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In Chaptler 2 we developed the Fourier transform representation of discrete-time signals
and systems, and in Chapler 3 we extended that represeniation 1o the 2 ransform. In
both chapters, the emphasis was on the translorms and their properties, with only a
bricl preview ol Lthe details of their use in the analysis of lincar Gme-invariant (L17)
sysloms, In this chapier, we develop in more detail the represenlation and analysis of
LIT systems using the Fourier and z-translorms. The material s cssential backpround
Llor our discussion in Chapter & of the implementation of LT1 systems and in Chaptler 7
of the design of such systems.

As discussed in Chapter 2, an LUl system can be completely characterized in the
tume domain by its impulse response i), with the output vin due to a given input x[z|

specified through the convolution sum
]

vinl= 3 xlklhln —k]. (5.1}
-

Alternatively, since the frequency respomse and impulse response are directly related
through the Fourer transform, the Frequency response, assuming it exists (e, Hiz) has
an ROC that includes z = &/, prowides an equally complete charactenization of LTI
systems. In Chapter 3, we developed the g-transform as a generalization of the Fourigr
transform. The z-transform of the cutput of an LT1 system s related to the z-transform

of the input and the o transform of the svstem impulse response by
Yiz) = Hiz)X{D), (5.2
where ¥izh, X(z), and £/{z) denote the --transforms of y|nl, =[] and filn] respectively
and have appropriate regions of convergence, ff (2} is typically referred to as the system
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Sunction. Since a sequence and its z-translform form a unigue pair, it follows that any LTI
system is completely characterized by its svstem function, again asswming convergence.
Both the frequency response, which corresponds to the system function evaluated
on the wnit circle, and the system function more generally as a function of the com-
plex vanable z, are extremely useful in the analysis and representation of L11 systems,
because we can readily infer many properties of the system response from them.

5.1 THE FREQUENCY RESPONSE OF LTI SYSTEMS

The frequency response Hie/*) of an LT1 svstem was defined in Section 2.6 as the com-
plex gain (eigenvalue) that the system applies to a complex exponential input (eigen-
function) /27 Furthermore, as discussed in Section 2.9.6, since the Fourier transform of
asequence represents a decompuosition as a [inear combination of complex cxponentials,
the Fourier transforms of the system input and output are related by

Fied™) = Hie!™) X iel®), {5.3)

where X (2/®) and ¥(e/®) are the Fourier ransforms of the system input and oulput,
respeclively,

5.1.1 Frequency Response Phase and Group Delay

The frequency response is in gencral a complex pumber at each frequency. With the
Frequency response expresscd in polar form, the magnitude and phase of the Fourer
transforms of the system input and output are related by

(¥ {28 = |H{e™)] - | X (eI, (5.4a)
AV {ef™y = L H(eM) + S X (e, (5.41)

where | H (e/®) represents the magnitiude response or the gain of the system, and £ H(e/™)
the phave responrse or phase shift of the system.

The magnitude and phase cfiects represenied by Egs. (3.4a) and {(3.4b) can be
either desirable, if the inpul signal is modified in a useful way, or undesirable, if the input
signal is changed in a deleterious manner. In the latter, we often refer 1o the effects of
an LT1 system on a signal, as represented by Egs (5.4a) and (5.4b}, as magninde and
phase distoriions, respectively,

The phase angle of any complex number is not uniquely defined, since any integer
multiple of 27 can be added without affecting the compiex nunber, When the phase
is pumerically computed with the vse of an arctangent subroutine, the principal value
is typically obtained. We will denote the principal value of the phase of ff{e/*) as
ARG H({e/™)], where

—7 = ARG|H (e} = 7. (5.

"
=i
a—
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Amny other angle that gives the correct complex value of the function H(e/™} can be

represented in terms of the pnncipal value as

LH(e") = ARGIH (/)] + Zrr(w), (5.6)

where ricw) is a positive or negative integer that can be different at each value of . We
will in general use the angle notation on the left side of Eq. (5.6} to denote ambiguous

phase, since riw) is somewhat arbitrary,

In many cases, the principal value will exhibit discontinuities of 2 radians when
viewed as a function of @, This is illustrated in Figure 5.1, which shows a continuous-
phase function arg[H (¢/*}] and its principal value ARG[H{e/*)] plotted over the range

arg[ Hie ]

(a)
ARG| (e

(B}

Fler)

)

P vﬁv/ /[

(c)

Figure 5.1 (a} Continuous-phase
curve for a system function evaluated on
the unit circle. {£) Principal value of the
phase curve in part (a). {c) Integer
multiptes of 2 to be added to
ARG H ] to obtain arg[He™ 1],
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1 < w = x.The phase function plotted in Figure 5.1{a) exceeds the range —x to +x. The
principal value, shown in Figure 3.1(b}, has jumps ol 27, owing lo the integer multiples
of 27 that must be sublracted in certain reglons to bring the phase curve within the
range of the principal value. Figure 5.1{c) shows the corresponding value of riw) in
Eqg. (3.0).

Throughout this text, in our discussion of phase, we refer to ARGLH (e/%)] as the
“wrapped™ phase, since the evaluation module 27 can be thought of as wrapping the
phase on a circle, In an amplitude and phase representation (in which the amplitede is
real-valued hut can be positive or negative), ARG H (e/*)] can be “unwrapped” to a
phase curve that is continuous in . The continuous (unwrapped) phase curve is denoted
as argl H{e™)]. Another particularly useful representation of phase is through the group
delay ria) defined as

)
T{m = g,rd[Hl[ef"“.l] = - d;[ﬂrﬂﬁff"!m:'"- (3.7)

It is worth noting that since the derivative of arg| H{e/*)] and ARG|H (e/*)] will be
identical except for the presence of impulses in the derivative of ARG H{e/"}] at the
discontinuities. the group delav can be obtained from the principal value by differenti-
ating, except at the discontinuities. Similarly, we can express the group delay in terms
of the ambiguous phase £ H (/) as

erd| Hie ) = — iu Hiei™), (5.8)

with the mlerpretation thal impulscs caused by discontinuities of stze 2r in ZH (2™}
are ignored.

Ta understand the effect of the phase and specifically the group delay of a linear
system, lel us first consider the ideal delay systemn. The impulbse response is

Rigln] = é[n — ngl. (5.9)
and the frequency response is
Hile!®) = e 1om, (5.100)
ar
Higle!™) =1, (5.11a)
LHigle!™) = —wny, lasl < m, {5.11h)

with periodicity 2:r in e assumed. From Eq. {5.11b) we note that time delay {or advance
i ry = () is associaled with phase that 15 linear with frequency.
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In many applications, delay distortion would be considered a rather mild form of
phase distortion, since its effeet is only to shift the sequence in time. Often this would
be inconsequential, or it could easily be compensated for by introducing delay in other
parts of a larger system. Thus, in designing approximations to ideal filters and other
LTI systems, we frequently are willing (o accepl a incar-phase response rather than a
zero-phase response as our ideal. For example, an ideal lowpass filter with linear phasc
would have [regquency responsc

£ jmr1 leo| = e,

Fany ;
Aiple™) = , wpe = |w] <. (5.12)
The corresponding impulse response is
$in ar.in — m,
hl‘p[“] = i ”I..,_nj:]_‘ —00 = R o= 0O, {FJH}

mwin —ng)

The group delay represents a convenient measure of the linearity of the phase.
Specifically, consider the output of a system with frequency response H /™) [or a nar-
rowband inpul of the form x[#] = s[n]cos(enr). Sinee it 1s assumed that X(e'™) is
nonzero only around e = wy, the effect ol the phase ol the system can be approximated
in a narrow band around m = ey with the linear approximation

arg[H (e™)] = —gy — way, {3.14)

where ny now represents the group delay. With this approximaiion, it can be shown
{see Problem 5.63) that the response v|n] to x[n] = s|n]cos{epn) is approximately
¥lnl = Hiel®0y|s[n — ny] coslonn — do — anhg). Consequently, the time delay of the
envelope sln| of the narrowband signal x[n] with Fourier transform centered at oy is
piven by the nepative of the slope of the phase at wy. In general, we can think of a broad-
band signal as a superposition of narrowband signals with different center frequencies.
If the group delay is constant with frequency then each narrowband component will
undergo identical delaw. If the proup delay is not constant. theve will be different delays
applied 1o different frequency packets resulting in a dispersion in time of the output
signal energy. Thus, nonlinearity of the phase or equivalently nonconstant group delay
results in time dispersion.

5.1.2 lllustration of Effects of Group Delay and
Attenuation

As an illustration of the effects of phase. group delay, and attenuation, consider the
specific system having system function

G (1 — 98e/472~1)(1 — 98—/ 8771y ]i[ (cf —z " Mex — 271 ‘[5153
A= BT )1 - Be i) i\ =il =zl '

Hyizh izl

with ¢ = 0,95/ W15 0278 for & — 1 2. 3,4 and Hy{z) and Hiiz) defined as indi-
cated. The pole-zerto plot for the overall system function H(z2) is shown in Figure 52,
where the factor H)iz) in Eq. (5.15} contributes the complex conjugate pair of poles
at 7 = 0.8¢t/47 as well as the pair of zeros close to the unit circle at z = Be®/57,
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The factor H2{z} in Eq. (5.15) contributes the groups of double-order poles at z =
op = 095015 1278 504 double-order zeros at z = 1/ep = 1/0,95¢F/ 0197 v li2xid)
for & = 1.2, 3,4 Bv uself, H:(z} represents an allpass svstem (see Section 5.5), ie.
| Hale!*)) = 1 for all w. As we will see, Hz(z) introduces a large amount of group delay
aver a narrow band of frequencies,

The lrequency response functions for the overall system are shown in Figures
5.3 and 54. These hgures illustrate several important points. First observe in Figure
5.3(a) that the principal value phasce response exhibits multiple discontinuities of size
2x. These are due to the modulo 27 computation of the phase. Figure 5.3(b} shows the
unwrapped (contineous) phase curve obtained by appropriately removing the jumps of
size 2.

Figure 5.4 shows the group delay and magnitude response of the overall system.
Obgerve that, since the unwrapped phase is monotonically deereasing except around
aw = *.8x. the group delay is positive everywhere except in that region. Also, the group
delay has a large positive peak in the bands of frequencies .17r < |w| = 237 where
the continuous phase has maximum negative slope. This frequency band corresponds
to the anpular location of the clusters of poles and reciprocal zeros in Fipure 5.2, Also
note the negative dip around « = 4+ .87, where the phase has positive slope. Since
H:{z) represents an allpass filter, the magnitude response of the overall filter is entirely
controlled by the poles and zeros of H)(z). Thus, since the frequency response is H(z)
evaluated for z = ¢/, the zeros at z = 98¢/ cause the overall frequency respomse
to be very small in a band around frequencies w = &4 8.

In Figure 5.5(a) we show an input signal x| »] consisting of three narrowband pulses
separated in time. Figure 5.5(b) shows the corresponding DTFT magnitude | X (e/“).
The pulses are given by

[l = winlcos).2rn), {5.16a)
x2[r] = wlnleos{lhdrn — /2], (3.16h)
xaln] = win]cos(ihBrn + 7 /3). {5.16¢)
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(1 Unwrapped Phase Response
Figure 5.3 Phase response functions for system in the example of Section 5.1.2;
(2} Principal value phase, ARG[#Hie™}], (b} Continuous phase arg [H=™].
where each sinusoid is shaped into a finite-duration pulse by the &1-point envelope

equence

n [0.54 046 cos2mn/M), D=n =M,
Rl =

0, otherwise (>.17)
with M = 60.! The complete input sequence shown in Figure 3.5(a) is
xln] = xsln] 4+ xifln - M = 1] + xz2ln = 2M = 2], (508

i.e., the highest frequency pulse comes first, then the lowest, followed by the mid-
frequency pulse. From the windowing or modulation theorem for discrete-time Fourier
transtorms (Section 2.9.7), the DTFT of a windowed (truncated-in-time } sinusoid is the
convolution of the DTET of the infinite-duration sinusoid {comprised of impulses at
= the frequency of the sinusoid) with the DTFT of the window. The three sinuscidal
frequencies are ey = 0.2x, «p = U4, and wy = 0.8x. Correspondingly, in the Fourier
transform magnitude in Figure 5.5(b) we see significant energy centered and concen-

Lin Cha pters 7 and 10, we will see that this govelope sequence is called a Hamming window when used
it Bilter desipgn and spectrot analvsis fespectively.



Section 5.1

The Frequency Response of LT Systems 281

200 T T T T T T T
50
e

b6}

[ H{ein]

50 i L ;
T -08r -fr —Adr Dl bl 12 [E ST, (5. ] »
W

{3) Group delay of H{=}

25 — e e i e ,_.—_..I_.__!.-.__,_.__.r._..1

. : H H H . H |

Hieiw)l

i ; i I T -
-7 087  -0byr -Ddx 027 i U2 Q4w bx ORxm T

Ar

() Magmitude of Frequency Hesponse

Flgure 5.4 Freguency response i_]f system in the example of Section 5.1.2:
(a) [_:‘ruup delay functicn, grd|Hie®™], (b} Magnitude of frequency responsa,
LHER)|.

traled around each of the three frequencies. Each pulse contributes {in the frequency
domain) a band of frequencies centered at the frequency of the sinusoid and with a
shape and width corresponding to the Fourier transform of the time window applied to
the sinusoid

When used as input Lo the system with system function H (2}, each of the frequency
packets or groups associated with cach of the narrowband pulses will be affected by the
filter response magnitude and group delay over the frequency band of that group. From
the filter frequency response magnitude, we sce that the freguency group centered and
concentrated around @ = a3 = 0,27 will expericnes a slight amplitude gain, and the
ong around o = en = Gdor will cxperience a gain of about 2. Since the magnitude of
the frequency response s very small around ltequency @ = an = (LB, the highest-
freguency pulse will be significantly attenuated. 1t will not be totally climinated, of
course, since the frequency content ol that group extends below and above {requency
w = aq = L8 because of the windowing applied to the sinusoid. Examining the plot of

2 Az we will see later in Cha péers T and 10, the widhof the frequency bands is approximately inversely
propoctional to the length of the window M 5 1.
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Figure5.5 Inputsignal for example of Section 5.1.2; (a) Input signal x[7], (&) Gor-
respanding DTFT magnitude X",

the system group delay in Figure 5.4(a), we sec that the group delay around frequency
w — e = L2 is significantly larger than for either o = wr =047 or w = ay = (187,
and consequently the lowest-frequency pulse will experience the most delay through
the system.

The system output is shown in Figure 5.6, The pulse at frequency e = wn = 08
has been essentially eliminated, which is consistent with the low values of the frequency
respense magnitude around that frequency. The two other pulses have been increased
11 amplitude and delayed. the pulse at w == 0.2 is slightly larger and delayed by about
150 samples, and the pulse at w = 0,47 has about twice the amplitude and is delayed
by about 10 samples, This is consistent with the magnitude response and group delay
at those frequencies, In fact, since the low-frequency pulse is delaved by 140 samples
more than the mid-frequency pulse and the pulses are each only 61 samples long, these
twao pulses are interchanged in time order in the output,

The example that we have presented in this subsection was designed to illustrate
how LTI systems can modify signals through the combined effects of amplitude scaling
and phase shilt. For the specific signal that we chose, consisting of a sum of narrowhand
compoenenis, it was possible to trace the effects on the individual pulses. This 1s because
the frequency response functions were smooth and varied only shightly across the narrow
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Figure 5.6 QOutput signal for the example of Section 5.1.2.

requency bands oceupied by the individual components. Therelore, all the [requencies
corresponding to a given pulse were subject to approximalely the same pain and were
delayed by approximately the same amount, resulting in the pulse shape being replicated
with only scaling and delay at the output, For wideband signals, this would generally not
b the case, because different parts of the specirum would be modified differently by the
systom. In such cases, recognizable features of the input such as pulse shape generally
wolld not be obvious in the owtput signal, and individual pulses separated in lime in
the input might cause overlapping contribuiions to the output.

This example has illustrated a number of important concepts that will be further
elaborated on in this and subsequent chapters. After completing a thorough study of this
chapter, it would be worthwhile to study the example of this subsection again carefully
1o gain a greater appreciation of its nuances. To fully appreciate this example, it also
would be useful to duplicate it with variable parameters in a convenient programmning
system such as MATLAB. Before testing the computer program, the reader shouid
attempt to predict what would happen, for example, when the window length is either
increased or decreased or when the frequencies of the sinusoids are changed.

5.2 SYSTEMS CHARACTERIZED BY LINEAR
CONSTANT-COEFFICIENT DIFFERENCE EQUATIONS

While ideal filters are wseful conceptually, discrete-time filters are most tyvpically realized
through the implementation of a linear comstant-cocfficient difference equation of the
form of Eq. (5.19).

N M
D myln k1= huxin - &), {5.19)
k=0 k=0

In Chapter 6, we discuss various computational structures for reabizing such sysiems,
and mm Chapter 7, we discuss vanous procedures for obtaining the parameters of the
difference equation to approximate a desired frequency response. In this seclion, with
the aid of the z-transform, we examine the propertics and characleristics of LTT systems
represented by Eq. (5.19). The results and insights will play an important role in many
of the later chaplers
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As we saw in Seclion 3.5, applymyg the z-translorm Lo both sides of Eq. (5,19} and
using the lincarily property (Section 3.4. 1) and the ime-shifting property (Section 3.4.2),
iL follows Lhat, Tor 4 system whose inpul and output satisly a dilference equation of the
form ol Eq. {5.19), the system functlion has the algebraic fomm

M
E!&:_i
b R——
Hi:l = —— = — ; b
& Xi{z) n 526}
akz_k
k=L

In Eq. (5.20) H(z) takes the form of a tatio of polynomials in z !, because Eq. (5.19)
consists of two hnear combinations of delay terms. Although Eq. (5.20) can, of course,
he rewritien so that the polynomials are expressed as powers of z rather than of 27/,
it is common practice nol to do so. Also, it is often convenient to express Eq. (5.20) in
factored form as

]‘]:;1 —az”

(2%
Hiz) = el Gy 5.21
i (ua) N (321)
[Ta-a:™h
k=1

Each of the factors (1 — gz~ 1) in the numerator contributes a zeroat ¢ = o and & poke
at z = (1. Similarly, each of the factors (1 — drz ") in the denominator contributes a zero
atz = 0and a pole al z = dg.

There is a straightforward relationship between the difference equation and the
corresponding aleebraic expression for the system function. Specifically, the numera-
tor polvnomial in Eq. (3.20) has the same coefficients and algebraic structure as the
righi-hand side of Eq. (5.19) (the tenms of the form bez* correspond to bexln — k]
whereas the denominator polvnomial in Eq. {5.20) has the same coefficients and alge-
braicstructure as the left-hand side of Eq. (5.19) (the terms of the form a,z—* correspond
to ap y[n — kf). Thus, given either the system function in the form of Fq. (3.20) or the
difference equation in the form of Eq. {3.19), it is straightforward to abtain the other,
This is illustrated in the following example,

Example 5.1 2™-Order System

g Suppose that the system function of an LTT system =

By 1+ 192 :
i Hz) = e - s (3.22)

1) ( -3 J{\l 3 )

% Tofind the difference equation thal 15 satisfied by the inpul and output of this system, we

o express Hiz) in the form of Eqg, (5.20) by multiplving the numerator and denominaior
& faclcrrs Lo obtain the ratio of polymomials

wiod (5.23)
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Thus.
(1441 fe) =0 w7 DX,
and the difference eguation is

yinl+ Lvin — 11— §y[n — 21 = x[n] + 2x[n — 1) 4 x[n = 2. (5.24)

5.2.1 Stability and Causality

To obtain Eq. {3.20) from Eq. (5.19), we assumed that the system was linear and time
invariant, so that Fq. (5.2} applied, butl we made no further assumption about stability
or causality, Correspondingly, from the difference equation, we can obtain the algebraic
expression for the svstem [unction, but not the region of convergence (ROC). Specif-
ically, the ROC of Hiz) is not determined from the derivation leading to Eq. (3.20),
since all that is required for Eq. (5.20) to hold is that X(z) and ¥ (z) have overlapping
ROCs. This is consistent with the fact that, as we saw in Chapter 2, the difference equa-
tion does not uniquely specify the impulse response of an LTT system. For the system
function of Eq. {3.20) or (5.21), there are a number of choices for the ROC. For a given
ratio of polvnomials, each possible choice for the ROC will lead to a different impulse
response, but they will all correspond to the same difference equation. However, if we
assume that the system is causal. it follows that A|n | must be a right-sided sequence, and
therefore, the ROC of H(z) must be outside the outermost pole. Alternatively, if we
assume that the system is stable, then, from the discussion in Section 2.4, the impulse
response must be absolutely summable, i2.,

[ )
> Ialnl| = co. {5.25)
===
Since Eg. (5.25) is identical to the condition that

o

3 GhinlT < 0o {5.26)

=00

for |z| = L, the condition for stability is equivalent to the condition that the ROC of
Hiz) includes the unit circle. Determining the ROC to associate with the system function
obtained from the difference equation is illustrated in the following example.

Example 5.2 Determining the ROC

) Consider the LTT system with input and cutput related through the difference equation
5 vinl = $¥ln — 1)+ ¥[r — 2] = x[n. (5.27)
Fromm the previons discussions, the algebrac expression for M (7115 given by

I |

1— 32714272 {I 2= %z—?)ﬂ -2z
The corresponding pole—eero plot for (2 s indicated m Figure 5.7, There are three
possible choices for the RO If the system is assumed to be causal, then the ROC

Hiz) = (5.28)

e
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2% s oulside the oulermost pole, Le., |2) = 2. In this case, the system will nol be stable,
csimee the ROC does not include the unit eircle, T we assume Thad the sysiem s stable,
o (hen the ROC will be %- =z} = 2, and Aln] will be g two-sided sequence. For the third
i: possible choice of ROC, |2| =< i: the system will be neither stable nor causal.

Th z-nlang

Linit girgle

@
e
[
[ 4

Figure 5.7 Pole-zero plot for Exampie 5.2.

As Example 5.2 suggests, causality and stability are not necessarily compatible
requirements. For an LT1 system whose input and output satisfy a difference equation
of the form of Eq. (5.19) to be both causal and stable, the ROC of the corresponding
system function must be outside the outermost pole and include the unit circle. Clearly,
this Tequires that all the poles of the system function be inside the unit circle.

5.2.2 Inverse Systems

For a given LT system with system function H{z), the corresponding inverse system
is defined to be the system with system function H;(z) such that if it is cascaded with
Hiz), the overall effective system [unction is unity; L.e.,

Giz) = Hiz)Hi(zi=1. {3.29)
This implies that
| =
)= m (5.30)

The time-domain condition equivalent to Eqg. (3.29) is
glr] = kial = h;|n] = &[n]. {(5.31)
From Eq. {3.30), the frequency response of the inverse system, if it exists, is

1
Hiel®y = — ... .
Gl T (5.32)
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e, Hi(e!™) is the reciprocal of H{e/®). Equivalently, the log magnitude, phase, and
group delay of the inverse system are negatives of the corresponding functions for
the original svstem. Mot all systems have an inverse, For example, the ideal lowpass
filter does not. There is no way to recover the frequency components above the cutoff
frequency that are set to zero by such a filter.

Many systems do have inverses, and the class of systems with rational system
functions provides a very useful and interesting example. Specifically, consider

M
T e
by 'y =1 .
Hiz =(— Sl 5,33
- .ﬂu) s )
(1—diz™h
k=L

with zeros at z = ep and poles at @ = d;. in addilion to possible zetos andior poles al
r="0and ;: = oo, Then

N 1
[la-diz™
: an y k=1
iz ={ = | ———— 5
i = (32) 5 (534)
[Tt =az™
k=

i.e., the poles of (2} are the zeros of Hiz) and vice versa. The question arises as to
what ROC to associate with £1;(z). The answer is provided by the convolution theorem,
expressed in this case by Eq. (5.31). For Eq. (5.31) to hold, the ROC of H(z) and I;{z)
must overlap. If H{z) is causal, its ROC is

lz| = m;1x|d'¢l. {5.35)

Thus, any appropriate ROC for H;{z) that overlaps with the region specified by Eq. {3.35)
is a valid ROC for #f;{z). Examples 53 and 5.4 will illustrate some of the possibilities.

Example 5.3 Inverse System for 1*-Order System

!t Let Hiz) be
L 1-0.5:71
B d o Bt e Ll
) () 1 —1.9z
with ROC |z] = 0.9 Then H;(z) is
1—-09:"!
Hi(z)= i
A2 | — (.51

E 1'_"-. only choiee for the ROC of 8020 that overlaps with 2§ = (L9138 |z| = (.5 Therefore,
ZEE the impulse response of the inverse system is

; hi[n1 = (0.51%u[n] — 0.9(0.5" Tu[n —11.
b thas case, the inverse system s both causal and stable.
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Example 5.4 Inverse for System with a Zero in the ROC

i Y Suppose that Biz) is

nE

i i «1_ps3

L Hizi= = =2 =08,
L 1—04!

i

= The inverse syslem funclion is

i

1-09~" -2+ 1.8~
- Hi(zy = S >

i - =l —05 1—2:71

As before, there are lwo possible ROCs (hal could be associated with this al-
& gehraic expression for Fiiz) [z = 2 and z| = 2 In this case, however, both regions
overlap with |z| = 0.9, so both arc valid inverse systems. The corresponding impulse
response [or an ROC 17| = 2 s

Hgis

iy

L)

hiiln] = 202" ul—n — 1) — 182" Lil-n)

Coand, for an ROC 2] = 2,0

i

e
—

Rislnl = =227 uln] + L& Luln — 1),

o e
e -2
PN Tabe i

B We see that by [n] is stable and noncausal, while Ay (e] s unstable and cavsal, Theo-
B retically, either system cascaded with Fiz) will result in the identity system.

a

A generalization from Cxamples 5.3 and 5.4 is that if /4 (z) is a causal system with
zerosalog. ko= 1, ., M, then its inverse system will be causal if and only if we associate
the ROC,

Iz| = mflx legl

with H;{z). If we also require that the inverse system be stable, then the WO of H;(z)
must include the unit circle, in which casc

max ey | = 1;
k

i.c., all the zeros of Hiz) must be inside the unit circle. Thus, an LT system is stable
and causal and also has a stable and causal inverse if and only if both the poles and the
zeros of M (z) are inside the unit circle, Such systems are referred to as minimum-phase
svstems and will be discussed in more detail in Section 5.6.

5.2.3 Impulse Response for Rational System Functions

The discussion of the partial fraction expansion technique for finding inverse z-transforms
{Section 3.3.2) can be applied to the system function 1z} to obtain a general expression
for the impulse response of a svstem that has a rational system function as in Eq. (5.21).
Recall that anv rational function of z ! with only 13!-order poles can be expressed in
the form

ez’
where the terms in the first summation would be obtained by long division of the denom-
inator inte the numerator and would be present only if M = N, The coelficients Ag in
the second set of terms are obtained using Eqg. (3.43). IF A{z) has a multiple-order pole,

e i . : Ay :
H@=) Bi +} 1 — (5.36)
r=I} k=1
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ils partial fraction expansion would have the [orm of Eqg. (3.46). If the system is assumed
Lo be causal, then the ROC is outside all of the poles in Eq. (5.36), and it follows that

M- N
hinl= Y Bl —rl+ Y Apdluln, (537)
r=I[} k=1

whoere the first summation s included only if M > N,

In discussing LTI systerms, it i useful (o identify two classes. In the first class, at
least one nonzero pole of H{z2) is not canceled by a zero. In this case, Ala] will have at
least ong term of the form A pid) )" wln], and f]n] will not be of finite length, Ce., will not
b zero outside a finite ingerval. Conscquently, systems of thns class are infinite impulse
response (1TR) systems.

For the second class of systerns, #(z) has no poles except at z = 0; e, N =0
in Eqs. (5.19) and (5.20). Thus, a partial fraction expansion is not possible, and H{z) is
simply a polynomial in z ™! of the form

W
Hizy = bzt (5.38)
=0

{We assume, without loss of generality, that ay = 1.) In this case, H(2) is determined to
within a constant multiplier by its zocros. From Eqg. (5.38). Ar] 15 seen by mspection to
bz

M

' be, D=n=M,

hinl =3 bedln — k] = [{;ﬂ e (5.39)
k=l ; E

In this case, lhe impulse response is finite in length; e, it is zero outside a finite interval.
Consequently, these systems are finite impulse response {FIR) systerns. Note that for
FIR systems, the difference equation of Eqg. {5.19) isidentical to the convolution sum. i.e.,

M
ylal =3 bpxln — k1. (5.40)

k=0

Example 5.5 gives a simple example of an FIR systen:.

Example 5.5 A Simpie FIR System

&7 Consider an impulse response that is a truncation of the impulse response of an LR
= syslem with system funclion

g

Griz) =

|z] = leal.
1—az—

7

u e ne M,
LUt {ﬂ oLtherwise.

A M4l =81
1 —ar z
Hazy=) a2 "=———— (5.41)

5\:5' w1 1~ az=*
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= Since the zeros of the numerator are al z-plane locations
ik = gefTTRAMED F=0.1,.... M, {5.47)

- where a s assumed real and posilive, the pole al z = a is canceled by the zero denoted
20, The pole-zero plot for the case M = 7 is thown in Figure 5.8, .
] The difference equation satisfied by the input and cutput of the LTI system is
- the discrete convolution
M
vinl =y atx[n =4, (543)
k=0
SE However, Eq. (5.41) suggests thal the input and output also satisfy the difference
equation

¥[n] — av[r — 1] =I[Ji!—d'“+1.[-|_l"[ - M —1]. {5.44)

% These two equivalent difference cquations result from the 1wo eqguivalent forms of
Hiz)in Gy (341}

T z-plana
e O -
g —
4 o
s kS
b T grder Y
b pole Y
e :
| [T e
. [ .
T y f
"{ LY s
4 o] a
i % ™
i e e

Figure 5.8 Pole—zero plos for Example 5 5.

5.2 FREQUENCY RESPONSE FOR RATIONAL SYSTEM
FUNCTIONS

If a stable LT system has a rational system function, i.e., if its input and output satisfy
a difference equation of the form of Eq. (5.19). then its frequency response {the system
function of Eg. (5.20} evaluated on the unit circle) has the form

M
E b gk

H) = 20 {5.45)

Z a; o Jek

k-0
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That is, H (¢'*) is a ratio of polynomials in the variable ¢/, To determine the magni-
tucle, phase, and group delay associated with the frequency response of such svstems, it
is useful to express H(«/™} in terms of the poles and zeros of H(z). Such an expression
results from substituting z = ¢ into Eq. {5.21) to obtain

M =
[Ta - cei®)
nem=(R) = 50
L) i
nl:l—d'ke jary
k=1

From Eq. (5.46), it [ollows that

M
l_[ 1 =cxe="

H ()] = |:§ LB (5.47)
[T11~ dee=re]
k=1
Correspondingly, the magnitude-squared function is
M
R ]_[{l — e — c‘,:af“'J
|H (™) = Hie™) H* (e/”) = (f—ﬂ ¥ (5.48)

' JTe1 = dee™7301 — dged)
k=1
From Eq. {547}, we note that | H ey is the product of the magnitudes of all the zero
factors of H1{z) evaluated on the unit circle, divided by the product of the mugni[udun
af all the pole factors evaluated on the unit circle. Expressed in decibels (dB), the gain
15 defined as

Gain in dB = 20Mog,, | Hie™™)] (5.49)

M
Gain in dB = 20log,, |’i"—‘;‘ +Y 20log;g IL — cre |
N o= (5.50)
- ¥ 20logp L — dee™.
k=1
'The phase response for a rational system function has the form

M N
i b[ﬁ T : ) i) —
arg | H g™ ] =argf— |+ ar [I — e -"""] - ar ['l — dpe -’“’], 5.51
g[Hiel) g[ut_] ;2‘: gl1—c ;1 g f (5.51)

where arg| | represents the continuous (unwrapped) phase.
The corresponding group delay for a rational system function is
s . e
rd H(e’)] = % | ——(arg[l —dpe ™ — ¥
grd|H(e")] = 3 ——(argll —dye™ Ty — )

k=1 kvl

i{e‘:lrg[l — e, (5.5
i
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An equivalent expression is
Il.r

ord[H (e!™)] = Z

|de!*  Refdie /) Z e — Refene 72}

. (5.53
L+ |di = 2Relde @) 1+ |op? — 2Refope—tw) (5.53)

In Eq. {5.51), as written, the phase of each of [hL terms is ambiguous; 1.e., any inleger
multiple of 27 can be added to each term at each value of « without Lhangmg the
value of the complex number. The expression for the group delay, on the other hand, is
defined in terms of the derivative of the unwrapped phase.

Equations (3.5, {5.51), and (5.33) represent the magnitude in dB, the phase, and
the group delay. respectively, as a sum of contributions from each of the poles and zeros
of the system function. Consequently, to gain an understanding of how the pole and zero
locations of higher-order stable systems impact the frequency response, it is useful to
consider in detail the frequency response of 15-order and 2™ -order systems in relation
to their pole and zero locations.

5.3.1 Frequency Response of 1*-Order Systems

Tn this section, we examine the properties of a single factor of the form (1 — re/¥e /@),
where r is the radius and @ 15 the angle of the pole or zero in the z-plane. This factor is
typical of cither a pole or a zero at a radius » and angle # in the z-plane.

The square ol the magnitude of such a lactor is

1 —rele™ 2 = (1 —refe )1 —re /™) = 1 42 — 2rcosimw — ). (5.54)

The gain in dB associated with this factor is

(1/9200og 11— rePe % = ¢4/ 0log [l | r* — 2rcoste — )], {5.55)
with a positive sign il the factor represents g zero and a negative sign if it represents a
pole.

The contribution to the principal value of the phase for such a factor is

Fsinfo — @) -
e 5.56
| —rcus{m—ﬁ'}] ¢ )
Differentiating the right-hand side of Eq. (3.36) (except at discontinuities) gives the

contribution to the group delay of the factor as

(+/—)ARG|1 — re/e™/*| = {4 /) arctan [

. ] o COslar — /) P cOsla — /)
+/—ygrdl] — re®eT i) = (+/-) Sogiiy §h TRRRKR
(+f=)grdl b=Gh 1412 —2reosiow — 6} ’ ) Il — radfe—fw2

(5.57)

again, with the positive sign for a zero and a negative sign for a pole. The functions in
Eqs. (5.34)-{5.57) are. of course, periodic in a with period 2x. Figure 5.9a) shows a
plot of Eq. {5.35) as a function of w over one period (0 = w < 2 ) for several values of
i with r = 0.9,

Figure 5.%(b) shows the phase function in Eq. {3.56) as a function of w for r =09
and several values of ¢. Note that the phase is zero at @ = # and that, for fixed r, the
function simply shifts with &, Figure 5. %c¢) shows the group delay function in Eq. (5.57)
for the same conditions on r and /. Note that the high positive slope of the phase around
ar = { corresponds to a large negative peak in the groop delay function at e« = &,

In inferring frequency response characteristics from pole-zero plots of either
continuous-lime or discrete-time systems, the associated vector diagrams in the

i
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I -piane

Figure 5.10 7-plane vectors fora
TE-order system funetion evaluated on
the unit circla, with © = 1,

complex plane are typically helplul. In this construction, cach pole and zero factor can
be represented by a vector in the z-plane from the pole or zero to a point on the unit
circle. For a 1¥-order system [unction of the form

{z —rel®)

Hi{zy =11 —reiz 1y = r<l, (5.58)

=

the pole—zero pattern is illustrated in Figure 5.1). Also indicated in this figure are the
veclots ©y, v2, and vy = 1y — i, representing the complex numbers o/, ref® and
{efe — pai®y, respectively. In terms of these vectors, the magnitude of the complex
number

¥ L 4

gl
is the ratio of the magnitudes of the vectors va and vy, Le.,

; YLy | 1 _
11 —reffert) = —P‘ = u (3.3%)
| il [v1]
or, since |v3| = 1. Eq. {5.59) is just equal to |w|. The corresponding phase is
L1 —relfemdmy = e — red®y — (8 = Llu3) = L)
{5.60)

=d3—¢1=¢ -

Thus, the contribution of a single factor {1 re/®z 1) to the magnitude function at
frequency e is the length of the vector vy from the zero to the point 2 = #/* on the unit
circle. The vector has minimum length when o = #. This accounts for the sharp dip in
the magnitude function at e = & in Figure 5.9{a). The vector ¢ from the pole at 2 = (1o
7 = /" always has unit length. Thus, it does not have any effect on the magnitude re-
sponse, Equation (3.601) states that the phase function is equal W the ditference between
the angle of the vector from the zero at ref® to the point 7 = ¢ and the angle of the
veclor from the pole at z = 0 Lo the point 7 = &/,

The dependence of the [requency-response contributions of a single factor
(1 —rede=5} on the radius r is shown in Figure 5.11 for 8 = r and several values of r.
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MNote that the log magnitude function plotted in Figure 5.11(a} dips more sharply as
r becomes closer 1o 1) indeed, the magnitude 1n dB approaches —oo at w = # as r
approaches 1. The phase lunction plotted in Fgure 3.11(h0) has positive slope around
o = f, which becomes infinite as r approaches 1. Thus, for r = 1, the phase function is
discontinuous, with 4 jump of 7 radians at e = 0. Away [rom @ = 4, the slope of the
phase function is negative. Since the group delay is the negative of the slope of the phase
curve, the group delay is negative around o = &, and it dips sharply as r approaches |
becoming an impulse {nol shown) when r = 1. Fgure 5.11{c) shows thatl as we move
away from @ = &, the group delay becomes positive and relatively flag,

5.3.2 Examples with Multiple Poles and Zeros
In this section, we utilize and expand the discussion of Section 3.3.1 to determine the

frequency response of systems with rational system functions.

Example 5.6 2"-Order IIR System

40 Cossider the 2 _arder system

1 1
i1 —ref byt —re= 1821 T 1 2rcosgrl 40272
The ditference equation satisfied by the input and output of the system is

Hiz) =

(5.61)

vin) — 2rcosdvln — 1]+ #oyln — 2) = xlal,
Lising the partial fraction cxpansion techrnigue, we can show that the impulse response
ol a causal system with Lhis system function is

Moo E
o rigin|ia 1 1)]
Bk il = ———————nlnl]. 562
Eid trl sl ] { )
o " n . n - = o B ,
i The s}'stcin_tt?unclmﬂ in Eq. (3.61) has a pole at - = re . and at _the_lmnjugate
+p locanon. 2 = re” /Y, and twozeros at ¢ = 0. The pole—zero plolis shown in Figure 5.12.

I 2-plane

Lol cirele

Figure5.12 Pole—zero plot for Example 55,
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4 From our discussion in Section 53,1,
-'-f': 20 JDg !H(e"'.“:}l = — 10logalt + rz Ar cosim — )]
0] Bl - (5.63a)
— 10logyqll + r* — 2r cosiw + (1),
v " rsin(a — &) L orsinte+ 6 .
¥ J —_— ol — g ———er——— | 5.. g
Hiel™) arctan |:] e g}] arctan [F TR {5.63h)
i and
:.':1' : P roosin — g 2y COslw -+ 0 o
! grd[ H e = - (5.63c)

1+f2 —Jrcca(w -0} 14,2~ 2rcos(w+0)

' These functions are plotted in Figure 3.13 for r = 0.9 and # = 7 /4.

Figure 5,12 shows the pole and zero vectors vy, w2, and ©q. The magnitude re-
sponse is the peoduct of the lengths of the zero vectors (which in this case are always
unity}, divided by the product of the lengths of the pole vectors. That is,

gt !

[H (el = s
ey - w2t ol -le

{5.64)
When e = ¢, the length of the vector ¢ = ¢/ — e/ becomes small and changes
significantly as e varies about &, whereas the length of the vector 1 = e/ — pe—i%
changes only slightly as = varies around e = & Thus, the pole at angle § dominates

G the frequency response around w = &, as is evident from Figure 513, By symmetry,
S0 the pole at angle @ dominates the frequency response around w = —8.

m

Rudian frequency (e
{a)

Figure 513 Frequency respense for a complex-conjugate pair of poles as in
Example 5.6, with r = 0.9, & = =4, (3) Log magnitude.
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by Figure 5.13 {confinved) Frequency response for a complex-conjugate pair of
5?! poles as in Example 5.8, with » = 0.9, ¢ = = /4. (b) Phase. {c) Group delay.
Example 5.7 2""-Order FIR System

In this example we consider an FLR system whose impalse response is

Al = 8[n] — 2r cos@dln — 1] = r28[n — 2. {5.65)

Hizy=1—2rcosfz ! 22 {5.66)

which is the reciprocal of the system function in Example 5.6, Therefore, the frequency-
& response plols for this FIR system are simply the negative of the plots in Figure 5,13,
“E Note that the pale and zero locations are interchanged in the reciprocal.
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Example 5.8 3™-Order IIR System

o Inthis example, we consider a lowpass filter designed using one of the approximation
. methods 1o be described in Chapter 7. The system function to be considered is

00563401 Lyl — 101661 4 273
e { +.z H e - (5.67)
(1 — 0683 Ll — 14d61:-1 40,7957

and the system is specificd to be stable. The zeros of this system function are at the
[ollowing locations:

Radius Angle
i 1  tad
i ] 10376 rad (59.45°)

1 The poles are wl the [ollowing locations;

Ly Rods Adple

.;" ————— —
o 653 0

2k {+Aw2 H1L6257 rad (358539

- The pole—zaro plot for this system 5 shown in Figure 514, Fipure 5.05 shows the log
magnitude, phase, and group delay of the system. The effect of the zeros that are on the
o unit circle al e = £1.0076 and r is clearly evidenl. However, the poles are placed so
#% that, rather than peaking for frequencies close to their angles, the total log magnitude
remains close to O JB over a band from e = 0 1o & = 027 (and, by symmetry,
, Irom e = L8x t0 @ = 27 ), and then it drops abruptly and remains below —25 JdB
from about 0 = 037 B0 1,77, As suggested by this example, useful approximations
to frequency-selective filler responses can be achieved using poles 10 build up the
magpitade response and zeros to suppress i,

T e
Unit circle e it
A\
"|
I-
4
—

Figure 5.14 Pole—zero plot for the lowpass fiter of Example 5.8.
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In this example, we see both tvpes of discontinoities in the plotted phase curve. At
i 2 (1L22% there is a discontinuity of 27 owing to the use of the principal value in plotting.
Atw = £1.0370 and v = 7, the discontinuities of = are due o the zeros on the unit circle.

5.4 RELATIONSHIP BETWEEN MAGNITUDE AND PHASE

In general, knowledge about the magnitude of the frequency response of an LTT sysiem
provides no information about the phase, and vice versa. However, for syslems described
by linear constant-coetficient difference equations, .., tational system Munctions, there
is some comstraint between magnitude and phasc. In particular, as we discuss in this
scetion, 1 the magnitude of the frequency response and the number of poles and seros
are known, then there are only a finite number of choices for the associated phase.
Similarly, il the number of poles and zeros and the phase are known, then, (o within a
scale [actor, there are only a linite number of choices for the magnitude. Furthermore,
under a constraint referred o as minimaun phase, the frequency-response magnitude
specifics the phase uniguely, and the [Tequency-response phase specifies the magnitude
to within a scale factor.

o explore the possible choices of system function, given the square of the mag-
nitude of the system frequency response, we consider |# (e/*)|* expressed as

|H(e_,l|.r} 2 s H[_E!-'I'IU.IIIH“{EJM}

. {5.68)
= H(z3H"{] .l"E’Jl;':eJ“'r
Restricting the system function H{z) to be rational in the form of Egq. (321}, 1.e,
u
HU — iz H
b - I
Hiz) = (—D] kvi— B
e S

[1¢ ~dz™
k=l

we see that H*{1/:2%1in BEg. (3.68) 15

M
[Taa-ea

Q- BE—
{4 Lol :

- .
[T =dla
ksl

wherein we have assumed Lhat ag and by are teal. Therefore, Eq. (5.68) states thal the
square of the magnitude of the frequency response s the evaluation on the unit circle
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of the z-transform

Ciz) = H(z)H"(1/7") {5.71)

e

L'y
[10 a1t - dray
k=1

If we know |H(e*)* expressed as a function of &/, then by replacing /' by z, we
can construct C(z). From C{z), we would like to infer as much as possible about H(z).
We first note that for each pole dy of H(z), there is a pole of C(z) at 4y and l{d::l‘].
Similarly, for each zero o of Bz}, thereis a zero of C(z) at o and u-,j}‘_‘. Consequently,
the poles and zeros of C{z} occur in conjugate reciprocal pairs, with one element of
each pair associated with H(z) and ume element of each pair associated with £7(1/2%).
Furthermore, if one element of each pair is inside the unit circle, then the other (ie.,
the comjugate reciprocal) will be outside the unit circle. The only other alternative is for
both to be on the unil circle in the same location.

1f H{z)is assumed to correspond to a causal, stable system, then all its poles must
lie inside the unit circle. With this constraint, the poles of H(z) can be identified from the
poles of O(2) However, with this constraintalone, the zeros of Hiz) cannot be uniguely
identified from the zeros of €(z). This can be seen from the following example.

Example 5.9 Different Systems with the Same (|2}

iR Consider two different stable systems with system functions

e

i —1 i

I ] 201 = =41 +0.5:71)

i Hyiz) = . e (5.73)
A (1 =L RedTir =431 — (hRe— 4Tz

. and

i (- b £ 2:Y

2 5 Haizh = - - 2 5.74)
i 2 = T 08l ATy - eI, !

QFI The pole-zero plots for these systems are shown in Figures 3.16(a) and 5.16(b). re-

LT

spectively, The two systems have identical pale locations and hoth have a zeroatz =1
but differ in the location of the second zero.
Mirw,

Cyiz) = Hl*.,:}HTU;':‘J

e
L

e

43

~ 201 — 21yt + 052200 ol + 0.52) (5:75)
Tl —08efnd, =1y — B Re—iF A~y — [1Bem FRIL(1 — D ReITIA)

and
3% Calz) = Ha(z H3(1/™)

_ (0 — =11+ 2:7 )1 = 21 4+ 29) (5.76)
T — 08T A Ly — Be AT D Re— ST — D BeiT
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# Elsing the fact that
£ 401 405710 £0.52 = (1 + 27101 + 22, 57

we see thal Cgz) = C2(2). The pole—zero plot for Cy iz} and Cg (23, which are identical,

& is shown in Figure S.16(c).
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Flgure 5.16 Pole—zeropiots fortwa system fungtions and their cammeon magnitude-
squared function. (a) Hyi2). (B) Hei2). (e} Oy (2, Caldh,

The system functions H(z) and H3{z) in Example 5.9 differ only n the location
of one of the zeros. In the example, the factor 2(1+ 0.5:7") = (z7! 4+ 2) contributes Lhe
same to the square of the magnitude of the frequency response as the factor (142271,
and consequently, [H (/)| and | H2(e/“)| are equal. Ilowever, the phase functions for
these two frequency responses are different.
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Example 5.10 Determination of H{z] from Cjz}

Suppose we are given the pole—zero plot for Cizpin Figure 5.17 and want to determine
the poles and zeros to associate with M {z). The conjugate reciprocal pairs of poles and
gerns for which one elemenl of ¢ach s associated with Hizk and one with H“fl;z“h
are as follows:

-
At
i
b 14
g

Forle pair 1 ¢ (PPl
Pusle pair 2 : (P2, psh

Pole pair 3 ¢ (frs. frgh
Zero panr 1 - (Z1.24)
Laro pair 2 : (2,15}
oo pair 3 (23, 28)

Knowing that H{z) corresponds Lo a stable, cansal system, we must choose the poles
- from cach pair that are inside the unit circle. i.¢., pq. p.and p3. No such constraint
is imposed on (he weros, Toweser, if we assume that the coefficients ap and by are
~7 real in Egs. (3.19) and {5.20)), the zeros (and poles} either are real or occur in comptex
o conjugale pairs, Conscquently, the seros o associate with #{z) am

13 or zg
i
(Z1.232) ot [zZg4.7sh

# Therefore, there are a tolal of four different stable, cavsal systems with three poles
¢ and three reros for which the pole—zero plot of Ciz) is that shown in Figure 517 and,
s eqguivalently, for which the frequency-response magnitude is the same. [f we had not
o assumed that the coefficients gg and by were real, the number of chojces would be
i preater. Furthermore, if the number of poles and zeros of Hiz) were not restricted,
% the number of choices for H1z) would be unlimited. To see this, assume that A7) has
o+ afactor of 1he fvim

gt g
1 Ll

I —az—

1 4

Hizy=H(5——=_ (5.78)
1-az!

Factors of this form represent ali-pass factors, since they have unity magnitude on the

i unil girgle; they are discussed in more detail in Section 5.5. T is easily verfied that [or

MHizlin Eg. (5.78),

Ciz) = Hiz H 12 = By HTIL 2y 15.79)

i.e., all-pass factors cancel in Ciz) and therefore would not be identifiable from the
. pole—vero plot of Ciz), Consequently, if the number of poles and zeros of Hiz) s
utispecitied, 1hen, piven £(z), any choice Tor Hiz) can he cascaded with an arbilrary
2% number of all-pass factors with poles inside the umt circle (e, o) < 1).
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Figure 5.17  Pole—zero plot for the magnitude-squared function in Example 5.10.

5.5 ALL-PASS SYSTEMS

As indicated in the discussion of Example 510, a stable system function of the form

P

Hap {;_.l = fﬁaﬂj

1—az-!

has a lrequency-response magnitude that 18 independent of w. This can be seen by
writing Haple™) in the form

_Jm — -
g o Smdby
Haple™) = 1 — ae—dm

(5.81)

In Eq. (5.81). the term ¢4 has unity magnitude, and the remaining numerator and
denominator factors are complex conjugates of each other and therelore have the same
magnitude. Consequently, [Hap(e!™)| = L A system for which the frequency-response
magnitude is a constant, referred (o as an all-pass system, passes all of the frequency
components of its input with constant gain or attenuation.”

The most general form lor the system function of an all-pass system with a real-
valued impulse response is a product of factors like Eq. (3.20), with complex poles being

3 some discussions. an all-pass system is defined Lo have gain of vmiy. In this 1exr, we use the lenm
all-pass svstem 1o refer o a svstem that passes all frequencies with a constant gain A thal & not testricled 1o
he umity.
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Uni [
mil -1l
ci:rc.]e>/,‘__,_-——g——____ s . z-planc
f t].iﬁ//{j: .
/ 4
""J—ﬂ-"""""_ / > b II '
L 2 1 ' 2 Re
T4 2

Figure 5.18 Typical pole—zero plot for
an all-pass system.

paired with their conjupales; i.e.,

=] M, -1 s —1 e
-ffj- H iz : e:}f-t zx} {5_H2}

M.
Hyr=4All = : ;
W :];[1 1 —dyz! k (I —exz~)1l—efz )

where 4 is a posilive constant and the dys are the real poles, and the e;s the complex
poles, of Hap(z). For causal and stable all-pass systems, |dy] < 1 and |eg| < 1. In terms
of our general notation for system functions, all-pass systems have M = ¥ =2M .+ M,
poles and zeros. Figure 5.18 shows a typical pole—zero plot for an all-pass system. In
this case M, = 2 and M, = 1. Note that each pole of Hup(z) is paired with a conjugate
reciprocal zero.

The frequency response [or a general all-pass system can be expressed in lerms
of the frequency responses of 1%'-order all-pass systems like that specified in Eq. (5.80).
For a causal all-pass system, each of these terms consists of a single pole inside the unit
circle and a zero at the conjugate reciprocal location. The magnitude response for such a
term is unity, as we have shown. Thus, the log magnitude in dB is zero, With o expressed
in polar form as @ = re/®, the phase function for Eq. (5.80) is

—jo _ pp-if Sl
1 [EJ—”J] = —m — 2 arclan [L{uﬁ}} G {553}

1 —reffe-in 1 = reos{ow — &)

Likewise, the phasc of a 2™ _order all-pass syslem with poles at z = ref® and
. g
r=re s

1 — rcos{w —8)

Z} I:_-E‘_'lm _r‘?_'fﬂ}{"_jw—re"'.fhﬁ
{1 — redfe—dw)] — re—t¥p—Ju)

] - --Zr.-;—iarctan[ rstnio — /) ]
(3.584)

—Earctan[ i sl }

1 —reoseo +8)
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Example 5.11 1°- and 2™-Order All-Pass Systems

24 Figure 5,19 shows plots of the log magnitude, phase, and proup delay for two 15'.order
all-pass systems, ome With a pole at 7z = 0.9 (8 = 0.r = 0.9 and another with 4

r T
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Figure 5.19 Frequency response for all-pass filters with real poles at 7 = 0.9
(zalid ling} and » = —0.9 {dashed line). {a} Log magnitude, (b) Phase (principal
valua). (o} Group delsy.
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o poleatz = 0.9 =7 r = 0.9). For both systems, the radii of the poles are r = 0.5,
o= Likewise, Figure 520 shows the same functions for a 2t prder all-pass system with
%@ poles at z = 0.9e/™4 and 3 = 0.9¢ 71714,

o
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Figure 5.20 Frequency response of 2d_grder all-pass gystem with poles at 7 =
095544 _{a) Log magnitude. (o) Phase {principal valug). (c) Group delay.
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Example 511 illusirates a general properiy of causal all-pass systems. In Tig-
ure 3.1%b}), we see that the phase is nonpositive for § = w = =. Similarly, in Fie-
ure 3.20(b), if the discontinuity of 2m resulting from the computation of the principal
value is removed, the resulting continuous-phase curve is nonpositive for 0 = w = i,
Since the more general all-pass system given by Eq. (5.82) is a product of only such 1%'-
and 2" _order factors, we can conclude that the (unwrapped) phase, argl /f aple/™1]. of
a causal all-pass system is always nonpositive for 0 = w =< 7. This may not appear to
be true if the principal value is plotted. as is illustrated in Figure 3.21, which shows the
log magnitude, phase, and group delay for an all-pass system with poles and zeros asin
Figurc 53 I8, However, we can establish this resull by first considering the group dclay.

The group delay of the simple one-pole all-pass system of Eq. {3.80) is the negative
derivative of the phase given by Eq. (5.83). With a small amount of algebra, il can be
shown that

Pt L L 12 1~r?
Pl | e e e T T T 5.85
G [I - refﬁe‘-f“'] L, = 2rcos(m — 83 |1 — reffe—in? (543)

Since r = 1 for a stable and causal all-pass system. from Eq. (5.85) the group delay
contributed by a single causal all-pass factor is always positive. Since the group delay of
a higher-order all-pass system will be a sum of positive terms, as in Eq. (5.853), iLis true
in general thal the group delay of a causal rational all-pass system is always positive.
This is confirmed by Figures 5.19{c}, 5.2(§¢), and 5.21{c), which show the group delay
for 1%-order, 27 -order, and 3™ -order all-pass systems, respectively.

The positivity of the group delay of a causal all-pass system is the basis for a simple
proof of the negativity of the phase of such a system, First, note that

argl Hyple!*)] = — ju grd[ Huple*Yld + argl Hap(e/™)] {5.86)

for 0 = @ = x. From Eq. {3.82), it follows that

H,,.F.;ffi';:,qﬁ :_d* I Ii::i = A, (5.87)
k=1 k=1
Therefore, arg|Hap(e!"i| = 0, and since
grdl Haple!)] = 0, (5.88)
it follows from Eq. {5.86) that
arg[Hap(e™)1 =0 for0 = w = m {5.89)

The positivity of the group delay and the nonpositivity of the unwrapped phase are
important properties of causal all-pass systcms.

All-pass systems have importance in many contexts. They can be used as compen-
sators tor phase {or group delay) distortion, as we will see in Chapter 7, and thev are use-
ful in the theory of minimum-phase systems, as we will see in Section 5.6. They are also
useful in transforming frequency-selective lowpass filters into other frequency-selective
forms and in obtaining variable-cutoff frequency-selective filters. These applications are
discussed in Chapter 7 and applied in the problems in that chapter.
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5.6 MINIMUM-PHASE SYSTEMS

In Section 5.4, we showed that the frequency-response magnitude for an I'TT system
with rational system function does not uniquely characterize the system. If the system is
stible and causal, the poles must be inside the unit circle, but stability and causality place
no such restriction on the zeros, For certain classes of problems, it is useful to impose
the additional restriction that the inverse system (one with system function 1/#(z))
also be stable and causal. As discussed in Section 5.2.2, this then restricts the zeros, as
well as the poles, to be inside the unit circle, since the poles of 1/ H i) are the xeros of
H{z). Such systems are commonly referred to as mininmmr-phase systems. The name
minimum-phase comes from a property of the phase response. which is nol obvious
from the preceding definition. This and other fundamental properties thal we discuss
are unigue 1o this class of systems, and therefore, any one of them could be laken as the
definition of the class. These properties are developed in Section 3.6.3.

I we are ziven 4 magnitude-squarcd function in the form of Eg. (3.72}, and we
know that both the system and its inverse are causal and stable (ie.,is 4 minimum-phase
system}, then Mz is uniquely determined and will consist of all the poles and reros of
Ciz) = Hiz)H*(1/z*) that lie inside the uni circle This approach is oflen followed
i filter design when only the magnitude respanse is determined by the design method
used. (Sce Chapter 7.)

5.6.1T Minimum-Phase and All-Pass Decomposition

In Section 5.4, we saw that, from the square of the magnitude of the frequency response
alone, we could not uniguely determine the system function (7}, since any choice
that had the given frequency-response magnitude could be cascaded with arbitrary all-
pass factors without affecting the magnitude. A related observation is that any rational
system function® can he expressed as
Hiz) = Hyjntz)Huplz), {3.90)

where Hgin{2) is a minimum-phase system and # (2} is an all-pass system,

To show this, suppose that Hiz) has one zero outside the unit circle at z = 1/¢7,
where |¢| = 1, and the remaining poles and reros are inside the unit circle, Then £/ (2}
can be expressed as

Hiz)=Hi@i ' =, (5.91)
where, by definition, H iz} is mimimum phase. An equivalent expression for Hz) is
- | .*
et

(5.92)

H(z) = Hyz)(l - cz_“HI —.

—
Since |¢| < 1, the factor H{{z){l — ez~ also is minimum phase, and it differs from H(z)
only in that the rero of H(z) that was outside the unit circle at 7 = 1/¢* 1 reflected inside
the unit circle to the conjugate reciprocal location z = . The term (77! —e*3/(1 — ez~ 1y

We have assumed that () has no poles or zeros o0 the unit circle. Strictly speaking, s¥stems with
poles on the unit drode are wostable and are generally to be avoided in practice. Zeros on the unil circle,
however, often aceur in practical filler designs. By our definition, such systems are nonminimum phase, but
many of the propertics of minimem-phase systems hold even in this case.

Tsomewhat for convenicnee, we will restrict the discussion to stable, cacsal systems. although the
observation applies more generally.
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is all-pass. This example can be generalized m a straightforward way o include more
zeros ouiside the unit circle, therchy showing that, in general, any svstem luncltion can
be expressed as

H{(z) = Huint2) Hap(2), (5.93)

where H yiqfz) conlains all the poles and reros of Hiz) that lie inside the unit cirele, Lo-
gether with zeros that are the conjugate reciprocals of the zeros of H(z) that lie outside
the unit circle, The system function Hap(:) is comprised of all the zeros of A(z) that lie
vulside the unit cirele, together with poles Lo cancel the reflected conjugate reciprocal
zeros in H iz

Lsing Eg. {3.93), we can form a nonminimum-phase system from a minimum-
phase system by reflecting one or more zeros lying inside the unil circle totheir conjugate
reciprocal locations outside the unit ¢ircle, or, conversely, we can form 4 minimum-
phase systemn from a nonminimum-phase system by reflecting all the zeros lying outside
the unit circle to their conjugate reciprocal locations inside. In either case, both the
minimum-phase and the nonminimum-phase systems will have the same frequency-
response magnitude.

Example 5.12 Minimum-Phase/All-Pass Decomposition

- T lastrate the decomposition of a slable, causal system into the cascade of 2 minimum-
phase and an all-pass system, consider the two stable, causal systems specified by the
system funclions

(1+3:71

Hlf:':l =
‘]+%r._|

{; + gg-;‘:r,mz—a) (I R ;‘rrr‘dfz—l)
L Fa
fHaiz) = = " 2 = —

(-1

The first svstem function, & 1423, has a pole inside the vnitcircle at 2 = — % and
a zero oulside at 2 = —3. We will need Lo choose the appropriate all-pass system 1o
5 relect this zero inside the umit cirde, From Eg, (5.91), we have ¢ = —=l;. Therefore,
S from Egs. (5.92) and (5.93), the all-pass component will be ’

-141
g
Hupiz) = —
1+ 327!
!_:;
andl the minimum-phase component will be
o I+ 1}5:_
ir Huinit) = 3ﬁi
1+ Ez
e,
T e A
i Hyto) = |3—3— ( —3 1.
1'!-§2:_ _]+§Z_ ]

The seeond svstem funclion, & (z), has two complex zeros oulside the unit circle
and a real pole inside. We can express H20z) in the form of Fyg, (5.91) by factonng
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3=t 3 - f i
ot el 4and 27 gut of the numerator terms to obtain

iJ{: _[, imi 4} g 1+3_'_,rxr -1-}

Hayiz) =
1-— 1_';2 =1

‘:: Fm_-mrmg asn Eq. {5,921 yvields

b (i+qr —jmi4 _l}{l_,_if;nﬂ —l]

(7 + 5 m) ( + 3 )
oL * []-1-.@-""4".; 1}{:1_...‘-_",?11-'-1 l.}

2t The firet term in sguare brackets is 8 minimum-phase system, while the second term
i is an all-pass system.

5.6.2 Frequency-Response Compensation of
Non-Minimum-Phase Systems

In many signal-processing contexts, a signal has been distorted by an LTT system with an
undesirable frequency response. It mav then be of interest to process the distorted signal
with a compensating system, as indicated in Figure 5.22. This situation may arise, for
example, in transmitting signals over a communication channel. If perfect compensation
is achieved, then s.[n] = s[n]. Le., H.(z) is the inverse of H (7). However, if we assume
that the distorting system is stable and causal and require the compensating system to
be stable and causal, then perfect compensation is possible only if H ;(2) i5 & minimum-
phase system, so that it has a stable. causal inverse.

Based on the previous discussions, assuming that M, (z) is known or approximated
as a rational svstem function, we can form a minimum-phase system {3 piptz) by Te-
Necting all the zeros of Hp(z) that are outside the unit circle to their conjugate reciprocal
locations inside the unit aircle. H(z) and H 4 min{2) have the same frequency-response
magnitude and are related through an all-pass system Hypiz), e,

Halz) = Hdmh{?.jHapff-J- (5.94)
Choosing the compensating filter to be

1
Hiz) = ——, {5.95)
: H 3 min{z)
wi find that the overall system function relating s[a] and s.[n] is
Gilz) = Hal2)H A2) = Haplzh (5.96)
L8134
e e o e B |
|
! Dislorting Compensating| |
—--'-'—'.;-'I'- S}'S-“:'ﬂ] Ly 53'hLmII. —i_-"
i I,z ] Mz & : : 2
Il ! alz) [ selr] 26 ; ] Figure 5.22 lllustration of distortion

K S 0 i d compensation by linear filtering.
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Le., G(z) corresponds to an all-pass system, Consequently, the frequency-response mag-

nitude is exactly compensated for, whereas the phase response is modified to £ Hyp(e/%).
The following example illustrates compensation of the frequency response mag-

nitude when the system (o be compensated for is a noominimum-phase FIR svstem,

Example 5.13 Compensation of an FIR System

77 Consider the distorting system function to be
P44 -”’d'[rj — {] L "_gf_,'[i.furz— L ]{I _ ”_1_;.[,—_.5!]!:.\: z—i}

(597)

: w1 — 12565087 . —1yp1 1 25e~i08m —1y
i The pale—zero plot is shown in Figure 523, Sinee 77 40z) has only zeros (all poles are
at z = 0}, it follows that the system has a finite-duration impulse response. Therafore,
o the system iy stable; and since M 4 (z) 15 a polynomial with only negative powers of z,
=+ the system is causal. However, since two of the zeros are outside the unit circle, the

= gyslem is nonminimum phase. Figure 5.24 shows the log magnitude, phase, and group
S5 delay for By (ed®).
: The corresponding minimum-phase system is obtained by reflecting the zeros
. that twcur gl £ = l.ESﬁzEﬂw* Lo their conjugale reciprocal locutions inside the unit
si0 circle. I we express T giz) as

H4(z) = (1 = 090987 ;= 2y(] — q.9e—i067 —1y(1 25)?

i 2 {5.08)
. w (771 = DBe— 08Ty~ _ gy geilbmy
. then
Hupinlo) = (12571 — 0.9e/067 -~ 1y(1 — qpe—08m 1,
e ; {5.99)
s ] — (g T =Ty g e/ =1y
and the all-pass system that relates 5 ;5420 and 5z} is
e ¥ S B 1%
Haplz) = — = . . b (5.100)
e (1 —BefhBr -~y _ () Re— 8T 1,
The log mapnitude, phase, and group delay of I.fmm(f*"ﬁ”.- are shown in Fgore 525,
f¢ Figures 5.24{a) and 5.25(a) are, of course, identical. The log magnitude, phase, and
1 ' fus 5 T - R
£ group delay for Hapfe/*) are plotted in Figure 5.26,
.
e Ulnit
: wircls m-plane
T
o
o \
IIII
L3
i A pipder J,I Ha
\ pole /
o]
HE___J____/

Figure 5.23 Pole—zero plot of FIR system i Example 5.13.
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Figure 5.26 Frequency response of all-pass system of Example 5.13. {The sum of
corresponding curves in Figures 5.25 and 5.26 equals the corresponding curve in
Figure 5.24 with the surm of the phase curves taken modulo 2«.) () Log magnitude.
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i

Note that the inverse system for H 4iz) would have poles at z = 1.256=/057 ang

3}5‘: at z = 0.9 1007 Land thus, the causal inverse wouold be unstable, The minimum-phase
L inverse woulld be the reciprocal of H iz, as given by Eq. (5,99, and if this inverse
HLAR ' . ] . . -
"5‘5;‘? were used in the cascade system of Figure 522, the overall effective system function
=8 would be Hapiz), as given in Eqg. (5.200),

5.6.3 Properties of Minimum-Phase Systems

We have been using the term “minimum phase”™ to refer to systems that are causal
and siable and that have a causal and stable inverse. This choiee of name is motivated
by a property of the phase function that, while not obvious, follows from our chosen
definition. In this section, we develop a number of interesting and important properties
of minimum-phase systems relative to all other systems that have the same frequency-
response magnitude,

The Minlmam Phase-Lag Property

The vse of the terminology “minimum phase™ as a descriptive name for a system having
all its poles and zeros inside the unit circle is suggested by Example 5.13. Recall that, asa
consequence of Eq. (5.90), the unwrapped phase. i.e., arp[ #(2/*}], of any nonminimum-
phase sysiem can be expressed as

arg| H{e )] = arg[Hminte’)] + argl Haple!)]. (5.101)

Therefore, the conlinwous phase that would correspond to the principal-value phase of
Figure 5.24(Ir) is the sum of the unwrapped phase associated with the minimum-phase
function of Figure 525(h) and the unwrapped phase of the all-pass system associated
with the principal-value phase shown in Figure 5.26(b). As was shown in Section 5.5
and asindicated by the principal-value phase curves of Figures 5.19(b). 5.20(h). 5.21{b},
and 5.26(b). the unwrapped-phase curve of an all-pass system is negative for () < o <
. Thus, the reflection aof zeros of Hp,(z) from inside the unil arcle to conjugate
reciprocal locations oulside always decreases the (unwrapped) phase or increases the
negative of the phase, which is called the phase-fag function. Hence, the causal, stable
system that has VH i (27 215 its magnitude response and also has all its zeros (and,
of course, poles) inside the unil cirele has the minimum phase-lap function (for 0 =
@ = ) oof all the systems having that same magnitude response. Therefore, a more
precise lerminology is minimiem phase-tag system, bul minimum phase s historically
the estabhished terminology.,

To make the interpretation of minimum phase-lag systems more precise, it is
necessary 1o impose the additional constraint that H(e/) be positive at @ = 0, Le.,

Hie'" = Z hln] = 0. (5.102)

H=—"3

Note that H e/} will be real if we restrict #n] to be real, The condition of Eq.(5.102}) s
necessarv because a system with impulse response —#A[n] has the same poles and zeros
for its system function as a system with impulse response Ai{n]. However, multiplving by
-1 would alter the phase by & radians. Thus, 1o remove this ambiguity, we impaose the
condition of Eq. (5,102} to ensure thal a svstem with all ils poles and zeros inside the
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unit circle also has the minimum phase-lag property. However, this constraint is often
of little significance, and our definition at the heginning of Section 5.6, which does not
include it, is the generally accepted definition of the class of minimum-phase systems,

The Minimum Group-Delay Property

Example 5.3 illustrates anather property of svstems whose poles and reros are all
inside the umit circle. First, note that the group delay for the systems that have the same
magnitude response is

grd{ He)] = grd| Hminle?™)] + grd[Hgpiel™)], (5,103)

The group delay for the minimum-phase system shown in Figure 5.25(c) is always less
than the group delay for the nonminimum-phase system shown in Figure 5.24(¢). This is
because, as Fizure 5.26(¢) shows, the all-pass system that converts the minimum-phase
systeniinto the nonminimum-phase system has a positive gproup delay. In Section 5.5, we
showed this to be a peneral property of all-pass systems; they always have positive group
delay for all w. Thus, if we again consider all the systems that have a given magnitude
response | H i {e/*}]. the one that has all its poles and zeros inside the unit circle has the
minimum group delay. An equally appropriate name for such svsterms would therefore
be minimum group-delay svstems, but this terminology is not generally used.

The Minimum Energy-Delay Property

InExample 5.13, there are a total of four causal FIR systems with real impulse respanses
that have the same frequency-response magnitude as the system in Eq. (5.97). The as-
socialed pole—zero plats are shown in Figure 5.27, where Figure 3.27(d) corresponds
to Eq. (5.97) and Figure 5.27(a} to the minimum-phase system of Eq. (5.99), The im-
pulse responses for these Four cases arc ploited in Figure 528, If we compare the fouar
sequences in this figure, we obscrve that the minimum-phase scquence appears 1o have
larger samples atits lefi-hand end than do all the other segquences. Indeed, it is true for
this cxample and, in general, that

[ALO1 = [fagin (01 (2104}
for any causal, stable sequence h[n] for which
|H (™Y = | H i (731, {5.105)

A proof of this property is suggested in Problem 5.71.
All the impulse responscs whose frequency-response magnitude is cqual to
| H minfe™) | have the same total energy as by [nl, since, by Parseval's theorem,

3 kil
m=L

1 i 2 l g -
Ho | H(ed® 2 n — f PH i (0 2
i f_ﬁ @)= [ Hoptel®)

e i (5.106)
=Y Praia 112
m=[
If we define the partial energy of the impulse response as
i
Eln]=>_ |h[m]F, (5.107)

m=l)



Chapter & Transform Analysis of Linear Time-invariant Systems

Limit ' Uimit Im

urd: z-plans wcarcle a z-plane

T
-

gl
ﬂ_!__..
2

12-11"-:11'd-:r R i i
]':-n!L pirle
k 5 /
(% iy
fal ik
Unit [ L Unit | Lm
cirgle o o t-planc circle | o-plane

FN 7T

T

'|

[ 4'“ -:rtdu Re |4 order | Re
K‘ pole \ | Dﬂy

ilﬂ {d)

Figure 5.27 Four systems, all having the same frequency-response magnitude.
Zeros are al ali combinations of the complex conjugate zero pairs 0.95%/0.6% and
0,860 and their reciprocals.

then it can be shown that (see Problem 5.72)

Y ImlE < ) i) ? {5.108)
=[] ra=ll

for all impulse responses hfn] belonging to the family of systems that have magni-
tude response given by Eq. (5.105). According to Eq. (5.108), the partial encrgy of
the minimum-phase system is most concentrated around n = 0; L.e,, the enerpy of the
minimum-phase system is delayed the least of all systems having the same magnitude
response function. For this reason, minimum-phase (lag) systems are also called min-
iem energy-delay systermis, of simply, minimum-delay systems This delay property is
illustrated by Figure 5.29, which shows plots of the partial energy for the four sequences
in Figure 5,28, We note for this example—and it is true in general—that the minimum
energy delay occurs for the system that has all its zeros inside the unit circle {ie., the
minimum-phase system) and the maximwm energy delay occurs for the system that has
all its zeros outside the unit circle, Maximum energy-delay systems are also often called
wtaximient-phase systems,
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Figura 5.29 Partial energies for the four sequenses of Figure 5.28. (Mote that
£51a] is for the minimum-phase sequence f;(A] and £y[A] is for the maximurn-
phase sequence fy,[n].}

5.7 LINEAR SYSTEMS WITH GENERALIZED LINEAR
PHASE

In designing filters and other signal-processing systems that pass some portion of the
frequency band undistorted, it is desirable to have approximately consiant frequency-
response mapnitude and zero phase in that band. For causal systems, zero phase s
not attainable. consequently, some phase distortion must be allowed. As we saw In
Section 5.1, the effect of linear phase with integer slope is a simple time shift. A nonlinear
phase, on the other hand, can have a major effect on the shape of a signal, even when
the frequency-response magnirude is constant. Thus, in many situations it is particularly
desirable to design systems to have exactly or approximately linear phase. Inthissection,
we consider a formalization and generalization of the notions of linear phase and ideal
time delay by considering the class of systems that have constant group delay. We begin
by reconsidering the concept of delay in a discrete-time sysrem.

5.7.1 Systems with Linear Phase
Consider an LT1 system whose frequency response over one period is
Higlel™y = g lue, lat| = T, (5.109)

where @ 18 a real number, not necessanily an integer. Such a system is an “ideal delay”
system, where @ 15 the delay iniroduced by the system. Mote that this system has constant
magnitude response, linear phase, and constant group delay; i.e.,
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—————————————————————————————————— ' noninteger delay in discrete-time

H(eh] systems,
|Hig(e!™)| = 1, (5.110a}
LHigle!™) = —wa, {5.110b)
grdl Hiafe™ ] = a. (5.110c)
The inverse Fourier transform of H (e/™) is the impulse response
sinTin —a) :
Raln] = oy —00C = B 0O, (5.111)

The output of this system for an input x[#] is

Sinwi{n —a) f": I[ﬂhiﬂ:‘i{n —k —uw)

i 12 x).. 5.112
¥l =x[n]* o R oy { )
I @ = ny. where ny is an integer, then, as mentioned in Section 5.1,
falnl = 8l — sl (3.113)
and
v[n] = x[r] = &[0 — n4] = x[n — nal. (5.114)

That is, if @ = my is an integer, the systermn with linear phase and unity gain in Eg. (5.104)
simply shifts the input sequence by ny samples. If o 15 not an integer, the most straight-
forward interpretation is the one developed in Example 4.7 in Chapter 4.

Specifically, a representation of the system of Eq. {3.109) is that showo in Fig-
ure 530, with A.(t) = 8(r —aT) and H.(j52) = ¢~ /T so that

H(e'®y = g=ion, ] = . (5.115)

In this representation, the choice of T is irrelevant and could simply be normalized
to unity, It is important to stress again that the representation is valid whether or not
x[n] was originally obtained by sampling a continuous-time signal. According to the
representation in Figure 5.30, y|n] is the sequence of samples of the time-shifted, band-
limited interpolation of the input sequence x|n]; i.e., ¥[r] = x. (8T — a7}, The system
of Eq. (5.109) is said to have a time shift of « samples, even if @ is not an integer. If the
group delay « is positive, the time shift 15 a time delay. If « is negative, the time shift is
a time advance,

This discussion also provides a useful interpretation of linear phase when it is as-
sociated with a nonconstant magnitude response. For example, consider a more general
frequency response with linear phase, Le.,

Hie/™) = |H(e/™)|g /=, les] = . (5.116)
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Figure 5.31 Representation of a
—— A | goier b—s  |ingar-phase LT| system as 2 cascade of
x[n] wn] ¥le] 3 magnitude filter and a time shift.

Eguation (3.116) suggests the interpretation of Figure 5.31. The signal x[n] is filtered
by the zero-phase frequency response |H (e/®), and the filtercd output is then “time
shifted™ by the (integer of noninteger) amount o, Suppose, For cxample, that H (/™) i
the lincar-phase ideal lowpass filler

PP - R T
Hiple!™) = 0, g e {5117
The corresponding impulse response is
sine-(n —
gy 2R ) (5.118)

Tin — i)

MNaote that Eq. (5.111) is abtained if w, = m,

Exampie 5.14 Ideal Lowpass with Linear Phase

The impuise response of the ideal towpass filter illustrates some interesting properties
“5 of lincar-phase systems. Figure 5.32(a) shows irjpi_u} firr e = D and o — ng = 5
© NWote that when o is an inleger, the impulse response is symmetric ahout n = ng! i€,

’ Sl {2Rs — 0 —ng)
an[erd —n] = e s

milng —m—nmy)

simee (Hg — n)

_?{“d gy (5.119)
= = ﬁlpl'n].
In this case, we could deling a zero-pfuire system
H |!1{e""”'} = H.P(ai‘”n«'””n‘ = !Hh,f.rf 1, (5.120)

wherein the impulse response is shifled to the left by ny samples. yielding an cven
S sequence

= sinegm o p
F:|F|n] = --;ii-- = F!gp[ . (5.121)

S | Tigure 5.32{b) shows h, (0] for o, = 04 and @ = 4.5. This is typical of the case when
- the linear phase corresponds 1o an integer plus one-hatf As in the case of the integer
delay, it is easily shown that if @ is an imteger plus one-half (or 2« is an integer), then

higl 20 — nj = hygla]. (5.122)

2 In this case, the point of symmetry is o, which is not an integer. Therefore, since the
G symnmetry is not aboul g point of the sequence, it is nol possibde o shifi the sequence o
. obtain an even sequence that has zero phase. This is sinilar to the case of Example 4.8
with M odd.
Figure 5.32(¢) represents 1 third case, in which there i8 no symmetry at all. To
this case, cu. = (hdmr and o = 4.3,
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In general a linear-phase system has frequency response
Hiel™y = |Hiel")jefow (5.123)

As illustrated in Example 5.14, if 2 is an integer (i, if @ is an integer or an
integer plus one-half), the corresponding impulse response has even symmetry about
o e,

h[2e —nl = hin). (5.124)

If 2e is not an integer, then the impulse response will not have symmetry. This is illus-
trated in Figure 5.32(c), which shows an impulse response that is not symmetric, but
that has linear phase, or equivalently, constant group delay.

5.7.2 Generalized Linear Phase

In the discussion in Section 5.7.1, we considered a class of systems whose frequency
response s of the form of Eq. (5.116), i.e., a real-valued nonnegative function of w
multiplied by a inear-phase term e ™/, For a frequency response of this form, the phase
ol H(e!™) 15 entirely associated with the lincar-phase factor ¢7/97, 1e, arg[Hie™)] =
—aer, and consequently, systemns in this class are referred to as linear-phase systems. In
the moving average of Example 4.8, the frequency response in Eq. (4.66) is a real-valued
tunction of w multiplied by a hnear-phase term, but the system is not, strictly speaking,
a linear-phase systemn, since, at frequencies for which the factor

1 sinfediM | 13/2]
M+1 sinfim,/2)

is negative, this term contributes an additional phase of o radians to the total phase.

Many of the advantages of lincar-phase systems apply to systems with frequency
response having the form of Eq. (4.66) as well, and consequently, it is useful to generalize
somewhat the definition and concept of linear phase, Specifically, a system is referred
1o as a generalized linear-phase system if its frequency response can be expressed in the
form

H (™) = A (! @)e el (5.125)

where o and # are constants and A (/%) is a real (possibly bipolar) function of w. For
the linear-phase system of Eq. (5.117) and the moving-average filter of Example 4.8,
o= —M/2and £ = (0. We see, however, that the bandlimited differentistor of Exam-
ple 4.4 has the form of Bg. (3.125) with e =0, 8 = w/2. and A (o) = @/ T

A system whose frequency response has the form of Eq. (5.125) is called a gen-
eralived lineur-phase system because the phase of such a syslem consists of constant
terms added 1o the Hnear function —es; e, —wo + 15 the equation of a straight line,
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However, if we ignore any discontinuities thal result from the addition of constant phase
over all or part of the band |«| < s, then such a system can be characterized by constant
group delay, That is, the class of systems such thai

; d
I':.I"IJ‘:I — g‘[’[]l-H{E'-'rwﬂ — d___{
{2

arg[ H{e!™)]}) = & {5.126)

have linear phase of the more general form
arg| H(e'*)] = 8 — wer, 0 = aw=m, {5.127)

where 8 and o are both real constants

Recall that we showed in Section 5.7.1 that the impulse responses of linear-phase
systems may have symmetry about o if 2o is an inteper. To see the implication of this for
generalized linear-phase systems, it is useful to derive an equation that must be satisfied
by flnl. o, and # for constant group-delay systems. This equation is derived by noting
that, for such systems, the frequency response can be expressed as

H(E_.'.ur] o {E,_frn*}fj 1 —avera)

; : {3.128)
= AleM™yeos(f —awe) + A (2™ — o),
or equivalently, as
i ;
H{eky= %" h[nje i

g (5.120)

oG 3 E
= Z hlr|coswn — j Z feln] sin n,
H=—"a R=—00

where we have assumed that &[] is real. The tangent of the phase angle of H{e/®) can
he expressed as

o]
— Z kr ] sitteon

L sindf — owx) PR
anif — an) = = i
cos{f — anr) i
Z Al cos wn

Cross multiplying and combining terms with a {rigonometric identity leads to the
equation

i

Z Rlmisinfain — o)+ #1 =0 Forall o {(3.130)

B=—i
This equation is a necessary condition on h[r], e, and £ for the system to have constant
group delay. It is not a sufficient condition, however, and, owing to its implicit nature,
it does not tell vs how to find a lingar-phase system.
A class of examples of generalized linear-phase systems are those for which

=0 or = (5.131a)
2o = M = an integer, (5.131b)
[2a — n] = K[a]. {5.131¢)
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With £ = 0 or =, Eq. {5,130} becomes

> hinlsinjwin — )] =0, (5.132)

A=—0o

from which it can be shown that if 2w is an integer, terms in Eq. {5.132) can be paired s0
that each pair of terms is identically zero for all e, These conditions in furn imply that
the corresponding frequency response has the form of Eq. {5.125) with & = O or 7 and
A (e'®y an even (and, of course, teal) function of w.

Another class of examples of generalized linear-phase systems are those for which

B==/2 or 3mj2, (5.133a)
2o = M = an integer, {5.133b)

and '
k2 — n| = —hln] (5.133c)

Equations (3.133) imply that the frequency response has the form of Eq. (5.125)
with f = w72 and A (e/*) an odd function of w. For these cases BEq. {3.130) becomes

[='4]

Z B[n] cosjein —a1] =10, {5.134)

H=—0

and is satisfied for all w.

Note that Eqs. {5.131} and {3.133) give two sets of sufficient conditions that guar-
antee generalized linear phase or constant group delay, but as we have already seen in
Figure 5.32(c}, there are other systems that satisfy Eq. (5.125) without these symmetry
conditions.

5.7.3 Causal Generalized Linear-Phase Systems

If the system i= causal, then Eq. {5.130) becomes

P u]
3 hlnlsinfestn — o)+ fl =0 forall o, (3.135)
n=fl

Causality and the conditions in Eqgs. (5,131} and (5.133) imply that
fin] = 0, =0 and n= M

2

i.e., causal FIR systems have generalized linear phase if they have impulse response
length (M + 1) and satisfy either Eq. {5.131c) or (5.133c). Specifically, it can be shown
that if

hM—n], D<n=<M,
{1, otherwise,

] = {5.136a)
then

Hiel™) = A fe! e /M2 (5.136b)
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where 4 r(er‘""] 1 a teal, cven, periodic function of w, Similarly, if

e _hl.'q"f—!‘i']. ﬂEn-::MI ,
Al = { U, otherwise, (5.137a)

then it follows that
H(fird:l = f.-!l,.){ffw;le Jen X 2 = .ﬁn{es'w:lt’ - M g jx__.;::l (5-13?'};

where A (e4*) iz a real, odd. periodic function of w. Note that in both cases the length
of the impulse response 15 (M + 1) samples.

The conditions in Eqs. {(5.136a) and {5.137a) are sufficient to guarantee a causal
system with generalized linear phase. However, they are not necessary conditions.
Clements and Pease (1989) have shown that causal infinite-duration impulse responses
can also have Fourier transforms with generalized linear phase. The corresponding sys-
tem functions, however, are notf rational, and thus, the systems cannot be implemented
with difference equations.

Expressions for the frequency response of FTR linear-phase systems are useful in
filler design and in understanding some of the properties of such systems. In deriving
these exprassions, it turns out that significantly different expressions result, depending
on the type of symmetry and whether M is an even or odd integer, For this reason, il is
generally useful to define [our types of FIR gencralized linear-phase systems.

Type I FIR Linear-Phase Systems
A type I system is defined as a system thal has a symmetric impulse response

hln) = M — n), G=n=M {5.138)
with M an even integer. The defay M /2 is an integer. The frequency response is
M .
H(e!®y =3 " hlnle™*", (5.139)
J'I=|-|'

By applying the symmetry condition, Eq. (5.138). the sum in Eq. {5.139) can be rewritten
in the form

Bt
Higly = g~ /uMis E alk] cos a.rk) . {5.140a)
k=l
where
altt] = A[M /2], (5.140b)
alk] = 20[(M/2) — k1. k=1,2,..., M2 {5.140c)

Thus, from Eq. (5.140a), we see that F{e/*} has the form of Eq. (3.136b), and in partic-
ular, # in Eq. {(5.123) is either D or 7.,
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Tvpe If FIR Linear-Phase Systems

A type LI system has a symmetric impulse response as in Eq. (5.138), with M an odd
integer. #{e'*) for this case can be expressed as

_ (M 4+1)72 - ;
HE®) = e M2 ]S b cos [m (k-1)] 1 (5.141a)
k-1
where
bkl =2h[(M +1}/2—kl.  k=1,2, ..., (M+1)/2. (5.141b)

Again, Hie/“) has the form of Eqg. (5.136b) with a time delay of M /2. which in this case
is an integer plus one-hall, and § in Eg. (5.125) is either 0 or 7.

Type HI FIR Linear-Phase Systems
If the system has an antisymmaetric impulse response

fln] = —hlM — r), D=<p=M, (5.142)
with M an even integer. then H(e/®) has the form
M2
Hiel*y = je foMi2 |:E[r[k]s.in r.-].f::| ; {5.1434)
k=1
where
clk] = 2R[(M/2) — k. k=12 . M2 (5.143b)

[n this case, f (¢/*) has the form of Eq. (5.137b) with a delay of M/2, which is an integer,
and g in Eq. (5.125) is 7 /2 or 3= /2.

Type IV FIR Lincar-Phase Sysrems
[f the impulse response is antisymmetric as in Eq. {5142} and M is odd. then

(M 41112 .
H{ef.f«_:} = je - foM £33 l:" Z dlk]sin [m. (]i: - %)]] . (5.1444)

=1
where
dlk) =280 + 1)/2 — k] E=1.2,....(8 4+ 1)/2. (5. 144D}

As in the case of type 111 systems, H(¢/*) has the form of Eq. (5.137b) with delay M /2,
which is an integer plus one-half, and 8 in Eq. (31253} is = /2 or 37 /2,

Examples of FIR Linear-Phase Systems
Figure 5.33 shows an example of each of the four types of FIR lincar-phase impulse
responses. The associated frequency responses are given in Examples 5.15-5.148.
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Example 5.15 Type | Linear-Phase System

i I the impulse response is

:!T% i 1. il =pn < 4.

% Ml I‘-L otherwise, {5.145)
‘_:,,r'E as shown in Figure 5.33(a), the system satisfies the condition of Eq. {5.138). The fre-
:& (UENLY CESPOTSE 1%

% 4 ; [ — g—dowd

= Hiefoy = § e ton = L2E

gt | o p=i® .
i "= (5.146)
If‘fi R gin {52}

"ﬁ B sinm 2y

i

H’ The magnitude, phase, and group delay of the system are shown in Figure 5.34. Since
\m M = 4 is even, the group delay is an integer, ie., o = 2.
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() Phasge. {¢) Group delay.

Example 5.16 Type Il Linear-Phase System

A I the length of the impulse response of the previous example 15 extended by one sam-
: g P P P n )

iz Ple. we obtain the impulse response of Figure 5.33(b). which has frequency response
e I,—J"U:;.';? Sil'll;?‘('.l)

tems Hiel™ = o —_—
e sin (i)

;?:, (5.147)
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vy The frequency-response functions for this system are shown in Figure 535, Mot that
S the proup delay in this case is constant with o = 5,2,

B

4.5 —
“ |
= |
2 an-
g
< |
I‘i
|'|| |
] kid kS 2 2y
kJ Radian frequency (u) 4
i
i -
Ei
=
B3 a - 3r .
2 Radian frequency {u) 2
ik
ik
z
Bt
7
=
,::~.' ] I boges 1 sesw i
'I‘:‘ L] ™ L 3w 2o
"If 2 Radian Freguency (o) 2
§« e
11-'5,%-_ ; Figure 535 Frequency response of type | system of Example 5.16. (2) Magni-
] tuda. (b) Phase, (c} Group delay.

Example 5.17 Type ill Linear-Phase System

¢ If the impulse responsa is
'-;:'f.' hifr] = §n] - dn -2, [5.]4.4}
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as in Figore 5.33(c), then
Hiefty =1 =120 _ 13 ginfen]e ™, {5.149)

The frequency-response plots for this example are given in Figere 5.36. Note

that the group delay in this case is constant with o = L

iz

Amplituds

s ! 1
1] f T 11!- Zar
2 Hadian fraquency (o) 2
&)
A e
1.5
]|
&
=15
=30 1 I
o s « i I
z Badian frecuency (o) a
(s}
s et
L5
i
E 10 :
05
I} I | |
Q s T 3 Ir
2 Radian frecuency (w) 2
(c)

Figure 5.36 Frequency response of type [Nl system of Example 5.17. {a) Magnk-
tude. (b} Phase. (c) Group delay,
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Example 5.18 Type IV Linear-Phase System

I this case (Figure 3330d)), the impulse response is

Nin| = &|n] — afn — 1], 5,150
' . for which the frequency response is
i . .

E Higltty — 1 — g—im )
4E {5.131)

= 2 sinfa 2 ]e i

The freguency response for (his svstemn 15 shown in Fipure 5,37, NMote that [he group
delay is cqual to % for all e,

Locations of Zeros for FIR Lincar-Phase Sysiems

The preceding examples illustrate the properties of ithe impulse responze and the fre-
quency response for all four types of FIR linear-phase systems. It is also insiructive to
consider the locations of the zeros of the system function for FIR linear-phase systems.
The system function is

M
Hiz) = Zh[ni:’."'". (5.152)

n=l}

In the symmetric cases (types I and M), we can use Eq. {5.138) to express H{z) as

M i
Hizh =3 hlM —nl™" =Y hlkl*z™
k=&

=] {5.153)
=g MR
From Eq. (5.153), we conclude that if 7y is 2 zero of H{7), then
Hzo) = 25" H(zp" =0, (5.154)
This implics that if =5 = re/ is a zero of H(z), then z[TJ = r~ e~ 4% is also a zero of

H{z). When hln] is real and zy is a zero of H(z), 2}, = re =/ will also be a zero of H{z),
and by the preceding argument, so will (z) ™' = r~'e/%. Therefore, when hln] is real,
each complex zero not on the unit cirele will be part of a set of four conjugate reciprocal
zeros of the form

(1 —rei®z 31 —pe 7 Ny —r Loz Ny — a0y

If a zero of H{z) is on the unit drele, e, 23 = /¥, then ::Jl = o~ = 2}y, 80 ZETOS 0N
the unit eircle come in pairs of the form

§ REPLF el Ty BB g ot

If a wero of M(z) is real and not on the unit circle, the rt'cfprm_'al will also be a zero of
Hiz), and Hiz) will have factors of the form

Adrz B £ 127N,
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Finally, azero of H(z) at z = £1 can appear by itself, since 1 15 1ts own reciprocal and
its own conjugate. Thus, we may also have factors of f(z) of the form

{1z
The case of a zero al z = —1 is particularly important. From Eq. (5,153),

H(=1) = (-1%™ 1 {-1).
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Figure 5.38 Typical plots of zeros for linear-phase systems. () Type I, (b) Type
11 {z) Type 11 id) Tvpe

1T A s even, we have 4 simple identity, but if M is odd, Hi=1) = =H{=1}, s0 H(=1)
must be zero, Thus, for symmetric impulse responses with M odd, the system Munclion
prrust have a zero at ¥ = =1, Figures 5.38(a) and 3 358(b) show typical locations of xeros
for type T (A cven) and tvpe I (M odd) systems, respectively.

If the impulse responsc is antisymmetric (1ypes I and 1V, then, following the
approach wsed to oblain Eg. (5.133), we can show that

Hizy=—z"MH(z . (5.155)

This equation can be used to show that the zeros of H(z) for the antisymmetric case are
constrained in the same way as the zeros for the symmetric case. In the antisymmetric
case, however, both : = 1 and ; = 1 are of special interest. If ; = 1, Eg. {5.155)
becomes

H(l) = —H(1). {5.156)

Thus, H{z)musrhave azero at z = 1 for both M even and M odd. 1fz = ~ 1, Eq. (5.135)
Fives

Hi—1) = (-1y"™M 1 g—1). (5.157)

In this case, if (M 1}isodd (Le.if M iseven), H{—1) = = H(—1}, 50 z: = —1 must be
azero of Hiz) if M is even. Figures 5.38(c) and 5.38(d} show typical zero locations for
type I and TV systems, respectively.

These constraints on the weros are important in designing FIR lincar-phase sys-
tems, since they impose imitations on the types of freguency responses that can be
achieved. Forexample, we note thit, in approximating a highpass ifler using a symmetric
impulse response, M shonld not be odd. since the frequency response 15 constrained 1o
be zeroutew = miz = -1
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5.7.4 Relation of FIR Linear-Phase Systems to
Minimum-Phase Systems

The previous discussion shows that all FIR linear-phase systems with real impulse re-
sponses have reros either on the unit cirele or at conjugate reciprocal locations. Thios,
it 15 easily shown that the system [unction of any FIR linear-phase system can be fac-
tored into a minimumn-phase term H g, 2), a maximumn-phase term Hpu,(z).and a term
H {7} containing only zeros on the unil circle; Le.,

Hiz) = Hupanlz) Huel2) H maxl2), (5.158a)
where
Hupax{2) = Hogin (271 )21 (5.158b)

and M; is the number of zeros of Hqinlz). In Eq. (3.1538a), Hgiqic) bas all M; of its
zeros fside the unit circle, and Hyelz) has all M, of its zeros on the unit citcle, H iz}
has all M; of its zeros ourside the unit citcle, and, from Eg. (5.158b), its zeros are the
reciprocals of the M; reros of H i,(2). The order of the system function H{z)istherefore
M=2M; + M,

Example 5.19 Decomposition of a Linear-Phase System

wo As a smple example of the use of BEgs (5.1538), consider the minimuam-phase syilem
a function of Eq. {3.99), for which the frequency response is plotted in Figure 523, The
©oswstern oblained by applying Eq. (5.138b) o H 40020 in Eq. (5.99) is

Hmax(z} = (099201 — 1111157 .~ 1yg | 1111 10071,

2 (1= 1250 139 _ 1 95, 08w 1y

Hmuxtz) has the frequency response shown in Figure 5.39. Now, if these two sysiems
are cascaded, it follows from Eq. (5,158b) that the overall system

Hiz) = Hyin (2 H max i)

& has linear phase. The frequency response of the composite system would be obtained
<1 by adding the respective log magnitude, phase, and group-delay functions, Therefore,

20 logig 1H e = 20logiq | Hminle ™) + 20Hog g | H max (e ™)

. {5.159)
= 40 logyq | H minfe®)1,
”g Similarly,
i LH{eE) = £ H (€9 + £ Henax(e?™. (5.160)
? From [ig, (3.158h). it follows thar
: £ Hmaxie™) = —uM; — £ H pinte!™). (3.161)

: and therefore

LHE ™) = —aM
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25 where M; = 4 15 the number of zeros of H g, (z). In like manner, the group-delay
functions of oo™ and Fgax(e ™) combine to give

grd Hie!™y = M, = 4.

© The [requency-respunse plots [or the composite syslem are given in Figure 5.40, Note
that the curves are sums of the corresponding functions in Figures 3.25 and 3.39.
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Figure 5.39 Frequency response of maximum-phase system having the same
magnitude as the system in Figure 5.25. () Log magnitude, (b} Phase {principal
valuz). {c) Group delay,
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5.8 SUMMARY
In this chapter, we developed and explored the representation and analysis of LTI

systems using the Fourier and r-transforms. The impnn‘unce of transform analysis for
LTI systems stemns directly from the fact that complex exponentials are eigenfunctions
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of such systems and the associated eigenvalues correspond to the system function or
frequency response.

A particularly imyportant class of LTI svstems is that characterized by lingar constant-
coefficient difference equations Swstems characterized by difference equalions may
have an impulse response that is infinite in duration (ITR) or finite in duration {FIR),
Transform analysis is particularly uscful for analyzing these systems, since the Fourier
transform ot s-transform converls adifference equation Lo an algebraic equation. In par-
ticular, the system function is 4 ratio of polynomials, the coefficients of which correspond
directly to the coefficients in the difference equation. The roots of these polynomials
provide a useful syslem representation in terms of the pole—zero plol.

The frequency response of LTI sysiems is often characlerized in terms of mag-
nitude and phase or group delay, which is the negative of the denvative of the phase.
Linecar phase is oflen a desirable characteristic of a system frequency response, since it
is a refatively mild form of phase distortion, corresponding 1o a time shift, The impor-
tance of FIR systems lies in part in the fact that such systems can be easily designed
to have exactly linear phase (or generalized linear phase), whereas, for a given set of
frequency response magnitude specifications, [IR systems are more efficient. These and
other trade-offs will be discussed in detail in Chapter 7,

While, in general, for LTI systems, the frequency-response magnitude and phase
are independent, for minimum-phase systems the magnitude uniquely specifies the
phase and the phase uniquely specifies the magnitude to withina scale factor. Nonmini-
mum-phase systems can be represented as the cascade combination of 4 minimum-
phase system and an all-pass system, Relations between Fourier trapsform magnitude
and phase wall be discussed in considerably more detail in Chapler 120

Basic Problems with Answers

S1. Inthe system shown in Figure P3.1-1, H (/™) s an ideal lowpass filter, Determine whether
for some choee of inpul x{a] and cutoff froguency o, the ootpuol can be the pulse

1, D=m= 10,

il = 0, otherwise,

shown in Figure P5.1-2,

— e ) e

xfr] vn}
ey
I
i
W ok de W@ Figure P5.1-1

¥[n]

] n i Figure P5.1-2
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Consider a stable LTI system with input x[a] and outpat ¥(4). The input and output satisfy
the difference equation

yin—1]— %y!n] + vln + 1] = x[ul.

{a} Piol the poles and zeros of the system fanction in the z-plane.
{b} Determine the impulse response hin].

Consider an LTI discrele-limee system Tfor which the inpul x[a] and oulpul y[a] are related
hy the 27 order difference equation
vim—=1]+ %}'Lrt -7 = xln].

From the following list, choose two possible impulse responses for the systemu

@ (- HH uln + 1]

by 3+ uln+1)
fe) 33" Fy—n — 2]

(d) ﬁ(—})“u{—n—z]
© (=4)" M un-n
(f) (%}R'H uln 4+ 1]

(g) (=3 uln]
() et uin.

5.4, When the input to an LTI system =

5.5.

5.6.

sinl = ()" ulnl + (2)"wl-n — 11,

the output is
ViRl =6 (%}n wln] —f (%)” rfnl.

(1) Determine the system function Hiz) of the system. Plot the poles and zeros of Hiz),
and indicate the ROC,

(b} Determine the impulse response h[n] of the system for all values of n.

(e} Write the difference equation thal characlerizes the system,

(d} Is the system stable? Is it causal?

Consider a system described by a linear constant-coefficient difference equation with initial-
rest conditions. The step response af the system is given by

¥[r] = (%}n u[n] + (A\jn ufn] + wln].

{a} Delermine the difference equation.

(b) Determime the mpulse response of (he system.

{e} Determine whether or not the system is stable.

The following information is known aboul an LTT svstem;

(1) The system is causal.
{2) When the input is

st = —1 (1) wlnl - $@0ur-n 11,
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the z-transiorm of the outpul is
2

-z~

¥iz) = = g
T Ya—ay

(a) DReterming the z-transform of x[mr].
(b) What arc the possible choices for the ROC of ¥(z)?
(e} What are the possible cholges Tor the impulse response of the systein?

When the input to an LTT system is
xm| = 5ulnl,

the output is

n A
¥[nl = EZ (%} +3 (—3‘) ]i‘J|P‘i].
{a) Determine the system function H(z) of the system. Plot the poleﬁ and zeros of Hiz),
and indicate the RO,
{b) Determine the impulse response of the system for all values of /.
{c) Write the difference equation thatl characlerizes the svstem.

A caosal LTT system 15 described by the difference equation
yInl=3y[n 114 3ln 2] 1 xfn - 1],

{a) Determine the system function H(z) = ¥iz)/ X (z) for this syvstem. Plot the poles and
ceros of Hiz), and indicate the ROC,

ib) Letermine the impulse response of the system.

{e} You should have found the sysiem to be unsiable. Determine a stable (noncaosal)
irnpulse response that satisfies the difference equation.

Consider an LTT system with input x| » ] and output »ir| for which
yin — 11— 33l + yln + 11 = xln].

The system may or may not be stable or causal. By considering the pole zero pattern
assorciated with this difference equation, determine three possible choiges [or the impulse
response of the sysiem. Show that each choice satisfies the difference equatic:un. Indicate
which choice corresponds to a stable system and which cheice corresponds to a cawusal
syslem.

If the system fonction Hiz) of an LT system has a pole—zere diagram as shown in Fig-
ure P5.10 and the system 1s causal. can the inverse syslem H(z), where Hiz1H;(zi=1,be
hoth causal and stable? Clearly justily vour answer.

Linit | Lm

circle 2-plane

Figura P5.10
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511, The svstem function of an LT1 systam has the pole—zero plot shown in Figure P5.11 Specify

whether cach of the following statements is true, 15 false, or cannot be determined from the
inforrmation given.

{a) The system s siable,

{b} The system is causal.

(e} If the system is causal, then it must be stable.

(d} IE the sysiem is stable, then it must bave a two-sided impulse response,

| Tm

e
<! \\rl,/’z &

Unit virele Figure P5.11

z-plane

£12, A discrele-1ime causal LTT systern has the system netion

(1+0.2:7h1 — 90

Hiz) =
el (1+0812—Y

(a) Isthe system stable?

(b) Determine expressions for @ minimum-phase system H((z) and an all-pass system
HHPL;_'_I silch that

Hiz) = Hyn) Haplz).
513 Fagore PE13 shows the pole—ero plots for Four different TTT systems Based on these plots,
state whether or not each syslem is an all-pass system.

2l (2} B B P
"

b

I|||. Re

2

| T FINES] Tin sy

1 Figure P5.13
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514. Determine the group delay for 0 < w < 7 for each of the following sequences:

(a)
n—-1, 1<nm=<3,
lal=19—n S<n=9
a, otherwrze,

(b}

() ()

515, Consider the class of discrete-time fliers whoses [requency response has the [orm
Hicit) = |H{lw|eFoe

where | H{7%]| is a real and nonnegative funclion of w and « is areal constant. As discussed
in Section 5.7.1, this class of Allers is referred 10 85 lneae-phuse Gllers
Consider also the class of discrete-time filters whose frequency response has the form

Hiel®) = 4 (giw)g Jowtid

where A (e#™) is a real lunction of o, @ 35 a real constant, and A is a real constant, As
discussed in Section 3.7.2, filters in this class are referred to as generalized linear-phase
filters.

For each of the filters in Tigure P5.15, determine whether il 1% a generalived linear-
phase filter. If it is, then find A (ed @y, . and A. In addition, for each filter vou determine
to be 4 generalized linear-phase filter, indicate whether it also meets the more siringent
criterion Tor being a linear-phase filter.

hn] hinj hin|

{dp ]
Figura P5.15

5.16. Fgure P5.16plois the continuous-phase argl [ (e 1] for the [fequency response of a specilic
L1l system, where

arzl Fl (™)1 = —am

for fw| < o and o 15 a positive imnteger.
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argfH (e

[

2]

-

Figure P5.16

Iz the impulse response Alx] of this system a causal sequence? If the system is definitely
causal, or if it s Jefimtely not causal, give 2 prool, If the causality of the system cannot
be determated from Figare P5.16, give examples of a noncansal sequence and a casal
sequence that both have the forcgoing phase response argl H (e/1),

517, Fow each of the Tollowing system Tunctions, state whether or fol il is a2 minimom-phase
system. Justify vour answers:

.
—
[ =]
—
21
Tt
I

2' Rl 3-' —,
1-32 1}{"*’3" ;

1_-1

b -3z
Hyfg) = e,
(—d T g )

z ](1 f;z"')'l
Hqiz) = =

(1 da=1i1 + {21y

518, Foreach of the (ollowing system funetions Az (z), specify 8 minimum-phase system function
H pint(z) such that the frequency-response magaitudes of the two systems are equal, ie.,
|Hgfed ™| = | H g (e™ ).

()
_22_}
H]':?.J-= -
_-;2
(b}
(43 {1 - Lt
Halzd= I {I _I J
= (1327
{c)
1-3"H{1-Li
Hite) = (-37)
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5.19. Figure P5.1% shows the impulse responses Tor several different LTT systems, Determine the
group delay associated with each system.

N ]
wh

el ]

hy[n] rz 92 Hzln]

Ll

_1_11 0 1 2 3_11
LA I # gl

r

. . 10 4 . Ti

2 -1 0 |_ll 3_11 5 6 7 8
haln] figln]
. TrrrrrrL.
L] =1 i i 2z i 4 5 T 8
Figure P3.19

5.20. Figure P5.20 shows just the zero locations for several different system functions. For each
plot, state whether the system function coudd be a generalized linear-phase system imple-
mented by a linear constant-coelficient difference equation with real coetficients.

Tm

Hi(z)

Tm i
Hylz}

=]

Figure P5.20
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Basic Problems

821, Let hipln] denaote the impulse response of an ideal lowpass filter with unity passband gain
and cuteff frequency w, = 7/d. Figure P5 21 shows fve systems, cach of which is cquivalent
o unideal LTT Mrequency-selective filer. For each system shown, skelch the eguivalend fre-
quency response, indicating cxplicitly the band-edpe frequencies in terms of we. In cach case,
specify whether the sysiem is a lowpass, highpass, bandpass, bandstop, or multiband flier,

o
x[n] ‘ ¥
- hlpl.’lj
fa)
(—13" =1y
Al —

x|n] »[#]

(b

et 1y [ 2]
x[n] ol 2] win}

()

[mi2],  neven

nodd

—] x|r} =+ ﬂll’

xn| ¥[n]
i}
el 43 byl 2 f—r
x[] * d ¥[]
(e Figura P5.21

5£.22. Many properties of a discrete-time sequence &|r] or an LTI system with impulse response
Ajn] can be discerned from a pole—zero plot of H{z). [n this problem, we are concerned only
with causal systems Clearly describe the z-plane characteristic that corresponds (o each of
the following properties:
{a} Real-valued impulse response
(b} Finile impulse response
{e} h[nl = A{2a — n] where 2 is an inteper
{d} Minimum phase
fe) All-puss
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For all parts of this problem, F{e/") is the frequency response of a DT filter and can be
expressed in polar coordinates as

. ) ptc
Hied™y = Aq)el "

where Adw] 15 even and real-valued and @fo) 15 8 continuous, odd functon of o for —7 =
w < ;0 L, 84w is what we have referred o as the unwrapped phase. Racall:

e The group defay ©(w) asgociated with the filter is defined as

Tl = ——— — foir|o] = m.

« An LTT filter 15 called neitimurme phose if it is stable and causal and has a stable and
causal inverse.

For zach of the following statements, state whether it is TRUE or FALSE. If you state
that it is TRUE, give a clear, brief justification, If vou stafe that it is FALSE, give a simple
counterexample with a clear, Briel explanation of why il is a counterexanple.

(a) “IF the filter is causal, 1ts group delay must be noanegative al all freguencies in the
range |w| = #."

(b} “If the group delay of the filler is a positive constant integer for e = 7 the filter muse
be a simpte ineper delaw™

{c) “If the filter is minimum phase and all the pales and zeros are on the real axis then
Ji Tlwlde =0."

A stable svstem wilh sysiem function Hi(z) has the pole—sero diagram shown in Figure
P5.24. It can he represented as the cascade of a stable minimum-phase system . (z) and
astable all-pass system Hypiz).

L

R

3.25,

/
aj= ¥
L]
& ]
¥

Figure P5.24 Pale=zero diagram for 2.

Determine achoice for My, (2) and Hpiz) {upto ascale factor) and draw their correspond-
ing pole-zero plots, Indicate whether vour decomposition is wnique up (o a scale factor,

(a) Anideal lowpass filter with impulse response Aln] is designed with zero phase. a cutoff
Trequency of o = 7/4, a passband gain of 1, and a stopband gain of 0, (H{/* is
shown in Figure P5.21.) Sketch the discrefe-time Fourier transform of {~1194[a].
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by A complex-valued filter with impuise response gln] has the pole—zero diagram shown
in Figure P53.25. Skewch the pole-zero diagram for (—1)%g{x]. If there is not sufficien
information provided, explain why.

Im

$

o

Figure P5.25

5,26. Consider a discrete-time LTI system for which the frequency response Hie/®) is described
by:

Hiefy=—j, Oecw=<r

Hiel® =), —a<w=0

{a) Is the impulse response of the system fn] real-valued? {i.e., is Aln| = i*{n] forc all n)
(b} Calculate the following:

(et
bIRLITE

H=—00

{c} Determine the response of the system Lo the doput x[n} = s[n]costw-n), where
0= ae < 7/2and S(e) = (0 for w3 < || <.

E27. We process the signal x[n] = cos{(.3xn) with a uaity-gain all-pass LTI system, with fre-
quency response w = H (¢!} and a group delay of 4 samples al frequency o = 0.3, 1o get
the output y[n). We also know that 28 (e/"3T) = ¢ and £ Hie= /™37y — 9. Choose the
most accurate statement:

(a) ¥ln] = cos(0.3mn +6)

(b} ¥[n] = cos{(Lixin —I) + 8}
(&) v[n] = cos(0.3xin — 4 — &)}
() v[n] = cosD3zin — 4

(e) ¥[n]=cos(}3xin =3+
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528, A causal DTT system has the system funchon

(1 el 3=y - 775 4 117657

Hizl = — ok .
& (1 = 083y = 09— i7 3= 1301 + 85271y

(a) Write the difference equation that is satisfied by the input x[r] and oulput ¥in] of this
system.

(b} Plot the pole-zere diagram and indicate the ROC for the system function.

() Make 3 carefully labeled sketch af [H e} . Use the pole—rern locations 1o explain
why the frequency response looks as it does.

(d} Stale whether the following are true or false about the system:

{i% The system is stable,
(i) The impulse response approaches a nonzero constant for large n.
{iii}) Beeause the system function has o pole al angle 773, the magniude of the [re-
guency response has a peak at approximately e = /3,
¢{iv) The system is a minimum-phase system.
(v} The system has a causal and slable inverse,

529, Consider the cascade of an LTT system with its inverse system shown in Figure P5.2%9,

n] L wln] A ¥inl
— Sysient | [MVESe NYSIEM] i
Aln) hin)

Figure P5.29

The impulze response of the first system is Ale} = 8] + 280 = 11

() Dwetermine the impulse response &, | of a stable inverse system [or Al |, Is the Invense
svslem causal?

i{b) Now consider the more general case where fijn] = &n] + af|n — 1], Under what
condilions on o will there cost an inverse system that is both stable and causal?

£30. In each of the following parts, state whether the statement is always TRUE or FALSE,
Justify cach of vour answers.

(a) “An LTI discrete-time system consisting of the caseade connection ol two minimuom-
phase systems is also minimum-phase.”

{by “An LTI discrete-time system consisting of the paralle] connection of two minimum-
phase systems is also minimum-phase.”™

5.31. Consider the system function

i

Hizl =

. |z] = ¥
1—(2reosagiz=! +r2z—2

Assume first that esyy 2 (L

{a} Draw a labeled pole—zero diagram and determine #fr].
(b} Repeal par {a) when wp = 0. This is known as a entically damped system.
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Advanced Problems

522, Suppose that a causal LTT system has an impulse response of length € as shown in Fig-
ure P332, where « is a real-valued constant {positive or negative].

0,75
0s ;
fo ]
— § J S g g
i R T l 3 4 & 7
N3
-1 Figure P5.32

Which of the following statements is true:

{a) This system must be minimum phase.
{b) This system cannol be minimum phase.
{c) This system may or may not be minimum phase, depending on the value of .
Tustify your answer,
5.33. iz is the system function for a stable LT system and is given by

0 =220 075y

Hiz)
¢ =1 —0.5:h

() fH(z) can be represented as a cascade of o minimum-phase system Hgipi{ch and &
unity-gain all-pass system fapizl, ie,

Hiz) = Hll:tli.lﬂ ff}HaprL

Determine achoice for Hpin: () and Hapi) and specify whether or not they are unique
up fo a scale factor,

(b} H(z)can be expressed as a cascade of a mininum-phase system Hpipoiz) and a gen-
eralized lincar-phase FIR system Hy, (2):

Hiz) = Hpynolz) Hip(2)h.

Dietermine a choice for Hyinaz) and Hyp(z) and specify whether or not these are
unigue up to a scale factor.

£33 A discrete-time LTT systern with input xn] and oulput vin] has the freguency respomse map-

nitude and group delay functions shown in Figure P5.34-1. The signal x|r), also shown in
Figure P5.34-1, is the sum of three namrowband pulses, In particular, Figure P5.34-1 contains
the following plots:

» x[H]

s | ¥{ed®, the Fourier transform magnitede of a particular input x[a]

e Frequency response magnitude plot for the system

« Group delay plot for the sysiem
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Input signal x[n]
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\Inrmahzcd frequendy ()
Figure P5.34-1 The input signal and the filker frequency espanse

In Figure P3.34-2 you are given four possible output signals, win] § = 1,2, 4. Deter-
mine which one of the possible output signals is the output of the system when [he input 13
x[n]. Provide 3 justification Tor vour choioe,
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Figure P5.34-2 Possible output signals

5.35, Suppose that a discrete-time Aleer has group delay riw). Does the condition «(w) = 0 for

—x = wm = x imply that the liler is necessarily causal? Clearly explain your reasoning.
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536. Consider the stable LTT system with system [unction

537

538

14472
Hi{z) = - _1." y e
1= _[E_' o Eii:"

The systemn function H(z) can be factored such that
Hizl = Hypginlahffapich,
where Hygin () is a minimum-phase system, and Hyp(z) is an all-pass system, i.c.,
IHaplel®)] = 1,

Sketch the pole-zero diagrams for Hpp, (z) and Hyp(z). Be sure to label the positions of all
the poles and zevos. Also, indicate the ROC for By, (23 and Hapiz).

An LTI system has generalived linear phase and system function H(z) = a + bz~ 4 ez
The impulse response has unil energy, a = 0, and Hie/™) = Hi=!M =0,

(a) Determin-a_a the impulse response k).

(b) Plot |Hiz ).

H (z) is the systemn function for a stable LTI system and is given by:

(1—927211+ 3271

Hiz) =
I - %z‘l

(a) H{z)canhe represenced as a cascade of a minimum-phase system A, () and a unity:
gain all-pass systcm Aypiz). Determine a choice for My f2) and Hapiz) and specify
whether or not they are unigue up 1o a scale [actor,

(b) Is the minimum-phase system, Hpi (21, an FIR system? Explain.

(¢) Is the minimum-phase system, AL (2), 4 generalized linear-phase system? If not, can
H{(z) be represented as a cascade of a generalized linear-phase sysiem My, (z) and an
all-pass system M52 ()7 If your answer is ves, determine Fig, () and Hypz(z). I your
answer 18 no, explain why such representation does not exist.

Hiz) is the transfer function of a stable LTT system and is given by:

-2

Hiz) = f.—tz 1A

{a) Is the system causal? Clearly justify your answer,

(b} {z} can also be expressed as B{z) = Hyp (20 (2} where i) is a minimum-
phase system and H;,(2) is a generalized linear-phase system. Determine a choice for
Hipintzd and Hyp (20

540, System §) hasa real impulse tesponse kg {z] and a real-valued fTequency response 4 FELS

{2} Does the impulse response k [#] have any symmetry? Explain.

{b) System % is a linear-phase system with the same magnitude response as system 5.
What is the relabonship between hz[n], the impulse response of system 5o, and &y [#]7?

{c} Can aeausal 1R filter have a linear phase” Explain, [f your answer is yves, provide an

cxample.
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5.41. Consider a discrete-time L1 filter whose impulse response k[z] is nonzero only over five
conseculive me samples; the fller's frequency respomse is He/"), Lel signals xin] and
w[n] demote the filler's input ard ontput, respectively.
Moreowver, you are given the following mformation zbout the filter:

T
(i} Hie! ™ Veden = 47,

—Ir

(i) There exists a signal @fn] that has s real and even DTFT Ate™") given by
ﬂ[e_l'm] — H{e’ja'Jcﬂm.

(i) Ae™ =8, and Aef™) =12,

Completcly specily the impuolse response el L., specily the impuolse response al cach
lime instant where it takes a nomzero value, Plot Afx], carefully and accurately labeling its
salient features,

342, A bounded-mput bounded-oulpul stable diserete-time LT svalem has impulse response
i) corresponding to a rational svstem function I7(2) with the pole—zero diagram shown

in Figure P5.42,
Im
|
{
!II ¥ 1 — R
3 1\ 152 ‘lll 1
Figure P5.42
o 8
In addition, we know that  » * (- 1)%kin] = =1 .
fl—

{a) Determine #{z) and its RO

ib) Constder a new syslem having an impulsc response gin] = #fn 4+ wg |, where sy 1s an
infeger, Given that Gizh|.—g = O, and :!1mx iz = o, determine the values of ny
and g,

() A new system has an unpulse response, flal = Aln] = &[—n),
Dretermtine Fighand its ROC.

td) Isthere a right-sided signal eln] such thal e[n |+ k(#] = wlni, where ofa]is the unit-siep
sequence? 1f 5o, is ¢[r] causal?
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543, Consider an LT system with system function:

{a) Is Hizb an all-pass system? Explain.

(b} The svstem iz to be implemented as the cascade of three systems Figin (), Finaxd(z).
amd Hg(z), denoting mintmum-phase, maximumn-phase, and integer time shift, respee-
tively, Determane the impulse responses bpan[nl. imax il and fgle], corresponding
toreach of the three systems.

544, Theimpulse responses of four linear-phase FIR filiers &[], Aalw] 3 ]a] and fga]are given
below. Moreover, four magnitude response plots, A, B, C. and D, that potentially corre-
spomd Lo these impulse responses are shown in Fgure P5.44, For each impulse response
hi[nl, i =1,... 4 specify which of the four magnitade response plots, if any, corresponds
to it. If nope of the mapnitude response plots matches a given A;[n], then specify “none”
a% the answer for that A;(n.

f[n} = 058[n] + OL78[n - 1] + 0580 - 2}
hain] = L.58[n) +8n — 1]+ &[n — 2| + L.54[n — 3]
hi3inl = —0.58Tn] — &ln — 17+ &n — 31 + 055 — 4]

hyln) = —8[n]+ (15800 - 1] - 0568 — 2] + &ln - 3],
5

3 e e
15
5
&
|
2 35
B ’ = 3
i Ls : I
x| g .
'j s
45t + L
| ] s
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Figure P5.44
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The pole—zero plots in Figure P45 deseribe six different causal LTT systems,
1 P : 1 e T
. - r 0 o (Al . P DE r:- (B’
E_ 05 ; o g2 s S :
E qa r ol N ) B o E atk [ IR 2 (‘_1, 4
= kS [ b L o
E . (o} i % E l‘l'\}( E i
1k ) e o at, v )
1 i 1 I 2 -1 0 1 2
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Figure P5.45
Answer the following questions about the systems having the above pole-zero nlots In
each case, an acceplable answer could b none or aff,
(a) Which systems are [TR systems?
(b) Which systems are FIR sys:ems?
(e} Which systems are stable svslems?
{d) Which systems are minimum-phase systems?
(e} Which systems are generatized lincar-phasc systems?
() Which systems have |4 (e H=constant for ull w?
(gl Which systems have corresponding stable and causal inverse systems”
¢hy Which sysicm has the shortest {lcast number of nonzero samples) impulse response?
(i) Which svstems have lowpass frequency responses?
{j) Which systems have minimum group delay?
Assume that the two linear systems in the cascade shown in Figure P5.46 are linear

phase TIR fiHers. Suppose that Hy(z) has order M) {impulse response length My + 1)
and Ha(z) has order Ma. Suppose that the frequency responses are of the form I {«'Y) =
Aqtefye= ML and Ha(el®) = jAzted® e~ T 2 where My is an cven integer and M»
i an oddainteger.
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{2} Determine the overall frequency response Ff (e fe

{b) Determine the length of the impulse response of the overall systen.

1) Determine the gronp delay of the overall system.

{d} 1s the overall system a Type L, Type 11, Type I, or Type-TV generalized linear-phase
syslem?

frifn] . Figlit] ¥[xl

xln]
Hylel) Hpleie)

Figure P5_46

547, A linear-phase FIR svstem has a real impulse response hr] whose z-transform is known
ta have the form

Hizd=0—az i —e™ 2 by s hin —05z -z 1y

where a, b, and ¢ are zeros of H(z) that you are to find. TUis also known that B (e =0 fur
¢ = [l This information and knowledge of the properties of linear-phase systems are suf-
ficicnd to completely delermine the system [unction (and therefore the impulse response)
and to answer the following questions:

{a) Determine the length of the impulse response (e, the number of nonzero samples).

by Is this a Type L Type IL, Tvpe 11, or Type IV system?

(¢) Determine the group delay of the system in samples.

() Determine the unknown zeros a, b and e, (The labels are arlvirary, but there are three
more reros to find.}

(e) Dretermine the values of the impulse résponse and sketeh if a5 a stem plot.

548, The system function H{z) of & causal LTT syslem kas the pole—sero configuralion shown in
Figure P54, 1t is also known that iz = 6 when z = 1.

Trit

z-plane
Double zaro

o

]
3

o =
5

Figure P5.48

(a) Determine Hizh
() Determine the impuelse response fla) of the system,
(¢) Determine the response of the system to the [ollowing input signals:

(i} xln] = uln]— fuln — 1]
{ii} The sgquence x[x] vblained {rom sumpling the continuous-time signal

r{t) = M+ 10 cos 2mwe -+ 3 cos Here

ar a sampling frequency 0y = 2x {30 rad's
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549, The system funclion of an LTI svstem is given by

21

Hiz) = - .
(l . .'%_;-=) (1= 2= 1y1 — 4z 1y

11 is known that the system 15 aol stable and that the impulse response s Lwo sided.

(a} Determine the impulse response hin] of the system.

(b} ‘T'he impulse response found in part (a) can be expressed as the sum of a causal impulse
response i fa] and an anticausal impulse response o2 [r], Determine the corresponding
svalem functions iz and Fa(z).

&80, The Fourier transtorm of a stable TTI system is purely real and is shown in Figure 550
Determine whether this system has a stable inverse system,

I”wf“=3

e e

Figure P5.50

5.51. A causal LTI sysiem hus the sysiem function

L (T—1.5 — =21 + 0971
Hiz) = — : .
il—z= 1l =07z el =075z 1

{ap Write the difference cquation that is satisficd by the input and the output of the syslem,
(b Plot the pole—zero dingram and indicate the ROC for the system function.
{ch Sketch |Hied®).
(dy State whether the following are true or false about the svslem:
i1} The syslem is stable.
(it} The impulse response approaches a constant for large n.
(1} The magnitude of the frequency responsc has a peak al approximately o = £ 2 /4.
{iv) The syslem bas a stable and causal inverse.

5.5 Consider a causal sequence x{x] with the :-transtform

For what values of o & ¢ vlnl o resl, minimom-phase sequence?
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553, Consider the LTI system whose system function s

H(z = (1 =098 -~y e J007 =Ty g 2500087, 1ypp _ | 25— F0Mn -1y

(3) Determne all causal system funcieons that resultin the same frequency-response mag-
nitude a5 A(z) and for which the impulse responses are real valued and of the same
length as the impulse response wssocinted with H iz, {There are four different such
system functions.) Identify which system function is minimum phase and which, to
within a fima shill, s maximum phase,

(b} Determine the impulse responses for the system funclions in part (ak.

(¢} For cach of the sequences in part (b), compute and plot the quantity

(]
Elm =Y (hlm)*

ma =i
for( = » < 5. Indicate cxplicitly which plot corresponds to the minimum-phase systen,
554, Shown in Figure ['5.54 are eight different finite-duration sequences Each sequence is four

points long. The magnitude of the Tourier transform is the same for all sequences. Which
of the sequences has all the zeros of its z-transform éasdde the unit circle?

M52

1747
67 53 Q.07 13.33
A N T RN AP
L 1 3 " J' 2 n 1 3 "
a3 -L33 1
-6.67
-15.33 18.67 -2H67
[a) a1] [c)
a3 1767 133
147 £33 "y 067
r 1 . s B R J_i_I_ ;R
1 2 l " _1{43 1 3 # 2 ]I“l i
1133 —l067 -13 -1.33
13 -18.467 —267
(d] fe) i
21.33 .33
L&T 267
I LR B M | 1__] 3 .
1 l 3 n l .
1067 s -6
—15.13
(g i
Figura P5.54

5.55. Cach of the pole—vera plots in Figure P5.55, wgether with the spediication of the RO,
deseribes an L1 system with system function H{z). ln each case, determine whether any
of the following slatements are true, Justity your answer with a brief slatement or 4 coun-
lerexample.

(a) The system is a zero-phase or a gencralized hncar-phase system.
ih) The sysiem has a stable inverse & (7).
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5.56. Assuming ideal VC amd O/ converters. the overall system of Figure P3.56 is a discrele.
time LTT system with freguency response B e/Y) and impulse cesponse kinl.

* 0} | Delay i
— | DA - S ) ) ————
x[n] | I #T |y {1 = xie—aT) ; v[a]
I
I
I T T ;
[ et AR S il T T e S S S 1 Fiqure P5.56

(a) Hiel™) can be expressed in the form
H{E‘:{"'} - Aﬁ_,jm:m_.fﬁ[m]‘

with A (/%) real. Determune and sketeh A (o) and o) for iw| = .
b} Sketch fr|a] for the following:

(i) o =3
i) =35

an iy sin -]
{il!_] ¥ = .‘rni.
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(c)

Consider a discrete-time LTI system for which
Hielt) — 4 (of2)efoe | < 7.
with A (242} real, What can be said about the symmetey of kn] lor the following?
(1) e =inleger
(i) w= M2 where M is an odd integer
(ini) General o

5.57. Consider the class of FIR filters that have hn] real, f[n] = O forn <= Qandan = M, and one
of the following symmctry propertics:

Svymmetric: k[n] = AlM —n]

Antisymmetric: kn] = -Rk[M — #]

Al filters in this class have generalized linear phase, 1.6, have requency response of the form

ﬁrfe."'lm} =A {Ei'f-'i‘}f_,—_r'r.r.-..u—;ﬁ.

where A (27 is a real function of @, « 15 a real constant, and # is a real constant.

of e

For the following table, show that A (e/®) has the indicated form, and find the values
and g.

Type Symmetry M+1) Form of A (e ] g
M2
I Symmelric Chdd Z aln]cosan
n=ﬂ
CH1)2
[l Symmetric Even 2: blr] cod el = 1/2)
H=]
M3
m Anfisymmelric  Odd Z e[n]sin wn
.l'l‘—1
(M112
v Antisymmetric  Ewen E dir]sinwin — 1;2}
N=[

Here are several helpful sugpestions

&

For lype I fillers, first show that 7™} can be wrillen in the [orm

iM—2)/2 _ (8 212 : ;
Higl®) = 3" hnlemie® o 37 ALM —nle PN g 21T IOOHER),
n=l n=0

‘The analysis for tvpe L1 filters is very similar to that for type 1, with the exception
of a sign change and removal of one of the preceding terms,
Faor type 1T fillers, st wrile ff(4*") in the furm

_ (M—1172 (M=11,2
Hiel™) = Z flale™ " 4 3" ALM — pjem el
n=f r=l

and then pull out a common factor of ¢~ /22 from both sums.
The analysis for type IV filters is very similar to that for type I filters.
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« Let ipla] denote the impulse response of an FIR generalized linear-phase lowpass fil-

ter, The impulse response le,pinl of an FIR generalized lincar-phase highpass Alver con boe
ohlained by the transformation
hpplnl = (=1)"hgglnl,
Tf we decide to design a highpass filler using this transformation and we wish the resulung
highpass filter to be symmetric, which of the four rypes of generalized lincar-phase FIR
fillers can wee use [or the design of the leewpass Gller? Your answer should consider off the
possible tvpes,
(a) A speciiic mimimum-phase system has system function M, (2) such that
H i (73 up (21 = Hyjplzd.
where fapiz) is an all-pass system function and 1y;,(2) 15 a causal generalized linear-
phase system. What does this information tell you about the poles and zerosof & 15,1217
(b} A gencralized incar-phase FIR sysiem has an impulse response with real values and
hin] = 0 for n = Dand for n = 8 and kle| = —&[7T - al The system function of this
svstcm hasazeroal 2 =10 82074 and another vero al ; = —2. What is H{z}?

. This problem concerns a discrete-time filter with a real-valued impulse response fi[m]. De-

termine whether the following statement is true or false;
Statement: If the proup delay of the filter is a constant for ¢ = w < 7, then the
impulse response musl have the property that either

Blnl = hlM — |

or

Mu] = —h[M —n],

where M is an imteger.
I the stalemenl i3 true, show why it is oroe. [F it is false, provide a counterexample.
The: system function Hppiz) represcents a type IT FIR generalized linear phase system with
impulse response hyfe). This system is cascaded with an LTT system whose system function
is 1wz Yt produce a third system with system function M () and impulse response ks
Prove that the overall system is a generalized Bnear-phasc system, and determine what type
of finear-phase syslem il i
Let &) be a cavsal and stable LI system with impulse response fi[#] and frequency re-
spomse H | fed ™, Theinput x[e] and oulput ¥[a] lor 5 are related by the difference equation

wint = yln ~ 11+ g¥in = 2] = xlal.

(a) I an LTI system 53 has a frequency response given by Ho{e/™ = H | (=&, would
vou characterize 5o as being a lowpass filter, a bandpass filter, or a highpass filter?
Justily your answer.

{b} Let 54 be acausal LT system whose frequency response i 5{e™ has the property that

Hyied ™) H (el = 1.
Is 54 a minimum phase filter? Could 54 be classified as one of the four rypes of FIR
[ilters wilh generalized Iinear phase? Justily your answers,
(e} Let §; be astable and noncausal LTT system whose frequency response is (e
and whose input x| ] and cutput y|u| are related by the difference equation:

¥l oy vle — 1 +osvle — 21 = gy xln).

where o, oz, and gn are all real and nonzero constants, Specify @ value for o, a value
fur o, and a value for fy sach that |H g2/ = | pie! ™.
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() Lel S5 bean FIR fifter whose impulse response is fig[n] and whose frequency responss,
Hsle feiy has the property that H_r.[f-"”’} =]A ff-".""}lz for some DTFT A (0F#) {Le, 55
i% a rero-phase flter). Determine Ag|n| such that &[] =[] is the impulse response
of a nencausal FIR filter.

Extension Problems

£.63. In the system shown in Figure P5.63-1, assume that the input can be expressed in the form
x[n] = sfn]eosimga).

Assume also that sfx] is lowpass and relatively narrowband; e, Sie'™) = 0 for |w] = A,
with A very small and A < g, 50 that X {e/™) 15 narrowband around e = =y,

et H ") fot

x[n] ¥[n] Figure P5.63-1

(a) If [H ™)) = 1 and ZH (o7 is as ilusirated in Fipure P5.63-2, chow that y(n] =
s[nfcosfann ~ gyl

i/_an“i"‘"]

.

~tn

Figure P5.63-2
{hj_ If | H el — 1 and £ Hie'™) is as illustrated in Fipure P3.63-3, show that v[#] can be
expressed in the form
v[nl = slr —nglcosiogn — dy — opeg ).
Show also that ¥#| can be equivalently expressed as
¥l =sln —ngleosiugn —d),

where — is the phase of (o) at w = 2.

|2 H (i)

dlope - -

Flgure P5.63-3
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¢) The group delay associaied with A (e!™) s defined as
{c) group delay
d i
Tprimb = ——arg[H{e™]]
dew

and the phase delay is defined as Tphf*-”) = —{1/m) £ ”{ﬁ_r'._-.}_ Assurne that “,”'__._J-r_-.n ie
unity over the bandwidth of x [«]. Based om your results in parts (a) and (b} and on the
assumption that x|«]is narrowband, show that if gy (o) and Tph L ) are hoth integers,
then

¥ln] = slr — teelen)lcosfanln — tppteghl.

This equation shows that, for s narrowband signal x(nf, £ H (e} eficctively applios a
delay of Tge () 10 1he envelope sinl of x[an] and a delay of Ty, (exy ) 1o the carmier cos mgn.

(d) Referring to the discussion in Section 4.5 associated with noninteger delays of a se-
quence, how woald you m!{,rpn! the effect of gi‘mlp delay and phasc delay if wpriogh
of Tpp {ey) (or both) is oot an integer?

The signal y{n] s the output of an LTI sysiem with input x[a], which is zero-mean white
noise. The system is described by the difference equation

N

y[n] = Eamu_kuth;[ﬂ Kl by=1.
k=1 k=]

{a) What is the z-trapsform @y, (z) of the autocorrelation function d¢yyln]?

Sometimes it is of interest Lo process ¥[n] with a linear filter such that the power spec-
trum of the linear filter’s output will be fiat when the input to the linear filter is ¥|n]. This pro-
cedure 1s known as “whitening™ y(n]. and the linear filler (hat accomplishes the Lask is said
1 be the “whitening filter™ tor the signal y[=]. Suppose that we know the autocorrelation
function ¢yy[n] and its z-transform d#y, (23, but not the values of the cocfficicnts ap and by.

(k) Describe a procedure for finding a system function F, () of the whitemng filter.
{c) [s the whitening filter unique?

In many praclical sitluations, we are [ced with the problem of recovering a signal that has
been “blurred™ by a convelution process. We can model this blurring process as a linear
filtering operation, as depicted in Figure P5.65-1, where the blurring impulse response is as
shown in Figure P365-2, This problem will consider ways to recover x[n] from y[a].

1 kn|
xin| ¥|m}

Dezired signal Blurred signal  Figure PS.65-1

h[ﬂ]—< 5 (,l?‘! M-1

-1

M-l " Figure P5.65-2
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One approach wrecowering o] Trom y[a]is 1o use aninverse Gler: e, y[a] s filtered
by a system whose frequency response is
Hard I
Hile!™) = e
Hiel=

whaere er-"-""} is the Fourier transform of Al#], For the impulse response k[n] shown
in Figure 1"3.63-2, discuss the practical problems involved in implementing the inverse
fillering approach. Be complete, but also be brief and to the point,

Because of the difficulties involved in inverse filtering, the following approach is sug-
gested for recovering |« ] from v|a|: The blurred signal ¥ [«] is processed by the system
shown in Figure P65-3, which produces an output wlr] from which we can exiract
an improved replica of x[n]. The impulse responses fiq [n] and fz[n] are shown in Fig-
ure P5.65-4, Explain in detail the working of this system. In particular, stale preciscly
the conditions under which we can reécover x[a] exactly from wln]. Hint: Congider the
impulse response of the everall system from z|s] to wla .

= fiy|n| = Fiz || »
¥lal winl Figure P5.65-3
q
muln] =S &l k]
k-l
|
i] M ZM M [g— LM oM n
fea[n] = di[n] - 6[n - 1]
Figure P5.65-4

{e} Letus now attempt to generalize this approach to arbitrary finite-length blurring im-

pulse responses flnl; e, assume only that Al = O for s <= Dors = &, Further,
assume that i [#] is the same as in Figure P3.65-4 How must Ha(z) and Hiz) be re-
lated for the system to work as in part {(b)? What condition must (2} satisfy in order

that i1 be possible Lo implement H202) a5 a causal system?
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I this problem, we demonsteate that, for arational z-transform, a factor of the form {(z —z;)

and a factor of the form /(2 — 1z contribute Lhe same phase.

(a) Lel Hizd =2 —1/a, where g isteal and © < a < 1. Sketeh the poles and zeros of the
system, including an indication of those at 7 = oo, Determing £ F (e, the phase of
the systen.

{b} Let Ciz) be specified such that it has poles al the conjugate-Teciprocal locations of ze-
rows of B (7)) and zeros an the conjogale-recipracal locations of poles of Hiz7), including
those at zero and oo, Sketch the pole-zero diagram of Giz). Delermine LG/, the
phasc of the system, and show that it is identical Lo £ 5 (),

Priowve the validily of the folliwing (wo slatemenls;

(a) The convolulion of Lwo minimum-phase sequences is also a minimum-phase sequences,

(b} The sum of two minimum-phase sequences is not necessasily a minimum-phase se-
guence. Specifically, give sn example of both a minimum-phase and a nonminimam-
phase sequence thal can be [ormed as the sum of two minimum-phase sequences,

A sequence is defingd by the relationship
e
rim) = Z himihlm + m| = hfn] + i|—n],
me=—00

where k[n] is a minimum-phase sequence and

rinl = %— {%}ﬁ uln] + %J"Lrl—r‘r — 1]

{a} [etermine Ri:) and sketch the pole-zero diagram.
ib} Determine the minimum-phase sequence Alr| lo within o scale factor of =1, Also.
determing the o-iransform Hiz) of Alal.

A rratcimrai-phue sequence 1soa stable sequence whose z-transform has all ils poles and
zeeros cutside the unit circle.

(a) Show lhsl maximum-phase scquences arc necessarily anti-causal, i.e., thal they are
wcro forn = (.

FIE muxmum-phase segquences con be made causal by induding a finite armount
of defay. A hnite-<duration causal mamimum-phase sequence baving a Fourier transform
of a given magnitude ¢an be obtained by reflecting all the zeros of the :-transform of 2
minimurn-phiase sequence 10 conjugate-regiprocal positions outside the unit cirele. That is,
we can express the z-transform of 2 maximum-phase cawusal finite-duration sequence as

Hmagizl = H g (2 aptan,

Oiwviously, this process ensures that |T.Tm=,x(pf""}_ = | H qin [&--‘i"‘" H. Mow, the z-trapsfoom of
a finite-duration minimum-phise sequence can be expressed as
M
Himin(2h = b0 [ 11 =™, el = 1
k=1

{b) Ohiain an expression for the all-pass system funetion reéquired to reflect all the zeros
Of A i (70 to posstlions oulside the anmit ciccle.
(e} Show that H qy(2) can be expressed as

Humaxlz) =z~ ”mir.'f':_1 I

(dy Using the resull of parl (c), express the maximum-phase sequence by ] inoerms of
fenin il
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It is not possible 1o obtain a causal and stable inverse system (a perfect compensaboe) for
a monminimum-phase system. In this problem, we study an approach to compensating for
only the magnilude of the frequency response of & nonminimum-phase system,

Suppose that a stable noaminimum-phase LT1 discrete-rime system with a rational
system {uncrion A (2} is cascaded with a compensating svstem H(z) as shown in Fg-
ure P50,

| s S e T e b Figure P5.70

{a) How should H.(z) be chosen so that it is stable and causal and so that the magniiude
af the overall effective frequency response is unity? (Recall that H{z) can always he
represented as Hiz) = HaplzdH piq (200

(b} What are the corresponding sysivrn functions & (z) and G2)7

{c) Assume that

Hiz) =0 =080 2 hyit —0.8e 10372yt — 1200 Py g — 120700 1,

Determine 8 i (). Haptz), f-(z), and iz for this case, and construct the pole -zero
plots Tor each svstem Lenclion,
Let g fal denole a minimum-phase sequence with z-transform B g, 020 W ale] s acansal

nonminimum-phase sequence whose Fourier transform magnitude is equal to | H gip{e/ )],
show 1hat

[A[UL = Mmin O

{Use the initial-value theorem together with Eqg, {5.93).)
Oneof the interesting and important properties of minimum-phase sequences is the minimum-
energy delay property; i, of all the cawsal sequences having the same Fourier transform
mapgnitude funclion | (e, the quantity
n
Efnl= 3" |kim I?
=1
is maxamun for all m = ) when Aln] Is the minmum-phase sequence. This result is proved
as follows: Let fi,n0n] be a minimum-phase sequence with z-transform & 4;p 020 Farther
more, let o be a zero of H qi,020 so thal we can express H 020 as

1

Huinlsd =@ @)l —zz™" lal =1,

where (2 (z11s 2gain mininmm phase. Mow consider another sequence i« ] with ;-transform
Hiz) such that
|H e = |H pijn &™)

and such that i has g zeroal - = | fz'f instead of at 7.

(2) Express Hizhin terms of Gzl
th) Express &|n] and hppie] in tarms of the minimum-phase sequence ¢|nj that has z-
franslorm (7).
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(¢} Tocompare the distribution of energy of the two sequences, show that
s K
T > 2 * a
g= 3 lhginlml[" = 3 {hlm]|” = {1 — z¢*Hglnll",

(d) Using the result of part {c), argue that

[ fal
3 [him] ? Z Finlm]”  Toralln

=1l mi=1

A causal all-pass svstem H;,p{zj has input x[n] and output va].
(a) If x[w]is 2 real minimum-phase sequence {which also implies that x|n] = 0 fora < 0
using Eg. (5.1068), show that
n L
>

3 IxlkF = Y vk, (P5.73-1)

k=0 k=0
{b) Show that Eq. (P3.73-1} holds even it a[a] is not minimum phase, but is zeco fora = (L

In the design of cither continuous-lime or discrete-1ime Aliers, we oflen approximate & spec-
ified magmitude characteristiic without particular regard to the phase. For example, standard
design techniques for lowpass and bandpass filters are derived from a consideration of the
magnilude characteristics only.

In many filtering problems, we would prefer that the phase characteristics be zern
ot linear. For causal flters, il is impossible 1o have sero phase, However, [or many fllering
applications, it is not necessary that the impulse response of the filter be 2ero forn =< 01
the processing is not to be carried out in real time.

One technigue commaonly used 1o diserete-lime Allenng when the data (0 be fillered
are of finite duration and are stored, for example, in computer memary is to process the
data forward and then backward through the same filter.

Lel Afr] be the impulse response of a causal filler with an arbitrary phase character-
istic. Assumie that k|« is real, and denote its Fourier transform by Hiedehy, Let z[n] be the
data that we want 1o filler,

(a) Merrod A The filtering operation is performed as shown in Figure P5.74-1.

——] h[n] -
xin] T e
w1 b
pra il =
iln] = rl-n] Figure P5.74-1

1. Determine the overall impulse response &y |n] that relates x[x] 1o s[w], and
show that it has a zero-phase characteristic.
2. Determine |Hq (2™, and express itin terms of S (e/™)| and £ H(e/),
(b)) Medhod f: Asdepicted in Figure P3.74-2, process x [#] through the filter A[n] to get gln].
Also, process x[#] backward through #(n] 1o get rin]. The output y|n] is then taken as
the sum of gln] and r[—a]. This composite sel of operations can be represented by a
filter with input x[n]. cutput »[#], and impulse response hz[n].
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—— H[n] —

x[n] gln]

— fi|n]| p——
x| rlr|

v[n] =gn] - r[-n] Figure P5.74-2

. Show thar the composite filter hafn] has a zero-phase characteriatic.
2. Determine |H;q’¢>s'i”}|. and express il in terms of | H fed ™y and £ H (),

{c) Suppose that we are given a sequence of finite duration on which we would like 1o
perform a bandpass zero-phasc filtering operation, Furthermore, assume that we are
given the bandpass filter &fn], wilh frequency response as specilied i Fgoare P574-3,
which has the magnitude characteristic that we desire, but has linear phase. Te achieve
zero phase, we could use cither method A or B, Delermine and skeich [Hq(e/™)|
and | Ha(e/*)1. From Lhese resulls, which method would you use 1o achieve the degired
bandpass filtering operation? Explain why. More pencrally, if #i|#] has the desited mag-
nmitude, bul a nonlinear phase characteristic, which methoed s preferable (o achizve a
zero-phase characteristic?

[ | et
1
|
T AT T oW
4 1

Figure P5.74-3

575, Determune whether the following statement is true or false. If it is true, concisely state vour
reasoning. IF it is false, give a counterexample.
Statement: I the system funciion H{z) has poles anywhere other than at the origin or
infinity, then the system cannot be a zero-phase or a generalized lincar-phase system.

876, Figure P5.76 shows the reros of the system funciion H{z) for a real causal inear-phase FIR
filter. All of the indicared zeros represent factors of the form (1 a2 1}. The corresponding
poles at 2 = 0 for these faclors are not shown in the figure. The flter has approximately
unily gain i s passband.

{a) One of thezeros has magnitude 0.5 and angle 153 degrees, Determine the exact location
of as many olher weros as vou can from this information.

(b) Thesystem function f7(z) isused in the system for discTete-time processing of continuous-
lime signals shown in Figure 4,10, with the sampling period T = 0.5 msec. Assume that
the contintous-lime input X (72 is bandlimited and that the sampling rate 18 high
crouph to aveld aliasing, What is the time delay (in msec) through the entire system,
assuming that both O/D and TVC conversion require neghipible amounts of ume?



3rz

Chapter & Transform Anarysis of Linear Time-imvariant Systems

{¢) Forthe system in part (b, sketch the overall effective conlinuous-time frequency ro-
sponse 20 logyp | F e (782 for 0 = @ = x/T as accurately as possible using the given
information. From the information in Figure P3.76 estimate the frequencies at which
H o500 =10, and mark them on your plot.

2 T T [
o
L3 o =
t s — —_
o
1O
e =] b -
g o
= ! [} L
& { 7
=  0p i o
H | ]
o u]
s B i
]
~1 ] - 2 e
=I5 o .
a
2 I 1 1 1 I
=2 -1.5 -1 .5 0 05 1 1.5 2
Real Part Figure P5.76
5.77. A signal x[wn]is processed through an LT system A (2} and then downsampled by a factor

of 2 (o yield ¥[a) as indicated in Figure P3.77, Also, as shown in the same figure, xfn] is first

downsampled and then processed through an LTT system 4z) to cbtain r{-].

{a} Specify a choice for Hiz) (other than a constant} and Gz} so that ris] — y(#] for an
arbitrary x[n].

{b} Specifyachaoice for H (z} sothat there is no choice for Giz) that will resultin r e | = v}
for an arbitrary x[a].

= Hiz) =~ {2 >
x[n] wn]) ¥[n] = w[Zn}
w 2 ol TS -
x|n] F[n] =w(2n] rln] Figure P5.77

(c) Determine as general a set of conditions as you can on Hiz) such that Giz) can be
chosen sothat rie] = v(n] for an arbitrary x[n]. The conditions shoukd not depend on
x[n|. If you first develop the condinions in terms of Alx |, restate them in terms of Hiz).

(d} For the conditions delermined in part (<), what is gis] in terms of k] so that
rinl= rlnl.
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Consider a discrete-time L1 system with a real-valued impulse response fifr]. We want to

find #[x]. or equivalently, the system [unction £42) rom the autocorelation oy [£] of the
impulse response. The definition of the autgeorrelation s

-
(] = Y ALKk +¢).

k=—00

(a) If the system f|r| is causal and stable, can vou uniquely recover fijr] from cyu|£]?
Justily your answer,

(h} Assume thal Ala] is causal and stable and that, in addition, yoo know that the system
function has the form

N

1-Y wmet

k=]

for some finite a, Can you umiquely recover #fn] from cpy [£]7 Clearly justify your
answer,

. Let #la] and Hiz} denote the impulse response and system function of a stable all-pass LTI

system, Let iy [r] denote the impulse response ol the (stable) LT imverse system, Assume
that fi[a] is real. Show that h; [n] = 2] -n].

Consider a real-valued sequence x|a ] for which Xiefy) = Ofor % < || <= . One sequence
value of x[a] may have been corrupted, and we would like 1o recover it approximately or
exactly. With g[#] denoting the corrupted signal,

glnl = x[n] for m # np.

and glryg] s real but rot related to x[eg]. In each of the following two cases, specify a
praclical algorithm for recovering x| #] from g|#] exactly or approximately.

{a) The exact value of ag 15 ncl known, bul we know that ey is an odd number,
ib) Mothing abour g is known.

Show that if &lx | s an (M + 1)-poinl FIR filler such that Aln| = 61M — ol and iz = 0.
then {1 /zp) = 1. This shows that even symmetric lingar-phase FIR filters have zeros that
arc reciprocal images. (If &|n] is real, the zeros also will be real or will occur in complex
conjupales.)



