I, =n=N-—-1,
(b} talnl 10, otherwisz,
n+1, b=pn=N-—-1,
(v} xoml=12N —-1—n, N=n<=2(¥N-1L.
i, otherwise.

finy: Mote that xpin] is 8 rectangular sequence and x x| s a triangular scquence. First,
express xpfn] in terms of xp =]

A, Consider the z-transform X (2} whose pole-zero plot is as shown in Figure P3.4.

{a} Dewermine the ROC of X (z) if it is known that the Fourier transform exists. For this
case, detemitine whether the corresponding sequence x[n] is right sided, lefl sided, or
twao sided.

{b)} Howmany possible two-sided sequences haw the pole—sero plot shown in Figure P3.47

(e} Isitpassible for the pole-zero plot in Figure 3.4 1o be associated with a sequence that
15 both stable and causal? If so, give the appropriate HOC.
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Im
z-plane
/_\<Unil circle
A ) V) >
-1 Z 3 Re

Figure P3.4

35 Determine the sequence xfn] with z-iransform
Xiz) =11 +2(1 + 32711 — 271y

J.6. Following are several z-transforms For vach, determine the inverse z-transform using both
methods—partial fraction expansion and power senies expansion—discussed in Section 3.3
In addition, indicate in each case whether the Fourier transform exists.

1 1
(a) Xioy= P T, lz| = 5
4 ’Iz_l 2
1 1
b X@y=——7— l2l<3
1+ iZ_I 2
l - 43—1 1
(e) Xizd= = s lz| =
1+ dz L2 2
P 1
e v i
QIO 1 B
1 ron —]
© X@=—"—,  |zl=lal
Z —d

3.7, The input (o 4 causal ETT svslem is

b

i e e (21) il

The z-transtform of the output of this system is

-1

— I-r
Fiz} = e

[:1— %z"}{l +2- 1)

{a} Determine Hi(z), the z-transform of the system impulse response. Be sure (o spealy
the ROC,

{b} What iz the ROC for ¥iz)?

{c} Determing y(n].

3.K. The system function of a cansal LT system is

4

Hiz)=
1+

&y
[}
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The input to ehis svstem is

xln] = [ %) ulk] + uf—n — 1]

(a) Find the impulsc response of the system, kin .
(by Find the output yfa],
(€} 1sthe system stable? That is, is Aln] absolutely summable?

A causal LTT system has impulse response iin], for which the z-transtorm

1 gp=t

()

Hiz} =

() What is the ROC of Hi2)?
(b} Ts ihe system stable? Explain.
{c} Find the :-transform X (+) of an input x|« that will produce the curput

=~ M
yInl = — %(‘?11) ufw] — %ﬂ}"u[—n =

{d} Find the impulse response ki) of the system.

Without explicitly solving for X iz, find the ROC of the z-transform of each of the following
sequences, and determine whether the Fourier transform converges:

ia} cin| = {{i)w + (%j}n]uin — 10
1 M= = 10,

) =fnd= [EI otherwise,
(¢} x[n] =2"u[—n]

n-il i
(d} xla] = [u} —mﬂ'-'%"] uln — 1]
(e) xinl =uln + 0] —wln—+ 5]

! —,

(F) xn] = [j} uln] + 42 43 ) [ n — 17,
Following arce four z-transtorms. Delermine which ones cowlif be the z-transform of a causal

sequence. Do not evaluate the inverse transform. You should be able w0 give the answer by
inspection. Clearly stale your reasons in each casc,

I_ z 1]1.-
(a) L TR

(t 1)
m &=

e,
(d} :::: ;:
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A12 Skewch the pole—zera plot tor each of the following z-transforms and shade the ROC:

315,

3.16.

AT

318

Llyd
z . i
ay Xjizl= —=——, ROC: |z| = 2
®) AR =1 o
1— %:_1
ib) Kpizl = - : —, xaln] causal
[:l + :Is_:‘]}(l - i:"j]
1 21 e g2
(e} X310 = —F———. xzlnl absolutely summable,
1 - ?z‘l Yoigrs

. A causal sequence gli] has the z-transform

Gy =siniz~ bl + 3272422

Find g|111.
I
B H{z = T B and hn] = A.;.:ri‘ ufn] + A;[:.u;‘u[uh determine the values of 4;. 47, o,
— Iz——
and gz,
1— 1 .~
HHz = ; ""i 1 for [z = 0, 1s the correspending LTT system causal? Juslify your
— 5L
ANsSWer, E

When the input ta an LT1 system s
o I

x{n1=(;) wfn] 4 (2l -a — 1],

the corresponding outpul is

M = f
}-rn|=SG) urm—s@) ufnl.

(a) Find the system function H (2} of the system. Plot the pole(s) und zerofs) of H () and
inglicate the RO,

ib) Fied the impulse response kla| of the system.

) Write g difference coaation thal is satisfied by the given input and outpal.

{d) Is the system stahle? Is it causal?

Consider an LYl system with input x[»] and output y[#] that satisfies the difterence equation
5
¥lul - i_ﬂﬁ' — 11+ »lr —2] = xlnl — x[n — 11

Determine afl possible values for the system’s mpulse response fifafat v =00
A causal LT1 system has the system function

(a) Find the impulse response of the system. &jn|.
() Findd the oatput of this system, y[r], for the input

x[n] =2"
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3.19. For each of the following pairs of input z-iransform X {7} and system function & (1), deter-
mine the BROK for the output z-transform Fizk:

(a)
1 1
Xz = [z = =
14+ %z"’l 2
wi = ol L
{z) = 1_%3_1 Fd i
(b}
1
YD) = —— fz| =2
(z 3.1
i 1 1
) = -
L 1z-1 473
{c}
1 1
Xizy= - =iz =3
(1=} (43l 3
| R P 1
HE@) = —T—, >
§'!‘Z

3.20. For cach of the lollowing pairs of input and cutput z-transforms X (z} and ¥ (), determine
the ROC for the system function H{z):

{a)
1 3
¥igy =3 n: e el = 3
1 2
Flo) = — Il = 3
1+ 5z 1 :
{b)
Xz = —1| Y |z = .
1+ gz'l 3
1 i 1
¥z} = : — = |z) = 3

Basic Problems

3.21. A cauwsal LTI system has the following system function:

440251 035z
{1-025:-1)1 + 0571

Hiz) =

{a} What is the ROC for H{z)7
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{b} Determine if the system is stable or not.

1c} Determine the ditference equation that is satisficd by the input x|«] and the output
¥lnk.

{d}y Llse a partial fraction expassion to determine the impulse response Ala).

{e) Find ¥iz). the z-transform of the owpual, when the input is ¢[#] = a|—n — 1). Be sure
e specily the ROC for Fiz)

() Find the output sequence y[n] whea the input s £n] = u[—n — 1.

A causal LT system has svstem fanction

1472
Hizp= o— 0
&= Trase

The inpiil B this system is
_r[.nj—.u[nj+2m&[z%n) — oo w2,

Dretermine the output yir] for large positive n;ie, find an expression for yle] that is
asymptotically correct as n gets large. (O cowrse, one approach i o Grd an ecpression for
v|n ] e i valid for alln, but vou should see an cazier way.)

Consider an LT system with impubse response

M

at, n=0,
) {ﬂ. n =1,

and input

. =n=({N=-1),
L otherwise

xpn] = [

{a) Determine the cutput v[e| by explicitly evaluating 1he diserete convolution of x [n] and
Aln].

ib) Determine the output y[n] by computing the inversc z-transform of the product of the
z-tramsforms of x[n] and A,

Comsider an LI system that is stable and tor which Fy:), the -transtorm of the impulse
rocspomse, is given by

Hiz = 2
: 1.-1

1+ x5z

Suppose x|u], the input to the system, is 2 unit step sequence.

{a) Derermine the cutput via] by ovaluating the discrete convolution of xf{r] and Afe],

{b} Determine the output v[a] by compating the inverse z-transtorm of ¥z,

. Sketch each of the following sequences and delermine their s-transforms, including the

ROC:

[ %)
(@) Y éln—dkf

A=—o

(b} % [e*""r“ - ms{;n} + sin (% + Erm).l uln]
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Consider a right-sided sequence «|n] with z-transform

-

1 =

X(z)= == _ A
! il —gz=1yi1 =k 1y [z —aMz —5H)

In Sectiom 3.3, we considercd the determinalion of x|x) by earrying out a partial fraction
cxpansion, with X () considered as a ratio of polyvoomials i 2, Carry out a partial fraction
expansion of Xiz), considered as a ratio of polynomials in z, and determine x[n] from this
EXpansion.

Drtermime the umilateral z-transform, meluding the ROC, for each of the following se-
quences!

(a) 4n)
by 5n 1]
(e} &in + 1]

@ ()" il

@ - (%) wl-n-1

{f) (%)”u!—n]

@ 1(4) +(3) 1uim
n—1

® (1) wn—1)

IT.X {7y dienotes the wnilateral s-teansfornm of xfa), determos, in lerms of X0z, the umilateral
z-transform of the following:

(a¥ x[n — 2}
(b} x[n 4 17
fl

() 3 xim]

m=—:a

For each of the following difference equations and associated input and inifial conditions,
determing the response y|n| for s = U by using the unilateral z-transform.

(a) ¥[n] 4 3vim - 1] = x[n]
ximl = (1) uin]
¥ o1 =1
by vln] - _—-!3*_\1!1 ~ 1} = x[n] = %11" 1
I[n] = ul;gl
_'f'l—].j =10
ic) vin| - %_-c[n —11=xnl— %x-’n —)
xlnl = ()" ulnl

H=1]1=1
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Advanced Problems

AM. A causal LT system has system tunction

1—37)
Hiz) = oo = oy s
1 —025== {1-05""W14+05"")
{#) Determine the output of the system when the input is x[n] = «|n].
{b) Delerming the inpul x[#] 50 thal the corresponding oulput of the ghove system is
y[n] = d[n] = dln = 1].
{c} Determine the outpul y[n] when the input is x[#] = cosiOSma) for—oa0 < 8 < 0o You
may leave vOur answer in any convenient form.,

3.31. Determine the inverse z-transform of each of the following, In parts (a)—(<), use the methods
specified. (Ta part (), use any method you prefer.)
(3) Long division;

1
Xim= ; x|rt] a right-sided sequence

pr T B EFH
[ 4

(h) Partial fraction:

x[n] stable

{c) Power series:

1
Xiz) = Ini1 —42), J2| = 3

() Xiz = 2] = (3~ L3

1— 473

A32. Using any methaod, determine the inverse z-transform for each of the following:

1
(a) Xiz)=-

(1+ 1z l)“n —2: -3
{x[n] is a stahle sequence)
(b) X(z)=ei
7 =27
z=2"
33 Determine the inverse z-lransform of cach of the followime, You should find the z-transform
properties in Section 3.4 helptuol.

<) X2 = {x[n]is a left-sided sequence )

32..—.1
{a) X1 = 5 x[n] left sided
|
(1-4)
(b} Xizy =sniz). ROC includes |z =1
7

A

(©) X@=""%.  l4>1

33, Determine a sequence x|x | whose z-transform is X {z) = ¢® + PUL 0.
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3.35. Delermine the inverse z-transform of

1
Xizh=logil -2z, i< 3.
by
{a) using the power scrics
o ™
log(l —x)=— % —, x| = 1;
gl — x) LI = ||
m=

(h) first differentinting X (z) and then using the derivative Lo recover xir|,

3.36. Foreach of the following sequences, determine the z-trapsform and RO, and skeich the
pole—zero diagram:
{a) x[n] =a un]+ b u[n]+Mul-n —1]. er] = j#ry = o
{b) x[n] =na"uln]

fe) zfn] =& [cns (]T—Er:)] uln] - " [mﬂ (:j_#)] uln—1]

3.37. The pole-zero diagram in Figure P3.37 corresponds to the z-transfurm K4z} of a causal
sequence xla]. Sketeh the pole—zero diagram of Yizh, where vie] = x[ e+ 3] Also, specify
the ROC for ¥iz).

L Figure P3.37

w
fud
&0

Let x[n] be the sequence with the pole—zera plot shown in Figure P3.38. Sketch the pole-
zera plot for:

@ yin = (1) 0l
i
(b wfn] = CDS(—EA}.X[M

im z-plane
Rt \
:/ i
| t )1 e
z

Figure P3.38
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Dieterming the umit step response of the causal system {or which the z-transform of the
impulse response is
3
— :
If the input c[a] to an LT svstem 15 x[n] = ], the output is

1 n=1
vin] = ( i) wfm 4 1].

o

Hiz =

{a) Find Hiz}, the ;-transform of (he system impulse response, and plot ils pole—#ero
diagram.

(k) Find the impulse response x|

(e) Is the system stahle?

(d) Is the system causal?

Consider a sequence x[n] for which the z-transform is

=]t L
4
Al = =
15-;" | — 21
and for which the HOC includes the unit circle. Determine x|[0] using the initial-value
theorem (see Problem 3.57).

In Figuee 342, 1) is the system function of a causal LTT system.

(a) Using z-lransforms of the signaks shown in the figure, oblain an expression for Wizim
the form

Wizl = Hyz) X (z) + Tha(ohEiz,

where both Hy(z) and Hy(z} are expressed in terms of H iz}
{b) For the special ease H(z) =271 (1 — 271y, determing Hyizh and Ha(z),
() s the system H (z) stable” Are the systems Hpiz) and T (z) stahle?

e[n]

fiizy —
wm?

Figure P3.42

343 In Figure PRAZ, £[n] 15 the impulse response of the TTT svstem within the inner box, The

inpul to system Afn] s wlal, and the output is wla]. The z-transtorm of Ala), Hiz), exists in
the following BROC:

0 < Fun =< 12] = rpax < oo

(a) Can the LTT system with impulse response #lsf be bounded input. bounded output
stable? IT so, delermine inegualily comstraints On Fgi, 4nd rmex such that it s stable
If not, briefly explain why

(b} Ts the overall system (in the large box, with input xix] and owtput yvie ) LTT? 11 so, find
its impulse response glal. I not, briefly explain why,
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{e) Canthe overallsystem be BIBC stable? H so, determine inequality constraints reladng
o, Fin And Fpax SUch that it es stable, 11 ot briefly explain why,

Fia i o oo e s s g O Figure P3.43

344 A causal and stable LTT systern S5 has irs input xfe] and outpol v[a] related by the linear
constant-cocfficicnt difference equation

10
i+ Y eyl — k) = xln] + Bsfn — 1),
k=l

Let the impulsc response of S be the sequence fija ).
(a) Show that A0 must be nongeno.
{k} Show that | can be determined from knowledge of 8, &[0, and &]1].

fey IT Afn| = (.M cos(zn/d) for 0 = 1 = 10, sketch the pole—zero plot for the svstem
function of &, and indicate the ROC,

345 When the inpol 1o an LTT syslem is

iln]= G) ufrl + 2" ul—n — 11,

£y 3"
v[r] = ﬁ{kz) pfn] =n (E} wln].

{a) Find the system tunction H(zy of the system. Plot the poles and zercs of 7)), and
indicate the ROC,

{h) Find the impulse respomse Afn] of the sysieem.

{c) Write the difference equation that characterizes the system.

{d) I the syvstem stable? Es it causal?

the output is

3.46. The following information is known about an CT1 system:

(i) The system is causal,
(i1 When the input is

1 A1%T 4 . ;
xjre] = 3 (i) uln] 3{1} al-n=1],

then the r-transform of the outpat is

1-3:72
¥(g) = e .
(1 -3z 1M1 =20
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(a) Find the s-transform of x[a].

by What are the possible chowes [or the ROC of Yim?

ie) Whatare the possible choices for alinear constant-coefficient di flerence equition used
I deseribe the system?

(d) What are the possible choices Tor the impulse response al the system?

Letx[a]be adiserete-time signal with x[«] = (Mora = Qand z-teansfonm X (z), Furthermare,
given xin|. let the discrete-time signal ¥[# | be defined by

1
g1 | axlel o=l
¥l { 0, otherwise,

(a) Compute ¥iz}in terms of X {z}.
{by LUising the result of part {a), find the z-iransform of
1

n+dln]"
The signal y[a) s the output of an ETT system with aopulse response d[n] for a given inpot
¥[# ). Throughout the problem, assume that v[x] is stable and has a z-transform ¥(;) with the
pole—pero tiagram shown in Figure P348-1. The signal x{#| is stable and has the pole-zero
diagram shown in Figure P3.45-2,

win] = [m - 1].

z-plane

Tiniz)

Figure P3.38-1

z-plane

Imiz)
[

Figure P3.48-2
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{a} What is the ROC, ¥i{n?

(b} Is vin] left sided, rght sided, or two sided?

{c} What is the ROC of Xi(z)7

{d) Is xfr| a causal sequence? That is, does x[n] = 0for e < 07
{e) What is £[0]7

(T} Diraw the pole-zero plot of Hiz), and specify its ROC,

{g} Is hle] anticausal? That is, dous Ar] = O for s = 07

Consder the dilfference equation of Eq. {3.66).

{a@) Show that with nonzero initial conditions the unilateral :-transform of the output of
the difference cquation is

N 3 M
Eﬂk E w[m —k — l]:"“"':1 E bzt
R kn_'] m:] s t_-u ..... E N
Vi = m -+ N A(z).
Z_fatz_* E: uk;_k
k=l k=il

(M) Lise the result of {a) foshow that the oubpof has the form
vinl = vzirlnl + yzrcminl
whers vrpp 1] is the output when the inpot is zero for all # and yppeop|a)is the output
when the initial conditons are all zoro.
(c) Show that when the inibal conditions are all zero, the result reduces to the result that
is obtained with the bilateral »-transform.

Extension Problems

350

351,

A5

Let x[n] denote a causal sequence; e, £{n] = (L n < 0. Furthermore, assume that [0 £ (]
and that the r-transform is 4 ratienal function.

(a) Show that thers are no poles or 7eres of X () atz = oo, ie., that LEHL,- X (z) is nonzero
and fimke,

(b} Show that the number of poles in the finite z-plane equals the number of zeros in the
fintte 2-plane. {The finite z-plane cxeludes 2 = oo

Consider a sequence with z-translorm Xiz) = P{z3/ (23, where Pz and 4z} are poly-
namials in 2. If the sequence is absolutely summable and if all the roots of @z} are inside
the umit aarele, is the sequence necessarily causal? If your answer is yes, clearly explain. 17
Your answer is no, pive a counterexample.
Let x|n] b a causal stable sequence with 2-transform X iz} The complex cepsivum &[n] is
defined as the inverse translorm of the logarithm of Xz i.e.
K(z) = log X(2) <2 Rinl.
where the ROC of X(z) includes the anit circle. {Strictly speaking, taking the logarithm of
a complex number requires some careful considerations, Furthermore, the logarithm of a
valid z-transform may not be a valid z-transform. For now. we assume that this operation
15 valid.)
Determine the complex cepstrum for the sequence
x[n] = d[n] + wd[n — N, where |u| = 1.
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Assume that x|n] is real and even; i.e., x|n] = x[—al. Further, assume that z, is a zero of
Eiznie. X(zpi =10

(a) Show thal 1/zp 15 also a zero of Xzl
() Are there other zeros of X420 mplied by the information given?

Lising (he definition of the :-transform i Eq. (3.2), show that if Xiz)is the z-ranslorm of
x[n] = xpln] + ja;in], then

(8) x*[n] <o X*iz%)
(b) x[—n] «» X(1/z)
e
(c) xpln) <= J1X{2)+ X*(z*)]

1
(d) xp[n] -:—?—1- ..;}-[Jl'[z] - XML

Consicer a read sequence x[n] that bas all the poles and zeros of 118 z-translorm nsids the
unit circle. Determine, in terms of x[n]. a real sequence x[n] notequal to cfe], but for which
21107 = %108, |xIn]] = xln]l, and the =-iransform of xq [#)] has all ity poles and zeros inside
the unit cirgle.

A real finite-duration sequence whaose z-transform has no zeros at conjugate reciprocal pair
locations and no zeros on the unil eirele is sniguely specified to within a positive scale factor
by its Fourier transform phase (Hayes el al_. 1980),

An example of zeros at conjupate reciprocal pair locationsis z — o and () 1. Even
though we can penerale sequences that do nol satisfy the preceding set of conditions, almost
any sequence of practical interest satisfies the conditions and therefore is uniquely specified
to within a positive scale factor by the phase of its Fourner transform.

Congider a sequence x[n] that is real, that is vero outside 0 < n =2 N — [, and whose
siransform has no zeros at conjugate reciprocal pair locations and no zercs on the unit
circle. We wish (o develop an algorithm that reconstruets cx|#] from £ X {e/*y, the Fourier
transtotm phase of xy{a], where ¢ is a positive scale factor,

{a) Specily asctol (N —1) linear cquations, the solution to which will provide the recovery
ol x[n] 1o within & positive o negative scale Mctor from tanfl X (¢4}, You donot have
to prove that the set of (& — 1) linear equations has a unigue solution. Further, show
that if we know £ X (e/%) rather than just tanfs X (e/™}), the sign of the scale factor can
alsor be determined.

(b} Suppose

0 om= [,
1, n=10,
x[ﬂi — 2, n = 1,
3 na=1,
1, n=zk

Using the approach developed in part {a), demonstrate that cx[n] can be determined
from £ X {2/, where £ 15 a positive seale factor.

For a sequence x| that is zero forn = (), use Eq. (3.2) 1o show that

lim Xiz) = =10
ol

This result &5 called the initie! vafue theareni. What is the corresponding theorem if the
scquence is zero for n - 07
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The aperiodic autocorrelation function for a real-valued stahble sequence x[=] is defined as

=
‘-"1.1'[”] = Z .ﬂk]]h‘! +.£t’|

k=—oc

{a) Show that the --transform of oy dn] is
Coxl(z) = X(22X(z "0

Determine the RO for O (20

(b} Suppose that x|n] = ¢®u[n]. Sketch the pole-zero plot for £,462), including the RO
Also, find oy c|n] by evaluating the mverse z-translorm of Cp(2).

(c) Speaily another saquence, x[a], thal & not Equ:ﬂ tox xfn] in part (B), bul thal has the
same autocorrelation function, oyy|#j, as x|a] in part (b).

() Specily athird sequence, cpfa], that is nod cgual 1o x[a} or v (el bl that has the sam
awtocorrelation function as x(a]in part (b,

Dictermine whether or not the funclion X0 = 2% can correspond to the z-transform of a
sequence. Claarly explain your reasomng,
Let Xiz) denote a ratio of polynomials in z. Le.,

Xi=

Show that if X(z) has a 1%-order pole at z = . then the residuc of X{z} at z = z;, is equal
53]

Bizy)

Al(zp)

where A'(z;) denotes the derivative of A(z) evaluated at & = ;.




