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4.0 INTRODUCTION

Discrete-time signals can arise in many ways, but they oocur most commonly as repre-
sentations of sampled continuous-lime signals. While sampling will no doubi be familiar
to many readers, we shall review many of the basic issues such as the phenomenon of
aliasing and the important fact that continuous-time signal processing can be imple-
mented through a process of sampling, discrete-time processing, and reconsiruction
of a continuous-time signal. After a thorough discussion of these basic issues, we dis-
cuss multirale signal processing, AJT) conversion, and the use of oversampling in A/
CONYETSTO.

4.1 PERIODIC SAMPLING

[Yiscrete representations of signals can take many forms including basis expansions of
various types, parametric models for signal modeling (Chapter 11}, and nonuniform
sampling (see for example Yen (1956}, Yao and Thomas (1967) and Eldar and Oppen-
heim {2000)). Such representations are often based on prior knowledge of properties
of the signal that can be exploited to oblain more efficient representations. However,
cven these allernative represcatations generally begin with a discrete-lime roprescnta-
ticem off 2 conlinuous-time signal obtained through periodic ﬁampling; e, asequence of
samples, x[r], is oblained from 4 continuous-time ﬁignal x.it) according to the relation

x[n] = xAnT). —0 1 OO, {41}
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N 5 T Figure 4.1  Biock diagram
*:A1) At =itelnd) representation of an ideal
continuous-to-discrete-time (C/00)
converter,

o e

In Eq. {4.1), T is the sompling period, and its reciprocal, f; = /T, is the sampling
fregoency, insamples per second, We also express the sampling frequency as £3; = 21/ T
when we want to use frequencies in radians per second. Since sampling representations
rely anly on the assumption of a bandlimited Fourier transform, they are applicable to
a wide class of signals that arise in many practical applications.

We refer to a system that implements the operation of Eq. (4.1} as an ideal
continous-to-discrete<time () converter, and we depict it in Block diagram form
as indicated in Figure 4.1, As an example of the relationship between x,.(r) and x[r].
in Figure 2.2 we illustrated g continuous-time speech waveform and the corresponding
sequence of samples.

In a practical setting. the operation of sampling is implemented by an analog-to-
digital (A/D) converter. Such systems can be viewed as approximations to the idea) C/D
converter. In addition to sampling rate, which is sufficient w define the wdeal /D con-
verter, important considerations in the implementation or choice of an A/D converier
include guantization of the output samples, linearity of quantization steps, the need for
sample-and-hold circuits, and limitations on the sampling rate. The effecis of gquantiza-
tion are discussed in Sections d.8.2 and 4.8.3, Other pracucal issues of A'D conversion
are clectronic circuit concerns that are outside the scope of this text,

‘The sampling operation is generally not invertible; ie., given the output xin],
1t i nol possible in peneral to reconstruct x.(r), the iInpul {0 the sampler, since many
continuous-tirme signals can produce the same outpul sequence of samples. The inherent
ambiguily in sampling is a fundamental issue in signal processing. However. it is possible
to remove the ambiguity by restricting the frequency content of input signals that zo
into the sampler.

It 15 convenient to represent the sampling process mathematically in the two stages
depicted in Figure 4.2(a). The stages consist of an impufse train modulator, followed by
conversiom of the impulse train to a sequence. The periodic impulse train is

e ]
st)= 3 du—nT}, (4.2)

h=—mx
where &(r) is the unit impulse function. or Dirac delta function. The product of 5(7) and
X0 is therefore
ety = x (181}
e o0
=ve(t) ¥ B —nTy= ¥ xA1)8(r—nT). (4.3)
H=—0C K==

Tlsing the property of the conlinuous-time impulse function, x(r8i) = x(0)8(r), some-
umes called the “sifling property” of the impulse function, (see cy.. Oppenheim and



Section 4.1

Pariodic Sampling 185

Willsky, 1997), x,(r) can be expressed as

e}

x. (1) = Z xinrTdt - nT ), (4.4

A=-—02C

Le., the size {arca) of the impulse at sample time #T is cqual to the value of the
continuous-time signal at that time. In this sense, the impulse train modulation of
Eq. (4.3} is a mathematical representation of sampling.

Figure 4.2{») shows a continuous-time signal x () and the results of impulse train
sampling for two different sampling rates. Note that the impulses x, {(nT)8{r —nT) are
represented by arrows with length proportional to their area. Fipure 4.2{c) depicts the
corresponding output sequences. The essential difference between x, (¢} and x[n] is that
x(r} is, in a sense, a continuous-time signal {specifically, an impulse train) that is zero,

LAY converter
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Figure 4.2 Sampling with a periedic impulse train, followed by conversion toa
discrete-time sequence. (a) Overall system. (B} xz(h for two sampling rates. {c)
The putput sequence for the two different sampling rates.
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except at integer multiples of I'. The sequence x{x|, on the other hand, is indexed
on the integer variable n, which, in effect, introduces a time normalization; i.e., the
sequence of numbers xin] contains no explicit information abour the sampling period
T. Furthermore, the samples of x.(¢7) are represented by finite numbers in x{n} rather
than as the areas of impulses, as with x, (1),

It is important to emphasize that Figure 4.2(a) is strictly a mathematical repre-
sentation convenient for gaiming insight into sampling in both the time domain and
trequency domain. It is not a elose representation of any physical circuits or systems
designed to implement the sampling operation. Whether a picce of hardwire can be
construed to be an approximation 1o the block diagram of Figure 4.2(a) is 4 secondary
issue at this point. We have introduced this representation of the sampling operation
because it leads to a simple derivation of a key result and because the approach leads to
anumber of imporiant insights that are difficult to obiain from a more formal derivation
based on manipulation of Fourier transform formulas,

4.2 FREQUENCY-DOMAIN REPRESENTATION OF
SAMPLING

Ta derive the frequency-domain relation between the input and output of an ideal C/T
converter, consider the Fourier transform of v,(). Since, from Eq. (4.2}, x(t) is the
product of 1. (r) and s(t), the Fourier transform of x, (¢} is the convolution of the Fourier
transforms X .{j£2) and S(;£2) scaled hy jl?t The Fourier transform of the periodic
impulse train £(2) 15 the penodic impulse traim

. i
SUR) = — Y SR — k). (4.5)
E=—un
whore £, = 27/ T is the sampling frequency in radians's (see Oppenheim and Willsky,
1997 or MeClellan, Schafer and Yoder, 2003). Since

1
X Q)= X (jR)* S(j<).

where # denotes the operation of continuous-variable convolution, it follows that
o
X i) = % PR L B TR (4.6)
f=—0r
Equation (4.6} is the desired relationship between the Fourier transforms of the
input and the output of the impulse train modulator in Figure 4.2(a}), Equation (4.6)
states that the Fourier transform of 1, (t) consists of periodically repeated copies of
X {f42), the Fourier transform of x.(t}). These copies are shifted by integer multiples
of the sampling frequency, and then superimposed to produce the periodic Fourier
transform of the impulse tram of samples. Figure 4.3 depicts the frequency-domain
representation of impulse train sampling. Figure 4.3(a) represents a bandlimited Fourier
transform having the property that X (780 = 0 for [22] = 22y, Figure 4.2{b) shows the
periodic impulse train 5§82, and Fgure 4.3{c) shows X, {70}, the result of convolving
X o €2y with 5{7€2} and scaling by 5-. Tt is cvident that when
Q,—Qu=0y, or 2, =20y (4.7)
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of the sampled signal with 25 <« 222,
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as in Figure 4.3(c), the replicas of X .{j£2; do not overlap, and therefore, when they are
added together in Eq. {4.0). there remains (to within a scale factor of 1/T) a replica
of X .(j&2) at each mteger multiple of £, Consequently, x..(f} can be recovered from
x.(r) with an ideal lowpass filter. This s depicted in Figure 4.4(a), which shows the
imq:uulm-: train modulator followed by an LTT systcm with frequency responsc H, (12).
For X .(jR) asin Figurc 4.4(b). X .( 22} would be as shown in Figure 4.4(c), where it 1s

assumed that §2, = 282, Since

X Af = H X078,

(4.8)
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Figure 4.4 Exact recovery of a
continugus-time signal from its samples
using an ideal iowpass filter,

it follows that if H,{j2) is an ideal lowpass filter with zain T and cutolf frequency 2,
such that

ﬂn‘ = nc < (8 - ﬂ.\'}'; f‘i‘ﬂ-
then
X (i) = X (fi2), (4.10)

as depicted in Fipure 4.4(e) and therefore x, (t} = x, (¢}
If the inequality of Eq. (4.7) does not hold, 1.e., if £, < 28y, the copies of X .(j£2)
overlap. so that when they are added together, X {792} is no longer recoverable by
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lowpass filtering. This isillustrated in Figure 4.3(d}, In this case, the reconstructed output
x40 )in Figure 4.4{a) iz related to the original continuous-timeinput through a distortion
refarred to as afiasing distortion, or, more simply, aliasing. Figure 4.3 illustrates aliasing
in the frequency domain for the simple case of a cosine signal of the form

X0y = cos gt {4.11a}
whaose Founer transform 1s
X 08 = wdi82 — ) 4+ mwdif2 4 £n) (.11}

as depicted in Figure 4.5(a}. Note that the impulse at —£I is dashed. It will be helpful
to observe its effect in subsequent plots. Figure 4.5(b) shows the Fourier transform
of i) with €2y = €;/2, and Figure 4.5(c) shows the Fourier transform of x, 1) with
%*— = fly == Q. Figures 4.5(d) and (e) correspond to the Fourier transform of the
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lowpass filter output for £y = /2 = #/7 and £,/2 = Oy = 1., respectively, with
£ = 8, /2. Figures 4.5(c) and {2} correspond to the case of aliasing, With no aliasing
[Figures 4.5{h} and (d)], the reconstructed output is

Kl = cos QF, (4.12)
With aliasing, the reconstructed output is
xrit) = cos(82; — S {4.13)

i.e., the higher frequency signal cos @y has taken on the identity {alias) of the lower
frequency signal cosiS2; — &)+ as a consequence of the sampling and reconstruction.
This discussion is the basis for the Myquist sampling theorem (MNyquist 192%; Shannon,
1949}, stated as follows.

MNyquist-Shannon Sampling Theorems:  Let x-(¢) be a bandlimited signal with

EKeifjfty=10 for (23] = &y, {4 1du)
Then x(1h 15 uniguely determined by ils samples xfn] = xoinT Lo =10, =1, £2. .. .. if
21
Q = = =20y. (4.14b)

The freguency 2y is commonly referred to as the Nyguist frequency, and the frequency
200y as the Mygrost rate.

Thus far, we have considered only the impulse train modulator in Figure 4.2{a).
Our eventual objecliveis to express X (&™), the discrete-time Founer transform (DTFL)
of the sequence x[n], in terms of X (i) and X (7). Toward this end, lel us consider
an alternative expression for X, (7 02). Applving the continuous-time Fourier transfonm
to Eq. {4.4% we obtain

o]
Xolj§0y = 3 xetnT )e™ /87T, (4.15)
R=—03
Since
xful = x i) (4.16)
and
[hon)
Xie!" = Z xr]e” ", {4.17)
AT
it follows that
X:ljﬂj =X if"ul}|11=RT =X "r"?ﬁ”.-}‘ (4lH]

Consequently, from Egs. (4.0} and {4.18},

1 l e
X (¢/87) = = ¥ X ko), (4.19)

k=—oo
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or equivalently,

w2 Lo [ 2k :
X (e == ch-[;(:{_ o )} (4.20)

b

From Egs (4.18)-(4.20), we sco that X (&™) is a frequency-scaled version of X . (70
with the frequency scaling specificd by w = 27, This scaling can alternatively be thought
of as a normalization ol the lrequency axis so that the frequency @ = 2, in X (i)
is normalized to e = 2w for X (™), The Irequency scaling or normalizalion in the
transformation from X ;(j72) to X (&™) 15 dircctly a resulil of the time normalization in
the transformation from v () 10 x[#]. Specifically, as we sce in Figure 4.2, x,{¢) retains
a spacing between samples equal to the sampling period T. In contrast, the “spacing”
of sequence values xln] is always unity; i.e., the time axis is normalized by a factor
of . Correspondingly, in the frequency domain the frequency axis is normalized by
Fi=1]T.

For a sinusoid of the form x,.(r) = cosQye), the highest {and only) [Tequency is
£2yy. Since the signal is described by a simple equation, it 18 casy 1o compute the sumples
of the signal. The next two examples vse sinusoidal signals to illusirate some imporiant
points about sampling,

Example 4.1 Sampling and Reconstruction of a Sinuscidal
Signal

i I we sample the conlinuous-time signal st = cos(40007 1) with sampling period
3-"; T = /A0, we obtain x[a] = x0T ) = cosiddlin T = cos{aym), where ey =
i 4000 T = 2o /3 In this case. 2, = 2/ T = 12000, and the highest frequency of the
¢ signal is €y = 0007, so the conditions of the Nyguist sampling theorem are satistied
“i: and there is no aliasing, The Fourier transform of k. () is

.-;'r'}.' XofE2) = w8082 — 40000 ) A S0 = 40006 ).
% Figure 4.601) shows

: s ;
xﬁum=? L X [J(8 = k2] (4.21)

k=—o0

- far 2, = 12i0der. Note that X . 72) is a pair of impulses at @ = S4000x, and we
¢+ see shifted copies of this Fourier transform centered on +£3,, £24, ere. Plotting
w X ooy = X /Ty as a fupctiom of the pormalived frequency o = 27 resulis
230 in Figure 4.0(h), where we have used the fact that sealing the independent wariable of

o an impulsc also scales its area, Le., 8o T ) = T8{w) (Oppenkeim and Willsky, 1997).
. Mote that the ariginal frequency £ = 4000r corresponds to the normalized frequency
- ey = 4000 T = 2ir/3, which satisties the inequality ey = =, correspanding to the fact
- thal g = 00kr - 7/ T = 60007, Figure 4.6(a) also shows lhe frequency response of
o an ideal reconstruction filter {00 Tor the given sampling rate of €, = 12000, This
© fpure shows that the reconstructed signal would have frequency £2; = 40007, which
¢ 18 the frequency of the ongnal signal x.iv).
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Figure 4.6 (a) Continuous-time and (b} discrete-time Fourier transtorms for sam-
a pled cosine signal with frequency £2n = 4000 and sampling period T = 16000,

Exampie 4.2 Aliasing in Sampling a Sinusoidal Signal

4 Now suppose that the continuous-lime signal is v} = cos{ 160Kk 1 ), but the sampling
T periced @5 T = 1 /6000, a5 # was in Example 4.1, This sampling peniod fails to satisfy
the Myguist criterion, since 2 = 2x/T — 120007 = 20y = 130007, Consequently,
we expect 10 see allasing, The Fourter transform X (82} for this case 1s identical to
‘o that of Figure 4.6{a). However, now the impulse located al 8 = —Wiix is from
VT XK F082 = 2,00 in Eg. (4.21) rather than from X (752, ) and the impulse at £ = 4000
b from X782 +£2,0]. That is. the frequencics 4000 are alias frequencics. Plotting

X e = X gt fo/ T pasafunction of e yields the same graph asshown in Figure 4,601},
4 sinee we are normalizing by the same sampling period. The fundamental reason for
" lhis is that the sequence of samples is the same in both cases; i.c..

coil 1al00z r /GO0 = cos{Zan 4 400Kk e /OO = cos{2om /3.

(Reeall that we can add any integer multiple of 27 to the argument of the cosine
withoul changing its value. ) Thos, we have obtamed the same seguence of samples,
£[r] = cosi2x a3, by sampling two different continuous-time signals with the same
sampling frequency, Inone case, the sampling frequency satisfied the Nyguist criterion,
and in the ather case it did not. As before, Figure 4.6{a} shows the frequency response
! of an ideal reconstruction filter H (82 for the piven sampling rate of 2, — 12000,
It is clear from this Ggure thal the signal that would be recomsinecied would have the
S frequency 52y = 4000x | which is the alias frequency of the original frequency TR0
- with respeet 1o the sampling frequency £, = 120007,

Examples 4.1 and 4.2 use sinusoidal signals o illustrate some of the ambipuities
that arc inherent in the samphing operation. Example 4.1 verifics that if the conditions
of the sampling theorem hold, the ariginal signal can be reconstrocted from the samples.
Example 4.2 illustrates that il the sampling frequency violates the sampling theorem, we
cannol reconstruct the original signal using an ideal lowpass reconstruction filter wilh
cutoff frequency al onc-hall the sampling [requency. ‘The signal that is reconstructed
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15 one of the alias frequencies of the original signal with respect to the sampling rate
used in sampling the original continuous-time signal. In both examples, the sequence of
samples was x[n] = cos(2xn /3, but the original continuous-time signal was different.
As suggesied by these two examples, there are unlimited ways of obtaining this same
set of samples by periodic sampling of a continuous-time sinusoid, All ambiguity is
removed, however, if we choose £y = 282,

4.3 RECONSTRUCTION OF A BANDLIMITED SIGNAL
FROM ITS SAMPLES

According to the sampling theorem, samples of a continuous-time bandlimited signal
taken frequently enough are sufficient to represent the signal exactly, in the sense that
the signal can be recovered from the samples and with knowledge of the sampling
periad. Impulse train modulation provides a convenient means for understanding the
process of reconstructing the continuous-time bandlimited signal from its samples.

In Section 4.2, we saw that if the conditions of the sampling theorem are mel
and if the modulated impulse train is filtered by an appropriale lowpass Tiller, then the
Fourier transtorm of the filter outputl will be dentical to the Fouricr transform of the
original continuous-time signal x,.(t), and thos, the output of the filter will be (0L Tf
we are piven a sequence of samples, x[#], we can form an impulse train v, (t) in which
successive impulses are assigned an area equal to successive sequence values, e,

0
= 3" xln)st - T ). 4.22)
M=—"0
The 1™ sample is associated with the impulsc at r = a7, where T is the sampling pertiod
associated with the sequence x[n]. I this impulse train is the input Lo an ideal lowpass
contintous-time filter with frequency response H . (j52) and impulse response i, (1), then
the output of the filter will be
xelt) = 3" xlnjh,(r —nT ), {(4.23)
=0
A block diapram representation of this signal reconstruction process is shown in Fig-
ure 4.7{a). Recall that the ideal reconstruction filter has a pain of T [to compensate
for the factor of 1/7 in Eq. (4.19) or (4.20}] and a cutoff frequency Q. between Qy
and £, — f¥w. A convenient and commonly used choice of the cutoff frequency is
£, = £2/2 = x/T. This choice is appropriate for any relationship between £, and
£2x that avoids aliasing (i.e., so long as €2, = 28 ). Figure 4.7(b) shows the frequency
response of the ideal reconstruction filter. The corresponding impulse response, f.(f),
is the inverse Fourier transform of 4, ( f2), and for cutoff frequency =/ T it is given by
sinfws /T

i) = ———. 424
i) xi/T { )
This impulse response is shown in Figure 4.7(c). Substituting Eq, (4.24) into Eq. (4.23)
leads Lo
sinfxir —nal )/T]
(1) = ! = : 4.25
s 3 R T (5

=
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Equations (4.23) and (4.25) express the continuous-time signal in terms of a linear
combination of basis functions k. {r — nT) with the samples x[n] playing the role of
coefficients. Other choices of the basis functions and corresponding coefficients could
be used to represent other classes of continuous-time functions [see, for example Unser
(20003]. However, the tunctions in Eq. (4.24) and the samples x[n] are the natural basis
functions and coefficients for representing bandlimited continuous-time signals.

From the frequency-domain argoment of Section 4.2, we saw thatif x|n] = x.(nT'),
where X (j02) = ( for (22| = =/T, then x.i1) is equal to x.(/). It is not immediately
obvious that this is true by considering Eq. (4.23) alone. However, useful insight is
gained by looking at that equation more closely. First, let us consider the function fi. (1)
given by Eq. (4.24). We note that

By =1. {4.26a)
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This follows from I'Hépital’s rule or the small angle approximation for the sine function,
In addition,

heinT ) =0 forn=41,4L2..... {4.26b)
It follows from Eqs. (4.20a) and (4.26b) and Ty, (4.23) that if x[n] = 2.(n T, then
ximT)=xAmT) (427}

for all integer values of m, Thal is, the signal that 15 reconsiructed by Eq. (4.23) has the
same values at the sampling times as the original continuous-lirne signal, independently
ol the sampling period 7.

In Figure 4.8, we show a continuous-time signal x,. (£} and the corresponding mod-
wlated impulse train. Figure 4.8(c) shows several of the terms

sinfzit = n¥ /T

*in] mt—al /T

and the resulting reconstructed signal x, (r). As suggested by this ligure, the ideal lowpass
filter interpedates between the impulses of x,{r) to construel a continuous-iime signal
x.(r). From Eq. (4.27), the resolting signal is an exact reconstruction of x.{r) at the
sampling times. The faet that, if there is no aliasing, the lowpass filter interpolates the

{1

{a)

B Figure 4.8 |deal bandlimited
i) interpolation.
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Ideal reconstruction svsiem
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Figure 4.9 {a) fdeal bandlimited signal reconstruction. {b} Equivalent represan-
taticn as an ideal D/C converter

correct reconsiruction belween the samples follows from our frequency-domain analysis
of the sampling and reconstruction process,

It 15 useful 1o formalize the preceding discussion by defining an ideal system for
reconstructing a bandhimited signal from a sequence of samples. We will call this svstem
the ideal diserete-to-continuous-time (1/C) converter. The desired system is depicted in
Figure 4.9, As we have seen, the ideal reconstruction process cun be represented as the
ennversion of the sequence to animpulse train, as in BEg. (4.22), followed by filtering with
an ideal lowpass filter, resulting in the output given by Eq. (4.23). The inlermediate step
of conversion wo an impulse train is a mathematical convenience in deriving Eqg. (4.25)
and 1 understanding the sipnal reconstroction process. However, once we are familiar
with this process, if is useful to define a more compact representalion, as depicted in
Figure 4. 9(b), whete the inpul is the sequence xfn] and the oulput is the continuous-time
signal x, (r) given by Eq. (4.25).

The properties of the ideal R/C converter are most easily seen in the frequency do-
main. Toderive an input/output relation in this domain, consider the Fourer transform
of Eg. (4.23) or Eg. (4.25), which ix

o
XA = D xlnlH (j@e /0,

=

Since H-{j52) s commaon to all the terms in the sum, we can write
X 9 = H (jQX (/97 (4.2%)

Cyuation (4.28) provides a frequency-domain description of the ideal D/C converter.
According to Eq. {4.28), X (¢} is frequency scaled (in effect, poing from the sequence
to the bmpulse train causes w to be replaced by 27T). Then the ideal lowpass filter
H, (i) selects the base period of the resulting periodic Fourier transform X (/%7
and compensates for the 1/ 7 scaling inherent in sampling, Thus, if the sequence x[n]
has been obtained by sampling a bandlimited signal at the Nvquist rate or higher, the
reconstructed signal & (t) will be equal to the original bandlimited signal. In any case,
it is also clear from Eq. (4.28) that the output of the ideal D/C converter is always
bandlimited to at most the cutoff frequency of the lowpass filter, which is typically
taken to be ope-half the sampling frequency,
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4.4 DISCRETE-TIME PROCESSING OF CONTINUOUS-TIME
SIGNALS

A major application of discrete-time systems is in the processing of continuous-time
signals, This is accomplished by a svstem of the general form depicted in Figure 4.10,
The system is a cascade of a C/T) converter. followed by a discrete-time system. followed
by a D/C converter, Note that the overall system is equivalent to a continuous-time
systam, since it transforms the continuous-time input signal x.{r) into the continuous-
time outpul signal v.(¢). The properties of the overall system are dependent on the
choice of the discrete-time system and the sampling rate. We assume in Figure 4.10 that
the C/ and TXC converters have the same sampling rate. This is not essential, and later
sections of this chapter and some of the problems at the end of the chapter consider
systems in which the input and output sampling rates are not the same.

The previous sections of the chapter have been devoted to understanding the
CiDY and DYC conversion operations in Figure 4.10, For convenience, and as a first step
in understanding the overall system of Figure 4.1, we summarize the mathematical
representations of these operations.

The CD converler produces a discrete-lime signal

xin] = xoind ), (4.29)

i.e., a4 sequence of samples of the continuous-time input signal x (). The DTFT of this
sequence is related to the continuous-time Fourier rransform of the continuous-time
mnput signal by

p—— } e e[ w2k (4.30)
== > :-J[F—T)- s
b=z
The DVC converler creates a continuous-lime output signal of the form
=4 . . pr
— sifadd —nT 1/7]
wit) = vin ; 4.31
(1) 21,! AT (4.31)

where the sequence y[r] s the oulput of the discrete-time system when the input 1o the

systems x[n]. From Eq. (4.28), ¥, ( 722}, the continuous-time Fourier transform of ¥ (7],
and ¥ie/®), the D1TT of y[n], are related by

o : Sy T}r{ﬁ_fﬂ]"] |ﬂ| “-'-'.'ff"IT. ’

— rp BTy L i J

Yo(jld) = H (JE)F (e ) = I{}_ otherwise. (4.32)

Next, let us relate the output sequence y[n ] to the input sequence xir|, or cguiva-

lently, Fe™) o X (@), A simple example is the identity system, e, ¥[n] = x[#n). This

| |
| Taly =] |
0 5 ”HE-:::;:“IG iy e
£ 6} : t|n] Ry wirt) : ¥.48)
| t t .
: T T |

Figurg 4.10 Discrete-time processing af continuous-time signals.
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is in effect the case that we have studied in detail so far. We know that if x.(¢) has a band-
limited Fourier transform such that X . j£2)} = 0 for |£2| = =/T and if the discrete-time
system v Figure 4,10 is the identity system such that v[r] = x|n] = x. {7}, then the
putput will be y (1) = r.{f). Recall that, in proving this result, we utilized the frequency-
domain representations of the conlinuous-time and discrete-lime signals, since the key
concept of aliasing is most easily understood in the frequency domain. Likewise, when
we deal with systems more compheated than the identity system, we generally carry
out the analysis in the frequency domain. Tf the discrete-time system is nonlinear or
time varying, it is usually difficult to obtain a general relationship between the Fourier
transforms of the input and the oulput of the system. (In Problem 4.51, we consider an
example of the system of Figure 4.10 in which the discrete-time system is nonlinear. }
However, the LTT casc leads to a rather simple and generally useful result.

4.4.1 Discrete-Time LTI Processing of Continuous-Time
Signals
If the discrete-time system in Figure 4.10 is lincar and lme invariant, we have
Pe!®) = H(e!)X (e/™), (4.33)

where Hie!*) is the frequency response of the svstem or, equivalently, the Fourier
transtorm of the unit sample response, and X (¢/*“}and ¥ {¢#*} are the Fourier transforms
of the input and output, respectively. Combining Eqs. (4.32} and (4,33}, we obtain

Y, Q) = H, (jQH e )X (o9, {4.34)
Next, using Fq. (4.30) with &0 = QT , we have
e 2k
V(0 = HGHEET S Y X, {;‘ (rz - L)] . (4.35)
e 1

If X, = 0 for |9 = x/T, then the ideal lowpass reconstruction Bleer H {j0)
cancels the factor 1/ T and selects only the term in Eq. (4.35) for k =1{; i.c.,

FeIyw (i [
r,uszn;[é“"’ MG Igr;:;;.: (4.36)

Thus, 1f X (/%) 15 bandlimited and the sampling rate is at or above the Nvquist rate,
the output is related to the input through an equation of the farm

Yol jS2) = Hop{ JO0VX A FR2), {d.37)
where
) M9y Q| < 7/ T, .
Hog(j82) = IG d ) EEI - FI‘J:"T (4.38)

That is, the overall continuous-time system is equivalent to an LTT system whose effecrive
frequency response is given by Eq. (4.38),

Tt is important o emphasize that the linear and time-invariant behavior of the sys-
tem of Fipure 4.10 depends on two factors, First, the discrete-time system must be lingar
and time invariant. Second, the input sipnal must be bandlimited, and the sampling rate
must be high enough so that any aliased components are removed by the discrete-time



Section 4.4 Dizscrete-Time Progessing of Continuous-Time Signals 169

system. As a simple illustration of this second condition being violated. consider the case
when x,(f}is asingle finite-duration unit-amplitude pulse whose duration is less than the
sampling period. If the pulse isunity atr = (), then x|n] = 4| n|. However. it is clearly pos-
sible roshift the pulse so thatit is not aligned with any of the sampling times, Le., x{nf = 0
forall». Such a pulse. being limiled in time, is not bandhimited, and the conditions of the
sampling theorem cannot hold. Even if the discrete-time system is the identity system,
such that v[n| = x[a|, the overall system will not be time invariant if aliasing occurs in
sampling the inpui. In general, if the discrete-time system in Figure 4.10 is linear and
time invariant, and if the sampling frequency is at or above the Nyquist rate associated
with the bandwidth of the input (13, then the overall system will be equivalent to an L1
continuous-time system with an effective frequency response given by Fq. (4.38). Fur-
thermore. Eq. (4.38) is valid even if some aliasing occurs in the (/D converter, as long as
Hiel®) does not pass Lthe aliased components. Example 4.3 is a simple illustration of this.

Example 4.3 Ideal Continuous-Time Lowpass Filtering
Using a Discrete-Time Lowpass Filter
Consider Figuee 4.10, with the T T discrete-Thme system having frequency response
: L] = e,
(i 4.3
H i) [i.'ll. e = ] S 4,39
This frequency response is pericdic with peried 2. as shown in Figure 4.11(a).
For bandlimited inputs sampled at or above the Nyquist rate, it follows from Eq. (4.38)
that the overall system of Figure 4.10 will behave as an LTI continuous-time system
2 with frequency response
1. |§2T| = e or 12| = we/ T,

Hoay (75 = {4.40)

0, 197 = we of |§2] = aa /T,

: Ag shown in Figure 4,11{b), this elfective [requency response is that of an ideal

“% lowpass flter with cutoff frequeney 2, = o/ T

: The graphical illustration given in Figure 412 provides an imterpretation of how
this effective response s achieved. Fipure 4.12(a) represents the Fourier transform

L Hie oy
e L
2 -tk ol 2w
5 fa}
3 g LD

ZI_

i
(b
Figure 4.1 {a) Frequency response of discrete-time system in Figure 4,10,

‘:_.{'i‘ {b) Corresponding effective continuons-time frequency response for bandlimited
e inputs,
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Figure 4.2 (a) Fowrier transform of a banclimited inpud sigreal. () Fourier trans-
forsn of semplad input plotled as a function of cortinuous-time frequency £3.
{c} Fourier transform X (o) of sequence of samples and frequency responss
Hr ety of discrate-time system plotted versus w. {g} Fourier transform of output
of discrete-time system. (&) Fourier transform of output of discrete-tme system
and frequency response of ideal recanstrugtion filter plotted versus . () Fourier
transform of cutput.
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# ofabandlimited signal. Figure 4.12(b} shows the Fourier transform of the intermediate
- modulated impulse train, which is identical o X l.’e"mr}, the DTFT of the sequence of
% samplesevaluated form = QT In Figure 4.12{c), the IYITT ol the sequence of sumples
“w and the frequency response of the discrete-time system are both plotted as a function

of 1he normalized discrete-time frequency variable a. Figure 4.12{d) shows Yied®) =
i H{e™ X (/%) the Fourier transtorm of the cutput of the diserete-time system, Figure
% 4.12{e) illustrates the Fourier transform of the output of the discrete-time svstem as
Jafunction of the continueus-time Treguency 2, Logether with the frequency response
*.. of the ideal reconstruction filter M, (j52) of the /C converter. Finally, Figure 4.12(f)
' shows the resulling Fourier translorm of the output of the DV C converter. By comparing
Cw Figures 4.12(a) and 4.12(f), we see thal the system behaves as an LTT system with

frequency response given by Eq. (4.40} and plotted in Figure 4.11{b}.

Several important points are illustrated in Example 4.3, First, note that the ideal
lowpass discrete-time filter with discrete-time cutoff frequency w, has the effect of an
ideal lowpass filter with cutoff frequency £, = w, /T when vsed in the configuration
of Figure 4,10, This cutoff frequency depends on both ew. and T, In particular, by vsing
a fixed discrete-time lowpass filter, but varving the sampling period T, an equivalent
continuous-time lowpass filter with a variable cutoff frequency can be implemented.
For example, if 7" were chosen so that 247 = w,, then the output of the system of
Figure 4.10 would be y. (1) = x.(t}. Also, as illustrated in Problem 4.31, Eq. {4.40) will
be valid even if some aliasing is present in Figures 4.12(b) and (c), as long as these
distorted (aliased) components are eliminated by the filter H{e’*), In particular, from
Figure 4.12(c), we see that for no aliasing to be present in the output, we require that

27— QnT) =y, (441)
compared with the Nvquist requirement that
(2m — QnT ) = QxT. (4.42)

As another example of continuous-lime processing using a discrete-time system, let us
consider the implementation of an ideal differentiator for bandlimiled sipgnals.

Example 4.4 Discrete-Time Implementation of an ldeal
Continuous-Time Bandlimited Differentiator

= The ideal continuous-1ime differentiator system is defined by

d .
b yelt) = e leh], {4.43)
7 with corresponding [requency respomnse
He(j@ = ja, (4,44}

7 Bince we are considering a realization in the form of Figure 4.1, the inputs are re-
i stricted Lo be bandlimited. For processing bandlimited signals, it is sufficient that

i, |9 <«=/T, :

i @ = /T, {4.45})
.. as depicted in Figure 4.13(a). The corresponding discrete-time system has frequency
ST Tesponse

-.':!:_-I H'{F_,l':'-:'j = %. |-c':il| <= 7, {4.45}

S Hoppi iy =
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anel 15 periodic with period 27, This frequency response is plotled in Figure 4.13(b).
The corresponding impulse response can be shown to be

1 ™ /i ; CORTR — Fi017
Ml = ,,—f (ﬂ e e = T° r—ﬂz el —n0 = K 0.
2 foo W T mrT

[ or eguivalently,

1, n=_(k

hn]l= 1 cosn 447
i[r] mSJ'_nI ot G {4.47)
nT

Thuss, if a discrete-time system with this impuolse response was used in the con-

- Dpuration of Figure 4,10, the outprut for every appropriately bandlimited input would

be the derivative of the input. Problem 4.22 concerns the verification of this for a

+ sinusoidal mpul signal,

i)
ﬂ |-
T
T ks 0
T r
‘;-.Hﬂ':'{j!.l'.!
s =
S . N
| - it
X

I
ol

i

Figurs 4.13 (a} Frequency response of a continuous-time ideal bandlimited dif-
ferentiator M:€2 = 38, |52 - /7. (0) Frequency response of a discrete-time
filter to implement a continuous-time bandlimited diferentiator,
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4.4.2 Impulse Invariance

We have shown that the cascade system of Figure 4.10 can be equivalent to an LTI
system for bandlimited input signals Let us now assume that, as depicted in Figure 4.14,
we are given a desired continuous-time system that we wish to implement in the form
of Figure 4,10, With H (i Q) bandlimited, Eq. (4.38) specifies how to choose H(e/%) so
that Hog( 782y = H(j2). Specifically,

H(e'™) = H (jw/T), w! =, (4.45)
with the further requirement that " be chosen such that
H.(jay=1, Q| = =/ T. {4.49)

Under the constraints of Egs. (4.48) and (4.49), there is also astraightforward and vuseful
relationship between the continuous-time impulse response /.(r) and the discrete-time
impulse response A[#]. In particular, as we shall verily shortly,

hin] = Tho(nT ) (4.50}

i.e, the impulse response of the discrete-time system is a scaled, sampled version of
h-ir). When Rin] and &0t} are related through Eq. (4.50)], the discrele-lime syslem s
said to be an impulse-fvariant version of the comtinuous-time system,

Equation (4.50}is a direct conseguence of the discussion in Sectiond. 2. Specifically,
with xfn] and x. (1) respectively replaced by A[n] and &,.(1) in Eq. (4.168), 1.,

hin} = ho(nT'), (4.51)
Eq. {4.20) hecomes
: | e o 2rky
Hey == % H.|ilz-5)]- 4.52
€7 Tl (_"('f' T )] S

Continuous time
— LTT svstem —
XA B (o), H A 54} Eokf)

fa}

g — vm w ra

Discrefe-rime
LTI systern  p—— 0
xr| R [me], He™) ¥|rl

o
]

x. ()

Hoqpl Ji1) = Ho{ A1)
th)

Figure 4 14 (a) Comtinuoos-lime LTI system, (b) Equivalent systern for bandlim-
ited inputs.



174

Chaptar 4 Sampling of Continuaus-Time Signals

or, if Eq. {4.49) 15 satisfied,

Hiei™ = :_H(_;T: N (4.53)
Moaodifying Egs. (4.51) and (4.53) to account for the scale factor of T in Eq. (4.50), we
have ;

Al = ThoinT ), (4.54)
Hie®) = H.. (;';—”] || = 1. (4.55)

Example 4.5 A Discrete-Time Lowpass Filter Obtained
by Impulse Invariance
27 Suppose That we wish 1o oblain an weal lowpass discrete-time {ilier with cutloff fro-

quEncy e = . We can do this by sampling a continaous-time ideal lowpass fifter with
0 cutoff frequency 82 = we/ T < mf 1 defined by

1, 10} = .

H-(jT) = I(., 10 = 5.

. The impulse response of this continuous-time system is
o sniER-D)
o) = —— ==,

T
so we define the impulse response of the discrete-time svstem to be

sin(£y.n AT
hin] = TheinT ) = 1'&“._«“ i i Tm{ﬂf}_
Tnl T

¥ where e = 0,7, We have already shown that this sequence corresponds Lo the DTET

10 e = cu-.

fraey
He™) = 0, e <o <1,

w5 which is identieal to W jeo/ T, as predicted by Ly, (4.55).

Example 4.6 Impulse Invariance Applied to
Continuous-Time Systems with Rational System Functions

~% Many continuous-time systems have impulse respanses composed of a sum of expo-
g pential sequences of the form

i

e heitd = A e™uirt,

- Such time functions have Laplace transforms
A 5
HAf) = = Helny = Relspl
&= &)
Ifwe apply the 1':11.pu13e invATiance concept such a coptinunus-limesystem, we oblain
' the impulse response

Blnl = Theind )= AT & M yn),
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- which has z-transtorm system (unclion
Af
Hisp= —————
1 — gl =1
and, assuming Relsgy < 0L

H{e"‘l-”;';l e

. whose impulse responses are sums of
quency responses that fall off rapidly at
2 the sampling rate is high enough. Thus,

.'
[
i
fit]
H
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2 spd’
lz] = [e™ |

e Tequency response

AT

| — gsud

# In this case. Eq. (4.55) does not hold cxactly, because the oripinal continuous-time
o system did not have a strictly bandlimited frequency response, and therefore, the re-
+ sulting discrele-time freguency responsc is an aliesed version of H-(752). Even though
- almsing occurs in such o case as Lhis, the effec) may be small. Higher-order svslems

complex exponentials may in fact have fre-
high frequencies, so that aliasing is minimal if
one appraach to the discrete-time simulation

of continuous-lime systems and also to the design of digital Gliers is through sampling
s of the impulse response of a corresponding analog filter.

4.5 CONTINUOUS-TIME PROCESSING OF DISCRETE-TIME
SIGNALS

In Section 4.4, we discussed and analyzed the vse of discrete-time systems for processing
continuous-time signals in the configuration of Figure 4.10. In this section, we consider
the complementary situation depicted in Figure 4.15, which is appropriately referred
to as continuous-time processing of discrete-time signals. Although the system of Fig-
ure 4,13 is not tvpically used to implement discrete-time svstems, it provides a useful
interpretation of certain discrete-time systems that have no simple interpretation in the
discrete domain.
From the definition of the ideal 1/C converter, X (752 and therefore also ¥.f f£2),
will necessarily be zero for [§2 = /T, Thus, the (VD converter samples v. (1) without
aliasing, and we can express x.(i) and y.(f) respectively as

x.th = Z x[m|

sinlsir —nd )/ T}

4.50
sty it —-nT YT ( )
and
o
sinfr it — nf )T =
e} = s 457
yelty= 3, = (437)
HN==—100
P:|rr| H{H‘*‘}
ety ey e ARG o ey
| |
' h () ; :
—t] M e = (A
J.[H!: ] H:A AL it} :_'r'[.ﬂl
| 4 ¥ :
: T T | Figure 4.18 Continuous-time

I processing of discrete-time signals.
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where xln] = x.(n¥ ) and y[n] = y.da¥ }, The frequency-domain relationships for
Figure 4.15 are

X 05 = TX (™), Q| < wfT. {4.58a)
YR = H (X (), (4.55h)
; 1 i .
reg ey & = o
}pa_TnQT) les| = . {4.58¢)

Therefore, by substituting Eqs. (4.58a) and (4.58b) into Eq. {4.58¢c). it follows that the
owerall system behaves as a discrele-time system whose frequency response is

Hf_e,r'mj =H, (;? ) : Jew) = . (4.59)
ot equivalently, the overall Irequency response of the system in Figure 4,15 will be equal
Lo a given Hief) il the [requency response of the cohtinuous-time system js

H.(j@) = H{el8Ty, i€ < m/T. (4.600)

Since X .(j&) = Ofor |2 = x/T, H.(jQ) may be chosen arbitrarily above =/ 7. A
convenient—bul arbitrary—choice is H.(j) = U for |2 = 2/ T.

With Lhis representation of a discrete-lime system, we can focos on the equivalent
effect of the continuous-time system on the bandlimiled continuous-time signal x,.(¢).
This is illusirated in Examples 4.7 and 4.8,

Example 4.7 Noninteger Delay

i Let us consider a discrefe-time svstem with frequency response

i H{edty = p—iod | = . {4.61)

"-.-: When A is an integer, this svstem has a straightforward interpretation as a delay of A,
£ L

vln] = xfn — Al (4.62)

When A s not an inleper. By, (4.62) has no formal meaning, because we canmol shill

= the sequence x|x| by o noninteger amount. Howaever, with the use of the system of

1 Figure 4,15, s uselul time-domain interpretation can be applied to the system speeified
o by Eg. (2615 Let Ff. 082y in Figure 4.15 be chosan to be

H oy = Ml = ,~iuTa, (463}

Then. from Eq. (4.59), the overall discrete-time system in Figore 4.15 will have the
w1 frequency response given by Eq. (4.61), whether of nol A 3% an integer. To interprel
© the system of Eq. (4.61). we note that Eq. (4.63) represents a time delay of T A seconds,
. Therefore,

yelt) =zt —TA L {4.64)

b i Furthermore, x-(¢) 1 the bandlimiled interpolation of x[r], and vin] is oblained by
sampling v.(¢) For example, il & = 11; ¥lnl woukl be the values of the bandlim-
ited interpolation halfway between the input sequence values. This is illustrated in
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i Fipure 4,16, We can alse obtain a direet convolution representation for the syslem
= defined by Fq. (4.6¢). From Fgs (4.64) and (4.56), we obban

E

wii] = vl ) = xainT - TA)

o i P o
Tt —TA—kPVYT
= 3 K Bl = 2 —] (4.65)
. mig - TA kT /T —a
*_ i lusin:!{n—k—.-ﬁ\]
= . i L T
i — &k — &)
if A== —00
;Tf‘:-: which is, by defionition, the convolation of x{r| with

hin] sin wim — Ad
] = ————, —o¢ T R DO,

i — Al
C5 When A is notan integer, hin] has infinite extent. However. whenr A = ny isan inteper,
itis casily shown that ijn | = &ls —an ), which is the impulse response of the ideal integer
delay system.

i - - e /xn:l:t]

£ i g L, alnl

L j w.

GEe v~ % -

' o T 2T o

i (a) ¥
2 F JEACEEARY
I -~ B s gl

bl 0o T ;

e ih)

e

i Figure 4.16 (a) Contifuous-time processing of the discrete-time sequence (B) can
it} produce a new sequerce with a “half-sample” delay.

The noninteger delay represented by Eq. (4.65) has considerable practical sig-
nificance, since such a factor often arises in the frequency-domain representation of
syslems. When this kind of term 1s found in the frequency response ol a causal diserete-
time system, il can he inlerpreted in the light of this example. This mlerpretabon is
illustrated in Example 4.8.

Example 4.8 Moving-Average System with Noninteger
Delay

:40 In Example 216, we considered the general moving-avernge system and obtained ils
] '.f: freguency response. For 1he case of the causal (A + [-poiol moving-average system,
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M{ —OGand Mo — M, and the frequency Tesponse is

| sinfm{M +11/2] — e
(M 4+ 1) sinim /2] & |

Hie!™y = || = . (4.66)

This representation of the frequency response suggests the interpretation of the

(& 4+ brpoint moving-averape system as Lthe cascade of (wo systems, 85 indicaled

in Figure 4.17, The first system imposes a frequency-domain amplitude weighting. The
sceond system reprosents the lincar-phase lerm in Eq. (4.66). I M s an cven integer

(meaning the moving average of an odd number of samples}, then the linear-phase

term corresponds to an integer delay, ic.

¥nl = wln — M2, (4.67)

'-1: However, if M is odd, the lincar-phase term corresponds to a noninteger delay, specif-

B vlnl

ically, an integer-plus-one-halt sample interval. This noninteger delay can be inler-
preted in terms of the discussion in Example 4.7; 1e., y[n] is equivalent to bandlim-
iled interpolation of wir], followed by a continuous-time delay of MT/2 (where T
is the assumed, but arbitrary, sampling period associated with the DYC interpola-
tion of w(a]), followed by €D conversion again with sampling period T. This frac-
tinal delay is illusirated in Figure 4.18, Figure 4.18{a} shows a diserete-time sequence
i[a] = cosil25zn). This sequence is the input to a six-point (M = ) moving-average
filter, Im this cxample, the input is "turmed on” far enough in the past so that the output
consists only of the steady-state response for the tme inlerval shown, Fipame 4,18(b}
shows the cormesponding cutput sequence, which is given by

Hie _,l[:'.Ei:‘."]lP_j”.zﬁ:l:n " Hl:g—_.ul’i.zﬁ::]l?— 35
2 i 2

rl_\ ﬁiﬂ_l=*Fl1-153f' | o~ ji02571572, j0.25mn _ L SIAIM02ITN 10 251572, j0:25mn
2 i 125m) 2 6sni—0.1237)

{1308 cos((125m(n — 2.51].

Thus, the six-point moving-average filter reduces the amplitude of the cosine signal
and introduces a phase shift that corresponds 1o 2.5 samples of delay. This is apparent
in Figure 418, where we have ploted the eontinuous-time cosines that would be inter-
polated by the ideal DVC converter for both the input and the cutput sequence. Note

ooin Fgure 4.18(k) that the six-poinl moving-average llering gives a sampled cosine

i3

1

g

3H

signal such that the sample points have been shifted by 2.5 samples with respect to

¢ lhe sample points of the inputl. This can be seen from Figure 4,18 by comparing the
L positive peak at # in the interpolated cosine for the input 1o the positive peak al 103

in the interpolated cosine for the output, Thus, the six-point moving-average filter is
seen o have adelay of 572 = 2.5 sumples

1 sin(w( M+ 137
hiE | (w2

.r[.r:]: + =i (2} W] [

|

B oy i o

Figure 417 Thz moving-average system represented as a cascade of two
systems.
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N S

Tk 051
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(b}

Figure 4.18 lllustration of moving-average filtering, {a) Input  signal
i x[n] = cos{B25zm. (b) Corresponding cuiput of six-point moving-average
it filter.

4.6 CHANGING THE SAMPLING RATE USING
DISCRETE-TIME PROCESSING

We have seen that a continuous-time signal x.(t) can be represented by a discrete-time
sipnal consisting, of a sequence of samples

xfn] = x.(nT ). {4.68)

Alternatively, our previous discussion has shown that, even if x[»| was not obtained
originally by sampling, we can always use the bandlimited interpolation formula of
Eq. (4.25) to reconstruct a continuous-time bandlimited signal x- (1) whose samples are
xlr| = x(nl) =x,(nT ).le,the samples of x {f) and 1. {r) are identical at the sampling
fimes even when ¥ (1) 2 x, ().

It is often necessary to change the sampling rate of a discrete-time sign:il, ie., to
obtain a new discrete-time representation of the underlying continuous-time signal of
the form

xifn] = xnTy), (4.69)

where T # T This operation is often called resampling. Conceptually, x;[#] can be ob-
taimed from x|n] by reconstructing x.{r) from x(a] using Eq. {4.25) and then resampling
x.(1) with peried Ty to obtain x (], However, this is nol usually a practcal approach,
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=y A =
xfn] x[n] = xfnd]
Sampling Sampling Figure 4.19 Representation of a
petiod T period Ty = MT g 3

compressor ar discrete-time sampter.

because of the nonideal analog reconstruction filter, DA converter, and AT converter
that would be used in a practical implementation. Thus, it is of interest to consider
methods of changing the sampling rate that involve only discrete-time operations.

4.6.1 Sampling Rate Reduction by an Integer Factor

The sampling rate of a scquence can be reduced by “sampling” it, 1.c., by defining a new
scquence

raln] = xinM] = x (nMT ). (4.70)

Equation (4,70} defines the system depicted in Figure 4.19, which is called a sampling
rafe comrpressar {see Crochiere and Rabiner, 1983 and Vaidyanathan, 1993) or simplv a
compressor. From FEq. (4.70), 1t follows that 1y [n] is identical 1o the sequence that would
be obtained from x.(r) by sampling with period Ty = M. Furthermore. if X (j§2) =0
for |82] = Sn, then xqln] is an exact representation of s-.() v/ Ty = a/iMT ) = Sy,
That is, the sampling rate can be reduced to /M without aliasing if the original sampling
rate 15 at least M times the Nyquist rate or if the bandwidth of the sequence is first
reduced by a factor of M by discrete-time liltering, In general, the operation of reducing
the sampling rate {(including any prefiliering) is called downsampling.

Asin the case of sampling s continuous-time signal, itis useful to oblain a frequency-
domain relation between the input and oulput of the compressor, This tme, however,
il will bz a relationship between DTTTs Although several methods can be wsed to de-
rive the desired result, we will base our derivation on the resulis already obtained for
sampling continuous-time signals. First, recall that the DTET of x[n] = x.(aT ) 13

o0

1 el 1.1'!'{
_|I|"l.l . -
X [ef™h = F Z X [_i" (? o+ T]] ' {-‘i._.'rlj
E=—na
Simularly, the DTTT of x4[n] = x[nM| = x (nTy1 with Ty = MT is
: ], s el 2ar
Xgleh) = — X-['(—— )} 4.72
dle Tir;x St (4.72)
MNow, sinee Ty = M T, we can write Eq. (4.72) as
Xie == 3 x (i—z"—r) .73)
= L Vel \aE T i) | |

To see the relationship between Egs. (4.73) and (4.71), note that the summation index r
in Eq. (4.73) can be expressed as

r=1i+ &M, {474}
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where kK and  are integers such thel —oc =k < soand b =i = M 1. Clearly, r is still
an integer ranging from —oao to oo, but now Eq. (4.73) can be expressed as

i L2 = ol 2ok 2mi
- oy _ 2 £ O T [P MO e O ;
Xale™) =4 Z T Z M“[*J (MT r M}“)H' (475)
i=l} L]
The term inside the square brackets in Eq. {4.75) is recognized from Eq. (4.71) as
S— (i w— 2mi 2wk
o Rt T P [l i ronl o .
Xie } Té;ﬂxt [j( T T )] {4.76)
Thus, we can express Eq. (4.75) as
p M-l
A W LT - i M =2 f M) ;
Kg(e) = VX ). (4.77)

i=(l

There is a strong analogy between Egs. (4.71) and (4.77): Equation (4.71) expresscs
the Fourier transform of the sequence of samples, x[n] (with period T in terms of the
Fourier trarstorm of the continuous-time signal x. (r): Equation (4.77) expresses the
Fourier transform of the discrete-time sampled sequence xz[n] { withsampling period M)
in terms of the Fourier transform of the sequence x[n]. If we compare Eqgs. (4.72) and
(4.77), we see that X s(#/) can be thought of as being composed of the superposition
of either an infinite set of amplitude-scaled copies of X .( jL2), frequency scaled through
o = 0Ty and shifted by integer multiples of 2 [Eq. (4.72)]. or M amplitude-scaled
copies of the periodic Fourier transform X (ef¥y, fr equency scaled by Af and shifted by
integer mulliples of 2 [Eq. (4.77)]. Either interpretation makes it clear that X ey iy
perindic with period 2 (as are all DTFTs) and that aliasing can be avoided by ensuring
that X (/%) is bandlimited, i.e,

X(el™ =0, < leof = . (4.78)

and 2x/ M = 2w,

Downsampling is illusirated in Figure 4.20 for M = 2. Figure 4.20{a}) shows the
Fourier (ransform of a bandlimiled continuous-time signal. and Figure 4.20(b) shows
the Fourier transform of the impulse train of samples when the sampling period is
T. Figure 4.2iMc) shows X (2} and is related to Figure 4.20(h) through Eq. (4.18).
As we have already seen. Figures 4.20{b} and (c) differ only in a sealing of the fre-
guency variable. Figure 4.20{d) shows the DTFT of the downsampled sequence when
M = 2. We have plotied this Fourier transform as & function of the normalized frequency
i = £2T,. Finally, Figure 4.20(2) shows the DTFT of the downsampled sequence plotted
as a [lunction of the continuous-time frequency variable Q. Figure 4.20(¢) is identical
Lo Faure 420(d), excepl lor the scaling of the frequency axis through the relation
D =w/Ty.

In this example, 2/ T = 4€Qy; i.e., the origina sampling rate is exactly twice the
minimum rate to avoid aliasing. Thus, when the orginal sampled sequence is downsam-
pled by a facior of M = 2, no aliasing resulis. If the downsampling factor is more than
2 in this case, aliasing will result, as illustrated in Rgure 4.21.

Figure 421{a) shows the conlinuous-time Fourter transform of x.(r), and Fig-
ure 4.21(b} shows the DTET of the sequence x[n] = x.(nT ), when 27 /T = 482, Thus,
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Figura 4.20 Frequency-domain illustration of downsampling.
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Lavwpass filter i

———]  (uin=1 f—

z[n]

Sampling
period T

= M —
Cutall = w/d | xlaf Halnl = X|rM)

Sampling Sampling
period T pericd Tp= MT

Figure 4.22 General system for
sampling rate reduction by 4.

ay = 5T = = /2. Now, if we downsample by a factor of M = 3, we obtain the sequence
xaln] = x[3n] = x.in3T ) whose DTFT is plotted in Fieure 4.21{c} with normalized
frequency w = QT,. Note that because Mwy = 37 /2, which is greater than =, aliasing
oceurs. In peneral, to avoid aliasing in downsampling by a factor of M requires that

M < or wy =M. [4.-."9}

If this condition does not hold, aliasing occurs, but it may be tolerable for some appli-
cations. Lo other cases, downsampling can be done without aliasing if we are willing to
reduce the bandwidth of the signal x[#] before downsampling. Thus, if x[»] is filtered
by an ideal lowpass filter with cutoff frequency 7/ M, then the output |n) can be down-
sampled without aliasing, as illustrated in Fipures 4.21{d), (e}, and (f}. Note that the
sequence T;[n] = ¥|n M1 no longer represents the original underlving continuous-time
!«;igna] xoit) Rather, ¥y[n] = X (nTy). where Ty = MT . and k(1) is obtained from x.(n)
by lowpass filtering with coloff frequency Q. =7/ = f/(MT

From the preceding discussion, we see thal a penetal system for downsamphing by
a factor of M is the one shown in Figure 422, Such a system is called a decimator, and
downsampling by lowpass liltering followed by compression hasbecn termed decimation
{ Crochiere and Rabiner, 1983 and Vaidyanathan, 194933,

4.6.2 Increasing the Sampling Rate by an Integer Factor

We have seen that the reduction of the sampling rate of a discrete-time signal by an
integer factor involves sampling the sequence in a manner analogous to sampling a
confipuous-time signal. Not surprisingly, increasing the sampling rate involves opera-
tions analogous to DAC conversion. To see this, consider a signal x[n| whose sampling
rate we wish to increase by a factor of L. If we consider the underlying continuous-time
signal r.(13, the objective is to obtain samples

&iln] = xAnli), (4.80)
where 77 = 7'/ L. from the sequence of samples
xln] = xe(nT ). (4.81)

We will refer to the operation of increasing the sampling rate as upsampling,
From Eqs. (4.80) and {481}, it follows that

gi[n] = x[rfL] = x0T 7L, =l 2 (482)

Figure 4,23 shows a svstem for oblaining x;[#] from x[r] using only discrele-time pro-
cessimg. The system on the left is called a sampling rate expander (see Crochicre and
Rabiner, 1983 and Vaidyanathan, 1993} or simply an expander. [ts output 15

x[r/L), m=40,&£L, 2L, ...,

oy} = (, otherwise,

(4.83)
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Lowpass filter
—  fL e Gain=L |—
x[n] xn] | Cutofi=wir | xfn]
Szmphng Splng Sampling Figure 4.23  Ganeral system for
perigwd ¥ period T = TV period T, = TL

sampling rata increase by L

or equivalently,
be
xfn]l= Z x[k]&fn — kL] {4.84)
k — =

The system on the right is a lowpass discrete-lime filker with cutoff frequency /1. and
gain L. This svstem plays a role similar to the ideal D/C converter in Figure 4.9{h).
First, we create g discrete-time impulse train x.[n], and we then ase a lowpass filier Lo
recunsiruct the sequence, ;

The operation of the system in Figure 4.23 is mast easily understood in the fre-
guency domain. The Fourier transform of x,[a] can be expressed as

Xl = 3 (Z kB -m)

e (4.85)
_ Z IL“?_J:-_.J:.L =K I:t:-"""j').
k=

Thus, the Fourier transform of the ouiput of the expander is a frequency-scaled
version of the Fourier transform of the input; 1.e., w is replaced by @l so that w is now
normalized by

w = L3F;, {4.86)
This effect s illustraled in Figure 4.24. Fgure 4.24(a) shows a bandlimited continuous-
time Fourier transform, and Rgure 4.24(b) shows the DTFT of the sequence xfn] =
o(nT ), where 7/ T = 2y, Figure 4.24{¢) shows X (/™) according Lo Eq. (4.85), with
L =2, and Figure 4.24(e) shows the Fourier transform of the desired signal x;[n]. We see
that X ;ie/*) can be obtained from X (e} by correcting the amplitude scale from 1, T
to 1/ 7; and by removing all the frequency-scaled images of X . f2) except at integer
multiples of 2. For the case depicted in Figure 424, this requires a lowpass filter with a
gain of 2 and cutoff frequency x /2, as shown in Figure 4.24{d). In general, the required
gain would be L, since L(1/T ) = [1/{T/L}] = 1/ T;, and the cutoff frequency would be
m/L.

This example shows that the system of Figure 4.23 does indeed give an output
satisfving Fq. {4.80) if the input sequence xfn] = r.(nT ) was obtained by sampling
without aliasing, Therefore, that system is called an interpelator, since it fills in the
missing samples, and the operation of upsampling 15 consequently considered to he
synonvmous with inrerpalarian,

Asin the case of the IV Cconverter, it is possible to obtain aninter polation formula
for xin] in terms of £[«]. First, note that the impulse response of the lowpass filler in
Figure 4,23 s
sin(mn /L)

hilp = bid -‘.E

(4.87)
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Figere 4.24  Frequency-domain illustration of interpolation,
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Using Eq. {4.84), we obtain

winl= 3 a2, (438)

k=—o%
The impulse response i;[x] has the properties
0 =1,

4.89
hilnl =1, =1L, 2L ... CBEn)
Thus, for the ideal lowpass interpolation filter, we have

xfnl =x[n/L] = x0T/ LY = x.(nT}), n=0 %L 2L, . .., (4.9}

as desired. The fact that x;[n] = x.(uT,) for all # Tollows rom our frequency-domain
argument.

4.6.3 Simple and Practical Interpolation Filters

Although ideal lowpass [lters for imterpolation cannol be mplemented exactly, very
pood approximations can be designed using technigues Lo be discussed in Chapter 7.
However, in some cases, very simple interpolation procedures are adeqguate or are forced
on us by computational limitations. Since hinear interpolation is often used (even though
it is oflen not very accurale), it is worthwhile to examine this process within the peneral
framework that we have just developed.

Linear interpolation corresponds 1o interpolation so that the samples between
two otiginal samples he on a straight line connecting the two original sample values,
Linear interpolation can be accomplished with the svstemn of Figure 4.23 with the filter
having the triangularly shaped impulse response

1—|m|/f, |#] =L,

Q, atherwise. (4.91)

fpglaf =

as shown in Figure 4.25 for £ = 5. With this filter, the interpolated outpul will be
a+rL-1
Xjinln] = Z K0k lfyin e — ] [4.92)
kmp—la1

Figure 4.26(a) depicts x,[£| (with the envelope of hyjn[n—k] shown dashed for a particular
value n = 18) and the corresponding output xjp [#] for the case £. = 5.In this case, xjj[n]
for 1 = 18 depends only on original samples x[3] and x[4]. From this figure, we see that
xlinfn] is identical o the sequence obtained by connecting the two original samples on
cither side of x by a straight line and then resampling at the L. — | desired points in

i o
. ,Ar'TT
0

hﬂn]"i
L=5

L

5
5
g 2i5
[Th
1L“= . Figure 4.25 impulse response for
®  linear interpolation.
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x.[x]
=3

e T T

[ =]
2

L L

=T 4
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v 4
5 5

iy

(b3

Flgure 4.26 (3 [llustration of lingar interpolation by filtering. {b) Frequency re-
sponse of linear interpolatar compared with ideat lowpass interpolation filker,

between. Also, note that the ariginal sample values are preserved because fj[0) = 1
and hyjp(n| = 0 for |w] = L,

The nature of the distortion in the intervening samples can be better understood
by comparing the frequency response of the linear interpolator with that of the ideal
lowpass interpolator for a factor of L interpolation. Tt can be shown (see Problem 4.56)
that

E 1 Eln{mf_. l."12'] £ .
Hyn &My = —_— | (4,93
tn (€7 L { sinier/2) ] : )

This function s plotted in Figure 4.26(b) for L = 5 together with the ideal Towpass
interpolation filter. From the figure, we sce thal if the original signal is sampled at just
the Nyquist tate, 1.c., npol oversampled, linear interpolation will not be very accurate,
since the autput of the filter will contain considerable cnergy inthe band /L < |wl = =
due to the frequency-scaled images of X o) 2 al multiples ol 27/ that are not removed
by the linear interpolation filter, However, if the original sampling rate is much higher
than the MNyquist rate, then the lincar interpolalor will be more suecessful in removing
these images because Hyp,(e/“) is small in a narrow region around these normalized
frequencies, and at higher sampling rates, the increased frequency scaling causes the
shifted copies of X .(j2) to be more localized at multiples of 27 /L. This is intuitively
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reasonable from a time domain perspective too, since, if the original sampling rate
greatly exceeds the Nyquist rate, the signal will not vary significantly between samples,
and thus, linear interpolation should be more accurate for oversampled signals,

Because ofits douhle-sided infinite-length impulse response, the ideal handlimited
interpolator involves all of the original samples in the computation of each interpolated
sample. In contrast, lingar interpolation invalves only twe of the original samples in the
computation of each interpolated sample. To hetter approximate ideal bandlimited in-
terpolation, it is necessary to use filters with longer impulse responses. For this purpose
FIR filters have many advantages. The impulse response i,[n] of an FIR filter for inter-
polation by a factor L usually is designed to have the following properties:

hilnl=0 |n =KL (4.94a)
hilnl = hil-n]  In| = KL {4.94b)
RlOl=1  n=0 (4.94c)
hilnl=0 n==L +2L,... +KL. {4.94d)

The interpolated output will therefore be

rtKL—1
¥i[n]= Z xo [k [n — k). (4.95)

k=n—FK 141

MNote that the impulse response [or linear interpolation satisfies Bgs. {4.94a)—(4.944d)
with ¥ = 1.

It is important to understand the motivation for the constraints of Egs. (4.94a)
(4.94d). Equation {4.94a) states that the length of the FIR filter is 2K L — 1 samples.
Furthermore, this consiraint ensures that only 2K original samples are involved in the
computation of each sample of &;[#]. This is because, even though Biln] has 2K L — 1
nonzero samples, the input x.[4] has only 2K nonzero samples within the region of
support of £;[n — k] for any » hetween two of the original samples. Equation (4.94b)
ensures that the filter will not introduce any phase shilt into the interpolated samples
since the corresponding frequency response is a real function of w. The system could
be made causal by introducing a delay of at least K1 — 1 samples In fact, the impulse
response i [7 — K L] would vield an interpolaled output delayed by K L samples, which
would correspond 1o a delay of K samples al the original samphing rate. We might want
Lo insert other amounts of delay so a% Lo equalize delay among parts of a larger system
that involves subsyslems operating at different sampling rates. Finally, Eqs. (4.94c) and
{4.94d) puaraniee that the orginal signal samples will be preserved in the output, Le.,

Zilnl = xInfL| at w=0 XL 2L, .... i(4.96)

Thus, if the sampling rate of %; [#] is subsequently reduced hack to the original rate (with
no intervening delay or a delay by a multiple of L samples) then ¥[aL] = x[nl e, the
original signal is recovered exactly, T this consistency is not required, the conditions of
Fgs. (4.94¢) and (4.94d) could be relaxed in the design of & [n].
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Figure 4.27 shows x k] and k;[n — k] with K = 2. The ligure shows that each
interpolated value depends on 2K = 4 samples of the original input signal. Also note
that computation of cach interpolated sample requires only 25 multiplications and
2K — | additions since there are always £ - 1 zero samples in x.[k] between each of the
origingl samples.

ffr — k)
& - ~ x|k}
'
bt
s b

] 2L 1 AL ]
--a—a—a—a | e - w o = B IR TR A - _p - LI =
o L 1=— - E1é n 4L ~|- of. k

Figura 4.27  llustration of interpalation inveleing 26 = 4 samples when [ = 5,

Interpolation is a much-studied problem in numerical analysis. Much of the de-
velopment in this field is based on interpolation formulas that exactly interpolate poly-
nomials of a certain degree. For example, the linear interpolator gives exact results for
a constant signal and one whose samples vary along a straight line. Just as in the case
of linear interpolation, higher-order Lagrange interpolation formulas (Schafer and Ra-
biner, 1973) and cubic spline interpolation formulas (Kevs, 1981 and Unser, 20000 can
be cast into our linear filtering framework to provide longer filters for interpolation,
For example, the equation

(a+ 2 /L - (a+3in/Lit+1 D=n=L
filnl = {3 aln/LP — Sin/L1E + 8aln/L| —da L <n=<2L (4.97)

{} otherwise

defines a convenient lamily of interpolation filter impulse responses that invelve four
(K = 2} original samples in the computation of each interpolated sample. Figure 4.28(a)
shows the impulse response of a cubic filter for & = —0.5 and L = 5 along with the
filter {dashed triangle) for linear (K = 1) interpolation. The corresponding {requency
responses are shown in Figure 4.28(b) on a logarithmic amplitude (dB) scale. Note that
the cubic filter has much wider regions around the frequencies 27/ L and 4= /L {4z
and 087 in this case) but lower sidelobes than the linear interpolator, which is shown
as the dashed line.

4.6.4 Changing the Sampling Rate by a Noninteger
Factor

We have shown how to increase or decrease the sampling rate of a sequence by an
integer factor. By combining decimation and interpolation, it is possible to changs
the sampling rate by a noninteger factor. Specifically, consider Figure 4.29(a). which
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shows an interpolator that decreases the sampling period from ¥ to T/L, followed by a
decimator that increases the sampling period by M, producing an output sequence ¥yn|
that has an effective sampling period of (T M /L). By choosing L. and M appropriately,
we can approach arbitrarily close to any desired ratio of sampling periods. For example,
if L = 100 and M = 101, then the effective sampling period is 10171,

IfM = L, there is a net increase in the sampling period (a decrease in the sam-
pling rate), and if M = L, the opposite is true, Since the interpolation and decima-
tion filters in Figure 4.2%{a] are in cascade, they can be combined as shown in Fig-
ure 4.29b) into one lowpass filter with gain 4, and cutoff equal to the minimum of
g/l and r/M_ I M = L, then 7/M is the dominant cutoff frequency, and there is a
net reduction in sampling rate. As pointed out in Section 4.6,1, 1 x[n] was obtained by
sampling at the Nvquist rate, the sequence iy[n] will correspond 1o a lowpass-filtered
version of the original underlying bandlimited signal if we are to avoid aliasing. On
the other hand, if M < L, then x/L 15 the dominant cutoff frequency, and there will
be no need to further limit the bandwidth of the signal below the original Nyquist
frequency.

Example 4.2 Sampling Rate Conversion by a Noninteger
Rational Factor

Figure 4.30 illustrates sampling rate conversion by a rational factor. Suppose that a
bandlimited signal with X (742} a5 given in Fgure 4.30a) s sampled a1 the Nyquist
orate; e, 2m/ 1 = 20y, The resuiting DXITT

5 i o w Ak
xe=z ¥ xeli( ))
I J—— \ T T £

" is plotted in Figure 4.30(b). An effective approach (o changing the sampling period
S (32T, is to first interpolate by a factor L = 2 and then decimate by a factor of
: M = 3. Since this implies a net decrease in sampling rate, and the original signal was
sampled al the Nyguist rate, we musl incorporate additional bandlimiting to pvoid
22 aliasing.

: Fipure 4.30c) shows the DTFT of the output of the £ — 2 upsampler. If we were
i indergsted only in mterpolating by a factor of 2, we could chooge the lowpass flter to
" have a cutoff frequency of sy = 7/2 and a gain of L = 2. However, since Lhe autput
- of the filter will be decimated by M = 3, we must use a cotoff frequency of - = 743,
but the gain of the filter should still be 2 as in Figure 4.30(d). The Fourier transform
- X;ie’™) of the output of the lowpass filter is shown in Figure 430(¢). The shaded
. regions indicate the par of the signal specirom Lhat is removed owing 1o the lower
cutoff frequency for the interpolation filter. Finally, Figure 4.30{f) shows the [XTET
of the culput of the downsampler by M = 3 Nolc that the shaded regions show the
aliasing that would have accurred iF the cutoff Trequency of the interpolation lowpass
o0 filter had becn /2 instcad of x /3.
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4.7 MULTIRATE SIGNAL PROCESSING

Ag we have seen, it is possible 1o chanpe the sampling rate of a discrete-time signal by a
combination of interpolation and decimation. For example, if we want a new sampling
period of LOLT, we can lirst interpolate by L = 100 using a lowpass filler that cuts off
gt @, = /101 and then decimale by M = 1L These large intermediate changes in-
sampling rate would reguire large amounts of computation lor cach oulpul sample if we
implement the filtering in a straightforward manner at the high intermediate sampling
rate that is required. Fortunately, it is possible 1o greatly reduce the amount of com-
putation required by taking advantage of some basic techniques broadly characterized
as mltirute signal processing. These multirate techniques refer in general to utilizing
upsampling, downsampling, compressors, and expanders in a variety of ways (o increase
the efficiency of signal-processing systems. Besides their use in sampling rate conver-
sion, they are exceedingly vseful in ATY and 1WA systems that exploit oversampling
and noise shaping. Another important class of signal-processing algorithms that relies
increasingly on multirate techniques is filter banks for the analysis and/or processing of
signals

Hecause of their widespread applicability, there is a large body of results on mul-
tirate signal processing techniques. In this section, we will focus on two basic results
and show how a combination of these results can preatly improve the efficiency of sam-
pling rate conversion, The first resull is concerned with the interchange of filtering and
downsampling or upsamphng operations. The second 15 the polyphase decomposition.
We shall also give two examples of how multirate lechnigues are used.

4.7.1 interchange of Filtering with
Compressor/Expander

First, we will derive bwo identitics that aid in manipulating and understanding the opera-
tion of multirate systems. Tt is straightforward to show that the two systems in Figure 4.31
are equivalent. To see the equivalence. note that in Figure 4.31{h),

X piet™) = Hie! ™)X (e/), {4 98)
and from Eq. (4.77],

M-
F{‘-’jw] e :H E Xﬁ{fjl;m.-'ﬂ»:z'—zrru.#ﬂ}_ f49"§j

=L}

— Ly Hiz} b
] L | ¥l
i)

e £ {2 M
i[n] xg[n] ¥[r]

Figure 4.31  Two equivalent systams
(h) based on downsampling identities.
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x[n] x,[n] ¥[n]
{a}
- AL N ey ) —
#i 1l yinl Figurs 4.32 Two equivalent systems
(b} based on upsampling identities.

Substituting Eqg. (4.98) into Eq. (4.99) gives

_ | M1 . _ .

Yel*) = o ¥ xaheim iy ar ol b=ty (4.100)
fe=l}
Since H{el/'w 2%y — H{ef) Eq. (4.100) reduces to
| Mol _ _
i RN
P

Hie™)X gie™), (4.101)

which corresponds 1o Figure 4.31 {a). Therelore, the systems in Figure 4.31{a) and 4 31(b)
are completely equivalent.

A similar identity applies to upsampling. Specifically, using Eq. {4.85) in Sec-
tion 4.6.2, it is also straightforward to show the equivalence of the two systems in Fig-
ure 432. We have, from Eq. (4.85) and Figure 4.32(a),

Yiedy = X (ef™k)

= X (efoilypf (gioly (4.102)
Since, from Eq. (4.85),
X o™y = X (e9¥5,
it follows that Eq. (4.102) ix, equivalently,
Yiel®y = Hig/™F)X p(ef®),

which corresponds fo Fipure 4.32(b).
In summary, we have shown that the operations of linear filtering and downsarn-
pling or upsampling can be interchanpged if we modify the linear filter.

4.7.2 Multistage Decimation and Interpolation

When decimation or interpolation ratios are large, it s necessary to use filters with very
long impulse responses to achieve adequate approximations to the required lowpass
filters. In such cases, there can be significant reduction in computation through the use
of multistage decimation or interpolation. Figure 4.33{a) shows a two-stage decimation
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Figure .33  Multistage decimation:
[ %yl (a) Twio-stage decimation system.
— Mz M) = (M My (b} Modificaticn of {a) using
downsampling identity of Figure 4.31.
{c} (¢ Equivalent one-stape decimation.

svstem where the overall decimation ratio is M = MMz, In this case, two lowpass
filters are required; #(z) corresponds to a lowpass filter with nominal cutoff frequency
x/ M and likewise, Ha(z) has nominal cutoff frequency /M-, Note that for single-
stage decimation, the required nominal cutoff frequency would be x /M = 7 /(M) M2},
which would be much smaller than that of either of the two filters. In Chaprer 7 we will
see that narrowband filters generally require high-order system functions to achisve
sharp cutoff approximations to frequency-selective filter characteristics. Because of this
effeci, the two-stage implementation 15 often much more afficient than a single-stage
implementation.

The single-stage sysiem that is equivalent to Figure 4 33(a} can be denived using the
downsampling identity of Figure 4.31. Figure 4.33(h) shows the result of replacing the
system H;(z) and ils preceding downsampler (by M) by the system H; (2™ followed
by a downsampler by My, Figure 4.33(¢) shows the result of combining Lhe cascaded
lincar systems and cascaded downsamplers inlo corresponding single-stage syslems.
From this, we see thal the system lunction of the cyuivalent single-stage lowpass filter
15 the product

H(z) = H:{z)Ha (2", (4.103)

This equation, which can be generalized to any number of stages if M has many factors,
is a useful representation of the overall effective frequency response of the two-stage
decimaltor. Since it explicitly shows the effects of the two filiers, it can be used as an aid in
designing effective multistage decimators that minimize compulation. (See Crochiers
and Rabiner, 1983, Vaidyanathan, 1993, and Bellanger, 20000} The factorizalion in
Ey. (4.103) has also been used directly to design lowpass fillers (Neoavo el al., 1984).
In this context, the Glter with system function represented by Eg. (4.103) s called an
irterpolated FIR fifter. This is because the corresponding impulse response can be secn
to be the convolution of i) [#] with the second impulse response expanded by Mzie,
=
hlel =hylnl= Y halklle — kM. (4.104)
k=—a

The same multistage principles can be applied to interpolation, where, m this case,
the upsampling identity of I'igure 4.32 is used to relate the two-stage interpolator to an

equivalent one-stage system. This is depicted in Fipure 4.34,
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4.7.3 Polyphase Decompositions

The polyphase decomposition of a sequence js obtained by representing it as a super-
position of M subsequences, each comsisting of every Mth value of successively delayed
versions of the seguence. When this decompaosition is applied to a filter impulse re-
sponse, i1 can lead to efficient implementation structures for linear fillers in several
contexts. Specifically, consider an impulse response fifn] that we decompose inta M

subsequences fgdn]withk =0,1, .., M — 1 as follows:
| Al K], n =integer multiple of M, R
hiln] = [ 0, otheTwise. (4.105)

By successively delaying these subsequences, we can reconstruct the original impulse
response fifn]; e,

M-1
hla) = Y heln = &}, (4.106)
kb

This decomposition can be represented with the block diagram in Figure 4.35, If we
cregle a chain of advance elements at the inpul and a chain of delay elements at the
output. the block diagram in Figure 4,36 15 equivalent to that of Figure 4.35, In the
decomposition in Figures 4.35 and 4.36, the sequences ¢;[n] are

eglnl = hlnM + k] = by ln M {4,107}

and are referred to in general as the polyphase components of #[r]. Therce arc several
other ways to derive the polyphase components, and there are other ways to index them
for notational convenience { Bellanger, 200 and Vaidyanathan, 1993}, but the definition
in Eq. (4.107} is adequate for our purpose in this section,

Figures 4,35 and 4,36 are nol realizations of the filter, but they show bow the filter
can be decomposed into M paralle] Gilters. We see this by noting that Figures 4.35 and
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Figure 4.35 Palyphase decomposition of filter 7[r] using compaonents g;[n].
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Figure 4.36 Polyphase decomposition of filker A7a] using components g, [ 7] with
chained dalays.

4.36 show that, in the frequency or z-transform domain, the polyphase representation
corresponds to expressing H(z) as
a—1
Hiz) =} Exz™), (4.108)
ke

Equation (4.108) expresses the system function (2} as a sum of delaved polyphase
component filters, For example, from Eq. (4.108), we obtain the filter structure shown
in Figure 4,37,
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4.7.4 Polyphase Implementation of Decimation Filters

One of the important applications of the polvphase decomposition is in the implemen-
tation of filters whose output is then downsampled as indicated in Figure 4,38,

In the most straightforward implementation of Figure 4.38, the filter computes
an cutput sample at each value of #, but then only one of every M output samples is
retained. Intuitively, we might expect that it should be possible to obtain a more efficient
implementation, which does not compute the samples that are thrown away.

To obtain a more efficient implementation, we can exploit a polyphase decomposi-
tion of the filter. Specifically, suppose we express ila} in polyphase form with polyphase
COmponents

exfn] = h[nM + k. (b 10A9)
From Eq. {4.108),

A1
HE =¥ Eig®u (4.110)
L=I}

With this decompaosition and the fact that dewnsampling commutes with addition, Fig-
ure 4.38 can be redrawn as shown in Figure 4.39. Applying the identity in Figure 4.31
to Lhe system in Figure 4.39, we see that the latter then becomes the system shown in
Fipure 4.40).

To illastrate the advantage of Figure 4.4} compared with Figure 4,38, suppose
that the input x[r] is clocked at a rate of one sample per unit time and that H(z) is an
N-point FIR filter, [n the straightforward implementation of Figure 4.38, we require N
multiplications and (&N — 13 additions per unit time. In the system of Figure 4,40, cach
of the fillers £z} is of length ¥/ M, and their inputs are clocked at a rate of 1 per M

units of time. Consequently, each filter requires l._f {%j multiplications per unit time and

,,';, f;:. - 1} additions per unit time. Since there are M polyphase components, the entire
system therefore requires (¥ /M) multiplications and { % — 1} + (M — 1) additions per
unit time. Thus, we can achieve a significant savings for some values of M and v,

—! H(z) =
] vl

L a

wir|=rinM|  Figure 4.38 Decimation systam.
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4.7.5 Polyphase Implementation of Interpolation Filters

A savings similar Lo that just discusscd For decimation can be achicved by applying the
polyphase decomposition 1o systems in which a filter 15 preceded by an upsampler as
shown in Figurc 4.41. Since only every Lth sample of wla] is nonzero, the most straight-
forward implementalion of Figure 441 would involve multiplying flter coeflicients by
sequence values that are known Lo be zero. Intuitively, here again we would expect thal
a more cfficient implementation was possible,

To implement the system in Figure 441 more efficiently, we again otilize the
polyphase decomposition of Hiz). For example, we can express H{z) as in the form
of Eg. (£.110) and represent Figure 4.41 as shown in Figure .42, Applying the identity
in Figure 4.32, we can rearrange Fizure 4,42 as shown in Fipure 4.43,

To illustrate the advantage of Figure 443 compared with Figore 441, we note
that in Fgure 4.41 if x{n] is clocked at a rate of one sample per vnit time, then win] is
clocked at a rate of L samples per unittime. If Hiz) is an FIR filler of flenpth &, we then

¥

— L Hiz) p——a
xjm] wim| el Flgure 4.41 Interpolation system.
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require NL multiplications and (N L — 1) additions per unit time. Figure 4.43, on the
other hand, requires /. (N /L) multiplications and L fii — 1) additions per unit time for
the set of polyphase filters, plus (L — 1) additions. to obtain y|n]. Thus, we again have
the possibility of sipnificant savings in computation for some values of /. and N,

For both decimation and interpolation, gains in computational efficiency result
from rearranging the operations so that the filtering is done at the low sampling rate.
Combinations of interpolation and decimation systems for noninteger rate changes lead
L sigmilicant savinps when high intermediate rates are required.

4.7.6 Muitirate Filter Banks

Polyphase structures for decimation and interpolation are widely used in filter banks
for analysis and synthesis of audio and speech signals. For example, Figure 4.44 shows
the block diagram of a two-channel analysis and synthesis filter bank commonly used
in speech coding applications. The purpose of the analysis part of the system is to
split the frequency spectruom of the input x[n] into a lowpass band represented by the
downsampled signal vy[n | and a high pass band represented by v [r]. Inspeech and audio
coding applications, the channel signals are quantized for transmission and/or storage,
Since the original band is nominally split into two equal parts of wideh 7/2 radians, the



202

Chapter 4 Sampling of Continuobs-Time Signals

va[w} ¥uln]
houl [T 2 T b sl ]
x[re] e ¥
dm| |y [ — » .
hy[n] vl S t2 £iinl ]
analyxis svitihiesis

Figure 4.44 Two-channel analysis and synthesis filter bank.

sampling rates of the filter outpuis can be 1/2 that of the input so that the total number
of samples per second remains the same.! Note that downsampling the output of the
lowpass filter expands the low-frequency band to the entire range |ew’ = 7. On the other
hand, downsampling the ocutput of the highpass filter down-shifts the high-frequency
band and expands it to the full range |w| = 7.

The decomposition requires that kpln} and hy[n] be impulse responses of lowpass
and highpass filters respectively, A commaon approach is toderive the highpass filter from
the Towpass filter by fiy [n] = &/ ™ hy[a]. This implies that Hy{e/™) = Hyle/™ 71} g0 that
if Hyiei™)isa lowpass filter with nominal passband 0 = |w]| = 7/2, then Hilel®) will be
o highpass filter with nominal passband m /2 « |w| = a. The purpose of the righthand
(synlhesis) parl of Figure 4.44 is Lo reconstilute an approximation to x[e] from the two
channel signals vyln] and 14fr]. This is achicved by upsampling both signals and passing
them through a lowpass Gilter ggfr] and highpass filter gy [n] respeclively. The resulling
interpolated signals are added to produce the (ull-band output signal ¥{n] sampled at
the impul samphing rate.

Applying the frequency-domain results for downsampling and upsampling to the
system in Fgure 444 Jeads to the following result:

Yiel”)y = 3 [GG(E*W;HF.{EJ”} XS GtEeJ"']HﬂeJ""”}} X (2l (4.111a)
i o )

05 (™) Fy (e o) }] X (pf =Ty i4.111b)

If the analysis and synthesis filters are ideal so that they exactly split the band 0 < o = 7
into two equal segments without overlapping, then it is straightforward to verify that
Yiel®) = X{e/“): ie.. the synthesis filter bank reconstructs the input signal exactly.
However, perfect or nearly perfect reconstruction also can be achieved with nonideal
filters for which aliasing will occur in the downsampling operations of the analysis filter
bank. To see this, note that the second term in the expression for ¥ie/®) (line labeled
Eq. (4.111b}), which represents polential aliasing distortion from the downsampling
operaiion, can be eliminated by choosing the filters such that

Gple!™) Hyle! ™™ 4+ G e/ Hy e/ ™™™ = 0. (4.112)

TEilter hunks that eomserve the total number of sam ples per second are termed marirmally decimared
fiter hanks
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This condition is called the alias cancellaiion condifion. One set of conditions that satisly
Cg.(4.112)is

hilni = e’ hyln] == He/®) = Hyfe! @ ™h {4.1134)
goln] = 2hpln] = Gpie'™) = 2Hy(e!™) {4.113h)
giln] = =2h(n] = G {ef™) = —2Hp{e/ ™)y, {4.113¢)

The filters hp|n] and &y Inj are termed guadrature mirror filters since Eq. (4.113a) imposes
mirror svmmetry about e = /2, Substituting these relations into Eg. (4.111a) leads (o
the relation

Yel®) = [ Hite!™) - Hite )] X(e/®), (4.114)

from which 1 [ollows that perfect reconstruction (with possible delay of M samples)
reqguires

H,::;"{f’l-w} i H;:'.;'_.[E,![Ep :'T:'} =E—_fl.".>M_ {4] ]5_]
Lt can be shown {(Vaidvanathan, 1993) that the only computationally realizable filters
satisfying Eq. (4.115) exactly are systems with impulse responses of the form agla] =
epdln — 2np] + opdln — 2ny — 1] where ag and »y are arbitrarily chosen integers and
e = % Such systems cannot provide the sharp frequency selective propertics needed
m speech and audio coding applications, but to illustrate that such systems can achicve
exact reconstruction, consider the simple two-point moving average lowpass filter

kplnl = %{ﬁ[u] + d&fn — 1710, {4.116a)
which has frequency response

Hy(el™) = cos{w/2)e™ 12 (4.116b)
For this filter, ¥ (e/®) = ¢ =% X {e/*) as can be verified by substituting Eq. (4.116b) into

Eq. {4.114).

Either F1R or LIR filters can be used in the analvsis/synthesis system of Figure 4.4
with the filiers related as in Eq. (4.113a)-(4.113¢) to provide nearly perfect reconstruc-
tion. The design of such filters is based on finding a design for Hyte/®) that is an accept-
able lowpass filter approximation while satisfving Eq. (4.115) to within an acceptable
approximation error. A set of such filters and an algorithm for their design was given
by Johnston {19301, Smith and Barnwell (1984 and Mintzer (1983) showed that perfect
reconstruction is possible with the two-channel filter bank of Figure 4.44 if the hlters
have a different relationship 1o one another than is specified by Eqg. (4.113a)-(4.113c).
The dilferent relationship leads (o filters called conjugate quadrature filters (COF).

Polyphase lechnigues can be employved tosave computation in the implementation
of the analysisisynthesis system of Figure 4.44. Applying the polyphase downsampling
result depicted in Figure 4.40 to the (wo chamnels leads wo the block diagram in Fig-
urce 4,45(a), where

eonln] = halZn] (4.117a)
caulnl = hul2n + 1] (4.1171)
ealn] = b [2n] = Ty ] = enaln] (4.117c)
eiln] = hy[2n + 1] = "/ Bgl2n 4+ 1] = —eyin). (4.117d)
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Equations (4.117¢) and (4.117d) show that the polyphase filters for Ay In]} are the same
{except for sign) as those for kylr] Therefore, only one set, eypin] and ey [#] need be
implemented. Figure 4.45(b} shows how both vgln] and v[#] can be formed from the
outputs of the tao polyphase filters. This equivalent structure, which teguires oniy half
the computation of Figure 4.45{a). is. of course, owing cutirely to the simple relation
hetween the two filters

The polyphase technigue can likewise be applied to the synthesis filter bank. by
recogniving that the two interpolalors can be replaced by their polyphase implementa-
tions and then the polyphase structures can be combined because gy [n] = —edT M galn] =
—ed 7 2hg ). The resulting polvphase synthesis system can be represented in terms of
the polyphase fillers finln] = 2epaln] and fiyln] = 2egiia] as in Figore 4.46. As in the
vase of the analysis filter bank, the synthesis polyphase filiers can be shared between
the two chanmels thereby balving the computation.

*q

vyln)

¥ ennln} fraln]

vl

L 3

fou[7e]

2 i_" ey [

Figure 4 46 Polyphase reprasentation of the two-channel analysis and synthesis fileer bank
of Figure 4.44



4.8

Digital Processing of Analog Slgnals 205

This two-band analysis/synthesis system can be peneralized to & equal width chan-
nels [0 oblain a finer decomposition of the spectrum. Such systems are used in aodio
coding, where they facilitate exploitation of the characteristics of human auditory per-
ception in compression of the digital inlormation rate. (See MPEG audio coding stan-
dard and Spanias, Painter, and Atti, 2007.) Also, the two-band system can be incorpo-
rated into a tree structure io obtain an analvsis/synthesis system with either uniformly
or nonuniformly spaced channels. When the COF filters of Smith and Barnwell, and
Mintzer are used, exact reconstruction is possible, and the resulting analysis synthe-
sis system is essentially the discrete wavelet transform. (See Vaidyanathan, 1993 and
Burrus, Gopinath and Guo, 1997}

DIGITAL PROCESSING OF ANALOG SIGNALS

So far, our discussions ol the representation of continuous-time signals by discrete-time
signals have [ocused onidealized models of periodic sampling and bandlimited interpo-
lation. We have [ormalized those discussions in terms of an idealized sampling svsiem
that we have called the fdea! continuons-to-discrete (C/D} comverrer and an idealized
bandlimited interpolator system called the ideal discrete-to-continuows (DVC) converter,
These idealized conversion systems allow us to concentrale on the essential mathemati-
cal details of the refationship between a bandlimited signal and its samples. For example.
in Section 4.4 we used the idealized C'D and D/C conversion systems to show that LTT
dizscrete-time systems can be used in the configuration of Figure 4.47{a) to implement
LTT continuous-time systems if the input is bandlimited and the sampling rate is at or
above the Wyquisl rate, In a practical setting, continuous-time signals are not precisely
handlimited, ideal filters cannot be realized. and the ideal C/T) and I/C converters can
only be approximuted hy devices that are called analog-to-digital (A/D) and digital-
to-amalog (YA converlers, respectively. The block diagram ol Figure 4.47(b) shows 4

!
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EALY x|q ¥ ¥l Wl
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Figure 4.47 (a) Discrete-time filtering of continuous-time signals. (k) Digital process:ing of

analag signals,
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more realistic model for digital processing of continuous-time (analog) signals. In this
section, we wilf examine some of the considerations introduced by each of the compo-
nents of the system in Figure 4.47{b].

4.8.1 Prefiltering to Avoid Aliasing

In processing analog signals using disercle-lime syslems, i1 15 generally desirable to
minimize the sampling rate, Thisis because the amount of arithmetic processing required
to implement the system is proportional Lo the number of samples to be processed.
If the input is not bandlimited or if the Nyquist frequency of the input is o high,
prefiltering may be necessary. An example of such a situation occurs in processingspeech
signals, where often only the low-frequency band up to about 3 to 4 kHzis required for
intelligibility, even though the speceh signal may have significant frequency content in
the 4 kHz 1o 20 kHz range. Also, even if the signal is naturally bandlimited, wideband
addilive noise may {ill in the higher frequency range, and as a result of sampling, Lthese
noise components would be aliased into the low-frequency band. If we wish to avoid
aliasing, the input signal must be forced to be bandlimited to frequencies below one-halt
the desired sampling rate. This can be accomplished by lowpass filtering the continuous-
time signal prior to C/D conversion, as shown in Figure 4.48. In this contexi, the lowpass
filter that precedes the C/D converter is called an ansinfiasing filter. 1deally, the frequency
response of the antialiasing filter would be

l, 2] = 82, ==/T,

Hali =14 10 >0,

{4.118)
From the discussion of Section 4.4.1, 1L follows that the overall system, from the output
of the antialiasing filter x4 (¢} to the oulput v, will always behave as an LTT system,
since the inpul to the (VD converler, x,(7), 18 forced by the antiahiasing filter (o be
bandhmited to frequencies below o/ T radians/s. Thus, the overall effective Frequency
response of Figure 4.48 will be the product of Hua(j5) and the elfective frequency
response [rom x ,47) 10 v (1) Combining Eqs (4.1158) and {4.38) gives
o | HE R 9 = R

Hepi{fi2) = 0. 19l > Q.. {4.119}
Thus, for an ideal lowpass antialiasing fiter, the system of Figure 4,48 behaves as an LTI
syslem wilth frequency response given by Eg. (4.119), even when X (j©) is nol ban-
dlimited. In practice, the lrequency response H (78 cannol be deally bandlimited,
but H ,,( ) can be made small for |2 = =/ T so that aliasing is minimized. In this case,
the overall frequency response of the sysiem in Figure 4.48 should be approximately

Hopr (S0 2= H a8 H (/7). {4,120}

To achieve a negligibly small frequency response above 7/ T, it would be necessary
for Ha(j0) 10 begin to “roll off” ie., begin to introduce attenuation, at frequencies
below 7/ T, Eq. (4.1200) suggests that the roll-off of the antjaliasing filter (and other
LT distortions to be discussed later) could be at least partially compensated for by
taking them into account in the design of the discrete-time system., This is itllustrared in
Problem 4.62.
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Flgure 4.48  Use of prefiltering to avoid aliasing.
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Flgure 4.49 Using cversampled &0 conversion o simplify a continucus-time
antialiasing filter,

The preceding discussion requires sharp-cutoff antialiasing filters. Such sharp-
cutoff analog filters can be realized using active networks and integrated arcuits How-
ever, in applications involving powerful, but incxpensive, digital provessors, these conlin-
uous-timee filters may account for a major part of the cost of a system for discrete-time
processing of analog signals. Sharp-cutoff filters are difficult and expensive to imple-
ment, and if the system is Lo operate with a variable sampling rate, adjustable fillers
would be required, Furthermore, sharp-cutolf analog lilters generally have a highly
nonlinear phase response, particularly at the passband edge. Thus, it is desirable for
several reasons o climinate the continuous-time filters or simplify the requirements on
them.

One approach is depicted in Figure 4.49. With Oy denoting the highest frequency
component 1o eventually be retained after the antialiasing fltering is completed, we first
apply a very simple antialiasing filter that has a gradual cutoff with significant alten-
uation at M2y, Next. implement the G conversion at a sampling rate much higher
than 28y, c.p., al 2M 2y, After that, sampling rate reduction by a factor of M that
includes sharp antialiasing filtering is implemented in the discrete-tinme domain, Subse-
quent discrete-time processing can then be done at the low sampling rate to mininize
computation.

This use of oversampling followed by sampling rate conversion is fllustrated in
Figure 4.50. Figure 4.50{a¥ shows the Fourier transform of & signal that occupies the
band |92| = 8y, plus the Fourier transform of what might correspond to high-frequency
“noise” or unwanted compaonents that we eventually want to eliminate with the an-
tialiasing filter. Also shown (dotted line) is the frequency response of an antialiasing
filter that does not cut off sharply but gradually falls to zero at frequencies above the
frequency Q2. Figure 4.50({b) shows the Fourier transform of the output of this filter. If
the signal & ;(2) is sampled with period ¥ such that (27 /% — §2.) = Q. then the DTFT
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Figure 4.50 Use of oversampling followed by decimation in G0 conversion.

ol the sequence £[n] will be as shown in Figure 4.50(c). Note that the *noise” will be
ahiased, but aliasing will not affect the signal band w| = ey = 24T, Now, il T and T
are chosensothat Ty = MT and =/ Ty = Q. then ] can be filtered by a sharp-cutoll
discrete-time lilter (shown wdealized in Figure 4.50{c)) with unity gain and cutofl [re-
quency /M. The output of the discrete-time filter can be downsampled by M to obiain
the sampled sequence xy|n] whose Fourier transform is shown in Figure 4.50(d). Thus
all the sharp-cutoff fillering has been done by a discrete-time system, and only nominal
continuous-time filtering is required. Since discrete-time FIR filters can have an exactly
linear phase. it is possible using this oversampling approach to implement antialiasing
filtering with virtually no phase distortion. Thiz can be a significant advantage in situa-
tions where it is critical to preserve not only the frequency spectrum, but the waveshape
as well.
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4.8.2 A/D Conversion

An ideal C/D converter converts a continuous-lime signal into a discrele-lime signal,
where cach sample 15 known with infimite precision. As an approximation to this for
digital signal processing, the system of Figure 4.51 converls a continuous-time {analog)
sipnal into a digilal signal. .o, a sequence of finite-preciston or quantized samples.
The two svstems in Figure 4.531 are available as physical devices, The A/D converteris a
physical device that converts a voltape or current amplitude atits input inlo a binary code
representing a quantized amplitude valoe closest to the amplitude of the input. Under
the control of an external clock, the A/D converter can be caused to starl and complete
an A/D conversion every T seconds. However, the conversion s not instantaneous, and
for this reason, a high-performance A/D system typically includes a sample-and-hold,
as in Fipure 4.51, The ideal sample-and-hold svstem is the system whose output is

=

Xty = Y x[nlhgle —nT ). (4.121)

B

where x[n] = x o tn ) are the ideal samples of x,(#} and fig(e) is the impulse response
of the rero-order-haold system, e,

LflereT, .
ho(t) = . 122
o) HID. otherwise. (4.122)
If we note that Eq, (4.121) has the equivalent form
o0
molt) =hgty+ 3 xg(nT (0 ~nT ), {4.123)

=

we see that the ideal sample-and-hold is equivalent to impulse train modulation followed
by linear filtering with the zero-order-hold system, as depicted in Fipure 4.52(a). The
relationship between the Pourier transform of xp(t) and the Fourier transform of x;{t)
can be worked out Tollowing the style of analysis of Section 4.2, and we will do a similar
analysis when we discuss the D/A converter. However, the analvsis is unnecessary at
this point, since everything we need to know about the behavior of the system can
be seen from the time-domain expression, Specifically, the output of the zero-order
hold is a staircase waveform where the sample values are held constant during the
sampling period of T secands. This is illustrated in Figure 4.32(b). Physical sample-and-
hold circuits are designed to sample x, (1) as nearly instantaneously as possible and to
hold the sample value as nearly constant as possible until the next sample is taken.
The purpose of this is to provide the constant input voltage {or current) required by
the AT converter. The details of the wide variety of A/D conversion processes and
the details of sample-and-hold and A/D circuit implementations are outside the scope
of this book. Many practical issues arise in obtaining a sample-and-hold that samples
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Flqure 4.52 {a} Representation
of an ideal sample-and-hald.

{by Representative input and output
(k) signals for the sample-and-hold.

quickly and holds the sample value constant with no decay or “glilches” Likewisc,
many practical concerns dictate the speed and accuracy of conversion of A/D converter
circuits. Such questions are considered in Hnatek (1988} and Schmid (1976}, and details
of the performance of specific products are available in manufacturers’ specification
and data sheets. Our concern in this section is the analysis of the quantization effects in
AT conversion.

Since the purpose of the sample-and-hold in Figure 4.51 is to implement ideal
sampling and Lo hold the sample value for quantization by the AT converter, we can
represent the system of Figure 4,51 by the system of Figure 4.53, where the ideal C/D
converier represents the sampling performed by the sample-and-hold and, as we will
describe later, the gquantizer and coder together represent the operation of the AD
converter.,

The quantizer is a nonlincar system whose purpose is to transform the input sample
xla| into one of a finite set of prescribed values. We represent this operation as

o] = Qixln]) {4.124)
— LY w1 Ol antizer ﬁ Coder —
i} x[n] x[x] xg[n]

Figure 4.53 Conceptual representation
r of the system in Figure 4,51,
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#i |

Typical guantizer for &T conversion,

and refer to £[r] as the quantized sample. Quantizers can be defined with either uni-
formly or nonuniformly spaced gquantization levels; however, when numerical caleula-
tions are to be done on the samples, the quantization steps usually are uniform. Figure
4.54 shows a typical uniform quantizer characteristic, in which the sample values are
ronnded to the nearest quantization lewvel.

Severnl features of Figure 4.54 should be emphasized. First, note that this quan-
tizer would be appropriate for a signal whose samples are both positive and negative
(bipolar). If it is known that the input samples are always positive (or negative), then
i different distribution of the quantization levels would be appropriate. Next, observe
thal the quantizer of Figure 4.54 has an even number of quantization levels. Wilth an
cven number of levels, it s not possible Lo have a quantization level al zero amplilude
and also have an equal number of positive and negative guantization levels. Generally,
the number of guantization levels will be a power of two, bul the number will be much
greater than eight, so this difference is usually inconseguential,

Figure 4.54 also depicts coding of the quantization levels. Since there are eight
quantization levels, we can label them by a binary code of 3 bits. (In general, 25+ levels
can be coded with a (8 + 1)-bit binary code.} In principle, any assignment of symbaols

2 & 1 i T ] - - .
“Such guantizers are also cabled finsgr quentizers becawse of the linear progression of guantoation
Steps.
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can be uwsed, snd many binary coding schemes exist, each with its own advantages and
disadvantages, depending on the application. For example, the right-hand column of
binary numbers in Figure 4.54 illustrates the offset Binary coding scheme, in which the
binary symbals are assigned in numeric order, starting with the most negative quantiza-
tion level. However, in digital sipnal processing, we generally wish to use a binary code
that permits us to do arithmetic directly with the code words as scaled representations
of the guantized samples.

The left-hand column in Figure 4.54 shows an assignment according to the two's
complement binary number system. This system for representing signed numbers is
used in mast computers and microprocessors; thus, it is perhaps the most convenient
labeling of the quantization levels, Note, incidentally, that the offset binary code can be
converted to two's-complement code simply by complementing the most significant bit.

In the two's-complement system, the leftmost, or most significant, bitis considered
as the sign bit, and we take the remaining bits as representing either hinary inlegers
or fractions. We will assume the latter; 1o, we assume a binary fraction point between
the two most significant bits. Then, lor the 1wo's-complement inlerprelation, the binary
symbaols have the [ollowing meaning for B = 2:

Binary symbol  Mumenc value, g

el 1 304
0,10 iz
(il 1 14
00 0

111 —1:4
lalfl 12
lall 1 ~344
104 =1

1o peneral, if we have a (8 + 1)-bit binary two's-complement fraction of the form
Jped |2 .. 3R,

then its value is

—ap2V 2 b e a2,
MNote that the symbol ¢ denotes the “binary point™ of the number. The relationship
between the code words and the quantized signal levels depends on the parameter X
in Fipure 4.54. This parameter determines the full-scale level of the A/D converter,
From Figure 4.54, we see that the sicp size of the quantizer would in general be

_zx_m Xm

= W b F. (4.115'}

The smallest quantization levels (£A) correspond to the least sipnificant bit of the
binary code word. Furthermore, the numeric relationship between the code words and
the quantized samples is

in] = X pxa(n]. {4.126)

since we have assumed that ¥g[n]is a binary numbersuch that —1 = $gln] = 1 {for two's
complement}. In this scheme, the binary coded samples i p|r] are directly proportional
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Figere 4.55 Sampling, quantization, coding, and DVA conversion with a 3-bit quantizer,

to the quantized samples {in two's-complement binary): therefore, they can be used
as a numeric representation of the amplitude of the samples. Indeed, it is generally
appropriate to assume that the input signal is normalized, so that the numeric values of
i[n] and &gr] are identical and there is no need to distinguish between the quantized
samples and the binary coded samples.

Figure 4,53 shows a simple example of quanrnization and coding of the samples of
a sine wave using a 3-bit quantizer. The unguantized samples i [1] are iMlustrated with
solid dots, and the quantized samples 1{n] are illustrated with open circles. Also shown
is the output of an ideal sample-and-hold. The dotied lines labeled “output of DéA
converter” will be discussed later. Figure 4.55 shows, in addition, the 3-bil code wards
that represent each sample. Note that, since the analog mpul v, () exceeds the full-scale
value of the guantizer, some of the positive samples are “clipped.”

Although much of the preceding discussion pertains to two's-complement coud-
ing of the quantization levels, the basic principles of guantization and coding in AJ/D
conversion are the same regardless of the binary code used Lo represent the samples,
A more detailed discussion of the binary arithmetic systems used in digital compuling
can be found in iexts on computer arithmetic, {See, for example, Knuth, 1998,) We now
turn L an analysis of the effects of quantizaiion. Since this analysis does nol depend on
the assignment of binary code words, it will lead 1o rather general conclusions.
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x|n] Q) i) = Qg
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x|x] Tﬂn] = xfn] + efn) ;
Figure 4.56 Additive noise model for
a[n] quantizer.

4.8.3 Analysis of Quantization Errors

From Iigures 4.54 and 4.55, we see that the quantized sample &[n] will penerally be dif-
ferent from the true sample value x[n]. The difference between them is the guantization
error, defined as

eln] = E[n] — x[n]. (41270

Forexample, for the 3-bit quantizer of Fipure 4.54, i A /2 = x[n] = 3A /2, thenk[n] = A,
and it follows that

=02 = efn] = AS2 (4.128)
In the case of Figure 4.54, Eqg. (4.128) holds whenever
—0A2 < x[n] = TAS2. (4.129)

In the peneral case of a (B + 1)-bit guantizer with A given by Eq. (4.125), the quaniti-
zation error satisfies Eq. (4.128) whenever

(=Xp—872) < x[n] =(Xm - &A/2) (4.130}

If x[n] is outside this range, as it is for the sample at ¢+ = 0 in Figure 4.55, then the
guantization error may be larger in magnitude than A /2, and such samples are said o
be clipped, and the quantizer is said o be overfoaded.

A simplified, but useful, model of the quantizer is depicted in Figure 4.56. In this
model, the quantization error samples are thoupght of as an additive noise signal. The
model is exactly equivalent to the quantizer if we know elrj. In most cases, however,
¢[n] is not known, and a statistical model based on Figure 4.56 is then often useful in
representing the effects of quantization, We will also use such a model in Chapters 6 and
9 to describe the effects of quantization in signal-processing algorithms, The statistical
representation of quantization errors is based on the following assumptions:

1. The error sequence ¢|(n] is a sample sequence of a stationary random process
2. The error sequence is uncorrelated with the sequence x [r.lj,J

3. The random variables of the error process are uncorrelated; Le, the error is a
white-noise process.

4, The probability distribution of the error process is uniform over the range of
guantization error,

*This dees not, of course, imply statistical independence, singe the error is directly determined by the
input signal.
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As we will see, the preceding assumptions lead to a rather simple, but effective,
analysis of quantization cffects thal can yield useful predictions of system performance,
[t s casy Lo fnd situations where (these assumptions arc nol valid. For example, if x.(r)
15 a step function, the assumptions would not be justificd. However, when the signal
i a complicated signal, such as speech or music, where the signal fluctuates rapidly in
a somewhal unprediciable manner, the assumplions are more realistic. Experimental
measurements and theoretceal analyses for random signal inputs have shown that, when
the guantization step size {and therefore the error) is small and when the signal vanes
in a complicated manner, the measured correlation between the signal and the guanti-
zation error decreases, and the error samples also become uncorrelated. {Sec Bennett,
1948; Widrow, 1936, 1961; Sripad and Snyder, 1977; and Widrow and Kolldr, 2008.) In
a heuristic sense, the assumptions of the statistical model appear to be valid when the
quanlizer is not overloaded and when the signal is sufficiently complex, and the quanti-
ration steps are sufficiently small, so that the amplitude of the signal is likely to traverse
many guantization steps from sample to sample,

Example 4.10 Quantization Error for a Sinusoidal Signal

As oan illustration, Figure 4,57(a) shows the sequence of unguantized samples of the
i cosine signal sfr] = 0.9%cos(n 10}, Figure 4.57{b) shows the quantized sample sc-
gquence ifn] = Qxja]) for a 3-hit quantizer (8 + 1 = 3), assuming that X, = 1. The
dashed lines in this fipure show the eight possible quantization levels. Fipures 4.57(c)
o und 4.570d) show the quantization error ¢|#] = Kln} — x|#] for 3- and 8-bit quantiza-
S tion, respectively. In each case, the scale of the quantization etror is adiusted so that
P2 the range A /2 is indicated by the dashed lines.

“ MNotice that in the 3Bt case, the error signal 15 highly correlasted with the un-
= quantized sipnal. For example, around the pogsitive and negative peaks of the cosine,
t{ - the quantized signal remains constant over many consecutive samples, so that the error

5 bas the shape of the inpat sequence during these intervals. Also, note that Juring the
= intervals around the positive peaks, the error is greater than A /2 inmapgnitude because
20 the signal level is too large for this setting of the quantizer parameters. On the other
" hand, the yuantizanon error for B-kit quantization has no apparent }'.nanems."' Visual
© inspection of these fipures supports the preceding assertions about the quantization
manse prosperlies i the linely quantzed (8- case; e, the error samples appear Lo
vary randomly. with no apparent correlation with the unguantized signal, and they
range bedween —A (2 and +A /2,

Figured.57 Exampie of quantization noise, (ay Unquantized samples of the signal
X[ =699 cos{n/10).

4FDT puriorjic cosine 3ignn|; the quantization grror would, of coorse, be periodic, togs and thergbore,
ite power spectruim would be concentrated at multiples of the frequency of the input sipnal, We used the
frequency gy = 1710 1o avord this case in Use example.
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::i; i &) 1M1 150
id)

Figure 4.57 (confinued) {b) Quantized samples of the cosing waveform in part
: {a) with a 3-bit quantizer. () Quantization errar sequence for 3-bit quantization of
7 the signal ir (a). (d) Quantization error sequance for B-bit guantization of the signal
it in (a).

For quantizers that round the sample value to the nearest quantization level, as
shown in Figure 4,54, the amplitude of Ihe quanlization noise is in the range

M2 = eln] = ASD {4.131)

For small A, it is reasonable to assume that efr] is a random variable unitormly dis-
tibuted from —A /2 1o A2, Therefore, the 17 -order probahility density assumed for
the quantization noise is as shown in Figure 4.58. (If truncation rather than rounding
is used in implementing quantization, then the error would always be negative, and we
would assume a uniform probability density from — A to {.) To complete the statistical
model for the guantization noise, we assume thal successive noise samples are uncor-
related with each other and that e[»n] is uncorrelated with xfr]. Thus, e[r] is assumed 10
be a uniformiy distributed white-noise sequence. 'The mean value of ¢|n] is zero, and its

| P e}

A &~2-8x,

Figure 4.58 Probability density

function of quantizatian ercor for 4

_4a 4 ®  rounding quantizer such as that of
2 2 Figure 4.54.
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variance is
Al 2
o] ' 5 ] |":'L
g, = { e —de = —. (4.132)
J_apm A

Fora (B + 1}-bit quantizer with tull-scale value X, the noise variance, or power, is

, 2°x2
gr = ],_’--'-'r. {4.133)

Equation (4.132) completes the white-noise model of quantization noise since the au-
tocorrelation function would be ¢..[m]| = o 8m] and the corresponding power density
spectrum would be

(E XN

a- I8
£ a L X
Bole™ =g’ = —

: 17 | < 7. {4.134)

Example 4.11 Measurements of Quantization Noise

Toconfirm and illustrate the validicy of the model for guantization noise, consider agam
quanlization of the signal xfr] = Peosie 1 which can e computed with fd-bil
floating-noint precisions (far all practical purposes unquantized) and then quantized
e B + 1 bits. The guantization noise seguence can also be compoted sinee we know
Poth the inpul and the owtpal of the quantizer. Anamplitlude histogram, which givesa
count of Lthe number of samples lying in each of a set of contiguous amplitude intervals
or “bins,” is often used as an estimate of the probability distribulion of 2 random signal,
Figure 4.39 shows histograms of the quantization noise for 16- and H-bil gquantization

Histourams {or Quantication Noise Samples

1500 . s
NTET)

L2

E

=3

)

2

=

E

Figure 4.58 Histograms of quantization noise for (&) 8 +1 = 16 amd
s+1-8
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o owith Xy = 1. Since the total number of samples was LK), and the number of bins was
“ 101, we should expect approximately 1000 samples in each bir if the noise is uniform|
distributed, Furthermore the total range of samples shoedd e 22172 16—t 83 % 107
for 16-bit quantization and £ 1 /2% =3.9% 1077 for 3-bit guantization. The histograms
- of Figure 4.39 are consistenl with these values, although the 8-bit case shows some
- ahviows deviation from the waiform distribution.

In Chapter 10), we show how to caleul are estimates of the power density spectrum.
7 Figure 4,60shows such spectrum estimates for quantization noise signals where 841 =
16, 12,8, and 4 bitz Observe that in this example, when the number of bils is B or
+%  preater, the spectrum is quite flat over the entire frequency range O < w = . and the
s spectrim level (in dB) is quite close 1 the value

' S ;
10 log a4 Poeief™ ) = 1 log ( T) = {107 a2 8],
B1nllee 210 120228
: which is predicted by the while-noise uniform-distribution model, Note that the curves
for B = 7. 11, and 15 difter at all frequencies by about 24 dB. Observe, however, that
when B + 1 = 4, the mode] [ails to predict the shape of the power specttum of the
OHSE.

Power Spretra for Unilorm Cruantizers
-11 v T T T

-1 i_
i

0nz? 0.4 {14 0.5 1

P

Figure 4.60 Spectra of quantization noise for sevaral values of 8.

This example demonstrates that the assumed model for quantization noise is use-
ful in predicting the performance of uniform quantizers. A common measure of the
amount of depradation of a signal by additive noise in general and quantization noise
in particular is the signal-to-noise ratio (SNR), defined as the ratio of signal variance
{power) to noise variance, Expressed in dB, the signal-lo-guantization-noise ratio of a
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I ot

=6.028 + 10.8 — 2 log,, (‘x—"") :
¥z

{8 + 1)-hit unilorm guantizer is

=
R L

SNRg = 10log, (
{4.135)

From Lq. {(4.135), we see that the SNR increases approximately 6 dB for each it added
to the word length of the gquantized samples, ie., for cach doubhing of the number of
quantization levels. 1t is ymportant to consider the term

Xm

in Eq. {4.135), First, recall that X, is a parameter of the quantizer, and it would usually
be fixed in a practical system. The quantity o, is the rms value of the signal amplituds,
and it would necessarily be less than the peak amplitude of the signal. For example, if
xu(f) isasine wave of peak amplitude X, then o, = X /42 If o, is too large, the peak
sipnal amplitude will exceed the full-scale amplitude X p, of the A/D converter. In this
case Eq. (4.135) is no longer valid, and severe distortion results. On the other hand, if
a; 15 too small, then the term in Eq. (4.136) will become large and negative, thereby
decreasing the SNR in Eq. (4.133). In fact, it is easily seen that when o, is halved, the
SR decreases by 6 dB, Thus, it is very important that the signal amplitude be carefully
matched 1o the full-scale amplitude of the AT converter.

Example 4.12 5SNR for Sinusoidal Signal

£% Using the signal x]a] = A cos{n,/ 11}, we can compute the quantization error for differ-
o ent values of B + 1 with X,, = 1 and A varying. Figure 4.61 shows cstimales of SNR
§ as a funcion of Xy /m oblained by computing the average power over many samples

L+ of the sl.gna] and dividing by the corresponding estimate of the average power of the
L TOASES e,

J'IJ.

Z {xlnfy?

SNRQ = IGIDg]n .l".l—|

< E (el
]

; where in the case of Figure 4.61, & = 101000,

it Observe that the curves in Figure 461 closely follow Eqg. (4.135) aver a wide
range of values of B. In particular, the curves ave straight lines as a function of
log( X e /o), and they are offset from one anolther by 12 JdB because the values of
B differ by 2. SNR increases as X /oy decreases since increasing oy with Xy fixed

=
=
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Figure 4.61 Signal-to-quantization-noise ratio &5 a function of X /oy for several
valuss of 5.
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Phn b

means that the signal uscs more of the available quantization levels. However, note
Lhe precipitous fall of the curves as X, /me — L Since oy = T0T A Tor a sine wave, this
mieans that the amplitude A becomes preater than X, = 1 and severe clipping occurs.
Thus, the SNR decreases rapidly afler the amplitnde exceeds X,

=
e

s

For analog sipnals such as speech or music, the distribution of amplitudes tends
i be concentrated abour zero and falls off rapidly with increasing amplitude. 1n such
cases, the probability that the magnitude of a sample will exceed three or four times the
rins value is very low, For example, if the signal amplitude has a Gaussian distribution,
only (.064 percent of the samples would have an amplitude greaser than 4oy, Thus, to
avoid clipping the peaks of the signal (as is assumed in our statistical model), we might
set the pain of fillers and amplifiers preceding the AT converter so that o, = X /4,
Using this value of o, in Eq. {4.1353] gives

SNRg = 68 — 125 dB. (4.137)

For example, obtaining a SNR of about 90-%6 dB for use in high-quality music record-
ing and playback requires 16-bit quantization, but it should be remembered that such
performance is oblained only if the input signal is carefully matched to the fullscale
range of the A/D converter.

This trade-off between peak signal amplitude and absolute size of the quantization
noise is fundamental to any quantization process. We will see its importance again in
Chapter 6§ when we discuss round-off noise in implementing discrete-time linear svstems,
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4.8.4 D/A Conversion

In Secticn 4.3, we discussed how a bandlimited sipnal can be reconstructed from a
sequence of samples using ideal lowpass filtering, In terms of Fourier transforms, the
reconstruction is represented as

X Q) = X (/%)Y H (j), {4.138)

where X (e/*) is the DTTT of the sequence of samples and X, (j) is the Fourier
transform of the reconstructed continuous-tme signal, The ideal reconstruction filier 1s

e | T 8| =T, ;
For this choice of B ,(j52), the corresponding relation between x(¢) and x[n] is
s sin[r(t —nT /T
r = g o T - " " 4
At} ,.,=Z_:qc x1n] 2l =TT (4.140)

The system that takes the sequence x[n] as input and produces x, (1) as outpul is called
the idval D/C converter. A physically realizable counterpart 1o the ideal D/C convertler
is & digital-to-analeg converter (DA converter) followed by an analog lowpass filter, As
depicted in Figure 4.62, a /A converier takes a sequence of binary code words $g[n]
as its input and produces a continuous-time output of the form

b5
Xpalt) = Z X wiglnlhp(t — nT )
R (4.141)

e
= 3 ilnlhytt —aT),
T —
where hofr) is the impulse response of the zero-order hold given by Eqg. (4.122). The
dotied lines in Figure 4,55 show the output of a YA converter Tor the guaniized ex-
amples of the sine wave. Note that the DfA converter holds the quantized sample for
one sample peériod in the same way that the sample-and-hold holds the unguantized in-
put sample, 1l we use the additive-noise mode] (o represent the effects of gquantization,
Eg. (4.141} beecomes

e s} [ ]
xpalty= Y xlalaGc—nT )+ Y elnlhuit —nT). (4.142)
=D} == 00

To simplify our discussion, we define

]
xoie} = 3 xlnlholt —nT), (4.143)
R=—2
fr1)
epilt )} = E elalhglt —nl 3, {4.144)
=—"00
W th{';hF ;[n!h {hﬁwn;;;i:? éﬂrﬁn?:;d “ m} :E;;un:.[ﬂ Block diagram of 0/4
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50 that Hg. (4.142) can be writlen as
Xnalty = xplt) + epit). [4.143)

The signal component xyif) s related to the input signal x{r), since x|n] = x,(nT ). The
noise signal {1} depends on the quantization-noise samples eln] in the same way that
apit) depends on the unguantized signal samples, The Fourier transform of Eq. (4.143)

15
oo

Xu(ji2) = Z xlni”.:]{jﬂ}f—_rﬁu‘r
H=—ia
& - (4.146
= E _l.E”-IE..;EHr.!) Hﬂﬁjﬂ-} [ }
B 00
= X (/%7 Hyij ).
Mow. since
¥ iy = : i x (i (52 E'.:Tk)‘ -
£ =7 ) al f 7 J , : }
K==
it {ollows that
; I < 2 2k

If X (782 is bandlimited to frequencies below =/ 7T, the shifted copies of X ,(52) do
not overfap in Eq. (4.148), and if we define a compensated reconstruction filter as

H. {j&)
Hyt 2y
then the output of the filter will be &, (1) if the input 15 xq{1). The frequency response of
the zero-order-hold filter is easily shown to be

H j) = {4.149)

Hylj&l) = o (4.150)
Therefore, the compensated reconstruction filter is
212 01
_ —ff TR (0] <xyT,
H,{jfy = 1 sin{Q7/2) {4.151)
0, [$2]| = =/T.

Figure 4.63{a) shows |Hnp{ f2)] as given by Eq. (4.150), comparced with the magnitude
of the wdeal interpolation filter |H,{ ) as given by Eg. (4.139). Both filters have a
wain of T at 2 = 0, bul the zero-order-hold, although lowpass in nature, does not
cut off sharply at £2 = a/7. Figure 4.63(h) shows the magnitude of the (reguency
response of the ideal compensated reconstruction filter (o be used following a zero-
order-hold reconstruction svsiem such as a D/A converter. The phase response would
ideally correspond to an advance time shift of T'/2 seconds 1o compensatie for the delay
of that amount introduced by the zero-order hold. Since such a time advance cannot be
realized in practical real-time approximations to the ideal compensated reconstruction
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T Ideal interpolatog,
“ filler H,{j{1}

Zero-order
Tl
Hod iy

[a]

IH ()

Figure 4.63 (a) Frequency response of
o rera-order hald compared with ideal

interpokating filter. (b} ldeal

compensated reconstruction filter for
(b} use with a zero-arder-hold output,

~ =

filter. only the magnitude response would normally be compensated. and often even
Lthis compensation is neglected, since the gain of the zero-order hold drops only w0 2/
{for -4 dB)at 8 ==/T,

Figure 4.64 shows a VA converter [ollowed by an ideal compensated recon-
struction filter. As can be seen from the preceding discussion, with the ideal compen-
sated reconstruction [ilter following the D/A converter, the reconstructed output sig-
nal would be

b= ] '
W= 3 an* e

T = T

o i {4.152)
e sinjagt —nT )/ T} ' sinfrr (s — n?" )/ 1)
= Z xfn] e Z efri] .
o m(t —ni )1 Lt A =nTfT
In other words, the oulpul would be
Epld) = xalr) + eqit), {4.153)
where ¢, (1) would be a bandlimited white-noise signal,
Compensated
x4 _ | reconstruction
a converter e tilter "-:r
xln| Lppall) H.00 X0
t Flgure 4.64 Phyzical configuration for

T (/4 conversion.
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Returning Lo a consideration of Figure 4.47{b), we are now in a position to un-
derstand the behavior of systems for digital processing of analog signals. If we assume
that the output of the antialiasing filter is bandlimited to frequencies below =/ T, that
H. J52) 15 simlarly bandlimited, and that the discretle-time syslem is linear and time
invariant, then the output of the overall system will be of the form

Feith = v lth 4 euird, f4.154)
where
T¥(jQ) = H (jOH QO H T Ha Q)X 5, (4.155)
inwhich H 5, (j52), Hoil 782, and H . (j42) are the frequency responses of the antialinsing
filter, the zero-order hald of the TWA converter, and the reconstruction lowpass filter,
respectively. H(e/%7 ) is the frequency response of the discrete-time system, Similarly.
assuming that the quantization noise introduced by the A/ converter is white noise
with variance rr;' = A%/12,itcan be shown that the power spectrum of the cutput noise is
P., (i) = |, {jS0Ho( i H 5T a2, (4.156)
i.e. the input quantization noise is changed by the successive stages of discrete- and
continuous-time filtering. From Eq. (4.155), it follows that, under the model for the
quaniization error and the assumption of negligible aliasing, the overall effective fre-
quency response from r.(r) 1o §.(f) s
THeg() = H G HG G H (57 ) H 30 Q), {4.15T)
If the antialiasing filter is ideal, as in Eq. (4.118), and if the compensation of the re-
construction filter is ideal, as in Eq. {4.131), then the effective frequency response is
as given in Eq. (4.119), Otherwise Eq. (4.1537) provides a reasonable model for the ef-
fective response. Note that Eq. (4.157) suggests that compensation for imperfections in
any of the [our lerms can, in principle, be included in any of the other terms: .., the
discrete-time system can include appropriate compensation for the antialiasing filter or
the zerg-order hold or the reconstruction filter or all of these.

In addition to the filtering supplied by Eq. (4.157), Eq. (4.154) reminds us that
the outputl will also be contaminated by the filtered quantization noise. In Chaptler 6w
will see that noise can be introduced as well in the implementation of the discrete-time
linear systern. This internal noise will. in general, be filtered by parts of the discrete-
time sysiem implementation, by the zero-order hold of the DV A converter, and by the
reconsiruction filter.

4.9 OVERSAMPLING AND NOISE SHAPING IN A/D AND

D/A CONVERSION

In Section 4.85.1, we showed that oversampling can make it possible to implement sharp-
cutoff antialiasing filtering by incorporating digital filtering and decimation. Aswe dis-
cuss in Seclion 4.9.1. oversampling and subsequent discrete-time filtering and down-
sampling also permil an increase in the step size A of the quantizer or, equivalently,
a reduction in the number of bits required in the AT conversion. In Section 4.9.2 we
show how the step size can be reduced even further by using oversampling together
with quantization-noise feedback, and in Section 4.9.3 we show how the oversampling
principle can be apphed in TYA conversion.
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Figure 4.65 Oversampled A'D conversion with simple quantization ard down-
sampling.

4.2.1 Oversampled A/D Conversion with Direct
Quantization

To explore the relation between oversampling and the quantization siep size, we con-
sider the aystiem in Figure 4.63. To analyze the effect of oversampling in this system, we
consider x, () to be a zero-mean, wide-sense-stationary, random process with power-
spectral densitv denoted by & . (j82) and autocorrelation function denoted by ¢, (1.
To simplify our discussion, we assume initially that x,(r) is already bandlimited to £y,
ie.

d‘:_,-:.d[.iiﬂ'} =1 |ﬂ| = 2y, Iqlss‘}

and we assume that 27 /7 = 2M Q. The constant M, which is assumed to be an integer,
is called the oversampling rarin. Using the additve noise model discussed in detail
in Section 4.8.3, we can replace Figure 4.65 by Figure 4.66. The decimation filter in
Figure 4.66 15 an ideal lowpass filter wilh unily gain and cutofl frequency o, = 7/ M,
Boecause the entire system of Frigure 466 1s lincar, ils oulput xy{n] has lwo components,
one due Lo the signal nput x, (1) and one due (o the quantization nodse input e[r]. We
denote these com ponents by xy, (0] and x;.0n], respectively.
Our goal is to determine the ratio of signal power .L“:'IJ.(%”[HH Lo quanlizalion-ndmse
power E‘i_xi[n]: in the output xz[n] as a function of the guantizer step size A and the
oversampling ratio M. Since the system of Figure 4.66 is linear, and since the noise is
assumed to be uncorrelated with the signal, we can treat the two sources separately in
computing the respective powers of the signal and noise components at the output.
First, we will consider the signal component of the output. We begin by relating
the power spectral density, autocorrelation function, and signal power of the sampied
signal 1|} to the corresponding functions for the continuous-time analog signal «, (1},

e[m]

S——— kR - Y Lol
x50 ? x[u] wlw] +efd]  [M 7Y ' Tgq ] =g, ]
o T
b oM

Figure 4.66 System of Figurs 4.85 with quantizer replaced by linear nolse maodel,
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Let b cfen] and &, (/™) respectively denote the autocorrelation and power spectral
densily of x[a]. Then, by detinition, ¢, [m] = £{x[a +mlxfal}, and since x[n] = x,{nT )
and x[n + m) = xy(nT +mT ),

S[Ilﬂ '+' ﬂ'ﬂ].l:‘in” = E{.J.“ffﬂ + ’HJI- J-raafn T H {4-159}
Therefore,
@orlm| = gy v (T ¥ (4.160)

i.e., the avtocorrelation function of the sequence of samples is a sampled version of the
autocorrelation function of the corresponding continuous-time signal. In particular the
wide-sense-stationarity assumption implies that £x2{¢)} is a constant independent of 7.
It then follows that

Elxtnll = Eix2nTY) = Elx201)) forallmorr. (4.161}

Since the power spectral densities are the Fourier transforms of the aulocorrelation
functions, as a consequence of Eq. (4.160).

a1 e - Ik
b le ]:T Z: ¢'-’-’a1u ) Q- “'i-.) . |:41'-r"1li

k=—00

Assuming that the input is bandlimited as in Eq. (4.138), and assnming oversampling
by a factor of M so that 2o/ T = 2My, we obtain. by substituling 2 = w/T inlo
Eq. (4.162)

%‘pw (;;) les| < 7/ M,

Oy (ef) = {4.163)

i, /M= w=m

For example, il &, 7€) is as depicied in Figure 4.67(a), and ol we choose the sampling
rate to be 2w /T = 2M 0y, then P (e} will be as depicted in Figure 4.67(b),

It is insiructive 1o demonsiraie that Eq. {4.161) is troe by utilizing the power
spectrum. The total power of the original analog signal is given by

1 F12Y
E{xz{!':IF = — h, . (S5,
a %ot Jg, et
T mm

| By, ()

1;

- £y n
(=1 (b}

T (]

Figure 4.[1"'_? ilustration of frequancy and amplitude scaling betwaen g o (55
and oy (24,
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From Eq, (4.163), the total power of the sampled signal is

1 i ;
Elx*n]) = =— f b, (0% (4.164)
7 T t
1 M el .
=5 fﬂm L3 (/%) do. {4.165)
Using the facl that 24T = =/M and making the substitution £ = /T in Eq. (4.165)
gives
3 1 Ly 2
el == [ @, (i = ko,
F —Thy

Thus, the total power of the sampled signal and the total power of the original analog
signal are exactly the same as was also shown in Eq. (4.161). Since the decimation filter is
anideal lowpassfilter with cutoft w, = = /M, the signal x[n] passes unaltered through the
filter. Therefore, the downsampled signal component at the output, 1a, (1] = xlaM] =
xa(nM T ), also has the same total power. This can be seen from the power spectrum by
noting that, since (/) is bandlimited to |e| < 7/M.

1 ML
q:'xp,.,x.-ir.-[ﬂ‘im} = ﬁ Dy [E’i{m_zn“’fwj
k=0
1 jard W
= ﬁq’rx{f‘l VT |ew] < s (4.166)
Using Eqg. {4.166), we obtain
5 1, i
Elay, Inl} = —f L IO (- Y 7]
el: T g Hu Xyl
1 = .
=— | =@ ("o
2 .
1 TN : b
i Prole’ ™ dw = Elx[nl],
=i T/

which shows that the power of the signal component stays the same as it traverses the
entire systern from the input x;{t) to the corresponding output component x4zl In
terms of the power spectrum, this occurs because, for each scaling of the frequency axis
that results from sampling, we have a counterbalancing inverse scaling of the amplitude,
so that the area under the power spectrum remains the same as we go from &y . (j§2)
to Do (o) to g, o () by sampling,

MNow let us consider the noise component that is generated by quantization. Ac-
cording to the model in Section 4.8.3, we assume that e|n] is a wide-sense-stationary
white-noise process with zero mean and variance®

2
2=t
BT

*Since the random procesy has zeeo mean, the average poever and the variance are the sume.



Chapter 4 Sampling of Continucus-Time Signals

1 e e e by e ™)
i Ble) = o}
——— A — Figure 4 6B  Power spectral density ot
| o a= i signal and guantization noise with an
- -l wH w7 i gversampling factor of M.

Consequently, the autocorrelation function and power density spectrum for e[n] are,
respectively,
Peelmn] = o28[m) (4.167)
and
Bole!y =02 ol <m. {4.168)

In Fipure 4.68, we show the power density specirum of ¢[n] and of x[n]. The power
density spectrum of the quantized signal £{x] is the sum of these, since the signal and
quantization-noise samples are assumed to be uncorrelated in our modeal,

Although we have shown thal the power in either xfn] or ¢ln] does not depend
on M, we note that as the oversampling ratio M increases, less of the quantization-
noise specirum overlaps with the signal spectrum. It is this effect of the oversampling
that lets us improve the signal-lo-guantization-noise ratio by sampling-rate reduction.
Specifically, the ideal lowpass filler removes the quantizalion noise in the band & /M =
fe] = mr, while it leaves the signal component unaliered. The noise power al the output
ol the ideal lowpass filter is

3 1 L 3 s
Elen =—f ordo = -5
=5 o -
Mext, the lowpass fillered signal is downsampled, and, as we have seen, the signal power
in the downsampled outpul remains the same. In Figure 4.69, we show the resulting
power den sty spectrum of both xp.(n ] and xgda] Comparing Figures 4.68 and 4.69, we
can see that the area under the power density spectrum for the signal has not changed,
since the frequency axis and amplitude axis scaling have been mverses of each other.
On the other hand, the noise power n the decimated output s the same as at the oulpul
of the lowpass filler: {.c..

() = - f T 4,169
e [ o I} s} — = —— g -
aeltlt =0 | ™= m = om 3.165)

Thus, the quantization-noise power £ [Jt;':, . |n]) has beenreduced by a factor of M through
the filtering and downsampling, while the signal power has remained the same.

Flgure 4.69 Power spectral density of
signal and quantization noise after
downsampling.
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From Eq. {(4.169), we see that for a given quantization noise powetr, there is a
clear trade-otf betwecn the oversampling factor M and the quantizer step size A. Equa-
tion (4.125) states that for a quantizer with (B + 1) bits and maximum input signal level
between plus and minus X ,,, the step size is

A= X028
and thercfore,
. 1 f XN
Elefinl) = (-2 E~J , (4.170)

Equation (4.1 70} shows that for a ixed quantizer, the noise power can be decreased
by increasing the oversampling ratio M. Since the signal power is independent of M,
increasing M will increase the signaI—tmﬂruantizntinn-nnjse ratio. Alternatively, for a
fixed quantization noise power Fy. = £{x;, [n]], the required value for B is

o
2

From Eq. (4.171), we see that for every doubling of the oversampling ratio M, we need
1/2 bit less to achieve a given signal-to-guantization-noise ratio, or, in other words, if
we oversample by a factor M = 4, we need one less bit 1o achieve a desired accuracy in
representing the signal.

I 1 -
2= IﬂgzM—ElﬂgzIE—EIt)g1F¢g+|{:g2Xm. {“I-.ln'lj

4.9.2 Oversampled A/D Conversion with Noise Shaping

In the previous section, we showed that oversampling and decimation can improve the
signal-to-gquantization-noise ratio. This seems to be a somewhat remarkable result. It
mplies that we can, in principle, use very crude quantization In our initial sampling of
the signal, and if the oversampling ratio is high enough, we can still obtain an accurate
representation of the original samples by doing digital computation on the noisy sam-
ples. The problem with what we have secen so {ar is that, to make a significant reduction
in the required number of hits, we need very large oversampling ratios. For example, to
reduce the number of bits from 16 (o 12 would require M = 4% = 256 'This scems Lo be
a rather high cost. However, the basic oversampling principle can lead 1o much higher
gains if we combine it with the concepl of noise speetrum shaping by feedback.

As was indicated in Figure 468, with direel gquantization the power density spec-
trum of the quantization noise is constant over the entire frequency band. The basic
concept in noise shaping is to modify the A/D conversion procedure so that the power
density spectrum of the quantization noise is no longer uniform, but rather, is shaped
such that most of the noise power is outside the band jw| < 7/M. In that way, the
subsequent filtering and downsampling removes more of the quantization-noise power.

The noise-shaping quantizer, generally referred to as a sampled-data Delta-Sigma
maodulator, is shown in Figure 4.70. (See Candy and Temes, 1992 and Schreler and Temes,
2005.) Figure 4.70{a ) shows a block diagram of how the system is implemented with inte-
grated circuits, The integrator is a switched-capacitor discrete-lime integrator. The AP
converter ¢can be implemented in many ways, but generally, it is a simple 1-bit quantizer
or comparztor, The INA converter converls the digital output back to an analog pulse
that is subtracted from the input signal at the input to the integrator. This system can
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i Sampled
+ AL
() * daa ::mwr:r:'rcr :_
o 1. inlearalor ¥[n]
A =
CORVETET w2
(i)
Hiz)
! i) xdbn] -
— T [ Quankizer - l:PF,M =l | ———
*alr) Hdihin T taci#] + xg[n]

(k)

Figure 4.70 Oversampled quantizer with noise $haping.

be represented by the diserete-time equivalent systemn shown in Figure 4.70{b). The
switched-capacitor integrator is represented by an accumulator system, and the delay
in the leedback path represents the delay introduced by the DVA converter.

As before, we model the quantization error as an additive nodse source so that the
systern in Figure 4.7 can be replaced by the linear model in Figure 4.71. In this system,
the output y[r] is the sum of two components: y,|r] due to the input x|n] alone and &{n}
due to the noise eln] alone,

We denote the transfer function from xlr] to vin] as #,(z) and from «ja] to yln|
as H.(z). These transtfer functions can both be calculated in a straightforward manner

and are
H.z=1, {(4.172a)
He(z)=(1-2z71, (4.172h)
vin|
v[nj
—s| /D + - m‘.I:’PfE'M - l. M —e
3,000 xglnl

Figure 4.71  System of Figure 4.70 from x4 to ;0] with guantizer replaced by
a lingar noise modal.
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Figura 4.72 Equivalent representation of Figure 4.71.

Consequenily,
¥¢ln] = x[n], (4.173a)
atud
éln] = e[n] — elr — 11. {4.173b)

Therelore, the outputl ¥[r] can be represented equivalently as y[w] = x[n] + é[n], where
x[n] appears unmodified at the output and the quantization noise e[ ] 15 modified by the
first-difference operator H,.(2). This is depicted in the block diagram in Figure 4.72. With
the power density spectrum for £[#] given by Eq. (4,168), the power density spectrum
of the quantization noise #[a] that is present in y[x] is

b (ef®) = n{?—; H . (el®)2
. (4.174)
= g} 2 sinfe/2) .

InFigure 4.73, we show the power density spectrum of #[n], the power spectrum of e[n],
and the same signal power spectrum that was shown in Figure 4.67(b) and Figure 4.68.

It is interesting to observe that the iofa! noise power is increased from £{e”[n]} = |:rr,2

1 _fiyM

T w

Figure 4.73 The powar spectral density of the quantization noise and the signal,
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Figure 4.74 Power spectral density of the signal and quantization noise alter downsampling.

at the quantizer to £{¢2[n]} = 202 at the output of the noise-shaping system. However,
note that in comparison with Figure 4.68, the quantization noise has been shaped in
such a way that more of the noise power is outside the signal band |¢) = 7/ M than in
the direct oversampled case, where the nose spectrum s flat.

Tn the system of Figure 4.70, this out-of-band noise power is removed by the low-
pass filter, Specifically. in Figure 4.74 we show the power density spectrumof @, ., (¢/*)
superimposed on the power densily spectrum of cbjdl_xml[ca‘""). Since the downsampler
does not temove any of the signal power. the signal power m x5, [n] is

Py = E(x5 [} = E(x2[n]} = Efx200)).

The qu.'mh'xalim'l-nnisu power in Lthe final oulpul is

1 7 i 1 A% & w 2
vt Ju o P 7 ainy [ ——
Pae = o f_, Crnge (0= o | (2sin (EM]) da. (4.175)

To compare this approximately with the results in Section 4.9.1, assume that M is suffi-
ciently large 50 that

Loy @
S1T1 (ﬁ} E_M
With this approximation, Eq. (4.175) is casily evaluated to obtain
1 A%zl

Pie = e 77" (4.176)

From Eq. {4.176), we see again a trade-off between the oversampling ratio M and
the quantizer step size A, For a (B + |)-hit quantizer and maximum mput signal level
between plus and minug X, A =X m;'l"". Therefore, to achieve a given guantization.
noise power £y, we must have

3 1
H=- 5 logy M + loga i /6) - Efugg Pie +logs X . (4.177)

Comparing Eq. (4.177) with Eq. (4.171). we see that, whereas with direct guantization
a doubling of the oversampling ratio M gained 1,2 bit in quantization, the use of noise
shaping results in a gain of 1.3 bits.

Table 4.1 gives the equivalent savings in quantizer bits over direct quantization
with no oversampling (M = 1) for {a) direct guantization with oversampling, as dis-
cussed in Section 4.9.1. and {h) oversampling with noise shaping, as examined in this
section,
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TABLE4.1  EQUIVALENT SAVINGS IN
CLUANTIZER BITS BELATIVE TO & = 1 FOR
DIRECT QUANTIZATION AND 1%'-0RDER

MCISE SHAPING
Lxircct Miise

M quantization shaping

e 1 2.2

2 1.5 37
& 2 51
32 25 fh
it 3 B

The noise-shaping strategy in Figure 4.7} can be extended by incorporating a
seeond stage of accumulation as shown in Figure 4.75. In this case, with the gquantizer
again modeled as an additive noise source [#], it can be shown that

y[u] = x[0] + éfu]
where, in the two-stage case, &[a] 1s the resull of processing the gquantizalion noise e[n]
through the transler function
Hoz)=(1-z"12 (4.178)

The corresponding power density spectrum of the quantization noise now present in
¥in] s

Bialel®) = nrf[l ﬁin{m,-’E‘J'IJ', (4.173)
wilh the resull that, although the tolal noise power at the oulpul of the two-stage noise-
shaping system is greater than for the one-stage case, even more of the noise les oulside
the signal band. More gencrally, p stages of accurnulation and feedback can be used,
wilh corresponding noise shaping piven by

Ppe’™) = a2 [2sin(w/ 2012, (4.180)
In'Table 4.2, we show the equivalent reduction in quantizer bits as a function of the order
p of the noise shaping and the oversampling ratio M. Note that with p =2 and M = 64,
we obtain almost 13 bits of increase in accuracy, suggesting that a 1-bit quantizer could
achieve about 14-bit accuracy at the output of the decimator.

Although multiple feedback loops such as the one shown in Figure 4.75 promise
greatly increased noise reduction, they are not without problems. Specifically, for large
valves of p, there is an increased potential for instability and oscillations to occur.

An alternative structure known as multistage noise shaping (MASH) is considered in
Problem 4.68,

+ 1 + 1

e i 4 i = ; o Cluantizer =
x,(1) x[w] 1-—¢-1 l—z7 [
u i, ¥lal

Figure 4.75 Oversampled guantizer with 2"-prder noise shaping.




Chapterd  Samp'ing of Conginuaus-Time Signats

TABLEA.2 REDUCTION IN QUANTIZER
BITS AS ORDER p OF NOQISE SHARING

Chersamphing factor AF

(uantizer  ————— --

order o 4 f 14 32 a4
0 4 15 20 25 A0
1 23 37 5.4 fifi 51
. 2.4 a4 TH 14 1249
3 33 0 WA 148 175
4+ 4.1 85 1300 175 0
3

da MG 155 ZEAF 265

4.9.3 Oversampiing and Noise Shaping in D/A
Conversion '

In Sections 4.9.1 and 4.9.2, we discussed the use of oversampling to simplify the process
of A/D conversion, As we mentioned, the signal is initially oversampled to simplify
antialias filtering and improve accuracy, but the final outpul xg[a] of the A/ converter
15 sampled at the Myquist rate for £, (¢). The minimum sampling rale is, ol course, highly
desitable for digital processing or for simply representing the analog signal in digital
form, as in the CD audio recording system. 1t 1s natural Lo apply the same principles in
reverse Lo achieve improvements in the DYA conversion process.

The basic system, which is the counterpart 1o Figure 4.65, is shown in Figure 4.76.
The sequence ve[r], which is to be converted to a continuous-time signal, is first up-
sumpled 1o produce the sequence #[n], which is then requantized before sending it 1o
a DVA converter that accepls binary samples with the number of bits produced by the
requantization process, We can use a simple IVA converter with few bits if we can be
assured that the guantization noise does not occupy the signal band. Then the noise can
be removed by inexpensive analog filtering,

In Figure 477, we show a structure Lor the quantizer that shapes the quantization
noise 1n a similar manner to the 1*-order noise shaping provided by the system in
Figure 4.70. In our analysis we assume Lhat vy[#!is effectively unquantized or so finely
quantized relative to y|n] that the primarv source of quantizer error is the quantizer in
Figure 4.76. To analyze the system in Fipures 4.76 and 4.77, we replace the quantizer
in Figure 477 by an additive white-noise source e|n], so thar Figure 4.77 is replaced by
Figure 4.78. The transfer function from §[a] to ¥{nl is unity. i.e, the upsampled signal

Sampling rate wncrease by A

i e e s i i |

: i
i LPF '
3 |
I o #= [iain = M ; | { Juamtizer - o
valn] 1 cutaff = wiM | | Fin ¥[n] ¥alt)
i
A — el f
T

Figure 4.76 Oversampled D/A conversion.
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Cuantizer -

Figure 4.77 1%'-order noise-shaping
system for aversampled DVA
quartization.

i, s ~ o m
SOy
eln] Figure 4.78 System of Figure 4.77
7 ' with quantizer repaced by linear noise

madal.

e
=
bl

‘ I :

¥

e
w5
=

Ay

9In| appears at the output unaltered. The transfer function H,(z) from ¢|x] to vln] is
Heiz) =1-z2"".
Therefore, the guantization noise component £|r] that appears at the output of the
noise-shaping system in Figure 4.78 has the power density spectrum
@se(el”) = a2 (2sinw/2)?, {4.181)
whete, again, 67 = A%/12.

An illustration of this approach to YA conversion is given in Figure 4.79, Fip-
ure 4.79(a) shows the power spectrum @, (¢/*) of the input v4(n| in Figure 4.76. Note
that we assume that the sipual vslr]is sampled at the Nyquist rate. Figure 4.79%b) shows
the corresponding power spectrum at the output of the upsampler (by M), and Fig-
ure 4.79{c) shows the quantization noise spectrum at the output of the quantizermoise-
shaper system, Finally, Figure 4,79({d) shows the power spectrum of the signal component
superimposed on the power spectrum of the noise component at the analog output of
the IVC converter of Figure 4.76. In this case, we assume that the D/C converter has an
ideal lowpass reconstruction filter with cutoff frequency =/ (M 7T ), which will remove as
much of the guantization noise as possible.

In a practical &a’lting, we would like to avoid sharp-cutoff analog reconstruction
filters. From Figure 4.79(d), it isclear that if we can tolerate somewhat maore quantization
noise, then the WO reconstruction filter need not roll off sa sharply. Furthermore, if we
wse multistage technigues in the noise shaping, we can obtain an oulput noise spectrum
of the form

[+ P [ejmj = ﬂ}(E §in r:],ﬂ'lsz,
which would push more of the noise to higher frequencics. Tn this ease, the analog
reconstruction filter specifications could be relaxed even further.
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b
w7

1 P

- _ b ™ T an
M M
(b
hza(e) = dol sin® Lwfl)
"y
] ]
T 1] I 0

™ d T L}

T

=

{d}

Figure 4. 78 (a) Powerspectral density of signal p. {n] (b} Power spectral density
of signal #{n]. () Power spectral density of quantization noise, (d) Power spectral
density of the continucus-time signal and the quantization noise.

4.10 SUMMARY

In this chapter, we developed and explored the relationship between continuous-time
signals and the discrete-time sequences obtained by periodic sampling. The fundamen-
tal theorem that allows the continuous-time signal to be represented by a sequence of
samples is the Myquist-Shannon theorem, which states that, for a bandlimited signal,
periodic samples are a sufficient representalion, as long as the sampling rate is suffi-
ciently high relative to the highest frequency in the continuous-time signal. Under this
condition, the conlinuous-lime signal can be reconstructed by lowpass filtering from
knowledge of only the original bandwidth, the sampling rute and the samples. This cor-
responds to bandlimited interpolation. If the samphing rate is too low relative to the
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bandwidth of the signal. then aliasing distortion occurs and the original signal cannot
be reconstructed by bandlimited interpolation,

The ability to represent signals by sampling permits the discrete-time processing of
conlinuous-lime signals. This 15 accomplished by firsl sampling, then applying discrete-
Lime processing, and, finally, reconstructing a continuous-time signal from the result.
Examples given were lowpass [iering and diflerentiation.

Sampling rate changes arc an imporlant class of digital signal processing oper-
ations. Downsampling a discrele-lime signal commesponds in the fregueney domain o
an amplitude-scaled replication of the discrele-lime spectrum and rescaling of the Ite-
quency axis, which may require additional bandlimiting to avoid aliasing. Upsampling
corresponds to effectively increasing the sampling rate and is also represented in the fre-
quency domain by arescaling of the frequency axis. By combining upsampling and down-
sampling by integer amounts, noninteger sampling rate conversion can be achieved, We
also showed how this can be efficiently done using multirate techniques.

In the final sections of the chapter, we explored a number of practical considera-
Llions associated with the discrete-time processing of continuous-time signals, including
the use of prefiltering to avoid aliasing, quantization error in A/ conversion, and some
issues associated with the filtering used in sampling and reconstructing the continuous-
time signals, Finally, we showed how discrete-time decimation and interpolation and
noisc shaping can be used Lo simplify the analog side of AT and T A conversion,

The focus of this chapler has been on periodic sampling as 4 process [or oblaining
a discrele represcnlation ol 4 conlinuous-lime signal. While such reprosentations arc by
lar the most common and are the basis Tor almost all of the topics Lo be discossed in the
remainder of this lext, there are other approaches Lo obtaining discrele representalions
that may lead Lo more compact represenialions for signals where other information
{besides bandwidth) is known about the signal. Some examples can be lound in Unser

(2000).

Basic Problems with Answers

4.1. The signal
K00y = sin (2 (10005

was sampled with sampling peniod T = 1/400 sccond to obtain a discrete-time signal xleq|.
What is the resulting sequenee x[(#]7
4.2, 'The sequence
T
x[n =mﬁ[:—rr . —0C = =D,
L) nd
was obtained by sampling the continuous-time signal

xplt) = cos {8y, [= T .

ata sampling rate of 1000 samplesds, What are two possible positive valoes of £ that conld
have resulted in the sequence x|r|?
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The continuous-time signal

A (F) == cos (M)
is sampled with a sampling period T to obtain the discrete-time signal

x{n] = :ns(’?} !

(a) Determine a choice for T consisient with this information.
(k) Is your choice for T in part {a) unigue? If so, explain why. If not, specify another choice
of T cunsistent with the information given.

The continuous-time signal

Xp0t) = sin (200 e} b cos (4l
is sampled with a sampling period 7 to obtain the discrele-ime signal

x[n] = sin {:%) «_—cu&(zi:Tﬂ) .

(a) Determine achoice for T consistent with this informalion,
(b) Is your choice for T in part (a) unigue ? If so. explain why, If not, specify another choice
of T consistenl with the information given.

Consider the system of Figure 410, with the discrete-tme system an ideal lowpass filter

with cutoff frequency /8 rudisns's,

(a) Ifx.(t}isbandlimited to 5kHz, whatis the maximum value of T that will aveid aliasing
i Lhe C/D converter?

(h) 161/7 = 10 kIl what will the cutoff frequency of the effzetive continuouns-time tilter
be?

(¢) Repealpart{b)for 1T = 20kHz

. Letfipir) denote the impulse response of an LTI continuous-lime filter and b 4[] the impulse

response of an LTI discrete-time filter.

(a) If

e 8 g =1,

0 <0,
where @ 1s o positive real constant, determine the continuous-time filler frequency
response and sketch ils magnitude.

(b)Y If hgin] = Th.{aT ) with k() as in part {a), determing the discrete-lime filter fre-
quency response and skelch ils magnitude,

(c) Fora given value of , determine, as a function of T, the minimwem magnitde of the
discrete-time filler frequency response.

j:'r:':ﬂ'=

Asimple model ofa mullipath communication chanoel isindicated in Figure P4.7- 1. Assume
that 514} 1s bandlimited such that 5:.{j2) = 0 lor 2] = 7/ T and that 1.(¢) is sampled wilh
a sampling period Tt obtain the sequence

xirnl = z.(nT .

+ >

501 A = w0+ w5 T}

Delay
Td

'lf':.

Figure P4.7-1
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{a) Determine the Fourier transform of r (1) and the Fourier transform of x|#] in terms
of S8,

(b} We want o simulate the multipath system with a discrete-time svstem by choosing
Hial™ in Figure P4.7-2 so that the output #|#] = (0¥} when the input is s|nl =
setmT b Determime H{r’.}‘!”] inlerms of T oand ;.

{c) Determine the impulse response ila]in Figure P47 when (i) oy = T and (i) 7y = T/2.

o H{r"“'} -
gn]=r5inTh rp] =xAnt} Figure P4.7-2

Consider the system in Figure P43 with the following relations:
X0y =1, 2] = 27 = 1Y,

xn) = xodnl ).

vinl=T 3 «lkl

k=
5 h[n]
D B e
x.(h x[n| Hie™) ¥[n]
r Figure P4.8

(a) For this system, what is the maximum allowable value of ¥ if aliasing is to be avoided,
1., 50 that v can be recovered Trom xa).

{h) Determine ffr].

(e} Interms of X (/™ ), what is the value of v[#) lorn — ot

(d) Determine whether there is any valze of T for which

(s )
¥l =f xetndr, (P4.8-1)

IR = —

I ihers is such a value for T, delermine the maximum value If there is not, explain and
specify how T would be chosen so thatthe equality in Eq. (P4.8-1) is best approximaled.

Congider a stable discrete-time signal x[a] whose discrete-time Fourier transform X el
satisfics the cquation

X (el = ¥ (ef“” ""})

and has even symmeltry, 1.2, x[rn] = x[—n].

{a) Show that X (&)1 penodic with a penod -

ib) Find the value of x[3]. (Hine: Find values for all odd-indexed points.)

1c) Lot vix] be the decimated version of xial, L, v[n] = x[2n]. Can you reconstruet x[m]
from ¥[n] Tor all m, I yes, how™ I no, justify your answer.
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Each of the Following continuous-time signals is used as the input x.{¢) for an ideal C/D
converter as shown in Figure 4.1 with the sampling peried ¥ specificd. In each case, find
the resulting discrete-time signal xr|.

(a) x.if)=cos Qe 100Ny, T = (1/306K0 sec

(b)) x.(t) =sin (P {UKWe, T = (115000 sec

(o) a0 = sin (210000 Sdma . T = (175008 sec

The following continuous- time input signals x-{f) and corresponding discrete-time cutput
signals xln} are these of an idesl OVD as shown in Figure 4.1, Specify a choice [or the
samplmg period T that s consisient with each pair of 060 and x[a]. In addition, mdicate
whether your choiee of ¥ 15 unique. I not, specify a sceond possible choice of T consistent
with the mformation given,

(o) x.{) =sin(Msrr),  xlnf =sinirw/d)

(b) x.iry = sini10m 83/ (107, x{n| =sindme/2) imnsdh,

In the system of Figure 4.10, assume that
Hieftry = fof T, —w 2w =,

and T = 1/1{ sec.
(a} Foreach of the following inputs x. (1, find the corresponding oueput w010

{11 xAF) = cosifme),
Cil) xpe(r) = cosi14xe).

(b} Are the oulpuls v {r) those vou would expect from a dillerentiator?

In the svstem shown in Figure 415, b0 = dir — /20,

{a) Supposc the input 1|r] = siniza/2yand T = 0. Find y[=].

(h} Supposc you use the same ¢[r] as in part (a), but halve 7" to be 5, Find the resulting
w[nj.

{e) In gencral. how does the continuows-time LTI system Ap¢) imit the range of the
sampling period ¥ that can be used without changing v|n)?

Which of the following signals can be downsampled by 4 [actor of 2 using the system in
Freure 4,19 without any loss of mlormation ?

{a) x|a] = #n — apl, for iy some unkoown integer

{h) x[n] = cosiza/4)

(¢) xfn] = cosian /4y cos(3an/d)

(d) xl#] =sinimn/d/(wrs3)

{e) xfn] = (=1 siniza;/3) fan/3h

Consider the system shown in Figere P45, For each of the [ollowing inpul signals xfe).
indicate whether the output ore] = x[#].

(a) xfr] =cos(rn/4)
(h) xlin] = cosimra; 20
ich

xln| = [h‘—;m'”'flm T

on

Fint: Use the modulation property of the Fourier transform to find X {e/*),
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Hie)|

afn ] 1’3 xqlnl 13 I,;-lf!r ‘J::l___ £ nl

w3 ' owid ow

Figure P4.15

4.16¢. Consider the system in Figure 429 The inpet & [«] and corresponding outpul #;[n] are given

417,

4.18.

for a spedific choice of ML in each of the foliowing parts. Determine a choice for M /L
baged on the information given, and specify whether your choiee is unique,

(a) xfwr]=sin{ras/d) fAanf3 Tglnl = sin(San/0) {5Tn /0

(h) xfr]=cos3xn/d), ¥yn] = cos(mni2).

Each of the following parls lists an inpet signal x{n ] and the upsampling and downsampling
rates L and M for the svstem in Figure 4209, Determing the corresponding cutpal &y [n]-
{a} xfn]=sin2an/dfon, L=4, M =3

{h} x|#| =sinE3mn/d). L=6 M=T

For the system shown in Figure 429, ¥ (¢/9) the Fourier transform of the input signal
xln|. is shown in Figurc P4.18. For each of the following choices of L and M. specify the
maximim possible value of wn soch thal X g(ed™) = aX (e M/ r'_] for some constant a,

| Ke)

- " Figure P4.18
{a) M =3, L=2
by M =5 L=3
'l,f.} M=l L=3

4.19. The continuous-time signal x. (1) with the Foarier transform X 1 22) shown in Figure P4.19-

1is passed through the syslem shown in Figure P4.19-2, Dretermine the range of values for
T for which xe (1) = 1000

XLt
[ i
|
-y _ 3y i 2y iy 0
3 3t Figare P4.19-1
— L = L /=
LAtk x|n| xit)

T Flgure P4.19-2
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4.20. Consider the system in Figure 4.10. The input signal x.(r) has the Fourier iransform shown
in Figure P4.20 wilth & = 2x{100) radians/second, The discrete-lime system 15 an ideal
lowpass filter with frequency response

I 17 ™

Hie!™)y = 1
= |ﬁ. otherwise,

- g b Figure PA.20

{ay What is the minimum sampling rate F; = 1/ T such that no aliasing occurs in sampling
the imput?
{b} Tio, = /2, what is the minimum sampling rate such that v.{t) = x.{1)?

Basic Problems

4,21, Consider a continuous-time sipnal x.(¢) with Fourier transform X, { /&) shown in Fig-
ure P4.21-1.

ey

o

Lad| b
—
£

—Lk —% Ly i
Figure P4.21-1  Fourier transform K-

(a) A continuous-time sipgnal x- (¢ is obtained through the process shown in Figure P4.21-
2. First, k(1) is multiplied by an impulse train of period Ty to produce the waveform
xyp(h), i,

o0

2t = Y xlnlslt —nTyh

R —

Mext, z;{1) is passed through a low pass filter with frequency response He{ 21 He{j52)
1s shown in Figure P4.21-3,
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AN EL0 49 ERL]

i S{f— i)
e Figure P4.21-2 Conversion system far part {a)

H{ i)
TIIE

el
T

iy

Figure P4.#1-3 Frequency response f:€3)

Dretermine the range of values for T for which x,(r) = x-0(r)

by Consider the systern in Figure P421-340 The system an this case s the same as the
one in part (a), except that the sampling period is now T:. The system Hp {8 is
some continuous-time ideal LTI filter. We wanl v, (r) (o be cqual to x.o0) for all £, e,
apltr = xp0r) for some choice of (07 52). Find all values of Ta for which x,(0) = xo(1)
is possible. For the fargest Ty you determined that would still allow recovery of o (r),
choose He{ j52) so0 that v, (1) = v, Sketch F, (7).

x 1) A6 H i) X¥oir)
L) »

i Gt =nTs)
n=—m Figure P4.21-4 Conversion system for part (&)

4.22. Suppose that the bandlimited differentixtor of Example 4.4 has input v (¢} = cos(Qys ) with

S ==/ T, In this Pruh]e_'m, wee wish Lo verify that the continuons-lime signal reconsirucled

from the output of the bandlimited differentiator is indeed the derivative of c-(r).

{a) The sampled mput will be x|#] = cosiwpe), where wy = 25T = 7. Determine an
expression for X (o) that s valid Tor |o] = .

{b) Now use Eq. {4.46) to determine the DTET of ¥ (e/™), the output of the discrete-time
sysiem.

{€) From g, (4.32) determine ¥, (2, the continupus-time Fourier transform of the out-
put of the D/C converter.

(d) Use the result of (c) to show that

; .4 :
yrit) = &y sinillyr) = o [xadrd].
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4.2). Figure P4.23-1 showsa conlinuous-l1ime filler that is implemented using an LT discrete-time
filter ideal lowpass Oller wilh (Tequency Tesponse Over —r = i = T 4%

) 1 oo wz e
Jowy (s

By = 0 e = o] = .

(a) Ifthe continuous-time Fourier transform of x-{7 b, namely X {72, 15 a5 shown in Figure
P4.23-2 andd . = g sketch and labsal ,'!;{[p::""'}.1 Fies*1 and ¥l j&5 for each of the
following cases:

iy 10Ty =170 =2« 104
(i) 1/ =4= 1074, 171 =10t
(i) 1/ =104 1/Te=3x= 1t

by Furl/T) =1/Th =6« [i P and for inpul signals r () whose spectra are handlimited
to |5 = 2row S x 10° {but otherwise uuqﬂnstruined}, whal is the maximum choice of
the cutoff requency o of the Glter He) for which the overall system iy LTI7 For
this maximum choice of o, specify H.{ 5.

H(j$2)
e e e s e L T R oy [
x,(fh | ' DA
=10 com Ilnl, Hiewy |2 Il b |t
|
|
. t t
| Y ’
RS, . ot . Figure P4.23-1
2w 5w 1Y 2w 5w 10 i Figure P4.23-2
4.24. Consider the system shown in Figure P34.24-1,
Hi e
_____________________________________________________ :
i
Anli-Alasing f
vity | xdf) xln) ) vl | R0
———= T Filter = o o Hatei=), Aln] » NG R
| T T
r T _:

Figure P4.24-1

I'he anti-aliasing filter is a continuous-time filter with the frequency response Li j€2) shown
in Figure F4.24-2,
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4 LijLa)

g r
=15

Figure P4.24-2

The frequency response of the LLT discrete-time system between the converters is given
by;

i

Hytelty =g 47 o) =

{a) What is the effective continnous-time frequency response of the overall system, FI (07
{b} Choosc the most accurate statemoent:
(i) welrd = Lz 300

(i) velt) = zelt — %0,

(i} yelt) = Fxe(e =370,

(i) weiry =it — $).
{a} Express yyln|in terms of w.dr}.
{b} Determine the impulse response #(n| of the discrete-time LTT system,

4.25. Two bandlimited signals, x0(¢) and x292), are multiplied, producing the product signal

Wit = xyirleais b this signal is sampled by a periodic impulse train yielding the signal

[s &)

[+ ]
W lt) = it Z At —uTy = Z winT 15t —nT)

Rt i
Assume that x ({1} is bandlimited to £31, and xy (7} is bandlimited to £2;; that is,
Ejam=n, k= 0

Determine the maximion sampling interval T such that wi(n s recoverable from wpir}
through the use of an ideal lowpass filicr.

4.26. The system of Figure P4.25 is to be used to filier continuous time music signals using a
sampling rate of 16kHz.

XA YA}
— O - Hiel) - o —
r ! Figure P4.25

H '™y 15 an ideal lowpass filter with a cutoff of =/2. If the input has been bandlimiled
such that X0 52 = O for [52] = 02, how should 2. be chosen so that the overall system in
Figure 14.26 is 1117
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4.27. The system shown in Figure P4.27 15 intended to approzimate a differentiator for bandbm-
ited continuous-timea input wavetorms.

HI.' [.r ﬂj

| n -  H o)

- LS = S =" .. vt R - =S _ Figurs P4.27

» The continuous-time inpul signal x:0) is bandlimiled 10 (2] < Sy
#« The C/D converter has sampling rate T = E“T?r ,and produces the signal
M
xqln] = x-(nT).
+ The discrete-time filter has frequency response
g2 _ g joafl
r r
¢ The ideal D/C converter is such that yiin] = ve(nT).

(a) Find the continuous-time frequency response K4 of the end-1o-end svstem.
(b} Find x;z[n]. vo(1), and vyir], when the input signal is

Hd-{e‘.""'} — fes| = a1 .

siny ﬁ;,,_rl__‘.!

it = Ot

4.24. Consider the representation of the process of sampling followed by reconstruction shown
in Figure P4.28,

SEE) = i&{: nT)

==

Hjg) f—=
T 6) %0 A1) Flgure P4.24

Aszume that the input signal is
Xele) = 2eos(1080mrr — /d) - eos(30T + 1/ —ow e < oo
The Trequency response of the reconsiruction flter is

T IR =x/T

Bl = In 92 = T

(a) Determine the comlinuous-time Founer transform Xo(782) and plot it as & function of
£,

(b)) Assume that f; = 1/T = 500 samples'zsec and ptot the Fourier transform X (j2) as
a function of 22 for =27,/ T = 2 < 27x/7, What is the output £-(¢) in this case? (You
should e able to give an exact equation for ().

() Now, assume that f; = 1/T = 250 samples'sec. Repeat part (b} for this condition.
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(d) 15 it possible lo choose the samphng rate so thal
xe(tt = A + 2oos(Izs — x/4)

where A 75 2 constant? [F s0, what is the sampling rate £, = 1T, and what is the
numerical value of A7

4.29. [n Figure P4.20, assume that X {0 = 0, |f2] = =/T. For the gereral case in which
Ty # Toin the system, cxpress ¥ 400 io terms of x.(2 ). Ts the basic relationship different for
T] = Tl and T|_ “ Tzr."

— (/f} i

X x[n] yelfh
! t

5 e Figure P4.29

¥

4.M. Tn the system of Figure P4.30, X (752 and Hief}y are as shown. Sketch and label the
Fourier iransform of ye (1) for each of the following cases:

(8) 1Ty =17, =108

(b} 1,7y =1/T3 =2 = 10°

(e} 1,7y =2=108  1/7; =104
) 1Ty =10%  1/Ts =25 109

—_—d (N =1 Hieh=) - T
P ¥ I ¥l
r r'z
X.{jil)
1 1
o 5 o= 1P 2w 5w UF ]
Hiegk
| |
- oo B X = .
2 2

Figure P4.30
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4.3. Figure P4.31-1 shows the overall system for filtering a continuous-time signal using a
discrete-time filer. The frequency responses of the reconstriction Glter By (jRQ) and the
discrere-time filter H(e!™} are shown in Figure P4.31-2,

bos(n 'E: Gt oal)

nl
|
|
I
5:::311?; f;:ir: : Cenvert.ta lttli}]!lf'lliili:ﬁﬂn
1o discrete-time | T ™) - =  impulse T fillier P
SCQUENGE :'I (7] ¥lxl train ¥ H. 1Y) I Rty
: | i |
R e i e e 2 i I | J
Figure P4.31-1
H, (i1l | Hie™)
5% 10° i}
Iwo A0t 0 N 1_" ar
4 4

Figure P4.31-2

{a) For X .(;0)asshownin Figare P4.31-3and 1/ T = M kHz sketch X 1/ Q) and ¥ (/).

X, ()

s el ' 2o 10 L Figure P4.31-3

For a certain range of values of T, the overall system, with input x.(r) and output v-irt,
is equivalent Lo a conlinuous-time lowpass Alier with frequency response H g f52)
sketched in Figure P4.31-4, "

H (i 2)

-8, Q0 Figure P4.31-4

ib) Dectermine the range of values of ¥ for which the information presented in {a) is true
when X 0700 is bandlimited (o |82] = 27 = 104 as shown in Figure P4.31-3,

(¢) Forthe range of values determined in (b)), sketch 2. as a function of 177,

Merte This s one way of implementing a variable-cutoff continuous-time filter using fised

continuons-time and discrete-time filters and a variable sampling rate.
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4.32. Consider the discrete-time system shown in Figure P4.32-1

¥in]

x|n|

________________________________ Flgure P4.32-1

where
(i} I and M are positive integers.

(i} weln] = IEI otherwise,
{iit)} wln| = yelud].
Mo |w| = %

i %{l{f]l*_'—ﬂ.

rlnfl] m=kIL, k&isanvinteger

fiv) Hiel™) = |

{a) Assume that L = 2 and M = 4, and that X (7%}, the DTFT of x[r], is real and iz as
shown in Figure P4.32-2, Make an appropriately labeled sketch of Xo(efy, ¥o{ed™y,
and ¥ie/™), the TFTFTs of xe[r], velnl, and y[n], respectively. Be sure to clearly label
salient amplitudes and frequencies.

X(ed)

=

¥ Figure P4.32-2

{b) Now assume L = 2 and M = 8 Determine y[na] in this case.
Hinr: See which diagrams in vour answer to part (a) change.

4.33. Forthe system shown in Fipure P4.33, find an expression for v[a] in terms of £[n]. Simplify
the expression as much as possible.

LN R i s e

L

k
=
L

Figure P4.33

Advanced Problems

4.34. In the system shown in Figure 434, the individual blocks are defined as indicated.

#r) : :
— H(Q) M ep [ Sys. A O op L2
t Ft I
¥ T Ryt T

Figure P4.34
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(a)

(b)

(c)
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I, |8 ==mn. 107 rad/sec

HijRy: Hijih= [D. €3] = - 1077 rad/sec

oo
System A:  ¥eift = 3 xalklhyle — k1))
k=—ma
Second O waln] = ve(nT}
Specily a choice for T, T, and ) (7} 50 that v (4] and x.i0) are guaranteed to be equal
for any choice of (1.
State whether vour choioe in (@) i$ unigue or whether there are other chotces for 1,
Ty, and () thal will guarantes that ye0t) and x.{1) are equal. As usual, clearly show
YOUT [Easoning,
For this pari, we are imierested in what is ofien referred 1o as consistent resompling,
Specitically, the system A constructs o continuous-time signal v0r) from gyn] the
scquence of samples of v, (1) and is then resampled Lo obtain vg(n ). The resampling is
referred to as consslent if vyln] = xgfn]. Determine the most general condifions you
canon T, Ty, and fig{r) so that ygla] = xglnl.

. Consider the system shown in Figure 174351,

For parts (a) and (b} only, X (j52) = 0 for |82] = 27 = 10 and Hie™} 15 as shown m Flgure
P4.35-2 (and of course pedodically repeats).

{a)
{h}

{ch

—_—] D = {2 F{ziny - |1 e

Deeterming the mest general condition on T, if any, so that the overall confinuous-time
syatern from i) 1o veie) is LT

Sketch and clearly label the wverall equivalent continuous-time frequency response
Hoppi 752 that resulis when the condition delermined in {a) holds,

For this part ondy assume that X (72 in Fipure P4.353-1 is bandlimited to aveid alias-
ing, i, Xl j58 = O for |§2 = 1-} For a general sampling peroed 7, we would like 1o
choose the system Hief*) in Figure P4.35-1 s0 that the overall continuous-lime sysicm
Treoam a0t pto vedr) is LT for any input - (¢ ) bandlimited as above. Datermine the most
general conditions on M{e/*), if any, so that the overall CT system is LTL. Assum-
ing that thess conditions hold, also specily in terms of Hied™) the overall equivalent
conlinuous-time frequency response M.l fE2).

A1) xy|n) xfn] Hnf Fulr] yedi}

t t

T T

Figure P4.35-1

4 Hiel)

L 1)

|
|y
FE

Figure P4.35-2
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4.36. We have a discrete-time signal, x[n], arriviag from a source at a rate of fl'l. samples per

4.37.

438

second. We want o digitally resample # to create a signal vin] thal has {.L samples per
second, where T3 — 2 7.
(a) Draw a block diagram of a discrele-time system 1o perform the resampling, Speeify
the input/output relationship for all the boxes in the Fourier domain.
I, n=0

(k) For an input signal x[r] = #[n] = , deterinine y[n].
2, otherwise,

Consider the decimation filter structure shown in Figure P4.37-1:

xyln |‘_ vyln]

Figiz)

xln]

-1

Xq|lH
)2 il Hilz)

Figure P4.37-1

where wyle] and ¥ [=] are generated according to the following difference equations:

| i I
syl = 230l — 11— 3xoln) + ol — 1)

1 1
¥lnl = ;1}=1In -1+ Exlrnl

{a) How many multiplies per output sample does the implementation of the flter structure
require? Consider a divide to be equivalent to a multiply,

The decimation filter can also be implemented as shown in Figure P4.37-2,

. o il
xjn] Hio) 'pln]'_: i2 ¥ial

Figure P4.37-2

where v[n] = avn — 1] + bx[n] + cx[n - 11

(b} Determine o, b, and c.

{¢} How many multiphies per output sample dees this second implementation require?

Consider the two systems of Figure P4.35,

(a) For M = 2, L = 3, and any arbitrary x|(x], will valr] = vglr]? I vour answer is yes,
justity your answer. [T vour answer is noy, clearly explain or give a counterexample.

{b} How must M and L be related to puarantec y4la] = vpgla] for arbitrary xf«]?

, W raln]

System A rl M A'H].- e ke

x[n] i z[n] yaln}

System B: f I. o GM
Figure F4.38
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4.3, In svstem A, 8 coninuous-time signal -0t is processed a5 indicated in Figure P4 3941,

Swvslemn A
- " """ """ "”"”"”"”""”>"¥"”/"”/"”/”"¥”¥/’/"¥"/"¥/-/"~"// U/ /s//— _i
I
Bl +fn v¥ln ¥l
[ o P e P
|
t } |
|
r |
T= ]- |
fe I

Figure P4.39-1

(a) If M =2 and x (7) has the Fourier transform shown in Figure P4.3%-2, determine vfx ).
Clearly show your work on this pary.

L]

I

—Inf.

2mrf, Figure P4 39-2

We would now like to modify system A by appropriately placing additionsl processing
modiles in the cascade cham of system A {iLe. Blocks'can be added at any point in the
cascade chaim—at the beginning, at the end, or even_in between existing blocks). All of the
current blocks in svstem A muost be kept, We would like the modified system 1o be an ideal
LT lowpass filter, as indicared in Figure P4.39-3,

£ L)
—]

¥l
Hidky ———

Figure P4.39-3

s
Hijay =41 9 <=5
[ othetwise

We have available an unlimited number of the six modules specified in the table given in
Figure P4.39-4, The per unit cost for cach module is indieated, and we would like the final
cost 1o be as low as possible. Node that the TWO converter & runaing al a rate of <277,

{b) Design the lowest-cost modified system if M = 2 in System A Specify the parameters

for all the modules used.

{c} Design the lowest-cost modified system if M = 4 in System AL Specify the parameters

for all the modules used,
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Parsmeters; T
Cost ; 10

xin] I xit} Discrete to Continmoos Time-
Comverter

Parameters: T

Cost: 14

| !
I
A

Discrete-Tiue Lowpass Fllier

an]— _.Eb... —eyin] | Parameters: AT

~-mT =T P Cost: 10

A Continuous-Time Lowpass
L — m = yie] Filier
e : Parameters: &, R

Coagt 2 M0

T _";'J.pmd-er
Parameters: L
Cost:d

Compressor
M Parameters: M

{_:nﬁt 5 FIW‘E Pdrag_‘q_

440 Consider the disceete-time systerm shown in Figuee P4.40-1.

x[n} | r.[rn] veln] 1 ¥nl
o] tM > Hiers) M -

e el e Figure P4.40-1
where
(i) M isan integer.
G woefm XlufM| o= k'ldf & Is anv integer

1 otherwise.
(i} yinl = ye[nM].
. o M |I'JJ|E%
Y e }_{ﬁ %-:.le*fﬂ'.
{a) Assume that M = 2 and thay ¥ {=/'*} the DTFT of x{x], &5 real and i5 as shown

in Figure P4.40 2. Make an appropriately labeled sketch of X (), Y (e/%), and
Fiad™), the DTFTs of x.[#], yeln]. and y|« |, respeciively. Be sure to clearly fabel salient
amplitades and frequencies

g Hled

IN—Y w2 ¥ Figure P4.40-2




(h)

(c)

(d)

441, (a)

(b)
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For M = 2 and X (27} as grven in Figore P440-2, find the value of
52 3
S R
=1

For M = 2, the overall system is LTL Determine and sketch the magnitude of the
frequency response of the overall system ! Hopp(e'™ ).

For M = 6, the overall system is sGll TTT, Determine and skelch the magnitude of the
overall system’s frequency response | Hoge!™)|.

Consider the systam in Figure P4.41-1 where a filter H{z} is followed by a compressor.
Suppose that #{z) has an impulse response given by:

hin] (), 0=n<ti (P4.41-1)
] = ¥ z
ib. otherwise.
r|#] _ wled
—* Hiz) ot B T
Figure P4.41-1

The efficiency of this systerm can he improved by implementing the filler M(z) and the
COmMpressor using a polyphase decomposition. Draw an efficicnt polyphase structure
for this system with two polvphase components, Please spealy the flters you wse,
mNow consider the system in Figure P4.41-2 where a filter H{z) is preceded by an ex-
pander, Supposz that & (z) has the impulse response as given in Bg, (P4.41-1).

¥in]

L ]

‘[HI—* 13 Hizp —*

Figure P4.41-2

The efficiency of this system can be improved by implementing the expander and filter
H{z) using a polvphase decomposition. Draw an efficient polyphasa structure for this
syslem wilh three polyvphase components, Ploase specify the Gilters vou use.

4,42, For the systems shown in Figare P4.42-1 and Figore P4.42-2, determine whether or fof it s
possible to specify a choice far Ha(z) in System 2 so that v [r] = v [n] when x21r] = 11al
and Hj (2} is as specified. If it is possible, specify Hy(z), If it is not possible, clearly explain

System 1;

& [v] w,ini ¥i|n|
— = L

12

el xgm2] . m2integer
T e ¢ diipeae Figure P4.42-1
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System 2:
] b Vil
—_— H;{z} i 12 2
woln2] . a?intoger
wlil= 4! e
» SITETNE Figure P4.42-2

4.43. The block diagram in Figure P4.43 represents a system that we would like to implement.
Dieterming a block diagram of an equivalent system consisting of & cascade of LTI systems,
compressor blocks, and expander blocks which resulis in the minirowm awmber of raultiphi-
cations per output sample.

Nore: By "equivalent system,” we mean that it produces the same output sequence for any
given inpul sequence,

] fa N iz o |2 .l 13 _-V!;T_J

E

Figures P4.43

250

74z78 2712
4.44, Consider the Lwo systems shown in Figure Pd,d44,

Hiz) =

Svslem A
xaln] 4 raflt] ¥alnl
w1 (M) -
i)
System B:
xule] = raln wlel
-+ — o)
S

Giz)

Figure P4.44

where () represents a quantizer which 15 the same in both systems For any given ({z).
can H(:) always be specified so that the two systems arc cquivalent (Le., x4ln] = vg[n)
when x4in] = xglrl) [or any arbitrary quantieer 037 I so, specily Hiz) 1L not, clearly
explain your reasoning.
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4.45, The quantizer -} in the system 5| (Figure P4.45-1 } can e modeled with an additive noise.
Figure P4.45-2 shows system %, which is 2 model for system §;

x[n] LPF ¥[n]
= Q) o [P M —
M Figure P4.45-1 Systam 3,
e[n]
x[n) l LPF eln] = v, |n] <y, In)
=2 ~ M »
A

Figure P4.45-2 Systern 5o

The input z|a] is a zero-mean, wide-sense stationary random process with power spectral
density @, (o4} which is bandlimited to /M and we have E [len]] = [. The additive
noise efn] is wide-sense stationary while noise with zero mean and variance o, Input and
additive noise are uncorrelated. The frequency response of the low-pass filter in all the
diaprams has a unit gain.

Elyin]l :
ELd N’ Note that vy [n] is
the output due to x[a] alone and y.[=] 5 the output due to e[=] alone.

{b) Toimprove the SNR owing to quantizadon, the svstem of Figure P4.45-3 s proposed:

{a) For system S5 find the signal to noise ratio: S¥ R = 10log

x|n] 1 of LPE | Flal = prodm] + ¥ 0]
o - -l - = | A +
1-¢g" By
oM fe
Figure P4.45-3

where N = Oisaninieper such that N <« M. Heplace the quantizer with the additive
madel, as in Figure P4.45-4. Express vy [#] in terms of x[n] and y-,[#] in terms of e[x].

e [r]

i
L &) —ITEL] dlr] % glm|
Figura P4.45-4

(¢) Assume thal e[x] s 2 2ero mean wide-sense statonary while noise that is uncommelated
with input x[n]. Is ), x| a wide-sense stationary signal? How about y [n]? Explain,

(d) Is the proposed method in part (b) improving the SNR? For which valuc of & is the
SMNR aof the system it part (B) maximized?
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4.46. 'The following are three proposed identities involving compressors and expanders. For each,
state whether or not the proposed identity is valid. 1 your answer is that it is valid, explicitly
show why, I§ your answer is no, explicitly give a simple counterexample.

{a} Proposed identity (ak:

Half sample delay f—ss

I

o 2 f—

¥

o

r4

Flgure P4.45-1

(b} Proposed identity (b

— 2 e BLE = }2 S
z b
—_— |2 whln+ 1] = {2 5
Figure P4.46-2

{c} Proposed identity (c):

I

-—p—fn[_

e

Figure P4.46-3

where L s & positive integer, and 4 s defined in terms of .li’(f:-‘:*”‘] and ¥ied™) [the
respective T s of A's input and output) as:

1[n] wlw]
—— A —

Yieh) - (Xiem)" Figure P4.46-4
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4,47, Consider the system shown in Figure P4.47-1 for discrete-time processing of the continuwons-
time input signal g.ir).

CT , DT
g0 | pan | xd0 | Weal dxmp |y | yin] | Teal | un
Svstem " LUI:L | System i (F:{i
Hul:jn:l ON¥, Hi [fm’.' DNV
T r Figure P4.47-1

The continuous-time input signal to the overall system is of the [onm g, (1) = foir) + e-{7)
where f.(1) is considered to be the “signal™ component and ¢.(f) 15 considered to be an
“additive noisc” componenl. The Fourier transforms of f:(r) and ¢, () are as shown in
Figure P4.47-2, :

Fii) T E{i€)
L

i

B T N I N I

X hr amflar —30Kr JII.'?EJ-;" Figure P4.47-2

Since the total input signal g.{r) does not have a bandlimited Fourier transform, a zero-
phuse continuous-time antialiasing filter iz used to combat alissing distortion. Tts frequency
response is given in Figure P4.47-3,

Ho(jity=

1 =SBy A < B
0 {0 = MlHbr

|

: Q
AN 40T A EODT Figure P4.47-3

{a} 1fin Fipure P4.47-1 the sampling rate is 25/ 7 = 16007, and the discrefe-time sysiem
has frequency reaponse

1 eo| = /2
0 il | <o

Hy [L:?-"-{"'} = {

sketch the Fourier transform of the continuous-time output signal for the input whose
Fourier transform is defined in Figure P4.47-2, _

(b) If the sampling rate is 27/ T = 1600r, determine the magnitude and phase of Hy (e
{the frequency response of the discrete-time systen) s0 that the output of the system
in Figure P4.47-1 15 voit) = fi.0 — 0.1 You may vse sany combination of equations or
carefully labeled plots (o express your answer.
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(e} Tt turns owl that since we are only interested in oblaining f-00) at the ootpul, we

can use a lower sampling rate than 2x/7T = 16007 while still using the antialiasing
filter in Figure P4.47-3. Determine the minimum sampling rate that will avoid aliasing
distortion of F.{ 752) and determine the frequency response of the filker 7y (e that
can be used so that v.{r} = f(1) at the outpur of the system in Figure P4.47-1.

{dy Now consider the system shown in Figure P4.47-4, where 20/ = 1600, and the

input signal is defined in Figure P4.47-2 and the antialiasing filter is as shown in Figure
P4.47.3,

C-T
[ME]
Ayslem
oty

LT

x| 1deal | xa vt [T ¥

C/D } 3

] System |
Comy. H{ein) ]

1

T Figure P4 47-4  Another System Block Diagram
where
] = x[n i3] =143+, ..
=10 otherwise

What should Fafed®) be ifit is desired that y[n] = f.(nT/3)7

4.48. (a) A finite sequence b|x] is such that:

Bizi+ Bl—zy=2¢, c#=0.
Explain the structure of bir]. Is there any constraint on the length of br]?

(k) Is it possible to have B(z) = H(z)H(z~")? Explain,
() A lenpgth-¥ filter (2} is such that,

Hiz Y+ Hi—oH{—z b =c [P4.48-1)
Find Gyiz) and €74{z) such that the filter shown in Figure P4.48 is LTT:
Hiz) - |2 —- 2 Gz
M M-z = {2 = {2 S
Figure P4 48

{d} For Gpiz)and &7y (z) given in part {c}, does the overall system perfectly reconstruct the

input? Explain.

4.49. Consider the multirate system shown in Figure P4.49-1 with input x{n] and output y[r]:

»

Hylete) t2 | Dplefor) —f 2 Hylel)
x{n] Hn}

)

Hyjei) f—t {2 = Qyfeiv) —=t 2 H fem)

Figure P4.49-1
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where ol and @ (e} ave the frequency responses of two IT] systems. Hy (/) and
(/™) are ideal lowpass and highpass filters, respectively, with cutoff frequency at = /2 as
shown in Figure P4.49-2:

i fﬂlleiﬁ.J
1
} } = (s
" =il T2 W
A FFied)
i
NI | Tl Foa X | ekl [ e —— -,
) —' W L Figure P4.49-2

The overall system is LTTiE @gle/®) and {4 {ed®) are as shown in Figure P4.49-3:

b Ohleis)

L £ [}
1

( N,

L) T = i
32 a2 ) - Figure P4.49-3
For these chuices of (qte’™) and ©4(e/*), skelch the freguency response
.lll:LI
(.r'{i.."f("“? S M
X edon

of the overall system.
4.50, Consider the QMF filterbank shown in Figure P4,50

Hilzy - 4' 2 - 1' 2 - G-,l[i} = Hyfz)

wa

Galz)=—Hyz)

Hio=Hy-zy —= }2 >}z

Figure P4_50
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The input-output relationship is ¥{z) = T (21X {z), where

1
Tizy=-
T

andd Er_;.f':‘::}l.. By (%) are the polyphase components of Hyiz.

{HI (D) = Hi (=) = 22 Byl Ey (%)

Parts (a) and (b) are independent.
{a) Fuplain whether the following two statemenis are correct:
{al} If Hoiz) is linear phase, then T{z) is incar phase.
(a2} I Egiz) and £ {7} are linear phase, then T(z) s linear phase.
(b} The prototype Aller is known, Agla] = 8[k] +8m — 1]+ }ﬁ[n -2
(b1} What are h;[a], pyla] and gi{e]?
(h2) Whal are eg[n] and &q[w]?
(b3} What are T(z) and 1[x]?

4.5L Consider the system in Figure 410 with X (i 2) = 0 for |£2] = Zx{ 1K and the discrele-
time system a squarer, ie, yln| = £2]n]. What is the fargest value of T such thar
yelt) = X267

4.52. In thesystem of Figure P45,

Xy =10, 2] = /T,

anl
S e | /L,
Hied®y = i
{e™) i, mil o= || =,
How is vla ] related to the inpuat sipnal x- ()7
—al e JBL Hiew) =l L |
r) e[t} =z inT} 21%]

=

Figure P4.52

Extension Problems

4,53, In many applications, discrete-ime random signals anse through periodic sampling of
continuous-time random signais. We are concerned in this problem with a derivation of
the sampling theorem for random signals. Consider a continuous-time, stationary, random
process defined hy the random variables {x (1)), where ¢ is a continuous variahle. The
autocorrelation function is defined as

Pz (1= Elxiniy™ e = 1)},

and the power density spectrum is
oo
Pz, (62) = f broa (101 .
— o

A discrete-time random process oblained by periodic sampling is defined by the sel of
random vanables {a[w]}, where x[n] = x, (T ) and T w the sampling period.
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(o) Whatis the relationship between dycle| and ¢, (217

(k) Express the power density specirum of the diserete-time process in terms of the power
density spectrum of the continuous-time process.

(¢) Under what condition is the discrete-time power density spectrum a faithful represen-
Lation of the conlinucus-time power densily specirarm ?

4.54. Consider a conlinuous-time random process (7)) with a bandlimited power density spec-
trum Py (02 as depicted in Figure P4.34-1. Suppose that we sample .01} to obtain the
discrete-time random process xfr] = x(n 1 1.

P, . (1

g Ty

- ity ' Figurs P4.54-1

{a) What is the aulocorreiation sequence of The discrele-time random process?

{b} For the continuous-time power density spectrum in Figure P4.34-1, how should T be
chosen so that the diserete-lime process is while, Le. so that the power speetrum is
comstant for all w?

1¢) If the continuous-time power density spectrum is a5 shown in Fipure P4.54-2, how
should T be choson so that the dscrete-time process is white'?

'px; X [ L J

I

-1, i, g Figura P4.54-2

(d] What is the genersl requiremen! on the confinuous-time process and the sampling
period such that the discrete-time process is white?

4.55. This problem explores the effect of interchanping the order of two operations on a signal.
namely, sampling and performing a memorvless nonlinear operation.

{a) Consider the two signal-processing systems in Figure P4.55-1, where the C/D and DiC
convertersare ideal, The mapping g[x] = x° represenls a memoryless nonlinear devige,
For the two systems in the fipure, sketch the sipnal spectra at points 1, 2, and 3 when
the sampling rate is selecled tobe 1/ 7 = 2 iy Hz and (1} has the Fourier transform
shown in Figure PA3S-2Z 15 vy = v (037 IF now, why not? 15 v (1) = :.-3{1;'.?' Explain
¥OUr answer.
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Swstei 1:
k] L )
—| Y at WA L RN
PO yo o) Miyopr
T T
System 2:
1 wln)
| glx] =" A Lo
Ry @

oL O

T Figure P4.55-1

XU

T

Zaf, 0 2%, @ Figure P4.55-2

(b) Consider Svstem 1, and let «4t) = A cos (3010, Let the sampling rate he 1/ T = 4 Hz.
Is ity = ;rf:irj? Explain why or why not.

(¢) Consider the signal-processing system shown in Figure P4.55-3, where gz} = s
and g_'[ul is the {umkjue] inverse, 1., ,n:_' [#ix)] = x. Let x4ty — A cos {30wr) and
1/ T = 40 Hz. Express v[n] in terms of x{a]. Is there spectral aliasing? Express y[a] in
terms of x|x]. What conclusion can vou reach from this example? You may find the
following adendily h:]pflll;

o Lnt = % cos Lgh + 3—$ cos 3821
] glx]=x* - D = £k "
1) b it [n] win)

e

Figure P4.55-3

(d) One practical problem is that of dipitizing a signal having a large dynamig range, Sup-
pose we compress the dynamic range by passing the signal through a memorvless
nonlinear device prior to AT} conversion and then expand 0 back after A/D conver-
sion. What is the impact of the nonlinear operation prior to the A converter in our
chodee of the sampling ratc?

4.56. Fizure 4.23 depicts a system for interpolating a signal by a factor of L, where
L) = xln/L, n=A1, +L, +2I. et .,
Xeln] = i, atherwise,
and the lowpass filter interpolates helween the nonzero values of x.[n} to generate the
upsampled or interpolated signal =;{# |. When the lowpass filter is ideal, the interpolation is
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referred to as Bandlimited interpolation. As indicated in Secrion 4.6.3, simple interpolation
procedures are adequate in many applications. Two simple procedures oflen used are zero-
order-hold and linear interpolation. For 2ero-otder-hold interpolation, each value of x[=]
is simply repeated L times; ..,

-T.::I-ﬂ.i. m=1, 1.,...L—1.

wfElL . AR L. MY

xifn]l = xei2L]. n=2L, 2L+1,...,

Lincar inlerpolation is described in Section 4.6.2,

(a) Determine an appropriate cholce for the impulse response of the lowpass filler in
Figure 4,23 (o implement sero-order-hold inlerpolation, Also, delermine the comme-
sponding frequency response.

(b} Equation {4.91) specifics the impulse response for linear interpolation. Determine the
corresponding Trequency response. {You may find it helpful (o use the Tact that iy, [x]
is trigngular and consequently corresponds to the convelution of lwo reclangular se
CUETICES. b

{€) Sketch the mapnitade of the fileer frequency response for zero-order-hold and linear
inter polation. Which is a beller approximation to ideal bandlimited interpolation?

. We wish to compute the autocorrelation function of an upsampled signal, as indicated in

Figure P4.57-1. It 15 suggested thal this can cquivalenily be accomplished with the sysiem
of Figure PA5T-1. Can fia{ed™} ke chosen so thal galm] = ¢y [m]? 1 oot why not? 11 so.
specify fa{e/™).

Ideal lowpass
—_—| 4 Bller cutoll | AUTHCOITE] e f— .
x|n} x,ln] L il #alml= ¥ glnsmiagn)
=
Figure P4.57-1
e, BB OO AT - ’|',L Hyfein »
xf] slm] bl ¢3lml - Figure P4.57-2

We are interested in upsampling a sequence by o faclor of 2, using a system of the form of
Figure 423, However, the lowpass flter in that figure i3 to be approximated by a five-point
filter with impulse response flR] indicated in Figure P4.58-1. In this system. the output v |al
i obvained by direct convolation of &[a] with w(nal.

hr]

- 42 h|x|

x|l we| e »lnl Figure P4.58-1
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{a} A proposed implementation of the systam with the preceding cholce of &ln]is shown
in Figurc P4.58-2, The three impulse responses Bjlr], Azl ] and fy[afare all resineted
o b weero outside the range 0 = a1 = 2. Determine and clearly justily a choice for
fylnl, kalrl, and fqle| so that yle] = v=[r] for any <[« ], e, =0 that the two systems

are idemtical.

L 3

Fy[n]

rnl

wylr)

3

haln

-l f2

¥

wafn]

he [}

wijn]

Figure P4.58-2

(b) Determine the number of muitiplications per output point required in the system of

Figure P4.58-1 and in the system of Figure PA.58-2, You should find that the system of

Figure 1'4.54-2 is more efficient.

4.59. Consider the analysis—synthesis system shown in Figure P4.59-1, The lowpass filter fgle)
15 identical in the analyeer and synthesizer, und the highpass Gler Ay (2] 15 identical in the
analyzer and synthesizer. The Fourier transforms of Agla] and & [#] are related by

Ir : i.ﬁ"fm_:' = ”I:E,__r' [+ I:I

I
I
N ] 3 ; 2 = B,
ilo] | ralnl y -"uri‘]: 1' giln oltd Fuln]
LPF I LPF
|
<[] :
= iy [n] == 42 - 12 hy[n]
riln] x ] il |y
LIFT TIPF
Analyrer Symthesizer
Figure P4.59-1

V] = vl - 1y [n]

(a) If X (e and Hyie!™) are as shown in Figure P4,59-2, sketeh (o within 4 seale [actor)
X gy, Gyle/®), and ¥yle/™).
(b} Write a general cxpression [or Gole™yin texms of X (e and Hﬂl:’j” b, Do prees | SsI TT
that X (e/*) and Hyle ™) are as shown in Figure P4.59-2,
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Kiem)
A
-1 1} T i
Hyle™
—_— 1 e
| |
I - w0 ™ ™ el
2 2 Figure P4.54-2

(¢} Delermine a set of conditions on Hple/™) [hat is as peneral as possible and that will
guarantee that | ¥e/™}| is proportional to | X (/)] for any stable input ¢ fx].

Nete: Analvzer-svnthesizer filter banks of the form developed in this problem are very
similar to quadrature mirror filter banks, (For [urther reading, sce Crochiere and Rabiner
(1983), pp, 3TE-392.)

Consider a real-valued sequence x|n] for which
gt T
Xiel™) =1, = < |oo| < T,

One value of x[n] may have been conrupted, and we would ke to approximately or exactly
recover it. With £|n] denoting the corrupled signal,

i[n] = xint lorn # ny,

and #[rpl is real but not pelated 1o x[np]. In each of the fulluwing three cases, specify a
practical algorithm for exactly or approximately recovering x|# | from &[s]:

{a) The value of ry is known.
(b} The exact value of ng 18 net known, bul we know that ng % an éven number,
{c} Mothing about x; is known.

Communication systems often require conversion from time-division multiplexing {TDM)
to [Tequeney-division multiplexing (FDM), In this problem, we examine a simple example
of such asystem. The hlock diagram of the system Lo be studied is shown in Figure P4A1-1.
The TDM input is assumed to be the sequence of interleaved samples

xpln 2] for n an even integer,
win] =
xallm =~ 13/2]  for e an odd integer.

Asgsume that the sequences xq[r] = 2. (rT b and xa3ln| = 2.20nT ) have been obtained by
sampling the conlinuous-time signals x_; (/) and x901), Tespectively, without aliasing.
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- Mioddulator 1
xyln]
TDM
w[n] demultiplex
oM
sl —— Modulator 2
el nl Figure P4.61-1

Assume also that these two signals have the same highest frequency, Ry, and that the

sampling period is T = m/ Q.

(=) Draw a block diagram of a svstem that produces xq[n] and xa[r] as outpuls; i.e., obtain
a svstem tor demultiplexing a TDM signal using simple operations. State whether or
nol your sysiem is inear, time invariant, coosal, and stable,

The &7 modulator system (& = 1 or 2} is defined by the block diagram in Figure
P4.61-2, The lowpass filter Hy(e/™), which is the same lor both channels, has gain L amnd
cutoff frequency ot/ L, and the highpass filtars A {e/™) have unity pain and cueot? frequency
s, The modulator frequencics atc such that

my =iy +xfL and en +moil=m {assume ) = x/2).

—sl 4L AT Hy (o) —
xi[n] ¥iln}
LPF HI'F

COF ot Figure P4.61-2

¥

ib) Assume that 2y = 2y = 5 « 10°, Find wq and L so that, after ideal VO conversion
wilh sampling period T/ L, the Fourier transform of v (¢} is zero, exeept in the band of
frequencies

2 ow 10 = | = 27 % 107 + 202

(c) Assume that the continuous-time Fourier transforms of the teo original input signals
are as sketched in Figure P4.61-3. Sketeh the Fourier transforms at each point in the
AYSLLMm-

X0 &)

—Iy iy 01 Figure P4.61-3

(d) Based on vour solution to parts (a)-{c}, discoss how the system could be generalized
e handle M equal-bandwideh channels,
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4.62. In Scclion 481, we considered the wse of prefillering to aveld aliasing, In practice, the
antializsing filter cannol be ideal. However, the nonideal characteristics can be at leasi
partially compensated for with a discrete-time system applied to the sequence x[n] that is
the output of the &I converter.

Comsider the two systems in Figure PAG2-1. The anlialiasing filters o {7520 and
o d i are shown in Figure PA62.2, B/ in Figure P4.62-1 is to be specified to com-
pensate for the nonidesl characteristios of Hag(752).

Sketch ffe™) s thal the two sequences ofn] and wln] are identical,

Svalern 1:
= Higeal 1) = CT =
x A x, (0 t x|n]
T
systerm 2
— H, {1 s A0 o F{ o iy e
x4 W) win|
f Figure P4.62-1
1 HI'."EII|{.II-H:|
o E 1
T T
Haal 100

SIE!

Flgure P4.62-2

463, As discussed in Section 4.8.2, lo process sequences on a digital compuier, we musi quantize
the amplitude of the sequence to a set of discrete levels ‘This quantization can be expressed
in lerms of passing the inpul sequence £l#x] through g quantizer ¢Ax) thal has an inpul-
culput relation as shown in Figure 434,

As discussed in Scetion 4.8.3, if the quantization interval A s small compared with
chunges in the leve] of the inpul sequence, we can assume Lhat the output of the gquantizer
i of the form

¥ln] = x[n] + gln],
where elnl = 2 {xln]) — x|n) and eln] is a slalionary random process with a 19 -arder

probability density uniform batween —A 2 and A /2, uncorrelated from sample to sample
and uncarrelated with x[a). so that £eln]cem]] = ¢ for all s and n.
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Let t|n| he 4 stationary white-noise process with zern mean and variance o .
(a} Find the mean, variance, and autocorrelation sequence of e[r].
' ' o ' ' 1
{b} What is the signal-to-guantizing-noise ratio o}/ 7
(¢} The quantized signal v[r] s do be fillered by a digital Gier with mmpulse response
hlnl= J;:F_d" + {—a)” |uin| Determine the variance of the noise produced at the output
due Lo the input guantueation nose, and determine the SNR at the outpul,
Im some cases we may want 12 use nonlinear quantization steps, for example, logarithmically
spaced quantizalion st2ps, This can he accomplished by applying uniform quantization to
the logarithm of the input as depicted in Figure P4.63, where -] is 4 uniform quantizer as
specified in Figure 4,54, In thig case, iDwe assume that A is small compared with changes in
the sequence Indx[a1), then we can assume that the outpuat of the guantizer is
lodelee ]y == lnixln]) + efer].
Thus,
vl = xlnl - expleln].
For small ¢, we can approgimate expiefr]) by (0 4+ efn |l 50 that
v[n] == x[m](] + e[n]) = x[n] + fir]. [P4.63-1)
I'his equartien will be used to describe the effect of logarithmic quantization. We assume

eln| to be a stationary random process, uncotrelaled from sample (o sample, independent
of the signal x[r]. and with Hlarder probalnahiny densiny unctorm betwasn 4 /1

— In [-l

x[n] In(x [r:]"]l.'- el

expl-f—

iyl ¥[n]  Figure P4.63

(d} Determine the mean, vanance, and autocorrelation sequence of the additve noize fn)
dofined in Fip. (4.57).

(&) Whatis the signal-to-guantizing-noise ratio o 2 _,-'a_l_"; ?Natethatinthiscasea

e f i inde-

pendent of o7, Within the limits of cur assumption, therefore, the signal-lo-quantizing-
noise rafic is independent of the input signal level, whereas, for linear guantization,
the ratio -::rf',-'::rf depends directiy on a2,

(1) The quantized signal »ln] is 1o be fillered by means of a digital filter with impulse
Tesponse flr| — %Iﬂ" = (=2 il ], Determine the variance of the noise produced at
the omtpat due 1o the inpat guantization noise, and determine the SNR at the ougput.

Figure P4.64-1 shews a system in which lwo conlinuous-lime signals are mulliplied and
a discrete-tnne signal is then obbained from the product by sampling the product at the
Nyquist rate; L.e., ¥j|n] is samples of v-(} taken at the Nyquist rate. The sigral . (r) is
bamdlimited 0 23 kHe (X Gi80 = 0 for (2] = 537 = lﬂ'jj. and xo(r) s limated 1o 2.5 kKHr
(X107 = 0for @ = (n/2) = 104,

eyt

Wyfe] = 3 dn T

LA

T

T = Nyquist rate Figure P4.64-1
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In some sitaations (digital ransmission, for example], the continuous-time signals have
already been sampled at their individual Nyguist rates, and the multiplicalion is to be
carried oul m the diserele-lime domain, perhaps with some addiliomnal processing before
and after multiplication, as indicated in Figure P4.64-2, Each of the systems 4, 8. and ©
either is an identity or can be implementicd wsing one or more of the modules shown in
Figure P4.64-3, ;

xylrh ;[ wyln]

& (.':} A 1

Ty =2 %10 see

valn]

],

Xyl x;0n] Wy [re]
—] D > B
. S .
Tp=2 =l e Figure P4.64-2
3l s[niL] m=0,L, 2L
Modulc | — TL = gn]= N Y
L, 0 atheredse
£]n|
Maodule 1T - M = g[n] =slnd]
sln 1_Hie™)
Module 11— :L — |
i % Figure P4,64-3

For each of the three systems A. #, and £ cither specify that the system is an identity
sysiem or specily an approprisie inlerconnection of ene or more of the medules shown in
Figure P4.64-3. Also, specify all relevant parameters L, M, and o The svstems A, B, and
€ should be constructed such that ¥ |n| is proportional to yp(s). ie.

wala] =kvyln] = kyo(nT I =kaginT b % 22(nT ).

and these samples are at the Nyguist rate, ie., y2ln] does not represent oversampling or
undersampling of y.-(r).

Suppose 5.0t 1% 8 speech sighal with the conneous-time Foluner ransform 8. (702 shown
in Figure P4.65-1. We oblain a discrete-time sequence s, [n| from the system shown in
Figure P4.65-2, where Hied™) 15 an ideal discrele-lime lowpass filter with cotoff frequency
e and a gain of £ throughout the passband, as shown in Figure 4.29(b). The signal s:fn)
will b used as an inpul 1o a speech coder, which operates correctly only on discrete-time
samples representing speech sampled al an 8-kHz rate. Choose values of L. M, and ax. (hat
produce the correct input signal sy [a] for the specch coder.
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Qw4000 0 274000 SMrad's) Figure PA.65-1

iln] suln]

sel#]
=R oM — 5[]

sty ——=| /B Hie )

1

T={1/14.1) ms
Figure P4.65-2

406, In many avdio apptications, it is necessary to sample a continuous-time signal x:(r) at
a sampling rate 1/ 7 = 44 kHz. Figure P4.66-1 shows a siraightforward syvstem, includ-
ing a continuous-time anhialias filler 8o 52, to acquire the desired samples, In many
applications, the “4x oversampling™ system shown in Figure P4.66-2 is used instead of the
conventional system shown i Figure P4AR-1. In the sysiem in Figure P4.6R-2,

| el = x4

fory _
Hie™) | 0. otherwise.

! H,li0) ) —
(1) x[a]

f

(147 = 44 ki b= Figure P4.66-1

¥

is an ideal fowpass filter, and

o 110 182 = 2,
H (51 = o, 1ol- o
forsome 0 < 2, = 8, = og,
—d ) s = Hie) w ol
x40 t xlr]
(LT =4 42 kile=176 kil Figure P4.66-2

Assuming that H{(e/*) is ideal, find the minimal sel of specifications on the antialias filter
0 j52), Pe, the smallest Q2 and the larpest Oy, such that the overall system of Fig-
ure P4.66-2 is cquivalent to the system in Figure P4.66-1.
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467, In this problem, we will consider the “double integration™ system for guantization with
noise shaping shown in Figure P4.67. [n this system,

1 -1
Hylz) = - and Halg)= -~ P
] — 21 1=

e -

and the frequency response of the dectimation filter is

.I. ||1.'i = -'1'.1"-'1{-.

..":-.ll.':"'" —
H3le™) = {u, M = ] =

The nowse source efel, which represents a quanlizer. 15 assumed (o be a gero-mean while-

noise (constant power spectrum ) signal that is uniformly diswibuted in amplitude and has
s bl .

noise power o2 = A2/12,

zin)

vin]

Hiiz) oz} + i) - M ——

ufn] wefn] v = w M

{a)

(b}

{ch
{d)

ie)

Flgure P4.67

Determine an equation for ¥{z) in lerms of X (z) and £(:}. Assume for this parl that
Eizy exasls From the z-lransform relation, show that vin] can be expressed in the form
vlre| = xfn — 1] = fln], where f]a] is the output owing to the noise source ¢|n . What
15 the lime-domain relation between Fin] and o(n]?

Mow assume that e[s] is 2 white-noise sipnal az described prior to part (a). Lise the
result from part () to show that the power specttum of the noise flq] is

Prpled®) = l6a2 sin(w/2).

What is the tota! noise power [uf—} in the noise componcent of the signal v|n|? On the
same set of axcs, sketch the power spectra Poelef™y and Py (el for0 < w < .
Now assume that X (&) = O for 7/M = o = 7. Argue that the output of A3z is
wln] = x[n — 1]+ gln]. State in words what g[n] is.

Dietermine an expression for the noise power o';,“' at the output of the decimation filter.
Assume Lhat /M =2 ne, M s large, so thal you can use s small-angle approximation
to simplity the evaluation of the integral.

Adfter the decimator, the outpul s vie] = wiMn| = x1Me — 1] = glr|. where glu] =
gl Mow suppose that xix] = x4nT ) {ie, x[n] was oblained by sampling a
continuous time signal), What condition must be satisfied by X (752 so that x| 1]
will pass through the filler unchanged? Express the “signal component™ of the oatput
vfm] in terms of 6. What is the total power r.r? of Lhe noise al The output? Give an
expression for the power spectrum of the noise at the output, and, on the same set of
axes, sketch the power specita £.. (e and Pr.,rl.fﬂ""”] forlh = o =,

468, Tor sigma-della oversampled AT converlers with high-order fecdback Toops, stability be-
comes a significant consideration. An alternative approach referred to as muli-stage noise
shaping {MASH) achicves high-order noise shaping with only 1% -order fecdback. The
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structure for 2™ -order MASH poise shaping is shown in Figure P4.68-2 and analyzed in
this problem.

Figure P468-1 15 & 1¥ order sigma-delta (L — A) nioise shaping system. whers the
effect of the quantizer is represented by the additive nmse signal efrn], The noise ela] 15
explicitly shown in the diagram as a second output of the system. Assume that the input
xlnlis a zero-mean wide-sense stationary random prodess, Assume also that eln] s zero-
mean, white, wide-senss stationary, and has variance rrf. eln] is uncorrelated with xfn].

{a} For the system in Figure P4.68-1, the output »[al has a component v, [0} due only to
ilr] and a component ve[n} dee only to e[n ], Le., v[r] = vy |8] + veli]
{1} Determine vifnlin terms of x[al.
(ii} Determine £y, {w), the power spectral density of y.ix].

1
i
]
]
i
)
| 1 :
a4 .4 _._—l'—h— i + : i
x|n] : L= EL wln
[
[
i
|
!

T d ) -
w
«[n] Figure P4.68-1
— 24 * r”
[n] ¥itn]
eq[n]
o »
valn]

|

€ln] Figure P4.58-2

(a) Thesystemol Figure P46E isnow connected in the configuration showe in Figure P48,
which shows the structure of the MASH system. MNotice that ¢y n) and &3 |#) are the
nonasignals resultimg from the guantizers in the sipma-delta noise shaping systems, The
output of the system r[n] has a component ry[n] owing only o x[r), and a component
Felal due ondy o the quantization noise, Le., rla] = ry v+ relal :issumt_,: that eqfn jand
ez[n] are Zero-mean, while, wide-sense stationary, each with variance a7 Also assume
that eq[#] is uncorretlated with e[ ].

{1} Determing re[n]in terms of fn].
(i1} Determine Fr (), the power spectral density of reln].



