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B i ~ The Discrete

Fourier Transform

B.0 INTRODUCTION

In Chaplers 2 and 3, we discussed the representation of sequences and LTI systems i
terms ol Lhe diserele-lime Fourler and g-transforms, respeelively. Dor finite-duration se-
guences, there s an allernative discrete-time Fourier representation, referred to as the
dizerele Fowrier transforsy (D), The DD s itsell a sequence rather than g function
of a continuous variable, and it corresponds (o sampies, ecually spaced 1 frequency,
of the IDTFT of the signal, In addition o its theoretical importaoee s a Fourier repre-
senlation of sequences, the DFT plays a central role in the implementation of a varicly
of digital sipnal-processing algorithms. This is because efficient algorithms exist for the
computation of the DFT. These algorithms will be discussed in detail in Chapter 9. The
application of the DE o spectrum analysis will be described in Chaprer U
Althouph several points of view can be taken toward the dervation and inter
pretation of the DFT representation of a linite-duration sequence, we have chosen to
base our presentation on lhe relationship between periodic sequences and finite-length
sequences. We begin by considering the ourier series representation of periodic se-
quences, Although this representation s important in ils own righl, we are most oflen
imerested in the application of Fourier series results to the representation ol finite-
length sequences. We accomplish this by constructing # peniodic sequence [or which
cach period is identical to the finite-lenpth sequence. The Fourier series represenlalion
of the periodic sequence then corresponds 1o the DFT of the fimte-lepath sequence.,
Thus, our approach is to define the Fourier sevies representation for periedic sequences
and to study the properties of such representations. Then, we repent essentiafly the same
derivations, assuming that the sequence to be represented is a finite-length sequence.
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624 Chapter 8 The Discrete Fourier Transform

This approach ta the DFT emphasizes the fundamental inherent periodicity of the DFT
representation and ensures that this periodicity iz not overlooked in applications of the
DFT.

8.1 REPRESENTATION OF PERIODIC SEQUENCES:
THE DISCRETE FOURIER SERIES

Consider a sequence ©n| that is pEl‘i{Jdi{;l with periad N, so thal £|n] = ¥[a + rV | for
any integer values of n and r. Aswith contimnuous-time perindic signals, such a sequence
can be represented by a Fourier series corresponding to a sum of harmonically related
complex exponential sequences, 1.e, complex exponentials with frequencies that are
integer multiples of the fundamental frequency (27 /8 associaled with the peniodic
sequence [n]. These perodic complex exponenlials are of the form

epln] = ef N o oin PN, (R.1)

where k is any integer, and the Founer series representition then his the form?
g G = ot 6 e WL LT
] = — ¥k e_j’l.'Z.'I.'n'\']J-.l?_ )
=5 Y X4 (82)

I'he Fourier series representation of a continuous-time periodic signal gener-
ally requires infinitely many harmonically related complex exponentials, whereas the
Fourier series for any discrete-time signal with period ¥ requires only N harmoni-
cally related complex exponeatials. To see this, note that the harmonically related com-
plex exponentials e;|»n] in Eq. (8.1) are identical for values of k separated by N, Le.,
ealn| = exlul. e |n] = exyp1lnl, and, in peneral,

eprininl = ol (I RIAHEN IR E,j-:E.'r.-'.'ﬁ"]R'uf,;th’.u — A lIm Nk _ enl, (8.3}

where £ s any integer. Consequently, the set of N periodic complex exponenitials enfnl.
eilrls « ... e—qln] defines all the distinet periodic complex exponentials with frequen-
cles that are integer multiples of (2w /N). Thus the Fourier series representation of a
pericdic sequence Tlr] need contain only N of these complex exponentials, For nota-
tional convenience, we choose & in the range of 0 to & — 1; hence, Eq. (8.2} has the
form

Pl o
P[] = = L ){E;L-k.l[‘rr_-rvlhr_ (8.4)
k=0

However, choosing & to tange over any full period of X [&] would be cqually valid.
To obtain the sequence of Fourier serics coelficients X [£] [rom the periodic se-
guence £[n], we exploil the orthogonality of the set of complex exponential sequences.

"Henceforth, we will use the lide (7)) 1w denote periedie seguences whenever it is impartant to clearly
diszinguish hetween perindic and aperindic sequences,

Ihe multiplicative constant |4 is included in Eg. (8.2} for convenience. It oould also he ahsorhed
inte the definilion of X [£].
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After multiplving both sides of Eq. (8.4) by /7" and summing from » = { to
n =N —1, we nbtain

w1 N-1 4 N-1
= — 2T SNrR e v Jrlm (N E—ra
Zx[u]g = Z 5 Z A [k]e : (8.5)
n=il n—Ilt k={)
Alfter interchanging the order of summation on the right-hand side, Eq. (8.5) becomes
-1 w1 1 4=l
= — 2/ Nirn __ v = Jila Nk —riR
Y Elale =Y Xkl L2 e . (8.6)
=l k] il
The following identity expresses the orthogonality of the complex exponentials:
N-1 :
1 2/ N (= 1. k—-r=mN, maninteger
b _,II..:t,-."‘n_I[J. ] — 1 E 1
N Zn A [ {1, otherwise. (8.7)

This identity can casily be proved (see Problem £.54), and when it is applied to the
summaltion in brackets in Eg. (8.6}, the result is

W1
¥Rl T ORANIE (8.8)
n=l}

Thus, the Fourier series coefficients X [k] in Eq. (8.4) are oblained from #[n] by the

relation

N-1
Xkl = Y R|nje PNt (2.9)
LEH]

Note that the sequence X |k} definedin Eq. (8.9)is also periodic with period N if Eq. (8.9)
is evaluated outside the tange 00 = & = N - Ljle, X ([0 = X[N |, X|1] = XN + 1],
and, more generally,
Nl
i’ i’i €T Nl-l — E i[i‘]]ﬁ’ ~ 2w Nk NI

n=l

A1
= z F[n]e™/@m/Nn | ~joTn — ¥ [H],
H=Ik
for any integer k.

The Fourier series coefficients can be imterpreted to be a sequence of finite length,
given by Eq. (89 for k =10, ... (¥ — 1}, and zero otherwise, or as a periodic sequence
delined for all k by Eq. (8.9). Clearly, both of these interpretations are acceptable, since
in Eq. (B4) we use only the values of X[klforO =k =(N -1). An advantape tointer.
preting the Fourier series coefficients X [k] as a periodic sequence is that there is then a
duality between the Uime and frequency domains for the Fourier series representation
of perodic sequences. Eguations (8.49) and (8.4) together are an analysis-synthesis pair
and will be referred to as the discrete Fourier series (DEFS) representation of a periodic
scquence.

For convenience in notation, these equations are olten written in terms of the
complex guantity

Wy = ¢ /28N, (8.10)
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With this notation, the DFS analysis synthesis pair is expressed as follows:

N1
Analysis equation: X [k] = Z Fln) Hﬂt-". (8.11)
=
] A=
Svathesis equation: &lnl=— Y X [k]Wg 8.12
virthesis equation:  T[»] NE [L1W { j|

In hoth of these equations, ¥ [£] and I[n] are periodic sequences. We will sometimes
find it convenient to use the notation

il 258 ki (8.13)

to signify the relationships of Eqs. (8.11) and (8.12). 'Lhe following examples illustrate
the use of those equations.

Example 8.1 DFS of a Periodic Impulse Train

¢t Wi consider the periodic impulse tram

o0

Zhptee % o B om=rN, ranyinteger, .
Flr} = L Hn J"."-]_lﬂI il (.14}

L=t 4]

Since ¥[n] =din] for(l = n = N — |, the DFS coefficients are found. asing Eyg. {8.11),
to be

i N—1

i Xikp= Y sinwhr=wh =1 {8.15)
; =l

In this case, X [k] = 1 for all k. Thus, substituting Eq. {8.15} into Eq. (8.12) leads to
- the representation

=

N1 N--1
1 1 Frnar
il = E Bl —rN]= E z : H_-;j:n — E E : o |_;..,‘!'..'"r]kl1:l {8.18)
ki) T k=0

Fe=—r

Example 8.1 produced a uselul representation ol a periodic impulse brain in terms
of a sum of complex exponentials, wherein all the complex exponentials have the same
magnitude and phase and add 1o wnity at integer muoltiples of & and o zero for all other
integers. 1F we look closely at Egs (8.11) and (£.12), we see that the two equations are
very similar, differing only in a constant multiplier and the sign of the exponents, This
duality between the periodic sequence $[n| and its DES coetficients X [&] is illustrated
in the following example.
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Example 8.2 Duality in the DFS

21 In this example. the DES coefficients are a periodic impulse train:
& ._ <

i Flk] = E Nk —r¥ .

e s

i Substituting ¥[k] into Ex. (8.12) gives

s W

oot L = —kt _ e _

g\ﬁ Hnl = o E‘r’ NETKIW wit=1.

7t Ll

E'. In this case, 7[n] = 1 Tor all n.ﬂfcnmpﬂring this result with the results for #[a] and X5

of Example 8.1, we see that ¥Y[k]| = NZ[k] and ¥[a] = X [#]. In Section 8.2.3, we will
#at show thar this example is a special case of a more general duality property.

SER

If the sequence xfn| is equal to unity over only part of one period, we can also ob-
tain a closed-form expression for the DFS coefficients. This isillusirated by the following
example.

Example 8.3 The DFS of a Periodic Rectangular Pulse Train

#7% For this example, ¥[a} is the sequence shown in Figure 8.1, whose period is ¥ = 10,
From Eqg. (B.11),

-
o

i 4 4
@ X[k]=Y whi = %" i@/l (8.17)
;i n=ll n=il

s

This finite sum has the closed form

ﬁ;":
e - 1- Wi - sinrk/2)
X (k] = L e 8.18
b 1— Wi § sin{ k105 (B.18)

The magnitude and phase of the pericdic sequence X [k] are shown in Figure 5.2,

ST

&

iln]

4

5,

Lo = 0123435678310 L

Figure B.1 Periodic sequence with period & = 10 for which the Fourier series
representation is to be computed.
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A
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Figura 8.2 Magritude and phiase of the Fourier series coefficients of the s2quence
of Figura 8.1.

We have shown that any periodic sequence can be represented as a sum of complex
exponential sequences. The key results are summarized in Eqs. (8.11) and {8.12). As
we will see, these relationships are the basis for the DFT, which focuses on finite-length
sequences, Before discussing the DFT, however, we will consider some of the basic
properties of the DFS representation of periodic sequences in Section 8.2, and then, in
Section 8.3, we will show how we can use the DFS representation to obtain a DTFT
representation of periodic signals.

8.2 PROPERTIES OF THE DFS

Just as with Fourier series and Fourier and Laplace transforms for continuous-ime
signals, and with discrete-time Fourner and z-transforms for nonperiodic sequences,
certain properties of the DES are of fundamental importance to 18 successtul use in
signal-processing problems. In this section, we summarize these important properiies,
I1 is not surprising that many ol the hasic properties are anglogous to properties of the
z-translorm and DTFT. However. we will be careful Lo point out where the periodicity
of both ¥ln] and X [£] resulis in some important distinctions. Furthermore, an exact
duality exists between the time and frequency domaing in the DI'S represeniation that
does not exist in the DTFT and z-transform representation of sequences.
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8.2.1 Linearity

Consider two periodic scguences ¥y [a] and £2in]. both with period N, such that

Biln] 5 Ralk), (8,19a)
and
Tainl 223 Xalkl. (8.19h)
Then
: s RS . __
afiln]+ Eiz(r] ~— aX||k] + bXa]k]. (8.20)

This linearity property follows immediately from the form of Eqgs. (8.11) and (£.12),

B.2.2 5hift of a Sequence

If a periodic sequence ¥[n] has Fourier coeificients X [k], then ¥[n — m] is a shifted
version of $x], and
[ —m] 225 WX ik (8.21)

The proof of this property is considered in Problem 8.35. Note that any shift that is
greater than or equal to the period (ie., m > N) cannot be distinguished in the time
domain from a shorter shift sy such thatm = sy + s NV, where sy and m: are integers
and 0 = m; = N - 1. {Another way of stating this is thal m; = m modulo & ar,
equivalently, sy is the temainder when m is divided by N.) It is easilv shown that with
this representation of m, Wf{.’" = W.J;'"”; i.e., as it must be, the ambiguily of the shifl in
the ime domain is also manifest in the frequency-domain representation.

Because the sequence of Fourier series coetlicients ol a periodic sequence 15 a
periodic sequence, a similar resull applies 1o a shift in the Fourier cocfficients by an
integer £, Specifically,

e
Wil s X Ik — f]. (8.22)

Mole the difference in the sign of the exponents in Eqgs. (8.21) and (5.22}.

8.2.3 Duality

Because of the strong similarity between the Fourier analysis and synthesis cquations
in continuous tme, there 1s o dualily between the time domain and frequency domain,
However, for the D'TFT of aperiodic signals, no similar duality exists, since aperiodic
signals and iheir Fourier transforms are very different kinds of functions: Aperiodic
discrete-lime signals are, of course, aperiodic sequences, whereas their IYIFTs are al-
ways periodic functions of a continuous frequency variable.

From Eqs. (811} and (8.12), we see that the IFS analveis and synthesis equations
differ only in a tactor of 1/N and in the sign of the exponent of Wy. Furthermaore, a
periodic sequence and its DFS coefficients are the same kinds of tunctions; thev are hoth
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periodic sequences. Specifically, taking account of the factor 1/ and the difference in
sign in the exponent between Eqs. (8.11) and (8.12), it follows from Eq. (8.12) that
N1
Ni[—al= ) X [kIW)" (8.23)
k=11
or, interchanging the roles of # and k in Eq. (8.23),
N-1
Ni[-kl= 3 X [n]Wi (8.24)
n=il
We see that Fqg. (8.24) is similar Lo Eqg. {#.11). In other words, the sequence of DFS
coelficients of the periodic sequence X [r]is NE[—k], i.c., the original periodic sequence
in reverse order and multiplied by N. This duality property is summarized as follows:
If

5] 22% AR, {8.254)
then
X [n) 225 NE[-k). (8.25b)

8.2.4 Symmetry Properties

As we discussed in Section 2.8, the Fourier transform of an aperiodic sequence has
a number of useful symmetry propertics. The same basic properties also hold for the
DFS representation of a periodic sequence. The derivation of these properties. which is
similar in style to the derivations in Chapter 2, is left as an exercise. {See Problem 8.56.)
The resulting properties are summarized for reference as properties 9-17 in Table 8.1
in Section 8.2.6,

8.2.5 Periodic Convolution

Let £y [n] and X2]n] be two periodic sequences, each with period & and with DDFS coef-
ficients denoted by X, [k] and X[k, respectively. If we form the product

X3[k] = Xq[KIXa[k]. (8.26)
then the periodic sequence #3[a] with Fourier series coefticients Xa[k] is
N—1

ian] = Z F[m]Eln — m). (R27)

m=I}

This resull is nol surTprising, since our previous experience with transforms suggests
that multiplication of frequency-omain fanctions corresponds 1o convolution of Ume-
domain functions and Eq. (8.27) looks very much like a convolution sum. Equation (8.27)
involves the summation of values of the product of #{m] with #2[n — m|, which is a
time-reversed and time-shifted version of #a[m], just as in aperiodic discretie convo-
lution. However, the sequences in Eq. (8.27) are all periodic with period N, and the
summation is over only one period. A convolution in the form of Eq. (827} is referred
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Lo as 8 periodic conveluton. lust as with aperiodic convolution, periodic convolution is
commutalive; i.e.,

|

Bln] = 3 Walmlila —ml. {B.28)

=}

To demonstrate that Xa[k], given by Eq. (8.26), is the sequence of Fourier cocffi-
cients corresponding to F3[n] given by Eq. (8.27), let us first apply Eq. (8.11), the DFS
analysis equation, to g, (8.27) to obtain

N1 N1
Xalk]= E: (z FilmdEsln — m] | WeE, (8.29)

=L}

n=L}

which, after we interchange the order of summation, becomes

AN=1 N1
Xslk] = Ei”_m] ZI‘gLr: g mjwj.;,"] ) (8.30)

m=l n=l} /

The inner sum on the index o is the DFS for the shitied sequence x2[n —m]. Therefore,
from the shilting property of Section 8.2.2, we oblain

=
e

Baln — m Wi = WE"Xalk],

g |

n=

which can be substituted nto Eq. (8.30) 1o vield

=1 N1
Xalkl =3 nulmlWimXalkj = | 3" BilmIWE" | Xalk] = X1[KIXa[k1  (8.31)
F.'I'_n' rn—fl
In summary.
N
e 5 DFES o e
3 RilmlEaln —m] <= X[k Xa[k]. (8.32)
=l

The periodic convolution of periedic sequences thus corresponds to multiplication of
the carresponding periodic sequences of Fourier series coefficients,

Since periadic convolutions are somewhat different from aperiadic convolutions,
it is worthwhile to consider the mechanics of evaluating Eq. (8.27). First, note that
Eq. (8.27} calls for the product of sequences ¥y [m] and ¥2[n —m] = Ezl—{m — )] viewad
as functions of m with # fixed. This is the same as for an aperiodic convolution, but with
the following two major differences:

1. The sum i1s over the finite interval 0 < m = N — 1.

2, The values of %2[n — m] in the interval O = m = & — 1 repeat periodically for m
ontside of that interval.

These details are Mustrated by the following example.
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Example 8.4 Periodic Convolution

o= Anillustration of the procedure for forming the periodic convelution of two periodic
4 sequences corresponding to Eq. (R.27) is given in Figure 8.3, wherein we have illus-
i trated the sequences Falm ], XyIme], Bal -], 2[1 - m] = T2l =(m - 13], and ¥5[2 —m] =
o Fal=tm—2)). To cvaluate ¥afn]in Eq. (8.27) for n = 2, for example, we multiply &3 [m]
. hy i2[2 — m] and then sum the produet terms 3y [miizf2 —mllord =m = N — 1, ob
taining %3[2]. As n changes, the sequence T3[n —m) shifts appropriately, and Eg. (8.27)
g0 is evaluated for cach value of 0 = 7 = & — 1. Note that as the sequenee 33]0 — m]
o ghifls o the vight or left, valoes that leave the interval between the dotled ines at
. one end reappear at the other end because of the periodicity. Because of the perind-
L ety of Falal, Ihere is no need to continue (0 evaluate Eg. (8.27) outside the interval
Hhen=A -1,

N ﬁm “lh?v I‘Hir;wI
1 T
Lt [l ]

= 1] I n
1 1

L2 m| =2 (m - 2)

: Figure B.3 Procedure for forming the periodic convolution of two pericdic
e Sequences.
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The duality theorem in Section 8.2.3 suggests that if the roles of ime and frequency
arc interchanged, we will obtain a result almost identical W the previous resull. That s,
the periodic sequence

Esln] = i[nlialnl, (8:33)

where &) [n] and E3[n] are periodic sequences, each with perind N, has the DIFS coeffi-
cients given hy

) ko, SR
Xilkl = — ) Xjl€1Xzlk — €1, (8.34)
=

2|

corresponding to 1/N times the periodic convolution of X [k] and X-[k]. This result
can also be verified by substituting Xs[&]. given by Eqg. (8.34), into the Fourier serics
relation of Eq. (8.12) to obtain xzfn].

8.2.6 Summary of Properties of the DFS Representation
of Periodic Sequences

The properties of the DFS representation discussed in this seclion are summarized in
Tuhle 8.1,

8.2 THE FOURIER TRANSFORM OF PERIODIC SIGNALS

As discussed in Scetion 2.7, uniform convergence of the Fourier transform of a sequence
requires that the sequence be absolutely summable, and mean-square convergence re-
quires that the sequence be square summable. Periodic sequences salisly neither con-
dition. However, as we discussed briclly in Section 2.7, sequences that can be expressed
as a sum of complex exponentials can be considerced to have a Fourier transform rep-
resentation in the form of Eq. (2.147), L.e., as a lrain of impulses. Similarly, it is eften
useful to incorporate the DFS representation of periodic sipnals within the framework
of the discrete-time Fourier transform. This can be done by interpreting the discrete-
time Fourier transform of a periodic sipnal to be an impulse train in the frequency
domain with the impulse values proportional to the DFS coefficients for the sequence.
Specifically, if £|n] is periodic with period N and the corresponding DFS coefficients
are X [&], then the Fourier transform of ¥ |s] is defined to be the impulse train

0
- 2w - Irk
i . TR _ &
X(ele) = Z 7 [ | (m o ) (8.35)
k=—0o
MNole that X{e/} has the neeessary periodicity with peniod 2 sinee X[klis periodic
with period N, and the impulses are spaced at integer multiples of 27 /4, where N is an
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TABLE 8.1 SUMMARY OF PROPERTIES OF THE DFS

Chapter 8

Perodic Seguence {Period &)

DES Coslicients (Poriod

1, Za| X (k] pericdic with period N
2. 5q[nl Ealed ¥ Ik] X0k periodic with period &
3 aiy|n] + bEpin] ﬁ-;fllﬂ + BX1k]
4, X[nm N[ k)
5. Ilm—m] WX [&]
6. W, iln) X k- f]
=1 i _
T z P Imiizln —m]  {periodic convolution) & i8] Xa[k]
L
[t
B belfalnl < ¥ [F1Xglk - ¢] (periodic convolution)
=0
9, #nj X[k
10, #*[-n] Faty
1. RelZlnl} Xefkh= Lix ki + X°[-4D
12, jTmiEla]} Xolkl= 32X k] — X [k
13. %] = %{1-[”1 + B —n]] RelX 4]
T Tuln] = FiEla) — 2% =] JTmiX (k)]
Properties 15-17 apply oaly when x|x] is eal.
X [k] = X[k}

15,

Svmmetey properties Sor &[a] real.

i Eelnl= 4iEln) + Fl-nl)

17,

Zpln] = 3 (Eln] — EL—n])

RelX [k]} = Re (¥ [—]}
TmiX [&]) = —Zm[X [-k])
X [21] = X I=#1|
CX Ikl =~ LK |4
Tee| X k)

JTm{X [k]}

The Discrate Fourier Transiorm

intcger. To show that X {(e/*) as defined in Eq. (8.35) is a Fourier transform represen-
tation of the periodic sequence $in}, we substitute Eq. (835) into the inverse Fourier
transform Eg. {2.130); 1.e.,

1 2

T —r —_—
Tepliygd 1 2 - 2k
—= X' = — SRR b 25 fateng 43
2T j-_f bl g e k_z\:c N [&] (&J ~ )z an, (8.36)

[—r¢

where ¢ satisfies the inequality 0 = ¢ = {2a/N). Recall that in evaluating the inverze
Fourier transform, we can integrate over any interval of length 27, since the integrand
X (ef®)efn is periodic with period 27, In Eq. (2.36) the integration limits are denoted
¢ and 27v —e, which means that the integration is from just before « = Q1o just before
w = 2. These limits are convenient, because they includs the impulse at w = 0 and



Sactlon 5.3 The Fourier Transtorm of Periodic Signals 635

exclude the impulse al o = 2 3 Interchangng the order of inlegration and summation

leads to
i am—g _ S 1 Cr 2 —£ Yol ]
= x‘.L,m.jfmmdm_vﬁkE X[k s 5((“_?*),_,;-.@%@
. {(8.37)
= = 3 X [rpesaninin
N s

The final form of Eq. (8.37) results because only the impulses corresponding io
k=0,1,.... (N - 1) are mcluded in the interval between w =0 - ¢ and w = 27 — ¢,

Comparing Fg. (8.37) and Eq. (8.12), we see that the final right-hand side of
Eq. (8.27) i exaclly egual 1o the Fourier series representation lor ffn], as specified by
Eq. (.12}, Consequently, the inverse Fourier transform of the impulse train in Eg, (8,33)
15 the periodic signal $[a], as desired,

Althouph the Founer fransform of a periodic seguence does not converge in the
normal sense, the intreduction of impulses permits us to include periodic sequences
formally within the framework of Fourier transform analysis. This approach was also
used in Chapter 2 to obtlain a Fourier transform representation of other nonsummable
sequences, such as the two-sided constant sequence {Example 2.19) or the complex
exponental sequence (Example 2.20). Although the DEFS representation is adequale
for most purposes, the Fourier transform representation of Eq. (8.35) sometimes leads
to simpler or more compact expressions and simplified analysis

Example 8.5 The Fourier Transform of a Periodic
Discrete-Time impulse Train

=i Consider the periodic discrete-time impulse train

E:
o

=

o plrl= Y —rN 1, (8.38)

F=—i0

#% which is the same as the periodic sequence ¥[n] considered in Example 8.1. From the
oo resubls of that example, i Iollows that

_ Plkl=, for all k. (.39}
Thercfore, the TTFT of pln| s
e o O ek
st el = il N o 4
& Pig'™y k_;m i 3 (w N (8407

The result of Example 8.5 is the basis for a useful interpretation of the relation
between a periodic signal and a finite-length signal. Consider a finite-length signal x{n]
such that s[n} = D exceptin the interval 0 = n <= & 1, and consider the convolution

Mhe limits (Ho 2 would present a proslem since the impulses at both fland 2r would Toguire special
handbizg



Ghapter 8 The Discrete Fourier Transform

Tl

I_LII'TT]J]TTT?II]T?T“-

N "

x[a] Figure 8.4 Periodic sequence ¥{n]
formed by repeating a finite-length
l ] sequance, x|, periodically,
S ——— o s - w—e a—a—a———  AltCMatively, x[na] = &[] over cne
] h " period and iz zero otherwize.

of x[n] with the periodic impulse train fla] of Example 8.5
b
Eln] = x[n] # plr] = x|n] =+ E dln—rN|= Z xin —v N1 {541)
r=—rx FE—

Equaticn (8.41) states that x| consists of a set of periodically repeated copies of the
finite-length sequence xin|. Figure 8.4 illustrates how a periodic sequence ¥|n) can be
formed from a finite-length sequence x|#] through Eq. (8.41). The Fourier transform af
x[n]is X (e, and the Fourier transform of 1|« is

iie*f”j = X{E""“’]f’i_e“""’”]

= X{e/) Z L 2“) (842)

el .-], ‘_
=y —Xf Ny g (.:;«- %)
b=—nc J
Comparing Eq. (842} with Eq. {8.35), we conclude that
i- [k] = X{H'l”r"f’"}"’} L X(E}“H . {8431
w=12x Wik

In ather words, the periodic sequence X [k] of DFS coefficients in Eq. (8.11) has an
discrete-time interpretation as equally spaced samples of the DTFT of the finite-length
sequence ohtained by extracting one period of #(n]:ie.,
:{nJ O=n=N-1,
Hal = otherwise,

This is also consislent with Figure 3.¢~ where 1t is clear that x{r] can be obtained [rom
Fln]using Eq. (8.44). We can verify Eq. (8.43) in vet another way. Since x[n] = ¥|n] [or
0=<n=N&—1andz|n] =0 otherwise,

(8.4d)

N-1 M1
¥l = E x[nle fe = Z.E[n]a'*’”‘". (8.45)
r=l} n=l}
Comparing Eq. (8.45}% and Eq. (8.11), we see again that
X[k = X (e ) oamp - (8.46)

This corresponds to sampling the Fourier transf orm at & equally spaced [requencies
between e = 0 and o = 2x with a frequency spacing of 2w /N,



Section 6.3 The: Fourier Transtorm of Periodic Signals 637

Example 8.6 Relationship Between the Fourier Series
Coefficients and the Fourier Transform of One Period

We again consider (he sequence £[n] of Example 8.3, which is shown in Fgure 8.1,
One period of Hal for the sequence in Figure 8.1 is

1, O=n=4
¥lnl=4 i T 47
[n] {l'!. olherwise (o)
The Founer ransform ol ong penod of £[a] 1% given by
& i :
] ; _ g ST R )

Xlale) — Jem = il , 848
S8 Zu‘ﬂ ‘ sin{m/2) (6u0)

n

Eguation [8.446} can be shown to be satisfied for this example by subslituting
Low= 2kl By, (48], giving

~ jikmkginy SIDLTA{2}

Y k] = o
L= sin(rk 10}

which 15 identical to the result in Eg. (8.18). The magnitude and phase of ¥ (el @y are
sketched in Figure 8.5, Note that the phase is discontinuous at the frequencies where
X{ed™) = O That the sequences in Figures 8.2(a) and (b) correspond 1o samples of
Figures 8.50a) and {b), respecrively, is demonstrated in Figure ®.6, where Figures 8.2
and 8.5 have been superimposed.

| X teip

(&)

£ X (e
.-L. T

(1)

Figure 8.5 Magnitude and phase of tha Fourier transform of one period of the
sequence in Figure 8.1
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] L& (e, | k]l
-1 5
£

)

Flgure 8.6 COverlay of Figures 8.2 and 8.5 illustrating the DFS coefficients of a
periodic sequence as samples of the Fourier transtorm of one period.

8.4 SAMPLING THE FOURIER TRANSFORM

In this section, we discuss with more generality the relationship berween an aperiodic
sequence with Fourier transform X (e/*) and the periodic sequence for which the DFS
coefficients correspond to samples of X {¢/*) equally spaced in frequency. We will find
this relationship to be particularly important when we discuss the discrete Fourier trans-
form and its properties later in the chapter.
Consider an aperiodic sequence x[» ] with Fourier transform X {¢/*), and assume
that a sequence X [k] is obtained by sampling X (¢/*) at frequencies wy. = 27k/N; ie.,
X [K] = X (/™) |ympaniae = X (! PRI, (B.49)

Since the Fourier transform is periodic in e with period 2, the resulting sequence is
periodic in & with period V. Also, since the Fourier transform is equal to the c-transform
evaluated on the unit circle, it follows that X ] can also be obtained by sampling X (z)
at & equally spaced points on the unit circle. Thus,

X (k] = X(2)) e = X (eSO, {8.50)
These sampling points are depicted in Figure 8.7 for & = & The figure makes it clear
that the sequence of satnples is periodic, since the N points are equally spaced starting
with zero angle. Therefore, the same sequence repeals as & varies outside the range
0=k = N — 1since we simply continue around the unit circle visiting the same set of
A points.

e Fi
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Figure 8.7 Points on the unit circe at
which X5 is samplad to obtain the

peripdic sequence X[k] (N = B).

Mote that the sequence of samples X [k], being periodic with period M, could be
the sequence of DIFS coefficients of a sequence ¥[n]. 1o obtain that sequence, we cun
simply substitute X [£] obtlained by sampling into Eq. (8.12):

[ Mol
el | — i X - v "k”
Flnl= & X Kwt (8.51)
kel
Since we have made no assumption about «[n] olher than that the Fourier transform
exists, we can use infinite lmits to indicate that the sum is
. M .
X(e)= Y xlmletom (8.52)
PR=—00
is over all nanzero values of x[m],

Substituting Eq. (8.52) into Eq. (8.49) and then substituting the resulting expres-

sion for X [k]into Eg. (8.51) gives

N1 o
13 i
¥ Pl S W ik r—kn L
xn]l= N E Z x[m]e :|“"N ' (H.53)
k=t Lm=—oc
which, after we interchange the order of summation, becomes
fess] i N—I =
= = el —.icl:_rl:--mfl _ - _
in] = Z x[me] % Z L = Z x[m] pln —m]. (8.5
e k=0 -

The term in brackets in Eq. (8.54) can be seen from either Eg. (8.7) or Eq. (8.16)
to be the Fourier serigs representation of the periodic impulse train of Examples 8.
and 8.2, Specifically,

N1 fe'ad
Fln—m]| = % W= N S —m— N (8.55)
=0 rE—
and therefore,
L (= ]
Finl = xln] + Z Sln—rN]= Z tr —rN |, (8.56)
P — O Fa=—

where # denotes aperiodic convolution. That is, & [r] is the periodic sequence that resulis
from the aperiodic convolution of x[n] with a periodic unit-impulse train. Thus, the
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xn]

U 1 [ Lt

{a}

N=12

[ty

Figure 8.8 (s Finite-length sequence =[nl. {b) Pariodic sequence ¥[»] corre-
sponding to sampling the Fourier transtorm of xfa] with N =12,

periodic sequence x[n|, corresponding fo X [k} obtained by sampling X (ed%), is formed
from x[n] by adding together an infinite number of shifted replicas of x[a]. The shifts
are all the positive and negative integer multiples of ¥, the period of the sequence
X [k]. This is illustrated in Figure &.8, where the sequence xjn| is of length % and the
value of ¥ n Ea. fH..‘i{}} is N = 12. Consequently, the delayed replications of x[n| do
nol overlap, and one period of the periodic sequence £{n] 15 recognizablz as «[a]. This
1= consistent with the discussion in Scciion 8.3 and Example 8.6, wherein we showed
that the Founer serics coethicients for a penodic sequence are samples of the Fourier
transform of one period. In Figure 8.2 the same sequence x[n] is used, bul the value
of ¥ s now N =7, In this case, the replicas of x[n] overlap and one period of T[] is
no longer identical o x[#]. In both cascs, however, Eg, (8.449) still holds; i.c., in hoth
cases, the DFS coellicients of & [n] are samples of the Fourier transform of x{xr] spaced

[= 3

-l
£le| = r;mx[n —r7]

il M gt g

7 14 b

M

Figure 8.9 Periodic sequence ¥[n] correspording 1o sampling the Fourier frans-
torm of x[7] in Figure 8. 8(a} with N = 7.
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in frequency at integer multiples of 2m /&, This discassion should be reminiscent of our
discussion of sampling in Chapter 4. The difference is that here we are sampling in the
frequency domain rather than in the ume domain. However, the general outlines of the
mathematical representations are very similar,

For the example in Figure 8.8, the onpinal sequence x[r? can be recovered from
&[n] by extracting one period. Equivalently, the Fourier transform X (ef“) can be re-
covered from the samples spaced i frequency by 2m/12, In contrast, i Figure 8.9,
x[n] cannot be recovered by extracting one period of ¥|r]. and, equvalently, Xie'™)
cannot be recovered from its samples if the sample spacing is only 27 /7. In effect, for
the case illustrated in Figure 8.8, the Fourier transform of x|r] has been sampled at a
sufficiently small spacing {in frequency) to be able to recover it from these samples,
whereas Figure 8.9 represents a case for which the Fourier transform has been under-
sampled. The relationship between x[r] and one period of i(r] in the undersampled
case can be thought of as a form of aliasing in the time domain, essentially identical
to the frequency-domain aliasing {discussed in Chapter 41 that results from undersam-
pling in the time domain. Obviously, time-domain aliasing can be avoided only if x[x]
has finite length, just as frequency-domain aliasing can be avoided only for signals that
have bandlimited Fourier transforms,

This discussion highlights several importiant concepts that will play a central role
in the remainder of the chapter. We have seen that samples of the Fourjer transform of
an aperiodic sequence x{n | can be thought of as DFS coefficients of a periodic sequence
Ifn] obtained through summing periodic repheas of xfa]. If x[e] is finite length and we
take a sufficient number of equally spaced samples of its Fourier transform (specifically,
a mumber greater than or equal o the length of x{r]}, then the Fourer transform is
recoverable from these samples, and, equivalently, xfn] is recoverable from the corre-
sponding periodic sequence X[n]. Specilically, if x[n| = b outside the interval n = 10,
7 =N —1, then

{8.57)

v JEML OSSN -1,
N R otherwise,

If the interval of support of ¢[a] is different than 0, & = | then Eq. (8.57) would be
appropriately modified. -

A direct relationship between X (/%) and its samples X [1], i.e., an interpolation
formula for X (e/@), can be derived {see Problem 8.57). However, the essence of our
prcvinus discussion s that Lo represent or to recover xr], it 15 not necessary to know
Xtadi®y at all frequencies if x[n] has fimite length. (riven a finite-length sequence x{n],
we can form a periodic sequence using Eq. (8.56), which in tum can be represented by
a DFS, Aldternatively, given Lthe sequence of Fourler coeflicents ¥ [k1, we can find @[r]
and then wse Eq. (8.57) to obtain x[n]. When the Fourier serics is used in this way to
represent linite-lengih sequences, it is called the discrete Fourier transform or DIFT. In
developing, discossing, and applying the FT, it is always important 1o remember that
the representation through samples of the Fourier transtorm is in cllect a representation
of the finite-duration sequence by a periodic sequence, one period of which is the finite-
duration sequence that we wish W represent,
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8.5 FOURIER REPRESENTATION OF FINITE-DURATION
SEQUENCES: THE DFT

In this scction, we formalize the point of view suggested at the end of the previous
seclion. We begin by considering a inite-length sequence x[n] of length & samples such
that x[n] = 0 outside the range 0 = # = N — |, In many instances, we will want to
assume that a sequence has length &, even il its length is M = N In such cases, we
simply recognize that the last (N — M) samples are zero. To each finite-length sequence
of length N, we can always associale a periodic sequence

Elu) = Z xlm=ri| {8.58a)
The finite-length sequence «|n] can be recovered from Ix] through Eq. (8.57), e,

winf = l.i[u}_ D=n=N-—1, (8.58b)

(}, otherwise.

Recall from Section 8.4 that the DFS coelficients ol ¥[#] are samples (spaced in
frequency by 2w /N) of the Fourier transform of ¢[a]. Since x[x] is assumed to have
finile length &, there 15 no overlap between the terms x[n — ¢ N | for different values of
r. Thus, Eq. (8.584) can alternatively be written as

Iln] = r[ir modulo NJ, {8.57

For convenience, we will use the notation ((#))y to denote (x modulo &) with this
notation. Eq. {8.59) is expressed as

] = af(im))w]. (&.60)

Mote that BEq. {8.60) is equivalent to Eq. (8.58a) only when x[n] has length less than or
equal to V. The finite-duration sequence x|»n] is obtained from X|n|] by extracting one
period, as in Eq. (8.58h).

One informal and usetul way of visualizing Eq. (E.39) is to think of wrapping a plot
of the finite-duration sequence x[n} around a cylinder with a circunference equal to the
length of the sequence. As we repeatedly traverse the circumference of the cylinder. we
see the finite-length sequence periodically repeated. With this interpretation, represen-
tation of the finite-length sequence by a periodic sequence corresponds to wrapping the
sequence around the cylinder; recovering the finite-length sequence from the periodic
sequence using Eq. (8.538b) can be visualized as unwrapping the cylinder and laying it flat
s0 that the sequence is displayed on a linear time axis rather than a circular (modulo &)
time axis
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As defined in Section 8.1, the sequence of DFS coeflicients X [k] of the periodic
sequence ¥[n] s itselfl a periodic sequence with period &, To maintain a duality between
the time and frequency domains, we will choose the Fourier coelficients that we associatle
with a linile-duration sequence 1o be a finite-duration sequence corresponding 1o one
period of X {k]. This finite-duration sequence, X [k, will be relerred to as the DEL Thus,

the DIL, X [], is related to the DFS coefficients. X [k], by

X[k d=k=N-1.
X[k]l=
{0, otherwise,

and
X [k] = X[tk modulo M)} = X[{(k) .
From Section %1, X [k] and ¥[#] are related by

N—1
XK1= ) #nwir,
a={

I"‘r 1

S Z Jf [k}h, -Jm

where Wy = o722/,

(8.61)

(8.62)

(5.63)

(8.64)

Sinee the summations in Eqgs. (£.63) and {8.64) involve only the interval between

zera and (M — 1}, it follows from Egs. (8.58b) to (8.64) that

N-1
piWE,  O=k=N-1,
X [k]= E,
i, oltherwise,
N—1
_ —mew—‘“‘, O<n=<N-—1,
x[n]l= e

0, otherwise.

(8.63)

(8.66)
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Generally, the DF1 analysis and synlhesis equations are written as follows:

-1
Analysis equation: X [k] = E xfm] Wi O<k=N-—1, (8.67)
n=l
N1
Synthesis equation:  x[x] = L X [k]wl..,“. =n=N-1 (£68)

That is, the fact that X |&] = 0 for & outside the interval 0 < & = ¥ —1 and that x|n] =0
lor m outside the interval 0 = n = & — 1 is implied. but not always stated explicitly. The
relationship between x| | and X |&] implied by Eqs. (8.67) and (3.68) will sometimes be
denoted as

P e (8.69)

In recasting Eqs (5.11) and {8.12} in the lorm of Eqs (8.67) and (5.68) for finite-
dutration sequences, we have not climinated the inherent periodicity. As with the DFS,
the DFL X [k] is equal to samples of the periodic Foutier transform X (e/®), and if
Eq. (4.68) iz evaluated for values of n outside the interval 0 < n = N — 1, the result
will not be zero, but rather a periodic extension of x|n}. 'The inherent periodicity is
always present. Sometimes, it causes us difficulty. and sometimes we can exploit it, but
to totally ignore it is to invite trouble, In defining the DFT representation, we are simply
recognizing that we are interested in values of y[n] only in the interval 0 < n < N — 1,
because x|n] is really zero outside that interval, and we are interested in values of X 4]
only in the interval 0 = & = N — 1 because these are the only values needed in Eq. (8.65)
to reconstract Xie).

Example 8.7 The DFT of a Rectangular Puise

N: Torillustrate the DFT of a finite-duration sequence. consider | r | shown in Figure 8.10{a).
In determining the DFT, we can consider x{»] as a finite-duration sequence with any

" lenpth greater than or equal to & = 5. Considered as a sequence of length & = 5, the

periodic sequence $(a) whose DIFS corresponds 10 the DFT of x{a] is shown in Fig-

ure & 10{h). Since the sequence in Figure 8.1 b) is constant over the interval () < 7 = 4,

it follows that

r...

o}
= 4 jamwk
" b | — e 427
oo Y —Jl,—:.i;ﬁ:m__—
s ¥ (k] Lrj = FOA)
133_ 5. k TU,:I:S, 10 ...

HE: 0.  otherwise;

i i, the only nonzero DFS coefficients X [k] are at & = 1) and integer multiples of
itk = 5 {all of which represent the same complex exponential frequency). The DFS
o poefficients are shown in Figure 8.100e). Also shown s the magnilude of the DTTT,
X tef e Clearly, X [&] s a sequence of samples of X (e/2) at frequencies ay = 2ak /%,
“1 According to Eq. (8.61), the five-point TFT of x|a| corresponds to the finite- il..ngth
© sequence obtained by extracting one period of X [&£]. Consequently, the five-point DTFT

of x|#| is shown in Figure 8.10{d}.
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: i‘{ Figure 8.10 MNustration of the BFT. (a) Anite-length sequence £[n]. (b) Pariodic
sl sequence ¥[a] formad from x[n] with period & = 5. (¢} Fourigr seites coefficients
¥ [k for #[n]. Toemp hasize that the Fourier series coefficients are samples of the
;é‘z Fourier transform, | X(e"}| is also shown. {d) DFT of x[a].

g If, instead, we consider xfr| to be of length & = 10, then the underlving periodic
S sequence is that shown in Figure 8.11¢b), which is the periodic sequence considered
s in Example 83, Therefore, X [%] is a5 shown ir Figures 8.2 and 8.6, and the 14 point
W% DFT X k] shown in Figures $.11(c) and 8.11{d) is one perind of X [£].

L
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’ x[n]
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Gl
*[n]
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X[k
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{d}

Figure .11 lustration of the DFT, () Finite-length sequence x[r]. () Periodic
sequence #[n] formed trom «{] with pericd & = 10. {¢) DFT magnitude. {d} DFT
phasa. (x's indicate indaterminate values.)

The distinction between the finite-duration sequence x[#] and the periodic se-
quence $[a] related through Egs. (8.537) and (8.60) may scem minor, since, by using
these equations, it s straightforward to construet one from the other. However, the
distinction becomes important in considering properties of the DFT and in considering
the effect on x[xn] of modifications to X [k]. This will become evident in the nexgt section,
where we discuss the properties of the DFT representation.
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8.6 PROPERTIES OF THE DFT

In this section, we consider 4 number of properties of the DFT for finite-duration
sequences, Our discussion parallels the discussion of Section 8.2 for penodic sequences.
However, particular attention is paid to the interaction of the finite-length assumption
and the implicit periodicity of the DFT representation of finite-length sequences.

8.6.1 Linearity

I two finile-duration sequences xq[n] and x2[n] are linearly combined, 1.e, if
xslnl = arqr] + bxelnl, {8.71)
then the DFT of x5)n] is
Xalk]l=aX k] 4+ bX:[k]. {B.72)

Clearly, if x|n] has length & and xz[n] has length &7, then the maximum length of
xzin| will be N3 = max{¥,. N;). Thus, in order for Eq. (8.72) to be meaningful, both
DE1's must be computed with the same length N = N3 If for example, ¥y = -, then
X[k] is the DFT of the sequence 1|n] augmented by (N — Nq) zeros. That is, the
Na-point DFT of xq]n] is

Ne—1
Xilkl= ) minlWi, 0=k =N;-1, (8.73)

P |

and the N;-point DEL of x2[n] is

Ny—1
Xalkl= D xalnlWyt, 0=k <Na—L (8.74)
ﬂ:ﬂ
In summary, if
alnl 24 x4k (8.75a)

and

xaln] <5 X41k], {8.75hb)
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then
axyln) + braln] 223 aX k) + BX 3 [k]. (8.76)

where the lengths of the sequences and their DFTs are all cqual 1o at least the maximum
of the lengths of xi[n] and x3[n]. OF course, DFTs of greater length can be computed
by augmenting both sequences with zero-valued samples.

B.6.2 Circular Shift of a Sequence

According to Section 2.9.2 and property 2 in Table 2.2, if X(e/*} is the discrete-time
Fourier transform of x[n], then e~/ X (2/*) 15 the Fourier transform of the time-shifted
sequence x[n - m] In other words, a shift in the tme domain by m points {with posi-
tive m corresponding (o a time delay and negative m to a time advance) corresponds
in the frequency domain (o multiplication of the Fourier transform by the lincar-phase
[actor e /", In Section 8.2.2, we discussed the corresponding property for the DFS
coefficients of a pc.rmdn. sequence; specifically, if a peniodic sequence ¥{n] has Fourier
series coeflioents b¢ [k]. then the shifted sequence X[n — m] has Fourier senies cocfii-
cienls e~ {1 2TENIm Y [kl Now we will consider the operation in the time domain that
corresponds 1o multiplving the DFT coefficients of a finite-length sequence x[x)] by the
linear-phase factor e ~4278Vm Snecifically, let x [n] denote the finite-length sequence
for which the DIFT js o= 12T0NI® Y [0 { e i

i1 224 ¥, (8.77)

then we are interesied in xq[r] stch thal

xilm) 220 x (k] = e TN ) = W [k), (8.78)

Since the N-point DFT represents a finite-duration sequence of length N, both x|n]and
xiln] must be zero outside the interval 0 < n = ¥ — 1, and consequently, x1[a] cannot
result from a simple time shift of x|n]. The correct result follows directly from the result
of Section 8.2, and the interpretation of the DFT as the Fourier series coefficients of
the periodic sequence x1[((n))x]. In particular. from Egs. {(8.5%) and (8.62) it follows
that

- DFS = .
£ln] = 2100181 228 X&) = XHED AL (8.79)
and similarly, we can define a periodic sequence X |#] such that
. DFES - .
#Inl = xilIn] 223 X1 [K] = X (k. (8.80)
where, by assumption,

XLk} = eI BERINm o0 10, (8.81)
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Therefore, the DFS coelficients of #1[n] are

MNote that

That is, since e

Xylk] = e~ RAEDNNIm w0 (k) ) (8.82)

o FRT NG N e kSN m {83

~fi2mkiMim s periodic with period & in both & and m. we can drop the

notation ((k}x. Hence, Eq. (8.82) becomes

-i‘l:l-kl — e—_f{:rk.-'.\"lﬂlirl'kL {H.Rdj

so Lhat 1t follows [Tom Section 8.2.2 that

Xiln) = Xln — m] = x[l(n — m))x]. {8.85)

Thus, the finite-length sequence xq[n] whose TXFT is given by Fqg. (8.81) is

_ N 3lal = xliin — mdin], 0=n-=N-1, ,
milnl = {II.'I. otherwise. (856)
Equation {8.86) tells us how to construct x| r| from x|n].
Example B.8 Circular Shift of a Sequence
Uit The circular shift procedure is illustrated in Fgure 812 for m = -2, Le, we want
=:.Ei to determing xq[rn] = x[itn + 2y | for ¥ = 6, which we have shown will have
_[_:J_;i DFI X [k] = W, iy [£]. Specifically, from x[n], we construct the periodic sequence
5::_5- Xln] = xl{in))g], as indicated n Figure 8.12(b). According to Eqg. {(8.85], we then
2 shift £[n] by 2 to Lhe left, obtaining ¥ [2] = &[n + 2] as in Figure 8.12(c). Finally, using

Eq. {8.86), we extract onc period of Xy [#] to obtain xq [»], as indicated in Figure 8.12(d).

A comparison of Fieures 8120a) and {d) indicates clearly that xq[»] does nol
correspond o a linear shift of x[n], and in fact, both sequences are confined to the
interval between O and (& — 1). By reference to Figure 812, we sce that x4(»] can be
Formed by shilting x[r], s0 that as a sequence value leaves the interval o (N — 1) al
one end, it enters at the other end. Another interesting point is that, for the example
shown in Figure 8.02(a), i we form xz(s] = x[({n — 4731 by shilling the sequence by 4
to the right modulo f, we obtain the same sequence as x [a]. In terms of the DFT, this
resulls becanse 'I-'Ir';"c — w2 or. more generally, l{r‘ﬂJE = '-‘I-’J.:l”_m]'&'. which implivs
that an ¥-point circular shift in one direction by m is the same as a circular shift in the

# opposite dircction by & — .
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Figure 8.12 Circular shift of a finite- enath sequence; Le., the effect in the time
domain of multiplying the OFT of the sequence by a linear-phase factor,

o Section 8.5, we sugpested the interpretation of forming the periodic sequence
X[a] from the finite-length sequence x[r] by displaying x|#] around the circumfberence
of a cylinder with a circumference of exactly &V points. As we repealedly traverse the
circumference of the cylinder, the sequence that we see is the periodic sequence [a].
A linear shift of this sequence corresponds, then, to a rotation of the cylinder. In the
confext of finite-length sequences and the DFT, such a shift is called a circudar shift or
a rotation of the sequence within the interval ) =n < N - 1,

In summary, the circular shift property of the DFT is

Xlfln —mnl, O=u= N 1 el imkmy g wm g (8.87)

8.6.3 Duality

since the DFT 15 50 closely associated with the DFS, we would expect the DEFT o exhibit
a duality property similar to that of the DDFS discussed in Section 82,3, In fact, from an
examination of Eqgs. (8.67) and (8.68), we see that the analvsis and synthesis equations
differ only in the factor ! /N and the sign of the exponent of the powers of Wy,
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The DFT duality properly can be derived by exploiting the relationship between
the DET and the DFS as in our derivation of the circular shift property, Toward this,
cad, consider x[a]and its DFT X [k], and construct the periodic sequences

¥ln] = x[{m))x]. (8.88a)
X k] = X [({k))w), (8.88h)

s0 that
#n) 255 1, (8.89)

From the duality property given in Egs. (8.25),

%1n1 258 vE-h (8.90)
If we define the periodic sequence ¥ifn] = X in], one period of whjuh is the finite-
length sequence xyfr] = X [n], then the DES coefticients of ¥ [#] are X [k] = Nx[-k].
Therefore, the DFT of xy[a] s

T e T O L o9
or, equivalently,
Consequently, the duality property for the DFT can be expressed as follows: If
<In1 25 x4, (R93a)
then
Xl 22 Nal—knl, O<ksN—1 {8.93b)

The sequence Nx[((—k)x] s Nx[k] index reversed, modulo N, Index-reversing
modilo N corresponds specificafly to ((—ky =N —kforl =k = N—land((—k)ix =
(k) for b = {0 Asin the case of shifting modulo &, the process of index-reversing
modulo N is usually best visualized in terms of the underlying periodic sequences.

Exampie 8.9 The Duality Relationship for the DFT

i

T illusteate the duality relationship in Egs. (B.93}, let us consider the sequence x[a] of

Example 8.7 Figure 8.13(a) shows the finite-length sequence x|r], and Figures 8.13(b)
and B.13(c) are the real and imaginary parts, respectively, of the corresponding 10~
point DFT X [&]. By simply relabeling the horizontal axis, we obtain the complex
scquence xp[a] = X [k}, as shown in Figures 8.13{d) and 5.153(c). According 1o the
duahity relation in Egs (B.93), the i0-point DFT of the {complex-valued) sequence
A [r] is the sequence shown in Figure 8.13(f).

E
ELS

"
E:.t&?k{% S '-l':
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imtaginary parts of the dual sequence x [(] = X[a]. {f) The DFT of x 0]
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8.6.4 Symmetry Properties

Since the DFT of x[n] is identical 1o the DFS coelficients of the periodic sequence
ila] = x[{{n))y ], syminetry properties associated with the DFT can be inferred from the
svimmetry propertics of the DFS summariced in Table 8.1 in Section 8.2.6, Specifically,
using Egs. (B.88) topether with Properties 9 and 100 in Table B.1, we have

S S Xkl 0=n= N1 (5.94)
and
SI-nn] 228 XK, O<a=N-—1 (8.95)

Propertics =14 in Table 8.1 refer wo the decomposition of a periodic sequence into the
sum of a conjugatc-symmetric and a conjugatc-antisymmetric sequence. This suggests
the decomposition of the finite-duration sequence x[n] into the two finite-duration
seguences of duration ¥ corresponding to one period of the conjugate-symmetric and
one period of the conjugate-antisymmeltric componentis of Tlrl. We will denote these
components ol x[n] as xepin] and yopln]. Thus, with

Xln] = x[{(n)n] {8.96)

and the conjugate-symmetric part being

Tofn} = L{ER] + #*[=nl]. (8.97}
and the conjupate-anlisymmetric part being
Foln] = H{F[n] — £*[—n]}, (8.98)
we define xep[n] and xgpln] as
xepln] = Eelnl, b=n=N-1, (8.54)
xopln] = Zolnl, D=n=N-=1 {81001
or, equivalently,
aeplnl = Lty ] +x*[i=nyl),  O=n =N -1, (8.101a)
xapln] = Hxlttn)w] — x* (=nx 1), O=n=N-1, (8.101hk)

with both xep[n| and xyple| being finite-length sequences, ie., both zere outside the
interval 0 <= n = N — 1. Since ({—ally = (N —nland (in)ly = nfor D s n = N -1, we
can also express Bgs. (8.101) as

xeplnl = glxln] + 2*IN —nll,  1=n<sN-1, (8.102a)
xgpl0] = Relx[O]}, (8.102b)
xoplnl = %{.1‘{::] — 2*[N —nl} l=n=N-1, {8.1102¢)
Xop[U] = jImix[O]} (8.102d)

This form of the equations is convenient, since it avoids the modulo & computation of
indices.
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Clearly, .r._.}-.l'u] and xnp[n'l are not cquivalent 10 x.[n] and x,[r] as defined by
Eqs. (2.149a) and (2,149b). However, it can be shown (sce Problem 8.59) that

xepln] = [xeln] + x.ln — N[}, Od=<n=N-1, (8.103)
and
xﬂp[n] =x, [0+ x,in— N}, l=n=HN-1. (8.104)

In other words, xepin] and xqpln] can be penerated by lime-aliasing x.[n] and x,[r]
into the interval 0 = n = & — 1. The sequences xqpln] and xqpln| will be referred to
as the periodic confugate-symenetric and periodic conjugate-aniis yrumeiric COmMponents,
respectively, of x[n]. When xepln] and zqpln] are real, they will be referred 1o as the
periodic even and periodic odd components, respectively. Mote that the sequences xepln]
and xqp[n] are not periodic sequences; they are. however, finite-lenpth sequences that
are equal to one period of the periodic sequences &, [n] and %,[n], respectively.

Equations (8.101) and (2.102) define xepln] and xopin] in terms of x[=]. The in-
verse relation, expressing x([n] in terms of xepia] and xqpin], can be obtained by using
Eqgs. (8.97) and (8.98) to express E[n] as

F[nl = f.[n] + F.fnl (8.105)
Thus,
x[n] = &ln] = &:[n] + Taln], D=n=N-1 {R.106)
Combining Eqgs. (8.106) with Eqs. (899} and (8. 100), we abtain
x[n]| = xepln] + xgplnl. (5.107)

Alternatively, Egs. (8.102), when added, also lead to Eq. (8.107). The symmetry prop-
erties of the DFT associated with properties 11-14 in Table 8.1 now fallow in a straight-
forward way;

Relxln)) <2 X pik], (R.108)
o nFEa
fIm{x[n]} «— A qplkl], {(R.109)
xeplnl =3 Re{X [k]}. (8.110)
xapln] <25 fTmiX K1), (8.111)

8.6.5 Circular Convalution

In Section 82.5, we showed that multiplication of the DFS coefficients of two periodic
sequences corresponds to a periodic convolution of the sequences. Here, we consider
\wo finite-duration sequences xq[n] and xz[n], both of length ¥, with DFTs X ([&] and
X a[k], respectively, and we wish to determine the sequence xy(n], for which the DFT
18 X 3[k] = X [k]1X2[£]. To determine xz[n], we can apply the resulis of Section 8.2.5,
Specifically, x3ln] corresponds to one period of #3[n], which is given by Eq. (8.27). Thus,
N-=1
xalnl = Y Eilmlizln —ml,  O=n=N-1, (8.112)

ar=l)
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or, equivalently,
N-1
xifm] = Z el Vi bttt - mdin, D=n==N-1. (R.113)
=t

Since ((mlly = m for 0 = m = N — 1, Eq. (8.113) can be written

N—]
xifn] = Z xy[mlxaliin —milx]. U=mn=N-1 {3.114)
mp==(1

Lguation (8.114) differs from a linear convolution of x)[#] and x2[n] as delined
by Eq. (2.49) in some important respects. In linear convolution, the computation of the
sequence value rifn] involves multiplving one sequence by a tiune-reversed and linearly
shifted version of the other and then summing the values of the product vy [m|xa|r —m]
over all m. To obtain suwccessive values of the sequence formed by the convolution
operation, the two sequences are successively shifted relative to each other along a
linear axis, In contrast, for the convolution defined by Eq. (8.114), the second sequence
is circularly time reversed and circularly shifted with respect to the first. For this reason,
the operation of combining two finite-length sequences accarding to Eq. (8,114} is called
circular convoluiion. More specifically, we refer to Eq. (8.114) as an ¥ -point circular
convolution, explicitly identifving the fact that both sequences have length N {or less)
and that the sequences are shifted modulo V. Sometimes, the operation of forming a
sequence x3fa] for il = n = N - 1 using Eq. (5.114) will be denotled

x3ln] = xiln] @) 1ain], (8.115)

i.e., the symbol (3 denotes N-point circular convolution.
Sincethe DFT of xalnfis X 3[k] = X | [K]X 2[4 | andsince X [k X 21k] = Xa[£]X k).
it follows with no further analvsis that

x3ln} = xzln] @) n], (5.116)
or, more specifically,
|'|-'_]
a3ln] =3 xalmlxi[((n — m))yl. {8.117)
=}

That is. circular convolution, like linear convolution, is a commutative operation,

Since circular convolution is really just periodic convolution, Example 8.4 and
Figure 8.3 are also illustrative of circular convolution. However, if we use the notion of
circular shifting, it is not necessary to construct the underlying penodic sequences as in
Figure 8.3, This is illustrated in the following examples.

Example 8.10 Circular Conveolution with a Delayed Impulse
Sequence

i Anexample of circular convolution is provided by the result of Section 8.6.2. Let xz(n|
“ be a finite-duration sequence of length & and
x[n] = 8[n = ng], (8.118)
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o where 0 = np = N. Clearly, xq|#] can be considered as the finite-duration sequence

(}, h=n = nyp.
apfnl =41, n = n. (8,119
i}, npen=N-1

as depicted in Figure 8.14 fornp = 1.
The DFT of xyfn] is

X 1lk] = Wem, (8.120)

1} we form the prodact

Xalkl = Wi x a1k, (8.121)

we see from Section #4602 that the finite-duration sequence eorresponding to X 5[&]
is the sequence xs|4] rotated to the right by #;y samples in the interval 0 = n =
N — 1. Thal is, the cuorettlar convolution of A sequence xg[r] with 5 simgle detayed ani
}{, impulse resuits in a rotation of «g[n] in the interval [} = 7 < N — 1. This example is
i llustrated m Figure 8.14 for % = 5 and ng = 1. Here, we show the sequences xo[m]

xajm]

I I

[ N
£yim]
B .
i N m

H[{{0-mpyl0=m=¥-1

i N "

Bl -yl 0=m=N-1

il N L

xq|n] = x-|m| @x:[r:]

0 N

Figure 8.14  Circular convolution of a finite-length sequenca x,[7] with a single
delayed impuise, ¥ [7] = 8[n— 1]
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B and xp[m] and then [0 mixland w2l ({1 = miin ] 1t is clear from these two cases
i - that the resalt of circular conveluiion of x3(n| with a single shifted unit impulse will

o be 1o circularly shift wfn]. The last sequence shown is x3[n], the result of the dreular
af? convolution of 1y 2] and £2[n].

Example 8.11 Circular Convolution of Two Rectangular
Pulses

;%% Az another cxample of crewlar convelution, et
‘::E’

I“_ﬂj:.ﬁ-:[ﬂ]v:ié' BEnsd ol {8.122)

otherwisc,

i

IE*-?wﬂl :

s

3;}“1' where, in Figure 815, L = 6. If we let & denote the DFT iength, then, for &' = £, the
g’% N-point DFTs are
ety
%’:@ w-1 ,
e _— s ke |- k=10, —
L& ¥k =Xald= ) W [n. otherwise, 812)
L] -

If we explicitly multiply X ¢[&] and X 7|&]. we oblain

, WL k=10,

e Xafkl = X ([k[X k) = [U, S {8.124}
’% from which it fodlorws that
i
i vlnl=N,  O<n=N-1 (8.125)
;: This result is depicted in Figure 815, Clearly, as the sequence o [((n —m) iy | is rotared

—
G

with respect to xq[m], the sum of produces xqfmlxz[{fn — m)iy ] will always be equal
to N,

CH course, it is possible to consider xy[s] and x2[n] as 2L-point sequences by
augmenting them with L zeros. If we then perform a ZL -point circular convalution of
the augmented sequences, we obtain the sequence in Figure 816, which can be seen to
be identical ter the linear convolution of the finite-duration sequences xq[a] and x2[n].
This important observation will be discussed in much more detail in Scetion 8.7,

Mote that for ¥ = 21, as i Figure 816,
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Figure 815 N-point circelar convalution of bwa constant sequences af length N,
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Figure B.16 2{-paint circular convolution of two constant sequences of langth L.
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The circular convalution property is represcnted as

ailn) ® xaln] 228 X, (k1X 1K) (8.126)

In view of the duality of the DFT relations. it is not surprising that the DFT of a product of
two M-point sequences is the circular convolution of their respective DF s Specifically,
if xa[n] = x1[nlxa[n], then

1 N-1
Xslk] = < ; X1[E1X alCtk — £ (8.127)
or
71
xilnkelnl $F S XK @ X0kl (8.128)

8.6.6 Summary of Properties of the DFT

The properties of the DFT that we discussed in Section 8.6 are summarized in Table 8.2.
MNuote that for all of the properhies, the EXPTessions given sp-:.c:if}' ¥fplfor = n = & —1
and X [k]for0 <k = N — 1. Both x[a] and X [k] are equal to zero outside those ranges.
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TABLEB.2 SUMMARY OF PROPERTIES OF THE DFT

Finite-length Sequence (Length A')

L. xinm]

2. aqlnl, saln]

Y axynf+ brya]
4. XInl

5 xlitn—mw]
6. Wyt xin)

N-1

T Z sylmlealtin — mkinl
=0

8 xylnlealn]

9zl
100 x*E(0—w)epr]
11, Reix|wf)

12, jTm{x|n]}

xeplnl = Hslnl + 2 [U—n)ppli

- wepln] = Lslnl - " [(—miby])
Properties 15-17 apply oniv when x[#] is real.

15. Symmelry properiiss

M. zeplni=
17, xepln] = %{a[u] — z[{i—alx ]}

Liein] + elii—mny 1l

M-peint DFT (Length N)

X[k
K plk] X 50k

aX 4]+ &X 2[k]
Nlf{-kTin]
whm k)

K100k —£11w]
X [R1X k]

1 -1
7 2 XXk — ey
=0
Xk p]
X*[&]
Xeplkl = HX [(k)hy ] + X 1=k i
X oplkl = TAX (Y] = X1~y 1
Rl X [&1
JTm X [K]]

XAl = X' =k ]
Reld k1] = Re[X[0-kba ]l
Tm|X k]) = —Zm XL~k w])

| XK = IXT(—&0a]l
LXK = —L[X[—k1nT)

Rl X [R1)
iTm X [k}

B.7 COMPUTING LINEAR CONVOLUTION USING
THE DFT

We will show in Chapter 9 that efficient algorithms are available for computing the
DFT of a finite-duration sequence. These are known collectively as FFT alporithms
Because these algorithms are available, it is computationally efficient to implement a
convolution of two sequences by the following procedure:

(a) Compute the ¥N-point DFTs X 1Tkl and X 21k] of the two sequences x; Tn] and xa[n],
respeclively.

(b} Compute the product X 3[k] = X [k|X 2|kl ford =k = & — L.

{c) Compute the sequence xaln| = x1[n] &) x21n] as the inverse DFT of X a[&.
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Tn many DSP applications, we are interested in implementing a linear convolution of
two sequences; 1.e., we wish to implement an LTT system. This is certainly true, for
example, in fillering a sequence such as a speech waveform or a radar signal or in
computing the autocorrelation function of such signals. As we saw in Section 8.0.5,
the multiplication of DFTs corresponds to a circular convolution of the sequences. To
vhlain a linear convolution, we must ensure Lthat arcular convolution has the effect of
lincar convolulion. The discussion at the end of Example 8.11 hints al how this might
be done. We now present a more delailed analysis

B8.7.1 Linear Convolution of Two Finite-Length
Sequences

Consider a sequence xq[n] whose length is L points and a sequence xz[n] whose length
is P points, and suppose that we wish o combine these two scquences by lincar convo-
lution to obtain a third sequence

x3le]l = Z xi[mlxzlr — m). (B.129)

e o

Figure 8.17(a) shows a typical sequence x;[m] and Fipure 8.17(1) shows a typical se-
quence xz[r — m| for the three casesn = —1L forl =n = L—landn =L+ P — L
Clearly, the product xq[m]xz[n — ] is zero for all m whenever n = Gandn = L4+ P - 2¢
Le,xslm] #0for0=n = L+ P —2 Therefore, (L + P — 1) is the maximum length of
the sequence tafn] resulting from the linear convalution of a sequence of length 7. with
a sequence of length P,

B8.7.2 Circular Convolution as Linear Convolution with
Allasing

As Examples 8.10 and 8.11 show, whether a circular convolution corresponding to the
product of two M-point DETs is the same as the linear convalution of the corresponding
finite-length sequences depends on the length of the DFT in relation to the length
of the finite-length sequences. An extremely useful interpretation of the relationship
between circular convalution and linear convolution is in terms of time aliasing. Since
this interpretation is so important and useful in understanding circular convolulion, we
will develop it in several ways.

In Section 8.4, we ohserved that if the Fourier transform X 2/ of a sequence
x[n]is sampled at frequencies wy, = 2wk /N, then the resulting sequence corresponds Lo
the TXFS coefficients of the periodic sequence

Blnl= % x[n—rN], (8.130)
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xy [m]

()

~-F -1 0 L L

-+l
B[l + P-1l-m]
-
1] L il
L+P-1
i}

Figure B.17  Example of linear convolution of two finila-langth sequences show-
ing that the result is such thal sl = 0form = —tandforp = L4+ F — 1.
{a) Finite-'ength sequence xyLw]. {b) saln — m] tar several values of r.

From our discussion of the DFT, it follows that the finlle-length sequence

| XN D sk = N -1,
ol [ 0. otherwise, (8.131)
is the DFT of one period of Z{a]. as given by Eq. (8.130); i.e.,
o x|n]. ﬂf—'n <N - 1,
*plnl = lfh otherwise. {8.132)

Obwiously, if z|n] has lenpth less than or equal to N, no time aliasing occurs and
xpln] = x|n]. However, if the length of x[#] is preater than N, xp|n] may not be equal
to x[n] for some or all values of n. We will henceforth use the subscript p to denote
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that a sequence is one period of a periodic sequence resulting from an inverse DFT of a
sampled Fourier transform. The subseript can be dropped il it is clear thal time altasing
is avoided.

The sequence xaln] in Eq. (8.129) has Fourier translorm

X3{e™y = X (/%) X 2(7¥). (R.133)
1fwe detine a DFT
X3kl = X qie/ImhiNy, U=k=N-1, (#.134)
then it is clear from Eqs. (8.133) and (8.134) that, also
Xalkl= X e/ G750 x (@I @ThINL - e p = N -, (R.135)
and theretore,
Xalk] = X |K]X 20k ] (8.138)
That is, the sequence resulting as the inverse DFT ol Xak] is
~
[ rgwxglﬂ N, O =N -1, (8.137)
0, otherwise,

and from Eq. (8.136), it follows that
xapln] = xiln] B aln]. (8.138)

Thus the circular convolution of two finite-length sequences is equivalent to linear
convalution of the two sequences, followed by time aliasing according to Eq, (8.137),

Note that if & is greater than or equal to either £ ov P, X [k] and X ;[¥] represent
apfa] and xzla) exactly, but xsy|n| = x3|n] for all » only if ¥ is greater than or equal
to the length of the sequence xa[n]. As we showed in Section 8.7.1, if x;|#] has length
L and x;[n] has length P, then «a|n] has maximum lenpth (£ 4 # — 1). Theraefore, the
circular convolution comesponding to X[k | X 3[k] is identical to the linear convolution
corresponding o X 1 (e X 2{e/™) il M the length of the DFTs, satisfies N = L4 P~ 1.

Example 8.12 Circular Convolution as Linear Convolution
with Aliasing

727 The resulls of Example 8.11 are castly understood in Bght of the interpretation just
“% discussed. Note that xy[n] and x2[n] are identical constant sequences of length L —
T P= £, a5 shown in Figure 8.18{a). The lnear convolution of x 1« | and x3x(n]is of length
2 L= F—1 =11 and hasthe triangular shape shown in Figure 8, 18(b). In Figures B.1E(¢)
5 and {d] are shown two of the shifted versions x3fe — r N ] in Eq. (8.137), x3[n — W]
L and vy[n + N | for M = 6. The N-point cireular convolution of xy[#] and x:[#] can be
formed by using By, (B.137). This is shown in Figure 8.18(e) for N = L = § and in
_-"1_:5 Figure 8.18(f) for N = 2L = 12. Mote that for ¥ = L = 6, only xa|n] and xa[n = N ]
! E': comiribuie to the resull, For & = 20 = 12, only x3[n] contribuies 1o the resull, Since
the length of the linsar convolution is (2L — 17, the result of the circufar convolution
; for & = 2L is identical to the result of lincar convolution for all® <2 <= N — 1. In

'a'_f:_'__ F
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s faet, this would be true for A — 2L — 1 = 11 a5 well,

xyfnl = xyfn],
L=Pzf

#3ln] = i ln] & xin]

R A~
0 aL-1 n
{h
J::_EH.—;'J}.
L Nel=6
e T e SR T =t 1 l—-—-l-T J—j- l ] | I I T T
¥ N n
()
L xs[m + N,

e,

0 a
1)
L L @x:[ﬂ].
M=L=6
i No 1 n
ie)
L

xﬂn]@x;;'n}.
N=11

Figure 8.18 [lllustration that circular convolution is equivalent o linear convaly-
tion faliowed by aliasing. {3) The sequences ¥ (7] and £ [#] to be convalvad. (b) The
linear convolution of x [#] and x[a]. (c) x:,{‘n — N]for ¥ =6, (d} s[4+ N for
N = 6. (e} % [#] (8) x[al], which is equal to the sum of (b}, (c), and (d) in the
& interval 0 < 0 = 5. {f} 5[] Q20 % [0]-




Section 8.7

Lingar Convolution Using the DFT 665
E ry[a]
i
e == - e e
0 L »
(a)
1 xa(n]
0 P "
(k)
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13[n] = x,fn] « 3]

(i)

Figure 8.19 An example of linear convolution of two finite-length sequences.

As Example 8.12 points out, time aliasing in the circular convolution of two finite-
length sequences can be avorded if V¥ = L + P — 1. Also, itis clear that if N = L = P,
all of the sequence values of the circular convolution may be different from those of
the linear convolution. However, if P < L, some of the sequence values in an L-point
circular convolution will be equal o the corresponding sequence values of the linear
convolution, The time-aliasing interpretation is useful for showing this.

Consider two finite-duration sequences x| [n] and xa|n], with x;[n] of length £ and
xzln] of length P, where £ = L, asindicated in Figures 8.19(a) and 8.1%(b)}, respectively.
Let us first consider the L-point circular convolution of xy[a] and x;[n] and inquire as
to which sequence values in the circular convolution are identical to values that would
be abtained from a linear convolution and which are not. The linear convolution of
xpln] with xz[n] will be a finite-length sequence of length (L + P — 1), as indicated in
Figure 8.1%c}). To determine the L-point circular convolution, we use Eqs. {(8.137) and
{5.138) 50 that

a5
S x1[n] {Lyxaln] = F:meg.[n -¢l], B=n=L-1, (8.139)
u, etherwise,
Figure 8.20(a) shows the term in Eq. (8.139) for » = 0, and Figures 8.20(b) and 8.20){c)
show the terms for » = -1 and r = +1, respectively. From Figure 821, it should be

clear that in the interval ) <a < L — 1, x3,[n] is influenced only by xa[n] and x3[n + L].
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Figure 8.20 Interpretation of circular convolution as linear convolution followed
by aliasing for the circular convolution of the two sequences s [af and 5[] in
Fegura 8.18.
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In general, whenever P < [, only the term xzln + L] will alias into the interval
0 = n = L—1. More specifically, when these terms are summed, the last { £ —1) points of
salw + L], whichextend from s = ton = P -2, will be added to the first (P — 1) points
of xaln], and thelast { £ = 1) points of x3|r], extending fromn = Lton = L+ F -2, will
contribute only to the next period of the underlying periodic result 53|a]. Then, xspln|
is formed by extracting the portion for(t = # = L — 1, Since the last { £ — 1) points of
xi[n 4+ L] and the last (P - 1) points of xi[n] are identical, we can alternatively view
the process of forming the circular convolution «s,[#] through linear convolution plus
aliasing, as taking the (# 1) values of xa[n] fromn = Ltoen= 1L + P 2 and adding
them to the first (£ ~ 1) values of xa[n]. This process is illustrated in Figure 8.21 for
the case # = 4 and L. = & Figure 8.21{a) shows the linear convelution xs[#], with the
points for n = L denoted by open symbaols. Note that only (# — 1) points for n = L
are nonzero. Figure 8.21{h} shows the formation of X3ip [#] by “wrapping x;lx] around
om itself.” The first (# — 1) points are corrupted hy the time aliasing, and the remaining
poimtsfroma = P — lton =L — 1 (ie, thelasl L. — P+ | points) are not corrupted;
that is, they are wdentical 1o what would be oblagined with a linear convolulion.

From this discussion, 1l should be clear that if the circular convolution 15 of suffi-
cient length relative 1o the lengths of the sequences 1y [rt and cofr]. then aliasing with
nonzero values can be avaided, in which case the circular convolution and linear con-
volution will be identical, Specifically, if, for the case just considered, xa[n] 1s replicated
with perivd ¥ = L + P — |, then no nonzere overlap will oceur. Figures 8.21(c) and
B.21(d) illustrate this case, again for P =4and L =8, with ¥ = 11.

8.7.3 Implementing Linear Time-Ilnvariant Systems Using
the DFT

The previous discussion focused on ways of obtaining a linear convelution from a dr-
cular convolution. Sinee 1TT systems can be implemented by convolution, this implics
that circular convolution (implemented by the procedure suggested 1t the beginning of
Section 8.7) can be used 1o implement these systems To see how this can be done, let
us [irst consider an L-point input sequence x[r] and a P-point impulse response hnl,
The linear convolution of these two sequences, which will be denoted by y[n], has linite
duration with length (L + P — 1} Consequently, as discussed 1n Section 8.7.2, for the cir-
cufar convolution and linear convolution to be identical, the circular convolution must
have a length of at least (L + P — 1} points. The eircular convolution can be achieved
by multiplying the DFT's of x{n] and f{x] Since we want the product 1o represent the
DFT of the linear convolution of x|n] and i[#], which has length (£ + # — 1), the DFTs
that we compute must also be of at least that length, i.e., both x[n] and h[n] must be
augmented with sequence values of zero amplitude. This process is often referred to as
zero-padding,

This procedure permits the computation of the linear convolution of two finite-
length sequences using the TXFT, i.e., the cutput of an FIR system whose input also has
finite length can be computed with the DFT. In many applications, such as filtering a
speech waveform, the input signal is of indefinite duration, Theoretically, while we might
be able ta store the entire waveform and then implement the procedure just discussed
using a DFT for a large number of points, such a DFT nmght be impractical to compute,
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Another consideration is that for this method of fltering, oo filtered samples can be
computed until all the input samples have been collected. Generally, we would like Lo
avoid such a large delay in processing. The solution to both of these problems is to use
block convolution, inwhich the sipnal to be filtered is segmented into sections of length
L. Each section can then be convolved with the finite-length impulse response and the
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Figure B.22  Finite-length impuise response H]0] and indefinite-length signal x[n]
o be filtered.

il
filtered sections fitted Logether in an appropriate way. The linear filtering of cach block
can then be implemented using the DFT.

T illustrate the procedure and to develop the procedure for fitting the filtered
sections logether, consider the impulse response hin] of length P and the signal x[n]
depicted in Figure §.22, Henceforth, we will assume that x[n] = 0 for r < () and that the
length of x|x] i much greater than P. The sequence x|n] can be represented as a sum
of shifted nonoverlapping finite-lenpth segments of length L Le.,

oo
xal=3 xn—rLl, (8.1400)
f=u
where

xlm+rL]., O=n=L -1,

0, otherwise. (8.141)

ilnl =

Figure 8.23{a) illustrates this segmentation for r{n]in Figure 5.22. Note that within each
segmient x| n], the first sample is at n = O; however, the zeroth sample of x,[n}isthe rith
sample of the sequence x| This is shown in Figure 8.23(a) by plotting the segments
in their shifted positions but with the redefined time crigin indicated,

Because convolution is an LTI operation, it follows from Fug. (8.140) that

¥ln) = xlnl + hln] = D wln —rL), (8.142)
r={}
where
velnl = z;[n] + &ln]. {8.143)

Since the segquences 1. [n] have only I nonzero points and ifx] is of length P, cach of
the terms v [n] = x.|n] * &[x] has length {L 4+ P = 1). Thus, the lnear convolution
x| n] # kin] can be obtained by the procedure described carlier using N-point DFTs,
wherein N = L - P — 1. Since the beginning of each inpul section is separated from
its neighbors by L points and each filtered section has length (L + P — 1}, the nonzero
points in the filtered sectioms will overlap by (P — 1% pcﬁn[s, and these overlap samples
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must be added in carrying out the sum required by Eg, (8.142). This is illusirated in
Figure 8.23(b), which illustrates the filiered sections, v.[r] = x.[n] = Alr]. Just as the
inpul waveform is reconstructed by adding the delaved waveforms in Fipare 8.23{a),
the filtered result x|n] = hlr] is constructed by adding the delayed liltered sections
depicted in Figure 8.23(b). This procedure for constructing the filtered output from
filtered sections 1s often referred to as the vverlap—add method, because ihe filtered
sections are overlapped and added 1o construct the output. The overlapping occurs
because the linear convolution of each section with the impulse response is, in general,
longer than the length of the section. The overfap—add methoed of block convolution is
not tied to the DFT and circular convolution. Clearly, all that is required is that the
smaller convolutions be computed and the results combined appropriately.
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An alternative block convolution procedure, commonly called the everlap-save
mrethod, corresponds to Implementing an L-point circular convolution of a P-point
impulse response f|n] with an L-point segment z [n] and identifving the part of the
circular convolution that corresponds to a linear convolution. The resulting cutput
segments are then “patched together” to form the output. Specifically, we showed that
if an L-point sequence is circularly convolved with a P-point sequence (F = L), then
the first (F = 1) poinis of the result are incorrect due to time aliasing, whereas the
remaining points are identical to those that would be obtained had we implemented a
linear convolution. Therefore, we can divide x[n] into sections of length L. so that each
input section overlaps the preceding section by (F - 1) points. That is, we define the
sechions as

lnl=zn+r{l-P+1)—F+1]. J=n=L -1, {8.144)

wherein, as before, we have defined the tme origin for cach seetion tobe at the bepinning
of that seetion rather than at the origin of x[n]. This method of sectioning is depicted in
Figure 8.24(a}. The circular convolution of each section with hin] is denoted ».5[n], the
extra subscript p indicating that y.,|»] is the result of a circular convolution in which
time aliasing has occurred. ‘These sequences are depicted in Figure 8.24(b). The portion
of each output section in the region t = n = P — 2 is the part that must be discarded.
The remaining samples from successive sections are then abutted to construct the final
filtered output. That is,

el
vinl= wln—rL-P+1)+ P -1] (8.145)
r;'n
where
g " P - I = = I. it 1,
wrlals ['}J*FIH] oihum?:u.r:. - (8.146)

This procedure 15 called the overlap--save method because the iput segments overlap,
g0 thal each succecding input section consists of (L — P 4 1) new points and (F — )
points saved from the previous section.

The atility of the overlap—add and the overlap—save methods of block convolution
may not be immediately apparent. In Chapter 9, we consider highly efficient alporithms
for computing the DFT. These algorithms, collectively called the FET, are so efficient
that, for FIR impulse responses of even modest length {on the order of 25 or 30}, it
may be more efficient to carry out block convolution using the DET than to implement
the linear convolution directly. ‘The length P at which the DFT method becomes more
efficient is, of course, dependent on the hardware and software available to implement
the computations. (See Stockham, 1966, and Helms, 1967.)
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Figure B.24 (3} Decomposition of x[n] In Figure 8.22 inlo overlapping sections
of length L. (b) Result of convolving each secticn with fn]. The portions of each
filtered secton to be discarded in forming the kinear convolution are indicated.



Section 8.8 The Discrete Cosine Transform [DCT) 673

8.8 THE DISCRETE COSINE TRANSFORM [DCT)

The DFT is perhaps the most common example of a general class of finite-length trans-
form representations of the form

N=1

ALkl = ) xlnlofinl, (8.147)
r=i)
e,

xn] = — % Al In], (8.148)

where the sequences ¢y[nl, referred to as the basis sequences, are orthogonal to one
another; Le.,

S W=l
O BLGTTE P (8149)
=il

In the case of the DFT, the basis sequences are the complex periodic sequences e/ 27/V
and the sequence A[k] is, in general, complex even if the sequence x[r] is real. 1t is natural
to inquire as to whether there exist sets of real-valued basis sequences that would vield
a real-valued transform sequence Al4] when x[n] is real. This has led to the definition
of a number of other orthogonal transform representations, such as Haar transforms,
Hadamard transforms (see Elliott and Rao, 1982), and Hartley transforms (Bracewell,
1983, 1984, 1989}, ('The definition and properties of the Hartley transform are explored
in Problem 8.68.) Another orthoponal transform for real sequences is the discrete cosine
transform (DCT). (See Ahmed, Natarajan and Rao, 1974 and Rao and Yip, 1990.) The
DT is closely related to the DFT and has become especially nseful and important in a
number of signal-processing applications, particularly speech and image compression,
In this section, we conclude our discussion of the DFT by introducing the DCT and
showing its relationship to the DFT

8.8.1 Definitions of the DCT

The DCT is a transform in the form of Egs (8.147) and (8.148) with basis sequences
peln] that are cosines. Since cosines are both periodic and have even symmuediry, the
extension of x[r] outside the range (0 = n = (N — 1) in the synthesis Eq. (8.148) will
be both periodic and symmetric. In other words, just as the DFD involves an implicit
assumption of peniodicity, the DCT involves implicit assumptions of both periodicity
and even syrmmeiry.

In the development of the DFT, we represented finite-length sequences by first
forming periodic sequences [rom which the finite-length sequence can be uniquely re-
covered and then using an expansion in terms of periodic complex exponentials. In a
similar style, the DCT corresponds to forming a pericdic, symmetric sequence from
a finite-length sequence in such a way that the original finite-length sequence can be
uniquely recovered. Because there are many ways to do this, there are many definitions
of the ICT. In Figure 8.25, we show [7 samples for each of four examples of symmet-
ric periodic extensions of a four-point sequence. The original finite-length sequence is
shown in each subfigure as the samples with solid dots. These sequences are all periodic
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Figure B.25 Four ways toextend a four-poinf sequonce x]0] both periodically and
symmetrically. The finite-length sequence x| n] is plotted with sotid dots. {a} Tvpe-1
periodic extension for DCT-1. {b) Type-2 periodic extension for D0T-2. {c) Type-3
periadic extension for DCT-3, (d} Type-4 periodic exteasion for DET-4,

{with period 16 or less) and also have even symmeiry. In cach case, the finite-length
scguence is casily cxtracied as the lirst four poinis of onc period. For convenicnec,
wet denote the periodic sequences oblained by replicating with period 16 cach of the
four subscquences in Figure 825(a), (b}, (c), and {(d) as y{x}, £2[n], Z3(n]. and T4ln},
respectively. We note that %) [a] has period (2N — 2) = 6 and has even symmetry about
bothw = Jandn = (N — 13 = 3. The sequence ;uinl ha'~. period 2N = B and has
even symmetry about the “hall sample” points n = —5 and . The sequence F3in] has
petiod 4% = 16 and has even symmetry about v = 0 and n = B. The scquence $yjn)
also has period 4% = 16 and cven symmeiry about the “half sample™ points n = —%
and n = (2N - §) = 4.

The four different cases shown in Figure 825 illustrate the periedicity that is
implicit in the four common forms of the DCT, wiich are referred fo as DCT-1, DCT-2,
DCT-3, and DOT-4 respectively. 1L can be shown (sce Martucei, 1994) (hat there are
four more ways (o create #n even periodic sequence from x[r]. This implies four other
possible DXCT representations. Furlhermore, i s also possible to create cight odd-
symmetrie periodie real scquences from xfk], leading to cight different versions of
the discrete sine transform (DST), wherein the basis sequences in the orthonormal
representation are sine functions. These transforms make up a family of 16 orthonormal
transforms for real sequences. OFf these, the DCT-1 and DCTL-2 representations are the
most used, and we shall focus on them in the remainder of our discussion.
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8.8.2 Definition of the DCT-1 and DCT-2

All of the periodic extensions leading to different forms of the DCT can be thought of
as 4 sum of shifted copies of the M -point sequences £x[n] and £x[—n] The differences
butween the extensions for the DCT-1 and DCT-2 depend on whether the endpoints
overlap with shilted versions of themselves and, il so, which of the endpoints overlap.
For the DCT-1, x]n] is lirst modified at the endpoints and then extended o have period
2N — 2. 'The resulting periodic sequence 1s

Iy[n] = xe[lin)an—z] + xali(—n}lan 2], (8.150)

where xg[n] i the modified sequence x,[n] = elrlx[r], with

lor=0 N-1,
e B =0 (8.151)

1 l <m-==N-=2

1

The weighting of the endpoints compensates for the doubling that oceurs when the two
terms in By, (8.150) overlap at n = (,, 0 = (N — 1), and at the corresponding points
spaced from these by integer multiples of (2V — 2}, With this weighting. it is easily
verified that xfr] = & [#] fore = 0.1, ..., ¥ — 1. The resulling periodic sequence & [r]
has even periodie symmelry about the points r = Gandn = ¥ —1, 2N -2, ete, which we
refer Lo as Type-7 periodic symmetry. Figure 8,25 (a) 15 an example of Type-1 symmetry
where ¥ = 4 and the periodic sequence &y[n] has period 2N — 2 = 6. 'The DU is
defined by the transform pair

N—t

Xk = Ega[ﬂ]x[n] Cos (w "1) ; D=hk=N-1, {&.152)
i e -Eu’[&tl"ﬂm] ¢ ( ”-;-‘i) D<sm=N-1, (8153)
e —N_lk=n ! Covs N—1/" =R= . A

where o[n] is defined in Eq. (8.131).
For the DCT-2, x[n] is cxtended (o have period 28, and the periodic sequence is
given by

Tafal = x[((n)ay]+ x[({—n — 1Daw]. (8.154)
Because the endpoints do not overlap, no maodilication of them is required to ensure
that x[n]| = Fz[n] forn =0, 1,..., N — L. In this case, which we call Tvpe-2 periodic
symmetry, the periodic sequence ¥z{n] has even periodic symmetry about the “half

sample” points —1/2, ¥ — 12, 2N — 1/2, ete. This is illustrated by Figure 8.25(b) for
N = 4 and period 2N = 8. The DCT-2 is defined by the transform pair

N-1

5 k(2 3
X =2% z[nims(m‘l, Osck N (8.155)
2N J
LES
ke e (REZR D) sy 2 :
x[n]_EZ,slklx [k]mss(—zﬁ ) OD=n=N-—1, (8156)

k=l
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where the inverse DCT-2 involves the weighting function

L r=n
k=12 8.157
Aik] {1, l=k=N-1. ( )

In many treatments, the DT dehnitions include normahzation factors that make the

translorms unr’mr}r."

-2 .II_— o TH k
X “|kJ=,|II,'§-,,B[kJ Zx[a]cm(MEJ.
moli "

!
xfnl = 1'|"II

where

For example, the DOT-2 [orm is often defined as

D=k=N-—1 (8158

2N

|
= gl T2 I .
cos & i D=mn=N-—1 (8139
[k1X k] s
k=0 ozl "

= | b

(8.160)

- —-=. k=1,
_k = 47
PIk] {1, F=1.2,....N=1.

Comparing these equations with Eqgs. {(8.135) and (8.156), we see that the multiplicative
factors 2. 1/N, and g[&) have been redistributed between the direct and inverse trans-
forms. (A similar normalization can be applied to define a normalized version of the
DCT-1.) While this normalization creates a umitary transform representation, the defi-
nitions in Egs (8152} and (8.153) and Egs. (8.153) and (8.156]) are simpler to relate to

the P2XFT as we have

defined it in this chapter. Therefore, in the following discussions, we

use our definitions rather than the normalized definitions that are found, for example,
in Bao and Yip (19M)) and many olher lexls

Although we normally evaluate the DCT only for 0 = & = N —1, nothing prevents
our evaluating the DCT equations cutside that interval, as illustrated in Figure 8.26,
wherein the DCT values for 0 = & < & — 1 are shown as solid dots. These figures

illustrate that the D
the transform seque

CTs also are even periodic sequences. However, the symmetry of
nee is not always the same as the symmetry of the implicit periodic

input sequence. While &;[»] and the extension of X “*[k] both have Type-1 symmetry
with the same period, we see from a comparison of Figures 8.25{c) and 8.26(b) that the
extended X “|&| has the same symmetry as Xa[u| rather than 12|n|. Furthermore, X“{n|

extends with period

4N while £2in] has period 2N,

Since the DMCTs are orthogonal transform representations, they have properties
similar in form (o those of the DFT. These properties are claborated on in some detail
in Ahmed, Nalarajan and Rao (1974) and Rao and Yip (1990),

8.8.3 Relationship between the DFT and the DCT-1

As might bhe expected, there is a close relationship between the DFT and the various
classes of the DCT of a finite-length sequence. Todevelop this relationship, we note that,

AThe DCT would
-t

A=l

be a waitary transforn if it is erthonormal and also has the property that

i et |
¥ ol = ¥ A2,
=0
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Figure 8.26 DCT-1 and DCT-2 for the four-point sequence used in Figure 8,25,
(a) DCT-1. {b) DCT-2.

since, for the DOT-1, £n] 15 constructed from x;fn| through Egs. (®.15(}) and {3.151),
one period of the periodic sequence 3 ir| defines the finite-length sequence

xln] = xel{tn)lan 2] + zalli-—n)ay 2l = Di[nl, n=11....28 3 (8161}
where x,[n] = wlnlx(n] is the N -point real sequence with endpoints divided by 2. From
Eq. (8.161), it follows that the (2.5 — 2)-point DFT of the (2 — 2)-point sequence x |n]
is

Xkl = Xolki+ X k] = 270e( X ol&]), E=0,1,..,28 =3,  (8.162)

whera X ,[k] is the (2N — 2)-point DFT of the M-point sequence alnlxln]: i.e.. aln|x]n]
is padded with (& — 2) zero samples. Using the definition of the (24 — 2)-point DFT of
the padded sequence, we obtain for & = 0.1... . % — 1,

N=1
xnmnznﬁxnm}:zE%amﬂpnmm(ggﬁé)=xdmL (8.163)

Therefore, the DCTA] of an ¥-point sequence is identical to the first & pomts of X[&],
the (2N — 23-point DFT of the symmetncally extended sequence xy [n], and it 1s also
identical to twice the real part of the first & points of X, [k], the (2N — 2)-point DFT of
the weighted sequence x.[n].

Since, as discussed in Chapter 9, {ast computational algorithms exist for the DEFT,
they can be vsed o compute the DFI's X ,[&] or X%} in Eg. (8.163), thus providing
a convenient and readily available fast computation of the DWCT-1. Since the definition
of the DCT-1 involves only real-valued coefficients, there are also efficient algorithms
for computing the DCT-1 of real sequences more directly without requiring the use
of complex multiplications and additions. (See Ahmed, Natarajan and Rao, 1974 and
Chen and Fralick, 1977.)

The inverse DCT-1 can also be computed using the inverse TXFT It is only nec-
essary fo use Eqg. (8.163) to construct X 1|&] from X ‘it and then compute the inverse
(2N = 2i-point IIFT. Specifically,

X Vk], e e

X|1k]: Xn’.'l.!zl.\'l 2 k-|-| lﬁ;=,|"r'l.|...--.;!I---i"'l'r""-3-.

(8.164)
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and, using the definition of the (2N — 2)-point inverse DFT, we can compute the sym-
metrically extended sequence
e
Y X [kePRONR g = 0,120 -3, (8.165)
E=l)

nlnl=353

from which we can obtain x[a] by exiracting the first N points, i.e., x[n] = xy|n] for
=101 ..., N— L Bysubstilution of Eq. (8.164) into Eq. (8.165), it also [ollows that
the inverse 1C1-1 relation can be expressed in terms of X 1| k] and cosine functions, as
in Bq. (8.153). This is suggested as an exercise in Problem 8.71.

8.8.4 Relationship between the DFT and the DCT-2

It is also possible to express the DCT-2 of a finite-length sequence x[n] in terms of the
DFT. To develop this relationship, observe that one period of the periodic sequence
Iz|n| defines the 2N -point sequence

azln] = x[lindaw] + x[{(-n - L}jaw] = E2ln]. n=0,1,....28 -1, (8.166)

where x[n] is the original N-point real sequence. From Eq. (B.166), it follows that the
2N -point DFT of the 2N -point sequence x3[n] 15

Xa[k] = X [k] + X [k]ef2mt/2N E=01,... 2N —1, (8.167)

where X [k] is the 2¥-point DFT of the N-point sequence x|n];i.e., in this case, x[n] is
padded with & zero samples. From Eq. (8.167), we obtain

Xalkl= X [k]+ X"[kle.l'lrrk,-"[z.".-'j
= e.j::kl,-[Zh'j(X [k]e“-"”*-f-'{z"'” i X*[k]f.‘j‘ﬂ”'[z""'-}) (8.168)

_ Ejzk,*m';ZRE{X IHE—;nk;rz.\r}]_
From the definition of the 2§ -point DFT of the padded sequence, it follows that

-1
Re{x r::ie.-‘f'-"*f”*"‘] - E x[n] cos (%) : (8.169)

Therefore, using Egs. (8.155), (8.167), and (8.169), we can express X “*{k] in terms of
X [k, the 2N-point DFT of the N-point sequence x[n], as
Xk = mglx m]rmf’fl’“]. E=0.1,....8 1, (8.170)
or in terms of the 28-point DFT of the 2¥-point symmetrically extended sequence
x3[n] defined by Eq, (8.166) as
Xk = ¢ PRHRMX K] k=0,1,..., N-1, (8.171)
and cquivalently,
Xolk] = /™M x 20 k=0,1....N-L (8.172)
As inthe case of the DCT-1, fast algorithms can be used to compute the 2N -point
DFTs X[k]and X-|k]in Eqgs. (8.170) and (8.171), respectively, Makhoul {1980} discusses
other ways that the DFT can be used to compute the DCT-2, (See also Problem 8,72.} In

addition, special fast algorithms for the computation of the DUT-2 have been developed
{Rao and Yip, 19%}).
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The inverse DCT-2 can also be computed using the inverse DET The procedure
utilizes Eq. (8.172) together with a symmetry property of the DCI-2. Specifically, it is
easily verified by direct substitution into Eq. (8.155) that

XO0N -k = —X“20, k=0,1,.. .28 —1, (8.173)
from which it follows that
X °2q07, k=10,
f.li?!'.l:!.lrllll"n"'lez[kll E=1.....N=-1,
Xafkl =1 o P, (%.174)

_E.l'-n'.ic.-'{zf\'-l-x r.'ZL?_N i 'l-'ln b= N &+ ]._-J"If +2_ ; ”12;,.:' 0 o

Using the inverse TIFT, we can compute the symmetrically extended sequence

2N -1
Y XafklelBRAN), g 01,28 - (8.175)
=l

x2ln] = IN

from whichwe can obtain x[n] = xa[r|forn = 0,1, ..., ¥—1. By substiiating Eqg. (8.174)
into Eq. (8.173), we can easily show that the inverse DCT-2 relation is that given by
Eq. (8.136). (See Problem 8.73.)

8.8.5 Energy Compaction Property of the DCT-2

The DCT-2 is used in many data compression applications in preference to the DF1
because of a property that is frequently referred to as “enerpy compaction.” Specifically,
the DCT-2 of a finite-leneth sequence often has its coefficients more highly concentrated
at low indices than the DFT does, The importance of this flows from Parseval's theorem,
which, for the DCT-1, is

w1 N—1

2 ] X L2 -
2_ alnllxinll = s 3 alklix k) (8.176)
n=0 k=l

and, for the DCT-2, 15

-1 N—1

I et
Z_;} il = = Eﬁlfﬂlx 135 (8.177)

where glk] is defined in Eq. (8.157). The DCT can be said to be concentrated in the
low indices of the DCT if the remaining DCT coefficients can be set to zero without
a significant impact on the energy of the signal. We illustrate the enerpy compaction
property in the following example.
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Example 8.13 Energy Compaction in the DCT-2

=]

-

- |

Sign T N SO
;;m,;.z%: L 28 o

=
.

b sma T

:i-'téd-.l.-i.'-“:

st i

sEmg
;T

£ s

T

S

i
T

T EEE TS

e
-

-

b

BT

i

L

B T T

T TER
b e
Lt T S .

™ amiipta s .
g peEE
. rgs

Consider a test input of the form
xlr] = @ cosiupn + ¢, n=01,....N -1, (8.178)
Such a signal 1s illustrated in Figure 827 fora = %o =01x, ¢ =0, and & = 32,

1 T

. U R
; I

wo Y T

2 | By e | 1 ] ]
0 A 10 15 20 25 )
n

Flgure 8.27 Test signal for comparing DFT and DCT.

The real and imaginary parts of the 32-point DFT of the 32-point sequence in
Figure 8.27 are shown in Figures 8.28(a) and (b)), respectively, and the IXTT2 of the
sequence is shown in Figure 828(c). In the case of the DFT, the real and imagnary
parls are shown for £ =0, 1,..., 18, Since the signal is real, X(0] and X[16] are real,
The remaining values are complex and conjugate symmetric. Thus, the 32 real numbers
shown in Figurcs 8.28{a) and (b) completely speeify the 32-point DFT. In the case of
the DICT-2, we show all 32 of the real I2CT-2 values, Clearly, the DDCT-2 values are
highly concentrated at low indices, so Parsevals theorem suggests that the energy
of the seguence is more concenlrated in the DCT-2 representation than in the DFT
representation.

This energy concentration property can be quantified by truncating the two
representations and comparing the mean-squared approaimation ermor for the two
representations when both use the same number of real coefticient values. To do this,
we define

3 1 Al . o

x0p) = - 5 TuRIX RN a1 Nl
k=)

: (K.179)

where, in this case, X [&] is the &-point DFT of x[#] and

I, G=k=(N—1—mZ,

Tkl =10 (N 11 my2=k<{N 11my2

L, iN+1+my2=k=n-—-1
ITm = 1, theterm XA 2118 removed, ITm = 3, then the terms X[V /2] and XN 2 1]
and its corresponding complex conjugate X[N /2 + 1] are removed, and so forth; Le.,
-l form =1,3,5, ..., N 1 is the sequence that is synthesized by symmetrically
amitling m DFT coelficients? With the exception of the DFT value, XA /21, which 13

SFor simplicity, we assume that & is an even integer.
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real, cach omitted complex DFT value and its corresponding complex conjugate actu-
. ally eorresponds to omitting two real numbers. For example, m = 5 would correspond
to setting the coefficients X[14}, X[15], X[16], X[17], and X[1¥] to zero in synthesizing
M) from the F-point DET shown in Figures 8.28(a) and (b

" Likewise, we ean truncate the DOCT-2 representation, abtaining

Ne=1~m
Wl =+ 3 Bk ik cos (W) Densh—1  (8180)
k

==l

" In this case, if m = 5, we omit the DUT2 cocficients X°°|27]. ... X“2[31] in the
: synithesis of r#r“t [a] from the DOCT-2 shown in Figure B280e), Sinee these coelfcienis

S8 are very small, xS%[n] should differ only slightly from x[n]

b % ! i . — : J
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|
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4 Figure 8.28 (&)} Real part of 32-point DFT; (b} Imaginary part of 32-point DFT,
4

() 32-point DGT-2 of the test signal plotted in Figure 8.27,
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To show how the approximation ercors depend on m forthe DFT and the DCT-2,
i we define
d 1§ dr
L S Yl TR TURR « ) PR
ENm] = = ) lxla] — x50 )
n=I{]
atu

N-1
1
E9% ] = = 5 x(nl — x %l 2
n={l

! to be the mean-squared approgimation errors for the truncated DFT and DCT, re-
spectively. These errors are plotted in Figure 8.29, with E9|m] indicated with c and
Ed“tlm] shown with ® For the special casesm = U (no truncation) andm = N — 1 {only
st the DC walue is relained), the DFT truncaltion function is gl =1ford < &£ = N -1

voand Ty _qkl=0forl =k = N  1and Ty_(10] = L, In these cases, both represen-
tations give the same error. For values 1 = m = 30, the DFT error grows steadily as m
inereases, whereas the THOT error remaing very small—up o aboat ;= 25—implying
that the 32 numhers of the sequence x[n] can be represented with slight error by only
seven DOT-2 cozfficients.

0.3 I I
gab — D7 truncation error
' ——— D¥FT Lruncalion ercor
03
03—
0.1 — L . e e e
oy o i e
[ = 1 L L L
0o 3 1 15 L

Muamber of cocfficients scl e zoro

Figure 8.29 Comparison of truncation errors for DFT and DET-2.

The signal in Example 8.13 is a low frequency exponentially decaying signal with
zero phase. We have chosen this example very carefully to emphasize the energy com-
paction property. Not every choice of x[n] will give such dramatic results. Highpass
signals and even some signals of the form of Eq. (8.178) with different parameters do
not show this dramatic difference. Nevertheless, in many eases of interest in data com-
pression, the D2 provides a distinet advantage over the DFT. 1t can be shown (Rao
and Yip, 1990) that the XCT-2 is nearly oplimum in the sense of minimum mean-sguared
truncation error [or sequences with exponential correlation funetions,

8.8.6 Applications of the DCT

The major application of the D=2 iz in signal compression, where it is a key part of
many standardized algorithems, (See Jayant and Noll, 1984, Pau, 1995, Rao and Hwang,
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199, Taubman and Marcellin, 2002, Bost and Goldberg, 2003 and Spamas, Painter and
Adti, 2007.) In this application, the blocks of the signal are represented by their cosine
transforms The popularity of the DCT in signal compression 15 mainly as a result of
ils enetpy concentration properly, which we demonstrated by a simple example in the
provious section.

The DCT representations, boing orthogonal translorms like the DFT, have many
properties similar to those of the DFT that make them very flexible for manipulating
the signals that they represent. One of the most important properties of the DFT 13
that periodic convolution of two finite-length sequences corresponds to multiplication
of their corresponding DF1s. We have seen in Section 8.7 that it is possible to exploit
this property to compute linear convolutions by doing enly DFT computations. In the
case of the DT, the corresponding result is that multiplication of DCTs corresponds
to periodic convolution of the underlying symmetrically extended sequences. However,
there are additional complications. For example, the periodic convolution of two Type-2
symmelric periodic sequences is not a Type-2 sequence, but rather, a Type-1 sequence,
Alternatively, periodic convolution of a Tvpe-1 sequence with a Type-2 sequence of the
same implied period is a Type-2 sequence. Thus, a mixture of DMCTs is required to ef-
fect periodic symmetric convolution by inverse transformation of the product of DCTs.
There are many more ways to do this, because we have many different DCT definitions
from which to choose. Each different combination would correspond to periodic convo-
Tution of a pair of symmetrically extended finite sequences. Martucei (1994) provides a
complete discussion of the use of DCT and DST transforms in implementing symmetric
periodic convolution.

Multiplication of DCTSs corresponds to a special type of periodic convolution that
has some features that may be uscful in some apphcations. As we have seen [or the DFT,
periodic convolution is characterized by end effects, or “wrap around™ effects, Indeed,
even binear convolution of two finite-length sequences has end effeets as the mmpulse
response engages and disengages from the input. The end etfects of periodic symmetric
convolution are different from ordinary convolution and from periodic convolution as
implemented by multiplying DFTs The symmetric cxtension creates symmeiry at the
endpoints, 'The “smooth™ boundaries that this implies often mitigate the end effects
encountered in convelving tinite-length sequences, One area In which symmetric con-
volution is particularly wseful is image filtering, where objectionable edge effects are
perceived as blocking artifacts. In such representations, the DCT may be superior to
the I3FT or even ordinary linear convolution. In doing periodic symmetric convolution
by multiplication of DXCTs, we can force the same result as ordinary convolution by
extending the sequences with a sufficient number of zero samples placed at both the
heginning and the end of each sequence.

8.9 SUMMARY

In this chapter, we have discussed discrete Fourier representations of finite-length se-
quences. Most of our discussion focused on the diserete Fourier transform (DFT), which
is based on the DFS representation of periodic sequences, By defining a periodic se-
quence for which each periodis identical to the finite-length sequence, the DFT becomes
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identical to ane period of the DFS coefficients Because of the importance of this up-
derlying periodicity, we irst examined the propertics of DFS representations and then
interpreted those propertics in terms of finite-length sequences. An important result is
that the DFT values are equal to samples of the z-transform al eqiially spaced points
on the unit circle, This leads to the notion of time aliasing in the interpretation of DFT
properties, a concept we used extensively in the study of circular convolution and its
relation to linear convolution. We then used the results of this study o show how the
DFT could be emploved to implement the linear convolution of a finite-length impulse
response with un indefinitely long input signal.

The chapter concluded with an introduction to the DCT. 1L was shown that the
DCT and DFT are closely related and that they share an implicit assumption of peri-
odicity. The energy compaction property, which is the main reason for the popualarity of
the DOT in data compression, was demonstrated with an example.

Basic Problems with Answers

8.1. Suppose x.{ry is a periodic continuous-time signal with period 1 ms and for which the
Fourier series is
i
2of) = Z: age? (2O kY
=-0
The Founer series coctficientsa; are wero for () = % x.0) issampled with a sample spacing
= é % 1072 s to form x|n |, That is.

"
xfn] = x (@ihﬂl') :
ta) Is x|r| perindic and. if so, with what period?
(b} Is the sampling rate above the Nvguist rate” That is, is T sufficiently small 1o avoid
aliasing”
(e} Find the DS coetficients of x[x] in terms of q;.

8.1, Suppose I[r]isa periodicscquence with period &, Then %[ is also periodic with period 30
Let X [k] denote the DFS coefticients of £ix| considered as a periodic sequence with periad
N and let X1k denote the TIFS cocflicients of ¥{n ] considered as a peniodie sequence with
period 3A.
(a) Express 5('_1_[.1:] in terms of X [%].
ib) By explicitly calculating X [k] and X 4[&], verify your result in part {a) when #[n] is as
given in Figure PE2.

—alylelly ]

5 & "™ Figure P8.2
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83, Figore PR3 shows three periodic sequences &) [m] throlgh £3[nl. These sequences can be
expressed in a Fouricr senes as

&1
1 o ] i
¥lnl= '_..-' E Xik |£;Jr.2.‘T_*|\-'.-M'.'I
k=0

{a) Fur which sequences can the time origin be chosen such that all the jf__l.l;] are real?

ih) Tor which sequences can the iime orgin be chosen such that all the X (&) (except for
k an integer multiple of A7) are imaginary?

(¢} For which sequences does X (k| = 0 for & — 2, +4, £67

] |
|| " ||l :
I
TR T L

8.4, Consider the sequence x[r] given by tlr] = a"ulr]. Assunte o} < 1A periodic sequence
Ela| 1% consiructed from xia ) in the following waw;
o
&[n] = 2: £l =N |

r= -

{a) Determing the Fourier lrdnsiunn_.lfl.’a'-""‘} of x[x].
by Deu:rmi_ne the DFS coe ﬂ]cignlﬁ X [£] fowr the sequence L[]
(c) Howis X [&] related to X e/

8.5, Compute the DFT of cach of the following finile-lenpth sequences considered 1o e of
lenpth & {where & is even):
la} xn]=d[r],
(b) x[n]=dlr —ryl. =ng=N&-1.
I, newen, O=n= N-1,
) Al =1, nodd, DznzN-1,
D=n<NR2-1,

| 17
{d) x[n]= 0, NZ=n=<N-—I
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ﬂ'”. GE?‘J = N — |_.
3.  otherwise

(e} xiu| = {

Consider the complex sequence

e L | ey e
10, otherwise.
(a) Find the Fourier transform X (e/™) of x[n].
(k) Find the N-point DFT X [4] of the finite-length sequence x[n].
{c} Find the DFT of x[n] for the case wg = 2xky/ V. where &p is an integer.

Consider the finite-length sequence x [r] in Figure P4.7. Let X {z) be the z-ransform of xfn].
If we sample ¥iz) atz = /574 £ — 01,2 3 we obtain

Xkl = x(,—_)|==£m,mh £=01,23

Sketch the sequence x;|a] obtained as the inverse DFT of X [£].

UL

R L O I " Figure PA.7

Let X () denote the Fourier transform of the sequence x[n] = (0.3 u[n]. Let v|x] denote
a finite-duration sequence of lemgth 10 d.c., vir] = 0n < 0,and ¥|n] = 0, n = 10, The 10-
poinl DFT of y[=], denoted by ¥ [X], corresponds to 10 equally spaced samples of X (/™)
e, ¥[t] = X {2710 Determine y[n).

Consider a 20-point finite-duration sequence xfre] such that x[n] = Couside 0 < n = 19,
and let X (e/%) represent the discrete-time Founer transform of «[r).

() If it is desired to evaluate X{e!™) al @ = 4r/5 by computing one M-point DFT,
determine the smallest possible M, and developamethod to obtain X e/ ate = 473 /5
using the smallest &f. )

(b) I it is desired o evaluate X (2% al @ = 107/27 by computing one L-poinl TFT,
determine the smallest possible 7, and develop a methad to obtain X (a1 2Ty using
the smallest £,

The two eight-point sequences xq [r] and xa{x] shown in Figure PRI have DFTs X [£] and
X k], respectively, Determine the relationship between X 4] and X2 ]&]).

£ x) [n}

0 1 2 31 4 5 6 7 8 n

- xafn]
d
b
| i ]
P12 34 356 7 8 7 FouePs.0
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RAL Figure PET] shows two fimite-length sequences xy[r] and xar]. Skelch their six-pomnl ar-
cular convalution.

& v [ nin]
2 ]
2 E 1
et -
o 1 2 3 4 A n no1 z n
Figure P8.11

#.12. Suppose we have two four-point sequences x[a] and &[] as follows:

xln =‘,ms(;'r:—”]|~ n=0.1,23

i) =21, e=0,123

(a) Calculate the four-poinl TPFT X [k].

(b} Calculare the four-point DFT ML)

{c) Caloulate vin] = .rl_nj@.ﬁzl_nj by doing the circular convelution directly,

{dy Calculate v[r] of part (¢ by multiplying the DFTs of x[x] and k[x] and performing an
inverse DFT.

#.13. Consider the finite-tength sequence x(n] in Fgure PR3, The five-point DFT of x{x] is
denoted by X [%]. Plot the sequence y[n] whose DFT is

Y ik] = WX [k,

e

B I

el
o
o
b=
14

i Figure PB.13
B4, Two finite-length sgnals, x)[n] and xa]n], are sketched in Figore PE.14. Assume that xy[x]

and xy|n] are zero cutside of the region shown in the figure. Let x3[n] be the eight-point
cireular convolution of x| [a] with x2is]; Le., x300) = v [#](8) 2z [n]. Determine x5302].

5 o 4
x[n] & £ =
ll 1 lx 11 i
TR 3 4 5 6 7 8 9 10 ...

-1 0 I 2

-1 0 1 304 5 & 7 4 9 10 ... Figure PB.14
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H.15, Figure PE.15-] shows two sequences xy[a] and xq[nl. The value of w1[#] at time e = 3 48
not known, but is shown as a varable a. Figure P2.15.2 shows v[«|, the four-point circular
convolution of xq]r] and rz(n]. Based on the graph of v|»). can you specily @ uniquely? If
so, what is «? 1If not, give two possible values of a that would vield the sequence v[n] as
shown.

2 .!-|_|-"J.|

-1t o 1 2 3 4 35 Figure P8.15-1
1 r ¥ln]
— - L ———
S l l A4 5
-1 -1 Figure P8.15-2

8.16. Figure P2.16-1 shows a six-point discrete-time sequence a|n). Assume that x[w] = O outside
the interval shown. The value of x[4] 18 not known and 15 represented as &, Mote that the
sample shown for b in the figure is not necessarily eo scale. Let Xiel®) be the DTFT of xix]
and X {[k] be samples of X (&™) every 7/2: i,

Xllij = .Jffl‘jmj sl Ak 0=k = 3.

The four-point scguence 1y [#] that results from taking the four-point inverse DFT of X (4]
is shown in Figure PA.16-2. Based on this figure, can vou determine b uniquely? 17 so, give
the value for b.

2 g +ln]

=l ]

[
[aa=]
—
=3
B
=
)
[T

Flgure P&.16-1

4 aful

2 3 4 3 Figure P8.16-2
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8,17, TFigure PE.17 shows two Amite-length sequences xq (0] and x2(n | What is the smallest & such

that the ¥ -point circular convolution of x| [n] and x;]#] are equal to the linsar convolution
of these sequences, i.e., such that xq[«] @.‘[2 lre] = xyin] % xa|n]?

3 Xyl

[ 3]

ap[r]

Figure P17

8.18. Figure PR.18-1 shows a sequence xfn] for which the value of £[3] is an enknown constant e.
The sample with amplitude ¢ is not necessarily drawn to scale. Let

Xqlk] = X [k]ed27 /5,

where X [£] is the five-point DFT of x[x]. The sequence xq[n] plotted in Figure PA.158-2 is
the inverse DFT of X ; [k]. What is the value of ¢7

x[n]

Figure P8.18-1

Figure P8.18-2
4.19, Two finite-length sequences x[n| and x;irt| are shown in Figure PE.19. The DFTs of these
sedquences, X [k} and X ¢ {k], respectively, are related by the equation
4 IH:] =X rk]f—ji_z.‘l'km.-'ﬁ)‘

where m is a0 vnknown constant, Can you determine a value of m consistent wilth Fig-

ure PR.IY! Is your choice of m unique? If =0, justify vour answer. If not, find another choice
of m consistent with the information given,
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3 xn]

b s 2 T S
-1 0 l l 5 6 7
-1 -1
3 xp[#]
bl
1

T I T i

4 &1 f 7

|
e
i
—
o)
rod)

Figure P8.19
8.20. Two Onite-length sequences x[x] and xy [#] are shown in Figure PS20. The V-point TFTs
of these sequences, X [&] and X 1 [&], respectively, are related by the equation
X 11k] = X [k]e/ TN
where & is an unknown constant, Can vou determine a value of N consistent with Fig-

wre PR2O? Ts vour choice for A unique? IT so, justify your apswer. IT not, find another
choice of ¥ consistent with the information given.

1 1 x[n]

Figure P8.20

Basic Problems

8.21. (a) Fipure PE.21-1 shows two periodic sequences, ¥ |#) and Ba[s ], with period ¥ = 7. Find
# sequence ¥y [n] whose DES s cgual to the product of the DFS of T4 [a] and the DFS
of Z3[n). i.e,

¥ilk] = X [k1Xa[k].
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£ é X |n|

3] 5

sl [Tisel1T10,. -
TtsolllTttel ity
T -5 -3 10123456 n
}7[51

1 1 1

-7 -5 -3 101232 45% " Figure P8.21-1

(b} Figure P221-2 shows 4 periodic sequence ¥2(n) with period & = 7. Find a sequence
¥a[n] whose DFS is equal o the product of the DFS of £y [r] and the DFS of #5[n], .o,

Falkl = X 1k1X (k]

Fyln]

~7 -5 -3 10123456 " Figure P8.21-2

K.22. Consider an N-point sequence x(a], i.e.,
x[n]l=0lorn = N —1andns < 0.

The discrete-time Fourier transform of xfn|is X(e/*), and the A -point DFT of x[x]is X]&].

ReiX[k]}=tfork=10.1,.... M - 1, can we conclude that Re lejr-'""]l =0for m =
w = w7 Il your answer is yes, explicitly show why, If not, give a simple counterexample.

£.23. Consider the real finite-length sequence «[r] shown in Figure PR.23,

4 x[n]

LFS)

3 31 0 1 2 3 4 % § = Figure PB.23

(a) Sketrch the finite-length sequence vin] whose six-pount DET is
Y [k) = WX ],

where X [£] is the six-point DFT of x{n].
(b} Sketch the finite-length sequence win] whose six-point DFT is

W k] = Tm|X k]
(€} Sketch the finite-Yength sequence g(n] whose three-point DFT is
Ok = X [2k +1], k=101,2.
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Figure PE.24 shows a finite-length sequence x[n]. Sketch the sequences
xyln] = x[{im = 2314]. D=n-=3
and
aln] = alif—u1l4], b= o= 3

f xfn]
3
| ] 41 3
0123 " Figure F8.24

Consider the signal r[n] = §[n = 4] + 28[n - 5] = &[rn - 6],

(@) Find X(e/%) the discrete-time Fourier transtorm of x[a]. Write expressions for the
maenilude and phase of X {«/, and sketch these functions,

{b) Bind all values of & for which the N-point DFT is a set of real numnbers

{e) Can vou find a threc-point causal signal xq{n] {ie. 5y(n] =0 lorn < Dand v = 2) for
which the three-point DFT of x¢[n] &

X[l = | X[k} ke=1,1,2

whete X[k]is the three-point IDFT of x[=]?

We have shown that the DFT X[k] of a finite-length sequence r[n] is identical to samples of

the DTET &0/ of that scquence al [requencies wy = (27/ N e, X[k = X{uj““'-"'“"”‘_]

fork =0,1,..., N =1 Now consider a sequence yln] = e~/ /¥ crp ] whose DF T is Y[k,

{a) Determine the relationship between the DFT Fk] and the DTFT X (eduy

(b) The result of part (a) shows that Y[&]is a differently sampled version of X ey What
are the frequencies at which X (2% is sumpled?

(e) Given the modificd DFT V[&]. how would you recover the onginal sequence x[a]”?

8.27. The 10-puint DFT of a 10-point scquence gln| is

#.28.

Glk| = 1051k .
Find ¢ iefy, the DTFT of gln).
Consider the six-point sequenge
X|nl =64[n] 4+ 58{n — 11 + 48[m — 21+ 38[n — 3] + 2dln — 4] + 8[n — 5]
shown i Figure P23,

]
4
3

-3 2 -1

[ t ! = f—
aq

f
5
no1 2

Figure P§.28
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{a} Determine X[k], the six-point DFT of sfs|. Express your answer in terms of
H.I,n e 225 6

(b} Plot the sequence wal n = U, 1, ..., 3, that iz obtained b compuiing the inverse
siv-piint DFT of Wikl = Wﬁ_mXIH.

(e Ulse any convenient method to evaluate the six-point circufar convolution of xie] with
the scquence hfn| = Sla] + d[n — 1]+ &ln = 2], Sketch the result.

{d} T we convolve the given y{a] with the given #{a} by N-point cireular convolution, how
should & be chosen so that the result of the circular convaolution is identical to the
result of hnear convolution? That is, choose & so that

N—1
vpln] = x[r] (S} klr] = E xlmlbf{ir — m))y
=}k
l'._‘i
= xfr]+ hlr] = L xlmlftln — ] forl=n-= X —1
[ =T 4

(e} In certain applications, such as multicarmier communication systeins (see Starr ¢l al,
1999, the linear convalution of a finitedength signal x[e] of length L samples with a
shorter finite-length impulse response Aln] is required te be identical (over & < a =
L — 1o what would have been obtained by L-point citeular convolution of x[a] with
hin]. This can be achieved by angmenting the sequence x[a] appropriately. Starting
with the graph of Fipure PR2%, where L = 6, add samples to the given sequence x|#]
to produce a new sequence 1y [x] such that with the sequence alnl given in part (o), the
ardinary convolution yv[r| = x;[n] # 2[x] satisfies the eguation

faca]
vilal =xylnl*hlnl= 3 xjlmlhln —m]
M=K

i~

= yulnl = xln] @h[n] = Z £lmlh[{{m ~ m¥lg] forQ=a =35

=l

{F)y Gueneralize the result of part {¢) for the case where Al s noneero for 0 <= = M
and r[n] is nonzeroforl) = n = L — 1, where M = L;ie show how to construct a
seyuenee vy (o] from x[af such that the linear convolution xq (] * &|» ] is equal to the
cireular convolulion xin] @hlnt ford=n=] —1,

. Consider the real five-point sequence

xlnf = djn] + &ln =V + 8n - 2] — Sl — 3] 1 Sn - 4]
The deterministic antocorrelation of this sequence is the inverse DTFT of
Cle™) = X (e X4 ey = X e/ 2,

where X *{¢/™} is the complex conjugate of X (¢/®}. For the piven x|n], the autocorrclation
can be found to be

cla] = xln)] * x| —r].

(a) Plot the seqguence o[r], Observe that o —w| = e¢|n] for all .

(k) MNow assume that we compte the seven-point DFT (N = 5) of the sequence x [a]. Call
this DF'E X<|k]. Then, we compute the inverse DFT of gl k] —= lea‘c_{x;[k}. Fiot the
resulting sequence csfr], How is o5ln] related to of#] (rom part {a)?
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{) Now asspme that we compute the 10-point DFT (¥ = W) of the sequence x[n], Call
this DFT Xy[k]. Then, we compute the inverse DFT of O] = xmmxl*“{.::]_ Plot
the resulting sequence cyglal.

(d) Now suppose that we use Xqplk] to form Dyglk| = Wi Cralk] = Wiy XqplkIX [k,
where Wiy = e 7271 Then, we compute the inverse DFT of Dyg[k]. Plot the re-
sulting sequence digln].

. Consider two sequences x[#] and f[n], and let y[n] denote their ordinary (linear) convolu-

tion, virl = x[r]* Aln). Assume that x[n] 15 cero outside the interval 21 = n = 31, and &[n]

is zero outside the interval 18 =< n = 31.

(a) The signal v[r] will be zero cutside of an interval &y = 5 = N5 Determing numerical
values for &y and Na.

(b) MNow suppose that we compute the 32-point DTS of

o n=101,....20
Hlel=1 i n=21,22,....3

and

it =
il = [ftl-"l] ::

{i.e., the zern samples at the beginning of each sequence are mmcluded). Then, we form
the product ¥k = Xy k] & [k]. If we define yq[#] to be the 32-point inverse DFT of
¥yl how is v [n] relaked to the ordinary convolution y{e |7 That is, give an cquation
that expresses vy [a] in terms of v[n) for (0 = a = 31

ic} Suppose that you are free to choose the DFT length {N) in part (b) so that the se-
guences are also zero-padded 4t their ends, What is the puntemes value of N so thai
yinl=vin]lforllen = N - 17

4 A
18,19, .. .. 31

Consider the scquenee a|nj = 28[r |+ §fn — 1] — [0 — 2],

{a} Determine the DTFT Xie/) of xfr] and the ITFT Yiel®) of the sequence v|n| =
x[—nl.

fb} Using vour results from part (a) find an expression for

W{P_r'-’l.?'] =¥ [Eim:l?{{’;ml].

(¢} Using the vesult of part (b} make a plot of win| = x[a] * v(nl

{d} Now plot the sequence y[n] = ri{{-nilg] as a function of n for b = = 3.

{e) Nowuse any convenient method to evaluate the four-point circular convolution of x[=]
with yp[r|. Call your answer wpln] and plat it

(I} It we convalve x[n] with yp[r] = x[{(-n)}x], how should & be chozen to avoid time-
domain aliasing?

Consider a finite-duration sequence x[xu] of length P such that xin| = 0fors < Jands = P£.
We wanl to compute samples af the Fourier transtform af the N egually spaced frequenciss
2wk
ruk:-‘-?-—, k=0.1.....0 1.
N

Determineg and justify procedures for computing the & samples of the Founer transform
using only one &-point DFT for the following two cases:

{ay M= F.

by &= F
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B.33. An FIR filler has a 10-paint impulse response, L&,
hn]=10 fore < and fors = 9.

Given that the 10-point DFT of k(#] is given by
Hk—l.ﬁk ]"-'-IE.E T
k] = z L I+ 3 [k —7L

find Hied®), the DTFT of &[],

8.0, Seppose that xqin] and x2(a] are two Anite-length sequences of length &, e, xqiv) =
xa[n] =lhoptsidedl = n = & — 1. Denote the z-transform of o [re] by X (), and denote the
N-point DEFT of raln| by X4|k]. The two transforms X;{z) and Xo[&] arc retated by

XQIHHXHE’.]! I
ot
g

k=01.. N-1
JgE.

Determine the relationship berween xy[r] and xq[a].

Advanced Problems

8.35. Figure PR35-1 illustrates a six-point discrete-time sequence x[q). Assume that e{# | is zeto
outside Lhe interval shown,

Ll K

2 3 4 5 6 7 Figure P8.35-1

The value of x[4] is not known and is represented as b. The sample in the figure is
nid shown 1o seale. Let X (e be the DTET of x[a] and X[k} be saumples of Xie'™1 s
oy = 2:!'-!:,"4, e,

— wr.du s

X]iR]—th'*Hw:;:!Jg. 0=k=3
The four-point sequence xq [#] that results from taking the four-point inverse DET of X1 |&]
is shown in Figure PE35-1, Based on the figure can you determine & uniguely? 11 5o, give
the value of k.
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xyin|

4 *  Figure P8.35-2

8.36. (a) X< is the DTFT of the discrete-time signal
z[n] = (1,20 uln).

Find a length-3 sequence g[a] whose five-paint DFT 71] is identical to samples of the
DTFT of x|r] at e = 2wk/5, 1.,

ginl=0dforn <0, n=4

and
Gkl = X (™™ fork =0,1,..., 4.
(b) Let win] be a sequence that is strictly nonzero for ) < n = 9 and sero elsewhere, e,
wrlxEd, 0=p=9%

wnl=0 otherwise

Detennine a choice for win| such that its DTFT Wief*) is equal to X(e'*) at the
Eequencies w = 2mk/3, £=0.1,..., 4.1,

Wi PFhiSy _ x (o205 for = 0,1, ... 4.

837, A diserete-lime LTT filter § is to be implemented vsing the overlap-save methosd. In the
averlap—save method, the inpot is divided into everlapping blocks, as opposed o the
overlap-add method where the input blocks are nonoverlapping, For this implementa-
ticm, the input signal x[re] will be divided into overlapping 236-point blocks 1. [n]. Adjacent
blocks will overlap by 255 points so that they differ by only one sample. This is represented
by Eg. (P8.37-1) which is a relation between x-[r] and x[x].

_ |t D=0 = 255
xlal={g i (PRIT-1)

where r ranges over all integers and we obtain a different block x,[r] for each value of r.
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Each block is processed by computing the 256-point DFT of x,.[«], multiplving the result
with H|k] given in Eqg. {P8.37-2), and computing the 256-point inverse DL of the product.

1 0=k<31
Hikl=410 32 = o= 224 (PR.3T-2)
1 225 < k = 255

One sample from each block computation (in this case enly a single sample per block) is
then “saved™ as parl of the overall onipol.

{a} Is ¥ an ideal frequency-selective filter? Justify your answer.

(b) 1= the impulse response of 5 real valued? Justify vour answer,
(e} Determine the impulse response of 5.

x{n] is a real-valued finite-length sequence of length 512, 1.e.,
ifn] =10 n-=,n=512

and has been stored in a 51 2-pomt data memory, Tt s known that XTE] the 512-point DFT
of ¢[r] has the property

X[kl =10 250 = &k = 261,

In storing the data. one data point at most may have been corrupted. Specifically, if s|a|
denotes the siored data, s[v] = x[n] excepr possibly at one unknown memery location s, To
test and possibly correct the data, you are able to examine 5[k], the 512-point DFT of s[x].

(#) Specify whether, by examining S[k]. it is possible and if so, how, Lo derect whether an
error has Been made in one data point, e, whether or not siz] = x[n] for all n.

In parts (b) and {c}, assume that you know for sure that one dats point has been cormupted,
ie., that k[r] = x[n] excepr al n = ny,

{b} In this part, assume the value of ng is unknown. Specify a procedure for determining
from 5(k] the value of xp.

{e) 1o this part, assime that you know the value of ny. Specily a procedure for determining
x|np} from SpEL

In the system shown i the Figure PE39, v [a]and cafn]are both causal, 32-point sequences,
i.e., they are both zero ootside the interval } = # = 31, y[n] denctes the linear convelution
of xy [n] and xq|n], Le., vir] = xq(a] « 2aln].

njnl £3in]

t2

M-point xsn] = xsn| @ x4|n]
Circular p——
Comvolution

2]

x30n] f )

Figure P8.3%

(1} Determing the values of & for which all the values of v[# ] can be completely recovered
[rom xs(e].

iby Specify explicitly how to recover v[n] from x5[n| for the smaflest value of & which vou
determined in part {a).
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8.40. Three real-valued seven-point sequences (x;{#], x3[n], and x4 [r]) are shown in Figure PS40,
For cach of these sequences, specify whether the seven-point DFT can be written in the form

Xi(k] = Aj[kJe=TRmhMka: ¢ _pq 4

where A;|k! is real-valued and Zw; is an integer. Include a beief explanation, For each
sequence which can be written in this [orm, specify all comesponding values of «; for

0= oy = 7.

I:H.J I:.a:] ¥ ["]

—

) (B

1 | L - "
] 1 2 3 4 5 0
fa) xyf]
(b} (b} ihy (B} (B)
T T T !
Y S N, e NS R N
a

] L 2 3 4 5 f

ii'l xy[r]
b {b)
———! o o | -—| — -
0 I z 3 4 5 f = Figure P8.40

B.4l. Suppose xfx] is the eight-point complex-valued sequence with real part . [a] and imagi-
nary part 1;|#] shown in Fipure PE.AL {i.e.x[n] = xelrl + jxi[n]). Let v[a] be the four-point
complex-valued seguence such that ¥l&|, the four-point DFT of y(n], is equal to the odd-
indexed values of X[&], the cight-point DFT of z[a] {the cdd-indexed values of X[k] are

those for which k= 1.3, 5,7
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xin]
(2]
*
(1} i
I N
-1 -1}
3 3
{i {l} xjn]
o NTTT % T % g %
L
(=13

Figure P8.41

Determine the numerical values of vk and v;[a ], and the real and imaginary parts of v{a].
x[n] s a finite-length sequence of length 1024, ie.,

el =0lorn <, n= 1023

The antocorrelation of xf#] is dafined as

oo

coslml= 3" xlnlzln +m],

o
and X y[&] is defined as the N-point DFT of x|z|, with M = 1024,

We are interested in computing o [m]. A proposed procedure begins by first computing
the ¥-point inverse DET of [ X (k) 1 to obtain an N-point sequence gy, Lo,

gwln] = N-point IDFT [;xmk ||2] :

() Determing the mimmam value of & so that ec, [m] can be obtained from gy (=) Also
specify how vou would abiain cg[me] Trom gl

(b) Determine the minimum value of & so that ool for jm) = 10 can be obtained from
gxlnl, Also specily how you would obrain these values from gy [r],
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8.43. InFigurcPA.43, x|a]isa fimitc-length sequence of length 1024, The sequence Rk is obtained
by taking the [024-poant DET af x[n] and compressing the result by 2.

(a)

()

¥

x[rl | 1024.point | ATK] R[¥] YI¥] | 1024-point | ¥in]
" oFT 1 +2 ad | wFr [

¥
31 2-poani
IDFT

l

rlnd
Figure P8.43

Choose the most accurate statement for rla i, the S12-point inverse DFT of R[EL Justily
vour chaice noa few concise senlences,

(i) rin]=x[nl, ¢ =n = 311

{ii) r[nl = x|2nl, O =n = 51l

(i) rn] = x[n]+xfn +512], 0 =n = 511

(i¥) rln] = xlal+ xl=n + 512], 0 = n = 511

() rlnl = x[n]+ 201023 nl, O =n =511

In all cases rin] =0 outside 0 < n < 511,

The sequence ¥k]is oblained by expanding K41 by 2. Choose the most accurale statc-

ment for y[a), the 1024-point inverse DET of ¥[&]. Justify vour choice in a few coneise
senlences
1 ! '3 . T
; (x[n)4xln -+ 53120, 0 =n =511
|:|:| .ﬁ"‘f: % [ ] I . .1.:' _._ )
5 (xin] +x[n — 5121, 512 =n = 103
() vin] xlnl. h=n=3511
n iR =
g xln— 5121, 512 <n = 1023
i xlnl,  nocven
(). e = lr:r. n odd
x12nl, h=n=511

fivl winl = L[:':" —SI2Y, 512 = n = 023

%} ¥[nl= ]-! (x[m] 4+ x[1023 — nl), 0 =n = K23

Io all cases y|n| = O outside 0 < 7 = 1023,
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B Figore PE.44 shows two finite-length sequences o (2] and xa(=] of length 7, X; (ef2y denotes
the DTFET of a;Qn), and X; 4] denotes the seven-point DFT of x;{a).

4 4
9 L]
xy[n] Jaln]

. -l . T Figure P8.44

For each of the sequences xifn] and xm[n], indicate whether each one of the following
properties halds:

(a) 1’,-[-‘!*;”‘} can be wrillen in the [orm
Xiief™) = Ajtee’™®, forw e (—7, T,

where A;(w) is real and w«; is a constant.

(h) X;[k| can be written in the form
X4 = 8y |kleP
where H;[&]is real and 4; is a constant.
R.d5. The ﬁ.e:qut:ru.:r_' x[r}is a 12B-poant sequence (e, x[n] = 0fora <= 0and forn = 127}, and

x[n] has at teast one nonzero sample. The DTFT of x|a] is denoted X {e/). What is the

largest integer M such that it 15 possible for X 12 My 1 ke zero Tor ] inleger values of
£ Construct an example for the maximal 3 that vou have found.

B.46. Eachparl efthis problem may be solved mdependently. All parts use the signal x| | given by
xli] = 35n) —dln — 1] = 28l — 3] + 3in — 4] — &|n —6).

(ap Let X (.af"') be the DTFT of xln]. Defing
Rigj=x ()| .. . O=k=3
k] = X [e )|m=ﬂ% sks

Plot the signal rir] which is the four-point inverse DEFT of R[E]
ih} Let X[k be the eight-point DIFT of x[x], and let H[k] be the eight-point DFT of the

impulse response ifs] given by

kln] = 8ln] — &in — 4].
Dretine ¥[k] = X[k [kl ford < k = 7. Plot v[r], the eight-point DFT of F&].
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Consider a time-limited continuous-time signal a.(ry whose duration is LK ms. Assume
that this signal has a bandlimited Fourier transform such that X.{;52) = 0 for 12| =
S 10, 0 radrs; 1.e., assume thal alinsing is neglipible, We want (o compuie samples of
X072 with 5 Hz spacing over the interval (0 = 0 = 2710, (00). This can be done with a
4000-point DFT. Specifically, we want to obtain a 4000-point sequence x[#] for whizh the
A000-point TFT 15 related to X0 752 hy:

Xkl =aXijde-5-5), k=01 ...,1999, (PE.47-1)

where « is a known scale factor. The following method is proposed to obtain a HKID-point
sequence whose DEFT gives the desired samples of X7 @0, First, o.(0) is saumpled with a
sampling period of T = S0us. Nesi, the resulling 2000-point sequence is used 1o furm the
sequence £ [a] as follows:

aeinT). 0= m = 1995,
Ful = § aglin — 20007, 2000 = r = 3999, {P8.47-2)
0, atherwize.

Finally, the #kkpoint DFT ¥[&] of this sequence is computed, For this method, determine
how X 4] is related to X752, Indicate this rela donship in a sketch for a “typical” Fourier
transform Xo( 52, Expheitly state whether or not X[k is the desired resolt, 12, whether
b {31 equals X[4] as specified in Eq. (PR.47-10.

8.48. x|nfisa real-valued finite length sequence of lenglh 1024, ie.,

.49,

]l =10 i (w1023,
Oinly the following samples of the HW24-point DFT of x[r] are kaown
XIk] =016, 16x2 16x3 .. 16 = (64 -1

Also, we observe s{a ] which is 4 corrupted version ol c[n ], with first &4 points cormupted. i.e.,
sln] = z[n]fore = 64 and s[n] 2 x[n], for 0 = n = 63 Deseribe a procedure 1o recover Lhe
first 64 samples of x[rn] using only 1024-point D¥FT and IDFL blocks multipliers, and adders.

The deterministic crosscortelation [unction between two real sequences is defined as

o e

erplt] = E vimlxfn +w) = E ¥l-mlxin —m]=y[-n]lxxln] —oc<n=o0

=—al M=—

(u) Show that the DTFT of cyy[n] is Oy (6% = X(e/@p¥*(el?),

(b) Suppose thalt x(n| = O0forw - Dand n = 9% and y[u] = O fors = Oand # = 49, The
corresponding crosscorrelation function oy [n] will be nonzero only in a finile-length
interval &y = # = N> What are A and Na 7

(] Suppose that we wish to compute values of cro (] in the tnterval 0 = » = 20 using the
following procedure:

(11 Compute X[k], the N-point DFT of x[n]
tii) Compute ¥Tk], the & -point DFT of v(n)
{iii) Compute Cjk] = X[kI¥*[k for =k = N — 1
(ivl Compuke cla ], the inverse DET of C&]
What is the minipnen value of N such that olu] = epplt], 0 < # = 207 Explain your
TEasoning,
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8.5, The DFT of 4 finite-duralion sequence corresponds to samples of 3s o-transform on the
unit circle. For examplz, the DFT of a 10-paint sequence x[n] corresponds to samples of
Xz} atthe 10 equally spuced points indicated in Figore PE.50-1. We wish te find the eguaally
spaced samples of X (2 on the contour shown in Figure PR.S0-2; ie,, we wish (o obtain

ng'] ek S ME g 10 F g WG

Show how to modity « |a] to obtain a sequence i [#] such that the DFT of x4 [n] corresponds
ko the desired samples of A(z).

-
Unit ﬁ\( i
circlﬁl// Pl

L

Figure P8.50-1
Frm
CI:.JI: wiljﬁ o 4 z-plans
radius = 5 /.-f 0
A 14 ¥ oA
kko// mf
Figure P8.50-2

851, Letw|n]denote the linear convolution of £ [# | and v[a]. Let g|n | denote the 40-point cireular
comvvolution of x[a]and y[a}:

)

winl = xfalssial = 3 xlklvin - &l,
k=--m0
19
gln) = xlnf@ yinl = 3 2[I3Liln — kgg).
k={i

{a) Deiermine the values of n for which wir] can be nonzero,
(b} Determine the values of n Tor which w[e] can be obtained from gn]. Explicitly specify
at what index values n in g|re] these values of win] appear.
B52, Letc[n] =0,
DL
(a) Evaluate

n <1, n =7 heareal eight-point sequence, and let X [£] b its eight-point

. K
R pr—

A=l Lr=W
in terms of v,
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Let wfn] =0. n <0 # = 7, be an eight-point sequance, and let V0] be its eight-point
DFT.

If Wikl = X(z) at z = 2exp(j(2wk + x)/8) for k = 0,..., 7. where X(z) is the 7-
transform of x(#], express vin] in terms of x(nl

letwrl =0 n = 0,n =3 ey four-point sequence, and let W{k| be its four-point
DFIL

If Wkl = X1k + X1k + 4], express wla] in terms of x(nj

Let vln] =10, n < r = 7, bean eight-point sequence, and let ¥ (k] be its eighi-poin
DFI.

If

¥k =

lx [k-ll k Z'D. 2|4|IE|-|
0, k=1732357

express vln) in terms of x(#].

8.5). Read cach part of this problem carefully to note the differences among parts.

{a)

ib)

ic)

Consider the signal

ity 14 cosimn/d) —05cosidan/d. O=n=T,
T olherwise,

which can be represented by the IDFT equation as

)

1 1o f 2k S
. F%IRHJE EEN Qean<T,

(. otherwise,

where & gik] is the eight-point DFT of x|n ). Plot Xgl&| for =k < 7.
Determine Vig[k], the 16-point DTT of the 16-poinf sequence

. 1 dcos{zrn/4) — h3cosdan/d), l=n <13,
vini= ’ 4 ;
otherwise,

Plol Vig[k] for ) = & < 15,
Finally, consider |X 5%}, the magnitude of the 1&6-point DFT of the eight-point se-
quence

1+cosimr/d —05cos3rnid), D=n=7,
1, otherwise.

xln) :I

Plot | X g5ik]] for 0 = & = 15 withowut explicitly evaluating the DFT expression. You will
not be able to find all values of | X 4kl by inspection as in parts (a) and (b), but you
should be able to find some of the values exactly. Plot all the values you know exactly
with a solid cirele, and plot estimales of the other values with an open circle,
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Extension Problems

8.54. In deriving the DES analysis Eq. (8.11), we used the identity of Eq. (8.7} To verify this
identity, we will consider the two conditions & —r =mN and & — r £ m& separately.

{a) Fork — r = mN, show that o/ G/ ¥)ik=rIr — § and fram this, that

N1
% Y LEmINIE=I 2 1 fork—r=mN. (PR.54-1)

n=0

(h) Since & and r are both integers in Eq, (8.7), we can make the substitution & —r = {
and consider the summation

el gollele
Jiay )
% ¥ el o = b S i (P8.54-2)
l.|=ﬂ .'~I=|:|‘
Because this i3 the sum of a finite number of tcrms in a geometric scrics, it cén be
expressed in closed Torm as
N1 fike  WHN
1 = /N 11 —{“--r{ I
o [N - 2
) e CHIN —

A=l

N 1 — ad@riNN (P8.54-3)

For what values of £ is the right-hand side of Eg, {P8.54-3) cquation indeterminate?
That is, are the numerator and denosminator both 2ero?
{c)} From the result in part (b}, show that if £ — r &= m N, then
1 N1
.
g SR R (PB.54-4)
n ..-ﬂ

K55, In Section 8.2, we stated the property that if
Eyln] = Efn — m].
then
X1[k] = Wim X (k).
where X [k] and }_{1 [£] ate the DFS coefficients of ¥[n] and %] [n], respectively. [n this prob-
lem, we consider the prool of that property.

{a} Using Eq. (811} togetherwith an appropriate substitution of variables, show that X plk]
can be expressed as
_ N—1-m
Xk =whr 3 wiriwy (PR55-1)
f=—m

(h) The summahon in Eg. (P835-1) can be rewritlen as

N—l-m -1 N-1l-m
Y oWl = Y Eawh o Y sawd (PB55:2)
r=-m = r=l]

Using the fact that X[r] and Wﬁ.’ are both periodic. show that

—1 M—1
5! Wl = Y Fewl (PH.55-3)

F=— Fe= ~m
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(¢) From your resulis in parts (a) and (b)), show thal
= M-l b
Xqlk = wh" 3 wwl = wirX (e,
rl)

R.56. {a) Table 8.1 lists 2 number of symmetry properties of the DFS for periodic sequences,
several of which we repeat here, Prove that cach of these properlies is irue. In carrying
ol your proafs, vou may use the definition of the DFS and any previous property in
the list. {For example, in proving property 3, you may use properties 1 and 2.)

Seguence DES
L #%[n] X' =k
2. i*[-n] X'kl
3. Re(v|ul) Xk}

4. jIm|E[n]} X[k

{b) From the properties proved in part {a), show that for a real periodic sequence Efn],
the foll r:w.-mg, symmelry properties of the DFS hold:
L j'31’{3’“-‘\‘]1 = Rg{.‘&’i —k]]
L Im{X|k]] = —TIm{X [-k]]
& Xk = X [=k]i
4. ‘X =—LX|—k|

H.57. We '11.EI.1|:E] in Secticn 84 that a direct rélationship between X f.vi"‘;l and X [%] can be dernved,
where X [k] s the DFS coefficients of a periodic sequence and X {=/) is the Fourier trans-
form of one period. Since X [k] corresponds to samples of Xie/™), the relalionship then
corresponds (0 an interpolation formala,

One approach to obtaining the desired relationship is to rely on the discussion of
Scction 8.4, the relationship of Eq. (8.54), and the modulation property of Section 2,97,
The procedure is as follows:

E. With X %] denoting the DFS coefficients of [x], express the Fourier transform
X(e/®)y of i[n] as an impulse train; i.c., scaled and shifted impulse functions Siw).

2. From Eq. (8.57), x[n] van be exprossed as xin] = Z[n]wln], where win]is an appro-
priate finite-length window.

3. Simce x|n| = Ffr]wln]. from Scclion 2.9.7, X ie/*) can be expressed as the {periodic)
convolulion of i’(e-'iwj and Wie ™).

By carrving out the details in this procedure, show that X (¢/%) can be expressed as
XI:R-".W i i Z ® ikl"SEIl[ (wN —Z2x k.':.-'rz_t 5 SN --!;._.'?][m—?:nl_.-'m_
N P sin{[aw — 2k N2
Specify explicitly the Hmits on the summation,
H.58. Ler X |&] denote the ¥ -point DFT of the N-point sequence aa .
(a)} Show that if
rin]=—xIN—-1—-nl.

then X [0 = 00 Consider separately the cases of & evenand & odd.
{b} Show that if N is even and if

xin] = =[N — 1 —n].
then X (W21 =0
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859, In Section 2.8, the conjugate-symmetric and conjugale-antsymmelric components of a se-

£.60.

8.61.

quence x[n] were defined, respectively. as

xsln] = %ufu] + x*[=nT1,

1
xaln] = leILJ.’IJ't'I — x*[=n])

In Scction 8.6.4, we found it convenient to define respectively the peniodic conjupgate-
symmetric and periodic conjugate-antisymmelric components of g sequence of finite dura-
tion & as

repln] = Jaxltmppl + X U—nDxll.  O0<nsN-1,
xopln] = JEl(Gby] — <" [6-nDWll,  O=n=N -1

{a} Show thal xep{r] can be related to xp (] and thal yopln] can be related to xu(n] by the
relations

xepln] = (xefn] +xeln — N 11, lemn=N-=1,

xgpln| = (xplal 4+ xaln — N 10, O=np=~N-—-1.

{b} x[n] is considered to be a sequence of length %, and in general, x:in] cannot be re-
cavered from repln], and x,[a] cannot be recovered from Toplnl Show that with x[r]
considersd as a sequence of length &, but with x(#] = 0,0 = ¥/2, x[#] can be ob-
tained from xeplal. and x,[n] can be obtained from xpp[al.

Show from Egs. (2.65) and (B.66) that with x|»] as an A-point sequence and X (k] as s
N -point DFT,

MN—

1 1 MN-1
2 2
el f = o 30 KRN
n=ll k=
This equation is commonly referred to as Parsevaels refatfon for the DFT,

£[n7is a real-valued, nonnegative, finite-length sequence of length N; i.e, x[a] is real and
nonnegative for 0 < 4 <= & — 1 and is zeto otherwise. The A-point DFT of x|u] is X [4]
and the Fourier transform of xIn]is X (e/™),

Detzrming whether each of the following stalements is true or false. For each state-
ment, if you indicate that it iy true, clearly show your reasoning, 1 vou state that it 15 false,
construct g counteresample,

{a) If X{c’*f""] is expressible in the form
Xie/®) = Bluwed,
where 8w s real and o i3 2 real constant, then X [k] can be expressed in the form
X [&] = ALk]elTE,

where Alk] is real and y is a real constant.
(b} 10 X [k} is expressible in the form

¥ [k] = A[klel¥t,
where A[k] is real and y is a real constant, then X (/™) can be expressed in the form
Xiel™) = Blanedo™

where Bia) s real and o is a rcal constant.
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B.62. xinm] and x| are two real-valued, positive. finite-length sequences of length 256; L.e.,

el = (b, 0z n o= 253,
yinf = 0, 0 < n < 255,
x[nl=yinl =0, otherwise,

rin | denotes the dinear convolution of xin] and [#]. Hl:{‘!-':‘_"‘:'] denotes the Fourer transform
of rln]. Re[k] denotes 128 equally spaced samples of R/ e,

R, lk) = Rie/®) E=0,1..... 127.

=Tk 125

Griven x{n] and ylal, we wanl 10 obiain &, [k as efficiently as possible, The orly modules
available are those shown in Figure PRAZ. The costs associated with each module are as
follows:

Modules 1 and I are free.
BMoxdule 111 costs 10 units,
Module |V costs 50 units.
Moedule Vocosts 100 units

M ccdute Maodule 11T
sl
= I * N m
z|m] i _L”_F-[n 1 17
- §[n + 128r] X E 5y [m]ga o - o]
= - =L
{a) ic]
Meduke T Module TV
#|nj
a_[-]q.-. o [ ] g n TV i
Bl aonrblgin: {s n], []== A = 127 _"_I Fln)
[] (1, otheradss $2(n] 2 5 [m]ag | —m]
wm-l
(b id}
Module V
—_— L% — 127
£l 8[#] =E x[r]e [l M
LAt
{e)

Figure PB.62

By appropriately connecling one or several of each module, construct a system for
which the inputs are xf{u] and v[~] and the output is ®;{k]. The important considerations
are (a1 whether the system works and (b)) how efficient if is. The lower the el cost, the
more efficient the system is
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B63. vla| is the output of a stable LT1 system with svstem function Bz = 1/{z - kz~!). where

bis

a known constant. We would like (o recover the input signal x(#] by operating on ww].
The following procedure is proposed Tor recoverning part of x[r] from the data v[a):

1, Using y[n], = n =< N — I, calculale ¥ [&], the N-point DFT of »[n].
2. Form

VIk] = (W F — oWE )Y [k).

A Calculate the inverse DFT af ¥[&] to oblain 1fx].

For which values of the index e inthe rangen = 0, 1, .., N =1 are we guaranlesd that

z|n] = vfr]?

B4, A modified diserete Fourier transform (MDET ) was proposed { Verpet, 1971) that computes
samples of the z-transform on the unit circle offset from those computed by the 3FT In
particular, with X 4 [#] denoting the MDET of x(r),

X pg[4] = X{z} , E=0,1,2,.... N -1,

|z —pilmbib+a i ]

Assume that & is even.

(=)

(b}

(c)

(d)

{e)

The N-point MDFT of a sequence 1 [a] corresponds to the N -point DET of a sequence
za [n], which is casily constructed [Tom xfn]. Delermine apr (0] in terms of 3 (]

If x[n] is real, not all the points in the DFT are independent, since the DFT is comjugale
symmetric; Le., X (k] = X*[{( &yl for 0 = & = N — 1. Smilarlv, of x[n] is real, not
all the points i the MDET are independent. Determine, for x[nl real, the relalionship
between points in X a ().

(1) Let Blx] = X ¢ [2%]; that is, £{4] contains the even-numbered points in X g [£].

~ From your answer in part (1), show that X 4 [k] can be recovered from Rik].

{ii) R{&]|canbe considered to be the & /2-point MDFT of an N 2-point sequence rf#].
Delermine 4 simple expression relating rie] direcily 1o x[a).

According o parts (b and {e), the N-point MDPT of a real sequence x[n] can be com-
puted by forming rfn] from x|r| and then computing the & 2-point MDET of r(n].
The nexl bwa parts are directed at showing that the MIDFT can be used to implement
a linear convolution.

Consider three sequences g [a], x; (). and xy(a), allof length N, Lel Xy L&) Xoas L&)
afid Xz pr [K], respectively, denote the MDFTs of the three sequences, Ti

Xaar [£] = Xpag [K)X a7 LK)

express x3in] in erms of xg[x] and x;[r]. Your expression must be of the form of 4
single summation over a “combination™ of k) [2] and x2[a] in the same style as (hut not
identical to) a circular convolution,

It is convenient to refer to the resull in part () as a modified circular convolution. I the
sequences iy [a] and safr| are both zero for v = N2, show that the modified circular
convalution of xy[r] and xz(n | is idenlical 1o the linear convolution of xy [#] and x2(#].
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B.65. In some applications in coding theory, it 15 necessary to compuie a 63-point circular con-

466,

B.67.

volution of two d3-point sequences xir]| and kin]. Suppose that the only computational
devices avallable are multipliers, adders, and processors that compute N -point DFTS, with
N restricied o be a power of 2,

(a} Ttispossible W compule the 63-point circwlar comvolution of x{a} and kla] using a aum-
ber of 64-point DF s, inverse DFTs, and the overlap-add method. How many DFTs
are needed? Hing Consider each of the 63-point sequences as the sum of a 32-point
sequence and 31-point sequence.

(b} Specify an algorithm that computes the 63-point circular convolution of xf« | and k(x|
wsing two 1 28-point DFTs and one 128-point inverse T3FT,

{c) We could also compute the 63-point circular convolution of 2 (2] and k[a | by computing
their linear convolulion o the tme domain and then abissing the results, In terms of
multiplications, which of these three methods iz most efficient? Which is least efficient?
{ Assume that one complex multiplicalion reguires foor real multiplications and that
x[n] and R[n] are real.)

We want ko filter a very long sequence with an FIR filter whose impulse response is St sam-
ples long. We wish to implement this filter with a DFT vsing the overlap-save technigue.
The procedurs 1s as Tollows:

L. The input sections must be overlappad by V¥ samples.

2. From the output of each section, we must extract ¥ samples such that when these
samples from cach seclion are abuited, the resulling sequence i the desired filtered
outpat.

Assume that the input sepments are 100 samples long and thar the size of the DFT is
128 (= 2 poands, Assume further that the oulpul seguence from the arcular convolution
is indexed from point to point 127.

(a) Determine V.

() Determine M.

() Delermmine the index of Lhe bepinning and the end of the M points exdracted: e, deter-
mine which of the 124 points from the circular convelution are extracted to be abutied
with the result from the previous section,

A problem that cfien agises in practice is one in which a distoried signal vin] is the ouipul
that results when a desired sipnal x|r] has been filtered by an LTI system. We wish 1o re-
cover the original signal x{n| by processing y[n ). In theory, x[n] can be recovered from yvn |
by passing v[n] through an inverse filler having a system funcuon equal 1o the reciprocal of
the system function of the distorting filter,

Suppaose thatl the distortion is caused by an TIR filter with impulse response

Aal =én] — 038(n — rpl

where nyy is a positive integer, i.e.. the distortion of x|n | takes the form of an eche at delay m.

{a} Dctermine the z-transform A (z) and the W-point DFT 4] of the impulse response
filn ). Assume that & = dnp,

ib} Let H;izy denote the svsiem function of the inverse filter, and let & [n] be the corre-
sponding impulse response. Determine by {#). Is this an FIR or an [IR filter? What is
the duration of fi;[r]?
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(¢) Suppose that we use an FIR filter of length N in an attempt to implement the inverse
filter, and let the A-point DFT of the FIR filter be

Gk =1/ H[K]. k=01..... M—1.

What is the impulse response g|n| of the FIR filter?

(d) It might appear that the FIR filter with DFT G k] = 1/ 8 [k] implements the inverse
filter perfectly. Atter all, one might arpue that the FIR distorting filter has an ¥-point
DFT H[k] and the FIR filter in caseade has an ¥ -point DFT G k] = 1/ H [ &), snd since
Cr[E]FITE] = 1 for all &, we have implemented an all-pass, nondistoriing filler. Briefly
explain the fallacy in this argument.

(e) Perform the convolulion of ginlwith Alrl. and thus delermine how well the FIR Gher
with N-paint DFT G[k] = 1/ H[k] implements the inverse filter.

A sequence x[n] of length & has a discrete Hartley transform (DHT) defined as
N1
Xglkl= 3 xln]Hylnkl,  k=01,..., 8 -1, (PB.68-1)
n=(}
where
Hyla) = Cylal+ Sylal,
with

Calal = cosma/ N, Sylal =smi2ma/ .

Originally proposed by BV, Tlartley m 1942 [or the conlimuous-tme case, the Elartley
transforim has properties that make it useful and attractive in the discrete-time case as well
(Bracewell, 1983, 1984}, Specifically, from Eq. (PR.68-1}, it is apparent that the TYHT of &
real seguence s alse a real sequence, In addition, the DHT has a convolution property, and
tast algorithms exist for its computation.

In complele snalogy with the DFT, the DHT has an implicit perodicity that mus) be
acknowledged in its use. That is, if we consider x[a] 1o he a finite-lengilh sequence such that
rlal =0fors < Gand n = & —1, then we can form a periodic sequence

=
Flnl = Z rip+ri]

r=—og

such that xl#| 15 simply one peried of #(e ], The periodic sequence 2(n] can be represented
by a discrete Hartley series (IXHS], which in turn can be interpreted as the DH'T by focusing,
attention on only one period of the peniodic sequence,

(a) The DHS analysis equation is defined by

N1
Xylkl = L #ln]Hy[nk]. (P4.65-2)
n=il

Show that the D'HS cocfficients form a sequence that is also periodic with period A e,

Xyl =¥yt + N1 forallk.
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(b} It can also be shown that the sequences Ky [ak| are orthogonal: Le.,

N1
NG iy = (m)
L-Z:l Hy k1 H k] = Iﬂ, olherwise.
=l

Uising this property and the DHS analysis formuia of Eq. (PR.08-2), show that the DHS
synthesis formula i

=
s

1 i,
En] = N Xy k] H i nk]. [P8.65-3)
=1l

=

Mote that the DHT is simply one period of the DHS coefficients, and likewize, the DH'I'
synthesis (inverse ) ceation is identical o the DITS synthesis EQ, (PS.68-3), excepl thal we
simply extract ene period of £7x]; e, the DHT svothesis expression is

1 N=1

xln] =+ Y Xylklfiylak], n=01...N L (PR.6K-4)

"=
With Egs. {PE&E-1) and (PA.6B-4) as definitions of the analysis and synthesis relations,
respectively, for the DHT, we may now procecd (o derive the useful properties of this
representation of a finile-length discrete-time signal.

ic) Verity that Hylal = Hyla + & |, and verify the following useful property of Ay fa):
Hyla + b = HylalCx|b) = Hyl—a)Sy b
= Hy[PICyla] + Hy[—b5ylal.
{d) Consider a circularly shifted sequence

Fn—npl=xliin —mpliyl. n=01..... N—=1.

flnl = :
1] 0, otherwise.

(P.68-5)

In olher words, 2 [#] is the seqguence (hat & oblained by extracting one period from
the shified periodic sequence fn — gl Using the identily verilied in pard {c), show
that the DHS coetficients for the shifted peniodic scquence are
y THS - - o
i - ng] 3 X glk1CxLngk] + X [ k18w [nghl (PH.GR-6)
From this, we conclude that the DHT of the finite-length circularly shifted sequence
x[lin —aglhyis
o
xltin — nglin] =% X ylkICK ngkl + X gL~k N ISuingkl.  (PB.GET)

(e} Suppose that x3in]is the N-point greular convolution of two N -poinl sequences o (1)
and zofn]: e,
x3ln) = xyln) @ x2ln]

N1 {PR68-8)
=3 mimlglin—miyl,  a=01...N-1
m=f]
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By applying the DHT to both sides of Eq. (PE.6E-8) and vsing Eq. (PE68-T), show that

X palhl = & X (IK10K okl + X gralti—k) 1) _
.y (PH.65-9)
Fa X [{{=-kDn WX gpzlk] — X gralli- R0y 1)

fork=01,.._,/ M = 1. This is the desired convolution property.

Motz that a lmear convelution can be computed using the DHT in the same way
that the DFT can be used to compite a hnear conveliton, Whils computing X k] froam
XLkl and X py2[#] requires the same amount of computation as computing X 3ik] from
X141 and X 2k, the computation of the DHT reguites only half the number of real mul-
tiplications required to compute the FT

(f} Suppose that we wish to compute the DHT of an & -point sequence x|n] and we have
available the means o compute the ¥V-point DFT. Describe a technigue for obtaining
X gkl from X[kl for k=01, .., ¥ ~1.

(g} Suppose that we wish to compute the DFT of an v -point sequence x|n | and we have
availahle the means to compute the N-point DHT. Describe a tachaigue for ohtaining
X [k] from X k| fork =01, N - I

869 Let x|r] be an N-point scquence such thal x[n]=0for s = Oand for n = N — 1. Led §n|
be the 2N -point sequence oblained by repeating rln]; e,

x[n], b=nah-1
Fnf=1x[pn—N1, N=m=<2N-1,
0, otherwise,

Constder the mmplementation of a discrete-lime filter shown in Figure P3.69, Ths
system has an impulse response Alr] that is 2N points long; L2, Alr] = 0 for v - (hand for
A=2N -1

{#) In Fgure PROY-1. what s X [%|. the 2N-poinit DT of #{n], inlerms of X [¥], the M-point
DFT of x[x]?

{b} The system shown in Figure PR.AY-1 can be implemented using only &-point DEFTs as
indicatzd in Figure P8.65-2 for appropriate choices for System A and System B Spec-
ity System A and System £ so that #[n] in Figure PE.0%-1 and y|e| in Fipure PR.69-2
are eyual for 0 = p = 20 — |, Note thal Alx] and y[a] in Figure PEGA9-2 are 2N -point
sequences and w|n] and gln] are N-point sequences.

Mgt
- LT
x[n|

AN il
IDFT

2M-point
DFT

hfn| Figure PB.69-1
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) . win ¥[n]
N-]'u::ﬂl'ut W o] M-point ! ]'- Syseem M —['-
— BE I¥FT 4 : ¢
<[] x[k] / /!
{
III lllllr
|I lllr
| ;
N-pesint i /!
DET N-poinf sequences
e __-—-“'F---F- J-"J
¢[n] 2N-point sequences
T
Svatemn A ,-'"'f
.-r"--f’-
.F'-P-.--
.-"'--.-'

Figure P5.69-2

8.70. In this problem. you will examinc the use of the DFT to implement the filtering necessary
for the discrete-tirpe interpolation, or upsampling, of a sigral. Assume that (he diserefe-lime
signal xfn | was obtained by samipling a continuous-time signal 1 with a sampling period
¥, Moreover. the continuous-lime signal is appropriately bandlimited; Le., X (52 = Oor
[£2| = 2/ ¥. For this problem, we will assume that x{=] has length & e, x[a] = 0 for
#oore = & — 1, where & is cven, Tt is not strictly possible to have a signzal that is both
periectly bandlimited and of fimile duration, but this i ofien assumed in practical systemns
processing finite-length siphals which have very little energy outside the band |92 = Zx/ T,

We wish to implement a 1:4 interpolation. Le., inerease the sampling tate by a factor
of 4. Asseen in Fipure 4273, we can perform this samphing rale conversion using @ sarnpling
rate expander followed by an appropriate lowpass filter. In this chapter, we have seen that
the lowpass filter could be implemented using the DFT if the filter is 2n FIR impulse re.
sponse. For this problem, assume that this filter bas an inpulse response &a] that s & + |
points long. Figure P8.70-1 depicts sach a svstem, where S[4] is the 40-point DFT of the
impulse response of the lowpass ler. Nobe that both vin] and p[a] are 48 -point sequences,

AM-point -
- t2 >
DFT v k|

[

. 4N point
1) - i
IDFT
Y[k s[nl

£l

Figure P8.70-1

(a) Specify the DFY #[&] such that the system in Figure PE.T0-1 implements the desired
upsamphing svstem, Think carclully abrout the phase of the values of k]

() It is also possible to upsample x[n] using the system in Figure PR.TO-2 Specily Sysiem
A in the middle box so that the 4N -point signal v|s] in this fipure is the same as vx]
in Figure PRT0-2. Nole that System A may consist of more than one operation,
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fe) Ts there o reason that the implementation in Figure PRT0-2 might be preferable w

Figure I'8.70-17
J‘b'-p:.]:il_ll o System & 4.’\"-p{__1im
DFl ; A Iy :
xl] g Yalkl ¥aln} Figure P3.70-2

8.71. Derive Eq. (8.153) using Eqs, {8.164) and (8.165).
B.72. Comsider the following procedure
(a) Form the sequence [r] = £2{2n] where za[n] is given by Eq. (8.166). This vields

ur] = x[2n] n=0,1.. ¥2-1
v —1—n]l=x2n+1], a=0,1,... . N/2-1,

{b) Compute V[i]. the ¥-point DFI of v[n].
Demonstrate that the following is troe:

¥ 2[k] = 2Refe— 2T EANY vy k=0,1, 00, L

_zziﬁn]u [ k(4"+l]:|. k=0,1,...,N -1,
n=k)

E{(2n + 1)
_EZx[n |:— 0 ) oy e e,
) S

Note that this algorithm uses N-poimt rather than 28-point DFTs as required in
Eq. (8.167). In addition, since vfn] is a real sequence, we can exploit even and odd
symmetries to do the computation of V[k] in one & /4-point complex DFT

RT3, Derive Lq. (8.136) using Egs. (8.174) and (8.157).

874, (a) Use Parseval’s theorem for the DEFL to derive o relationship between Z |.‘JL""I [k]lz
k

and Z x[n] 4,
n

(b} Use Parseval’s theorem for the DIFI to derive a relationship between E |.!E"‘?L.Fci|2

K
and E lxin] ;2.
L



