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Aswe saw o Chapler 5, an LT1 system with a rational system function has the property
ihat the inpul and curput sequences satisfy a linear constani-coefficient difference equa-
tion. Since Lhe system function is the c-transform of 1he impulse response, and since the
differonce equation salisficd by the inpul and outpul can be determined by inspection
of the system lunclion, it follows that Lhe difference equation, the impulse response, and
the system lunction are equivalenl characterizations of the inpul-oulpul relation of an
LT diserete-time systemrl. When such svstems are implemented with discrete-lime una-
log or digital hardware. the differsnce equation or the system function representation
must be converted to an algorithm or structure that can be realized in the desired tech-
notogy. As we will see in this chapler, systems deseribed by linear constant-coefficient
difference equations can be represented hy structures consisting of an interconnection
of the basic operations of addition, multiplication by a constunt, and delay, the exact
implementation of which is dictated by the technology 1o be used.

As an illustration of the computation asseciated with a difference equation, con-
sider the system described by the system function

by + -fiia",_L .
Ho == 2| = |4l (6.1)
1-az
The impulse response of Lthis sysiem is
filn] = bpa"wln] + biatuln 10, {f.2)

and the 1*-order difference equation that is satisfied by the input and output
sequences is
¥ln] —ayla — 1] = buxln] + braln — 1], (6.3)
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Equation (6.2) gives a formula for the impulse response for this svstem, However,
since the system impulse response bas infinite duration, even if we only wanied to
compule the output over a fintle interval, it would not be efficient to do so by discrete
convolulion since the amount of computation required to compute y[r] would grow
with n. Howcver, rewriling Eq. (6.3) in the form

vlrl = avln — 1]+ byx[n] + byxln — 1] {6.4)

provides the basis for an algorithm for recursive computation of the output at any
time # in terms of the previous output vin — 11, the current inpul sample x|n], and
the previous input sample x{n — 1], As discussed in Section 2.5, if we further assume
initial-rest conditions {ie, if xln] = Dforn < 0, then ¥ln} = 0 for a < ), and if
we use Eq. (6.4} as a recurrence formula for computing the output from past values
of the outpul and present and past values of the input, the system will be linear and
uime invariant. A similar procedure can be apphed 1o the more general case of an
N order difference equation. However. the algorithm suggested by Eq. (6.4), and
its generalization for higher-order difference equations is not the only computational
alporithm for implementing a particular system, and often, it is not the best choice. As
we will see. an unlimited vanety of computational structures result in the same refation
between the imput sequenee x ] and the oulput sequence y[rj

In the remainder of this chapler, we consider the important issues in the implemen-
tation of LTI discrete-time systems, We first present the block diagram and signal How
graph descriptions of computational structures for lincar constant-cocthicient difference
equations representmg LT1 causal svstems.! Using a combination of algebraic manipu-
lations and manipulations of block diagram representations, we derive a number of basic
equivalent structures for implementing a causal LTT svstem including lattice structures,
Although two structures may be equivalent with regard to their input-output character-
istics for infinite-precision representations of coefficients and variables, thev may have
vastly different behavior when the numerical precision is limited. This is the major rea-
son that it is of interest to studyv different implementation structures. The effects of finite-
precision representation of thesystem coefficients and the effects of truncation or round-
ing of intermediate computations are considered in the latter sections of the chapter,

6.1 BLOCK DIAGRAM REPRESENTATION OF LINEAR
CONSTANT-COEFFICIENT DIFFERENCE EQUATIONS

The implementation of an LTT discrete-time system by iteratively evaluating a recur-
rence formula ebtained from a difference equation requires that delayed values of the
output, input. and intermediate sequences be available, The delay of sequence values
implies the need for storage of past sequence values, Also, we must provide means for
multiplication of the delayed sequence values by the coefficients, as well as means for
adding the resulting products. Therefore, the basic elements required for the implemen-
tation of an LTT discrete-time system are adders, multipliers, and memory for storing

!Buch Mow praphs are also called “nerworks” in analogy 1o electrical circuil diagrams. We shall use the
terms How graph, structure, and network interchangeahly with respect (o grophic representations of deflerence
CEuUAtIons,
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x[n] ru'[:.']
iy
o " Figure 6.1 Block giagram symbols.
<[ o il '1'] () Addition of two sequences.
: (B} Multiplication of a sequence by a
4] constand, (¢) Unit detay,

delayed sequence values and coefficients. The interconnection of these basic elements
is conveniently depicted by block diagrams composed of the basic pictorial symbols
shown in Figura 6.1, Figure 6.1(a) represents the addition of lwo sequences. Tn genaral
block diagram notation. an adder may have any number of inpuls. However, in almost
all practical implementations, adders have only two inpuls. In all the diagrams of this
chapter, we indicate this explicitly by limiting the number of inputs as in Figure 6.1({a).
Figure 6.1{b) depicts multiplication of a sequence by a constant, and Figure 6.1(¢) de-
picts delaying a sequence by one sample. In digital implementations, the delay operation
can be implemented by providing a storage register for cach umt delay thal 15 requred.
For this reason, we sometimes refor o the operator of Figure 6.1(c) as a delay register.
In analog discrete=timme implementations such as swilched-capacitor ilers, the delays
are implemented by charge storage devices. The unit delay system is represenied in Fig-
ure 6.1(c) by its system function, :—*. Delays of more than one sample can be denoled
as in Figure 6.1ic). with a system function of ;¥ where M is the number of samples
of delay; however, the actual implementation of A samples of delay would generally
be done by cascading M unit delays. In an integrated-circuit implementation. these unit
delays might form a shift repister that is clocked at the sampling rate of the input signal,
In a software implementation, M cascaded unit delays would be implemented as M
consecutive memaory registers,

Example 6.1 Block Diagram Representation of a Difference

Equation

i As an example of the representation of a difference equation in terms of the elements
2 in Figure .1, comsider the 2™ onder difference equation

i yln] =ayvin = 1|+ aaxln — 2] + bpxla]. (6.5)
= The corresponding system function is

s b -
i Hizv= “' —, (6.6}
k3 | —aqz~ ) —pr2

‘i The block diagram representation of the system realization based on Eq. (6.5) 5 shown
: in Figure 6.2, Such diagrams give a piclorial representation of a computaiional al-
47 gorthm for implementing the system. When the system s aimplemented on cither a
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i peneral-purpose computer or adigital signal processing {DSF) chip, network structures
such as the one shownin Figure 6.2 serve as the basis for a program that implements the
He gystem. If the svstem is implemented with discrete components or as a complete system
L0 with very large-scale integration (YT.81) technology, the block diagram is the basis for

"% determining a hardware architecture for the system. In both cases, diagrams such as
‘¢ Figure 6.2 show explicitly that we must provide storage for the delayed variables (in
S this case, vl — 11 and y[n — 210 anel also the coelficients of the difference equation (in
this case, wq, oy, and #y ). Furthermore, we see from Figure 6.2 that an outpur sequence
value v{n] is computed by first forming the products oy (s — 1] and ga (s — 2], then
adding them, and, finally, adding the resull to bpxla], Thos, Figure 6.2 convenicntly
o depicts the complexity of the associated computational algorithm, the steps of the

= algorithm. and the amount of hardware required to realize the system,

% () :
A z|nj v in]
"1 vir-1]
i - |
yb-2)
Figure 5.2 Example of a dlock diagram representation of a differense equation.

Example 6.1 can be generalized to higher-order difference equations of the form?®

yinl =) ayln—kl = bixln — &, (6.7

Hizy= e, (6.8)

Rewriting Eqg. (6.7) as a recurrence formula for yir] in terms of a linear combination of
past values of the output sequence and current and past values of the input sequence

The form used in previous chaprers for a general ¥ U oyder ditference EqQUATIOT Was

N M
}-:ak_v[n EJ:E.!?;_IIJT k|.
) k=)

In the remainder of the book, it will be more convenicnt to wse the form in Bq. (6.7} where the coefficient
of yin] is normalized w unity und the coelficients assocdated with the deleyed outpet appear with o positive
sign after they have been moved to the right-hand side of the equation. {Sce Eq, {6.9).)
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leads 1o the relation

N b
vinl=) ayin —k1+ 3 buxln — k). (6.9)
k=1 Je=f)

The block diagram of Figure 6.3 is an explicit pictorial representation of Eq. (6.9).
More precisely, il represents Lhe pair of difference equations

M

vin] = Ebk.r[n — k], {6.10a)
]
Jl.r

¥lnl =3 aryln — k| + vinl. (6.10b)
k=1

The assumplion of a two-inpul adder imphies that the additions are done in a specificd
order. That s Figure 6.3 shows that the products anyln — N] and ap—1¥ln — ¥ + 1]
must be computed, then added, and the resulting sum added Lo ay—z¥[n — & + 2], and
so on. Alter ¥[n] has been computed, the delay variables must be updated by moving
¥[m — & + 1] intoe the register holding y[n — N1, and s0 on, with the newly computed
¥[n] becoming vir — 1] for the next iteration,

A block diagram can be rearranged or modified in a variety of ways without chang-
ing the overall system function. Each appropriate rearrangement represents a differen:
computational algorithm for implementing the same system. For example, the block
diagram of Figure 6.2 can be viewed as a cascade of two systems, the first represent-
ing the computation of ©[n| from x|n| and the second representing the computation of
¥[r] frem w|#]. Since each of the two systems is an LTI system {assuming initial-rest
conditions for the delay registers), the order in which the two systems are cascaded can
be reversed, a5 shown in Figure 6.4, without affecting the overall system function. In
Figure 6.4, for convenience, we have assumed that M = N, Clearly, there 15 no loss of
generality, since if M # ¥, some of the coefficients ap or b in the figure would be zero,
and the diagram could be simplified accordingly.

Figure 5.3 Block diagram

rapresentation for a general W.prder
-N] difference equation.

xin = M|
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In terms of the system function # (z) in Eq. (6.8). Figure 6.3 can be viewed as an
implementation of H{z) through the decomposition

i
(Zm:-*) (6.11)

k=il

l
Hiz) = Wb = | ——

A
T - Eaka K
k=1

or, equivalently, through the pair of eguations

M !
Vizy=I1(z)X (g} = (Z L‘J';(;_t) Xz, {ﬁ.'l.?ﬂ]l
k=)
1
¥iz) = Ha(o)V(Z) = | ——— | V(2. {6.12b)
1- Zﬂ'ﬂ. %
Kol

Figure 6.4, or the other hand, represents Hiz) as

o
1
H{(z) = H1(z)H2(z} = (Z bz "*) — (6.13)
bl 1 Z ay _:_—k
k=1

or, equivalently, through the equations

1
Wiz)=Hzd)X (7)) = | ——— | X iz, {6.14a)

N
- Y
k=1

o)
¥Yiz) = Hi(z)Wiz) = (‘Zbka‘*) Wiz). (6.14b)
=il
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wn]
win— ]
Ax 4 L
() s |
F 3 T r -

4 -l Figure 5.4 Rearcangement of block
diagram of Figure 6.3. We assume for

ay by cenvenience that & = M. IFN = M,

wlm— A - some of the coefficients will be sero.

In the time domain, Figure 6.4 and, equivalently, Egs. (6.14a) and {f.14h) can be repre-
sented by the pair of difference equations

N

win] = anw[n — k] + x[n], (&.154)
k=1
M

yinl =) mawin — k. (6.15k)
f=I[}

The block diagrams of Figures 6.3 and 6.4 have several important differences. In
Figure 6.3, the zeros of H{z), represented by H(z), are implemented first, followed by
the poles, represented by #2(z). In Figure 6.4, the poles are implemented first, followed
by the zeros, Theoretically, the order of implementation does not affect the overall sys-
tem function. However, a5 we will see, when a difference equation is implemented with
finite-precision arithmetic, there can be a significant difference between two systems
that are equivalent with the assumption of infinite precision arithmetic in the real num-
ber system. Another important point concerns the number of delay elements in the two
systems, As drawn, the systems in Figures 6.3 and 6.4 each have a total of (& + M)
delay elements. However, the block diagram of Figure 6.4 can be redrawn by noting
that exactly the same signal, wln], is stored in the two chains of delay elements in the
fgure. Conscquently, the two can be collapsed into ane chain, as indicated in Figure 6.5,

The total number of delay elementsin Figure 6.5 is less than or equal to the number
required in either Figure 6.3 or Figure 6.4, and in fact it is the minimum number required
teimplement a system with system function given by Eq. (6.8). Specifically, the minimum
number of delay elements required is, in general, max({¥, M ). An implementation with
the minimum number of delay elements s commonly referred o as a canonic form
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N N wlal By %
] N () ¥ln]

1

“

£

¥ oo

C.: ay g Py :+)

an by Figure 6.5 Combination of delays in
o » Figure 6.4,

implementation, The noncanonic block diagram in Figure 6.3 is referred to as the direct
form Fimplementation of the general Nth-order system because it is a direct realization
of the difference equation satisfied by the input x[a] and the output ¥[a], whick in
turn can be written direetly from the system function by inspection, Figure 6.5 is often
referred 10 as the direct form I ot canonic direct form implementiation. Knowing that
Figure 6.5 is an appropriate realization structure for H (7)) given by Eq. (6.8}, we can go
directly back and lorth in a straightforward manner between the system function and
the block diagram {or the cquivalent difference equation).

Exampie 6.2 Direct Form | and Direct Form Il
Implementation of an LTI System

Consider the LTI system with system function

o _ | 4271
Hiz) = —
1—1.5:-1 pnuz2

(6.16)

- Comparing this systern funciion with Eq. (6.8), we find by = 1, b = 2, a4y = +1.5,

and gy = ~0.9, 50 it follows from Figore 6.3 that we can implement the system in a

# dhirect form T hlock diggram as shown in Figure 6.6, Reforming 1o Figure 6.5, we con also

implement the systern function in direct form 11, as shown in Figure 6.7, In both cases,

note that the coefficients in the feedback branches in the block diagram have opposite

= signs from the corresponding coclficients of ;7' and 2= in Eg. (6.16). Alihough this

- change of sign is sometimes confusing, it is essential to remember Lthat the feedback

+ coefficients {4z ] always have the opposite sign in the difference equation from their

1 signin the system function, Note also that the direct form 11 requires only two delay
. elements tr implement H{z), one less than the direct form | implementation.
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*[n vlal
i x|nf ; v[n]
i 2
i
B
. 4
1|
ﬁ Figure 6.7 [irect form Himplementaticn of EQ. (6.16).

In the preceding discussion, we developed two equivalent block diagrams for im-
plementing an LTT system with system function given by Eq. (6.8). These block diagrams,
which represent different computational algorithms for implementing the system, were
obtained by manipulations based on the linearity of the system and the algebraic prop-
erties of the svstem function, Indeed, since the basic difference equations that represent
an LTI system are linear, equivalent sets of difference equations can be obtained sim-
ply by linear transformations of the variables of the difference equations. Thus, there
are an unlimited number of equivalent realizations of any given system. In Section 6.3,
using an approach similar to that employed in this section, we will develop a number of
other important and useful equivalent structures for implementing a system with system
function as in Eq. (6.8). Before discussing these other forms, however, it is convenient
to introduce signal flow graphs as an allernative to block diagrams for representing
difference equations

6.2 SIGNAL FLOW GRAPH REPRESENTATION OF LINEAR

CONSTANT-COEFFICIENT DIFFERENCE EQUATIONS

A signal flow graph representation of a difference equation is essentially the same as
a block diagram representation, except for a few notational differences. Formally, a
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\ Flgurg 6.8 Example of nodes and

Node k branches in a signal flow graph.

sipnal flow graph is a network of directed branches that connect al nodes. Associated
with each node is a variable or node value. The value associaled with node k& might
be denoted wy, or, since node variables for digital filters are generally sequences, we
often indicate this explicitly with the notation wy[nl. Branch (. k) denotes a branch
originating al node j and lerminating at node &, with the directlion from § Lo & being
indicated by an arrowhead on the branch. This is shown in Figure 6.8. Each branch
has an input signal and an output signal. The inpul signal from node § tobranch (f. &)
is the node value w;[n] In a linear signal flow graph, which is the only class we will
consider, the output of a branch is a linear transformation of the input 1o the branch.
The simplest example is a constant gain, i.e., when the output of the branch is simply a
constant multiple of the input to the branch. The linear operation represented by the
branch is typically indicated next to the arrowhead showing the direction of the branch.
For the case of a constant muliiplier, the constant is simply shown next to the arrowhead.
When an explicit indication of the branch operation is omitted, this indicates a branch
transmittance of unity, or the identity transformation. By definition, the value at each
node in a graph is the sum of the outputs of all the branches entering the node.

To complete the definition of signal flow graph notation. we define two special
types of nodes. Source nodes are nodes that have no entering branches, Source nodes
are used to represent the injection of external inputs or signal sources into a graph.
Sink nodes are nodes that have only entering branches. Sink nodes are used to extract
outputs from a graph, Source nedes, sink nodes, and simple branch gains are illustrated
in the signal flow graph of Figure 6.9, The linear equations represented by the figure
are as follows:

wq[un] = xinl +awgin] + Fusqlnl,
wzln| = cury|n], (6.17)

¥ln] = dxin] + ewyfn].

&mmo/_p____ﬁn Sink

node ; ; i Snode  Figure 6.9 Examnpie of a signal flow
wlal wil] S ¢ waln] ] graph showing source and sink rodes.
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Source
mode )
&

xn]

Figura 6.10 (2] Block diagram
representation of a 1¥-order digital filter,
(b} Structure of the signal flow graph
” correspanding b the block disgram in

5 {a).

Addition, multiptication by a constant, and delay are the basic operations reguired
toimplement a linear constant-coctficient difference equation. Since these are all lincar
operations, it is possible to use signal flow graph notation to depict algorithms for
implementing LTI discrete-time systems. As an example of how the How graph concepts
just discussed can be applied to the representation of a difference equation, consider
the block diagram in Figure 6.10(a}, which is the direct form II realization of the system
whose system function is given by Eq. (6.1). A signal flow graph corresponding to this
sysiem is shown in Figure 6.10({b}. In the signal flow graph representation of differsnce
equations, the node variables are sequences. In Figure 6.10{b), node 0 is a source node
whose value is determined by the input sequence x|r )], and node 5 is a sink node whose
value is denoted v[r]. Notice that the source and sink nodes are connected to the
rest of the graph by unity-gain branches to clearly denote the input and output of the
system. Obviously, nodes 3 and 3 have identical values, The extra branch with unity
gain is simply used Lo highlight the fact that node 3 is the output of the system. In
Figure 6.10{b}, all branches except one {the delay branch (2, 4}) can be represented
by a simple branch gain; i.e, the cutput signal is a constant multiple of the branch
input. A delay cannot be represented in the time domain by a branch gain. However,
the z-transform representation of a unit delay is multiplication by the factor 277, If we
reprasented the difference equations by their corresponding z-transform equations, all
the branches would be characterized by theirsystem functions. In this case, each branch
gain would be a function of 7; e.g.. a unit delay branch would have a gain of 7~ 1 By
convention, we represent Lhe vanables in a signal Aow graph as sequences rather than
4% r-lransforms of sequences, However, to simplify the notation, we normally indicate
# delay branch by showing its branch pain as 771, but i35 understood that the outpul
of such a branch is the branch input delayed by one sequence value. That is, the use of
z~! in a signal flow graph is in the sense of an operator that produces a delay of one
sample. The graph of Figure 6.1(0{b) is shown in Figurc 6.11 with thiz convention. The
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wy [1] Wa[n] By wafn]
e - ¥ + 7y - e o
x[n] / ¥[n]
\ x
s by Figure 6.11  Signal flow graph af
" Figura 6.14b) with the delay branch
Halnl indicated by z 1.

equations represented by Figure 6,11 are as follows:

i) = awgla] -+ xlnl. {6.18a)
wain] = wylr]. (6,180
Wi = bpwali] + Bpwgel, (6. 18c)
tgfn] = ualn = 1], {ﬁ.]ﬁd_}

wn] = wnlu]. if.18:)

A comparizon of Figure 6.10{a) and Fgure 6.1 shows that there ix a direet corre-
spondence between branches in the block diagram and branches in the Jow praph. In
[act, the important difference between the two ix that nodes in the low graph represent
both branching poinis and adders, whereas in the block diagram a special symbol is used
for adders. A branching poind in the block diagram is represented in the flow graph by a
node that has only one incoming branch and onc or more outpoing branches. An adder
in the block diagram is represented in the signal low graph by a node that has two {or
more ) incoming branches. In general, we will draw flow graphs with at most two inputs
to each node, since most hardware implementations of addition have only two inputs.
Signal flow graphs are therefore totally equivalent to block diagrams as pictorial repre-
sentations of difference equations, but they are simpler to draw. Like block diagrams,
they can be manipulated graphically to gain insight into the properties of a given system.
A large body of signal flow graph theory exists that can be directly applied to discrete-
time sysiems when they are represented in this form, (See Mason and Zimmermann,
1964} Chow and Cassignol, 1962; and Phillips and Nagle, 1995.) Although we will use
flow graphs primarily for their pictorial value, we will use certain theorems relating to
signal Mow graphs in examining alternative structures for implementing lincar systems.

Equations (6.18a)-(6.18¢) define a multistep algorithm for computing the output
of the LTI system from the input sequence x[r]. This example illusirates the kind of
data precedence relations that generally arise in the implementation of R systems
Eguations (6.18a) (6.18¢) cannol be compuled in arbitrary order. Equations (6.18a)
and {f.18¢) require mubltiplications and additions, but Egs, (6.18b) and {f.18c) sim-
ply rename variables. Equation (6.18d) represents the “updating” of the memory of
the system. It would be implemented simply by replacing the contents of the mem-
oty regisler representing wyr] by the value of wals], but this would have to be done
consistently cither befirre or affer the evaluation of all the other equations, Initial-rest
conditions would be imposed in this case by defining wo[—1] = 0 or wy[0] = 0. Clearly,
Eqgs. (6.18a)—(6.18¢) must be computed in the order given, except that the last two could
be interchanged or Ey. (6.18d) could be consistently evaluated first.
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The flow graph represents a set of difference equalions, with one equation being
written at each node of the network. In the case of the llow graph ol Figure 6,11, we can
eliminale some of the variables rather casily 1o oblain the pair of cquations

wn[n] = qusfre — 1] + x|n], (f.1%9a)
w[n} = bpawala] + byuslr — 11, {6.19b)

which are in the form of Egs. {(6.15a) and {6.15b); i.c., in direct form IL. Often, the
manipulation of the difference equations of a flow graph is difficult when dealing with
the time-domain variables, owing to feedback of delaved variables. In such cases, it is
always possible to work with the g-transform representation, wherein all branches are
simple gains since delay s represented in the z-transform by multiphication by 7~ | Prob-
Tems 6.1-6.28 iltustrate the utility of z-transform analysis of Oow graphs for ohiaining
equivalent seis of difference equations.

Example 6.3 Determination of the System Function from a
Flow Graph

: To illustrate the use of the y-transform in detcrmining the system function from a
5 Now graph, consider Figore 6,12, The Qow graph in this Ggure is nor in direet [orm,

* Therefore, the svstem function cannot he written down by inspection of the graph.
i However, the set of difference eguations represented by the graph can be written
i down by writing an equation {or the vatlue of each node variahble in terms of the other
1% node variahles, The five equations are

£ wiln] = wyln] - xfn], {6.20)
'L wiln] = ey [n], {6, 20t)
waln] = wsln] 1 xln). (6.20c)

: waln] = wsln 1], {6.2iK)
vin] = waln] 4 wgln]. (6.20k)
These are (he equations that would be wsed to implement the system in the form

: described by the flow graph. Equations {6.20a)=(6.24e) can be represented by the
z-lranslorm cquations
Wizl — Wiz — Xizh, {6.21a)
Wiz} = W) {z). {(6.21h)
r‘ Wiz} = Walzy+ X {z), (6.21¢)
Wyiz) = 27 Wila), (6.21d)

Fizh = Waiz + Wyiz). {6.21¢)
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Figure 6§.12 Flow graph not in standarg direct form.

W con eliminate Wyiz) and Wiz from this sei of cquations by substiluting
. By (6.21a) into Eq. (6.21k) and Eq. (6.21c) into BEq. (6.21d), obtaining

Wala} = i Wylz)y — X iz}, (6.22a)
Walz) = N {Walzh+ X (2), (6.22h)
¥igd = Woizh + Walsd (6.22c)
< Equations (6.22a) and (6.22h) can be solved for Waiz) and Waiz). vielding
-~1
. iz™ = 1)
Waiz} = ﬁx (=} 16.234)
it 0
Wil = S =B {6.23b)
1- Er:_l
7 and substituting Egs. (6.23a) and (6.230) into Fg. (6.22¢) leads (o
e N IS e N
o O o ot s ESE el LE NI N i M (6.24)
ezl 1 =@zl
: Therefore, the sysiem function of the flow graph of Figure 6,12 15
—1
Hin=>1"% [6.25)
1 —az=1

‘& from which it follows that the impulsz response of the system is
filn] = ﬂ”_lufn -11- o™l w[r]
- and the direct form | low graph is as shown in Figure .13,

—iK

- x([n] F//T I\‘l yla]
L z! 21

Figure 6.13 Direct form | equivalent of Fgure 612

Example 6.3 shows how the z-transform converts the time-domain expressions,
which involve feedback and thus are difficult to solve, into linear equations that can be
solved by algebraic techmiques. The example also illusirales that different How praph
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representations define computational algonithms that require different amounts of com-
putational resources. By comparing Figures 6.12 and 6,13, wie see that the original imple-
mentation requires only one multiplication and one delay {memory) clement, whereas
the direct form Timplementation would require two multiplications and two delay ele-
ments The direct form 1T implementation would reguire one less delay. but it stll would
require two multiplications.

6.3 BASIC STRUCTURES FOR IR SYSTEMS

In Section 6.1, we introduced two alternative structures for implementing an [T system
with system function as in Eq. (6.85). In this section we present the signal fow graph
representations of those systems, and we also develop several other commonly used
equivalent flow graph network structures. Our discussion will make it clear that, for any
given rational system function, a wide variety of equivalent sets of difference equations
or network structures exists. One consideration in the choice among these different
structures is computational complexity. For examiple, in some digital implementations,
structures with the fewest constani multipliers and the fewest delay branches are often
most desirable. This is because multiplication is generally a time-consuming and costly
operation in digital hardware and because each delay element corresponds to a memory
register. Consequently, a reduction mn the number of constant multipliers means an
increase in speed, and a reduction in the number of delay elements means a reduction
N memaory Teguirements.

(ither, more subtle, trade-ofls arise in VLST implementations, in which the aren
of a chip is often an important measure of efficiency. Modularity and simplicity of data
transfer on the chip are also frequently very desirable in such implementations In
mulliprocessor implementations, the most important considerations are often related
to partitioning of the algorithm and communication reguirements between processors
(ther major considerations are the effects of a finite register lenpth and finite -precision
arithmetic. These effects depend on the way in which the computations are organized,
L., on the struciure of the signal flow graph. Sometimes it is desirable to use a siructure
that does not have the minimum number of multipliers and delay elements if that
siructure is less sensitive to finite register length effects.

In this section, we develop several of the most commonly vsed forms for imple-
menting an LTT IR, system and obtain their flow graph representations,

&.3.1 Direct Forms

In Section 6.1, we obtiined block diagram representations of the direct form T {Fig-
ure 6.3 and direct form 11, or canonic direct form (Figore 6.5), structures for an LTT
svstem whose inpul and oulput satisly a difference equation of the form

N M

¥inl =) agylr —kI =D bexln — k1, (6.26)

=l &=l



Section 6.3 Basic Structures for l1R Sysiems 389

hp w{rel
P 2 % - -
x[n] J vl
1
] & L
x| -1] —_— e vl 1]
1 v B
by, e IL
x[:u—'l]?i'- —— : I —_——— II'.[n— 2]
| | ] |
| | |
| I |
by | [ iy |
xln-N+1]4 > & . vlm-N+1]
:—I ] :—1
I o
r[n - N] Kl . <yl - N

Figure 6.14  Signal flow graph of direct form | structure for an NtB-grder system.

with the corresponding rational sysiem funciion

Z bh

Hiz) = (6.27)

1-— Zf{kz_'}
k=1

In Figure 6.14, the direct form 1 structure of Figure 6.3 is shown using signal flow graph
conventions, and Figure 6.15 shows the signal llow graph representation of the direct
form 11 structure of Agure 6.5, Again, we have assumed for convenience that N = M.
Mote that we have drawn the bow graph so that cach node has no more than twvo Inpuls,
A node in a signal flow graph may have any number of inputs, but, as indicated earlier,
this two-input convention resulis in a graph that is more closely related to programs and
architectures for implementing the computation of the difference equations represented
by the graph.
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i L
- system.
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Example 6.4 lliustration of Direct Form | and Direct Form Il
Structures

v Consider the system function
=iy

W | PP
+F ?":. BN e (6.24)
1-075:- +0.125:~2
et Since the cocfficients in the direct form structures correspond directly to the coclffi-
cients of the numerator and denominator polynomials (faking into account the minus
. sign in the denominator of Eq. {(6.27)), we can draw these seructures by inspection with
" roference Lo Fgures 6,14 and 6,15, The direct form [ and direcl form I structures for
! 1his example are shown in Figures 616 and 6.17, respectively.

iz} =

L

4 xn] - l L ¥
|

_Ir

(2]
ki

i o125
e — e - il
W
.l:i'__*_: Figure 6.16 Direct form | structure for Example 6.4.
it G g gaEg i e
L xfn] ' ¥[n]
i J, 073 2
¥ L B ]
| e
| -na2s

Figure 6.17 Direct form 1l structura for Example 6.4.

&.2.2 Cascade Form

The direct form structures were obtained directlv from the system function H{z), written
as a ratio of polynomials in the variable : ~! as in Eq. (6.27). If we factor the numerator
and denominator polynomials, we can express Hiz) in the form

My

[Ja- e J]"]fl—gh 1nl—gﬂf L

Hiz) = q*—' : (6.29)
]_[11--L,;‘ 1]‘[(1—@_ WL —dlz
k=1

where M = M| +2M; and N = Ny 4 2M;. In this expression, the 1™-order factors
represent real zeros at /i and real poles at e, and the 2™d-order factors represent
complex conjugate pairs of zeros at g and g7 and complex conjugate pairs of poles
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W [n] ¥inl w:[i-lj i p%[u] W_-,[.-H] w3[]

Figure 6,18 Cascade structure for a 6'"-order system with a direct farm il real-
ization of each 2"9-orde- subsystem.

at 4 and d;. This represents the most general distribution of poles and zeros when
all the coefficients in Eq. (6.27) are real. Equation (6.29) suggests a class of structures
consisting of a cascade of 1¥_ and 2" _arder syslems. There is considerable freedom in
the choice of composition of the subsystems and in the order in which the subsystems are
cascaded. In practice, however, it is often desirable toimplement the eascade realization
using aminimum of storage and computation. A madular structure thatis advantageous
for many types of implementations 1s obtained by combining pairs of real factors and
complex conjugate pairs into 2™ -order factors so that Eqg. (6.29) can be expressed as

N,

g + bz~ 4 bagz?
Hiz) = ; 6.30
@ E 1 —apz™! —anz? (630)

where &, = [ (N + 1}1/2] is the largest integer contained in (N + 11/2. In writing Hi{z)
in this form, we have assumed that & = & and that the real poles and ceros huve been
combined o pairs, If therc are an odd number of rcal seros, one of the coctlicients by
will be zero, Likewise, if there are an odd number of real poles, one of the coefficients ag;
will be zero. The individual 2™-order sections can be implemented using either of the
direct form structures; however, the previous discussion shows that we can implement
a cascade structure with a minimum number of multiplications and a minimum number
of delay elements if we use the direct form I1 structure for each 2*d-order section. A
cascade structure for a 6M-order system using three direct form 1F 2™-order sections
is shown in Figure 6.18, The difference equations represented by a general cascade of
direct form 1 299 _order sections are of the form

yol#l = x[n]. (631a)
welel = appweln — 1] + agpwele — 2] 4+ vl kE=1.2,..., N, (6.31b)
welel = bppag[n] 4 dpwgln — 1]+ bapagn =21, £=12,...,N. (b1lc)

¥inl = vy, Inl (631d)

It is easy to see that a variety of theoraticallv equivalent svstems can be obtained
by simply pairing the poles and zeros in different ways and by ordering the 2™-order
sections in different ways. Indeed, if there are N, 3 _order sections, there are NN,
factorial) pairings of the poles with zeros and N, ! orderings of the resulting 2™.order
sections, or a total of { ¥, "y different pairings and orderings. Although these all have the
sume overall system function and corresponding inpul-output relation when infinite-
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precision arithmetic is used, their behavior with finite-precision arithmetic can be quite
different, as we will see in Sections 6.5-6.10.

Example 6.5 llustration of Cascade Structures

% Letusagain consider the system function of Eq. (6.25). Since thisisa 294 _order system,
5 a cascade structure with direct form I 29d_nrder sections reduces 1o the structure of
7 Figure 6.17. Allernatively, to illustrute the cascade struclure, we can use 151-order
1 wystems by expressing Bz} as a product of 1*l-order factors, as in

N P AP P | .1
Hiz) = 142z +¢ (14+z7 KL+170)

o075 Tru12s: 20 (0 - 05 1y —02se 0y

(632

Since all of the poles and zeros are real, a cascade structure with 13"-order sections
=3 has real coefficients. I the polcs and/or zeros were complex, only a 289 arder section
: - wioul] have real coeflicients, Figure 6,19 shows two equivalent caseude struciures, cach
% of which has the system function in Eq. {6.32). The difference equations represented
* bv the fow graphs in the figure can be written down casily. Problem 6.22 is concerned
with finding other, aquivalent sysiem configurations

¥ * T T o O
x[n] T | ] ¥n]
1-1; ¥ “'-J:f Y
:L e | £ e L

0.5 0.25
fa)
o £ — - - > o £ - 1
«[w] ¥l
7! =
0.5 025
(b}

Figure 6.19 Cascade structures for Example 8.5. (2} Direct form [ subsections.
(b} Direct form 1 subsections,

A final comment should be made about our definition of the system function
for the cascade form. As defined in Eq, (6.30), each 2"-order section has five constant
multipliers. For comparison, let us assume that M = N in A(z) aspiven by Eq. (6.27).and
furthermore, assume that ¥ is an even integer, 5o that &; = N /2. Then, the direct form
I and IT struciures have 2N { 1 constanl mullipliers, while the cascade form structure
sugpested by Eg. (6.30) has SA/2 constant multipliers. For the 6™ order system in
Figure 6,18, we require a total of 15 multipliers, while the equivalent direct forms would
require a tolal of 13 multipliers. Anulhu dehnition ol the cascade form is

H{ﬂ-bn[] }+bl.ﬁ« +b&4. {5_33}

| —ayz ' —anz™?
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where by is the leading coelficient in the numeratar polynomial of Eq. (6.27) and b, =
Bigfboe for | = 1,2 and &k = 1.2,....7 N,. 'This form for H{z) sugpests a cascade of
four-multiplier 2™ -order sections, with a single overall gain constant by, This cascade
form has the same number of constant mullipliers as the direct form structures. As
discussed in Section 6.9, the five-multiplier 2"-order sections are commonly used when
implemented with fixed-point arithmetic, because they make il possible to distribute
the overall gain of the system and thereby control the size of signals at various critical
points in the system. When ﬂumjnf_-—puinl arithmetic is vsed and dvnamic range is not
a problem, the four-multiplier 2*4-arder sections can be used to decrease the amount
of computation. Further simplification results for zeros on the vnit cirele. In this case,
B¢ = 1, and we require anly three multipliers per 2*.order section.

6.3.3 Paraliel Form

As an alternative to factoring the numerator and denominator polynomials of Hizd,
we can express a rational svstem function as given by Eq. (6.27) or (6.29) as a partial
fraction expansion io the form

1_Zc,ﬁ‘*+zll

ksl d

h .
3 Bl ~ez 1y
. 6,34
Z_]: (1—dez 13l —dfz 1) (6.34)

— iz L
where N = N + 2N I M = N, then My = M — N: otherwise, the first summation in
Eq. {6.34) is not included. If the coefficients ay and by are real in Bg, (6.27) then the
quantitics 44, By, Cp, vr, and e are all real, In this form, the system function can be
interpreted as representing a parallel combination of 1*- and 2™ -order 1IR systems,
with possibly &, simple scaled delay paths. Alternatively, we may group the real poles
N pairs, so that H{z) can be expressed as

.’\'-p N . A
j.“::] e Z C-k:—.';: + z Bl |- f']-'(-.. & (-ELSSJ
kould

o 1l —aypz™ — ez "
where, as in the cascade form, &, = [(N 4+ 1372 s the largest integer contained in
N4+, and if Np = M — N 13 negative, the first sum is not present. A wypical example
for N = M = Gisshown in Figure 6.2, The weneral difference equations for the parallel
form with 2™ -arder direct form 11 sections are

wpfn] = apwiln — 11+ aaeoeln = 21+ xfn], k=1.2,.... N, {{,"pﬁﬂj

veln] = egeuwelnf 4 epewpln = 1], E=12...., M, {H.36h)

"." N,
Ml =3 Cexln—k1+ )yl (6.36¢)

If M = N, then the first summation in Eq. (8.36c) is not included.
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Figure 6.20 Parallel farm structurs for 6-order system (M = N = 6) with the
real and complex poles grouped in pairs.

Example 6.6 llustration of Parallel Form Structures

= Consider again the system function used in Examples .4 and &.5. For the parallel form,
owe must express Hiz) in the form of either Eq. (6.34) or Eq. (#.35). 1f we use R

:;?: sections,

L 1427V 422 T4+ 41

By Hi = : - =8+ - ; 837
i 1=075z-1 4 0125: 2 10752 1404252 (

% The parallel form realization for this example with a 2 order section is shown in
s Tigure 6.2
i Since all the poles are real, we can obtain an alternative paralle] form realization
¢ by expanding Hiz) as

18 25
1—-05z71 1-025z 1
-‘ The resulting parallel form with 1%-order sections is shown in Figure 6.22. As in the
“o general cuse, the difference equations represented by both Figures 6.21 and 622 can
= be written down by inspection.

Hifl=8+

(6.3K)
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Parzllel form structure for Example 66 using a 2™-order

Dl r— e e
x| |

6.2.4 Feedback in lIR Systems

All the flow graphs of this section have feedback loops; Le., they have closed paths that
begin at a node and return to that node by traversing branches only in the direetion of
their arrowheads. Such a structure in the flow graph implies that a node variable in a loop
depends directly or indirectly on itself. A simple example is shown in Figure 6.23(a}),

which represents the diffe

rence equalion

v[r] = ayln — 11+ x[r].

vl

¥|af

Figure §.22 Paralle! form structure for Example 6.6 using 1%-ordar systems.
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¥ Erﬁ

* 0
¥[#]
rz I
U/
{h
r - - 0
0| \\w"’}. y[n]
n Figure 6.23 {a) System with feedback
: leop. (b FIR syster with feedback loop,
i} () Moncomputable system.

Such loops are necessary (but not sufficient) to generate infinitely long inpulse
responses. This can be seen if we consider a network with no feedback loops. Lo sucha
case, any path from the input to the output can pass throvgh each delay element only
once. Therefore. the longest delay between the input and cutput would occur for a path
that passes Lhrough all of the delay elements in the network. Thus, for a network with
no loops, the impulse response is no longer than the tolal number of delay elements
in the network, From this, we conclude that il a network hus no loops, then the system
function hus only zeros (exeept for poles at z = U), and the number of zeros can be no
more than the number ol delay elements in the network.

Returning to the simple example of Figure 6.23(a), we see that when the input
15 the impulse sequence d|n). the single-input sample continually recirculates m Lhe
[eedback loop with either increasing (if |a| = 1) or decreasing {if |a| < 1) amplitude
owing to multiplication by the constant o, so that the impulse response is ifn] = a"ulr].
This illustrates how fzedback can create an infinitely long impulse response.

I£ a system function has poles, a corresponding block dingram or signal fow graph
will have feedback loops. On the other hand. neither poles in the system function nor
loops in the petwork are sufficient for the impulse response to be infinitely long, Fig-
ure £.23(b) shows a network with a feedback loop. but with an impulse response of
finite length. This is because the pole of the system function cancels with o zero; ie., for
Figure 6.23{h),

1-—g2;72 (1—az~'W1+ ezl

Hiz) = = — =1+4az"L {6.40)
| —ar 1 —ar

The impulse response of this system is #fn| = §ln] + adln — 1), The system is a ssmiple
examyple of a general class ol FIR systems called freguencu-sampling svstems This class
of systems is considered in more detail in Problems 6.3 and 6.51.
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Loops in a network pose special problems in implementing the computalions im-
plicd by the network, As we have discussed, 1t must be possible to compule the node
varigbles in a network in segoence such that all necessary values are available when
necded. In some cases, there s no way o order the computations so that the node
varigbles of a low graph can be computed in sequence. Such a network is called non-
compurable (see Crochiere and Oppenheim, 1973). A simple noncomputable network
18 shown in Figure 6.23(c). The difference equation for this network is

vlu] = ay[n] + x[n]. {H.41)

In this form, we cannot compute v[r] because the right-hand side of the equation in-
volves the quantity we wish o compute. The fact that a flow graph is noncomputable
does nof mean the equations represented by the flow graph cannot be solved: indeed,
Lthe solution to Eq. (6.41) s y¥[u] = x[n] /(1 —a). ILsimply means that the flow graph does
nol represent a set of difference equations that can be solved successively for the node
vatiables. The key to the computability of a flow graph is that all loops must contain at
least one unit delay element. Thus, in manipulating fow graphs representing implemen-
tations of LTI systems, we musl be careful not to create delay-free loops. Problem 6.37
deals with a system having a delay-free loop. Problem 7.51 shows how a delay-free loop
can be mtroduced.

6.4 TRANSPOSED FORMS

The theory of linear siznal flow graphs provides a variety of procedures for transforming
such graphs into different forms while leaving the overall system function between
input and output unchanged. One of these procedures, called flow graph reversal or
transpasition, leads to a set of transposed system structures that provide some useful
alternatives to the structures discussed in the previous section.

Tranxposition of a flow graph is accomplished by reversing the directions of all
branches in the network while keeping the branch transmittances as they were and
reversing the roles of the input and cutput so that source nodes become sink nodes and
vice versa. For single-input, single-outpul systems, the resulting flow graph has the same
syslem funetion as the onginal graph if the inpul and outpul nodes are interchanged.
Although we will not formally prove this resull here,” we will demonstrate that it is
vulid with two examples

Example 6.7 Transposed Form for a 1*-Order System with
No Zeros

. The 15L.order system corresponding to the flow graph in Figure 6.24(a) has system
= function

Hiz} = s (5,42}
— 17

*The thearem fodlows directiy from Masan's gain formila of signal Aow graph theory. (Sec Mason and
Zimmenmani. 1960 Chow and Cassienol, 1952 or Phullips and Nagle 1993}
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‘jﬁ To obtain the teansposed form for this system, we reverse the directions of all the

branch arrows, taking the output where the input was and injecting the input where
;o the outpul was The resull is shown i Figure 6.24(b). TUis usually convenien! to draw
the transposed network with the input on the left and the outpue on the right, as shown

P
(o]

A

E:é in Figure 6.24{c}. Comparing Figures 6.24{a) and 6.24{c} we note that the only differ-
2% ence is that in Figure 6.24(a), we multiply the defayed output sequence ¥[n — 1] by the
':%‘3;3? coefficient o, whereas in Figure £.24(c) we multiply the output y[n] by the coefficient
ioa and then delay the resulting produoct. Since the two operations can be interchanged,
?{ we can conclude by inspection that the original system in Figure 0.24(a) and the cor
7= responding transposed system in Figure 6.24{c) have the same system function.
o
f' - et
5 xln
2 !
=
el
}:tru:'i:
::}5? —— + L
L ¥[n] x[a]
RE =L
i
."g??:-
gl:'é i
i (&)
ol
3 o - - —
B x[n] ¥]
.
g
e
o a
e
ot {c)
&
£ Figure 6.24 {a) Flow graph of simple 1%-order system. (b} Transposad form of

W5

(@) {e) Structure of (b) redrawn with input on left,

In Example 6.7, itisstraightforward o see that the original system and its transpose
the same system function. However, for more complhicated graphs. the result is
not so obvious, This 15 illustrated by the next example,

Example 6.8 Transposed Form for a Basic 2™-Order Section

g;‘;‘{; Consider the basic 20 _order section de picted in Figure 6235, The corresponding dif-

i ference equations for this system are
S
%’?ﬁ: wn] = apwln — 11+ aawln — I + x[n], (64340

éﬁi vla] = bnwinl +byuwln — 11+ bywin - 2] {0.430)
e
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The transposed flow graph is shown in Figure 6.26; its corresponding differcnce
SYUATIONS A1

vglr] = bpxfe] + vyln — 1], (ivdda)
¥l = wln], {f.4dh)
vilnl = ayvinl = bxin] +opin — 1|, (6.44c)
ta[r] = @y v[n] 4 baxin) {6ddd)

Equations (6430 -{6.43b) and Fys (6.d40)A6.44d) are dilferenl ways 10 Ofga-

' nize the computation of the output samples v|a| from the input samples x[n], and it

iz novl immediately clear that the two sets of difference cquations are cquivalent. One

i ; way Lo show this e uivalence 15 by use the z-transform representalions of hoth sets

of cqualions, solve for the ratio ¥i:)/ X {2) = Hiz} in both cases, and compare the
resulls, Another way is o substitulc Eg. (6.44d) inlo Eg. (6.44¢), substitule the result

o into Eq. (&.44a), and Hinally, substitote that result into Eq. (6.44b). The final result is

¥inl = aqyin — 1+ aavinw — 2| + bpxie] + byxln — 1]+ baxln — 2). {6,435}

Since the network of Figure 6.23 is a direct furm 11 strugture, it is casily seen that the
input and output of the system in Figure 6.25 also satisfies the difference Eq. (6.45).

Therefore, for mital-rest conditions, the svsiems in Fgures 625 and 626 are

" eguivalent.

wn] hy

o L o 4

»- ]
xlr| ¥[n

e e e

Figurs 6.25 Direct form |l structure for Example 6.8,

by Faln]
- 2 PRRRT—
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Figure 6. 26 Transposed direct form 1 structure for Example 6.8,

The transposition theorem can be applied to any of the structures that we have
dizcussed so far, For example. the result of applving the theorem to the direct form I
structure of Figure 6.14 is shown in Figure 6.27, and similarly, the structure obtained by
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Figure .27 Generalficw graph rasulting frorm applying the transposition theorem
ta the direct form | strugcture of Figure 6.14.

transposing the divect form i strecture of Fipure 6,15 s shown in Figure 6.28. I a sipnal
flow zraph configuration is transposed, the number of delay branches and the number
of coctlicients remain the same. Thus, the transposed direct form [ structure is also a
canonic structure. lTransposed structures derived from direct forms are also “direct™ in
the sense that they can be consuructed by inspection of the numerator and denominator
of the system function.

An important point becomes evident through a comparison of Figures (.15 and
.28, Whereas the direct form II structure implements the poles first and then the
zeros, the transposed direct form IT structure implements the zeros first and then the
poles. These differences can become important in the presence of quantization in finite-
precision digital implementations or in 1he presence of noise in discrete-time analog
implementations,

L
o - Ak r - for o
%lg] , ylng
] = iy
$!
b i e

Figura6.28 General o graph resulting from applying the transposition theoram
to the direct form Il strieciure of Figure 6.15.
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When the transposition theorem is applied to cascade or parallel structurcs. the
individuai 2™ .order syslems arc replaced by transposed structures. For example, ap-
plving the transposition theorem 1o Fipure 6,18 results in a cascade of three transposed
dircet form U1 sections {cach like the one in Example 6.8) with the same cocficients as
in Figurc 618, but with the order of the cascade reversed. A similar stalement can be
made about the fransposition of Figure 6.20.

The transposition theorem further cmphasizes that an infinile vanety of imple-
mentation structures exists for any given rational system function. The transposition
theorem provides a simple procedure for generating new structures. The problems of
implementing systems with [nile-precision arithmetic have motivated the development
of many more classes of equivalent structures than we can discuss here. Thus, we con-
cenirate only on the most commonly wsed siructures.

6.5 BASIC NETWORK STRUCTURES FOR FIR SYSTEMS

The direct, cascade, and parallel form structures discussed in Sections 6.3 and 6.4 arc
the most common basic structures for TR systems These structures were developed
under the assumption that the system function had both poles and zeros. Although the
direet and cascade Tormes for TR systems include FIR systems as a special case, there
are additional specilic forms for FIR systoms.

&.5.1 Direct Form

For causal FIR systems, the system function has only zeros (except Tor poles al z =11,
and since the cocfficients ; are all zero, the difference cquation of Eqg. (6.9} reduces (o

i
¥lnl = byxln — &]. (6.46)
k=0

This can be recognized as the discrete convolution of x{s] with the impulse response

b, n=101 ..., M

{1 otherwise. (h.47

hfa] = [

In this case, the direct form [ and direct form 11 structures in Figures 6,14 and 6.15 both
reduce to the direct form FIR structure as redrawn in Figure 6,29, Because of the chain
of delay elements across the top of the diagram, this structure is also referred to as a
tapped delay line structure or A fransversal filter structure, As seen from Figure 8.29, the
sienal at each tap along this chain is weighted by the appropriate coeflicient {impulse-
response value), and the resulting products are summed to form the output vlx].

The transposed direct form for the FIR case is obtained by applying the transpo-
sition theorem to Figure 6.29 or, equivalently. by setting the coefficients ap 10 zero in
Figure 6.27 or Figure 6,28, The result is shown in Figure 6.30.
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o
¥lnl
—
¥lnl
h{1] [0]

xir[]

Figure 6.30 Transposition of the network of Figure 6,29,

6.5.2 Cascade Form

The cascade lorm for FIR systems is obtained by factoring the polvnomial system fune-
tion. That 1s, we represent H{z) as

M,

Hiz) = Emn] = [T toos + brez T+ bz, (6.45)
n=] k=1

where M, = [ (M -+ 1)/2] is the largest integer contained in (M <+ 1)/2. If M is odd, one
of the coefficients by will be zero, since H{z) in that case would have an odd number
of real zeros. The flow graph representing Eq. (6.48) is shown in Figure 6.31, which is
identical in form to Figure 618 with the cocfficients aqp and gz all zero. Each of the
2™ order sections in Figure 6.31 uses the direct form shown in Figure 6.29. Another
alternative is 1o use transposed direct form 2™ -order sections or, cquivalently, to apply
the transposition theorem to Figure 6,31,

i) b2
— . - -
cin]
e 1
By bz
——— ———
2__| L ] z—'! L
fra) bz
| |

Figure 6.31 Cascade form realization of an FIR system.
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6.5.3 Structures for Linear-Phase FIR Systems

Tn Chapter 5, we showed Lhal causal FTR syslems have generalized linear phase if the
impulse response salishes the symmetry condilion 4
RIM —nl=kr] nr=01 .M {6.49a)

|
ar

kM —n] = —h[r] n=101,..., M (6.49b)

With either of these conditions, the number of coefficient multipliers can be es-
sentially halved. To see this consider the following manipulations of the discrete con-
volution equation, assuming that M is an even integer corresponding to type 1 or type
III systems:

M
¥inl =3 Alklx[r — k]

k=01
M- M
= Z hlklx[n — K]+ B[ M 21x[n — M 2] + E hk]lxcln — k]
k=0 k=M/1+1
M1 M1
= 5 hlklx[n — K1 +h[M/20xn — M/21+ S M — Klx[n — M +&].
k=D k=l
For Lype T systems, we use Eq. (6.4%) 1o oblain
M1
¥[nl= Z AlElixlrn — k] +xfn — M+ k) + A[M [ 2]xln — M/2]. (6307
k=0
For type 111 systems. we use Eqg. (6.49b) Lo oblain
Mia-1
yln] = Z Alklieln — k] —xln— M + &) {6.51)
: k)
For the case of M an odd integer, the corresponding equations are, for type I systems,
(L2
ylnl= 3" hlklx[n = K]+ x[n — M +kT) (6.52)
k=0
and, for type 1V systems,
iM—l1}2
¥lnl= 3 hlklsln K] xln M 1 &D. (6.53)
k=0

Equations {6_31)=(6.33) imply structurcs with cither M2 + 1, M2 or {M + 1)/2
coefficient multipliers, rather than the M coefficicnt multipliers of the general dircet
form structure of Figure 6,29, Fipure 6,32 shows the structure implicd by Eq. (6,510}, and
Figure 6,33 shows the structure implicd by Eg. (6.52).

In our discussion of lincar-phase systems in Section 3.7.3, we showed that the
symmelry conditions of Egs. (6.4%) and (6.49b) cavse the zeros of Hiz) 1o occur in
mirror-image pairs. That is, if zp is a zero of Hiz), then 1/zp is also a zero of Hiz).
Furthermore, if f[#x] is real, then the zeros of H(z) occur in complex-conjugale pairs.
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Flgure 6.32  Direct form structiere for an FIR linear-phase system when M is an
Buen integer.
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Figure 6.33 Dirgct form structure for an FR lingar-phase system when A is an
nad integer.

As a consequence, real zeros not on the unit circle occur in reciprocal pairs. Complex
zeros not on the unit circle occur in groups of four, corresponding to the complex
conjugates and reciprocals. If a zero is on the unit circle, its reciprocal is also its conjugate.
Consequently, complex zeros on the unit circle are conveniently grouped into pairs.
Zeros at 2 = =1 are their own reciprocal and complex conjugate. The four cases are
summarized in Figure 6.34, where the zeros at z;, ], 1/z1, and 1/z] are considered
as a group of four, The zeros at 25 and 1/z; are considered as a group of two, as are
the zeros at o3 and £3, The zero at 24 is considered singly, If H{z) has the zeros shown
in Figure 6.34, it can be factored into a product of 1%- 2“"-: and 4™ -order factors
Fach of these factors is a polyvnomial whose coefficients have the same symmetry as
the coeflicients of Hiz); i.e.. each factor is a linear-phase polvnomial in z=!, Therelore,
the system can be implemented as a cascade of 15, 2" and 4".order systems. For
cxample, the system funcilion corresponding to the zeros of Figure 6.34 can be expressed
as

-
&

Hipy = k01l + 2zl +az '+ 22l + bz + 7%

i g (6.54)
x{(l+ez t+dze 2+ ez +27h,
where

= {z2+1/12), b = 2Relzsl, c=—2Rel) + 1/}, d=2+i5+ Lin.
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| Zm =] =
L
/ ‘ 7 \I 2-planz
T Y
\ | ste /"
e
2 ax Figure .34 Symmetry of zerncs for a
1 “1 lingar-phase FIR filter.

This representation suggests a cascade structure consisting of linear-phase elements, It
can be seen that the order of the system function polynomial is M = 9 and the number
of different coefficient multipliers is five. This is the same oumber (M + 11/2 = 5) of
canstant multipliers required for implementing the system in the linear-phase direct
form of Figure £.32. Thus, with no additional multiplications. we abtain a modular
structure in tetms of & cascade of short linear-phase FTR systems,

6.6 LATTICE FILTERS

In Sections 6.3.2 and 6.5.2, we discussed cascade Forms for both IR and FIR systems
obtained by factoring their system functions into 1%- and 2™-order scctions, Another
interesting and useful cascade structure is based on a cascade {output to input) con-
nection of the asic structure shown in Figure 6,35(a). In the case of Figure €.35(a) the
basic building black system has two inputs and two outpuls, and is called a two-port
low graph. Figure 6.35(b) shaws the equivalent Aow graph representation. Figure 6.36
shows g cascade of M of these hasic clemenits with a “lermination™ at cach end of the
cascade so that the overall system is a single-inpul single-outpat system with input x[n]
feeding both inputs of two-port building block (1) and output y[a] defined to be 2™ [n],
the upper output of the last two-port building block M. {The lower output of the M0
stage is generally nored.) Although such a strueture could take many different forms

a{:—])lﬂ! al:l:l[ﬁ] alt ”l_"fi n.l'l'j[ﬂ.l
g = e ke L o @
Twe-Piort _;
. i
Fow
{]I’?.JP]'I = e N
) / \
=1
LII'I—]]["] FJ""I’[H| Bt ?ln | |r3"""[-"=1
ta) (L)

Figure 6.35 One section of the lattice structure for FIR lattice filters. (2} Block

diagram representation of a two-part building biock (b) Equivalert flow graph.
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W | a | an| at¥-Uin] a'* )
o= o F———ee e eoe e o—e ————o
Two-Port Two-Port Twa-Port =¥ln
Flow Florw Flow
x|n] Craph Graph Giraph
(i) 2 (AL
o] e e F——
bll-!l]lﬂ] h.;'-.][nj _lhrZr[H] h.:-..f .l:[-":] {]I_‘.f:l[ﬂ!

Figure 6.36 Cazscade connection of Af basic building block sections.

depending on the delimtion of the basic building block, we will limit our atlention 1o
the particular choiee in Figure 6.35(b), which leads to a widely vsed class of FIR and
[IR filter structures known as Luerice filters.,

6.6.1 FIR Lattice Filters

If the basic butterfly-shaped two-port building block in Figure 6.35(b) is used in the
cascade of Figure 6.36, we obtain a low praph like the one shown in Figure 6.37, whose
lattice shape motivates the name lertice filter. The coefficients by, &z, .., kar. arereferred
to penerally as the k-parameters of the lattice structure, In Chapter 11, we will see that
the k-parameters have a special meaning in the context of all-pole modeling of signals,
and the lattice filter of Fgure 6.37 15 an implementation structure for a linear prediction
of signal samples. In the current chapter, our focus is only on the use of lattice filters to
implement FIR and all-pole TR transfer functions

The node variables a''[a] and B¥/[x] in Figure 6.37 are intermediate sequences
that depend upon the input x[n] th mugh the zet of difference ﬂqu.‘iﬁ:mﬁ

an) = 5 0] = tin] {6.55a)
a"'lInl =a" V= kb Vm—11 i=1.2.....M (6.55b)
PNl = b V=1 - k" V[l i=1,2,.... M (6.55¢)

ylnl = a'™[n). (6.55d)

As we can see, the k-parameters are coefficients in this set of M coupled difference
equations represented by Figure 6.37 and Egs (6.55a)-{6.55d). It should be elear that

S a '] a"![n] a*lal  yin]

-5 -Kpr /

s kg

-—I---wﬂ-\-\() P man i = -i-lm-d{v- E -—‘E}r
B[] F)m[rﬂ B[] ,p,li'-F]{"]

Figure 6.37 Lattice flow graph for an FIR system basad on a cascade of M two-
port building blocks of Figure £.35{b).
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these equations must be computed in the order shown (i = 0, 1, ..., M) since the output
of stage (/1) is needed as input to stage (7}, et

The lattice structure in Figure 6,37 15 clearly an LTT syslem, since it 35 a linear signal
flow graph with only delays and constant branch coefficients. Furthermore, note that
there are no feedhack loops, which implics that the system has a finite-duration impulse
response, In el a straightforward argument is sufficient Lo show that the impulse
response from the input to any internal node has finite length. Specifically, consider the
impulse response from x(n] o the node variable a'n|, Le, from the input to the ;th
upper node. It is clear that il x[n] = §fn], then 2“0 = 1 for every i, since the impulse
propagates with no delay through the top branch of all the stages. All other paths to any
node variable a"'[n] or b'"'[n] pass through af least one delay, with the greatest delay
being along the bottom path and then up to node variable o' [n| through the coefficient
—4k;. This will be the last impulse that arrives at &' 1], so the impulse response will have
length i + 1 samples. All other paths to an internal node zigzag between the top and
hottom of the graph. thereby passing through at least one, but not afl, of the delays
occurnng before the ontputs of section (i).

Note that in our introduction to lattice filters, «'s| and 5 |n] were used in
Figure 6,37 and Eqgs. {6.55a)-(6.35d} to denote the node variables of building block (i)
far any inpui x[n]. However, for the remainder of our discussion, il is convenient 10
assume specifically that x[n] = #[n] so that «''[n] and 5"/ [n] arc the resulting impulse
responses at the associated nodes, and that the corresponding z-transforms 4Y*(z) and
BY 7y are the transfer [unctions between the imput and the it" nodes, Conscqguently,

the transler function between the input and the upper i™ node is

i i
ANy = "a Ve =15 ) " alla™™, (6.56)
n={l =]
where in the second form, the coefficients ' for m < i are composed of sums of

products of the coefficients &; for j = m. As we have shown, the coefficient {or the
if]

longest delay from the input to the upper node i is ;" = #&;. In this notlation, the
impulse response from x{n] to node variable a'[a] is
1 n =1l
aVn] =8 —af) 1=<n<i (6.57)
{ otherwise

Similarly, the transfer function (tom the inpul o the lower node | is denoted
£847(z), Therefore, from Figure 6.35(h) or Egs. (6.55h) and (6.55¢). we sce that

AV = AN Vi — gz 1B i (6.58a)
BY ) = —k AV iz 4 2By, (6.58b)

Also, we note that al the input end {f =)
Aglz) = Boizy=1. (6.59)

Using Eqs. (6.38a) and (6.58h) and starling with Eq. (6.59), we can calculate A" (z)
and B"'(z} recursively up to any value of . If we continue, the patiern that cmerges in
the relationship between B“'(z) and A" (27 is

Bz =A% 10 {6.60u)
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or by replacing z by 1/z in Eq. {6.60a} we have the equivalent relation
Aoy =B . (6.60b)

W can verify these equivalent relationships [ormally by induction, e, by verilying
that if they are true for some value [ — 1 then they will be true for i, ‘\pcmﬁ_a]l}, it is
straightforward to sec from Eq. (6.539) that Egs. (6.60a) and (6.60b) arc true for § = (0.
Now note that lori =1,

AV = A -k B =1 - k!
BNo = gAY (@) + 718 () = —k + 277
=z Wl -k
=z ATz
and fori = 2,
APy = AN @) = kar B ) = 1 = kiz 7! = k(1 = Kq2)
=1- k(] = ka7t — ka2
BH) = =i AP (@) + 7BV @ = k(1 = kaz ) + 2700 = k)
=270 = k(] - k)2 = k22
=2 AR (Lo

We can prove the general result by assuming that Eq. {6.60a) and Eq. (6.60b) are trus
fori = 1, apd then substitute into Ea, (6.58b) to obtain

BYz) = —kyz UTHBY M2y + 271 AU )
= o~ [A0 V172 - ke8P (1))
From Eq. (6.58a) it follows that the term in brackets is A/7{1/2), so that in general,
BYz) = 27 AV 2,

as m Eqg. (6.60a}. Thus, we have shown that Egs. (6.60a) and (6.60b) hold for any ¢ = 0.

As indicated earlier, the transfer functions AY}Hz) and B*'(z} can be computed
recursively using Eq. (6.58a) and (6.58b). These transfer functions are ™ -order polyno-
mials, and it is particularly vseful to obtain a direct relationship among the coeflicients
of the polynomials. Toward this end, the right side of Eq. (6,57} detines the coefficients
of AU o be —at! form = 1.2, ..., i with the leading coeflicient equal Lo one; L.e.,
as in Eq. (6.56),

Afizy=1— Za“‘ 2t (6.61)
and similarly,

."’.L“_“I:.E_] T Zuh 1] —m (6.62)
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To obtain a direct recursive relationship for the coefficients ul, " in terms of cr,",‘._ ' and
ki, we combine BEgs (6.60a) and (6.62) from which it follows that
i—1
BZI—I]{I} i :--[f—HA-:l'—'I]{lll,rz] — 1r—1 1— cf::f:._l:':,* w (5_53]
m=1

Substituting Eqs. (6.62) and (6.63} into Eq. (6.58a), 4')(z) can also be expressed as

i—1 i—1
:‘Tlm{,’.] — (J _ E.:&ﬁ ”Z .lrr) -k 1 (Z S N I Za:: -I!E-Hut . (6.64)
m=l m=]

Ke-indexing the second summation by reversing the ordering of the terms {i.e.. replacing
#r by { — m and re-summing ) and combining terms in Eq. (6.64) leads to

i1
ARy [aj;'-” - kr-n,“_;”] ERL ¥, {6.65)
=1
where we see that, as indicated earlier, the coefficient of z—* is —k; Comparing Eqs. (6.65)
and (6.61) shows that

el [.:g'lf--“ —h-a.["'f] O I (6.662)

m m [==rm

al? = k;, {6,66b)

Equations (6.66) are the desired direct recursion hetween the coefficients of A" (z) and
the cocfficients of A 1 (z), These equations. together with Eq. (6.60a) also determine
the transfer function &% (z).

The recursion of Egs. (6.60) can also be expressed compactly in matmix form. We
denote by a@,_; the vector of transfer function coefficients for A% Yz and by &;_,
these coefficients in reverse order, i.c.,

Y TG ¥ i
a0 ]
and
PRI L o un‘-n]r
e e | ;
Then Eqs. (6.66) can be expressed as the matrix cquation
B o o
=] coves | =& | coves . {6.67)
0 -1
The recursionin Eqs, {6.66} or Eqs, (6,67} is the basis for an algarithm for analyzing
an FIR lattice structure to obtain its transfer function. We begin with the flow graph
specified as in Figure 6.37 by the set of k-parameters [k, k2, ..., k). Then we can use
Egs. (6.66) recursively to compute the transfer functions of successively higher-order
FIR fillers until we come to end of the cascade piving us

) .
AD =1 ame " = ;“L; , (6.684)

=l
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k-Parameters-to-Coefficients Algorithm

Given kl, k:.. i .k,u
fori=12.... M
o = k& Eq. (6.66b)
if Bl thenfor j=12,...i-1
ali[”: s{:;c—]] kr 1,1 s'l Eq.{ﬁ,ﬁﬁaj
end
end \ Figure 6.38  Algorithm for converting
ap=a j=12..,M Eq. (6.68b) |  from k-parameters to FIR filier
. : eoafficients.
where
=S w12, M {5.68h}

The steps of Lthis alporithm are represented in l"igi.lrn:: 638

It 15 also of inlerest Lo obtain the k-parameters in the FIR lattice struclure that
realize a given desired transfer function from input x[#] to the oulput ¥[a] = a"™[a]; i,
we wish Lo go from Alz) specilied as a polynomial by Egs. (6.68a) and (6.68b) to the sct
of k-parameters (or the latlice structure in Figure 6.37. This can be done by reversing the
recursion of Egs. (6.66) or (6.67) to obtain successively the transter funcetion A¥ = (z)in
terms of AYHz) fori = M, M —1, ..., 2. The k-parameters are obtained as a by-product
of this recursion.

Specifically, we assume that the coefficients cr},fﬂ =ty form =1, ..., M are spec-
ified and we want to obtain the k-parameters k. .... ky to realize this transfer funetion
in lattice form. We start with the last stage of the FIR lattice, i.e., withi = M. From
Eq. (6.66b),

5
kay = [IILI. - oAy fﬁ'ﬁg}
with A" (z) defined in terms of the specified coefficients as
At
Al:-ul{'z}:-l _ E ""':|'J. — _Zﬂ-m“ = fﬁ?ﬂ}
== |
Inverting Eqs. (6.68) or equivalently Eqg. (6.67), with { = M and ky = “ﬂ then
delermines e g —; , the vector of translorm coeflicients at the next to last stage i = M — 1.

This process is repeated until we reach AV (z),

To oblain a general recursion formula for u.r;: in terms of D:,[,i.\’ from Eq. (f.66a)
note that r.c” ' must be eliminated. To do this, replace m by i — m in Eq. {6.66a) and
multiply both SldLS of the resulting equanon b'.' ki thereby ubtalmng

kol = el
Adding this equation to Eq, (6.66a} results in

il 1 2 =l
ol + k), = i~ — Kl

|':'-‘ [i— l:-_

from which it follows thal

ﬂ":r_1'|=— ?}’]:].E

1\ - U S § {6.71a)
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With ag_’} calculated form = 1,2, ... — | we note from Eq. (A.66b) that

R T (6.71b)
Thus, starting with r.'rw] = ay.m = 1,2, .M we can use Egs. (6.71a) and {6.71h}
to compute u}f:“ 1 Jhorm = 1,2,..., M — | and k), and then repeat this process

recursively toobta iu all of the transfer functions A" (z) and. as a by-product, all of the -
parameters needed for the lattice structure. The algorithm Is represented in Figure 6,39,

Coelficienis-to-f-Parameters Algorithm

Given {r“ﬂ SR T B e M
kag = alil) Fq. (6.69)
far i = M M - . 2

forj=1,2.. ,: - l_

22 Ol Eq. (6.71a)

o 1— .ﬁf q.{ i)
end

oy =afl ] Eq. (6.71b)

Figure 6.39 Algorithm for converting from FIR filter coefficients o #-parameters.

Example 6.9 Kk-Parameters for a 3™-Order FIR System

EZ_E: Consider the FTR svstem shown in Figure @403 whose system fonction is
Ay = 10871 +Hﬁ4*_2 (157623,
i Consequently, M = 3 and the coefficients a: Yin Eg. (6.1, are

o =09 ag“—ﬂm ag — 0.576,

We begin by -::uhﬁertrmg that k3 = arj. =574,
i Mext we want to calenlate the coefficients for transfer function Am{z} using
o Eq (6.71a). Specifically, applying Eq. (6.71a), we obtain {rounded to three decimal

:.’;;‘: places):;
fui 3 HJ 13
7] 4 &
P =B TR _ p7es
| - k3
+ ko

o = _31_L = —0.182

~ From Eq. (6.71b) we then identify ky — u:flj =-0.182
To obtain A'1'(2) we again applv Eq. (6.71a) obtaining

(23 (2
o+ ke
o I TR gera
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% We then identify & = uf”’ = 0.67% The resulting lattice structure is shown in Fip-
ure 6.4,
£
2 -l
z|n} T
04y 0,64
- |.‘I:---—---o-- — -
¥l

.gi': x[n]
Bt {'l_"""
e 1,673 +0.182 0,57
6?1 0,182 /fx 0,57
3 H i , k" \ 2t
%v (b}
£
jﬁ";: Figure 6.40 Flow graphs for example. {a) Direct form, {h) Lattice tarm (coetf-
B cignls rounded).
]

6.6.2 All-Pole Lattice Structure

A lattice structure for implementing the all-pole system function Hiz} = 1/A(z) can
be developed from the FIR lattice of the previous section by recognizing that fiz)
is the inverse filter for the FIR system function A{z). To derive the all-pole lattice
structure, assume that we are given yln] = a'™’(n|, and we wish to compute the input

a"|n} = x[n]. This can be done hy working from right to left to invert the com putatmnq
in Figure 6.37. More specifically, if we solve Eq. (6.58a) for A ™z} in terms of A77(2)
and BY !(z) and leave Eq. {6.58b) as it is, we oblain the pair of equations

Ay = AV D+ k7 BY N (6.72a)
Bz) = kAT Vi 4 7B, 300

which have the flow gruph representation shown in Figure 6.41, Note that in this casze,
the signal flow is from [ to 7 - 1 alang the top of the diagram and from ¢ — 1 to § along
the botlom. Successive connection of M stages of Figure 6.41 with the appropriate k;
in each section lakes the input a'™!(#] to the output ™ |4] as shown in the flow graph
of Figure 6.42. Fmally, the condition x[#] = @™ [n] = 4™ [n] at the terminals of the last
stage in Figure 6.42 causes u feedback connection that provides the sequences b9 [x)
that propaguate in the reverse direetion, Such feedback is, of course, necessary for an
IR svstem,
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L + o Figure 5.41 One stage of computation
Ei ) Ul for an all-pole lattice system,

'The set of difference cquations represented by Figure 642 is?

a"™Min] = y(n) (6.73a)
U =a )+ kBT -1 =M. M-1,...,1 (6.73b]
POl = b V1= ka™ Ynl i=M M —1.....1 {6.73¢)
xIn] = a™n] = 1. (6.73d)

Because of the feedback inherent in Figure 6.42 and these corresponding equations,
initial conditions must be specified for all of the node variables associated with delays,
Typically, we would specify »'"'[ = 1] = 0} for initial rest conditions. Then, if Eq. (6,.73b)
is evaluated first, a" = *{a] will be available at times 1 = 0 for evaluation of Eq. {6.73¢)
wilh the values of 7~ Y[i — 1] having been provided by the previous iteration.

Now we can state that all the analysis of Section 6.6.1 applies to the all-pole lattice
system ol Figure 6.42. T we wish 1o obtain a lattice implementation of an all-pole system
with system function H(z) = 1/A(z), we can simply use the algorithms in Figures 6.39
and 6.38 tooblain k-parameters from denominator polynomial coellicients or vice-versa.

.'r;[ﬂ]=#':”]Tf| f_r'”'”l!ﬂﬂ i . ™ n] o x]n]
o i L “P ---- L
kg™, Kpg-1 / iy
—K 4 TR ok
/\/\' _______ -/_\z;'
ALY iy R B

Figure 6.42 AM-pole lattice system.

Ao Lhat by basing our derivation of the all-pole lattice on che FIR lattice i Fgure 637, we bave
cnded up with the input deooted v[r] and the ourput of#? 0 opposition [ our normal convention. This
labeling 15, of course, arhitrary once the derivation has been complieted.
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Example 6.10 Lattice Implementation of an lIR System

S As an example of an HR system, consider the system function

i

S H(z) = : (6.74a)
£ 1= 0521 4 0edc-? 0576 h
i

iy L

i = {h.74b)
3 (1 08jz Il + 08z Tyt 09:-1) '
TE‘F which is the inverse system for the system in Example 6.9 Figure 6.43(a) shows the
i direcl form realization of this system, whereas Figure 6.43(b) shows the cquevalont
S IR lattice system using the k-parameters computed as in Example .9, Note that the
K.y lattice structure has the same number of delays (memory registers) as the direct form
Hg structure, However, the nomber of multipliers s twice the number of the direct form.,
Si# This is obviously tree for any order M.
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1
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Figure 8.43 Signal flow graph of 1R flter; (a) direct form, (b) lattice form,

Since the latiice structure of Figure 6.42 1% an [R system, we must be concerned
about its stability. We will see in Chapter 13 thal a necessary and sufficient condi-
tion for all the zeros of a polynomial A7) to be inside the unil circle is k| < 1,
i=12,..., M (See Markel and Gray, 1976.) Example 610 conlirms this fact since, as
shown in Bq. (6.74b) the poles of H(z) (zeros of A(z)) are located inside the unit circle
of the z-plane and all the &-parameters have magnitude less than one. For 11R systems,
the guarantee of stability inherent in the condition |&;| < 1 i1s particularly important.
Even though the lattice structure requires twice the number of multiplications per out-
put sample as the direct form, it is insensitive o quantization of the &-parameters. This
property accounts for the popularity of lattice filters in speech svnthesis applications,
{See Quatieri, 202 and Rabiner and Schafer, 1978.)
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6.6.3 Generalization of Lattice Systems

We have shown that FIR systems and all-pole HR systems have a laltice structure
representation. When the system function has hoth poles and zeros, it is still possible to
find a lattice structure based upon a modification of the all-pole structure of Figure 6.42,
The derivation will not be provided herc (Sce Gray and Markel, 1973, 1976.), but it i3
outhned in Problem 11.27.

6.7 OVERVIEW OF FINITE-PRECISION NUMERICAL
EFFECTS

We have secn that a particular LT1 diserele-time system can be implemented by a
variety of computational structures. One molivation for considering allernatives Lo the
simple direct form structures is that different structures that are equivalent for infinite-
precision arithmetic may behave differently when implemented with finite numerical
precision. Lo this section, we give a brief introduction to the major numerical problems
that arise in implementing discrete-time systems. A more detailed analysis of these finite
word-length effects is piven in Scctions 6.8-6.10.

6.7.1 Number Representations

In theoretical analyses of discrete-time systems, we penerally assume that signal valves
and system coefficients are represented in the real-number system. However, with ana-
log discrete-time systems, the limited precision of the components of a circuit makes
it difficult to realize coefficients exactly. Similarly, when implementing digital signal-
processing systems, we must represent signals and coefficients in some digital number
sysiem that must always have finite precision,

The problem of finite numerical precision has already been discussed in Sec-
Lion 4.8#.2 in the contex! of A/ conversion. We showed there that the output samples
from an A/D converter are quantized and thus can be represented by fixed-point binary
numbers. For compactness and simplicity in implementing arithmetie, one of the bils
of the binary number is assumed Lo indicate the algebraic sign of the number. Formats
such as sign and magnitude, one's complement, and two s complement are possible, but
twa's complement is most common.® A real number can be represented with infinite
precision in two's-complement form as

x=Xn (—hr_. + ih;l f) , (6.75)

=]
where X is an arbitrary scale factor and the bs are cither O or 1. The quantity by is
referred to as the sign bir. 1 by =0, then 0 = x = X andil by =1, then =X, = x =00
Thus any real number whose magnitude is less than or equal to X, can be represented
by Eq. (6.75). An arbitrary real number x would require an inlinite number of bits for
its exact binary representalion. Aswe saw in the case of A/D conversion, if we use only

S detailed description of binary number systems and corresponding arithmetic is given by Knuth
(19970,
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a linite number of bits {8 + 1 ). then the representation of Eq. (6.75) must be modilicd
Lo

f fi
I = 0glr]l = Xu (—bu + Z h,-:“) = Xutp. (6.74)
i=1

The resulting binary representation is quantized, so that the smallest difference between
numbers is

A=Xn28 (6.77)

In this case, the quantized numbers are in the range —X,, = ¥ = X, The {ractional
part of & can be represented with the positional notation

ig = byobibzba---bp. {6.74)
where ¢ represents the binary point.

The operation of quantizing a number Lo (B + 1} bils can be implemented by
rounding or by truncation, but in either case, quantization is a nonlinear memory-
less operation. Figures 6.44(a) and 6.44(b) show the input—output relation for two's-
complement rounding and truncation, respectively, for the case B = 2. ln considering
the effects of quantization, we often define the guartization error as

e = Oalx] —x. (6.79)
For the case ol two's-=complement rounding, — A f2 = ¢ = A /2 and for bwo's-complement
truncation, — A = ¢ = (1.9

Il a number is larger than X, (asituation called an overflow), we must implement
some method of determining the quantized result. In the twos-complement arithmetic
system, this need arises when we add two numbers whose sum is greater than X, For
example, consider the 4-bit two's-complement number 0111, which in decimal form
i 7. If we add the number 0001, the carry propagates all the way 1o the sign bit, so
that the result is 1000, which in decimal form is —8. Thus, the resulting error can be
very large when overflow occurs. Figure 6.45(a) shows the twos-complement rounding
guantizer, including the effect of regular two's-complement arithmetic overflow, An
alternative, which is called serwration overflow or clipping, is shown in Figure 6.43(b).
This method of handling overflow is generally implemented for A/T} conversion, and
it sometimes is implemented in specialized DSP microprocessors for the addition of
two's-complement numbers, With saturation overflow, the size of the error does not
increase abruptly when overflow occurs; however, a disadvantage of the method is that
it voids the following interesting and useful property of two's-complement arithimetic:
If several two's-complement numbers whaose sum would not overflow are added. then
the result of two's-complement accumulation of these numbers is cotrect, even though
intermediale sums might overflow.

Both quantization and overflow introduce ermots in digital representations of num-
bers. Unfortunately, Lo minimize overflow while keeping the number of bits the same,
wi musl increase X, and thus increase the size of guantization errors proportionately.
Hence, to simultaneously achieve wider dynamic range and lower quantizalion error,
we must increase the number of bits in the binary representation.

ENote that Eq. (6,76} also represents the result of rounding or troncating aev {8 + 1)-bil binary

representation, where 8) = £ In ths case A would be replaced by (4 - X2 M) in the hounds on the sie
of the quantization ermor.
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So far, we have simply stated that the quantity X, is an arbitrary scale factor;
however, thisfactor hasseveraluseful interpretations. In A/D conversion, we considered
X tobe the full-scale amplitude of the AT converter, In this case, X, would probably
represent a voltage or current in the analog part of the system. Thus, X, serves as a
calibration constant for relating binary numbers in the range —1 = ¥z < 1 to analog
signal amplitudes.

To digital signal-processing implementations, it s common to assume that all signal
variables and all coefficients are hinary fractions. Thus, if we multiply a { 8 41 )-bit signal
variable hy a (B + 1)-bit coefficient, the result 15 a (28 4 1)-hit fraction that can be
conveniently reduced to (B + 1) bits by rounding or truncating the least significant bits,
With this convention, the gquantity X, can be thought of as a scale factor that allows the
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Figure 6.45 Two's-complement rounding. (a) Natural overflow, (b} Saturation,

representation of numbers that are greater than unity in magritude. For example, in
fixed-point computations, it 15 common to assume that each binary number has a scale
factor of the form X, = 2% Accordingly, a value ¢ = 2 implies that the binary point is
actually located between by and by of the binary word in Eqg. (6.78). Oflen, this scale
lwctor is not explicitly represented; instead, it is implicit in the implementation program
or hardware architecture,
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Still another way of thinking about the scale factor X, leads (o the foating-poin
representations, in which the exponent ¢ of the scale factor is called the characteristic
and the fractional purt Fg is called the mantivsa. The characteristic and the mantissa
are each reproesentled exphicitly as binary numbers in floating-point arithmetic systems.
Floating-point representations provide a convenient means for maintaining both a wide
dynamic range and a small quantization noise: however, quantization error manifesis
itself in a somewhal ditfferent way.

6.7.2 Quantization in Implementing Systems

MNumerical quantization affects the implementation of LTT discrete-time systems in sev-
eral ways, As a simple illustration, consider Figure 6.44(a), which shows a block diagram

x|n] vin|  w|H]
—_—p! () + - i _i'}.-"c e
xA7) T 1 FeAf)
-
T P T

{a)
s x[n] - o, £[n] 05 i [l nre ¥ln il s N
xAf) T f Fetn)
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T 4 i T
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3n]
— e BiC f—
X1 el
T £alt] T
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{4}

Flgure 8468 mplementation of discrete-time filtering of an analog signal. (a} deal
system. (b} Monlinear model. () Linearized madel.
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[or a systemn in which a bandlimited continuous-time signal x.(3 is sampled Lo obtain
the sequence xlr], which is the inpul to an L1 system whose systemn function is

Hiz) = (6.80)

=4z b
The cutput of this svstem, v[nl, 15 converted by ideal bandlimited interpolation to the
bandlimited signal v.it)

A more realistic model is shown in Figure 6.46{b). In a practical setting, sampling
would be done with an A/ converter with finite precision of (8; + 1) bits. The sys-
tem would be implemented with binary arithmetic of (8 4+ 1) hits. The coefficient o 1n
Figure 6.46(a) would be represented with (8 + 1) bits of precision. Also, the delaved
vatiable ©ln — 1] would be stored in a {8 4 1)-bit repister, and when the {8 4 1)-bit
number iln — 1] is multiplied by the {8 -+ 1)-bit number 4, the resulting product would
be (28 + 1) bits in length. If we assume that a (8 + 1)-bit adder is used, the product
dvln — 1] must be quantized (i.e. rounded or truncated) to (5 + 1) bits before it can
be added to the (8; + 1)-bit input sample &|n]. When B; = B, the (8; -+ 1) bits of the
input samples can be placed anywhere in the (8 4 1)-hit hinary word with appropriate
extension of the sign. Different choices correspond to different scalings of the input,
The coeflicient a has been quantized, so leaving aside the other quantization errors,
the system response cannot in general be the same as in Figure 6.46{a}. Finally, the
(B -+ 1)-hit samples #[n]. computed by ilerating the difference equation represented
by the block diagram, would be converted to an analog signal by a (#, + 1)-hit VA
converter. When B, = B, the output samples must be quantized further before TH/A
COMYETSIOM.

Allthough the model of Figure 6.46(0) could be an accurate representation of
a real systern, it would be difficult to analyee. The system 15 nonlinesr owing to the
gquantizers and the possibility of overflow at the adder. Also, quanlizalion errors arc
introduced 4t many points in the system. The eflcets of these errors are impossible o
analyze precisely, since they depend on the input signal, which we generally consider to
be unknown. Thus, we are forced Lo adopt several dillerent approximation approaches
Lo simplily the analysis of such svstems,

The effect of quantizing the svstem parameters, such as the coellicient a in [ig-
ure 6.46(a), is generally determined separately from the effect of quantization in data
conversion or in implementing difference equations. That is, the ideal coetficients of a
svstem function are replaced by their quantized values. and the resulting response fune-
tions are tested to see whether, in the absence of other guantization in the arithmetic,
quantization of the filter coefficients has degraded the performance of the system o
unacceptable levels. For the example of Figure 6.46. if the real number « is quantized
to (& 4+ 1) bits, we must consider whether the resulting system with system function

1

ﬁ{z‘.l =
1 —az~

] (6.81)
is close enough to the desired system function H(z) given by Eq. (6.80}, Since there are
only 20+ different ( B + 1)-bit binary numbers, the polz of H(z) can occur only at 26+
locations on the real axis of the z-plane. and. while itis possible thatd = «, in most cases
some deviation from the ideal response would result. This type of analysis is discussed
in more general lerms in Section 6.8,
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The nonlinearity of the system of Figure 6.46(b} causes behavior that cannot occur
in a linear system. Specifically, systems such as this can exhibit zero-input limit cycles,
where the output oscillates periodically when the input becomes zero after having been
nonzero. Limit cycles are caused both by quantization and by overflow, Although the
analysis of such phenomena is difficult. some useful approximate results have been
developed. Limit cycles are discussed briefly in Saction 6,10,

I care is taken in the design of a digital implementation, we can ensure that
overflow occurs only rarely and quantization crrors are small. Under these conditions,
the system of Figure f.46(h) behaves very much like a limear system (with guantized
coefficients) in which quantization errors are injected at the input and oustput and at
internal points in the structure where rounding or truncation occurs. Therefore, we can
replace the model of Figure 6.46(h) by the linearized model of Figure 6.46(c). where the
guantizers are replaced by additive noise sources (sec Gold and Rader, 1969; Jackson,
1970w, 1970b). Figure 6.46(c) is equivalent to Figure 64600 ) if we know cach of the noise
sources exactly, However, as discussed in Section 4.8.3, uscful resulls gre obtained if
wi assume a random noise model for the quantization noisc in A/D conversion. This
same approach can be used in analyzng the effects of arithmetic guantization in digital
implementations of linear systems. As seen in Figure 8.46(c), cach noise souree injects
a random signal that is processed by a different part of the sysicm, but since we assume
that all parts of the system are linear, we can compuie the overall effoct by superposition,
In Section 6.9, we illusirate this sivle of analysis for several imporiant systems.

In the simple example of Figure 646, there is litile flexibility in the choice of
structure. However, for higher-order systems, we have seen that there is a wide variety
of choices. Some of the structures are less sensitive to coefficient guantization than
others. Similarly, because different structures have different quantization noise sources
and because these noise sources are filtered in different ways by the system, we will find
that structures that are theoretically equivalent sometimes perform quite differently
when finite-precision arithmetic is used to implement them,

6.8 THE EFFECTS OF COEFFICIENT QUANTIZATION

I T discrete-time systems are generally used to perform a filtering operation, Methods
for designing FIR and IR filters. which are discussed in Chapter 7, typically assume
g particular form for the system function. The result of the fller design process is a
syslem function ot which we must choosce an implementation structure {a set of dif-
ference equalions) from an unbmiled number of theorelically equivalent implementa-
tions, Although we are almost alwavs interested in implementations that reguire 1he
feast hardware or software complexity, it s not always possibic to base the choice of
implementation struciure on this criterion alone. As we will sce in Sceilion 6.9, the im-
plementation siructure detlermines the guantization noise penerated internally in the
system. Also, some structures are more scositive than others to perturbations of the
coefficients. As we pointed out in Section 6.7, the standard approach o the study of co-
efficient quantization and round-off noise is to treat them independently. In this section,
we consider the effects of quantizing the system parameters,



Chapter & Structures for Discrete-Time Systems

6.8.1 Effects of Coefficient Quantization in IR Systems

When the parameters of a rational system function or corresponding difference equation
arc quantized, the poles and zeros of the system function move 1o new positions in the
z-plane. Equivalendy, the frequency response is perturbed from its original value. 1f the
system implementation structure is highly sensitive to perturbations of the cocflicients,
the resulting system may no longer meet the oripinal design specifications, or an IR
svstem might even become unstable,

A detailed sensitivity analysis for the general case is complicated and vsually of
limited value in specific cases of digital filter implementation. Using powerful simulation
tools, it is usually easy to simply quantize the coefficients of the difference equations
employved in implementing the system and then compute the corresponding frequency
response and compare it with the desired frequency-response function, Even though
simulation of the system is generally necessary in specific cases, it is still worthwhile
to consider, in general, how the system function is affected by guantization of the ¢o-
efficients of the difference equations. For example, the system function representation
corresponding to both dircet forms (and their corresponding transposed versions) is the
ratio ol polynomials

A
Zﬁg:_"
Hiz)= -+ : (6.82)
1- Zﬂk?_"k
k=

The sets of coefficients {oy ] and {8} are the ideal infinite-precision coefficients in bath
direct form implementation structures {and corresponding transposed structures). If we
quantize these coelficients, we oblain the system funcltion

Hiz) =" {6.53)

where i = ag + Ay and by = by + Ab, are the quantized coefficients that differ from
the original coefficients by the quantization errors Aag and Ady.

Now consider how the rools of the denominator and numerator polyvnomials (the
poles and zeros of H{z)) are affcetled by the errors in the coefficicnts, Each polynomial
root is affected by all of the errors in the eoctlicients of the polynomial since each root
15 4 [unetion of all the coeficients of the polynomial, Thus, cach pole and rero will he
affected by all of the quantization errors in the denominator and numerator polynomi-
als, respectively. More specifically, Kaiser (1966) showed that if the poles {or zeros) are
tightly clustered. it is possible that small errors in the denominator (numeralor) cocffi-
cients can cause large shifts of the poles (zeres) for the direct form structures, Thus, if
the poles (zeros) are tightly clustered, corresponding to a narrow-bandpass filter or a
narrow-bandwidth lowpass filier, then we can expect the poles of the dircet torm struc-
ture to be quite sensitive to quantization errors in the coefficients. Furthermore, Kaiser's
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analysis showed that the larger the number of clusiered poles (zeros), the greater is the
sensitivily.

The cuscade and paralle] form system functions, which are given by Egs (6.30) and
(6,35), respectively, consist of comhinations of 2" _grder direct form systems. However,
in both cases, each pair of complex-conjugate poles is realized independently of all the
other poles. Thus, the error in a particular pole pair is independent of its distance from
the other poles of the system function. For the cascade form. the same argument holds
fur the zeros, since they are realized as independent 20 _grder factors. Thus, the cascade
form 15 generally much less sensitive o cocfficient guantizapion than the equivalent
direct form realization.

Asscen in Eqg. (6.33), the zeros of the parallel form system function are realized
implicitly. through combining the quantized 2™ -order sections o obtain a common
denominator, Thus, a particular zerois affected by gquantization errors in the numerator
and denominator coefficients of @ff the 2°¢-order scctions, However, for most practical
filter designs, the parallel form is also (ound o be much less sensitive o cocllicient
quantization than the equivalent direct forms because the 2™-order subsystems are
nol extremely sensitive o gquantization. In many practical filters, the zeros are olien
widely distributed around the unit circle, or i some cases they may all be located ag
z = %1. In thelatter situation. the zeros mainly provide much higher attenuation around
frequencies w = 0 and w = r than is specificd, and thus, movements of zeros away from
z = %1 do not signiticantly degrade the performance of the system.

6.8.2 Example of Coefficient Quantization in an ENiptic
Filter

As an illustration of the etffect of coefficient quantization, consider the example of an
LK bandpass elliptic filter designed using approximation technigues to be discussed in
Chapter 7. The filter was designed to meet the following specifications:

0.99 < [Hi{e/)| =< 1.01. 037 < |w = 04w,
[H (e!™)] < 0.01ii.e., —40dBY, en| = (.29,
IH{ed®)| < 0.0Hie., — 40dB), DAl = || < 7.

That 15, the filter should approximate one in the passband, () 3r = || = (Ldor, and zero
elsewhere in the base interval 1) < || = 7, As a concession to computational realizabil-
iy, & ransition {do not care) region of (U071 x s allowed on either side of the passband. In
Chapter 7, we will see that specifications for freguency-selective filter design algorithms
arc often represenied in this form. The MATLAB lunction for elliptic filler design pro-
duces the cocllicients of a 12'-order direct form representation of the system [unction
of the [orm of Eq. (6.82), where the coefficients a; and by were computed with 6d-bit
Noating-point arithmetic and are shown in Table 6.1 with [ull 15-decimal-digit precision.
We shall refer 1o this represeniation ol the filter as “unquantized.”

The frequency response 20log, |Hie/*)| of the unguantized filter is shown in
Figure 6.47(a), which shows that the filter meets the specifications in the stopbands (at
least 40 dB attenuation ). Also, the solid line in Figure 6.47(b). which is a blow-up of the
passband repion 037 = |w| = Odx for the unguantized filter, shows that the filier also
meets the specifications in the passband.
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TABLEG.2 ZEROS AND POLES OF UNQUANTIZED 12TH-CRDER
ELLIPTIC FILTER.
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16-bit quantization of tha direct form

{21 4] coefficients,

Factoring the numerator and denominator polynomials corresponding to the co-
efficients in Table 6.1 in Eq. {6.82) yvields a representation

12 : e
H[H_ﬂbﬂ-“_ﬂ-z 1
L) = b T el .

(6.54)

in terms of the zeros and poles, which arc given in Table 6.2,

The poles and zeros of the unquantized filter that lie in the upper half of the z-plane
are plotted i Figure 6.48(a). Note that the zeros are all on the unit circle. with their
angular localions corresponding to the deep nulls in Figure 6.47. The zeros are sirate-
gically placed by the filter design method on either side of the passband (o provide the
desired stopband attenuation and sharp cutoff. Also note that the poles arc elusterad in
the narrow passhand, with two of the complex conjugate pole pairs having radii preater
than .99, This finely tuned arrangement of zevos and poles is required 1o produce the
narrowhand sharp-cutoff bandpass filler frequency response shown in Figure 6.47(a).

A glanee at the coeflicients in Table 6.1 suggests that quantization of the direct form
may present significant problems. Recall that with a fixed quantizer, the quantization
error size is the same, regardless of the size of the number being guantized; i.e., the
quantization ervor for coefficient a7 = 0.6262858610¢551 can be as large as the error
for coetficient ap, = S8.07462886449437 if we usc the same number of bits and the
same scale factor for both. For this reason, when the direct form coefficients in Table
.1 were quantized with 16-bit precision, each coefficient was quantized independently
of the other coefficienis so as to maximize the accuracy for each coefficient; 1.e., each
16-bit coefficient requires its own scale factor.” With this conservative approach, the

o simplily implementation, it would be desirable, but far less aveurete, if sach coefficient bad the
same seale factor,
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resulling poles und zeros are as depicted in Fipure 6.48(b). Note that the zeros have
shilted noticeably, but not dramatically. In particular, the closely-spaced pair of zeros
toward the top of the circle has remained at about the same angle, but they have moved
off of the unit circle into a group of four complex conjugate reciprocal zeros, whereas
the olher zeros are shifted angularly but remain on the unit circle. This constrained
movement is a result of the symmetry of the coefficients of the numerator polynomial,
which is preserved under quantization. However, the tightly clustered poles, having no
symmetry conslraints, have moved to much different positions, and, as iseasily observed,
some of the poles have moved outside the unit circle. Therefore, the direct form svstem
cannot be implemented with 16-bit coefficients because it would be unstable,

On the other hand. the cascade form is much less sensitive to coefficient quan-
tization, The cascade form of the present example can be obtained by grouping the
complex conjugate pairs of poles and zeros in Fq. (6.84) and Table 6.2, to form six

2 _grder factors as in

il : 1, w_ 1 f -1 -2
el — ez M1 —fz7 ) bup + b 4 byt
Hiz =] e =T] L CRR

i (1 —drez-1M1 -z 1) vl - a2~ a2t

The zeros ¢ and poles dy and cocllicients By and a; of the cascade form can be com-
puted with 64-hit loating-point accuracy so these coeflficients can still considered o be
unquantized. Table 6.3 gives the coelficients of the six 2™ -order sections (as defined in
Eqg. (6.83). The pairing and ordering of the poles and zeros [ollows a procedure to be
discussed in Section 6.49.3,

TABLEG.3 LNQUANTIZED CASCADE-FORM
COEFFIGIENTS FOR A 12TH-OROER ELLIPTIC FILTER

(6.85)

k ar aay; g by by

1 07379 0831917 0037483 DOR3%dE 0137483
1 0961757 OEelll  0ZELSSE D446ER1 (LZB155E
3 1LAZESTRE ANEITE 0545323 025TME (843302
4 LLIT6dE 841938 O0T06MK)  GOS00IE3 QLRG0
5 0605903 -00E4347 07eR508 0426879 (79509
B LITAZR  ARWRATIT D93%EST 0 -1143918 (LU3TRET

1o illustrate how coellicients are quantized and represented as fixed-point num-
bers, the coefficients in Table 6.3 were quantized to 16-bit accuracy. The resulting coef-
ficients are presented in Table 6.4, The fixed-point coefficients are shown as a decimal
inteper times a power-of-2 scale factor. The binary representation would he obtained
by converting the decimal integer to a nary number, In a fixed-point implementation,
the scale factor would be represented only implicitly in the data shifts that would be
necessary to ling up the binary points of products prior Lo Ltheir addition Lo other prod-
ucts, Motice that binary points of the cocfficicnts are not all in the same location. For
example, all the coetficients with scale factor 2 15 have their binary points belween the
sign bit, by, and the highest fractional bit, &, as shown in Eq. (6.78). However, numbers
whose magnitudes do nol excecd (1.3, such as the coefficient bgz, can be shified lefl by
one or more bit positions.® Thus, the binary point for by is actually o the left of the

EThe use of different binary point locatiens retains greater acevracy in the coelficients, bul it compli-
cates the programming or system archilecturnes.
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sign bit as if the word length is extended 1o 17 bits. On the other hand, numbers whose
magnitudes exceed §| bul are less than 2, such as aqg, must have their binary points
moved one position to the right, e, between by and by in Eqg. (6.TR),

TABLE 6.4  5IXTEEN-BIT QUANTIZED CASCADE-FORM COEFFICIENTS
FOR A 12TH-ORDER ELLIPTIC FILTER

k Apg fro0 b LT By

M1 2715 2Rl = 275 1TRNS k2 V7 a3 w2V RS = 2717
AT = 2717 —ZBIED = 210 iEETR w2710 2913l w21 qHITR w200
626 2717 FIE w27 17556 w210 BLET « 2715 17356 » 2713
B 1 B S L 1111 PV St T 17 RO L S NG 1y § [ RV Lol B 7 SOV, T b
T (7 ¥ S N s PR S L L% kRIS I 1+ oy BV Sl L L & & IR R
6 19220 w271 Laris k27 18039 w2710 18387 2271 15030 214

T

ad

The dashed line in Figure 6.47(b) shows the magnitude response in the passband
for the quantized cascade form implementation. 'The frequency response is only shightly
degraded in the passband region and negligibly in the stopband.

To obtain other equivalent structures, the cascade form system function must be
rearranged into a different form. For example, if a parallel form structure is determined
by partial fraction expansion of the unquantized system function), and the resulting
coefficients are quantized to 16 bits as before, the frequency response in the passhand
i5 50 close to the unquantized frequency response that the difference is not observable
in Figure £.47(a) and barely observable in Figure 6.47(h).

The example just discussed illustrates the robustness of the cascade and paral-
lel forms to the effects of coefficient quantization, and il also illustrates the extreme
sensitivity of the direct forms for high-order filters. Becausc of this sensitivity, the di-
rect forms are rarely used for implementing anything other than 2"™-order systems.”
Since the cascade and parallel forms can be configured to require the same amount of
memory and the same or only slightly more computation as the canonic direct form,
these modular structures are the most commonly used. More complex structures such
as lattice structures may be more robust for verv short word lengths, but they require
significantly more computation for svstems of the same order.

6.8.3 Poles of Quantized 2™-Order Sections

Even for the 2™ _order systems that are used to implement the cascade and parallel
forms, there remains some flexibility 1o improve the robusiness to coefficient quanti-
zation, Consider a complex-conjugate pole pair implemented using the direct form, as
in Figure 6.49. With infinite-precision coefficients, this flow graph has poles at z = re’®
and z = re~ /%, However, if the coefficients 2r cos# and —r? are quantized, only a finite
number of different pole locations is possible. The poles must lie on a grid in the z-plane
defined by the intersection of concentric circles (corresponding to the quantization of
r2} and vertical lines (corresponding to the quantization of 2r cost/). Such a grid is

%an exception is in speech synthesis, where systems of 1M _prder and higher are roulinely smple-
mented using the direct farm, This iz possible becavse in speech svathesis the poles of the system function
are widely sepoaraled (see Rabiner and Schafer, 1978},
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Figure 6.49 Direct torm
implementation af a complex-corjugate
pole pair.

illustrated in Figoure 6.500a) Lor 4-bit quantization (3 bits plus 1 bit for the sign)s de.,
r? s restricted 1o seven positive values and zera, whereas 2r cos 8 is restricted (o seven
positive values, eight nepative values, and zero, Figure 6.500b) shows a denser grid
abtained with 7-bit quantization (& bits plus 1 bit for the sign). 'The plots of Figure 6,50
are, of course, symmetrically mirrored into each of the other quadrants of the ;-plane,

Z-plane

o Reclizable pole posilions

e L
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Sl B o R
b : IR o Dl earcle
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Figure 6.50 Pole-locations tor the

i1 0.5

(I

2 prder 1R direct form system of
Figure 649, {a) Four-bit quantization of
coelficierts. (k) Seven-hit quantization.
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\' implemertation of a complex-canjugate
R pole pair,

Matice that for the direct form, the grid is rather sparse around the real axis. Thus, poles
located around @ = O or @ = 7 may be shifted more than those around ¢ = 772, OF
coursg, it 1s always possible that the infinite-precision pole lacation is very close ta one
of the allowed quantized poles Inthis case, quanlization causes no problem whatsocver,
but in general, quantization can be expected to degrade performance.

An alternative 2™-order structure for realizing poles at 7 = re/™ and z = re /% is
shown in Figure 6,51, This structure is teferred Lo as the coupled form lor the 2"-order
system {sce Rader and Gold, 1967 [Uis casily venflicd thal the systems of Figures 6.49
and .51 have the same poles tor infinile-precision cocfficients To implement Lhe system
of Figure 6,51, we must guantize r cos @ and r sin 4. Since these guantitics are the real and
imaginary parts, respectively, of the pole locations, the quantized pole locations are at
intersections of evenly spaced horizontal and vertical lines in the z-plane. Feures6.52(a)
and 6.32{h) show the possible pole locations for 4-bit and 7-bit quantization, respectively.
[n this case, the density of pole locations is uniform throughout the interior of the unit
circle, ‘Iwice as many constant multipliers are required to achieve this more uniform
density. In some sitnations, the extra computation might be jusiified to achieve more
accurate pole location with reduced word lenzth.

6.8.4 Effects of Coefficient Quantization in FIR Systems

For FIR systems. we need only be concerned with the locations of the zeros of the system
function, since, for causal FIR systems all the poles are at & = (1. Although we have just
seen that the direct form struciure should be avoided for high-order TTR systems, it turns
oul that the direct form structure is commonly used for FTR systems. To understand why
this i% w0, we express the system funclion for a divcet form FIR system in the form

M

Hizy=> hnlz™", (6.86)
=0

Mo SUPpOsC that the coefficients {hln]] are quantized, resulting in a new set of coelfi-
cients {afn| = hln] -+ Ah[r]} The system function for the guantized system is then
M
Hizy = hlnl™" = Hiz) = AH{2), (6.87)

=il
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e Yigure 6.51. (z) Four-bit quantization of
coefficiants. {0} Seven-bit quantization.

where

it
AH(Z) =Y Ahlnle™. (6.88)

w=il

Thus, the system function (and therefore, also the frequency response ) of the quantived
swslern is linearly related to the guantization errers in the mpulse-response coefiicients,
For this reason, Lhe quanlized syslem can be represenled as in Figure 6,53, which shows
the unguantized system in parallel with an error system whose impulse responsc is
the sequence of quantization error samples [Af|n]] and whose system function is the
carresponding z-transform, A7z,
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w1 (2]
+
x|n| ¥l
= AH(z) Figure 6.53 Representation of
coefficient quantization in FIR systems.

TABLE 6.5 UMNOUANTIZED AND QUANTIZED COEFFICIENTS FOR AN QOPTIMLIM

FIR LOWPASS FILTER (M = 27)

Cocfficient Unquoantized 16 hits 14 hits 13 hits 2 birs
R = k271 1359657 « 102 A5 w2 11213 w2 12 w2 ?
RI1T = h[26] 1616003 = 10~ §3 w23 13 5 2718 Tx2 12 w2
B2 = k25 =T.TIE0GR x 107 —28g 27 MF —63x 213 —32 w212 —1x27
R3] = R[74]  —2AE6EA] w103 e N, - vl L L | O 127
Fid] = k23] 1255246 « 10~ 411 = 2-1 Lok 2-13 5 w212 2x27
Al5] = h[22] A5UER0 = 10 T 216 x 215 545213 27212 1x72
BT =k[21T 22792 w1072 7 w2l jErwa-ld 0 _glwzld 3w
R[] = h|20) 1.524663 x 1072 Sl = 2717 125 2713 2w 21" 2x2
BRI = k|19 AT20RE 10 7 1212 15 M5x2 17 1522 12 x2 7
A9 = R[1H] 3.233337 « 102 1054 5 213 T o 210 132 = 7-12 4x72-7
R10| = R117] —6BSITET = 1072 2142 w271 _sae w2713 e w1t gl
AN =hA[16] —T526754 % 10-7 3467 x2- 1% @172 _a@x2 1 w27
BI121 - A[15] 1560870 « 10—t SIS =271 e 13 e300 w2 T
A3 = h(14] 430004 <1070 14300271 R0« 271 100 w271l Se w27

Another approach to studying the sensitivily of the direcl form FIR structure
would be Lo examine the sensitivity of the zeros o gquaniization errors in the impulsc-
response coellicients, which are, of course the coefficients of the polynomial Hiz). 1f
the zeros of Hiz) are lightly clusiered, then their locations will be highly sensitive to
quantization errors in the impulse-response cocllicients. The reason that the direct form
IR system is widely used is that, for most linear phase FIR filters, the zeros are more
ot less uniformly spread in the z-plane. We demonstrate this by the following example.

6.8.5 Example of Quantization of an Optimum FIR Filter
As an example of the effect of coefficient quantization in the FIR case, consider a
lingar-phase lowpass filter designed to meet the following specifications:
0.99 = |Hie)| = 101,
[H(e!)| = 0.001{i.c., —60dB),

This filter was designed wusing the Parks-McClellan design technique, which will be
discussed in Section 7.7.3. The details of the design for this example are considered in
Section 7.8.1

Table 6.5 shows the unquantized impulse-response coefficients for the system,
along with quantized coefficients for 16-, 14-, 13-, and &-bit quantization. Figure 6.54

= || = (0.4m,

(Lfr =< |e) = .
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{b) Approximation error for unguantized case. (Error not defined in transition band.)
{¢} Approximation ereor for 16-bit guantization,
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gives a comparison of the requency responses of the various systems. Figure 6.54(a)
shows the log magnitude in dB of the frequency response tor unquantized coefficients
Figures 6.54(b), (e}, (d). (), and {I} show the passband and stopband approximation
errors {Crroms im approximating unily in the passband and zero in the stopband) for
the unguantized. -, 14-, 13-, and 8-bil quantized cascs, respectively. From Figure 6.54,
we sie that the system meets the specifications for the unguantized case and both the
16-bil and 14-bit quantized cases. However, with 13-bit quantization the stopband ap-
proximalion error becomes greater than 0.001, and with B-bit quantization the stopband
approximation error is over 1Himes as large as specified. 'Thus, we see that al least 14-bit
coefficients are required for a direct form implementation of the svslem. However, Lhis
is not a serious limitation, since 16-bit or 14-bit coefficients are well matched 1o many
of the technologies that might be used to implement such a filter.

The effect of quantization of the filter coefficients on the locations of the zeros
of the filter is shown in Figure 6.55. Note that in the unquantized case, shown in Fig-
ure h.55{a}. the zeros are spread around the z-plane, although there is some clustering
on the unit circle. The zeros on the unit circle are primarily responsible for developing
the stopband attenualion, whereas those at conjugate reciprocal locations off the unit
circle are primarily responsible for forming the passband. Note that little difference
is observed in Figure 6.55(b) for 16-bit quantization, but in Figure £.55(c}), showing
| 3-b1t quantization, the zeros on the umt cirele have moved significanthy. Finally, in Fig-
ure 6.55(d}, we see that 8-hil quantization causes several of the zeros on the unit circle
to pair up and move off the cirele to conjugate reciprocal locations. This behavior of
the zeros explains the behavior of the frequency response shown in Figure 6.54,

A final point about this example is worth mentioming, All of the unquantized
coelficients have magnitudes less than 0.5, Consequently, it all of the coeflicients (and
therefore, the impulse response) are doubled prior Lo quantization, more efficient use
of the available hits will result, corresponding in effect to increasing B by 1. In Table 6.5
and Figure 6.54, we did not take this potential for increased accuracy into account.

6.8.6 Maintaining Linear Phase

So far, we have not made any assumptions about the phase response of the FIR sys-
tem. However, the possibility of generalized linear phase is one of the major advan-
tages of an FIK system. Recall that a linear-phase FIR system has either a symmetric
(#M — n] = Rln]} or an antisymmetric (h|M — r] = —h|n]) impulse response. These
linear-phase conditions are easily preserved for the direct form quantized system. Thus,
all the systems discussed in the example of the previous subsection have a precisely
linear phase, regardless of the coarseness of the quantization. This can be seen in the
way in which the conjugate reciprocal locations are preserved in Figure 6,55,

Figure 6.55(d} supgesis that, in situations where quantization is very coarse or for
high-order systems with closely spaced zeros, it may be worthwhile to realize smaller
sels of zeros independently with a cascade form FIR system. To maintain hinear phase,
each of the sections in the cascade must also have linear phase. Recall that the zeros
of a inear-phase system must oceur as illusirated in Figure 6.34, For example, if we use
2M_srder sections of the form (14+a2 ™" + 2 %) for each complex-conjugate prair of zeros
on the unil circle. the zero can move only on the unit cirele when Lhe coefficient a is
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Figure 6.55 Effect of impulse responze quantizaticn on zeros of Hizp. (a) Un-
guantized. {h) 16-hit quantization. (o) 13-bit quantization. {d) B-hit quantization.

guantized. This provents »eros from moving away from the unil circle, thereby lessening
their atlenuating effect, Similarly, real zeros mside the unit circle and st the reciprocal
location outside the umit cirele would remain real. Also, zeros at £ = +1 can be realized
exactly by 1™ -order systems. IF a pair of complex-conjugate zeros inside the unit circle is
realized by a 2™ -order system rather than a 4™-arder system, then we must ensure that,
for each complex zero inside the unit circle, there is a conjugate reciprocal zero outside
the unit cirele. This can be done by expressing the 4th_order factor corresponding to

zerosat z = ref and z =+ 1e 7 as

3 d

I I--:?_z‘1L Fdr 24 ey

5y {689
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Figure 6.56 Subsystem 0 implement AM.grder factors in a jinear-phase FIR
system such that linearity of the phase is maintained independently of parameter
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This condition correspands to the subsystem shown in Fipure 6.56. This system uses the
same coefficients, —2r cos# and /=, to realize both the zeros inside the unit circle and
the conjugate reciprocal zeros outside the unit circle, Thus, the linear-phase condition is
preserved under quantization. Notice that the factor {1 —2r cos#z 71+ 72z~ 2) isidentical
to the denominator of the 2" order direct form 1TR system of Figure 6.4%. Therefore, the
set of quantized reros is as depicted in Figure 6,50, More details on cascade realizations
of FIR aystems are given by Herrmann and Schiissler (19700),

6.9 EFFECTS OF ROUND-OFF NOISE IN DIGITAL FILTERS

Dilference cqualions realized with fnile-precision arithmelic are nonlinear systems
Although it is important in general to understand how this nonlineanity affects the per-
formance ol discrete-time systems, a precise analyvsis of arithmetic quantization effects
15 penerally not required in practical applications, where we are typically concerned with
the performance of a specific system. Indeed, just as with coefficient quantization, the
most effective approach is often to simulate the system and measure its performance,
FFor example, a comumon objective in quantization error analysis is to choose the digital
waord length such that the digital system is a sufficiently accurate realization of the de-
sired linear system and at the same time requires a mininnun of hardware or software
complexitv. The digital word lengih can, of course, be changed only in steps of 1 bit,
and as we have already seen in Section 4.8.2, the addition of 1 bit to the word length
reduces the size of quantization errors by a factor of 2. Thus, the choice of word length is
insensitive to maccuracies in the quantizalion error analysis; an analysis that is correct
to within 30 to 40 percent is often adequate. For (s reason, many of the imporiant
effects of quantization can be studied using hinear additive noise approximations, We
develop such approximations in this section and llastrate their use with several ex-
amples. An exceplion s the phenomenon of zero-input Hmit cyveles, which are strictly
nonlinear phenomena. We restrict our study of nonlinear models for digital filters to a
bricf introduction Lo zero-inpud imit cycles in Section 6140,

6.9.1 Analysis of the Direct Form IR Structures

Fontroduce the basic idess. let us consider the direct form structure for an LT1 diserete-
time system. The flow graph of a direct form | 2"-order system is shown in
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Figure 6.57(a). The general N grder difference equation for the direct form 1
structure jis

) M
vin) =) ayln - K1+ Y buxln - k], (6.90)
k=1 k={}
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and the system function s

M
E bpz"*

k=il Biz)
1 — Za,t:'k
i=1

Let us assume that all signal values and coefticients are represented by (B + 1)-bit
fixed-point binary numbers. Then, in implementing Eq. (6.90) with a (8 + 1)-bit adder,
it wounld be necessary to reduce the lengih of the (28 + 1)-bit producis resulting from
multiplying two { £ +1)-bit pumbers back to{ #— 1} bits. Since all numbers are treated as
fractions. we would discard the least sipnificant 8 bits by either rounding or truncation.
This is represented by replacing cach constant multiplier branch in Figure 6.57(a) by a
constant multiplier followed by a quantizer, as in the nonlinear model of Figure 6.57(b).
The difference equation corresponding to Figure 6.57(b) is the nonlinear equation

N M
Blnd =3 Qludln— k]l =Y Qlbgxin — k]| {6.92)
k=1 =0

Figure 6.537(c) shows an allernative representation in which the guantizers are
replaced by noise sources that are equal to the quantizaliom error at the output of each
guantizer. For example, rounding or truncation of a product hxfr] is represcated by a
noise source of the form

eln] = exlnlf = bxlnl. (6.93)

If the noise sources are known exactly, then Figure 6.57(¢) is exactly equivalent to
Figure 6.57(b). However, Figure 6.57{c) is most useful when we assume that each quan-
tization noise soutce has the following properlies:

1. Euchyuantization noise source e[x] is 4 wide-scnse-stationary white-noise process,

2, Each quantization nose source has a uniform distribution of amplitudes over one
quaniization interval.

3. Eachquantization noise sourec is uncorrelated with the input to the corresponding
guantizer, all other quantization noise sources. and the input to the system.

These assumptions are identical to those made in the analysis of A/D conversion
in Section 4.8, Strictly speaking, our assumptions here cannol be valid, since the quanti-
zation error depends directly on the inpul to the gquantizer. This is readily apparent for
constant and sinusoidal signaia However, expenimental and theoretical analyses hawve
shown (sce Bennett, 1948; Widrow, 1956, 1961; Widrow and Kollar, 2008) that in many
situations the approximation just described leads 10 accurate predictions of measured
slalistical averages such as the mean, variance, and correlation function, This is truc
when the input signal is a complicated wideband signal such as speech, in which the
sigmal fluctuates rapidly among all the gquantization levels and traverses many of those
levels in poing from sample to sample (see Gold and Rader, 1969} The simple lmear
noise approximation presented here allows us to characterize the noise generated in the
system by averages such as the mean and variance and to determine how these averages
are modified by the system.
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For { 8 + 1)-bil quantization, we showed in Section .71 that, for rounding,
1 1 .
—Ez R f;emgiz'*ﬁ (6.94a)
and for twa's-complement truncation,

~27F = eln] =0, {6.94h)

Thus, according to our second assumption, the probability density functions for the
random variables representing quantization error are the uniform densities shown in
Figure 6.58(a} for rounding and in Figure 6.538(b) for fruncation. The mean and variance
for rounding are, respectively,

me =, {6.93a})
2—?.{‘
By (6.95b)
For two's-complement truncation, the mean and varance are
4—H
M, = - “T {H.96a)
gl = Z_Ei {(65.96h)
: 2. RE

In general, the autocorrelation sequence of a quantization noise source is, according 1o
the first assumption,
-
deeln] = o Bln] <= m", {6.97)
In the case of rounding, which we will assume for convenience hencelorth, m, = (1 so the

autocorrelation function is ¢,..[#n] = n: 3[n]. and the power spectrum is @ le'“) = a?
for lesl = . In this case, the variance and the average power are dentical. In the
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¢[n]
nr'.||_'\ y
x[n] | | Fln] = pln]  f|nl
19 L
Z . =
by iy
[ [ £
z |'| 1’z-|
b L
2 L2

Figure 6.59 Linear-noise model for direct form | with noise sogrces combined.

case of truncation, the mean is not zeTo, so average-power results derived for rounding
must be corrected by computing the mean of the signal and adding its square to the
average-power tesults ot rounding,

With this model for each of the noise sources in Fipure 6.57(c), we can now proceed
to determine the effect of the guantization noise on the outpul of the system. To aid
us in doing this, it is helpful 1o observe that all of the noise sources in that figure are
effeclively injected between the part of the system that implements the zeros and the
part thal implemcnts the poles. Thus, Figure £.59 15 equivalent Lo Figure 0.57(¢) if e[n]
in Figure .59 15

eln] = epln] 4+ ey [n] + e2[n] 4+ esln] + cqlrn]. {6.98]

Since we assurme that all the noise sources are independent of the input and independent
of each other, the variance of the combined noise sources for the 20 prder direct form
I case is

af:ofl__+crsj -I—fri+crjé—;—cri=5-%, (6.4

and for the general direct form 1 case, it 1s
3 et .
T, =M+ 1+ N} 3 (B 1M

To obtain an expression {or the putput noise, we note from Figure 6.59 that the
syslemn has two inputs, x[n] and e[n]. and since the svstem is now assumed Lo be linear,
the outpul can be represented as #lr] = v[n] + fin], where yfa] is the response of the
tdesl unguantized svstem Lo the mpil sequence x[#] and 0] is the response of the
syslem to the mput eln]. The outpul ¥[r] is given by the differcnee equation (6.90), but
ginee e[n] 15 injected after the zeros and before the poles, the outlpul noise satishes the
difference equation

N
flal =3 @ fln — k1 +elal; (6.101}
k=1
i.e., the propertics of the output noise in the direct form 1 implementation depend only
on the poles of the system,

To determine the mean and variance of the output noise sequence, we can use

some resolts from Section 2,10, Consider a linear system with system function i ¢iz)
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with a white-noise input ¢|r] and corresponding output ([x]. Then. from Egs. (2.184)
and (2.185), the mean of the output is

=
o=, l: frpplo] =H‘IﬂHe._|rffr‘l[?J. {ﬁln"zjl

=00

Since m, = 0 for rounding, the mean of the output will be zero, so we need not be
concerned with the mean value of the noise if we assume rounding. From Eqgs. (6.97) and
{2.190), it follows that, because, for rounding, ¢]r] is a zero-mean white-noise sequence,
the power density spectram of the cutpul noise is simply

Prriw) = @ pie™) = of|H o p(e!) " {6.103)
From Eq. (2.192}, the variance of the output noise can be shown 1o be
] ¥ | ;
2 = — ¥ = it ey pd ’
o 3 f‘f Fiifewldo = '?e o 11‘in (= Lt ST {6.104)

Using Parseval’s theorem in the form of Eq. {2.162), we can also express o7 as

=02 Y |heslnll. (6.105)

When the system function corresponding 1o A.¢|n] is a rational function, as it will always
be for difference equations of the type considered in this chapter, we can use Eq. { A.66)
in Appendix A for evaluating infinite sums of squares of the [onm of BEq. (6.105).

We will use the results summarized in Eqs. (6.102)-(6.113) often in our analysis
of quantization noise in finear systems. For example, for the direct form 1 system of
Fipure 6.59, Aoz = 1/A(z); 1e., the system function from the point where all the
noise sources are injected o the vulpul consists only of the poles of the system function
Hizyin Eq. {691} Thus, we conclude that, in general, the total outpul variance owing
to internal round-olf or truncation is

a5 T
5 b 1 i
i M+1+N — R —
op=4 12" 2 j:n | A (el 2
yorn (6.106)

L g ln]l?,

where heiln] i5 the impulse response corresponding to Hopied = 1/A(z) The use of the
preceding results is illustrated by the following examples.

(M+1+N)

Example 6.11 Round-off Nolise in a 1"-Order System

% Suppose thal we wish lo implement a stable system having the system funclion

i b :

& _?'“ iz = — s =1 (6.107)
"I i 1 —az-1

7 Figure 060 shows the Qow graph of (be linear-noise model for the implementalion
- in which products are gquantized before addition. Each noise source is filtered by the
it system from e[a] to the output, for which the impulse response is Agp[n] = a"uln].

Ly

e
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2 Since M = (and N =1 {or this example. from Eq. (6.103), the power spectrum of the

S oukpul noise is
Lo
TP ( ] ) (6.108)
ok ikl = y i -
e ff 12 V1+4a? ~Zacose
" 4nd the total noise variance at the oulpul 13
a—18 02 =28 I
e 4 ) e
gF =2 o™ =2 —. —) (h.a0w
f 12 ?:‘_Dl ' 12 ( — |af? )

From T4, (6,109}, we see that the culput noise variance increases as the pole at
iz = aapproaches the unit circle. Thus, to mainiain the noise variance below a specilied
2% level as |a| approaches urity, we must use longer word lengths, The following example
w5 also illustrates this point.

:gi elr] = o, |a + eyln]

by

x[n] . #ln] = ¥[n] + Fln|

Figure 6.60 1¥'-order linear noise model.

Example 6.12 Round-off Noise in a 2"-Order System

. Consider a stable 2"-order direct form I system with system function

by+ bzt byt
il —predfo=1yl — pe—iz—=1y’

n

Hiz)= - {1101

' The linear-noise mode] for this system is shown in Figure 6.37(c), or equivalently,
Figure 6.59, withay — 2rcosd and ap = —r?_ In this case, the total output noise power
can be expressed in the form

s , a1 4 m i

3 (21 _ — 6,111
7 12 20 J_p [(1 — rel®eiw)(] = re=ifg-juy2 WrLEH

Using Eq. (A.66) in Appendix A, the output noise power is found to ba
428

1472 1 .
= = - : BA12
. 12 (E""')H-'-'l—lr‘cmzﬁ (6.12)

= bd

t A5 in Exumple 6.11, we see thal as the complex conjugate poles approach the anit
cirche (r — 1), the total autput nodse varance increases, thus reguiring lonper word
lengths to maintain the variance below a prescribed level.

The technigues of analysis developed so far for the direct form I structure can also
be applied to the direct form II structure. The nonlinear difference equations for the
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direct form 11 structure are of the form

N

iir|n] = ZQlakﬁ'ha—Hi—i- x[ml, {6.113a)
k=1
M

§lnl =) Qlbwibln — k1. (6.113b)
k=0

Figure 6.61(a} shows the linear-noise model for a 2%-order direct form 11 system. A
noise source has been introduced after each multiplication, indicating that the products
are quantized to {8 + 1) bits before addition. Figure 6.61{1) shows an equivalent linear
mnodz], wherein we have moved the noise sources resulting from implementation of the
poles and combined them into a single noise source ¢, {n] = e3in] -+ esln| at the input.
Likewise, the noise sources due to implementation of the zeros are combined into the
single noise source epfn] = egln]+e1[n]+ezln] that is added directly to the output. From
this equivalent model. it follows that for M 7eros and & poles and rounding (m, = 0},
the power spectium of the oulput noise is

2—25‘ g 2—23‘
Frriw) = N?EHW-”’H + (M4 7 {6.114})
and the outpul noise varancs 15
. 2 2n g N 2..'.’!3
op =N e 2?f.rr!!'1'(4:.'-""']!|‘n;!’a.r+{I'ri-'+:l} 3
_gut _ga (6. 115)
g Pt AIE + 20

I'hat is, the white noise produced in implementing the poles is filiered by the entire
gystem, whereas the white noise produced in implermnenting the eros is added directly
to the output of the system. In writing Bq. (6.115), we have assumed that the N noise
sources at the input are independent, so that their sum has & times the variance of a
single guantization noise source. The same assumption was made about the (M + 1)
ooise sources at the output. These results are gasily moditied for two's-complement
truncation. Recall from Eqs. (6.95)-(6.93b) and Eqgs. {6.96a)}-(6.96b) that the variance
of a truncation noise source is the same as that of a rounding noise source, but the mean
of a truncation noise source is not zero. Consequently, the formulas in Eqgs, (6,106} and
(6.115} for the total output noise variance also hobd for truncation. However, the output
noise will have a nonzero average value that can be computed using Eq. (6.102).

A comparison of Eq. (6.106) with Eq. (6.1 15)shows that the direct form I and direct
form 11 structures are affected differently by the quantization of products in implement-
ing the corresponding difference equations. In general, other equivalent structures such
as cascade, parallel, and transposed forms will have a total output noise variance differ-
ent [rom that of cither of the direct form structures. However, oven though Egs (6.106)
and (6.115) arc different, we cannol say which system will have the smaller output noise
variance unless we know speciiic values lor the coefiicienis of the system. Inother words,
it is not possible 1o state that a particular structural form will always produce the least
outpul noisc.
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It is possible to improve the noise performance of the direct form systems {and
thercfore cascade and parallel forms as well) by using a {28+ 1}-bit adder to accumulate
the sum of products required in both direct form systems. For exampie, for the direct
form I implementation, we could use a difference equation of the form

N M
Binl = 0| Y ailn —kl+ ) txln —kj]; (6.116)
=1 =1

L., the sums of products are accumulated with (28 + 1)- or {28 -t 2)-bit accuracy, and
the result is quantized o { B + 1) bits for output and storapge in the delay memory, In the
direct form [ case, this means that the quantization noise is sUll Altered by the poles, but
the factor (M 414N ) in Eq. (6. 106) is replaced by unity. Similarly, for the direct form 11
realization, the difference equations (6.113a)-{6.113b) can respeetively be replaced by

N
ﬂ@ﬂ:Q[E}WMH—H+xmq (6.117a)
=]

and

(6.117b)

M
Jln] =@ {Z hyii]n — k]—‘
k=)
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This implies a single noise source at both the input and output, so the faclors N and
(M + 1yin BEg. (6.115) are each replaced by unity. 'Thus, the double-length accumulator
provided in most DSP chips can be used to significantly reduce quantization noise in
direct form systems.

6.9.2 5Scaling in Fixed-Point Implementations of IR
Systems

The possibility of overllow is another important consideration in the implementation
of 11K systems using lixed-point arithmetie. [ we follow the convention that cach fixed-
point number represents a fraction {possibly times a known scale factor), each node in
the structure must be constrained to have a magnitude less than unity Lo avoid overflow.
If w;[n] denotes the value of the FP node variable, and hyln] denotes the impulse
response from the input x[#] Lo the node variable wy[n], then

| in]| = Z xfe = g m]| . {6.118)
The bound
horlnll = Tmax 9, [lm]| (6.119)

is obtained by replacing x[n — m| by its maximum value xqu, and vsing the fact that the
magnitude of a sum is less than or egual to the sum of the magnitudes of the summands.
Therefore, a sufficient condition for |wgln]| < 115

1
Xmax = —/——— (6.120)

=

> lhlml|

for all nodes in the Mow graph. I gy does not satisfy Eq. (61200, then we can multiply
x[n] by a scaling multiplicr 5 at the input to the system so thal sxmay satisfios Eq. (6.120)
for all nodes in the flow graph; Le.,

1

FXmay = a0 F
THd ik
; X |: E i ;c[mIl]

{6.121)

M=

Scaling the input in this way guarantees that overflow never oceurs at any of the nodes in
the flow graph. Equation (6.120} is necessarv as well as sufficient, since an input always
exists such that Eq. {6.119) is satisfied with equality. {See Eq, {2.70) in the discussion
of stability in Section 2.4.) However, Eq. (6.120) leads to a very conservative scaling of
the input for most signals.

Another approach to scaling is to assume that the input is a narrowband signal,
modeled as xfn] = xay cos egn. In this case, the node variables will have the form

we[n] = | H e/ |xmax costmgn + £ Hp(el®0)). {6.122)
Iherefore, overflow is avoided for &ff sinusoidal signals if
max |Hele!“Hamax < 1 (6.123)
k. w|=r
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or if the input is scaled by the scale factor 5 such thal

1

s |H¢{f;‘"'}|'
J.'_|r¢,l-£q

(6.124)

§Xmax <

Still another scaling approach is based on the energy £ = . |x[n]|* of the input
signal. We can derive the scale faclor in this case by applving the Schwarz inequality
(see Bartle, 2000} to obtain the following inequality relating the square of the node
signal to the energies of the input signal and the node impulse response:

T

1 (7 _ _
f ™V X (/™05 din)
L S - |

i . T =
= (,,if HIJ{{&"';MH?TJ&)J (_l f |X{E?'I-M:|]1dw). fﬁ_lz:.;
AT J P S S

Therelore, il we scale the input sequence values by s and apply Parseval’s theorem, we
see Lhat juy [n]1? < 1 for all nodes k il

o 5
2 1
2 2 2 ;
¥ ( Z |x[a] ) =3°F = s " (6.126]
= s [ :|
[

v
Jwelall” =

2 RE

n=-—a

Since it can be shown that for the &'V node,

pe- 8]

o 1,2
IZ |m-|n1|'~’} = max |Hyle™)| = 3 |iglnll, (6.127

H=- D2 A==

it follows that ([or most input signals) Egs. (6.121), (6.124), and (6.126) pive three de-
creasingly conservative ways of scaling the input to a digital filter (equivalently decreas-
ing the gain of the filter). Ol the three, Eq. {6.126) is generally the easiest 1o evaluale
analytically because the partial [raction method of Appendix A can be used; however
use of Eq. (6.126) requires an assumption about the mean-squared value of the signal,
E. On the other hand, Eq. (6,121} is difficult to evaluate analytically, except for the sim-
plest systems. Of course, if the filter coefficients are fixed numbers, the scale factors can
be estimated by computing the impulse response or frequency response numerically.
If the input must be scaled down (s < 1), the sipnal-to-noise ratio (SWER) ar the
output of the system will be reduced because the sipnal power is reduced, but the noise
power is dependent anly on the rounding operation. Fipure 6.62 shows 29_order direct
form I and direct form II systems with scaling multipliers at the input. In determimng
the scaling multiplier for these systems, 1t is nol necessary to examine each node in
the flow graph. Some nodes do not represent addition and thus cannot overflow. Other
nodes represent partial sums. If we pse nonsaturation two's-complement arithmetic,
such nodes are permitted to overflow 1f certain key nodes do not. For example. in
Fipure 6.62(a}, we can focos on the node enclosed by the dashed eirele. In the figure, the
scaling multiplier is shown combined with the bys so that the noise source is the same
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&[]

afm]

e ) By ] Figure 6.62 Scaling of direct form
eystemns, (ah Direct form | (B} Direct
ik form 1,

as in Figure 6.5%; i.e., it has five times the power of a single quantization noise source.'!
Since the noise source is again filtered only by the poles, the output noise power is the
same in Figures 6.3% and 6.62(a), However, the overall system function of the system
in Figure 6.62(a) is s f1{z) instead of H{z), so the unguantized component of the output
3#r] is s¥[n] instead of v{n]. Since the noise is injected after the scaling, the ratio of
signal power Lo noise power in the scaled system is s* times the SNR for Figure 6.59.
Beoause s < 1 if scaling is regquired to avoid overflow, the SNR is reduced by scaling,

The same is true for the direct form IT system of Figure 6.62(b). In this case, we
must determine the scaling multiphier to avoid overflow at both of the aircled nodes
Again. the overall gain of the system is 5 times the gain of the system in Figure 6.61(h).
but it may be nccessary 1o implement the scaling multiplicr explicitly in this casc to
avold overflow at the node on the kefl. This scaling muliplier adds an additional noisc
component to ey[nl, 5o the noise power al the input is, in general, (N 4+ 1)2728 /12,
Otherwise, the nodse sonrees are illered by the system in cxactly the same way in both
Figure 6.61(b) and Figure 6.62(h). Therefore, the signal power is multiplied by 52, and
the noise power at the output is again given by Eq. (6.115), with & replaced by (N + 1)
The 5NR is again reduced if scaling is required to avoid overflow,

Yrihis eliminates & separate scaling multiplication and quantization noise source, However, scaling
fand guantizing) the by s can change the frequency response of the system. ITa separate inpot scaling multiplier
precedes the implementation of the zeros in Figure 66202}, then an sdditional guanization noise souree woold
comtribute to the output nodse after going throngh the entire system /o2
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Example 6.13 Interaction Between Scaling and Round-off
Noise

r!li.El
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To lpstrate the interazction of scaling and round-off noise, consider the system of
Exumple 6,11 with system function given by Eg. (6107} If the scaling multiplier is
combined with the coefcient &, we oblain the low graph of Figure 6.3 for the scaled
system. Suppose that the input is white noise with amplitudes unitormly distributed
between —1 and +1, Then the total signal variance is o? = 1/3. To guarantee no
overflow in computing #[n], we nse Eqg. {6.121) o compute the scale Gaclor

1 1 —tal

= — = ; (6.128)
Z Ib| |ﬂ|”
=i

5

i The output noise variance was determined in Example 6.11 to be

P
¥

'
e

R

M
X'

e

i
LUy T

228 ) ;
R (6.129)

2_1a
fff = o

; and since we again have two (B + 1)-hit iotnding operations, the nmse power al the

cutput is the same, i.c., o;', = u;'. The variance of the output ¥'[n] due to the scaled
imput sx[a] is

1 ) s2h°
2 2.2
T =] = =£7d,, . {Gljl”
: & (1 1 —a* ¥ :
: ‘Therefore, the SNR at the output is
2 2 N
L’-"“—sﬁﬂi—(]_!‘"]zﬁ (6.131)
— = = . i
r.rf. r.r_E- L] nr.r_%

As the pole of the system approaches the unit circle, the SNR decreases because Lhe
quantization noise is amplificd by the system and because the high gain of the system
lorces the input fo be scaled down (o avoid overflow. Again, we see that overllow and

¢ quantization noiss work in opposition to decrease the performance of the aystam.

o )
Fin| = sylnf 1 [a]

*[n)

Figurs 6.63 Scaled 1%-arder system.

6.9.3 Example of Analysis of a Cascade HR Structure

The previous resulis of this section can be applied directly to the analysis of either paral-
{el or cascade structures composed of 2".order direct form subsystems. The interaction
of scaling and quantization 15 particularly interesting in the cascade form. Our general
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comments on cascade systems will be mterwoven with a specific example.
An elhiptic lowpass iller was designed to meet the following specilications:
099 = |H(e/"™y] = 14N, [ea] = )5,
|H (&%) = 001, L56m = | =51

The system function of the resulting system is

z 14 12
Hz) = 0079459 ] [ — by + DG?E‘4‘E9H Ho(z),  (6.132)
: —apz~ - ayz? ek

where the coefficients are given in Table 6.6. I‘ql'.lilf-ﬂ that all the zeros of Hiz) arc on the
unit circle in this example; however, that need not be the case n general.

Figure 6.64{a} shows a flow graph of a possible implementation of this system as a
cascade of 2" -order transpased direct form 11 subsystems. The gain constant, 0.079459,
is such that the overall gain of the system is approxiumately unity in the passband, and it
iz assumed that this guarantees no overflow at the output of the system. Figure 6.64(a)
shows the gain constant placed at the input to the system, This approach reduces the
amplitude of the signal immediately, with the result that the subsequent filter sections
must have high gain to produce an overall pain of unity. Since the quantization noise
sources are introduced after the gain of 0.079459 but are likewise amplified by the rest
of the system. this is not a good approach. Ideally, the overall gain constant, being less
than unity, should be placed at the very end of the cascade, so that the signal and noise
will be attenuated by the same amount. However, this creates the possibility of overflow
along the cascade, Therefore, a beller approach is to distribute the gain among the three
stapes of the system, so that overflow is just avoided al each stage of the cascade. This
disimbution 1s represented by

Hiz) = s H(zhsa Hafzhes Hafz), (6.133)

where 555 = D07M59, The scaling multipliers can be incorporated into the coeffi-
cients of the numerators of the individual system lunctions I} () = s; H{z), as in

; : H".‘c + E"]kq '-'k" 6.134
H(z) = ﬂ — l_[HHzJ (6.134)

b 11—z —an:

where bil:l-i.- = Hm = 5 and b;ﬁ = sib;. The resulting scaled svstem is depicted in
Figure 6.64(b).

Alsoshown in Figure 6.64(b) are quantization noise sources representing the quan-
tization of the products betfore addition. Figure 6.64(c) shows an equivalent noise model,

TABLEG.BE COEFFICIENTS FOR
ELLIFTIC LOWPASS FILTER IN

CASCADE FORM
k ayE dag 814
1 D4TARRE 0172150 1719454
2 BA3TTHT  —0e10077 0781109
1

—04547T 092374 0411452
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Figure 6.64 Madels for 6" -arder cascade system with transposed direct form Il subsys-
tems. {7 Infinite-precision model, (b) Linear-noise model for scaled system, showing quan-
tization of individual multiplications. (¢} Linear-noise model with noise sources combinad.

for which it is recognized that all the noise sources in a particular section are filtered
only by the poles of that section (and the subsequent subsystems). Figure 6.64{c} also
uses the fact that delaved white-noise sources are still white noise and are independent
of all the other noise sources, so that all five sources in a subsection can be combined
into a single noise source having five times the variance of a single quantization noise
source.’! Since the noise sources are assumed indzpendent, the variance of the output

This discussion can be generalized to show that the transposcd direct torm 11 has the same poise
behavior as the direct form I svstem,
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noise is the sum of the variances owing to the three noise sources in Figure 6.64(c),
Therefore, for rounding, the power spectrum of the output noise is

228 .ia.H’-{f*jr"’J el H e'~"“":|'2 32 H (e z 1
Pp prlw) =35 - l ?*!_ ,‘I: : l e gl ——— |, {6135}
) 12 [ A {ede)]- [Aa{ef)] [A afefe)
and the total output noise variance is
g _ 52721 [ 3 IH2(e )53 H e )2
T = . Ty, = r L iehy
f 2 |2r [, |4 (efe)2
, . (6.136)
1 7™ sylHs(e!™)° 1 F 1 5
IO I— b ot —_— W a
Zr | A T 3w J g [As(e®)P

If a double-length accumulator is available, it would be necessary to quantize only
the sums that are the inputs to the delay elements in Fipure 6.64(b}. In this case the
factor of 5 in Eqs. (6.135) and {6.136) would be changed to 3. Furthermore, if a double-
length register were used to implement the delay elements, only the variables iy ]
would have to be quantized, and there would be only one quantization noise source per
subsystem. In that case, the factor of 5 in Eqs. (6.135) and {6.136) would be changed to
unity,

The scale factors s, are chosen to avoid overflow at poinés along the cascade system,
We will use the scaling convention of Eq. {6,124}, Therefore, the scaling constants are
chosen to satisfy

53 rr:;:tx Hyef™) < 1, {6.137a)
w| T
s152 max LH (e H (2] = 1, (6.137h)
| St
519287 = 0079459, (6.137¢)

Thelast condition ensures that there will be no overflow at the output of the system
[or unit-amplitude sinusoidal inpuls, because the maximum overall gain of the filter is
unity. For the cocfficients of Table 6.6, the resulting scale factors are 5; = (L186447,
g2 = (L329236, and 53 = BLR05267.

Equations {6.125) and {6.136) show that the shape of the outpul noisc power spec-
trum and the total oultpul noise variance depends on the way thal zeros and poles are
paired to form the 2"-order sections and on the order of the 2" -order sections in the
cascade form realication. Indeed, it is casily scen that, for N sections, there are (X1}
ways Lo pair the poles and zeros, and there are likewise (N1) ways 1o order the result-
ing 2"-order sections, a total of (N1 different systems. In addition, we can choose
either direct form 1 or direct form 11 {or their transposes) for the implementation of
the 2™-order sections. In our example, this implies that there are 144 different cascade
systems to consider, if we wish to find the system with the lowest outpul noise variance,
For five cascaded sections, there would be 57,600 different systems, Clearly, the complete
analvsis of even low-order systems is a tedious task, since an expression like Eq. (6,136}
must be evaloated for each pairing and ordering, Hwang {1974) used dynamic pro-
gramming and Liv and Peled {1975} used a heutistic approach to reduce the amount of
computation.
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Figure 6.65 Pole-rero plot for
| 6M-grder system of Figure 6.64,
i showing pairing of poles and 2eros,

Even though finding the best paiting and ordering may require compuler optimiza-
tion, Jackson (19704, 1970h, 1996) found that good resulls are almosl always oblained
by applying simple rules of the following form:

L The pole that 1s closest to the unit circle should be paired with the zero that is
closest to it in the z-plane.

2. Rule 1should be repeatedly applied until all the poles and zeros have been paired,

3. The resulting 2™ -order sections should be ordered according to either increasing
closeness to the unit circle or decreasing closeness to the unit circle,

The pairing rules are based on the observation that subsystems with high peak
gain are undesirable because thoy can cause overflow and because they can amplify
quantization noise. Painng a pole that is close Lo the umt circle with an adjacent zero
tends to reduce the peak gain of that section. These heuristic rules are implemented in
design and analysis tools such as the MATLAB [unction zpZsos.

One motivation [or rule 3 is suggested by Eg. (6.135). We see that the frequency re-
sponses of some of the subsystems appear more than once in the equalion for the power
spectrum of the outpul noise. If we do nol want the output noise variance spectrum Lo
have a high peak around a pole that is close to the unit circle, then it is advantageous
to have the frequency-response component owing to that pole not appear [requently in
Eq. (6.135). This suggesis moving such “high ¢ poles to the beginning of the cascade.
On the other hand, the frequency response from the input to a particular node in the
flow praph will involve a product of the frequency responses of the subsystems that pre-
cede the node. Thus, to avoid excessive reduction of the signal level in the early stapes
of the cascade, we should place the poles that are close to the unit circle last in order,
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Clearly then, the question of ordering hinges on a variety of considerations, including
total oulput noise variance and the shape of the output noise spectrum, Jackson {1970,
1970b} used L, norms to quantify the analysis of the pairing-and-ordering problem and
gave a much more detailed set of “rules of thumb™ for obtaining good results without
having to evaluate all possibilities.

The pole—zero plot for the system in our example is shown in Figure 6,63, The
paired poles and zeros are citcled. In this case, we have chosen to order the sections
from least peaked to most peaked frequency response, Figure 6.66 illustrates how the
frequency responses of the individual sections combine to form the overall frequency
respanse, Figures 6.66(a)-(c) show the frequency responses of the individual unscaled
suhsystems. Figures 6.66(d)}—() show how the overall frequency response is built up.
Nuotice that Figures 6.66(d)~(f) demonstrate that the scaling Eqgs. (6.137a)-(6.137c) en-
sure thal the maximum gain rom the input to the output of any subsystem 15 less thap
unily. The soiid curve in Figure .67 shows the power spectrum of the cutput noise for
the ordering 123 (least peaked Lo most peaked). We assume that 8 + 1 = |6 for the
plot. Note that the spectrum poeaks in the vicinity of the pole that is closest to the unit
circle, The dotled curve shows the power spectrum of the outlput noise when the scotion
order is reversed {ie., 321). Since section | has high gain at low frequencics, the noise
spectrum is appreciably larger at low freguencies and slightly lower around the peak,
The high O pole sall filters the noise sources of the first section in the cascade, so it still
tends to dominaie the spectrum, The total noise power {or the two orderings turns oul
to be almost the same in Lhis case.

The example we have just presented shows the complexity of the issues thar arise
in fixed-point implementations of cascade 1R systems, The parallel form is somewhat
simpler because the issue of pairing and ordering does not arise. However, scaling is still
required to avoid overflow in individual 2™-order subsystems and when the outputs of
the subsystems are summed 1o produce the overall output. The techniques that we have
developed musit therefore be applied for the parallel form as well. Jackson {19%%) dis-
cusses the analysis of the parallel form in defail and concludes that its tofal output noise
power is typically comparable to that of the best pairings and orderings of the cascade
form. Even so, the cascade form is more common, because, for widely used MR filrers
such that the zeros of the system function are on the unit circle, the cascade form can
be implemented with fewer multipliers and with more control over the locations of the
FETOR

6.9.4 Analysis of Direct-Form FIR Systems

Since the dircet form | and direct form 11 1R systems include the direct lorm FIR system
as a special case (i.e., the case where all coefficients ay in Figures 6.14 and 6.15 are zero},
the results and analvsis techniques of Sections 6.9.1 and 6.9.2 apply to FIR systems if we
eliminate all reference to the poles of the system function and eliminate the feedback
paths in ali the signal flow graphs.

The direct form FIR system is simply the discrete convalution

it
¥inl =" hlklx[n — k1. (6.138)

k=il
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Figure 6.68(a) shows the ideal unguantized direct form FIR system, and Figure 6.68(b)
shows the linear-nose mode] for the system, assuming that all products are guantized
before additions are performed. The effect is to inject (M + [} while-noise sources
directly at the output of the system, so that the total oulput noise variance is

a-i

z

(6.139)

This 1s exactly the result we would obtain by setting & = 0 and hy¢[n] = &[r} in
Egs. (6.106) and (6.115). When a double-length accumulator is available, we would
need 1o quantize only the output, Therefore, the factor (M + 1) in Eq. (A.139) would be
replaced by unity. This makes the double-length accumulator a very attractive hardware
feature for implementing FIR systems,

Overflow is also a problem for fixed-point realizations of FIR svstems in direct
form. For two's-complement arithmetic, we need to be concerned only about the size
of the output, since all the other sums in Figure 6.68(h) are partial sums. Thus, the
impulse-response coefficients can be scaled to reduce the possibility of overflow, Scaling
multipliers can be determined using any of the alternatives discussed in Section 6.9.2,
Of course, scaling the impulse response reduces the gain of the system, and therefore
the SNR at the output is reduced as discussed in that section,
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Figura 6.68 Direct form realization of an FIR system. (4) Infinite-precision maode).
{b} Lingar-noise model,

Example 6.14 Scaling Considerations for the FIR System in
Section 6.8.5

The impulse-response cocfficients for the system in Seclion 6.8.5 are given in Table 6.5,
Simple caleulations show, and from Figure 6.54(h) we see, thai

27
= Z (Rln]l = 1.751352,
i r=H
B 27 1/2
i (Z urr:nﬁ) = 0,679442,
i =lF
max |Hied =) = 100,
Jee| =

These numbers satisly the ordering relationship in Eq. (6.127). Thus, the system, as
- piven, is scaled so that overflow is theoretically possilile for a sinusoidal signal whose
o amplitude is greater than 1/ L009 = 0.9911, but even so, overfiow is unlikely for most
G osignals, Indeed, since the filter has a linear phase, we can argue thal, for widehand
¢ swenals, since the gain in the passband is approximately unity, and the gain elsewhere
15 less tham unity, the cutpul signal should be smaller than the inpul signal,

In Section 6.5.3, we showed that linear-phase systems like the one in Example 6,14
can be implemented with aboul half the number of multiplicalions of the general FIR
system, This is evident from the signal Row praphs of Figures 6.32 and 6,33, Tn these
cases, it should be clear that the output noise variance would be halved if products
were guanbived before addition. Howewver, the utihzation of such structueres involves a
more complicated indexing algorithm than the direcl form. The architecture of most
DSF chips combines a double-length accumulator with an efficient pipelined multiply-
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accumulate operation and simple looping control to optimize for the case of the direct
form FIR system, For this reason, direct form FIR implementations are often most
attractive, even compared with TTR filters that meet frequency-response specitications
with fewer multiplications, since cascade or parallel structures do not permit long se-
quences of multiply-accumulate operations.

In Section 6.5.3, we discussed cascade realizations of FTR systems. The results and
analvsis techniques of Section 6.9.3 apply to these realizations; but for FIR systems
with no poles, the pairing and ordering problem reduces to just an ordering problem.
As in the case of TIR cascade svstems, the analysis of all possible orderings can be very
difficult if the system is composed of many subsystems. Chan and Rabiner (19730, 19730)
studied this problem and found experimentally that the noise performance is relatively
insensitive Lo the ordering. Their results suggest that a good ordering is an ordering for
which the [Tequency response from cach noise source to the output is relatively at and
for which the peak gain is small.

6.9.5 Floating-Peoint Realizations of Discrete-Time
Systems

From the preceding discussion, it clear that the limited dynamic range of [ixed-point
arithmetic makes it necessary to carelully scale the input and intermediate signal levels
m lixed-point digital realizations of discrete-lUme systems. The need for such scaling can
be essentially eliminated by using floating-point numerie representations and Ooating-
point arithmetic.

In foating-point representations, a real number x is represented by the binary
number 2° %y, where the cxponent ¢ of the scale factor is called the characteristic and
Xar is a fractional part called the meaentisse. Both the characteristic and the mantissa are
represented explicitly as fixed-point binary numbers in floating-point arithmetic sys-
tems, Floating-point representations provide a convenient means for maintaining both
a wide dvnamic range and low quantization noise; however, quantization error mani-
fests itself in a somewhat different way, Floating-point arithmetic generally maintains its
high accuracy and wide dynamic range by adjusting the characteristic and normalizing
the mantissa so that .3 < ¥y = 1. When floating-poin{ numbers are multiplied, their
characteristics are added and their mantissns are multiplied. Thus, the mantissa must
be guantized. When two foating-point numbers are added, their characteristics must
be adiusted to be the same by moving the binary point of the mantissa of the smaller
number. Hence, addition results in guantization, too. If we assume that the range of the
characteristic is sufficient so thal no numbers become larger than 29, then quantization
affcets only the mantissa, but the error in the mantissa is also scaled by 27, Thus, a
guantized Noating-point number is conveniently represented as

t=xil4er=x| Ex, (6.1400

By representing the quantization error as a fraction £ of x, we automatically represent
the fact that the quantization error is scaled up and down with the signal level,

The aforementioned properties of Aoating-point arithmetic complicate the quan-
tization error analysis of floating-point implementations of discrele-time systens. First,
noise sourees must be inserted both after each multiplication and afier each addition,
An important consequence 1s that, in contrast to fixed-point arithmelic, the erder in
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which multiplications and additions are performed can sometimes make a big ditfer-
ence. More important for analysis, we can no longer justify the assumption that the
gquantization noise sources are white noise and are independent of the signal. In fact,
in Eq. {6.14(), the noise is expressed exphaitly in terms of the signal. Therefore, we can
no longer analyze the noise without making assumptions about the nature of the inpul
signal. If the inputis assumed to be known (e.g., white noise), a reasonable assumption
is that the refative error £ is independent of 1 and is uniformly distributed white noise.

With these types of assumptions, useful results have been obtained by Sandberg
{1967}, Liv and Kaneko {196%), Weinstein and Oppenheim (196%), and Kan and Ag-
garwal (1971). In particular, Weinstein and Oppenheim, comparing foating-point and
fixed-point realizations of 13- and 2°d-order 1IR systems, showed that if the number
of bits representing the floating-point mantissa is equal to the length of the fixed-point
word, then fioating-point arithmetic leads to higher SNIX at the outpui. Not surpris-
ingly. the difference was found o be greater for poles close to the unit circle. However,
additional bits are required to represent the characteristic, and the greater the desired
dynamic range, the more bits are required for the characteristic. Also, the hardware
to implement floating-point arithmetic is much more complex than that for fixed-point
anithmetic. Therefore, the use of foaling-point arithmetic entails an increased word
length and increased complexity in the arithmelic unit. Tts major advantage is that il
essentially eliminates the problem of overflow, and if a sufficiently long mantissa is used,
quantizalion also becomes much less of a prohlem. This translates into greater simplicity
in svstem design and implementation.

Nowadays, digital iltering of multi-media signals is often implemented on personal
computers or workstations that have very ageurate floating point numerical represen-
tions and high speed arithmetic umts, In such ¢ases, the guantivation issues discussed in
Sections 5.7 6.9 are generally of liltle or no concern, However, in high volume syslems,
fixed point arithmetic is generally required to achieve low cost.

6.10 ZERO-INPUT LIMIT CYCLES IN FIXED-POINT
REALIZATIONS OF IR DIGITAL FILTERS

For stable TTR discrete-time systems implemented with infinite-precision arithmetic,
if the excitation becomes zero and remains zero for # greater than some value pg,
the oulput for f > np will decay asymplotically toward zero. For the same system,
implemented with finite-register-length arithmetic, the output may continue 1o oscillate
indefinitely with a periodic pattern while the inpul remains equal to zero. This effect 13
often relerred to as zero-fnpur limir cpcle behavior and s a consequence cither of the
nonlinear quantizers in the feedback loop of the system or of overflow of additions. The
limit eycle behavior of a digital filter is complex and difficult 1o analyze, and we will not
allempl to treat the topic in any general sense, To illustrale the point, however, we will
give two simple cxamples that will show how such limit cycles can arise.

5.10.1 Limit Cycles Owing to Round-off and Truncation

Successive round-off or truncation of products in an iterated difference equation can
create repeating patterns. This is illustrated in the following example.
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Example 6.15 Limit Cycle Behavior in a 1*'-Order System

-y

Consider the 1% -order system characterized by the ditference equation
wli| = avla — 1) + xl#l, [ex] = 1. i6.141)

The signal low graph of this swvstem is shown in Figure 6.68a), Lel us assume
that the register lenpth for storing the coefficient o, the input x[a}, and the filter node

st variable vix — 1] 15 4 bits {i.c., a sign bit Lo the left of the binary peint and 3 bits 1o the
Y rightof the binary point). Because of the fnite-length registers, the produet ayln —1]

must he rounded or tuncated to 4 bits before being added eo xlw]. The How graph
represenling the actusl realization based on Eq. (6.141) is shown in Figure 5.49b).
Assuming roending of the product, the actual ouiput #a] satisfies the nonlinear dif-
ference equation

Flul = Qlailn — 11| + x[n]. (6.142)

S5 where @[] represents the rouncing operation, Let us assume that @ = 1/2 = 0,100
+ and that the inputis x[a] = (7/8}14] = (L, 111%3}nr]. Using BEqg, {6.142), we see that for

a=>0 70 =7/A= 0111 Tooblan ¥11], we multiply ¥[0] by g, oblaining the result

S dy[0] = 10,0116k, a 7-bit number that must be rounded o 4 its. This number, 7716,

‘o is exactly halfway between the two 4-bit quantization levels 4/8 and 3/8. If we choose

alwans (o round wpward onosuch cases, then Ga 07 1T rounded 10 4 bits s 0,100 = 172,
Since x[1} = 0, it follows that #[1] = 0,100 = 1,2, Continuing toiterate the difference
cquation gives $(2] = QlaF L]l = 0.010 = 1/4 and #3] = 0,001 = 1/8. In both
these cases, no rounding is necessary. However, o obtain ¥[4], we must round the
7-bit number a %3] = 000100 1o G001, The same result (s obtained for all values of
n = 3 The outpul sequence for this cxample 15 shown in Figure 6.70a) [fa = =172,
we canl carty oul the preceding computation again to demonstrate thal the ouipul is as
shown in Figure 6.70{b}. Thus, because of rounding of the product ala — 1], the outpuat
reaches o constan! value of 1/8 when e = 172 and a periodic steady-state oscillation
between +1/8 and - 1/8 when e = —1/2. These are periodic outputs similar to those
that would be obtained from a 1%-order pele at : = =1 instead of at » = £172.

= - =} E = " .
s[nt \\ ¥l
B
s,
{ah

dny w\ T
Z-L
—
(k]

Figure 6.69 1%'-order IR systam. (a} Imfinite-precisicn linear system. (b) Han-
finear system due to guantization.
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Figure 6.70 Response of the 1¥'-order system of Fgure 6.6 to an impulse.
i laba=g.(bla= -3

et When a = +1,/2, the period of the oscillation 35 1, and when a = —1/2, the

= period of oscillation is 2. Such steady-state periodic outputs are called fimit cycles, and
- Lheir existence was first noted by Blackman (1965), who referred to the amplitude
s intervals 1o which such Bmit cveles are confined as dead bands. Tn (his case, (he dead
0 bandig =278 = Gln] = 4277 where 8 = 3.

The foregoing example has itlustrated that a zero-input limit cvele can result from
rounding in a 1*'-order IIR system. Similar results can be demonstrated for truncation.
2"_arder systems can also exhibit limit cycle behavior. In the case of parallel realizations
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of higher-order systems, the outputs of the individual 2%9-order systems are indepen-
dent when the input is zero. In this case, one or more of the 2"_order sections could
contribute a limit cycle to the owrput sum. In the case of cascade realizations, only the
first secton has zero input; succeeding sections may exhibit their own characteristic
limit ¢vcle behavior, or they may appear to be simply filtering the limit cycle output of
a previous section. For higher-order svstems realized by other filter structures, the limit
cycle behavior becomes more complex, as does 1ts analysis.

In addifion to mving an understanding of limit gycle effects mn digatal filiers, the
preceding results are useful when the zero-input limit eycle response of a system is the
desired output. This 15 the case, for example, when one 1s concerned with digital sine
wave oscillators for signal generation or for the generation of coeflicients for calenlation
of the discrele Fourier transform.

6.10.2 Limit Cycles Owing to Overfiow

In addition to the classes of limit cycles discussed in the preceding section, a more severe
tvpe of limit cycle can ocour owing Lo overflow. The effect of overflow is toinsert a pross
error in the output, and in some cases the filter output thereafter oscillates between
large-amplitude limits. Such limit cycles have been referred to as overflow oscillarion.
The problem of oscillations caused by overflow is discussed in detail by Ebert et al,
{1969). Overflow oscillations are illustrated by the Tollowing example.

Example 6.16 Overflow Oscillations in a 2™-Order System

i

’m Consider a 2"%-order system realized by the difference equation
o §inl = x[n]+ Qlag #ln — 111 + Qlaziln — 211, (6.143)

i

i
ar
7

'; where {J[-] represents two's-complement roanding with a word length of 3 bits plus 1

bit for the sign. Overflow can eceur with twir's-complement addition of 1he rounded
P oproducts, SUT}]:fnﬁe that ] = 34 =010 and @ = —3/4 = 1,000, and assume thal
& x|u] remains equeal to zero for s = (b Furthermore, assume that -1 = 3/4 = 0,110
L7 and $[—2) = —3/4 = 1.010. Now the output at sample n = (s

FIO] = dha 170 = O, L1 4 15000 = 1000,
IT we gvaluate the products using 1wo's-complemen] arithmetic, we oblain
F10] = D, 10006 4 0, 100100,

I : and if we choose 1o round upward when a nomber s halfway between two guantization
o levels, the result of two's-complement addition is

FIUT = U100 + 0101 = 1,010 = }I
[ this case the hinary carrv overflows into the sign bil, (hos changing the positive sum
i intoe a negative number. Repeating the process gives

Fl] = 1,001 + Ll — 1. 110 = :

The tinary carry resulling [rom (he sum of the sign bils is lost, and the negalive sum is
‘= mapped into a positive number. Clearly, ${x] will comtinue 10 oscillate between -3/4
. and —3/4 until an input is applied. Thus, 7|} has entered a periodic limit cycle with 2
5 peticd of 2 and an amplitude of almost the full-scale amplitude of the mplementation,
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The preceding example illustrates how overflow oseillations occur. Much maore
complex behavior can be exhibited by higher-order systems, and other frequencics can
occur, Some results are available For predicting when overllow oscillations can be sup-
ported by a difference cquation (see Ebert et al, 1969}, Overllow oscillations can be
avoided by using the saturation overllow characteristic of Figure 6.45{b} {sec Ebert ¢t
al., 1969},

6.10.2 Avoiding Limit Cycles

The possible existence of a zero-input limit cycle is important in applications where a
digital filter is to be in continuous operation, since it is generally desired that the output
approach zero when the input is zero. For example, suppose that a speech signal is
sampled, filtered by a digital filter, and then converted back to an acoustic signal using
a DA converter. In such a situation it would be very undesirable for the filter to enter
a perindic limit cycle whenever the input is zero, since the limit eyvcle would produce an
audible tone.

One approach to the general problem of limit eveles is 1o seek structures that do
not support limit cycle oscillations. Such structures have been dernived by using state-
space represcntations (see Barnes and Fam, 1977 Mills, Mullis and Roberts, 1978)
and concepls analogous to passivily in analog systems (sce Ruao and Kailath, 1984
Fettweis, 1986). However, these structures generally require more compulation than
an cqglivalent cascade or parallel form implementation. By adding more bits o the
computational wordlength, we can generally avoid overllow. Similarly, since round-off
limit cyvcles usually are limited to the least significant bits of the binary word, additional
bits can be used 1o reduce the effective amplitude of the limit evele. Alzo, Claasen
et al. (1973) showed that if a double-length accomulator is used <o that quantization
occurs after the accumulation of products, then limit cycles owing to round-off are much
less likely to oceur in 2™-arder systems. Thus, the trade-off between word length and
computational algorithm complexity arises for limit ¢veles just as it does for coefficient
quantization and round-off noise.

Finally. itis impartant to point out ihat zero-input limit cyeles due to both overflow
and round-off are a phenomenon unique to ITR systems: FIR systems canmol support
zero-input imit cycles, because they have no feedback paths The output of an FIR
svstem will be zero no later than (M 4 1) samples after the inpul goes to zero and
remains there. This is a major advantage of FIR systems in applications wherein hmil
cyele oscillations cannot be tolerated.

6.11 SUMMARY

In this chapter, we have considered many aspects of the problem of implementing an
LTT discrete-time system. The first half of the chapter was devoted to basic implemen-
tation structures. After introducing block diagram and signal flow graphs as pictorial
representations of difference equations, we discussed a number of basic structures for
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[TR and FIR discrete-time sysiems. These included the direct form 1, direct form 1, cas-
cade form, parallel form, lattice form. and transposed version of all the basic forms. We
showed that these forms are all equivalent when implemented with infinite-precision
arithmetic. However, the different structures are most significant in the context of finite-
precision implementations, Therefore, the remainder of the chapter addressed problems
associated with finite precision or quantization in fixed-point digital implementations
of the basic structures.

We began the discussion of finite precision effects with a brief review of digital
number representation and an overview showing that the quantization effects that are
impaoriant in sampling (discussed in Chapter 4} are also important in representing the
coefficients of a discrete-time system and in implementing systems using finite-precision
arithmetic. We llustrated the effect of quantizalion of the coefficients of a difference
equation through several examples, This issue was treated independently of the effects
of finite-precision arithmetic, which we showed introduces nonlineanity inlo the system,
We demonstraled that in some cases Lhis nonbincarily was responsible for limil cyeles
that may persist aller the mput 10 & svslem has become zeto, We alsoshowed thatl quan-
Lration effects can be modeled in terms of independent random white-noise sources
that are imjected internally into the flow graph. Such lincarnoise models were devel-
oped for the direct form siructures and for the cascade structure. In all of owr discussion
of guantization cffects, the underlying theme was the conflict between the desire [or fine
quantization and the need lo maintain a wide range of signal amplitudes. We saw that
in fixed-point implementations, one can be improved at the expense of the other, but to
improve one while leaving the other unatfected requires thatl we increase the number
of bits used to represent coefficients and signal amplitudes, This can be done cither by
increasing the fixed-point word length or by adopting a floating-point representation,

Our discussion of quantization effects serves two purposes, Lirst, we developed
several results that can be useful in guiding the design of practical implementations. We
found that quantization effects depend greatly on the structure used and on the specific
parameters of the system to be implemented, and even though simulation of the system
is generally necessary to evaluate its performance, many of the resulis discussed are
useful in making intelligent decisions in the design process, A second, equally important
purpose of this part of the chapter was to illustrate a style of analysis that can be applied
in studying quantization ¢ffects in a variety of digital signal-processing algorithms, The
examples of the chapter indicate the bypes of assumptions and approximations that
are commonly made in studying quantization cffects. In Chapter 9, we will apply the
analysis techniques developed here to the study of quantization in the computation of
the diserete Fourier transform.

Basic Problems with Answers

6.1, Determine the system funclion of the two Bow graphs in Figure P61, and show that they
have the same poles
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Nerwork |
{a)

Network 2

i) Flgure PE.1

6.2. The signal low graph of Figure PA.2 represents a linear difference equation with constant
coefficients. Determine the difference equation that refates the output vix| to the input

xfnl.
- i - - o
xln] ¥in]

Figure P§.2

63 Figure PA.3 shows six systems, Determine which one of the last fve, (01 has the same
system function as (a). You should be able to eliminate some of the possibilities by inspec-
tion,
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6.4. Consider the system in Figure Pa.3(d).

() Determine the system function relating the z-transforms of the input and output.

(b) Write the difference equation that is satisfied by the input sequence x|n} and the cutput
sequence vir]

6.5 An LT system s realized by the flow graph shows in Figure Ph.5.

L= - o o & o o L L - 2
x[m] ¥ln]
=1 '|- 1r2-|
3| !
{—‘—? ——
£y 2l
1 2 .
s 5 Figure PB.5

{a) Write the difference equation relating x{al and v[n] for this Mlow graph.

ib} What is the system function of the system?

{c} Inthe realization of Figure P6.5. how many real multiplications and real additions are
required to compute gach sample of the outpu? {Asswine that x[«] is real, and assume
that multiplication by 1 does not count in the total.y

{d} The realization of Figure PAS requires [our storage repsiens (delay elements). Is it
puossible to reduce the number of storape registers by using o different struceure? 1f

s, draw the flow graph; if not, explain why the number of stotage registers cannot be
redueed.
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6.6, Detenmine the impulse response of each of the svstems in Figure PA.A.

: o W - zLL o oz !
x|n]
| 3 ¥ 3 -1 1
¥n]
(a)
) -l -1 5l 4t
¥ - F = r - ¥ - F o
I sl
i 4 3 o -2 1
;[n] ) - ) F ] ) l
k)
(=2
x[m}
¥
¥ln|
o
r[n]
i
¥|n)
id)
Figura PG.6

6.7, Let x[n] and v[n] be sequences related by the following difference equation:
[n] ! [n —2]=xn—2j L] 1
! [ | = — — =Xt
¥al- 3 xln — 2] — gxin

Divaw a direct form I signal flow praph for the causal LTT systemn corresponding fo Chis
ditference equation.
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6.8 The signal fow graph in Figure POR represents an L1 system. Determing a difference
equation that gives a relationship between the input x[r| and the output v[r] of this svstem.

As usual, all branches of the signal Bow graph have unity gain unless specifically indicated
otherwise.

2 Figure P6.3

6.9, Figure Pa.9 shows the signal Dow graph for a causal discrete-time: LT system. Branches
without gains explicitly indicated have a gain of uwnity.

{a) Bvtracing the path of an impulse theough the Jowgraph, determing A{17, the impulse
response ate = 1.

(b) Dretermine the difference equation relating x(n] and ¥(e].

<[l | yin]
127
=i O
i F
3 4 Figure P6.9

.10 Consider the signal flow graph shown in Figure Pa 10,

(4) Lising the node vaniables imdicated, woite the set of dilference cguatioms represented
by this flow graph,

(b) Draw the flow graph of an equivalent system that is the cascade of two 1-order
systents.

(€] Is the system stable? Explain.

x[n] '_—T__HQ_I' T il
1 e’

A ¥
N

Figure P6.10
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6.11.

6,12,

6.13.

6.14.

6.15.

16,

Chapter & Structures for Discrete-Time Systems

Congsider g causal LTT system with impulse response Alr] and system function

(1=2:"h1 - 4L
gy, oL

z (1 - %z"\]
(a) Diraw a direct form 1L Aow graph for the system,
() Draw the transposed form of the low graph in part (a).

For the LTT svatem described by the Qow graph in Fipure P8, 12, determine the differencs
equation relating the input xfa] to the output y[n].

Figure PB.12

Draw the signal flow graph for the direct form | implementation of the LTI system with
system function

Hi Lrge s

=
L—1 1.-2
1—34 —ge

Draw the signal Aow graph for the direct form 1 implementation of the LTT system with
sysieimn function

1+ g: 1y l,-2

Hip)= B B

1 1

"
-l

RH— T

AT z
Draw the signal flow graph for the transposed direet form 11 implementation of the LT sys-
tem with system function
7.1 1_.-2
| =2zt # 22
Hiz) = '”—15
1+ L+ I
Consider the signal fiow graph shown in Figure PA_16.
{a} Drawthe signal flow graph that results from applying the transposition theorem Lo this
signal flow praph.
{b)y Confirm that the transposed signal fow graph that you found in (a) has the same system
function H(z) as the original svstem in the figure.

[ o P S a R > B ]
xfr]

=l—a

Figura P5.16
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.17,

4.18,

6.19,

4711
Consider the causal LTT system with system Tunction
E . 1 _» .
A=l -z 2o 4270,

(#) Draw the signal flow graph for the direct form implementation of this system.,
(1) Drraw the signal low graph for the transposed direct form inplementation of the
EYSLam,

For some nonrero choices of the parameter g, the signal fiow praph in Figure PA.1S can

be replaced by a 208, grder direet form L1 signal flow araph implementing the same system
function, Give oné such choice (or @ and the syslem function &2 that results

a[n]

m = . e - - -

e | ™
’:'J 1 2 !
-

3 # Figure PG.18

a3 | fa

[
|

o=t

¥ 3

i
Lk

Consider the causal TTT svstem with the system (unction

2 - -gr:__] —23_2
Hiz) = =l

)

Draw a signal flow graph that implements this system as a paraltel combination of 1*-order
transposed ditect form 1 sections,

L Diraw a signal flow graph implementing the system function

HE) = A+ -2+ A+ 5 h _
G M = G i — o2 - 22

as a cascade of 2™.order transposed direct form 11 sections with real coefficients,

Basic Problems

6.21.

For many applications, it is useful to have a system that will generate a sinusoidal sequence.
Oine possible way 1o do this is with a systemn whose impulse response is Afn] = e/ y[n].
‘The real and imaginary parts of hla] are therefore b [n] = {coswpriuln| and f;(n] =
(5in cut joel a ), Tespectively,

In implementing a syslem with a4 complex impulse respanse, the real and imagnary
parts are distinguished as separate outputs. By first writing the complex difference equation
reguired 1o produce the desired impulse response and then separating 1 into its real and
imaginary parts, draw o flow graph that will implement (his system, The Aow graph that
you draw should have only real coefficients. This implementation is sometimes called the
corpled form oveiflator, since, when the inpuat s excited by an impulse, the oulpuls are
sinuscidal.
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6.22,

6.23,

6.24.

Chapter & Structures for Discrete-Tima Systems

For the system funciion

].—2;‘._1-.':'3

Az =
e YT TR T

draw the flow graphs of all possible realizations for this system as cascades of 1™-order
BYSEE NS,

We want to implement a causal system H (2) with the pole-zero diagram shown in Fig-
ure P6.23. For all parts of (has problem, 29, 22, py, and po are real, and 4 gain consiant that
is independent of freguency can be absorbed into a gain coefficiznt in the output branch of
each flow graph.

.
!
| Lo

|| :1'. iz H ;‘1 e

L

Figure P6.23

(a} Draw the flow graph of the direct form 1T implementation. Delerming an expression
tor each of the branch gains in terms of the variables 7y, z2, py. and .

(b} Draw the Aow graph of an implementation as a cascade of 20d_oeder direct form 11
szctions. Determine an expression for each of the branch gains in terms of the variables
71, 23, pyoand ps,

e} Draw the Aow graph of a parallel form implementation with 15'-order direct form |1
sections. Specify o svstem of linear equations that can be solved to express the branch
gains in lerms of the variables 2y, 22, py.and pa.

Consider a causal LTT system whose syslem funclion iy

— 4

=

|
S
i P
]-"T 541

,_.
|
1
[
I
4
et
[
|
P
W
—
i
4
e
ru
|
o
-
L] |
[
1
Lt

() Draw the signal low graphs for implementations of the system in each of the following
[exrrms:
(1) Dirce form I
(1) Drirect form T1
(i) Cascade form using 1% and 2™ -order direet form 11 sections
{iv) Purallel form using 1%'- and 2" order direct form I sections
{v) Transposed direct form T1.
(b} Write the difference equations for the Aow graph of part (v} in (a) and show that this
systent has the correct syslem fnetion.
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625, A cavsal LTI svstem is defined by the signal flow graph shown in Figure P6.25, which
Teprosents the system as 8 cascade of a 2™ arder svstem with a 151 -order system.

xlal yin]
o — e 3 - - = s o > r S
i
T f_{ L . z 1
(.3 | 08 |
— L » & S
B
(B3 081
s S
Figure P&.25

{a) What is the system function of the overall cascade system?

{h) Is the overall system stable? Explain bricefly,

{c) ls the overall system a minimum-phase system!? Explain briefly.

{d) Draw the signal ow graph of a transposed direct form 1 implementation of this system,

626, A causal LTT syslem has system funciion given by the [ollowing expression;

1 1371
|y R R A S
1-z 1 1-z1+08:

(a) Is this system stable? Explain briefly.

(k) Draw the signal flow graph of a paratlel form implementation of this system.

(¢} Draw the signal Oow praph of a cascade form implementation of this syslem as 2
cascade of a 1%-order system and a 2™ -order system. Use a transposed dircet form 11

implementarion for the 2"%-order system,

6.27. An LTTsystem with sysiem function
02(1 42136
Lok R q"ﬁfﬂ I T
(i 2270 4 gz )l:l+.:' + 5z *)(] 52 —-z")

is o be implemented using a Oow graphb of the form shown in Figure PE.27.

Figure P6.27
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{a) Fill in all the coetficients in the diagram of Feure P27, [s your solution unigue?
(b} Define approprigle node variables in Figure P27, and write the set of differcoce
equations that is represented by the flow graph.

G628, {a) Determine the system function, 77(z), from cfr| to y[a] for the flow graph shown in
Figure P6.28-1 (note that the location where the diagonal lines criss-cross 13 not a singhe
nade),

o Figure P6.28-1

(b} Draw the direct form (1 and 1T) fow graph of systems having the svsiem fumetion iz,
(c) Desigr_l Hyiz) such that f2izy in Figure PG28-2 has a causal stable mverse and
IHoe ! = [H e/ Mote: Zero-pole cancellation is permitied.

aln] ¥im]
— J(Z) —

H| fZ:l o

L

Hylz) Figure P6.28-2

(d) Draw the transposed dircet form IT flow graph for &0z

6.29. (a) Determine the system funclion Fz) relating the input xin] o the outpul y|» | for the
FLR lattice filter depicted in Figure P6.29.

x[n] . - 5 - ¥n

Figure P6.29

(b} Draw the lattice filler structare for the all-pale Glter |/ TF{z).
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6k Determine and deaw the lanice filter implementation of the following causal all-pole syslem
function:

Ts the system stahle?
6L An LR lattice filter iz shown in Figure P31,

xin| ¥al
O

£ g Flgure P6.31

{a} By wacing the path of an impulse through the flowgraph, determine »[1] for input
v[r} = §[r|.

ib} Determine a flow graph for the corresponding inverse filter.

{¢) Determing the tramsfer function for the IR filter in Figure PG.31.

6.32. The low graph shown in Figure P32 is an implementation of a causal, LT system.

" ]

1 2 Figure P5.32

(a) Draw the transpose of the signal flow graph.

(h) Forelther the orignal system or s transpose, delerming the dilference equation relat-
ing the tnput x[n] to the ougput ¥[n]. (Nowe: The difference equations will be the same
for both structures.)

(e} 15 the systern BIBO stable?

(d) Determine p[2]if x[n] = (1/2)"uln].
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Advanced Problems

633, Consider the LTT system represented by the FIR Jattice striclure in Figure PA.33-1.

vin|

xfn] 3'[”]

Figure P6.33-1

fa} Determine the system function from the mpal xfe] Lo the oatpued ofa ] {NOT v[5]).

(b} Let Hiz) be the system funclion from the input xlr] to the output v|a], and let gzla)
b the result of cxpanding the associated impulse response &n] by 2 as shown in
Figure P0.33-2.

hin] g}

t2 p—

Figure P&.33-2

The impulse response gle| defines a new system with system fusction €4{z). We would
like to implement 7iz) using an FIR latlice structure. Delerming the & -parameters
negessary for an FIR lattice hﬂpldlﬂeﬂlmjﬂn of Grizd, Wedes You should think carefuily
betore diving into a long calculation.

6.M. Figure P6.34-1 shows an implse response hlaf, specified as
1 nid \ ' : .
(EJ uln], for o an integer maltipie of 4

hlni=
constant in batween as indicated

hin|
1

{EHH Emim

(a) Determine a choice for ky[n] and ka|n] such that

hin] = &y [n] = ka[n],

7 Figure P6.34-1

where ki [n]is an FIR filler and where fz[n] = 0 for n /4 notan integer, Is hofn) an FIR
ar [TR filter?
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{b} The impulse response k[n] 15 to be used in a downsampling system as indicated in
Figure P5.34-2.

ﬂh H l"] - * 4 }I:‘{]]

Figure P5.34-2

Draw a flow praph implementution of the system in Figure P6.34-2 that requires the
migimum number of nonzero and nonunity coefficient multipliers, You may use unit
delay elemants, coefficient multipliers, adders and compressors. (Multiplication by a
sero or g ene does not reguire a multiplier.)

(e} For vour sysiem, state how many multiplications per input sample and per output
sample are required, giving a brief explanation.

6.35. Consider the system shown in Fgoure PAR33-L

il H[n] L4 sal

Figure P§.35-1

We want to implement this system using the polyphase structure shown in Figure P& 35-2,

¥|n] )
r 4 - eafr] .
sl
- v e - e {n] -
- ¥in
£ L ——
* . 4 . £an] x>
‘z-.l -
y 4 » 3l =

Figure P6.35-2 Polyphase structure of the system.
For parts (a) and (b} only, assume Afn] is defined in Figore PO 25-3

¥ drzpr 12 L2
fifn]

L8 L8

6 7 B 9 10 11 e n Figure P§.35-3

(hlnl =0foralln < 0andn = 12),
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(a) Give the scquencesegla|, eqlr], ez 1], and es[# ] that result in acorrect implementation.

(b} We want to mmimimize the total number of multphes per oulput sample for the imple-
mentation of the structure in Figure PA35-2. Using the appropriate choice of egln],
eyl# ), ealn], and ezln] from part {a), detcrmine the minimum number of muoltiplies
per output sample for the overall system, Also, determine the minimum number of
multiplies per input sample for the overall system. Explain.

(c) Imstead of using the sequences eplnl, eplr], ¢zl ), and eq)n] idenlificd in part (a), now
assume that Epie!™) and Ea(e!™) the DTETS of eple] and ezxlr], respectively, are as
given in Figure PG35-4, and E; (e7%) = Eqie/®) =),

=
Eqle) Eqlet) =3 aw - 2r)

Ff=-—3

— il 0 i,

Figure P6.35-4

Sketch und label Hie ™) from i—m, ),

6.36. Consider a peneral flow graph {denoted Network 4) consisting of coefficient multiphers
and delay clements, as shown in Figure P6.36-1. If the system is initially at rest, its behavior
is completely specified by its impulse response fi|r|. We wish 10 modify the system to create
a new flow graph {denoted Network A ;) with impulse response fiy [n]= (—1"A[r].

x[n]

Netwark A Figure P6.36-1
(a) If Hiei®} is as given in Figure P6_36-2, sketch H (ef®).

s

2
2

2 Figure P6.36-2

(b) Explain how to modify Network A by simple modifications of its coefficient multipliers
andfor the delay branches 1o lorm the new MNetwork 4 whose impulse response is
hyln].
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(e) If Metwork A is as given in Fipure PA.36-3, show how to modify it by simple moditica-
tions to onfy the coefficient multipliers so that the resulting Network A § has mpulse
response iy n).

(=2 = lw] s - S st s e f—r
x[x] y[r]
A | :-1 A

. - .

1 -2

Fal ;

2 1
J . ]

- L

2 ]

gt
o ]
! -2 Figure PG.35-3

637, The flow graph shown in Figure 16,37 is noncomputable; i.e., it is not possible to compute
the oulput using the difference cquations represented by the Now graph because it contains
a closed loop having no delay elements

- ! P o ey

<]
vin]

x[n]

=]

g -1 Figure P6.37

3
=

(ap Write the difference equations (ot the system of Figure P6.37. snd [rom them, find the
systemn function of the flow graph.
{b) From the system function, obtain a flow graph that is computable,

6.38. The impulse response of an L1 system is

e, =n=T,

,  otherwisc.

hn] = {

{a) Drwaw the fow graph of a direct form aonrecursive implementation of the systen.

() Show that the corresponding system function can be exprassed as

#.—8
T

| —u

Hiz} = lz| = lal.

1 —az-

(¢} Draw the ferw graph of an implementation of Hig) as expressed in part (b), corre-

sponding toa cascade of an F1R system {numerator) with an HER system {denominator).

(d} Is the implemcntation in part {c) recursive or nonrecursive? Is the overall svstem FIR
or IIR?
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(e) Which implementation of the system requires
1} the most storage (delay clements)?
(ii} the most arithmetic {multiplications and additions per output sample)?

6,39, Consider an FIR syslem whose impulse response is
N ]—15‘(1 +eosl 2/ 15n —npil). 0 =n =14,
a, otherwise.
This system is an example of a class of fillers known as frequency-sampling Aliers. Prob-
lem 6.51 discusses these filters in detail. In this problem, we consider just one specific case,

{a} Sketch the impulse response of the system for the cases g = 0 and ng = 15/2.
{by Show that the system function of the system can be expressed as

i 1 1 .-]51’_-" 2anglls __]h,jz Tpd 15
! = ;

Hizt=il-z

s Qo
1301 —z-1 | — ed2Tili—1 + | — e—J2mil5.—1

(e} Show that il wy = 15/2, the frequency response of the system can be expressed as
; 1 e | sindel 5020 L sin[tw — 2 /1501502
Figdty = _ b Nt el el 2 X
W e

La
1 sin]iaw + 2w /15115,/2)
2 sin[(w + 27/15),2]
Use this expression Lo skeleh the magnitude of the frequency response of the system
tor ay = 1572, Obtain a similar expression for ag = 0. Sketeh the magnitude response
tor ng = (. For which choives of rg does the system have a generalized lnear phase?
(d} Draw asignal flow graph of an implementation of the system as a cascade of an FLR sys-
—13 and a parallel combinationof a 13- and 2y der

fem whose system function is | —z
LR system.

6.40. Consider the discrete-time system depicted in Figure PG.40-1.
(r 1+r

O o i T et ina it o)

x|n| ¥lnl

I-r Figure P6.40-1

{a) Write the set of difference equations represented by the flow graph of Figure PR3k

(b} Determine the system function #y{z) = Y izh/ X (2} of the system in Figure P6.40-1,
and determine the magnitudes and angles of the poles of 5 (z) as a function of r [or
=1l =r =1

(¢} Figure P6.40-2 shows a different low praph obtained rom the flow graph of Fg-
ure Pa4-1 by moving the delay elements to the opposite top branch. How is the
system function foiz) = ¥a(z}/ X (z) related to H02)7?

o T 1-r !

E[H] )

]

1-r Figure P6_40-2
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6.41. The three flow graphs in Figure P6.41 are all equivalent implementations of the same two-
input, two-owtput LTT svstem.

e —

S P )
x| v ] sl 1 L il
r Yo i
@ tet = & o - T 4 l 3

Fulnl 1-r EAL C‘“‘\H o

wlal T e =T x|
Metwork B

{a) ih

Metwork A

Metwork O
(ch
Figure P&.41

(a) Wnite the difference equalions for Network A.

(b} Delermine values of a, b, ¢, and o for Network B in terms of r in Network A such that
the bwo systerns are equivalent,

(e} Determine values of e and § for Network © in terms of - in Network A such that the
two systems are cguivalent.

(d) Whyv might Metwork £ or C be preferred over Network A7 What possible advantage
could MNetwork A have over Network 8 or O7

6.42. Consider an zll-pass system with system function

1 — {1/5.54z~1
TINS5
| — 3471

A Now graph [or an implementation of this system is shown in Figure P6.42,

i :i Tk - Ot
x[n) -l;, : ! w[n}
N7 A
— Figure P5.42

fa) Determine the cocfficients b. . and d such that the Aow graph in Figurc PH42 is a
direct realization of H(z).

{b} In a practical imple mentation of the network in Figure PA .42, the coefficients b, o, and
a might b quantized by rounding the exact value to the ncarest teoth (e.g, 0.54 will
be rounded 1o (L3 and /054 = 18518, ., will be rounded 1o 1.9, Would the resulting
system still be an all-pass system?
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{£) Show that the ditference equation relating the input and cutput of the all-pass system

with system funelion Hiz) can be expressed as

vin] = 1.540v[n — 1] - <la]) + xle = 1].

Drraw the fiow graph of & network that implemendts this difference cquation with twa

delay elements, but only one multiplication by a constant other than 4+1.
{d) With quantized coztheients, would the flow graph of part {c) be an all-pass system?

The primary disadvantage of the implementation in part (¢} compared with the im-

plementation in pare (a} 1s that it requires two delay elements. However, for higher-order
sy=lems, 16 15 necessary o implement a cascade of a“—paﬁﬁ systems. For & all-pass sections
in cascade, it is possible to use all-pass sections in the form determined in part {c} while
requiring only (& -+ 1) delay clements. This is accomplished by sharing a delay element
hetween sections

(e} Consider the all-pass system wilh system funclion

-—1 1
I I z 2]
ffizy= - :
(I. a4z 1)(] b:_'l)

Diraw the flow graph of a “cascade” realization composed of two sections of the form
oblained in part {€) with one delay clement sharcd between the sections, The resulting
flow graph should have only three delay elements.

(£} With quantized coetficients @ and &, would the flow graph in part {e) be an all-pass
syslem?

. All branches of the signal flow graphs in this problem have unity gain unless specifically

indicated otherwise.

- Z.._gz.1 P | K
- / \\J’ 4 ‘\\//

{a) Thesignal flow graph of System A, shown in Fizure P6.43-1. represents a causal LT sys
tem. Is 11 possible 1o implement the same input—output relationship using fewer delays?
It is possible, what is the minimom number of defays required to implement an equiv-
alent system? If it is not possible, explain why not.

() Does the Svsiem B shown in Figure Po.43-2 represent the same input—outpu| relation-
ship as Svstem A in Figure P6.43-17 Explain clearly.

o
xfm

Figure P6.43-1

¥[n]

Flqure P6.43-2

644, Congider an all-pass sysiem whose svstem function is

R |
L e &
I — i:'l
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(a2} Draw the direct form | signal low graph for the system. How many delays and multi-
pliers do you necd? (Do not count multiplying by £1.)

(b} Draw asignal flow graph for the system that uses ane multiplier. Minimize the number
of dulays.

ey Now consider another all-pass system whose system function is

=1 1 1
)
Hiz) = !___3 s
(1- 52711 =221}

Determine and draw a sipnal flow graph for the system with two multipliers and three
delavs.

645, With infinite-precision arithmetic, the flow graphs shown in Figure P6.45 have the same
gystem function, but with quantized fixed-pomt arithmetic they behave differently. Assume
that u and b are real numbers and 0 < a = 1.

4 [:],, b .'f'[*L] x [;,-] b

Sl S

¥l
ity

P 1

4 4 Figure PE.45

(a) Determine zppgy, the maximum amplitude of the input samples se that the maximum
value of the outpul ¥[r] of either of the two systems i8 guaranteed (o be less than one,

{b) Assume that the above systems are implemented with two's-complement fixed-point
arithmetic, and that in both cases all produocts are immediately rounded to B + 1 bits
{frefore any additions are done). Insect round -off noise sources at appropriate locations
in the above diagrams to model the rounding error. Assume that cach of the noise
sources inserbed has average power equal (o -:rf? = 2_2",»' 12,

(¢} If the products are rounded as described in part (b)Y, the outputs of the two systems
will differ; Le., the output of the first system will be v (0] = #in] + fijn] and the
output of the second system will be wn] = vin] + fHlel where fi[n] and fz(n] are
the outputs due te the noise sources. Determine the power density spectra &, 1 {efey
and @y, 7, (/™) of the output noise for both systems.

{d} Determine the total nolse powers a?l and .-:i__ at the output for both systems.

6.46. An allpass system is to be implemented with fixed-point arithmetic. [ts system function is

G l-a*e ! —a)

Hipy = -
fel {1 - az‘lfl[] - ﬂ":'lj

where a = redf,

{a} Draw the signal flow graphs for both the direct form | and direct form L implementa-
tions of this system as a 27 grder system using only real coefficients,



6.47.

ih)

(e}
(d)

(e)
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Assuming {hat the products are cach rounded before addilions are performed, insertt
appropriale noise sources oo the networks drawn in part (a), combining noise sources
where possible, and indicating the power of each noise source in terms of #2 , the power
of a single rounding nose source.

Circle the nodes in your network diagrams where overflow may occur.

Specify whether or not the output noise power of the direct form Ll system is inde-
pendent of v, while the oufpul noise power Tor the ditect form T sysicm increases as
r — 1. Cilve a convincing argument Lo SUpPort vour answer. 11y to anawer the question
without computing the output noise power of either system. OF course, such a compu-
lation would answer the guestion, but you shoald be able 1o see the answer without
computing the noise power.

MNow determine the output noise power for bozh systems,

Assume that a in the flow graphs shown in Figure P6.47T is a real number and & = o = 1.
Note that under infinile-precision arithmetic, the two systems are cguivalent.

{a)

(h)

(<)

x| Fla]

= i i i i a i * £}
lE_J 1 lzl
a

Flow Ciraph #1

xin] ¥fn)
s _l. > r » o > [ > &
A e I i
—s \ ._.J
Flow Graph 82 Figura PG.47

Assume that the lwo systems are implemented with (wo's-complement fixed-point
arithemetic, and that in both cases all products are immediately rounded {Before any
additions are done}). Insert round-off noise sources al appropriate localions in both
Aow graphs to model the roonding error (multiplications by anity do nod introduce
notse), Assume that cach of the noise sources inserted has average power cqual to
or =222,

If the products are rounded as described in part (a), the cutputs of the two syseems will
differ; i, the oulput of the rst system will be v in] = ¥(n] + filn] and the oulput of
the second system will be valn] = v[n] + fHla], where y(aj s the oulpal owing 1o xjs]
acting alone, and fjla] and || are the outputs owing to the noise sources. [etermine
the power density spectrum of |he oulput noise @ ¢, ¢ (/™). Also delermine the total
noise power of the cutput of flow graph #1; i.e.. detcrmine o2 .

Without aclually computing (he culput noise power for flow graph #2, you should be
able to determine which system has the largest total noise power at the output. Cive a
brief explanation of your answer,
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6.48. Consider the paralle]l form flow graph shown in Figure 648

[n5

1z

vli]

Figure P6.48

(a) Assume that the system isimplemented with two's-complement Oxed-point arithmetic,
and that all products (multiplications by 1 do not introduce noise) are immediately
rounded (before any additions arc done), Insert round-ofl noisc sources at appropriale
locations n the fow graph 10 model the rounding ermor, Indicate the size (averape
power) of sach noise source in terms of o2, the average power of one (B + 1) bit
rounding operation.

(k) If the products are rounded as described in part (2), the owtput can be represented as
¥nl = ylnl+ fix] where vix]is the output owing to a|n] acting alone, and fin] is the
total output due to all the noise sources acting independently, Determine the power
density spectrum of the output noise € ;4 {&/%).

(o} Alsa determing the total noise power cj-. of the noise compoment of the outpui.

6.4% Consider the sysiem shown in Figure P6.49, which consists of a 16-bit AT converter whose
output is the input to an FI R digital filter that is implemented with 16-bit fixed-point arith-

metic,
16-Bat ATx Converter
X0t Ideal xin] 16-Bit i[r] LTI P[]
* : Ci ™1 Ouantizer > S:.'str:,m. —
Converter Rin], Higd)
]

T Figure P6.49
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The impulse response of the digital Rlter is
fln| = —3738[n) + 7530 — 11— 3756in — 2).

This system is implemented with 16-bit rwo's-complement arithmetic. The products are

rounded (o 16-hits before they are accumulaled (o produce the output. Tn anticipation of

using the linear noise model 1o analyze this system, we define Elr] = x[n] 4 #ln] and

flal = vinl + Finl, where ¢[n}is the guantizalion crror introduced by the AYD converter

and fim| is the reral quantization noise al the calput of the ilier,

(a) Determine the maximum magnitude of £lx] such that no overflow can possibly occur
in implementing the digital filler; ie., delerming ymax such that ${nf = 1 for all —oo <
n o= oo when $n] < opas for all —mo < 5o« oo

{b) Draw the linear noise model for the complete system {inclucing the linear noise model
of the AMD). Include a detalled fow-graph Tor the digial ler including all noise
sources due to quantization.

(¢} Determine the total noise power al the oulput, Denote this 2%,

{dy Detzgrming the power spectram of the noise al the output of the filter i.c., determine
ttr.,-_,r(uv"“".l. Flat your result.

Extension Problems

6.50. In this problem, we consider the implementation of a causal filler with system function
1 1
(1 63z - B3z-D) 1 — 1461 4 0.5229;-2

Hizl =

This system 15 to be implemented with {7 + §)-bil two's-complement roundimg arithmelic

with products rounded before additions arc performed. The input to the svstem is a zero-

mean, white, wide-sense stationary random process. with values uniformly distributed be-
tween —imay and +rmax.

(a) Draw the dirccl form flow graph implementation for the filter, with all cocfficicnt
multiplicrs roundsd to the nearsst tenth,

(b} Draw a flow graph implementation of this system as a cascade of two 1¥order systems,
with all coefficient multipliers rounded o the nearest tenth,

() Only one of the implementations from parts {a) and (1) above 15 usable, Which one?
Explain.

(1) Toprevenl overflow al the outpul mode, we must carefully choose the parameter smax.
For the implementation selected in part {c), determing a value [or 5y that praraniees
the output will stav between -1 and 1. (Ignore any potential overflow at nodes other
than the oulpul.)

{e) Redraw the flow graph selected in part {c). this time including linearized noise models
representing quantization round-off crror,

{f) Whether yvou chose the direct form or cascade implementation Tor part (c), thero s
still at least one more design alternative:

(1) I vou chose the divect form, you could also use @ transposed direcl form,
(i} IF yore chose the cascade form, you could implement the smaller pole first or the
larger pole first,
For the system chosen in parl {c}, which alternative (it any} has lower oulpat guan-
tization noise power? Note you do nol need to explicitly calculate the total output
quantizalion noise pawer, but vou must justify your answer with some analysis.
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in this problem, we will develop some of the properties of a elass of discrele-time systems
called frequency-sampling filters. This class of filters has system functions of the form

N-1 ¢
' HIKI/N
Hizt=0-z"). %" ] r_} s
gty kR

where 7 = TN far b — 01, N — 1.

(a) Svstem funclions such as HI'-[zJ can be implemented as s coscade of an FIR system whiose
system function is(1-—z” Ny witha parallel combination of 1%-order IR systems. Draw
the signal flow graph of such an implementation.

(h) Show that Hiz}is an (N — Dst-degree polynomial in 27 L To do thas, 10 85 fecessary 1o
show that H(2) has no poles other than : = (1 and that it has no powers of = | higher
than { & — 1), Whal do these conditions imply abouwt the length of the impuolse response
of the system?

(¢} Show that the impulse responsc is given by the expression

el :
a5 02 N rieege N
kin] = N E Hk]e ) (ee|r] — u[n — N1k
k=l
Hint: Determine the impulse responses of the FIR and the [IR parts of the system,

and comvolve them o ingd the overall impulse response,
{d} Use I'Hdapital's rule to show that

Hizm) = Hied miNimy _ prog 0 L. N =1

i.c., show that the constants M [m] are samples of the frequency response of the svstem.
Hed™y, al egually spaced Meguencies wy = G /N lorm =000 ..., — L. 11 s
this property that accounts for the name of this class of FIR svstems.

{e} Ingencral, soth the poles z; of the TR part and the samples of the frequency response
H k| will be complex. However, if A« ] is real, we can find an implementation mvolving
only real guantilies, Specilically, show that if Ale] s real and & s an even integer, then
H iz} can be expressed as

HilvN -1/
127V ™ Qf 2]

Hizy =1l —z""’-i{

N2 =1 . . ey R
: 3 T 2@ PN costgmk/ V) — 2 cosle 2k N) = 2mk/N]
ey N 1—2cos2mkiniz— + 272

where Hie™™) = |Hiad® Jlﬁfﬁ'-’_”:'. Diraw the signal flow proph representation of such a
syatem when N = lhand FHe/%% ) =Ufor k =34, . 14

In Chapler 4, we showed that, in peneral, the sampling rute of a discrete-time sipnal can
be reduced by a combination of linear fillering and Gme compression. Fipure PRS2 shows
a block disgram of an M-to-1 decimator that can be used to reduce the sampling rate by
an integer factor M. According to the model. the lincar filter operates al the high sampling
rate. However, if M is large, most of the owput samples of the filter will be discarded by
the compressor. In some cases, more efficient implementations are possible.

Hizk i
(Z) Y M

xln] ki) | wlaj vlnl=w[Mn] Figure P§.52
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{a) Assume that the Gler is an FIR system with impulse response such that Afn] = 0 for
n = Dand for n = | Dvaw the svstem in Figure PAS2Z, but replace the filter kin]
with an cguivalent signal flow graph based on Lhe given information, Note that itis not
pm,'siljle Loy implement the W-ro-l compressor l,.ls:ing a signal Qow graph, so you must
lzave this as a box, as shown in Figure PRS2

(b) Note that sume of the branch eperalions can be commuted with the compression
operatiom. Using this Facl, draw the Qow graph of a more efficient realizaiion of the
systern of part {a). By what factor has the total number of computations required in
cbtaining the output vin] been decreased?

{e) Now suppose that the filter in Figure PA.52 has svstem function

Hizh = . = T'f

Diraw the fiow graph of the direct form realization of the ecomplete svstem in the fgure.
With this system for the [inear Blter, can the total computation per oulput sample be
reduvced? TF 5o, by what lactor?
(d) Finally, suppose that the filter in Figure PA.52 has system function
i 7.-1
Ho - — 5 =L
1 7

Drraw the flow graph for the complete system of the figure, using each of the follewing
forms for the linear filies:
(i direct form [
(1) direct form 11
{11} transposed direel form |
(tv) transposed direct form 1L
For which of the four forms can the system of Figure P6.52 he more efficiertly imple-
menled by commuting operations with the compressor?

Speech production can be modeled by alingar system representing the vecal cavity, which is
excited by puffs of air released through the vibrating vocal cords. One approach to synthe-
sizing speech involves represcnting the vocal cavity as a connection of cylindrical acoustic
tubes of equal lengih, but with varying cross-sectiona] areas, as depicied in Figore PASD,
Letus assume that we want to simulate this svstem in terms of the volume velocity repre-
scoting airflow,. The inpul 15 coupled inlo the voeal tract through a small constriction, the
wocal cords. We will assume that the mgnit is represented by a change in volume veloaty
at the left end, but that the boundary condition for raveling waves at the left end is that
Lhe net volume velocily must be zero, This is analogous o an electrical transmission line
driven by a current source at one end and with an open circait at the far end. Current in the
lransmission line is then analogous to volume velocity in the acoustic tube, whereas voltage
15 analogos b acoustic pressure. The owlpul of (he acoustic Wb 15 the volume velocily al
the right end. We assume that each section is a lossless acounstic transnuission line.

m Figure P6.53
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At each interface berwesn sections, a forward-traveling wave £ is transmitted to the next
seclion with one coefficient and reflected as a backward-traveling wave f with a different
coetficien), Simlary, a backward-traveling wave £~ artving al an inferface is trapsmitied
with one coefficient and reflected with a different coefficient. Specifically, if we consider a
forward-traveling wave FTin a tube with cross-sectional area A j armiving at Lthe interface
with a tube of cross-sectional area Ao, then the forward-traveling wave transmitted is
{1 +ri1f" and the reflected wave is r 7™, where

Consider the length of each section to be 3.4 cm, with the velociy of scund in air equal to
A4 0000 s, Draw a Now graph thae will implement the four-section model in Frgure PR.53,
with the output sampled at 20,000 samples/s.

In spite of the lengthy inlrodoction, this a reasonably straightforward problem. I
vou find it difficult to think in terms of acoustic tubes, think in terms of transmission-ling
sections with different charactenstic impedances, Just as with lransmission lines, it is diffcult
trenpress the impulse response in closed form. Therefore, draw the flow graph directly from
phvsical considerations, in terms of forward- and backward -traveling pulses in each section.

In modeling the cllects of tound-ofl and truncation in digital fler implementalions, guan-
nzed varianles are represented as

| = Mzfnll = xln] + elnl,

where ¢4 | denotes either rounding or truncation to {8 4+ 1) bits and e | is the guarntizarion
errer, We gssume that the qual‘llinlihjn naise sequence is 4 stalionary white-noise sequence
such thar

Elteln] — meMeln +m] — hip)] = r'.r.}ﬂrﬂj

and that the amplitudes of the noise sequence values are umilormiy distribited over (he
quantization step A = 278 The F¥larder probability dersities for rounding and truncation
arc shown in Figures P6.54(a) and (b). respectively,

ple} el

B |

1
A

| L=
| L

(a) (b Figure P6.54

{a) Determine the mean #. and the vanance r,rj ferr the noise owing o rounding,
{h) Determine the mesn s, and the varianoe '53 for the nodse owing to truncalion.

Consider an LTT system with two inputs, as depicted in Figure PA.S5, Let fig v and dz(n] be
the impulse responses from nodes 1 and 2, respectively, to the oulpat, node 3. Show that il
xin] and xy[»] are uncorrefared, then their corresponding cutputs vy |« ) and v {»] are also
uneorrelated,
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;ﬂ/ —o ]

d

wlel 11— v[1] = vl + ]
Melwiork

Flgure P§_55

6.56. The flow praphs in Figure P6.56 all have the same system function. Assume that the systems
in the figure arc implemenled using (# + 1)-bil fixed-point anthmelic in all the compu-
taticms. Assume also that all prodocts are eonnded to (8 4 1) bits before additioms are

performed.
by by

o - o = o o - 0
x 1] vlna] x|m| vln|

! Az

a b b @

a1 {b)

o * o - o

x[n] by ¥[n]

il 2!
by d
el

Figure PE.56

(a) Draw lincar-noise models for cach of the systems in Figure PA36,

(b)Y Tworal the Aow graphs in Figure PA.56 have the same total output noise power owing Lo
arithmetic round-off. Without explicitly computing the output noise power, determine
which lwo have the same oulpul noise power.

(¢} Determine the output noise power for each of the flow graphs in Figure PG.36. Express
your answer in lerms of -:r]%. the power of & single source of round-ofl noisc,

6.57. The flow graph of a 1™ -order syslem is shown in Figure P6.57,

Cr

B -
x|a]

#r - &
L, YAl
Z
i Figure F6.57

{a} Assuming infinite-precision arithmetic, find the response of the system to the input
1

z, /=1
xRl = = R
] 1, n =L

What is the response of the system for large n?



Chapter B

Problams 491

MNow suppose that the system is implemented with fixed-point arithmetic. The coef-
ficient and all variables in the fiow graph are represented in sign-and-magnitude notation
with 5-bil regisiers. That is, all numbers are (o be considered signed fractions represented
as

bty bababy,
where fig, by, 1, b3, and by are either 0 or 1 and
|Register valuef = 27 g {:.22“'3 + 32 3 +by2 %

If by = (1, the fraction is positive, and if by = 1, the fraction is negative, The result of a
multiplication of a sequence value by a coetficient is truncated before additions oceur; fe.,
only the sign bit and the most significant four bits are retained.
{b) Compute the response ol the quantized system to the inpul of parl {a). and plot the

responses of both the quantized and unguantized systems ftor 0 < 2 = 5. How do the

responscs compare for large #?

() MNow consider the system depicted in Fipure POST, where
| . n
_ 1= n2z0,
x[n) = {{1, )
Repeat parts (a) and {b) {or this system and input,

- 0

] “\' B / Vil
-3

658, A causal LTT system has a system function

Figure P5.57

1
HZ) 2= e s,
o 104z 40982
(a} Tsthis syslerm stahle?
(b} If the cocfficients are rounded to the nearest tenth, would the resulting system be
stable?

6.59, When implemented with infinite-precision arithmetic, the flow graphs in Figure PA.39 have
the same system function.

o - * - o - > —
wml I T\. vin]
[

|

Melwork 2

Figure P6.59
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Show that the two systems have the same overall system fanelion leom mpul x[a]
output v,

Assume thatl the preceding syslems are implemented with (wo's complement fixsd-
point arithmetic and that producis are rounded before additions are performed, Deaw
signal flow graphs that insert round-off noise sources at appropriate locations 1o the
signal flow graphs of Figure PA.59.

Circle the nodes in your figure from part (h) where overtlow can oceur,

Determine the maximum size of the inpul samples such that overfiow cannot occur in
cilher of the two sysiems

Assume that o = 1. Determine the total noise power at the output of each sysem,
and determine the maximum value of (o) such that Network 1 has lower outpul nodse
prvwer than Metwork 2,



