7.0 INTRODUCTION

Filters are a particolarly important class of LTT systems. Strictly speaking, the rerm
Trevuenicy-sedecrive filter sugpests s system that passes certain frequensy comporents of
an input sipnal and totally rejects all others, bul in a broader context, any system that
madifics certain frequencics relative 1o others is also called a flter. Whilc the primary
cmphasis in this chapter @ on the desipn of frequency-selective ilters, some of the
techniques are more broadly applicable, We concentrate on the design of causal filters,
althcugh in many contexts, filters need not be restricted to causal designs. Very often,
noncausal filters are designed and implemented by modifying causal designs,

The design of discrete-time filters corresponds to determining the parameters of a
trunsfer function or difference equation that approximates a desired impulse response or
frequency responsc within specilied tolerances. As discussed in Chapter 2, discrete-time
systems implemented with dilference eguations [all into two basic categonies: infinite
impulse response (HR) systems and finite impulse response (FIR) systems, Designing
R filters implics oblaining an spproximating transfer function that 1s a rational funetion
of z. whereas designing FIR Aliers implics polvonomial approximation. The commonly
used design technigues for these two classes take different forms, When discrete-time
filters first came into common use, their design: were based on mapping well-formulated
and well-understoad continuous-time filtér designs 1o discrete-time designs through
techniques such as impulse invariance and the hilinear transformation, as we will discuss
in Sections 72.1 and 7.2.2. Thece always resulted in ITR filters and remain at the core
of the design of frequancy selective discrete-time TIR filters. In contrast, since there
is not a hody of FIR design technigues in continuous time that could be adapted to
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494 Chapter 7 Filter Design Technigues

the discrete-time case, design techniques for that class of fillers emerged only after they
became important in practical systems. The most prevalent approaches to designing FIR
filters are the use of windowing, @5 we will discuss in Scetion 7.5 and the class of llerative
algorithms discussed in Section 7.7 and collectively referred o as the Parks-MeClellan
algorithin.

The design of filiers involves the following stages: the specification of the desired
propertics of the system, the approximation of the specifications using a causal discrete-
time system, and the realization of the system. Although these three sieps are certainly
nol independent, we focus our attention primarily on the second siep, the first being
highly dependent on the application and the third dependent on the technology to be
used for the implementation. In a practical setting, the desired filter is generally -
plemented with digital hardware and often vsed to filter a signal that is derived from a
continvous-time signal by means of periodic sampling followed by A/D conversion. For
this reason, it has become comumon to refer to discrete-time filters as digital filters, even
though the underlving design techniques most often relate only to the discrete-time
nature of the signals and systems. The issues associated with quantization of filter coef-
ficients and signals inherent in digital representations is handled separately, as already
discussed in Chapter 6.

In this chapter, we will discuss a wide range of methods for designing both TIR
and FIR flters. In any practical context, there are a variety of trade offs between these
two classes of filters, and many factors that need to be considered in choosing a specific
design procedure or class of filters, Our goal in this chapter is to discuss and illustrate
some ol the most widely used design technigues and to suggest some of the trade ofls
involved. The projects and problems on the companion websile provide an opportunity
to explore in more depth the characteristics of the various filter types and classes and
the associated issues and trade olls

7.1 FILTER SPECIFICATIONS

In our discussion of filter design techniques, we will focus primarily on frequency-
selective lowpass filters, although many of the techniques and examples generalize to
other types of filters. Furthermore, as discussed in Section 7 4, lowpass filter designs are
easily transformed into other tvpes of frequency-selective filters.

Figure 7.1 depicts the typical representation of the tolerance limits associated with
approximating a discrele-time lowpass filter that ideally has unity gain in the passband
and zero gain in the stopband. We refer to a plot such as Figure 7.1 as a “tolerance
scheme.”

Since the approximation cannot have an abrupt transition from passband 1o stop-
band, a transition region from the passband adge frequency o, to the beginning of the
stopband at w, is allowed, in which the filler gain is unconsirained.

Depending somewhal on the application, and the historical basgis [or the design
technique, the passband tolerance limits may vary symmetrically around unity gain in
which case &, = &, or the passband may be constrained to have maximum gain of
unity, in which case &, = 0.
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Many of the filters used in practice are specified by a tolerance scheme similar
Loy that which is presented below in Example 7.1, with no constraints on the phase
response other than those imposed implicitly by requireinents of stability and causality,
For example, the poles of the system function for a causal and stable HE filter must lie
inside the vnit circle. In designing FIR filters, we often lmpose the constraint of linear
[Phase, This remaoves the phase of the signal from consideration in the design process,

Example 7.1 Determining Specifications for a Discrete-Time
Filter

Consider a discrete-lime lowpass flier that is (o De used 1o filter a continuons-time
sipnal using the basic confipuration of Figure 7.2, As shown in Section 4.4 if an L1
diserete-time system is used as 0 Tigere 7.2, and if the inpot is bandlimited and the
sampling fregquency is high enough to avoid aliasing, then the overall syscem behaoves
as s LTT continuous-time system with frequency response

Hie! 2y, |6 < =/ T,

=
i, 2] = o/ 7. Wh14)

Hop 782 = [

In such cases, it is straiphtforward to convert from specifications on the effecuve
conlinuous-time filler to specificutions on the diserete-time flter through the relation
o= 0T, That is, H e 05 specilied over one period by The equalion
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Figure 7.2 Basic system for discrete-time filtering of continuous-time signals.
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For this example, the overall system of Figure 7.2 i 0 kave the Iollowing prop-
erties when the sampling rate is 10% samples/s (7 = 10°% s

1. The gain |Happdi52) ] should be within =001 of unity in the reguency band O =
0 = 2 20N
2. Lhe gain shoukd be no greater than 0001 in the frequency band 2o (30007 = 2.
2 Since Fg. (7.1a) s a mupping between the continuots-lme and discrete-time freguen-
cies, it only affects the passhand and srophand edge frequencies and not the taleranes

limits on frequency response magnilude, For this specific example, the parameters
would he

Ao = fp, = 001
dy = 0001
rop = (.4n radians
g = 16w radians,

> Therefore, in this case, the ideal passhand magnitude is unity and is allowed to vary
- between (L4, 1and {1—4p, ). and the stopband magnitode is allowed tovary between
 Oand 4y, Expressed in wnis of decibels,

:._;5 idcal passband gain in decibels = 200lag i1} =(dB
: maximum passband gain in degibels = 20%og,(1.01) = 00864 D
=+ minimum passband gain at passhand edge in decibels = 20%ag 099 = LETI 4B

maximum stopband gain m decibels — 20log(0.001) = —60 4B

Example 7.1 was phrased in the context of using a discrete-time filter to process 2
continuous-lime signal after periodic sampling, There are many applications in which
a discrete-time signal to be fltered 1s not derived from a continuous-time signal. and
there are a variety of means besides periodic sampling for represening continuous-timg
signals in terms of sequences. Also, in most of the design technigues that we discuss, the
sampling period plays no role whatsoever in the approximalion procedure. For these
reasons, we take the point of view that the filler design problem begins from a set of
desired specilications in terms of the discrete-time freguency variable . Depending
on the specific application or context, these speciications may or may not have been
oblained from a consideration of fltering in the framework of Figure 7.2,

7.2 DESIGN OF DISCRETE-TIME lIiR FILTERS FROM
CONTINUOUS-TIME FILTERS

Historically, as the field of digital signal processing was emerging, technigues for the
design of discrete-time IR [lters relied on the transformation of 4 continuous-time
filter into a discrete-tune filter meeting prescribed specifications. 'This was and still is 2
reasonable approach for several reasons:

s The art of continuous-time IR filter design is highly advanced, and since useful
results can be achieved, it is advantageous to use the design procedures already
developed for continuous-time Rlters
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= Many useful continuous-time ITR design methods have relatively simple closed-
form design formulas, Therefore, discrete-time ITR filter design methods based on
such standard continuous-time design formulas are simple to carry out.

s The standard approximation methods that work well for continuous-time TR
filters do not lead to simple closed-form design formulas when these methods are
applied directly to the discrete-time IR case, because the frequency response of
a discrele-lime filter is periodic, and thal of a continuous-time filler is not.

The fact that continuous-time Aller desipns can be mapped (o diserete-time filter
designs s otally unrelated to. and independent of, whether the discrete-time filter is 1o
be used n the configuration of Figure 7.2 Tor processing conlinuous-time signals We
emphuasize again thal the design procedure for the discrete-lime system begins from
a set ol discrete-time specifications. Heneeforth, we assume that these specilications
have been appropriately determined. We will use continuous-time filler approximation
methods only as a convenicnce in determining the discrete-time filter that meets the
desired specilications, Indeed, the continuous-time filter on which the approximation is
based may have a frequency response that is vastly different from the effective frequency
response when the discrete-time [her is wsed in the configuration of Figure 7.2.

In designing a discrete-time filter by transforming a prototype continuous-time
filter, the specilications for the continuous-time filter are obtained by a transformation
of the specifications for the desired discrete-time filter, The system function M- (s} or
impulse response ke of the continuous-time filter is then obtained through one of
the established approxunation methods used for continuous-time filter design, such as
those which are discussed in Appendix B. Next, the system function f{z) or impulse
response klaf for the discrete-time filter is oblained by applying to H.{s) or k.(r) a
transformation of the type discussed in this section,

In such transformations, we generally require that the essential properties of the
continuous-time frequency response be preserved In the frequency response of the
resulting discrete-time filter, Specifically, this implies that we wanl the imaginary axis
of the s-plane to map onto the unit cirgle of the z-plane, A second condition is that a
stable continuous-time filter should be transformed to a stable diserete-tme filier. This
means that if the continuous-time system has poles only in the left hall of the -plane,
then the discrete-time filter must have poles only inside the unil circle in the z-plane.
These constraints arc basic to all the technigues discussed in this section,

7.2.1 Filter Design by Impulse Invariance

In Section 4.4.2, we discussed the concepl of impulse invariance, wherein a discreie-
time system is defined by sampling the impulse response of a continuous-time system.
We showed that impulse invariance provides a direct means of computing samples of
the output of a bandlimited continuous-time system for bandlimited input signals. In
some contexts, it is particularly appropriate and convenient to design a discrete-time
filter by sampling the impulse response of a continuous-time filter. For example, if the
overall objective is to simulate a continuous-lime system in a discrete-lime setfing,
we might typically carry out the simulation in the configuration of Figure 7.2, with the
discrete-time system design such that its impulse response corresponds to samples of the
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conlinuous-lime filter to be simulated. In other contexts, it might be desirable to main.
tain, in a discrele-time setting, certain time-domain characteristics of well-developed
continueuas-time filters, such as desitable lime-domain overshoot, energy compaction,
controlled time-domain ripple, and 50 on. Alternatively, in the context of filler design,
we can think of impulse invariance as a method for oblaining a discrete-time system
whose frequency response 15 determined by the frequency response of a continuous-
Lirme $¥sLemm.

In the impulse invariance design procedure for transforming conlinwous-time fil-
ters into discrete-time filters, the impulse response of the discrete-time filter s chosen
proporiional 1o equally spaced samples of the impulse response of the continuous-time
filter: i.e.,

hln] = Taho(nTa), 7.2

where Ty represents a sumpling interval. As we will see, because we begin the design
problem with the discrete-time filter specifications, the parameter Ty in Eq. (7.2) in
fact has no role whatsoever in the design process or the resulting discrete-time filter,
However, since i1 is customary 1o specify this parameter in defining the procedure, we
inclode it in the following discussion, Even if the filter is used in the basic configuration
of Figure 7.2, the design sampling period Ty need not be the same as the sampling period
T associated with the C/D and IVC conversion.

When impulse invariance is used as a means for designing a discrete-time filter
with a specified frequency response. we are especially interested in the relationship
betwesn the frequency responses of the discrete-time and continunous-time filters. From
the discussion of sampling in Chapter 4, it follows that the frequency response of the
discrete-time filier obtained through Eq. (7.2) is related to the frequency response of
the contlinuoss-time filter by

[ %
; 2 :
Hiev= Y H, (in +jT—_Rk). (73}
Rt i d
If the continuous-time filter is bandlimited, so that
H.(j) =0, Qi = x/ Ty, (7.4)
then
; "
H(el*) = H, (j-—) L el = (7.5)
T

i.e., the discrete-lime and continuous-time frequency responses are related by a Hoear
scaling of the frequency axis, namely, @ = 27T, for |@| < 7. Unfortunaicly, any practical
continuons-time filler cannol be exactly bandlimited, and consequently, interference
between successive termsin By, {7.3) ocours, causing aliasing, asillustirated in Figure 7.3,
However, if the continuous-time filler approaches zero al high lrequencies, the aliasing
may be nepligibly small, and a vseful discrete-time filter can result from sampling the
impulse response of a continuous-time filter.

When the impulse invarance design procedure is used o uiilize continuous-time
filier design procedures for the design of a discrete-time filter with given frequency
response specifications, the discrete-time filler specifications are first transformed to
continuous-time filter specifications through the wse of Eq. (7.5). Assuming that the
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Figure 7.3 ustraticn of aliasing in the impulse invariance desion technigue,

aliasing involved in the transformation from H.(j) w0 H (el is neplipible, we obtain
the specifications on ff . j& by applying the relation

0 =aw Ty (7.6)

to obtain the continuous-time filter specifications from the specifications an H{e/™),
After obtaining a continuous-time filter that meets these specifications, the continuous-
time filter with system function H (s} is transformed to the desired discrete-time filter
with system funetion H{z). We develop the algebraic datails of the transformation from
H.(5) to H{z) shortly. Note, however, that in the transformation back to discrete-time
[requency, H e} will be related o H.( i) through Eq. {7.3), which apgain applies the
transformation ol Eq. (7.6} to the [requency axis. As a consequence, the “sampling” pa-
rameter Ty cannol be wsed o control aliasing. Since the basic specificalions are in terms
of discrele-time frequency, if the sampling rate is increased (e, il Ty is made smaller),
then the cutoff frequeney of the conlinuous-lime filter must increase in proportion. In
praclice, Lo compensate lor aliasing that might occur in the transformation from & { f22)
to Hief*), the continuous-time filter may be somewhat overdesigned, i.e., designed 10
exveed the specifications, particularly in the stopband.

While the impulse invariance transformation from continuous time to discrete
time is defined in terms of lime-domain sampling, it is easy to carry oul as a transfor-
mation on the system function, To develop this transformation, we consider the svstem
function of a causal continvovs-time filter expressed in terms of a partial fraction ex-
pansion, so that!

b

Ay 4
H.(5) = ; 1.7
(s} ;1_ o (7.7)
The corresponding impulse response 18
N
il “

helr) = ;A*f B, (7.8)

0, t =0

LFay simplicity, we assame in the discossion that all poles of A} are sinple order. In Problem 7415,
we consider the modifications reguined for multiple-order pales
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The impulse response of the causal discrete-time filter obtained by sampling Tk (t) is

M
hin] = Tyhoinly) = E Ty Ape™ Tt ]
k=1
A {7.9]
=3 Tadgte™ ™) ulnl.
k=1
The system function of the causal discrete-time filter is therefore given by
N T Ax
H{CJ=Z"‘—1_":;”EE_1. (7100

In comparing Egs. (7.7) and (7.10), we observe that a pole at s = w in the s-plane
transforms to a pole at z = ¢% ¢ in the z-plane and the coefficicnts in the partial fraction
gexpansions of H.(s} and Hiz} are cqual, except for the scaling multiphier Ty If the
continuous-time causal fifter is stable, corresponding to the real part of 5, being less than
zero, then the magnitude of % will be less than unity, so that the corresponding pole in
the discrete-time filter is mside the umt circle. Therefore, the causal discrete-time ller
ix also stable. Although the poles in the y-planc map to poles in the z-plane according
to the relationship z; = ™% it is important o recognize that the impulse invariance
design procedure does not correspond to a simple mapping of the »-plane to the z-plane
by that relationship. In particular, the zeros in the discrete-time system funciion are 4
function of the poles e 7 and the coefficients Tj; Ay in the partial fraction expansion, and
they will not in general be mapped in the same way the poles are mapped. We illusirate
the impulse invariance design procedure of a lowpass filter with the following example.

Example 7.2 Impuise Invariance with a Butterworth Filter

A0 Inm this examphe we consider the design of & lowpass diserele-time Slier by applying
S impulse invariance to an appropriate continuous-time filter. The class of filters that we
© choose for this example is referred (o as Butterworth filters, which we discuss in more
detail in Section 7.3 and in Appendix B.2 The specifications for Lhe discrele-time filer
correspond to passhand gain between 0 dB and —1 dB, and stopband attenuation of
al lesst —15 dB, e,

089125 = [ Fe™W = 1, (b= el = (1.2, (7.1ia)

|H (e = 017783, 0.3m = |w| < {7110
1 Since the parameter Ty cancels in the nnpulse invariance procedors, we can just as
# well choose Ty = 1.0 thatw = 52 In Problem 7.2, this same example is considered,

bul with the paramster Ty expbicitly ingluded to illusirate how and where it cancels.

i [n designing the filler using mpolse invariance on a continuous-time Butter-
! worth filter, we must first transform the discrete-time specifications (o spectfications

on the continuous-time filler, For this example, we will assame that the e ffecl of abas-
ing in Eq. (7.3} is negligible. Afier the design is complete, we can evaluate the resuliting

: frequency response apgainst the specifications in Eqs. (7.11a) and (7.11k),

2 nntinuous-time Butterworth and Che hyshey fillers are discussed in Appendix B,
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sy Because of the preceding considerations, we want o design s conlinuous-time
i Burterworth filter with magnitude function |7 .( /€] for which
T
LS 089125 < |H(JDl = 1. 0= (R = 02w {7.12a)
TH G = 017783, N3 = 0 = 7 (7.12h)

% Since the magnitude response of an analog Butterworth filter is a monotonic function
w0 of Trequency, Bgs, (7.12a) and (7.12b) will be satisfied il 4.0/ = 1,

| H o j0.2)] = 059125 {7.13a)

i and
|H(0.3m)] = 017743, (7.13h)

The magnitude-squared function of a Butterworth filter is of the form
i .
|He(RY = — e, 7.14)
’ 1+ (52752 2N *
50 that the filter desipn process consists of determining the parameters & and Q. to

.: meet the desired specifications, Ulsing Eq. (7.14) in Egs (7.13) with equality leads o
the equations

0.2 3\ ¥ i :
1+ (------- = (--—-—-—- 7.15
: T ) 0.39125) g
5 and
' OEURT 1, x2
T | =T R i U 7151
( o ) (1}_17?33) R
The simallaneous solotion of these wo cquabions s N = 55858 amd
L. — LA The parameter N, however, st be an integer. In order that the

i specifications are met or exceeded, we must round N up ta the nearestinteger, N = 6,
in which case the filter will not exactly sadsfy both Egs. {7.15a) and (7.15b) simulta-
¢ neously. With & — 6, the filter parameter 0 can be chosen lo exceed the specilicd
requirements {i.e., have lower approximation error) in either the passhand, the stop-
. band, or both, Specifically, as the value of £2. varics, there is atrade-offin the amount by
o which the stopband and passhand specifications are exceeded. 11 we substitule VW =6
Zl into Eq. (7.15a), we obtain (£, = 0.74132). With this value, the passband specifications
{of the continwous-1ime fller) wili be met exactly, and the stopband specifications (of
5 the continuous-time filter ) will be exceaded. This allows some margin for aliasing inthe
% discrete-time filter, With (£, = 0.7032) and with & = é_ the 12 poles of the magritude-
=4 sguared function H o5 H - (—53 = U14+05/783,97 Y are uniformly distributed in angle
. on a circle of radins (2, = 0).7032), as indicated in Figure 7.4. Consequently, the poles
" of H.is) are the threc pole pairs in the left half of the s-plane with the following
coordinates:

Fale pair 11 —0L.182 & j((1679),
Pole pair 2: —00497 = j(0L297),
Pole pair 3: —0.679 £ j((L182).




502 Chaptar 7 Filter Design Techniques

i w

: '.-Ili—_ i —‘Llr-' s-plane

R | !

Rt 1] !

5B SATTES

2@- )(’ 3 i )(\

-‘}g / III. B A

2{&3 3 Wi “:"QF | 3

:Eg i ' I Re

i )'5\ h

freed /

i3 x - X

[ P e =

1@ oy -

&

LEE

“P” Flgure 7.4  =-plane locations for poles of Ho(suHp (-2 for 8t prder Butterworth
i filter in Example 7.2,

”_&.ﬁ

»% Therefore,

o 0.120093

o M.z = = — = i
i [£¢ + (L3640 + 04945 (g< + 09945 & D 494515+ 4 1.35855 + 04945}
";‘E# _ (7.16)
f‘" If we express H () as a partial fraction expansion, perform the transformation
L

of Eq. (7.10}, and then combine complex-conjugate terms, the resulting svstem function
of the discrete-time filter is

02871 —0.4466r~! 21428+ 114557
1- 12971z 1 + 06049272 1. 10691z 1 + 03699 2

1RS57 — 0630327
1-09972:-1 +0.2570:2

% A
o e
PR R

g

Hizi=
(7.17)

S

q -

5;:-*”'1 Asis evident from Eg. (7.17), the system function resulting from the impulse mvariance
% design procedure may b realized directly in parallel form. I cither the cascade or
4 direct form isdesired, the separate 208_grder terms are first combined in an appropriate

e

i

way.

The frequency-response functions of the discrete-time system are shown in Fig-
ure 7.5, The prototype continuous-time filter had been desipned to meet the specifice-
fions exactly al the passband edpe and to exceed the specifications at the stopband edpe,
and this turns out to be true for the resulting discrete<time filter. This s an indication
that the continucus-time filter was sulficicntly bandlimited so that aliasing presented
no problem, Indeed, the difference between 20 log,p 1H (1] and 20 logy | H - 12|
would not be visible on this plotting scale, except for a slight deviation around w = .

b
- k-

;!?‘ {Beeall that Ty = 1, 50 & = w.) Somelimes, aliasing is much more of a problem. I the
-\._'45}!"_ resulting discrete-time filter fails to meet the specifications because of aliasing, there
et

is no alternative with impulse invariance bul to try again with a higher-order filter o
wilth dillerent fller parameters, holding the order fuoed,

1 4
]

gk
fi



Section 7.2

[y
U
4
]
Wi w
i = 4
b =
ih WA

s 2 l—
B | |

Design of Discrete-Time 1R Filters from Continuous-Time Filters

e |
ok — 10K — . P E—

Ol

6w
Radian froquency (o)

fa)

—

DET -

14
8-
4
B
= {6
=
Tomd
_:s: (1 e
i
‘::'.. | | |

ik b 2 4w 1R

: Radian frequency (o)
i (T}

a3
-;{? 3 1 I

i 02 hdar {hhrr
Radiin [requency (o)

&7 )

Figure 7.5 Frequency response of 8™-arder Butterworth filter transformed by

.Z;'._f' impulse invariance. (a) Log magnitude (n dB. {b) Magnitude. (c) Group delay,

503



504

Chapter ¥ Filter Design Tachnigues

The basis for impulse invariance is to choose an impulse response for the discrete-
time filler that is similay in some sense to the impulse response of the continuous-
time filter. The use of this procedure may be motivated by a desire to maintain the
shape of the impulse response or by the knowledge that if the continuous-time filter
is bandlimited, consequently the discrete-time filter frequency response will closely
approximate the continuous-time frequency response. When the primary objective is
to control some aspect of the time response, such as the impulse response or the step
response, a natural approach might be to desipn the discrete-time filter by impulse
invariance or by step invariance. In the latter case, the response of the filter to a sampled
unif step function is defined 1o be the sequence obtained by sampling the continuous-
time step response, If the continuous-time filter has good step response characteristics,
such as a small rise time and low peak overshoot, these characteristics will be preservad
in the discrete-lime filter, Clearly, this concept of waveform invariance can be exlended
to the preservation of the oulput waveshape for a variety of inputs, as illustrated in
Problem 7.1. The problem points oul the fact that transforming the same continuous-
time filter by impulse invariance and also by step invariance {(or some other waveform
invarance crilerion) does not lead o the same discrete-lime filter in the two cases.

In the impulse invanance design procedure, the relationship between continuous-
time and discrete-time [requency is linear; consequently, except lor aliasing, the shape
of Lhe [requency response s preserved. This s 1o contrast to the procedure discussed
nexl, which is based on an alpebraic translormation. In concluding this subsection we
iterate that the impulse invariance technique is appropriate oaly lor bandlimited filters;
highpass or bandstop continuous-time filters, for example, would require additional
bandlimiling 10 avoid severe aliasing distortion if impulse invariance design is used.

7.2.2 Bilinear Transformation

The technique discussed in this subsection uses the bilinear transformation, an algebraic
transformation between the variables s and - that maps the entire 7<-axis in the s-plane
to one revolution of the unit circle in the z-plane. Since with this approach, —e¢ = @ =
o0 maps onto —x = w = 7, the transformation between the continuous-time and
discrete-time frequency variables is necessarily nonlinear. Therefore, the use of this
technique is restricted to sitvations in which the corresponding nonlinear warping of
the frequency axis is aceeptable.

With H.(s) denoting the continuous-time system function and H(z) the discrete-
time system function, the bilinear transformation corresponds to replacing s by

2 {1=21
=r—(r) g8

O e B 719
(zy=H, T \Ts)) (7.19)

As it impulse invariance, a *sampling” parameter Ty is often included in the defimition
of the bilincar rranstormation. Historieally, this parameter has been included, beeause
the difference equation cortesponding to H(z) can be obtained by applying the trape-
zoidal integration rule to the differential equation corresponding 1o H.{x), with Ty

that is,
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represenling the siep size of the numerical integration. (See Kaiser, 1966, and Proh-
lem 7.49.) However, in filler design, our use of the bilinear transformation is based
on the properties of the algebraic transformation given in Eq. (7. 18). As with impulse
invanance, the parameter Ty s of po consequence in the design procedure, since we
assume that the design problem always begins with specilications on the diserete-time
filter Hie/™), When these specifications are mapped Lo continuous-time specifications,
and the continuous-time filter is then mapped back 10 a discrete-time filter, the effect of
Ty will cancel. We will retain Lhe parameter T in our discustion lor historical reasons,
in specific problems and examples, any convenient value can be chosen,
To develop the properties of the algebraic fransformation specified in Eg. {7.18),
we solve [or £ 10 obtain
L+ (Ta/2)s
2= Tl (7.20)
1— (Ta/2)
and, substituting s = o + 5 into Eq. (7.20), we obtain
liaTy/2-+ jtiaf
= ——,
1 =atyf2—jady /2
If 7 < 0, then, from Eqg. (7.21), it follows thal |z| < 1 for any value of £2. Similarly, if
a = (), then |z| = 1 for all £ That is, if a pole of H,.{s) is in the left-half s-plane, its
mmage in the z-plane will be inside the unit circle. Thercfore, causal stable continuous-
time fillers map inlo causal stable discrete-time filters,
MNext, to show that the fQ-axis of the s-plane maps onto the unit eircle, we substi-
tute s = j&into Eg. [7.200, obtaining
1+ j8Ta/2
I e
1— jaT;/2?
From Eq. (7.22), it is clear that [z] = 1 for all values of 5 on the j@-axis. That is, the
JS2-axis maps onto the unit circle, 50 Eqg. (7.22) takes the form
E‘Fm i |._| _{ﬁ?};;zl
1— jaT; 2
To derive a relationship between the variables w and 2, it is useful 1o return to Eq. (7.18)
and substitute z = e/, We obtain

gt (:) (7:24)

f_.r! 1ter®

(7.21)

(7.22)

(7.23)

or, equivalently.

2 | 2«79 jsine/2) | 2

= = — - = — tanfw/2d). 7.25
ek T [ Zf‘}“'-‘zfcus:u,ﬁz}} Ts Ama/s) (20
Fquating real and imaginary parts on both sides of Eq. {7.23) leads to the relations

o = land
Q= i taniw/2), (7.26)

T4
or

o = 2 arctani 275 /2). (7.27)
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: yeplane - 2-plane
e L e

Image of
& = j41 {unit circle)

o
Imiage of
left half-plane
Figure 7.6 Mapping of Ihe s-plare
arta the 2-plang using the kilinear
transformation,
[iH
= 2 anctan [II_TJJ
ik
g ol e i n
I
-— Figure 7.7 Mapping of the
-7 continuous-time freguency 2xis onto tha
discrete-time frequarcy axis by bilingzr
translormation.

These properties of the hilinear transformation as a mapping from the s-plane to
the z-plane are summarized in Figures 7.6 and 7.7, From Eq. (7.27) and Figure 7.7, we
sce Lhal the range of requencies § = 2 = oo maps o 0 < w = 7, while the range
—og = 8 = hmaps o —x = @ = [} The bilinear transformation avoids the problem
of aliasing encountered with the use of impulse invariance, because i1 maps the entire
imaginary axis of the s-plane onto the unit circle in the z-plape. The price paid for this,
however, is the nonlinear compression of the frequency axis, as depicted in Figure 7.7,
Consequently, the design of discrete-time filters using the hilinear fransformation is
uselul only when this compression can be loleraled or compensaled for, as T the case
ol lilers that approximale ideal plecewise-consianl magnilude-response characleris
tics, This is illostrated i Figore 7.8, wherein we show how a contnuous-time equency
response and tolerance scheme maps 1o a corresponding discrete-time {requency ro-
sponse and tolerance scheme through the frequency warping of Eqs {7.26) and (7.27).
I the crifical frequencies (such as the passhand and stopband edge frequencies) of the
comtinuous-lime Al are prewarped according 1o Eg. (7.26) then, when the continuous-
time filter is transformed Lo the discrele-time (lier using Eqg. (7.19), the discrele-time
filier will mecl the desired specifications,

Alihoogh the bilinear transformation can be used ellectively in mapping a picce-
wise-consrant magnitude-response characteristic fram the s-plane 1o the z-plane, the
distortion in the frequency axis also manifests itself as a warping of the phase response
of the filter. For example, Figure 7.9 shows the result of applying the hilinear transforma-
tion to an ideal lincar-phase factor & . 17 we substitute Fo. (7.18) for 5 and evaluate
the resull on the unil cirele, the phase angle s —(2a/ T2 anie:/2). In Fgure 7.9, the
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solid curve shows the Tunclion — 20/ T tanda: /21, and the dotted curve 1s the perindic
linear-phase function —(eww/ 1), which is obtained by vsing the small-angle approxi-
mation w2 2= tanio /21, From this, it should be evident that if we desire 2 discrete-tima
lowwpass [lEer with a limear-phase chavacleristic, we cannot obtain such a Rlter by apply-
ing the bilincar transformation Lo & conlinuous-lime lowpass filler with a lncar-phase
characteristic,

o As mentioned previously, because of the frequency warping, the bilinear transtor-
mation is mast useful in the desipn of approximations to filters with piecewise-constant
frequency magnitude characteristics, such as highpass, lowpass and handpass filters, As
demonstrated in Example 7.2, impulse invariance can also be used to design lowpass
filters. However, impulse invariance cannot be used to map highpass continuous-time
designs to highpass discrete-lime designs, since highpass continuous-lime illers are not
bandlimited.

In Fxample 4.4, we discussad a class of filters often referred to as discreie-lime
ififferentiators. A significant feature of the frequency response of this class of filters
is that it is linear with frequency, The noalinear warping of the frequency axis intro-
dueed by the hilinear transformation will not preserve that property, Consequently, the
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Hie )

171'“

Ty

= |7

Figure 7.9 [llustration of the offect of the bilinear transformation on a linear
phase characteristic. {(Dashed line is tinear phase and solid line is phase resulting
from bilinear transformation.)

bilinear transformation applied to a continuous-time differentiator will not resull ina
discrete-time differentiator. However, impulse invariance applied to an appropriately
bandlimited continuous-time differentiator will result in a discrete-time differentiator.

7.3 DISCRETE-TIME BUTTERWORTH, CHEBYSHEV AND
ELLIPTIC FILTERS

Historically, the most widely used classes of frequency-selective continuous-time fil-
ters are those referred to as Butterworth, Chebyshev and elliptic filter designs In Ap-
rendix B we bricfly summarize the characteristics of these three classes of continuous-
time filters, The associated closed-form design formulas make the design procedure
relatively straightforward. As discussed in Appendix B, the magnitude of the frequency
response of a Butterworth continuous-time filter is monotonic in the passband and the
stopband. A type 1 Chebyshey filter has an cquinipple frequency response in the pass-
band and varies monotonically in the stopband. A type 1 Chebyshey flter 15 monotonic
in the passband and cquinpple in the stopband. An elliptic lilter is cquitipple in both the
passband and the stopband. Clearly, these properties will be preserved when the filter
is mapped to a digital filter with the bilincar transformation. This is illustraled by the
dashed approximation shown in Figure 7.8, The filters resulting [rom applying the bilin-
ear transformation to these classes of continuous-lime filters, referred to respectively as
discrete-time Butterworth, Chebyshey and elliptic filters have sumilarly become widely
used as discrete-time frequency selective filters.
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As afirst step in the design procedure for any of these classes of fillers, the critical
frequencies, i.e.. the band edge frequencies, must be prewarped to the continuous-time
frequencies using Eg. (7.26) so that the frequency distortion inherent i the bilinear
transformation will map the continuous-time frequencies back Lo the correct discrete-
lime [requencies. This prewarping will be illustrated in more detail in Example 7.3, The
allowed tolerances in the passhands and stopbands will be the same for the discrete-time
and continuous-time filters since the bilinear mapping only distorts the frequency axis,
fot the amphtude scale. In using a discrete-time filter design package such as found in
MATLADL and LabVIEW, the rypical inputs would be the desired tolerances and the
diserete-time critical frequencies. The desigh program explicitly or implicitly handles
any necessary prewarping of the frequencies.

In advance of illustrating these classes of filters with several examples, it is worth
commenting on some general characteristics to expect. We have noted above that we
expect the discrete-time Butierworth, Chebyshey and elliptic filter frequency responses
to relain the monotonicity and ripple characteristics of the corresponding continuous-
time filters, The N'P-order continuous-time lowpass Bulterworth filter has N zeros at
£ = oo, Since the bilinear transtormation maps s = oo to z = —1, we would expect any
Buiterworth design utilizing the bilinear transformation to result in N zeros at z = —1.
The same is also true for the Chebyshev type I lowpass filter,

7.3.1 Examples of HR Filter Design

In the following discussion, we present a number of examples to illustrate TTR filter
design. The purpose of Example 7.3 is o illusttate the steps in the design of o Buller-
worth filter using the hilinear transformation. in comparison with the use of impulse
invanance. Example 7.4 presents a4 sel of examples comparing the design of a Butter-
worth, Chebyshey 1, Chehyshev TI, and elliptic filler. Example 7.5 illustrates, with a
different set of specifications, the design of 1 Butterworth, Chebyshey I, Chebyshey H
and elliplic filter. These designs will be compared in Section 7.8.1 with FIR designs, For
both Example 7.4 and 7.5 the filter design package in the signal processing toolbox of
MATLAB was used.

Example 7.3 Bilinear Transformation of a Butterworth Filter

© Consider the discrete-time filer specifications of Example 7.2, in which we illustrated
the impulse invariance technigue for the desizn of a discrete-time filter. The specitica-
tions for the discrele-time filter are

(LED125 = |Hie/™) = 1, 0= = 0.2, (7.28a)
|Hef*)| = 017783, Udr <@< (7.28h)
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In carrving out the desipn using the bilinear transformation applied (o a continuous.
& time design, the critical frequencies of the discrete-time filter are first prewarped lo
¢ [he corresponding conlinuous-lime [requencies using Eq. (7,26} s0 that the frequency
. distortion inherent in the bilingar transformation will map the continuous-time fre-
~+* guencies back o the correct discrete-time crilical frequencics. For this specific filter.

S with [ M representing the magnitude-response funclion of the conlinuous-time

filter, we require that

2 .2
0289125 = |H.(j&)] = 1, O=0= - lan (UTT) (7.29)
o =
2 .3
|H (0] < 017783, — tn ( i ) <0 = o, (7.29%)
Frl

' Forconvenience, we choose Ty — 1, Also, as with Example 7.2, since a continuous-time
Bullerworth filler has 8 monolonic magnitude response, we can equivalently reguirs
=27 that

|H o2 taniD 1r)y| = 0.89125 {730}
and
[H o2 tan(D 1 5 < (17783 (7.30R)

The form of the magnitude-sguared funcion (or the Butlerworth filter i

|H (e = (7.30)

14692/
Solving for & and £2; with the equality sign in Eqs. (7.30a) and {7.30b), we obtain

21;.nm,|rr]“~?-“_( I %2 —
(2" - (i e
g
2 tanii). 15m) 2% 1 \2
].ri-. . — — | —— = .32'
( o ) \0.1?3)' (:32h)

 and solving for & in Eqs. (7.32a) and {7.32h) gives

e, L

s ((mim) - 1) / (k) - 1))

= 2loglant E5x)/ tandd. )] (7.33)
= 5305,

Since & must be aninleger, we choose N = A Substitluting N = Ginwo Eqg. {7.32h),

we obtain £, = (L.766, For this value of £2., the passband specifications are exceeded
o and the stopband specificalions are mel exacily. This 15 reasonable Tor the bilinear

transformation, since we do not have to be concerned with aliasing, That is, with
= proper prewarping, we can be certain that the resulting discrete-time filter will mect
o the specifications exactly at the desired stopband edpe.
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In the s-plane, the 12 poles of the magnilude-squared function are aniformly
distributed in angle on a circle of radius 0.766, as shown in Figore 7.10. The system
function of the causal continuous-time filler obtained by selecting the lelt hall-plane
pokes is

_ B () 020238

: f)= —— B e P -——
.':g,: 'f {52 + 03996 + 0.98713 (57 + 10836 + 058713052 + 148025 + 0.5871)
=] (7.34)
The system function for the discrete-time filter is then obtained by applying the hilinear
transformation to B (v} with T = 1, The resuli is

B.0007I7H(1 4 = 10

(1 - 1.2686z 1 + 0.7051272)(1 ~ L0106z~ + 0358322

Hizy=

(7.35)
1

3 =
(1 — NYd-—1 4 021551

The magnitude, log magnitude, and geoup delay of the frequency response of the
discrete-time filter are shown in Figure 7.1 1. At — 0.2 the log magnitude is (.56 dB,
amdd a1 @ = 0.37 the log magnitude is exactly —15 dB,

Since the bitinear transformation maps the entire 702-axis of the s-plane onto
the unit circle in the z-plane, the magnitude response of the discrete-time filter falls off
- much more rapidly than that of the continuous-time filker or the Bulterworth discrede-
time filter designed by impulse invariance. In particular, the behavior of H{e/®) ato =
m corresponds fo the behavior of A 12) at 2 = o, Therefore, since the continuous-
- time Butterworth filier has a 6'-order zero at s = 30, the resulting discrete-time filter
% has a6M-arder zeroat ; = —1.

Figure 7.10  s-plane locations for potes of He(siH;( -5 for 6M-arder Butterworth
filter tn Example 7.3.
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Since the general form of the magnitude-squared of the N _grder Butterworth
continuous-time filter is as given by Eg. {7.31), and since @ and 92 are related by
Eq. (7.26), it follows that the general N order Butterworth discrete-time filter has
the magnilude-squared function

1

(.?%H’_.iﬁ?f?l ) '
* tan{w,. /2}

where tan{m, /2) = 0.7, /2. The frequency-response function of Eq. (7.26) has the same
properties as the continuous-time Butterworth response: Le., it is maximally flat® and
|H{e/2e)® = 0.5, However, the function in Eq. (7.36} is periodic with period 27 and
falls off more sharply than the continuous-lime Butterworth response.

Discrete-time Butterworth filters are not tvpically designed directly by starting
with Eq. (7.36), because it is not straightforward to determine the z-plane locations of
the poles {all the zeros are at - = — 1) associated with the magnitude-squared function of
Eq. (7.36), It is necessary to determine the poles 50 as to factor the magnitude-squared
function into H(z)H(z ') and thereby determine H (z1. Tt is much easier to factor the
continuous-time svstem function, and then transform the left half-plane poles by the
hilincar transformation as we did in Example 7.3.

Eqguations of the form of Eq. {7.36) may also be obtained for diserete-time Cheby-
shev and elliptic filters. However, the details of the design computations for these com-
munly used classes of filters are best carricd out by computer programs that incorporate
the appropriate closed-lorm design equations

In the next example, we compare the design of a lowpass lilter based on But-
terworlh, Chebyshey § Chebyshev H and elliptic tilter designs. There are some specilic
characteristics of the frequency response magnitude and the pole—zero patterns for cach
of these four discrele-time lowpass lilter types, and these characteristics will be evident
in the designs in Example 7.4 and Example 7.5 that follow.

For a Butlerworth lowpass filter. the frequency response magnitude decreases
monoctonically in both the passband and stopband, and all the zeros of the transfer
function are at z = —1. For a Chebyshev Type I lowpass filter. the frequency response
magnitude will always be equiripple in the passband, i.e.. will oscillate with equal max-
imum error on either side of the desired gain and will be monotonic in the stopband.
All the zeros of the corresponding transfer function will be at z = —1. For a Chebyshev
Type I lowpass filter, the frequency response magnitude will be monotonic in the pass-
band and equiripple in the stopband, Le.. oscillates around zero gain. Because of this
equiripple slopband behavior, the zeros of the transfer function will correspondingly
be distributed on the unit cirche.

In both cases of Chebyshev approximation, the monotonic behavior in cither the
stophand ot the passband suggests that perhaps a lower-order system might be obtainad
il an cquitipple appraximation were used in both the passband snd the stopband. In-
deed, 1t can be shown (sce Papoulis, [957) that for fixed values of ﬁpl__ Ay dyy drhy, il
ary in the lolerance scheme of Figure 7.1, the lowest order filter s oblained when the
approximation crror ripples cqually between the extremes of the two approximation
bands. This equiripple behavior is achicved with the class of filters referred to as elliptic

Hie!™)|? =

(7.36)

YThe firsl (24 — 1) derivatives of | H{ef™)|% are zero st o =10,



514 Chapier 7 Filter Desige Techniques

flters, Elliptic filters, like the Chebyshev type 11 filter, has its zevos arraved in the stop-
band region of the umit circle. These properties of Butterworth, Chebyshev, and elliptic
filters are illustrated by the following example.

Example 7.4 Design Comparisons

For the four filter designs that follow, the signal processing toolbox in MATLAR was
- used. This and other typical design programs for IR lowpass filter design, assume
= foletance specifications as indicated in Figure 7.1 with ﬁp| = 1 Althoogh the resulting
. designs correspond to what would result from applyving the bilinear transformation
- Lo appropriale continuous-lime designs, any required frequency prowarping and in-
corporation of the bilinear transformation, are internal 1o these design progeatns and
& transparent to the user, Consequently the specifications are given to the desipgn pro-
% pram dircetly in terms of the diserele-time parameters, For this example, the fAlter his
© been designed to meet or exceed the following specifications.:

passband edge frequency wp = (h3x
stopband edpe frequency wy, — (har

maximam passhand pain = (tdB
minimum passband pain =-0.3dB
maximum stopband pain = —3JdB

Referring to Figure 7.1, the corresponding pazsband and stopband tolerance lignits ane

2logypil + 8p b =1 orequivalently Sp =0
20logpll —dp, ) = —0.3 vr equivalently &p, = 0.0339
logygits) = =3 or equivatently 4, = (0L.{316,

Mote that the specifications are only on the magnitudes of the frequency re-
: sponse. The phase is implicitly determined by the nature of the approximating fune-
tions,

Using the filter design program. it is determined that for a Butterworth design,
the minimum {integer) filier order that meets or exceeds the given specifications is a

3 T
sy o

L

15M.arder filter. The resulting frequency response magnitude, group delay, and pole-
wers plol are shown in Figere 7,170 As expected, all of the seros of the Butterworth
I filter are atz = —1.

For a Chebwshev type I design, the minimum Alter order is 7. The resulting

frequency response magnitude and group delay, and the corvesponding pole—zerno plot
arc shown in Figure 7.13. As expected. all of the zeros of the transfer function are
# o = —1 and the frequency response magnitude 15 equinipple in the passbancd and
monotonic in the stopband.
; For a Chebyshev type 11 design, the minimum filter order is again 7. The re-
S splting Trequency response magnitude, group delay and pole—zero plot are shown in
- Fipure 7.14. Again as expected, the frequency response magnilude s monotonic in
the passband and cquinipple in the stopband, The zeros of Lhe transfer funclion are
G arraved on the unit circle in the stopband,

In comparing the Chebyshev I and Chebyshev 11 designs it is worth noting that
for both, the order of the denominator polvnomial in the transfer funchion corms-
sponding to the poles is 7, and the order of the numerator polynomial is also 7. in the
- implementation of the differcace cquation for both the Chebyshey 1 design and the
Butterworth design, significant advantage can be taken of the tact that all the rens

s A
) =
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oo ootur al 2 = =1, This is not the case for the Chebyshey 11 Gler. Conseguently. in an
implementation of the filler, the Chebyvshey T1 design will require more muliapheaiions
than the Chebyshey T desion. For the Butterworth design, while advantage can be
5 laken of the elustered 2evos al £ = —1, the filier order is more than twice Lthat of the
. Chebyshev designs and consequently requires maore mubtiplications

For the desipn of an elliptic filter to meet the given specifications, a filler of at
least 5 order is required. Figure 7.15 shows the resulting design. As with previous
examples, in designing a filter with given specifications, the minimum specifications are
likely 10 be exceeded. since the Gilter arder is necessarily an inleger, Depending on the
applicaticn, the desigher may choose which of the specifications to exactly meet and
* which to exceed, For example, with the ¢lliptie filer design we may choose o exactly
& meet the passband and stophand edge frequencies and the passhand varation and
- minimize the stopband gain. The resulting filter, which achieves 43 dB of sttenuation
in the stophand, 15 shown in Figure 706, Alternately, the added Gexibility can be wsed
to narrow the transition band or redoce the deviation from O dB pain ia the passhand.
Again as expected, the reguency response of the elliptic Glter is equiripple in both the
“ passhand and the stophand,

I_r_l - T —————— " ! : o S B -
Il
=11}
g -
—a -
—F b
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Q a4 miz Sard *
Frl_'q_:bcm_'y. at
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it w4 ™2 Zenid Ed

Frequency, «

1]

Figure 7.16  Elliptic fitter, 5™ -order, minimizing the passband ripple.

Example 7.5 Design Exampie for Comparison with FIR
Designs

v 1o this example we relurn 1o the specifications of Example 7.1 and illustrate the re-
gg alization of this filter specilication with a Butlerworth, Chebyshev [, Chebwshew 11,
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Figure 7.17 Frequency response of 14™-order Butterworth fitter in Example 7.5.
{a) Log magnitude in dB. {b) Detailed plat of magnitude in passband. (¢} Group
delay.
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g and elliptic designs, The designs are again carried oul using the filler design program
¢ in the MATLAB sipnal processing toolbox. In Section 7.8.1 we will compare these
TR designs with FIR designs with the same specifications, Typical design programs
Lo for FIR filters require the passhand olerance limits in Figure 7.1 to be specified with
= By = dpp. whereas for IR filters, it is typically assumed that §,; = 0. Consequently to
2.8 carry oul a comparison of TTR and FIR designs, some renormalization ol the passband
. and stopband specifications may need to be carried out (see, for example, Problem 73},
7 as will be done in Example 7.5,

. The lowpass discrete-time filter specifications as used for this example arg:
;*, 0.99 < |H(e!™)] = 1.01, ] = 0.4, {7.37a)
r*':’ and
::" [Hel®y) <0001, O = |w) = 5. (7.37b}

< In terms of the lolerance scheme of Fgure 7.1, 85 = dp, = 001, & = 0001,
CE wy = 04x, and wy = (6. Rescaling these specifications so that .1 = 0 corresponds
#.0 toscaling the filter by 1/(1 | &1 to obtain: § 5y =0, dpy = 00198 and &, = 0094,

The filters are first designed wsing the filicr design program with these specifi-
‘. cations and the filcer designs returned by the filter design program are then rescaled
= by a lactor of 1.01 1o satisty the specifications in Eqs. (7.37a) and (7.537b).
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For the specifications in (his example, the Batterworth approximation method
requires a system of 145 geder, The frequency response of the discrete-time tfilter that
results from the bilinear transformation of the appropriate prewarped Butterwarth fil-
ter is shown in Figure 7.17. Figure 7.17(a) shows the log magnitude in dB, Figure 7.17(b)
shows the magnitude of Hie/™) in the passhand only, and Fgore 7.87{c) shows the
group delay of the filter. From these plots, we see that as expected, the Butterworth

e fregquency response decrenses monotonmcally with frequency, and the gain of the filler

hegomes very small above about g = 0.7,

Both Chebyshev designs [ and I lead to the same order for a given set of specifi-
eations, For our specifications the required order is 8 rather than 14, as was required for
the Batterworth approdimation. Figuee 7,18 shows the log magninde, passband maymni-
tude, and group delay for the type | approximaticn to the specifications of Eqs. (7.372)
andd (73701 Nole that as especled, the frequeney response oscillates with vgqual mas-

- mum error on either side of the desired gain of unity in the passhand.

Figure 7.19 shows the frequency-response functions for the Chebyshev tvpe 11
approximation. In this case, lhe equinpple approximation behavior is i the stopband,
The pole-zero plots for the Chebyshev filters are shown in Figure 7.20. Note that the
Chebwshew tvpe [ filter is similar to the Bultcrworth filter in that it has all eight of its
peros at 7 = —1. On the other hand, the type I filter has its zeros arrayed on the unit

. clrcle. These zeros are naturally positioned by the design equations so as Lo achicve

the equiripple behavior in the stopband,

The specilications of Eqs (7.37a) and (7.37Th) are mat by an ellipiic filter of
order six. This is the lowest order rational function appreximalion o the specifica-
fions Figure 7.21 clearly shows the eguiripple hehavior in both approximation bands
Figure 7.22 shows that the elliptic filter, ike the Chebysheviype 11, has its zeros arrayed
in the stopband region of the unit circle,

Im

z-plane Lim z-planc
e B - i ¥
8- order B Unit S E T
mero x\"’c:nﬂc [ ‘*qi"' cirche
\ ; ‘H
Y L% x 'n

{8) (b}

Figure7.20 Pole—zera platof 8 -order Chabysheyfilters in Example 7.5. () Type |,
{b} Type 1.
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7.4 FREQUENCY TRANSFORMATIONS OF LOWPASS IIR
FILTERS

Owr discussion and examples of IIR filter desipn have focused onthe desipgh of frequency-
selective lowpass filters. Other types of frequency-selective filters such as highpass, band-
pass, bandstop, and multiband filters are equally important. Aswith Jowpass filters, thess
other classes are characterized by one or several passbands and stopbands, each spec-
ified by passband and stopband edge frequencies. Generally the desired filter gain is
unity in the passbands and zero in the stopbands, but as with lowpass filters, the filter
design specifications include tolerance limits by which the ideal gains or attenuation in
the pass- and stopbands can be exceeded. A typical tolerance scheme for a multiband
filter with two passbands and one stopband 15 shown in Figure 7.23.

L b, (L B A
=8 Prmmm—— b
5 AN
| | 1 i
wFl u:l_‘| I'l'.lﬂ ""‘,-12 i

Figure 7.23 Tolerance scheme for a multiband filter.
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The traditional approach to the design of many continuous-time frequency-sclect-
ive filters is to first design a frequency-normalized prototype lowpass filler and then,
using an algebraic transformation, derive the desired filler from the prototype lowpass
filicr {(see Guillernin, 1957 and Daniels, 1974). In the case of discrete-lime frequency-
sclective filters, we could design a continuous-time frequency=selective filter of the de-
sircd {ype and then transform it to adiscrete-time {ilter. This procedure would be accept-
able with the bilincar transformation, but impulse invariance clearly could not be used
to transtorm highpass and bandsiop continuous-time filters into corresponding discrete-
time filters because of the aliasing that results from sampling. An aliernative procedure
that works with either the bilinear transformation or impulse invariance is to design a
discreie-time prototype lowpass filter and then perform an algebraic transformation on
il to obtain the desired frequency-selective discrete-time filter.

Frequency-selective filters of the lowpass, highpass, bandpass, and bandstop tvpes
can be obtained from a low pass discrete-time filter by use of transformations very similar
to the bilinear transformation vsed to transform continuous-time system functions into
discrete-time system functions. To see how this is done, assume that we are given a
lowpass system function H;F{E] that we wish to transform to g new system function
H{z}, which has either lowpass, highpass, bandpass, or bandstop characteristics when
evaluated on the unit circle, Note that we associate the complex variable £ with the
prototype lowpass filter and the complex variable 2 with the transformed filter. Then,
we define a2 mapping from the Z-plane to the z-planc of the form

Z7' =G {7.38)
such that

Hiz) = Hp(Z)|, (7.39)

=Gz}

Instead of expressing Z as a function of z, we have assumed in Eq. (7.38) that 2 1 is
expressed as a function of ', Thus, according to Eq. (7.39), in obtaining H{2) from
Hip(z) we replace Z 1 everywherein Hp(£) by the function G{z 1y, This is a convenient
representation, because Hy,(Z) is normally expressed as a rational funetion of z-L

If By, (2 s the rational system function of a causal and stable systemn, we naturally
require that the transformed system function Hiz) be a rational function of ;! and
that the system also be cavsal and stable, This places the following constraints on the
transformation Z -1 = Giz~ '

1. F(z~") must be a rational function of 7~

2. The inside of the unit circle of the Z-plane must map to the inside of the unit circle
of the z-plane,

3. The unit circle of the Z-plane must map onto the unit circle of the z-plane.
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Let & and w be the frequency variables (angles) in the Z-plane and z-plane, re-
spectively, L.e., on the respective unit circles Z = /% and z = ¢/*, Then, for condition 3
tor hold, it must be true that

eI |Gem vy |l LG (7.40)
and thus,
|Gie™ ") = 1. (7.41)
Therefore, the relationship between the frequency variables is
—f = LGla™my, (7.42)

Constantinides (1970) showed that the most general form of the function Gz~'}
that satisfies all the above requirements is

L

R S e z -

£ =0z }__llﬁ' {(743)
=1

—pIT

Fram our discussion of allpass svstems in Chapter 5, it should be clear that Giz L as
given in Eq. (7.43) satisfies Eq. (7.41), and it is easily shown that Eg. (7.43) maps the
inside of the unit circle of the Z-plane to the inside of the unit circle of the z-plane if and
only if | | = 1. By choosing appropriate values for & and the constants ¢, a variety of
mappings can be obtained. The simplest is the one that transforms a lowpass filter inlo
another lowpass flter with different passband and stophand edge frequencies. For this
case,
7l

Zloagiy =272 (7.44)
1 —wz—!

Tf we substitule Z = ¢/ and z = ¢/, we obtain

. —fu _
Pt LT B A £7.45)
P — s
from which it follows that
o = arctan {L—a7sing : (7.4k)
2o + {1 +edycosf :

This relationship is plotled in Figure 7.24 for different values of o Although a warp-
ing of the frequency scale is evident in Figure 7.24 {except in the case ¢ = (), which
corresponds to 271 = z7'), if the original sysiem has a piccewise-constant lowpass
freguency response with cutolf frequency 8,5, then the transformed system will likewise
have a similar lowpass response with cutol requency o, determined by the choice of e
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By
7| o =1
_______ 5 -
; 2
aif] I L Figure 7.24 ‘Warping of the frequancy
f & T T #  grale in lowpass-to-lowpass
2 transformation.

TABLET.1 TRANSFORMATIONS FROM A LOWFASS DIGITAL FICFER PROTOTYPE
OF CUTOFF FREQUENCY &5 TO HIGHPASS. BANDPASS, AND BANDSTOP FILTERS

Filter Type Transtarmations Associated Dosign Farmulas

ot sin (7% ) ‘ﬂ‘l

g T o=
Luowpass I = —— Fatn
o 1—az! sin {J‘ J
wp = desited cutel] frequency
¥ vy it
: co:,( 2—L‘]
Highpass Z 1= protcea "=
- o (B2
arp = desited enteff frequeacy
cos (223221 )
g2 _ Imk -] 4 k=1 cos [ 222201
-1 ; krl* k+1 ‘ A
Bandpass Tt =— a3 = Wy d
E=1,2_ Zwk 1 e Jtan FJ
7 A = ¥ S 2
iy = dsired lower cutolf frequency
wyn = desired upper cutedl requency
o { f.";'z"fj_}
=
op B i oo (227
Bandstop z1= JE = Ik g = fthg] [
1=k, —2 _ 2a -1 _q t=tan | 2 Jwan| -2
TEs Ties 2 T
wy = desired lower culodl frequency

apa = desired upper cutofl [requercy

529
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Solving for « in terms of #, and ., we obtain
_sin|i6; —wp)/2]
sinf (¢p J.—mPJ,Q]'

Thus, to use these results to obtain a lowpass filter H (z) with cutofffrequency w, from an
already available lowpass filter H,(£) with cutolf frequency 8, we would use Eq. {7.47)
to determine « in the expression

Hiz) = HiplZ)|,

(7.47)

(748}

=g~ ) 1 Ly
{Problem 7.51 explores how the Towpass-lowpass transformation can be used to obtain
a network structure for a vanable cutoff frequency filter where the cutoff frequency is
determined by a single parameter e.)

Translormations from a lowpass filter 1o highpass, bandpass, and bandstop fillers
can be derived in a similar manner. These transformations are summarized in Table 7.1,
In the design formulas, all of the cutoff [requencies are assumed to be between zero
and = radians The following example illustrates the use of such transformations.

Exampile 7.6 Transformation of a Lowpass Filter
to a Highpass Filter

iz Consider a Type I Chebyshev lowpass filter with system function
b ORI 4 213

& N (D)= - : 749

¢ In (1 - 1.5548Z L § 064932 21 — 1.4996Z 1 + D.84827 -2) e
This 3. order system was desipned to meet the specifications

ULRUI25 < rnr,(e-”‘n <1, h=d <02, {7.50a)

|H|I,{¢~‘”}| 27T, Ddm 2f = (7.500)

The frequency response of this filter is shown in Figure 7.25.
To trapsform this filler to a highpass filter with passband cutoff frequency
2 gy = 060, we oblain from Table 7.1

B cos [(0.2x + 0.6m1/2)

| = — k — = —(}, JE197. 751
5» o cos [10.2x — 06}/ 2] 731
‘xﬁ Thus, vsing the lowpass—highpass tremsformation indicated in Table 7.1, wie obtain
i

L Hizy = Hytdy] .

el ey et oA~ a1y

(ipd260] - Ly
-- ; N = (7:52)
(14 Lidie: 1 040092301 + 0566121 +0.7657: 4

* The frequency response of this system is shown in Figure 7.26. Note that except for
some distortion of the frequency scale, the highpass frequency response Appears very
much as if the lowpass frequency response were shifted in frequeney by . Also note
that the 4W_order zero at 7 = —1 for the lowvpass filler now appears at ¢ = | for
: & the highpass filier, This example alse verifies that the equiripple passband and stop-
band behavior is preserved by frequency transformations of this type. Also note thal
the group defay in Figure 7.26(c) is not simply a stretched and shifted veesion of Fig-
- ure T.25(c), This is becawse the phase varations are sireiched and shifted, so that the
derivative of the phase is smaller for the highpass filter.
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7.5 DESIGN OF FIR FILTERS BY WINDOWING

As discussed in Section 7.2, commonly used technigues Lor the design of IR filters have
evolved from applying transtformations of continnous-time LR systems into discrete-
time 1R systems. In contrast, the design techniques for FIR filters are based on directly
approximaling the desired frequency response or impulse response of the discrete-time
systent.

The simplest method of FIR filter design is called the window method, This method
generally begins with an ideal desired frequency response that can be represented as

“xh
Hately= 3" halnle 7, (7.53)

=== Dl

where hyln] is the corresponding impulse response sequence, which can be expressed
in terms of Hg{e/™} as

T
haln] = -]—f Hie! ™1™ da, {7.54)
2n f A

Many idcalized systems are defined by piecewise-constant or piecewisc-smooth (te-
quency responses with disconlinuitics at the boundarics between bands. As 4 result,
these systems have impulse responses that are noncausal and infinitely long, The most
straightlorward approach to oblaining an FIR approximation to such systems is to Lrun-
cate the ideal impulse response through the process referred to as windowing. Equa-
tion {7.53) can be thought of as a Fourier series representation of the periodic frequency
response M (e}, with the sequence hg[n] playing the role of the Fourier coefficients.
Thus, the approximation of an ideal filter by truncation of the ideal impulse response
is identical to the issue of the convergence of Fourier series, a subject that has received
a great deal of study, A particularly importanl concept from this theory is the (ibbs
phenomenon, which was discussed in Example 2,18, In the following discussion, we will
st how this cffect of nonuniform convergence manifests itself in the design of FIR
filters.

A particularly simple way to obtain a causal FIR filter from figin] is to truncate
faln], Le, W0 define & new system with impulse response dlnl given |_'r}'4

hyln], D =n-=M,
hinl = ¥ 7.85
ir] 0, otherwise. ( )

Maore gencrally, we can represent h[n] as the product of the desired impulse response
and a finte-duration “window” win|; 1e.,

k] = halnwlnr], (7.56)

+ihe notation for FIR systems was estahlished n Chapler 3. That s, 8 s the order of the system
funetion polvnomial, Thus, (M -+ 1} i= the length, or duration. of the impulse response, Often in the literature,
M s used for the leogth of the impulse response of an FIR filier: however, we lave used & 1o denode the order
of the denominator palynomial in the system funclion of an TR fileer. Thus, 1o avord confusion and maniain
comsistency throughout this book, we will comsider the length of the impulse response of 2n FIR fiter to ke
{M =1
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where, for simple truncation as in Eq. (7.35), the window is the rectangular window

|1 0=n =M, s
winl = 0, otherwise. (=)

I follows from the modulation, or windowing, theorem (Section 2.9.7) that

1 ¥
Hl:t“"uil gty
P, B

H (e )W (e/ " )dg, {7.58)
That is, H(#/) is the periodic convolution of the desired ideal frequency Tesponse
with the Fourier transform of the window. Thus, the frequency response Hie/™y will
be a “smeared” version of the desired response H (e Figure 7.27{a) depicts typical
{unctions Hy I:f-';':?] and W el =="" a5 a function of 4, as required in Eg. {7.58).

Il w[n] = 1 for all » {ic., il we donot truncale at all), Wie!™) is a periodic impulse
train with period 2, and therefore, Hie'™) = Hgie!™). This interpretalion suggests
that if win] is chosen so that Wie/™) is concentrated in a narrow band of frequencies
around w = {, i.e, it approximates an impulse, then H(e/™) will "look like” H 3{a™),
except where Hyie!®) changes very abruptly, Consequently, the choice of window is
governed by the desire 1o have win] as shorl as possible in duration, so as Lo minimize
computation in the implementation of the filter, while having W1e/*) approximate an
impulse; that is, we want Wie/®) 1o be highly concentrated in frequency so that the
convolution of Eq. (7.58) faithfully reproduces the desired frequency response. These
are conflicting requirements, as can be seen in the case of the reclanpular window of
Eq. (7.57), where

H .
& - ]__f—_.'m[.h'-l-l\l 5 -ﬁSInlﬂJf_Mﬂ'-ll"EJ
Wis'"y = E g Lol e e - =@ Jawdpr o LA A 754
- r|=|.lp L 3 sinfew,/2) (7-59)

The magnitude of the lunction sinfa (M + 1)/21/sin(e/2) is plotted in Figure 7.28 for
the case M = 7. Note that Wie/™) [or the rectangular window has a generalized lincar
phase. As M increases, the width of the “main lobe™ decreases. The main lobe is usually
defined as the region between the first zero-crossings on either side ol the origin. For
the rectangular window, the width of the main lobe is Ay, = dr/(M + 1). However,
for the rectangular window, the side lobes are large, and in fact, as M increases, the
peak amplitudes of the main lobe and the side lobes grow in a manner such that the
area under cach lobe is a constant while the width of sach lobe decreases with M.
Consequently, as Wie/™ ") “slides by” a discontinuity of f (/%) as w varies, the
integral of Wie! "~y H (/") will oscillate as each side lobe of W e/} moves past
the discontinuity. This result is depicted in Figure 7.27(b). Since the area under each
lobe remains constant with increasing M, the oscillations occur more rapidly, but do not
decrease in amplitude as M increases.

In the theory of Fourier series, it is well known that this nonuniform convergence,
the Gibbs phenomenon, can be moderated through the use of a less abrupt truncation
of the Fourier series, By tapering the window smoothly to zeto at each end, the height
of the side lobes can be diminished: however, this is achieved at the cxpense of a wider
main lobe and thus a wider transition at the discontinuity.
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7.5.1 Properties of Commonly Used Windows

Some commonly used windows are shown in Figure 7.29. These windows are defined
by the following equations:
Rectangular

0, otherwise

5

I, O0<n=M,
wm:‘ v e (7.60a)
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] Rectangular
1.0 "
) Hamming
{ I —=—=—=— Hamn
ol I = Dlackman
_ N N
0.4 |
|
|
(r4 | : |
= I
ﬂ_2 1 -/j I
s |
L7 ""{/ : Ea- PN
0 M M
2
Figure 7.29 Gommonly used windows,
Bartew (triangular)
2n/M, O=n=Mm2 Mecven
wintl=42—2n/M, M/2<n=M, (7.600)
{, otherwise
Hann
0.5 —05cos(2mn/M), QO=n= M, )
wn] = ; {7640}
(1, otherwise
Hamming
- 054 — O docos(Zrn/M), l=n=M, (7.60)
win] = ;
a0, otherwise
Blackman
042 —05cos(2an/ M)+ 008 cosidrn /M), U=n=M,
RE= { wn/M) wnfM), @=n= (7.60¢)
0, olherwise

{For convenience, Figure 7.2%9 shows these windows plotted as functions of a con-
tinuous variable; however, as specified in Eaq. {7.60), the window sequence is defined
only at inleger values of 1)

The Bartlett, Hann, Hamming, and Blackman windows are all named after their
originators. The Hann window is associated with Julius von Hann, an Austrian meteor-
ologist. The term “hanning” was used by Blackman and Tukey (1958) to describe the
operation of applying this window to a signal and has since become the most widely
used name for the window, with varying preferences for the choice of “Hanning™ or
“hunning.” There is some slightl variation in the definition of the Bartlett and Hanm
windows. As we have defimed them, w{(] = w{M] = 0, so thal 1t would be reasonable
to assert that with this definition, the window length is really only M - | samples. Other




Section 7.5

20 by (W (e )

20 lag,q Wed

[Cesign of FIR Filters by Windowing 537

definitions of the Bartlett and Hann windows are related to our definitions by a shift of
one sample and redefinition of the window length,

Aswill e discussed in Chapter L0, the windows defined in Eq. (7.60)are commanly
used for spectrum analysis as well as for FIR filter design. They have the desirable
properly that their Fourier transforms are concentrated around o = 0, and they have a
simple functional form that allows them to be computed easily. The Fourier transform of
the Bartlett window can he expressed as a product of Fourier transforms of rectangular
windows, and the Fourier transforms of the other windows can be expressed as sums of
requency-shifted Fourjer transforms of the rectangular window, as given by Eq. (7.39).
{See Prohlem 7.43.)

The function 201og,;, |W{e'™)| is platted in Figure 7.30 for each of these windows
with M = 501 The rectangular window clearly has the narrowest main lobe, and thus,
for a given length, i should yvield the sharpest transitions of H{e'™) al a disconbinuily
ol Hyte!™). However, the first side lobe is only about 13 dB below the main peak,
resulting in oscillations of H (e/*) of considerable size around discontinuitics of H ie!™y.
Table 7.2, which compares the windows of Eq. (7.60), shows that, by tapering the window
smoothly to zero, as with the Bartlelt, Hamming, Hann, and Blackman windows, the
side lobes {second column) are greatly reduced in amplitude; however, the price paid
is a much wider main lobe {third column} and thus wider transitions at discontinuities
of Ha{e/™). The other columns of Table 7.2 will be discussed later.

00— L1 —
it (.2 {14 L6 (1.8 a
Eadian frequency (w)
[a)
{
2
A}
b —
—H'H';—
—i00! : e Figure 7.30 Fourier transforms {log
i Ol 4 (Lt 0. gm T magnituda) of windows af Figure 7.29
Radiun {requency (w) with M = 50. {a) Fectanguiar,

() {b} Bartlatt.
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7.5.2 Incorporation of Generalized Linear Phase

In designing many types of FIR filters, it is desirable to obtain causal systems with a
generalized linear-phase response, All the windows of Eq. (7.60) have been defined in
anticipation of this need. Specifically. note that all the windows have the property that

wLnEZ{MIM. o ay (7.61)

0, otherwise;
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TABLE 7.2 COMPARISON OF COMMONLY USED WINDOWS

Peak Transition

Peak Approximation  Eguivalent Width
Side-Lobe  Approximale LErrar, K aiser of Equivalenl

Tvpz of Amplitude Width of 2logn d Window, Kaiser
Wirkdow {Relative) Mue Lobe (B} . Winidow
Reclapgular -13 AmiiM 41 21 4] 1.8lm /M
Bartleti 25 B/ —25 133 23Tn M
Hann =31 s —d4 356 SMxiM
Hanuming 41 Bery A 53 4.56 0.27miM

Blackinun ~57 13m /M —T4 104 019 /M

e they are symmeltric about the point M /2. As a result, their Fourer transforms are
of the form :

W I:F_rm} L Wg{ﬁ‘fr"'}t? — imAf 2 : {?62}

where W.(e/™) is a real, even function of w. This is illustrated bv Eq. {7.39}. The conven-
tion of Eq. (7.61} leads to causal filters in general, and if the desired impulse responss
is also symumetric about M2, ie, if #g[M - n] = halr]. then the windowed impulse
response will also have that symmetry, and the resulting frequency response will have
a generalized linear phase; that is,

Hiel) < A (e/™)e M2, (7.63)

where A.{e/™) is real and is an even function of w. Similarly, if the desired impulse
response is antisymemetric about M2, ie il kgl — n] = —hz[n], then the windowed
impulse response will also be antisymmetric about M /2, and the resulting frequency
response will have a peneralized linear phase with a constant phase shift of ninety
depgrees; 1.e.,

H(2i®) = jA{ei¥)e oM, (7.64)

where A, (™) s Teal and 1% an odd function ol w.

Although the preceding statements are straightforward if we consider the product
of the symmelric window with the symmetric {or antisvmmetric) desired impulse re-
sponse, i s useful Lo consider the [requency-domain representation. Suppose
hg[M —n] = hgln]. Then,

Hylel®) = H (efv)emioMi2, {7.65)

where H,.(e ey is real and even.
If the window is symmetric, we can substitute Fgs. (7.62) and (7.63 ) into Eq. (7.38)
to obtain

1 . i i ) (" e e 3 =
Hiel®y = = f H el 10MIdg (o itu—fly = ia—BiM(1 40 {7.66)
TS

A simple manipulation of the phase factors leads to

Hie!) = A (el oML (7.67)
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where

o

: 1 = i G
Acleh) = 5— f H, (e W, (el 050 4p, (7.68)
-

Thus, we see that the resulting system has a generalized linear phase and, moreover,
the real function 4 (/™) is the result of the pericdic convolution of the real functions
Ho (e and Walede),

The detailed behavior of the convolution of Eq. {7.068) determines the magnitude
response of the filler that results from windowing. The following example illustrates this
for a lincar-phase lowpass filter,

Example 7.7 LinearPhase Lowpass Fliter
¢ The desired frequency response is defined as

[P—_,'u.u.l'l-F,l'Z: |"U < g,

H]pfr-"mt = l:_.-'.h‘.i::l

FERE-R P I
= where the peneralized linear-phase faclor bas baen incorporated into the definition of
¢ the wdeal lowpass filter, 'The corresponding ideal impulse response is
B Y bl Pt LM
hyplnl = % f_,.,,{_ o FwM o, % (7.7
¢ for —oo0 < 6 < o0, [Uis easily shown that | M —n] = jyg |, soif we use a symmetric
window in lhe eguation
3 - )

hn) = "““Ei[‘:-li_:ﬂ';;"”u-[n I (7.71)
- then a lincar-phase system will result.

The: upper part of Figure 7.310 depiels the characler of the amplitude response
that would result for all the windows of Eg. (7.600), except the Bartlerr window, which is
rarely used for filler design. {For M even, the Bartlett window would produce a mono-
S tonic [unciion A pted™) because Wole™ 1 is a positive function, ) The heure displays
£ the important properties of window method approximations to desired frequency re-
sponses that bave step discontinuitics. Tt applics aceurately when we 15 not close w
serg ar Lo oand when the width of the main lobe is smaller than 2o, At the botiom
of the figura is a typical Fourier transform for 2 symmetric window {except for the
o lincar phase). This funcion should be visoalized in differenl positions as an aid in

1 understanding the shape of (he approximation A e/} in the vicinity of m,.

e When w = o, the symmetric function W, (e o8y ig caprered on the disconti-
S muity, and abowt one-half its area contribies 1o A (o™, Similarly, we can see that (he
peak overshoot accurs when Wi/ @ 81) s shafted such that the first negative side lobe
on the right is just to the right of w.. Similarly, the peak negadive undershoot cecurs
o7 when the first negative side lobe on the efl is just 1o the el of w,.. This means thal the
¢ distance between the peak ripples on either side of the discontinuity is approximately
4 the main-lobe width Ay . as shown in Figure 7.31, The iransition width Aw as defined
in the figure is therefore somewlhat less than the main-lobe width, Finally, owing Lo the
symmetry of Weie/1® ¥1) the approximation tends to be symmetric around w.: ie.,
2 the approximation overshoobs by an amount 8 in the passband and undershools by the

- same amount in the stopband.
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Figure 7.31  [Mustration of lyne of approximation obtained 2t a discontinuily of
the ideal frequency response,

The fourth column of Table 7.2 shows the paak approximation error at a discon-
tinuity {in dB} for the windows of Eq, (7.60), Clearly, the windows with the smaller
side lobes vield hetler approximations of the ideal response at a discontinuily. Also, the
third colummn, which shows the width of the main lobe, suggests thal narmower transition
replons cuan be schieved by inereasing M. Thus, through the choice of the shape and du-
ralion ol the window, we can control the properties of the resulting FIR filter, However,
trving ditferent windows and adjusting lengths by trial and error is not a very satistac-
tory way o design filters. Fortunately, a simple formalization of the window method has
been developed by Kaiser (1974).

7.5.3 The Kaiser Window Filter Design Method

The trade-off between the main-lobe width and side-lobe area can be quantified by
seeking the window function that is maximally concentrated around w = 0 in the fre-
quency domain, The issue was considered in depth in o series of classic papers by Slepian
et al. (1961}, The solution found in this work involves prolate sphereidal wave func-
tions, which are difficult to compute and therefore unattractive for filter desipn, How-
ever, Kaiser {1966, 1974) found thal a near-optimal window could be formed using the
zero'-arder modified Bessel function of the first kind, a function that is much casicr to



Chapter 7 Filter Dasior Techniquas

compute, The Kaiser window is defined as

Bl —[r —a)aP)'P
win] = To(h) , O=n = M, (1.72)
0, otherwise,

where @ = M2, and In(-) represents the zero™-order modified Bessel function of the
lirst kind. In contrast to the other windows in Egs. (760}, the Kaiser window has two
parameters: the length (M 4+ 1) and a shape parameter 8. By varving (4 + 1) and 2,
the window length and shape can be adjusted to trade side-lobe amplitude for main-
lobe width. Figure 7.32(a) shows continuous envelopes of Kaiser windows of length
M+ 1 =21for =03 and 6. Notice from Eq. (7.72) that the case g = 0 reduces
to the rectangular window. Fipure 7.32(b) shows the corresponding Fourier transforms
of the Kaiser windows in Figure 7.32{a}. Figure 7.32{c) shows Fourier transforms of
Kaiser windows with § = 6 and A = 10, 20, and 40. The plots in Figures 7.32{b) and {c)
clearly show that the desired trade-off can be achieved. If the window is tapered more,
the side lobes of the Fourier transform become smaller, but the main lobe becomes
wider, Figure 7.32(c) shows that increasing M while holding # constant causes the main
lobe to decrease in width, but it does not affect the peak amplitude of the side lobes. In
fact, through extensive numerical experimentation. Kaiser obtained a pair of formulas
that permit the filter designer to predict in advance the values of M and A needed to
meel 4 given frequency-selective lter specilication. The upper plot of Figare 7.31 is
also typical of approximations obtained using the Kaiser window, and Kaiser {1974)
found that, over a usefully wide range of conditions, the peak approximation error (4
in Figure 731} is determined by the choice of §. Given that & is fixed, the passband
cutoll frequency a, of the lowpass filter is defined 1o be the highest frequency such
that (H{e!™)| = 1 — & The stopband cutolf frequency a, 1s defined to be the lowest
[requency such that |H (/™) = 5. Therefore, the transition region has width

Aot = w; — wry (7.73)
for the lowpass filter approximation. Defining
A= —Zﬂlugm &, {F'r.‘.-'rq'}

Kaiser determined empirically that the value of # needed to achieve a specified value
of A s given by

0.1102(A — 8.7, A = 50,
B= 10584204 — 21U £ 0.07836(4 —21). 21 < A = 50, {7.75)
0.0, A =21,

(Recall that the case £ — 0 is the rectangular window for which A = 21.) Furthermore,
Kaiser found that to achieve prescribed values of A and Ao, M must satisfy
A=5
T 2285Aw
Equation (7.76) predicts M to within +2 over a wide range of values of Aw and 4. Thus,

with these formulas. the Kaiser window design method requires almost no iteration or
trial and error, The examples in Section 7.6 outhine and illustrate the procedure.

(7.75)
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Relationship of the Kaiser Window to Other Windows

The basic pnnciple of the window design method is to truncate the ideal impulse re-
sponse with a finite-length window such as one of those discussed in this section. The
commesponcing effect m the frequency domain is that the ideal frequency response is
convolved with the Fourier transform of the window, If the ideal filter is a low pass filter,
the discontinuity in its freguency response is smeared as the main lobe ol the Fourier
transform of the window moves aeross the discontinuily in the convolubion process,
To a first approximation, the widih of the resulting transitdon band 1s determined by
the width of the main lobe of the Fourier transform of the window, and the passband
and stopband ripples are determined by the side lobes of the Fourier transform of the
window. Because the passband and stopband ripples are produced by integration of the
symunetric window side lobes. the ripples in the passband and the stopband are approx-
imately the same. Furthermore, (o a very good approximation, the maximum passband
and stopband deviations are not dependent on M and can be changed only by changing
the shape of the window used. This is illusirated by Kaiser's formula, Eq. (7.73), for the
window shape parameter. which is independent of M. The last two columns of Table 7.2
compare the Kaiser window with the windows of Eqs. (7.6(1), The fifth column gives the
Eaiser window shape parameter (8) that yvields the same peak approximation error (4)
as the window indicated in the first column. The sixth column shows the corresponding
transition width [from Eq. {7.76}] for filters designed with the Kaiser window, This for-
mula would be a much better predictor of the transition width for the other windows
than would the main-lobe width given in the third column of the table.

In Figure 7.33 15 shown a comparison of maximum approximation error versus
trunsition wikdth for the vanous fixed windows and the Kaiser window for different

Approaimation ereet va, Transition width [* = fived windows, 0 = Kaizer (3 = intcger)]

T T T T T T T T T
i -

= .,
Kniserl s * Batiet
an - Haiser
iy K:li:oeri‘ﬂ
g - <
= Kaiserd ,  # Handi
£ -5
g K:li\mrﬁ"’]! Hamming
2 k-
E Kaiseri™q
g ..
g - Kaiser?-0 1
E . # Blackman
] Kaiserds{t -
— Kﬂi.ml.:f‘-CL .
1 (] 1 1 i i i “ i 1
il 0= (b2 03w = nHw

Tranzten widih {Aw)

Figure 7.33 Comparison of fixed windows with Kaiser windmes in a lowpass filter
design application {4 = 32 and &y = =/2). {Note thal the designation "Kaiser 6°
means Kaiser window with 8 = 6, etc)
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values of 8. The dashed line obtained from Eq. (7.76), shows that Kaiser's formula is
an accutate representation of approximation error as a function of transition width for
the Kaiser window.

7.6 EXAMPLES OF FIR FILTER DESIGN BY THE KAISER
WINDOW METHOD

In this section, we give several examples that llustrate the use of the Kaiser window
to obtain FIR approximations to several filter types including lowpass hilters. These
cxamples also serve to point out some important propertics of FIR systems.

7.6.1 Lowpass Filter

With the nse of the design formulas for the Kaiser window, it is straightforward 1o design
an FIR lowpass filter to meet preseribed specifications. The procedure is as follows;

1. First, the specifications must be established. This means selecting the desired w,
and a, and the maximum (olerable approximation error, For window design, the
resulting filler will have the same peak crror & m both the passhand and the
stopband. For this example, we use the same specifications as in Example 7.5,
wy = Ddr, @, = (Low, & = (.01, and & = 0001, Snce fillers designed by the
window method inherently have §; = d2, we must set 4§ = 0001,

2. The cutoff frequency of the underlying ideal lowpass filter must be found. Owing
to the symmetry of the approximation at the discontinuity of H ;(2'™), we would
s2t

wp oy
2

4

= [.5x.

e =

3. To determine the parameters of the Kaiser window, we first compute
A = fehy = dpp = D.ETE'. A= —Eﬂ]ﬂg][;lﬁ = ]},

We substitute these two quantities into Eqs (7.73) and (7.76) to obtain the reguired
values of § and 4f. For this example the formulas predict

f=35653, M=37

4, The impulse response of the filter is computed using Egs (7.71) and (7.72). We
obtain
sines(m — ) IlB01 — [(n — &) jee )2
hin]=1 = —o) In( )

{}, otherwise,

, D=n= M,

where ¢ = M/2 = 37/2 = 18.5. Since M = 37 15 an odd integer, the resulting
linear-phase system would be of type 1L (See Section 5.7.3 for the definitions
of the four types of FIR systems with peneralized linear phase.} The response
characteristics of the filter are shown in Figure 7.34. Figure 7.34(a), which shows
the impulse response, displays the characteristic symmetry of a type IT system.
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Figure 7.34(b), which shows the log magnitude response in dB, indicates that
H{el®} is zeto at e = 7 o1, equivalently, that H{z) has a zero at z = =1, a5
required for a type 11 FIR system. Figure 7.34(c} shows the approximation error
in the passhand and stopbands. This error function is defined as
{ | — A, 0= w = my,
Fala) = : {170
0=A &™) oy =w=m
(The error is not defined in the transition region, 0.4 < @ < (.6} Note the slight
asymmetry of the approximation error, and note also that the peak approximation
erroris 4 = 0.00113 instead of the desired value of 0001, In this case 1t 15 necessary
to increase M to 40 in order to meet the specifications.
5. Finally. obscrve thalilis nol necessary Lo plol cither the phase or the group delay,
since we know thatl the phase s precisely linear and the delay is M2 = 185
samples.

7.6.2 Highpass Filter
The ideal highpass lilter with generalized linear phase has the frequency response
Hip(e?®) = IS'_ MR, o < I|:|| ; f:‘ (7.78)
‘Ihe corresponding impulse response can be found by evaluating the inverse transform
of Hyp(e!™), or we can observe that
Hyp(e!®) = 7492 _ g (™), (7.79)
where Hyp(e™) is given by Eq. (7.69). Thus, hppla] is
gsinmin — M2 sina.(n — M2}
min— M/2) min — M/

Ter design an FIR approximation to Lthe highpass filter, we can proceed in a manner
similar Lo thal in Section 7.6.1.
Suppose that we wish Lo design a filter 1o meet the highpass specifications

hnplnl = ; —00 < R 00, (7.80)

|H(e'™)] = &. leo] = e
1— &y = |H{e!] =1 +8, tp < lw| =

where ay, = (035w, @, = 057, and §) = & = & = 0.02. Since the ideal response
also has a discontinuity, we can apply Kaiser’s formulas in Eqs. (7.75) and (7.76) with
A = 3398 and Aw = 0.157 to estimate the required values of § = 2.65 and M = 24,
Figure 7.35 shows the response characteristics that result when a Kaiser window with
these parameters is applied to fippln] with w. = (0357 + 0.57) /2. Note that, since M
is an even integer, the filter is a type [ FIR system with linear phase, and the delay
is precisely M/2 = 12 samples. In this case, the actual peak approximation error is
& = (L0209 rather than 0.02, as specified. Since the error is less than 0.02 everywhere
excepl at the stopband edge, it is tempting to simply increase M to 25, keeping 8 the
same, thereby narrowing the transition region. This type 1T filter, which is shown in
Figure 7.36, is highly unsatisfactory, owing to the zero of f(z} that is forced by Lhe
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TCPTCR P it | S Rt ! Figure 7.37 Ideal frequency response
iy o e % for multiband Flter,
linear-phase constraint tobe at ; = -1, Le., w = 7. Although increasing the order by 1

leads to a worse result, increasing M o 20 would, of course, lead to a tyvpe [ system that
would exceed the specifications. Clearly, type IIFIR lincar-phase systermns are generally
not appropriate approximations for cither highpass or bandstop filters,

The previous discussion of highpass filter design can be generalized to the case
of multiple passbands and stopbands. Figure 7.37 shows an ideal multiband frequency-
selective frequency response, This generalized multiband filter includes lowpass, high-
pass. bandpass, and bandstop filters as special cases. If such a magnilude function is
multiplied by a linear-phase factor e /M2 the corresponding ideal impulse res ponse
13

sinay{n — M J/2)

min —M/2) {781}

Hrh
fimblnl = 3 Gy ~ Gig1)
ksl

where Ny, is the number of bands and Gy 1 = 0. If fgpla] is multiplied by a Kaiser
window, the tvpe of approximations that we have observed at the single discontinuity of
the lowpass and highpass systems will occur at each of the discontinuities. The behavior
will be the same at each discontinuity, provided that the discontinuities are far enough
apart. Thus, Kaiser's formulas for the window parameters can be applied to this case to
predict approximation errors and transition widths. Note that the approximation errors
will be scaled by the size of the jump that produces them. That is. if a discontinuity of
unity produces a peak error of 4, then a discontinuity of one-half will have a peak error
of /2.

7.6.3 Discrete-Time Differentiators

Asillustrated in Example 4.4, sometimes it is of interest 1o obtain sumples of the deriva-
tive of a bandlimited signal from samples of the signal itsclf. Since the Fourer translorm
of the derivative of a continuous-time signal 15 § 0 times the Fourier transform of the
signal, it follows that, for bandlimited signals, a discrete-time system with frequency re-
sponse {ju/ T ) for —r = w < 7 {and that is periodic, with period 2 ) will vield ourput
samples that are equal to samples of the derivative of the continuous-time signal. A
system with this property is referred to as a discrete-time differentiator,



Saction 7.6

Examples of FIR Filter Design by the Kaiser Window Mathod 551

For an ideal discrete-time differentiator with linear phase, the appropriate fre-
UENCY TESPONSE 15

Haigrle!™) = (jae M2 _x cw < (7.82}
{We have omitted the factor 1/7.) The corresponding ideal im pulse response is

cosmin - M/2y  sinwin- M2
in— M/2) aln — Mi2E

hgigeln] = . —oc < n < oc. {7.83)

If A gipr|r] 15 multplied by a symmetric window of length (M - 1), then it is easily shown
that filn] = —A[M = u]. Thus, the resulling system is either a type T or a type IV
generalized linear-phase system.

Since Kaiser's formulas were developed [or frequency responses with simple mag-
nitode discontinuities, it is not straightforward (0 apply them (o differenliators, wherein
the discontinuity in the ideal frequency response is introduced by the phase. Neverthe-
less, as we show in the next example, the window method is very effective in designing
such systems.

Kaiser Window Design of a Differentiator

To illustrate the window design of a differentiator, suppose M = 1 and § = 2.4, The
resulting response characteristics are shown in Figure 7.38. Figure 7.38(a) shows the
antisymmettic impulse response. Since M is even, the system is a type 1 linear-phase
systermn, which implies that {f(z) haszerosat bothz =+l lw=0)and z = -1 (w = 7).
This is clearly displayed in the magnitude response shown in Figure 7.38(b)., The phase
is exact, since tvpe 111 systems have a & /2-radian constant phase shift plus a linear phase
carresponding in this case to M/2 = 5 samples delay. Figure 7.38(¢) shows the amplitude
approximation ertor

Egrlo) = m— A,(e/7), 0= w<08r, (7.84)

where A.(e/*) is the amplitude of the approximaiion. (Note that the error is large
around o =  and is not plotted for frequencies above w = 0.8x.) Clearly. the linearly
increasing magnitude is not achieved over the whole band, and, obviously, the relative
error (l.e., Egifple)/w) is very large for low frequencies or high frequencies {around
=ik

Type TV linear-phase systems do not constrain /f{z) to have a zero at 7 = —1.
This type of system leads to much better approximations to the amplitude function, as
shownin Figure 7.39, for M = 5and 8 = 2.4 In this case, the amplitude approximation
ertor is very small up to and beyond er = (1.8, The phase for thissystem is againma = /2-
radian constant phase shift plus a linear phase corresponding Lo a delay of M2 =25
samples. This noninteger delay is the price paid for the exceedingly good amplitude
approximation. Instead of obtaining samples of the derivative of the continuous-time
signal at the original sampling times 1 = nT, we oblain sumples of the derivative at
tirmes ¢ = {# — 2.5)7. However, in many applications, this noninteger delay may not
cause a problem, or il could be compensated for by other noninteger delays in a more
complex system involving other lincar-phase filters.
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7.7 OPTIMUM APPROXIMATIONS OF FIR FILTERS

The design of FIR filters by windowing is straightforward and is guite seneral, even
though 1t has a number of limitations as discussed below. However, we oflen wish 1o
design a filter that is the "best” that can be achieved for a given value of M. It =
meaningless to discuss this guestion m the absence of an approximation criterion. For
example, in lhe case of the window design method, it follows [tom the theory of Fourier
series that the reclangwlar window provides the best mean-sguare approximation (ooa
desired [reguency response Tor & given value of A4, That is,

hglml, 0O =n =M, ;
= 1 T'
Aln] | a0, otherwise, (e
minimizes the expression
1 [T ; j
£ = = | Ha (') — Hie'™)idw. (7.86)
dtd —T

(See Problem 7.25.) However, as we have seen, this approximation criterion leads to
adverse hehavior at discontinuities of H (e, Furthermore, the window method does
not permit individual conlrol over the approximation errors in different bands. For
many applications, better filters result from a minimax strategy {(minimization of the
maximum errors ) or a frequency-weighted error eriterion. Such designs can be achieved
wsing algorithmic lechmigues.

As the previous examples show, requency-selecuve filters designed by windowing
olten have the properly thal Lhe error is greatest on either side of a discontinuity of the
ideal frequency response, and the crror beeomes smaller for {reguencies away from
the discontinuily. Furthermore, as suggested by Figure 7.31, such filters ypically result
in approximately equal errors in the passband and stopband. {See Figures 7.34c) and
7.35(c), tor example.) We have already seen that, for [IR filters, it the approximation
error is spread out uniformly in frequency and if the passband and stopband ripples arc
adjusted separately, a given design specification can be met with a lower-order filter than
it the approximation just meets the specification at one frequency and far exceeds it at
others. This intuitive notion is confirmed for FIR systems by a theorem to be discussed
tater in the section.

I the following discussion, we consider a particularly effective and widely used
algorithmic procedure for the design of FIR filters with a generalized linear phase,
Although we consider only type [ filters in detail, we indicate where appropriate, how
the results apply to types 1L, 11, and TV generalized linear-phase filters,

In designing a causal type 1 lipear-phase FIR filier, it is comvenient first to consider
the design of a zero-phase filter, i.e., one for which

fi ) = he[=n], {(7.87)

and then toinsert a delay sufficient 1o make it cauvsal. Consequently, we consider &,|n]
satisfying the condition of Eq. (7.587). The corresponding frequency response is given
by

1.
Ae™)= " hunleion, (7.88)
n XL
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Mate that A (e 15 a real, even, and periodic function of w. A causal systemn can be
obtained from f;|a] by delayving it by L = A2 samples. The resulting svstem has
impilse response

Al = holn — M2 = h[M — n] (7.90)
and [requency response
Hlf"fle = Ae{r.”f':"\]a_’ :ia..-.‘-:fl.--:'. thLJ

Figure 740 shows a talerance scheme for an approximation to a lowpass filter with a real
function such as A (e/*), Unity is to be approximated in the band 0 = |w| < w, with
maximuni absolute error 4:, and zero is to be approximated in the band w. = w| = =
with maximum absolute error 83, An algorithmic technique for designing a filter to meet
these specificalions musl, in effect, systematically vary the (L - 1) unconstrained im.
pulse response values i [n], where 0 = 0 = L. Design alporithms have been developed
in which some of the parameters L, 4, §a, i, and e are fixed and an iterative proce-
dure is uzed to abtain optimum adjustments of the remaining parameters. Two distinet
approaches have been developed. Herrmann (1970), Herrmann and Schiissler (1970a},
and Hofstetier, Oppenheim and Siegel (1971} developed procedures in which £, 8¢, and
&2 are fixed, and @, and w, are variable. Parks and MeClelian {1972a, 1972k}, MeClellan
and Parks (1973), and Rabiner (19724, [972b) developed procedures in which Ly, oy,
and the ralio 8 /& are lined and 4 {or 82 38 variable Since the lime when Lhese dilferent
approaches were developed, the Parks—MeClellan algorithm has become the domiant
method for optitmum design of FIR filters. This is because it is the most flexible and the
most computationally efficient. Thus, we will discuss only that algorithm here.

The Parks—MeClellan algorithm is based on reformulating the filter design prob-
lem as a problem in polynomial approximation. Specifically, the terms cos{we) in
Eu. {789 can be expressed as a sum of powers of cos o in the form

cosiem) = T, (cos ), (742
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where T,(x) is an n'"-order polynomial.” Consequently, Eq. (7.89) can be rewtitien as
an L™ grder polynomial in cos w, namely,

A lef™) = E“R (oosa”, (7.93)
k=0
where the 4:5 are constants that are related to k. |x|, the values of the impulse response,
With the substitution » = ¢osw, we can express Eg. (7.93) as
Aele!™) = Pix}x=cosw (7.94)
where P{x}is the L'™-order polynomial
L
PO =) axt, (7.95)
gl
We will see that it is not necessary to know the relationship between the ags and h.[n]
{although a formulacan be oblained §; it is enough to know that A (e can be cxpressed
as the L'"M-arder trigonometric polynomial of Eq. (7.93).

The key to gaining control over ay, and w, is to fix them at their desired values and
let 4y and §; vary. Parks and McClellan (1972a, 1972b) showed that with L, w,, and
fixed, the frequency-selective filter desipn problemn becomes a problem in Cheby shev ap-
proximation over disjoint sets, an important problem in approximation theory and one
for which several useful theorems and procedures have been developed. (See Cheney,

1982} To formalize the approximation problem in this case, let us define an approxi-
mation error function

Eiw) = Wiw)|Haie'™) — A(e/™)]. {7.96)

where the weighting function Wiw) incorporates the approximalion crror parameters
into the desipn process. In this design method, the error function E{w), the weighting
function Wiw), and the desired frequency response H gie'™) are defined only over closed
subintervals of 0 = @ = m. For example, to approximate a lowpass filter, these funetions
are definedfor 0 = w = wpand @ < @ = . The approximating function A L(ed® s not
constrained in the transition region(s) (e.g., wp < @ = e, ), and it may take any shape
necessary to achieve the desired response in the other subintervals,
For example, suppose that we wish to obtain an approximation as in Figure 740,
where /., wp, and w, are fixed design parameters. For this case.
2 0= i oy,
Hyte™) = R {7.97)
i, g =TT
The weighting function Wiw) allows us to weight the approximation errors differently
in the different approximation intervals. For the lowpass filter approximation problem,
the weighting function is
1
Wiwi = { K’
1, iy = =R,

0= < up,

(7.98)

dore specitically, Tait) i the wf nrder Chebyshoy polvnomial, defined as Ty ie) = cosie cns Ly
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where K = §; /8. If A, (&%) is as shown in Figure 7.41, the weighted approximation
error, Eiw) in Eq. (7.96), would be as indicated in Figure 7.42. Note that with this
weighting, the maximum weighted absolute approximation error is § = 47 in both
bands.

The particular criterion used in this design procedure is the so-called minimax
or Chebyshev criterion, where, within the frequency intervals of inlerest (the passbund
and stophand for a lowpass filler). we seek a frequency response A, (e/*) that minimizes
the praximum weighted approximation error of Eq. (7.96), Stated more compactly, the
best approximation is Lo be found in the sense of

il sy (EFIE ),
where /7 is the closed subsetof 0 < w = m such that 0 = w = wp or wy = w < 7. Thus,
we seek the set of impulse response values that minimizes 4 in Figure 7.42,

Parks and McClellan (194722, 1972b) applied the following theorem of approxi-

mation theory to this filter design problem.

Alternation Theorem: Let Fp denole the closed subsel consisting of the disjoint union
of elosed subsels of the real axis x, Furlhermore,
r

Pixy= Z :u.r"‘

k=il
isan rMeorder polynomial, and e () denotes 4 given desired function of x Uhal is conlin-
uous on Fes Wedx) is a positive fanction, continuods on Fp, and
Ep(xt = Wpixi|Dpix) — Fix)]
15 The weighted ercor, The maxumiim error 16 defined as
IE! = max |Epix}|.
x=Fp
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A necessary and sufficient conditdon that £x} be the unigue ¢
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th_arder polynomial that

moninuees ||Ef 15 thal £pdxh exhobit af deasi (r + 21 alternatons; L, there must exist at
lenst {r + 2) values x; in Fp such that x; = r3 = .-+ = 5,37 and such that Epix) =
—Epir; )= 2l Effori = L2, ... (r+ 10

At first glance, it may seem to be difficult to relate this formal theorem to the
problem of filter design. However, in the discussion that follows, all of the elements of
the theorem will be shown to be important in developing the design algomithm. To aid in
understanding the allernation theorem, in Section 7.7.1 we will interpret it specilically
for the design of a type [ lowpass filler. Before proceeding (o apply the alternation
theorem Lo filter design, however, we illustrate in Example 7.8 how the theorem is
applied Lo polynomials,

Example 7.8 Alternation Theorem and Polynomials

% The altermation theorem provides s necessary and sufficient condition {hat a poly-

nontial must satisty in order that it be the polynomial that minimizes the maximnm
weighted error for a given order. To illustrate how the theorem is applied, suppose we
wanl o examine polvnomials F{) that approsimate onity for —1 = = —{.] and aero

i fordll = @ = 1. Conader three such polynomials, as shown in Figure 7.43. Each of

these polynomials is of 5t _nrder, and we would like to determine which, if any, satisfy
the alternation theorem. The closed subsets of the real axis © referred toin the theorem
are the regions —1 = v = —0.1 and (L1 = v = 1, We will weighl ercors equally in both
regions, ie, Wole) = 1. To begin, it will be usefual for the reader to carefully construct
sketchas of the approximation error function for cach polynomial in Figure 7.42
According to the alternation theorem, the optimal 5" -order polynomial must

exhibit af feast seven altermations of the error in the regions corresponding o the

closed subset Fp. Ppix) has only five alternations —three in the region =1 < x = L1

and two in the region 01 = x = 1. The points ¥ at which the polynomial ataing the

2 maximum approdimation error ||| within the sel Fp oare called exiremal points {or

B

simply extremals). All alternations occur at extremals, but not all extremal points are
alternations, as we will see, For example, the point with ceroslope close 10 x =1 that
does not touch the dotted line isa local maximaomn, bat is not an alternation, because the
corresponding error funclion docs not reach the negative extreme value.” The alierna-

¢ tion theorem specifies thal adjacent aliernations must alternate sign, =0 the extremal
value at x = 1 cannot be an alternation either. since the previous alternation was a

 positive exlremal value al the liest point with zero slopein 0.1 < & = 1, The locations
© of the alterations are indicated by the symbol o on the polynomials in Figure 743,

Fa(x) also has only five alternations and thus is not optimal, Specifically, Pr(x0
has three zltemations in —0 = x = —0.1, buel again, only lwo allernations in
(L1 < x = 1. The difficulty oceurs because x = (11 is not a negative extremal value, The

= previous allernation #i ¥ = —0.1 isa posilive extremal value, so we need a negative ex-

tremal value for the next alternation. The first point with zero slope inside 0.1 = x = 1
also cannot be counted. since it is a positive extremal valae, like x = - (11, and does
nol alterpate sign. We can count the second point with zero slope in this region and
& =1, giving two alternations in {1 = ¢ = 1 and a total of five.

Bin this discussion, we Tofer (o masitive and negarive extremals of the error fupction, Smge the polvio-
mial is svbiracied from a constant to forem e error. Lhe extremal poins are easily localed on the polynoanial
curves in Figure 743, hut ke sign is opposite of the variation above and below the desired constant values,
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Flgure 7.43 5"-order polynomials for Example 7.9. Alternation points are indi-
cated by o.

-jg‘ P5{x) has eight alternations; all points of zero slope, v = -1,y = —0.1,x =01
i and ¥ = |, Sinee eight altermations satisfies the alternation theorem, which specifies a

: j'- minimum of s¢ven, (o) is the unigue oplimal sth_order polynuimial approzimalion

o

S for this region,
7.7.1 Optimal Type | Lowpass Filters

For type 1 filters, the polynomial Pix) is the cosine polynomial A LLed™) in By, (7.93).
with the transformation of variable x = cosmwand v = L:

Pilcosw) = Zatfms w)t, (7.9

Drpix) is the desired lowpass filter frequency response in Eq. (7.97), with x = cos e

1, ooswp < cosa =1,
Dpltosmw) = lﬂ. —1 < COS e < COS o, {7.1001)

Wpcosw) is given by Eg. (TY8), rephrased in terms of cos
Wplcosa) = { T cosay = cosm <= 1, (7.101)

1 =1 = covs o = 0O g

And the weighted approximation error is

Eplcosw) = Wplcosw)[Dpicosa) — Plcosa)l {7.102)
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Figure 7.44 Typical example of 3 towpass filter approximation that is optimal
according to the altermation theorem for L = 7.

The closed subset Fp is made up of the union of the intervals 0 = & = @, and
ay < @ = . orin lerms of cos a, of the corresponding intervals cos ey, = cosw = 1land
—1 = cose < cosay,. The allernation theorem then states thatl a set ol coefficionts ap in
Eq. (7.99) will correspond to the filier represcniing the unigque best approximation to
the ideal lowpass filter, with the ratio 44 /8; [ixed ai X and with passband and stopband
edges mp and wy, if and only it £ picos w) exhibits at least (7.4-2) alternations on Fp i,
if and onlv if Kp(eose) allernately equals plus and minus its maximum vaiue at least
tf 4 2) times. We have previously seen such equiripple approximations in the case of
elliptic TIR filters

Figure 7.44 shows a filter frequency response that 15 optimal according to the
alternation theorem for £. = 7. In this figure, A (&™) is plotted against . To formally
test the allernation theorem. we should first redraw A (/™) as a function of ¥ = cos w.
Furthermaore, we wani to cxplicitly examine the alternations of Ep{x). Consequently, in
Figure 7.45(a), (b}, and {c), we show Pix), Weixp, and Epix), respectively, as a function
of ¥ = cosew, Io this example, where L = 7, we sec that there are nine alternations of
the error, Consequently, the alternation theorem is satisfied. An important point is that,
in counting allernations, we include the pomnts eos ay, and cos a,, since, according Lo the
alternation theorem, the subsets {or subintervals) included in Fpoare closed, e, the
endpoints of the intervals are counted. Although this might seem to be a small issue, it
15 in fact very significant, as we will sce.

Comparing Figures 744 and 7.45 supgests that when the desired filter is a lowpass
filter for any piecewisc-constant fiter) we could easily count the allernatons by direct
examination of the frequency response, keeping in mind that the maximum error is
different {in the ratio £ = & f/f2} in the passband and stopband.

The alternation theorem states that the optimum filter must have a minimuom
of (i 4 2} alternations, but it does not exclude the possibility of more than (£ + 2)
alternations. In fact, we will show that for alowpass filter, the maximum possible number
of alternations is (£ + 3). First, however, we illustrate this in Fipure 746 for L = 7.
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Figure 7.45 Equivaent polynomial approximation functions as a function of ¥ = o5 e,
{a) Approximating polynomial. (b} Weighting function. (¢} Approximation arrar.

Figure 7.46(a) has I. 4+ 3 = 10 alternations, whereas Figures 7.46(b), (c), and (d) each
have L+2 = 9alternations, The case of [.+3 alternations (Figure 7.46a) is often referred
to as the extraripple care. Mote that for the extraripple filter, there are alternations
at @ = 0 and m, as well as al v = iy and w = o, Le., at all the band edges. For
Figures 7.46(b) and (¢}, there are agaim alternations al e, and w,, bul not at both @ =0
and o0 = x. In Fipure 7.46(d), therc arc alternations at 0, o, g, and m,, but there s
one less point of zero slope inside the stopband, We also observe that all of these cases
ate equiripple inside the passband and stopband; i.c., all points of zero slope inside the
imterval 0 < @ «= x are [requencies at which the magnitude of the weighted error is
maximal. Finaily, becausc all of the filicrs in Figure 7.46 satisfy the allernation theorem
for L = 7 and for the same value of K = & /#. it follows that w, andinr w, must be
different for each, since the alternation theorem states that the optimum filier under
the conditions of the theorem is unique.

The properiies referred to in the preceding paragraph for the filters in Figoure 7.46
result from the alternation theorem. Specifically, we will show that for type I lowpass
filters:

s The maximum possible number of alternations of the error is (L + 3.

s Alternations will always occur at w, and .

» All points with zero slope inside the passband and all points with zero slope inside
the stopband (for 0 < @ < w, and e, < @ < 7} will correspond to alternations;
i.2., the filter will be equiripple, except possibly at ew = 0 and m = x,
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Figure 7.45 Possible optimam
lowpass filter approximations for L = 7.
i} L + 3 alternations (extraripple casal,
(b} L + 2 alfernations {extremunm at

w o= 1), [C) L 4 2 alternations
{extremum at o = Of. {dy L+ 2
alwerrations (extremum at both eo =0
and e = ).
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The maximum possible number of alternations is (L + 3)

Reference to Figure 7.44 or Figure 7.46 suggests that the maximuom possible number of
locations for allerpations, arc the fourband edges (e = 0, 71, wp, o) and the frequencies
al which A ,{e/") has zero slope. Since an L™ -order polvnomial can have at most (L — 1)
points with zero slope inan open inlerval, the maximum possible number of locations
for altermations are the (L — 1) local maxima or minima of the polynomial plus the four
hand edges, a total of (1 + 3). In considering points with zero slope for trigonometric
polynomials, it is important to observe that the trigonometric polynomial

L
Pleosw) = Y ap(cosw)’, (7-103)
e=l)

when considered as a function of e, will glways have zeroslope atw = Jand w = T even
though Pix) considered as a function of x may not have zeroslope al the corresponding
points v = T apd x = —1. This is because

. ; L
d P \
it = - BiN @ } kayicos ey~
s k=0

(7.104)
L-1
= —sinw E{k + Dy qyicosen’ |,
k="

which is alwavs zero at e = O and w =, as well as at the (L 1) roots of the (L — [)st-
order polynomial represented by the sum. This behavior a4t o = 0 and w = 7 15 evident
in Figure 7.46. In Figure 7.46(d). it happens that the polynomial #(x) also has zero slope
alxy =-=1=cusr.

Alrernarions always occur at w, and w,

For all of the frequency responses in Figure 7.46, A (¢} is exactly equal ta 1 — §; at
the passband edge w, and exactly equal to +42 at the stopband edge ;. To suggest why
Lhis must always be the casc, let us consider whether the filter in Figure 7.46{a) could
also be optimal if we redefined i, as indicated in Figure 7.47 leaving the polynomial
unchanged. The frequencies at which the magnitude of the maximum weighted error
are equal are the frequencies e = (), ey, an, oy, ay, oy, s, g, and @ = 7, for a
total of (L + 2) = % Howewver, not all of the [requencies are allernations, since, to
be counted in the alternation theorem. the error must afternate between § = = || E|
al these frequencies. Theretore, because the error s negative al both on and w;, the
frequencies counted in the alternation theorem are w = 0, &y, an, w3, cig, 05, o, and
. for a total of 8. Since (L 4+ 2) = 9. the conditions of the altemation theorem are not
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satisfied, and the frequency response of Figure 7.47 15 not optimal with w, and w; as
indicated. In other words, the removal of w, as an alternation frequency removes two
alternations. Since the maximum number is (L -+ 3), this leaves al most (L + 1), which
is not a sufficient number. An identical argument would hold if w, were removed as an
alternation [reguency. A simlar argumen! can be constructed lor lhighpass fillers, but
Lhis is not necessarily the case for bandpass or multiband filters, (See Problem 7.63.)

The filter will be equiripple except passiblyatw =D orw =nx
The argument here is very similar to the one used to show that both @, and w, must
he alternations. Suppose, for example, that the filter in Figure 7.46(a) was modified as
indicated m Figure 7.48, so that one point wilh zero slope did nol achieve the maximum
error. Although the maximum error occurs at nine frequencies, only eight of these can
be counted as alternations. Consequently, eliminaling one ripple as a point of maximum
error reduces the number of alternations by two, leaving { L+1) as the maximum possible
number.

The foregoing represent only a few of many propertics that can be inferred from
the allernation theorem. A variety of others are discussed in Rabiner and Crold (1975).
Farthermore, we have considered only type I lowpass filters. While a much broader
and detailed discussion of type IL L, and I'V [ilters or fillers with more pencral desived
frequency responses is beyond the scope of this book, we briefly consider type Il lowpass
filters 1o turther emphasize a number of aspects of the alternation theorem.

|
|
|
|
|
|
|
|
|
|
i

' frequency response must be equiripple

) T TR T T Figare 7.48 Illustration that the
! | ! L N "
woowy wp wNB S wy N U6 ONT W o approximation bands.
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7.7.2 Optimal Type il Lowpass Filters

A type II causal filter is a filter for which fi|n] = 0 outside the range 0 = n = M, with
the filter length (M + 1) even.ie, M odd, and with the symmetry property

Ale] = alM —nl. {7.105)
Comseguently, the frequency response H 2™} can he expressed in the form
IM—1)72 >
Hie/") = g—tuM/2 Z 2hin] cos [w (-J-— - n\] , (7.108)
re=[} % &
Letting bln] = 2A[IM 4+ 132 —nl,n = 1,2, ... (M 4+ 1}/2, we can rewrite Eg. (7.108)
as
[d+11/2 i
Hiol™) = e S 2 Z Bia] cos |:m (n - ;):| 1 {(7.107)
=1 ; 5

To apply the alternation theorem to the design of type 11 filters, we must be able
to identify the problem as one of polvnomial approximation. To accomyplish this, we
express the summation in Eg. (7.107) in the (orm

(A12 i (17 8 T
E Bln] oy ]:cu (n - - ):| = o0& )2 Z E[n'l coslam ] | . {7.108)
n=] 2 r={]

{See Problem 7.538.) The summation on the right-hand side of Eq. (7.108) can now be
repiesented as a trigonometric polvnontal Plcos w) so that

Hiel®y = o M2 pig(a/2) Ploos ), (7.108a)
where

i

Ploosa) = Z ag {cosm)® (7.1090)

L=l
and L = (M — 13/2. The coefficients oy in Eq. (7.1(/h) are related to the coefficients
Bln|in Eq. (7.108), which in turn are related to the coefficients #ln| = 2k (M | 1) /2= n]
in Eq. (7.107). As in the tvpe 1 case, it i= not necessary to obtain an explicit relationship
between the impulse response and the a,s. We now can apply the alternation theorem
to the weighted error beiween FPicosw) and the desired frequency response. For a
type I lowpass filter with a specified ratio & of passband to stophand nipple, the desired
function i= given by Eq. {7.97), and the weighting function for the error is given by
Eqg. (7.98). For type 11 lowpass filters, because of the presence of the factor cos(e/2) in
Eq. (7.10%%a), the function Lo be approximated by the polvonomial Plcos ) is delined as
1

T At 1 {] E E EU!.,
Hdte-'l"”‘.l = [p{cosu) = cos{w/2} {7.11(0
(1, iy " =T,
and the weighting function to be applied to the error is
LU""Emfé—j 0 == tin,
Wiw) = Wplcosw) = K (7.111)

cos{e/2y, oy < =
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Consequently, type Il filter design is a different polynomial approximation prob-
lem than type 1 filter design,

In this section, we have only outlined the design of type 11 filters, principally to
highlight the requirement that the design problem first be formulated as a polynomial
approximation problem. A similarset olisspes arisesin the design of type I and type IV
linear-phase FIR filters. Specifically. these classes also can be formulated as polynomial
approximation problems, but in each class, the weighting function applied to the error
has a trigonometric form. just as it does for type T1 filters. (See Problem 7.58.) A detailed
discussion of the design and properties of these classes of flters can be found in Rabiner
and Gold (1975).

The details of the formulation of the problem for type T and type 11 linear-phase
systems have been illustrated for the case of the lowpass filter. However, the discussion
of type ITsysterns in particular should supgest that there 15 great flexibility in the choice
of both the desired response funetion H,(e/™) and the weighting function Wiw). For
example, the weighting lunction can be defined in terms of the desired Tunction so as to
vield equiripple percentage error approximation. This approach is valuable in designing
type U1 and type IV diflerentiator systems.

7.7.3 The Parks-McClellan Algorithm

The alternation theorem gives necessary and sufficient conditions on the error for op-
timality in the Chebyshev or minimax sense, Although the theorem does not state
explicitly how to find the optimum filter, the conditions that are presented serve as the
basis for an efficient algorithm for Anding i, While our discussion is phrased in terms
of type 1 lowpass filters, the algorithm easily generalizes, _

From the allernation theorem, we know that the optimum filter A (27} will satisly
the set of equations

Wien [ H g — A (e?)] = (1), i N (L+2) (7.112)

where § is the optimum error and A, (ef*) is given by either Eq, (7.89) or Eq. (7.93).
Tlsing Eq. (7.93) for A, {«'*), we can write these equations as

l II -{12 o l{__ wl } _ "
gol 0 T [
X2 X 2 o e
i Y Wian) * D AT
£ z - f;-"llil'l""':
| . T SSTTE . fate)
ez Ty T oo |

where x; = coswy;. This set of equations serves as the basis for an iterative algorithm
for finding the optimum A (#/*). The procedure begins by guessing a set of alternation
frequencies w; fori = 1,2, ... {L 4+2). Note that e, and r; are fixed and, based on our
discussion in Section 7.7, 1, are necessanly members of the set of allernation frequencies.
Specilically, if g =, then a7 = w,. The set of Egs (7.113) could be solved for the
sel of coellicients ap and & However, 1 more elficient alternative i« {o use polynomial
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interpolation. Tn particular, Parks and McClellan {1972a, 1972b} found that. for the
given set of the extremal frequencies,

L+2

E'F"'HJEE-JM}
k=

e, S A
Ltz %‘,t_{—”t_:i
W ey )

(7.114)

=1

s

where
L4z 1

=[] =—— (7.115)

(Xp — x1)
y=1

Pk

and, as before, x; = cos ay. Thatis, if A,(e/®) is determined by the set of coetficients oy
Lhat satisfy Eq. (7.113), with & piven by Eq. (7.114), then the error function goes through
=d at the (L + 2} requencies w,, or, equivalently, A, (e/™) has values | = KF 0 = oy =
ay and £Fif oy, < oy < 7. Now,since A, (e is known to be an LW-order triponomettic
polvnomial, we can interpolate a triponometric polynomial through (L -1} of the (L4+2)
known values E(ay; ) (or equivalently, A, (e/* )}, Parks and McClellan used the Lagrange
interpolation formula to obtain

L+1
> lele f(x — ) ]C
Ay = Pieosw) = 21— (7.116a)
> ldi/tx = %)
LS
where ¥ = cos e, 1p = G008 oy,
i (—1EFLE
Cp = Hgle!™y — 2~ 7.116b
F= e e {Zen)
and
L+1 1
d, = — = B — X (7 116c)
:r! (xg — x;) I
ik

Although only the frequencies wy, we, .. ., wr 4 are used in fitting the LM order
polynomial, we can be assured that the polynomial also takes on the correct value al
w2 because Egs (7.113) are satisfied by the resulting A, (e/™).

Now A.ie/*) is available at any desired frequency, without the need to solve
the set of equations (7.113} for the coefficients &, The polynomial of Eq. (7.116a)
can be used to evaluate A, (¢/*) and also E{w) on a dense set of frequencies in the
passband and stopband, If |£{ws] = & for all w in the passband and stopband, then the
oplimum approximation has been found. Otherwise, we must find a new sel ol exlremal
frequencies.
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“—“l"_;'?- %K"_ﬂ Figure 7.49

. o & MNiustration of the
" \ ’/“3/ T Parks-McClellan algorithm for
equiripple approximation,

Figure 7.49 shows a typical example for a tvpe I lowpass filter before the optimum
has been found. Clearly, the set of frequencies «; used to find § (as represented by open
circles in the figure) was such that & was loo small. Adopting the philosophy of the
Remez exchange method (see Cheney, 2000}, the extremal frequencies are exchanged
for a completely new set defined by the (L - 2) largest peaks of the error curve. The
points marked with = would be the new set of frequencies for the example shown in
the figure. As before, w, and @, must be selected as extremal frequencies. Recall that

there are at most (L — 1) local minima and maxima in the open intervals § = w < w,
and @y = @ «< 7. The remaining exiremal frequency can be at either e = Dor w = 7.
If there is a maximum of the error function at both 0 and 7. then the frequency at
which the greatest error occurs is taken as the new estimate of the frequency of the
remaining extremum. LThe eyele—computing the value of &, fitling a polynomial to the
assumed error peaks, and then locating the actval error peaks—is repeated until § does
not change from its previous value by more than a prescribed small amount. This value
of 4 is then the desired minimum maximum weighted approximation error.

A flowchart for the Parks—McClellan algorithm is shown in Figure 7.50. In this
algorithm, all the impulse response values k. |n] are implicitly varied on each iteration
1o obtain the desired optimal approximation, but the values of h.In] are never explicitly
computed. After the algorithm has converged, the impulse response can be computed
from samples of the polynomial representation using the discrete Fourier transform, as
will be discussed in Chapter 8,

7.7.4 Characteristics of Optimum FIR Filters

Optimum lowpass FIR filters have the smallest maximum weighled approximation error
# for preseribed passband and stopband edge frequencies ay, and e, For the weighting
[unction of Eq. (7.498), the resulting maximum stopband approximation crror is & = §,
and the maximum passband approximation erroris &) = K 4. InFigure 7.51, we illustrate
how & varies with the order of the filter and the passband cutofl [requency. For this
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example, & = 1 and the transition width is fixed at (@ — ap) = 027, The curves
show that as e, increases, the error 8 attains local minima. These minima on the curves
correspond to the extraripple (L 4+ 3 extrema) filters. All points between the minima
correspond to filters that are optimal according to the alternation theorem. The filters
for M = 8and M = 10 are type 1 filters, while M = 9and M = 11 correspond to a tvpe
Il filter. It is interesting to note that, for some choices of parameters, a shorter filter
(M = 3} mav be better (i.e., it vields a smaller error) than a longer filter (M = 10),
This may at first seem surprising and even contradictory. However, the cases M = 9
and M = 10 represent fundamentally different tvpes of filters Interpreted another way,
filters for M = 9 cannot be considered to be spacial cases of M = 10 with one point set
to zero, since this would violate the linear-phase symmetry requirement, On the other
hand, M = B could always be thought of as a special case of M = 1{} with the first and
last samples set to zero. For that reason, an optimal filter for M = & cannot be better
than ong for M = 10, This restriction ¢an be seen in Figure 7.51, where the curve for
M — Bis alwavs above or equal to the one for M = 10. The points at which the rwo
curves touch correspond to identical impulse responses, with the M = 10 filter having
the first and last points equal to rero.

Herrmann ef al. (1973} did an extensive computational study of the relationships
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(0.1
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Passband or stopband ripple

[y 1 — 1 | |
Lo 02 ELE 0.6 [

Passhand cutoff (w)

Figure 7.51  INustration of the dependence of passband and stopband error on
cutef frequency for optimal approximations of a lowpass filter. For this exampta,
K =1and {ess - eog) = 0.27. (After Herrmann, Rabiner and Chan, 1973.)

among the parameters M, 51, d2, wp, and w; for equiripple lowpass approximations, and
Kaiser (1974) subsequently obtained the simplified formula
—lﬂiugmfﬁ|53) —13
2.324Am ;

where Aw = oy, —a,, a5 alit 1o their data. By comparing Eq. (7.117) with the design lor-
mula of Eg. {7.76) for the Kaiser window method. we can ses that, for the comparable
case (§; = §; = §), the optimal approximations provide about 5 dB better approxima-
tion error for a given value of M. Another important advantage of the equiripple filters
is that &, and 4; need not be equal, as must be the case for the window method.

M= {(7.117)

7.8 EXAMPLES OF FIR EQUIRIPPLE APPROXIMATION

The Parks—McClellan algorithm for optimum equiripple approximation of FIR filters
can be used to design a wide variety of such filters. In this section. we give several
examples that illustrate some of the properties of the optimum approximation and
sugpest the great flexibility that is afforded by the design method.

7.8.1 Lowpass Filter

For the lowpass filter case, we again approximate the sel of specifications used in Ex-
ample 7.5 and Section 7.6.1 s0 that we can compare all the major design methods on the
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same lowpass filter specifications. These specifications call for w, — 047, w, = 0.6m,
# = 0.01. and & = 0.001. In contrast te the window method, the Parks—McClellan
algorithm can accommaodate the different approximation error in the passband versus
that in the stopband by fixing the weighting function parameter at X = 4;/4; = 1L

Substituting the foregoing specifications into Eq. (7.117) and rounding up vields
the cstimate M = 26 for the value of M that is necessary to achieve the specifications,
Fipures 7.32(a), (b), and () show the impulse response, log magnitude, and approxima-
tiom error, respectively, [or the optimum filler with M = 26, e, = 0,47, and w, = .67,
Figure 7.52{c) shows the wmweighted approximaton ermor

Ele 1— A e/, 0<w=m,, ) .
Sl { i (7.118)

O0— A (&™), oy ==,

rather than the weighted error used in the fTormulation of the desipn aleorithm. The
weighted error would be identical to Figure 7.52(c), except that the crror would be di-
vided by 10 in the passband.” The alternations of the approximation error are clearly in
evidence in Figure 7.52ic). There are scven alternations in the passband and eight in the
stopband, for a total of filteen alternations, Since L = M/2 for type [ (M even) systems,
and M = 26, the minimum number of alternations is (L + 2} = (26/2 + 2) = 15. Thus,
the filter of Figure 7.52 is the optimurmn filter for M = 26, @, = 047, and @, = 0.6,
However, Fipure 7.52(¢) shows that the filter fails to meet the original speciflications
on passhand and stopband error. {The maximum errors in the passband and stopband
are (L0116 and 000116, respectively.) To meet or exceed the specifications, we must
increase M,

The filter response functions for the case M = 27 are shown in Figure 7.53, Now
the passband and stopband approximation errors are slightly less than the specified
values. (The maximum errors in the passband and stopband are 0.00%2 and 0.00052,
respectively.) In this case, there are again seven alternations in the passband and eight
allernations in the stopband, for a total of fifteen, Note that, since M = 27, thisis 1 lype
I system. and for type Il systems, the order of the implicit approximating polynomial is
L=i{M-1/2=027-1}/2=13 Thus. the minimum number of alternations 15 s1ill 15
Mote also that in the type 1T case, the system is constrained Lo have 4 wero of its system
funclion at z = —1 of @ = m. This is clearly shown in Figures 7.53(b) and (c).

If we compare the results of this example with the results of Section 7.6.1, we
find that the Kaiser window method requires a value M = 40 to meet or execed the
specifications, whereas the Parks—McClellan method requires M = 27, This disparity
is accentuated because the window method produces approximately equal maximum
ertors in the passband and stopband, while the Parks-MeClellan method can weight
the errors differently.

7.8.2 Compensation for Zero-Order Hold

1n many cases, a discrete-time filter is desipned to be used in a system such as that de-
picted in Figure 7.54:1.e., the filter is used to process a sequence of samples x[#]| to obtain

TFor frequency-selective filters, the unweighted approximation error also coaveniently displavs the
passband and stopband behavior, sinee 4 (28 = 1 — E{w) in the passband and A e/ = —Ejw) in the
stopband.
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[zcrotz-time EXia Reconstruction
—r filtzr = converter * filter —
x|n] ey N ¥inl| a0 Fpaali) FIAEInY) v i)

f

T

Figure 7.54 Precompensation of a discrete-time filker for the effects of a DJ4
converker,

asequence y[u], which is then the inpul to a WA converter and continuous-time lowpass
filter {as an approximation to the ideal DVYC converter) used for the reconstruction of a
conlinuous-time signal v.i6), Such a system anises as part of a syvstem for discrefe-time
{iltering of a continuous-time signal, as discussed in Scction 4.8, 1 the VA converter
holds 1ts oulpul constant Tor the enlire sampling period T, the Fouricr transform ol the
OULPUE ¥ (1) 15
Yol 52 = H SO H, SO H e X (797, (7.119}
where #,{j52) is the frequency response of an appropriate lowpass reconstruction filter
and
SinCRT/2) o
a2

is the frequeney response of the zero-order hold of the DA converter. In Scetion 4.8.4,
wi siggrested that compensalion for A0 7E2) could be mcorporated into the contimuous-
time reconstroction filter; Le. f-L {72y could be chosen as

. L7 W

H.(j6) = § $in(82¥ /1) (7.121)

] otherwise

Ha(j52) = {7.120)

so that the effect of the discrele-time Blter #(e/** ) would be undistorted by the zero-
arder hold. Another approach s Lo build the compensation into the discrete-lime filter
by designing a filter H e/} such that

He'®y = %ﬁmﬁ”n. (7.122)

A DiA-compensated lowpass filter can be readily designed by the Parks—MeClellan
algorithm if we simply define the desired response as

w2
Hale™) = { sintew/2)
0, bl o SO

U= = anp,

{7.123)

Figura7.55 shows the response functions for such afiller, wherein the specifications
are again wy = 0dr, w. = 0.6, 4) = 001, and &3 = 0.001. In this case. the specifications
are met with M = 28 rather than M = 27 as in the previous constant-gain case. Thus,
for essentially no penalty, we have incorporated compensation for the IVA converter
into the diserete-time filter so (hat the effcctive passhand of the Alter will be fat. (To
emphasize the sloping nature of the passband, Figure 7.55(c) shows the magnitude
response in the passhand, rather than the approximation error, as in the frequency
response plots for the other FIR examples. )
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7.8.2 Bandpass Filter

Section 7.7 focused entirely on the lowpass optimal FIR, for which there are only two
approximation bands. However, bandpass and bandstop filters require three approx-
imation bands, To design such filters, it is necessary to generalize the discussion of
Section 7.7 to the multiband case. This requires that we explore the implications of the
alternation theorem and the properties of the approximating polynomial in the more
general context. First, recall that, as stated, the alternation theoremn does not assume
any limit on the number of disjoint approximation intervals, Therefore, the minfmim
number of alternations for the optimum approximation is still { L + 2). However, multi-
band filters can have more than (4 +3) alternations, because there are more band edges.
(Problem 7.63 explores this issue.) This means thal some of the statements proved in
Section 7.7.1 are not true in the multiband case, For example, it is nor necessary for all
the local maxima or minima of A .(e/*} to lie inside the approximation intervals, Thus,
local extrema can occur in the transition regions, and the approximation need not be
equiripple in the approximation repgions.
To illustrate this, consider the desired response

_ i, 0=w=03m,
Hae!™y= 11, 0357z =w = 0.6m, {7.124)
0, D7m =w=m,

and the error weighting [unction

1. 0= @ = (L3,
Wiew) = 1 1, 0357 = w < 0.6m, {7.125)
0

2, BIlr<w=<n.

A value of M + 1 = 75 was chosen for the length of the impulse response of the filter.
Figure 7.56 shows the response functions for the resulting filter. Note that the transi-
tion region from the second approximation band to the third is no longer monotonic,
However, the use of rwo local extrema in this unconstrained region does not violate
the allernation theorem. Since M = 74, the filter is a type I system, and the order of
Lthe implicit approximating polynomial is 4, = M /2 = 74,2 = 37. Thus, the alternation
theorem requires at least .42 = 3% alternations. It can be readily seen in Figure 7.56{c).
which shows the unweighted approximation error, that there are 13 alternations in each
band, for a 1otal of 39,

Such approximations as shown in Figure 7.56 are aplimal in the sense of the alter-
nation theorem, bul they would probably be unacceptable in a fltering apphication. In
general, there is no guarantee that the transition regions of a multiband filter will be
monolonic, becavse the Parks-MeClellan algorithm leaves these regions completely
unconstrained. When this kind of response results for a particular choice of the filter
parameters, acceplable lransition regions can wsually be obtained by systematically
changing one or more of the band edge Irequencies, the impolse-response length, or
the error-weighting function and redesiyming the filter.
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7.9 COMMENTS ON HR AND FIR DISCRETE-TIME FILTERS

This chapter has been concerned with design methods for UIT discrele-time systems.
We have discussed a wide range of methods of designing both infinite-duration and
finite-duration impulse-response filters,

The choice between an FIR filter and an ITR filter depends on the importance to
the design problem of the advantages of each type. [TR filters. for example, have the
advantage thal a variety of frequency-selective filters can be designed using closed-form
design formulas. That is. once the problem has been specified in terms appropriate for a
given approximation method (e.g., Butterworth, Chebyshey, or clliptic), then the order
of the filter that will meet the specificalions can be compuled, and the coefficients {or
poles and reros) ol the diserete-time filter can be obtained by strajghtforward substi-
Lution into 4 sct of design equations. This kind of simplicity of the design procedure
makes it feasible to design TR filiers by manual computation if necessary, and it leads
o straightiorward noniierative computer programs for LR filler design. These methods
arc limited to frequency-selective filters, and they permit only 1he magnitode response
to be specified. If other mapnitude shapes are desired, or if it is necessary Lo approx-
imate a prescribed phase- or group-delay response, an algorithmic procedure will be
required.

In contrast, FIR filters can have a precisely {generalized) inear phase. However,
closed-form design equations do not exist for FIR filters, Although the window method
is straightforward to apply, some iteration may be necessary to meet a prescribed spec-
ification. The Parks-McClellan algorithm leads to lower-order filters than the window
methaod and filter design programs are readily available for both methods. Also, the
window method and most of the algorithmic methods afford the possibility of approx-
imating rather arbitrary frequency-response characteristics with little more diffienlty
than is encountered in the design of lowpass filters. In addition, the design problem for
FIR filters is much more under control than the ITR design problem. because of the
existence of an optimality theorem for FIR filters that is meaningful in a wide range of
practical situations. Design techniques for FIR fillers without linear phase have been
given by Chen and Parks (1987), Parks and Burrus {1987), Schiissler and Steffen {1988),
and Karam and McClellan (1995).

Cuestions of economics also arise in implementing a discrete-time fifter. Boo-
nomic concerns are Uswally measured in terms of hardware complexity, chip arca, or
computational speed. These [aclors are more or less directly related Lo the order of
the filter required (0 mect a given specification. In applications where the efficiencies
of polyphase implementations cannot be exploited, it is generally true that a given
magnitude-response specification can be met most efficiently with an IR filter. How-
ever, in many cases, the linear phase available with an FIR filier may be well worth the
extra cost.

In any specific practical setting, lhe choice of class of fillers and desipn method
will be highlv dependent on the context, constraints, specifications, and implementation
platform. In this section, we conclude the chapter with one specific example to illustrate
some of the trade offs and issues that can arise. However, it is only one of many scenarios,
gach of which can result in different choices and conclusions,
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7.10 DESIGN OF AN UPSAMPLING FILTER

We conclude this chapler with a companison, in the context of upsampling. of IR and
FIR filter designs. As discussed in Chapler 4, Sections 4.6.2 and 4.9 3 inleger upsampling
and oversampled VA conversion employ an expander-by-L followed by a discrete-time
lowpass filler. Because the sampling rate at the output of the expander is L times the
rale at the input, the lowpass filter operates at & rale which is L-times the rate of the
input to the upsampler or YA converter. As we illustrate in this example, the order
of the lowpass filter is very dependent on whether the filler 15 designed as an IR or
FIR filter and also within those classes, which filter design method is chosen. While the
order of the resulting LR filler might be signiticantly less than the order of the FIR filter,
the FIR filter can exploit the efficiencies of a polyphase implementation. For the TIR
designs, polyphase can be exploited for the implementation of the zeros of the transfer
function but not for the poles. :

The system to be implemented is an upsampler-by-four, ie., L = 4. As discussed
in Chapter 4, the ideal filter for 1.4 interpolation is an ideal lowpass filter with gain of 4
and cutoff frequency /4. To approximate this filier we set the specifications as follows:®

passhand edge frequency w, = 0,227
stopband edge frequency w, = (.29

maximum passband gain = dbB
mimimum passhand gain = —1dB
maximum stophand pain = —4i1dB,

Six different filters were designed o meet these specifications: the four ITR filter designs
discussed in Section 7.3 (Butterworth, Chebyshev 1, Chebyshev I, elliptic) and two FIR
filter designs {a Kaiser window design and an optimal filter desipned wsing the Parks-
McClellan algorithm). The designs were done using the sienal processing toolbox in
MATLAB. Since the FIK design program used requires passband tolerance limits that
are symmefric about unity, the specifications above were first scaled appropriately for
the FIR designs and the resulting FIR filter was then rescaled for a maximum of () dB
gain in the passband. (See Problem 7.3.)

The resulting filter orders for the six filters are shown in Table 7.3 and the corre-
sponding pole-zero plots are shown in Figure 7.57(a)—(1). For the two FIR designs only
the zero locations are shown in Figure 7.57. IT these filters are implemented as causal

TABLE7.2 DORDERS
DF CESIGNED FILTERS.

Filter design Order
Butterwiorth 1&
Chebyshey | B
Chehyshey 1] B
Elliptic 3
Kaixer 63

Farks—Mehellan 44

£ he gain was normalized o unity in Lhe passband. 1o all cases the filiers can be scaled by 4 for wse in
interpolation.
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Figure 7.57 Pople-zero plots forthe six designs. {a) Butterworth filter, (b) Chebyshey | fitter,
(o) Chabyshey 1| filter. (d} EIlptic filter. (2) Kaiser filter. {T) Parks—McClellan filter,

filters there will be a multiple-order pole at the origin to match the total number of

zeros of the transfer function.

Without exploiting available efficicncics, such as the use ol a polyphasc imple-
mentation, the two FIR designs require significantly more multiplications per output
sample than any of the LR designs. In the IR designs, the number of multiplications
per ouiput sample will be dependent on specifically how the zeros are implemenied. A
discussion of how to efficiently implement each of the six designs follows below with
a summary in Table 7.4 comparing the required number of multiplications per output
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sumple. The four ITR designs can be considered as a cascade of an FIR filter {imple-
menting the zeros of the transfer function) and an IR filter {implementing the poles).
We first discuss the two FIR designs since efficiencies thal can be exploited for those
can also be utilized with the FIR component of the TIR filters.

Parks—-McClellan and Kaiser window designs: Withoul exploiting symmetry of the
impulse response or g polyphase implementation, the required number of multiplica-
tions per oudput sample is equal to the length of the filter. Ifa polyphase implementation
is used as discussed in Section 4.7 .5, then the number of multiplications per inpud sample
is equal 1o the length of the filler. Alternatively, since both filters are symmetric, the
folded structure discussed in Section 6.3.3 {Figures £.32 and 6.33) can be used to reduce
the number of multiplications at the input rate by approximately a factor of 2.7

Butterworth design: As is characteristic of discrete-time Buticrworth filiers, all
ot the zeros occur at 7 = —1 and the poles are, of course, in complex conjugate pairs.
Hy implementing the zcros as a cascade of 18 1*-order terms of the form (1 + 7~ no
multiplications are required for implementing the zeros, The 18 poles require a total of
18 muluiplications per output sample.

Chebyshey I desipn: The Chebyshev I filter has order 8 with the zeros at 7 = —1
and consequently the zeros can be implemented with no multiplications, The 8 poles
require 8 multiplies per outpul sample.

Chebyshey IT design: In this design, the filter order is again 8, Since the reros are
now distributed around the unit circle, their implementation will require some multipli-
cations. However. since all the zeros are on the unit circle, the associated FIR impulse
response will be symmetric, and folding and/or polyphase efficiencies can be exploited
for implementing the reros,

Elliptic lter desipn:  The elliptic filter has the lowest {order 3) of the four [TR
designs. From the pole-zero plot we note that it has all its zeros on the unit circle,
Consequently the xeros can be implemented efficiently exploiting symrmetry as well as
polyphase implementation.

Table 7.4 summarizes the number of multiplications required per output sample
{or each of the six designs with several different implementation structures. The direct
form implementation assumes that both the poles and zeros are implemented in direct
form, ie., it does not take advantage of the possibility of cascade implementation of
multiple zeroes at z = —1. Exploiting a polyphase implementation but not also the sym-
metry of the impulse response, the FIR designs are slightly less efficient than the most
efficient ITR designs, although they are also the only ones that have linear phase. Ex-
ploiting both symmetry and polyphase together in implementing the Parks-McClellan
design, it and the elliptic filter are the most efficient.

i is possible to combine both (olding and polyvphase efliciencies in implementing symmetric FIR
filters (see Baran and Oppenhemm, 2007). The resolting number of molGplicstions is approcimately half the
filter lengih and at the rate of the input samples rather than at the rate of the outpat samples, Howewver, the
resu e strocture s sipnificantly more complex.
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TABLE7.4 AVERAGE MUMBER OF REQUIRED
MULTIPLICATIONS PER GUTPUT SAMPLE FOR
EACGH OF THE DESIGNED FILTERS.

Filter design [rrect form  Symmetric Polyphase
Hutterworth ) 18 18
Chehyshev | 17 £ 8
Chebystey 11 17 13 10.25
Eiliptic 11 8 6.5
Koaiscr frd 3 14
Parks-MoClellan 45 23 1E.25

7.11 SUMMARY

In this chapicr, we have considered a variety of design techngues for both infimite-
duration and finite-duration impulse-response discrete-time filters. Our emphasis was
on the frequency-domain specification of the desired filier characteristics. since this is
most common in practice. Our objective was to give a peneral picture of the wide range
of possibilities available for discrete-time filter design, while also giving sufficient detail
about some of the techniques so that they may be applied directly, without further
reference to the extensive literature on discrete-time filter design. In the FIR case,
considerable detail was presented on both the window method and the Parks-hcClellan
aloorithmic method of filter design.

The chapter concluded with some remarks on the choice between the two classes of
digital filters. The main point of that discussion was that the choice is not always clear cut
and may depend on a multitude of factors that are often difficult to quantify or discuss in
general terms. However, it should be clear from this chapler and Chapler 6 that digital
filters are characierized by great Aexibility in design and implementation. This Nexibility
makes it possible to implement rather sophisticated signal-processing schemes that in
many cases would be ditficult, if not impossible, Lo mmplement by analog means.

Basic Problems with Answers

7.1. Consider a causal coniinuous-{ime system with impulse response A.{r) and sysiem funection
f+d

Graf+ 12

Hoixy =

(a} Use impulsc invariance to determme Hpiz) for a discrete-time system such that
my{nl = heind )
{b} Usc step invariance to determine Hfo{z) for a discrete-time system such that
salal = s (nd" }, where
]

splal= Y holkl  and .-.,_-U:n:f-..‘rt-[r]dr.

& =-—=00 =

{¢)} Determine the stepresponse 5gla] ol system 1 and the impulse response iz |n) of system
2 Is it grue that hofn] = fip[n] = ho(anT ¥ Is it true that v (0] = sp[n] = 5w T 1?



Chapter ¥

Problems

T.L.

Tlsl

583

A discrete-time lowpass Blter 18 to be designed by applying the impulse invananee method
tora continuous-time Butterworth filter having magnitude-squared tfuncrion

# 1
H AP
{ |+ (202N

The specifications for the discrele-time system are those of Example 7.2, 1.2,

D89125 < |[Hief) = 1, 0= |wj <027,
Hie!™)| = (L17783, 037 = |o < 7.

Assume, @5 in that cxample, that aliasing will not be s problem: i.c., design the continuous-
time Butterworth flter to meet passhand and stopband specfications as determmed by the
desired discrete-time filter,

(8) Skerch the tolerance bounds on the maghitude of the frequency response, [F.0521,
of the conlinuous-tme Butterworth filter such that afler application of the impuelse
mvariance method (e, fifn] = T (e Tyl the resulling discrete-time Alier will satisly
the grven design specifications. Do not assume that Ty — 1 as in Example 7.2,

(b) Determine the integer order & and the quantity £;52, such that the continueus-lime
Buiterworth filter exactly meets the specifications determined in part {a} al the pass-
band edge.

(c) Naote that if 1y = |, vour answer in part (b)) should give the values of & and 52
obtained in Example 7.2. Use this observation to detenmine the system function M. (a)
for T4 # 1 and to argue that the system function &(z) which results from impulse
nvariange design with Ty 2= | s the same as the result for Ty = 1 given by Bg. {?. i7y.

Yo wish 10 use impulse invariance or the bihnear 1ransformation 1o design a discrete-time
filter that meets specifications of the following Jorm:

f--d) = (el = 1 447, 0= |m| < ey, (P731)
2-1)

|Hiefe| = dz, T T R

For historical reasons, mosl of the design formulas, tables, or charts for continuons-time
filters are normally specified with a peak gain of unity in the passband; ic.,

| &) = |Heim] = 1, 0= |92 = 2.

{P7.3-2}

|Ha2)] = 6. Ry = (9.
Liselul design charts for con tinuous-time (lers speeified in this form were given by Rabiner,
Kaiser, Herrmann, and Dolan {1974).

{a} Touse such tables and charts vo design discrete-time systerms with a peak gainof (1448 ),
it is necessary to convert the discrete -time specifications into specifications of the form
of Egp, (P7.3-2). This can be done by dividing the diserete-time specifications by (145 ).
Use this approach 1o obtain an expression for 3 and i1 in terms of 57 and 4,

{b} In Example 72, we desipned a discrete-time filter with 8 maximuom passband gain of
unily, This filser can be converted w s [her smisfying o set of specifications such as
those in Eq. (P?7.3-1) by multiplying by a constant of the form {1 4+8, ). Find the required
value of 4) and the corresponding value of d; for this example, and vse Eq. (7.17) to
determine the coafficienis of the svsiem function of the new Gler.

{c} Repeat part (b) for the flter in Example 7.3,
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‘The system function of a discrete-time system is

)=+ —zn.z' o '"—'i'n“.'a =1
— & z 1—e r

{a) Assume that this discrete-time filter was designed by the impulse invariance method
with Ty = i, k[n] = 2h,12n}, where b-(1) isreal. Find the svstem function H -{s} of
a continuous-time fller that oould have been the basis for the design. [s vour answer
unigua? It tot, find another system fenction H- (5.

(h) Assume that A7) was obtained by the bilinear transform method with Ty = 2. Find
the system function & (5} thal could have been the basis Tor the design, Is vour answer
unique? If not, find another H,(s).

W wish o use the Kaiser window method to design a discrete-time filter with generalized
linear phase that meets specifications of the [ollowing form:

|Hief®y) = 01, 0 < | =0.257,
095 = | Hiefr)| < 1.08, 0357 < lw| = 0.6,
|[Hiefoy| =001, 0657 = w| <.

{a) Determine the minimum lenpth (M 4- 1) of the impulse response and the value of the
Kaiser window parameder 8 for a filter that meels the preceding specifications.

{h) Whalt is the delay of the filter?

{c} Determine the ideal impulse response hyln] 1o which the Kaiser window should be
applied.

We wish to use the Kaiser window method to design a symmetric real-valued FIR filter with

zero phase that meets the following speaifications:

09 < He/®) <11, 05w =027
—.06 = H e} = DG, (L3r = | = 04757,
1.9 = H{sd™) < 2.1, L5257 < || = .
This specification is to be met by applying the Kaiser window to the ideal real-valned
impulse response assoclated wilh the ideal frequency response Hy (e given by
1. 0 = i = 025,
Hyed* 1= 310, 0257 < lw| = 0.5,
2. 057 < fon = .

(#) What is the maximum value of § thal can be used to meet this specilication? Whal is
the corresponding value of #7 Clearly explain your reasoning,

(b) What is the maximum value of Aw that can be used to meet the specification? What is
The cortesponding valwe of A + 1, the lenglh of the impulse response? Clearly explain
Your reasoning.

We are inlerested in implementing & continuous-time LTI lowpass filler H{j52) using the
system shown in Figare 4.10 when the discrete-time system has frequency response Hyje/™ )
The sampling lime T = 10~ second and the input signal 1.t} is appropriately bandlimited
with X [ f2) = O for |82] = 25000},
Let the specifications on | H(j52)| be
099 = [H{jfn| = 1., [£2] = 2 { 1K},
IHGR <000, |82 = 2201 1K,

Determine the corresponding specifications on the discrete-time frequency response Hyie 2.
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1.8, We wish to design an optimal (Parks-MeClellan) zero-phase Type 1 FIR lowpass filter
with passband frequency wp = 037 and stoptand [requency wy = 0.6 with equal error
weighting in the passband and stopband. The impulse response of the desired filter has
lemgth 11; e, filn] = Oforn <= -5 or 0 = 3. Figure P7.8 shows the frequency response
H{ﬁj"‘*J for two different filters, For cach filler, specify how many alternations the flter has,
and state whether it satisfies the alternation theorem as the optimal filter in the minimax
sense meeting the preceding specifications.

L4 T T T | 1
12

1
5
o

Hyle™)

k4
k2

ph

02 I |
il il

o (L& T
Radian trequancy (w)

()

S

=
1

(hB
156

Flafe ™y

0.4

'

Fadian frequency (i)

(&) Figure P7.8

7.9, Supposc we design adiscrete-time Glter using the impulse invariance technigque with an ideal
continuols-lime owpass [er as a prototype, The prototype flter has a cutoll freguency
of 3. = 2100 rad/s, and the impulse invariance transformarion uses T = (1.2 ms. What
15 the cutoff frequency - for the resulting discrede-time filier?

T We wish to design a discrete-time lowpass filter using the bilinear transformation on a
continuous-time ideal lowpass filter. Assume that the continuous-time prototype filter has
cutefl frequency £2, = 2720000 rad/s, and we choose the hilincar transformation parameler
T = (b4 me. What is the cutoff frequeney e for the resalting disceete-time flter?
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Suppose that we have an ideal discrete-time lowpass [ller with culell frequency e — /4,
In addition, we are told that this filter resulted from applying impulse invariance to a
continuons-time prototype lowpass filter using ¥ = 0.1 ms, What was the cutoff frequency
&2, for the prolotype continuous-time filter?

Anideal discrete-time lnghpass filter with cutoff frequency e, = /2 was designed using the
bilinear transformation with T = 1 ms. What was the cutoff frequency Q- for the prototype
continuows-lime ideal highpass iler?

. An ideal discrete-time lowpass filter with cutoff frequency me = Zm /5 was designed us-

ing impulse invariance [rom an ideal continuous-time lowpass filter with cutofl frequency
£ = 28N radfs What was the value of 77 15 this value unique? IT not, find another
value of T consistent with the information given.

The bilinear traosformation is vsed Lo design an idesl discrete-time lowpass [ller with
culell Trequency e = 35 from an ideal continuous-time lowpass filter with cutoff fre-
quency $2- = 2w (300} rad/s. Give a choice for the parameter T thal is consistent with this
nlormation, Is this cholee emigue? I not, give another choice that s consistent with the
infost mation.

We wish 1o design an FIR lowpass filler satis{ying the specilications
(L85 <« Hie!¥) <105, 0= || < 025,
—0.1 = Hie!™) = b1, (357 = || =7,

b applving a window w[z] to the impulse response fiy[a] for the ideal discrete-time lowpass
filter with cutoff w. = 037, Which of the windows listed in Section 7.5.1 can be used to
meel this specification? For cach window thal you claim will satisly this specification, give
the minimum length A 4 | required for the filter.

We wish to design an FIR lowpass filter satislying the specifications

(L98 « Hiel™) < 1,02, 0= |ew = (LA3T,
—0.15 = Hie™p < 015, 0657 < |w| =7,
by applying a Kaiser window (o the impulse responss hglr] for the ideal discrete-time
lowpass filter with cutoff e, — (Lidz. Find the values of g and M required to satisfy this
specification,
Suppose that we wish 1o design a bandpass filter salislying the following specilication:
002 = | Hiel) = 002, 0= wl = 0.2,
095 = |H{e/®) = 1.05, 031 = |w| < 0.7x.
D001 = |[H{e/®)| = 0001, 0757 < ‘w| = =

Ihe filter will be designed by applving impulse invariance with T = 5 ms to a prototype
conlinuous-time ler, State the specifications that should be wsed (o desipn the pootolype
continuous-time filter.

Suppose that we wish to design a highpass filter satisfying the following specification:
—0.04 < |H(e!™) <004, 0= o =027,
0995 < Hie™)| = 1.005, 037 = e = .

The filter will be designed using the hilinear transformation and T = 2 ms with a prototype
continuous-time filter. State the specifications that should be used to design the prototvpe
continuous-time filter to ensure that the specifications for the diserete-time filter are met,
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7.1%. We wish to design a discrete-time ideal bandpass filter that has a passband 7 /4 < w = x/2

by applying impulse invariance (o an ideal continuovs-lime bandpass filter with passband
2ar (3N = 0 = D (BOLD), Specify a choice for T that will produce the desired filter, Is vour
choice of T unigue?

720, Specify whether the Tollowing slatement is true or false, Justify your answer.

Statement: If the bilinear transformation is used to transform a continnous-time all-
pass system to a diserete-lime system. the reswlting discrete-time system will slse be
an all-pass system,

Basic Problems

7.21. Anengineer is asked to evaluate the signal processing system shown in Figure P7.21-1 and

improve il if necessery. The inpul x[x] 15 obtained by sampling a conlinuous-time signal at
a sampling rate of 1/ T = 100 Hz.

Kn] ¥[n]

— !.ﬂ'fa'“:l

Figure P7.21-1

The poal is for H{e" ) obea linear-phase FIR lter, and ideally it should have the following
amplitude response (50 it can function as a bandlimiled differentiatory:

—inf T =1}

H Juy =
amplitude of H; (e [ afT w=0

{a} For one implementation of Ff {edey referred to as i 1} (el the designer, motivated by
the definilion
d (X)) s x[t) —xir — Arj‘

dt A= Al
chooses the system impulse response fiy [4] so that the input-output relationship is
xln] — xle = 1]
Plot the amplitude response of H)(e/®} and discuss how well it matches the ideal
response, You may find the following expansions helpful:

1 |

o Lo doon 5
sme,-wﬂ—ﬁEf +§|:J —ﬁﬂ ey

¥l =

cos(fh = 1 — %ah %é‘ - {%H&+---

(b)Y We want o cascade Hy(e/™) with ancther lirear-phase FIR [lter Gief*), o ensure
that tor the combination of the twe filters, the group delay is an integer number of
samples. Should the length of the impuolse response gla] be an even o1 an odd integer?
Explain.

() Ancther method for designing the discrete-lime K filter is the method of impulse
invariance. In this method, the ideal bandlimited continuows-lime impulse response,
as given in Eq. (P7.21-1), is sampled.

oot oo 20 — o sind a0}

o

{In a typical application, £2,. might be slightly less than =/ T, making k() the impulse

response of a differentiator which is bandlimited to [22{ =/ T.) Based on this impulse

hiry =

(P7.21-1)
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response, wi would have to create a new filter H> which is also FIR and linear phase
Therefore, the impulze response, h=[al, should preserve the odd symmetey of k{0 about
¢ = 0. Using the plot in Figure '7.21-2, indicate the location of samples that result it the
impulse response is sampled al 100 He, and an impulse response of length 9 s oblained
using a reclangular window,

P — e e T S .

ERLLY

h(r)

RekLLY

005 AL = 00 =001 0 e 2 a3 oo 0403
t [seconds)

Figure P7.21-2

(d)} Again using the plotin Figure P7.21-2, indicate the location of samples if the inpulse
response fanf is designed 1o have lengrh 5, again preserving the odd symmetry of Air)
aboute =10,

{e} Since the desired magnitude response of Hie/®) is large near w = 7, you da not want
Hy tohave a wero al @ = m. Would you use an impulse response with an even or an
odd number of samples’ Explain.

722, Inthe system shown in Figure P72, the discrete-time system is 8 linear-phase FIR lowpass
filter designed by the Parks-MceClellan algarithm with §) = 0.01, 2 = (L, @, = 047,
amd «y = 067, The length of the impulse response is 28 samples. The sampling rate tor the
ideal O and IVC converters is 1/7 = L0000 samples/sec,

x41) fdeal | x[n] | LTI System | pin] | Idesl yele)
—_— : D * fpa|, Figeiv) o DiC -
Couverter Convergar
r r Figure P7.22

fa) What property should the inpuar signal have so that the overall system behaves as an
LT1 system with Y {8} = Hyyr (i) X (j2)?
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(b} For the conditions found in {a}), determine the approximation error specifications sat-
isfied by | Hp e /52)]. Give your answer as either an equation or a plot as a function of
g2

(e} What is the overall delay from the continucus-time input to the continuous-time output
(in seconds) of the svstem in Figure P7.227

Consider a continuous-time system with system funclion
l
H s)= -,
by

This system is called an fntegratar, since the output (1) is related to the input x-{r) by

!
Yol = f Leizhdr.

o
Suppose a discrete-time system is oblained by applying the bilinear transformation to H (.

(a) What is the syilem function Wiz of the resulling discrete-time system? What is the
umpulse response fla !

(b) If x[r]is the inpuf and ¥[#| is the oulput of the resulting discrele-lime system, wrile the
difference equation that is satisfied by the input and output. What problems do you
anticipate in implementing the discrete-time system using this difference cquation?

{r) Oblain an exprossion for the [reguency response Hiel™) of the syslem, Skelch the
magnitude and phase of the discrete-time system for 0 = |w| < x. Compare them with
the magnitude and phase of (the frequency Tesponse & (782 of Lhe continuous-time:
integrator. Under what conditions could the discrete-time “integrator™ he considered
a good approximation to the continuous-time integrator?

Mow consider a conlinuous-time system with system function
(Fox) = v

This system is a differentiator; 1e., the output is the derivative of the input. Suppose a
digere le-lime svstem is oblained by applying Lhe linear ransformation o G058

{dy Whal is ihe svilem function G{zp of the resulting discrete-time system? What is the
impulse response gla]?

{e) Obiain an expression for the frequency response Giel™) of lhe system. Sketch the
magnitude and phase of the discrete-time system tor ¢ = |w| = =, Compare them
with the magnitude and phase of the frequency response G j82) of the conlinuous-
time differentiator, Under whal conditions could the discrele-time “differentiator” he
considered a good approximation to the continuous-time differentiator?

(£) The continuous-time inlegrator and differentialor are exact inverses of one another.
Is the same frue of the discrete-lime approgimations obtained by using the bilinear
transformation?

Suppose we have an even-symmetric FIR filter #[n) of lenglh 2L + 1, i,

hifn] =0for o] = L,

hln] = A]l—n].

The frequeney response H'[fJ"'”‘_u, i, the TFT of &ln], is plotted over -z = @ = = in
Figure P7.24.
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L& : ! !

08 -

H{em)

4

- -l 0 w2 T
MNormalized frequency o
Figure P7.24

What can be inferred from Figure P7.24 about the possible ranpe of values of L7 Clearly
explain the reason(s) for vour answer. Do not make any assumptions about the design
procedure that might have been used 1o obtain Al

Let h,¢[n] denote the impulse response of an ideal desired system with corresponding fre-
quency response Hgied®y, and let bln] and A2 denole the impulse response and fre-
guency response, respectively, of an FIR approximation 1o the ideal system. Assume thal
filu] =D forn - 0 and a = M. We wish to cheose the (M + 1} samples of the impulse
response o as [0 minimize the mean-sguare error of the frequency response defined as

; S ;
&= — [ [Hgte™) - Hie!) da.
s o
(a) Use Parsevals relation to express the erroc function in terms of the sequences &, [a]

and k[n).

(hy Using the resull of parl (a), determine the values of &[x] for i = n = M that minimize

T

[t

{c) The FIR filter determined in part {(b) could have been oblaimed by a windowing oper-
atinn. That is, hfr] could have been obtained by multiplying the desired infinite-length
sequence i) by a certain finile-length sequence wn ). Determine the necessary win-
dow wlr] such Lhat the optimal impulse response is Aln) = wlafigin].

Advanced Problems

T.26. fiputse invariance and the bilinear transformation are two methods for designing discrete-

lime filters, Both methods trunstorm a contineows-time system function &) anio s discree-
time system function H{z). Answer the following guestions by indicating which merthod(s)
will yield the desired resuli
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(a} A minimum-phase conlinuous-lime system has all its poles and zeros i the lefl-half s-
plane. If o minimum-phase contlinuous-time system is transformed into a discrele-1ime
systent, which method(s) will result in a minimum-phase discrete-time system?

(b) 10 the comtinucws-time system s an all-pass system, s poles will be af locations g in the
lefi-balf s-plane, and its zeros will be at corresponding locations —s in the fight-halt
s-plane. Which design method(s) will result in an all-pass discrete-time system?

(e} Which design method(s) will guaraniee that

Hiel™) = Hel iR gy

(dy If the continuous-time system is a bandstop filter, which methodis] will result in a
discrete-time bandstop filter?

(e} Suppose that B (23 Aoz, and Hiz) are transformed versions of H.q(5), H.ads), and
H (50, tespectively, Which design method(s) will suaranice thatl Hi(z) = H{(@ A 2iz)
whenever Hoix) = I (51 Haois)?

{f} Suppose that Hy(z), H4+(z), and H(z) are transformed versions of H.((s), H.5(s). and
H -5, respectively. Which desien method (5) will guarantes thal Hizy = H 2+ H=(z)
whenever s = H.p{s) -+ Ho{31?

{g) Assume that bwo conlinuous-lime system functions satisfy the condition

e WP
Haoy a2 0=

If Hyiz)and H4(z) are transformed versions of 4 () and H,o(5), respectively, which
design melhod(s) will result in discrele-lime systems such that

J_-f_[{r*"”’;l _ { e T D,

i afeley — =07

elmiL
(Such svslems are called “%-depree phase splitlers.”}
Suppuse that we are given an ideal lowpass discrele-time filler with Mrequency response

1. ewl = /4,

I .nil.':-l R
s, ['D. b R T R

We wish to derive new filters from this prototype by manipulations of the impulse response

hin

(s) Plol the [requency response i) (ed™) Jor the sysiem whose impulse response is
fry|nl = Ri2n).

{h) Plot the frequency response Hie'™) for the system whose impulse response is

R[AIZ], =R 2l

aln} = LI otherwise.

{c) Plot the froquency response Mafed™) [or the syslem whose impulse Tesponsc is

haln] = e/ T hfn] = (—1)"hn].
Clomsider o continuous-nime owpass iller Ho0s) with passhand and stopband specifications
=8 = [H Dl = 1+ 8. 192 £ 2.
|H (L)) = 8. 0y = |92

This Alter is transformed (oo lowpass diserele-time Alter Hqi2) by the transformation

Mz = H,;[.yfll

s=il-r by Iy
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and the same continuous-time filter is transformed 10 a highpass discrete-time flter by the
transformation
”-2‘. = -”-r‘.'ﬂ fr= (|_+1- 1}1.14'1_. 'I:l-

{a) Determine arelationship between he passband cutolf frequency 2 of the cantinuous-
time lowpass filter and the passhand cuteff frequency & gs] of the discrete-time lowpass
filter.

() Determine arelationship between the passhand cutof T requency §2,; of the continuous-
time bowpass filter and the passhand cutoff frequency w ;> of the discrete-time highpass
filter.

(¢) Delermine a relationship between the passband cutoff frequency ap,y of the discrete-
time lowpass filter and the passband cutoff frequency w7 of the discrete-time highpass
filter.

(d) The network in Figore P7.28 depicls an implementation of the discrete-time lowpass
filter with system function H{{z). The coefficients A, B. €, and D are real. How should
these coclficients be modified to oblain a network that implements the discrete-time
highpass filter with aystern tunction f#4(z)7

x\i/ i

Figure P7.28

x[n]

T

A diserete-time system with system function H {2 und impulse response & (n ) has frequency
respomse
: A, 18] = 8.,
H ,;ﬁ' s |
el {ﬂ. b = 18] < .

whered] < fp = m, This filter is transformed into a new filter by the transformation £ = —5_2;

ie.,
Hy(2y = H(ZY|;_ 2= H{-Z).
(m) Obtain arelationship between the frequency variable @ for the original lowpass system
H {4y and the frequency variable o for the new swslem Hiz),
(h) Sketch and carefully label the frequency response I (/™ for the new filter,
(e) Obtain a relationship expressing A; (] in terms of ifr].
(d) Assume that H{Z) can be réalized by the set of dillgrence equations

gl =x[n] —aqelin — 11— b fln - 21
Fin] = agpln = 1]+ bafln = 11,
¥n) =y fin] —cagln — 1L

where x|nfis the inpul and v rlis the outpat of the system, Determine a set of difference
equations that will realize the transformed system i {z) = M- =),
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Consider designing a diserete-time filler with sestem function f{z) from a continuois-time
filter with rational system function M .(s) by the transformation

Hrf:l = Hr'f";]|L'=ﬁ[|".—{""".I,-'ﬂ-}-t"""r]'

where o 18 4 aonZero integer and 818 real.

(a) Ifa = (0, for what valees of £ does a stable, causal continuous-time filter with rational
H (51 always lead to a stable, causal discrete-time filier with ratiooal Hiz)?

(b) If o = 0, Tor what values of # does a stable, cansal continuous-time Hlter with rational
H -(5) always lead to a stable, causal discrete-time filter with rational Ffiz)?

ie) Forae = 2 and ¢ = 1, determine to what conleur in the z-plane the ji2-axis of the
s-plane maps

(d) Suppose that the continuous-time filter is a stable lowpass filter with passband fre-
quency response stech thal

1-8) = [HAJ12)] =144 for |92 = 1.

If the discrete-time svstem Hi(z) is obtammed by the trapsformation sel forth at the
Beginning of this problem, with ¢ = 2 and 8 = 1, determine the values of w in the
interval |w| == for which

1 =8 = [Hie/™) = |+,

Suppose that we have used the Parks—MeClellan algorithm to design a causal TTR Linear-
phase lowpass filter. The system function of this system is denoted Fiz} The length of the
impulse response is 23 samples, Le, kv = O for e < 0 and for v = 24, and /[0] # 0. The
itesired mesponse and weighting funciion nsed were

1 | =03

, 1w <03x
Jiy o
f‘frf{r y= [n .47 = ||;|-|| =

W ._.im =
TR T g <R,

In vach case below, determine whether the statement is true or false or that insoflicienl

information is given. Justify your conclusions.

(&) kln =121 = R[12 - n]orhje +-12] = ~A[12  wlfor —oc = n = oo

{b) The system has a stable and causal inverse,

(ed We know that F(—1) =1

(d} The maximum weighted approximation error is the same in all approximation bands.

(e} If zp b5 & zere of Hiz), then Lizg is a pole of HizZ),

() Thesystem can be implemented by a network {flow graph) that has no feedback paths.

ig) The group delay is equal to 24 for 0 < w < .

(h) I the coclficients of the system [unction are quantized (o 00 bies sach, the system is
still ppeimum in the Chebyshev sense for the original desired response and weighting
function.

(#) If the cocllicients of the system lunclion are quantized Lo 10 bits each, the system is
still guaranteed to be a linear-phase filter,

{(j) M the cocflicents of the sysiem function are guantized to 10 bits each, (he system may
become unstable,
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Chapter 7 Filter Design Techniques
You are required to design an FIR filter, &[], with the following magnitude specifications:

» Passband edge: wp = /100,
o Stophand edee: w, = x50
» Maxiimum slopband gain: §, = =60 dB relative to passband.

Itis suggested thal you try using 3 Kaiser window, The Kaiser window desigen rules for shape
parameter # and filter length M are provided im Seclion 7.5.3.

(a} What values of § and M are necessary Lo meef the reguired specifications?

You show the resulting filter to your boss, and he is unsatisfied. He asks vou to reduce
the computations reguired for the filler. You bring in a consullant who siaggests thal you
design the filter as a cascade of two stages: &'[n] = pir] = gln|. To design p|nj he suggests
firsl designing a filter, glil. with passband edge m}, = 10w, stopband edge o) = 10w, and
stopband gain 4, = §;. The filter p|#|is then obtained by expanding g|n| by a factor of 1)

gl /0], when /10 s an integer,
pln]l = ; 5
o, othorwise.

(b} What values of #' and M’ arc necessary to meet the required specifications for pin]?

(¢} Skeich Pl rom w = Mo e = 7/4 You do not necd (o draw the exact shape of the
frequency response; instead, you should show which regions of the frequency response
are near O dB, and which regions arc a1 or below —60 dB, Labcel all band cdges in your
sketch.

{d} What specifications should be used in designing gl# | 1o guarantee that A'|n] = pli] +
gl meets or exeeeds the oniginal reguirements? Specify the passband cdge, m:.f.. stope-
band cdge, &, and stopband attenuation, &, required for gn].

(&) What values of A and M™ are necessary to meel the required specifications for g(n]?
How many nonzero samples will A'[n] = gln] = plr] have?

(fy The filter 4'|n] from parts {b}-{c} is implemented by first directly convolving the input
with qin] and then directly convedving the results with pin]. The filter &[a] Irom part
(a) is implemented by directly convolving the input with &[n]. Which of these two
tmplementations requires fewer multiplications? Explain, Nole: you should not count
multiplications by 0 as an operation.

Comnsider o real, bandlimited sipnal xg (7)) whose Fourier transform X, 07582 has the following
property:

.0 =0 fior [T = 2m - FOOD0
That i, the signal is bandlimited to 10 kHz.
Wi wish (o process x(r) with a highpass analog filter whoese magnitede response
satisfies the following specifications (see Figure P7.33%:
0= 1H R =01 Jor 0= |G| = 2o - 4000 = £
09 = |H, (1] =1 for @p =27 - 8000 = |82

where £2, and i2; denote the stopband and passband frequencies, respectively.
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Suppost the snalog filter A, 07520 is implemented by discrete-lime processing, accond-
ing to the disgram shown in Fipure 7.2,

1
The sampling frequency f; = = i5 24 kHe for both the tdeal O/ D and D/C conventers,

Determine the approptiate lter specification for | H el the magnitude response of
the digital filter.
=1

17
magnitude response specifications were found in part (a}. Find the specifications of
|G g7 p{ F8210], the magnitude response of the highpass analog filter that is relaied to the
digital filter through the nlinear transformation, Agan, provide a fully Tabelled sketeh
of the magpitude response specifications on |Gy {52

Ulsing the bilinear transformation s = we wane to design a digital filter whose

Using the trequency transformation s = —, {i.e., replacing the Laplace transform

variable s by ies reciprocal), design the highpass analog filter &g p(752;) irom the
lowest-order Bulterworth lier, whose magnit ude-squared freguency response is given
below:

!
GG - ———— .
L (/)

In particalar, find the lowest lilter order N and its corresponding curotf freguency Q.
such that the original filtcr's passband specification (jfHz {1153 = 0.9) is mel exaciy.
In a diagram, label the salient features of the Bullerworth filter magnitude response
that yon have designed.

Draw the pole—zero diagram of the (lowpass) Butterworth filter s ), and find an
expression for its transfer Mnction.
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7M. A zero-phase FIR filter A[a] has associated DTFT H{ed™y, shown in Figure P7.34.

.!-.uj T ! | L] : ! ! ! ! -—
phociniin 8. . T TN TN
08 Wi e i pln i, o (e o s o g i e, S e, e o et T e B
n_,ﬁ,l. ......................................................................
3
-
T 04
[ T Y S ...... ....... . ........ ....... ....... :
R, i ot LW, DL JOE. CUPR. T WO ..
02 A S S S
- 08y D67 Lder D2y 0 02x Od4r Qb6 O8r o
Normalized frequency w
Figure PT.34

The filter is known to have been designed using the Parks-MeCleflan (PM) algotithm. The
input parameters to the FM algorithm are known to have been:

» Passband edge:owp = 0dx

& Stopband cdge: w, = Lbm

s Ideal passband gain: (7 = |

» Jdeal stopband gain: &, =0

o« Error weighting function Wia) =1

The length of the impulse response bl s M+ 1 =21 + 1 and
Rin] =0 for |n| = L.

The value of L s ool known,

It is claimed that there are two filters, each with frequency response identical to that
shown in Figure P7.34_ and cach having been designed by the Parks-MceClellan algorithm
with different values fur the inpul parameter L,

o Filter 1: L = [
e Filter 2: L = 1> = L.

Both filters were designed using exactly the same Parks-MceClellan algarithm and input
paranmelers, excepd for the value of L,

{a) What are possible values for £47
(b)Y What are possible values for La = L7
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(c) Are the impulsce responses hy[rj and fe|a] of the two filters identical?
(d} The alternation theorem guarantees “unfgueness of the rit prder podynomial” T your

answer 1o (c) Is yes, cxplain why the aHemation theorem is not violated. If your answer
15 muy, show how the two fillens, iy (o] and kg [a ], are related,

7.35. We are given an FIR bandpass filter Af# | that is zero phase, e, Ajr] = k| —n]. Tis associated
DTET Fie!™) is shown in Figure P7335

Laiaies Laowr Llpger Lippas
staphand  pamsband  pusshond  seophand
wilgx udps wilye [R5

I ' \_/ ’\1 /

8

| O LS, R, A P 0 5o |
e 8w -0or 4w Q2w 0O 02w O47w Qbow 08w T

Wormaliced freguency w

Figure P7.35

The filter is known to have been designed vsing the Parks MeClellan algorithm, The input
paratmeters 10 the Parks—MeClellan algorithm are Known 10 have been:

+ Lower stopband edge:; o =027
» Lower passhand edge: mp = (03
» Upper passband edge: @y = 07w
+ Upper stopband edge: g =087

o Tdeal passband gain: &'y, = |
s [deal stophand gain: Gy = ()
« Error weighting function Wiw) = 1

The value of the inpul parameter M -+ 1, which represents the maximom number of nonzera
impulse response valoes (equivalently the filter length), is not knows.

I is claimed that there are two filters, each with a freqoency response identical to thal
shown in Figure P7.335, but having differenr impulse response lengths M+ 1= 20 + 1.

[ ﬁltl!! lt M= .'1-:F| =14

o Filier2: M — M2 = My
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Both fillers were designed using cxactly the same Parks-McClellan algorithm and input
paramaters, excepd for the value of M,

() What are possible values for Mo7
(b} The alternaticn theorem guaraniees “urdgueness of the rMoorder polynomial,” Explain
why the alternation theorem is not violated.

7.36, The graphs in Figure P7.36 depict Tonr frequency-response magnitude plots of linear-phase
FIR filters, labelled (AL}, ¢ = 1,2.3,4. One or more of these plots may belong to
couiripple linear-phase FIR Aliers designed by the Parks-MeClellan algorithm. The maxd-
MU approXitmation errors in the passhand and the stophand, as well as the desiced cytaf]
frequencies of those bands, are also shown in the plots. Please note that the approximation
error and filter length specifications may have been chosen differently to ensure that the
cutoff frequencies are the same in each design,

Ve e D e e i i s T e e
1.2 ¢ | 1.2
1 LN T R oo,
T 08 08
S M
= 06 T
0.4 1.4
2 0.2
0 s Vo - iy — s -
] 4= {Lhm T ] 0 4x [LXT o T
ik [ty
1.4 14
12}

LA e
L ey

il 4 Lbr T 0 4w  rhr =
[ ar

Figure P7.36

(a} What typeis) (I, 11, 1L, 1V} of linear-phase FIR filters can ,A‘e{e-fﬂ*}l correspond te, for
i = 1.2, 3,47 Please note that there may be more than one lincar-phase FIR Alier type
corresponding 1o each |A (e} 1f you feel this is the case, Iist all possible choices.

(b) How many alternations does each | A%(e/®)| exhibit, fori = 1.2, 3, 47
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(e) Foreach i,/ = 1,23, 4, can |.4'E,{n='}""]i belong tooan ouipul of the Parks—MeClellan
algarithm?

(d) If vou claimed that a given |-41', (o) could correspond to an output of the Parks
McClellan algorithm, and thal it could be type I, what is the length of the impulse
respanse of (AL e/

Consider the two-stape svstem shown in Figure P7.37 for interpolating a seguence
xinl = x-And) to a sampling rate that is 1% times as high as the input sampling rate; i.e. we
desiee v[n] = x{rT/15%

Ain] ol wi] W, ml ¥lnj
— f'j (o) — Tj | o efe)

Figure P7.37

Assume that the input scquence xinl = rin) was obtained by sampling a band-
limited continuous-time signal whose Fourier transform satisties the following condition:
[ Xl ist)| = O for |82 = 2x{3600). Assume Lhat the original sampling period was T =
178000,

(2} Make asketch of the Founer transform X782 of a “typical” bandlimiled mput signal
and the corresponding discrete-time Fourier transforms & (/™) and X, (#/™).

{b) Toimplement the interpolation system, we must, of coumse, use nonideal ilters. Use
your plot of X{e/*) oblained in part (a) to determine the passhand and stopband
cutoff frequencies (wp; and wy; ) required to preserve the original band of frequencies
essentially unmodified while significantly altenualing the images of the baseband spec-
trum. {That is, we desire that win] = x0T /30 Assumiog that this can be achieved
with passhand approximation error &y = 0005 (Tor filler passband gain ol 1) and stop-
hand approximation error & = (LUL, plot the specifications for the design of the filter
Hyjefy for —g =< w = m,

(e} Assuming that wa] = k.0aT /31 make a sketeh of Wi} and use it to determine the
passband and stopband cutoff frequencies wpz and w2 required for the sccond filer,

(d) Use the formula of Eg. (7.117) to determine the filter orders My and M; for Parks—
MceClellan filters that have the passband and stopband cutoff frequencies determined
in parts {b) and (¢} with &y = 0.005 and 42 = 0.01 for both filters,

(e) Determine how many multiplications are required 1o compute 15 samples of the ourput
for this case.

The system of Figure 7.2 is used to perform filtering of continuous-time signals with a digital

filter. The sampling rate of the T and IVC converters is fr = 17T = 10, 000 samplesisec,

A Kaiser window wy{n] of length W + 1 = 23 and # = 3395 is used to design a
lincar-phase lowpass filter with frequency response Hpte/™). When used in the system of
Figure 7.1 so that H e/ = H!I._,{e”""":}: the overall effective frequency responsc (from input
Yy (] 1o outpur v, (¢) meets the following specifications:

(99 = Fpe(is)) = 101, 0= 9 < 22000}
[Hepr( 82y = 0,01 2r(3000) = |02 = Ix 3000,
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(a) The linear phase of the FIR Alter introduces a lime delay £y, Find the time delay through
the system {in milliseconds).

(b} MNow a highpass filter is designed with the seme Kaiser window by applying it to the
ileal impulse response hg[n] whose corresponding frequency response is

) 1] fens] = 257
Jury _ !
Ha(e™™) = 2 0257 = la| = m,

Thal is. a ling ur-phase FIR highpass filter with impulse response hhpln] = wyinlhglnl
and frequency response th[i'-fm} was oblained by muoltiplying #4(#] by the same
Koaiser window w g ] thatl was used 1o design the first mentioned lowpass filler, The
resulting FIR hiphpass discrete-time filter meets a set of specitications of the following
form:

(Hpp (2] = 8 0 = ol = oy
G—d = |Hyple!™) =G+8 w=lwl<nw

Use information from the lowpass filter specifications to determine the values of ey,

iy, 51, da, and .

7.39. Figure P7.39 is the ideal, desired frequency response amplitude for a bandpass filter to be
designed as a Fype 1 FIR filter fln), with DTET A e} that approximates Hy{e™') and
meels the ollowing constraimts:

—dy = Hie"™) = 8. 0= k| =y
1—dy = Hie!®) = 1483, wn < || =

By = H(ed™) = By, myg < |w| =

H e}
!
14
- - LX X ]
Sr oz oy 0wy g ey we # " Flours PT.39

The resilting filter Aln] is to minimize the maximum weighted error and Lhersfore must
satisfy the alterpation theorem.

Determine and sketch an appropriate choice for the weighting function to use with the
Parks McClellan algorithm.
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Tl (a) Figure P740-1 shows the requency response Ap (o) of a lowpass Type T Parks—

(b)

MeClellan filter based on the following speafications. Coasequently il satisfies the
alternation theorem,

Passband edge:  wp = 0457

Stopband edpe:  wy = (L3n

Desired passband magnitude: 1

Desired stopband magmiode: O
The weighting function wsed in both the passband and the stopband is Wiw) = 1.

What can you conclude about the maximum possible number of nonzero values in the
impulse response of the Blter?

i i S R L i

[ —

i i | Fii.d
F |
-1 08 06 04 02 0 02 04 ’ﬂuﬂ.ﬁ 0.8
1
J||I Mormalized [requency by
Stopband  Passhand Passhand  Rinphend
vl e il exlp

Figure P7.40-1

Figure P7.40(+-2 shows another frequency response By ie’™) for a Tvpe 1 FIR filter,
Bied™) is obtained from A, {e/*) from part (1) as follows:

X . ; 2
Bried®) = ki (A (e!™)) + k2,

where kj and &k are constants. Observe that B.{e!) displays equinpple behavior, with
different maximum crror in the passband and slopband,

Does this Alter satisfy the allernation theorem with the passband and stopband cdge
frequencies indicated and with passband ripple and stopband nipple indicated by the
dashed linas?
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B e

L= i o 1 i
-1 -8 —u.ﬁ; pa 2 0 02 rb.ﬁ 'r;.ﬁ 08 1
,." / Mormalized frequency H\'..
Smophand Passhand Pessbamd  Srosnbapd
edge sige =dge edpe
Figure P7.40-2
Assume that H-05 has an rPorder pole at £ = 4y, 5o that A {5} can be expressed as
s 'Jl.t
Heish = e (rais),
,.E i5 — sghk

where (. (5] has only 1*-order poles. Assume H(3) is causal.

{a) Give atformula for determining the constants Ap from & 5).

() Obtain an expression for the impulse response k(0 inteems of sy and g,-0¢), the inverse
Laplace transform of Go(s)

As discussed in Chapler 12, an ideal discrete-tinie Hilbert transformer is a system that in-
troduces —90 degrees {—n /2 radians) of phase shift for & < @ = 7 and +M degrees (+m/2
radianshof phaseshift for —a = @ < 0, The magnitude of the frequency response is constant
funity} for 0 = w -« and for s = w = (L Such systems are also called ideal Whdegree
Phase shifters

{a) Give an equation for the ideal desired frequency response H(e/”) of anideal discrete-
time Hilber! transformer that also incledes constant (noozero) group delay, Plot the
phase response of this svstem for - < o= m.

(b) What tvpe(s) of FIR linear-phase systems (|, 11, 1L, or IV can be used to approximate
the ideal Hilher! transformer in part (a)7?

(¢) Suppose that we wishtouse the window method to design a kinear- phase approximation
tos the ideal Hilbert transformer. Use Hyie*) given in parl {a} to determine the ideal
imputlse response hgln] i the FIR system 5 10 be such that Afn] = 0 for n = 0 and
mo= M.

() What is the delay of the system if M = 217 Sketch the magnitude of the frequency
response of the FIR approximation for this case, assuming a rectangular window,
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(e} What is the delay of the system if A = 207 Skeich the magnitude of the fregquency
response of the FIR approximacion for this case, assoming a rectangular window,

The commonly used windows presented in Scetion 7.5.1 can all be expressed in terms of
reclangufar windows, This facl can be used o oblain expressions for the Foarier (ransforms
of the Bartlett window and the raised-cosine family of windows, which includes the Hanning,
Hamming. and Blackman windows,

{a} Show that the (M —1)-point Barilett window, defined by Eq. {78k}, can be expressed
as the convolution of two smaller rectangular windows. blse this fact to show that the
Fourier transform of the (M + 1)-point Barilett window 15

ko ‘sinfwM 4342

Wgled®) = e~ 30MI2(2 14y M) for M even,
SIm a2y

ar

for Af odd.

W (e/®) = oI MI2 0 141 { i i "3'*’.4.1) (ﬂinfw{-w - 'nm)

sinfw,/2) Sin{es2)

{b} Ttcancasilybeseenthatthe (M +1)-point raised-cosine windows defined by Eqs. {7.60c)-
(7.60e) can all be expressed in the form

wln] = [A + Beos(Zon/ M) + Coos(dmn/ Milw glnl,

where wi|n] is an (M + 1)-point rectangular window. Use this relation to find the
Fourier transform of the general rnsed-cosine window,

te) Using appropriate choices for A, 8, and € and the result determvined in part (b, sketch
the magnitude of the Fouricr lransform of the Hanning window,

Consicler the following ideal frequency response for a multiband filter:
pofab i 0 =< |ew| = 0.3,
Hyle!™ = 0. 037 < |wf < 0.6,
T L EE it SR PRl

The impulse response Aglalis mulliplicd by a Kaiser window with M = 48 and # = 3.68,

resulting in a lipear-phase FIR syslem with impulse response hfnl,

(a) What is the delay of the filter?

(b} Delerming the ideal desired impulse response fi /]

(¢) Determing the set of approximation error specifications that is satisfied by the FIR
filter; i.e., determine the parameters 8y, 42, 83. 8. C, ey, ey, o0, and w2 in

B -§ = |H{e!) = B+4y, 0 =2 = ey,
|Hiel)| = &, fag] e e,

C—d=|HEe™| =C+h, wp<osm

The freguency response of g desired hlter A(x ] i shown in Figure P7.45, Tn this problem,
we wish b design an (M 4+ T)-puoint cassal lneac-phase FIR (iler k[r] that minimizes the
integral-squared error

[T

1 ] I
g = = J[_,, Ae™) = Hyle? ) do,
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Figure P7.45

where the frequency response of the filter Ajn] is
H{ed®) = Aiel®)e Jond 2L
and M s an even inleger,

{a) Determine hg[n].

(b} Whal symmeiry should Al=] have in the range 0 < » = M7 Brielly explain your
rEARONINE.

fep Determine aln] inthe ranpe 0 =0 = M.

(d} Determine an expression for the minimum integral-squared error 2 as a function ol
fiafr| and M.

Tdbh, Consider a type | hinear-phass FIR lowpass filter with impulse response iy pla] of length
(M -+ 1) and freguency response

Hy plef®) = A (efeye JoM2

The sysiem has the amplitude Tanction 4 L8 shown in Figume PT7.4d6.

Azt

iy

Figure PT.46

This amplitude function it the optimal [in the Parks—MeClellan s2nse) approximation to

unity im the band O = @ = wp, where my = 0,277, and \he optimal approximation to zero
inthe hand wy; = om < 7, whergin m, = (Fdx.

{a} What is the value of M7
Suppose now that a highpass filter 14 decived from this lowpass filter by definimg
Rapln] = (—1"7 Uy pin) = —eP Mk pla].

(b} Show that the resulting frequency response is of the form Hg p (o) = Bale ety = Jea M i,
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(e) Sketch Bo(e/™yfor 0= o= 1w

{d) Itis asscrted that for the given value of M (as found in part {a}). the resulling highpass
filter s the optimum approximation to zero in the band 0 = @ = .87 and to unity in
the band 8. 73r = w = . 1s this assertion correct? Justify your answer.

TAT. Design a three-poinl optimal {in the mimmax sense) causal lowpass filter with g = /2,
wp = w/3. and K = 1. Specify the impulse response Aln] of the filter you design. Nowe:
cos(r/ 2 = Dand cos(xw/3) =415,

Extension Problems

TA8. I an LT[ continuous-time system has a rational system function, then its input and ontpt
salisfy an ordinary linear differcntial equation with constanl coclficicvnts. A standard pro-
cedure in the simulation of such systems is 1o use finfte-difference approximations 1o the
derivatives in the differential equations. In particular, since, for continuous differentiable
funclions v.-(¢h.

dr 720l T

itseems plausible that if 7 is “small enough.” we should obtain a good approximation if we
replace dve (3 dr by [y 00} — vt — T/ T

While (his simple approach may be wselul forsimulating continwous-1ime svslems, iLis
not generally a useful method for designing discrate-time systems for filtering applications.
To understand the effect of approximating differential equations by differénce eguations, it
15 helplul to consider a specific example. Assume that the system function of a continoms-
THmYE System is

"-'II_'I'r:{r':I S o __:"g;(” vy _""n::'f-r -7 ']

A
HC[SJ 3 i
R A

where 4 and « are constants,
(a) Show that the input x. () and the output v.{f) of the svstem satisty the differential

equation
dyp (8}
:! — + exelt) = Axgle).
(b} Evaluate the differential equation at r = 7T, and substitute
dyairy] _ ¥elnT} = ylaT - T}
alt t=nT T

ie, replace the first derivative by the firse backward difference,

{ch Defing xln] = x.(nT ) and y[n] = v-(nT ). With this notation and the result of part (b),
obtain a differcnce cyuation relating xfr} and ¥{n |, and determine the system funetion
Hiz) =¥ (23 X {z) of the resulting discretle-time system.

{d} Show that, for this example,

Hiz) = Hel$)| gy yr
i.e., show that Mz} can be obtained directly from M7 :45) by the mapping
121
r
{11 can be demonsteated that if higher-order dervatives are approgimated by repeated

application of the first backward difference, then the result of part {d) helds for higher-
order systems as well.)

3=
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For the mapping of part (d), determine the contour in the z-plane to which the Q-
axis of the s-plane maps. Also, determine the region of the z-plane thatl carresponds
to the left half of the s-plane. If the continuous-time system with system function
H(5) 1% stable, will the discrete-time system obtained by first backward difference
approsimation also be stable? Will the requency response af the discrede-lime sysiem
be a faithful repreduction of the frequency response of the continuous-time system?
How will the stability and freguency response be affected by the chowee of 17
Assume that the first derivative is approximated by the frst forwaed difference: ie.,

dv. 1) oy Yeln T+T)—yenT)
i ’

turl’ T

Determine the corresponding mapping from the s-plane to the z-plang, and repeat
parl (e} for this mapping.

Consider an LTI continuous-time system with rational system function & (¢}, The input
aedrand the output v} satisly an ordinary linear differential equation with constant coef-
ficients. One approach tosimulating such systems is to use numerical technigues to integrate
the differential equation. In this problem, we demonstrate that if the trapezoidal integra-
tion formulais used, this approach is equivalent to transforming the contintous-fume sysiem
function i () to a discrete-time system function & () using the bilinear transformation.

To demonsirale this statement, consider the continuous-time system function

A
Haln) = - :
els s+re

where A and ¢ are constanis, The corresponding differential equation i

Fell) 4 ovellh = Axpdr),

where

(a}

dyail)

Telrl= i

Show that v (s T j can be expressed in terms of 4-(¢} as

rT
weln¥ ) = f FelTldT + yelnd = 1)
inT=T}

The definite integral in this equation represents the area beneath the funetion vt} for
the mterval from (n? — ') to nT. Figure P7.49 shows a function v.(r) and a shaded
trapeenid-shaped repion whote area approximales the srea beneath the corve, This
approximation to the integral is known as the rrapezoidal approxivarion. Clearly, as T
approaches zero, the approximation improves, Use the trapezoidal approximation o
abtain an expression for ye(nT )i lermsof v (nT =T ), v (nT ), and %.inT — T ).

ALY yelr}

f Figure P7_49
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(h)y Use the differential equation to obtain an expression for y.0nT 3, and substitute Lhis
expression into the expression obtained in part {a).

() Define xin] = xo(nT ) amd pln] = vein? ) With this notation and the result of part {b),
obtain a difference equation relating x[r] and v[«], and determine (he svstem function
Hiz) = ¥ {21/ X (z) of the resulting discrete-time system.

(dy Show that, for this example,

fiz) = ”*-'{-"':'l.¢={2.f1"]l.’2—: Bz 4y

e, show that Bz} can be obtained directly from A, {s) by the bilinear transformation.
{For higher-order differential equations, repeated trapezoidal integration applied o
the highest order derivative of the ourpud will resultin the same conclusion for a general
continuous-time system with rational system funetion.}

In this problem, we consider a method of filter design that might be called awtocorrelation
imvariarce. Consider a stable continucus-time system with impulse response fip4:) and sys-
tem function H- (), The aulocortelation function of the syslem impulse response is defined
as

g
deir) = f ot (e =+ ©hdt,
e =

g for & real impulse response, il 38 casily shown that the Laplace transform of d.07) s
Do (x) = Ko H (5. Similarly, consider & discrete-time system with impulse response
Afn] and system function H(z). The autocorrclation function of a discrete-time system
impulse respomse is defined as
e
dlm] = E filnlfln + m),

L —

ancl for o real impolse response, $z7) = Hizdiz~"

Antocorrelation invariance wnplis that a discrete-time filter is defined by equating
the autocorrelation function of the discrete-time system to the sampled autocorrelation
function of & continuous-lime system: i.e.,

afm] = Ty (m Ty, —O0 <M= OO

The following desipn procedure is proposed for autocorrelation invariance when H-45) is
o rativnal function having & [5-grder polesatsg, k=1, 2,.., N and ¥ = N deros
1. Obtain a partial fraction expangion of &, (s} in the form

N .
A B
o et ]
ooy VAR S
2. Form the z-transform
N

: ST TiBy )
. "E (] By s Y g 7 1/

3. Find the poles and zeros of &), and form a minimum-phase system function H{z)
from the poles and zeres of d(z) thal arc faside the unit circle.

{a} Justify each step in the proposed desipn procedure; i.e., show that the autocorrelation
tunction of the resulting discrete-time system is a sampled version of the autocorrela-
tion function of the continwous-time system, To verify the procedure, it may be helpful
to try it out on the 1% -order svstem with impulse response

heith = 67 uin
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and corresponding system function

Hals) = :
Gk

(b} What is the relabonship between |H Le*"'";lz and |Hpij f.l‘.l|2'? What tvpes of frequency-
respomse functions would be appropriate for aulocorrelation invariance design?

{c) 1s the system function obtained in $tep 3 unigque? If not, describe how to obtain addi-
lional autecortelation-invariant discrele-time sysiems.

Let HiplZ) denofe the system function for a discrete-time lowpass filter. The implementa-
Lions of such a system can be represented by linear signal Dow graphs consisting of adders,
gains, and unit delay elements as in Figure P7.51-1. We want to implement g lowpass filter
for which the cutoff frequency ean be varied by changing a single parameter. The proposed
siratepy is to replace each unit delay element in a fiow graph representing Hip:?'.: by Lhe
network shown in Figere P7.51-2, where o is real and [e] = 1.

z- Figure PT.51-1

£l Fiqure P7.51-2

(a) Let IViz) denote the system function for the filter that resulis when the network of
Fgure P7.51-2 is substituted for cach unil delay branch in the network that implements
H';:.1{7-}. Show that Hiz} and Hy, (£} are relaled by a mapping of the Z-plane into the
z-plane.

(by If Hie™) and H|F,{c~-'ﬂ_] are Lhe frequency responses of the two systems, determine the
relatiomship between the frequency variahles o and &, Sketch w a8 a function of # or
e =115 and 0.5, and show that 7 (e/™) is a lowpass filter. Also, if ¢, is the passhand
culoff frequency for the origina] lowpass Alter M, (20, obilain an equalion for ap. the
cutoll requency of the new filter F(z), as a function of o and 4,

(c) Assume that the original lowpass filter has the system function

gl 2= Ty
Draw the flow graph of an implementation of Hp(2), and also draw the flow graph of
the implementation of Mz} obtained by replacing the unit delav elements in the first
fow praph by the netwark in Figure P7.51-2, Droes the resulting network correspond
to a computable difference equation?

(d) U Hy,i2) comresponds to an FIR system implemented in ditect fomm, would the Sow
gl-apg manipulation lead to a2 computable difference equation? IT the FIR system
H‘{PLE} was d lincar-phase system, would the resulting system H {25 also be a lincar
phase system? I the FIR system has an impulse response of length M + 1 samples
what would be the length of the impulse response of the transformed system?
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To avoid the difficulties that arose in part (c), it i3 suggested that the network of
Figure P7.51-2 be cascaded with a unit delay element, as depicted in Fipure PT.51-3
Repent the analvsis of part (a) when the network of Figare '7.51-3 is substituted for
each unit delay element. Determine an equation that expresses 8 as a function of w,
andd show that if H]T_,,ff’”? i5 a lowpass flter, then Hie!®) is nol a lowpass (e

;/f“\ﬂ
\._r/

Figurs P7.51-3

7.52, If we are given a basic filter module (a hardware ot compiter subroutine), it 18 sometinnes
possible to use it repetitively to implement a new filter with sharper frequency-response
characteristics, One approach is to cascade the flter with itself two or more times, but it
can easily he shown that, while stopband errors are squared (thereby reducing them if they
are less than 1), this approach will increase the passband approximation error, Another
approach, supgested by Tukey (1977), is shown in the block diagram of Figure P7.52-1,
Tukey called this approach “twicing”

(a)

(b)

{c)

o irf[_n_] o o Hln]
dnl | LA [wpr N HEM |yt

2
- | Figure F7.52-1

Assume that the basic system has a symmetric finite-duration impulse response; Le.,

hi-n)], —-L=<na=<1L,
hin] = .
( otherwise,

Determine whether the overall impulse response gla]is (i) FIR and (i} symmetric.
Suppose that M (e/™) satisfics the following approximation crror specifications:

(-8 = @) = (148,  02w=w,
—& = H(ed") < &, ol =@ T

Il can be shown that if the basic system has these specifications, the overall frequency
response Gie'™) (from x[n] to y[n]) satisfies specifications of the form

A=Gel™ =B, Dze=w,.
c

Determine A, B, C, and I in terms of ) and 8. T §; < 1 and & < 1, what are the
approximate maximum passband and stopband approximation errors far G(e/™) 7

As determined in part {b), Tukey's twicing method improves the passhand approxi-
mation error, but increases the stophand error. Kaiser and Hamming 1977} general-
ized the twicing method so ds to improve botk the passband and the stopband. They
called their approach “sharpening.” The simplest sharpeping system thatimproveshoth
passband and stopband is shown in Figure P7.52-2. Assume again that the impulse re-
sponse of the basic system is as given in part (a). Repeat part (b) for the system of
Figure P7.52-2.

1A

Gled™y = D, flp S T
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(d) The basic system was assumed to be noncawsal. I the impulse response of the basic
svslem is o chusal lincar-phase FTR system such that

I — | = Eo
T I I —nl. U=n = M,
i, otherwise,

how should the svstems of Figures PT.32-1 and P7.52-2 be modified? What typeds) {T,
H, 101, or IV} of causal lincar-phase FIR system(s) can be used? What are the lengths
ol the impulse responses gin] [or the systems in Fpores P752-1 and PT.52-2 (o lerms

of L¥?
N O A CIC N . ;
x[n) HieM) ; Hely He™ |y
3
» Figure P7.52-2

T.53 Consider the design of a lowpass linear-phase FIR filler by means of the Parks-MeClellan
algorithm. Lse the alternation theorem to argue that the approximation must decrease
monotonically in the “don’t care” region between the passband and the stopband approx-
imation intervals. Hind: Show that all the local maxima and minima of the ngonomeiric
polvnomial must be in either the passband or the stopband to satisfy the alternation theo
TEM.

7.54. Figure P7.54 shows the requency response A sAed®) ol a discrete-time FIR sustem for which
the impulse tesponse is

| Ael=nl, —L=n=L,
el = [l]. atherwise

001

01— - ! b
ik k] i Figure P7.54

{a) Showithat A (e/®}cannot correspond 1o an FIR filter generated by the Parks—MeClellan
dlporithm with a passband edge frequency of 7 /3, a lopband edge frequency of 22 /3,
and an error-welghting function of unity in the passband and stopband, Clearly explain
your reascaing. Mint: The alternation theorem states that the best approximation is
umiyuL,

(b} Based on Figure PT54 and thestatement that A (e cannol correspond (o an oplimal
filter. what can be concluded about the value of L?
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7.55. Consider the system in Figure P7.55,

Ideal ; DA
= Falll s} - I &™) <2 awd I [jI1)
x{1) converter | X[r] =x.{n¥) ¥|n ¥ora(t) ¥ A1y
Sampling Sampling
poriod periad
T T

Figure P7.55

1. Assume that X (/£ = O for |£2 = 7/ T and that

Y B T L N o
Hr(jid) IU. |2 = =/ T,

denotes an idcal lowpass reconstruction filter,
1, The TWA comverier has a buili-in rero-order-hold circuit, so that

faal

Ypalty= 3 yinlbgir - nT),

=20
where

1, B=<p=T,
Aple)= { 0, otherwisc.

{We neglect quantization in the IVA converter.)
3, The second system in Figure P7.55 is a hnear-phase FIR discrete-tume system with
frequency response H (el ™),
We wish to desizn the FIR system using the Parks-MeClellan alporithm to compensate for
the effects of the rero-order-hold system.

{a) The Fourier transform of the cutput is V() = H.q(fQ)X (72} Determine an
expression for Hog (i) in lerms of H{f-‘”‘“".l amd T,

{b) If the incar-phase FIR system issuch thal ijn| = 0fors < 0ands = 3, and ¥ = 10—
&, what is the overall tine delay (i ms) between x. (1) and (117

{e) Supposethat when T = 10" s, we want the effective frequency response Lo be equirip-
ple {in both the passband and the stopband) within the following tulerances:

L0 = | Mo 782 = 1.1, [©3] = 2m (10007,
| Faept 52y = 001, 2 {2000 = |52] = Zreq SU0OY,

We wanl to achieve this by designing an optimum lipear-phase filter (using the Parks—
McClellan algorithm) that includes compensation for the zero-order hold. Give an
equatiom [or the ideal response M g(e'™) thal shouald be used, Find and skeich the
weiphting function W {w) that should be used. Sketch a “typical™ frequency response
H (e ™ (that might result,

(d) How would you modify your results in parl (e} toinclude mapnitade compensation For
a reconstruction filter My (752 with zero gain above £ = 2x {5000}, but with sloping
passhand?
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Afiter a discrete-time signal 15 lowpass hitered, 1t is ofien downsampled or decimated, as
depicted in Figure P7.50-1. Linear-phase FIR filters are frequently desitable in such appli-
cations, but if the lowpass filter in the figure has a narrow transition tand, an FIR system
will have a long impulse response and thus will reguire a large number of multiplications
and additinns per output sample

gl ;ERE > | A "
x[n] Hipy rrm] ‘lr ¥[m]
Hief}

wy = passband frequency
w, = stopband frequency
{oay = 0oy} = transition bandwidih

' s v Figurs P7.56-1

In this problem, we will study the merits of a mulostage implementation of the system in
Figure P7.56-1. Such implc mentations are particularly useful when e, is small and the dee-
imation factor AF 18 large, A cenecal multistage implementaliion is depicted in Fgure P7.56-
2. The strategy is 1o use a wider transition band in the lowpass filters of the earlier stages.
thereby reducing the length of the reguired Gller impulse responses in those stages, As dec-
imation oceuts, the nwmber of signal samples is reduced, and we can progressively decrease
the widths of the transition bands of the filters that operate on the decimated signal. In this
manner, the overall number of computations required o mplement the decimator may be
reduced.

t ]

- | M,

Call L\.FF_?
vyl wy 1]

)M, # v == LFF,,

o . A, -
vafn] w[#] Vit

¥lnl

Figure P7.56-2

{a) It no aliasing is to oceur as a result of the decimation in Figure P756-1, what is the
miaxim im allowable decimabion factor & o terms of o, ?

€y Let M = 1L o; = 77100 and @, = L9/ 10K in the system of Figure P7.56-2. If
xlny = &nl. sketch Vi and ¥ (2.

Mow consider a two-stage implemenlation of the decimator for M = 100, as depicted
inFigure F7.50-3, where M | = 5L M5 = 2,001 = (L9 /100, a0 0 = 08772 and g =7/
W musl chioosc wyy o1, equivalently. the transition band of LPF). (e;) —owpr), such that the
two-slage implementalion yields the same equivalent passband and stopband [reguencies as
the single-stage decimator. (We are nat concerned abont the detailed shape of the frequency
response i the transition band. except that both systems should have a monotonically
decreasing response in the fransilion band, )
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LFF, . LPF.
. 4 A e -:‘ 2 <
] Oy i ey LS S l ¥lnl

xfr]

H: {i’ '-“r\'

e iianaliass

i”F'I

LFT 1 Flgure P7.56-3

(e} Foran arbifrary e, and the input 2Jn] = §[n], sketch V) (el =y Wle/ ™y, Valed ™), and
¥ (/) for the two-stage decimator of Figure PT.56-3,

{d) Find the forgest value of @y such that the two-stage decimator yields the same equiv-
alent passhand and stophand cutodl frequencies as the single-stape system in part (b).

In sddinien to possessing a nonzero iransition bandwidth, the fowpass filters must

differ frowm the ideal by passhand and siopband approximation ecrors of &, and 8, , respec-

tively, Assume that lincar-phase equiripple FIR approximations are used. It follows from

Fq. (7.117) that, for aptimum lowpass filters,

o —10T0ggtEp8,) — 13

2328

where & 15 the Tength of the impulse response and A = wop —eoy is the ransition band of the

lowpass filter. Equation PT.56-1 provides the basis for comparing the two implementations

of the decimator. Equation {(7.76) could be used in place of Eq. (P7.56-1) to estimate the

impulse-response lergth of the fillers are designed by the Raiser window method,

(P7.56-1)

1

{e) Assume that , = 0.01 and & = 0.001 for the lewpass filter in the single-stage im-
plementation. Compuie the length & of the impulse response of the lowpass filter,
and determine the number of multiplications required to compute cach sample of the
owlpul, Take advantage of the symmelry of the impulse response of the linear-phase
FIR system, (Nole that in this decimation application. only every afih sample of the
cutput need be computed; ie., the compressor commmites with the multiplications of
the FIR swatem.)

{fy Using the valpe af ey found in part (d). compute the impulse response lengths &)
and My of LPF) and LPFz, respectively. in the two-stage decimator of Figure P7.56-3.
Determine the total number of multGphications required 1o compute each sample of
the output in the two-stage decimator.

(g) If the approximation error specifications ép = 001 and 4 = 0.001 are used for
both fillers in the two-stage decimator, the overall passband npple may be greater
than {11, since the passhand ripples of the two stages can reinforce each other; e.p.,
(L +dpildl +dp) = {1 + dp) To compensate for this, the fillers in the two-stage mm-
plementation gan each be desipned 10 have onby one-half the passhand ripple of the
single-stage implementation. Therefore, assume that 8, = 0.005 and &, = 0.001 for
eack filler in the two-slage decimator, Caleulale the impulse response lengths Ay and
N of LPF) and LPF;, respectively, and determine the total nuimber of multiplications
required to compute each sample of the output.
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{h) Should we also reduce the specification on the stophand approsimation etror for the
filters in the two-stage decimator?

(i) Optional The combination of My = 50 and M5 = 2 may not vield the smallest total
number of multiphcations per owlput sample, Other integer cholees for M and M2 are
possible such that Af Mo = 100, Determine the values of My and 35 that minimize
the number of multiplications per cutput sample,

7.57. In this problem, we develop a technique for desigming discrete-time fifters with minimum
phase, Such filte rs have all their poles and zeros inside {or on ) the unit circle, (We will allow
zeros on the unit circle.) Let us first consider the problem of converting 2 type | linear-
phase FIR equiripple lowpass filter to a minimum-phase system. I H (¢/*) is the frequency
response of a tvpe [ lincar-phase filter, then

1. The corresponding impulse response
M —nl, D=n=M,
1, otherwise,

hla] = [

is real and M is an even inteper, _ _

2. It follows from part 1 that Fie/®) = 4 (e /" where A,.0e™™) is real and
ap = M/2isaninteger.

3. The passband ripple is &; i.c., in the passband, A .(e/*) oscillates between (1 + &)
and {1 — &;). (See Figure P7.57-1.)

Agle 'w}
L+d&

1-4,

Bl L
8. U -u_._uﬂ' o

Figure P7.57-1

4. The stopband ripple 15 415 1.6., in the stophand, —8; = AH{.H-';“"J = dy, and A ,?[ej“')
oscillates between —dx and +4;. (See Figure F7.57-1.)
The following technigue was proposed by Herrmann and Schiissler (1970a) for converting
this lincar-phase system into a minimum-phase system that has a system function Hy, (20
and unil sample response g, e (in this problem, we assume thal minimum-phase systems
can have reros on the unit circle :

Step 1. Creale & new sequence
_ | A, n # ny,
iyl = [h[nﬂ] t+ &, h=ay
Step 2. Recognize that 5 (2) can be expressed in the form
Hi(zh = 27" H2 H2(1/2) = 27" H 3(2)
fur some Ho(z), where H30(z) has all its poles and zeros inside or on the unit

circle and ha[n] is real.
Step ). Define
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The denominator constant where a = (T — 8 +8; = /1 + 4] + 8)/2 nor-
malizes the passhand so that the resulting frequency tesponse Hy, (o) will
cscillate about 4 value of nnity.

(a) Show thatif b [r] is chosen as in Step 1, thes H o) can be wrillen us

Hite!™y =g fome g pedey,
where H3(ed"} is real and nonnegative for all values of .
ib) If H5{«'®) = {), as was shown in part (a), show that there exists an ff -{z) such that
Haiz) = HaiiH (172,

where H12) 15 a minimum-phase svstem funclion and #fq [ § is real (e, justify Step 2).

{c) Demonstrate that the new filler My (ed™) is an equiripple Towpass filier (ie., thal ils
magnitude characteristic is of the form shown in Figure P7.57-2) by evaluating | and
.53. What is the length of the new impulse response hy, fel?

|'”ruir|. E'I:w.l
I+ 8]
1-85F
5l

T Figure P7.57-2

(dy In parts (a), (b}, and (), we sssumed that we started with a type | FIR lincar-phase
fileer. Will Lhis Lechnigue work if we remaove the linear-phase constraint? Will it work
if we use a tvpe 1l FIR linear-phase system?

T58. Suppose that we have a program thal finds the set of coeffcients alnl.e =01, .., L, that
minimizes
I
max ¢ | W Hglet™) — loos
max | () giet™) Eﬂu[n. tri
} =

piven L, F, Wiy, and H (/™1 We have shown that the solution o this oplimiration prob-
lem implies a noncausal FIR zero-phase system with impulse response satisfying heln] =
fol—w ). By delaying &g [n} by L samples, we oblain a causal tvpe 1 FIR linear-phase system
with frequency response

I 2L
= e =
g™ = p Frihd | }_: afr]cos mn = Z ]
=1} n=I}

where the impulse response is related o the coefficients aln| by

2R(M 2 -n] Tl =n= L

aln] = ih[M_.-fE] formn =0,

and M = 2L is the order of the system function polvnomial. (The length of the impulse
response is M+ 1)

The other three types (1T, 161, and 1V} of linear-phase FIR filers can he designed by
the available program if we make suitable modifications to the weighting function Wie)
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and the desired frequency response Fgle/™) To see how to do this, it is necessary (o
manipulate the cxpressions for the frequency response into the standard form assumed by
the program.

(a)

(b}

{c}

{d}

Azsume Lhal we wish 1o design @ cawsal type IT FIR lincar-phase system such that

hin]l = M —n] fora = 0,1,..., M, where M is an odd integer. Show that the
frequency response of this type of svstem can be expressed as
IM+1072

el = e M2 3 bincos m(ri s %] :
FES |

and determine the relalionship between the cocficients blr] and i[n].
Show that the summaticon

(M 41,2
Z A msu(n glr)
.l'l=|
can e written as
iM—112
cosiw/2) ¥ blajcoswa
n=ll
by nhlnining an expression for bla| fore = 1,2, (M + 13/2 in terms of E-{nj for
a=IL .. .08 —1)/2 Hime Note carefully that b[nlib Lo be l:xprcsscd in terms of
.i!:-[rr] A'Is::: use the trigonometric identity cose cos g = 3 L cosia + B+ ., cosie — .
If we wish 1o use the given program to design lype [1 kwslc:mb (M add) Tor & given F,
Wiw), and Hd{e-'“’j show how to obtain L. F, Wiw), and H,, {ef‘””} interms of M, F,
W i), and & 4(e%) such that if we tun the program using L, F. Wiw), and H z(ef),
we may use the resulling set of coefficients to determine (the impalie response of the
desired type LI system.
Parts (u)—(c) can be repeated for types 11T and IV causal linear-phase FIR systems
where k[n] = —R[M - ). For these cases vou must show that, for type HI systems (M
even), the freguency response can be expressed as
M2
Higltn = g~JuM/2 E clrlsinan
n=|
(M —2)2
= e~ M2 gin E Eli] cos o,
n=l!
and for type TV systems (M odd),
(M2 _
Hie/®y = g—/wM/T Z d|n]sin o n — ;i-,]
=1 T
(& —I J,-'?_,
= g fuMil sinfan2] E ddlm | eos o
n=[}
As in part (h), it is necessary fo express cn) i|1 terms of #[r| m'ld d[n] in lerms of dn)
using the (rgemometric identity sin e cos £ = =; s +— #) + z siniee — H), MeClellan
and Parks (1973) and Rabiner and Gold {l'ﬂ"}j give more df:l.nls o1 issues raised in
this problem.
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T.59, Tn this problem, we consider a method of obtaining an implementation of a vanable-cutoff

lingar-phase filter. Assume that we are given a rera-phase filter desipned by the Parks—
McClellan method. The frequency response of this flier can be represented as

L
A ,_:[e-';ﬂ] = Z a,@[fﬂsﬂjk.
k=l}

and its system funclion can Ltherefore he represented as

I z_z.] k
AR = Za,‘,( = ) .

=0 a

with /! = Z. {We use Z for the original svstem and g for the svstem to be oblained by
transformation of the ongingl system,)

(a) Using the preceding expression for the system function, draw a hlock diagram or
flow graph of an implementation of the system that utilizes multiplications by the
coctficients ay, additions, and clemental svstems having system luncton (£ + =1 142,

(b} What 15 the length of the mpulse iesponse of the system? The overall system can he
made causal by cascading the system with a delay of L samples. Distribute this delay
as umil delays so thal all parts of the nelwork will be causal.

() Suppose that we ohtain a new system function from A 07 by the substitution

Belz) = Al iy o1y 2mabin b2 1120
Lsing the flow graph obtained in part (a), draw the flow graph of a system that im-
plements the system Tunglion B.(z) What is the length of the impulse response of this
system? Modily the nerwork as in part (b) to make the overall system and all parts of
the network causal.

(dy 1A e/ is the frequency response of (he original filler and B, (2/%) is the frequency
response of the transformed filter, determine the relationship between ¢ and w.

{e) The frequency responsc of the original optimal Aller is shown in Figure PL5%, For
‘the case o) = | — oy and O = ayy = 1, describe how the frequency response B, (/%)
changes as wy, varies. Hint: Plot Aoy and Boie/) as funclions of cos ¢ and cosw.
Are the resulting Iransbormed Gillers also oplimal i the sense of having the munitmiim
maximum weighted approximation errors in the transformed passband and stopband?

W
A \VALVIRY Lo

T Figure PT.59

(A Optional. Repeat part (e} for the case o = 1 +ap and — 1 = oy = (.
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In this problem, we consider the effect of mapping continuous-time flters to discrete-time
filters by replacing derivalives in the differential cquation for a continuous-lime flter by
centrul dilferenoes to obrtain a difference equation. The first central dilTerence of a sequence
A[n] is defined as

A = xlm+ 1] = xln=1].
and the k9 central difference is defined recursively as

A% xln]) = AN AR D )y,
For consistency, the zeroll central difference is defined as

A [x[n]} = x[a).

(a} IT X iz} 15 the z-translorm of x[n], delermine the z-iransiorm of .-‘_'-.';j”[.flull.

The mapping of an LTT contimiows-time Glter to an TTT discrete-time Gller is as
fodlows: Let the continuous-time filter with nput o0t} and output wird be specified by a
differential equation of the form

h ; M
4 di}‘[fj 3 axirh
iy - by :
L .I'k ] drr
=il r=I(

Then the corresponding discrete-time filler with inpoal c(n] and output yie] s specified by
the difference equation

W Af
> ax Ayl = 3 b AT xal,
k=l r=(

iby If H.(+}is a rational continuous-time system function and H,; ;) is the discrete-tima
svalem [unction obtained by mapping the dillerential cquation Lo s dilferenee cguation
as indicated in part {a), then

Hylzd = Hels)

Seoemy’
Dretermine meiz).

(e) Assume that H{s) approximates a continuous-time lowpass filter with a cotoff fre-
guency ol 2 = 15 1.6,

L, |52 = 1.

H{je) = [} olherwise,

This filter is mapped Lo & diserele-time filler using central dilferences as discusscd in

part (a). Skewh the approximate lrequency response that you would expect or the

discrete time filler. assuming that it is stable.
Let Afs] be the optimal type | equiripple lowpass filter shown in Figure PT.61, desipned
wilh weighting [unction Wied/™} and desited [regquency response Hgied™ ), For simplicity,
assume that the filter is zero phase (e noncausal ). We will use Alr] to design five different
FIR filters as follows:

hylnl = k[—nl,

ialn] = (=11 &[a].

f3ln] = hlnl= ilnl.

hgln] = h[a] = Ki[n], where K is a constant,
I e

hyln] = in/2]  [or meven,

1] otherwise.
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For each filter h;[#], determine whether k;|a] is optimal in the minimax sense. That is,
determing whether
hiln] = min max (W (e Hy(e!®) ~ He™))
bR} e F
for some choices of a piecewise-constant Hd(e'*’.“'} and a piecewise-constant W(u»"“‘), where
F iz a union of disjﬂjnl closed intervals on 0 = o < . I A;[s] is optimal, determine the
corresponding Hy (=7 and Wie'®) If k;{n] is not optimal, explain why.

Fi{e ™)

Figura P7.61

Suppose that you have used the Parks—MeClellan algorithm to design a causal FIR linear-
phase system. The system function of this system is denoted Hi(z). The kength of the impulse
tesponse 15 25 samples, £(nr] = 0 fora < 0 and for 7 = 24, and A[0] &£ 0. For each of the
following questions, answer “true,” “false,” or “insufficient information given™:

(a) Aln+12] =Fh(12 —nlorh(n +12] = —A[12 —a] for —o0 = n = oo,

(b) The svstem has a stable and causal inverse.

(c) We know that H(—1) =1,

(d)} The maximum weighted approdimation error is the same in all approximation bands.
(e} The system can be implemented by a signal flow graph that has no feedback paths.

(N The growp delay is positive for O < @ < T,

Consider the design of a type | bandpass linear-phase FIR filter using the Parks-McClellan
algorithm, The impulse response lengthis M -1 = 2L +1. Reeall that for type L systems, the
frequency response is of the form H(e/9) = A (e/®0e M2 and the Parks-McClellan
algorithm finds the function A e/} that minimizes the maximum value of the error func-
Hon

E{e} = Wie)[Hg(e!™) - Agef®)], weF.
where F is a closed subset of the interval 0 = o = 7, Wi is a weighting function, and

H {e/®} defines the desired frequency response in the approximation intervals #, The
tolerance scheme for a bandpass filter is shown in Figure P7.63,

{8) Give the equation for the desired response H g(e/®) for the tolerance scheme in Fig-
ure P7.63.
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(b} Give the aquation for the weighting function Wiw) for the tolerance scheme in Fig-

ure P7.63.
(¢) Whal s the mindmem number of aliernations of the error function for the oplimum
filter?
(d) What is the maximurr number of alternations of the error funciion for the oplimum
filter?
f de )
[+ 4, R R ]
1
bi=g4] FEREAATE
i
J_ i 5= i
By
i Hm
; | i | |
£ ] (=1 P o
61 1 ) % ity ik
—, | P

Figura P7.63

() Sketch a “lypical” weighted error functeen £ () that could be the ervor funclion for
an optimum bandpass filter if M = 14. Assume the suaranme number of alternations

{F Mow suppose that M, ), e, oy, Lhe weighting function, and the desited funclion are
kept the same, bub my 15 faceedsed, 5o that the ransition band {oy < mq) 18 increased.
Will the optimum filter for these new specifications recesyarily have a senafler value of
the maximum approsimalion error than the optimum Glter associated with the oniginal
specifications? Clearly show your reasoning,

{g) In the lowpass filler case. all local minima and maxima of Ai.{f"“'} musl ocour in the
approximation hands w & F; they cannof occur in the “don’t care”™ bands. Also, in
the lowpass case, the local minima snd maxima that occur in the approximation bands
must by alternations of the error. Show that this s nol necessarily (roe in the handpass
filter case. Specifically, use the alternation theorem to show (i) that local maxima and
minima of A .{ef*) are not resiricted to the approximation bands and (i) that local
maxitmg and minima in the approximation bands need not be alternations

Tad, 1t s often desirable to transform a prototype discrete-time lowpass filter 1o another kind
of discrete-time frequency-selective filter. In particular, the impulse invariance approach
cannot be wsed Lo convert continwous-uime highpass or bandstiop filiers 1o discrete-time
highpass or bandstop filters. Consequently, the traditional approach has been wo design
a prototype lowpass diserete-time filter using either impulse invariance or the bilinear
tramsformytion and then 1o wse an alpebrase fransflormation Lo convert the discrele-lime
bowpass filter into the desired frequency-selective filter.

To see how this is done, assume that we are given a lowpass system function My, 1£)
that we wish to transform fo a new svstem functien H (20, which has either lowpass, highpass,
bandpass. or bandstop characteristics when it 15 evaluated on the unit circle. Note that we
associale the complex varable & with the protolype lowpass lilffer and the complex vanable
z with the transformed filter. Then, we define a mapping from the Z-plane to the z-plane
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of the form
27l =G (1*7.64-1)
such that
H{z) = BiplZ) yo1_gem1y- {P7.64-2)

Inslead of expressing Z as a function of z, we have assumed in Eq, {P7.64-1) that 2~ s
expressed as a function of 2~ 1 Thus, according to Eq. (P7.64-2}, in nhtainin% H{z) from
Hhp (41, we simply replace 2~ 1 everywhere in Hypi ) by the function Giz77). This is a
convenient reprasentation, because M, (¥} is normally expressed as a rational function of
i,

it H|p|.‘2} is the rational syslem function of 4 causal and stable system, we natueally

require that the transformed system function A1) be a rational function of ! and that the
system alse be causal and stable, This places the following consiraints on the translormalion
Z-1 =g~y
1. Gz~ must be a rational function of 27!
2. The inside of the unit gecle of the 2-plane must map o the inside of the unitl circle
of the s-plane.
3, The unit circle of the £-plane must map onle the unit circke of the z-plane.
In this problem, you will derive and characterize the algebraic transformations necessary
to converl a discrete-time lowpass filler into another lowpass filter with a different cotoff
frequency or 1o a discrete-time highpass filter.
(2} Letd andwbethe frequency variables (angles) in the Z-plane and z-plane, respectively,
ie., om the respective unit circdes 7 = &/ and 7 = /% Show that, for Condition 3 1o
hald, Gz~ 1) must be an all-pass system. i.e.

Gl ™) =1, (P7.6d4-3)

(b) It is possible to show that the most general form of 71z~ 13 rhat satisfies all of the
precedimg three condilions s

g S e LR o B S (PT.64-4)

From our discussion of all-pass systems in Chapter 3, it should be clear that G{z 1),
as given In Cg. (PT.64-4), satisfies Eq. (P7.64-3), ie., is an alipass system, and thus
meets Condition 3. Bg. (F7.04-4) also clearly meets Condition 1. Demonstrate [hat
Condition 2 is satisficd if and only if oy < 1.

(e} A simple I®-order 7z~ !y can be used o map a protolype lowpass filter H'lp(Z} with
cutolf #, to a new filter fiz) with cutoff wp. Demonstrate that

GI::__I]_- ‘: _QII
1 — ™

will produce the desired mapping for some value of o, Solve for e as a fanction of
iy and g Problem 7.51 uses this approach to design lowpass Alters with adjustahte
curoft trequencies.

{d} Consider the case of o prototype lowpass filer with 6, = /2, For each of the following
choices of @, specity the resulting cutoff frequency wp for the transformed filter:
{i} « = —-0.2679,
i) w=1
(i) o = 04142,
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(&) It is also possible to find a 1%-order all-pass system {or G(z“‘J such that the prototype
lowpass filier is transformed 1o g discrete-time highpass flter with cutoll w,. Note
that such a transformation must map Z° 1 = i 4 2l = &% and also map
Z =171 =—1; i€, & = 0 maps to @ = . Find G{z_L} for this transformation,
and also, find an expression for e in terms of 8, and ay,

(f) Using the same prototype filter and values for « as in part (d}. sketch the frequency
respomses for the highpass Gllers resulling from the transformation you specified in
part {e).

Similar, but more complicated, transformaiions can be used 1o convert the prototype
levwpass filter Hjp(Z) into bandpass and bandstop filters. Constantinides (1970) describes
these transformations in more detail.



